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Preface

The ongoing success of the Iberoamerican Congress on Pattern Recognition
(CIARP) reflects the growing need for developing new theory and applications
of pattern recognition, which is being confronted by many reseachers. The 11th
Iberoamerican Congress on Pattern Recognition (CIARP 2006) was the 11th
event in the premier series of research agenda-defining conferences on pattern
recognition in the Iberoamerican community. As in the previous years, CIARP
2006 attracted worldwide participation. The aim of the congress was to promote
and disseminate ongoing research and mathematical methods for pattern recog-
nition, image analysis, and applications in such diverse areas as computer vision,
robotics and remote sensing, industry, health, space exploration, data mining,
document analysis, natural language processing and speech recognition, to name
a few.

CIARP 2006, held in Cancun, Mexico, was organized by the Computer
Science Department of the National Institute of Astrophysics, Optics and Elec-
tronics (INAOE). The event was sponsored by the Advanced Technologies Ap-
plication Center of Cuba (CENATAV), the Mexican Association for Computer
Vision, Neurocomputing and Robotics (MACVNR), the Cuban Association for
Pattern Recognition (ACRP), the Portuguese Association for Pattern Recogni-
tion (APRP), the Spanish Association for Pattern Recognition and Image Analy-
sis (AERFAI), the Special Interest Group on Pattern Recognition of the Brazilian
Computer Society (SIGPR-SBC), and the Chilean Association for Pattern Recog-
nition (ACHRP). CIARP 2006 was endorsed by the International Association for
Pattern Recognition (IAPR).

Contributions were received from 36 countries. In total 239 papers were sub-
mitted, out of which 99 were accepted for publication in these proceedings and
for presentation at the conference. The review process was carried out by the
Scientific Committee, composed of internationally recognized scientists, all ex-
perts in their respective fields. We are indebted to them for their efforts and the
quality of the reviews.

The exciting technical programme formed by the selected contributed papers
was complemented by three invited keynote talks, given by:

– Gabriella Sanniti di Baja, Image Analysis Department of the Istitute of
Cibernetics “E. Caianiello”, CNR, Italy

– Petra Perner, Institute of Computer Vision and Applied Computer Sciences,
Germany

– Jim Bezdek, University of West Florida, USA

They enriched the conference with an interesting mix of theoretical and appli-
cation topics in pattern recognition.



VI Preface

We would like to thank the members of the Organizing Committee for their
enormous effort that resulted in these excellent conference proceedings. We trust
that the papers in this volume provide not only a record of the recent progress
in this rapidly moving field but will also stimulate future research on machine
perception for the benefit of industry, commerce, as well as the well-being of
society.

November 2006 José Francisco Mart́ınez-Trinidad
Jesús Ariel Carrasco-Ochoa

Josef Kittler
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Jesús Ariel Carrasco-Ochoa Computer Science Department, National
Institute of Astrophysics, Optics and
Electronics (INAOE), Mexico

Steering Committee
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Robersy Sanchez, Yves Van de Peer

A Theoretical Comparison of Two Linear Dimensionality Reduction
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Luis Rueda, Myriam Herrera

A New Approach to Multi-class Linear Dimensionality Reduction . . . . . . . 634
Luis Rueda, Myriam Herrera

Automatic Band Selection in Multispectral Images Using Mutual
Information-Based Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644
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Rodrigo Mungúıa, Antoni Grau

Probabilistic Shot Boundary Detection Using Interframe Histogram
Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726

Alvaro Pardo

A Probabilistic Approach to Build 2D Line Based Maps from Laser
Scans in Indoor Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

Leonardo Romero, Carlos Lara

Egomotion Estimation as an Appearance-Based Classification
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

Pedro Sánchez, Cornelio Yáñez, Jonathan Pecero,
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Abstract. Skeletonization is a way to reduce dimensionality of digital objects 
and is of interest in a number of tasks for image analysis. In this paper, efficient 
approaches to skeletonization of 2D and 3D digital objects are illustrated.  

1   Introduction 

Skeletonization is a process leading to the extraction of a medial representation of a 
digital object with lower dimension. Algorithms to compute such a medial 
representation have been called, besides skeletonization, also thinning and medial axis 
transformation, and the resulting set has received names such as medial line, medial 
axis transform, skeleton, and labeled skeleton. These medial representations do not 
necessarily coincide and are characterized by different properties. In this paper, we 
refer to skeletonization as to a process to compute a subset of the object, the skeleton, 
topologically homotopic to the object, spatially placed along the medial region of the 
object and, depending on the problem domain, expected to account for different 
geometrical and morphological properties of the represented object. In particular, all 
object parts regarded as significant in the problem domain should be reconstructed 
starting from the skeleton (i.e., the skeleton enjoys the reversibility feature).  

Skeletonization has been initially suggested to compute linear representations of 
2D digital objects. During the process, object pixels on the border of the object are 
changed to background pixels until a subset S of the object is obtained, which is a 
union of arcs and curves placed symmetrically with respect to the border of the object.  

The research on 2D skeletonization has been largely influenced by the work of 
Blum dealing with a geometry based on the primitive notions of a symmetric point 
and a growth process [1,2]. A point p of a continuous object at distance d from the 
boundary of the object is symmetric if at least two points of the boundary exist, 
having distance d from p. A maximal ball can be associated to every symmetric point 
p by growth of the symmetric point, where the maximal ball is the largest ball 
centered on p and contained in the object. The set of symmetric points, labeled with 
the radii of the associated maximal balls, constitutes the medial axis transform of the 
object. The union of the maximal balls coincides in shape and size with the object, 
thus the medial axis transform enjoys the reversibility feature.  

The medial axis transform is not necessarily a minimal coding of the object, since a 
maximal ball can be completely included by the union of other maximal balls. An 
object can often be reconstructed from proper subsets of its medial axis transform. 
Moreover, the medial axis does not necessarily reflect the topological properties of 
the object. For example, if a connected object consists of a number of balls tangent to 
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each other, its medial axis is the non-connected set consisting of the centers of the 
balls. Differently from the medial axis transform, the skeleton is a subset of the 
object, which includes, besides the centers of maximal balls (so that the skeleton 
enjoys the reversibility feature), also other elements necessary to guarantee that the 
object and its skeleton are homotopic. 

Reducing digital objects to lower dimensions is even more desirable in 3D. The 3D 
skeleton is either a set of 3D surfaces and curves (called surface skeleton, SS) or, if 
the object does not include cavities, it may consist only of 3D curves (called curve 
skeleton, CS). The basic idea underlying 3D skeletonization does not differ from the 
2D case: object voxels are changed to background voxels, provided that topology and 
geometry are not altered, until the skeleton is obtained. 

The literature in the field of skeletonization is very rich and different approaches 
can be followed to compute the skeleton. A well-known approach is based on the 
repeated use of topology preserving removal operations. These are applied border 
after border so as to have a skeleton centered within the object, and hence reflecting 
its geometrical features. A drawback of this approach, when the algorithm is 
implemented on conventional sequential computers, is that a number of image scans 
proportional to the object’s thickness is necessary to reach the goal, so that the 
computation time is quite large. A computationally convenient approach is based on 
the use of the distance transform of the object. In the distance transform, the layers 
(i.e., the sets of object elements at the same distance from the background) can be 
interpreted as the successive borders that characterize the object when this undergoes 
skeletonization by iterated removal of border elements. In principle, since all layers 
are available in the distance transform, the skeletal elements can be directly identified 
and marked in a small and fixed number of inspections of the distance transform.  

Both continuous and discrete approaches have been suggested in the literature. We 
will here focus on discrete approaches to skeletonization. A brief overview of 
different approaches can be found in [3,4]. This paper is organized as follows. In 
Section 2, preliminary notions are given. Sections 3 and 4 respectively deal with 2D 
and 3D skeletonization. Some concluding remarks are given in Section 5.  

2   Notions and Definitions 

We work with a binary discrete image I in square/cubic grid, where the object O is the 
set of 1’s and the background B is the set of 0’s. When working in the discrete space, 
some problems specific to this space and relevant for skeletonization have to be faced. 
It is well known that a different connectivity type has to be used for the object and for 
its complement (the background) to avoid topological paradoxa. The connectivity 
type depends on which, among the neighbors of a pixel/voxel, are considered as 
directly connected to the pixel/voxel at hand.  

In 2D, a pixel p has four neighbors sharing an edge with p, and four neighbors 
sharing a vertex with p. The 4-connectivity considers as connected to p the pixels 
sharing an edge with p, while the 8-connectivity considers both kinds of neighbors.  

In 3D, a voxel v has six neighbors sharing a face with v, twelve neighbors  
sharing an edge and eight neighbors sharing a vertex. Three connectivity types are 
hence possible: 26-connectivity, when all three kinds of neighbors are considered,  
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18-connectivity, when neighbors sharing a face or an edge are considered, and  
6-connectivity, when only the neighbors sharing a face are considered.  

If the same connectivity type is used for both O and B, a closed curve/surface 
would not divide its complement into disjoint parts, or an open curve/surface would 
divide its complement into disjoint parts. In the 2D discrete space, the 8-connectivity 
and the 4-connectivity are generally adopted for the object (and, hence, its skeleton) 
and for its complement, respectively. In the 3D space, the 26-connectivity and the  
6-connectivity are generally used for the object and its complement, respectively.  

A second problem, relevant for skeletonization, is related to the nature of the 
discrete space. In correspondence with regions whose thickness is expressed by an 
even number of pixels/voxels, the set of centers of maximal balls is 2-pixel/voxel 
wide. Thus, if a discrete solution to skeletonization is desired, the resulting set (called 
nearly-thin skeleton) can locally be 2-pixel/voxel wide. Alternatively, the nearly-thin 
skeleton can be reduced to a 1-pixel/voxel thick set by means of a post-processing, 
generally called final thinning, but in this case the complete reversibility is lost, since 
a number of centers of maximal balls are unavoidably removed from the nearly-thin 
skeleton. The loss in object recovery starting from the unit-wide S and SS exclusively 
regards pixels/voxels on the border of the original object and, as such, is generally 
considered as acceptable. However, if the 3D curve-skeleton CS is computed, 
reversibility is generally no longer possible, due to the very large number of centers of 
maximal balls removed from SS to reduce it to CS.   

The discrete distance between two elements p and q is the length of a shortest path 
from p to q. The degree of approximation to the Euclidean distance depends both on 
the unit moves used to build the path, and on the weights assigned to the unit moves, 
when these have different Euclidean lengths. A thorough investigation of the distance 
transforms in 2D and 3D, as well as of weight selection can be found in [5,6]. A good 
approximation is obtained in 2D by using the weights we=3 and wv=4, for the edge- 
and the vertex-neighbors respectively, and in 3D by using the weights wf=3, we=4 and 
wv=5, for the face-, the edge- and the vertex-neighbors respectively. For the city-

block distance in 2D it is we=1 and wv=∝, and for its 3D equivalent distance it is 

wf=1, we=∝ and wv=∝.  
The distance transform DT of the object O with respect to the background B is a 

replica of the image I, where the elements of O are labeled with their distances from 
B, computed according to the chosen distance function.  

A center of a maximal ball, CMB, is an object element whose associated ball is not 
included by any other single ball in the object. To check this condition, a comparison 
among the label of the element itself and the labels of its neighbors taking into 
account the relative weights is sufficient [7]. An object element p is center of a 
maximal ball if for every neighbor q, it is q < p+wi, where i={f, e, v} depending on 
whether q is a face-, an edge- or a vertex-neighbor of p. Of course, only edge- and 
vertex-neighbors exist in 2D. 

A hole in 2D (a cavity in 3D) is a maximal 4-connected (6-connected) component 
of background elements fully surrounded by object elements.  

A tunnel exists in a 3D object if a path can be found in the object that cannot be 
deformed to a single voxel [8]. 
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An object element p is simple if the object including p is homotopic to the object 
deprived of p. Simplicity of p means that the numbers of holes and object components 
in 2D (the numbers of cavities, object components, and tunnels in 3D) are the same, 
independently of whether p is in the object or in the background. 

An object element is a border element in the 2D case (in the 3D case) if it has at 
least an edge-neighbor (a face-neighbor) in the background. Otherwise, an object 
element is and inside element. 

An end point is an element of S in 2D (of  CS in 3D) having only one neighbor in 
the skeleton. 

3   Skeletonization in 2D 

The classical approach to skeletonization is based on the repeated use of topology 
preserving removal operations. Removal of a pixel p should not create holes, which 
requires that p has at least an edge-neighbor in the background. Disconnections 
should not occur, which requires that p has exactly one 8-connected component of 
object neighbors. Simple arithmetic checks, such as the crossing number [9] and the 
connectivity number [10], can be used to respectively count the number of 4-
connected components of background elements and the number of 8-connected 
components of object elements in the neighborhood of p. Finally, in order the skeleton 
reflects the geometrical properties of the object, removal of p should be permitted 
only provided that p is not necessary to prevent shortening of peripheral branches in 
the resulting skeleton.  

By following the iterated approach, skeletonization requires a number of iterations 
proportional to the maximal thickness of the object O. If sequential computers are 
used, each iteration consists of two sub-iterations, respectively dealing with the 
identification of the current border, and with the sequential deletion of suitable border 
pixels, i.e., pixels that, when inspected, are not necessary to preserve topology and are 
not end points. The process is repeated until no border pixel can be removed from the 
current border. At this stage of the process, all object pixels are expected to be border 
pixels; some exceptions are discussed later on in this section.  

End point detection is a key task to guarantee isotropic object compression and to 
avoid unwanted shortening of branches in the resulting skeleton. Every significant 
protrusion of the object should be mapped into a skeleton branch. To achieve a correct 
mapping, the tip of each protrusion should be identified and an element of the tip 
should be prevented from removal, so that it will become an end point in the skeleton. 
Unfortunately, pixel removal often occurs during a blind sequential process, that uses 
the property satisfied by the end points in the resulting skeleton, i.e., the property of 
having only one neighbor in the skeleton, as a criterion to detect the end points during 
the process. Thus, in correspondence with identical configurations end points may be 
originated or not, depending on the order in which the chosen sequence of removal 
operations is applied to the object's elements. 

 To solve this problem, the border configurations corresponding to object 
protrusions should be identified at the beginning of all iterations of the skeletonization 
process, before applying the removal operations. Effective criteria can be based on the 
distance of border elements from the inside of the object. Only border subsets 
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including elements at distance from the inside larger than a given threshold 
correspond to significantly elongated object protrusions and, hence, their pixels 
should be prevented from being removed [11]. Alternatively, effective criteria can be 
based on the selection and preservation of all centers of maximal balls in DT. In fact, 
in correspondence with the tip of an object protrusion, a maximal ball certainly exists, 
whose border fits the border of the object protrusion for a (large) connected part. The 
center of such a maximal ball can be selected as the end point of the branch into 
which the protrusion is mapped. In both cases, the components of skeletal pixels 
found at a given iteration are likely not to be of unit width. The final identification of 
the end points is actually postponed to the final thinning, when the nearly-thin 
skeleton is reduced to unit width.  

From an operative point of view, the pixels that should not be removed at the k-th 
step of the iterated skeletonization process (being necessary for topology preservation, 
or belonging to border subsets corresponding to significant protrusions) are located 
where the current border Ck is locally nearly-thin, i.e., where Ck folds on itself. These 
pixels are called multiple pixels, since they prevent Ck from being simple.  

In the digital plane a simple 8-connected curve is a set of object pixels dividing the 
background into two connected subsets, respectively called the outside and the inside 
of the curve. Pixels of a curve are neighbors of both the inside and the outside of the 
curve. Since both the inside and the outside of the curve consist of background pixels, 
the 4-connectness is used for both sets. On the other hand, when the curve is actually 
the border of an object, the inside consists of object pixels while the outside consists 
of background pixels, so that 8-connectedness and 4-connectedness are respectively 
used for the inside and the outside.  

In [12], we have proved that the border of an object is simple if and only if both 
conditions below are satisfied for each of its pixels p: 

A1 A pair of opposite edge-neighbors of p exists, such that one of these 
neighbors belongs to the inside of the object and the other neighbor belongs to the 
background.  

A2  A border pixel v, vertex-neighbor of p, does not exist such that the two edge-
neighbors of p that are also edge-neighbors of v both belong to the background.  

If the border is not simple, then the border pixels for which any of the above 
conditions does not hold are multiple pixels. These pixels are the only ones that, at 
each iteration of skeletonization, cannot be removed. An end point detection criterion 
is not necessary, when using conditions A1-A2. In fact, the pixel(s) delimiting a 
peripheral (nearly-thin) part of the border protruding from the object are definitely 
multiple due to condition A1 (they cannot have an edge-neighbor in the inside). Thus, 
conditions A1-A2 are more powerful within skeletonization than removal operations 
based on the notion of simple point. In fact, in the latter case an end point detection 
criterion should be used to avoid unwanted shortening of peripheral branches, since 
the end points are simple points.  

The process terminates when the current border is completely made up of multiple 
pixels. Ordinarily, this will occur when the current inside is empty. However, in some 
pathological cases, a border consisting entirely of multiple pixels can exist, while the 
inside is not empty. Examples of pathological cases are shown in Fig.1. In both cases, 
the current border consists exclusively of multiple pixels, but the inside is not empty.  
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Fig. 1. Object pixels (squares) on a white background. Dots indicate multiple pixels. Light gray 
and dark gray denote removed object pixels and remaining inside pixels, respectively.  

The two conditions A1-A2 can be used more efficiently by employing the city-
block distance transform DT of the object during the iterative skeletonization process. 
In this way, the sub-iteration dealing with current border identification would be no 
longer necessary, since the DT keeps track of all successive borders. The border of 
the object at the k-th iteration includes all pixels with distance label k in DT, as well 
as pixels with distance label smaller than k, if these latter pixels were not removed 
during previous iterations. Pixels with label greater than k are inside pixels at the k-th 
iteration. The background is, at all iterations, the set of removed pixels, i.e., the set of 
0’s. With this interpretation, the skeletonization algorithm can be sketched as follows. 

 
Compute DT. Let m be the maximal distance label in DT 

for k = 1, m 
Remove every pixel p with distance label k, which satisfies conditions A1 

and A2, when p is inspected. 
 
It is easy to see that if p is a CMB, condition A1 fails. In fact, no edge-neighbor of 

p can be labeled more than p, so that p cannot have an edge-neighbor in the inside of 
the object. Thus, the skeleton includes all the CMBs and complete recovery of the 
object is possible. The skeleton is nearly-thin, since the set of the CMBs is likely to be 
2-pixel thick in some parts.  

If the unit-wide S is desired, final thinning is performed by means of topology 
preserving removal operations. Since inside pixels can exist in the set of skeletal 
pixels, e.g., for pathological cases or in correspondence of branches crossing each 
other, only pixels with at least one edge-neighbor in the background are processed, to 
avoid creation of spurious holes. We suggest a removal operator using the four masks 
shown in Fig.2. A skeletal pixel p with an edge-neighbor in the background is 
removed if at least one mask matches the neighborhood configuration of p. 

 

Fig. 2. Masks for final thinning. Black squares and gray squares denote skeletal pixels and 
background pixels, respectively. White squares are don’t care pixels, but among them at least 
one edge-neighbor of p in each mask must belong to the background. 

A post-processing aimed at removal of noisy branches is generally also 
accomplished (pruning). Of course, both final thinning and pruning will remove from 
the skeleton some CMBs. As a consequence, complete object recovery is not possible, 



 Skeletonization of Digital Objects 7 

starting from the unit-wide pruned S. However, the loss in recovery can be kept under 
control by using context dependent pruning [13].  

The performance of the algorithm can be seen with reference to Fig.3. The skeleton 
has been reduced to unit thickness and pruning of short branches has been applied. 
The black pixels in proximity of the border of the object in Fig. 3 are those whose 
recovery is not possible. 

 

Fig. 3. A mug in three different orientations. The “city-block” skeleton is computed by using 
conditions A1 and A2. 

A different approach to skeletonization can be followed, by exploiting the use of 
the distance transform. This approach is valid for DTs computed by using any pair of 
weights we and wv. The DT is interpreted as a landscape, where the label of a pixel 
indicates its height. Some constraints exist on the heights of neighboring pixels, 
whose labels can differ only to a limited extent (at most we for edge-neighbors, and at 
most wv for vertex-neighbors). Thus, the landscape is characterized by gentle slopes 
converging towards at most two-pixel wide ridges and peaks. The CMBs are located 
on peaks or ridges and can be detected in one inspection of the DT. Other skeletal 
pixels detectable in the same inspection of the DT are placed in saddle configurations. 
These pixels have in their neighborhood both (4-connected) components of neighbors 
with smaller label, and (8-connected) components of pixels with larger label. Indeed, 
due to the discrete nature of the digital space, in correspondence with parts of the 
object with even thickness, a special case of saddle configuration occurs, where the 
pixel p at hand is part of a 2×2 block of pixels all with the same label.  

The set consisting of the CMBs and the saddle pixels is not necessarily connected, 
even for a connected object. Thus, to ensure skeleton connectedness, a path growing 
process is used. Paths originate from already detected skeletal pixels and proceed in 
the direction of the distance gradient upwards, until another already detected skeletal 
pixel is found. When determining the gradient, the weights wi used to measure the 
unit moves are taken into account. If p is an already detected skeletal pixel and q is a 
neighbor of p labeled more than p, the gradient to q from p is grad q = (q-p)/wi. The 
neighbor of p that maximizes the gradient is the next pixel in the path.  

This skeletonization process is computationally very convenient, as it requires only 
two scans to compute the DT, one scan of the DT plus a path growing process to 
detect all skeletal pixels, independently of the object’s thickness. For more details, see 
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Fig. 4. The skeleton obtained in one inspection of the DT computed with we=3 and wv=4 

[13,14]. Also in this case, the skeleton is nearly-thin and the same final thinning 
already discussed can be employed to obtain the unit-wide skeleton.  

An example of the performance of this algorithm by using the DT with weights 
we=3 and wv=4 is given in Fig.4. 

4   Skeletonization in 3D 

In 3D, objects can be i) directly reduced to their curve skeletons, e.g., [15,16], or ii) 
they can be first reduced to their surface skeletons, e.g., [17,18], which are then 
furthermore compressed to the curve skeletons, e.g., [19,20]. Since object recovery is 
possible only from the surface skeleton, we prefer algorithms of the latter type. 

4.1   Surface Skeletonization 

The iterated approach to surface skeletonization requires the identification, iteration 
after iteration, of the surface bordering the object. Topology preserving removal 
operations can then be applied. Analogously to the 2D case, where care has to be 
taken to avoid unwanted shortening of skeleton branches corresponding to significant 
object protrusions, in 3D removal should not affect peripheral surfaces into which 
object parts should be mapped. Again, preserving from removal the voxels that are 
CMBs is a convenient way to achieve this goal. 

Also in 3D, topology preserving removal operations can be based on the notion of 
simple point [21,22], by taking into account that, besides cavities and disconnections, 
also tunnels have to be considered in the definition of point simplicity. Cavities are 
not created when removing v from a 26-connected object, if v has at least a face-
neighbor in the background. Unfortunately, simple arithmetic checks, analogous to 
the crossing number or the connectivity numbers available in the 2D case, do not exist 
to count the number of components in the neighborhood of a voxel v. The number, 
N26, of 26-connected components of object voxels and the number, N6, of 6-connected 
components of background voxels have to be computed by processing the 3×3×3 
neighborhood of v. These numbers can be used to determine whether removal of v 
causes disconnections. Moreover, since removal of v should prevent creation of 
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tunnels, also the number, N6
18, of 6-connected components of background voxels, 

having v as face-neighbor and computed in the 3×3×3 neighborhood of v deprived of 
the eight vertex-neighbors, has to be computed. Due to the heavy computation of N26, 
N6 and N6

18, alternative removal operations that limit the use of the above numbers 
are of interest. 

The conditions A1-A2 defined in 2D, respectively involve edge- and vertex-
neighbors of a pixel p. In 3D, face- and edge-neighbors of a voxel v play the role of 
the edge- and vertex-neighbors of a pixel p in 2D, respectively. By taking into 
account that also a third kind of neighbor of a voxel v exists in 3D, the vertex-
neighbor, the conditions A1-A2 can be extended to the 3D case, so originating three 
conditions B1-B3 to detect multiple voxels. A voxel v is not removable if any of the 
following conditions is satisfied: 

B1  No pair of opposite face-neighbors of v exists such that one is an inside 
object voxel and the other is a background voxel.  

B2  There exists a border voxel e, edge-neighbor of v, such that the face-
neighbors of both e and v are background voxels.  

B3  There exists a border voxel x, vertex-neighbor of v, such that the six common 
neighbors of both x and v are background voxels. 

In Fig.5, the basic configurations involved in conditions B1-B3 are shown. Of 
course, rotated and mirrored configurations have to be taken into account. 

 

 
 
 

Fig. 5. Voxels involved in Condition B1, left, B2, middle, B3, right. White, gray and black 
cubes denote background, border and inside voxels, respectively. 

If the conditions B1-B3 are sequentially checked for the voxels of the current 
border, iteration after iteration, a nearly-thin surface skeleton is obtained, as soon as 
all voxels in the current border are multiple voxels. We point out that the obtained 
surface skeleton includes the voxels that would be detected as CMBs in the DT 
computed by using the weights wf=1, we=∝ and wv=∝. These voxels are in fact 
detected by condition B1 (analogously to the 2D case, where the CMBs in the city-
block DT were detected by condition A1). 

If a unit wide surface skeleton is desired, final thinning should be accomplished. 
Since the only voxels that should be removed by this process are those located where 
the object is 2-voxel thick in face-direction, we should detect the existence of such 
subsets in the nearly-thin surface skeleton. To this purpose, we use a 4×1 mask 
consisting of four voxels aligned along one of the three principal directions (top-
bottom or bottom-top, left-right or right-left, and front-back or back-front). In each 
mask, the two external voxels are background voxels and the two internal ones, say v1 
and v2, are object voxels. The voxels of the surface skeleton are sequentially inspected 
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and if the current voxel plays the role of v1 in the above 4×1 mask, the voxel is 
removed provided that conditions B2 and B3 do not hold. This is, in fact, sufficient to 
avoid unwanted reduction of thin peripheral surfaces as well as disconnections. 

As an example of the performance of the above algorithm, see Fig.6. 

 

Fig. 6. A 3D object, left, and its surface skeleton, right, obtained by using conditions B1-B3 

The distance transform with weights wf=1, we=∝ and wv=∝ can be used, 
analogously to the 2D case, to reduce the computational effort of the above algorithm. 
In fact, by computing the DT all the borders that will successively characterize the 
object are available. As in 2D, at the k-th iteration, the border consists of voxels with 
distance label k, as well as of voxels with smaller distance label that have been 
prevented from being removed at previous iterations. The inside includes all voxels 
with distance label larger than k, and the background the voxels set to 0. 

Efficient methods to furthermore exploit the use of the DT with the purpose of 
computing the surface skeletons in a fixed and small number of scans have been 
suggested only for the DT computed with weights wf=1, we=∝ and wv=∝ [23]. 

4.2   Curve Skeletonization 

Although curve skeletonization is not reversible since a number of CMBs have 
unavoidably to be removed from the surface skeleton SS to obtain the curve skeleton 
CS, this process is still of interest. In fact, the curve skeleton is a useful representation 
of the object, provided that it at least maintains some shape information.  

To obtain the curve skeleton, an iterated removal process can be applied to the 
surface skeleton to remove voxels located along the border of the surface skeleton. 
Thus, a classification of the voxels of the surface skeleton is necessary [20]. Four 
types of voxels can be identified: internal, edge, curve, and junction voxels. 
Obviously, internal voxels should not be removed, to avoid creation of spurious 
tunnels. Curve voxels have to be preserved from removal, since they already 
constitute parts of the desired curve skeleton. Junction voxels have also to be 
preserved to avoid disconnections. Thus, the only voxels that should undergo the 
removal process are the edge voxels. Due to voxel removal during an iteration, some 
voxels initially classified as internal or junction voxels are likely to become edge 
voxels at the successive iteration and, as such, should undergo the removal process. 
However, the basic idea behind curve skeletonization is to postpone as much as 
possible removal of the voxels classified as junction voxels in the initial surface  
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skeleton, since junctions between different subsets of the surface skeleton retain 
significant shape information. Thus, curve skeletonization is performed in two phases. 
During the first phase, removal of voxels classified as junction voxels in the initial 
surface skeleton is prevented, even if those junction voxels are transformed into edge 
voxels at some iteration. During the second phase, all current edge voxels are 
candidate to removal.  

Topology preserving removal operations, based on the computation of N26, N6 and 
N6

18, are used during both phases. The obtained curve skeleton is at most two-voxel 
thick, is centered within the surface skeleton, and is homotopic to the surface skeleton 
(and, hence, is homotopic to the original object). No end point detection criterion is 
necessary. In fact, end points are automatically preserved, due to their classification as 
curve voxels whose removal is always prevented. 

To reduce the nearly-thin curve skeleton to unit width, final thinning has to be 
applied. The 4×1 mask introduced in Section 4.1 can be used to identify voxels 
candidate to removal. These voxels are removed only if this does not alter topology. 
Actually, two-voxel thickness of the curve skeleton can also be due to pairs of voxels, 
which are edge-neighbors of each other. Thus, final thinning makes use of different 
strategies, depending on whether two-voxel thickness is due to pairs of skeletal voxels 
that are face- or edge-neighbors of each other. Finally, pruning some of the peripheral 
branches is generally done [24]. Pruning is performed by tracing any peripheral 
branch and by removing its voxels, provided that the branch includes a small 
percentage of significant voxels, where the notion of significance is still based on the 
voxel classification accomplished on the surface skeleton. 

In Fig.7, a 3D object, its surface skeleton, the nearly-thin curve skeleton, and the 
unit-wide curve skeleton before and after pruning are shown. 

                         

Fig. 7. From left to right: a 3D object, the surface skeleton, the nearly-thin curve skeleton, the 
unit-wide curve skeleton, and the pruned unit-wide curve skeleton 

5   Concluding Remarks 

Skeletonization is a convenient process to obtain an object representation with 
reduced cardinality and suited for image analysis. In the 2D case, the skeleton is 
union of arcs and curves placed symmetrically within the object. It has been used in 
many applications, e.g., in optical character recognition. In the 3D case, the skeleton 
can be either a surface skeleton, or a curve skeleton. The latter can be computed only 
for objects without cavities. The 3D skeleton is union either of surfaces and curves, or 
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of curves. It has been used in a number of applications, e.g., for the analysis of 
angiographies starting from magnetic resonance images. 

In this paper, approaches to 2D and 3D skeletonization have been presented and 
algorithms to efficiently compute the skeleton have been briefly illustrated. In 
particular, it has been shown that the computational load can be significantly reduced 
when using the distance transform of the object. 
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Maximin Initialization for Cluster Analysis 

 In this note we introduce, analyze and demonstrate a new initialization procedure, 
called the maximin initialization (MMI) algorithm, which is applicable to any 
clustering method that requires an initial guess for a partition of the data.  The core of 
the proposed initialization strategy appeared as one part of the progressive sampling 
scheme used in the eNERF (extended non-Euclidean relational fuzzy c-means) 
algorithm of Bezdek et al. [1] for clustering large relational data sets. MMI is also 
used in the sVAT (scalable visual assessment of tendency) scheme of Hathaway et al. 
[2], which produces image displays of large unlabeled data sets.  However, neither of 
these papers discussed the use of MMI in the present context as a standalone tool for 
initialization of clustering algorithms. In a nutshell, MMI systematically identifies 
objects that are distributed throughout the data, and uses the identified objects to 
inexpensively generate an initial partition of the entire data set.  We will prove that 
the MMI partition is exact if the data set consists of compact and separated clusters in 
the sense of Dunn [3].  

{o1,…, on} into c self-similar subsets based on available data and some well-defined 
measure of (cluster) similarity. When each object in O is represented by a (column) 

vector x in s , the set X = {x1,…,xn}  s
 is called an object data representation of 

O.  The kth component of the ith feature vector (xki) is the value of the kth feature (e.g., 
height, weight, length, etc.) of the ith object.  It is in this data space that practitioners 
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generally, the relational data can be a matrix of similarities based on a variety of 
measures (Borg and Lingoes [4];  Kendall and Gibbons [5]). 

partition of the data is the family of c-means models. There are hard (Ball and Hall 
[6]), fuzzy (Bezdek [7]) and possibilistic (Krishnapuram and Keller [8]) c-means 
models and algorithms for object data (HCM, FCM, PCM), and corresponding duals 
of each of these for relational data (Hathaway et al., [9]).  The new initialization 
procedure can be used with all versions of c-means. We use only HCM and FCM in 
this note, so clustering is done on object data. 

matrix U.  The sets of (nondegenerate)  fuzzy and hard c-partitions of n objects are 
denoted by Mfcn and Mhcn: 

 
Mhcn = U Mfcn | uik {0,1}{ } ; and 

 
Mhcn = U Mfcn |uik {0,1}{ } .  

 

The element uik of a partition matrix U represents the degree or extent to which object 
ok (or datum xk) belongs to cluster i.  The crucial difference between the two sets in 
(1) is that fuzzy partitions, which were first used by Ruspini [10], allow memberships 
in [0,1], so that (partial) membership of a datum can be shared between clusters, while 
hard partitions require  membership values to be 0 or 1, so each datum is 
unequivocally placed into one and only one of the c clusters. 

member of the family of functionals 

 

Jm (U,V) = uik
m

k=1

n

i=1

c
dik
2

, 

 

where: dik
2
= [d(xk, v i )]

2
 is the distance from xk to vi in any inner product induced 

norm, n = X , m  [1, +  ) is a user- defined fuzzification  constant, c is the number 

of clusters assumed, U is in Mfcn (m > 1) or Mhcn (m = 1), V = [v1,…,vc] is a matrix 

One  of  the  better-known families of clustering models that must be initialized by a 

A partitioning of the data (or objects) into c clusters is represented by a c⋅n partition 

The  hard  and  fuzzy c-means algorithms  arise  by  (approximately)  minimizing  a 

 

whose columns are c prototypes in 
s
, and d(vi, xk) measures the distance between 

data point xk and prototype vi in any inner product induced norm metric. Zeroing the 

Lagrangian of Jm results in the following first order necessary conditions (m = 1 for 

HCM, m > 1 for FCM): 

 

HCM V Update : vi = uik
k=1

n
xk uik

k=1

n
i 

 

HCM U Update :  uik =
1; dik < djk j i
0; otherwise

i,k  

 

(1)

(2)

(3)

(4)

(5)
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The iteration can be initialized using either a partition U or matrix of prototypes V. 
For example, for either algorithm, a current U is used to update the prior set of 
prototypes V = [v1,...,vc], which are in turn used to calculate a new partition U, and 
then successive estimates (of either set of variables) are compared to a termination 
threshold. The theory of this alternating optimization (AO) procedure is given in 
Bezdek and Hathaway [11]. Many authors have considered the sensitivity of AO to its 
initialization. Bezdek et al. [12] contains an extensive discussion of this issue for the 
c-means algorithms. Our current contribution to this ongoing body of research is a 
new initialization scheme that has some theoretical substance - viz., the MMI 
algorithms produces an initial guess for U that is exact when X (or D) contains c 
compact, separated clusters in the sense of Dunn [3]. In the experiments conducted in 
Section 3, initialization is always done using an MMI partition U  Mhcn. 

2 The Maximin Initialization Algorithm 

The core of MMI involves selecting c distinguished objects  om1 ,om2 ,...,omc  that are 

distributed throughout the set of objects O = {o1,...,on}, relative to the available 

FCM V Update  : vi = uik
m

k=1

n
xk uik

m

k=1

n
i 

FCM U Update : uik = dik d jk( )
2

(m 1)

j=1

c
1

 i,k  

measure of dissimilarity between pairs of objects in O.  If a relational dissimilarity

 

matrix D is available, then this is used directly to measure dissimilarity of pairs of

 

objects. When using object data set X = {x1,...,xn}  s , we pick a metric d(  ,  ) on

 

s s  and use d(xj, xk) as a measure of dissimilarity between oj and ok.  The first

 

distinguished object selected is simply
1
m
o = o1. The second chosen (

2
m
o ) is the

 

object in O most dissimilar to 
1
m
o .  All subsequent choices of distinguished objects 

involve picking the object with the largest minimum dissimilarity to all of the 
previously selected objects.  This selection of distinguished objects is formally 
described in Step 1 of the statement of the MMI.  The second step of the algorithm 
computes the (hard) partition that corresponds to grouping each object into the same 
class as its nearest distinguished object.  For the case of object data, this amounts to 
doing (2b) with vi = 

i
m
x , for i = 1,...,c.  The MMI algorithm follows. 

MMI: Maximin Initialization Algorithm 

 Choose The number of clusters c, 1 < c < n; and, s s  if the available data are 
object data  X, an inner product induced metric d(  ,  ) on. 

 
Input Object data X = {x1,...,xn}    or dissimilarity data D =  [dij]    n n . 

(6)

(7)

:

:
s
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Step 1 Select the indices m1, ..., mc of the c distinguished objects. 
Select m1 = 1 (Remark: this is the "object seed";m1 = 1 is arbitrary)  
 (If the data are X, calculate dissimilarities { d1,k }, k = 1 to n.) 
Initialize the minimum distance array 1

= [ 1
1,..., n

1 ] = [d1,1, ..., d1,n] 
For t = 2,…, c: 

 Update t  [min{ 1,m
1t

1 1t
d, }, ...,min{ n,m

1t
n 1t

d, }] 

 Select mt  }{maxarg t
j

nj1

 

 (If the data are X, calculate dissimilarities {dmt ,k } , k = 1 to n.) 

Next t 

Step 2 Cluster each object in {o1, ..., on} with its nearest distinguished object. 

 Clear the initialization matrix array  U = [uik]   cn : uik = 0  i,k 
 For k = 1,..., n:   
  Select i  }d{minarg k,m

cj1
j

and then set uik = 1 

 Next k 
 

Output  A crisp c n initialization partition U in Mhcn 
 
If initialization (of the c-means algorithms)  by a set of c prototypes rather than by a 
partition is desired, then it is only necessary to execute Step 1 and terminate with vi = 

i
m
x ,  for i = 1,...,c. The name maximin initialization follows by noticing that the loop 

in Step 1 can be "unrolled" to show that mt is selected as an index in {1,...,c} that 
maximizes the minimum of the distances to the previously selected distinguished 
objects; i.e., mt is a solution of 

 

argmax{min{dm1, j,dm2, j,K,dm t 1, j
1 j n

}}

 Any tie breaking strategy can be used if arg max of Step 1 or arg min of Step 2 does 
not specify a unique index.  The crisp clusters found at Step 2 of MMI are produced 
by labeling each of the (n-c) remaining objects with the nearest prototype (1-np) rule. 
Seen in this light, Step 2 of MMI is just a crisp 1-np classifier for the objects in the 
data that are not selected in Step 1. Finally, notice that MMI requires the user to 
specify a value for c, the number of clusters that a subsequent clustering algorithm 
will seek in the data. MMI produces its initialization for any 1 < c < n, and does not 
offer an uninformed user any means for inferring a "best" choice for this important 
parameter. This important problem - the cluster validity problem - is addressed, for 
example, by the sVAT algorithm of Hathaway et al. [2]. In this note we simply pick 
and use (the "correct") value of c for various examples to illustrate how MMI then 
finds a good initialization for subsequent clustering. In practice, the data should be 
submitted to an algorithm such as sVAT before using MMI, so that initialization is 
done at a reasonable value of c. 

cheaper for relational data D than for object data X.  For object data, Step 1 requires 
MMI  has about  the same computational  cost  as one  iteration of  HCM, and  is a bit 

(8)

:
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calculation of cn distances in s , which is O(scn). Then MMI performs [(c-1)n] min 
operations involving 2 elements each, and (c-1) max operations involving n elements 
each.  In Step 2, we must do n min operations involving c elements each, which is 
exactly the cost of performing (2b) one time. Overall then, MMI is O(scn) for object 

data.  For relational data, we don't have to calculate the cn distances in s  because 
the dissimilarities are already available as elements of the input data set D. Thus, 
MMI is O(cn) when its input is relational data set D. 

initialization is exact.  To formalize this, we recall the notion of compact and 
separated clusters defined by Dunn [3].  For a set of objects O = {o1,...,oN} with 
corresponding relational dissimilarity data D, we say that a partitioning O(1), O(2), ..., 
O(c) of O is compact and separated (CS) relative to D if each of the possible intra-
cluster distances is strictly less than each of the possible inter-cluster ones.  When the 
data has this property, we say simply that "O can be partitioned into c CS clusters". 
The main result (Theorem 1) is that if the data consists of c CS clusters, and MMI is 
applied to it with c as the specified number of distinguished objects, then the initial 
partition produced by MMI will correctly partition O into these c CS clusters.  Based 
on this property - perfect initialization in the compact and separated case - we expect 
MMI to provide good initializations in most (non-CS) cases.  We will investigate this 
expectation empirically in Section 3. 

 

Theorem 1  Suppose that the set of objects O = {o1,...,oN}, represented by either an 

object data set X (with metric d(  ,  ) on s ) or a relational dissimilarity matrix D, 
can be partitioned into c  1 CS clusters.  Then the crisp MMI c-partition of X (or D) 
partitions O into its c CS clusters.  
 
Proof.   We denote the dissimilarity between objects oj and ok by djk = dis(oj,ok), 
understanding that djk either comes directly from the matrix D if relational data is 
available or is calculated as djk = d(xk,xj) if object data is available.  Also, we denote 
the c CS clusters of O = {o1,...,on} by O(1), O(2), ..., O(c), and when convenient, we 

indicate the cluster of a datum or object by a superscript in parentheses; e.g., )2(
7o  

indicates that the seventh object is in the second CS cluster. First we prove that Step 1 
of MMI selects exactly one distinguished object from each of the c CS clusters.  The 
result is trivially true for c = 1.  Now, suppose we can partition On ={o1,...,on} into c  
2 CS clusters O(1), O(2), ..., O(c).  Since the clusters are compact and separated, it is true 
that for 1  i  h  c and applicable k, p, j, we have 

We first select object o1, and without loss of generality,  assume that it belongs to O(1).  
Then the initial search array 1 is defined (either using elements of D or d(  ,  ) on 
corresponding object vectors) as 1 = [dis(o1,o1),  ... , dis(o1,on)]  =  [d11,...,d1n] . Then 
applying (9) with i = 1, we see that the maximum element in 1 (and therefore the 
choice of the second distinguished feature) must correspond to an object in O(2), ..., 

The main theoretical result for MMI is that if the clusters are well separated,  then the 

.

(9)dkp = dis(ok
(i),op

(i)) < dis(ok
(i),o j

(h)) = dkj .
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exactly one distinguished object for c = 2, and we now continue for the case of c  3.  
Suppose the max occurs in the second entry of 1 so that the next object selected is o2; 
and further suppose that o2 belongs to CS cluster O(2).  The updated search array 2 is: 

           2
= [min{ 1

1,d21},…,min{ n
1 ,d2n}] . 

Suppose that a maximum entry is found in the third component of  
2
 and that o3 is 

the third object selected (m3 = 3).  We will prove that o3 cannot belong to O(1) or O(2) 
by contradiction. So, assume that o3 does belong to either O(1) or O(2), say O(1).  
Selection of o3 implies that, for all j = 1 to n: 

 

min{
1

3
, d23}  = min{dis(o1, o3), dis(o2, o3)}   min{dis(o1, oj), dis(o2, oj)} 

O(c) (but not in O(1)).  This completes the proof that each CS cluster is represented by 

But (10) implies that, for j = 1 to n: 

dis(o1, o3)    min{dis(o1, oj),dis(o2, oj)} 

 
Now, let j  4 be any index such that oj is in neither O(1) nor O(2).  (At least one such j 
exists since c  3 and for k = 1, 2, 3 we have ok  O(1)  O(2).)    Without loss of 
generality we suppose that j = 4 satisfies (7) with o4  O(3), and that  dis(o1,o4)  
dis(o2,o4)).  Then (11) gives dis(o1,o3)    dis(o1,o4) ,where o1  O(1), o3  O(1), and o4 

 O(3); but this contradicts (9) for i = k = 1, p = h = 3, and j = 4.  Thus, the third object 
chosen cannot be in a previously represented cluster. We can now repeat this 
argument for the 4th, 5th, …, up to the cth choice.   This establishes our claim that each 
CS cluster is represented by (i.e., contains) exactly one of the distinguished objects 

c21 mmm o,...,o,o . Finally, since Step 1 of MMI has selected one distinguished object 

from each of the c CS clusters, (5) implies that for i = 1,...,c, each object in cluster O(i) 
is grouped with object 

im
o in Step 2.  Thus, our construction produces a crisp c-

partition of O = {o1,...,on} into its c compact and separated clusters.  

Theorem 1 guarantees that MMI produces an initial crisp c-partition corresponding to 
c compact and separated clusters whenever c CS clusters exist in the data. We assert 
that this provides an excellent initialization for (any) partitioning algorithm that 
initializes at U in Mhcn. Indeed, when X (or D) has c CS clusters, the MMI c-partition 
of it is part of a necessary pair for J1 at (3, m=1) - i.e., it is part of an HCM solution.    
The experiments we present in the next section investigate whether MMI also 
produces useful initializations when the clusters are not w1ell separated. 

3 Numerical Examples  

In this section we test the MMI algorithm with HCM and FCM.  The data sets we 

choose are samples drawn from mixtures of  c = 4 normal distributions in either 2  
or 10 . Thus, the data sets used for each figure and simulation in this section 
nominally have c = 4 clusters (or components); and all are of size n = 1000.  The 

    

(10)

(11)
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parameter we use to control the amount of overlap between the four clusters is the 
(common) variance  2 of the component normals.  We call the two types of data sets 
used DIAGONAL data and SQUARE data,  terms chosen to (roughly) refer to the 
arrangement of clusters. The DIAGONAL data sets are samples from a  mixture 
distribution of 4 normal distributions with cluster centers arranged along a diagonal 

line.  The specific component parameters in the case of s = 2 (i.e., X  2) are: 

mixing proportions :  1 = 0.15, 2 = 0.25, 3 = 0.25 and 4 = 0.35; 

means :  1 = [0 0]
T
, 2 = [3 3]

T
, 3 = [6 6]

T
 and 4 = [9 9]

T
; and 

covariance matrices  : 1 = 2 = 3 = 4 = 
2
 I2 2 

 
where I2 2 is the 2x2 identity matrix and the positive number 2 is varied according to 
the experiment.  The SQUARE data distribution is so named because the clusters 
form the corners of a square configuration, and its component parameters are given by 
(12), (14), and: 

 
means : 1 = [0 0]

T
, 2 = [6 0]

T
, 3 = [0 6]

T
 and 4 = [6 6]

T
. 
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Figures 1 and 2 are scatter plots of typical samples from the two dimensional mixtures 

in 2 (n = 1000) for various values of 2.  The symbol ( ) represents the c= 4 MMI-
selected  distinguished objects (i.e., object data in this case). 

 
 

Fig. 2. + o

throughout the data sets in the figures and are clearly present in all four clusters in  the 
more separated cases such as those of Figures 1(a) and 2(a).  The 2-dimensional 
simulations that are reported in this section use data sets distributed like those in the 
figures.  Also performed are simulations using 10-dimensional data sets whose first 
two coordinates are distributed like those in the figures while the 3rd through 10th 
coordinates are normally distributed with mean 0.  Specifically, the mean parameters 
for the 10-dimensional versions of the DIAGONAL and SQUARE data are: 

 

 1 =[0 0 0 0 0 0 0 0 0 0]
T
; 2 =[3 3 0 0 0 0 0 0 0 0]

T 
;  (DIAGONAL)   

     3 =[6 6 0 0 0 0 0 0 0 0]
T
; 4 =[9 9 0 0 0 0 0 0 0 0]

T 
. 

1 =[0 0 0 0 0 0 0 0 0 0]
T
; 2 =[6 0 0 0 0 0 0 0 0 0]

T 
; (SQUARE)   

3 =[0 6 0 0 0 0 0 0 0 0]
T
; 4 =[6 6 0 0 0 0 0 0 0 0] . 

 Typical SQUARE data; means ( ) and MMI selected data ( ) 

As expected, thedistinguished data (o) selected by the MMI algorithm are distributed 
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dimensions in this way allows us to examine the effect of dimensionality without 
making the clustering problem substantially easier (or harder) since the separation 
between components is essentially unchanged and depends only on the first 2 
coordinates. 

initializer of HCM and FCM. We want to compare HCM (and FCM) results obtained 
using MMI initialization to those obtained using the true class labels as the point of 
initialization.  Toward this end, the true labels are tabulated and represented as a crisp 
c n partition (in this case 4 1000) during the generation of each normal mixture data 
set.  We chose this structuring of the tests because we want to know whether or not 
the MMI works well compared to an "optimal" initialization (i.e., the true labels);  not 
merely whether or not it compares relatively well to some other existing  initialization 
scheme.    

corresponds to the difference between HCM and FCM partitions of the input data 
obtained from starting the iteration through equations (4)-(5) or (6)-(7) using the MMI 
and true initializations.  We denote the terminal fuzzy partitions obtained using FCM 

with the two initializations as U
MMI

FCM  and FCM

TRUE
U ; and we similarly denote the HCM 

results by U
MMI

HCM and HCM

TRUE
U .  We define DIF(h) and DIF (f) to measure the 

percentage difference between the crisp (h) or fuzzy (f) clusters obtained using the 
two initializations.  For example, if  45 of n = 1000 data are grouped by HCM into 
different clusters using the two initializations, then DIF(h) = 4.5%.  The percentage 
can be computed in the crisp case as: 

 

DIF(h) = 50* (uTRUE
HCM )ij (uMIA

HCM)ij
j=1

n

i=1

c
n  . 

 

To define the analog of DIF(h) for FCM, we must "harden" the terminal fuzzy 
partitions obtained by starting FCM at the MMI and True partitions. This amounts to 
replacing the maximum entry in each column of U by a 1, and replacing all (c – 1) 
other entries with 0's (this is just Bayes rule when U is a partition of posterior 
probabilities).  We denote the hardening of a partition U by H(U) and define DIF(f) 
for the FCM results as: 

 
DIF(f) = 50* (H(uTRUE

FCM ))ij (H(uMIA
FCM))ij

j=1

n

i=1

c
n  .  

  

Next, we describe the simulations and the types of entries that appear in Tables 1 and 
2.  All experiments were done using MATLAB on a PC, with m = 2 in equations (3), 
(6) and (7) for FCM.  The iterations for HCM and FCM were terminated as soon as 

The component covariance matrices for the 10-dimensional distributions all equal  2 
I10 10, and the mixing proportions in (12) are unchanged.  Extension from 2 to 10 

the maximum change in the (cn) membership values for successive U iterates became 
less than or equal to 0.00001.  Table 1 gives the results for the DIAGONAL data and 
Table 2 contains the SQUARE data results.  Each row of the two tables corresponds 
to samples from a mixture specified by the component variance 2 and dimension s.  

The  purpose of  our simulations  is to  investigate the  effectiveness of  MMI as  an 

The  measurement  recorded  in  Tables  1  and 2  is  referred  to as  DIF( ),   which 

(18)

(19)
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The other component parameters are given in the appropriate parts of equations (12-
17).  For each row, 1000 samples each of size n = 1000 were generated.  For each 
sample, both HCM (results in columns 2-4) and FCM (results in columns 5-7) were 
initialized using both the true component labels and the MMI initialization.  Columns 
2 and 5 give the percentage of the 1000 trials for which DIF( ) = 0; i.e., the percent 
of trials for which the terminal c-means partitions (hardened in the case of FCM) 
produced by the MMI initializations are exactly the same as those produced by 
initialization with the true class labels.  Columns 3 and 6 give the average DIF( ) 
over the 1000 trials, while columns 4 and 7 give the worst DIF( ) that occurred for 
any single trial.   

 
Table 1. 

  DIF(h) for HCM DIF(f) for FCM 

 

s 

 
2
 

% Trials 

where 

DIF(h) = 0 

Ave. 

DIF(h) 

Worst 

DIF(h) 

% Trials 

where 

DIF(f) = 0 

Ave. 

DIF(f) 

Worst 

DIF(f) 

2 0.2  99.9% 0.0% 0.1% 100% 0% 0% 

2 0.5  94.5% 0.3% 35.3% 100% 0% 0% 

2 1.0  69.4% 0.1% 39.4% 100% 0% 0% 

2 2.0  42.1% 0.8% 45.4% 99.5% 0.0% 0.1% 

10 0.2  99.9% 0.0% 33.5% 100% 0% 0% 

10 0.5  89.8% 0.7% 34.5% 100% 0% 0% 

10 1.0  43.6% 1.8% 42.7% 99.4% 0.0% 0.1% 

10 2.0  13.5% 3.1% 49.4% 99.7% 0.0% 0.8% 

 

algorithmic labels may or may not correspond to the "true" labels of the input data. 

Thus, algorithmic cluster 1 might correspond to input cluster 2, and so on. To solve 

this correspondence problem in the actual computation of DIF( ), all permutations of 

the rows of one of the partitions are considered, so that the recorded DIF( ) is based 

on the permutation that gives the smallest possible value of (18).  This ensures that 

the calculated disagreement between partitions actually measures a difference in the 

grouping of the data among clusters, and not simply a difference in the (arbitrary) 

numerical label assigned to each cluster by HCM or FCM.  For c = 4, this amounts to 

trying 4! = 24 different permutations.  This factorial growth in the calculation of DIF 

is one reason we limited our experiments to the modest value of c = 4. An entry of 0% 

in either table means exactly 0%, while an entry of 0.0% indicates a rounded positive 

number.  
  

for FCM than it does for HCM. This is not surprising, since it is well known that 
initialization sensitivity is more of a problem for the hard c-means algorithm (Bezdek 

et al., [12]).  The performance of MMI with FCM is consistently good throughout the 

All  clustering  algorithms  assign  numerical   labels   to   their   clusters,   and   these 

A strong implication of the values in Tables 1 and 2 is that MMI works much better 

1000 tr ials for  DIAGONAL data : n = 1000 
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Table 2. 

  DIF(h) for HCM DIF(f) for FCM 

 

s 

 
2
 

% Trials 

where 

DIF(h) = 0 

Ave. 

DIF(h) 

Worst 

DIF(h) 

% Trials 

where 

DIF(f) = 0 

Ave. 

DIF(f) 

Worst 

DIF(f) 

2 0.2  100% 0% 0% 100% 0% 0% 

2 0.5  100% 0% 0% 100% 0% 0% 

2 1.0  94.2% 0.0% 0.2% 100% 0% 0% 

2 2.0  64.0% 0.1% 0.7% 99.7% 0.0% 0.1% 

10 0.2  100% 0% 0% 100% 0% 0% 

10 0.5  99.8% 0.0% 0.1% 100% 0% 0% 

10 1.0  88.9% 0.6% 37.9% 98.8% 0.2% 20.5% 

10 2.0  32.8% 1.5% 36.5% 96.4% 0.2% 22.3% 

 

high probability, MMI initialization produces the same FCM result as initialization at 
the true class labels.  The average DIF(f) values in both tables show that the average 
differences between the MMI and true label results are very small: zero for all choices 
of 2 except at  2 =1.0 and 2.0 for the 10 dimensional data, and just 0.2% for these 
two cases.   

MMI initialization of HCM worked adequately for very well  separated  problems

 (
 2 
= 0.2), but even in this case there was a Worst DIF(h) value of 33.5% for s = 10 

dimensions in Table 1.  As 
 2

 increases, the cluster separation decreases, and it 

becomes more and more difficult to obtain the same HCM result using the MMI 

initialization as that obtained by HCM using the true class labels for initialization.  

For example, in the worst HCM case, (
 2

 = 2.0 and s = 10 in Table 1), agreement was 

reached only 135 times in 1000 trials. This is not so much an indictment of MMI 

initialization as it is an indication that there are a large number of local trap states for 

minima of J1 when the data have so much overlap.  Even so, the average values of 

DIF(h) for HCM never got worse than 3.1% for either data set.   

consistently high percentage of cases for which DIF(f) = 0 indicates that with a very 

The scatter plots of the data in Figures 1 and 2 visually suggest that the SQUARE 
data clusters are better separated than the DIAGONAL ones, and should therefore be 
easier for both HCM and FCM.  Comparing the tables we see that our intuition is 
correct for HCM; MMI did significantly better for the SQUARE data than for 
DIAGONAL.  But very surprisingly, the MMI-FCM combination did not have a 
significantly easier time with the SQUARE data, and in fact, it was this case that 
produced the only real problems for FCM (Worst DIF(f) values of 20.5% and 22.3%).  
Finally, we point out that increasing the data space dimensionality from 2 to 10 
caused some increase in difficulty, typically more for HCM than FCM. 

experiments, although the 10-dimensional cases of the SQUARE data with highest 
overlap ( 2 = 1.0 and 2.0) resulted in several values of DIF(f) above 20%.  The 

 1000 tr ials for  SQUARE data : n = 1000 
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4 Discussion  

 
The maximin initialization (MMI) algorithm was stated, analyzed and then 
demonstrated, using samples drawn from a variety of 4 component normal mixtures in 
two and ten dimensions.  The computational cost of executing MMI is essentially 
equal to a single iteration of HCM or FCM in the case of object data (O(scn)), and 

even less in the case of relational data (O(cn)). Theorem 1 guarantees that the MMI c-
partition corresponds to a compact and separated partitioning of the data whenever 
such a partitioning exists. MMI identifies c distinguished data (or objects) distributed 
throughout the data space, and then uses them as "seed" prototypes to build a 1-np 
partition of the remaining unlabeled data.  Our simulations suggest that for a moderate 
number of clusters, FCM combines particularly well with MMI initialization to 
produce clustering results comparable to those obtainable when FCM is initialized 
with the "true" cluster labels. 

the inexpensive computational cost, we believe that MMI is a useful tool for 
generating initializations for FCM, and to a lesser extent, for HCM.  Since HCM is 
notoriously sensitive to initialization, it is probably wise to initialize it from several 
starting points to make sure a "good" set of clusters is found. MMI can be used to 
generate multiple, different starting points.  How? Just choose an "object seed" other 
than 1 for m1 in Step 1 of MMI, and then change 1 accordingly. This change to MMI 
can be used over and over, to produce as many different initializations as desired. 

may create some problems for the MMI scheme, although this has yet to be tested.  
Perhaps a trimmed maximin selection, in the spirit of the more robust trimmed mean 
estimator of centrality, might offer an advantage in the case of data contaminated with 
outliers.  Recently, much effort has been expended to "kernelize" classification and 
clustering methods.  Can kernelized distances be introduced here in a way that causes 
the selection of better performing distinguished data (or objects)?  Two other related 
clustering approaches that benefit from good initializations  are the possibilistic 
c-means (PCM) algorithm and normal-mixture-based clustering using the expectation-
maximization (EM) algorithm (McLachlan and Peel [13]).  The EM approach  is 
known to be somewhat sensitive to initialization and PCM produces coincident 
clusters from some initializations.  MMI should stabilize this aspect of both 
algorithms, but this supposition has yet to be tested. 
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Abstract. There are many biotechnological applications where 3-dimensional 
objects are represented as 2-d objects in a digital image. The dynamic and 
variable nature of the microorganism thus creates a formidable challenge to the 
design of a robust 2-d image inspection system with the ideal characteristics of 
high analysis accuracy but wide generalization ability. We have developed a 
novel case-based object recognition method for this kind of problems. The 
method is able to recognize objects and learn incrementally cases for  
the recognition process. Such a procedure requires capturing new cases for the 
further recognition process in order to be able to handle the variability of the 
natural objects. We describe the theory behind the method and how it works on 
our problem of fungi spore recognition. The developed case-based object 
recognition method is flexible and robust enough to be used for different 
recognition tasks in biotechnology. 

Keywords: Object Recognition, Similarity Measure, Image Mining, Case-
Based Reasoning. 

1   Introduction 

There are many biotechnological applications where 3-dimensional objects are 
represented as 2-d objects in a digital image. The dynamic and variable nature of the 
microorganism thus creates a formidable challenge to the design of a robust 2-d image 
inspection system with the ideal characteristics of high analysis accuracy but wide 
generalization ability. 

We have developed a novel case-based object recognition method for this kind of 
problems. The method is able to recognize objects and learn incrementally cases for 
the recognition process. Such a procedure requires capturing new cases for the further 
recognition process in order to be able to handle the variability of the natural objects. 
Image mining is applied to the newly captured cases in order to keep the case base as 
small as possible. As a result we obtain groups of similar cases for which we are 
prototypically calculating cases that are stored into the case base. These learnt cases 
are applied for case-based object recognition. For the object recognition procedure we 
have developed a novel similarity measure that can determine similarity between the 
cases in the case base and the objects in the image. The similarity measure is flexible 
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enough in order to get adjusted for different recognition purposes. We describe the 
theory behind it and how it works on our problem of fungi spore recognition. 

The developed case-based object recognition method is flexible and robust enough 
to be used for different recognition tasks in biotechnology. 

2   Material 

Some digitized sample images are presented in Table 1 for the different fungal spores. 
The objects in the images are good representatives for the nature of different kind of 
biological objects such as yeast, cells, algae, and others. 

Table 1. Images of fungal strains 

Alternaria 
Alternata 

Aspergillus 
Niger 

Rhizopus 
Stolonifer 

Scopulariopsis 
Brevicaulis 

Ulocladium 
Botrytis 

Wallenia Sebi

3   Case-Base Object Recognition 

The objects in the image are highly structured. Our study has shown that these 
images, represented in Table 1, cannot be segmented by thresholding. The objects in 
the image can be occluded, touching, or overlapping. It can also happen that only 
parts of the objects appear in the image. Therefore we decided to use a case-based 
object recognition procedure for the detection of objects in the image. 

A case-based object recognition method uses cases that generalize the original 
objects and matches these cases against the objects in the image. During the match a 
score is calculated that describes the goodness of the fit between the object and the 
case. Well known similarity measures are the normalized cross correlation [1], the 
Hausdorff distance [2] and the chamfer matching [3]. We did not use the gray values 
of the objects, but used the object edges instead. For the score of the match between 
the case and the image we modified the normalized cross correlation in order to 
measure the average angle between the vectors of the case and the object. 
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The case can be an object model that describes the inner appearance of the object 
as well as the contour. In our case the appearance of the whole objects can be very 
diverse. The shape seems to be the feature that generalizes the objects. Therefore we 
decided to use the contour of the objects as case representation. 

3.1   Similarity Measure 

We determine the similarity measure based on the cross correlation by using the 
direction vectors of an image. This requires the calculation of the dot product between 

each direction vector of the model ( )T
kkk w,vm = , n,,1k = , and the 

corresponding image vector ( )T
kkk e,di = : 
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The similarity measure of Equation (1) is influenced by the length of the vector. 
That means that s1 is influenced by the contrast in the image and the model. In order 
to remove the contrast, the direction vectors are normalized to the length one by 
dividing them through their gradient: 
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Note that the normalization of s2 differs from the normalized cross correlation 
(NCC): The NCC normalizes each pixel value by the expected mean of all values of 
the considered pixels. Therefore it is sensitive to nonlinear contrast changes whereas 
our method is not. The similarity measure in Equation (2) takes into account only the 
angle between the direction vectors, i.e. it is invariant against illumination changes. 

The value of 2sarccos  indicates the mean angle between the model vectors and the 

image vectors. 
The values of s2 can range from -1 to 1. In case of s2 = 1 and s2 = -1 the model 

and the image object are identical. If s2 is equal to one, then all vectors in the model 
and the corresponding image vectors have the same direction. If s2 is equal to -1 then 
the vectors have exactly opposite directions, that means only the contrast between the 
model and the image is changed. 

Contrast changes can be ignored if the absolute value of the dot product is 
calculated: 
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The aim is to store only one model for objects with similar shapes of different scale 
and rotation. Therefore a transformed model must be compared to the image at a 
particular location. 
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3.2   Case Generation 

The acquisition of the templates is done semi-automatically. Prototypical images are 
displayed to an expert. The screenshot of our developed tool is shown in Fig. 1. The 
expert manually traces the contour of the object with the help of the cursor of the 
computer. Afterwards the number of the contour points are reduced for data reduction 
purposes by interpolating the marked contour by a 1st order polynom. The marked 
object shapes are then aligned by Procrustes Algorithm [6]. From a set of shapes 
general groups of shapes are learnt by clustering. Single-linkage technique is used for 
clustering [4]. The prototype of each cluster is calculated by estimating the median 
shape [5] of the set of shapes in the cluster and taken as an object model. 

3.2.1   Shape Approximation 
An approximation of the contour might reduce this set of contour pixels to a 
sufficiently large set of pixels that will speed up the succeeding computation time of 
the alignment and clustering process. The numbers of pixels in this set will be 
influenced by the chosen order of the polygon and the allowed approximation error. 

Our approach to the polygonal approximation is based on the area/length ratio 
according to Wall and Daniellson [6]. We use the first labeled point s1 of the object S 
as the starting point p1 for the first approximation. Next, we virtually draw a line 
segment from the starting point p1 to the successor point in B. The area A between 
this line and the corresponding contour segment of the object S is measured. If the 
area divided by the length L of the line is smaller than a predefined threshold T, then 
the same process is repeated for the next successor point in the set B. 

This procedure is repeated until the ratio exceeds the threshold T. In that case the 
current point of set B becomes the end point of the approximated line P and the 
starting point for the next approximation. The same process is then repeated until the 
last point in set B is reached. The result of the approximation is a subset C of m points 
p1…pm where m < n and pi∈N. 

The ratio A / L controls the maximal error of the approximation, since A is the area 
and L the side length of a virtual rectangle. If the ratio is low, then the other side of 
the virtual rectangle is small and wise-versa. 

 

Fig. 1. Labeled and approximated shapes with coordinates 
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3.2.2   Shape Alignment 
The aim of the alignment process is to compare the shapes of two objects in order to 
define a measure of similarity between them. Consider two shape instances P  and  O  

defined by the point-sets 2
i Rp ∈ , 1N,...2,1i =  and 2

j Ro ∈ , 2N,...2,1j = , 

respectively. The basic task of aligning two shapes consists of transforming one of them 
(say P ), so that it fits in some optimal way the other one (say O ). Generally the shape 

instance { }
1N...1ii )y,x(pP ==  is said to be aligned to the shape instance 

( ){ }
2N...1jj y,xoO ==  if a distance )O,P(d  between the two shapes can not be 

decreased by applying a transformation ψ  to P . The differences between various 

alignment approaches is the group of allowed transformations (similarity, rigidity, 
affinity…) on one side and the chosen distance function on the other side. 

In our application we use the Procrustes distance, a least-squares type distance 
function. The alignment of shapes is limited to a similarity transformation in order to 
eliminate differences in the translation, the rotation and the scale of the two shapes P  
and O . 

After computing a similarity transformation between P  and O , the Procrustes 
distance is defined by: 
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where θ  is the rotation matrix, Pμ  and Oμ  are the centroids of the objects P  and 

O , respectively and Pσ  and Oσ  are the sums of squared distances of each point-set 

from the centroids. 
In the basic form, the Procrustes alignment centers and scales each set of points, so 

that the sum of squared distances of all points in each point-set is unity. Then a 
similarity transformation based on these centered pre-shapes is computed. Finally the 
Procrustes average shape and Procrustes residuals can be evaluated. Our algorithm is 
described in [7]. 

 

Fig. 2. Aligned shapes of objects Ulocladium Botrytis 



32 P. Perner 

4   Our Conceptual Clustering Algorithm 

Conceptual clustering [8] is a type of flexible learning the hierarchy by observations. 
The partitioning of the cases is controlled by a category utility function [4]. 
Conceptual clustering algorithms can be distinguished by the type of this utility 
function which can be based on a probabilistic [9], [10] or a similarity concept [11]. 
Our conceptual clustering algorithm presented here is based on similarities, because 
we do not consider logical but numerical concepts. The algorithm works directly with 

structural objects. In our study this is a set of N  acquired cases { }N1 S,,S , each 

comprised by an ordered array of 2D contour points. In contrast to the agglomerative 
clustering methods where the distance matrix is used as input it is not necessary to 
calculate pair-wise distances at first. 

In addition to merging cases our algorithm allows incorporating new cases into 
existing nodes, opening new nodes, and splitting of existing nodes at every position in 
the hierarchy. Each new case is successively incorporated, so the algorithm 
dynamically fits the hierarchy to the data. The result will be a sequence of partitions 
represented a directed graph (concept hierarchy) where the root node contains the 
complete set of input cases and each terminal node represents an individual case. 

Initially the concept hierarchy only consists of an empty root node. The algorithm 
implements a top-down method. A new case is placed into the actual concept 
hierarchy level by level beginning with the root node until a terminal node is reached. 
In each hierarchy level one of these four different kinds of operations is performed: 

The new case is incorporated into an existing child node, 
A new empty child node is created where the new case is incorporated, 
Two existing nodes are merged to form a single node where the new case is 

incorporated, and 
An existing node is splitted into its child nodes. 
The new case is tentatively placed into the next hierarchy level by applying all of 

these operations. Finally that operation is performed which gives the best score of the 
partition according to the evaluation criteria. A proper evaluation function prefers 
compact and well separated clusters. These are clusters with small inner-cluster 
variances and high inter-class variances. Thus we calculate the score of a partition 

comprised of the clusters { }m21 X,X,X  by 

( )ii

m

1i

i SWSBp
m

1
SCORE −=

=

 , (5) 

where m  is the number of clusters in this partition, ip  is the relative frequency of 

the i -th cluster, iSB  is the inter-cluster variance and iSW  is the inner-cluster 

variance of the i -th cluster. The normalization according to m  is necessary to 

compare partitions of different size. The relative frequency ip  of the i -th cluster is 

n

n
p i

i =  , (6) 
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where in  is the number of cases in the i -th cluster and n  is the number of cases in 

the parent node. The output of our algorithm for applying the eight exemplary shape 
cases of strain Ulocladium Botrytis is shown in Fig. 4. On top level the root node is 
shown which comprises the set of all input cases. Successively the tree is partitioned 
into nodes until each input case forms its one cluster. 

We also introduced a pruning criterion into the algorithm which can be used 

optionally. It says that the clusters { }m21 X,X,X  in one partition are removed 

if the sum of their inner-cluster-variances is zero. The criterion is fulfilled if the 
following condition is met 

=

=
m

1i
i 0SW  . (7) 

Fig. 3 shows the complete, un-pruned concept hierarchy, where a new case called 

{ }9_ub  was incorporated supplementary. The darker nodes were those clusters 

which had to be modified because the new case was incorporated into them. For these 
nodes the cluster has to be updated. The white nodes in the hierarchy are clusters 
which were not attached. 

 

Fig. 3. Complete, not-pruned concept hierarchy after incrementally incorporating a new case 

The main advantage of our conceptual clustering algorithm is that it brings along a 
concept description. Thus, in comparison to agglomerative clustering methods it is 
easy to understand why a set of cases forms a cluster. The algorithm calculates the 
inner-cluster-variances direct on the cases within this cluster or rather on their contour 
points instead of using a given distance matrix. During the clustering process the 
representative case, and also the variances and maximum distances in relation to this 
representative case are calculated since they are part of the concept description. It is 
also possible to incorporate new cases into the existing learnt hierarchy. Thus, the 
algorithm is of incrementally fashion. 
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Fig. 4. The pruned version of the concept hierarchy resulting from the eight instances of strain 
Ulocladium Botrytis is shown 

5   Calculation of General Cases 

The representative case of a cluster is a more general representation of all cases 
hosted in this cluster. We select the medoid as a natural representative case for a 

cluster. The medoid medoidx  of a cluster X  is the shape case which is positioned 

closest to the cluster centroid. It is the case which has the minimum distance to all 
other cases in the cluster 

( )
=

∈
==

xn

1i

i
Xx

medoidX x,xdminxμ  . (8) 

In addition to the representative of a cluster we are interested in learning the 
maximum permissible distance from this generalized case. The maximum permissible 

distance XD  to the representative case is 

( )X
Xx

X ,xdmaxD μ
∈

=  . (9) 

When matching objects with a hierarchical casebase of increasing specialized cases 
it is important to know the degree of generalization for each case. This measure will 
be used as threshold for the similarity score while matching. 

6   Experimental Results 

We applied our method to six different airborne fungi spores (see Table 1). We 
labeled a total of 60 objects for each of the six fungal strains. These objects were 
taken for the case generation process according to the procedure as described in 
Section 4. The result was a casebase of 79 cases for the six different fungal strains. 
Despite the result in [12] where for each separate class the number of models was 
calculated we get a reduction in the number of models of 27.5%. That is because 
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some of the fungal strain have the same appreance in shape and get clustered into the 
same cluster with others although the dimension of these objects might be different. 
Table 3 illustrates this fact. 

The 79 cases were inputed in our case base and were applied to a test set of images 
contaning the same number of images for each class. 

The threshold for the score was set to 0.8. We calculated the recognition rate as the 
number of objects that were recognized correctly in the image to the total number of 
objects in the images. The results of the matching process are shown in Table 2 and 
Table 3. Compared to our former results in [12] we got a better recognition rate since 
with our conceptual clustering method we could better control the grouping of the 
objects and the level of the hierarchy where the clusters should be taken from. The 
strategy for finding the cut-off for the grouping by conventional hierarchical 
clustering methods is a bit more tricky and subjective.  

Table 2. Recognized objects in the image 

Alternaria 
Alternata 

Aspergillus 
Niger 

Rhizopus 
Stolonifer 

Scopulariopsis 
Brevicaulis 

Ulocladium 
Botrytis 

Wallenia Sebi 

Table 3. Cluster number versus class membership 

 Cluster Membership of Classes 

Number 
of 

Clusters 

Alternari
a Alterna 

Ulocladi
um Botrytis

Aspergill
us 
Niger 

Rhizo. 
Stol. 

Scopul. 
Brev. 

Wallenia 
Sebi 

1  X     
2      X 
3 X X     
... ... ... ... ... ... ... 
11 X X    X 
12 X X     
13  X     
14      X 
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Table 3. (continued) 

... ... ... ... ... ... ... 
28  X  X  X 
29  X     
30    X   
31 X X  X   

... ... ... ... ... ... ... 
63 X X X  X  
64 X  X  X  
65 X   X   
66 X  X    
67 X    X  
68   X  X  
69     X  
70     X  
... ... ... ... ... ... ... 
77     X  
78     X  
79     X  

Number 
of Member 

ship 
26 33 9 25 18 26 

Table 4. Results of matching 

Class Classification Accuracy in % 

Alternaria 
Alternata 93% 

Aspergillus 
Niger 

92% 

Rhizopus 
Stolonifer 94% 

Scopulariopsis Brevicaulis 89% 
Ulocladium 

Botrytis 92% 

Wallenia Sebi 85% 

6   Conclusions 

We have described our method for the recognition of biological objects such as e.g. 
fungi spores in digital microscopic images. 

We used a case-based recognition method. The cases are represented by edges and 
not by the gray-level itself. The similarity measure is based on the scalar product and 
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is invariant against illumination changes and contrast changes. The case generation 
was done by manually tracing the contour of the object, automatic shape alignment, 
conceptual shape clustering and prototype calculation. The clustering process is 
incremental and allows to incorporate a new object into the excisting cluster 
hierarchy. 
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Abstract. In this paper, we propose a novel method of illumination
normalization developed on the basis of the retinex theory. In retinex
based methods, illumination is generally estimated and normalized by
first smoothing the input image and then dividing the estimate into
the original input image. The proposed method estimates illumination
by iteratively convolving the input image with a 3 × 3 averaging mask
weighted by an efficient measure of the illumination discontinuity at each
pixel. In this way, we could achieve a fast illumination normalization in
which even face images with strong shadows are normalized efficiently.
The proposed method has been evaluated based on the Yale face data-
base B and the CMU PIE database by using PCA. Carrying out various
scenarios of test, we have found that our method presented consistent
and promising results even when we used images with the worst case
of illumination as training sets. We believe that the proposed method
has a great potential to be applied to real time face recognition systems,
especially under harsh illumination conditions.

1 Introduction

Among many factors affecting the performance of face recognition systems, il-
lumination is known to be the one of the most significant. It has already been
shown that illumination causes larger variations in intensity of face images than
pose. For example, ambient lighting varies greatly during the course of the day,
and from one day to another, as well as between indoor and outdoor environ-
ments. Moreover, strong shadows cast from a direct light source can make certain
facial features invisible. Therefore, illumination normalization is a major require-
ment in the face recognition process and also is a central topic in the field of
computer vision. In recent years, numerous approaches have been proposed to
solve illumination problems in face recognition. Belhumeur et al. [1] extended the
eigenface algorithm of Turk and Pentland [2] to fisherfaces by employing a classi-
fier based on Fisher’s linear discriminant analysis. They reported that fisherfaces
outperform eigenfaces under conditions of varying illumination. Georghiades et
al. [3] showed that the illumination cones of human faces can be approximated
well by low dimensional linear subspaces. Therefore, the set of face images in
fixed pose but under different illumination conditions can be efficiently repre-
sented using an illumination cone. However, the above methods either require

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 38–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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certain assumptions to be made about the light source or need a large number
of training sets, and these requirements are not considered practical in real ap-
plications. On the other hand, there are alternative methods available which are
based on retinex theory. The retinex theory motivated by Land [4] is based on
the physical imaging model, in which an image I(x, y) is regarded as the prod-
uct I(x, y) = R(x, y)L(x, y) where R(x, y) is the reflectance and L(x, y) is the
illumination at each pixel (x, y). Here, the nature of L(x, y) is determined by the
illumination source, whereas R(x, y) is determined by the characteristics of the
imaged objects. Therefore, the illumination normalization for face recognition
can be achieved by estimating the illumination L and then dividing the image
I by it. However, it is impossible to estimate L from I, unless something else
is known about either L or R. Hence, various assumptions and simplifications
about L, or R, or both are proposed to solve this problem [5]. A common assump-
tion is that edges in the scene are edges in the reflectance, while illumination
spatially changes slowly in the scene. Thus, in most retinex based algorithms,
the reflectance R is estimated as the ratio of the image I and its smooth version
which serves as the estimate of the illumination L, and many smoothing filters to
estimate the illumination have been proposed for robust face recognition. Single
Scale Retinex (SSR), the latest version of Land’s retinex that was implemented
and tested by Jobson et al. [6], employed a simple linear filter with Gaussian
kernel. However, halo effects are often visible at large illumination discontinuities
in I, and Gross and Brajovie [5] introduced an anisotropic filter to reduce these
halo effects to some extent. More recently, self-quotient image (SQI) [7] has been
proposed with impressive improvement of performance for illumination problem.
SQI employs the weighed Gaussian filter in which the convolution region is di-
vided into two sub-regions with respect to a threshold, and separate values of
weights are applied in each sub-region. These retinex based methods have com-
mon advantages that they do not require training images and has relatively low
computational complexity. However, these methods cannot completely remove
large illumination discontinuities, and more fast method is required for real time
face recognition system. In this paper, we propose a novel method for illumina-
tion normalization based on the retinex theory. The key idea of our method is to
estimate illumination by iteratively convolving an input image with a 3 × 3 av-
eraging mask weighted by an efficient measure of the illumination discontinuity
at each pixel. The paper is organized as follows. In section 2, the proposed algo-
rithm is described in detail. In section 3, the experimental results are presented.
Finally a conclusion is made in section 4.

2 Illumination Normalization

Since our method is based on the retinex theory, the process of our method for
a pixel (x, y) in an image is described as

R(x, y) =
I(x, y)
L(x, y)

(1)
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As mentioned in section 1, the illumination L is estimated as a smooth version
of input image I. Jobson et al. [6] evaluated various functional forms for the
smoothing filter and found that the Gaussian form performed better than the
inverse square suggested by Land [4]. For face recognition, however, Gaussian
filter is known not to satisfy a robustness requirement, which smoothing must be
carried out among pixels which having homogeneous illumination. This robust-
ness requirement implies that the estimated illumination must be discontinuous
at locations where the input image I has strong discontinuities of intensity [8].
This robust requirement is to more accurately take real world scenes into ac-
count, where illumination discontinuities such as shadows frequently occur. On
the other hand, the Gaussian kernel, which is currently in wide use for smooth-
ing, has an inherent computational limitation to be applied in real time; that
is the computational complexity increases proportionally to the square of the
kernel size, causing the overall speed of the smoothing filter very slow. To ensure
a fast smoothing satisfying the robustness requirement at the same time, we
present a novel method based on iterative convolution.

2.1 Iterative Convolution

Iterative convolution is a fast algorithm, in which an efficient short-length convo-
lution is performed iteratively to build a long convolution [9]. As shown in table
1, iterative convolution is very efficient in terms of the computational complexity.
Moreover, it was shown that, by virtue of the central limit theorem, convolving

Table 1. Computational complexity of two convolution methods

Iterative short-length Fixed long-length

Complexity O(nN2k2) O(N2K2)
N : image size N : image size
k: small kernel size(2∼3) K: kernel size
n: # of iteration

a 3 × 3 averaging kernel n times with an image I approximates the convolution
of I with Gaussian kernel of σ =

√
n/3 and size of 3(n+1)−n = 2n+3 [10]. We

can formulate the iterative convolution process as follows. Let I(0)(x, y) be the
input image at each point (x, y) before smoothing. Then, the smoothed image
I(t+1)(x, y) at the (t + 1)th iteration is given by: [9]

I(t+1)(x, y) =
1

N (t)

1∑
i=−1

1∑
j=−1

I(t)(x + i, y + j)w(t)(x + i, y + j) (2)

with

N (t) =
1∑

i=−1

1∑
j=−1

w(t)(x + i, y + j) (3)
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where
w(t)(x, y) = 1, ∀(x, y) and ∀t. (4)

N (t) in (3) represents a normalizing factor, and w(t)(x, y) in (4) indicate the
corresponding weights of the convolution mask. This filter smoothes the image
everywhere, even across discontinuities because this is just an approximated ver-
sion of Gaussian filter. Consequently, halo effects might often be visible when we
apply the Gaussian filter. Therefore, although iterative convolution is efficient
in computational complexity, it doesn’t meet the robustness requirement. For
robust smoothing, the w(t)(x, y), thus, must be set adaptively based on discon-
tinuities of intensity values. We will present the adaptive weighting method in
the next subsection

Fig. 1. An example of a convolution mask constructed by applying adaptive weighting
(α = 0.2) to an input image

2.2 Adaptive Weighting

To set weights of convolution mask w(t)(x, y) adaptively, we must know where
illumination discontinuities take place. If we already knew the locations of these
discontinuity points, then we could set the corresponding weights of the convolu-
tion mask w(t)(x, y) to zero [9]. In the framework of illumination normalization,
this means that smoothing must be mainly carried out among pixels with ho-
mogeneous illumination. Unfortunately, it is impossible to correctly acquire the
locations of illumination discontinuities when only one image is given, and addi-
tional information about the scene is not available. To solve this problem, we can
set w(t)(x, y) based on the variance between a central pixel and neighboring pix-
els in convolution mask. Let pixel location (m,n) correspond to a central pixel
of a convolution mask with 3×3 size. Then, the variance between the central
pixel and neighboring pixels in convolution mask is

τ(m,n) =
∑ ∑

(x,y)∈Ω

|I(x, y) − I(m,n)| (5)

where Ω is a convolution region, and (x, y) indicates the locations of the neigh-
boring pixels. The corresponding weights of the convolution mask w(t)(x, y) are
determined according to the variance as follows:
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Fig. 2. The intensity profiles of horizontal lines in an original image and a smoothed
image after 9 iterations

w(t)(x, y) =
{

1 |I(x, y) − I(m,n)| < ατ(i, j)
0 else (6)

where α determines the level of strong discontinuity. If α approaches 0, level of
strong discontinuity which must be preserved during the process of smoothing
decreases. As shown in figure 1, only pixels with relatively little different inten-
sity values from a current pixel are convolved. Once weights of the convolution
mask corresponding to each pixel of an input image are determined, iterative
convolution is performed. Due to the diffusion characteristic of the iterative con-
volution, there are two significant operations affecting the image as the iteration
proceeds: one is the preservation of strong discontinuities, and the other is the
smoothing within regions with small variance. Figure 1 shows these operations
well, where diffusion effects of smoothing occur only in the directions of arrow.
Now, for more accurate description of real environments, we address an addi-
tional constraint that surfaces cannot reflect more light than what is shed on
them [8]. Thus, the reflectance R must be always smaller than one. By this
constraint, (2) can be modified as follows.

I(t+1)(x, y) = 1
N(t)

∑1
i=−1

∑1
j=−1 I(t)(x + i, y + j)w(t)(x + i, y + j)

I(t+1)(x, y) = max{I(t+1)(x, y), I(t)(x, y)}
(7)

Figure 2 shows a result of smoothing using the proposed iterative convolution
with adaptive weighting with α = 0.2. Each region A and B in the graph corre-
spond to two eyes in the face. We can see that regions of facial features are effi-
ciently smoothed while the illumination discontinuities are preserved. Note that
the signal variation under light region is much larger than that under shadow re-
gion, and the facial features (in this case, the two eyes) have far different scales
in these two regions. For a good and stable performance of face recognition,
therefore, it is necessary that the small scale signal in the shadow region must
be amplified so that both the light and shadow regions have similar signal scales
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Fig. 3. Effect of different α in adaptive weighting. The first row shows estimated
illumination using the proposed smoothing method, and the second row shows final
results which are obtained by dividing an input images by estimated illuminations.

after illumination normalization. For this purpose, we apply the retinex theory
formulated in (1), and figure 3 shows the results according to some typical val-
ues of α. In order to ensure a robust face recognition, the smoothing must be
carried out at larger scale than the scale of facial features; that is, we should
emphasize the small scale facial features such as mouth, nose, eyes, and eyebrows
while removing the illumination. And this mainly depends on the proper choice
of α; for example, if α is too small, facial features would not be visible. By some
investigations as shown in figure 3, we selected a proper value of α = 0.2 for
our experiments which will be described in the following section. The number of
iterations is also important factor for robust face recognition. If the number of
iterations is too large, normalization effects would decrease with the increase of
visual effects. For our experiment, we fixed the number of iterations to n = 9.

3 Experimental Results and Discussion

In order to evaluate the robustness and effectiveness of the proposed method, we
used the images from two publicly available databases: Yale face database B [3]
and CMU PIE database [11], and computed the recognition accuracies using
Eigenfaces (Principal Component Analysis (PCA)) [2]. The proposed method is
also compared with three other existing methods of illumination normalization:
SSR [6], SQI [7] and histogram equalization. We present the respective test result
for each database.

3.1 Yale Face Database B

The Yale face database B contains 5,760 images taken from 10 subjects under
576 viewing conditions(9 poses × 64 illumination conditions). Since we are only
concerned with the illumination problem in this paper, we selected 640 images
for 10 subjects representing 64 illumination conditions under the frontal pose.
Images in the database are divided into 5 subsets based on the angle of the
light source directions. The 5 subsets are subset 1(0◦ to 12◦), subset 2(13◦ to
25◦), subset 3(26◦ to 50◦), subset 4(51◦ to 77◦), and subset 5(above 78◦) [3]. We
refer to images in both subset 4 and subset 5 as images with large illumination
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Fig. 4. Representative images of 10 subjects in Yale face database B

Fig. 5. Illumination normalization effect comparison

(a) (b)

Fig. 6. Recognition accuracies(%) on the Yale face database B using (a)subset 1, and
(b)only the representative images, as the training set

variation. Among the 640 images, we discarded 7 corrupted images and finally
constructed total 633 images (70, 118, 118, 138, 189 images in subset 1 to 5).
Figure 4 shows the representative images of the 10 subjects, and figure 5 shows
illumination normalization results by different methods according to each subset
of the one among 10 subjects. To apply our proposed method to a face recognition
system, we first used subset 1 as training set and tested other subsets. Figure
6(a) shows the recognition results using each illumination normalization method.
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Table 2. Average recognition rate (%) comparison on the Yale face database B using
images in all different subsets (from subset 2 to subset 5) as the training set

Proposed method SQI SSR Histogram equalization

Recognition rate 97.65% 93.11% 94.06% 42.36%

(a) (b)

(c) (d)

Fig. 7. Recognition accuracies(%) on the Yale face database B using (a)subset 2 (test2),
(b)subset 3 (test3), (c)subset 4 (test4), and (d)subset 5 (test5) as the training set

The proposed method achieved recognition rates of 100% in all subsets. As a
second test, we only used the 10 images(one for each subject in subset 1) in
figure 4 as a training set and tested other subsets. The results are given in
figure 6(b), and it is clear that the proposed method outperforms other methods.
Finally, we used images in each of the other subsets (2 to 5) as training set
and computed the recognition accuracy [12]. Since subset 2 to 5 represent the
illumination conditions close to real environments, we can say that this test is
more meaningful and practical than the other two previous tests. As shown in
figure 7, four tests are carried out. Each testX denotes that the training set
is from subset X , where X = 2, 3, 4, 5, and the test is done for the remaining
subsets. Table 2 compares recognition rates by averaging all results from these
four tests. From the figure 7 and the table 2, it is clear that the proposed method
has consistent and promising results even when images with large illumination
variation (subset 4 and subset 5) are used as the training set.
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Fig. 8. Recognition accuracies(%) on the CMU PIE database

Table 3. Average recognition rate (%) comparison on the CMU PIE database

Proposed method SQI SSR Histogram equalization

Recognition rate 98.57% 94.53% 95.32% 48.69%

3.2 CMU PIE Database

The CMU PIE database contains 41,368 images obtained from 68 subjects. We
took images of frontal faces with 21 different illumination conditions. Among 68
subjects, we removed one subject because it was not a frontal image. Thus, the
total number of images we used for our test is 1,407.

The recognition rates were computed by the k-fold strategy: i.e, k images of
each subject (in our test, k = 1) are selected for training and the remaining
21 − k images of each subject are selected for test. This process was repeated
(21− k+1) times by changing training images. Figure 8 shows recognition rates
according to each trial. The proposed method also outperforms other methods
and has consistently high recognition rates over 95%.

4 Conclusion

In this paper, we proposed a new illumination normalization method for robust
face recognition. The proposed method, which is based on the retinex theory,
estimates the illumination using a novel iterative smoothing methodology, and
turned out to be superior to existing smoothing methods in terms of both time
complexity and performance. The essence of our proposed method is that the
smoothing is carried out by iteratively convolving an input image with a 3 × 3
averaging mask weighted by a efficient measure of the illumination discontinuity
at each pixel. Using the proposed method, we showed that even images with
strong shadow are effectively normalized, and consequently the recognition ac-
curacies notably outperformed the existing methods. Especially, our proposed
method presented consistent and promising results even when we used images
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with large illumination variations as training set. We believe that the proposed
method has a wide range of applications in real time face recognition systems,
especially under harsh illumination conditions.
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Abstract. In this paper we present a method for the automatic localization of 
local light variations and its photometric normalization in face images affected 
by different angles of illumination causing the appearance of specular light. The 
proposed approach is faster and more efficient that if the same one was carried 
out on the whole image through the traditional photometric normalization 
methods (homomorphic filtering, anisotropic smoothing, etc.). The process con-
sists in using of the Adaboosting algorithms for the fast detection of regions af-
fected by specular reflection combined with a normalization method based on 
the local normalization that standardizes the local mean and variance into the 
located region. A set of measures are proposed to evaluate the effectiveness of 
detectors. Finally, results are compared through two experimental schemes to 
measure how the similarity is affected by illumination changes and how the 
proposed approach improves the effect caused by these changes. 

1   Introduction 

Face recognition algorithms consist in three major parts: Face detection, normaliza-
tion and face identification [1]. Face recognition starts with the detection of face pat-
terns in sometimes cluttered scenes, continues normalizing the face images to attenu-
ate or eliminate geometrical and illumination problems, then these faces are identified 
using appropriated classification algorithms, and finally results are post-processed us-
ing model-based schemes and logistic feedback [2]. 

One illumination effect that might cause particular problems in the recognition 
process is the local reflection of light in the face. Recently many appearance-based 
algorithms have been proposed to deal with the problem [3-6]. These algorithms work 
well, but are computationally expensive.  

To find a method to efficiently and quickly solve these mentionated problems that 
obtains face images without the specular illumination effect and maintaining the fea-
tures necessary for identification is a challenge. 

In this paper we present a new approach to perform a fast detection of regions af-
fected by the specular illumination effect by means of a boosted cascade detector 
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which is based on works of P.Viola and M. Jones [7] and an algorithm proposed by us 
to attenuate the local specular light through the filtering of the detected regions by 
mean value of pixels in the four corners of the localized square. 

The first contribution of this paper is the fact that we use the Viola and Jones 
method for region detection instead of object detection. And if in addition we con-
sider that already the integral image has been calculated and that the detection turns 
into a region previously located by the face detector, the detection process will be ex-
tremely fast.  

The second contribution of this paper is the fact that this process of photometric 
normalization is done only in the automatic detected regions and not on the whole im-
age and only in those images where the illumination problem is present; this clearly 
reports an important saving of time and calculation  

The third contribution of this paper is the proposed method for the local normaliza-
tion that standardizes the local mean and variance of an image region by means of a 
very fast processing implemented through a lookup table.  

The effectiveness of the proposed method was evaluated in several experiments  
using images from the Yale B database, taken a variety of illumination conditions. 
Detectors were evaluated using five proposed measures, and obtained results demon-
strate that the variations in the image similarity caused by illumination are success-
fully eliminated or attenuated. 

2   Fast Detection of Faces and Their Corresponding Regions  
     Affected by Illumination 

Face detection and their corresponding regions affected by illumination is achieved 
trough the Viola and John’s algorithm [7], and are implemented at the OpenCV li-
brary [8]. There are several advantages offer by this method: The image representa-
tion called integral image, allows a very quickly computation of the features used by 
the detectors. The learning algorithm based on Adaboost, allows to select a small 
number of features from the initial set, and to obtain a cascade of simple classifiers to 
discriminate them [7].  

Two cascade detectors were used, the first one was devoted to detect the faces, and 
the other one devoted to detect the regions affected by specular ligth. 

2.1   Training Process 

The face training is composed by automatic labeled faces detected by the Stump-
based 24x24 Gentle Adaboost frontal face detector, applied on the Yale B Face Data-
base. A region training set was manually prepared by means of selection of the square 
regions, assigning a positive label (+1) to the samples with local affectations of illu-
mination, and negative labels (-1) to the samples without great affectations of  illumi-
nation. Then these samples are saved and rescaled to a size of 24 x 24 pixels (Fig. 1). 
In training phase, the classifier was exhaustively trained using these sets of regions 
taken from the previously detected faces by the first cascade detector in a wide variety 
of training images. 

 



50 E.M. Álvarez Morales et al. 

 

Fig. 1. Region selection for training samples, positive (left) and negatives (right) 

2.2   Description of the Detection Process 

Detection process begins with the face detection by means of a cascade specialized 
detector (1). As result, the coordinates of the square which contains the face are ob-
tained. A second cascade detector is triggered to look for the regions affected by 
specular light but only in the region contained within squares that were detected be-
fore (2). The third step is the normalization process, which is made only in the zone 
detected by the second detector (3). If the face images are going to be used in face 
recognition the process will continue with the recognition algorithm. If the final ob-
jective is to improve the images quality of the processed squares then the normalized 
regions will be restored to their original position (4). Fig 2 shows the general scheme 
of the proposed method. 

 

Fig. 2. Basic steps in fast normalization sequence 

3   A Fast Local Photometric Normalization Method 

The following proposed method is based on the local normalization algorithm that 
standardizes the local mean and variance of an image [9], [10]. In our approach we 
make a filtering by the mean value of the pixels of local regions located at the four 
corners of the automatically localized square window which contains the image parts 
affected by low frequency illumination effect (specular light) calculated by the  
expression: 
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II −=  (1) 

Where, I(i,j)0,  is the original value of a pixel located at the position i,j of the square 
window containing the part of image affected by illumination.  
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I(i,j)f is the normalized value of a pixel affected by illumination at the position i,j of 
the rectangular window. 

X . is the mean value of vector formed by four maximum pixel values contained in 
the windows located at the four corners of  the automatic located square that contains 
the part of the image affected by low frequency illumination effect (specular light). 
See Fig 3. 

p. is the coefficient that depends of the Euclidean distance between the mean value 
and each value of the image inside the located square window, the values of p are in-
creased on a fixed quantity together with the distance interval, Table 1 shows the dis-
tance intervals and their corresponding coefficients used by us.  

4
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Fig. 3. Distribution of four pixel windows situated in the corners of the automatic localized 
square window that contains the part of the image affected by low frequency illumination effect 
(specular light) 

Table 1. Distance intervals and its corresponding coefficients p 

No. of interval Distance Interval Coefficient p 
1 1.2 - 1.5 10 
2 1.5 - 1.8 40 
… … … 
20 6.9 - 7.2 760 

Taking in to account that the automatic localization extracts pixels affected by il-
lumination surrounded by non affected pixels, the normalization algorithm works with 
the values of these non affected pixels localized in the four corners, the effect is the 
change of pixel values in the window in function of the mean value calculated, with-
out lost of information (see Fig 4). 

3.1   Lookup Table 

To increase the speed of normalization process we will set all the possible values that 
can be obtained with expressions 1 and 2 in a lookup table. A lookup table is a matrix 
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in which the intersection of each column and row represents the value to be returned 
for one possible combination of pixels in a neighborhood. We produced a multidi-
mensional matrix (256x256x20) containing, one dimension for each distance interval. 

 

Fig. 4. Example of face image normalization in the Yale B database using the proposed method 

4   Experiments 

For a complete evaluation of the performance of our proposal we divided the experi-
mental process in two parts, the first one is devoted to measure the effectiveness of 
the automatic detection process, and the second one is devoted to measure the per-
formance of the photometric normalization method. 

4.1   Measurement of the Effectiveness of the Detection Process 

We defined a set of measures necessary to accurately know the detector effectiveness 
behaviour according to the final mission of the process. They are: 

100.
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ESD (External Square Difference): The difference between the area of automatic de-
tected square (DA) and the area of the optimal square that includes the region to de-
tect (TA), if it was completely detected (Fig.5, A), considering the optimal square like 
the bounding box of the region affected with specular light, it is given in percentages 
and calculated by the expression: 

ISD (Internal Square Difference): The difference in area between optimal square con-
taining the real region (TA) and the automatically detected one, if the area of the de-
tected square (DA) is situated inside the bounding box (Fig 5, B); it is given in per-
centages and calculated by the expression: 
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UED (Unavoidable Error of Detector): Is the difference between the actual area of the 
region affected by specular light (RA) taken with a certain threshold and the area of 
the optimal square that is tangential to the region boundaries (TRA) (Fig.5, E). 

The value of UED was calculated based on the area of the segmented regions and a 
threshold calculated according to the process of automatic threshold choosing [13] 
and the area of the automatically detected square that inscribe the segmented regions, 
it is given in percentages and calculated by expression: 
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NDR (Not Detected Region): Is the total area of the region that must be detected but 
is not detected (Fig 5, C), it is given in percentages and calculated by expression: 
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EDA (Erroneous Detected Area): Is the total area of the image that was erroneously 
marked by the detector (Fig 5, D), it is given in percentages and calculated by expres-
sion: 
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Where BDA is the bat detected area, and AI is the total area of the image. 
We also measured the effectiveness of the automatic detection process by comput-

ing the true detected, no detected and falsely detected regions in the test set. 

 

Fig. 5. Proposed measures of the effectiveness of the automatic detection process, A-ESD, B-
ISD, C-NDR, D-EDA, E-UED 

4.2   The Yale B Database 

We experimented the proposed approach in images from Yale B database [12]. 
The Yale B database (Fig. 6) contains 64 different illumination conditions for 10 sub-

jects. The illumination conditions are a single light source, the position of which varies 
horizontally and vertically. For the evaluation of the effectiveness of the detection proc-
ess we take a test set composed by 197 images affected by specular reflection. 

4.3   Evaluation of the Performance of the Photometric Normalization Method 

For evaluation of proposed method we tested it using images from Yale B database. 
We take 3 images per subject, and from each of these 3 images we created new 5 im-
ages introducing high frequency pixel values in some areas of images simulating the 
low frequency illumination effect (specular light). Fig 6 shows an example of gener-
ated images. 

With generated images we compared the results in two experimental schemes. The 
idea was to measure how the similarity is affected by illumination changes and how 
the proposed approach improves the effect caused by these changes. Normalized cor-
relation has been chosen as it has proved to be a successful similarity measure in face 
recognition [11]. For identical images it takes the maximum value equal to unity. 
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Fig. 6. Example of the new 5 images of one subject created by introducing low frequency pixel 
values in some areas of images (specular light). The first image in the left is the original image.  

To obtain geometrically normalized images we implemented an algorithm [11] that 
consists of the following steps: Smoothing, rotating, scaling and resampling the input 
image. The smoothing is performed by convolution with a Gaussian Filter of size5x5, 
the rotation and scaling outputs an image of size 55 rows x 51 cols. The left-eye is 
mapped onto the pixel position (19, 38) and the right-eye is mapped onto the pixel po-
sition (19, 12). 

 

Fig. 7. Experimental schemes. Left, in the image domain; Right, in the frequency domain 

The experimental schemes are shown in Fig. 7. Using these schemes we compared 
results obtained in two different representation spaces, one in the image domain and 
other in the frequency domain using an illumination insensitive representation [11] 
based in the complex first derivative image to highlight the high frequency content 
and transformed it to the frequency domain and extracted the real part as illumination 
insensitive representation. 

For the time consuming evaluation we compared the time taken by our method to 
normalizing of images affected by illumination taking as the region to be normalized 
the square that encloses whole image, against the time consumed by four traditional 
algorithms of photometric normalization [13] (homomorphic filtering, anisotropic 
smoothing, isotropic smoothing and multiescale retinex) applied to whole image. 

5   Experimental Results 

5.1   Results of Measurement of the Effectiveness of Detection Process 

In Table 2 and 3 we present the results of the evaluation of the detector effectiveness 
during the detection of regions. 
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The value of the UED is relatively high. This effect is produced by the fact that the 
most of affected regions in the Yale B database have shapes near to a rectangle and 
the detector produces square region 

Table 2. Effectiveness of the detection by the proposed measures 

UED ISD ESD NDR EDA 
36.1 3.0 31.4 9.0 33.0 

Table 3. Performance of the Region Detector 

Total of affected regions  True detected No detected Falsely Detected 
366 334 32 90 

100% 91.28% 8.74% - 

Table 4. Difference in the quantity of pixels processed by our method image (region oriented) 
and processed by traditional methods (whole image oriented) 

Total area of 197 im-
ages in the database 
(pixels) 

Total area of detected re-
gions in the images (pixels) 

Percentage of the processed 
area vs. total image area 
(%) 

11 824 925 2 963 300 25% 

The small value of ISD means that in a little number of cases the detector marks 
the square smaller than the actual region. The effect of this error is significant in the 
sense that when we used the proposed normalization method, it will take for the nor-
malization process the mean value from pixels affected by illumination. 

The relatively high value of ESD in certain sense increase the computational cost 
of the normalization process because the number of pixels to be normalized is bigger 
than the quantity of pixels included in the actual region affected by illumination, but it 
guarantees that the mean value for photometric normalization will be taken from well 
illuminated pixels. The effect of normalization on not affected pixels will not consid-
erably change their values since the normalization grade depends of the difference of 
the pixel value to the mean value. 

The low value of the NDR is in correspondence with the low error rate of detector 
(Table 3)  

The value of EDA although is relatively high, principally have implications in the 
increasing of quantity of pixels to be processed. 

Results in Table 3 show that the process of detection reaches high rates; although it 
leaves a little number of not detected regions. Nevertheless we have achieved a high 
speed in detection of the 91.28% of affected regions (see Table 4). For the normaliza-
tion of the not detected regions (9.0%) can be applied one variant of our method that 
allows the manual selection of the affected region, or can be applied the traditional 
methods of normalization. 
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5.2   Results in the Evaluation of the Performance of the Photometric  
        Normalization Method 

The distributions of normalized correlations were compared in 4 different combina-
tions. In Table 5 we show the different variants of normalized correlations and results 
of their comparison. We can see that when we applied the proposed approach and 
compared the normalized correlations in the image domain, we obtained a significant 
increase of the correlation coefficients of all normalized images respect to the original 
image. 

Table 5. Normalized correlation and its comparison in Yale B database 

Correlations Description Nc 
In the image domain 

A 165 subjects against the same subjects using 5 different 
generated images  

0.79 

B 165 subjects against the same subjects using 5 different 
generated images (with previous photometric normaliza-
tion). 

0.88 

In the frequency domain 
C 165 subjects against the same subjects using 5 different 

generated images  
0.92 

D 165 subjects against the same subjects using 5 different 
generated images (with previous photometric normaliza-
tion). 

0.98 

A similar result is obtained using the representation in the frequency domain, in 
this case we obtained high correlation coefficients in both correlations, in concor-
dance with results obtained by Garea and Kittler[11] but when applied the proposed 
approach the correlation coefficients reached nearer values to one. 

The time consuming comparison (Table 6) shows that the proposed normalization 
method is faster than others traditionally used in computer vision even when it is ap-
plied to whole image. Taking in to account that the application of the proposed 
method will be only in those regions affected by illumination the time processing will 
decrease significantly. 

Table 6. Comparison of averages of time consuming in the normalization process in milli-
seconds 

Proposed method Homomorphic Multiescale Anisotropic Isotropic  
0.1 3.4 3.5 10.0 0.8 

6   Conclusions 

The use of the methods for fast localization of regions with specific features allows 
the automatic detection of regions affected by illumination specular effects with rela-
tively high accuracy and speed. 
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The proposed method for photometric normalization offers a set of advantages, the 
process is carried out only on images affected by illumination and more specifically in 
those affected regions, and as a result we obtain a good save of time with a low com-
putational cost. The use of a Lookup Table is another factor that influences in the high 
speed of the proposed method. The total save of computational cost might be measure 
not only in the quantity of pixels that it avoids to process and also in the fact of hav-
ing avoided the use of operations with high computational cost like the logarithms and 
the transformations to the frequency domain. 

The proposed experimental scheme for evaluation of the detection effectiveness 
and the proposed measures allowed proving the high performance of the process.  

The proposed method for fast localization and normalization might be used as a 
previous step in the general face recognition process and also as an independent proc-
ess for the improvement of the visual effect of face images.  
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Abstract. The aim in this paper is to show how to discriminate gender
using a parameterized representation of fields of facial surface normals
(needle-maps) which can be extracted from 2D intensity images using
shape-from-shading (SFS). We makes use of principle geodesic analysis
(PGA) to parameterize the facial needle-maps. Using feature selection,
we determine which of the components of the resulting parameter vector
are the most significant in distinguishing gender. Using the EM algo-
rithm we distinguish gender by fitting a two component mixture model
to the vectors of selected features. Results on real-world data reveal that
the method gives gender discrimination results that are comparable to
human observers.

1 Introduction

Humans are remarkably accurate determining the gender of a subject based on
the appearance of the face alone. In fact, an accuracy as good as 96% can be
achieved with the hair concealed, facial hair removed and no makeup [1]. Exper-
iments by Bruce etc. showed that the gender of the face is conveyed by several
cues including: (i) superficial and/or local features, (ii) configural relationships
between features, and (iii) the 3-D structure of the face [2]. In [1], Burton etc.
attempt to discover a gender discriminator by explicit measurements on the
feature points of frontal facial views and profile views. However, their method
requires manually labeled 14 landmark points. As a result it is unsuitable for
automatic gender classification.

In this paper, we present a statistical framework for gender discrimination
that does not require explicit landmark measurements. The method makes use
of a representation of facial shape based on a parameterisation of fields of facial
surface normals or needle-maps. The needle-map is a 2.5-D shape representation
which is mid-way between the 2D intensity image and the 3D surface height
function [3]. The representation can be acquired from 2D intensity images using
shape-from-shading [4] and is invariant to illumination. To parameterise the
facial needle-maps we make use of principle geodesic analysis (PGA) [5], [6].
PGA is a generalization of principle components analysis (PCA) [7]. For data
residing on a Riemannian manifold, PGA is better suited to the analysis of
directional data than PCA. Our aim is to determine gender using vectors of
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PGA parameters. We aim to distinguish the genders of a sample of subjects by
fitting a two-component mixture model to the distribution of vectors of selected
features.

The standard method to learn the mixture models is the expectation - maxi-
mization (EM) algorithm [8], [9], [10], [11]. However, applying the EM algorithm
directly to high dimensional facial needle-maps yields two problems. The first
is the analysis of the distribution of needle-maps cannot be effected in a linear
way, because a linear combination of unit vectors (normals) is not itself a unit
vector. The second problem is that the covariance over the full dimensions of
the data is too large to be computationally tractable.

The first of these problems is overcomed if we use PGA parameters (feature
vectors) to represent the facial needle-maps since the parameter vectors reside
in a vector space. To overcome the problem of dimensionality, we select the most
significant feature components for discriminating gender that give the best class
separability. Experimental results show that the mixture model learnt by our
method has a correct gender classification rate of 87%.

The outline of the paper is as follows. Section 2 reviews the log and exponen-
tial maps used in principal geodesic analysis. Section 3 explores how the most
significant gender features can be selected. In Section 4, a detailed description of
the learning phase and the classification method is given. Experiments are pre-
sented in Section 5. Finally, Section 6 concludes the paper and offers directions
for future investigation.

2 Principle Geodesic Analysis

The surface normal n ∈ R3 may be considered as a point lying on a spherical
manifold n ∈ S2, therefore, we turn to the intrinsic mean and PGA proposed by
Fletcher et al. [5] to analyze the variations of the surface normals.

2.1 The Log and Exponential Maps

If u ∈ TnS
2 is a vector on the tangent plane to S2 at n and u �= 0, the exponential

map, denoted Expn, of u is the point, denoted Expn(u), on S2 along the geodesic
in the direction of u at distance ‖ u ‖ from n. This is illustrated in Fig. 1. The
log map, denoted Logn is the inverse of the exponential map. The exponential
and log maps reserve the geodesic distance between two points, i.e. d(n1, n2) =
d(u1, u2), where u1 = Lognn1, u2 = Lognn2.

2.2 Spherical Medians

It is more natural to treat the surface normal as points on a unit sphere:
n1, . . . nN ∈ S2 rather than points in Euclidian space. Instead of the Euclid-
ian mean, we compute the intrinsic mean: μ = arg minn∈S2

∑N
i=1 d(n, ni) ,

where d(n, ni) = arccos(n · ni) is the arc length. For a spherical manifold,
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Fig. 1. The exponential map

the intrinsic mean can be found using the gradient descent method of Pen-
nec [6]. Accordingly, the current estimate μ(t) is updated as follows: μ(t+1) =
Expμ(t)( 1

N

∑N
i=1 Logμ(t)(ni)).

2.3 PGA of Needle Maps

PGA is analogous to PCA except that each principal axis in PCA is a straight
line, while in PGA each principle axis is a geodesic curve. In the spherical case
this corresponds to a great circle. Consider a great circle G on the sphere S2.
To project a point n1 ∈ S2 onto a point on G, we use the projection opera-
tor πG : S2 −→ G given by πG(n1) = argminn∈G(n1, n)2. For a geodesic G
passing through the intrinsic mean μ, πG may be approximated linearly in the
tangent plane TμS

2: Logμ(πG(n1)) ≈ ∑K
i=1 V i ·Logμ(n1), where V1, . . . VK is an

orthonormal basis for TμS
2.

Suppose there are K training needle-maps each having N pixel locations, and
the surface normal at the pixel location p for the kth training needle-map is
nk

p. We calculate the intrinsic mean μp of the distribution of surface normals
n1

p, . . . n
K
p at each pixel location p. nk

p is then represented by its log map position
uk

p = Logμp
(nk

p). uk = [uk
1 , . . . , u

k
N ]T is the log mapped long vector of the kth

training needle-map. The K long vectors form the data matrix U = [u1| . . . |uK ].
The covariance matrix of the data matrix is L = 1

K UUT .
We use the numerically efficient snap-shot method of Sirovich [12] to compute

the eigenvectors of L. Accordingly, we construct the matrix L̂ = 1
K UTU , and find

the eigenvalues and eigenvectors. The ith eigenvector ei of L can be computed
from the ith eigenvector êiof L̂ using ei = Uêi. The ith eigenvalue λi of L equals
the ith eigenvalue λ̂i of L̂ when i ≤ K. When i > K, λi = 0. Providing the effects
of noise are small, we only need to retain S eigenmodes to retain p percent of
the model variance. S is the smallest integer satisfying:

∑S
i=1 λi ≥ p

100

∑K
i=1 λi.

In our experiments, we use the 10 leading eigenvectors of L as the columns of
the eigenvector matrix (projection matrix) Φ = (e1|e2| . . . |e10).
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Given a long vector u = [u1, . . . , uN ]T , we can get the corresponding vector
of parameters (feature vector) b = ΦTu. Given a feature vector b = [b1, . . . bS]T ,
we can generate a needle-map using: np = Expμp

((Pb)p).

3 Feature Selection

After PGA, we select the most significant S components of the PGA parameter
vector (in our experiments, S=10). However, the S dimensional feature vectors
still inevitably contain information which is either redundant or irrelevant to
the gender classification task. As stated in [13], the classification of patterns as
performed by humans is based on a very few of the most important attributes.
Therefore, we select the most significant features for gender discrimination.

We examine the distribution for the first 9 components of the PGA parameter
vectors for the 200 data samples in our experiments. Here the first 100 are
females, and the last 100 are males (see Fig. 2). Table 1 shows the mean values
of the first 9 feature components for females and males. By inspection, the 1st,
5th and 6th components have the most significant difference between females
and males.

Figure 3 shows the mean face and its variations along the directions of the 1st,
5th and 6th principal geodesic directions. We can see the 3 feature components
do convey some gender information. Turning our attention to the 1st component,
as λ1 increases, the face becomes larger and more solid, and, the cheeks thinner.
These are all masculine characteristics. In the case of the 5th component, as λ5

decreases, the face becomes wider and the eyes deepen. Again these are masculine
characteristics. In the case of the 6th component, as λ6 increases, there is a
more masculine appearance. Fig. 2 and Fig. 3 therefore indicate the 1st, 5th,
6th features are intuitively the most significant ones for gender discrimination.

To verify our empirical selection, we explore the different feature selection
criteria described by Devijver and Kittler [13]. We use the class separability
criterion J(ξ) = |Sw+Sb|

|Sw| =
∏d

k=1(1 + λk), where Sw and Sb are the between
and within class scatter matrices, λk, k = 1 . . . d are the eigenvalues of matrix
S−1

w Sb. The values of J for the first 9 features are shown in Table 2, from which
we can see B(1), B(5), B(6) have the 3 largest values. The result is consistent
with our empirical selection. Therefore, the 1st, 5th, and 6th features are the
most significant features for gender discrimination. We use them as the selected
feature vectors in gender classification using EM algorithm.

Table 1. Mean values of the first 9 feature components

B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) B(9)

Female -8.6776 -3.2660 -0.4854 0.7371 3.0581 -2.4635 0.1951 0.2868 0.8078

Male 8.6776 3.2660 0.4854 -0.7371 -3.0581 2.4635 -0.1951 -0.2868 -0.8078
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Fig. 2. Plots of the first 9 feature components. From left to right, the first line is B(1),
B(2), B(3), the second line is B(4), B(5), B(6), the third line is B(7), B(8), B(9). X
axis ranging from 1 to 200 stand for the 200 faces, the first 100 are females, the second
100 are males. Y axis ranging from -25 to 25 is the value of the feature components.

Fig. 3. The mean face and its variances along the 1st, 5th and 6th feature components.
The lines are according to the features (from top to bottom): 1st, 5th, 6th features.
The columns are according to the variances (from left to right): λ=-30, λ=-20, λ=0
(the mean face), λ=20, and λ=30.
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Table 2. J values on the first 9 feature components

B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) B(9)

J 1.6231 1.0681 1.0024 1.0073 1.1644 1.1532 1.0010 1.0026 1.0243

4 Learning Gaussian Mixture Models

We use the EM algorithm to fit a two component mixture model to vectors of
selected features, and explore whether the a posteriori class probabilities can be
used to classify the gender of subjects.

4.1 EM Initialization

In our EM algorithm the a posteriori probability is estimated from the selected
feature vectors using the method outlined in [10]. For 2-component Gaussian
mixture models, we set α

(0)
1 = α

(0)
2 = 1

2 , μ
(0)
b1 = μb + ε1, μ

(0)
b2 = μb + ε2, and

Σ
(0)
b1 = Σ

(0)
b2 = det(Σb)1/dId. Here α1, α2 is the a priori probability of each class,

μb is the overall mean of the selected feature vectors, Σb is the overall covariance
matrix of the selected feature vectors, ε1 and ε2 are two small random vectors.

In our experiments d = 3. We can set the class means are μ
(0)
b1 = [−ε1(1),

+ε1(2),−ε1(3)], μ(0)
b2 = [+ε2(1),−ε2(2),+ε1(3)]. The signs before the ε elements

are indicated from Fig. 3. We can see, in our experiments, when the 1st and 6th
feature components are negative, the 5th component is positive, the face is more
female. Otherwise, the face is more male. Using this information makes the EM
initialization more reliable.

4.2 E – Step

In E – Step the a posteriori class membership probability is updated by applying
the Bayes law to the class-conditional density. In our application, the class-
conditional density is Gaussian:
p(Bj |μ(t)

bc , Σ
(t)
bc ) = 1

(2π)d|Σ(t)
bc |

exp[− 1
2 (Bj −μ

(t)
bc )T ×(Σ(t)

bc )−1×(Bj −μ
(t)
bc )]. Here,

Bj donates the selected feature vector of the jth sample data.
At iteration t+1, the a posteriori probability is updated as follows:

W (j,t)
c ≡ P (j ∈ c|Bj , μ

(t)
bc , Σ

(t)
bc ) =

α
(t)
c p(Bj |μ(t)

bc , Σ
(t)
bc )∑2

i=1 α
(t)
i p(Bj |μ(t)

bi , Σ
(t)
bi )

. (1)

Here, W
(j,t)
c means estimate, at iteration t, of the probability that Bj was pro-

duced by class c.

4.3 M – Step

In M – Step the parameters for each class are updated to maximize the expected
log-likelihood function:

Q(C(t+1)|C(t)) =
∑n

j=1

∑2
c=1 W

(j,t)
c × log(α(t+1)

c p(Bj |μ(t+1)
bc , Σ

(t+1)
bc )).
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At iteration t+1, the revised estimate of the a priori probability of class c is
α

(t+1)
c = 1

n

∑n
j=1 W

(j,t)
c , the revised estimate of the mean vector is

μ
(t+1)
bc =

n
j=1 W (j,t)

c Bj

n
j=1 W

(j,t)
c

, and the revised estimate of the covariance matrix is

Σ
(t+1)
bc =

n
j=1 W (j,t)

c (Bj−μ
(t+1)
bc )(Bj−μ

(t+1)
bc )T

n
j=1 W

(j,t)
c

.

4.4 Classification

After the mixture model of genders has been learnt, we use the a posteriori
class probability to classify faces to one of the genders. Given the needle-map
n of a test face, first get its selected feature vector b through PGA and feature
selection method mentioned in previous sections. Then compute the a posteriori
probabilities Wf and Wm through formula (1), using the acquired mean vectors
μbf , μbm and the covariance matrixes Σbf , Σbm. If Wf > Wm, then the face is
classified as female. Otherwise, the face is classified as male.

5 Experiments

In this section, we evaluate the performance of the method for discriminating
gender on the basis of the learnt two-component mixture model for the distrib-
ution of shape-features. The data consists of 200 facial needle-maps with known
ground truth from the Max Plank dataset. There are 100 females and 100 males.

We first apply PGA and feature selection to the data to extract the shape
parameter vectors and perform feature selection. The visualization of the data is
shown in the left-hand panel of Fig. 5. Here we show the distribution of the 1st
and 5th features as a scatter plot. The data is relatively well clustered according
to gender. There is some overlap and this is due to feminine looking males and
masculine looking females.

Experiment 1. We use the 200 data for unsupervised learning. Figure 4 shows
the initial and final classifications of the data. After convergence of the EM al-
gorithm, the data are reasonably well clustered according to gender. The correct
classification rate reaches 89% for females, and 85% for males. Figure 5 visual-
izes the classification results. From the figure, around 13% of the errors are due
to the misclassification of the data in the overlap region. Tests involving human
observers give similar error rates.

Experiment 2. We select the 10 needle-maps with the largest and 10 with the
smallest female probability Wf from the 100 female faces. The top 10 faces are
considered to be typical females, while the bottom 10 are considered to be female
faces falling into the overlap region. We repeat this procedure for the male faces.
We render the 40 facial needle-maps with facial textures, and present them to
9 subjects (6 males and 3 females). The average classification error rate of the
9 people is shown in Table 3. From the table, the classification performance on
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Fig. 4. Learning steps visualized on 1st and 5th features. From left to right, are the
results of EM initialization, after 5 iterations and on convergence.
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Fig. 5. Classification result on the training data visualized on 1st and 5th features.
Left is the original training data, right is the classification result.

the faces in the overlap region is poorer than that of the typical female and male
faces. This confirms that the results obtained in experiment 1 are consistent with
the performance of human subjects. Interestingly, the classification of the female
faces is poorer than that of the males. This may be due to the fact that without
hair or makeup the facial appearance is masculine.

Table 3. Error rate of human classification

Total Overlap Unoverlap Females Males

22.5% 25.6% 19.4% 43.9% 1.1%

Experiment 3. We randomly selected 40 needle-maps from the 200 available
for use as test data. The remaining 160 are used as training data. First, we obtain
the selected feature vectors of the training and test data using the intrinsic mean
and projection matrix using the full sample of 200 data. Then we fit the mixture
model to the training data. We visualize the models in the left-hand panel of
Fig. 6. The classification rate is evaluated by fitting the mixture models to the
test data. The result is shown in the right-hand panel of Fig. 6 and compared
with the original test data shown in the middle of Fig. 6. The classification rate
for females is 80% and on males 95%. This is a good result and that our method
has good generalisation.
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Fig. 6. Training and Testing result visualized on 1st and 5th features. The left is the
learnt models on the training data. In the middle is the original testing data. The right
is the classification on the testing data.

6 Conclusion

In this paper, we apply feature selection and EM algorithm to PGA shape para-
meters of the facial needle-maps to perform gender classification. We explore the
most significant components of the parameter vectors for gender discrimination,
and use the EM algorithm to cluster the selected features. Experimental re-
sults show that using the selected feature vectors, facial needle-maps can be well
clustered according to gender. Moreover, it demonstrates that it is feasible to
construct a 2-component Gaussian mixture models from the facial needle-maps
to classify the gender.

However, there are still some problems that require further investigation.
First, feature selection is quite empirical and the simplest theoretical verification
measure has been used. Our future research will focus on the use of more prin-
cipled methods for feature selection. Second, in the EM initialization step, we
need to analyze the mean face and its variances along each feature component to
determine the signs of the initial mean vectors. Thus, although the training data
need not to be labeled, the learning phase is not totally unsupervised. Third, our
current experiments are based on the ground truth needle-maps extracted from
range images. In the future, we will apply our method to needle-maps recovered
from facial images using SFS.
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Abstract. In this work it is described a framework for classifying face images 
using Adaboost and domain-partitioning based classifiers. The most interesting 
aspect of this framework is the capability of building classification systems with 
high accuracy in dynamical environments, which achieve, at the same time, 
high processing and training speed. We apply this framework to the specific 
problem of gender classification. We built several gender classification systems 
under the proposed framework using different features (LBP, wavelets, rectan-
gular, etc.). These systems are analyzed and evaluated using standard face  
databases (FERET and BioID), and a new gender classification database of 
real-world images. 

1   Introduction 

The computational analysis of face images plays an important role in many computer 
vision applications. Among them we can mention visual human-computer interaction, 
biometry, video conferencing, human-robot interaction, surveillance, video summariz-
ing, image/video indexing and retrieval, and drivers monitoring. So far, face detection 
systems that perform with high accuracy in real world applications have been devel-
oped [13][9][3][11]. However, face classification systems (gender classification, race 
classification, age classification, etc.) do not achieve similar performance, specifically 
when analyzing low-resolution faces obtained under uncontrolled conditions (uncon-
trolled illumination, non-uniform background, etc.). 

We aim at reverting this situation by describing a framework for building robust 
face classification systems using Adaboost [7] and domain-partitioning [8] based 
classifiers. Within this framework we make use of diverse feature types: (i) rectangu-
lar features (similar to Haar wavelets) [12], (ii) LBP-based features [2], (iii) wavelet 
features [9], and (iv) LBP-based features applied over a wavelet decomposition. Some 
of these features have not been used before in face classification problems. 

We apply this learning framework to the specific problem of gender classification. 
Gender classification is a relevant problem within many applications: (1) human-
robot interaction and visual human-computer interaction: it allows building systems 
that behaves differently depending on the user’s gender, (2) video summarizing, and 
image/video indexing and retrieval: it allows the use of gender information in the 
                                                           
* This research was funded by Millenium Nucleus Center for Web Research, Grant P04-067-F, 

Chile. 



 Gender Classification of Faces Using Adaboost 69 

retrieving/indexing process, and (3) face recognition biometric systems: it allows 
improving the system performance by having specific models for each gender. 

We built several robust gender classification systems using this learning frame-
work and diverse features. Their main strengths are the ability of processing  
low-resolution faces (up to 24x24 pixels), and being illumination invariant (no pre-
processing is needed for photometric normalization). These systems are analyzed and 
evaluated using standard face databases (FERET, BioID), and a new database of real-
world images created with this purpose (UCHGender DB). 

The article is structured as follows. In section 2 some related work is outlined. The 
learning framework is presented in section 3. In section 4 the employed features are 
described. In section 5 a comparative analysis of different gender classification sys-
tems is presented. Finally, in section 6, some conclusions of this work are given. 

2   Related Work 

Several methods have been proposed for solving the gender classification problem, 
among them systems based on neural networks (RBF, back propagation, etc.), PCA 
projections, decision trees, SVM classifiers, and Adaboost classifiers can be men-
tioned. Best reported results have been obtained using SVM and Adaboost. We will 
analyze some of these relevant works. In [5] it is proposed a gender classification 
system based on the use of SVM classifier. The employed features are the pixel ele-
ments themselves. The obtained results are very good, 3.38% overall error rate when 
using a RBF kernel, but the test set consists of only 259 faces. In [1] is proposed a 
gender classification system based on a SVM classifier and features obtained using 
PCA (Principal Component Analysis), CCA (Curvilinear Component Analysis) and 
SOM (Self Organizing Maps). Best results are obtained using 759 PCA components, 
7.75% overall error rate, but the size of the faces is restricted to 128x128 pixels and 
the test set is composed by only 80 faces.  

One of the drawbacks of the SVM based system is the fact that they are not real-
time. Therefore systems based in Adaboost have been proposed in the last years. In 
[10] is presented a gender classification system that uses a threshold-weak-classifier 
based Adaboost algorithm and rectangular features. The system achieves a perform-
ance of 79% correct rate in a set of face images obtained from Internet that were 
manually annotated prior to classification (500 features were employed in this case). 
This system was favorably compared against the one proposed in [5] using the same 
dataset; it is 1,000 times faster and it has a higher classification rate (79% against 
75.5%). In [14] is described a LUT-based Adaboost system for gender classification 
that uses rectangular features. Prior to classification faces are aligned. This is done 
using a face alignment method called SDAM that is a kind AAM (Active Appearance 
Model). After alignment, grey-level normalization (histogram equalization) is per-
formed. The system achieves a classification rate of 88% in images downloaded form 
Internet (using 36x36 face windows), and using this database it is favorably compared 
against a SVM-based system and a threshold-Adaboost system.  

Our Adaboost-based gender classification system employs the domain-partitioning 
approach, and the main improvements over previous works are: (1) the use of more 
suitable features for addressing this problem (mLBP features behave better than  
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rectangular features; see section 5), (2) the usage of smaller face windows (24x24) 
which allows analyzing smaller faces, and (3) a faster processing, because, besides the 
eye alignment, we do not perform any geometric or photometric normalization. 

3   A Learning Framework for Building Robust Face Classification 
     Systems 

The key concepts used in the considered framework are boosting and domain parti-
tioning classifiers. Adaboost [7] (a Boosting algorithm) is employed for finding 
highly accurate hypotheses (classification rules) by combining several weak hypothe-
ses (classifiers). We use domain partitioning weak hypotheses [8], each one having a 
moderate accuracy, and giving self-rated confidence values that estimate the reliabil-
ity of each prediction. These weak classifiers are linearly combined, obtaining a clas-
sifier of the form shown in (1). Each function ht(x) is a weak classifier, T is the num-
ber of weak classifiers, and b is a threshold value that defines the operation point of 
the classifier. The class assigned to the input corresponds to the sign of H(x). 

H (x) = α t ht (x)
t=1

T

− b      (1) 

The weak classifiers are applied over features computed in every pattern to be 
processed. Each weak classifier has associated a single feature. Following [8], do-
main-partitioning weak hypotheses make their predictions based on a partitioning of 
the domain X into disjoint blocks X1,…,Xn, which cover all X, and for which 
h(x)=h(x’) for all x, x’∈  Xj. Thus, the weak classifiers prediction depends only on 
which block Xj a given sample instance falls into. In our case the weak classifiers are 
applied over features, therefore each feature domain F is partitioned into disjoint 
blocks F1,…,Fn, and a weak classifier h will have an output for each partition block of 
its associated feature f: 

h( f (x)) = c j ∋ f (x) ∈ Fj     (2) 

For each classifier, the value associated to each partition block (cj), i.e. its output, 
is calculated for minimizing a bound of the training error. This value depends on the 
number of times that the corresponding feature, computed on the training samples (xi), 
fall into this partition block (histograms), and on the class of these samples (yi) and 
their weight D(i). For minimizing the training error, cj is set to [8]: 

c j = 1

2
ln

W+1
j +ε

W−1
j +ε

 

 
  

 

 
  ,          Wl

j = D(i)
i:f (xi )∈Fj ∧yi = l

,  where l = ±1    (3) 

were ε  is a regularization parameter. The outputs, cj, of each the weak classifier, 
obtained during training, are stored in a LUT for speeding up its evaluation. The 
pseudo code of the whole algorithm is shown in figure 1. 
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Fig. 1. Domain-Partitioning Adaboost training algorithm 

4   Features 

We analyze the use of different kinds of features applied to the problem of face classi-
fication: rectangular, mLBP, wavelet, and wavelet+mLBP features. In all cases the 
feature space is partitioned so it can be used directly with the domain-partitioning 
Adaboost classifier described in section 3. In all cases LUTs (Look-Up Tables) are 
used for a fast evaluation of the weak classifiers. 

4.1   Rectangular Features 

Rectangular features resemble Haar wavelets and can be evaluated very quickly, in-
dependently of their size and position, using the integral image [12]. They correspond 
to the difference between sums of pixels values in rectangular image regions. The 
output value defines a domain that is partitioned using intervals (or bins) of equal  
size [13]. 

4.2   Modified LBP 

The LBP (Local Binary Pattern), also known as texture number or census transform, 
corresponds to an illumination invariant descriptor of the local structure in a given 
image neighborhood. We use their modified version [2] (mLPB = modified LBP), 
which overcomes some problems of the original LBP. The mLBP is computed as 
follows: for a given window of 3x3 pixels, the average of the pixels in the window is 
calculated. Then, each of the pixel values is compared against the obtained average. 
From these comparisons, 9 bits are generated, with 0 indicating that a pixel is smaller 
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than the average, and 1 otherwise. After that, the concatenated 9 bits corresponds to 
the mLBP feature. As it can be noticed, for the mLBP feature the domain partition is 
already defined, there are 512 bins (actually 511 [2]). 

4.3   Wavelet Coefficients 

The wavelet transformation allows analyzing images in the spatial-frequency domain. 
In the context of face detection, wavelets coefficients have been successfully em-
ployed as local features. As in [9], the features correspond to groups of 8 neighbor 
coefficients (in space, orientation or scale) that are used as a partition of the feature 
space. Each of the coefficients is quantized in 3 levels and then grouped together, 
defining a partition of 6,561 bins. Given that we use small training sets (see section 
5), such a large number of bins may lead to overfitting. Therefore, we partition the 
wavelet coefficients directly in a small number of bins (16, 32 and 64). 

4.4   Modified LBP of the Wavelet Coefficients 

The mLBP is applied over the wavelet transform for avoiding the quantization of the 
wavelet coefficients, and for summarizing information from groups of coefficients. In 
this way we can reduce the number of partitions to 511 bins. 

5   Evaluation 

5.1   Evaluated Gender Classification Systems 

We use three baseline systems for comparing the performance of our Adaboost based 
gender classification systems: 

- SVM: SVM classifier and face pixels as features. Parameters: RBF kernel, 
σ =1,125, C=25, 3,082 support vectors. 

- SVM+PCA: SVM classifier and PCA projection of the face pixels as features. 
Parameters: RBF kernel, σ =4,950, C=50, 1,981 support vectors, and 300 PCA 
components. 

- PCA: Face gender is determined using the minimal reconstruction error after 
projection of the face pixels in a PCA model of men faces and a PCA model of 
women faces. Parameters: 100 PCA components in each model. 
 

We build different gender classification systems using the described learning 
framework (domain partitioning Adaboost) and different features: 

- Adaboost-Rect: Adaboost & 1,000 rectangular features, 16 bins. 
- Adaboost-mLBP: Adaboost & 1,000 mLBP features. 
- Adaboost-Wav: Adaboost & 426 wavelet-based features (2-level W), 64 bins. 
- Adaboost-Wav-mLBP: Adaboost & 958 wavelet+mLBP features (3 levels WT). 

 

For all systems the selection of the best parameters was done using a validation da-
tabase (see next section). 
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5.2   Databases 

For the classifiers’ training (Adaboost, PCA and SVM based) we built a training da-
tabase of 4,245 face images, containing images from the CAS-PEAL dataset [4] and 
UCHGenderTrainDB (our own dataset). We use 2,009 images from CAS-PEAL 
(1,222 men and 787 women), and 2,165 images from UCHGenderTrainDB (1,150 
men and 1,115 women). We use a validation database of 2,745 face images, contain-
ing images from CAS-PEAL and UCHGenderValDB (our own dataset). The valida-
tion CAS-PEAL dataset contains 1,312 images (768 men and 544 are women), while 
UCHGenderValDB contains 1,433 images (744 men and 689 women). The validation 
database is used for model selection during training. In the case of domain-
partitioning Adaboost, it is used for selecting the number of weak classifiers and the 
number of bins in the LUTs. In the case of SVM, it is used for selecting the parame-
ters of the kernel, while in the case of PCA, for selecting the number of components. 
In both databases, training and validation, for each face a second one was generated, 
which corresponds to a random variation in the position of cropping. It is important to 
note that CAS-PEAL includes only Asians, while UCHGenderTrainDB considers 
other races. With this combination we intend to make our gender classifier race inde-
pendent to a large degree. 

For evaluating the proposed system we use 3 databases: (1) the UCHGender data-
base (real world images, see fig. 2), (2) the Feret database [6], and (3) the BioID data-
base [15]. See table 1 for details on the number of images in each class for these data-
sets. No image in the evaluation database is also included in the training or in the 
validation databases. 

Faces were cropped using the same procedure during training and evaluation. The 
cropping was done using the position of the eyes. In the case of the training and vali-
dation datasets, the cropping of the faces was done using ground truth data, while in 
the case of evaluation two cases are considered: cropping using ground truth data and 
cropping using automatic face and eyes detection (both systems are described in [11]). 
The obtained results using both alternatives are analyzed (see figs. 3-5). 

Table 1. Summary of Databases used for evaluation 

Test database # images # Faces # Men  #  Women  % Men  % 
Women  

UCHGender 142 343 192 151 55.9 44.1 
Feret 2,745 2,745 1,650 1,095 60.1 39.9 
BioID 1,521 1,521 975 546 64.1 35.9 

 

The images employed for the training and testing of the SVM and Adaboost based 
systems were not preprocessed at all. In the case of the PCA based systems (PCA and 
PCA+SVM) the standard preprocessing required by PCA analysis was employed 
(subtraction of the mean face image plus variance normalization).  

 
 



74 R. Verschae, J. Ruiz-del-Solar, and M. Correa 

 
(a) 

 
(b) 

Fig. 2. UCHGender DB (examples) (24x24 pixels): (a) Men, (b) Women faces 

5.3   Results 

All the here presented results, with the exception of PCA and PCA+SVM, consider 
faces of 24x24 pixels. PCA based methods use faces of 100x185 pixels. The usage of 
larger face sizes (48x48) slightly improves the performance of some methods (for 
example Adaboost-Rect features and Adaboost-Wav), however the training time in-
creases exponentially (from hours to days). Because of this and for not introducing 
important restrictions in the size of the faces to be analyzed we consider faces of 
24x24 pixels. 

Figures 3, 4 and 5 show the results of the evaluation of the different methods in the 
Feret, BioID and UCHGender databases, respectively. Figures 3(a), 4(a) and 5(a) 
show the results in the case when the eyes were annotated, while figures 3(b), 4(b) 
and 5(b) show results when the eyes (and faces) were automatically detected. In this 
last case only correct face detections were considered in the statistics (% of correct 
face detections: Feret: 99.49%, BioID: 98.22% and UCHGender: 96.79%). Table 2 
shows some numerical results for the case of equal error rates in both classes. 

Table 2. Correct Classification Rates at Operation points with equal error rates in both classes. 
Only best performing methods are shown. Faces were cropped using annotated eyes (left), and 
automatically detected eyes (right). Results are separated by a “/”. Best results are shown in 
bold. 

Database SVM (RBF) Adab.-Rect Adab.-mLBP Adab.-Wav Adab.-Wav-mLBP 
UCHGender 79.2 / 79.82 79.47 / 79.22 81.23 / 80.12 79.47 / 75.90 78.01 / 71.99 
Feret 83.4 / 84.13 85.24 / 83.95 85.56 / 85.89 78.31 / 76.51 78.09 / 83.83 
BioID 81.44 / 79.05 79.66 / 79.52 80.91 / 81.46 78.54 / 72.96 72.48 / 68.94 

It can be noticed that in the Feret database (fig. 3) the best performing method is 
Adaboost-mLBP followed by Adaboost-Rect, SVM and SVM+PCA. It can also be 
notice that in this database the results of all methods are relatively independent of the 
way the eye positions were obtained. Main reason seems to be the fact that due to the 
characteristics of this database (homogeneous backgrounds and controlled illumina-
tion) the face detection rate is very high (99.49%) and the eyes detection very precise. 

In the case of the BioID database (fig. 4), the performance of some of the methods 
increases when the eye detector is used. This happens in particular with the Adaboost-
mLBP and Adaboost-Rect. When using annotated eyes (fig. 4(a)), best performing 
methods are Adaboost-mLBP and SVM depending on the operation point. This is the 
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only case where SVM works better than the other methods, for equal error rates in 
both classes (see table 2). When using automatic detected eyes (fig. 4(b)), the best 
performing method is Adaboost-mLBP followed by Adaboost-Rect. This shows that 
Adaboost-mLBP is more robust (an independent) of the eye detector being used.  In 
the case of the UCHGender database (fig. 5), it can be noticed that again the 
Adaboost-mLBP outperforms other methodologies. In the case of UCHGender data-
base we do not include results of the PCA and PCA+SVM methods because most 
faces are smaller than 100x185, and PCA using those images gives poor results. 

From figs 3, 4 and 5 it can be noticed that best results are obtained in the Feret  
database, followed by BioID, and UCHGender. This is probably because the Feret 
database contains homogeneous backgrounds, controlled illumination, and only com-
pletely frontal faces. On the other hand, the UCHGender contains a large variation on 
backgrounds, races, illumination conditions, and faces are not necessarily frontal -- 
some of them present yaw (out-of-plane) rotation. 

In table 3 it is shown the average time required by the different methods for the 
gender classification of a given face image. This time does not include the time re-
quired for the face detection/cropping, face scaling and eyes detection. It includes just 
the time required for the face analysis (feature extraction and classification). It can be 
seen that Adaboost-mLPB is about 10 times faster than SVM, while Adaboost-Rect is 
6 times faster than Adaboost-mLPB, and 60 times faster than SVM. This evaluation 
was done in an Intel Pentium 4 CPU 1.80GHz with 2GB RAM, running Debian 
GNU/Linux. 
 

(a) 
 

(b) 

Fig. 3. Classification rates for the FERET dataset. Faces were aligned using: (a) annotated eyes, 
(b) detected eyes. 

Table 3. Processing times of some of the different methods 

Method SVM PCA SVM+PCA Ada-Rect Ada-mLBP Ada-Wav Ada-Wav-mLBP 
Time [mseg] 10.48 625 205 0.244 1.465 1.8554  2.7592 
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(a) 
 

(b) 

Fig. 4. Classification rates for the BioID dataset. Faces were aligned using: (a) annotated eyes, 
(b) detected eyes. 

 
(a)  

 
(b) 

Fig. 5. Classification rates for the UCHGender dataset. Faces were aligned using: (a) annotated 
eyes, (b) detected eyes. 

6   Conclusions 

In this article it was presented a framework for classifying face images using 
Adaboost and domain-partitioning based classifiers. We built several gender classifi-
cation systems using the proposed framework and different features (LBP, wavelets, 
rectangular, etc.). These systems are analyzed and evaluated using three databases 
(Feret, BioID and UCHGender). The obtained results indicate that Adaboost-mLBP 
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outperforms all other Adaboost-based methods, as well as baseline methods (SVM, 
PCA and PCA+SVM), in terms for classification rate. The Adaboost-mLBP behavior 
is robust to changes in the way eyes positions are obtained for performing the face 
alignment. 

The most interesting advantage of the Adaboost-based methods is its high accuracy 
in dynamical environments, achieved with high processing speed. In terms of process-
ing time, the faster method is Adaboost-Rect, being al least 6 times faster than the 
other methods (60 times faster than SVM-based methods). It is followed by 
Adaboost-mLBP, which is 10 times faster than SVM-based methods.  

Another interesting characteristic of the developed Adaboost-based methods is 
their relatively high training speed, about one hour in the case of Adaboost-mLBP and 
about 48 hours for Adaboost-Rect, for a training database of 4,245 face images and a 
validation database of 2,745 face images. 

Future work can be done in extending this framework to multi-class problems (age 
and race classification), and finding out a way of using (selecting) different kinds of 
features at the same time. 
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Abstract. We present a face recognition system able to identify people from a
single non-frontal image in an arbitrary pose. The key component of the sys-
tem is a novel pose correction technique based on Active Appearance Models
(AAMs), which is used to remap probe images into a frontal pose similar to that
of gallery images. The method generalises previous pose correction algorithms
based on AAMs to multiple axis head rotations. We show that such model can
be combined with image warping techniques to increase the textural content of
the images synthesised. We also show that bilateral symmetry of faces can be ex-
ploited to improve recognition. Experiments on a database of 570 non-frontal test
images, which includes 148 different identities, show that the method produces a
significant increase in the success rate (up to 77.4%) compared to conventional
recognition techniques which do not consider pose correction.

1 Introduction

Face recognition has been a topic of active research in computer vision and pattern
recognition for several decades. Applications encompass many aspects of everyday life
such as video surveillance, human-machine interface or multimedia applications. Some
of the reasons why face recognition has been attracting so much attention is that, unlike
other biometrics such as fingerprints or eye iris scan, it does not require cooperation of
the subject, it is unobtrusive and it can be done with a relatively cheap equipment. De-
spite the high recognition rates achieved by current recognition systems in the case of
frontal images, performance has been observed to drop significantly if such ideal con-
ditions are not satisfied. In fact, a previous evaluation of face recognition algorithms [1]
has identified the face recognition problem from non-frontal images as a major research
issue. In this paper, we concentrate on this problem and propose a novel solution.

1.1 Previous Work

Early solutions to the general pose face recognition problem were multi-view generali-
sations of standard frontal face recognition techniques. In [2], Beymer extends template-
based techniques to non-frontal poses by building galleries of views for some pose
configurations which sample the viewing sphere. In [3], Pentland et al. apply the
eigenspace technique to arbitrary pose images by building a separate eigenspaces for
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each pose configuration. One major limitation of such methods is that a large number
of images is required to sample the viewing sphere for each subject.

More recent work focused on eliminating the effects of pose variation by remapping
gallery and probe images into similar pose configurations in which case standard recog-
nition techniques are known to perform well. In [4], Vetter and Poggio show that such
image transformations can be learnt from a set of prototypical images of objects of the
same class that form what they call Linear Object Classes. They synthesised realistic
frontal images of faces from non-frontal views, however the decomposition as a sum of
basis functions results in a loss of textural information. In [5] Vetter addresses this prob-
lem by supplementing the previous method with a generic 3D model which remaps the
texture of the original image onto the corrected view. One limitation is that a database of
prototype images is needed for each pose that must be corrected or synthesised, which
requires the acquisition of a large number of images.

A different line of research concerns the use of parametric surfaces in the recogni-
tion feature space. The principle has been formulated in a general object recognition
context in [6]. In this work Murase and Nayar consider the set of images of an object
undergoing a rotation motion in 3D space and subject to changes of illumination. They
observed that the projection of such images into the eigenspace forms a characteristic
hypersurface for each object. The recognition problem is then reformulated in terms
of finding the hypersurface which lies closest to the projection of the probe image in
the eigenspace for a given metric. The principle has been applied in face recognition in
the case of single [7] or multiple [8] images. A major limitation of such methods is that
the construction of the eigensurface requires a large number of images for each subject.

Another important class of methods consists of model-based methods. The general
idea is that a face in an image can be represented by the parameters of a model which
can be used for recognition. In [9], Wiskott et al. represent faces by labelled graphs,
where each node is labelled with a set of complex Gabor wavelet coefficients, called a
jet. In [10], an Active Appearance Model (AAM) [11] is used for face localisation and
recognition. The authors used Linear Discriminant Analysis to separate the parameters
encoding the identity from the parameters encoding other sources of variation (pose,
illumination, expression). In [12], the authors show that the appearance parameters can
be used to estimate the pose of a face and synthesise novel views in different poses. They
apply the method successfully to tracking images in [12] and face verification [13]. 3D
morphable models have also been used to localise faces and identify subjects based on
the fitted model parameters [14] or a corrected frontal view [15]. 3D morphable models
handle better occlusions than AAM, however they require better initialisation and their
convergence may be more difficult.

Finally, in [16] a view synthesis technique based on shape-from-shading is used to
correct images with arbitrary poses and illumination into a frontal view under frontal
lighting. Unlike other methods, this approach does not require a large number of exam-
ple images, however light source and pose estimation were done manually.

1.2 Our Approach

Our approach is based on using an AAM to localise the face and synthesise a frontal
view which can be then fed into a conventional face recognition system. We require
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only a gallery of frontal views of each subjects (e.g. mugshots) to train the recogni-
tion system, and we use only a single image of a subject in an arbitrary pose (usually
non-frontal) for identification. This is a significant advantage compared to techniques
requiring multiple example views for training [2,3,7,8]. Another strong point of our sys-
tem is that it has the potential to localise automatically facial features in the image. This
contrasts with a number of approaches which rely more heavily on a good initialisation
[14,15,16].

Our approach is different from previous AAM-based face recognition systems
[10,12,13] in the sense it does not use the model parameters for recognition. Instead
it uses a corrected frontal appearance whose shape is predicted by a statistical model,
modelling pose variation, and whose texture is either directly synthesised from the ap-
pearance model or obtained by image warping techniques. The latter approach presents
the advantage of preserving the textural information (moles, freckles, etc) contained in
the original image; such information would be lost in a traditional model parameter rep-
resentation which models only the principal components of the appearance (low-pass
filter equivalent). Another specificity of our pose correction model is that it can accom-
modate more general head rotations than the original model [12] which was formulated
for single axis rotation only.

Our main contributions are the following. Firstly we formulate a novel pose correc-
tion method based on AAMs which generalises previous methods [12] as described in
the previous paragraph. Secondly we show that AAMs can be used to improve face
recognition performance by synthesis of corrected views of the probe images. Finally,
we show that the bilateral symmetry of the face can be exploited to attenuate the effect
of occlusions and increase the recognition performance.

The paper is structured as follows. We start by giving an overview of the system.
We then concentrate on the novel pose estimation and correction algorithm proposed.
Experimental results are given on a database of non-frontal images.

2 Methodology

The system is illustrated in Fig. 1. We give a brief description of each module.

localisation
face

(arbitrary pose)
  input image annotated

image

pose
estimate

estimation
pose

correction
pose

geometric
normalisationnormalisation

photometric
identification

faceID

frontal
image

θ, φ

Fig. 1. Illustration of the main modules constituting the system
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Face localisation. An AAM [11] is used for localising faces and their characteristic fea-
tures. Our implementation uses 128 feature points for shape description. For efficiency,
a multi-resolution approach with three different resolutions is adopted. The AAM is
initialised with the coordinates of the eye centres, which could be obtained for example
from an eye detector. In order to improve the convergence properties of algorithm in the
case of non-frontal images, we use five different initialisations corresponding to mean
appearance for different poses and select the result with lowest residual.

Pose estimation and pose correction. The aim of these modules are firstly to estimate
the pose of the face in the probe image and then to synthesise a novel view of the subject
in the same pose as the gallery images, i.e. frontal in this case. This is the core of our
method. It will be described in detail in the next section.

Geometric and photometric normalisation. Geometric normalisation is done by apply-
ing an affine transformation composed of a translation, rotation and scaling in order to
align the eye centres with some pre-defined positions; the position of the eye centres
in the original image is obtained automatically from the fitted appearance. Photometric
normalisation is done by histogram equalisation [17].

Identification. The statistical features used for recognition are obtained by Linear Dis-
criminant Analysis (LDA) [18]. Identification is done by comparing the projection of
the probe and gallery images in the LDA subspace and selecting the gallery image
which maximises the normalised correlation [19]. Our implementation uses the bilat-
eral symmetry of faces to attenuate the effect of occlusions (see details in result section).

3 Pose Estimation and Correction

Our method is inspired from the work of Cootes et al. described in [12]. In this pa-
per, the authors formulated a pose correction method which handles rotation around a
unique axis. Although it was claimed that generalisation to more general rotations was
straightforward, no explicit formulation was given. In [13], it was suggested that ro-
tation around two axes could be handled by using sequentially two independent pose
correction models trained for pan and tilt motion respectively. Although this may work
in practice for small rotations, this is not suitable for correcting rotations which exhibit
simultaneously large pan and tilt components because such poses have not been learnt
by either pose correction model. We formulate a pose correction method which han-
dles correctly simultaneous pan and tilt head rotations. In addition, we show that image
warping techniques can be used to improve the textural content of the corrected images.

3.1 Modelling Pose Variation

Out of plane head rotation is parametrised by two angles: the pan angle θ and the tilt
angle φ, accounting respectively for rotation around the vertical axis and the horizontal
axis attached to the face. This is sufficient to parametrise arbitrary head pose, because
in-plane rotation, translation and image scaling are already modelled by the appearance
model parameters. In an appropriately defined world reference frame, a feature point
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attached to the head and with coordinates (X0, Y0, Z0)� transforms into the point with
coordinates (X,Y, Z)� after a rotation parametrised by (θ, φ), such that:

X = X0cθcφ−Y0sθcφ+Z0sφ, Y = X0sθ+Y0cθ, and Z = −X0cθsφ+Y0sθsφ+Z0cφ, (1)

where we use the notations cα = cosα and sα = sinα. Assuming an affine projection
model, the 3D point (X,Y, Z)� projects into the image point (x, y)� such that:

x = x0 + x1cθ + x2sθ + x3cφ + x4sφ + x5cθcφ + x6cθsφ + x7sθcφ + x8sθsφ, (2)

where x0, . . . , x8 are some constant (a similar equation is obtained for y). The shape
model being linear, the shape parameters c follow a similar linear model:

c = c0 + c1cθ + c2sθ + c3cφ + c4sφ + c5cθcφ + c6cθsφ + c7sθcφ + c8sθsφ, (3)

where c0, . . . , c8 are constant vectors which can be learnt from a database of annotated
images. Experiments we carried out suggest that this equation can be extended to the
appearance parameters. This is consistent with what was observed by Cootes et al. in
the case of a single rotation in [12]. Note that if one of the angles is set to a fixed value,
(3) simplifies to the equation originally formulated in [12].

3.2 Pose Estimation

We define the matrix Rc = [c1|c2|c3|c4|c5|c6|c7|c8]. Given a vector c of shape or
appearance parameters, we compute the vector [a1, . . . , a8]� = R+

c (c−c0), where R+
c

is the pseudo-inverse of Rc. A closed-form solution for the pan and tilt angles is then
given by: θ = tan−1(a2

a1
) and φ = tan−1(a4

a3
). Such a solution is not optimum because

it involves only the values a1 to a4. A more accurate solution is obtained by finding the
values of θ and φ which minimise the following cost function:

dc(θ, φ) = ‖c−(c0+c1cθ+c2sθ+c3cφ+c4sφ+c5cθcφ+c6cθsφ+c7sθcφ+c8sθsφ)‖.
(4)

This is a simple two-dimensional non-linear minimisation problem which can be solved
e.g. with a steepest descent algorithm initialised with the closed-form solution.

3.3 Synthesising Corrected Views

We assume that the pose in the original image has been estimated as (θ, φ) and would
like to synthesise a novel view of the same subject in the pose (θ′, φ′). As in [12], we
compute the residual vector r not explained by the pose model in the original image:

r = c− (c0 +c1cθ +c2sθ +c3cφ +c4sφ +c5cθcφ +c6cθsφ +c7sθcφ +c8sθsφ). (5)

The shape or appearance parameters c′ of the rotated view in the new pose (θ′, φ′)

are then obtained by re-injecting the residual vector r into the new pose equation:

c′ = c0 + c1c′θ + c2s′θ + c3c′φ + c4s′φ + c5c′θc′φ + c6c′θs′φ + c7s′θc′φ + c8s′θs′φ + r. (6)

If (6) is applied to all appearance parameters, the appearance model can be then used
to synthesise a full corrected view of the person (see second row in Fig. 2). We will
refer to this method as the basic pose correction method.
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Fig. 2. Example of non-frontal images (top row) and corrected frontal images (middle rows). For
comparison, the bottom row shows example of real frontal images of the same subjects.

3.4 Improving the Textural Content of the Corrected Views

The novel view synthesis method described in the previous section solves elegantly the
pose correction problem by predicting the appearance parameters of the novel view and
then synthesising a full appearance. There are however two limitations to this approach.
Firstly, details such as e.g. moles or freckles are lost in the corrected view, because
the appearance parameter representation preserves only the principal components of
the image variations. Another limitation is that the basic pose correction method is
able to predict the appearance only within the convex hull of the set of feature points,
which explains why a black border is present around the face. In practice, this may pose
problem during recognition if such border is not present in the gallery images.

We present two methods based on image warping which do not suffer from such
limitations. The key idea is to apply (6) only to the shape parameters. This yields an
estimate of the position of the feature points in a frontal view. Then the texture of the
corrected image is obtained by warping the original image. Two warping techniques
have been considered: i) piece-wise affine warping and ii) thin-plate spline warping.
Results for all methods are illustrated in Fig. 2 for a few randomly selected subjects. In
the first approach, meshes of the original and corrected faces are generated, with vertices
placed at the localised or predicted feature points. Triangular meshes are generated
automatically by Delaunay triangulation [20]. Then each triangle is warped affinely to
its new position (see Fig. 3). The second technique is based on thin-plate splines [21]. It
has the advantage of resulting in smoother deformations than the previous method (no
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artefact at the boundary between triangles), however the behaviour of the method is not
always clear in-between feature points, especially in the case of large pose variations.

Experiments carried out on a database of

Fig. 3. Illustration of the piece-wise affine
warping method. The original image (arbi-
trary pose) is shown on the left, while the
corrected image (frontal pose) is shown on
the right. Both images are overlaid with the
triangular mesh used for warping.

396 images of unknown subjects (not used
for training the pose correction model) with
variations of ±22.5◦ for the pan angle and
±30◦ for the tilt angle showed that our pose
estimation model is accurate to about 5◦ for
the pan angle and 7◦ for the tilt angle. Er-
rors in pose estimation translate into errors in
the computation of r in (5), which ultimately
result in errors in the corrected frontal view.
Typically, errors in estimation of pan and tilt
angle result in a compression or expansion of
the face in the horizontal or vertical direction
respectively. Errors in scale in the horizon-
tal direction are usually less problematic be-
cause the distance between the two eyes is normalised for recognition. Unfortunately
there exists no such compensation for scaling errors in the vertical direction.

4 Experimental Results

Experiments were carried out on the XM2VTS database [22]. The database contains
eight frontal images and four non-frontal images (corresponding to poses with head
turned left, right, up or down) of 295 different subjects. Among all these images, 225
frontal images and 1177 non-frontal images have been manually annotated with facial
landmarks. We also use a database of 567 similarly annotated images of 43 subjects for
which additional pose information is available. Ground truth pose (pan and tilt angles)
was obtained by placing the subjects on a turntable during image acquisition.

For a fair evaluation, the images have been split into two subsets. The first sub-
set contains the images of the first 147 subjects from the XM2VTS database plus the
turntable images, and has been used to train the AAM and the pose correction model
(when pose ground truth was available). The images of the remaining 148 subjects from
the XM2VTS database (570 images in total) are used for recognition experiments; the
frontal images were used for training the recognition system (gallery images), while
the non-frontal images were used for testing (probe images). None of the subjects used
for training the AAM or the pose correction model were used during the recognition
experiments.

Two different test sets were considered. Test set 1 (295 images) contains only the
probe images for which the subjects have their eyes open and do not wear glasses.
Eyes closed or glasses (which can generate specularities) complicate significantly the
problem because the eyes, which contain important information for identification and
face localisation, may not be visible. Test set 2 contains all probe images (570 images).
Both test sets are very challenging because of the large pose variations observed (see
top row of Fig. 2 for some example of probe images).
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Experiments were carried out in two modes: manual and semi-automatic. In the
manual mode, the system is initialised with the manually marked-up feature points;
this eliminates potential errors due to AAM fitting and allows us to measure the per-
formance of the system independently from the localisation algorithm. In the semi-
automatic mode, faces are localised by the AAM algorithm initialised with the coor-
dinates of the eye centres obtained from manual annotation. In future implementation,
the method will be made fully automatic by using an eye detector to initialise the AAM
search.

Four different methods are compared. The method with no pose correction applies
only geometric and photometric normalisation to the test images before projection into
the LDA subspace. For geometric normalisation, the images are cropped to a window of
dimension 55 × 51 pixels, where the left and right eyes occupy the points with coordi-
nates (19, 38) and (19, 12). This is a conventional recognition method which is known
to perform well in the case of frontal images. The other methods apply additional pose
correction based techniques described earlier: basic pose correction (see Sect. 3.3),
shape correction combined with either piece-wise affine warping or thin-plate spline
warping (see Sect. 3.4).

Given the large changes of pose observed in the images, parts of the face can become
largely occluded, which can produce significant artefacts in the corrected images. In
order to attenuate such effects, at least in the case of rotations around the vertical axis,
the bilateral face symmetry has been used to eliminate the occluded half of the face
when needed. In this approach, three different LDA subspaces are build for full image,
left half-image and right half-image respectively. Then the pose estimate for the probe
images is used to select automatically the most appropriate LDA subspace to use for
identification. At the moment, the pose classification is done by thresholding of the
pan angle (thresholds of −15◦ and +15◦ have been used). All recognition methods are
tested with and without this bilateral face symmetry based occlusion removal algorithm;
we refer to these methods as partial face and full face methods respectively.

The success rates (percentage of subjects identified as top matches) obtained for each
configuration are shown in Table 1. The best performing method is the one which uses
shape correction combined with a piece-wise affine warping, followed very closely by
shape correction combined with the thin-plate spline warping. Compared to a conven-
tional face recognition system which does not consider pose correction, the best pose
correction method improves the success rate by between 33.7% and 77.4% depend-
ing on the difficulty of the test set and the degree of initialisation. The best success
rate measured is 69.2%. This is a high recognition score given the number of classes
(148 subjects) and the fact that all images are non-frontal (pure chance would be only
0.67%). The basic pose correction method is the least accurate. This suggests that it is
important to preserve the textural information contained in original images. The loss of
information in the image synthesised from the predicted frontal appearance parameters
is accentuated by errors in locating the face in the case of the semi-automatic algo-
rithm. It can be observed that the use of bilateral face symmetry for reducing the effect
of occlusions allows to increase the performance by a few percents in the case of the
semi-automatic algorithm; it is not as critical in the case of manually localised faces.
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Table 1. Success rate for different general pose face recognition methods

no pose basic pose piece-wise thin-plate
correction correction affine warping spline warping

full face part. face full face part. face full face part. face full face part. face
Test set manual 39.0 38.0 33.2 32.2 69.2 69.2 66.1 66.8

1 semi-auto 39.0 38.0 17.3 16.6 60.0 63.7 56.9 59.7
Test set manual 40.4 40.0 33.5 33.3 62.6 62.6 59.3 59.3

2 semi-auto 40.4 40.0 13.7 13.7 52.5 54.0 50.2 51.9

5 Conclusions and Future Work

We have presented a novel method for face identification which is able to cope with
pose variations and requires only a single view of a person in an arbitrary pose for
identification. The method relies on the use of a statistical model to estimate and syn-
thesise frontal views of the subjects. When combined with image warping techniques,
the method is able to preserve the textural content of the original non-frontal image.
The corrected image can be fed directly into a conventional face recognition system. It
has been shown that such a correction algorithm is able to improve the performance by
up to 77.4% compared to a conventional approach which does not consider correction.
We also showed how bilateral face symmetry can be used to alleviate the effects of oc-
clusions by using the pose estimate to classify images into three categories for which
separate LDA subspaces have been built.

We have compared several methods for correcting the pose and applied them suc-
cessfully to the problem of face recognition. We are currently working on comparing
these methods with other approaches which carry out the recognition directly in the
space of model parameters after having decoupled the parameters encoding the identity
from the ones encoding pose, expression and illumination [10]. Although the compari-
son is still in its early stages, we can already anticipate that such method will probably
not be able to achieve as high success rates as the ones given here because of the loss
of texture information induced by the model parameter representation.

We think that there is a scope for improving further the technique presented in this
paper. One possible avenue for future work is to investigate how pose estimation (and
thereby pose correction) can be improved by treating the problem jointly with the face
recognition problem; in this approach an optimum pose estimate is found by minimising
the metric used for matching in the LDA subspace. Other possible avenues include the
use of non-linear techniques such as kernel PCA to improve the performance of our
AAM in the case of pose variation, a better handling of occlusions (at the moment
we classify faces in only three classes according to pan angle) or the extension of the
method to image sequences.
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Approximating 3D Facial Shape from Photographs
Using Coupled Statistical Models
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Abstract. In this paper we focus on the problem of developing a coupled statis-
tical model that can be used to recover surface height from frontal photographs
of faces. The idea is to couple intensity and height by jointly modeling their
combined variations. We perform Principal Component Analysis (PCA) on the
shape coefficients for both intensity and height training data in order to construct
the coupled statistical model. Using the best-fit coefficients of an intensity im-
age, height information can be implicitly recovered through the coupled statisti-
cal model. Experiments show that the method can generate good approximations
of the facial surface shape from out-of-training photographs of faces.

1 Introduction

One of the simplest approaches to facial shape recovery using shape-from-shading is to
extract a field of surface normals and then recover the surface height function by inte-
grating the surface normals [1–3]. Unfortunately, there are a number of obstacles that
are encountered when this simple strategy is applied to real-world data. The most impor-
tant of these is that when integrated, the concave/convex ambiguities in the needle-map
can lead to the distortion of the topography of the reconstructed face. One of the most
serious instances of this problem is that the nose can become imploded.

In general, shape-from-shading is an under-constrained problem since a surface nor-
mal has two degrees of freedom corresponding to the elevation and azimuth angles
on the unit sphere which can not be recovered from a single brightness measurement.
Domain specific constraints have been used to overcome this problem. Several authors
[4–7] have shown that, at the expense of generality, the accuracy of recovered shape
information can be greatly enhanced by restricting a shape-from-shading algorithm to a
particular class of objects. For instance, both Prados and Faugeras [7] and Castelán and
Hancock [6] use the location of singular points to enforce convexity on the recovered
surface. Zhao and Chellappa [4] have introduced a geometric constraint which exploited
the approximate bilateral symmetry of faces.

On the other hand, Atick et al. [8] proposed a statistical shape-from-shading frame-
work based on a low dimensional parametrization of facial surfaces. Principal compo-
nents analysis was used to derive a set of ‘eigenheads’ which compactly captures 3D
facial shape. Unfortunately, it is surface orientation and not height which is conveyed by
image intensity. Therefore, fitting the model to an image equates to a computationally
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expensive parameter search which attempts to minimise the error between the rendered
surface and the observed intensity. Dovgard and Basri [9] combined the statistical con-
straint of Atick et al. and the geometric constraint of Zhao and Chellappa into a single
shape-from-shading framework. However, asymmetry in real face images results in er-
rors in the recovered surfaces. Blanz and Vetter [10] decoupled surface texture from
shape and performed PCA on the two components separately. Their framework could be
used regardless of pose and illumination changes, but linear combinations of shape and
texture had to be formed separately for the eyes, nose, mouth and the surrounding area.
In addition, expensive alignment and parameter fitting procedures had to be carried out.
The results delivered by fitting this morphable model proved to be accurate enough to
generate photo-realistic views from an input image, though sacrificing efficiency and
simplicity.

The aim in this paper is to explore how coupled statistical models can be used to
overcome these difficulties. We couple height surface with intensity, developing a cou-
pled statistical model that jointly describes variations in image brightness and height
data over the surface of a face. The coupled model is inspired by the active appearance
model developed by Cootes, Edwards and Taylor [11], which simultaneously models
2D shape and texture.

2 Principal Component Analysis

In this section we describe how eigenspace models are constructed for Cartesian data.
Here we follow the approach adopted by Turk and Pentland who were among the first
to explore the use of principal components analysis for face recognition [12]. We make
use of the technique described by Sirovich et al. [13] to render the method efficient.

2.1 The Intensity Model

The image data is vectorized by stacking the image columns to form long column vec-
tors i. If the K training images contain M columns and N rows, then the pixel with col-
umn index jc and row index jr corresponds to the element indexed j = (N−1)jc+jr of
the long column vector. The training set data-matrix, I = [i1|i2| · · · |iK ] is then formed
by using the long vectors ik as columns. The differences from the average face image,
ī (the sample mean) are used to construct the centered training data matrix

I′ = [(i1 − ī)|(i2 − ī)| · · · |(iK − ī)] = [i′1|i′2| · · · |i′K ]. (1)

Principal Component Analysis (PCA) seeks a set of K−1 orthogonal vectors which,
in a least squares sense, best describe the distribution of the columns of I′. The solution
to the least squares problem is found by calculating the eigenvectors of the explicit
covariance matrix

Vi =
K∑

k=1

i′ki
′
k

T = I′I′T . (2)

Unfortunately, due to its size (MN×MN ), computing the eigenvalues and eigenvec-
tors of vi becomes intractable for large sets of data. However, the numerically efficient
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method proposed in [13] can be used to overcome these difficulties. According to this
method there are only K − 1 non zero eigenvalues from Vi and these can be computed
from the K × K sampled covariance matrix V̂i = I′T I′. The eigen-vector equations
for the explicit and sampled covariance matrices, Vi and V̂i, are

Viui
k = λkui

k and V̂iûi
k = λ̂i

kû
i
k, (3)

where ui
k, ûi

k and λi
k, λ̂i

k are the eigenvectors and eigenvalues of Vi and V̂i, respec-
tively. To demonstrate the relationship between the two sets of eigenvectors, we note
that

V̂iûi
k = λ̂i

kû
i
k, (4)

I′T I′ûi
k = λ̂i

kû
i
k, (5)

I′I′T I′ûi
k = λ̂i

kI
′ûi

k, (6)

Vi(I′ûi
k) = λ̂i

k(I′ûi
k). (7)

As a result ui
k = I′ûi

k and λi
k = λ̂i

k . This means that the eigenvectors of the explicit
covariance matrix can be calculated by multiplying the centered training set by the
eigenvectors of the sampled covariance matrix. Likewise, the non-zero eigenvalues of
the explicit covariance matrix are equal to the eigenvalues of the sampled covariance
matrix.

The eigenfaces are then the eigenvectors of Vi and are constructed by multiplying
the centered training-set data-matrix I′ by the eigenvectors of the sampled covariance
matrix V̂i, i.e.

Mi = I′Ûi, (8)

where Ûi = [ûi
1|ûi

2| · · · |ûi
K ].

An out-of-training-sample face i̇ can be fitted to the eigenfaces Mi by calculating the
parameter vector bi = [bi

1, b
i
2, · · · , bi

k] that minimizes the squared error. The solution
to this least-squares estimation problem is

bi = MiT (i̇ − ī). (9)

The vector of parameters bi measures the contributions from each eigenface to the
recovered approximation of the out-of-training face i̇, and is given by

i̇ ≈ ī + Mibi. (10)

In order to be valid examples of the class represented by the training set, the values
of the vector bi should be constrained to fall in the interval bk ∈ [−3

√
λi

k,+3
√

λi
k].

2.2 The Surface Height Model

To explain how the surface height model was constructed, let us assume that each of
the K surfaces in the training set may be represented by long vectors of height values
h. The mean height vector h̄ is given by



92 M. Castelán, W.A.P. Smith, and E.R. Hancock

h̄ =
1
K

K∑
k=1

hk. (11)

In a similar manner to Equation 1, we form the MN × K matrix of centered long
vectors H′ = [(h1 − h̄)|(h2 − h̄)| · · · |(hK − h̄)]. We calculate the eigenvectors ûh

k of
the matrix H′T H′ and construct the height statistical model (as in Equation 8)

Mh = H′Ûh, (12)

where Ûh = [ûh
1 |ûh

2 | · · · |ûh
K ]. An out-of-training-sample centered long-vector

of height values, ḣ − h̄, can be projected onto the model and represented using the
vector of coefficients

bh = MhT
(ḣ − h̄). (13)

Note that the intensity model and the height model exhibit different modes of vari-
ation. This means that the information encoded by the intensity shape parameters, bi,
is of limited use in directly recovering surface shape from intensity images. This prob-
lem has been circumvented by minimizing the distance between rendered views from
recovered surfaces and input images, as in the work of Atick [8] and Vetter and Blanz
[10]. Unfortunately, the minimization of this distance is badly affected by the presence
of local minima. This means that exhaustive search methods must be used, and this
sacrifices efficiency. We overcome this problem by using a coupled statistical model to
relate 2D intensity variations and variations in surface shape. Once fitted to data, the
coupled model allows us to infer the shape-parameters from the best-fit intensity para-
meters, rather than using the distance between input images and rendered views of the
recovered surfaces.

3 The Coupled Model

To construct the coupled model, each training example (i.e. pair of intensity image and
corresponding aligned range image) can be summarized by the parameter vectors bi

and bh. In both models, we assume that the lower eigenmodes represent small scale
noise variation. Hence, if the kth eigenvalue for the intensity model is λi

k, we need
only S eigenmodes to retain Perc percent of the model variance. We choose S so that∑S

k=1 λi
k ≥ Perc

100

∑K
k=1 λi

k. Similarly, for the 3D models we retain T eigenmodes to
capture Perc percent of the variance.

3.1 Eigenmode Concatenation

For the kth training sample we can generate the concatenated parameter vector of length
S + T :

bc
k =

(
Wbi

k

bh
k

)
=

(
WMiT (ti

k − ī)
MhT (th

k − h̄)

)
, (14)
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where W is a diagonal matrix of weights for each intensity model parameter, allowing
for the different relative weighting of the intensity and surface models. As the elements
of bi and bh represent different classes of data (grayscale and surface shape), they can
not be compared directly. We follow Cootes and Taylor [11] and set W = rMi, where
r2 is the ratio of the total shape variance to the total intensity variance. The coupled
model data matrix is (bc

1|bc
2|...|bc

K).
By applying PCA to the concatenated intensity-shape parameter vectors, we obtain

the coupled model:

bc = Cc =
(

Ci

Ch

)
c, (15)

where C are the eigenvectors and c is a vector of coupled parameters controlling the
intensity and surface shape models simultaneously. The matrix Ci has S rows, and
represents the first S eigenvectors, corresponding to the intensity subspace of the model.
The matrix Ch has T rows, and represents the final T eigenvectors, corresponding to
the surface shape subspace of the model.

We may express the vectors of projected intensity and 3D values directly in terms of
the parameter vector c:

ti = ī + MiW−1Cic. (16)

th = h̄ + MhChc. (17)

For compactness we write: Qi = W−1Ci. We retained 95% of the variance for each
of the models.

3.2 Fitting the Model to Intensity Data

Fitting the model to intensity data involves estimating the parameter vector c from input
images of faces. To do this we seek the coupled model parameters which minimize the
error between the best fit parameters bi and the recovered parameters Qic. In doing so,
we implicitly recover the surface shape represented by the coupled model parameters.

Suppose that ti is a centered vector of length M × N that represents an intensity
image of a face. Its best fit parameter vector, bi, is calculated using Equation 9. We fit
the model to data seeking the vector c of length S + T that satisfies the condition

c = arg min
c

{(bi − Qic)T (bi − Qic)} (18)

The corresponding best fit vector of surface shape values is given by

th ≈ h̄ + MhChc (19)

We used a Matlab implementation of the quasi-Newton minimization procedure to
solve Equation 18. The fit was constrained such that each coupled parameter lies within
±3 standard deviations from the mean. One input image took around a couple of sec-
onds to converge to the best solution.
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4 Experiments

In this section we report experiments focused on using out-of-training-sample images
to evaluate the ability of the coupled model to recover accurate surface information.
The face database used for building the models was provided by the Max-Planck In-
stitute for Biological Cybernetics in Tuebingen, Germany [14]. This database was con-
structed using Laser scans of heads of young adults, and provides head structure data
in a cylindrical representation. For constructing the 3D based models, we converted the
cylindrical coordinates to Cartesian coordinates and solved for height values. We were
also provided with the intensity maps for each 3D face.

We constructed our models using 90 examples. We used 90 out-of-training-sample
examples for surface reconstruction tests. We calculated the fractional height difference
error ‖Ground truth−Recovered surface‖/Ground truth as an average over the
90 surfaces and over all points on the surfaces. For the purposes of analysis, we ordered
the out-of-training-samples examples according to their distance from the mean inten-
sity image ī. We used the sum of the first ten values of bi (to account for at least 50%
of the variability), i.e.,

∑10
j=1 bi

j as a similarity measure. We test how well the coupled
model performs using the 90 out-of-training-sample intensity images as input. We com-
pare the recovered surfaces with the ground truth surface height data. In Figure 1 we
plot the fractional height difference. The results were ordered according to ascending
error for ease of visual comparison. The average surface recovery error was 1.19%. We
also calculated the average error from every out-of-training example to the mean height
shape, which was 1.71%.

Next, we turn out our attention to real world images. The first set of images used
is drawn from the Yale B database [15] and is disjoint from the data used to train the
statistical models. In the images, the faces are in frontal pose and were illuminated by
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Fig. 1. Plot of the fractional height difference between ground-truth and recovered surface when
using the 90 out-of-training intensity images as input
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Fig. 2. Experiments with frontal images of 10 individuals of the Yale B database. The figure is
divided into two panels, each of which contains five of the ten subjects in the database. In the
figure, the rows are labeled with numbers and present the different subjects. The input image, in-
tensity best-fit recovery, frontal illumination of the recovered height and profile view with warped
input image are shown column-wise, for each panel.

a point light source situated approximately in the viewer direction. We aligned each
image with the mean intensity shape so that the eyes, nose tip and mouth center were
in the same position. The surface recovery results using the coupled model are shown
in Figure 2. The figure is divided into two panels, with five subjects on the left and five
on the right. The result for the different subjects are shown in different rows. From left-
to-right in each row we show the input image, the best-fit recovered intensity image, a
frontal illumination of the recovered surface height and a profile view of texture map-
ping the input input image onto the recovered surface. There are a number of features to
note from the figure. First, the reconstructed images agree well with the input. Second,
the overall shape of the profile view is subjectively convincing.

In Figure 3 we present another set of real world images. In the figure, the columns
are labeled with numbers to identify the different subjects. The photographs were taken
under uncontrolled lighting conditions. Also, the resolution of the photographs of sub-
jects 3 and 5 was half the size of the one used for training. Note that we did not perform
alignment operations to the mean intensity image. The top row of the figure shows the
input image, while the bottom row shows the intensity best fit recovery. The intensity
best fit recovery results are noisier than those obtained using the Yale database. Only
subject 1 achieved a visually convincing reconstruction. The noise can be explained as
consequence of not performing alignment operations as well as lower quality resolution.

The artifacts present in the bottom row of Figure 3 occur especially around the mouth
and nose regions of the face. This effect may be sufficient to distort the recovered height
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Fig. 3. Experiments with photographs taken under uncontrolled lighting conditions. Top row:
input images. Bottom row: best fit recovery from the intensity model.

Fig. 4. Surface reconstruction comparison. Top row: ground truth surface. Bottom row: recovered
surface using the coupled model.

surface, as we can verify in Figure 4, where we show profile views of the ground truth
surfaces (top row) together with profile views of the recovered surfaces using the cou-
pled model (bottom row). The ground truth surfaces of the subjects were acquired with
a Cyberware laser scanner. Note that the input photographs are not aligned to the ground
truth surfaces, therefore they exhibit slightly different poses and expressions. For this
reason we did not perform height difference tests for the experiments on this set of im-
ages. A visual examination of both the recovered and the ground truth profiles reveals
interesting features. First, the surface recovery of subject 1 presents the best agreement
with the ground truth. This is a consequence of the good quality of its best fit intensity
recovery. Second, the overall reconstructed facial shape is similar to the ground truth,
specially in the nose and mouth shape. The area around the eyes seems to be the most
difficult to recover.

Finally, in Figure 5 we present re-illumination experiments on the recovered surfaces
for the five subjects. The light source direction makes an angle of −45 and +45 degrees
to the image normal in the horizontal (x) direction for rows 1 and 2, respectively. In
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Fig. 5. Experiments on re-illuminating the recovered surfaces The different columns show differ-
ent subjects. The light source direction makes an angle of −45 and +45 degrees in the horizontal
(x) direction for rows 1 and 2 respectively. Similarly, the light source is moved in the vertical (y)
direction, in rows 3 and 4.

rows 3 and 4, the light source is moved in the same manner in the vertical (y) direction.
From the figure we can note that, despite the instabilities around the nose, mouth and
eyes, the re-illuminations seem to be in accordance with the overall face structure.

5 Conclusions

We have proposed the use of coupled statistical models of 3D face shape and intensity
in order to obtain facial surface approximation from photographs. The coupled model
strongly links the best-fit coefficients for intensity and height data into a single statistical
model. To recover the parameters of the coupled model, and hence reconstruct height
shape, requires an optimization method whose objective function relies on the best-
fit intensity parameters. Depending on the quality of the best-fit intensity recovery, the
coupled model can be good enough to generate accurate surfaces from intensity imagery
in an efficient way.
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Abstract. The variation of illumination of an object can produce large changes 
in the image plane, significantly impairing the performance of face verification 
algorithms. In this paper we present a comparison of several face representation 
methods from the point of view of their sensibility to illumination changes. The 
sensibility is measured in term of the overlap of distribution of normalized cor-
relations for inter class and intra class image comparison. We compared a com-
bination of differentiated image in the frequency domain and the performance 
of Fourier parameters to obtain an illumination insensitive representation. The 
result suggests, that better illumination invariance could be achieve in feature 
spaces developed for a differentiated image rather than using the original input 
image. 

1   Introduction 

A number of algorithms [1-4] have been proposed for the face recognition problem, to 
compensate for illumination changes. In general the variations between images of dif-
ferent faces are smaller than that of the same face taken in a variety of environments. 
External factors such as pose and illumination can cause different conditions and sig-
nificant changes in the image plane. It has been shown that illumination causes larger 
variation in face images than pose [2]. The importance of illumination is further illus-
trated by examination of the eigenface method [5]. Belhumeur improved the accuracy 
of a recognition system based on eigenfaces, by removing the first three principal 
components [4]. 

In recent years many appearance-based algorithms have been proposed to deal with 
the problem [7-10]. Belhumeur showed [7], that the set of images of an object in fixed 
pose but under varying illumination forms a convex cone in the space of images. This 
method requires a large amount of training data, but Lee showed that the subspace 
could be generated using only nine images captured under a particular set of illumina-
tion conditions [10] Recognition is carried out by finding the distance of the probe 
image to the illumination cone. These algorithms work well, but are computationally 
expensive. 

Wei and Lai [11] showed that the facial edge feature is an important cue for face 
recognition and is less sensitive to illumination changes. Barnabas [12] used the 
Hausdorff distance between the facial edge maps for face recognition. Gao and Leung 
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[13] furthermore encode the edge map (LEM) by a polygonal line fitting process and 
computed the similarity of two LEMs with a line segment Hausdorff distance. Sav-
vides [14] showed that modeling the complex phase spectrum in the frequency do-
main produces a face representation that is tolerant to illumination variations, and also 
can automatically handle occlusions (i.e. missing features) without any special pre-
processing. 

In this paper we exploit the fact that although the actual intensity value at each im-
age point is affected by illumination changes, the local differences are much more 
stable. We propose a novel representation in the frequency domain which is derived 
from a complex input image with the real and imaginary parts defined by the x and y 
derivatives of the original image. The sensitivity to illumination is compared with that 
of the original image and features from the Fourier spectrum.  

The contrast XM2VTS database [15] and the Yale B face database [16] are used in 
the experiments. The images in the XM2VTS database were captured in a controlled 
environment in which illumination variations are minimized in one set of images but 
accentuated across another set. 

The Yale B database contains images under widely varying illumination conditions 
and poses of ten subjects. Tests were carried out using the frontal pose set of images 
with varying illumination 

We show that the Real Part of the Fourier transform from differentiated complex 
image yield the most consistent results across all experimental combinations and can 
be used as an illumination insensitive representation for face verification. 

In the next section, we describe the four representations used in the comparative 
study. Section 3 details the experimental procedures to obtain and compare the repre-
sentations. The results of the experiments are presented in Section 4 and we conclude 
in Section 5. 

2   Representations 

In this section we describe four face representations that will be compared to identify 
the most illumination insensitive. They are defined in the frequency domain (magni-
tude, phase angle, real part and imaginary part) computed from differentiated face im-
ages forming a complex input image. 

2.1   Fourier Transform 

The Fourier transform produces a representation of a signal, in term of a weighted 
sum of complex exponentials. The defining formulas for the forward Fourier and the 
inverse Fourier transforms are as follows. Given an image a its forward discrete Fou-
rier transform A is defined as 

+∞
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and vice versa, its inverse as  
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The Fourier spectrum is the complex function of the real frequency variables and it 
can be represented by in its real and imaginary parts. Alternatively we can represent it 
by its magnitude and phase as: 

),(),(),( ΨΩΨΩ=ΨΩ ϕjeAA  (3) 

Where ),( ΨΩA is the magnitude and ),( ΨΩ is the phase corresponding to frequency 

pair ),( ΨΩϕ . 

2.2   Derivatives of Image 

Illumination is a low frequency phenomenon the effect of which can be suppressed by 
differentiation. 

In computer vision, image differentiation is traditionally implemented by convolv-
ing the signal with some form of linear filter, usually a filter that approximates a  
first or second derivative operator. An odd symmetric filter will approximate a first 
derivative.  

The gradient of the image is a vector with the derivatives in x and y directions as 
its components, i.e. 
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Rather than in a vector form it is convenient to represent the derivatives in x and y 
directions as a complex image 

),(),(),( yxjyxyxg yx Δ+Δ=  (5) 

3   Experimental Methods 

The basic idea of the proposed experimental method is shown in Fig. 1. The principal 
representation scheme consists in the combination of the elements that we described 
above. We use the complex first derivative image to highlight frequency content and, 
then transform it to the frequency domain and determine its characteristics. These 
characteristics computed for a pair of images will be compared using normalized cor-
relation defined as:  
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Where the first image is w(i,j), the second image is w1(i,j). The idea is to measure 
how their similarity is affected by illumination changes. Normalized correlation has 
been chosen as it has proved to be a successful similarity measure in face recognition. 
For identical images it takes the maximum value equal to unity. Examples of gener-
ated representations by principal scheme are shown in Fig 2. 

 

Fig. 1. The flow diagram of the principal proposed experimental method 

 

Fig. 2. Image Representations used in the comparative study: a)Geometric normalized input 
image, b)Magnitude, c)Phase, d)Real part, e) Imaginary part of the frequency spectrum of the 
differentiated image. f)Magnitude, g)Phase, h)Real part, i) Imaginary part of the frequency 
spectrum of the input image. 

In the second representation scheme the objective is to transform the input image 
to the frequency domain directly and determine its characteristics.  
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The third experimental scheme is very simple. It directly involves the original in-
put images geometrically normalized as in the first and second experimental schemes. 

3.1   Geometric Normalization Algorithm  

The geometric normalization used consists of the following steps: Smoothing, rotat-
ing, scaling and resampling the input image. The smoothing is performed by convolu-
tion with a Gaussian Filter of size5x5.  

The rotation operation is designed to ensure that the line connecting the centres of 
the two eyes is parallel to the x- axis. The image scaling and resampling scaling out-
puts an image of size 55 rows x 51 columns. The left-eye is mapped onto the pixel 
position (19, 38) and the right-eye is mapped onto the pixel position (19, 12), Fig. 3. 

 

Fig. 3. Geometric normalized image 

For a thorough evaluation of the proposed representations, we calculated and com-
pared the normalized correlations using images from the XM2VTS database and Yale 
B database. 

3.2   The XM2VTS Database 

For a thorough evaluation of the proposed method, we calculated and compared the 
normalized correlations using images from the XM2VTS database (Fig. 4). 

The XM2VTS database contains images of 295 subjects captured over 4 sessions 
in a controlled uniformly illuminated environment and with illumination from left and 
right over 2 sessions. The database uses a standard protocol [15].  

 

Fig. 4. Examples of the XM2VTS database: Normal illuminated (top), Illuminated from left 
and right (bottom) 



104 E. Garea Llano et al. 

We also used a derivative database obtained by photometric normalization of im-
ages of the XM2VTS. The images were normalized using the anisotropic smoothing 
method [17]. 

3.3   The Yale B Database 

The Yale B database contains 64 different illumination conditions for 10 subjects. The 
illumination conditions are a single light source, the position of which varies horizon-
tally (from -130oto 130o) and vertically (from –40o to 65o).We take 4 images per each 
subject with different illumination condition and we also used a derivative database 
obtained by photometric normalization of one image per person in the Yale B data-
base. The images were normalized using the anisotropic smoothing method [17] 
(Fig.5). 

 

Fig. 5. Examples of the Yale B database: a,b,c,d., illuminated images from above, below, right  
and left respectively; e, photometrically normalized image 

3.4   Comparison of Normalized Correlations 

In the XM2VTS database the normalized correlations were compared in two different 
combinations for each database  

• A: 295 subjects of the XM2VTS database against the same subjects using differ-
ent images for each subject 

• B: 295 subjects of the XM2VTS database against 294 different subjects using dif-
ferent images for each subject. 

Correlations were carried out among normal illuminated, illuminated from right 
and left, and photometric normalized images from XM2VTS database to verify in 
many different conditions the results of comparisons. 

In the YaleB database the normalized correlations were compared in two different 
combinations.  

• A: 64 subjects of the Yale B database against the same subjects using different 
images for each subject 

• B: 64 subjects of the Yale B database against 63 different subjects using different 
images for each subject. 

Correlations were carried out among, illuminated from right, left, above and bel-
low, and photometric normalized images to verify in different conditions the results of 
comparisons. 

In table 1 we show the different variants of normalized correlations and its  
comparison. 
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4   Experimental Results 

This section presents a summary of the results of the comparison of the proposed rep-
resentations by the experimental schemes described. 

First, the results of comparisons 1, 2 and 3 from Table 1 are presented in Table 2. 
We can see that the real part and imaginary part obtained by principal representation 
scheme are the best spectral properties that reflect the similarity between different im-
ages of the same subject and the dissimilarity between images of different subjects 
taken under controlled illumination conditions of XM2VTS database. The original 
image in this case best reflects the similarity under controlled normal illumination 
conditions. 

Results on the Yale B database shows that the real part obtained by the principal 
experimental scheme is consistent representation with high correlation coefficients 
between images of the same subject taken in different illumination conditions and 
photometrically normalized. 

The second experiment relates to the comparisons 4 and 5 from Table 1. The re-
sults are shown in Table 3. The experiment shows that the real part obtained by the 
principal experimental scheme is consistent representation with high correlation coef-
ficients between images of the same subject taken in normal condition and images 
taken in different illumination conditions (Fig. 6) and photometrically normalized in 
both databases. 

Table 1. Comparison of normalized correlations 

 

No Comparison 
of correla-
tions 

Compared images 
(XM2VTS database) 

Compared images 
(Yale B database) 

Compared 
represen-
tations 

1 A vs. B Normally illuminated 
vs. normal illuminated 
(8 by 8 images) 

Illuminated from right 
and left vs. Illumi-
nated from right and 
left  (2 by 2 images) 

Principal, 
Second, 
Third 

 
2 A vs. B Illuminated from right 

and left vs. Illumi-
nated from right and 
left (4 by 4 images) 

Illuminated above and 
bellow vs. illuminated 
above and bellow (2 
by 2 images) 

Principal, 
Second, 
Third 

 
3 A vs. B Normally illuminated 

vs. illuminated from 
right and left (8 by 4 
images) 

Illuminated from right 
and left vs. illumi-
nated above and bel-
low (2 by 2 images) 

Principal, 
Second, 
Third 
 

4 A vs. A Normally illuminated 
vs. photometrically 
normalized (2 by 8) 
images 

Illuminated from right 
and left vs. photomet-
rically normalized (1 
by 2 images)  

Principa1 

5 A vs. A Illuminated from right 
and left vs. photomet-
rically normalized (4 
by 2 images) 

Illuminated above and 
bellow vs. photomet-
rically normalized (1 
by 2 images) 

Principa1 
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Table 2. Principal results of comparison between normalized correlations (1,2 and 3; Table 1) 

XM2VTS database Yale B database Rp Par 
Av 
(A) 

Av 
(B) 

overlap 
% 

Dist Av 
(A) 

Av 
(B) 

overlap 
% 

Dist 

Comparison 1 1 
Mg 0.69 0.63 81.70 0.06 0.78 0.73 93.58 0.05 
Fi 0.12 0.02 12.88 0.09 0.09 0.04 44.44 0.05 
R 0.83 0.67 10.17 0.16 0.92 0.56 22.88 0.36 

Pr. 
 

I 0.57 0.25 13.83 0.32 0.52 0.51 95.00 0.01 
Mg 0.73 0.69 63.73 0.03 0.75 0.70 93.33 0.05 
Fi 0.14 0.04 64.41 0.10 0.13 0.02 58.55 0.11 
R 0.99 0.98 22.03 0.01 0.97 0.95 44.06 0.02 

Sec. 

I 0.63 0.35 20.00 0.27 0.58 0.33 18.51 0.25 
Th. Or 0.76 0.40 4.40 0.36 0.45 0.34 75.55 0.11 
Comparison 2 2 

Mg 0.72 0.66 50.84 0.09 0.72 0.66 50.84 0.09 
Fi 0.13 0.03 98.64 0.1 0.13 0.03 98.64 0.1 
R 0.90 0.77 20.00 0.23 0.93 0.69 20.86 0.24 

 
Pr. 

 
I 0.75 0.32 19.15 0.43 0.69 0.63 91.30 0.06 
Mg 0.80 0.75 58.64 0.07 0.82 0.73 75.39 0.09 
Fi 0.21 0.07 85.42 0.14 0.17 0.08 54.41 0.09 
R 0.99 0.98 61.69 0.01 0.95 0.93 71.56 0.02 

Sec. 

I 0.96 0.89 67.00 0.07 0.93 0.78 69.00 0.15 
Th. Or 0.89 0.82 64.00 0.07 0.85 0.77 73.14 0.08 
Comparison 3 3 

Mg 0.68 0.65 86.39 0.04 0.63 0.58 85.50 0.05 
Fi 0.12 0.05 57.82 0.05 0.10 0.03 56.79 0.07 
R 0.82 0.63 32.24 0.19 0.90 0.65 31.35 0.25 

Pr. 
 

I 0.57 0.48 58.50 0.09 0.53 0.45 57.45 0.08 
Mg 0.78 0.67 68.00 0.11 0.81 0.69 67.58 0.12 
Fi 0.25 0.03 12.00 0.22 0.15 0.08 40.00 0.08 
R 0.99 0.99 100.00 0.00 0.97 0.93 75.00 0.04 

Sec. 

I 0.70 0.55 56.32 0.15 0.68 0.62 65.52 0.06 
Th. Or 0.60 0.62 55.00 0.02 0.57 0.53 53.65 0.04 

Table 3. Result of comparisons between normalized correlations (4 and 5, Table 1) 

XM2VTS database Yale B database Par 
Av(A) Av(A) Av(A) Av(A) 

Comparison 4 4 
Mg 0.63 0.67 0.56 0.58 
Fi 0.09 0.18 0.11 0.16 
R 0.71 0.79 0.85 0.89
I 0.46 0.61 0.51 0.63 

Comparison 5 5 
Mg 0.56 0.57 0.63 0.67 
Fi 0.12 0.13 0.08 0.11 
R 0.81 0.83 0.92 0.96 
I 0.43 0.64 0.45 0.67 
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Fig. 6. Results of normalized correlation A (left) and B(right) using normally illuminated and 
illuminated images from right and left in the XM2VTS database by principal experimental 
scheme 

5   Conclusions 

We proposed a novel face image representation in the frequency domain which is de-
rived from a complex input image with the real and imaginary parts defined by the x 
and y derivatives of the original image. The experimental results show that the real 
part obtained by the proposed experimental scheme is the most consistent representa-
tion with high correlation coefficients between images of the same subject taken in 
normal condition and images taken in different illumination conditions. 

In tables 2 and 3: Mg- Magnitude, Fi- Phase, R-Real part, I- Imaginary part, Or: 
original image, Pr, Sec. and Th.: Principal, Second and Third representation schemes 
respectively, Av(A), Av(B): mean of correlation coefficients, overlap%: Percent of 
overlapping of compared correlations, Distance: Difference between Av(A) and 
Av(B). 
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Face Recognition with Region Division and Spin Images
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Abstract. This paper explores how spin images can be constructed using shape-
from-shading information and used for the purposes of face recognition. We com-
mence by extracting needle-maps from gray-scale images of faces, using a mean
needle-map to enforce the correct pattern of facial convexity and concavity. Spin
images [4] are estimated from the needle maps using local spherical geometry
to approximate the facial surface. Our representation is based on the spin image
histograms for an arrangement of image patches. We demonstrate how this rep-
resentation can be used to perform face recognition across different subjects and
illumination conditions. Experiments show the method to be reliable and accu-
rate, and the recognition precision reaches 98% on CMU PIE sub- database.

1 Introduction

Face recognition is an active research area that has been approached in many ways.
Roughly speaking the alternative methods can be divided in two categories. The first
of these is the feature-based method, while the second is the model-based method. Re-
cently, it is the model-based method that has attracted the greatest attention [2]. Here
one on the most important recent developments is the work of Blanz and Vetter [3].
In this work a 3-D morphable model matched to face data using correspondences de-
livered by optic flow information. The method gives recognition rates of about 80%
when profiles are used to recognise frontal poses. However, the construction of the
model requires manually marking feature points, which is labour intensive. Hence, the
automatic construction of models remains an imperative in face recognition. There are
related feature-based approaches which are based on the assumption that face images
are the result of Lambertian reflectance. Under this assumption 3D linear subspaces
can be constructed that account for facial appearance under fixed viewpoint but under
different illumination [9,1,7].

In this paper we aim to develop a feature based method for face recognition that
can be used to recognise faces using surface shape information inferred from image
brightness using a Lambertian shape-from-shading scheme. Shape-from-shading is not
widely accepted as a technique for face recognition. The reason is that the surface nor-
mal is commonly believed to be noisy and is unstable under changes in illumination di-
rection or change of pose. However, recently it has been shown that shape-from-shading
can be used to extract useful features from real world face images [8].

One of the problems that hinders the extraction of reliable facial topography using
shape-from-shading is the concave/convex inversions that arise due to the bas-relief
ambiguity. A recent paper [8] have shown how this problem can be overcome using a
statistical model for admissible surface normal variations trained on range data. Here

J.F. Martı́nez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 109–117, 2006.
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we use a simplified version of this algorithm. The surface normals are constrained to
fall on the Lambertian reflectance with axis in the light source direction and apex angle
given by the inverse cosine of the normalised image brightness. The position of the
surface normal on the cone is such that it minimizes the distance to the corresponding
mean surface normal direction.

To construct a surface representation from the surface normals, we turn to the spin
image first developed by Johnson and Hebert [4]. A spin image is a series of histograms
constructed from the polar coordinates of arbitrary reference points on a surface. The
representation can capture fine topographic surface detail. Unfortunately, the compu-
tational overheads associated with the method are high, since a histogram needs to be
generated for each surface location. Moreover, the original spin image representation
was developed for range images and hence relies on surface height rather than sur-
face normal information. We demonstrate how these two problems can be overcome by
computing local spin images on image patches using surface normal information.

2 Mean Needle Map Alignment

The shape-from-shading algorithm used to extract needle-maps from brightness images
is as follows. We follow the work in [10] and place the surface normal on a cone whose
axis is the light source direction and whose opening angle is the inverse cosine of the
normalised image brightness.

This initial field of surface normals typically contains errors, and in particular loca-
tions where the pattern of convexity or concavity is reversed. To overcome this problem
we draw on a model that accounts for the distribution of surface normals across ground-
truth facial surfaces. To construct this model we use a sample of range images of human
faces. From the gradients of the surface height data, we make estimates of surface nor-
mal direction. The resulting fields of surface normals are adjusted so that that the faces
have the same overall centering, scale and orientation. At each location we compute
the mean surface normal direction over the set of training images. Here we use the
Max-Planck data-base which has 200 sample images of male and female subjects.

We use the mean facial needle-map to adjust the positions of the surface normals on
the reflectance cones. Each initial surface normal is rotated on its cone so that it min-
imises the angle subtended with the mean surface normal at the corresponding image
location.

f(x, y) = argmin(tan(θr(x, y) − θmean(x, y))) (1)

where θr and θmean are the azimuth angles of the aligned surface normal nr and the
mean surface normal nmean on the surface point (x, y).

The simplest way to satisfy 1 is to adjust the azimuth angle of the aligned surface
normal nr so that nr becomes parallel to nmean.

In Fig. 3 we illustrate the improvements gained using this simple shape-from-shading
procedure. In the top row of the figure we show the input images of a single subject with
the light source in different directions. In the second row we show the initial estimates
of the surface normal directions. Here we have visualised the needle-maps by taking
the inner product of the surface normal with the light-source vector perpendicular to
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the image plane. This is equivalent to re-illuminating the field of surface normals with
frontal Lambertian reflectance. From the images in the second row it is clear that there
are significant concave/convex inversions in the proximity of the nose and lips when
the face is illuminated obliquely. In the third row of the figure we show the field of
surface normals that result from the adjustment procedure described above. The re-
illuminations reveal that the inversions are removed and the quality of the recovered
facial topography is improved (Fig. 4 illustrates the solution of this inversion problem).

3 The Spin Image Approach

The spin image of Johnson and Hebert [4] aims to construct an object-centered repre-
sentation. The representation consists of a series of 2D histograms and is constructed
in the following manner: Commence by selecting an arbitrary point on the surface as
the reference point O, and

→
no is the surface normal at the point O. Then select a second

arbitrary point P on the surface, and
→
np is the surface normal at the point P . Assume

the object resides in a 3D coordinate system with the surface normal
→
no as z axis and

the xy plane perpendicular to
→
no. The Euclidean distance γ = |

→
OP | can be projected

onto the xy plane as α and the z axis as β respectively. After the distances α and β of
all the surface points are calculated, we can use them to construct a 2D histogram. The
above procedure is performed after each point on the surface has been taken as the point
P so that a single 2D histogram is constructed, and then a series of 2D histograms are
constructed using the above steps and taking each point on the surface as the reference
point O. Figure 1 illustrates the spin image construction. Equation 2 shows the struc-
ture of the spin image, in which N is the number of image surface points and n is the
number of histogram bins.

O1 O2⎡⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤⎥⎥⎥⎦
. . . ON

. . .

⎡⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤⎥⎥⎥⎦
(2)

This object-centered representation is invariant to translation and rotation since the
spin image is calculated using only relative distances between object surface points.

The spin image representation is based on the availability of surface height data and
can not be applied directly to fields of surface normals or needle maps. Moreover, the
spin image histograms need to be constructed at each image location, and this is com-
putationally demanding in both time and storage. In order to obtain this object-centered
representation for an object with n surface points/image pixels, the computation cost
will be O(n2).
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Fig. 1. Illustration of spin image construction

4 Adapting Spin Images to Needle-Maps

We have adapted a patch based approach to spin-image representation. We segment the
surface into patches and for each patch we use only the geometric center point O to
construct the spin image, rather than use every point of this surface as in the original
spin image approach. Our histograms are constructed on a patch-by-patch basis.

From the GGFI [6] we obtain a surface height

∣∣∣∣ →
OP ′

∣∣∣∣ in the viewing direction
→
nv. The

surface height

∣∣∣∣ →
OP ′

∣∣∣∣ and the horizontal distance

∣∣∣∣ →
P ′P

∣∣∣∣ can not be used to construct the

spin image because they are based on the viewing direction. What we need is the surface
height and the horizontal distance based on the surface normal

→
no direction.

To compute these quantities we proceed as follows. From the surface height

∣∣∣∣ →
OP ′

∣∣∣∣,
the distance

∣∣∣∣ →
OP

∣∣∣∣ is easy to compute since the distance

∣∣∣∣ →
PP ′

∣∣∣∣ on the viewing plane can

be directly measured from the 2D image. From Fig. 2, we are interested in the distance

α, i.e.

∣∣∣∣ →
PP ′′

∣∣∣∣, on the surface normal plane δ and the relative height β, i.e.

∣∣∣∣ →
OP ′′

∣∣∣∣, in

the surface normal direction
→
no between the reference point O and the arbitrary point

P . The quantities are related by the following equations:

→
OP=

→
OP ′ +

→
P ′P (3)

→
P ′′O= (

→
OP · →

no)× →
no (4)
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Fig. 2. Illustration of how to obtain the distance α and the relative height β

→
P ′′P=

→
P ′′O +

→
OP (5)

We now have all the ingredients to construct the 2D histogram of α and β for the
surface patch centered at the point O. Equation 6 shows the structure of the patch based
spin image, in which M is the number of surface patches and n is the number of his-
togram bins.

O1 O2⎡⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤⎥⎥⎥⎦
. . . OM

. . .

⎡⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann

⎤⎥⎥⎥⎦
(6)

In our experiment we construct a 10 by 10 bin 2D histograms of α and β for an image
patch of 32 by 32 pixels. The histogram is also normalised so as to be scale invariant.

As an additional step, we have performed PCA on the spin image histograms to
reduce the dimensionality of the data. The idea is as follows. We normalise the contents
of each spin image histogram to unity. The normalised bin contents of the histograms
are concatenated as a long-vector as follows.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

{O1 : a11} , {O1 : a12} , . . . , {O1 : a1n} , . . . ,
{O1 : an1} , {O1 : an2} , . . . , {O1 : ann} ,
{O2 : a11} , {O2 : a12} , . . . , {O2 : a1n} , . . . ,
{O2 : an1} , {O2 : an2} , . . . , {O2 : ann} ,
. . . ,
{OM : a11} , {OM : a12} , . . . , {OM : a1n} , . . . ,
{OM : an1} , {OM : an2} , . . . , {OM : ann}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

Dimensionality reduction is effected by projecting the long-vector onto the leading
eigenvectors of the long-vector covariance matrix.

In the adaptation of spin image on surface normal, the computation cost is reduced
to O(n) instead of O(n2) in the original approach.

5 Recognition

In our preprocessing of the images to extract needle-maps, we perform alignment. This
means that we can apply a patch template to the extracted needle-maps to decompose
the face into regions. The patch template is constructed from the mean facial needle
map, and consists of regions that are either wholly concave or wholly convex. The con-
vexity/concavity test is made using the sign of the changes in surface normal direction.
By performing the spin image analysis on these regions, we avoid problems associated
with inflexion points when the approximations outlined in Sect. 2 are employed.

As an alternative to constructing the template from the mean needle-map, we have
explored constructing it from the needle map extracted from each facial image.

Our measure of facial similarity is based on the normalised correlation of the spin-
image histograms for corresponding template patches.

Johnson and Hebert use normalised correlation to evaluate spin image similarity[4].
The method assumes that spin-images from proximal points on the surface for different
views of an object will be linearly related. This is because the number of points that fall
into corresponding bins will be similar (given that the distribution of points over the
surface of the objects is the same). In our case, this assumption still holds. We hence
use normalised correlation to compare the patch-based spin images. The correlation is
given by

rxy =
n
∑

xiyi −
∑

xi

∑
yi√

(n
∑

x2
i − (

∑
xi)2)(n

∑
y2

i − (
∑

yi)2)
(8)

where rxy is the correlation of two spin images x and y. n is the bin number of the spin
image, xi and yi is the bin contents of two spin images respectively.

rsum =
min(M,N)∑

i=1

rmini (9)
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6 Experiments

We apply our method to the CMU PIE face database. We use cropped frontal-viewed
face images (without background) in this paper. The sub-database contains 67×7 = 469
(67 subjects (1-67) and 7 lights (3,10,7,8,9,13,16)) images. We apply the two different
patch segmentation strategies outlined above.

For the 7 images of the same subject illuminated by different lights, we use 3 for
training sets and 4 for testing. To perform recognition for the 67 subjects, we select
a probe image from the test set and the closest image in the training set. The results
of our experiments are summarised using the precision-recall curves shown in Fig. 5.
The star-dotted curve shows the result of patch-based similarity, the circle-dotted curve
shows the result of comparing the vectors extracted using PCA and the cross-dotted
curve shows the result of using a global histogram of curvature attributes extracted
from the needle-maps [5]. The best results are obtained by applying PCA to the spin
image histograms.

In Table 1 we compare the recognition results obtained using the spin-image and
applying PCA to the spin image long-vectors. Performance is improved using PCA,
and this can be ascribed to the fact that PCA effectively discards the histogram bins that
are associated with insignificant variance.

Please notice the face component performance is obtained by only comparing the
similarity of a single face component (eye, nose, mouth, etc.) instead of the whole face,
so the recognition rate will be reasonably low and can only be used to compare the
performance of two methods.

Table 1. Recognition performance using the spin image and the dimension-reduced spin image
vector

Spin Image Spin Image Vector
Face Components 27.81% 29.69%
Whole Face 87.50% 98.75%

In Table 2 we show the effect of applying the different shape-representations to the
initial needle maps and the adjusted needle maps obtained using the mean needle map.
In each case there is a significant improvement.

Table 2. Recognition performance using the surface normal aligned to mean needle map and and
the original surface normal

Original MNMA
Global Histogram 47.50% 62.50%
Spin Image 85.00% 87.5%
Spin Image Vector 95.00% 98.75%
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Fig. 3. The images in the first row are real images illuminated by the light sources from different
directions. The images in the second row are the original needle maps rendered by the light
source different from the real one [10]. The images in the third row are the needle maps after
Mean Needle Map Alignment (Sect. 2) rendered by the light source different from the real one.
The images in the third row are more photo-realistic and carry less noise than the ones in the
second row.

Fig. 4. The first image is the original needle map projected to the x direction of the viewing
plane. The second image is the mean needle map that we use as the template. The third image
is the needle map projected to the x direction of the viewing plane after the Mean Needle Map
Alignment (Sect. 2). The third image compensate the concave/convex problem of the first one.
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Fig. 5. There are three precision-recall curves of different approaches in this figure: the basic
patch-based spin image approach, the spin image vector approach and the previous global his-
togram approach [5]. All these results are based on the surface normal processed by the Mean
Needle Map Alignment because that approach has been proved improving the distinguishing
ability in Table 2. Among them the spin image vector approach gives the best performance.
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7 Conclusion and Future Work

In this paper we have explored how spin images can can extracted from 2D facial images
using shape-from-shading. We make a number of contributions. First, we show how the
spin-image histograms can be computed from needle-maps. Second, we show how the
complexity of the spin image computation can be reduced using patches, and how the
dimensionality of the histograms can be reduced using PCA. Third, we show how the
problems of concave/convex inversions in the needle map can be overcome using a
mean facial needle-map. The performance of the method is encouraging and can give
recognition rates as high as 98.75%.
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Abstract. This paper presents a strategy for the extraction of blood vessels from 
ophthalmoscopic color images of the fundus of human retinas. To extract the 
vascular network, morphology operators were used, primarily maximum of 
openings and sum of valleys, and secondly a reconstruction by dilation from 
two images obtained using threshold by hysteresis. To extract the skeleton of 
the resulting vascular network, morphological thinning and pruning algorithms 
were used. Results obtained represent a starting point for future work related to 
the detection of anomalies in the vascular network and techniques for  personal 
authentication. 

Keywords: Blood vessels segmentation, Fundus analysis, Morphology.  

1   Introduction  

The automatic analysis of human eye fundus images is a task of major importance. 
The fundamental aim is to help ophthalmologists during the diagnosis of illnesses that 
present visible affections in the human retina. Some of these illnesses are of concern, 
because if they are not detected in time, they can lead to blindness. Of particular 
interest are: glaucoma, diabetic retinopathy, and macular degeneration. Early 
detection of these conditions is a focus of importance for ophthalmologists. 

There are three visible anatomical elements in the fundus of the retina: the macula 
lutea, the optic disk (or optic papilla), and the vascular network, composed of a thick 
and dark red vein network, and a thinner arterial network of a clearer reddish tone 
(Fig. 1). 

In order for the ophthalmologist to analyze the retina it is common to induce 
certain conditions on patients to improve the quality of observation of the eye fundus. 
To enlarge the observation field the pupils of the patients are dilated; to highlight 
affections of the retina related with blood, it is common to inject patients with a 
fluoresceinic substance that makes blood vessels visible with easiness. In this paper 
we propose a method to detect blood vessels in human retinas from digital 
ophthalmoscopic color images. 
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Fig. 1. Anatomic elements of a human eye fundus image 

2   The Problem  

Our task deals with the extraction of the vascular network from the retina. Due to the 
normal distribution through the entire retina and the probable non-uniform 
illumination of the field observed when retina images are captured, this is not a trivial 
task. Any strategy applied to achieve this purpose should be independent of non-
uniform illumination and invariant to translation, rotation, and scale of the images 
being analyzed.  

3   Background  

The successful extraction of blood vessels from images of the retina has been treated 
previously. Filtering by coincidence has being used to separate the blood vessels in 
eye fundus images [1] [2]. As in their traverse section the blood vessels have the form 
of an overturned Gauss bell, their segmentation can be carried out by the convolution 
of images with a Gaussian nucleus. This method used by Chutatape and Zheng [3] is 
slow because it requires a large Gaussian mask for the convolution, and images need 
to be rotated several times. Also, the selected mask responds well when it represents 
the same standard deviation than that of pixels of blood vessels, but it does not 
respond either for smaller nor bigger blood vessels.  

Artificial neural networks have been applied with promising results in the analysis 
of ophthalmic images [4] [5] [6]. They have demonstrated to be useful, since they can 
be trained to recognize patterns of blood vessels. In this way it is possible to extract 
them. A disadvantage of neural networks is that classification is carried out on the 
basis of statistical methods and logical reasoning. 

Algorithms for tracking blood vessels have been used to segment them between 
two given points [7]. These algorithms work at the level of a single blood vessel and 
not of the whole vascular network. Usually, while moving through the blood vessel, 
these algorithms calculate their width, which represents an advantage. Other 
parameters like the width average and the tortuosity of the blood vessel can also be 
calculated. The main advantage of this method is that it gives quite exact measures 
and information about individual blood vessels. Unfortunately, they require a starting 
point and in most case a terminal point, which works against automation of the 
process.  

Macula Optic Papilla 
(Optic Disk)  

Venous 
Vascular Network  

Arterial Vascular 
Network 
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Image processing by means of morphological methods is particularly effective 
when it is required to extract components of the image whose shape is known a priori 
[8]. The vascular network is linear in small portions, which is ideal for morphological 
processing. Morphological methods have been applied in segmentation of certain 
types of vascular networks with the intrinsic advantage of being more efficient and 
more immune to noise than other methods. In particular, this approach has been 
applied to gray-level angiographic images captured after patients were injected with a 
fluoresceinic substance that highlights areas containing blood, as is the case with 
veins and arterial blood vessels of the vascular network [8] [9].  

As mentioned earlier, this paper deals with the extraction of the vascular network 
from color ophthalmoscopic fundus images. These are images obtained without the 
necessity of invasive procedures. 

4   Our Strategy  

The method proposed for the extraction of the vascular network is based on methods 
proposed by Flynn [10], and by Zana and Klein [9]. The main difference with our 
strategy is that those methods work well for fluoresceinic gray-level images of retina 
where blood vessels appear with a higher intensity level and have well-defined 
contours. In this paper, images were captured from patients that did not require any 
previous invasive preparation, that is, our solution use color images captured directly 
and transformed to gray level images.  

These images typically are corrupted by significant additive noise that causes the 
image background to have a non homogeneous gray level. We call background in this 
paper all parts of the image that do not offer useful information related to our task. On 
the other hand, the background’s gray level is not uniform in all areas through which 
the vascular network appears. In the region of the optic disk and near to it, the 
background has a clearer tone of gray, while in regions near the macula the 
background appears darker. In this aspect, factors related to the illumination of 
images when they are captured, produce more illuminated areas and also areas where 
it is not possible to distinguish the location of blood vessels (Fig. 2). 

Fig. 2. Human eye fundus image 

Generally, blood vessels are darker than the background, although there are areas 
where the vascular network is not visible because its level is similar to the 
background. The thickness of blood vessels is variable. In the area near the optic disk, 
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where the two main veins and the two main arteries arise from the choroids through 
the center of the papilla to the retina, the vascular network is thicker. Other veins and 
arteries derived from these four are thinner, up to regions where almost they get lost 
when their thickness is only of one pixel. The last interesting characteristic of the 
vascular network is its piecewise linear structure. We can say that the vascular 
network is composed by small linear segments connected to each other [10]. The area 
near the center of the macula lutea is physiologically avascular.  

Before extracting blood vessels images are preprocessed to normalize their size, to 
reduce additive noise and to enhance the contrast. All images used were obtained 
from the same source and have a spatial resolution of 300 dpi. Images were 
normalized to 350 pixels in the longer side. 

 
 
 
 
 
 
 
 

Fig. 3. Gray-level image from the green channel 

Experimentally, as the green color is located at the centre of the visible spectrum, it 
has been observed that from the three-color channels that compose the image in the 
RGB (Red, Green, and Blue) color model, the green channel offers the higher 
quantity in information and less additive noise. The red channel still gives some 
information, and very little the blue channel, in occasions none, but having higher 
additive noise. Therefore, to avoid the influence of the noise present in these two 
channels, the conversion of the image to gray levels is based on the information 
contained in the green channel only (Fig. 3). 

Subsequently, a morphological operator proposed by Zana and Klein [8], and 
Flynn [10] is applied, which diminishes at the same time the additive noise in the 
background and preserves blood vessels. The operator, called maximum of openings, 
is defined in the following way [12] [13]:  

 
IC = maxi=1…16{I0 ° Bi} 

 
Where IC is the "cleaned" image, I0 is the original image, and Bi is a flat structuring 
element of height h > 0 rotated 16 times. The size of the structuring element (SE) 
must be chosen in such a way that it preserves the blood vessels and eliminates the 
additive noise in the image. In our case, we have determined experimentally that 9 
pixels length and 5 level unit’s height SE gives the best results. 
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Fig. 4. Effects of the maximum of openings on the background of the image. (a) Original image 
(green plane). (b) Uniform background, while the structure of the blood vessels is preserved. 

Note that after using this filter, the obtained image preserves blood vessels and 
have a more uniform background (Fig. 4b).  

4.1   Primary Detection of the Blood Vessels  

Once the image has been preprocessed, a preliminary detection of the blood vessels is 
carried out. The process is preliminary because in this step some artifacts remain, and 
have to be eliminated later. The operation is called sum of valleys defined as the dual 
of the operation proposed by Zana and Klein given previously [8]. The resulting 
image from this operation preserves blood vessels and is sharper, while the 
background spreads to be black. Figure 5(a) shows an example, in which the intensity 
has been inverted for clarity.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. (a) Image after the operator of sum of valleys is applied. Observe how noise and artifact 
are conserved in certain regions. (b) Image after suppression of noise and artifacts. 

4.2   Extraction of Blood Vessels 

The objectives of the next step are to suppress additive noise and artifacts, to preserve 
the vascular network and to prepare the image for converting it in a binary image.  

Again, a maximum of openings is carried out to clean noise and artifacts, and 
preserve the useful information. The group of structuring elements is formed by a flat 
linear structure element rotated 16 times. As in previous operations, its longitude 
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depends on the size of the blood vessels in the original image. In our case, two 
maximum of openings were carried out with structuring elements of different sizes 
and heights, in order to improve the extraction of the vascular network. Result of one 
of these maximum of openings is shown in Fig, 5b. 

4.3   Thresholding  

So far, part of the noise and artifacts still persist in the resulting images. They can be 
finally eliminated by means of thresholding by hysteresis and a reconstruction by 
dilation [13]. In this way, when the appropriate thresholds are chosen, the vascular 
network is isolated. We take advantage of the fact that the additive noise never 
reaches high gray levels, and that the vascular network is connected. The use of 
thresholding by hysteresis with an appropriate selection of minimum and maximum 
thresholds, allows eliminating the noise that still persists in the image, and obtaining a 
clean image with an isolated vascular network (Fig. 6).  

 
 
 
 
 
 
 

(a) (b)   (c) 

Fig. 6. (a) Image with threshold in 11. (b) Image with threshold in 6. (c) Image after 
reconstruction by dilation from previous images. 

The image in Fig. 6(a) was obtained with threshold equal to 11. Notice the 
absence of noise, and that some blood vessels are not connected. This image is the 
binary mask. Fig. 6(b) shows the image with threshold equal to 6. Here the vascular 
network is fully connected, although there are also noise and artifacts. This is the 
binary marker. Figure 6(c) shows the image after being reconstructed by dilation 
using both the binary mask and the binary marker. Notice how the noise is reduced 
and the vascular network is now completely connected.  

 

 
 
 
 

 
 

 
(a)  (b)  (c) 

Fig. 7. (a) Skeleton of final image obtained from the process. (b) After pruning. (c) Segmented 
vascular network superimposed to the original image. 
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The skeleton of the vascular network is obtained by means of the morphological 
operation of thinning. After it, the skeleton is not still smart, because it is common 
that it presents some non-desirable protuberances, which are eliminated later with 
several iterations of morphological pruning (Figs. 7a and 7b). In our case, two 
iterations were enough; finally, Fig. 7c shows the skeleton of the vascular network 
superimposed to the original image.  

5   Discussion of Results 

Some problems occurred in the detection of the vascular network due to its relative 
thickness and length with respect to the characteristics of the SE used. When the 
vascular network is thicker than the SE, it cannot be detected successfully. It is 
impossible to achieve a good segmentation if the size of the structuring elements is 
not adjusted. Generally it is common that all images proceed from the same source, 
by which once the SE is adjusted it does not present serious problems. In our case, the 
algorithm was applied to 11 color ophthalmic images with 24 bits/pixel originally, 9 
from a Visucam-Lite, Kart Zeiss camera, and 2 from Internet network.   

It can happen that once the sizes of structuring elements have been adjusted, there 
are regions where two blood vessels may be nearly parallel. In this case, they appear 
like a double cross sized blood vessel, and then a successful segmentation usually is 
not possible (Figs. 8a and b).  

 

 (a) (b) (c) (d) 

Fig. 8. (a) Fragment where two blood vessels appear very near. (b) Faulty detection. (c) Image 
where an area with atrophy is observed in the left inferior border of the optic disk. (d) False 
detection in this area. 

Another problem is the false detection of the border of the optic disk. In a healthy 
eye this border is presented with a normal transition from clearer to darker shades of 
gray, and there is no problem. But some atrophy can be present due to glaucoma in 
the border of the optic disk. In these cases, false detections of the border of the optic 
disk can occur, as shown in Figs. 8c and 8d. This problem is unavoidable, due to the 
similar morphology of the blood vessels and the border of the optic disk. 

We note that our results presented thus far were obtained without contrast 
enhancement. That was one of our objectives in order to process images as they were 
captured.  

Osareh, Mirmehdi et al. have obtained good results with preprocessing steps 
related mainly to color normalization and contrast enhancement of retinal color 
images, using Fuzzy C-means clustering in the automatic recognition of exudative 
maculopathies [14].  
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Fig. 9. Original images (left). The skeleton of the vascular network (right). Figures from (a) to 
(d) are real images. Figures (e) and (f) show images from Internet. 

6   Conclusions  

In this paper we implemented an algorithm for extracting the blood vessels from real 
color ophthalmoscopic images of the fundus of the human retina, using morphological 
methods. Images processed were captured in color without any previous bloody 
preparation of the patients with fluoresceinic substances to highlight the vascular 
network. The solution was based on two types of operators: maximum of openings 
and sum of valleys. The algorithm shows a favorable answer in the detection of blood 
vessels, although the presence of noise can affect the detection in some degree. The 
extraction is finally achieved using a reconstruction by dilation of two binary images 
obtained with two different thresholds. The skeleton was finally obtained by thinning 
and pruning the extracted vascular network.  
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Abstract. The iris localization plays a fundamental role in the recognition 
process because the speed and performance of the iris recognition system 
largely depends on the quality of the pupil and iris detection. This process 
includes the detection of inner (pupil) and outer (iris) boundaries. In this paper 
we present a new method for iris and pupil boundaries detection based on 
Adaboosting technique for localization of circular objects and an algorithm 
based on the elements of analytic geometry, in particular, the determination of 
the bounded circumference of a tangential square that encloses the pupil and 
iris. The proposed approach overcomes the limitations that had previous 
methods regarding the use of images obtained under not controlled conditions 
like specular light reflected in the pupil or in the iris. We experimented our 
approach comparing the results in detection with the results obtained by 
Daugman algorithm using images from two contrasting databases, CASIA and 
UBIRIS. 

1   Introduction 

Recognition using the iris texture has been an active investigation field in last years; it 
has been considered the better phenotypic feature in human face that determines its 
identity and offers biometric feature acquisition without invasion. Recognition of a 
person by iris constitutes one of the main applications of the biometrics at present 
time. The first step in the recognition process is the automatic iris localization. The 
human eye iris is characterized by a circular or quasi circular form limited by two 
borders (iris inner border and outer). The iris inner border coincides with the contour 
of the eye's pupil and the iris outer border establishes the contact iris-sclera (Fig.1). A 
number of algorithms have been proposed for automatic iris contour detection to 
obtain both, the iris inner and outer border parameters in order to isolate the iris 
texture information. [1-7]. The limitations of these algorithms are the fact that they 
were thought for working using images taken under well controlled illumination 
conditions [8] where of the specular light reflected in the pupil or in the iris does not 
represent a problem. The high computational cost is another of their limitations.  

In this paper we present a method based on Viola and Johns algorithms [9] that 
localized the pupil and iris circles. The results of this process are the localization of 



128 F. Silva Mata et al. 

the iris inner and outer border enclosed in a tangential to border square. The next step 
is to draw the circle enclosed in the detected square that describes the iris and pupil 
borders. We experimented our approach using images from UBIRIS database that 
incorporates images with several noise factors, thus permitting the evaluation of 
robustness iris recognition methodologies and compared the results with those 
obtained using images taken in well controlled environment of CASIA database. 

2   Automatic Detection of Tangential Square to Pupil and Iris  
     Borders 

Detection of tangential square to pupil and iris borders is achieved through the 
algorithm of Viola and Johns [9], implemented in the OpenCV library [10]. The 
advantages that this algorithm offers are several: The image representation called 
integral image, which allows a very quickly computation of the features used by the 
detectors. The learning algorithm is based on the Stump-based 24x24 Gentle 
Adaboost, which lets the selection of a small number of features from the initial set 
and to obtain efficient classifiers. This method combines classifiers increasingly in a 
cascade of simple classifiers for discriminate particular features [9]. 

We trained two cascade detectors, the first devoted to detect the pupil circle (inner 
contour) with or without specular light reflection, and the second devoted to detect the 
iris circle detection (outer contour) with or without specular light reflection.  

 

Fig. 1. Circular form of the Iris and pupil 

2.1   Training Process 

The iris training set consisted of 100 labeled pupil and 100 labeled iris images taken 
from the UBIRIS and CASIA databases. The region training set was manually 
prepared by means of the selection of the rectangular regions, and then these samples 
were saved and rescaled all to a size of 24 x 24 pixels. (Fig. 2). In the training phase, 
the classifier was exhaustively trained using these sets of regions by the cascade 
detectors in a wide variety of training images. 
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2.2   Description of the Automatic Detection Process 

The process begins with the pupil border detection by means of the cascade detector 
specialized in the pupil detection with specular light reflection or without it (1). As a 
result, the coordinates of the tangential square that contains the pupil are obtained. A 
second cascade detector is triggered to look for the iris circle, as in the previous step 
we obtain the coordinates of the tangential square that contains the iris (2). 

 

Fig. 2. Region selection for iris training samples in the UBIRIS database 

3   Approximation of Pupil and Iris Contour to a Circle Inscribed  
     in a Square 

The iris inner contour coincides with the external pupil boundary. Since it is assumed 
that the pupil and iris possess circular form, the parameters that should be obtained 
are, the pupil centre coordinates and its radio. To solve this task the algorithm of 
tangential square circle was designed. 

The general idea is very simple, beginning with an automatic localized tangential 
square; we will calculate the radius of the circumference and the centre of the square 
that is the centre of the pupil or iris. With the centre and the radius we draw a 
bounded circumference to the square. The calculated circumference is the pupil or iris 
contour.  

The steps for the proposed approximation are as follows: 

Step1: Find the radius of the circumferences  
The radius of the circumferences is calculated by expressions: 
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Where nxp,i and mxp,i are the extreme coordinates of the horizontal or vertical side of 
the square for the pupil(p) and iris(i). (Fig. 3) 

Step 2: Find the centres of the tangential squares. 
The centres of the squares Cp(xp,yp) and Ci(xi,yi)are calculated by expressions : 
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Where xp,i and yp,i are the horizontal and vertical coordinates of the square centres of 
the pupil (p) and iris (i) respectively (Fig. 4). The mean centre [Cm(xm,ym)] of the eye 
is calculated by the expression: 
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Step 3: With the circumference parameters we automatically draw the bounded 
circumference to the square that is the pupil (p) or iris (i) contour by expression. 

θcos.,, ipip rx = , θsenry ipip .,, =   (4) 

Where xp,i and yp,i are the coordinates of the circumferential sector inner and outer 
borders of the texture codification area. 

 

Fig. 3. Coordinates of the squares and centres of the circles 

3.1   Lookup Table 

To increase the speed of the proposed algorithm we put all the possible values of the 
circumference coordinates in a lookup table. A lookup table also contents the all 
possible values of the points xim, yim and xpm, ypm that correspond to all possible 
values of rim and rpm respectively and for all possible values of the  angles  in the 
intervals [315o-45o] and [135o-225o]. 

3.2   The Pupil Pixel Value Change  

In a previous work [7] we presented an algorithm that we called “Three points 
algorithm”. The proposed algorithm takes advantage of the pupil circular form using 
elements of analytic geometry, in particular of the determination of the bounded 
circumference to a triangle. To obtain the parameters that define the external contour 
the Daugman algorithm [1, 2] was used. This second algorithm receives the output 
from the first one and after that, searches the abrupt gradient changes of a contour 
integral to find the iris border. The problem of this proposal was the fact that its 
effectiveness depends of the quantitative texture feature, as the standard deviation to 
detect the frontier between the pupil and the iris. When we work on a database with 
well controlled conditions like the CASIA database [3] composed by images taken 
with near infrared illumination, without the presence of specular light the 
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performance of the combination of these two algorithms is very high, but when the 
images are affected by specular light it fails due to the high variability detected in the 
pupil. To avoid this problem and improve the performance of this combination we 
implemented an optional step in our new proposal  

Step 4: Substitution of the pixel values inside the pupil circumference by zero 
values, this guarantees that the performance of Daugman algorithm will be effective 
because the difference between the standard deviation within the pupil and in the iris 
area increase abruptly. 

 

Fig. 4. Determination of the circular sector of the texture codification area for feature extraction 

4   Experiments 

For a complete evaluation of the performance of our proposal we divided the 
experimental process in two parts, the first one oriented to the measurement of the 
effectiveness of the automatic detection of the tangential square enclosing the iris 
inner and outer contours, and the second one oriented to measure the accuracy of 
determination of the texture codification area for feature extraction and identification. 

4.1   Measurement of the Effectiveness in the Automatic Tangential Square 
        Detection 

We defined a set of measures necessary to know accurately the effectiveness 
behaviour of the detector according to the final mission of the process. They are: 

ESD (External Square Difference): The difference in area between optimal square 
containing the real contour and the one automatically detected if the area of the square 
detected is bigger (Fig 5, left), it is given in percentage and calculated by the 
expression: 
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where DAS and TAS are the areas of the tangential square automatically detected and 
the area of the actual tangential square respectively. 

ISD (Internal Square Difference): The difference in area between optimal square 
containing the actual contour and the one automatically detected if the area of the 
detected square is smaller (Fig 5, right), it is given in percentages and calculated by 
the expression: 
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GFT (General effectiveness of automatic detection) is the general percentages of 
accuracy taking in to account the ISD and ESD, and expresses the precision with 
which the detector is able to enclose the actual contour. It is calculated by the 
expression. 
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We also measured the effectiveness of the automatic detection process by 
computing the correctly detected regions, missed regions and falsely detected regions. 

 

Fig. 5. Measurement of the effectiveness of the automatic iris inner and outer contour detection. 
A: Optimal square containing the actual contour , B: Automatically detected square. 

4.2   The UBIRIS Database 

We did the experiments in the UBIRIS database[11]. UBIRIS database is composed 
of 1877 images collected from 241 persons during September, 2004 in two distinct 
sessions. Its main characteristic results from the fact that, in opposition to the existing 
public and free databases (CASIA and UPOL), it incorporates images with several 
noise factors, thus permitting the evaluation of robustness iris recognition 
methodologies. For our experiment we took 2 images per person (482 images of 241 
persons) and divided the database in two sections, training set, 100 persons (200 
images) and test set, 141 persons (282 images), see Fig.7. 
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4.3   Measurement of the Accuracy in Determination of the Texture Codification  
        Area for Feature Extraction and Identification 

The idea was to measure the similarity between images that contain the texture 
codification area for feature extraction and identification, comparing images 
generated from the detected automatically contours and the ones detected by 
Daugman algorithm(Fig 6). As a similarity measure we used normalized correlation. 
Normalized correlation has been chosen as it has proved to be a successful similarity 
measure in computer vision. For identical images it takes the maximum value equal to 
unity, it is defined as: 
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Where the first image is w(i,j), the second image is w1(i,j). 
For this experiment we used images from CASIA database. We compared 108 

images generated from our approach against 108 images of the same individuals 
generated from Daugman algorithm. 

The same procedure we used to compare images from UBIRIS database. For this 
experiment we compared the Nc with the radial difference in pixels between outer 
contours generated by our approach and the ones generated by Daugman algorithm 
with previous inner contour detection and normalization of pupil pixel values using 
our proposed approach (3.2). 

 

Fig. 6. Extraction of the texture codification area for feature extraction and identification 

4.4   The Time Consuming Evaluation 

For the evaluation of time consuming in the detection process we compared the time 
taken for the automatic contour detection using our approach and the time taken using 
the proposed by Daugman detection algorithm with the same quantity of images and 
similar hardware configuration. We expressed these measures in milliseconds related 
to the time consumed for contour detection by Daugman algorithm in 100 images 
from CASIA database. 
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4.5   The CASIA Database 

The CASIA Iris Image Database [3] includes 108 classes and each class has 7 iris 
images captured in two sessions with a time interval about a month. So there are 
totally 756 iris images with a resolution of 320x280 pixels. In our experiment we used 
1 image per class (108 images), see Fig 8. 

 

Fig. 7. Samples of the CASIA database used in the experiment 

5   Experimental Results 

In Table 1 and 2 we present the results obtained by experimental procedure described 
in 4.1 in the UBIRIS database. We can see that in both cases, ERD and IRD are less 
than 2.0 % and the GFT is bigger than 98%. The detector only fails in 3 samples 
detecting the inner contour (0.62%) but in 20 samples detecting the outer contour  
(4 %). 

Table 1. Values of the ERD and IRD in the UBIRIS database 

Inner Iris contour  Outer Iris contour  
IRD (%) ERD (%) IRD (%) ERD (%) 

0.64 0.33 1.65 0.98 
GFT (%) GFT (%) 

99.51 98.68 

Table 2. Performance of the Detector 

Correctly Detected (%) Missed (%) Falsely Detected(%) 
Pupil Contour (Inner) 

99.3 0.7 0.05 
Iris-Contour (Outer) 

95.9 4.1 0 
 

In the Fig. 8 we present the results obtained by experimental procedure described 
in 4.3. The normalized correlation coefficients (Nc) are in all the cases of the CASIA 
database (Fig.8A) bigger than 0.9. This result shows that the texture codification areas 
extracted from images in which the iris contour was automatically detected by our 
own approach are very similar to the ones obtained from those in which the iris 
contour was detected by Daugman algorithm. They can be used for the feature 
extraction and identification. The results in the UBIRIS database (Fig.8B) show that 
the under not controlled illumination conditions the Nc values are in most of cases 
bigger than 0.7. 
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From Fig.9, we observe that when our approach is used, the time of processing 
decreases in approximately 45% of the total of the time used by Daugman algorithm 
to process the same quantity of images with similar hardware configuration. 
 

 
Fig. 8. Comparison of the normalized correlations: A: in the CASIA database, B: in the 
UBIRIS database 

 
Fig. 9. Comparison of the time consuming (in milliseconds) using Daugman algorithm against 
proposed approach in the CASIA database 

6   Conclusions 

In this paper we proposed an approach based on the Adaboosting technique for fast 
detection of the iris and pupil contour in the images of human eyes. The proposed 
approach overcomes the problem of the specular light reflected in the pupil or in the 
iris and allows the detection and localization of the circular sector of the texture 
codification area for feature extraction. To increase the speed of the proposed 
algorithm we used the Lookup table containing all the possible values of the 
circumferential sectors describing the iris contours. The experimental results show 
that our proposal is equivalent in accuracy in comparison with the well validated 
Daugman algorithm together with a relevant improvement of the computational time.  
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Abstract. In this paper we present a novel framework for classification
of the different kind of tissues in intravascular ultrasound (IVUS) data.
We expose a normalized reconstruction of the IVUS images from radio
frequency (RF) signals, and the use of these signals for classification.
The reconstructed data is described in terms of texture based features
and feeds an ECOC-Adaboost learning process. In the same manner, the
RF signals are characterize using Autoregressive models, and classified
with a similar learning process. A comparison is performed among these
techniques and with DICOM based classification ones obtaining very
promising results.

1 Introduction

Plaque rupture is one of the most frequent cause of acute coronary syndromes.
Most of them end in myocardial infarction or sudden cardiac death. Many stud-
ies, nowadays, report a high correlation between multiple plaque ruptures and
acute coronary syndrome. To understand the mechanisms of plaque destabiliza-
tion and guide a pharmacological treatment, it is of high interest the characteri-
zation of the fragile part of the atheromatous plaque and to differentiate between
low-risk and high-risk plaques.

Intravascular ultrasound (IVUS) offers a unique view of the morphology of
the arterial plaque, it displays the morphology and histological properties of a
cross-section of the vessel. It is generally accepted that in these images three are
the different kind of plaque tissues distinguishable: calcium formations (charac-
terized by a very high echo-reflectivity and absorbtion); fibrous plaque (medium
echo-reflectivity and good transmission coefficient) and lipidic or soft plaque
(very low reflectance). The automatic analysis of the IVUS images is of vital
importance to the coronary community, since it allows feasible ways to predict
vulnerable plaques as well as to quantify the amount of the different tissues,
avoiding all the subjectivity due to the physician who performs the study and
the amount of hours needed to label the recorded IVUS pullbacks.

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 137–146, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The analysis of IVUS data is approached in two ways in literature: On one
hand, several authors propose the analysis of the DICOM images themselves by
means of normalization procedures and texture analysis [15,13]. On the other
hand, several researchers prefer the use of the original radio-frequency signal
when available [5,4]. However, until now there is no evidence of one of the tech-
niques being better than the other.

In this paper we propose two methods that exploit the advantages of both
trends of work: we propose a framework to reconstruct normalized IVUS images
from the radio frequency signal and to apply the image based characterization
process. This data is feeded into an ECOC improved Adaboost framework to
perform the final classification. The main advantages of our method are three-
fold: firstly, our method offers the advantage of normalizing all cases to a fixed
parameter set. Secondly, it allows to use very complex texture-based descriptors.
And thirdly, by using a machine learning technique we ensure a proper behavior
of the classification approach. In addition, this article presents an approach of
tissue classification using RF signals with a similar learning machine technique.
Then a comparison between the classification using reconstructed normalized
IVUS images with different settings and RF signal analysis is performed.

In section 2, we present an image reconstruction process, in section 3, it is
explained an RF signal analysis and characterization. In section 4, it is exposed
how to extract the different texture features used in our study. Finally, the
results, discussion, and conclusion are presented.

2 Image Reconstruction Process

An IVUS equipment consists of a main computer to reconstruct images, and
a catheter which is introduced into the vessel to perform an exploration. This
catheter carries an ultrasound emitter which shots a given number of beams,
and a transducer that collects their reflections as RF signals. Based on the kind
of tissue, these signals vary their frequency and amplitude. There is enough
evidence that these signals are suitable to perform a classification process[9,5].

2.1 RF Signal Acquisition

The RF signals are acquired using a 12-bit Acquiris acquisition card with a
sampling rate of 200MHz. The frequency of the catheter transducer is 40Mhz
for our data, and it is assumed a sound speed in tissue of 1565m/s. Each IVUS
image consists of a total of 256 A-lines (ultrasound beams), and a length of
6.5mm. Thus, RF data were acquired from patient pullback sequences in vivo.

2.2 Image Construction

Having the acquired RF data, an image construction framework is applied to
obtain the IVUS images with the same parameters set. Hence as a preprocessing
step, the acquired signals are filtered with a band pass filter with 50% of gain
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located at the transducer frequency. Additionally, a time gain compensation is
applied in order to correct the tissue attenuation α = 1DbMhz/s.

After the signals are compensated a signal envelope is calculated using the
Hilbert transform. This envelope is normalized in a range from 0 to 1, and
compressed in a logarithmical form. This is done in order to distribute the gray
levels in the histogram and also to enhance the image visualization.

The image is constructed in cartesian form and the missing pixels between
each angle are filled using bilinear interpolation. Then, a non linear Digital
Development Process (DDP) to regulate the contrast radially is applied. The
parameters are fixed in order to normalize all the images with the same con-
trast. This process allow us to change the contrast of the image easily with low
computational cost, which is not an easy task in the DICOM images since the
construction parameters are not usually available. Figure 1 shows an example of
constructed images with different gains.

(a) (b) (c)

Fig. 1. Reconstructed IVUS images from RF signals with different DDP gain param-
eters. (a)DDP gain parameter fixed to 1.04. (b)DDP gain parameter fixed to 2.20.
(c)DDP gain parameter fixed to 3.20.

The constructed images are used mainly for: classification with a texture based
approach, visualization as a reference for the RF signal correlation, and for
manual segmentation used in the training set.

3 RF Signal Analysis

Once the RF signals have been acquired, filtered, and compensated, a characteri-
zation process is performed. According to [8,4], one of the most suitable methods
to analyze ultrasound signals is the use of Autoregressive (AR) models of their
power spectrum. Thus, in this approach the utilization of AR models is explored.

3.1 Autoregressive Models

The autoregressive models can be defined as a linear prediction formula where
the output x at a certain point n is equal to a linear combination of its previous
outputs p with a given weight ap[12].
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x(n) =
p∑

k=1

ap(k)x(n − k),

The AR models are used to approximate the power spectrum of a RF signal
window. In our case it is composed of 64 samples, and 12 of the 256 A-lines. The
Burg method is used to estimate the power spectrum, and the optimal model
order (21) was obtained using the Akaike’s Final Error Prediction [6]. Then, only
one side of the spectrum is used because of its symmetry. It is composed of 200
sampled frequencies ranging from 0 to 100MHz. Thus, each frequency value of
the model is used as a signal feature for classification, as it is shown in figure 2.

Here an sliding window of 64 samples and 12 A-lines, and a displacement
of 16 samples and 4 A-lines are used for characterization. These is done in
order to increase the resolution of the characterization. Note that this window
corresponds to a region of 16 × 12 pixels in the reconstructed polar image.

(a) (b)
Fig. 2. The use of a different RF signal sections (a) to create an Autoregressive
model(b)

4 Texture Features Extraction

4.1 Co-occurrence Matrix

The co-occurrence matrix can be defined as an estimation of the joint probality
density function of gray level pairs in a image [11]. The element values in a
matrix are bounded from 0 to 1 and the sum of all element values is:

P (i, j,D, θ) = P (I(l,m) = i ⊗ I(l + Dcos(θ),m + Dsin(θ)) = j),

where I(l,m) is the gray value at the pixel(l,m), D is the distance among pixels
and θ is the angle of each of neighbors. The angle orientation θ has been fixed
to be [0o, 45o, 90o, 135o], because, according to [3,11], it is the minimum set of
orientations needed to describe a second-order statistic measures of texture. Af-
ter computing this matrix some characterizing measures are extracted such as
energy, entropy, the Inverse Difference Moment, shade, inertia and Promenance,
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as are defined in [11]. Thus, a 48 feature space is built to perform the classifi-
cation process for each pixel, since we are estimating 6 different measures at 4
orientations and two distances D = [5, 8].

4.2 Local Binary Patterns

These feature extractor operators are used to detect uniform texture patterns
into circular neighborhoods with any quantization of angular space and spatial
resolution[10]. It is based on a circular symmetric neighborhood of P members of
a circle with radius R. In order to achieve gray level invariance, the central pixel
gc is subtracted to each neighbor gp, assigning to the result 1 if the difference is
positive and 0 if it is negative. Each neighbor is weighted with a 2p value. Then,
the neighbors are added, and the result is assigned to the central pixel.

LBPR,P =
P∑

p=0

s(gp − gc) · 2p

The application of this operator generates a 3 dimensional space in tex-
ture analysis, by applying a radius of R = [1, 2, 3] and a neighborhood of
P = [8, 16, 24].

4.3 Gabor Filters Bank in Texture Analysis

The Gabor Filters is an special case of wavelets [1,2], and is essentially a Gaussian
g modulated by a complex sinusoid s. In 2D, a Gabor filter has the following
form in the spatial domain:

h(x, y) = 1
2πσx′σy′ exp{− 1

2 [( x′
σx′ )

2 + ( y′

σy′ )
2]} · s(x, y),

where s(x, y) and the Gaussian rotation are defined as:

s(x, y) = exp[−i2π(Ux + V y)]
x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ.

x′ and y′ represent the spatial coordinates rotated by an angle θ. σx′ and σy′

are the standard deviations for the Gaussian envelope. An aspect ratio λ and its
orientation are defined as:

λ = σx′
σy′ , φ = arctanV/U

where U and V represent the 2D frequencies of the complex sinusoid.
We have fixed λ = 1 in order to manage with isotropic gaussian envelopes,

provoking that both σx′ and σy′ are equal, leading to discard θ. Then, θ = 0.
We have represented the 2D frequency, (U, V ), by a polar representation F, φ.
Thus, we have created a filter bank using the following parameters:

σx = σy = [12.7205, 6.3602, 3.1801, 1.5901],
φ = [0o, 45o, 90o, 135o],
F = [0.0442, 0.0884, 0.1768, 0.3536],

yielding a 16 dimensional space for each pixel.
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4.4 Feature Vector Generation

Now, we have extracted all the features explained above. We have compiled them
into a unique feature vector of 67 dimensions for each pixel, which will be used
to train the classifier. The main idea is to extract the best of each technique in
order to improve the classification performance.

5 Classification

Once we have designed a characterization framework for images using texture
and for RF signals using AR models, a classification scheme is developed. We
have established 3 classes of tissue: fibrotic plaque, lipid or soft plaque, and
calcium. Since we already know how many classes are, and how they behave, we
use the Adaptive Boosting (Adaboost) supervised learning technique.

Adaboost is a method that allows us to add ”weak” classifiers until some
desired training error is obtained [17,16]. In each step of the algorithm a weight
is assigned to each feature, which means how accurate this feature can classify
the training data. It results into a linear combination of weaker classifiers, and
the weight of each one depends on the amount of data it can classify.

Since we have a multiclass problem, we need to establish some combination
criteria for the classifier output. Firstly, we used decision tables to combine the
outputs but the appearance of draws was common. As a result, we switched to use
Error Correction Output Codes (ECOC)[14]. Basically, it consists in assigning
a code map table which relates classifiers outputs and classes. Then, the final
classification is obtained finding the minimum distance between the resulting
code and the classes.

The classification map from the ECOC is the same for both techniques. It is
shown in table 1. Here, the number 0’s indicate that these classes are not used in
the selected classifier. Because there are only two classes left for each classifier,
we apply one class versus the other, and not one versus the rest. The 1’s indicate
that the classifier should output a positive value when this class is found, and
negative one (−1) when it is not.

Once we have all the classifiers results, it is found the Euclidean distance
between each sample of the test and all the class codes. Thus, the class the
minimum distance respect to the sample is assigned.

Table 1. ECOC code map used in the classification

Classes Classifier 1 Classifier 2 Classifier 3

Calcium 1 1 0
Fibrotic Plaque -1 0 1

Soft Plaque 0 -1 -1
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6 Results

We have the RF signals from in vivo sequences, and their IVUS reconstructed
images from a set of 10 patients all with the three classes of plaque. Each patient
may have 1 or 2 vessel studies or pullbacks. Then, for each one, 10 to 15 different
vessel sections are selected to be analyzed.

In order to avoid any kind of bias, the experiment has been repeated ten
times by picking one different patient for testing and the rest for training in
each iteration. This gives us a roughly idea of how the classification could work
with a new unseen patient.

6.1 Tissue Segmentation

We have developed an application to construct IVUS images from the RF signals.
It has the advantage of allowing the physicians to move the gain parameter of
the DDP to simplify the manual segmentation task. Additionally, it permits the
offline manipulation of the images for the physicians. Although the main propose
of this step is to segment the training data and label it, the parameters used for
the segmentation are stored for future analysis yielding to settings normalization.

The physicians have segmented from the vessel images around of 50 sections
of interests per patient. These segmentations were taken as regions of interest
(ROI) which were collected into a database categorized by patient. These were
mapped in both RF signals and reconstructed images in order to build the data
set for this experiment.

6.2 RF Signal Classification

One of the classifications we have done is the one based on the RF signals
obtained from the ultrasound transducer. Here, we employ a classifier using the
characterization of the signals based on AR models, as it is explained above.
Then, we use the ROI selected by the physicians in order to train and test our
system. The gentle Boost classifier with 50 stumps is utilized, because in our
scheme all the frequencies have the same weight. Hence, the test set is classified,
the classification error is calculated based on the number of misclassified samples
of each class.

The average accuracy using AR models is 70% for the fibrous plaque, 77.2%
for the soft and 75% for the calcium correctly classified. Although the accuracy
is lower than some of the rates previously published using RF signals[8,7], it is
important to note that this experiment has been performed with a cross val-
idation method. In addition, the test data is taken from different patients of
the training data avoiding any kind of bias as in real performance. Notice that
the accuracy using the training data is not shown since we think it is useless to
measure the real performance of the system.
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6.3 Texture Based Classification

In order to test the performance of our texture based classification approach, we
have selected 6 different DDP gain parameters to reconstruct the images. Then,
there has been created five different data sets, and their extracted texture fea-
tures have been processed separately using the characterization exposed before.
For every DDP gain parameter values a classification error has been computed
for each kind of tissue. Thus, the accuracy for different DDP gain parameters is
shown in figure 3.

Fig. 3. Classification result among different DDP gain parameters for each type of
tissue

It can be seen that the best gain parameter is 1.8 where the classification
results are: 70% for fibrotic plaque, 90.5% for lipid, and 77.6% for calcium.
Even when it can be chosen a certain gain as the best one for classification,
a combination of multiple gain values, one designed for each tissue, could be
suitable to improve the performance.

6.4 Classification Comparison

Having tested our classification using the two exposed characterization schemes,
we show a comparative table of their performance in table 2. Notice that these
results have been obtained with pixel resolution in both schemes, without any
kind of postprocessing.

Additionally, a sample image classification result of both techniques is shown
in figure 4. Here, a qualitative comparison can be observed. It is worth to mention
that RF signal classification presents a border error. It could be caused by the
physicians segmentation since it is easy to take little areas out of the real class.
Because the RF characterization is based on the power spectrum, it can be easily
influenced by the previous and after samples. Thus, this problem affects more in
the RF signal based classification performance than in the texture based one.
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Table 2. Classification Results from RF Signal Analysis and Texture Based Analysis

Classes RF signal Analysis Texture Base Analysis

Fibrosis 70% 70%
Soft 77% 91.2%

Calcium 75% 77.6%

a b c

Fig. 4. Images (a) Segmented by the physician, white is calcium, light gray fibrosis
and dark gray soft plaque. (b) Classified with RF signal Analysis. (c)Classified with
Texture Based Features.

In any case, the accuracy rates shown here represents an improvement in
the tissue characterization problem respect to the DICOM based approaches.
Usually, the classifications rates reported in these approaches are around of 76%
of the total performance without any kind of postprocessing[13]. The difference is
mainly caused by the we use normalized data to test our classification framework.

7 Discussion and Conclusion

Two methods for tissue classification in IVUS from in vivo patients have been
presented taking into account three types of plaque: fibrotic, soft, and calcium.
We have proposed a more accurate technique based on a set of normalized data,
which is not possible in conventional approaches based on DICOM images. To
do so, an image construction method has been depicted.

The hit rate of the classification is higher in constructed images than in RF sig-
nal analysis. However, we suggest a combination of both characterization frame-
works, because they provide complementary information. Thus, we are working
now in the improvement of RF signal characterization since these represent the
raw data and the real plaque response. Additionally, we have shown an applica-
tion of a multi-class problem using ECOC to combine a set of two-class classifiers
based on Gentle AdaBoost.

The classification exposed here has been done for each pixel but without any
kind of postprocessing, since we desire to preserve the highest possible resolution.
In order to improve the classification, some grouping techniques could be applied
to the obtained results.
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Abstract. To smooth lung boundary segmented by gray-level process-
ing in chest CT images, we propose a new method using scan line search.
Our method consists of three main steps. First, lung boundary is ex-
tracted by our automatic segmentation method. Second, segmented lung
contour is smoothed in each axial CT slice. Scan line search is proposed
to track the points on lung contour and find rapidly changing curvature
without conventional contour tracking. 2D closing in axial CT slice is ap-
plied to reduce the number of rapidly changing curvature points. Finally,
to provide consistent appearance between lung contours in neighboring
axial slices, 2D closing in coronal CT slice is applied within pre-defined
subvolume. Experimental results show that the smoothness of lung con-
tour considerably increased after applying proposed method.

1 Introduction

Recently, high-resolution X-ray computed tomography (CT) images provide us
a detailed abnormal area, and they are increasingly used for applications such as
lung nodule detection, lung motion analysis. A critical first step in these appli-
cations is the automatic lung segmentation. To separate low density lung regions
from the denser surrounding anatomy in chest CT images, most of methods use
the difference in gray-level value of pixels [1,2,3]. In gray-level based method,
radiodense pulmonary vessels near mediastinum and pleural nodules that con-
tact with the surrounding anatomy, as shown in Fig. 1(a) and (b), are excluded
from the segmentation result. This can bring about indentations on segmented
lung regions. On the other hand, gray-level based method can include main-
stem bronchi into the lung regions because of partial volume effect, as shown
in Fig. 1(c). This may not be consistent across slices and therefore causes the
lung boundary to have an irregular appearance, especially in coronal and sagittal
views [4]. To remove indentations and salience caused by gray-level based method
and obtain consistent appearance across slices, smoothing the lung boundary is
required after segmentation.
� Corresponding author, Seoul Women’s University, Phone: 82-2-970-5756.

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 147–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



148 Y. Yim and H. Hong

(a) (b) (c)

Fig. 1. Original axial CT slices in which gray-level based segmentation method gives
rise to indentations and salience of lung regions: (a) axial CT slice with pulmonary
vessels, (b) axial CT slice with a pleural nodule, (c) axial CT slice with mainstem
bronchi

Several approaches have been suggested for smoothing lung boundary in chest
CT images. To compensate the lost pleural nodules, Kanazawa [5] and Ko [6]
utilized curvature of points on the initial lung contour. Curvature-based method
replaces the contour with rapidly changing curvature using a straight line. To
calculate the curvature, however, time-consuming contour tracking is required.
Armato [2] rectified indentations that corresponds to pleural nodules by rolling
a ball along the lung contour. If the ball overlaps the contour at two contour
pixels, linear interpolation is used to identify new contour pixels. However, balls
of different radius have to be applied in succession to remove concavities of dif-
ferent dimensions. Shen [7] proposed an algorithm for surface smoothing within
a volume of interest (VOI). To segment the pleural lung nodules from the VOI,
position and orientation of each point on lung surfaces are transformed into in-
tensity value of 2D image, and then high intensity region which corresponds to
nodule is eliminated from this image. This algorithm requires user manipulation
for VOI selection and is suitable only for local surface smoothing. For 3D smooth-
ing of the lung surfaces near mediastinum, Ukil [4] performed 3D morphological
closing with an ellipsoidal mask using information from the segmented airway
tree. Even though this method gives well-smoothed lung surfaces, it requires too
excessive time about 5-6 minutes for 3D smoothing of datasets with 300-600
image slices.

To deal with the above limitations, we propose a new method for smoothing
segmented lung boundary in chest CT images through scan line search. To track
the contour points and find rapidly changing curvature efficiently, we search for
intersection points between scan lines and lung contour. To reduce the number of
high curvature point, we apply 2D closing in axial slice, as a pre-processing step.
For consistent appearance between lung contours in neighboring axial slices, we
apply 2D closing in coronal slice. In order not to distort the lung contour away
from mediastinum, this operation is performed within predefined subvolume near
mediastinum.
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2 Methods

The proposed method for smoothing lung boundary is outlined in Fig. 2. Our
method consists of three main steps: lung segmentation, smoothing in axial slice
and subvolume smoothing in coronal slice.

Fig. 2. The pipeline of proposed method for smoothing segmented lung boundary in
chest CT images

2.1 Lung Segmentation

The lung boundary is extracted by our automatic segmentation method [3],
which is based on density and morphology information in chest CT images. To
extract left and right lungs, we use the inverse operation of 2D region growing
(2D iRG) that segments the thorax from the background and then the lungs
from the thorax. Since the density of bronchus is similar to that of the lungs in
CT images, the lungs segmented by 2D iRG still contain the bronchus.

To delineate the bronchus from the lungs, we first extract bronchus and
then subtract the result from the segmentation result of bronchus and lungs in
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voxel-by-voxel manner. To segment bronchus without leakage into lung
parenchyma, we use our 3D branch-based region growing [8] that changes the
growing condition according to morphology of bronchus. This method differenti-
ates trachea from left and right bronchi based on branch bifurcation and applies
different threshold values. For trachea, 3D region growing uses the threshold
value determined by optimal thresholding [9]. Fig. 3 shows the process of re-
gion growing. Region grows from seed point until bifurcation is found. To detect
bifurcation, we perform 3D connected component labeling with 26-connectivity
to the grown region in every step and adopt the location where the number
of connected component becomes two. For left and right mainstem bronchi, we
calculate a new threshold value μ − hσ where μ and σ is respectively mean and
standard deviation of gray-level values of voxels that corresponds to trachea and
h is a parameter that controls the ease of region growing. To increase robustness
of bronchus extraction, we apply additional processing such as median filtering
and morphological operations.

Fig. 3. 3D branch-based region growing. 3D region growing with 6-connectivity is
simplified to the 2D region growing with 4-connectivity. The number written in each
voxel describes growing step.

2.2 Smoothing in Axial Slice

Since the lung segmentation entirely removes trachea and mainstem bronchi, in-
consistent extraction of bronchus across slices can be solved. However, concavities
from pleural nodules and pulmonary vessels are still remained. For smoothing the
segmented lung contour, curvature-based method is commonly used [5,6]. This
method assumes that a rapid change in curvature at points on the lung contour
indicates a nodule, large vessel or bronchus, and corrects the lung contour by in-
serting a border segment. To calculate the curvature of a point, we have to know
the previous and next point on lung contour, and therefore contour tracking
is required, which takes excessive processing time. To smooth segmented lung
contour based on curvature without this time-consuming process, we propose
smoothing in axial slice through scan line search.

Smoothing in axial slice tracks the points on lung contour using scan line
search, and fills out unwanted cavities by connecting high curvature points. For
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each lung, we first search for intersection points between scan lines and lung con-
tour by scanning each 2D axial CT slice in horizontal direction at fixed intervals,
as shown in Fig. 4(a). For contour tracking, we classify intersection points of ith

scan line into three groups: first point Ifirst
i (x, y), last point I last

i (x, y) and mid-
dle points I

middlej

i (x, y). By tracking points of identical group on neighboring
scan lines, as shown in Fig. 4(b), we can calculate the curvature of point on a
scan line. As the scan line interval becomes shorter, we can get more accurate
curvature. The scan line interval is experimentally set to 4 pixels.

(a) (b)

Fig. 4. Scan line search: (a) detection of intersection points between scan lines and
lung contour, (b) tracking of lung contour for curvature calculation

Based on this approximation, we calculate the curvature of the first and last
intersection point in each scan line using Eq. (1).

κi =
(xi−1 − xi) × (yi−1 − 2yi + yi+1) − (yi−1 − yi) × (xi−1 − 2xi + xi+1)

[(xi−1 − xi)2 + (yi−1 − yi)2]3/2
(1)

where κi is the curvature and (xi, yi) is the coordinates of Ii(x, y). To calcu-
late the curvature of the first intersection point of ith scan line, Ifirst

i−1 (x, y) and
Ifirst
i+1 (x, y) is required as well as Ifirst

i (x, y). After calculating the curvature of
intersection points, we adopt high curvature points as feature points. We deter-
mine the curvature is high when its absolute value is larger than 0.2. All middle
intersection points are also added to feature points to improve accuracy of the
above approximation.

The number of feature points detected from left and right lungs is 41 per axial
slice, on average. To reduce the number of feature points, we apply 2D closing
operation with 3 × 3 mask to each slice, as a pre-processing step. In order to
distort lung contour as little as possible, the iteration number is experimentally
set to 2. As a result, many concave indentations near mediastinum become gentle
and the number of feature points per slice is reduced to 35.
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After finding feature points through curvature calculation, we connect all
different feature points by linear interpolation when the distance between two
points is in the pre-defined range. Experimentally, this range is set from 3 to 40
pixels. The regions that are encompassed by connecting lines are filled by 2D
region growing.

2.3 Subvolume Smoothing in Coronal Slice

In smoothing in axial slice, detected feature points and smoothed regions are
different across slices. For this reason, smoothed lung contour in one slice can be
inconsistent with that of neighboring slice. In coronal or sagittal view, rugged
boundary still remains. To solve this problem, we apply 2D closing operation in
coronal slice with 3 × 3 cross mask.

Closing consists of dilation followed by erosion. For 2D dilation operation
with 3 × 3 cross mask, we perform 2D convolution with 3 × 3 cross mask
and maximum filtering. For 2D erosion operation, 2D convolution is followed
by minimum filtering. Fig. 5 shows the process of 2D dilation operation with 3
× 3 cross mask. We first convolve the input image with cross mask, and apply
gray-level thresholding to convolved image with threshold 30, as shown in Fig.
5(a) and (b). Maximum filtering with 3 × 3 mask sets each pixel in Fig. 5(c)
as the maximum value among all the pixel values of thresholded image in the
neighborhood of size 3 × 3.

2D closing operation with 3 × 3 cross mask can lead to smooth lung contour
in coronal slice while applying the operation with 3 × 3 mask iteratively can
cause jagged lung contour. To avoid unwanted distortion of lung contour, closing

(a)

(b) (c)

Fig. 5. 2D dilation with 3 × 3 cross mask: (a) convolution, (b) the result image after
applying gray-level thresholding with threshold value 30, (c) the result image after
applying maximum filter
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operation is applied only within pre-defined subvolume near mediastinum. Fig.
6(a) shows the subvolume, which is in the range of 0.4 × width < x < 0.7 ×
width, 0.4 × height < y < 0.7 × height, 0.4 × depth < z < 0.8 × depth. Fig.
6(b) and (c) shows the effect of subvolume smoothing in coronal slice. After
subvolume smoothing in coronal slice, inconsistency across axial slices is much
reduced.

(a) (b) (c)

Fig. 6. Subvolume smoothing in coronal slice: (a) the range of subvolume, (b) the result
before subvolume smoothing in coronal slice, (c) the result after subvolume smoothing
in coronal slice

3 Experimental Results

All our implementation and test were performed on an Intel Pentium 4 PC con-
taining 2.5 GHz CPU and 2.0 GB of main memory. Our method has been ap-
plied to six patients with pulmonary nodule of 16-channel chest CT scans whose
properties are described in Table 1. The CT images were obtained with Light-
Speed Ultra (GE Healthcare) and Sensation16 (Siemens) multi-detector row CT
scanner. Experimental dataset contains 222–446 slices with a slice thickness of
0.75–1.25 mm and a reconstruction size of 512 × 512 pixels.

Fig. 7 shows the lung contours smoothed by proposed method in axial and
coronal CT slices. In Fig. 7(b) and (e), lung nodules and pulmonary vessels are
excluded from the lung contours. The result in Fig. 7(c) and (f) shows that our
smoothing algorithm compensates for these lost parts.

Table 1. Image conditions of experimental datasets

Subject Slice number Pixel size (mm) Slice thickness (mm)

1 222 0.63 × 0.63 1.25
2 291 0.66 × 0.66 1.0
3 279 0.64 × 0.64 1.25
4 258 0.59 × 0.59 1.25
5 446 0.64 × 0.64 0.75
6 305 0.59 × 0.59 2.0
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(a) (b) (c)

(d) (e) (f)

Fig. 7. The result of smoothing: (a) original axial CT slice, (b) automatic segmentation
of (a) by [3], (c) smoothing of (b) by proposed method, (d) original coronal CT slice,
(e) automatic segmentation of (d) by [3], (f) smoothing of (e) by proposed method

Fig. 8 shows the 3D rendered view of the segmentation result after smooth-
ing. Figures show that the result has smooth lung boundary in all aspects and
consistent appearance across slices.

(a) (b) (c) (d)

Fig. 8. 3D rendered view of segmentation result after smoothing: (a) anterior view, (b)
posterior view, (c) medial view of left lung, (d) medial view of right lung

To evaluate the accuracy of segmented lung contour, we calculated the av-
erage of absolute value of curvature over mediastinal axial slices before and
after smoothing. For this evaluation, we tracked the contour using chain code
[10], which first picks a starting pixel and finds the next pixel on lung contour
by searching the eight directions surrounding the current pixel. The value cal-
culated before and after smoothing was 0.0496 and 0.0371, respectively. This
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result shows that the smoothness of lung contour considerably increased after
smoothing.

Processing time for smoothing segmented lung boundary was measured from
6 patient datasets. Total processing time was 5.62 seconds on average, as shown
in Fig. 9. For smoothing in axial slice and subvolume smoothing in coronal
slice, 3.62 and 2.0 seconds were required, respectively. To prove efficiency of
proposed scan line search, we compared the contour tracking time between our
method and conventional contour tracking technique. For conventional method,
we implemented contour tracking using chain code. From 6 patient datasets, the
average contour tracking time of conventional method was 1.281 seconds. On the
other hand, the average time needed for scan line search was 0.286 seconds.

Fig. 9. Total processing time of proposed method for smoothing segmented lung bound-
ary

4 Conclusion

We have developed a new method for smoothing segmented lung boundary
in chest CT images. Using scan line search and curvature calculation, we can
smooth lung boundary identified by our automatic segmentation method. Scan
line search allows us to track the points and find rapidly changing curvature on
lung contour efficiently. 2D closing in axial slice can reduce the number of rapidly
changing curvature points. Subvolume smoothing in coronal slice provides con-
sistent appearance between lung contours in neighboring axial slices. Six patient
datasets with lung nodules have been used for the performance evaluation with
the aspects of visual inspection, accuracy and processing time. The results of
our method show that the smoothness of lung contour considerably increased by
compensating for pulmonary vessels near mediastinum and pleural nodules. Pro-
posed method have been successfully used for lung nodule matching [11,12] and
can be used for quantitative evaluation such as measurement of nodule growth
rate.
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Abstract. Measurement of nuchal translucency (NT) thickness in the first 
trimester of pregnancy has recently been proposed as the most useful marker in 
the early screening for fetal chromosomal abnormalities. Ultrasonic 
measurement of NT thickness is currently performed by manually tracing the 
two echogenic lines and locating the electronic calipers on the inner edges of 
these lines. The drawbacks of this method are inter- and intra-observer 
variability, and its inefficiency. In particular, accurate caliper placement 
requires highly skilled operators since the border of the nuchal translucency 
layer is very thin. We present a computerized method of detecting the border of 
the NT layer by minimizing a cost function using dynamic programming. Local 
measurements of intensity, edge strength and continuity are extracted and 
become weighted terms in a cost function. Our method can obtain accurate and 
reproducible results, and has been validated by computing the correlation 
coefficient between manual and automatic measurements. 

1   Introduction 

Ultrasonography (US) is performed during early pregnancy for dating, determination 
of the number of fetuses, assessment of early complications, and increasingly for 
evaluation of the fetus, including measurement of the nuchal translucency (NT) 
thickness [1]. Measurement of NT thickness in the first trimester of pregnancy has 
proved to be one of the most discriminating prenatal markers of screening for 
chromosomal abnormalities such as trisomies 13, 18 and 21 [2]. Furthermore, an 
increased NT thickness in the presence of a normal karyotype is associated with an 
increased frequency of structural defects and genetic syndromes [3]. The NT 
thickness is measured in the sagittal section of the fetus by transabdominal or 
transvaginal ultrasound examination. Measurement is obtained manually by placing 
the calipers on the inner edges of the two thin echogenic lines that border the nuchal 
translucency layer. The crossbar of the caliper should be positioned so that one of its 
lines is hardly visible as it merges with the white line of the border. This not only 
requires highly skilled operators but it is also prone to inter- and intra-observer 
variability. There has been a little research on the computerized automation of  
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fetal NT measurement. However, Bernardino et al. developed a semiautomated 
computerized measurement system, which uses the Sobel operator to detect the border 
of the NT layer [4]. In conventional edge-detection, the location of an edge is entirely 
determined by local evaluation of a single image feature such as the intensity or the 
intensity gradient.  But a single image feature is not sufficient for reliable border 
measurement in fetal ultrasound images. These images frequently include weak 
echoes, echo dropouts, and speckle noise which makes them difficult to analyze using 
conventional border-detection techniques. Gustavsson et al. [5-7] have suggested a 
global optimization approach based on dynamic programming (DP) for detecting the 
boundaries of carotid artery which takes multiple image features into account. This 
method has obtained accurate and reproducible results for automated ultrasonic 
measurement by considering multiple image features such as intensity, gradient and 
border continuity.  

In this paper, we will present a procedure based on dynamic programming to 
measure NT thickness automatically. We start by defining a region of interest in order 
to reduce the interference from the image boundary and to adapt to different fetal 
head positions and sizes of the NT layer. We then apply a dynamic programming 
procedure to determine the location of the border of the NT layer in a way that 
minimizes a cost function. This cost function is a weighted sum of terms that include 
local measurements of the echo intensity and the intensity gradient of the image, and a 
geometrical constraint on the shape of the borders. Our method overcomes the 
limitations of ultrasound images and accurately detects the border of the NT by 
combining multiple image features. Moreover, we avoid the variability of manual 
measurements.  

The rest of this paper is organized as follows. In Section 2, we describe the 
characteristics of nuchal translucency images, definition of the region of interest, the 
segmentation procedure for detecting the border of the NT layer, and the automated 
measurement procedure. The results of this method are evaluated in Section 3, and 
then we draw some conclusions in Section 4. 

2   Methods 

In this section, we describe the characteristics of nuchal translucency images, the 
definition of the region of interest and the border detection method, and then we 
explain the automatic measurement procedure.  

2.1   Nuchal Translucency 

Nuchal translucency (NT) refers to the normal subcutaneous fluid-filled space 
between the back of the neck of a fetus and the overlying skin [8]. Fig. 1 shows a 
representative image of the NT and a schematic illustration of the echo zones (Z1-Z5) 
and the borders (B1, B2) of the NT layer. The NT thickness is defined as the 
maximum thickness of the translucent space (Z3) between the skin (Z4) and the soft 
tissues (Z2) overlying the cervical spine in the sagittal view of the fetus.  
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Fig. 1. Echo zones and NT borders 

 

 (a)                                                                    (b) 

Fig. 2. Caliper method of measuring NT thickness: (a) ultrasonographic sagittal view of fetus 
with two calipers; (b) calipers placement on anatomical structures of the fetus 

To measure the NT thickness, the calipers are located on the inner borders of the 
NT edges with none of the horizontal crossbars protruding into the NT layer. The + 
calipers should be only calipers used for NT measurement. The NT thickness should 
be measured at its maximum thickness with the placement of the calipers 
perpendicular to the long axis of the fetus [9]. The ultrasonographic sagittal view of a 
fetus with two calipers is shown in Fig. 2(a) and Fig. 2(b) illustrates the correct and 
incorrect placement of the calipers on anatomical structures of the fetus [10]. 

2.2   The Region of Interest 

NT images can differ widely because of fetal movement over a scan of several 
minutes. Fig. 3 shows various NT images corresponding to different fetal positions. In 
Fig. 3(a) the fetal skin is clearly separate from the amnion, and in Fig. 3(b) there is no 
clear distinction between fetal skin and the amnion. Fetal images with the head in 
upside-down or oblique positions are shown in Figs. 3(c) and (d). The ultimate 
purpose of the identifying the border of the NT layer is to measure the thickness of its 
widest part. We need to define a region of interest (ROI) which reduces the 
interference of image boundary and which is adaptable to changes in the fetal head 
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(a)                                                                         (b) 

      

(c)                                                                         (d) 

Fig. 3. NT images of different fetal positions (the rectangle indicates the ROI): (a) fetus image 
with a clear amniotic edge; (b) a fetus image with an indistinct amnion edge; (c) a fetus in an 
upside-down position; and (d) a fetus in an oblique position 

position and the size of the NT layer. An additional requirement of border detection 
based on dynamic programming is the choice of start and end-point that enclose the 
interesting region of the NT layer. We create a rectangular region of interest that 
includes the widest part of the NT layer in the fetal image by user interaction. By 
creating the ROI in the correct position, we can avoid interference from speckles and 
from echo zones Z2 and Z4. The coordinates of start and end-point are the top-left 
and top-right corners of the ROI window.  

2.3   Border Detection 

The accurate segmentation of a border is a very difficult task since ultrasound images 
usually have a high level of speckle noise and other imaging artifacts due to random 
scattering. We apply a global optimization approach based on DP to NT border 
detection. We will now describe this method in detail.  

Cost Function. Cost functions are built for each of the borders of the NT layer, which 
we will call B1 and B2. If the ROI is an M×N rectangle, then all possible borders BN 

can be considered as polylines with N nodes:  

Amnion 
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where pN-1 and pN  are horizontal neighbors, and N is the horizontal length of a contour 
line. The cost function C(BN) is defined as a sum of local costs along a candidate 
border BN: 
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where fj(pi) are image feature terms, k is the number of image features used, g(pi-1 , pi) 
is a geometrical force term, and wj (j = 1, 2, 3, 4) is a weighting factor. We use three 
image features, so k is 3. The cost terms in the cost function associated with a 
particular type of border must reflect the characteristics of the image features in its 
neighborhood and the geometrical form of the border. The cost terms are defined such 
that a stronger image feature at pi will yield a lower local cost. The desired border 
corresponds to the BN which minimizes the cost function C(BN). The weighting factors 
are determined empirically for each border using the constraint w1 + w2 + w3 + w4 = 1. 
Fig. 4 shows a 3D view of the NT layer. Above the NT border B1 (in the y-direction) 
is a bright and below it is a dark region. The NT border B2 is located above a bright 
region and below a dark region. From these observations, we can define cost terms 
that correspond to the characteristics of each border. To be more specific, we will 
describe the cost terms used in the cost function for B2. 

The first term f1(pi) measures the average intensity of n (here, n = 3) pixels below a 
pixel pi and aims to detect a pixel that belongs to a line above a strong echo zone Z4. 
The second term f2(pi)  measures the average intensity of m (here, m = 2) pixels above 
a pixel pi, and favors a pixel that belongs to a line immediately below a dark NT space 
Z3. The third term f3(pi) measures the downward intensity gradient which is expected 
at the upper edge of an echo zone Z4. The intensity gradient is estimated as vertical 
intensity slope of the pixel pi using the gradient operator. The final cost term g(pi-1 , pi) 
is proportional to the square of the difference in vertical distance between the border 
being estimated and a reference line at node pi; this term is designed to ensure border 
continuity. In the case of B2, g(pi-1 , pi) is calculated with a horizontal reference line. 
In estimating the cost term g(pi-1 , pi) in case of B1, the reference line is the border B2 
that has already been detected.  

Dynamic Programming. Dynamic programming is typically applied to optimization 
problems, and can be used as an optimal search method for border detection. The 
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Fig. 4. 3D view of the nuchal translucency layer 

optimum border is one that minimizes the given cost function, which is C(BN) in this 
case. The search for a solution must be performed globally in the searching region to 
avoid local minima due to interference patterns such as speckles. 

To recast our problem as a DP search, we begin by rewriting Equation (1) in a 
recursive form as follows: 
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We denote the candidate minima of the cost function of polyline BN as )(
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nBC . 

Applying Equation (5), the multistage cost accumulation process can now be 
expressed as  
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To search for the optimum border, costs are accumulated according to Equation (6) 

and the location of pn-1, which defines )(
~

nBC , is stored in a pointer array at each stage 

n. The arrows in Fig. 5(a), point to the pixel in the previous column with the 
minimum accumulated cost, which then allows the points of the optimal border to be 
derived by back-tracking. 

We will now describe the cost accumulation and back-tracking process in detail 
within an M×N ROI. A vertical scan window of height M is used to scan the border 
from the start to end-point at N horizontal positions. The locations of the start and 
end-point are the upper-left and upper-right pixels of the ROI respectively, and 
correspond to the left and right arrows in Fig. 5(b). At each column n, a candidate 
minimum of the cost function is found for each point in that column, and its cost is 
accumulated. After scanning all the columns, the lowest accumulated cost is located. 
The position of the minimum cost point becomes the end-point of the border. Then 
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(a)                                                                      (b) 

 

Fig. 5. Border detection using dynamic programming: (a) the backtracking process, and (b) 
detecting the border B2 in the NT image 

the back-tracking is performed following the pointers until the first column is reached 
in the ROI. This creates our estimate of the border. B2 can be identified relatively 
easily since the nearby echogenic zone Z4 is stronger than echogenic zone Z2. 
Therefore we find B2 first. We then search for B1 using a smoothed line of B2 as a 
reference line, which forms a lower limit in the search for B1. 

2.4   Measurements 

We measure the distance between B1 and B2 using linear regression. The process 
consists of five steps. In the first step, we calculate mid-points between the upper 
edge and the lower edge at the 2 right and left neighbors centered on a given value 
of x. The second step is to find the line L1 that bisects the two edges by linear 
regression. The third step is to find a line L2 that is orthogonal to this bisector L1. 
The fourth step is to fit lines L3, L4 to B1 and B2 respectively, by linear regression 
in the range of x that we have previously defined. Finally, we calculate the 
intersection points between L2 and L3, L4, and then measure the distance between 
pairs of points. These distances are estimates of the minimum, average and 
maximum NT thickness. 

3   Implementation and Experimental Results 

The algorithm that we have described in this paper was implemented in Visual C++ 
on a Pentium IV. We have applied our method to the sagittal section of 2D and 3D 
fetus NT images obtained by transabdominal and transvaginal ultrasonography. Fig. 6 
compares the conventional edge-detectors and our method. Fig. 7 shows the resulting 
borders. The strength of the relationship between automated and manual methods is 
indicated by the correlation ca, m , which is defined as follows: 
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N 
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Scan direction 
Back-tracking 
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ma
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c

σσ
,

, =                                                      (7) 

where Cova,m is the covariance between the automated and manual and σa and σm 
are the standard deviation of automated and manual measurements, respectively. 
The means (μa, μm) and standard deviation (σa, σm) for the differences between the 
 

   

(a)                                                        (b) 

   

(c)                                                       (d) 

Fig. 6. Comparison of various edge-detectors: (a) original image; (b) Sobel; (c) Canny; (d) 
edge-detection using dynamic programming  

automatic and manual measurements were calculated for the population (n=30). We 
calculated the correlation which is defined as accuracy between the automatic and 
manual measurements of the maximum thickness of the NT layer. The resulting 
values of the parameters μa, μm, σa, σm, ca, m are shown in Table 1. 

Table 1. Comparison between automatic and manual methods (n = 30) 

 
Automatic 

aa σμ ±  (mm) 
Manual 

mm σμ ±  (mm) 
Correlation 

ca, m 

NTmax 2.68 ±0.18 2.69±0.17 0.98 
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Fig. 7. Experimental results. Left: original image. Right: detecting the border of a fetal NT. 
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4   Conclusions 

We have proposed a method for automated fetal ultrasonic measurements that is 
based on dynamic programming. Our method detects the borders of the nuchal 
translucency by constructing a cost function that includes weighted cost terms to 
represent multiple image features such as intensity, gradient and border continuity. 
We have obtained superior results to conventional edge-detection procedures that 
typically consider single image features. In particular, our method has overcome the 
problem of border continuity which occurs when weak edges are disrupted by the 
scattering inevitably present in ultrasound images. Our automated measurements were 
compared with manual measurements, and were found to be equally accurate; and an 
automated approach reduces the problems of variability and reproducibility that are 
always present with manual assessments. However, for clinical purposes, some 
interactive tools may still be needed in order to correct residual detection errors in 
extremely poor images.  
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Abstract. The detection and modeling of the human spine from scanned
3D data is an important issue in biomedical shape analysis. It can be use-
ful for avoiding invasive treatments like radiographs, taken for the purpose
of monitoring spine deformations and its correction, as is the cases in sco-
liosis. This is especially important with children.

This work presents a new method for the detection of the human
spine from 3D models of human backs formed by triangular meshes, and
taken with a range sensor. The method is based on the estimation of the
principal curvatures directions, and by joining valley points along these
directions. Results are presented with the method applied to scanned 3D
models of real patients.

1 Introduction

Serious deformities in the human spine are present in a significant percentage of
the population, these includes scoliosis, and abnormal cifosis and lordosis. The
idiopathic scoliosis is the most common of these deformities, mainly in children
[1], this is an abnormal lateral curvature of the spine of congenital origin, or
caused by trauma or disease of the vertebrae or hip bones. This is first noticed
as a result of the changes that occur in the shape of the human back during the
adolescent growing season. The characteristic feature is the disfiguring hump,
caused by the rotation of the vertebrae and ribs, that appears together with a
lateral bend of the spine.

In some cases the deterioration of the spine occurs quickly, so an early detec-
tion of this disease is very important. The most extended means of assessment
has been the use of frequent X-ray examinations. Well known is the noxious
effect of radiation over patients, principally in early seasons.

Aiming to find alternatives, several non-invasive methods of surface shape
measurements and analysis have been proposed and used, including deformation
tests [4], photographic methods [2] [3] [5].

Several works have used the analysis of the principal curvatures from 3D data
to detect the human spine on the back surface [6] [7]. In the present paper, we
describe a new method for the detection and modeling of the backbone, which

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 168–177, 2006.
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constitutes a preliminary step for every method that attempts to estimate the
deformation of human spines.

For the development and assessment of our method we have used a 3D rep-
resentation of the human back, as a computerized 3D model, obtained by a
non-invasive technique, such as the use of a laser scanner. These 3D models are
triangular meshes where the mesh vertices are real scanned points in the back
to be represented.

The structure of this paper is as follows: in Section 2 some related works
are discussed. Section 3 describes surface curvature and the approach presented
in this paper for estimating these geometric features. In Section 5 we explain
our approach in detail. Finally, in Section 7 conclusions are drawn and further
research directions are discussed.

2 Related Work

The human back presents an almost symmetrical shape, being the spine the
symmetry axis. From the lumbar area, in the base of the dorsal thorn, to the
cervical region symmetry is preserved. From simple visual inspection of hori-
zontal sections we would be able to locate the whole dorsal thorn estimating
their position in each traverse section. The estimation is possible only from the
mentioned symmetrical characteristic.

Symmetry of the back is affected by deformations in the spine, mainly due
to affections as scoliosis, cifosis or lordosis that produce deviations and torsions.
Despite this anomaly it is still possible to find in each horizontal section (profile)
the point of best symmetry, that is, the point of minimum asymmetry. This point
will, in fact, be a localization of the spine for this horizontal profile. The group
of the points in the horizontal profiles will constitute a localization of the dorsal
thorn in the all back.

This is the idea followed by Drerup and Hierholzer [6] for the detection of the
spine. In their work a fixed coordinate system is attached to the body. The refer-
ence points of this reference system were: the prominence of the seventh cervical
vertebra, the sacrum point, and the two points dimples of the posterior superior
iliac spines. The first two points defined the vertical axis and the others two
the horizontal axis. For the localization of reference points the “symmetry line”
was detected along the back. Then, by means of anatomical criteria, windows
were located where the points of interest were estimated. Inside each region the
anatomical points were finally located using digital image processing techniques.
These regions were called landmark windows. The authors use as a back surface
representation the raster stereographic technique.

Another approach used in order to detect the backbone was presented by
Sotoca [8]. In this case the authors use an active shape model [9] based on a
statistical scheme trained with a set of samples. This method looked for a curve
that represents the shortest path between point matching vertebra C7 and point
matching vertebra L5. This curve must fulfill also a criterion of surface smooth-
ness lengthwise. This contribution is based on a raster stereographic technique.
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3 Principal Curvatures Estimation

The use of invariant geometric properties is very extended in Computer Vision,
like principal curvatures and their directions. Surface curvature is a local shape
descriptor invariant to rigid body transformations, this is a concept from Differ-
ential Geometry [10] [11]. Several works about 3D object analysis and recognition
are based on principal curvatures [12] [13] [14] [15]. Particularly, its use has been
adequate in medical imaging applications [16] [17]. The use of polyhedral rep-
resentations for approximation of real surfaces is also quite common. Actually
triangular meshes is the most habitual representation for surfaces because of eas-
iness in latter processing such as estimation of geometric features [18]. However,
estimation of surface curvatures on a discrete graphical model is difficult. The
main drawback is that curvatures depend on the second derivative of the surface.
Some works aim at overcoming this difficulty; they are grouped regarding the
techniques used, and can be classified into three main categories [19]. The first
one is surface fitting methods, here curvatures are computed from an analytical
surface formula that is previously fit to the discrete model points. This approach
requires a local surface parameterization [20] [21]. The second class is total cur-
vature methods, in this context curvature is estimated for a surface region and
not for singles points [22]. Finally, curve fitting methods fit a family of curves
around each surface point in order to estimate the curvatures [23] [24] [25]. When
working with large 3D models, as such the ones present in medical applications,
it is very important to use a robust estimation method capable of dealing with
noise. In this sense, curve fitting based methods are very promising.

The Normal Vector Voting (NVV) algorithm introduced by [19] is an exten-
sion of the work presented by [26] and [27]. We have used this method, with slight
modifications, for estimating principal curvatures and principal directions. This
is a two-pass algorithm that can work with large, and probably noisy, triangular
meshes. The first step consists of estimating the normal direction for each sur-
face point. In the second step the principal curvatures and their directions are
estimated for each surface point.

Basically, the method uses a voting scheme such that all triangles and vertices
in a neighborhood of user defined radium, around the current vertex, affect the
estimation of curvatures and directions for this vertex. This approach contrasts
with other curvature estimation methods that only use a simple one-ring vicinity
around the vertex of interest [28]. Interesting in the NVV is that the neighbor-
hood of each vertex is defined using geodesic distance and not with traditional
Euclidean distance. The search for the geodesic neighborhood of a vertex is re-
lated to the discrete geodesic problem [29]; this concerns about finding a set of
triangles within a specified distance to this vertex. Geodesic distance is com-
puted using a modification of the Kimmel and Sethian method [30], introduced
by Sun and Abidi in [31].

Having the vicinity, each triangle in this patch (or geodesic neighborhood)
votes for the center vertex. These votes are collected in a covariance matrix,
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which is decomposed using eigen-analysis. Then eigenvectors and eigenvalues are
used respectively for estimating principal directions and principal curvatures for
each point.

We have introduced a slight modification of the NVV algorithm that in our
case produce better results, we now explain this fact. When collecting votes, in
the first pass of the NVV algorithm for estimating the normal vector orientation
of each vertex in the mesh, for each triangle in the geodesic neighborhood of ver-
tex v was defined the matrix Vv =

∑
wiVi. In this definition Vi is the covariance

matrix Vi = NiN
t
i where Ni is the normal vector for each triangle in the geodesic

neighborhood. wi is a weighting term defined as wi = Ai

Amax
exp

(− gi

σ

)
where Ai

is the area of each triangle, gi is the geodesic distance from the center of the
triangle to the vertex v, σ is a constant value defined as function of a maximal
geodesic distance defined by the user such that votes from triangle beyond this
distance have a negligible influence. The other term in this expression is Amax

which is defined as the maximal area in the all mesh. However, the dimension of
the triangles in a mesh can vary significantly, and this fact can produce adverse
numerical effects in neighborhoods with triangles of small area relative to the
maximal area. To overcome this drawback we have used, with better results, the
local maximal area in the geodesic neighborhood of the current vertex instead
of global maximal area.

4 Method Overview

The proposed approach proceeds by computing the minimum asymmetry point
located on each of several horizontal profiles placed on the back surface. Each of
these points is an estimation of the position of the spine, so we can model the
backbone by means of this set of minimum asymmetry points. But in our ap-
proach the model used is a triangular mesh, and the way of defining a horizontal
profile is different that what it would be using other model for the back sur-
face, for example if we use raster stereography. When we set a horizontal cutting
plane in order to find intersections with the surface and obtain points forming
this horizontal profile, in the case of triangular meshes we can not control the
amount of points in this intersection. So, when defining horizontal profiles we
can not just take vertices of the triangular mesh belonging to the cutting plane
(see Figure 1).

On the other hand, we use directions of principal curvatures as local shape
descriptor of the back surface. We assume that surface is oriented such the back-
bone is almost vertical. To obtain horizontal profiles we set several horizontal
cutting planes intercepting the surface uniformly along that vertical axis (Fig-
ure 1 a). To define a profile we take into account all vertices belonging to the
corresponding cutting plane and also all vertices between this cutting plane and
the following one. Then we project all these points over the current cutting plane
and we use all these projected points as profile definition.

When projecting 3D vertices on a cutting plane several of these point can be
very close between them. In general, we are not interested in processing all the
projected points placed near the same coordinate in the x axis ((Figure 1) b),



172 Y. Santiesteban, J.M. Sanchiz, and J.M. Sotoca

a) b)

Fig. 1. Horizontal cutting planes defining profiles

regardless coordinate in the z axis. So, we use a clustering method in order to
find groups of points close to each other in the cutting plane. Then we use only
the central point for each cluster representing all points that have been classified
together. This central point is not necessarily a member of the cluster, but the
cluster centroid.

So far we have a set of points for each cutting plane, next we need to use a local
shape descriptor to analyze the surface behavior in this profile. We select one
direction of the principal curvatures for each point as a local shape descriptor.
The direction chosen is the most horizontal one. The direction of the curvature
for the cluster centroid is obtained from the direction of all points in the cluster.

At this point a profile is formed by a set of points (cluster centroid) and one
direction for each of these points. Afterwards we find convex and concave regions
taking second derivatives in the profile, then we select one of these regions by a
criterion of symmetric position in the profile. The point locating the spine is the
middle point of the selected region.

Having a location for the spine on each profile, the entire backbone is modeled
by a third degree polynomial. A robust fitting method that can cope with outliers
is used to estimate the polynomial parameters.

5 Human Spine Detection Method Based on Principal
Directions

At this stage we assume that principal curvatures and directions have been
estimated for every vertex in the triangular mesh modeling the back surface. In
the following we explain in detail how to obtain the horizontal profiles.
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Let
{
v1

i , v
2
i

}
be the pair of principal directions for each surface point Pi,

i = 1, 2, . . . , n, where n is the number of vertices in the mesh. We associate
vector vi to each point Pi. vi is defined as

vi =

{
v1

i if
∣∣∣v1

iy

∣∣∣ ≤ ∣∣∣v2
iy

∣∣∣
v2

i other case
,

where v1
iy

and v2
iy

are the y axis component for the first and second principal
directions. In others words, we assign to each point the most horizontal of the
two principal curvatures directions.

In the rest of the paper we suppose that the surface orientation and the
reference coordinate system is as showed in Figure 2. We also assume that points
of minimum coordinate in the y axis lie in the x− z plane. So we can define the
height of the surface, L, as the maximum coordinate in the y axis.

We place several cutting planes intercepting horizontally the surface, and
then we project all points over some cutting plane. Denoting as y = jλ the
family of cutting planes, where j = 0, 1, 2, . . . , N , N being the number of cutting
planes, we can derive that N =

[
L
λ

]
, λ being a constant value representing the

spacing between any pair of cutting planes and
[

.

.

]
representing the integer part

operation. We refer to a cutting plane by its factor j, and because there is a single
profile for each cutting plane and vice versa, we refer to the profile j which is
attached to the cutting plane j.

Next we can define how points are projected onto the cutting planes. A
point P (xP , yP , zP ) is projected onto cutting plane j if this is the nearest
cutting plane, such that yP ≥ jλ. We denote projection of P on plane j as
P j (xP , jλ, zP ).

In order to simplify the profiles and obtain only useful shape information, we use
an incremental clustering technique for grouping close points. Incremental cluster-
ing algorithms form clusters dynamically each time a new object is available.These
methods are extensively used in document classification, image segmentation and
more applications. Given a set of objects to be clustered, clustering algorithms de-
fine partitions of this set. For the clustering task a representation space, a similarity
measure between objects and a clustering criterion are needed.

In our case, the objects to be grouped are 2D points (3D points projected
on a cutting plane). For the clustering algorithm, and as a similarity measure
between two point projections P j

1

(
xj

i1
, jλ, zj

i1

)
and P j

2

(
xj

i2
, jλ, zj

i2

)
we define

the function s(P j
1 , P j

2 ) = |xi1 − xi2 |. This function take as similar points that
are close by the x axis component regardless the z axis component.

It is frequent in the literature to use a cluster centroid such that when esti-
mating if new objects will be in a given cluster, comparison is made between
the new object and the cluster centroid instead of between the new objects and
all objects in the cluster. Each time a new objects is inserted into the cluster,
the cluster centroid is updated. We use this approach and we define the cluster
centroid for the cluster Cj as the point PCj (xCj , jλ, zCj ) where xCj and zCj are
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the average coordinate in x and z axis respectively for all points in Cj . Here j
is the cutting plane.

As a clustering criterion we use the fact that P will be in cluster Cj if and
only if s(P, PCj ) < r, where r is a user defined threshold.

We have used the Single-Pass algorithm by Hill [32] for clustering the set of
points projected on each cutting plane. This is a simple method that assigns a
point to the first cluster that matches the clustering criterion.

Then, we define the set M j =
{
P j

C1
, P j

C2
, . . . , P j

Cm

}
as the set of cluster

centroid, here m is the number of clusters for cutting plane j. Associated to M j ,
we define the set of directions for each cluster centroid V j =

{
vj
1, v

j
2, . . . , v

j
m

}
.

Each vector in V j is obtained by averaging components of the direction vector
for each point in the corresponding cluster. We identify the profile for cutting
plane j as the set of cluster centroids M j, and the set of profile directions is V j .

For each profile j we consider the function f(vj
k) = tanαj

k, where αj
k is the

slope angle of vj
k. All vj

k are 2D vectors in cutting plane j. Function f has
following property: f(vk) = (F j)′, where F j is the analytic intersection curve
between the cutting plane and the surface. After that, we consider the function
g(vj

k) = G(f(vj
k)), where G is a first derivative Gaussian function. The use of

a Gaussian function has the effect of smoothing the profile and obtaining its
second derivative, then we have that g(vj

k) = (F j)′′. So far profiles have been
defined, the next step is the detection of concave and convex regions for each
profile. Aiming at this we use the following statement: P j

Ck
is in a concave region

if g(vj
k) > 0. On the other hand, if g(vj

k) < 0 then P j
Ck

is on a convex region.
In this manner, our method selects points from concave and convex regions for

each profile. By means of a symmetry criterion in the profile, using the geodesic
distance, we select only one point for each profile. At the end we have selected
a set of points that match the spine location on the surface.

Finally the human spine has to be modeled and for that purpose we use a third-
degree polynomial. Being

{
P j(xP j , jλ, zP j )

}
the set of selected points for each

profile, we consider the function xP j = h(jλ) and we use robust linear regres-
sion [33] in order to fit xP j as a function of jλ. Algorithm used is an iteratively re
weighted least squares approach [34]. This method assign lower weight to points
that do not fit well, resulting in a fit less sensitive to outliers in the input data. In
this manner we have obtained a 2D curve that reflet lateral deviations of backbone.
In order to obtain a 3D curve we project the 2D curve over the surface.

6 Results

Several 3D models of patients with spine deformities, consisting of triangular
meshes, have been taken using a commercial laser scanner, model FastSCAN by
Polhemus. The size of the models is about 26000 vertices and 67000 triangles.
The proposed approach to obtain an estimation of the spine was applied to
the models. First, the principal curvatures directions were estimated using the
modified NVV algorithm presented in Section 3. Next, horizontal profiles were
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Fig. 2. Horizontal profiles, points of maximum symmetry, and curves modeling the
spine in three models of real human backs

defined all along the back using the most horizontal direction of the curvatures.
The mesh vertices were projected on the closest profile, and a clustering was
done to obtain points all along each profile. Concave and convex regions were
bounded in each profile and the best symmetry region was selected according to
the concave-convex changes. Then, in each best symmetry region, and for each
profile, the best symmetry point was identified. Having one best symmetry point
in each profile, a three-degree polynomial curve was fit by robust least squares.
Figure 2 shows the curves that model the spines estimated from three example
models of real patients.

7 Conclusions and Further Work

We have presented a new method for estimating and modeling the human spine
from scanned 3D models of the human back consisting of triangular meshes. The
method is based on estimating the principal curvature directions, defining point
profiles in horizontal directions, and detecting valley points. The method has
been applied to real scanned human backs producing encouraging results. From
the spine model important geometric information can be derived, like the Cobb
angles. Further work is addressed at estimating and quantifying asymmetries in
the spine and in the whole back.
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Abstract. This work tackles the categorization of general linear radial
patterns by means of the valleys and ridges detection and the use of
descriptors of directional information, which are provided by steerable
filters in different regions of the image. We successfully apply our pro-
posal in the specific case of automatic detection of tonic contractions
in video capsule endoscopy, which represent a paradigmatic example of
linear radial patterns.

1 Introduction

In this work, we propose a general methodology for the achievement of suitable
features for the categorization of linear radial patterns. The interest about cat-
egorizing radial patterns is underpinned by the fact that a considerable number
of points of interest in computer vision are to be points with an intrinsic radial
structure -an interesting and deep review about this issue can be found at [7]-.
Recent works presented the characterization of radial patterns to tackle the facial
feature extraction, finding blobs in images, processing astronomical images, and
starfish tracking, among others. Most of these approaches involve the analysis
of the gradient image in a constrained neighborhood, and the application of a
symmetry transform which codifies the degree of radial symmetry for each pixel
of the image.

Our approach is specifically focused towards the characterization of linear
radial patterns by means of the analysis of the overall directional information
surrounding the centroid of a given linear pattern. We achieve this by means
of the division of the image into several quadrants, and by calculating a set
of features which carry the directional information for each quadrant. We also
propose an alternative method based on the previous polar transform of the
linear pattern. On the one hand, our approach is directly addressed to the specific
issue of linear radial patterns ranging the whole image, which lays out of the
scope of previous methods, which are focused to the localization of points of
interest in a constrained neighborhood by using gradient analysis. On the other
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hand, this orientation appears specially suitable for the specific issue of the
automatic detection of tonic intestinal contractions in capsule video endoscopy
for intestinal motility assessment [8].

Video capsule endoscopy [4] is a novel clinical technique based on the anal-
ysis of the video images provided by a camera attached to a capsule, which is
ingested by the patient, in a frame rate of 2 frames per second. Tonic intesti-
nal contractions are rendered in video capsule endoscopy images as a sequence
of frames showing a radial pattern of wrinkles, corresponding to the intestinal
folds. The manual annotation of these kind of sequences provides a useful source
of information for intestinal motility assessment, but this is tedious and time
consuming task, which may span for several hours. The use of the linear radial
pattern characterization approach which we present in this work appears to deal
in a successful way with the automatic detection of this type of events.

The organization of this paper is as follows: Section 2 introduces the visual
paradigm of tonic contractions. Section 3 explains the procedure for the obten-
tion of the linear pattern based on the valleys and ridges detection. Section 4
explains the categorization procedure of the linear radial patterns. Section 5
shows the results of our approach for the automatic detection of tonic contrac-
tions. We finish our contribution with our conclusions in Section 6.

2 Tonic Intestinal Contractions: Visual Paradigms and
Video Annotation

Tonic contractions are produced by muscular tone [5], and can be visualized in
capsule endoscopy as a continuous closing of the intestinal lumen with a high
variability in length. Thus, the visual pattern of tonic contractions corresponds
to a sequence of a closed intestinal lumen in a undefined number of frames.
This pattern is highly recognizable for the presence of the characteristic wrin-
kles which the continuous muscular tone produces when the intestinal walls are
folded. Figure 1 shows a characteristic example of a tonic contraction -frames
are sequentially deployed from left to right and from top to bottom-.

Fig. 1. Sustained contraction (bounded by the green line) spanning 15 frames

The procedure of annotation of tonic contractions in capsule endoscopy con-
sists of the visualization of the whole video by the specialist, and the labelling
of the contraction frames. As long as the duration of tonic contractions is not
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constrained, and varies in a wide range, the specialist labels the first and last
frames of the sequence which contains the contraction. The threshold for the
consideration of a motility event as a tonic contraction is set by the specialist
in at least 10 frames. This procedure becomes a tedious and time consuming
task. For a typical study spanning 2 hours of video, and containing about 40
tonic contractions, a trained specialist may last about 3 hours for an accurate
annotation.

3 Intestinal Wrinkles Detection Through Valleys and
Ridges Analysis

Our hypothesis is that the characteristic pattern of radial wrinkles which tonic
contractions show is associated with the valleys and ridges analysis of its inten-
sity image. But before the application of a method for the valleys and ridges
detection, endoscopy images must be pre-processed in order to smooth them,
which we successfully performed by meas of a median filter, with a fixed rect-
angular window. The size of the median filter window is set to the mean width
of wrinkles in sustained contractions, which is set to 6.5 pixels. The applica-
tion of this filter is justified by the sharpness of the images in areas where a
homogeneous view of the intestinal walls is rendered. This is mainly due to the
physiological structure of the intestinal walls tissue, and some amount of im-
age noise. Figure 2 (b) renders one example of the results of the median filter
smoothing. We tried other sophisticated smoothing methods, such as anisotropic
diffusion, which respects the structural information of the image in order to a
apply the smoothing by keeping sharpness in edges, obtaining similar results but
with a dramatic increase in the computation time.

The valley and ridge detection procedure is performed in the following way:
we create a filter mask by calculating the second derivative of an anisotropic
gaussian kernel [6]. The implemented anisotropic kernel uses σ1 = 1 and σ2 = 2
for each direction. We obtain 4 different filter responses F i(n) for an input image
In as:

F i(n) = In ∗ kernαi , αi =
iπ

4
(1)

where, αi represents 4 different orientations 00, 450, 900 and 1350, kernαi repre-
sents the anisotropic kernel rotated αi radians, and ∗ represents the convolution
operator. The valleys and ridges images F val and F rid are calculated as:

F val(n) = max(x,y){F i(n)}
F rid(n) = max(x,y){(−1) ∗ F i(n)} (2)

where max(x,y) represents the maximum value of the F i functions for the (x, y)
pixel. Figure 2 (c) shows the valleys image F val for the example image of Figure
2 (a). In the next step of our procedure, we create a binary image by keeping
the 75% percentile of F val(n) and F rid(n). Figure 2 (d) shows the binary image
created by this procedure for F val. Finally, we apply a morphological skeletoni-
sation [2] in order to obtain the lines with one pixel connectivity which describe
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(a) (b) (c) (d) (e)

Fig. 2. (a) Original image. (b) Smoothed image. (c) Valley detection. (d) Binary image.
(e) Skeletonisation results.

(a) (b)

Fig. 3. Original image, wrinkles detected as valleys (blue) and ridges (cyan), and wrin-
kles pattern for (a) a frame from a tonic contraction and (b) a randomly selected frame

the valleys and the ridges. Figure 2 (e) shows the skeletons created by this pro-
cedure. Figure 3 shows the super-imposition of the valleys and wrinkles for two
test frames: (a) a frame from a sustained contraction, and (b) a random frame.
The green square corresponds to the center of the intestinal lumen. This point
can be straightforward estimated as the centroid of the binary blob obtained
by applying a greater-than-zero threshold on the response image of laplacian of
gaussian detector with σ = 6, as [8] demonstrated. Notice that the centroid of
the lumen appears in the middle of the radial wrinkle pattern for the contraction
frame. On the contrary, for the random frame the position of the centroid of the
lumen does not follow a fixed pattern.

4 Descriptors for Linear Radial Patterns

We propose two different strategies for the linear radial patterns characteriza-
tion. The first approach is based on 4 descriptors which code the multi-directional
information of the wrinkles. The second approach simplifies the number of de-
scriptors to 2, by means of a polar transform of the original data. Although the
wrinkle pattern is defined both by valleys and ridges, we used only the valleys
pattern as a source of wrinkle information because valleys usually show a higher
degree of contrast, a more regular radial organization, and keep a more constant
orientation for each wrinkle. The inclusion of ridges is shown not to provide a
better performance in the specific case of intestinal contractions.

4.1 Multidirectional Approach

For a given wrinkle pattern, we define 4 different quadrants -see Figure 4 (a)-,
which we denote by quadrant 1, 2, 3 and 4, using the centroid of the lumen as the
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(a) (b) (c) (d)

Fig. 4. Quadrant divisions of a frame -(a) and (b)-, and two filter responses for two
different orientations: (c) 45◦, and (d) 1350

quadrant division middle point. In our preliminary tests, we checked other ap-
proaches for the center estimation, such as using as a centroid the center of mass
of the wrinkle pattern. However, the results provided by these alternatives were
not as satisfactory as those provided by the proposed method. The directional
information is obtained by means of 4 second derivative of gaussian steerable
filters [1], oriented to 450 and 1350. For both filters, σ = 1, so they basically
operate as line detectors in the direction towards they are oriented. The former
output is used to define two descriptors f1 and f2 as:

f1(n) = G450

1,3 (n) − G1350

1,3 (n)

f2(n) = G1350

2,4 (n) − G450

2,4 (n)

f3(n) = G00

6,8(In) − G900

6,8 (In)

f4(n) = G900

5,7 (In) − G00

5,7(In)
(3)

where Gθ
i,j(n) represents the sum of the response of the filter with orientation

θ over all the pixels of the image In in the quadrants i and j. Thus, f1 and
f2 codify the global amount of directional information in the diagonal radial
direction for each quadrant. This same analysis was repeated for a 450 rotated
version of the quadrant distribution as shown Figure 4 (b), defining the new
quadrants labelled by 5, 6, 7 and 8. This new quadrant distribution provides
two more descriptors f3 and f4 defined in equation (3), which codify the global
amount of directional information in the vertical and horizontal directions for
each quadrant. The paradigmatic response of two filters oriented 450 and 1350

is rendered in Figure 4 (c) and (d). In order to illustrate the behavior of this
set of descriptors, we edited a pool of synthetic images and calculated f1, f2,
f3 and f4. Figure 5 shows the feature values for several test images: the four
features tend to express high positive values for the linear radial patterns and
high negative values for concentric distributions.

4.2 Polar Transform Approach

Polar transform [3] consists of a mapping from the original cartesian image, in
which each pixel is referred to by the pair (row, column), into a transformed im-
age in which each pixel is referred to by a pair (angle, dist). In order to perform
a polar transform, we need to fix a center. For each pixel with cartesian coordi-
nates (row, column), the dist value is its Euclidean distance to the center, while
the angle value is the angle which the vector connecting the center and the pixel
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Fig. 5. Directional features for test images

Fig. 6. Wrinkles detected as valleys in polar coordinates

forms with the horizontal axis. In the polar image, the horizontal axis represents
the angle parameter, ranging in the interval [00, 3600] from left to right. The
vertical axis represents the dist parameter, ranging in the interval [0, maxdist]
from top to bottom, where maxdist corresponds to the maximal distance be-
tween two pixels within the camera field of view -which in capsule endoscopy
frames corresponds to 240 pixels-.We set the center of the polar transform to
be the centroid of the lumen, relating the origin of the transform to the center
of the intestinal lumen. Figure 6 shows the result of the polar transform on the
wrinkles associated to valleys (blue) for a given frame. Finally, we calculate two
descriptors f1′

and f2′
as follows:

f1′
(n) = G00

(Ipolar
n )

f2′
(n) = G900

(Ipolar
n )

(4)

where f1′
(n) and f2′

(n) codify the global amount of directional information in
the horizontal and vertical direction of the polar image Ipolar

n of the n frame.

4.3 Definition of the Area of Analysis

As we previously showed, intestinal folds and wrinkles in tonic contractions ap-
pear as radial lines in the cartesian image, and as nearly vertical lines in the
polar transformed image. However, it must be noticed that this pattern under-
goes deformations which are more severe around the the lumen center, and also
in distant points from the center -distant parts of the wrinkles usually occur to
be curved and no longer respect the radial orientation-. These both regions cor-
respond to the top and bottom areas in the polar plot. To minimize the influence
of this phenomenon, we tested the exclusion of the area defined by the lumen
detector from the wrinkle analysis. In addition to this, we also excluded all the
distant pixels. This exclusion was performed by a simple morphological proce-
dure of dilation and substraction as defined in Figure 7. The region of analysis
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(a) (b)

Fig. 7. (a) Tonic contractions. (b) Randomly selected frames.

is defined by a ring-wise or donut mask, which is to be applied to the valleys
wrinkle pattern previously to the feature extraction procedure. Figure 7 shows
several examples of (a) frames from tonic contractions and (b) random frames,
with their corresponding lumen blobs, masks, wrinkles and polar transform of
the valleys wrinkles pattern, restricted to the donut-mask.

5 Results

We tested the features explained in last section, defining 4 different sets: 1)
Quadrant : features f1, f2, f3 and f4, 2) Quadrant-donut : features f1, f2, f3

and f4, restricted to the mask defined in Figure 7, 3) Polar : features f1′
and f2′

,
and 4) Polar-donut : the same like quadrant-donut, but using the polar features
f1′

and f2′
. For the dilatation step of the donut generation, we used a 40 pixels

squared structural element. For each feature set, we run 3 different experimental
tests in order to assess the performance of our approach in the detection of
frames belonging to tonic contractions, and the final detection rate of tonic
contractions: Our first experiment consisted of testing the performance of our
system with patterns of frames belonging to sustained contraction without any
further restriction. The second experiment tried to quantify the number of frames
belonging to sustained contractions which were labelled as contraction frames
-sensitivity over frames belonging to tonic contractions sequences-. Finally, the
third experiment provides the global performance, over one whole video, in terms
of sensitivity and precision.

For the performance assessment on generalpatterns of frames belonging to tonic
contractions -from now on, we refer this set to as wrinkle frames-, the specialists se-
lected a pool of 2,414 wrinkle frames and 2,414 randomly selected frames which did
not belong to any tonic contraction -fromnowon, we refer this set to asnon-wrinkle
frames-. For all our experiments we trained a SVM classifiers with a radial basis
function kernel and γ = 0.05. We used 80% of the samples for training and 20% for
testing,performing 10 runs. Figure 8show theROCandPR-curves of the classifica-
tion experiments for the different features sets. Both quadrant and quadrant-donut
feature sets showed similar behaviors in the ROC curve, although the PR-curve
analysis showed that quadrant presented optimal performance in precision in the
middle region of recall (sensitivity) of wrinkle frames.
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Fig. 8. (a) ROC, and (b) PR curves for the wrinkle frames detection

We used the classifier trained in the last experiment with the quadrant feature
set in order to label all the frames of the sequences of tonic contractions. The
aim of this experiment is to assess the sensitivity of our system for frames of
tonic contractions. Table 1 summarizes the results provided by our system. We
analyzed 42 sustained contractions with 737 frames. The mean length of the
contractions was 14.2(±5.3) frames. Our system detected 454 frames, which
represents 61.5% of all the frames belonging to tonic contractions. In average,
for each contraction sequence, our system labelled 60.9% of frames as frames
showing the radial wrinkle pattern.

Table 1. Detection of frames belonging to tonic contractions

Number of tonic contractions: 42 (737 frames)
Number of annotated frames: 454 (61.5%)
Avg. frame annotation by sequence: 60.9% (±0.3)

The final step for the validation of our system consists of the automatic la-
belling of tonic contractions for one video. In order to define the criteria for
the detection of a sequence of tonic contraction, we followed the subsequent
highlights proposed by the physicians: we consider that we detect a sustained
contraction if we detect 5 or more radial wrinkle frames within a window of ±5
frames. Thus, we define a contraction detection by providing at least one frame
holding the previous requirement. Our criteria for the calculus of the system
performance consisted on the following lines: 1) We automatically annotate all
the wrinkle frames in the video. 2) We create all the sequences of sustained
contractions following the criterion described above: all the frames belonging to
the same sequence have, at least, 5 wrinkle frames within a ±5 frames neighbor-
hood. 3) We consider that a sequence labelled by the experts is detected (a true
positive) if there exists a sequence provided by the system which has, at least,
one frame in common. 4) We consider that a sequence provided by the system
is a false positive if none of its frames belong to a tonic contraction labelled by
the experts. Following this criteria we obtain the results showed in Table 2:
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Table 2. Detection rate of sequences of sustained contractions

Sustained contractions: 42
System sequences: 106
True positives: 30 (71.4% sensitivity)
False positives: 76 (28.3% precision)

Our system successfully detected 71.4% of the sustained contractions provided
by the experts. In the final output 1 out of 3 suggested sequences are real tonic con-
tractions. In this sense, the visual validation on the false positives sequences shows
the difficulty of the labelling of this kind of contractions by the specialists. The vi-
sual patterns of the sequences obtained as false positives match, in many cases,
with the paradigm of more than 10 frames of sustained contraction, although in
some cases it is really difficult to separate the threshold between a phasic and a
sustained for such a sort span of time. For the case of the longest contractions,
this is not happening, and the specialist and the system provided sequences which
intersect for all the cases without exception. Figure 9 (a) shows a set of represen-
tative sequences of sustained contractions detected by the system (true positives).
The frames detected as wrinkle frames are surrounded by a green square. Figure 9
(b) shows a set of representative false negatives (missed findings). Finally, Figure
9 (c) shows a mosaic of the output of the system for the test video. The sequences
detected by the system are surrounded by a green square, the experts’ sequences
are surrounded by a blue square, and the coincidences are in cyan.

In true positives the wrinkle frames show the sought radial pattern. Regarding
the false negatives, the origin of the misclassifications is twofold: some bubbles in
the lumen center hinder the detection of the lumen. For other cases the wrinkle

(a) (b)

c)

Fig. 9. (a) True positive, (b) false negative sequences of tonic contractions, and (c) a
mosaic: system output (green), experts’ findings (blue) and coincidences (cyan)
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pattern is so weak that no blob was in the binary laplacian image. Finally, it must
be noticed that, even with a precision about 30%, the output of our system sup-
poses a valuable tool for the specialists, because they are directly driven to the
suggested contractions, and they must not visualize the whole video. For the pro-
posed example of our experiments, assuming the experts to take 10 seconds in the
discrimination between a false positive and a true positive of tonic contractions,
the total amount of analysis time is reduced to 106× 10 = 1060 seconds, less than
20 minutes. The time consumed by the expert in the labelling of 42 tonic contrac-
tions in the analyzed video was reported to be more than 3 hours.

6 Conclusions

In this work, we presented our own general approach for the categorization of
linear radial patterns. The obtention of the patterns is performed through a val-
ley and ridge detection algorithm, followed by a morphological processing stage.
For the pattern characterization, we propose two different alternatives based on
a directional analysis by steerable filters: 1) taking into account the the infor-
mation of different quadrant divisions of the image, and 2) by means of a polar
transform. This general strategy appears to deal well with the specific problem
of automatic detection of tonic contractions in capsule endoscopy, providing the
experts with a useful tool which achieves a relevant reduction in inspection time.
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Abstract. Small Bowel Motility Assessment by means of Wireless Cap-
sule Video Endoscopy constitutes a novel clinical methodology in which a
capsule with a micro-camera attached to it is swallowed by the patient,
emitting a RF signal which is recorded as a video of its trip through-
out the gut. In order to overcome the main drawbacks associated with
this technique -mainly related to the large amount of visualization time
required-, our efforts have been focused on the development of a ma-
chine learning system, built up in sequential stages, which provides the
specialists with the useful part of the video, rejecting those parts not
valid for analysis. We successfully used Self Organized Maps in a general
semi-supervised framework with the aim of tackling the different learn-
ing stages of our system. The analysis of the diverse types of images and
the automatic detection of intestinal contractions is performed under the
perspective of intestinal motility assessment in a clinical environment.

1 Introduction

Wireless Capsule Video Endoscopy constitutes a recent technology in which
a capsule with an attached camera is swallowed by the patient. The camera
travels along the intestinal tract and emits a radio signal, in a ratio of two
frames per second, which is recorded as a video in an external device carried
by the patient [6]. Once the study is finished, the final record can be easily
downloaded into a PC with the appropriate software installed for its posterior
analysis by the physicians. Recently, several works have tested the performance
of capsule endoscopy in multiple clinical studies. Some of these clinical scenarios
include intestinal polyposis and the diagnosis of small bowel tumors, obscure
digestive tract bleeding, Crohn’s disease and small bowel transplant surveillance
[17,11,3,1,8,15,7].

The assessment of intestinal motility using wireless capsule video endoscopy
is a novel and challenging fieldwork, which has been the focus of interest in
recent publications [20,21]. In this medical image modality, the intestinal con-
traction sequences constitute the target of the labelling process, which consists
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of video sequences showing the radial contraction of the intestinal lumen. These
events have a low prevalence, presenting a typical ratio about 1 frame out of
50 video frames. The clinical procedure associated with this technique implies
the visualization of the whole video (1-2 hours per video), which represents a
huge amount of time and efforts for the specialist. In addition to this, images
from video capsule endoscopy are usually significantly noisy, due to the presence
of turbid content from the intestinal juices which hinders the correct visual-
ization of the gut, providing wide range video zones not valid for analysis. All
these drawbacks hinder the manual labelling process, and drive a useful clinical
routine into a not feasible one. For this reason, we tackle the problem of intesti-
nal motility assessment in a novel approach involving classical machine learning
techniques. The main traits of our approach can be listed as follows:

– We state our problem in a cascade-wise strategy, identifying the different
features of interest involved in motility assessment, and associating them
with different and independent stages.

– We use self organized maps in an exhaustive way in the learning stage of
each part of the cascade, adding the possibility of integrating the expert
knowledge in a semi-supervised context.

– Finally, we apply a classification step based on a support vector machine
in order to accomplish a two-fold objective: the identification of the portion
of the video not valid for analysis, and the automatic labelling of intestinal
contractions.

By using this strategy we can face several challenges in a simultaneous way:
On the one hand, the resulting model is open and flexible, and new features of
interest can be easily included adding new stages in the cascade as new neces-
sities appear in the clinical scenario. On the other hand, the intervention of the
specialists is reduced to a common framework, implemented with the self orga-
nized maps, making the expert-system interactivity bounded to a single common
application interface.

In this paper we deploy the former issues according to the following structure:
Section 1 is devoted to the explanation of the proposed system as a sequential
cascade. Section 2 deploys the main traits exposed in Section 1, focusing on
the identification of the portion of the video which is not valid for analysis,
the SOM framework for the training stages, and the final classification step for
the identification of intestinal contractions. Section 4 presents the results of the
system in terms of intestinal motility assessment. We finally conclude this piece
of research with the conclusions exposed in Section 5.

2 A General Framework: The Cascade System

Our system is deployed in a sequentially modular way, namely, a cascade, as
pictured out in Figure 1. Each part of the cascade receives as an input the
output of the previous stage. The main input consists of the video frames, and
the main output consists of the frames suggested as contractions. The rejected
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Fig. 1. Sequential Cascade System for Intestinal Motility Assessment

frames are distributed in several classes: turbid frames not valid for analysis, wall
frames, and tunnel frames. All the learning stages of each step of the cascade
involve a self organized map. The final classification step consists of a support
vector machine trained with frames previously labelled by the experts.

In the feature extraction step we used the same set of six features proposed by
Vilariño et al. [21], [18], based on widely known image descriptors such as, mean
intensity, Laplacian response, and statistical descriptors obtained from the con-
currence matrices. In addition to this, we included two color descriptors based on
the color opponent decomposition, using only the two chrominance components
R-G and B-Y [16], [10]. These eight descriptors constitute the feature vector to
be associated to each single frame. Since intestinal motility is a dynamic process,
not only static information (frame) should be taken into account, but dynamic
information also. For this reason, for each frame we construct a feature vector
containing the descriptors of the 4 previous and 4 following frames, i.e., con-
taining the descriptors of a whole sequence of 9 frames. The span of 9 frames
is based on well known physiological outcomes which bound the minimum time
interval between two intestinal contractions in about ten seconds [14].

The choice of the cascade system is underpinned by the fact that each step
is designed in order to reject an amount of frames which mainly include images
which are not valid for analysis, letting pass through the sequential stages those
frames related to intestinal contractions. Finally, the last step of the cascade,
consisting of the support vector machine classifier, is to face a classification
problem with an imbalance ratio about 1:5 -in contrast with the 1:50 at the
input of the system-. This reduction in the imbalanced ratio is shown to be an
effective way of tackling the problem of classification in imbalanced data sets.
Moreover, the modular shape of the system lets the expert identify new features
in order to include them as a new filter stage, adding domain knowledge in a
natural way.

Each step of the cascade is trained independently from the others. For each of
them, a reduced set of features is utilized, and a self organized map is used to build
up the training sets. Self Organizing Maps (SOMs) or Kohonen networks [12] are
a specific type of neural networks which provide the possibility of reducing the
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dimensionality of complexmultivariatedata sets, allowing their visualization ina 2-
dimensional representation. By producing easily comprehensible low-dimensional
maps of informative features, SOMs offer a technique for visual understanding and
interpretation of hidden structures and correlations in the input dataset. Several
works have been published referring medical applications using SOMs in a wide
range of fieldworks, including classification of craniofacial growth patterns [13], ex-
traction of information from electromyographic signals [5], magnetic resonance im-
age segmentation [9], cytodiagnosis of breast carcinoma [22], classification of renal
diseases [4], and drug design [2], among others. In our case, the use of SOMs is fully
justified, since for each step of the cascade, a multidimensional representation of
the frames is provided, but the selection of the training sets is strictly related to
the visual patterns which the specialist identifies for each case. The SOM shows a
clustering of the video sequences based on the information specifically needed for
each step, grouping them into cells which correspond to similar descriptors. Each
cell is identified by a representative element of the underlying sequences, which
gives the specialist a first impression about the visual aspect of the cluster, and all
the underlying sequences can be pictured for each cell. Now, the expert can select
those cells which best adapt to the sought patterns in order to conform the optimal
training sets.

3 System Implementation

3.1 Identification of the Region Not Valid for Analysis

The video frames not valid for analysis are constituted by frames presenting
turbid liquid hindering the visualization of the whole image, frames with the
camera focusing the intestinal wall, and frames with the camera focusing the
intestinal lumen trough a time interval in which no intestinal motion is registered.

The motivation of the first category is straightforward: since the turbid liquid
is hindering the visualization of the intestinal tube, no motility information can
be inferred, since no intestinal contractions can be visualized. From a visual point
of view, these frames are presented as a green-yellowish turbid bath which covers
the whole field of view. The second category -frames focusing the intestinal wall-
follows a similar reasoning: since the camera is focusing the intestinal wall (due
to a lack of contractile activity or a transversal location in the intestinal tube),
no intestinal contractions can be visualized. The last category, is related to a lack
of motility activity, since the camera is focusing the gut as a tube, appearing as
a steady tunnel, with no apparent motion in the intestinal walls.

Figures 2 a) and b) show the SOM resulting from the clustering of all the
frames of two different videos, using only the two chrominance features described
in Section 1. The number of cells and its shape has been set to a common value
for visual comparison purposes. It can be seen how the cell structure is graded
in color. After selecting in the SOM the cells corresponding to turbid frames,
the feature space is partitioned into two different areas: turbid and not turbid.
Figures 2 c) and d) show the two dimensional plots corresponding to the videos
in Figures 2 a) and b). The horizontal axis represents the R-G chrominance



192 F. Vilariño et al.

component, and the vertical axis the B-Y chrominance component. The green
points correspond to the frames selected in the SOM as turbid, while blue points
are related to the remaining frames, i.e., the frames which are valid for analysis.
The red points represent contractions labelled by hand by the specialist for each
video. It can be seen that some real contractions fall into the selected not valid
for analysis area, resulting as missed contractions (false negatives) of the system.

c)

a) b) d)

Fig. 2. a) and b):Two SOMs using color features for two different videos. c) and d):
Chrominance plot for both videos.

Figure 3 represents a SOM for the wall detection using as features the number
of pixels with positive value of the Laplacian filter, related to the size of the lumen
(in order to deal with the size of the hole), and their overall sum, related to the
contrast (in order to distinguish between real lumen and shadows). On the left
side, we present a SOM where the different cells have been delimited with red
lines for visualization purposes. On the right side, an example of a cell content
is shown in a), with four video sequences which do not correspond to the wall
paradigm, and in b), with seven sequences matching the wall paradigm. For this
case, the specialist is to select those sets of cells which best fit the wall paradigm.
The same procedure is applied for the case of tunnel sequences.

The classification step for turbid, wall and tunnel is performed with three
different support vector machines (SVM) [19] with a radial basis function kernel
and γ = 0.1 for turbid and γ = 0.05 for wall and tunnel. The choice of the kernel
and the γ parameter was obtained in a heuristical way using an exhaustive
analysis.

The output of the classification stages is used to construct interactive mosaics.
These mosaics deploy the whole video in a sequential way from left to right and
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Fig. 3. a) Sequences underlying a cell which does not represent the wall paradigm.
b) The wall paradigm is present in this cell. The central frame of each sequence is
surrounded by the blue frame.

top to down, associating one pixel to each frame, and showing a different color
depending on the the classification performed by the system. Figure 4 shows the
interactive mosaics related to the videos in Figure 1. Each frame is assigned with
a different color, so the specialist can visualize the valid area (in blue) directly
and avoid visualizing the turbid (green), wall (beige) and tunnel frames (brown).
For some cases, as it is straightforward to visualize from the mosaic of the video
in Figure 4 b) the reduction in visualization time becomes drastic (about 50%).

a) b)

Fig. 4. a) and b): Two color mosaics. Green represents turbid, beige wall, brown tun-
nel, red labelled contractions and black labelled contract falling into the not valid for
analysis area.
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3.2 The SVM Classification Step

The aim of the final module of the cascade is to determine in an automatic way
whether a frame is to be labelled as a contraction sequence. The input of this
stage consists of the frames resulting valid for analysis, and its output consists
of the frames which the system suggest as intestinal contractions. This last step
is performed by a support vector machine with a kernel of radial basis functions
and γ = 0.1, obtained in a heuristical way using exhaustive search. The feature
vectors are constructed using all the existing features except the chrominance
values used for turbid detection. The training set consists of a pool of all the
previous labelled contractions from the remaining videos for the positives, and
a random sample of the same number of non-contractions (under-sampling the
negative class).

One of the main difficulties concerning the problem of intestinal motitility
assessment lies on the different patterns of intestinal contractions present in each
video. From a physiological point of view the different patterns can be gathered
into phasic and tonic. The former are characterized by a sudden closing of the
intestinal lumen, followed by a posterior opening, while the latter corresponds to
a sequence of a closed lumen in an undefined number of frames. The analysis of
the typology of contractions provides the specialist with helpful information for
the evaluation of the presence of malfunctions. We used SOMs in order to provide
the specialist with a useful tool for the validation of the different typology of
intestinal contractions. In this case, the SOM is constructed with the output of
the system. The feature set for the SOM is the same used for the final SVM
classifier. Figure 5 a) Shows the SOM of the contraction frames corresponding
to the video in Figure 2 a). Figure 5 b) Shows the sequences associated to the
cell (9,1) (ninth raw, second column) which are to be mainly associated with
the pattern of phasic contractions. Figure 5 c) Shows the sequences associated
with the cell (4,1), which are to be mainly associated with the pattern of tonic
contractions.

4 Results

In order to validate our system, several considerations must be taken into ac-
count. On the one hand, the validation of the turbid, wall and tunnel detectors
is hard to perform in a direct way, since the large number of frames in video
(typically 50, 000) makes the manual labelling of all of them not feasible. On the
other hand, we must assume the loss of some frames labelled as contractions both
in the intermediate stages of the cascade, and the final SVM classifier (these are
the false negatives). In addition to this, we must also assume that the final SVM
classifier identifies some frames as contractions in a wrong way (these are the
false positives). One usual way of assessment for this kind of problems is tackled
by using performance measures such as sensitivity and specificity. Sensitivity
is defined as the number of the positives correctly detected over all the exist-
ing positives, while specificity is defined as the number of negatives correctly
detected over all the existing negatives. Since for imbalanced problems, where
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a) b) c)

Fig. 5. a) SOM constructed exclusively with sequences of contractions provided by the
system. b) Phasic contraction sequences underlying the cell (9,1). c) Tonic contraction
sequences underlying the cell (4,1).

the negative samples outnumber the positives, specificity is not a useful metric,
because it is generally close to 1. In our case we define a performance measure
as false alarm ratio (FAR) as the number of wrongly classified frames over all
the existing frames (false positives / (true positives + false negatives)). Any
other performance measure, such as precision (true positives / (true positives
+ false positives)) could be used as well. For the specialist, the FAR as defined
above adds information in the sense that It normalizes the number of wrongly
detected frames by the number of existing contractions. In this sense, the FAR
measure is not bounded as precision is, and may be greater than one. The pair
sensitivity-FAR provides the operation point of our system.

The validation of the system was performed using ten different videos. For each
video, the specialists were asked to visualize the whole video and to label all the
existing contractions. Then, the specialist was asked to perform the classification
stages for the turbid, wall and tunnel. The final SVM was trained for each video
with all the contractions of the remaining videos and the same number of a
random sample of negatives, in a leave-one-out strategy. The performance results
are shown in Table 1.

The resulting overall sensitivity is 74.78 with σ = 7.85, and the overall FAR
is 42.75 with σ = 23.00. The columns of sensitivity and FAR in Table 1 deserve
a separate analysis. On the one hand, the values of sensitivity imply that our
system is shown to be able to detect about the 75% of all existing intestinal
contractions, with a pick of performance of 85.22% in Video 3. In the specific
context of motility assessment, it may not be mandatory to achieve higher levels
of accuracy, since the aim of the procedure is to reconstruct the pattern of
intestinal contractions along the time. On the other hand, it is important to
notice the high value of FAR for Video 10 -a video which has shown to present
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Table 1. Performance results for 10 videos

Video Sensitivity % FAR%

Video 1 66.01 35.38
Video 2 65.25 25.35
Video 3 85.22 69.58
Video 4 73.32 17.78
Video 5 70.97 41.47
Video 6 75.35 32.36
Video 7 65.36 43.95
Video 8 82.07 37.56
Video 9 79.77 29.05
Video 10 84.52 95.01

a large amount of turbid frames-. If Video 10 is not taken into account, the
overall FAR is reduced to 36.94 with σ = 14.67, while sensitivity does not suffer
a significant variation. This means that, as an average, for each three existing
contractions in the video, the system is to provide us with a false positive.

5 Conclusions

Intestinal motility assessment in video capsule endoscopy is a tedious task due
to the large amount of time needed for the visualization of each studio, the
variability of the images present in the video, and the low prevalence of intestinal
contractions. We presented a novel approach based on a machine learning system
using classical techniques, which overcomes these main drawbacks. The main
contribution of our work lies on driving this useful but not feasible technique
into a feasible clinical technique. We showed the efficiency of our system designed
in a sequential way (cascade), in which each step is trained independently. We
introduced a general framework based on self organized maps, which are used in
the different training stages of the cascade, providing the specialist with unified
way of including expert knowledge. Finally, we presented the classification results
obtained by a support vector machine classifier, which represents, as far as we
know, the most efficient approach present in the literature for this clinical field.
In addition to this conclusions, we expect to continue working in several points
for future pieces of research. The seek of optimal descriptors, the development of
advanced techniques for dealing with the imbalanced ratio, and the investigation
on more efficient classification techniques are some of our current lines of work.
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Abstract. For a lossy encoder, it is important to be able to provide also lossless 
compression with little or no modification of the usual algorithm, so that an im-
plementation of that algorithm can work in lossy or lossless mode, depending 
on the specific application, simply by varying the input parameters. In this pa-
per, we evaluate the capability of the Lower Tree Wavelet (LTW) image  
encoder to work in lossless mode. LTW is a fast and multiresolution wavelet 
image encoder, which uses trees as a fast mode to group coefficients. In addi-
tion, general details on how to implement efficiently (i.e., with only shift and 
addition/subtraction operations) a reversible integer-to-integer wavelet trans-
form are also given, as a requirement to implement a wavelet-based lossless en-
coder. Numerical results show that despite being general purpose (i.e., both 
lossy and lossless) and lacking of complex techniques (such as high-order con-
text and predictive coding), the LTW performs as well as JPEG 2000 in lossless 
mode, and only 5% below LOCO-I, a specific lossless algorithm. 

1   Introduction 

Most specific lossless image coders are based on entropy coding with various con-
texts and predictive techniques. Predictive coding schemes try to predict each sample 
from the samples that have been previously encoded, which are available to both 
encoder and decoder. In image compression, prediction is usually performed from 
nearby pixels. Once a prediction has been calculated, the residual pixel is encoded as 
the error committed by this prediction. This way, the better a prediction is, the lower 
it will be the entropy of the residual pixels. The CALIC scheme [1] follows this  
approach, becoming one of the most efficient lossless image coders in terms of com-
pression performance. A simplification of CALIC was adopted as the JPEG-LS stan-
dard, which replaced the lossless mode of the original JPEG standard. This simplified 
version of CALIC is called LOCO-I [2], and its performance is close to CALIC with 
lower complexity. Other lossless image encoders are PNG (proposed as a royalty-free 
alternative to GIF) and JBIG (intended to bi-level image coding and used in fax 
transmission). 
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On the other hand, an interesting feature of general lossy image encoders is the 
ability to losslessly encode an image if no quantization is applied. This way, the 
emerging JPEG 2000 standard [3] was designed to be able to work in both lossy and 
lossless mode. SPIHT [4] and EZW [5] are tree-based lossy wavelet image encoders 
that also can store an image in lossless mode with SNR scalability.  

LTW [6] was proposed as a low-complexity multiresolution alternative to the pre-
vious encoders. Multiresolution is a very interesting feature in heterogeneous frame-
works (such as today’s Internet) in which multiple devices with different display 
capabilities (e.g., image size) are potential clients. For instant, if an image is encoded 
with spatial scalability, the same bitstream can be employed by a mobile phone (read-
ing only the base layer), a PDA (reading an additional layer to provide a slightly 
higher resolution) and a desktop computer (maybe needing all the image layers for 
full resolution).  

In this paper, we describe the details to implement the LTW encoder working in a 
lossless mode, implemented with integer data type. We tackle this problem within the 
two stages of a wavelet-based image coder, i.e., in the wavelet transform and in the 
coding stage. 

Many applications need to be able to work in lossless mode. Medical imaging is an 
example of this type of application in which lossless compression is required, since all 
the image details must be preserved so that medical analysis is not hindered. Another 
application of lossless coding is image editing. In this type of application, if lossy 
compression is employed, accumulative errors from successive editions may seriously 
damage the final image quality. 

Lossless compression requires reversibility, which is not guaranteed with regular 
floating-point operations due to the finite-precision of the operands. In this case, a 
reversible integer-to-integer implementation is needed. In addition, an integer imple-
mentation is not only interesting for lossless image coding to achieve a reversible 
transform, but also in hardware architectures that only support integer arithmetic, such 
as some DSPs and many FPGAs. In fact, doing floating-point on FPGAs is difficult 
due to large amount of hardware required.  

The rest of this paper is structured as follows. In Section 2, there is a detailed de-
scription of the wavelet transform implemented with the lifting scheme, focusing on a 
reversible implementation with integer data types. Section 3 describes the LTW  
algorithm and the required details to work in lossless mode. In Section 4, some  
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experimental results are given, comparing the LTW encoder with JPEG 2000 working 
in lossless mode, and the specific lossless encoder LOCO-I. Finally, in Section 5 
some conclusions are given. 

2   Reversible Wavelet Transform 

The wavelet transform was earlier defined and implemented using a regular filtering 
operation following a multiresolution analysis [7], but a more efficient algorithm to 
compute it was introduced by Sweldens in [8]. This algorithm is called the lifting 
scheme. The main advantage of this approach is the reduction in the number of opera-
tions needed to perform the wavelet transform. An additional advantage is that it 
allows in-place computation, and hence no extra memory is required to store the re-
sulting coefficients as it happens with any regular filtering method. The third benefit 
that the lifting scheme introduces is the feasibility of a reversible integer-to-integer 
wavelet transform with only a slight modification of the usual floating-point imple-
mentation. In this section, we will deal with this type of integer wavelet transform. 

We have mentioned that the lifting scheme implements an in-place DWT decom-
position as an alternative algorithm to the classical filtering algorithm. In the filtering 
algorithm, in-place processing is not possible because each input sample is required as 
incoming data for the computation of its neighbor coefficients. Therefore, an extra 
array is needed to store the resulting coefficients, doubling the memory requirements. 
In addition, the lifting-scheme reduces the number of operations needed to compute 
the DWT. 

In Figure 1, we present a diagram to illustrate the general lifting process. The 
whole process consists of a first lazy transform, one or several prediction and update 
steps, and coefficient normalization. In the lazy transform, the input samples are split 
into two data sets, one with the even samples and the other one with the odd ones. 
Thus, if we consider { }ix  the input samples, we define both coefficient sets as: 
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0 =   { } { }12
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Then, in a prediction step (sometimes called dual lifting), each sample in { }0
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replaced by the error committed in the prediction of that sample from the samples in 
{ }0

is : 
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while in an update step (also known as primal lifting), each sample in the set { }0
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updated by { }1
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After m successive prediction and update steps, the final low frequency coefficients 
(scaling { }i

) and high frequency coefficients (wavelet { }i
) are achieved normaliza-

tion:  
 

{ } { }m
ii sK ×= 0   { } { }m

ii dK ×= 1  
 
A nice feature of the lifting scheme is that it is formed by very simple steps, and 

each of these steps is easily invertible, which leads to an almost trivial inverse trans-
form. For the inverse transform, we only have to perform the inverse operations in the 
reverse order. Hence, from the subsets { }i

 and { }i
, we can get { }m

is  and { }m
id  simply 

by dividing these coefficients by the scaling factors: 
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Then, an inverse update operation can be done from these data sets as follows: 
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and at this moment, we can apply the inverse prediction step: 
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After m successive inverse update and prediction steps, we get the initial sets of 

even and odd samples, we can interleave these data sets to obtain the original set of 
samples { }ix . 

2.1   The Integer-to-Integer Lifting Scheme 

With the above scheme, floating-point arithmetic is needed despite having integer 
input samples (e.g., image pixels), if the weighting factors employed for the predic-
tion/update operations are floating-point and not integer or rational. Actually, even if 
rational filters are employed, the precision required to perform lossless operation with 
fixed-point arithmetic grows with each mathematical operation if we do not change 
the scheme described above.  

Fortunately, the lifting scheme can be slightly modified to achieve reversible inte-
ger-to-integer wavelet transform [9]. Since the lifting scheme is formed by several 
simple steps, the whole process can be reversible if we perform each single step in a 
reversible way.  

For the forward transform, we have seen that each prediction step has the form: 
 

{ }( )11 −− −= m
i

m
i

m
i sPdd  
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In a wavelet transform for integer implementation, the prediction operation 
{ }( )1−m

isP  involves rational weighting factors (e.g., division by two), and hence the 

resulting data are not integer.  If a rounding operation is added after the prediction 
operation, an integer variable can be used to store the result of that operation, and 
hence each m

id  can be computed from 1−m
id  and the { }1−m

is  set using integer values as 

follows: 
 

{ }( )11 −− −= m
i

m
i

m
i sPdd  

 
In the inverse transform, the exact value of each 1−m

id  can be recovered from m
id  

and the { }1−m
is  set as follows: 

 

{ }( )11 −− += m
i

m
i

m
i sPdd  

 
Thereby, perfect reconstruction is guaranteed despite the rounding operation. The 

same analysis can be performed for an update operation with integer data type. 
Although we have used the floor operator for rounding in the above equations, any 

other rounding operation, such as ceil or rounding to the nearest integer, can be used 
as long as the same operator is employed in both the forward and inverse transforms. 

Finally, a reversible integer-to-integer transform can only be obtained if the nor-
malization factors K0 and K1 are integer values.  

A drawback of the use of rounding is that the new wavelet transform is no longer 
linear. Hence, for a 2D wavelet transform, the reverse column-row order of the for-
ward transform has to be used in the inverse transform to achieve perfect reconstruc-
tion.  

2.2   An Implementation Using the Bi-orthogonal 5/3 Transform 

The 5/3 wavelet transform is a typical wavelet for integer-to-integer transform, being 
part of the JPEG2000 standard for lossless compression. In order to compute it in 
terms of the lifting scheme, after the lazy transform, the dual lifting is calculated as: 

 

( )+−= +
0

1
001

2

1
iiii ssdd

 
 

while the primal lifting is (notice the different rounding): 
 

( )+++= − 2

1

4

1 1
1

101
iiii ddss

 
 
These operations can be easily performed with integer data types and integer arith-

metic. For example, in C language, the two above equations can be efficiently com-
puted as: 
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d1[i]=d0[i]-((s0[i]+s0[i+1])>>1); 
s1[i]=s0[i]+((d1[i]+d1[i-1]+2)>>2); 
 

Where d0, d1, s0 and s1 are arrays of integers, and >> is the right shift operator in C 
( ba >>  is equivalent to the division of a by b2  with floor rounding).  

For a lossless transform, the normalization factors K0 and K1 are equal to 1, achiev-
ing (1,2) normalization in this case. Thus, the set { }1

id  is directly the final wavelet 

coefficient set, and the set { }1
is  is the scaling one.  

The inverse transform to recover losslessly the original samples is given by: 
 

( )++−= − 2

1

4

1 1
1

110
iiii ddss

  
( )+−= +

0
1

010

2

1
iiii ssdd

 
 
Other reversible integer-to-integer wavelet transforms are given in [10], including 

an integer version of the popular bi-orthogonal 9/7 transform [11].  

HL2

HL3

LH1 HH1

HL1LH2 HH2 HL2

(b) HL1

(a)  
Fig. 2. Definition of wavelet coefficient trees. In (a), it is shown that coefficients of the same type of 
subband (HL, LH or HH) representing the same image area through different levels can be logically 
arranged as a quadtree, in which each node is a wavelet coefficient. The parent/children relation 
between each a pair of nodes in the quadtree is presented in (b). 

3   Tree-Based Coding of Wavelet Coefficients with Multiresolution 

3.1   Multiresolution in Wavelet Image Coding 

One of the features that have turned the wavelet transform so popular is the ability to 
perform a multiresolution analysis. In order to achieve this type of scalability, the 
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order in which the coefficients are received by the decoder has to follow a decreasing 
order of the subband level. This way, the first subband that the decoder attains is the 
LLN, which is a low-resolution scaled version of the original image. Then, the decoder 
progressively receives the remaining subbands, from lower frequency subbands to 
higher ones, which are used as a complement to the low-resolution image to recur-
sively double its size, which is know as Mallat decomposition [7]. 

In tree-based wavelet image coding, neither EZW [5] nor SPIHT [4] possess mul-
tiresolution scalability due to the successive scans that they perform, focusing on a 
different bit plane in each scan. The Lower Tree Wavelet (LTW) image encoder [6] 
was one of the first tree-based wavelet encoders to introduce multiresolution, at the 
expense of losing SNR scalability. In the next subsection, we describe the LTW  
encoder. 

3.2   Lower-Tree Wavelet Coding 

In the LTW encoder [6], the quantization process is performed by two strategies: one 
coarser and another finer. The finer one consists in applying a scalar uniform quanti-
zation, Q, to wavelet coefficients. On the other hand, the coarser one is based on re-
moving least significant bit planes. We define rplanes as the number of least signifi-
cant bit planes that have been removed from the wavelet coefficients.  

In this encoder, a tree structure (like the one shown in Figure 2) is used, not only to 
reduce data redundancy among subbands, but also as a simple and fast way of group-
ing coefficients. As a consequence, the total number of symbols needed to encode the 
image is reduced, decreasing the overall execution time (because the arithmetic en-
coder stores less symbols). This structure is called lower tree, and it is a coefficient 
tree in which all its coefficients are lower than rplanes2 .  

Our algorithm consists of two stages: (a) the construction of the significant map 
and (b) coefficient coding based on the symbols that have been computed in the first 
stage. In the first stage, the significance map is built after quantizing the wavelet coef-
ficients (by means of using both Q and rplanes parameters). For the arithmetic en-
coder, the symbol set employed in our proposal is the following one:  

(1) A LOWER symbol represents a coefficient that is the root of a lower-tree. 
The rest of coefficients in a lower-tree are labeled as 
LOWER_COMPONENT, but they are never encoded because they are al-
ready represented by the root coefficient.  

(2) If a coefficient is insignificant (i.e., lower than rplanes2 ), but it does not be-
long to a lower-tree because it has at least one significant descendant, it is 
labeled as an ISOLATED_LOWER symbol.  

(3) For a significant coefficient (i.e., higher or equal to rplanes2 ), we use a sym-
bol indicating the number of bits needed to represent it. Finally, there is a 
special type of significant coefficient in which all its descendants are insig-
nificant.  This type of symbol is able to represent efficiently some special 
lower-trees, where only the root coefficient is significant, and the descen-
dants are insignificant. 

Let us describe now the whole coding algorithm.  
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In the first stage (symbol computation), all wavelet subbands are scanned in 2×2 
blocks of coefficients, from the first decomposition level to the Nth (to be able to build the 
lower-trees from leaves to root). In the first level subband, if the four coefficients in each 
2×2 block are insignificant (i.e., lower than 2rplanes), they are considered to be part of the 
same lower-tree, and thereby the are labeled as LOWER_COMPONENT. Then, when 
scanning upper level subbands, if a 2×2 block has four insignificant coefficients, and all 
their direct descendants are LOWER_COMPONENT, the coefficients in that block can be 
labeled as LOWER_COMPONENT as well, increasing the lower-tree size.  

However, when at least one coefficient in the block is significant, the lower-tree 
cannot continue growing. In that case, a symbol for each coefficient is computed one 
by one. Each insignificant coefficient in the block is assigned a LOWER symbol if all 
its descendants are LOWER_COMPONENT, otherwise it is assigned an 
ISOLATED_LOWER symbol. On the other hand, for each significant coefficient, a 
symbol indicating the number of bits needed to represent that coefficient is employed, 
but this symbol is marked as a special symbol if its direct descendants are 
LOWER_COMPONENT to be able to identify this type of tree. 

Finally, in the second stage, the subbands are encoded from the LLN subband to the 
first-level wavelet subbands. Observe that this is the order in which the decoder needs 
to know the symbols, so that lower-tree roots are decoded before its leaves. In addi-
tion, this order provides resolution scalability. 

In each subband, for each 2×2 block of coefficients, the symbols that were com-
puted in the first stage are entropy coded by means of an arithmetic encoder with two 
simple contexts based on the significance of the upper coefficient and the coefficient 
previously encoded (on the left). Recall that no LOWER_COMPONENT is encoded. 
In addition, for the significant coefficients, the significant bits and its sign are also 
needed, and therefore they are binary encoded. 

3.3   Lossless Mode 

As we mentioned in the introduction, it is important for an encoder to be able to pro-
vide lossless compression with little or no modification of the usual algorithm, so that 
an implementation of that algorithm can work in lossy or lossless mode, depending on 
the specific application, simply by varying the input parameters. The Lower Tree 
 

Table 1. Lossless coding comparison of various image encoders with six greyscale 8 bpp im-
ages. Results are given in bits per pixel (bpp) needed to losslessly encode the original image. 

codec \ image LOCO-I JPEG 2000 LTW 

Lena (512×512) 4.24 4.31 4.26 
Barbara (512×512) 4.86 4.78 4.83 
Goldhill (512×512) 4.71 4.84 4.78 
Woman (2560×2048) 4.45 4.51 4.50 
Café (2560×2048) 5.09 5.35 5.36 
Bike (2560×2048) 4.36 4.53 4.56 
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Wavelet encoder possesses this feature if no quantization is applied and an integer-to-
integer wavelet transform, such as the one presented in the previous section, is used. 
In order to skip the quantization process, the quantization parameters presented in the 
description of the algorithm can be set as rplanes=0, Q=1, although it is faster if we 
simply omit all the operations related to the scalar quantization. For the wavelet trans-
form, we will use the reversible bi-orthogonal 5/3 filter bank for integer implementa-
tion, which is fully described in Section 2. 

4   Numerical Results 

In Table 1, we compare the results of losslessly encode six images (grayscale 8 bpp) 
with our encoder, JPEG 2000 and the LOCO-I algorithm (in which the JPEG-LS 
standard is based). In JPEG 2000, the same bi-orthogonal 5/3 transform is used. In 
this table, results are expressed as the number of bits per pixel needed for the com-
pressed image, and in general it is reduced from 8 bpp (in the original image) to 4-5 
bpp after lossless coding. LTW and JPEG 2000 are general purpose encoders and, if 
we compare them, they perform almost the same in all the images, with no more than 
0.05 bpp difference between them (about 1% in performance). This is a good result 
for our encoder, if we take into account that lossless coding is mainly based on pre-
dictive techniques and context modeling (which are heavily developed in JPEG 
2000). LTW, contrary to JPEG 2000, only handles two contexts. As we said in the 
introduction, LOCO-I [2] is a specific prediction-based lossless technique in which 
the lossless standard JPEG-LS is based. However, it is not much more efficient than 
the other two encoders under evaluation, requiring about 0.1-0.2 bpp less than JPEG 
2000 and LTW. In particular, LOCO-I’s coding efficiency is not higher than 5% com-
pared with JPEG 2000 and LTW. 

5   Conclusions 

In this paper, we have presented the LTW encoder in a lossless framework, showing 
that it is also competitive with this type of application. In fact, the coding efficiency is 
only 5% under the specific lossless algorithm LOCO-I. 

In addition, we have presented a detailed description on how to implement the 
wavelet transform using the lifting scheme. To this end, we have provided the exact 
instructions in C language to implement this transform with only shift and addi-
tion/subtraction operations. This implementation can be used for any wavelet-based 
encoder, and even to implement the wavelet transform with hardware architectures 
that only support integer arithmetic. 
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Abstract. Deformable mesh methods have become an alternative of
choice to classical deformable models for 3D image understanding. They
allow to render the evolving surface directly during the segmentation
process in a fast and efficient way, avoiding both the additional time-
cost and approximation errors induced by 3D reconstruction algorithms
after segmentation. Current methods utilize edge-based forces to attract
the mesh surface toward the image entities. These forces are inadequate
in 3D fluorescence microscopy, where edges are not well defined by gra-
dient. In this paper, we propose a fully automated deformable 3D mesh
model that deforms using the reduced Mumford-Shah functional to seg-
ment and track objects with fuzzy boundaries. Simultaneous rendering
of the mesh evolution allows faster tweaking of the model parameters
and offers biologists a more precise insight on the scene and hence better
understanding of biological phenomena. We present evaluations on both
synthetic and real 3D microscopy data.

1 Introduction

3D segmentation and tracking by deformable models is a topic of active research
in many domains including medical imaging [1][2][3] and biological imaging [4][5].
Until the early 90’s, due to poor machine performances, 3D rendering of the scene
used to be done in a post-processing step using surface extraction algorithms,
inducing surface approximation errors and an additional time cost for the re-
construction. Advances in 3D computer graphic cards and rendering techniques
have thus lead to the development of new techniques where segmentation and 3D
rendering are done simultaneously, namely deformable mesh models. The idea,
as originally proposed by Miller in [6], is to discretize an initial surface into a
closed mesh, i.e. a closed set of polygons, and deform this surface by attract-
ing its vertices toward the features of interest. Most deformable mesh models
use edge information to drive the surface. This performs poorly on 3D volumes
(depth-stacks of 2D images) obtained in confocal fluorescence microscopy due to
several factors: first, a significant blur is introduced by the microscope’s Point-
Spread Function (PSF), especially along the depth axis. Moreover, like in 2D
imaging, the stacks are corrupted by both multiplicative (Poisson) and additive
(Gaussian) noise. This has many sources of explanation, including low exposure
times, autofluorescence of the medium and shot noise induced by the camera’s

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 208–217, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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CCD. Finally, in a tracking context, absorption of fluorophore by the entities in-
duces an intensity decrease through time (phenomenon called photo-bleaching).
To address this problem, a mesh model that uses region-based information in-
stead of edge-based information is proposed. The method is able to detect and
track an object with fuzzy boundaries and provides a fast and precise 3D ren-
dering of the evolving surface thanks to the mesh formalism.

In section 2, we review existing work on deformable surfaces and mesh models.
Then we detail in section 3 the characteristics of the proposed method. Eval-
uation on synthetic data and tests on real data are presented in section 4. We
conclude the paper in section 5 and discuss possible extensions of the method.

2 Background and Related Work

In this section, an overview of the principles of 3D deformable surfaces is pre-
sented, followed by a brief review of existing 3D deformable mesh models.

2.1 3D Deformable Surfaces

To evolve from its initial state to the object boundary, a surface S is driven
under the influence of two kinds of forces: data attachment (external) forces,
which pull the surface toward specific features of the image, and regularization
(internal) forces, which maintain smoothness and regularity of the surface. This
evolution can be done by three different ways: a variational, a dynamic and a
probabilistic approach.

– The variational approach is most popular. The 2D formulation is due to
Kass et. al [7], and its 3D extension to Cohen and Cohen [8]. The evolving
shape is defined as a parametrized surface S(p) = (x(p), y(p), z(p))�, where
p ∈ [0, 1] is the parametric domain. The surface is then linked to an energy
functional, defined to be minimal when the surface fits the desired object
correctly. This functional reads

F (S) = Finternal(S) + Fexternal(S), (1)

where

Finternal(S) =
1
2

∫ 1

0

α

∣∣∣∣∂S

∂p

∣∣∣∣2 + β

∣∣∣∣∂2S

∂p2

∣∣∣∣2 dp (2)

and

Fexternal(S) = −
∫ 1

0

P (S(p))dp. (3)

Finternal is the deformation energy, where α is a ”tension” parameter that
tends to minimize the surface perimeter, and β a ”rigidity” parameter that
smooths the surface curvature.

The external energy (eq. 3) attracts the surface toward the image features
through the scalar potential function P .
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Eq. 1 is then minimized using a time-dependent gradient-descent method
such as the well-known Euler-Lagrange equations, which give

∂S

∂t
= α

∂2S

∂p2
− β

∂4S

∂p4
+ ∇P (S(p, t)). (4)

The final surface is obtained after convergence, i.e. when ∂S/∂t = 0.

– In a dynamic approach, the shape is defined as a time-varying physi-
cal surface S(p, t) = (x(p, t), y(p, t), z(p, t))� that evolves until it reaches a
steady-state, following the Lagrange equation of motion, which gives

γ
∂S

∂t
+ μ

∂2S

∂t2
+ α

∂2S

∂p2
− β

∂4S

∂p4
= ∇P (S(p, t)) (5)

where γ and μ are the surface mass and damping densities, respectively.
The final surface is obtained when the system converges to equilibrium, i.e.
∂S/∂t = ∂2S/∂t2 = 0. This approach allows to quantify both shape and
motion evolution through time but complicates the method with two more
parameters (γ and μ) to be set by the user.

– Finally, the model can be viewed as a fitting process in a probabilistic
framework [9][10]. The shape is defined by a set x of parameters and
their probability p(x), being higher for low energy-shapes (this is usually
done using a Gibbs distribution). Then, knowing the probability of the im-
age p(u0) and that of the image knowing the initial shape p(u0/x), the
probability of guessing x from u0 is obtained thanks to the Bayes theo-
rem: p(x/u0) = p(u0/x)p(x)/p(u0). Finally, this probability is maximized to
find an estimation of x̂ called the ”maximum a posteriori”. Probabilistic ap-
proaches have the advantage of giving an uncertainty measure of the fitting,
but they are computationally much more expensive.

2.2 Deformable Meshes in Computer Vision

3D mesh models find applications in numerous domains including object recon-
struction [11], realistic surgery simulation [12] and medical volume segmentation
[2][13]. The continuous surface is discretized into a 3D mesh defined as a list of
vertices vi = (xi, yi, zi)� organized in a closed set of oriented polygons repre-
senting the boundary of a volumetric object. The surface is then driven by the
movement of the mesh vertices. In addition, two reference distances Dmin and
Dmax are computed from the initial mesh in order to keep a regular mesh sam-
pling during the evolution. The distance between two connected vertices vi and
vj should always satisfy

Dmin ≤ dist(vi,vj) ≤ Dmax.

If dist(vi,vj) < Dmin or dist(vi,vj) > Dmax, a local adaptation of the mesh
must be applied to respect the above constraint (by splitting or merging prob-
lematic faces or edges).
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In most models, the external potential P is chosen as an edge map of the
image (eventually smoothed to be more robust to noise). This turns out to be
efficient for many applications, but fails to detect fuzzy edges in 3D fluorescence
microscopy images, where the surface simply shrinks (or inflates, depending on
the parameters) and misses the object boundaries. This problem is partially
solved in [13], where an additional external term is involved to attract the surface
toward a particular iso-value (gray level) of the image. Nevertheless, the detected
boundaries are still erroneous, since the object has a much lower intensity at the
top and bottom of the volume (along the depth axis) than in the middle plane.

An efficient solution to detect objects with ill-defined boundaries is the
Mumford-Shah functional [14], designed for segmentation and denoising in a
variational context. The general form of this functional reads

FMS(u, S) =
∫

Ω

|u0 − u|2dω +
∫

Ω/S

|∇u|2dω + HN−1(S) (6)

where Ω is the image domain, u0 the original image, u the reconstructed image
and HN−1 the (N-1) dimensional Hausdorff measure. In case the reconstructed
image u should be formed only of regions Ri ⊂ Ω, i ∈ {1, n} of constant intensity
ci, then u can be considered piecewise-constant, i.e.

∫
Ω\S |∇u|2dω = 0, which

leads to the reduced Mumford-Shah functional

FRMS(c1, ..., cn, S) =
n∑

i=1

[∫
Ri

|u0 − ci|2dω
]

+ HN−1(S). (7)

These two functionals have been extensively utilized by region-based deformable
models, in 2D (implicit and explicit) methods [15][16],[17][18] and in the 3D
implicit case in [5]. To our knowledge, it has not yet been employed in the
context of mesh models. We therefore introduce in the next section the new
deformable mesh model and its underlying energy term based on the reduced
Mumford-Shah functional.

3 Contributed Model

This section describes the proposed method. First, the geometrical aspects of the
mesh are presented, then the evolution equation driving the mesh toward the
object boundary is described. Finally, we describe the automatic initialization
and tracking possibilities of the method.

3.1 Geometrical Mesh Properties

The simplex mesh formalism introduced by Delingette in [19] allows the mesh to
be formed of different types of geometric primitives (triangles, squares and other
polygons). Local mesh adaptation must therefore be done differently for each
kind of primitive, which requires to store additional information in the mesh
structure. In our approach, we prefer handling a uniform triangle-shaped mesh,



212 A. Dufour, N. Vincent, and A. Genovesio

which gives satisfactory results in our context. Moreover, a unique scheme is
necessary to perform local mesh adaptations, and the mesh structure stores only
the vertices and their connectivity.

As presented in section 2.2, the distance between two vertices should be reg-
ular over the whole mesh. Therefore we use the initial distance d0 between two
mesh vertices to define a freedom range [Dmin, Dmax] such that{

Dmin = d0/2,
Dmax = 2d0.

(8)

The more this interval is chosen narrow, the more the mesh will be regular, and
the more it is chosen large, the more freedom is given to the vertices. If the
distance between two vertices vi and vj gets lower than Dmin, we apply a local
mesh adaptation by deleting these two vertices and creating a new one in their
center that will share all the neighbors of vi and vj . Inversely, if this distance
gets higher than Dmax, then we isolate the two vertices vk and vl forming a
triangle with vi and vj , separate vi and vj so that they are no longer neighbors
and create a new vertex in their center that is linked to vi, vj ,vk and vl.

Lachaud proposed in [13] a multi-resolution approach to speed up convergence.
The initial mesh is chosen with a low resolution (i.e. the initial distance between
two vertices is very high compared to the image resolution), and evolved until
convergence. Then the mesh is globally subdivided to obtain a higher-resolution
mesh, and evolved again to fit the object boundary more precisely. The evolution-
subdivision process is repeated until a suitable mesh resolution is reached (note
that subpixel accuracy can be obtained if the distance between two vertices is
lower than the image resolution).

The global subdivision strategy should be well chosen, in order to preserve
the local mesh curvature as much as possible. We have thus chosen to apply a
straightforward subdivision scheme: all faces are splitted into 4 smaller faces by
creating a new vertex in the middle of each edge. This turns out to be the first
step of the well-known Loop subdivision scheme, proposed for mesh refinement
and smoothing in computer graphics in 1987 [20]. This scheme outperforms that
of Lachaud in [13] which tends to sharpen the mesh corners, increasing its local
curvature.

3.2 Evolution Equation

The Mumford-Shah functional is designed to fit into a variational framework, we
therefore choose to evolve the surface by an energy-minimization scheme similar
to that defined in section 2.1. Our images are typically formed of two phases
(the object and the background), thus we may restrict eq. 7 to the two-phase
case, which gives

FRMS(cin, cout, S) =
∫

in(S)

|u0−cin|2dω+
∫

out(S)

|u0−cout|2dω+HN−1(S) (9)

where cin and cout are variables being respectively the mean intensities of the
original image u0 inside and outside S. We finally construct our energy functional
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using the same internal energy defined in eq. 2 and the data attachment term of
the above equation, and we obtain

F (cin, cout, S) =
1
2

∫ 1

0

α

∣∣∣∣∂S

∂p

∣∣∣∣2 + β

∣∣∣∣∂2S

∂p2

∣∣∣∣2 dp

+λin

∫
in(S)

|u0 − cin|2dω (10)

+λout

∫
out(S)

|u0 − cout|2dω

where λin and λout are strictly positive parameters. The Euler-Lagrange equa-
tions linked to the minimization of this new energy functional thus give

∂S

∂t
= α

∂2S

∂p2
− β

∂4S

∂p4
− [

λin(u0 − cin)2 − λout(u0 − cout)2
] ∣∣∣∣∂S

∂p

∣∣∣∣−→n (11)

where −→n is the surface normal pointing outward. During the evolution, the
variables cin and cout have to be recomputed at every iteration.

3.3 Initialization

Deformable models usually rely on user intervention to initialize the model.
We prefer employing an automated framework to determine the location and
approximate size of the object. First, an automatic thresholding technique is
applied (we used the well-known K-means algorithm). The biggest connected
component is then extracted from the thresholded image, its mass center vc is
computed as the average of the objects points coordinates and the mean radius
r is defined as the average distance between the mass center and all surface
points. Finally, a regular polyhedron of radius r is created and placed in the
image domain at the position vc. Actually, any kind of polyhedron can be used
as an initial shape. In our case, a regular 20-face polyhedron was used, also
known as the regular icosahedron.

3.4 Tracking

As for most deformable models, tracking is done in a straightforward way. Once
the object has been segmented on the first frame, we reuse the obtained mesh
to initialize the model for the next frame. The new initial mesh being very close
from the new object’s position, a few number of iterations will be sufficient to
track the object movement. This however implies that a significant overlap exist
between the object’s position at two successive time-points. This overlap should
be such that the difference cin − cout is of same sign for both frames. Otherwise,
if cin − cout changes sign, the object is interpreted as the background and vice-
versa, and the model starts to segment the dual of the object.

There are two possible walk-arounds to such behavior. The first simple way
is to reduce the time-lapse between two successive frames during the image
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acquisition. The second solution is to fix cin and cout after segmentation of the
first frame, which are good estimates of the object’s and background’s mean
intensities as long as the global illumination does not vary through time. If
photo-bleaching occurs, these estimates must be recalculated regularly, i.e. cin

and cout are updated once after convergence on each new frame.

4 Experiments and Results

This section presents several experimentations and evaluations of our method.
We shall first discuss results on generated noisy data, and then show results
obtained on real microscopy data sets.

4.1 Synthetic Data

We simulated 50 stacks of cell-shaped objects moving in a biological medium,
using a method close to that described in [5]. First, binary volumes of size
200 × 200 × 200 voxels are generated, in which a sphere of random radius an
center is created (representing the cell body). Then several smaller spheres are
generated on the boundary of the bigger sphere to simulate cell protuberances.
Then, dark structures are generated randomly within the cell body to simu-
late inhomogeneous fluorescent marking. Finally, the volumes are convolved by
the microscope’s PSF and disturbed by multiplicative (Poisson) and additive
(Gaussian) noise representing imperfections of the imaging system. To take into
account the low depth-resolution of the 3D microscope, we additionally down-
scale the volumes depth resolution to 200×200×40. However, due to major im-
provements of new microscopy systems, space resolution is now almost isotropic.
The left and middle columns of fig. 1 show two slices of an original (left) and
noisy (right) stack.

The main calculations were done on a 1.7 GHz mobile cpu, while the rendering
was simultaneously performed on a 128 Mb graphic card. The processing time
of each stack was approximately 60 seconds including the update of cin and
cout after every iteration (an example of segmentation result is shown on the
right column of fig. 1). To illustrate the rendering possibilities of the method,
we show in fig. 2 three different steps of the mesh evolution at its lower (initial)
resolution: the left frame is a snapshot taken before the evolution, where one
can see the icosahedron used to initialize the model; the middle frame shows in
intermediate stage of the evolution; the right frame shows the converged mesh
before it is refined and evolved again to fit the object more precisely.

We evaluated the segmentation by measuring the average distance between
the segmentation residue and the original object, as proposed by Ciofolo in [21].
This measure is defined by

derr(R,O) =
∑

vR∈R

minvO∈O
dist(vR, vO)

card(R)
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Fig. 1. Two different slices of a synthetic 200 × 200 × 40 stack. left: original image,
middle: noisy image, right: result. The top row shows a slice in the middle of the cell,
while the bottom row shows a higher slice of the cell. Note the effect of the microscope’s
PSF on the object boundary.

where vO and vR are image voxels forming respectively the original object O the
and the segmentation residue R (i.e. the difference between the detected object
and O). The average distance derr over the 50 processed stacks is 2 voxels. This
measure tends to show that the object boundary has been quite well detected
despite the noise, since the errors are mostly located in the vicinity of the object.

4.2 Trial Microscopy Data Sets

Here we present experimental results on a 3D time sequence of a HEK cell
changing shape through time while emitting protuberances at its surface. The cell
was stained using the Yellow Fluorescent Protein (YFP), and the 3D stacks were
acquired on a Zeiss LSM 5 microscope. Fig. 3 shows snapshots of the sequence as
well as segmentation and tracking results. The two left-most columns show top
and side views of the original stack (left) and segmentation result (right). Note
that the model has detected correctly the upper and lower fuzzy boundaries of
the cell. The two right-most columns show the same views for the next time-
point of the sequence (left), where protuberances appear on the cell surface, and
which are correctly detected by the mesh (right).

5 Conclusion and Future Works

A new deformable mesh model based on the reduced Mumford-Shah functional
has been proposed, joining the theories of explicit active mesh, region-based
information and 3D visualization. The method is able to detect an object with
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Fig. 2. Rendering of the low resolution mesh at various stages of the evolution: left:
before evolution; middle: during evolution; right: after convergence (before refinement)

t=0 t=1

Fig. 3. Tracking results on a HEK cell emitting a protuberance at its top (volume size:
512x512x181): top row: XY plane view from the top of the cell; bottom row: XZ plane
view from the side of the cell

fuzzy boundaries and follow its movement and shape changes through time while
offering a simultaneous rendering of the evolving scene. Experimental results
show that the method is suitable for 3D confocal image analysis, and will be
employed in a biological context to study pathogenic diseases involving cellular
structures changes through time.

The next step of our work is to detect and track multiple objects simulta-
neously. To achieve this, multiple meshes will evolve simultaneously within the
image domain, and a collision detection strategy will be employed to distinguish
correctly two or more objects that might touch each other in time.
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Abstract. We propose a 2D-3D point-based registration method that provides 
fast and efficient alignment of X-ray fluoroscopy and CT images. Our method 
is divided into two procedures: pre-operative and intra-operative procedures. 
For pre-operative procedures, we generate digitally reconstructed radiographs 
(DRRs) from 3D volume using graphics hardware. In intra-operative proce-
dures, we perform a hierarchical registration that includes in-plane registration 
using principal axes method and out-plane registration using minimal error 
searching method in spherical coordinates. This method reduces a degree of 
freedom from 6-DOF to 2-DOF. Experimental results using 2 cardiac phantoms 
show that our DRRs generation method is more than 150 times faster than soft-
ware-based ray casting methods, and our hierarchical registration technique ef-
fectively matches DRRs and 2D images. 

1   Introduction 

Three-dimensional (3D) imaging modalities such as computed tomography (CT) and 
magnetic resonance (MR) imaging are widely used in clinical diagnosis and treatment 
planning due to their ability to produce detailed anatomical structures of human or-
gans. However due to the manner in which the images are generated, both techniques 
have limitations in their use as a modality for guiding interventional procedures. For 
interventional procedures, images need to be produced in real-time and this is com-
monly done with ultrasound or X-ray fluoroscopy. The drawbacks of these modalities 
are that they fail to provide adequate spatial information. Combining the benefits of 
both types of imaging modalities could produce a system highly suitable for interven-
tional procedures. Therefore, the registration of pre-operative 3D volume to intra-
operative 2D images could provide complementary information for tracking the spa-
tial location of medical instruments during image-guided surgery [1-4]. 

A major obstacle to this proposal is that images obtained with 3D scanning modali-
ties have different dimensions from those obtained using 2D scanning modalities. To 
estimate geometrical transformation by bringing two modalities into spatial alignment, it 
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is essential that two different images are compared in the same space[5]. There are two 
possible approaches to dealing with this 2D-3D registration. 

 
 Convert the 2D image to a 3D image resulting in a 3D-3D registration 
 Convert the 3D image to a 2D image resulting in a 2D-2D registration 

 
From a practical point of view, 3D-3D registration, i.e. reconstructing 3D volume 

from 2D images requires numerous projection acquisitions and a large computation 
time[6]. It is consequently more feasible to simulate 2D images from 3D volume[5,7]. 
To do this, digitally reconstructed radiographs(DDRs) have to be first produced. 
These images are generated by a ray-casting algorithm that computes the amount of 
light that a virtual ray from an X-ray light source penetrates the 3D volume as shown 
in Fig. 1. Since this algorithm visits every voxel of 3D volume and computes while 
generating the projection image, it needs a large computation time. To reduce the 
computation time, software-based techniques have been proposed but are limited in 
their ability to generate simulated projection images in real-time.  
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Fig. 1. The principle of DRRs generation from CT volume 

In order to overcome this limitation, we propose a fast 2D-3D point-based registra-
tion using Graphics Processing Unit (GPU)-based preprocessing. Our main contribu-
tion is to accelerate DRRs generation using graphics hardware in pre-operative  
procedures and to perform hierarchical registration in intra-operative procedure that 
includes in-plane and out-plane registrations. Our hierarchical registration signifi-
cantly increases the accuracy by reducing the degrees of freedom from 6 to 2. 

The organization of the paper is as follows. In Section 2, we discuss how to gener-
ate DRRs using graphics hardware. Then we propose a hierarchical registration to 
find correspondences between 2D X-ray fluoroscopy images and 3D CT volume. In 
Section 3, experimental results show how our methods accelerate the procedure for 
2D-3D registration. This paper is concluded with brief discussion of the results in 
Section 4. 
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2   Fast 2D-3D Point-Based Registration 

For the registration of 3D volume and 2D images, we followed the pipeline shown in 
Fig. 2. The method is divided into two procedures: pre-operative and intra-operative 
procedures. For the pre-operative stage, DRRs are generated from 3D volumes using 
graphics hardware. For the intra-operative stage, hierarchical registration is performed 
by a technique that includes in-plane registration using a principal axes method and 
out-plane registration using a minimal error searching method in spherical space. In 
both stages, confirmation markers are automatically detected and segmented. 

 

 

Fig. 2. The pipeline of proposed method using GPU-based preprocessing for Image-Guided 
Surgery     

2.1   The Generation of DRRs Using Graphics Hardware 

The DRRs are generated by texture-based volume rendering using hig-level shading 
language. Generation is composed of three steps. Firstly the 3D volume is changed 
from 12 bit to 8 bit. Secondly the proxy geometry is generated using perspective pro-
jection. Finally the compositing is performed using maximum intensity projection. 

The reason for changing the 3D volume from 12 bit to 8 bit is that current graphics 
hardware has a limitation in loading 3D volume to three-dimensional texture memory 
in GPU when the resolution of the 3D volume is over 512 x 512 x 512 bits. The main 
purpose of our method is to align confirmation markers between DRRs projected 
from 3D volume and 2D images. In addition, the confirmation markers have a high 
density values. Thus, it is possible to use higher 8 bit from 12 bit in 3D volume. In 
general, proxy geometry is generated using parallel projection. In order to simulate  
X-ray images, we have generated proxy geometry using the technique of perspective 
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projection as shown in Fig. 3. We map three-dimensional texture memory in GPU to 
the proxy geometry. The mapped slices onto the proxy geometry render using compo-
siting modes that include maximum intensity projection, average intensity projection 
and minimum intensity projection. 

 

Fig. 3. A generation of proxy geometry using perspective projection  

2.2   Automatic Confirmation Marker Segmentation 

For point-based registration, confirmation markers are needed to automatically detect 
and segment. Our method is composed of three steps. Firstly, candidate regions of 
confirmation markers in each image are segmented by using thresholding [8]. The 
pixels above 2300 Hounsefield units are considered as the candidate of confirmation 
markers. Then these candidate regions are saved as binary images as shown in Fig. 
4(a). Secondly, noise or other features in the binary images are removed by using 
connected component labeling. For this, candidate regions of confirmation marker 
shown in Fig. 4(b) are compared with standard confirmation marker model. If candi-
date regions of confirmation markers are smaller or larger than the standard confirma-
tion marker model, they are considered as noise or other features and are removed. 
Finally, centroids of extracted confirmation markers are computed.   

2.3   Hierarchical Registration 

The purpose of 2D-3D registration is to align the 3D volume obtained from pre-
operative imaging modalities with 2D images obtained from intra-operative imaging 
modalities. In order to determine geometrical transformations in three dimensions, 
translations and rotations in x-, y-, and z-axis are computed with six degree-of-
freedom (DOF). However, this approach dramatically increases the number of com-
putations. To address this problem we propose a hierarchical registration that includes 
in-plane registration and out-plane registration. This method reduces the computation 
requirement from 6 DOF to 2 DOF. 
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(a) (b) (c) 

Fig. 4. A concept of automatic marker detection and segmentation (a) DRR image (b) candidate 
regions (c) noise removal and centroid extraction 

For in-plane registration, we determine optimal translation and rotation vectors of 
confirmation markers using the principle axes method. Each axis of DRRs and 2D 
images are computed using Singular Value Decomposition (SVD) and are used to 
align these two images[9,10]. SVD is defined as Eq. 1. The in-plane rotation vector  
is the differential angle between axes. The in-plane translation vectors, TX, TY for 
each axes is computed by the weighted mean of the markers' center positions. 
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where U and V are unitary, and  is real diagonal elements. i is called the singular 
values. 

Out-plane registration is used to compute the position of the source of 2D images 
in 3D space. To find the source position, we apply two rotation vectors of spherical 
coordinate systems and search the rotation vectors that optimize the correspondence 
between 3D volume and 2D images. In order to estimate the similarities, we use the 
root-mean-squared (RMS) error of the result of in-plane registration like Eq. 2. 

=

−=
n

j
jij TP

n
RMSE

1

21
 (2) 

where Ti is x-ray marker and Pij is nearest marker of CT with Ti. 

3   Experimental Result 

All our implementation and tests were performed using a personal computer (PC) 
equipped with an Intel Pentium 4, 2.4 GHz CPU and 1GB memory. The graphics 
hardware was ATI Radeon 9600 GPU with 256 MB of memory. Our method was 
applied to two cardiac phantom datasets to evaluate its accuracy and computation 
time. 
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Table 1 shows the datasets derived from the 2 cardiac phantoms used for the 
study. Three groups of datasets were used: 

 Dataset A and B had 3600 DRRs taken at intervals of 0.5 degree 
 Dataset C and D had 900 DRRs taken at intervals of 1.0 degree 
 Dataset E and F had 225 DRRs taken at 2.0 degree interval 

Table 1. Image conditions of experimental datasets 
(mm) 

Dataset CT dataset 
Image 

resolution 
Slice # 

DRR 
Interval 

Slice # 
(DRR) 

A CT 1 512 x 512 566 0.5 3600 
B CT 2 512 x 512 391 0.5 3600 
C CT 1 512 x 512 566 1.0 900 
D CT 2 512 x 512 391 1.0 900 

E CT 1 512 x 512 566 2.0 225 
F CT 2 512 x 512 391 2.0 225 

We have compared our technique with software-based ray casting. This is an image 
order algorithm used in computer graphics to render three-dimensional scenes to two-
dimensional scenes by following rays of light from the eye of the observer to a light 
source. Table 2 shows a comparison of the DRRs generation time using the 2 different 
techniques. Our method is over 150 times faster than software-based ray-casting. 

Fig. 5 shows the results obtained by generating DRRs using our proposed method 
based on graphics hardware in comparison with software-based ray casting. It indi-
cates that the image quality of DRRs generated from our method is as good as that of 
software-based ray-casting. 

Fig. 6 shows the result of segmentation of confirmation markers in DRRs. The 
background image is X-ray fluoroscopy with circles indicating confirmation markers 
in X-ray fluoroscopy, and crosses indicating confirmation markers in DRRs. 

Fig. 7 shows the result of registration of DRRs generated from the 3D cardiac 
phantoms and X-ray fluoroscopy. In the case of registration of 2-degree interval 
DRRs, the confirmation markers of the DRRs are not aligned with those of the X-ray 
fluoroscopy. However, with registration of 1 or 0.5 degree interval DRRs, the confir-
mation markers are almost perfectly matched. 

 
Table 2. The comparison of DRRs generation time 

Dataset Proposed graphics 
hardware method (min)

Software-based ray-casting 
method (min) 

A 24.21 5707.85 
B 23.48 3664.28 
C 6.02 1427.01 
D 5.87 916.06 
E 1.50 356.67 
F 1.47 229.03  
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(a) (b)  

Fig. 5. The results of DRRs generation (a) proposed graphics hardware-based method (b) soft-
ware-based ray casting   

 

Fig. 6. The results of segmentation of confirmation markers in X-ray fluoroscopy and DRRs 

 
(a) (b) (c) 

Fig. 7. The results of 2D-3D point-based registration with (a) registration of 2.0 degree interval 
DRRs, (b) registration of 1.0 degree interval DRRs, (c) registration of 0.5 degree interval DRRs 
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To further evaluate the accuracy of the method, we studied the root mean square 
error between the confirmation markers of DRRs and X-ray fluoroscopy (a distance 
referred to as the ground truth). If both markers are identically aligned there will be 
no distance or angulation between them. Our results demonstrated that the distance 
between the 2 markers varied from 12 to 47mm and the rotation between them varied 
from 31.6 to 56.5 degrees in all 3 axes (see Table 3). The root mean square error var-
ied between 0.7 and 2.3 mm for distance and 0.5 and 2.8 for angulation. 

Table 3. The accuracy evaluation using RMS error 

Translation Rotation 
Ground-Truth Parameters Ground-Truth Parameters Dataset 
( Tx, mm ) ( Ty, mm ) ( xθ ,deg) ( yθ ,deg ) ( zθ ,deg ) 

RMSE 
(mm) 

30.9 30.1 53.5 48.0 56.5 
Data A 

31.0 29.0 53.7 47.9 56.3 
2.7 

12.3 17.6 35.5 50.5 45.5 
Data B 

12.0 18.0 35.7 50.3 45.4 
1.8 

29.7 46.4 32.0 50.0 42.0 
Data C 

29.0 47.0 31.6 50.5 41.6 
11.3 

22.5 30.8 36.0 42.0 42.0 
Data D 

24.0 30.0 36.2 41.6 41.9 
8.6 

20.6 28.8 54.0 54.0 48.0 
Data E 

21.0 27.0 54.9 53.5 49.4 
19.7 

15.7 15.8 47.0 36.0 54.0 
Data F 

16.0 15.0 46.1 36.9 54.8 
22.7 

4   Conclusion 

We have developed a novel technique of 2D-3D registration of three-dimensional CT 
dataset and X-ray fluoroscopy. In pre-operative procedure, the DRRs generation 
method based on graphics hardware was performed rapidly. The automatic confirma-
tion marker segmentation could remove noise and other features in both DRRs and X-
ray fluoroscopy. The hierarchical registration including in-plane and out-plane regis-
trations could reduce the search space from 6 DOF to 2 DOF. In our experiments, we 
use 3D cardiac phantom dataset to evaluate accuracy and computation time. The im-
age quality of DRRs generated from our method is as good as that of software-based 
ray casting. In addition, the DRRs generation using graphics hardware is over 150 
times faster than software-based ray casting. Experimental results showed that our 
DRRs generation method performs very fast and the hierarchical registration effec-
tively matches the DRRs and 2D images. 
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Abstract. We present the GA–SSD–ARC–NLM, a new robust para-
metric image registration technique based on the non–parametric image
registration SSD–ARC algorithm. This new algorithm minimizes a new
cost function quite different to the original non-parametric SSD-ARC,
which explicitly models outlier punishments, using a combination of a
genetic algorithm and the Newton–Levenberg–Marquardt method. The
performance of the new method was compared against two robust regis-
tration techniques: the Lorentzian Estimator and the RANSAC method.
Experimental tests using gray level images with outliers (noise) were done
using the three algorithms. The goal was to find an affine transformation
to match two images; the new method improves the other methods when
noisy images are used.

1 Introduction

The parametric image registration problem [1] consists of finding a parameter set
which allows us to match an origin image with a target image. Many algorithms
try to minimize the Sum of Squared Differences (SSD) between the origin and
target images. Successful SSD applications, including the classical Least Squared
method (LS), are presented in [2,3,4]. Nevertheless the SSD based algorithms
have poor performances in cases of noisy images and outliers. In particular,
the problem with LS is that outliers have a huge weight in the cost function
(and gradient vector) and pull the solution towards them; robust methods try
to exclude outliers in some way.

Two well known robust methods in the computer vision literature are the
Lorentzian Estimator (LE) and the the Random Sample Consensus method
(RANSAC). Some authors, instead of using SSD, use the Lorenzian estimator
[5] in cases of noisy images, getting good results. The RANSAC method is a sto-
chastic technique which presents good results with outliers, and its application
for image mosaics is presented in [6].

Another robust method is called, Sum of Squared Difference with Adaptive
Rest Condition (SSD–ARC), which models outliers rejection inside the SSD cost
function. An SSD-ARC application for non-parametric image registration was
presented in [7] and another application for non-parametric camera calibration
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is found in [8]. In both articles, the non-parametric SSD–ARC cost function
is minimized using a coarse to fine strategy (scale space) and the Richarson
Iteration [9].

This paper describes a new robust method named GA–SSD–ARC–NLM that
combines the explicit outlier rejection idea from non-parametric SSD–ARC [7]
into a new cost function with a searching process in two stages. The first stage
is done with a Genetic Algorithm (GA) and the goal is to find an approximate
solution inside a bounded parameter space. The second stage refines the solution,
reached by GA, using the Newton–Levenberg–Marquardt (NLM) method [9].

An experimental comparison among GA–SSD–ARC–NLM, RANSAC and LE
show the robustness pf GA–SSD–ARC–NLM in cases of noisy images.

2 Registration Using an Affine Transformation

The Affine Transformation (AT) [10,11] allows us to compute, at the same time,
translation, rotation, scaling, and sharing of images. An AT uses a six-parameter
vector Θ, and maps a pixel at position ri (with integer coordinates [xi, yi]) to a
new position r̂i (with real coordinates [x̂i, ŷi]) given by

r̂i(Θ) =
[
x̂i

ŷi

]
=

[
xi yi 1 0 0 0
0 0 0 xi yi 1

]
Θ = M(ri)Θ (1)

where M(ri) is the matrix of coordinates and Θ = [θ0...θ5] is the parameter
vector.

The image registration problem, try to find the Θ which match an origin or
source image I1 on a target image I2. However in practical cases both images
are corrupted by noise and the problem is to find the best AT to match a
transformation of I1 into I2. A very well known method to evaluate the match
quality is to compute the Sum of Squared Differences (SSD) between the source
and target images, pixel by pixel, as in Equation (2).

E (Θ) =
N∑

i=1

[I1(r̂i (Θ)) − I2(ri)]
2 =

N∑
i=1

ei (Θ)2 (2)

with a difference vector image ei given by

ei (Θ) = I1(r̂i (Θ)) − I2(ri) (3)

where I(ri) is the gray level value of pixel ri in image I. Using this error mea-
surement, SSD, the registration image task consists of finding Θ∗ that makes E
reaches a minimum value (Θ∗ is the minimizer of Equation (2)). This method
is named Least Squared (LS) and some strategies to minimize Equation (2) are
presented in [9].

Using the ρ-function, defined by Hampel in [12], the SSD can be defined by
Equation (4) with ρLS(ei) = e2

i .

ELS (θ) =
N∑

i=1

ρLS(ei (θ)) (4)
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The influence function is defined by Hampel in [12], as the derivative of the
ρ-function and it helps to see the contribution of the errors to the right solution
(see [12]). In the LS case, the influence function is given by (5)

ψLS (ei) = 2ei (5)

A robust function presented in [5], is the Lorentzian Estimator (LE), which has
a ρ-function and influence function given by Equation (6) and (7)

ρLE(ei) = log
(

1 +
e2

i

2σ2

)
(6)

ψLE(ei) =
2ei

2σ2 + e2
i

(7)

note, the term 1
2σ2+e2

i
in (7), reduces the error contribution on the gradient

vector and it is not present in Equation (5). This fact explains why LS is noto-
rious sensitive to outliers. Another new function with similar performance is the
parametric SSD–ARC function which is described in the following section.

2.1 Parametric SSD-ARC

The Sum of SquaredDifferences with Adaptive RestCondition for non–parametric
Image Registration was presented, by Calderon in [7], as the minimization of a
quadratic energy function ÊSSD−ARC with a term lihi to reduce huge error con-
tribution given by Equation (8)

ÊSSD−ARC (V, l) =
N∑

i=1

(ei (Vi) − lihi)2 + μ

N∑
i=1

l2i +
τμ

4

N∑
i=1

|∇Vi|2 (8)

where hi is an error dependent function, li ∈ [0, 1] is an outlier indicator func-
tion under the control of parameter μ, Vi is the displacement vector for each
image pixel, and the last term is a homogeneity constrain with regularization
parameter τ .

In our case, assuming an AT, hi = ei(Θ), and annulling the homogeneity
constraint, a particular parametric SDD-ARC function can be obtained as

ÊSSD−ARC (Θ, l) =
N∑

i=1

e2
i (Θ)(1 − li)2 + μ

N∑
i=1

l2i (9)

For this parametric SDD–ARC function, the term (1 − li)2 allows us to discard
outliers. The second term in Equation (9) restricts the number of outliers by
means of μ. The minimizer l∗i for Equation (9) can be computed by solving
∂ESSD−ARC(Θ,l)

∂li
= 0, so the solution for l∗i is given by Equation (10). We refer to

l∗i as the outlier field.

l∗i =
e2

i (Θ)
μ + e2

i (Θ)
(10)
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Replacing the value of l∗i in Equation (9), we have a new parametric SSD–ARC
function ESSD−ARC (Θ) given by Equation (11), which has an unimodal ρ–
function and an influence function given by Equations (12) and (13) respectively.

ESSD−ARC (Θ) =
N∑

i=1

μe2
i (Θ)

μ + e2
i (Θ)

(11)

ρSSD−ARC (ei) =
μe2

i

μ + e2
i

(12)

ψSSD−ARC (ei) =
2μ2ei

(μ + e2
i )

2 (13)

Note, the parametric SSD-ARC influence function exhibits a behavior similar
to the Lorentzian Estimator influence function. In both functions, large differ-
ences give derivatives values near to zero, as can see in Equations (13) and (7)
respectively. The parametric SSD–ARC influence function has a maximum value
located at ê =

√
μ/3 and values greater than 2ê will have a derivative value near

to zero. Nevertheless, there is not a gradient-based algorithm capable to reach
the minimum, if the initial value gives an error greater than 2ê. For this reason,
a minimization method in two steps for the parametric SSD–ARC error function
is proposed.

3 Algorithm GA–SSD–ARC–NLM

We propose to begin with a stochastic-based search, as Genetic Algorithm,
and then to refine the results using a gradient-based algorithm, the Newton
Levenberg–Marquardt (NLM). The following names are used in order to distin-
guish between the ways to minimize the parametric SSD–ARC Equation. If only
the NLM algorithm is used, the minimization process is named SSD–ARC–NLM
(see Algorithm 2.); if we use GA, the minimization procedure will be named GA–
SSD–ARC (see Algorithm 1.), and when we use a combination, performing first
GA and then NLM, the process will be called GA–SSD–ARC–NLM. A similar
convention is used with LE.

3.1 GA–SSD–ARC

Haupt and Haupt in [13], describe the steps to minimize a continuous parameter
function cost using GA. In our case, the parametric SSD–ARC given by (11)
is optimized and the six vector parameter Θ will be the chromosome for each
individual and the jth parameter is randomly computed by

θj = (θmax
j − θmin

j ) ∗ α + θmin
j (14)

where θmax
j and θmin

j are the upper and lower bounds and α is a random number
in [0, 1].
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Algorithm 1. GA-SSD-ARC
Given μ, I1(ri), I2(ri) and Npop then
1. Compute a initial population

- For k = 1 to Npop

Randomly compute Θ(k) using Equation (14),

For each Θ(k) compute I1(ri(Θ
(k))) and ei(Θ

(k)), by Equation(3)

Compute the error ESSD−ARC(Θ(k)) using Equation (11)

- Select the half population with least ESSD−ARC(Θ(k)); Npop ← Npop/2.0
2. Matting.

- Randomly select couples over the best population half given more

matting probability those elements with least ESSD−ARC(Θ(k))
3. Reproduce

- Replace the worst population half by the offsprings created by Equation (15)

- and then, compute the Error ESSD−ARC(Θ(off)) (Equation (11)) for each offspring.
4. Mutation

- Randomly select the k − th population member and the j − th
parameter, and replace it by a new parameter computed by Equation (14)

- Never mutate the best population member.
5. Repeat steps 2, 3 and 4 until the population do not reach convergence.

6. For the best population member Θ(0), compute ei(Θ
(0)) using Equation (3),

and then, the outliers field li by Equation (10)

At each generation, a fitness-based selection process indicates which individ-
uals from the population will mate and reproduce, yielding new offsprings. Once
we have selected two individuals Θ(f), and Θ(m) for mating, cross-over is accom-
plished according to the following formulae

θ
(k)
j = θ

(m)
j − β(θ(m)

j − θ
(f)
j ) (15)

θ
(k+1)
j = θ

(f)
j + β(θ(m)

j − θ
(f)
j )

where β is a random number between zero and one, and θ
(k)
j denotes the j −

th parameter of the vector parameter Θ(k). Newly born offsprings (Θ(k) and
Θ(k+1)) are incorporated to the population replacing the worst elements and
their fitness is computed by Equation (11). The final GA-SSD-ARC is presented
in the Algorithm 1.

3.2 SSD–ARC–NLM

Equation (16) gives the iterative steps to find the minimum value using the
Newton Levenberg–Marquardt NLM [9], and the strategy for computing λ(k) is
given by Algorithm 2.

Θ(k+1) = Θ(k) −
[
H

(
Θ(k)

)
+ λ(k)I

]−1

∇E
(
Θ(k)

)
(16)
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Algorithm 2. SSD–ARC–NLM
Given the μ, I1(ri), I2(ri), λ(0) and Θ(0) then:

1. Set k = 0 and compute E(Θ(0)) by Equation (11)
2. Do

Compute H(Θ(k)) and ∇(Θ(k)) by Equations (17) and (18)
Do

Update H(Θ(k)) ← H(Θ(k)) + λ(k)I

Compute Θ(k+1) by Equation (16) and ESSD−ARC(Θ(k+1)) by Equation (11),

If (ESSD−ARC(Θ(k+1) > ESSD−ARC(Θ(k)) λ(k+1)=10λ(k) else λ(k+1) = λ(k)

While ((ESSD−ARC(Θ(k+1)) > ESSD−ARC(Θ(k))) and (λ(k+1) < λmax)

If (λ(k) > λmin) then λ(k) ← λ(k)/10

If (ESSD−ARC(Θ(k+1) > ESSD−ARC(Θ(k))) then Θ(k+1) = Θ(k)

Set k ← k + 1

While ((ESSD−ARC(Θ(k)) < ESSD−ARC(Θ(k−1)))
3. For the final Θ∗, compute ei(Θ

∗) using Equation (3), and then li by Equation (10)

where ∇E (Θ) is the gradient vector and H (Θ) is the Hessian matriz at each
iteration and they are computed by Equations (17) and (18)

∇E (Θ) = 2
N−1∑
i=0

J(r̂i (Θ))
μe2

i

μ + e2
i

(17)

H (Θ) = 2
N−1∑
i=0

JT (r̂i (Θ))J(r̂i (Θ))
2μ2

(
μ − 3e2

i

)
(μ + e2

i )
3 (18)

J(r̂i (Θ)) =
[
A−T∇In(ri)

]T
M(ri)

where J(r̂i (Θ)) is the Jacobian matrix, M(ri) is defined by Equation(1), In(ri) =

I1(r̂i (Θ)) and A =
(

θ0 θ1

θ3 θ4

)
.

4 Experiments

We compare GA–SSD–ARC–NLM, LE and RANSAC methods using pairs of
synthetic and real images. For LE, a minimization scheme similar to GA–SSD–
ARC–NLM (using GA and NLM) is used in order to give similar minimization
conditions (only replacing ESSD−ARC by ELE in Algorithms 1. and 2.). Since in
experiments with pairs of synthetic images, we know the right parameter vector
Θ̂, so the Euclidean distance |ΔΘ| between the known parameter vector Θ̂ and
the estimated parameter vector Θ, is used as a proximity measure.

4.1 Experiments with Synthetic Images

In synthetic experiments, the NLM uses the vector Θ = [1, 0, 0, 0, 1, 0]T as the
initial value, and the stop criterion was 1e − 5 or 1000 iterations. For GA, a
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population of 3000 individuals and 100 generations were used. In order to accel-
erate the convergence procedure, in some cases the error function was evaluated
only on 20% of the image pixels, all these parameters were handpicked in order
to have a good performance. The GA search boundaries, for each of the affine
transformation parameters, are {0.5, 1.5}, {−0.5, 0.5}, {−10, 10}, {−0.5, 0.5},
{0.5, 1.5}, {−10, 10}. The parameters μ for parametric SSD–ARC and σ for LE
were 20 and 25 respectively, in order to give the better performance for both
algorithms, and they are the same in all experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1. Experiments with synthetic images. Origin images (a, b, c and d), target images
(e, f, g and h), and resulting images using GN–SSD–ARC–NLM (i,j,k and l)

In the first experiment, an affine transformation given by Θ̂ = [0.9396, -0.3420,
3.0000, 0.3420, 0.9396, 3.0000] is applied to the Lena image (Figure 1(a)) and
the target images is shown in Figure 1(e). In the second experiment, in contrast
with the previous one, 20% of the image pixels were set to black color (zero
value) in order to simulate a regular outlier field. Using the same AT as the
experiment one, the target image is shown in Figure 1(f). In the third experiment
the complement of a circular-shaped outlier field and an affine transformation,
given by Θ̂ = [1.3, 0, 0, 0, 1.3, 0] are applied to the Cameramen Image (Figure
1(c)), yielding the picture in Figure 1(g). In the fourth experiment we use the
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Baboon image (Figure 1(d)), an affine transformation given by Θ̂ =[0.7, 0.3, 0,
0.3, 0.7, 0] and a random outlier field are applied to the baboon image, the target
image is shown in Figure 1(h).

The results for LS, SSD–ARC–NLM, GA-SSD-ARC, GA–SSD–ARC–NLM,
LE–NLM, GA–LE, GA–LE–NLM and RANSAC are presented in Table 1. These
results show that GA–SSD–ARC–NLM outperforms the other methods, specially
in the cameraman and Baboon images. The final images computed by GA–SSD–
ARC–NLM in the four experiments are presented in Figures 1(i), 1(j), 1(k) and
1(l). Note the transformed origin images are very close to target images. You
can note the bad performance for the same parametric SSD–ARC function when
this is minimized using only NLM.

Table 1. Comparative results for parametric SSD-ARC, LE and RANSAC for synthetic
experiments

Lena Lena Cameraman Babbon

Algorithm |ΔΘ| |ΔΘ| |ΔΘ| |ΔΘ|
LS 0.00010 51.4019 10.0451 1.3056

SSD-ARC-NLM 7.04200 4.2710 8.1507 12.5695

GA-SSD-ARC 0.96880 2.8368 1.3841 1.0910

GA-SSD-ARC-NLM 0.00010 0.0431 0.0002 0.0000

LE-NLM 19.60010 262.6573 19.6643 0.0006

GA–LE 0.42630 0.5471 6.7396 0.1371

GA-LE-NLM 0.00014 0.2089 6.3691 0.0006

RANSAC 0.12590 0.5376 0.4082 94.0000

4.2 Experiment with Real Images

This experiment use the origin and target images shown in Figure 2. These im-
ages show some differences that can be modelled using an affine transformation.
Additionally, the target image has a boy in front of the car (which does not ap-
pear in the origin image), in order to introduce more complexity in the outliers,
and the camera was rotated. The goal is to obtain the boy image as part of the
outlier field and the affine transformation introduced by the camera rotation.

The transformation computed by GA–SSD–ARC–NLM was Θ = [0.9700,
-0.2280, 42.7323, 0.2413, 0.9768, -20.6006 ] and by RANSAC was Θ = [0.9166,
-0.2473, 47.1152, 0.2151, 0.9249, -15.3065]. In this case there are differences be-
tween the parameter vectors computed by both algorithms but these values do
not allow us to conclude which one is the best or produces the nearest image to
the target image. Using Equation (10), the outlier field can be computed and its
image is presented in Figure 2(c), note in this image the contour of the boy in
front of the car. Figure 2(d) shows the resulting image computed by GA–SSD–
ARC–NLM. Finally the Figures 2(e) and 2(f) give a clear idea of the accuracy
of both AF computed. In both Figures the absolute value of the difference be-
tween the target image and the computed image by GA–SSD–ARC–NLM and
RANSAC were computed; dark areas correspond to low difference. Note the
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(a) Origin (b) Target (c) Outlier computed by
GA–SSD–ARC–NLM

(d) Final Image com-
puting by GA–SSD–
ARC–NLM

(e) Difference between
GA–SSD–ARC–NLM
and target images

(f) Difference between
RANSAC and target im-
ages

Fig. 2. Car park image registration

quality for the AT computed by GA–SSD–ARC–NLM, shown in Figure 2(e),
most static objects like the car or walls are almost perfectly matched; only the
boy, and the leaves of trees do not match. In the RANSAC difference image
(Figure 2(f)) even the car is not fully matched.

5 Conclusions

In this paper, we presented GA–SSD–ARC–NLM, an algorithm for parametric
image registration, based on the non–parametric SSD–ARC algorithm. The Ob-
jective function is minimized in two steps, using GA at the beginning and then
the NLM to refine the solution found by GA. The final algorithm improved the
solution using only GA or using only NLM and it is robust when the images
are corrupted by noise. A comparison of GA–SSD–ARC–NLM with other im-
age registration algorithms, such as RANSAC and LE, was presented in order
to provide experimental proof of the robustness of GA–SSD–ARC–NLM. We
tested GA–SSD–ARC–NLM using different kinds of images and outlier fields. In
all these tests, GA–SSD–ARC–NLM improved the results of the RANSAC and
LE methods. Our method is similar to GA–LE–NLM but it is less sensitive to
the particular parameter σ, and it is easier to find better solutions. Additionally
the GA–SSD–ARC–NLM provides an explicit way to compute the outliers and
does not need an extra image processing.

With synthetic images, we tested the robustness of GA–SSD–ARC–NLM and
presented how the two minimization steps improved the solution using only NLM
for the parametric SSD–ARC function. In case of real images, the comparison
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was done using only the final parameter vector, computed by GA–SSD–ARC–
NLM and RANSAC.

Furthermore, GA–SSD–ARC-NLM has the advantage of computing the out-
liers with accuracy even in case of a random outlier field (as shown in the experi-
ments). In contrast with RANSAC, GA–SSD–ARC–NLM computes the outliers
for the whole image using a simple Equation. This outlier Equation is implicit
on the parametric SSD–ARC function and the outlier field is computed when
the algorithm converges.
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Abstract. We introduce a method for computing similarity between
two square matrices based on the information given by their eigenvalues
and eigenvectors. The idea is to evaluate the effect of the conjugation of
the original matrices and the eigenvectors and eigenvalues of each other.
Then, we exemplify its utility for computing similarity between square
images from a classified bank of pictures. The performance of the method
is evaluated with diverse experiments.

1 Introduction

Comparing matrices is an interesting open problem in computer sciences. More-
over, since matrices are a very useful representation for many kinds of data, it
has a lot of applications in many different fields. On the conventional paradigm
[1], measuring similarity between entities implies the selection of those properties
considered as essential. These subjective elections are commonly erroneous and
always incomplete. In many cases, the best techniques are those that use all the
information available of the involved entities. For the specific problem of com-
paring matrices, we should prefer a method that works with all the information
contained in each element of the bi-dimensional array.

In Linear Algebra, eigenvalues and eigenvectors are often used to characterize
a transformation defined by a square matrix [6]. The determination of those
vectors and values is a very well studied problem, and there are a lot of numerical
processes which aim to solve it.

Definition 1. Given a linear transformation M (defined by a square matrix)
from Υ into Υ , a nonzero vector v in Υ is an eigenvector of M if

Mv = λv (1)

where v �=0̌ and ‖v‖2 = 1.

The scalar λ is called the eigenvalue of M corresponding to v [3]. Thus, we could
say that an eigenvector of a square matrix is a non-null vector whose direction
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is unchanged by the transformation and that the factor by which the magnitude
is scaled is called the eigenvalue of that vector.

A square matrix M of n × n has up to n distinct pairs formed by an eigen-
value and a normalized eigenvector: Mv(1) = λ1v

(1), Mv(2) = λ2v
(2), · · · ,

Mv(n) = λnv(n); where
∥∥v(i)

∥∥
2

= 0 for i = 1, 2, · · · , n. It is common to rep-
resent the eigenvalues of a square matrix into a diagonal matrix called Λ, and
the normalized eigenvectors are often represented as the columns of a square
matrix called V , where they occupy their position according to Λ as follows

Λ =

⎡⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λn

⎤⎥⎥⎥⎦ (2)

V =
[
v(1) v(2) · · · v(n)

]
(3)

It is useful to condense all the information given by the eigenvalues and eigen-
vectors into a single algebraic expression

MV = V Λ (4)

It is mathematically accepted to say that two (n × n) matrices A and B are
similar if there is an invertible matrix P for which B = P−1AP [3]. This is an
equivalence relation on �n×n. We also know that if A and B are mathematically
similar, they share the same eigenvalues. But this idea is inadequate for real
cases where this relation does not describe sufficiently the data. Together, the
eigenvectors and eigenvalues describe completely and univocally the intrinsic
information of a square matrix. Thus, it is not possible to find two distinct
matrices with the same eigenvalues and eigenvectors. We could take advantage
of this unique characterization in order to represent a matrix with neither loss
of information nor any kind of ambiguity.

2 Eigenconjugation of Two Square Matrices

Definition 2. Given two square matrices (n × n) A and B with the matrices
of eigenvalues ΛA, ΛB and the matrices of eigenvectors VA, VB respectively, we
know it is true that

VA = AVAΛ−1
A (5)

VB = BVBΛ−1
B (6)

where A,B,ΛA, ΛB, VA, VB ∈ C(n×n). Then, the matrices V ′
A and V ′

B know as
the eigenconjugation of A and B are defined as

V ′
A = BVAΛ−1

A (7)

V ′
B = AVBΛ−1

B (8)

where V ′
A, V ′

B ∈ C(n×n).
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Since VA and VB are matrices composed by column vectors, we considered V ′
A

and V ′
B to have the same structure. Therefore, the column vectors of V ′

A express
the effect of the conjugation of B with the eigenvalues and eigenvectors of A.
And the columns vectors of V ′

B express the effect of the conjugation of A with
the eigenvalues and eigenvectors of B.

3 Evaluation of the Eigenconjugation as a Similarity
Measure for Square Matrices

In this section we introduce a new method which aims to measure an approxi-
mated distance between two square matrices based on the algebraic conjugation
of the original matrices and the eigenvalues and eigenvectors of each other.

It is possible to represent the distances of each of the column vectors from
VA to V ′

A into a sequence of n elements, and the distances from VB to V ′
B into

another sequence. An interesting assumption is that if the original matrices A
and B are similar, then the behaviours of both sequences are also similar. Now,
we define a new matrix operator for determinining the distances between those
vectors.

Definition 3. Given two matrices (n×m) U and V , both composed by column
vectors such as

U =
[
u(1) u(2) · · · u(m)

]
(9)

V =
[
v(1) v(2) · · · v(m)

]
(10)

the operator ∗ is defined as

U ∗ V =
[
e(u(1), v(1)) e(u(2), v(2)) · · · e(u(m), v(m))

]
(11)

where e(u, v) calculates the Euclidean distance between vectors u and v

e(u, v) =

(
n∑

i=1

(ui − vi)2
) 1

2

. (12)

The result is a sequence that contains the distances between the consecutive pairs
of columns vectors from both matrices. Now, we define two useful sequences

d1 = VA ∗ V ′
A (13)

d2 = VB ∗ V ′
B (14)

Therefore d1 express the Euclidian distances between each of the vectors of
VA and V ′

A, and d2 express the Euclidian distances between each of the vectors
of VB and V ′

B . Both sequences characterize the effect of the eigenconjugation of
A and B. The characteristic sequences of an Eigenconjugation have always an
uptrend.

The hypothesis is that the original matrices A and B are as similar as se-
quences d1 and d2 are:
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A ≈ B → d1 ≈ d2 (15)

Since the expression (15) is an one-way logical implication, we must assume
that A and B are matrices that belong to the same class.

There are many techniques for comparing sequences as time series. For this
work we chose Dynamic Time Warping (DTW) for minimize the base dis-
tances between these sequences. For more information we suggest to see [4].

Definition 4. Given two sequences Q = 〈q1, q2, · · · , qn〉 and C = 〈c1, c2,
· · · , cm〉, the dynamic time warping distance DTW is defined recursively as
follows [2]:

DTW (〈〉, 〈〉) = 0 (16)

DTW (Q, 〈〉) = DTW (〈〉, C) = ∞ (17)

DTW (Q,C) = dbase(f(Q), f(C)) + min

⎧⎨⎩
DTW (Q, r(C))
DTW (r(Q), C)

DTW (r(Q), r(C))
(18)

where
dbase(qi, cj) = |qi − cj | (19)

and f(〈p1, p2, · · · , pk〉) = p1, r(〈p1, p2, · · · , pk〉) = 〈p2, p3, · · · , pk〉.

It is assumed that Q and C are the same if DTW (Q,C) = 0, they are similar
when DTW (Q,C) → 0, and they are different when DTW (Q,C) → ∞.

For the experimental results we noticed that the numeric value given by the
computation of DTW could be affected by the scale of the magnitudes of the
original matrices. So there were many near false positives cases when we compare
one image to a bank of hundreds. Therefore we modified (19) in order to employ
a kind of normalization similar to the one occupied in Normalized Root Mean
Square Error (NRMS) measure. Thus, dbase is redefined as follows:

dbase(qi, cj) = |qi − cj

q − qi
| (20)

where q is the mean value of the fist sequence. Therefore DTW (Q,C) �=
DTW (C,Q) in general. For the implementation we used an optimized version
of DTW know as Fast Dynamic Time Warping (FDTW ), which is a non-
recursive approximation of computational complexity less than a polynomial of
degree 2.

Definition 5. Given two square matrices A and B of the same class, the simi-
larity measure sim(A,B) is defined as

sim(A,B) =
√

DTW 2(d1, d2) + DTW 2(d2, d1) (21)

where d1 and d2 are the characteristic sequences of the eigenconjugation of A
and B.
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In the following figures we show four examples of comparisons between pairs of
same-class images. In Figure 1 it is possible to appreciate by simple glance, the
relation of similarity supposed by (15). In the first case both sequences have a
similar behaviour and the original images are also alike. In the second case it is
observable the opposite situation.

Fig. 1. Image A is compared to B and their characteristic sequences -d1 & d2- are
showed in (c). Image A is also compared to C, their sequences -d1 & d2- are showed in
(f). All images are of size 100 × 100 pixels. Only the first 80% of the elements of the
sequences are plotted. Codes in brackets are the references of the images.

In Figure 2 two more experiments are showed, where it is important to notice
that the numeric values given by sim are validated by the similarity relation of
the original images.

4 Comparing Square Images Using Eigenconjugation

Although humans are capable of a complex and efficient performance while com-
paring images, this task is quite difficult for automated systems. Eigenconju-
gation validates the similarity relation between data matrices using numerical
processes that can be easily implemented into a computer.

Although there are many techniques for pre-processing images such as filtering
or thresholding, we rather work with the original information without any other
stage or process. This is necessary because in this paper we introduce a method
for comparing any kind of square matrices, not only for the specific case of square
images.
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Fig. 2. Image A is compared to B and their characteristic sequences -d1 & d2- are
showed in (c). Image A is also compared to C, their sequences -d1 & d2- are showed in
(f). All images are of size 100 × 100 pixels. Only the first 80% of the elements of the
sequences are plotted. Codes in brackets are the references of the images.

Using eigenconjugation, a comparison of two square matrices (n × n) has a
computational complexity of somewhat less than 4n3 + 12n2 + 8n field oper-
ations; where the following stages are considered: algebraic eigenconjugation,
construction of the characteristic sequences and the evaluation with FDTW .

Given a set of matrix representations of same-class images (Π) the procedure
for sorting the elements by its similarity with a query is as follows (it is supposed
that all images are square normalized and have the same size):

1. Select the query matrix A|A ∈ Π .
2. Calculate the eigenvectors and eigenvalues of A.
3. For each matrix B on the set (B|B ∈ Π):

(a) Calculate the eigenvectors and eigenvalues of B.
(b) Obtain the eigenconjugation sequences of A and B: d1 and d2.
(c) Calculate the similarity measure sim(A,B); and save the result into a

list.
4. Sort the list and show the results.

At first we worked with simple matrices obtained for the grayscale represen-
tation of the images. Obviously the information given by grayscale matrices is
not enough for differencing efficiently each image from others. During these first
experiments the results were not very satisfactory. It was necessary to include
the information given by the colour components. Since the original images were
available in RGB format, we decided to make a triple comparison using the ma-
trices of the red, green and blue components. So there were three distances for



Eigenconjugation: An Approach for Computing Image Similarity 243

each comparison. These three values were the components of a vector of distance
whose absolute magnitude was defined as the total distance between the coloured
matrices. Thus the results were sensibly improved in almost all the cases. But
there were still some inconsistencies.

The best results were obtained when we used a unique jointly-coloured matrix
representation of each image. This coloured matrix is constructed by an alterna-
tive permutation of the bits of the three colour components of each pixel. Thus,
one single numeric value is obtained for each pixel. In the former representations
the interval for pixel values was small (0− 255), with the use of coloured matri-
ces the interval or variability is incremented (up to 2563). Therefore the amount
of available information is extended, and the process of similarity measuring is
improved.

Every RGB image could be decomposed into three component matrices

R = (rij) G = (gij) B = (bij) (22)

where each element (r, g and b) of the matrices has a binary representation as

r = (r7r6r5r4r3r2r1r0)2 (23)

r =
7∑

k=0

2k · rk (24)

where rk ∈ {0, 1} for 0 ≤ k ≤ 7.

Definition 6. Given a square RGB image (n×n), its jointly-coloured represen-
tation M is defined as follows:

M = C(R,G,B) (25)

where M = (mij); and each element m of M has the following binary composi-
tion

m = (r7g7b7r6g6b6 · · · r0g0b0)2 (26)

r =
7∑

k=0

23k+2 · rk + 23k+1 · gk + 23k · bk (27)

where rk, gk, bk ∈ {0, 1} for 0 ≤ k ≤ 7.

This representation prevents us for giving and excessive importance to a spe-
cific colour component. Nevertheless there is still an undesirable minimized
favouritism. The defined order (r-g-b) in the combination is arbitrary, and it
could be changed for optimizing the results in specific cases.

We tried experimentally to use normalization in different steps of the pro-
cedure, but the results did not improve except for some specific cases. General
applications should not use normalization.
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5 Experimental Results

In the following figures we illustrate some experiments where a query image was
given, and the five nearest coloured images are showed (among more than 100
elements in each class). In all cases the jointly-coloured matrix representation
was used. These results are very interesting and precise although they have to be
validated by human inspection. Thus, there is no way to make a rigid objective
evaluation of the effectiveness of the method.

In Figure 3, the two more similar images were placed next to the target. The
other results could be irrelevant or appear to be erroneous. But the experiment
is good because it brought the most similar elements at first.

Fig. 3. Searching over the Elephant class. Image Q “query” was compared to all the
elements from the class. Images A to E are the nearest found specimens given by the
sim measure. Codes in brackets are the corresponding references of the images.

Two experiments among the Horse class are showed in Figure 4 and Figure 5.
These results are very appropriate for exemplify the correct performance of the
method. They are good because the Horse class is correctly classified and the
set is homogeneous. Therefore the method could determine with high precision
the similarity over an homogeneous set.

Every class of images has a degree of homogeneity which is merely a subjective
estimation of resemblance among its elements. In Figure 6 the results are very
acceptable; in fact they are almost exactly. It is important to observe that the
method is not infallible, that its efficiency depends strongly on the degree of
homogeneity between the elements of the class.

6 Conclusions and Future Work

Eigenconjugation is a method for computing similarity between same-class im-
ages. And this might be a difficult task because these images are already similar.
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Fig. 4. Searching over the Horse class. Images A to E are the nearest specimens of Q
given by the sim measure. Codes in brackets are the references of the images.

Fig. 5. Searching once again over the Horse class. Images A to E are the nearest
specimens of Q given by sim. Codes in brackets are the references of the images.

Fig. 6. Searching over the Flower class. Images A to E are the nearest specimens of Q
given by the sim measure. Codes in brackets are the references of the images.
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The proposed method could determine with high precision the similarity over an
homogeneous set. Its efficiency depends strongly on the degree of homogeneity
between the elements of the class. We have evaluated the method using matrix
representations of colour images having better results while working with ho-
mogeneous sets. Nevertheless, this method could be applied for every kind of
square data matrices. The method evaluates the similarity based on the whole
structure of the matrices. In this paper we have discussed about its limitations
and characteristics in different cases of use.

Eigenconjugation is a new different approach for computing image similarity.
Some other methods [8] need to first process all the elements of the class, but
Eigencojugation could evaluate the distance only between two matrices without
any information from the other elements. A profound comparison with other
techniques is a complicated task which is out of the reach of this paper.

Some future work suggestions are:

1. Using other similarity techniques and measures for time series.
2. Using eigenconjugation for computing similarity with other kinds of data

matrices.
3. Complementing eigenconjugation with a classification method for working

with non same-class images.
4. Comparing eigenconjugation with other techniques for image similarity.
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Abstract. In this paper, we present a block overlapped intensity-pair 
distribution based image enhancement algorithm. Instead of using the intensity-
pair distribution of the whole image, this proposed algorithm takes the 
intensity-pair distribution block-wise and maps the intensity of the center pixel 
according to an expansion function. Analyzing the intensity difference of the 
intensity-pair, two different expansion force sets are generated for contrast 
stretch: one for soft edges, another for strong edges. In addition, a set of anti-
expansion force is generated for smooth regions to avoid noticeable change. 
The contrast stretch and over-enhancement are controlled with a linear 
magnitude mapping function instead of a non-linear one. This linear mapping 
preserves the relative contrast enhancement ratio between the gray levels. The 
local information from blocks easily facilitates the contrast enhancement, 
brings out subtle edge information, and removes noises from the image.  

Keywords: Anti-expansion force, expansion force, intensity pair.  

1   Introduction  

Contrast enhancement is an important issue in image processing for both human and 
computer vision. It is widely used for medical image processing and as a 
preprocessing step in speech recognition, texture synthesis, and many other 
image/video processing applications [4-7]. A very popular technique for contrast 
enhancement of images is histogram equalization (HE) [9-11]. It is the most 
commonly used method due to its simplicity. HE performs its operation by remapping 
the gray levels of the image based on the probability distribution of the input gray 
levels [8]. The basic idea behind this method is to stretch the dynamic range of the 
image histogram and resulting in overall contrast improvement. Many researches 
have already been done on histogram equalization and many methods have already 
been proposed. Generally, we can classify these methods in two principle categories – 
global and local histogram equalization [12]. 

Global Histogram Equalization (GHE) uses the histogram information of the entire 
input image for its transformation function. Fig. 1(b) shows the result of GHE on the 
                                                           
* Corresponding author.  
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original image as shown in 1(a). Though this global approach is suitable for overall 
enhancement, it fails to adapt with the local brightness features of the input image 
[12] and shifts the brightness to the middle gray level of the image regardless of the 
input brightness [10]. Local histogram equalization (LHE), also known as   Adaptive 
histogram equalization (AHE) [11], can get rid of such problem. It uses a small 
window that slides through every pixel of the image sequentially and only the block 
of pixels that fall in this window are taken into account for HE and then gray level 
mapping for enhancement is done only for the center pixel of that window. Thus, it 
takes the advantages of HE, also remarkable use of local statistical information of the 
input image. But LHE requires high computational cost and sometimes causes over-
enhancement in some portion of the image. Another problem of this method is that it 
also enhances the noises in the input image along with the image features. To get rid 
of the high computational cost, another approach is to apply non-overlapping block 
based HE. Nonetheless, most of the time, these methods produce an undesirable 
checkerboard effects on enhanced images [9].  

 
(a)  

 
(b)                                                                     (c)  

Fig. 1. (a) Original image. (b) Enhanced image resulting from GHE. (c) Enhanced image 
resulting from intensity-pair distribution based method. 

Recently, [2] proposes curvelet based method for contrast enhancement. Though in 
multi-scale edge enhancement, curvelet based approach outperforms wavelet 
approach [3] in edge representation, but for noiseless or near noiseless images its 
enhancement is not remarkly better than wavelet based enhancement [2]. On the other 
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hand, [1] proposes an approach for enhancement based on intensity-pair distribution 
that possesses both the local and global information of the image content. Depending 
on the intensity difference in the intensity pair, either a set of expansion forces or a set 
of anti-expansion forces is generated to get an intensity mapping function, which 
enhances contrast and suppresses the image noise in the output image. This mapping 
function is more or less like GHE mapping function but incorporating some 
neighborhood information from intensity pairs. However, still this method cannot 
sharpen edges with low intensity-pair contribution and remove impulse noises.  

In this paper, our proposed algorithm exploits the block-wise intensity-pair 
distribution for edge enhancement. Generally, digital images contain two-dimensional 
array of intensity values with locally varying statistics, which results from different 
combinations of abrupt features, like edges and contrasting homogeneous regions [9]. 
Since different parts of the image have different statistical characteristics we apply the 
block based approach to handle local information effectively and leave less chance for 
the smooth regions from other part of the image to have more influence over the edge 
pairs and finally lead to better image contrast stretch. To control the contrast stretch of 
the soft edges and strong edges two different expansion forces are used, where the 
expansion force for the soft edge pairs are comparatively less than that of strong edge 
pairs. Unlike [1], where a nonlinear magnitude function was used to avoid over-
enhancement and preserve natural look of the processed image, here we present a linear 
magnitude mapping function to keep the relative contrast enhancement ratio between 
the gray levels since our search space is small and limited inside the block only. Once 
we get the final intensity mapping function from the expansion and anti-expansion 
forces of intensity pairs, only the center pixel of that block is updated and we move to 
the next pixel to repeat the same procedure. To take care of noises, if the deviation of 
center pixel’s intensity value from its block intensity mean is too high, we replace that 
intensity value with the mean intensity value of that block, hence suppressing the noise 
pixels. Here we combined the advantages of conventional intensity-pair distribution 
method and block based approach for better edge extraction and enhanced image.  

This paper is organized as follows. In section 2, we briefly introduce the intensity-
pair distribution based image enhancement method [1]. The proposed algorithm is 
explained in details in section 3. Section 4 lists a few experimental results on different 
images to illustrate the performance of the proposed approach while section 5 
concludes this paper.  

 

Fig. 2. An illustration of a pixel and its 8-neighbors. The solid arrows show the 4-neighbors 
from pixel E for intensity-pair generation.  
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2   Intensity-Pair Distribution Based Method  

This section will briefly describe the Intensity-Pair distribution method for image 
enhancement. The algorithm presented in [1] extracts both the global and local 
information. It starts with computing the intensity-pair distribution.  For a given 
image, each pixel is checked with its 8-connected neighbors. Due to the commutative 
property of intensity pair, only 4-neighboring pixels in raster order are scanned. Fig. 2 
shows an illustration of 4-neighbors taken into account for the pixel at E from its 8-
connection neighbor. Now to find intensity pairs belonging either to the smooth 
region or the edge region, we take the intensity difference within the pair. If the 
intensity difference is above a predefined threshold we can treat that pair as an edge 
pair otherwise that belongs to a flat region.  To increase the contrast of the image and 
make the edges sharp we want to stretch the intensity of the edges pairs. On the 
contrary we also want to keep the flat regions from being stretched.   
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Fig. 3. Intensity mapping function generation procedure 

In order to have contrast stretch in the edge pairs, we give a train of expansion 
forces between the gray level range of the edge pair. In a real 2D image many edge 
exists. So, we accumulate all the corresponding expansion forces of the edge pairs. 
Similarly all the anti-expansion forces are generated and accumulated for the intensity 
pairs of the smooth region. Now the smooth intensity pairs might lie within the gray 
level range of the edge pair. Due to the contrast stretch of the edge pair, the dynamic 
range of those smooth regions will also be stretched. To avoid these circumstances, 
the anti-expansion forces are subtracted from the expansion forces; hence the net-
expansion force is obtained. Here, the anti-expansion forces preserve the smoothness 
for flat regions in the net-expansion force. Still the magnitude of the net-expansion 
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force might be high enough to cause some unnatural and overly enhanced image. To 
reduce the dynamic range of the net expansion force a magnitude mapping function 
M(.) is applied which constrains the expansion force to an extent so that the image 
looks natural. A proposed mapping function is  

1/( ) mY M X X= =  .  
                                             (1) 

where, X is the net-expansion force, m is the behavior controlling parameter of the 
mapping function, and Y denoting adjusted net-expansion force. Finally the expansion 
forces are integrated and normalized to get the expansion function for intensity 
mapping. Fig. 3 shows the procedure for generation of intensity mapping function and 
Fig. 1(c) shows the enhanced image resulting from using the just reviewed approach. 
Notice that the contrast of some of the edges have improved while some others have 
not improved significantly. This happened because the contrast stretch was done 
based on the global information irrespective of contrast stretch needed only for a 
particular region.  

 
(a)                                                                        (b) 

Fig. 4. (a) Original image. (b) Image resulting from intensity-pair distribution based method, 
which shows no enhancements made.  

3   Proposed Method  

In the proposed method, our key objective is to bring out the subtle details of the 
image by letting the less frequent intensity pairs contribute almost equally to the 
expansion function. In case of global intensity-pair distribution based method, there 
are chances that the gray levels of intensity pairs of smooth region might lie and cover 
the entire gray level range which the edge pairs are expecting to stretch. Since the 
smooth intensity pairs will generate trains of anti-expansion force, and due to the high 
occurrences of those pairs the anti-expansion force might nullify the expansion force. 
As a result, in the net-expansion force there will be no effect from those edge pairs 
and eventually no contrast stretch. Such an example is shown in Fig. 4. In the original 
image we have only (0,48) edge pairs because there is sudden intensity jump from 0 
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to 48 at the middle of the image. Rest of the image contains gray values gradually 
either increasing from 0 to 48 or decreasing from 48 to 0. So our smooth intensity-
pairs are (0,0),(0,1),(1,1),(1,2),…,(47,48),(48,48). Thus the gray level ranges of the 
smooth regions have covered the entire gray level range of the edge pairs. Now 
though the edge pairs are generating expansion forces between its gray level ranges, 
due to high occurrences of smooth pairs the anti-expansion force generated by them 
will cancel the expansion force. In the end, no enhancement is done. But in case of 
block-based intensity pair distribution, since we focus only to the intensity pairs 
falling inside the block, there is no scope for the smooth regions to dominate the edge 
pair forces.  When the block slides over the edges pixels, we have more edge pairs, 
which then give more expansion force at edge regions. This brings out fine edge 
information without having any threat from smooth regions. Again, when dealing 
with edges, we get two types of edges: soft edges and strong edges. Now if the same 
set of expansion force is applied for both soft edges and strong edges, we might get 
contrast stretch in intensity but not visually pleasing image. So we give a 
comparatively low expansion force to the soft edge pairs compared to the strong edge 
pairs. Low expansion force prevents the soft edges from being too sharp.   

Moreover, to avoid unnatural or overly enhanced features due to the large 
magnitude expansion force, the contrast enhancement approach based on global 
intensity-pair distribution [1] uses a magnitude mapping function on the net 
expansion force, which is nonlinear in nature. Due to the nonlinearity, after applying 
the magnitude mapping function the ratios between the forces at different gray levels 
do not remain the same as before. So the resultant net expansion forces do not reflect 
properly the forces of the intensity pairs anymore. Since our proposed method 
confines attention only inside the block and we have less number of intensity pairs, 
intuitively there is less scope of having net-expansion force with extremely large 
magnitude. Here the proposed contrast enhancement algorithm makes use of a linear 
magnitude mapping function to compress the dynamic range of the net expansion 
forces and to keep the relative contrast enhancement ratio between the gray levels 
which otherwise will be lost incase of non-linear mapping function.  

In our algorithm, the first step is to define a block and retrieve its intensity pair 
distribution. This distribution gives us the local information. If an edge falls inside the 
block then we will have many edge pairs. The expansion force and anti-expansion 
forces are computed in the same manner as discussed in the previous section with an 
additional check for soft edge and strong edge. To compress the dynamic range of the 
net expansion forces, we use a linear magnitude mapping function. An example of 
such a mapping function M(.) is  

Y = M ( X ) = X / max( f
0
, f

1
,..., f

i 
,..., f

255 
) .                            (2) 

where fi is the number of times expansion force is added for the i-th gray level. The 
next step is to integrate the net-expansion force to generate the expansion function 
and normalize it to fit in the range 0 to 255. This function is used as the final intensity 
mapping function for the center pixel of the block. The presented approach also takes 
care of impulse noise pixels by computing the mean (μ) and standard deviation ( ) of 
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the block intensity values. For noise pixel removal, if the deviation of the center 
pixel’s   intensity value  from its block mean is  larger  than  twice  the  standard   

1) Define an M×N sized output image array for an M×N input image I.
2) FOR each pixel position (x,y) in the input image 

a. Scan through every pixel within the block centered at pixel position (x,y) to 
calculate the intensity-pair information, mean μ, and standard deviation σ.

b. IF | I(x,y) - μ | > 2*σ
THEN  

Put μ as the intensity value at pixel    position (x,y) of output image 
and move to step 2. 

c. FOR each intensity-pair  
 IF Intensity difference > Smooth region Threshold AND Intensity

difference > Soft edge Threshold 
  THEN  

Train of expansion forces for strong edges is generated between
the gray level range of intensity-pair. 

 ELSE IF Intensity difference > Smooth region Threshold AND Intensity
difference <= Soft edge Threshold 

   THEN  
Train of expansion forces for soft edges is generated between the
gray level range of intensity-pair. 

                 ELSE 
  THEN  

Train of anti-expansion forces is generated between the gray level
range of intensity-pair. 

d. Accumulate the expansion and anti-expansion force. 
e. For each gray level k, calculate the net expansion force based on the

following equation: 

[ ] [ ]
[ ]kionForceAntiExpansg

korceExpansionFkonForceNetExpansi
×

−=

here, g is chosen to be 0.1 empirically. If the net expansion force at k is 
negative, reset that value to zero. 

f. Apply the magnitude mapping function M (.) over the net expansion force. 
g. Integrate the net expansion force to obtain the expansion function T and

normalize it to fit within the range 0 to 255. 
h. The intensity value for the output image at pixel position (x,y) is calculated

using the following equation: 

[ ] ),()1(),( yxIwyxITw ×−+×
 here, w is a combination factor with 0 ≤ w ≤ 1  

Fig. 5.  Summary of the proposed algorithm 

deviation of the block intensity value, the mean value is used instead of using the 
intensity mapping function-mapped value. Since only the pixels inside the block are 
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taken into account for the generation of the intensity mapping function and 
computation of center pixel’s intensity, we are dealing more with the local 
information. Next, the block is moved by one pixel and the same procedure is 
repeated until the end of the image is reached. Here contrast enhancement based on 
intensity-pair distribution is performed with each block information so it can adapt 
well to the subtle edge enhancement and partial light condition in the same way the 
block overlapped histogram equalization works. The proposed algorithm is basically a 
block overlapped intensity-pair distribution based image enhancement approach with 
two expansion forces and a linear magnitude mapping function. This idea is 
summarized more clearly in Fig. 5. In the next section, we will present a detailed 
experimental result to further display the effectiveness of the proposed algorithm.  

 
                (a)                                                                    (b)  
 

 
                (c)                                                                    (d)  

Fig. 6.  (a) Original image (b) Enhanced image by LHE (c) Enhanced image by intensity-pair 
distribution based method with (m, g, k) = (2, 0.1, 0.8) (d) Enhanced image by block based 
intensity- pair distribution with (g , w) = ( 0.1, 0.6 ) and block size 3×3  

4   Experimental Results  

The results from previous algorithms and the proposed algorithm are simulated on 
various images, and compared with the enhancement ability of the proposed 
approach. Fig. 6 shows the original image along with simulation results from LHE, 
Intensity-Pair Distribution method and the proposed method. Here Block based 
Intensity-Pair distribution method has given better enhancement of the image, 
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especially with the hare. Moreover, in the original image there are some impulse 
noises, which still remain for LHE and Intensity-Pair distribution method. Whereas 
Fig. 6(d) clearly shows our approach has quite efficiently removed those impulse 
noises.  

To further prove the performance of the proposed algorithm, simulation result from 
applying the proposed method (g = 0.1, w = 0.6 and block size 3×3) on satellite image 
is shown in Fig. 7(c), compared with Fig. 7(b) resulting from curvelet transform (c = 
3, l = p = 0.5 and s = 0). Here the edges and contrast at the upper portion are much 
more distinct in case of the enhanced image resulting from the proposed algorithm. 
Moreover, curvelet transform has also increased the overall brightness of the images, 
which might not be desirable in other images. In edge representation, image 
brightness and contrast, our proposed approach has done a significant improvement.  

 
(a)  

 
(b)                                                                     (c) 

Fig. 7. (a) Original satellite image. (b) Image enhanced by curvelet method. (c) Image 
enhanced by block based intensity-pair distribution method.  
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5   Conclusion  

In this paper, we propose a block based intensity-pair distribution method with two 
expansion forces and linear magnitude mapping function for image contrast 
enhancement. Since only the block intensity pairs contribute to the intensity mapping 
function and smooth regions cannot nullify the expansion force of edge pairs, delicate 
edges are extracted and image enhanced.  An additional noise checking procedure has 
also suppressed noise effectively from input images. Simulation results have shown 
that the proposed method has done a better improvement compared with the existing 
methods.   

References  

1. Jen, T., Hsieh, B., Wang, S.: Image contrast enhancement based on intensity-pair 
distribution. In Proc. Int. Conf.  Image Processing, Vol. 1, (2005) 913-16  

2. Starck, J., Murtagh, F., Candes, E.J., and Donnoho, D.L.: Gray and color image contrast 
enhancement by the curvelet transform. IEEE Trans. Image Processing, Vol. 12, No. 6, 
(2003) 706-717  

3. Velde, K.V.: Multi-scale color image enhancement. In Proc. Int. Conf. Image Processing, 
Vol. 3, (1999) 584–587  

4. Pei, S.C., Zeng, Y.C., Chang, C.H.: Virtual restoration of ancient Chinese paintings using 
color contrast enhancement and lacuna texture synthesis. IEEE Trans. Image Processing, 
Vol. 13, (2004) 416–429  

5. Chin, W.A., S.H., Tan, E.C.: Novel approach to automated fingerprint recognition. In 
Proc. IEE Vision, Image and Signal Processing, Vol. 145, (1998) 160–166  

6. Torre, A., Peinado, A.M., Segura, J.C., Perez-Cordoba, J.L., Benitez, M.C., Rubio, A. J.: 
Histogram equalization of speech representation for robust speech recognition. IEEE 
Trans. Speech Audio Processing, Vol. 13, (2005) 355–366  

7. Pizer, S.M.: The medical image display and analysis group at the university of north 
carolina: Reminiscences and philosophy. IEEE Trans. Medical Imaging, Vol. 22, (2003) 
2–10  

8. Chen, S.–D., Ramli, A.R.: Contrast enhancement using recursive mean-separate histogram 
equalization for scalable brightness preservation. IEEE Trans. Consumer Electronics, Vol. 
49, No. 4, (2003) 1301-1309  

9. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. 2nd ed. Reading, MA: Addison-
Wesley, (1992)  

10. Kim, Y.-K.: Contrast enhancement using brightness preserving bi-histogram equalization. 
IEEE Trans. Consumer Electronics, Vol. 43, No. 1, (1997) 1–8  

11. Kim, Y.K., Paik, J.K., Kang, B.S.: Contrast enhancement system using spatially adaptive 
histogram equalization with temporal filtering. IEEE Trans. on Consumer Electronics, Vol. 
44, No. 1, (1998) 82–86  

12. Kim, J.-Y., Kim, L.-S, Hwang, S.-H.: An advanced contrast enhancement using partially 
overlapped sub-block histogram equalization. IEEE Trans. Circuits and Systems for Video 
Technology, Vol.11, (2001) 475 –484  

 



Guiding a Bottom-Up Visual Attention

Mechanism to Locate Specific Image Regions
Using a Distributed Genetic Optimization

Eanes T. Pereira and Herman M. Gomes

Universidade Federal de Campina Grande, Departamento de Sistemas e Computação
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Abstract. The purpose of this paper is to present an approach to locate
specific regions in images. The novelty of the approach is the combina-
tion of a weighted bottom-up visual attention mechanism with a genetic
algorithm optimization running on a computational grid. The visual at-
tention mechanism is based on the model proposed by Itti and Koch [1].
A saliency map indicates the most interesting points in an image us-
ing a number of intermediate low level features, which are detected at
different scales and orientations. Using the saliency map weights as pa-
rameters, the optimization problem is to minimize the number of most
salient points needed to locate a set of reference image regions, previ-
ously (and manually) labeled as being interesting. Both an objective and
subjective evaluation have demonstrated that the proposed approach is
more effective when compared to a fixed weight attention mechanism.

1 Introduction

In any physical computational system, processing capability is limited. A mecha-
nism to deal with this drawback in both biological and machine vision systems is
visual attention. Visual attention is the ability that the visual system of superior
vertebrates have to select and process only the most relevant regions in a visual
scene. In this way, only the major areas in a scene are treated. This selection of
relevant information in input stimuli is one of the most important characteristics
of visual biological systems that allows fast detection of predators and is very
important for perpetuation and evolution of the species [1]. Tsotsos [2] analyzed
the computational complexity of visual analyses and confirmed that visual at-
tention is one of the most important contributions to optimize the quantity of
computations in visual systems.

For study purposes, visual attention can be divided into bottom-up and top-
down. Bottom-up visual attention is related to low level features of the scene,
such as: color, orientation and intensity. In this case, attention is not a conscious
process. Only subjective interest guides the observer attention. Whereas top-
down visual attention is very related with the observer desire or purpose. In
top-down mechanisms, attention is guided by a previous interest of the observer.

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 257–266, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Generally, models that require a previous process of learning are used to study
top-down visual attention. One of the most used are neural networks. To study
bottom-up visual attention, one of the most known models is saliency based
model proposed by Koch and Ullman [3].

In a saliency map model, a set of maps is combined to form one single map
that represents the most salient regions in the scene [4]. A salient region is the
region that attracts most attention. There are several ways to combine feature
maps. Itti et al [5] compared four strategies to combine feature maps: simple
normalized summation, linear combination with learned weights, global non-
linear normalization followed by summation and local non-linear competition
between salient locations. Almost all strategies used to combine feature maps
are based in learning processes to weight the maps. But none of them use an
optimization process like genetic algorithms.

As to each saliency map is associated a weight, top-down knowledge can be
used to guide the types of selected regions [6]. For instance, if one is searching
for red flowers in a garden picture, the search accuracy can be improved if the
weight related with color has a higher value than the other features. So, the
system proposed here uses that knowledge to improve the quality of the search
and guide the attention to look for previously known objects via an optimization
process.

This paper proposes a novel strategy for optimizing the weights of a feature
based attention mechanism. This strategy uses genetic algorithms to optimize
the arrangement of weights that gives the best results when compared with a
weightless map. Optimization is followed by detection and comparison phases.
In the detection phase, a saliency map based on three features (color, intensity,
and orientation) is constructed. After the detection phase, the resulting salient
regions are compared with some previously selected regions and the comparison
results are used in the next optimization phase.

The problem of mapping an image region that raises the human visual at-
tention into a function that could be optimized is a complex task. Even when
using the linearly weighted saliency model used in this work, there is not a clear
way of doing that mapping. Besides that, the quantity of possible feature map
combinations is very large and adds more complexity to the problem treated
here. Therefore, we chose to use a method that has been used to treat those
types of problems: genetic algorithm optimization, which are most appropriate
for optimizing complex models in which the location of a global optimum is a
difficult task [7].

There are many works that use some kind of evolutionary or genetic approach
to treat visual attention [8], [9], but none of them uses a genetic algorithm to
weight features maps like the strategy proposed here. Stentiford [8] presents a
strategy that maps pixel neighborhoods to individuals in a genetic population.
This population is evolved and performs a discrimination between salient and
non-salient image features. Treptow et al. [9] present an evolutionary algorithm
that uses the Adaboost framework to find new features and to reduce feature
search.
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The paper starts with a description of the overall optimization architecture
proposed, which includes a description of the visual attention mechanism that
was employed. This is followed by an objective (numerical) and subjective (based
on some test images) evaluations. Finally, some conclusions and proposals of
future work are presented. This paper presents and extension of a previous work
[10] by giving an improved description of the proposed approach and providing
an expanded set of results that uses images publicly available.

2 Proposed Approach

The approach receives as input a reference set of static color images, digitized
at 352 × 240 pixels. The images are grouped in two sets: one containing only
objects and other with people. In the set that contains people we consider the
faces like the regions that raise more attention. So, in these images, human
faces are marked manually by the selection of ears, eyes, mouth and nose of
the present faces in the image. After that a file containing the coordinates of
these parts is created. In the images without people, all the objects or regions
that would intuitively raise the attention of human observers are also manually
identified. These images are transfered to remote machines in a grid during the
optimization process.

Since the size of the input space for optimization is relatively high (a total
of 27 continuously valued weights), a computational grid was employed to cut
down the processing time from several weeks on a single computer to just a
few days using a grid of dozen computers. The reference input images (100 for
people and 80 for objects) are divided into subsets for grid processing. The
detection module (which is actually the attention mechanism) will concurrently
run on different machines of the grid and process each of the reference image
subsets producing as output a list of the most salient points found on those
images. A genetic algorithm (which is the optimization module itself) provides
the different weight combinations for the attention mechanism. The algorithm
uses a cost function that is the percentage of salient points needed to find the
previously labeled regions on the reference images. This function is minimized
throughout the several iterations of the algorithm. Figure 1 illustrates the whole
process.

2.1 Optimization Module

The optimization module is composed by a genetic algorithm that generates sets
of weights to be applied in a combination of feature maps. An initial population
of weights is randomly generated. After that, this set is sent to remote machines.
A group of images and the detection module is sent to remote machines too. In
the remote machines, the detection and evaluation processes take place.

When the detection and evaluation processes are finished, the results are sent
to the optimization module. Then, the genetic algorithm tries to minimize the
number of points needed to find a set of previously selected regions.
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Fig. 1. Optimization architecture of the proposed approach

2.2 Detection Module

The detection module is an adaptation of the model proposed by Itti et al [11].
It uses a saliency-based attention mechanism (bottom-up), which is constructed
from a Gaussian Pyramid and locally oriented neighborhood operators. Figure 2
shows a diagram of the detection module.

Initially, three types of primitive visual features are extracted: color, intensity
and orientation. After that, four color channels are created (R to red, G to green,
B to blue and Y to yellow). Finally, for each channel a Gaussian Pyramid with
five levels is created. The Gaussian Pyramid is composed by pass-low filtered
versions of the Gaussian convolution applied to the input image. The pyramidal
representation is used to get image samples that do not have undesirable details.

To obtain the center-surround differences, it is necessary to create Steerable
Pyramids. A Steerable Pyramid is a multi-scale and multi-orientation decompo-
sition of an image. In this type of decomposition, an image is subdivided in a
set of sub-bands localized in different scales and orientations. Center-surround
operations are implemented as differences among scales. The center is a pixel
in the scale c = {2, 3, 4} and the surround region is the correspondent pixel
in the scale s = c + δ with δ = {3, 4}. Difference between two images is ob-
tained by image interpolation in the scale and point-to-point subtraction. The
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Fig. 2. Detection module
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utilization of several scales allows multi-scale feature extraction. After execution
of center-surround differences, the feature maps are generated.

Once the feature maps are obtained, they are summed up to produce the
Conspicuity Maps: I for intensity, C for color and O for orientation, in the scale
σ = 4. The motivation for create three separated channels (I, C,O) is the hypoth-
esis that similar features compete for saliency, while different features indepen-
dently contribute for Saliency Map [1]. The three Conspicuity Maps contribute
to saliency. The purpose of the Saliency Map is to represent salient regions in
the image by scalar quantities and guide selection of regions based on spatial
distribution of saliency.

Before summing the Conspicuity Maps, the set of weights got from the genetic
algorithm are applied. Each combination is applied to all images and the results
are written to a file. These weights are applied to the Conspicuity Maps, Feature
Maps and Saliency Maps. After the subject detection, the results are compared
with the previous manually selected ones. The result of this comparison is re-
turned back to the optimization module.

A pixel sorting scheme (in descending order of saliency) was implemented
to select regions of interest. A region around a coordinate of interest (which
corresponds to the pixel with greater value) in the Saliency Map is selected.
The radius of this region is called by the inhibition radius. In the experiments
presented in this work we used inhibition radius of 2 pixels. Besides selecting the
region of interest, that region is filled with null intensities. This prevents that
the same region of interest be treated another time.

To prevent the same region of interest being selected more than one time,
only part of objects are located, a micro-saccadic movement strategy was im-
plemented. For each region of interest displacements are executed, changing the
focus of attention to several neighboring points.

A previous work [12] employed an averaging computation in order to obtain
the final Saliency Map, and to perform the required visual task using this map
(e.g. locating traffic signs, locating faces, etc). In this paper, however, we tune
the attention system by changing a set of weights that are used to produce
the final attention map, in such a way that the given visual task is performed
better. These weights are obtained by an experimental process. In that process,
different weights are attributed to each map and results are optimized by the
genetic algorithm until it stops.

2.3 Labelling the Regions of Interest

In order to guide the optimization process and to verify if the results of the auto-
matic detection module are satisfactory, one tool was implemented to help man-
ually select objects in images. Satisfactory results are those in which a smaller
number of most salient points are required to fall into a set of previously selected
image regions.

2.4 Verification Process

After the optimization module achieved a convergence plateau and returned the
set of optimized weights, a verification process is performed. That process is
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performed with images obtained from Internet websites and that were not used
in the optimization process.

The verification process is described as follows. Regions of images that raise
attention of the observer are manually selected and their coordinates are saved.
After that, the visual attention system is applied to those images and the coor-
dinates of all points that raise attention are saved. Then a program is used to
verify if the points returned by the attention system are contained in the regions
manually selected. This process is done in two ways: using the optimized weights
and without using them.

3 Experiments and Results

The purpose of the experiments was to optimize the weights in such a way that
the system could find the subject of interest in the images with the least number
of points. As mentioned before, the experiments were done using two types of
images: with and without people. The goal of using different types of images is
to check the generalization capacity of the genetic algorithm.

In this work, grid computing and a genetic algorithm library were used. The
computational grid framework OurGrid (http://ourgrid.org/) was used to re-
motely process the detection module. The GAlib (http://lancet.mit.edu/ga/) ge-
netic algorithm library was used to make our system. Almost all the code was
done in C++ language, the only exception was the manual detection module and
the methods related to the grid communication that were done in Java language.

The optimization (or reference) set of images containing people has 100 images
and the set of the images without people has 80 images. These images were
obtained in an environment that contains great quantity of dispersive elements
that can misguide the subject detection process. The image set without people
is formed by indoor images and natural environments.

The genetic algorithm uses overlapping populations. Using a previous estab-
lished percentage, the algorithm creates a new population from a percentage
of the best individuals in the early population and from a percentage of the
crossovers and mutations of the early population. The algorithm goal is to de-
termine the best mean of points needed to find all previous manually selected
regions.

After the optimized weights were found, a verification process was performed.
This process was done using 100 images with people and 100 images without
people that were not in the optimization set. These images were obtained from
Internet websites. In the image set with people, faces regions of people were man-
ually selected. In the other image set, regions that raise attention in accordance
with some features (color, intensity, and orientation) were selected. After that,
a verification of the most salient points found by the visual attention system
that was contained in the faces regions was performed. Fig. 3 shows the results
obtained using an inhibition radius of 2 pixels.

The image set with people used in the verification process contains 194 people
faces. From the graph of Fig. 3 (left), one can see that using only 1% of the total
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Fig. 3. Region location results for images with (left) and without (right) people, when
using the corresponding optimized saliency map weights

Fig. 4. Results of the attention mechanism with optimized (1st column) and standard
(2nd column) weights on arbitrary test images

number of image points the system using optimized weights found points of
interest in 152 (78%) people faces previously selected. In the image set without
people, 258 objects, or regions that raise attention, were manually selected. The
graph from Fig. 3 (right) shows that using 1% of the total number of image
points the system using the optimized weights found points of attention in 222
(86%) objects or regions.
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Fig. 5. Results of the attention mechanism with optimized (1st column) and standard
(2nd column) weights on test images available at http://ilab.usc.edu/imgdbs/

In Fig. 3, it is clear that the use of optimized weights gives an improvement in
the task of finding the subject of images. Besides that, optimized weights guide
the subject detection in such a way that the user can previously establish what
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kind of objects he wants. The graph from Fig. 3 (left) shows an improvement
of about 20% to the minor number of points and of about 30% to the greater
number of points, and the graph from Fig. 3 (right) shows an improvement of
about 19% to the minor number of points and of about 23% to the greater
number of points.

For a subjective evaluation, we have applied our optimized attention mecha-
nisms to a number of test images. Figures 4 and 5 contains these results. In Fig.
4, the images were arbitrarily chosen from the Internet. In Fig. 5, we used images
from the Miscellaneous artwork, posters and portraits (first image) [11], Miscella-
neous outdoors (second) and Color images with German traffic signs (third and
fourth images) [13], all available for download at http://ilab.usc.edu/imgdbs/.
The black crosses in the images indicate the 10 most salient points returned by
the visual attention system, using an inhibition radius of 10 pixels. The inhibition
radius of 10 was used to help the subjective analysis of the images (reducing the
excessive agglomeration of salient points). In these figures, there are two types
of images: Images in which the regions of interest are the faces of people, and
images in which the regions of interest are general objects. Comparing the results
with and without optimized weights one can perceive the improvement brought
by the former.

4 Conclusions

This paper presented the application of genetic algorithms in a visual attention
system. The genetic algorithm was used to optimize weights that were applied
in a saliency map system. These weights were applied to construct the Saliency
Map. To obtain results in satisfactory time, the experiments were executed in a
computational grid due to the number of free parameters to optimize.

Although the saliency map system used was simple (using only 3 features),
the results were very satisfactory. The results using the optimized weights pre-
sented an improvement of about 20% against the results of the system without
optimized weights. Another characteristic of the experiments presented is that
all images used were obtained in arbitrary (mostly distracting, full of low level
details) environments. These environments acted misguiding the system in some
cases.

Experiments and results shown here have interesting areas for further im-
provement: only three features were considered in the saliency map model (more
features could be added in the future), and there are many aspects of the evolu-
tionary process that could enhance these results, including, for instance, selection
methods, diversity maintenance, multi-objective techniques, and the use of au-
tomatically defined functions. Future work will further examine these issues and
their application to visual attention systems.
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Abstract. We introduce a new type of smart cameras. These cameras
have an embedded orientation sensor which provides an estimate of the
orientation of the camera. In this paper, we describe our prototype orien-
tation sensor and propose some methods for the calibration of the whole
camera. We then show two applications. First, the camera is used to
create oriented spherical panoramas. Second, it is used for image based
localization, in which only the position of the camera has to be retrieved.

1 Introduction

Many researchers are working on methods providing the camera pose (orientation
and translation) from the image. These methods use either some knowledge
about the observed scene (for example, a 3D model) or more than one image
in order to determine the camera pose and a partial model of the scene at the
same time. In the first case, the recovered pose is relative to the 3D model. In
the second one, the different poses are generally expressed as a function of the
first pose and are defined up to a unknown scale.

In this paper, we propose to use an electronic device fastened to a camera
in order to determine its orientation. This absolute orientation is defined in a
fixed orthonormal world coordinates system in which two axes correspond to the
vertical and magnetic north directions.

Some commercial digital cameras contain an embedded orientation sensor.
This sensor is not of the same type that the one described here, as it only allows
to determine if the captured image is in portrait or landscape orientation. Our
sensor, on the other hand, allows to know in which direction each pixel of the
camera is pointing.

In [7], a system combining a camera and inertial sensors is proposed to detect
the vertical reference. The authors of [8] proposed a more advanced solution,
using both inertial sensors an gyroscopes. The magnetic sensors we use do not
deviate in time as gyroscopes do, and we can so expect to obtain the correct
absolute orientation whereas they can only expect a relative one.

The paper is organized as follows. First, we describe the camera and the ori-
entation sensor. Second, we propose some methods for the calibration of the
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complete sensor. Third, we use the camera to create automatically omnidirec-
tional oriented panoramas. Finally, we show how this camera can be used for
image based localization and conclude with some perspectives.

2 Description of the Camera

Our aim was to create an handheld and low cost smart camera. The figure 1
shows the resulting prototype whose dimensions are 100*60*22mm and cost is
about 150 USD. Both can be greatly reduced if the sensor is mass produced.

Fig. 1. The complete camera whose
thickness is about 2cm

Fig. 2. The orientation sensor and its
different axes of sensor. Both a1 and
Yb are orthogonal to the main board.

2.1 The Orientation Sensor

The figure 2 shows the orientation sensor prototype we have built and integrated
inside the camera. Its dimensions are 45*60*10mm. It is mainly composed of low
cost integrated Micro Electro Mechanical Systems (iMEMS), namely accelerom-
eters and magnetometers.

We use the magnetic sensors HONNEYWELL HMC1051Z and HMC1052 in
order to have a 3D measurement of the magnetic field (on the axes a1,a2 and
a3 shown on the figure 2). We also use two double axis accelerometers MEMSIC
MXD3334UL mounted orthogonally to sense the gravity. Each MXD3334UL
includes 2 orthogonal accelerometers. A single chip would lead to inaccuracies
when one of the two sensor’s axis is near the gravity, because each measurement
corresponds to the sinus of the angle between the sensor axis and the horizontal
plane. When this angle is near 90 degrees, a change of orientation of a few degrees
cannot be detected as its sinus changes very few. Using at least 3 sensors allows
to always have some sensor axes far away from the gravity axis and hence ensure
more accuracy. Finally, the acceleration is sensed on the axes Xa, Ya, Xb and
Yb as shown on the figure 2.

A Microchip PIC 18F252 microcontroller gathers the different sensors’ mea-
sures and send them to the computer using a USB connexion thanks to the
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FTDI FT232BM circuit. The complete set of measures is sent at 100Hz allowing
a realtime orientation estimation in our computer vision task.

It is noticeable that the sensor provides redundant information as only 3
parameters (the rotations) have to be retrieved from 7 measurements. This allows
to compute a more accurate orientation and to detect some incoherences such as
parasite accelerations due to movements or magnetic field perturbations. Hence
a confidence measure in the retrieved orientation is provided.

2.2 The Camera

The imaging sensor can be either a digital camera or a Webcam. In our prototype,
we use the electronic parts of a Logitech QuickCam Pro 4000 at a resolution of
352*288 pixels and at 15 fps. This camera provides the ability to control the
shutter speed and gain. Moreover, our model has very low radial distortions,
and so can be well approximated by a simple pinhole model.

3 Calibration

3.1 The Orientation Sensor

The data provided by the different sensors have to be corrected in order to
determine the orientation. The adequate correction is computed thanks to a
calibration procedure that we describe hereafter.

Each magnetometer provide an analogous output. Offsets and gains have to
be applied to each channel to ensure that the norm of the magnetic field is
approximately constant when the sensor is rotated in any direction. They are
estimated by acquiring a sequence of measurements while the sensor is rotating.
A cost function whose value is minimal when the variance of the corrected norm
is the lowest is then minimized to find the best set of parameters.

Oppositely, the accelerometers needs to be calibrated in static positions to
avoid parasite accelerations. The orientation sensor is held in different known
orientations and many measurements are done on each channel to compute mean
values corresponding to extremal orientations (vertical and horizontal on each
axis). The outputs of these circuits are Pulse Width Modulated with a duty cycle
between 20 and 70%. The calibration consists in the estimation of a rectification
function that provides a duty cycle of 20 or 70% when the sensor is held vertically
and of 50% when the sensor is held horizontally.

The next calibration step is optional and only provides better accuracy. It
consists in the estimation of the 3D direction of the earth magnetic field at the
current location. The field has a different vertical component depending on the
latitude on earth. The angle between the magnetic field and the horizontal is
estimated by holding the sensor horizontally and deducing the angle directly
from the measures given by the sensor.

Once the calibration has been achieved, a first estimate of the orientation is
computed using only two accelerometers and a 2D projection of the magnetic
field to the estimated horizontal plane. The orientation is then refined by taking
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into account the data from the 7 sensors. The orientation is parameterized with
a quaternion to avoid discontinuity problems and gimbal lock caused by Euler
angles parametrization.

Because of the noise in the measurements, we apply a temporal filter to in-
crease the stability and accuracy. Our first idea was to implement a Kalman
filter as proposed in [2], but as we have no idea of the movement of the sensor
at a given time, we would have modeled it as static. Under this condition, the
Kalman filter is equivalent to a standard least squares estimator that we have
preferred to implement. Let w defines the size of a temporal window in which
the measures of the sensors previously acquired between times t − w and t are
used to compute the orientation at instant t. The samples in this windows are
weighted differently in order to make the samples which are close in time to the
last acquired sample more influent. Increasing (resp. decreasing) w makes the
detected orientation more stable (resp. reactive). Values of w between 10 and 20
have provided good results in our applications.

3.2 The Camera and Its Relative Orientation

Once the orientation sensor has been calibrated, it is necessary to calibrate the
whole camera, ie. estimate its internal parameters and orientation relatively to
the orientation sensor.

This is achieved by acquiring pictures Ij of a checkerboard pattern whose one
axis is oriented to the magnetic north. We then use the Jean-Yves Bouguet’s
Complete Camera Calibration Toolbox for Matlab [5] to estimate the pose of
the camera for each image (Rij, T ij) and its intrinsic parameters. Using the
orientation given by the orientation sensor for each image Rsj, we then compute
a rotation RΔ which minimizes

∑n
j=1(RΔRij − Rsj)2 over the n images. This

provides the relative orientation of the camera much more accurately than the
measure from only one view. Moreover, in order to avoid bias in the estimation
of RΔ, it is better to sample the complete space of possible orientations.

The final detected standard deviation between RΔRij and Rsj is about 1.5
degree and the max deviation is about 4 degrees.

4 Oriented Panoramas

4.1 Their Inherent Advantages

The most obvious applications for our camera is the automatic stitching of im-
ages to create panoramas. It consists in generating a panoramic image from the
different images acquired by the camera without needing to detect some common
points in the different images, as Brown and Lowe do in [9]. Our approach has
mainly four main advantages, thanks to the orientation sensor.

First, the reconstructed panoramas are oriented, so the horizon of the scene
is projected on a straight horizontal line and the first column of the panoramic
image can point to the magnetic north for example.
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Second, as the orientation of the camera is known a priori, homologous points
detection is not needed to stitch the images. This allows to deal with panora-
mas which contains big portions of non textured areas whose images cannot be
automatically stitched by standard methods.

Third, the knowledge of the orientation simplifies greatly the creation of com-
plete spherical panoramas. The problem of closings usually appears when one
try to stitch images under a full 360 degrees rotation of the camera. Because
of the accumulated errors, it is quite hard to stitch the last image and the first
one. This problem can be avoided by using bundle adjustment to estimate the
whole solution for the stitching instead of stitching iteratively new images to the
panorama as proposed in [1] but this method requires a good initial guess for
the whole correspondances.

Finally, our camera allows to deal very efficiently with scenes containing mov-
ing object which are outliers in the panorama reconstruction. Methods generally
used to compute panoramas of such scenes involve a background/foreground
segmentation in order to detect the camera orientation relatively to the back-
ground. With our sensor, this is done very simply by detecting zones in the
images whose movements are incoherent with the orientation provided by the
orientation sensor. The pixels of these zones are labeled as foreground and are
discarded in the panorama reconstruction.

4.2 How to Create the Panoramas

We recall that a panorama can be created from images if the viewpoint of the
camera does not move (or at least, its displacement should be very small com-
pared with the distance to the observed scene), id. that the images are only
related by a rotation of the camera. In this paper, we consider that the intrinsic
parameters of the camera do not change between the images.

Using the orientation provided by the orientation sensor, it is possible to
project each image of the camera to the right location on the panorama. How-
ever, due to imprecisions in the orientations of the different images, the different
images do not exactly connect together. We first show how to obtain an approx-
imate panorama in real-time and then propose to use the bundle adjustment
method to improve its quality.

The resulting panorama we create is spherical, id. each pixel of the resulting
image corresponds to a point on the sphere whose spherical coordinates are
related to the pixel position. Any surface could be used to sample the image but
the sphere allows an omnidirectional field of view.

Let the point Pi be one 3D position on the sphere corresponding to a pixel
i. Let the quaternion corresponding to the orientation of the image j be defined
by Qj = [abcd]T . The j indices are omitted in the quaternion parameters for
readability purpose. The corresponding rotation matrix Rj is defined in the
equation (1).

Let the camera matrix K be defined in the equation (2), αu (resp. αv) be-
ing the horizontal (resp. vertical) focal length and [pupv]T being the position
of the principal point. The points Pi = [xi yi zi ]T of the sphere is projected
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in the image j to the homogeneous point pHij = [uij vij wij ]T whose inho-
mogeneous coordinates are pij = [uij/wij vij/wij ]T obtained by the function
pij = D(pHij). The image pij of the point Pi in the image j is obtained as shown
in the equation (2).

Rj =

⎡⎢⎢⎣
1 − 2 b2 − 2 c2 2 ab − 2 cd 2 ac + 2 bd

2 ab + 2 cd 1 − 2 a2 − 2 c2 2 bc− 2 ad

2 ac − 2 bd 2 bc + 2 ad 1 − 2 a2 − 2 b2

⎤⎥⎥⎦ (1)

K =

⎛⎝αu 0 pu

0 αv pv

0 0 1

⎞⎠ ; pij = D(KRjPi) (2)

If pij lies inside the image boundaries and if the z component of RjPi is
positive (id. the camera is facing the point), then the point Pi is viewable on the
image j and the RGB values of pij are used in the panorama for the pixel i.

This computation is achieved for the whole sphere at each frame in order to
update the panorama. The figure 3 shows an image from the camera and the
reconstructed low resolution (1024*512 pixels) oriented panorama obtained in
real time from a sequence of approximately 10 seconds. No post processing is
applied; the panorama only results from the projections of the different images
to the sphere. The left column of the reconstructed panorama points to the north
and the horizon of the scene corresponds to an horizontal line in the panorama.
Note the narrow field of view of the camera. The scene contains large un-textured
areas on the roof, walls and a over exposed area at the window. The images of
these parts would be impossible to stitch automatically as they do not contain
any discriminant points.

Fig. 3. Left: An image from the camera. Right: The reconstructed oriented panorama.
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4.3 Refinement of the Panoramas

The bundle adjustment is used to improve the estimation of the different images
orientations. This has already been proposed in [1] but they were not using the
a priori knowledge provided by the orientation sensor. The reader can find more
information about the bundle adjustment techniques in [6]. This problem can be
stated as an iterative minimization of a cost function f defined in equation (3).
A detected projection of the point i in the image j is denoted p̃ij = [ ũij ṽij ]T

and is called an observation. Each observation of a point projection provides 2
residuals (resu and resv).

f =
n∑

j=1

(
m∑

i=1

(||D(KRjPi) − [ ũij ṽij ]T ||2)) =
n∑

j=1

(
m∑

i=1

(res2
u + res2

v)) (3)

Not all the images (the camera is acquiring images at 15fps) are needed to
refine the panorama, so the set of images have to be decimated in order to avoid
useless computations. The decimation is very simple and consists in selecting
images such that they have at least half their surface in common with the other
images. The approximate orientation from the sensor is accurate enough to com-
pute the set of images to keep.

The computations cannot be achieved on every pixels of the retained images
and so some of them have to be selected. We use the famous Harris corner
detector [3] to detect the projections of corners. Thanks to the knowledge of
the approximate orientation of each image, there is no need to use descriptors
to detect correspondences between the points in the different images. Instead of
this, we simply project the detected Harris points of the different images to the
sphere in order to detect the correspondences. A correspondence is established
if some projected points from different images are closer than a threshold and if
there is no other Harris points in the same images too close in their neighborhood.

Once the correspondences have been detected, the cost function is iteratively
minimized. This way, we refine the intrinsic parameters, the quaternions Qj and
the Pi. The convergence is very fast in general and the computation can be
achieved very efficiently thanks to the sparse structure of the jacobian. As the
accuracy of the orientation sensor is known, we define some limits on the possible
values for the quaternion parameters during the iterations. If a quaternion exceed
these limits, we take it back to the limit. This ensure that the orientations of
the different images cannot deviate too much during the bundle adjustment.

Some images contain no Harris point at all. These images will not have any
observation and will not be related in the jacobian matrix. So their orientation
will not change. Hopefully, the images which do not contains Harris point are
likely to be untextured, so small misalignments due to the orientation sensor
inaccuracies are not usually noticeable.

Finally, a post processing is applied in order to smooth the discontinuities at
the image boundaries.

The figure (4) shows the results of the bundle adjustment and post processing
on a part of the panorama. Only five iterations where necessary to adjust the
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(a)
(b)

Fig. 4. (a) A part of the panorama from 4 images before the bundle adjustment and
post processing. (b) The same part after refinement and post processing.

whole panorama . Only four images are rendered here in order to see the details.
Note that the discontinuities are attenuated in the refined image.

We have not deal with radial distortions because our camera does not require
it. However it can be included very easily in the model, both in the calibration
and bundle adjustment steps.

5 Image Based Localization

Our camera can also be used as an image based substitute for the GPS inside
buildings, where the satellite signals cannot be received. In our previous works,
we were using catadioptric camera in order to achieve this task. However, these
cameras are quite expensive and fragile. Their size do not really allows to use
the term ”handheld” and special care must be taken in order to avoid scratches
and dust that reduce the image quality. Finally, their resolution is lower than
the one available from stitched images and the exposure has to be set for the
whole scene, resulting in over or under exposed areas. Their main advantage
is their ability to acquire more than an hemisphere of the scene in only one
shot. Another advantage is that they allow to retrieve the orientation relatively
to the horizon using the projection of vertical lines which are numerous inside
buildings. However, the orientation to the magnetic north obviously cannot be
determined automatically from the image.

In this section, we propose a very simple system to illustrate the ability of our
camera. A database B of images IP of the building in which we want to localize
our camera (from its image IC) is acquired using a catadioptric camera with a
parabolic mirror. The acquired area is sampled at a given altitude and every
30cm in an horizontal plane. The paracatadioptric camera is held horizontally
and with the columns of the image sensor pointing to the north (using a compass)
so the database is at least approximately oriented.

The localization of IC is achieved after computing a rectified image IR (which
is of the same type than IP ) and finding the closest image IP in B. Instead of the
sphere (as in the section 4), the surface of the paracatadioptric image is sampled.
This way IC is projected to a portion of a paracatadioptric image IR and can be
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(a) (b) (c)

Fig. 5. (a) The image IC from the camera to be localized. (b) The projection IR of the
image to the surface of the paracatadioptric mirror. (c) The closest panoramic image
IP found in the database.

matched with images from B. Thanks to the orientation knowledge, IR should
superpose to a IP acquired from the same location.A color rectification is also
applied in order to make the images matchable.

In order to avoid costly comparisons of IR with all the IP , a first detection
is achieved using corners detected by the Harris corner detector. The database
is processed offline. Local descriptors are computed to describe every corner
points. A famous descriptor widely used in the computer vision community is
the Scale Invariant Feature Transform (SIFT) from David Lowe [4]. It provides
very good results for matching image points related by affine transformations.
However, thanks to the orientation sensor, such a complex descriptor is useless,
as the points are observed in similar orientations and from very close positions
(less than 20cm). In this experiment, we only use square windows of pixels to
describe the points. These descriptors are simpler to compute and are also more
discriminant, as they do not give good matching scores to couples which are
related by affine transformation.

When an image IC has to be localized, the Harris points HC are detected in
IC using a variable size for the gaussian filter in order to deal with the varying
resolution of the paracatadioptric camera. IC and HC are then projected to the
paraboloid and the descriptors corresponding to the projected HC are computed
in IR.

In order to match the images efficiently, we use a decomposition of the im-
ages in annular portions of sectors. The potential Harris points correspondences
between IR and the whole set of IP are only compared if the points lie in the
same or one of the 8 neighbor portions. The computed score is a ZNCC measure
between the descriptors, which allows to deal with light variations. Harris points
which do not have any correspondence get the worst score. The partial corre-
lation score computed for an image IP is the sum of the scores of the different
points.

A final verification step is applied in order to check the correspondences which
have the highest scores, and to decide between different solutions if needed (when
many correspondences have nearly the same scores). This step consists in trying
to match every pixels of IR with one pixel in IP . The ZNCC score is computed
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for each pixel of the IR with pixels from IP in a centered window neighborhood.
The lowest score is kept for each pixel, allowing small displacement in the images.
The resulting score for each image correspondence is the sum of the pixels’ scores.

During our preliminary experiments, we have observed that this simple local-
ization is robust to occlusions up to 30% of the surface of the image. When we
integrate many images IR to create a paracatadioptric panorama from the cur-
rent location, the robustness of the localization is greatly increased. Obviously,
the localization fails if the camera is pointed only to a region which is not dis-
criminant, such as an uniform wall for example.

The figure 5 shows an example of the method. Less than 5 seconds are neces-
sary to retrieve the correct IP from a database of more than 200 images using a
pentium 4 computer. The panoramic images were divided in 10 angular sectors,
each one divided in 4 portions.

6 Conclusions and Perspectives

As far as we know, this paper presents the first handheld camera containing a
complete absolute orientation sensor. We have shown that this camera is com-
pact, low cost, practical and quite easy to calibrate. This sensor could be im-
proved to obtain more accurate measures but it is sufficient for the proposed ap-
plications. We believe that this kind of camera have many other applications and
should interest many researchers. Future work will focus on improving the im-
age based localization system in order to avoid the dense sampling of panoramic
images while acquiring the database. We are trying to use either a reconstructed
3D model of the scene or a sparse set of panoramic images.
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Abstract. In this paper we use different decimation strategies in irreg-
ular pyramid segmentation framework, to produce perceptually impor-
tant groupings. These graph decimation strategies, based on the max-
imum independent set concept, used in Bor̊uvka’s minimum spanning
tree based partitioning method, show similar discrepancy segmentation
errors. Global and local consistency error measures do not show big dif-
ferences between the methods although human visual inspection of the
results show advantages for one method. To a certain extent this subjec-
tive impression is captured by the new criteria of ’region size variation’.

1 Introduction

It is suggested in [1] to bridge and not to eliminate the representational gap, and
to focus efforts on region segmentation, perceptual grouping, and image abstrac-
tion. The segmentation process results in ’homogeneous’ regions with respect to
the low-level cues using some similarity measures. Problems occur since the ho-
mogeneity of low levels does not always lead to semantically plausible regions and
the difficulty of defining the degree of homogeneity of a region. Thus, using only
low-level vision cues cannot produce a complete final ’good’ segmentation [2],
since there is an intrinsic ambiguity in the exact location of region boundaries
as well as the problems in defining the context of a digital image. Although
the methods that do not use the context of the image cannot produce a ’good’
segmentation, they can be valuable tools in image analysis just like efficient
edge detectors are. Hence, the low-level coherence of brightness, color, texture
or motion attributes should be used to come up sequentially with partitions [4].
A grouping method should have the following properties [3]: capture perceptu-
ally important groupings (encoding global views of an image); be highly efficient
(running in time (near) linear), and create hierarchical partitions [4]. Computer
vision problems could benefit from an efficient computation of segmentation.

Regular image pyramids are an efficient representation for fast grouping and
access to image objects in top-down and bottom-up processes. However, it is
shown that regular image pyramids are confined to globally defined sampling
grids and lack shift invariance [5], and that they have to be rejected as general-
purpose segmentation algorithms. To avoid these drawbacks, [6] proposes irregu-
lar image pyramids (adaptive pyramids), where the hierarchical structure of the
� Supported by the Austrian Science Fund under grants P18716-N13 and S9103-N04.
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pyramid is not a priori known but recursively built based on the data. [7] shows
that irregular pyramids can be used for segmentation and feature detection.

In the same sense, segmentation can be evaluated purely1 as segmentation
by comparing the segmentation done by humans with those done by a partic-
ular method [9]. There is a consistency of segmentation done by humans, even
thought humans segment images at different granularity (refinement or coarsen-
ing) (Fig. 2, rows 3 − 4). This refinement or coarsening could be thought of as
hierarchical structure of the image, i.e. the pyramid. Thus in [9] a segmentation
evaluation framework that does not penalize this granularity is used (Sec. 5).

In order to achieve efficiency in image partitioning, Bor̊uvka’s algorithm[10]
is combined with dual graph contraction (DGC) [11] for building in a hierar-
chical way a minimum weight spanning tree (of the region)(Sec. 3). We use the
idea of building a minimum weight spanning tree (MST) to find region borders
quickly and effortlessly in a bottom-up way based only on local differences in a
specific feature. Different stochastic strategies (MIS, MIES, D3P, Sec. 2) for
contraction kernels are used within the DGC, thus yielding different partitioning
methods. We evaluate the normalized cut [4](NCutSeg) and the method based
on the Bor̊uvka’s MST [12](Bor̊uSeg) (all three flavors depending on the deci-
mation strategy used: MIS, MIES or D3P (Bor̊uSeg (MIS), Bor̊uSeg (MIES)
and Bor̊uSeg (D3P)). We compare these methods following the framework of [9],
and show that the methods have similar discrepancy error. Although, qualita-
tive inspection of the produced segmentations showed differences between the
methods which the pixel-based discrepancy measures did not show (Sec. 5).

2 Irregular Graph Pyramid

In a regular image pyramid, the number of pixels at any level k is λ times higher
than the number of pixels at the next (reduced) level k+1. The so called reduc-
tion factor λ is greater than one and it is the same for all levels k. If s denotes the
number of pixels in an image I, the number of new levels on top of I amounts to
logλ(s). This implies that an image pyramid is build in O[log(image diameter)]
time [8], as well as algorithms running on this representation (Fig. 1a).

An irregular pyramid should be used instead of regular ones for segmentation
methods [6]. Irregular pyramids can perform all the operations for which their
regular counterparts are employed [13]. Each level represents a partition of the
pixel set into cells, i.e.connected subsets of pixels. The construction of an irregular
pyramid is iteratively local [14]. On the base level (level 0) of an irregular pyramid
the cells represent single pixels and the neighborhood of the cells is defined by
the 4(8)-connectivity of the pixels. A cell on level k + 1 (parent) is a union of
some neighboring cells on level k (children). This union is controlled by so called
contraction kernels (CK) [11]. Every parent computes its values independently
of other cells on the same level. We assume that there is a highest level h.
Although adaptive pyramids overcome the drawbacks of their regular ancestors
and although they grow to a reasonable height as long as the base is small,

1 The context of the image is not taken into consideration during segmentation.
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Fig. 1. a,b) Pyramid concept, and c) partition of pixel set into cells and representation
of the cells and their neighborhood relations by a dual pair (Gk, Gk) of plane graphs

they grow higher than the logarithm of base diameter with a larger input size
because the progressive deviation from the regular base favors configurations
that slow down the contraction process. As a consequence of the greater height
the efficiency of pyramids degrades. It is shown in [15] that this problem can
be resolved by a new selection mechanism (MIES) which guarantees logarithmic
heights. The maximal independent set concept from graph theory is the main
principle behind the methods to find the set of CKs: the maximal independent
vertex set (MIS)[14]; the maximal independent edge set (MIES) [15] and the
data driven decimation process (D3P) [16]. Irregular graph pyramids build by
MIS may have a very poor reduction factor and small reduction factors are
likely, especially when the images are large [15]. The MIES method guarantees
a reduction factor of at least 2.0, proved theoretically, but is applicable only if
the edges may be contracted in both directions as in the case of segmentation.
The D3P method is proposed to speed up the process of finding the set of CKs.

A level of the graph pyramid consists of a pair (Gk, Gk) of plane graphs
Gk and its geometric dual Gk (Fig. 1c). The planarity of graphs restricts us
to use only the 4-connectivity of the pixels. The vertices of Gk represent the
cells on level k and the edges of Gk represent the neighborhood relations of the
cells, depicted with square vertices and dashed edges in Fig. 1c. The edges of
Gk represent the borders of the cells on level k, solid lines in Fig. 1c, possibly
including so called pseudo edges needed to represent neighborhood relations to
a cell completely enclosed by another cell. Finally, the vertices of Gk (circles in
Fig. 1c), represent junctions of boundary segments of Gk. Moreover the graph is
attributed, G = (V,E, av, ae), where av : V → R

+ is a weighted function defined
on vertices and ae : E → R

+ is a weighted function defined on edges (similar
applies for Gk). The sequence (Gk, Gk), 0 ≤ k ≤ h is called irregular (dual)
graph pyramid and is build using Alg. 1. For simplicity of the presentation the
dual G is omitted afterward.

3 MST Based Segmentation Algorithm

The segmentation method is supposed to find natural groupings from the pixel
set. It is expected that, the measures of dissimilarity capture the expectation
that the similarity of pixels within a segment (internal) is less than the similarity
between pixels in different segments (external). The goal is to find the segments
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Algorithm 1 – Constructing Dual Graph Pyramid
Input : Graphs (G0, G0)

1: while further abstraction is possible do
2: select contraction kernels by an iterative local method

/* use MIS, MIES or D3P to determine contraction kernels */
3: perform dual graph contraction and simplification of dual graph (DGC [11])
4: apply reduction functions to compute content of new reduced level

Output : Graph pyramid – (Gk, Gk), 0 ≤ k ≤ h.

that have strong internal similarities, which optimize the criterion function. The
pairwise comparison of neighboring vertices, i.e. partitions, is used to check for
similarities [3]. This function measures the difference along the boundary of
two components relative to a measure of differences of components’ internal
differences, i.e. tries to capture the notion of contrast: a contrasted zone is a
region containing two connected components whose inner differences (internal
contrast) are less than differences within it’s context (external contrast).

Let G = (V,E, av, ae) be a given attributed graph. The goal is to find par-
titions P = {C1, C2, ..., Cn} such that these elements are disjoint and satisfy
certain properties. Moreover P is a partition of V ∈ G, ∀i �= j, Ci ∩ Cj = φ
and

⋃
Ci = V , ∀i = 1, ..., n. The graph on level k of the pyramid is denoted

by Gk. Every vertex u ∈ Gk is a representative of a component Ci of the parti-
tion Pk. The equivalent contraction kernel of a vertex u ∈ Gk, N0,k(u) is a set
of edges forming a tree on the base level e ∈ E0 that contracts the subgraph
G′ ⊆ G = N0,k(u) onto the vertex u.

The internal contrast of the Ci ∈ Pk is the largest dissimilarity of component
Ci i.e. the largest edge weight of the N0,k(u) of vertex u ∈ Gk:

I(Ci) = max{ae(e), e ∈ N0,k(u)}. (1)

Let ui, uj ∈ Vk be the end vertices of an edge e ∈ Ek. The external contrast
between two components Ci, Cj ∈ Pk is the smallest dissimilarity between
component Ci and Cj i.e. the smallest edge weight connecting the trees N0,k(ui)
and N0,k(uj) of vertices ui ∈ Ci and uj ∈ Cj :

E(Ci, Cj) = min{ae(e), e = (v, w) : v ∈ N0,k(ui) ∧ w ∈ N0,k(uj)}. (2)

The I(Ci) is the maximum of edge weights of the tree within Ci, whereas
E(Ci, Cj) is the minimum of weights of the edges (bridges) connecting com-
ponent Ci and Cj on the base level G0. Vertices ui and uj are representative of
the components Ci and Cj .

The pairwise comparison function B(·, ·) is defined as:

B(Ci, Cj) =
{

1 if E(Ci, Cj) > PI(Ci, Cj),
0 otherwise, (3)

where PI(·, ·) is the minimum internal contrast between two components, defined
as PI(Ci, Cj) = min(I(Ci) + τ(Ci), I(Cj) + τ(Cj)). For the function B(·, ·) to
be true, i.e. for the border to exist, the external contrast must be greater than
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Algorithm 2 – Construct Hierarchy of Partitions (Bor̊uSeg) [12]
Input : attributed graph G0.

1: k ← 0
2: repeat
3: for all vertices u ∈ Gk do
4: Emin(u) ← argmin{ae(e) | e = (u, v) ∈ Ek or e = (v, u) ∈ Ek}
5: Emin = Emin ∪ Emin(u)
6: for all e = (uk,i, uk,j) ∈ Emin do
7: if P I(Ck

i , Ck
j )−E(Ck

i , Ck
j ) is a strikt local maximum in the edge graph then

8: include edge e in contraction edges Nk,k+1

9: contract graph Gk with contraction kernels, Nk,k+1: Gk+1 ← C[Gk, Nk,k+1].
/* MIS, MIES or D3P used as decimation methods */

10: for all ek+1 ∈ Gk+1 do
11: set edge attributes ae(ek+1) ← min{ae(ek) | ek+1 = C[ek, Nk,k+1]}
12: k ← k + 1
13: until Gk = Gk−1

Output : a region adjacency graph (RAG) at each level of the pyramid.

the internal contrast. Note that B(·, ·) is a boolean comparison function and the
resulted segmentation is a so called crisp segmentation. Using the comparison
function B(·, ·) defined previously one can define the algorithm to build the
hierarchy of partitions (Alg. 2). Step 10 of this algorithm is the same as steps
2 − 4 of Alg. 1. For more details on steps of this algorithm see [12]. A threshold
function τ(C) is used since for small components C, I(C) is not a good estimate
of the local characteristics of the data, in extreme case when |C| = 1, I(C) = 0.
Any non-negative function of a single component C can be used for τ(C) [3].
We define τ to be a function of the size of C: τ(C) = α/|C|, where |C| denotes
the size of the component C and α is a constant. A large constant α sets the
preference for larger components. The size of |C| gets larger as the algorithms
proceeds hence τ → 0, i.e. the influence of the parameter decreases.

4 Segmentation Results

We start with the trivial partition, where each pixel (vertex) is a homogeneous
region. The attributes of edges can be defined as the difference between end
point features of end vertices, ae(ui, uj) = |F (ui) − F (uj)|, where F is some
feature. F could be defined as F (ui) = I(ui), for gray value intensity images,
or F (ui) = [vi, vi · si · sin(hi), vi · si · cos(hi)], for color images in HSV color
distance [4]. However the choice of the definition of the weights and the features
to be used is in general a hard problem, since the grouping cues could conflict
each other. In order to evaluate the methods in our experiments we choose simple
gray intensity difference, i.e. ae(ui, uj) = |I(ui)− I(uj)|. Note that the methods
are applicable to any color space as well. The segmentation results of NCutSeg2,
on gray value images are shown in Fig. 2 rows 4-5 of Bor̊uSeg (MIS) in rows
2 See [4] for NCutSeg default parameters, and for all Bor̊uSeg α is set to 500.
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6-7; of Bor̊uSeg (MIES) in rows 8-9 and Bor̊uSeg (D3P) in rows 10-11. These
methods use only local contrast based on pixel intensity values. As expected,
and shown in Fig. 2, segmentation methods, which are based only on low-level
local cues, can not create segmentation results as good as humans. Even thought
it looks like, the NCutSeg method produces more regions, actually the overall
number of regions in row 4, 6, 8, 10 and 5, 7, 9, 11 are almost the same, but
Bor̊uSeg produces more small regions. Anyway all the methods were capable of
segmenting the face of a man satisfactory (image #35). Bor̊uSeg did not merge
the statue on the top of the mountain with the sky (image #17). Humans do
segment this statue as a single region (see Fig. 2). All methods have problems
segmenting the see creatures (image #12). Note that the segmentation done by
humans on the image of rocks (image #18), contains the symmetry axis, even
thought there is no ’big’ change in the local contrast, therefore the NCutSeg
and Bor̊uSeg methods fail in this respect. None of the methods is ’looking’ for
this axis of symmetry.

5 Evaluation of Segmentations

For the evaluation, real world images should be used, since it is difficult to extrap-
olate conclusions based on synthetic images to real images [17], and the human
should be the the final evaluator. We use the empirical method for the evalua-
tion, which studies properties of the segmentations by measuring how ‘good’ a
segmentation is close to an ‘ideal’ one, by measuring this ‘goodness’ with some
function of parameters [18]. The difference between the segmented image and the
reference (ideal) one is used to asses the performance of the algorithm [18], and
measured by a discrepancy method. The reference image could be a synthetic
image or manually segmented by humans. Higher value of the discrepancy means
bigger error, signaling poor performance of the segmentation method. In [18],
it is concluded that evaluation methods based on “mis-segmented pixels should
be more powerful than other methods using other measures”. In [9] the error
measures used for segmentation evaluation ‘count’ the mis-segmented pixels.

Segmentations made by humans are used as a reference for benchmarking
segmentations produced by different methods. The idea behind this is the ob-
servation that, even though different people produce different segmentations for
the same image, the obtained segmentations differ, mostly, only in the local
refinement of certain regions. This concept has been studied on the human seg-
mentation database (Fig. 2 row 2− 3) in [9] and used as a basis for defining two
error measures, which do not penalize a segmentation if it is coarser or more
refined than another. They define two error measures based on the pixel er-
ror measures (local refinement error), that counts miss-classified pixels between
two regions of two segmentations: the global consistency error (GCE), which
forces all local refinements to be in the same direction; and local consistency
error (LCE), which allows refinement in different directions in different parts of
the image. GCE is a tougher measure than LCE, because GCE tolerates only
simple refinements, while LCE tolerates mutual refinement as well. We use the
GCE and LCE measures to evaluate the Bor̊uSeg method using the human seg-
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Method vs. Humans
Humans NCutSeg

Method μLCE μGCE

Humans 0.059 0.083

NCutSeg 0.204 0.248

MIES 0.203 0.278
Bor̊uSeg MIS 0.200 0.273

D3P 0.215 0.303
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Fig. 3. Histograms of GCE and summary of LCE and GCE discrepancy errors

mented images from the Berkley image database [9]. The results of the NCutSeg
method vs Humans and Humans vs Humans are confirmed [9]. A segmentation
consisting of a single region and a segmentation where each pixel is a region,
is the coarsest and finest possible of any segmentation. In this sense, the LCE
and GCE measures should not be used when the number of regions in the two
segmentation differs a lot [9]. We take for each image as a region count reference
number, the average number of regions from the human segmentations available
for that image. We instructed the NCutSeg to produce the same number of re-
gions and for the Bor̊uSeg we have taken the level of the pyramid that has the
number of regions closest to the same region count reference number. For the
experiments, we use 100 gray level images from the Berkley Image Database3.
We used the original normalized cuts implementation [4]4, and for the Bor̊uSeg
we have our own implementation. For each of the images in the test, we have
calculated the GCE and LCE using the results produced by the methods and all
the human segmentations available for that image. Fig. 3 shows the histograms
of the GCE5 values obtained ([0 . . . 1], where zero means no error) for Human vs
Human, NCutSeg vs Human, and Bor̊uSeg (MIES, MIS D3P) vs Human. In
these images μ̂ measures the mean the error. Notice that humans are consistent
in segmenting the images and the Human vs Human histogram shows a peak
very close to 0 (i.e. a small μ̂GCE = 0.0832). For NCutSeg and Bor̊uSeg there
is no significant difference between the values of LCE and GCE (see μ̂ of the
respective histograms). One concludes that the quality of segmentation of these

3 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
4 http://www.cis.upenn.edu/∼jshi/software/
5 Histograms of LCE are similar and are not shown in this presentation.
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Fig. 4. Variation of region sizes

methods seen over the whole database is not different. The table in Fig. 3 sum-
marizes the histogram mean values of discrepancy errors. Different decimation
strategies have similar error, indicating that the segmentation results do not
depend on the chosen decimation strategy.

To test how region sizes vary we calculated the standard deviation (σs) of
the normalized region sizes for each segmentation (normalization is relative to
the image size). For humans, the mean of the calculated σs for the same image
is taken. Fig. 4a) shows the resulting σs for 70 images (a majority for which
the σS order Humans>Bor̊uSeg(MIES)>NCutSeg existed). Results are shown
sorted by the sum of the 3 σs for each image. The average region size variation
for the whole dataset is: Humans 0.1537 , Bor̊uSeg(MIES) 0.0872 and NCutSeg
0.0392. Note, that the size variation is smallest and almost content independent
for the NCutSeg and largest for Humans. This shows that, the NCutSeg method
is biased toward large regions, since it is defined to avoid the bias of small
components of cut criterion in [4]. For the other two decimation strategies, the
average region size variation for the whole data set is 0.0893 for Bor̊uSeg (MIS)
and 0.1037 for Bor̊uSeg (D3P). One could produce three plots, one for each
decimation strategy MIS, MIES, and D3P. In order not to overload the figure
with too many plots, we show in Fig. 4b) a solid line representing the mean (μds)
region size variation of the Bor̊uSeg with three decimation methods MIES, MIS,
and D3P; and the doted line the standard deviation (σds).

6 Conclusion

In this paper different methods to build an irregular graph hierarchy of im-
age partitions by using different decimation strategies are shown. Although the
algorithm makes simple greedy decisions locally, it produces perceptually im-
portant partitions in a bottom-up way based only on local differences. We also
evaluated segmentation results of three graph-based methods; the well known
method based on the normalized cuts (NCutSeg) and the method based on
the minimal spanning tree principle (Bor̊uSeg). The NCutSeg method and the
Bor̊uSeg are compared with human segmentations. The evaluation is done by
using discrepancy measures, that do not penalize segmentations that are coarser
or more refined in certain regions. We used gray value images to evaluate the
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quality of results. For the NCutSeg and Bor̊uSeg segmentation methods, the
error measure results are concentrated in the lower half of the output domain
and that the mean of the GCE and LCE measure is for both around the value of
0.2. Moreover different decimation strategies (MIS, MIES, D3P) used in Bor̊uSeg
have shown similar error results. One can say that for image segmentation choos-
ing any of the decimation strategies will produce satisfiable results. In the ex-
periment with region sizes we show that humans have the biggest variation of
the produced region sizes, followed by Bor̊uSeg, and NCutSeg.
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Abstract. Recently we have proposed Gaussian mixtures as a local sta-
tistical model to synthesize artificial textures. We describe the statisti-
cal dependence of pixels of a movable window by multivariate Gaussian
mixture of product components. The mixture components correspond to
different variants of image patches as they appear in the window. In this
sense they can be used to identify different segments of the source color
texture image. The segmentation can be obtained by means of Bayes for-
mula provided that a proper decomposition of the estimated Gaussian
mixture into sub-mixtures is available. In this paper the mixture model
is decomposed by maximizing the mean probability of correct classifica-
tion of pixels into segments in a way taking into account the assumed
consistency of final segmentation.

1 Introduction

The concept of texture segmentation derives from a simple image decomposi-
tion suggested e.g. by different colors or by distinct edges. However, it is uneasy
to specify the underlying classification problem when the image segments have
to be identified by different textural properties. A unique solution of the tex-
ture segmentation problem is hardly achievable because a generally accepted
definition of texture is also missing. The available texture based image segmen-
tation methods usually consider some local texture properties to identify either
boundaries or regions or to combine both approaches [12]. In view of the un-
derlying high-dimensional problems the texture segmentation methods usually
apply different feature extraction techniques or subspace approaches [7], [8], [9].
In most applications like image analysis or image database retrieval the segmen-
tation algorithms should be computationally efficient. However, in some areas
like medical imaging the computing time is less relevant [13].

In the present paper we propose a novel segmentation procedure based on a
local statistical model of the texture properties. We assume that the image to
be segmented is composed of different textures which can be characterized by
some local statistical properties and simultaneously that the potential texture
segments are sufficiently large and homogeneous to enable their identification.

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 287–296, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Recently we have shown in a series of papers [3], [5], [6] that gray-scale textures
can be described locally in terms of a joint probability density of gray-levels
in a suitably chosen observation window. Unlike other approaches, no feature
extraction technique has been applied to pixel variables of the window image
patch. Consequently, the dimension of the estimated density may be very high,
e.g. of order 102 ÷ 103. By estimating the probability density in the form of
Gaussian mixture of product components we succeeded to synthesize artificial
textures by sequential prediction. A specific advantage of texture synthesis is the
possibility to verify the quality of the estimated mixture model by comparing
the original- and synthesized image visually [5], [6]. Motivated by successful
experiments we have applied the local mixture model to statistical evaluation of
color texture images with the aim to emphasize abnormalities or local defects [4].

The present application of the statistical model to color texture segmentation
is based on decomposition of the underlying mixture density into sub-mixtures
which correspond to different segments of the source texture image. Considering
the framework of statistical classification we suggest a simple criterion in terms
of probability of correct classification of pixels into the segments. The criterion
is maximized by means of an iterative algorithm which is shown to converge
monotonically in a finite number of steps.

In the following we first describe the local statistical texture model in the
form of a multivariate Gaussian mixture of product components. In Sec. 3 we
propose the basic texture segmentation algorithm and in Sec. 4 its topological
modification. In Sec. 5 we illustrate the method by numerical examples from the
Prague segmentation benchmark [11]. Finally in the Conclusion we summarize
the method and discuss different computational aspects.

2 Gaussian Mixture Model

A digitized color texture image can be described by a matrix of vector variables
where each pixel specifies the three RGB spectral values

Z = [zij ]
I J

i=0 j=0 , zij = (zij1, zij2, zij3) ∈ R3.

Here i, j correspond to row and column indices respectively. We assume that the
statistical dependencies between pixels in a suitably chosen observation window
do not depend on the window position or, in other words, that the local statis-
tical properties of the texture are shift-invariant. Given a window centered at a
position (i, j), we denote

x(i, j) = x = (x1, x2, . . . , xN )

the vector of spectral values of window defined context neighborhood in a fixed
arrangement, i.e. for each pixel three spectral values. Then in each position the
window interior (image patch) x can be viewed as an observation of a random
vector and therefore we can describe the statistical properties of the variables xn
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in full generality by a joint probability density. For this purpose we approximate
the unknown density function in the form of Gaussian mixture

P (x) =
∑

m∈M
wmF (x|μm,σm), x ∈ RN . (1)

Assuming conditional independence of variables we define the mixture compo-
nents as products of univariate Gaussian densities [5], [6]:

F (x|μm,σm) =
∏

n∈N
fn(xn|μmn, σmn), (2)

fn(xn|μmn, σmn) =
1√

2πσmn

exp
{
− (xn − μmn)2

2σ2
mn

}
. (3)

To simplify notation we denote M = {1, 2, . . . ,M} and N = {1, 2, . . . , N} the
index sets of components and variables respectively.

The standard way to estimate mixtures is to use the EM algorithm [10]. By us-
ing the “image patch” data set S obtained by pixel-wise shifting the observation
window through the original texture image

S = {x(1), . . . ,x(K)}, x(k) ∈ RN , (K = |S|), (4)

we maximize the corresponding log-likelihood function

L =
1
|S|

∑
x∈S

log

[ ∑
m∈M

wmF (x|μm,σm)

]
(5)

by means of the well-known EM iteration equations [1] :

E-step: (m ∈ M, n ∈ N ,x ∈ S)

q(m|x) =
wmF (x|μm,σm)∑
j∈M wjF (x|μj ,σj)

, m ∈ M (6)

M-step:

w
′
m =

1
|S|

∑
x∈S

q(m|x), μ
′
mn =

1∑
x∈S q(m|x)

∑
x∈S

xnq(m|x), (7)

(σ
′
mn)2 = −(μ

′
mn)2 +

1∑
x∈S q(m|x)

∑
x∈S

x2
nq(m|x). (8)

Here the apostrophe denotes the new parameter values in each iteration.
The local mixture model P (x) provides fully general description of statisti-

cal dependencies of pixel variables in the observation window. For any given
image patch x ∈ S we can compute the corresponding conditional weights
q(m|x),m ∈ M which can be viewed as highly informative features describ-
ing the textural properties of the image patch x in terms of its affinity with
the component means μm. It is intuitively clear that the context information
contained in q(m|x) increases with the window size but, simultaneously, the re-
lated textural properties become less local. The underlying density estimation
problem also becomes more difficult with the increasing dimension N .
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3 Segmentation Algorithm

By its nature the EM algorithm produces a set of mixture components which
correspond to different local properties of the source texture image, as it can be
seen in Fig. 1. The first row shows the color texture examples to be segmented [11]
and the second row shows the corresponding mixture models. The component
means μm (in the arrangement of the observation window) can be viewed as
averaged (smoothed) representants of the typical image patch variants. All the
three mixture densities have been estimated in the space of dimension N=1143
without any feature extraction (window size: 21x21 pixels with the corners cut
away, i.e. N=381x3=1143). The number of mixture components has been chosen
M1 = 64, M2 = 59 and M3 = 64 respectively.

The basic idea of segmentation is to unify similar texture pieces. As the mix-
ture component means μm correspond to different variants of the image patches
we assume that different parts of the texture can be characterized by aggregat-
ing the related mixture components, i.e. by decomposing the Gaussian mixture
P (x) into sub-mixtures. In particular, let � be a partition of the index set M
into disjunct subsets Mk ⊂ M:

� = {M1,M2, . . . ,MM}, ∪k∈MMk = M, Mk ∩ Mj = ∅, k �= j. (9)

Then we can define the corresponding decomposition of the mixture density (1)
into sub-mixtures:

P (x) =
∑
k∈M

Pk(x) =
∑

k∈M

∑
m∈Mk

wmF (x|μm,σm), (10)

Pk(x) =
∑

m∈Mk

wmF (x|μm,σm). (11)

We assume a sub-mixture Pk(x) corresponding to Mk to be zero in case of empty
subset Mk = ∅. Given the sub-mixtures Pk(x) we can classify the image patches
x ∈ S by means of Bayes formula. Let us recall that each vector x = x(i, j) ∈ S
uniquely corresponds to the position (i, j) of central pixel of the observation
window and also for each x ∈ S we can evaluate the probabilities

p(k|x) =
Pk(x)
P (x)

=
∑

m∈Mk

q(m|x), k ∈ M. (12)

Here p(k|x) is the probability that the central pixel of the image patch x belongs
to the texture segment Sk which is characterized by the sub-mixture Pk(x).
Ignoring some border pixels, we can define a segmentation of the texture image
as a partition � of the set S into disjunct subsets Sk ⊂ S:

� = {S1,S2, . . . ,SM}, ∪k∈MSk = S, Sk ∩ Sj = ∅, k �= j. (13)
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In view of Eq. (12) the optimal subsets Sk given � can be defined by means of
the Bayes decision function 1

d(x|�) = arg max
k∈M

{p(k|x)} = arg max
k∈M

{
∑

m∈Mk

q(m|x)} (14)

Sk = {x ∈ S : d(x|�) = k}, k ∈ M (15)

where d(x|�) specifies the sub-mixture with the maximum aposteriori probabil-
ity p(k|x) given x ∈ S.

In view of the available mixture model a natural way to measure the quality
of the texture segmentation � is to compute the mean probability of correct
pixel classification with respect to the given segments Sk ∈ �:

Q(�,�) =
1
|S|

∑
k∈M

∑
x∈Sk

p(k|x) =
1
|S|

∑
k∈M

∑
x∈Sk

∑
m∈Mk

q(m|x). (16)

In the above criterion p(k|x) denotes the probability that the pixel (i, j) has
been classified correctly, i.e. that x = x(i, j) ∈ Sk. Given a segmentation � we
define the optimal mixture decomposition � by Eqs.:

ϕ(m|�) = arg max
k∈M

{
∑

x∈Sk

q(m|x)}, (17)

Mk = {m ∈ M : ϕ(m|�) = k}, k ∈ M. (18)

Here ϕ(m|�) specifies the segment Sk with the greatest “contribution” of the
m-th mixture component. The criterion Q(�,�) can be maximized by repeating
the iterative steps (15), (18). In particular we prove:

Theorem. The iterative use of Eqs. (15) and (18) produces a nondecreasing
sequence of values of the criterion Q(�,�) converging in a finite number of steps
to a finite limit.

Proof. Let us note first that any change of the mixture decomposition � can
be viewed as a result of a sequence of elementary steps. In particular, let �+ be
defined by an elementary change of � (cf. (17)):

M+
k = Mk ∪ {m0}, M+

l = Ml \ {m0}, M+
j = Mj , j ∈ M, j �= k, l

with m0 satisfying the condition ϕ(m0|�) = k (cf. (18)). Therefore the following
inequality holds (cf. (17))∑

x∈Sk

q(m0|x) ≥
∑
x∈Sj

q(m0|x), ∀j ∈ M (19)

and the corresponding change of the criterion Q (cf. (16)) is non-negative
1 If the maximum is not unique we choose the smallest index k ∈ M with the specified

property.
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Q(�+,�) − Q(�,�) =
1
|S|

[∑
x∈Sk

q(m0|x) −
∑
x∈Sl

q(m0|x)

]
≥ 0. (20)

Consequently, the inequality (20) is also valid for the resulting “cumulative”
decomposition as defined by (18).

Analogously, let �+ is defined by an elementary change of texture segmenta-
tion �:

S+
k = Sk ∪ {x0}, S+

l = Sl \ {x0}, S+
j = Sj , j �= k, l

with x0 satisfying the condition d(x0|�) = k (cf. (15)). Therefore the following
inequality is satisfied (cf. (14)):

p(k|x0) ≥ p(j|x0), ∀j ∈ M, (21)

and the corresponding change of the criterion (16) is non-negative

Q(�,�+) − Q(�,�) =
1
|S| [p(k|x0) − p(l|x0)] ≥ 0.

It can be seen that the last inequality is also valid for any complex change of
the segmentation �.

Consequently, the iterative segmentation algorithm (15), (18) based on the
local mixture model P (x) converges to a finite limit in a finite number of steps
because the criterion Q(�,�) is bounded above and the number of possible
partitions � and � is finite.

4 Topologically Modified Segmentation

The “bottom up” segmentation algorithm from Sec. 3 starting with the finest
partition �0 : Mk = {k}, k ∈ M and maximizing the criterion Q(�,�) con-
verges in few iterations to a highly over-segmented texture. The tendency to
over-segmentation is closely related to the high dimensionality of the estimated
density P (x). Even in case of a small size the observation window may contain
several hundreds of pixels with three spectral values and the resulting dimen-
sion N is very high. In multidimensional spaces the mixture components are
nearly non-overlapping and therefore there is usually one-to-one correspondence
between the mixture components and the initial highly specific texture seg-
ments. The examples of the initial over-segmentation are shown in Fig. 1 (third
row). Recall that in case of the mixture components from Fig. 1 the underly-
ing densities have dimension N = 1143. In high-dimensional spaces the mixture
components are well separated and almost non-overlapping and therefore the
conditional probabilities q(m|x) have nearly binary properties.

In order to increase the senzitivity of the criterion (16) with respect to the
topological properties of the texture we include a neighborhood into the under-
lying decision-making. We define the decision neighborhood D(x(i, j)) of the
vector x(i, j) ∈ S as a subset of vectors x ∈ S which correspond to the pixels
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near the central point (i, j). In particular, considering a square decision neigh-
borhood with the corners cut away, we can write:

D(x(i, j)) = {x(k, l) ∈ S : |i − k| + |j − l| < (2ρ − r)}. (22)

where ρ ≥ 0 is a window “radius” and r = ρ/2 the corner size (cf. Fig. 1, second
row). To simplify notation, the position (i, j) of the observation window will be
omitted whenever tolerable.

By using the neighborhood D(x) we can compute the mean probability of
correct pixel classification in a more robust way by taking in account the neigh-
bouring pixels:

Q(�,�) ≈ 1
|S|

∑
k∈M

∑
x∈Sk

p(k|D(x)) (23)

Here the probability p(k|D(x)) of correct classification of a pixel x = x(i, j) ∈ S
can be expressed in the form:

p(k|D(x)) =
Pk(D(x))
P (D(x))

=
∑

y∈D(x)

Pk(y)
P (D(x))

=
∑

y∈D(x)

P (y)
P (D(x))

p(k|y). (24)

If we assume the term P (y)/P (D(x)) to be approximately constant for all y ∈
D(x) then it can be replaced by a coefficient 1/|D(x)|. Denoting |D(x)| = D0

we can write the criterion (23) in the following more suitable form:

QD(�,�) =
1
|S|

∑
k∈M

∑
x∈Sk

1
D0

∑
y∈D(x)

p(k|y) (25)

If we modify definition (15) of the segmentation � given the decomposition �

dD(x|�) = arg max
k∈M

{
∑

m∈Mk

∑
y∈D(x)

q(m|y)}. (26)

Sk = {x ∈ S : dD(x|�) = k}, k ∈ M, (27)

and the definition (18) of mixture decomposition � given the segmentation �:

ϕD(m|�) = arg max
k∈M

{
∑
x∈Sk

∑
y∈D(x)

q(m|y)}, (28)

Mk = {m ∈ M : ϕD(m|�) = k}, k ∈ M (29)

then the criterion (25) is again maximized by iterating the steps (27) and (29).
The proof of this assertion is analogous to that of Sec. 3.

5 Computational Experiments

The practical implementation of the above algorithm starts with the highly over-
segmented texture from Sec. 3 which corresponds to the neighborhood radius
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Fig. 1. Texture segmentation experiments. Each column corresponds to one example
taken from [11]. The texture image is in the first row, the second row shows the com-
ponent means μm of the respective Gaussian mixture model and the third and fourth
row show the initial and final segmentation respectively. The resulting segmentation
is essentially correct despite the strong inhomogeneity of the texture segments. There
are only minor “rounding” errors on the segment boundaries.
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ρ = 0, i.e. to |D(x)| = 1. Then the topologically modified segmentation algo-
rithm is repeatedly started again with an increased neighborhood D(x) and iter-
ated until convergence. The repeated application of the segmentation algorithm
represents a hierarchical scheme which can be stopped e.g. when the number
of segments does not change for several repetitions or by choosing an ad hoc
maximum size of the final decision neighborhood.

In the experiments we have applied the proposed segmentation algorithm to
the Prague texture segmentation benchmark which is known to contain very diffi-
cult examples. The three test images shown in the first row of Fig. 1 are available
at the address [11]. For each texture image we have computed the local statistical
model in the form of Gaussian mixture for the window size 21x21 (dimension
N=1143, cf. Sec. 3 for details). The second row of Fig. 1 shows the correspond-
ing component means for the three mixtures - as discussed in Sec. 3. The initial
“over-segmented” images in the third row illustrate the “discriminative power”
of the models and finally the fourth row shows the resulting segmentations. In
the considered examples 1-3 the segmentation algorithm has been stopped for
the size of decision neighborhood ρ = 28, ρ = 33 and ρ = 24 respectively. The
results of segmentation are rather convincing. It can be seen that, despite strong
inhomogeneity, all texture segments have been correctly identified, possibly ex-
cept for some minor “rounding” errors on the segment boundaries.

In the present form the proposed method is rather demanding (several hours)
mainly because of the time-consuming mixture estimation. However, the result-
ing segmentation can be obtained more quickly when the size of the decision
neighborhood can be specified in advance.

6 Conclusion

In the present paper we propose a color texture segmentation algorithm based
on statistical model of local texture properties. We describe the statistical de-
pendencies between the spectral pixel values in a suitably chosen observation
window by a multivariate Gaussian mixture with product components. We es-
timate the mixture parameters by means of EM algorithm from color image
patch data obtained by pixelwise shifting the observation window through the
original color texture image. No feature extraction- or dimensionality reduction
technique is applied to the spectral pixel variables. As the mixture components
correspond to different “averaged” variants of the image patches we identify
each texture segment by a corresponding sub-mixture by using Bayes formula.
We propose a simple segmentation criterion in terms of probability of correct
pixel classification into segments and an iterative algorithm to maximize the pro-
posed criterion. Simultaneously, we prove that the convergence of the algorithm
is monotonic in a finite number of steps.

In the present form the proposed texture segmentation method is time-
consuming and therefore hardly applicable on-line. On the other hand it may be
useful, e.g. for careful off-line evaluation of medical images.
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Abstract. In this paper, we use a multifractal approach based on the computa-
tion of two spectrums for image analysis and texture segmentation problems. 
The two spectrums are the Legendre Spectrum, determined by classical meth-
ods, and the Large Deviation Spectrum, determined by kernel density estima-
tion. We propose a way for the fusion of these two spectrums to improve  
textured image segmentation results. An unsupervised k-means is used as clus-
tering approach for the texture classification. The algorithm is applied on mo-
saic image built using IKONOS images and various natural textures from the 
Brodatz album. The segmentation obtained with our approach gives better re-
sults than the application of each spectrum separately. 

Keywords: Multifractal theory, multifractal spectrum, wavelets, texture seg-
mentation, high and very high spatial resolution image. 

1   Introduction 

This work has been conducted within the CESAR project (Arborescent species classi-
fication). The main objective is to reinforce monitoring measurements and to improve 
durable management of forest resources for ecological considerations. The first step is 
to obtain a forest identification using very high satellite images such as QUICKBIRD 
or IKONOS images. 

Since we consider that forests could be identified using their texture features our 
approach is to segment the images into homogeneous textured regions. Indeed, natural 
images are composed of different and various textures often considered as an infinite 
combination. With the apparition of very high resolution satellite images, small struc-
tures are now textured instead of having a homogeneous mean intensity. 

Texture analysis has been studied for a long time using different approaches. A lot 
of methods are directly based upon the intensity of an image. These include grey-level 
co-occurrence matrices (GLCM) [1], [2], autocorrelation function analysis [1], mo-
ment based texture segmentation [3], two-dimensional filtering in the spatial and 
frequency domain [4], [5], and the fractal analysis [6]. 

In order to perform the segmentation we have to characterize each texture. To 
achieve this goal we have used the multifractal tool based on the Legendre and Large 
Deviation Spectrum (LS and LDS) [7]. Both spectrums exploit the local and global 
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regularity of the image using the distribution of singularity exponent [8] (Hölder coef-
ficient or Lipschitz exponent). We justify our choice by the fact that studied images 
are taken from natural scenes having non-stationary characteristics resulting in com-
plex structures (multifractal) [9]. The analysis of the singular structures of the image 
[10] enables as to establish a relation between a geometrical description and a statisti-
cal description for local and global grey-levels. 

These two spectrums are two different ways to compute the same parameter. LS is 
a statistical approach and LDS a geometrical approach [7]. 

The article is composed as follow: section 2 explains different approaches used in 
literature for texture segmentation. Section 3 defines the multifractal approach and the 
spectrum computation in a two-dimensional case. Section 4 describes the algorithm 
we use to compute the texture features. Experiments and results are given in Section 
5. Section 6 gives some concluding remarks. 

2   Texture Segmentation Approach 

In the literature there are two important aspects of texture image segmentation proce-
dures, namely feature extraction and classification. There are several methods allow-
ing to extract texture features of images that we can regroup in four large topics: sta-
tistical methods (co-occurrence matrices, autocorrelation features [1], [2] moment 
features [11]), geometrical methods (Voronoi tessellation features [11], structural 
methods [12]), model based methods (random field models [13], [14], fractals [15], 
[16]), and signal processing methods (spatial domain filters [17], Fourier domain 
filtering [18], Gabor and wavelet models [5]). Classification methods are grouped in 
two categories: supervised and unsupervised classification methods (maximum likeli-
hood classifier [19], Bayesian classification [20], neural networks [21], …). 

In the scope of this article we have chosen a multifractal approach and an unsuper-
vised k-means classification. 

3   Multifractal Approach 

The multifractal formalism is a nice tool for characterizing and describing the statisti-
cal and geometrical properties of images from real world scenes [10]. The main idea 

in this approach is to built a positive measure μ  on the image ( )xI , where 2ℜ∈x  

represents the coordinate vector. Treatments will be made using the measure instead 

of the image. For each set A , the measure ( )Aμ  is given by: 

( ) ( )=
A

xdxIAμ  (1) 

hence μ  is compactly supported and thus finite. 

We quickly present in the following the computation of Legendre and Large De-
viation Spectrum. 
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3.1   Legendre Spectrum (LS) 

We define here μ  as a Borel probability measure over [ ] [ ]1,01,0 × . Let nν  be an 

increasing sequence of positive integers, and let us define: 

+×+=
nnnn

nji

jjii
I

νννν
1

,
1

,,,  (2) 

We directly compute some kind of “moments” or generalized dimensions of our 
measure. To perform this calculation, we will use the Differential Box Counting 
(DBC) method defined by Chaudhuri and Sarker (1992) [22]. The generalized dimen-
sion of order q , ℜ∈q , is defined by : 

( )[ ] ( )[ ]
( )[ ]=

i j

q
n

q
nq

n
jiP

jiP
jiI

,

,
,μ  (3) 

Where ( )jiPn ,  is the probability estimation in a ball of radius nν . 

Then the multifractal spectrum is defined as follows:  
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and the singularity exponent as 

( )
( )[ ] ( )[ ]

( )n
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n
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μ
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log

,log,
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∗
=
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 (5) 

3.2   Large Deviation Spectrum (LDS) 

Let us consider the projections of the measure μ  over an appropriate wavelet ψ  

around a point 0x  who allows evaluating μ  over balls B  centred on 0x  with differ-

ent radius 
n

r
ν
1= . 

( ) ( ) −≡
B r

xx
x

r
rxT 0

20

1
, ψμμψ  (6) 

The wavelet projection provides the same singularity exponents as μ  ([9]), that is: 
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( ) ( )0,0
xrrxT α

ψ μ ≈  (7) 

It has been established in [9] that natural images can be modelled by this equation. 
Starting from this equation we can estimate the singularity exponents as being the 

slope of the linear regression in the following way: 

( ) ( )[ ]
( )r

rxT
x

r log

,log
lim 0

0
0

μ
α ψ

→
=  (8) 

After the computation of the singularity exponent at each point by using the above 
equation, the LDS is estimated [7] by  

( ) ( )[ ]
( )r

hN
hf r

r
g log

log
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0

ε

ε ∞→→
=  (9) 

where ( ) [ ]{ } ( )hpKhhN rr ∗≈+−∈= ε
ε εεαεαα ,/# , ∗  is the convolution 

product, ( )hpr  the density of ( )xα  and =
εεε
h

KK
1

 a rectangular kernel [19]   
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4   Proposed Algorithm 

In this section, we expose the method which will allow us to fuse the two previous 

spectrums (LS and LDS) in order to obtain a single value for each pixel ( )ji, . This 

value will be denoted ( )jiF ,  and explained in the following as well as the resulting 

algorithm. 

4.1   EPNSQ Filtering Approach 

The Edge Preserving Noise Smoothing Quadrant (EPNSQ) filtering approach was 
introduced by [23] with the objective of estimating the local statistics and to reduce 
the misclassification inside texture regions. 

This method could be applied on any feature computed from the original image. It 
has often been applied on fractal dimension estimations and on laws filter, etc. but 
never on LS and LDS. The EPNSQ can be applied on these two spectrums given the 
fact that there are two different approaches (geometrical and statistical) to compute 
the same parameter. 

The EPNSQ algorithm performs as follow. 
Let us consider q features computed from the image. A sliding window of  

size ( ) ( )1212 +×+ ww  centered on each coordinate ( )ji,  will be used for each 
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feature. This window is split into four quadrants. Fig. 1. illustrates this with 2=w  

and 1=q , thus the size of each kW  is ( ) ( ) 3311 ×≡+×+ ww . 

 
 
 
 
  
     
 
 
 
 

Fig. 1. Four quadrants and an example for a 2=w  

For each quadrant k  and each feature p  we compute the local variance p
kW

V . We 

select the quadrant ∗k  and the feature ∗p  with the minimal variance 
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The feature value ( )jiF ,  is the average value computed on the 
∗

∗
p

k
W  quadrant  
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This value will be considered as being the most representative spectrum value for 
each pixel. 

4.2   Our Algorithm 

The block diagram of our algorithm is described in the following figure and consists 
in the following steps: 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Block diagram of our algorithm 
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If the two spectrums (LS and LDS) are computed over the whole image, then each 

pixel ( )ji,  is associated with two features and the EPNSQ filtering approach is used 

to compute ( )jiF , . We perform the texture segmentation by applying a general k-

means clustering algorithm [24] on ( )jiF , . 

5   Experimental Results 

This approach, texture features extraction and segmentation, has been tested on dif-
ferent mosaic images built using Brodatz album textures (D9, D57 and D92) (fig. 3) 
and textures extracted from IKONOS images (fig. 4). Brodatz textures have been 
chosen because they are close to forest textures extracted from satellite images. 

The size of each mosaic image is 256×256 pixels. The texture feature ( )jiF ,  is 

computed using a sliding window of size 17×17. The number of classes for the k-
mean classification algorithm is set to the number of textures (3 in fig. 3 and 4 in fig. 
4). For each figure, the k-means classification algorithm was applied on LS (b),  LDS 

(c) and ( )jiF ,  (d). 

 
 

        
          a                                        b 
 

 

  
     c           d 

Fig. 3. a: image created from three Brodatz textures (D9, D57, D92). b: segmentation obtained 
using LS. c: segmentation obtained using LDS. d: segmentation obtained using our algorithm. 
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               a                         b 
 

       
   c                                       d 

Fig. 4. a: image created from four textures extracted from IKONOS images. b: segmentation 
obtained using LS. c: segmentation obtained using LDS. d: segmentation obtained using our 
algorithm. 

The results show that the classification algorithm applied on texture features 

( )jiF ,  gives a better segmentation on the two kinds of images than the segmenta-

tion applied on both spectrums separately. (b) and (c) of fig. 3 and fig. 4 shows that 
the segmentation based in LDS is better that LS. The main contribution is that spec-
trum fusion improves the homogeneity of the regions. 

6    Conclusion 

In this paper we have developed a texture feature segmentation algorithm based on 
the multifractal spectrums. This approach first computes the Legendre and Large 
Deviation spectrum within localized regions of the image around each pixel. Then it 

computes the features ( )jiF ,  for each pixel using the EPNSQ filtering approach. 

Finally it classifies these features using a k-means clustering algorithm. 

We note that the segmentation applied on ( )jiF ,  gives more homogeneous and 

compact regions. The classification error using ( )jiF ,  is lower than the error using 

LS or LDS. 
In future works we will try to exploit the LDS using different kernel density esti-

mation methods and we will integrate colour information. 
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Abstract. In this paper we present a method based on self-organizing
neural networks to extract the shape of a 2D or 3D object using a set of
transformations expressed as versors in the conformal geometric algebra
framework. Such transformations, when applied to any geometric entity
of this geometric algebra, define the shape of the object. This approach
was tested with several images, but here we show its utility first using a
2D magnetic resonance image to segment the ventricle. Then we present
some examples of an application for the case of 3D objects.

1 Introduction

The use of neural networks in medical image processing is an area receiving a
lot of attention with a variety of applications like segmentation or classification
of tissues, etc. The self-organizing neural networks like Kohonen’s Map or Self-
Organizing Map (SOM), Neural Gas (NG) and Growing Neural Gas (GNG, [3])
have been used broadly when we need to preserve the topology of the data.

In this work we present an approach which uses the Generalized Gradient
Vector Flow (GGVF) [4] to guide the automatic selection of the input patterns,
as well as the learning process of the self-organized neural network GNG to
obtain a set of transformations expressed in the conformal geometric algebra
framework, which is a coordinate free approach. These transformations help us
to define the shape of the object we are interested in. We decided to use such
framework because of its coordinate free nature and because it has the advantage
that (rigid body) transformations of geometric entities (like points, lines, planes,
circles, spheres) are expressed in compact form as operators called versors, which
are applied in a multiplicatively way to any entity of the conformal geometric
algebra. Thus, training the network we do not obtain specific positions for a
particular entity (for example, the positions of points when the weights of the
network are interpreted in such a way), but we obtain the transformation that
can be applied to entities resulting in the definition of the object contour or its
shape.

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 306–315, 2006.
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Note that the authors are proposing a very advanced algorithm using early
vision preprocessing and self-organizing neural computing in terms of algebra
techniques. We believe that the early vision preprocessing together with self-
organizing neurocomputing resembles the geometric visual processing in biolog-
ical creatures. The experimental results show that approach is very promising.

2 Geometric Algebra

The Geometric Algebra Gp,q,r is constructed over the vector space Vp,q,r, where
p, q, r denote the signature of the algebra; if p �= 0 and q = r = 0, the metric is
Euclidean; if only r = 0, the metric is pseudo euclidean; if p �= 0, q �= 0, r �= 0,
the metric is degenerate. In this algebra, we have the geometric product which is
defined as in (1) for two vectors a, b, and have two parts: the inner product a · b
is the symmetric part, while the wedge product a∧ b is the antisymmetric part.

ab = a · b + a ∧ b. (1)

The dimension of Gn=p,q,r is 2n, and Gn is constructed by the application of the
geometric product over the vector basis ei.

eiej =

1 for i = j ∈ 1, · · · , p
−1 for i = j ∈ p + 1, · · · , p + q

0 for i = j ∈ p + q + 1, · · · , p + q + r
ei ∧ ej for i 	= j

This leads to a basis for the entire algebra: {1}, {ei}, {ei ∧ ej}, {ei ∧ ej ∧
ek}, . . . , {e1∧e2∧. . .∧en}. Any multivector can be expressed in terms of this ba-
sis. In the n-D space there are multivectors of grade 0 (scalars), grade 1 (vectors),
grade 2 (bivectors), grade 3 (trivectors)... up to grade n.

To work in Conformal Geometric Algebra (CGA) G4,1,0 means to embed
the Euclidean space in a higher dimensional space with two extra basis vectors
which have particular meaning; in this way, we represent particular objects of
the Euclidean space with subspaces of the conformal space. The vectors we add
are e+ and e−, which square to 1,−1, respectively. With these two vectors, we
define the null vectors

e0 =
1
2
(e− − e+); e∞ = (e− + e+), (2)

interpreted as the origin and the point at infinity, respectively. From now and
in the rest of the paper, points in the 3D-Euclidean space are represented in
lowercase letters, while conformal points in uppercase letters; also the conformal
entities will be expressed in the Inner Product Null Space (IPNS), and not in the
Outer Product Null Space unless it is specified explicitly. To map a point x ∈ V3

to the conformal space in G4,1, we use

X = x +
1
2
x2e∞ + e0. (3)
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Let be X1, X2 two conformal points. If we subtract X2 from X1, we obtain

X1 − X2 = (x1 − x2) +
1
2
(x2

1 − x2
2)e∞ + e0 (4)

and if we square this result, we obtain

(X1 − X2)2 = (x1 − x2)2 (5)

So, if we want a measure of the euclidean distance between the two points, we can
apply (5). Reader is encouraged to see the CGA representation of other entities
consulting [2]. All of such entities and its transformations can be managed easily
using the rigid body motion operators described further.

2.1 Rotation, Translation and Dilation

In GA there exist specific operators named versors to model rotations, transla-
tions and dilations, and are called rotors, translators and dilators respectively.
In general, a versor G is a multivector which can be expressed as the geometric
product of nonsingular vectors

G = ±a1a2...ak (6)

In CGA, such operators are defined by (7) being R the rotor, T the translator,
and Dλ the dilator.

R = e
1
2bθ, T = e−

te∞
2 , Dλ = e

− log(λ)∧E
2 , (7)

where b is the bivector dual to the rotation axis, θ is the rotation angle, t ∈ E3

is the translation vector, λ is the factor of dilation and E = e ∧ e0.
Such operators are applied to any entity of any dimension by multiplying the

entity by the operator from the left, and by the reverse of the operator from
the right. Let be Xi any entity in CGA; then to rotate it, we do X ′

1 = RX1R̃,
while to translate it we apply X ′

2 = TX2T̃ , and to dilate we use X ′
3 = DλX3D̃λ.

However, dilations are applied only on the origin, so we must translate the entity
Xi to origin, then to dilate it, and finally back translate to its original position.

3 Determining the Shape of an Object

If we want to determine the shape of an object, we can use a topographic map-
ping which uses selected points of interest along the contour of the object to fit
a low dimensional map to the high dimensional manifold of such contour. This
mapping is commonly achieved by using self-organized neural networks as Koho-
nen’s Maps (SOM) or Neural Gas (NG); however, if we desire a better topology
preservation, we should not specify the number of neurons of the network a priori
(as specified for neurons in SOM or NG, together with its neighborhood rela-
tions), but allow the network to grow using an incremental training algorithm,
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Fig. 1. A block diagram of our approach

as in the case of the Growing Neural Gas (GNG) [3]. In this work we follow
the idea of GNG and present an approach to determine the shape of objects by
means of applying versors of the CGA, resulting in a model easy to handle in
post processing stages, for example modeling the dynamic behavior of the ob-
ject; a scheme of our approach is shown in Fig. 1. This representation is compact
because it uses only one base point and a set of versors in the conformal geo-
metric algebra framework (translators T in 2D, motors M in 3D), which moves
such point along the contour of the object we are interested in, to determine its
shape. That means that the neural network has versors associated to its neurons,
and its learning algorithm determines the parameters of them that best fit the
input patterns, allowing us to get every point on the contour by interpolation of
such versors.

Additionally, we modify the acquisition of input patterns by adding a pre-
processing stage which determines the inputs to the net; this is done by comput-
ing the Generalized Gradient Vector Flow (GGVF) and analyzing the streamlines
followed by particles (points) placed on the vertices of small squares by dividing
the 3D space in such squares (a sort of grid for 3D). The streamline or the path
followed by a particle that is placed on x = (x, y, z) coordinates will be denoted
as S(x).

3.1 Automatic Samples Selection Using GGVF

Since our goal is to have an approach which needs less as possible the intervention
of users, the selection of input patterns must be as automatic and robust as
possible; that means that we want to give to the computer only the medical
image or the volumetric data in order to find the shape of the object we are
interested in. Therefore, we need a method that can provide information to guide
the algorithm in this selection. The GGVF [4] is a dense vector field derived from
the volumetric data by minimizing a certain energy functional in a variational
framework. The minimization is achieved by solving linear partial differential
equations which diffuses the gradient vectors computed from the volumetric
data. To define the GGVF, the edge map is defined at first as

f(x) : Ω → R (8)

(for the 2D image, it is defined as f(x, y) = −|∇G(x, y) ∗ I(x, y)|2, where I(x, y)
is the gray level of the image on pixel (x, y), G(x, y) is a 2D Gaussian func-
tion (for robustness in presence of noise), and ∇ is the gradient operator).
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With this edge map, the GGVF is defined as to be the vector field v(x, y, z) =
[u(x, y, z), v(x, y, z), w(x, y, z)] that minimizes the energy functional

E =
∫ ∫

g(|∇f |)∇2v − h(|∇f |)(v − ∇f) (9)

where
g(|∇f |) = e−

|∇f|
μ and h(|∇f |) = 1 − g(|∇f |) (10)

and μ is a coefficient. An example of such dense vector field obtained in a 2D
image is shown in Fig. 2.a, while an example of the vector field for a volumetric
data is shown in Fig. 2.b.

a) b)

Fig. 2. Example of the dense vector field called GGVF (it is shown not all the vector
field, but only representative samples of a grid). a) Samples of the vector field for a 2D
image; b) Samples of the vector field for volumetric data.

The automatic selection of input patterns is done by analyzing the streamlines
of points of a 3D grid topology defined over the volumetric data. It means that
the algorithm follow the streamlines of each point of the grid, which will guide the
point to the more evident contour of the object; then the algorithm selects the
point where the streamline finds a peak in the edge map and gets its conformal
representation X (as in equation (3))to make the inputs pattern set. Additionally
to the X (conformal position of the point), the inputs have the vector vζ =
[u, v, w] which is the value of the GGVF in such pixel and it will be used in the
training stage as a parameter determining the amount of energy the input has
to attract neurons. This information will be used in the training stage together
with the position x for learning the topology of the data. Summarizing, the input
set I will be

I = {ζk = (Xζk
,vζk)|xζ ∈ S(x′) and f(xζ) = 1} (11)

where Xζ is the conformal representation of xζ ; xζ ∈ S(x′) means that xζ is on
the path followed by a particle placed in (x′), and f(xζ) is the value of the edge
map in position xζ (assuming it is binarized). As some streamlines can carry to
the same point or very close points, we can add constraints to avoid very close
samples; one very simple restriction is that the candidate to be included in the
input set must be at least at a fixed distance dthresh of any other input.
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3.2 Learning the Shape Using Versors

Using Growing Neural Gas (GNG) we will define the versors that applied to a
point will describe the shape of the object. It is important to note that although
we are explaining the algorithm using points, the versors can be applied to any
entity in GA that we had selected to model the object (e.g. planes to describe
a surface in 3D, spheres, etc). The network starts with a minimum number of
versors (neural units) and new units are inserted successively. The network is
specified by

– A set of units (neurons) named N , where each nl ∈ N has its associated
versor Mnl

; each versor is the transformation that must be applied to a
point to place it in the contour of the object. The set of transformations will
ultimately describe the shape of the object.

– A set of connections between neurons defining the topological structure.

In this approach we will use the information available on GGVF to guide the
learning. With this elements, we define the learning algorithm to find the versors
that will define the contour as follows:

1. Let P0 be a fixed initial point over which the transformations will be applied.
Such transformations will be expressed as M = e−

t
2 e∞ in the conformal

geometric algebra. This point corresponds to the conformal representation
of p0, which can be a random point or the centroid defined by the inputs.
The vector t will be determined according the distance between Xζ and P0

as explained below, but initially it is a random displacement.
2. Start with the minimal number of neurons, which have associated random

translators as well as a vector vl = [ul, vl, wl] whose magnitude is inter-
preted as the capacity of learning for such neuron (initially set to 1).

3. Select one input ζ from the inputs set I and find the winner neuron; that
means to find the neuron nl having the versor Ml which moves the point P0

closer to such input:
Mwin = min

∀M
‖Xζ − P0‖ (12)

4. Modify Mwin and all others versors of neighboring neurons Ml in such a
way that the modified T will represent a transformation moving the point
P0 nearer the input:

Mlnew = e−
tl
2 e∞e−

Δtl
2 e∞ (13)

where
Δtl = α φ η (vζ ,vl)(xζ − p0) (14)

α is a learning parameter, φ is a function defining the amount of a neuron
can learn according to its distance to the winner one (usually defined as in
(15)), and η(vζ ,vl) is defined as in (16).

φ = e−(
Xζ−TP0T̃ )2

2σ (15)
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η(vζ ,vl) = ‖vζ − vl‖2 (16)

which is a function defining a quantity of learning depending on the strength
to teach of the input ζ and the capacity to learn of the neuron, given in vζ

and vl, respectively. In other words, with η(vζ ,vl) we are taking into account
the information of GGVF which guide to the contours. Finally, also update
the value vl:

vl = [(ul + α φ ul), (vl + α φ vl), (wl + α φ wl)]T (17)

5. Insert new neurons as follows:
– Determine neighboring neurons ni and nj connected by an edge larger

than cmax

– Create a new neuron nnew between ni and nj whose associated M and
vl will be

Mnnew =
Mi + Mj

2
, vl new =

vi + vj

2
(18)

– Delete old edge connecting ni and nj and create two new edges connect-
ing nnew with ni and nj

6. Repeat steps 3 to 5 if the stopping criterion is not achieved. The stopping
criterion is when a maximum number of neurons is reached or when the
learning capacity of neurons approaches to zero (is less that a threshold
cmin), the first that happens will stop the learning process.

Training the network we find the set of M defining positions on a trajectory;
such positions minimizes the error measured as the average distance between Xζ

and the result of MζP0M̃ζ :

χ =

∑
∀ζ(

√
(MζP0M̃ζ − Xζ)2

N
(19)

where Mζ moves P0 closer to input Xζ , and N is the number of inputs.

4 Experiments

To illustrate the algorithm explained in section 3.2 we first present the process for
a 2D image. Fig. 3 shows the result when the algorithm is applied to a magnetic
resonance image (MRI); the goal is to obtain the shape of the ventricle. Fig. 3.a
shows the original brain image and the Region Of Interest (ROI); Fig. 3.b the
computed vector field for the ROI; Fig. 3.c the streamlines in the ROI defined
for particles placed on the vertices of a 32x32 grid; Fig. 3.d shows the initial
shape as defined for the two initial random versors Ma,Mb, which move the
point P0 to Xa = Ma P0 M̃a and Xb = Mb P0 M̃b; Fig. 3.e shows the final shape
obtained; and finally Fig. 3.f the original image with the segmented object. Many
other experiments were carried out, and table 1 shows some quantitative results.
Such table shows the errors obtained with the algorithm using and not using the
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Fig. 3. a) Original image and region of interest (ROI); b) Zoom of the dense vector field
of the ROI; c) Zoom of the streamlines in ROI; d) Inputs and initial shape; e) Final
shape defined according the 54 estimated translators; f) Image segmented according
the results

Table 1. Errors obtained by the algorithm with and without the GGVF information

Example Error without GGVF Error with GGVF

Ventricle 1 3.29 2.51

Eye 1 7.63 6.8

Eye 2 3.43 2.98

Column disk 1 4.65 4.1

Tumor 1 3.41 2.85

Tumor 2 2.95 2.41

Free form curve 2.84 1.97

Ventricle 1 3.29 2.51

GGVF information (error measured as in (19)). For the 3D case, Fig. 4.a shows
the vectors of the dense GGVF on a 3D grid arrangement of size 32x32x16;
Fig. 4.b shows the inputs determined by GGVF and edge map, and also shows
the initialization of the net GNG; Fig. 4.c shows Final shape after training has
finished with a total of 300 versors M (associated with 300 neural units).

Figure 5 shows the results obtained with other two examples using volumetric
data. The first column shows the inputs to the net, selected according the pro-
cedure of Sect. 3.1 and the initialization of the net with nine neural units (the
topology of the net is defined as a sort of pyramid around the centroid of input
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a) Samples of the 3D GGVF b) Inputs and initial positions

of nine initial neurons

c) Final shape obtained

with 300 versors

Fig. 4. The algorithm for 3D object’s shape determination. a) Vectors of the dense
GGVF on a 3D grid arrangement of 32x32x16; b) Inputs determined by GGVF and
edge map and the initialization of the net GNG; c) Final shape after training has
finished with a total of 300 versors M (associated with 300 neural units).

a) Inputs and initial positions defined

by the versors M of nine

initial neurons

b) Final shape obtained

with 300 versors (corresponding

to 300 neural units) Error measure

a) Inputs and initial positions defined

by the versors M of nine

initial neurons

b) Final shape obtained

with 300 versors (corresponding

to 300 neural units)

Error measure

Fig. 5. Two examples of 3D object shape definition. First column: inputs to the net
selected using GGVF and streamlines, and the initialization of the net with nine neural
units; Second column: result after the net has been reached the maximum number
of neurons (300 neurons); Third column: error minimization according to (19).

points); the second column show the result after the net has been reached the
maximum number of neurons, which was fixed to 300; the third column shows
the minimization of the error according to (19).

It is necessary to mention that the whole process is quick enough; in fact, the
computational time required for all the examples showed in this work, took only
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few seconds. The computation of the GGVF is the most time consuming task in
the algorithm, but it only takes about 3 seconds for 64x64 images, 20 seconds for
256x256 images, and 110 seconds for 512x512 images. This is the reason why we
decide do not compute it for the whole image, but for selected region of interest.
The same criterion was applied to 3D examples.

5 Conclusions

In this work it was shown the use of the dense vector field named Generalized
Gradient Vector Flow (GGVF) not only to select the inputs to a neural network,
but also as a parameter guiding the learning process of the net. The neural
network presented here is the growing Neural Gas, which is used to find a set of
transformations expressed in the conformal geometric algebra framework, which
move a point by means of a versor along the contour of an object, defining by
this way the shape of the object. This is useful because although we have shown
examples using points, the versors of the conformal geometric algebra can be used
to transform any entity exactly in the same way: multiplying the entity from the
left by M and from the right by M̃ . There were presented some experiments and
results shows that in addition to the set of versors available even if the entity
used is other than points, this algorithm is well suited for segmentation tasks.
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Abstract. This paper reports on an automatic method for ventricular
cavity segmentation in angiographic images. The first step of the method
consists in applying a linear regression model that exploits the functional
relationship between the original input image and a smoothed version.
This intermediate result is used as input to a clustering algorithm, which
is based on a region growing technique. The clustering algorithm is a two
stage process. In the first stage an initial segmentation is achieved us-
ing as input the result of the linear regression and the smoothed version
of the input image. The second stage is intended for refining the initial
segmentation based on feature vectors including the area, the gray-level
average and the centroid of each candidate region. The segmentation
method is conceptually simple and provides an accurate contour detec-
tion for the left ventricle cavity.

1 Introduction

Clustering is the division of a dataset into groups of similar objects. Clustering
methods have been used for recognition of shapes [1] [2]. Given a set of M
data points, the objective is to detect similarities between points of this data
set. The clustered data is stored in d-dimension vectors. Each vector represents
a particular object which is described by d features that enables comparison to
other data vectors. The result of the feature comparison process is used to classify
the data into several disjoint subsets. This technique has been used to solve the
image segmentation problem. Clustering based segmentation considers features
like pixel space positions, topological relations and contour features. Examples of
these techniques are the methods for classification [3] and clustering by Region
Growing [4].

Region growing methods have been used for performing the segmentation of
several medical imaging modalities [5]. The region growing is usually based on
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simple linkage, on multiple connections or centroid based linkage [6]. An alterna-
tive classification method is based on clustering by graph theory [7]. According to
this method, data is initially represented by adjacent graphs [8] building up sev-
eral subgraph sets whose union represents a spatially connected region in the im-
age. The fuzzy C–means classification algorithms have also provided good results
for image segmentation. These methods require a high computational cost [9][10].
Ventriculograms are obtained from a medical imaging modality based on X–rays,
after the injection of a contrast medium in the cavities of the heart aiming to en-
hance the contrast with respect to other tissues. Such examination enables the
assessment of morphology and function of the heart. Ventriculographic image
analysis requires a precise description of ventricular shape in order to quantify
the parameters associated with the cardiovascular function [11] [12] or alter-
natively for performing the visualization of this anatomical structure [13]. The
accurate description of ventricular shape and their quantitative analysis is im-
portant, since cardiovascular disease (CVD) accounts for one third of the deaths
in the world [14].

Recently, several robust methods for ventriculographic image segmentation
have been proposed. Suzuki et al. [15] have developed a ventricular contour de-
tector based on neural networks (NN). The detector was implemented using a
multilayer neural network which was trained through a back–propagation algo-
rithm. The training set includes left ventricle images and ventricular contours
traced by a cardiologist. Validation was performed by comparison of the area
enclosed by the estimated contour with respect to the reference contour traced
by the cardiologist. The average contour error obtained at end–diastole was
6.2%. Oost et al. [16] have proposed a ventricular cavity automatic segmentation
method based on Active Appearance Models (AAMs) and dynamic programming
(DP). The active appearance model is used to exploit the existing correlations
in shape and texture between end-diastole and end-systole images. A dynamic
programming algorithm was used to incorporate cardiac motion features to the
method. The method was evaluated by using 140 images. The average border po-
sitioning error was smaller than 1.45 mm. These methods provided an accurate
representation of ventricular borders, however, they are not yet fully validated
and accepted in the clinical work as a gold standard.

The objective of this research is to develop a left ventricle segmentation
method based on region growing. This segmentation method consists of two
fundamental stages. The first is a preprocessing stage that enhances the image
data using statistical tools. The second is a classification stage based on region
growing. The method uses a feature vector including the gray-level intensity and
the average of pixels included in a neighborhood.

2 Method

2.1 Preprocessing Stage

An average filter is applied to the input image. According to this filter, if a pixel
value is greater than the average of its neighbors (the eight closest pixels in a
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neighborhood of size 3 × 3) plus a certain threshold ε, then the pixel value in
the output image is set to the average value, otherwise the output pixel is set
equal to the pixel in the input image. The output image is a smoothed version of
the input. The threshold value ε was set to the standard deviation of the input
image.

A linear regression model is estimated to exploit the functional relation [17]
between the data of the input image (IO) and the data of the smoothed image
(IP ). The model is described by:

ÎP = β0 + β1IO , (1)

where β0 and β1 are the regression coefficients [17], which are estimated by the
least squares method according to:

β0 =
n
i=0(IOi

−ĪO)(IPi
−ĪP )

n
i=0(IOi

−ĪO)2

β1 = ĪP − β0ĪO

. (2)

The data obtained by the functional relation between the original image and
the smoothed image represents a new image (ÎP ). The pixel values in this image
and in the smoothed image are the members of the feature vector used in the
clustering method.

(a) (b) (c) (d) (e)

Fig. 1. Linear regression model. (a) Original image. (b) Smoothed image. (c) Linear
regression image. (d) Similarity image. (e) Density function image.

2.2 Clustering Stage

The clustering stage is a four steps process. In the first step a similarity matrix is
generated based on a similarity criterion [6] that measures the difference between
the gray-level values of pixels in ÎP and the smoothed image (IP ). According
to this criterion, pixels p1(u, v) (in ÎP ) and p2(u, v) (in IP ) have feature vectors
denoted as: pv1=[i1, a] and pv2=[i2, b], where i1 and i2 denote the intensities
associated with the corresponding pixel and, a and b are the intensity average
in a 5 × 5 neighborhood around each pixel. The neighborhood size was varied
between 3 × 3 and 11 × 11. The size 5 × 5 provided the best results and was
retained. In general the impact of neighborhood size is not very important;
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(a) (b) (c) (d) (e)

Fig. 2. (a) Original image (RAO view). (b) Approximate segmentation. (c) Final clus-
tering. (d) Left ventricle cavity. (e) Background region.

however, neighborhood sizes larger than 5 × 5 increase the computational cost.
The similarity matrix (IS) is an image obtained using the following equation:

IS = (i1 − i2)2 + (i1 − b)2 + (i2 − a)2 . (3)

In the second step a data density function ID [18] is obtained by convolving IS

with a unimodal density mask K as follows:

ID = IS ∗ K . (4)

The density function establishes the degree of dispersion in IS . A Gaussian
distribution with standard deviation σ is used as a density mask [18] as follows:

K(i, j) =
(

1
2πσ2

)n/2

e
−|i+j|2

2σ2 ; 0 ≤ i, j ≤ n , (5)

where n denotes the mask size. In our case we use n = 5 and σ is set as the
standard deviation of the smoothed image IP .

In the third step, an approximate segmentation is performed. All pixels that
have an intensity value lower than the standard deviation of image IP are con-
sidered as seed points for a simple linkage region growing algorithm that is
performed on image ID. A region grows from each of the seed pixels by group-
ing neighbor pixels that comply with the following uniformity criterion: if the
difference between two neighbor pixels is lower than the standard deviation σD

of image ID, then both pixels are clustered. This process is applied to the entire
image ID until all pixels are clustered and tagged. Thus, results achieved provide
an approximate segmentation of the input image as more than two regions can
be obtained.

The last step of the clustering process improves the segmentation by using
a region growing method by multiple linkage [19]. The objective is to obtain
only two regions partitioning the ventriculograms: one representing the interior
of the left ventricle cavity and the other the background region. Each tagged
region obtained in the previous step is a seed region that is represented by a
feature vector whose components are the area, the average intensity and the
centroid. Neighbor regions are merged when the following uniformity criterion
is met: the neighbor regions must provide a minimum for the difference between
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the average intensity, for the difference between the area and for the Euclidean
distance between centroids. This process is applied in an iterative way until only
two neighbor regions are left.

(a) (b) (c) (d) (e)

Fig. 3. (a) End-systole image (LAO view). (b) Approximate segmentation. (c) Clus-
tering results. (d) Left ventricle cavity. (e) Background region.

3 Results

The proposed method has been tested with biplane ventriculograms acquired at
several instants of the cardiac cycle. The biplane images were acquired according

Table 1. Components of the feature vector for each of the regions in the end-diastole
image

Feature vector Area (pixels) Gray-level average Centroid

Region 0 13305 216 (120,98)

Region 1 16995 152 (105, 106)

Region 2 35236 31 (145, 155)

Table 2. Feature vector for each of the regions in the end-systole image

Feature vector Area (pixels) Gray-level average Centroid

Region 0 35421 52 (62,67)

Region 1 4515 72 (236,220)

Region 2 15172 104 (103,81)

Region 3 7111 156 (135,116)

Region 4 3317 208 (144,174)

Table 3. Feature vector for each of the regions after the first iteration of the multiple
linkage clustering in the end-systole image

Feature vector Area (pixels) Gray-level average Centroid

Region 0 39936 52 (62,67)

Region 1 15172 104 (103,81)

Region 2 10428 182 (132,144)
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Fig. 4. Segmentation for a RAO view image sequence

to the conventional Left Anterior Oblique (LAO) 60◦ and Right Anterior Oblique
(RAO) 30◦ views. All images are of size 256×256 pixels. The input images were
preprocessed by performing distortion correction and logarithmic subtraction.

Figure 1.a shows the input image that corresponds to the RAO view at the
end-diastole instant. Figure 1.b shows the smoothed image using a neighborhood
of size 3 × 3 and figure 1.c shows the image estimated by linear-regression (ÎP ).
The similarity image (obtained using equation 3) is shown in figure 1.d. This
image is obtained as a quadratic function that combines pixels in the original
image with pixels in the smoothed image. As a result the output image has a
smoothed appearance. Finally, the density function image is shown in figure 1.e.
This image is obtained by convolving a Gaussian function with the similarity
image, thus increasing the degree of smoothing. The standard deviation value
(σ = 44.63) is estimated from the smoothed image IP .

Figure 2.b shows the approximate segmentation where several regions are
identified. The standard deviation used for determining the 3 clusters was σD =
59.63. This standard deviation is estimated from the density function image ID.
A feature vector for each of the regions is shown in Table 1. The adjacent re-
gions with a more similar feature vector are regions 0 and 1. The clustering step
using multiple linkage provides the final segmentation shown in figure 2.c, where
regions 0 and 1 are clustered based on the region growing step. Figure 2.d–
2.e shows the two regions obtained from the segmentation process. In figure 3,
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Fig. 5. Segmentation for a LAO view image sequence

results of the segmentation for the end-systole ventriculogram (LAO view) are
shown. In this case, five regions have been found at the approximate segmenta-
tion step. Table 2 shows the feature vectors for each region. The clustering step
is performed using two iterations for attaining the final segmentation. During
the first iteration regions 0 and 1 are merged as well as regions 3 and 4. The
merged regions have the feature vectors shown in Table 3. During the second
iteration regions 1 and 2 are merged providing the final segmentation shown in
figure 3.c.

Figure 4 and Figure 5 show the results of the segmentation for a sequence
of ventriculograms in the RAO view and LAO view respectively. The first and
third rows (from top to bottom) show the original images while the second and
fourth rows show the segmentation results.

Validation of the segmentation method is performed by quantifying the differ-
ence between the left ventricle shape obtained with respect to the left ventricle
shape traced by a cardiologist. The error is expressed as the ratio between the
area of the shape difference with respect to area of the union of shapes compared.
The error obtained (mean ± standard deviation) for a sequence of ventriculo-
grams in the RAO view, including 25 images is 5.47 % ± 1.61 %, with a maximum
value of 7.84 % and a minimum value of 2.53 %. When the segmentation is per-
formed for the sequence showing the LAO view (including 25 images) the error
is 4.39 % ± 3.41 % with a maximum value of 13.90 % and a minimum value of
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Fig. 6. Left ventricle volume

1.53 %. The error considering the set of 50 images (25 for the RAO view and 25
for the LAO view) is 4.93 % ± 2.69 %. The volume for the left ventricle during
the cardiac cycle is estimated using the Area-Length method [20] from the con-
tours obtained using the segmentation method. Fig. 6 shows the left ventricle
volume estimated using the contours obtained by the proposed segmentation
method (estimated volume) and the volume obtained from contours traced by
the cardiologist (reference volume). The volume is normalized with respect to
the end-diastole volume. The error obtained by comparing the reference volume
with respect to the estimated volume is 4.61 % ± 1.22 %. The ejection fraction
[21] for the reference volume is 0.77 and 0.74 for the estimated volume. The
percent error is 3.9%.

4 Conclusions

An automatic image segmentation method has been presented. The proposed
method is tested using real biplane ventriculograms. The region growing algo-
rithm used as the core of the segmentation process enables the accurate dis-
crimination of the ventricular cavity. The segmentation method does not require
any prior knowledge about the ventriculograms and considers the relationship
between neighbor pixels.

The segmentation method is conceptually simple and provides an accurate
left ventricle contour. The method requires a low computational cost. The pro-
posed approach provides an initial segmentation that is later improved using
the multiple linkage region growing algorithm. The initial segmentation could
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be interpreted as a compression stage that codes the set of groups that represent
the image. The initial segmentation could also be considered as the input to
other segmentation methods based on clustering or non-supervised learning ma-
chines (for instance auto-organized maps or fuzzy logic based techniques). The
tests performed on real biplane ventriculograms shows that parameters describ-
ing the cardiac function like the volume and the ejection fraction are consistent
with the values reported in the literature [22] [23].

As a future research we propose to incorporate other components to the fea-
ture vector such as contour curvature and smoothness. In addition, comparison
to other methods would be performed. A complete validation is also necessary,
including an important number of control subjects as well as cardiac patients. In
the validation stage we plan to use other metrics for comparing the segmentation
results as for instance the average contour positioning error as in [16]. The vali-
dation stage could also include a comparison of estimated parameters describing
the cardiac function with respect to results obtained using other imaging modal-
ities like magnetic resonance imaging or multi-slice computerized tomography.
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Abstract. Image segmentation plays an important role in many systems of 
computer vision. The good performance of recognition algorithms depend on 
the quality of segmented image. According to the opinion of many authors the 
segmentation concludes when it satisfies the observer’s objectives, the more 
effective methods being the iterative. However, a problem of these algorithms is 
the stopping criterion.  In this work the entropy is used as stopping criterion in 
the segmentation process by using recursively the mean shift filtering. In such 
sense a new algorithm is introduced. The good performance of this algorithm is 
illustrated with extensive experimental results. The obtained results 
demonstrated that this algorithm is a straightforward extension of the filtering 
process. In this paper a comparison was carried out between the obtained results 
with our algorithm and with the EDISON System [16]. 

Keywords: Entropy, image segmentation, mean shift, smoothing filter. 

1   Introduction 

Segmentation and contour extraction are important steps in many systems of high 
level. Segmented images are now used routinely in a multitude of different 
applications, such as, diagnosis, treatment planning, in the robotics, localization of 
pathology, geology, study of anatomical structure, meteorology, computer-integrated 
surgery, among others. However, image segmentation remains a difficult task due to 
both the variability of object shapes and the variation in image quality. In spite of the 
most complex algorithms developed until the present, segmentation continues being 
very dependent on the application and it doesn't exist a single method that can solve 
all the problems that are presented in the universe.  

With the aim of obtaining segmentation methods more exact and more effective, 
several techniques have been proposed in the literature, where a great variety of them 
has been dedicated to biomedical images [1-7]. Unfortunately, segmentation is a 
complex problem with no exact solution. Segmentation using traditional low-level 
image processing techniques, such as thresholding, histogram, region growing and 
other classical operations requires a considerable amount of interactive guidance in 
order to attain satisfactory results. Automating these model-free approaches is 
difficult because of complexity, shadows, and variability within and across individual 
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objects. Furthermore, noise and other image artifacts can cause incorrect regions or 
boundary discontinuities in objects recovered from these methods. 

At the present time the most robust algorithms in segmentation are the iterative 
methods, which cover a variety of techniques, from the mathematical morphology, 
deformable models until the thresholding methods. However, one of the problems of 
these iterative techniques is the stopping criterion, in which great quantities of 
methods have been proposed [8-11].  

The mean shift is a nonparemetric procedure and it is an extremely versatile tool 
for feature analysis and can provide reliable solutions for many computer vision tasks. 
[12]. The mean shift was proposed in 1975 by Fukunaga and Hostetler [13] and 
largely forgotten until Cheng´s paper [14] rekindled interest in it. The segmentation 
by using the mean shift as first step carries out a smoothing filter and later on the 
segmentation process [12].   

The term of entropy is not a new concept in the field based on information theory 
and it has been used in image restoration, edge detection and recently as an objective 
evaluation method for image segmentation [15]. 

In this work a new segmentation strategy by using the mean shift is proposed. The 
new method uses the entropy as stopping criterion, where two steps to obtain the 
segmented image is not necessary to carry out. The obtained results with our 
algorithm are compared with the attained results by using EDISON System [16]. The 
results from this preliminary study indicate that the proposed strategy is effective and 
that at worst these are similar to those reported in [8, 12]. 

The remainder of the paper is organized as follows: In Section 2, we provide the 
more significant theoretical aspects of the mean shift. In Section 3, we shortly 
introduce the entropy concept and we carry out some comments. Then, in Section 4, 
we describe our segmentation algorithm based on the mean shift and by using the 
entropy as stopping criterion. The experimental results, comparisons and discussion are 
presented in Section 5, and Section 6 concludes the paper and discusses future work. 

2   The Mean Shift: Analysis 

The iterative procedure of the mean shift is introduced as normalized density gradient 
estimate. By employing a differentiable kernel, an estimate of the density gradient can 
be defined as the gradient of the kernel density estimate, that is,   
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Conditions on the kernel K(x) and the window radio h are derived in [9] to guarantee 
asymptotic unbiasedness, mean-square consistency, and uniform consistency of the 
estimate in the expression (1)  
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where the region )(xSh  is a hypersphere of radius  h having the volume d
d ch , 

centered on x, and containing xn  data points, that is, the uniform kernel. The last 

term in expression (2) is called the sample mean shift, 
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The expression (5) shows that an estimate of the normalized gradient can be obtained 
by computing the sample mean shift in a uniform kernel centered on x. In addition, 
the mean shift has the direction of the gradient of the density estimate at x when this 
estimate is obtained with the Epanechnikov kernel. Since the mean shift vector always 
points towards the direction of the maximum increase in the density, it can define a 
path leading to a local density maximum that is, to a mode of the density. 

A digital image can be represented as a two-dimensional array of p-dimensional 
vectors (pixels), where p =1 in the gray level case, three for color images, and p > 3 
in the multispectral case.  

As was pointed in [8] when the location and range vectors are concatenated in the 
joint spatial-range domain of dimension d = p+2, their different nature has to be 
compensated by proper normalization with the hs and hr parameters. Thus, the multi-
variable kernel is defined as the product of two radially symmetric kernels and the 
Euclidean metric allows a single bandwidth for each domain, that is,  
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where xs is the spatial part, xr is the range part of a feature vector, k (x) the common 
profile used in both domains, hs and hr the employed kernel bandwidths, and C the 
corresponding normalization constant.  

The novelty lies in applying the mean shift procedure for the data points in the 
joint spatial-range domain.  
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3   Entropy 

From the point of view of digital image processing the entropy is defined according to 
the following expression, 

−=
−

=
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(x) plog (x) p) (x E                                            (6)  

where B is the total quantity of bits of the digitized image and by agreement 
;00log2 =  p(x) it is the probability of occurrence of a gray-level value. Within a 

totally uniform region the entropy reaches the minimum value, because one speaking 
theoretically, the probability of occurrence of the gray-level value is always one. In the 
practice when one works with real images, the entropy does not reach, in general, the 
zero value. This is due to the existent noise in the images. Therefore, if we consider the 
entropy as a measure of the disorder within a system, it could be used as a good 
stopping criterion into an iterative process by using the mean shift filtering. The 
entropy within each region diminishes in the measure that the regions become more 
homogeneous and at the same time in the whole image, until reaching a stable value. 
When the convergence is reached, a totally segmented image is obtained, because the 
mean shift filtering is not idempotent as it doesn't happen to some types of filters in the 
mathematical morphology (for example, with the opening). In addition, as by [8] was 
pointed out, the mean shift procedure-based image segmentation is a straightforward 
extension of the discontinuity preserving smoothing algorithm and the segmentation 
step does not add a significant overhead to the filtering process.  

The choice of entropy as a measure of goodness deserves several observations. 
First, it is known that the addition of two independent random variables (for example, 
a signal and additive noise) increases the entropy [17]. Entropy reduction reduces the 
randomness in corrupted probability density function and tries to counteract noise. 
Then, following this same analysis as the segmented image is a simplified version of 
the original image, the entropy (segmented image) should be smaller. Recently, it was 
found empirically that the entropy of the noise diminishes faster than that of the signal 
[17]. Therefore, an effective criterion would be to stop when the relative rate of 
change of the entropy, of an iteration to the next one, falls below some threshold.  

4   Algorithms 

4.1   Filtering Algorithm by Using the Mean Shift 

Let Xi and Zi,  i=1,..,n, be the input and filtered images in the joint spatial-range 

domain.  For each pixel p ∈ Xi, 
3),,( ℜ∈= zyxp , where 2y)(x, ℜ∈  and 

1]2[0,z −∈  , β being the quantity of bits/pixel in the image.  The filtering 

algorithm comprises the following steps [8]:  

1. Initialize  j =1 and  yi,1 = pi 
2. Compute through the mean shift (see expression (3), yi, j+1), the mode where 
the pixel converges; that is, the calculation of the mean shift is carried out until 
convergence,  y = yi,c. 
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3. Store at Zi the component of the gray level of calculated 

value: )y ,x (Z r
c i,

s
ii = , where x s

i  is the spatial component and y r
c i,  is the 

range component. 

4.2   Developed Segmentation Algorithm by Using Recursively the Mean Shift 
Filtering 

The proposed algorithm comprise the following steps: 
 

1. Initialize the control values, ent1 = 1,  errabs = 1,  edsEnt  
2. While errabs > edsEnt,  then  
3. Do filtrate the image according to the steps of the previous algorithm; store 
in Z the filtering image. 
4. Do calculate the entropy from the filtered image according to the expression 
(6); store in ent 
5. Do calculate the absolute error with the entropy value obtained in the 
previous step;  errabs = abs ( ent – ent1) 
6. Do update  the value of the parameter;  ent1 = ent 

 

It is possible to observe that, in this case, the proposed segmentation algorithm is a 
straightforward extension of the filtering algorithm, which finishes when the entropy 
reaches the stability. Note the simplification of this algorithm compared with the one 
proposed in [8]. A detailed discussion on this issue will be made in the next section. 

5   Applications: Discussion  

Image segmentation; that is, the decomposition of the gray-level values into 
homogeneous areas is maybe one of the most important steps in any system of 
computer vision.  Homogeneity, in general, is defined as similarity in pixel values, 
where a piecewise constant model is enforced over the image [8]. 

All the segmentation experiments were performed using a uniform kernel. The 
segmentation of the image lake obtained with the proposed algorithm is shown in Fig. 
1b, while in Fig. 1c is presented the obtained results by using EDISON System [16]. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Lake: (a) Original image, (b) Segmented image by our strategy (hs, hr) = (12, 15), (c) 
Segmented image according to algorithm proposed in en [8], (hs, hr, M) = (16, 7, 40) 

(a) (c) (b) 
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From the point of view of the visual analysis, it is not observed big differences 
between the image segmented by our algorithm and the one obtained by the EDISON 
System. However, to say of other observers the sky and the clouds were better 
segmented with our strategy. Note that all the other details in the segmented image are 
preserved. Comparing Figs. 1(b) and 1(c), in the part corresponding to the water with 
our algorithm an additional homogeneous area was obtained. The obtained result in 
Fig. 1(b) took 9 iterations to reached the convergence; that is, until the stability was 
reached (no more change). From the point of view of the final result the image 
segmented with our algorithm has an aspect a little more natural with regard to the 
original image. In many occasions, given the application, segmentation imposes 
certain conditions (elimination of regions, prunes or integration of certain maxima, 
etc). This can originate a biased image with regard to the initial. With our algorithm 
the resolution is only imposed on the segmentation process; that is, the parameters hr 
and hs. For this reason, our algorithm did not make mistakes; that is, a segmented 
image very different to the original never was obtained. 

To better visualize the segmentation process, it is represented in three dimensions 
in Fig. 2. Observe that the data was reflected over the horizontal axis, while the 
intensities over z. This gives a more informative display. In Fig. 2(a) the segmented 
image with our algorithm is presented, while in Fig. 2(b) the segmented image with 
the EDISON system. Note that in both representations significant differences are not 
observed, but in the segmented image with our algorithm one can see other 
homogeneous areas (do see the central plate of Fig. 2(a) corresponding to the sky and 
the clouds). It is possible to observe in Fig. 2(a) the integration of large homogeneous 
regions when the convergence is reached (see the plates). Also, one can see that these 
plates in both images reached the same level of intensity (see in axis z). In spite of 
with both algorithms very similar results are obtained, the difference underlies in that 
to obtain the image of Fig. 1(c) it was necessary to carry out a filtering step and other 
of segmentation. In this last step, one can have certain complexity when adjacency 
graphs and hierarchical technique are used [8]. 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Visualization in 3D of the mean shift segmentation. (a) With our algorithm. (b) By using 
EDISON system.  
 

We verified that the segmentation through our algorithm was not very sensitive to 
the choice of the parameters hr and hs. This was also tested in [8]. We selected for 
most of images the same parameters hr =15 and hs =12 and edsEnt = 0.005 as 
threshold of stopping criterion. This value was empirically found, after carrying out 
several investigations with different images.  

(b) (a) 



332 R. Rodríguez and A.G. Suarez 

Another segmentation example through our algorithm and using the EDISON system 
is shown in Fig. 3  
 
 
 
 
 
 
 
 
 
 

Fig. 3. Cameraman: (a) Original image, (b) Segmented image according to our  algorithm hs= 
12 and hr= 15, (c) Segmented image by using  EDISON system hs=8, hr=4  

Note that visually substantial differences are not appreciated between the 
segmented image with our algorithm and by using EDISON system. The convergence 
with our algorithm in 8 iterations was reached. It is possible to observe that with our 
strategy the grass is a little more homogeneous as compared with the image of  
Fig. 3(c). In addition, all the other regions were preserved the same as in the image of 
Fig. 4(c). Note that the tripod and the buildings were well segmented. However, with 
our algorithm is not well appreciated the area of the cameraman's hand for an hr = 15.  
In other images segmented with smaller value of hr was possible to segment the 
cameraman's hand. This was not put here for space problem. The range parameter hr 
controls the number of regions in the segmented image [8]. A three-dimensional 
representation of the segmented images with both methods is shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Visualization in 3D of the mean shift segmentation. (a) With our algorithm. (b) By using 
EDISON system.  

 
Note in Fig. 4 that in both images is appreciated the plates corresponding to the sky 

and to the grass, with the slight difference that in the image of  Fig. 4(b) the plate of 
the grass is observed something curved. In the other details, significant differences are 
not appreciated. The advantage that presents our algorithm compared with the one 

(a) (b) (c) 

(a) (b)
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proposed in [8] is the simplicity of the same one. Our algorithm would be very useful 
in an automatic segmentation process. 

In Fig. 5 another segmentation examples are shown with both methods. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 5.  (a)  Original  image,  (b)  Segmented   image according  to  our   algorithm  hs= 12 and  
hr= 15, (c) Segmented image using the  EDISON  system; hs=8, hr=7 y M = 20  

Analyzing, both images visually, one can see that these were segmented well, where 
it is possible to observe differences in some details, which it are not significant. These 
differences can be given by the use of different parameters (hr, hs). In this case the 
convergence with our algorithm was reached in 10 iterations. To better visualization of 
the segmentation process in Fig. 6 are represented in three dimensions. 

 
 
 
 
 
 
 
 
 
 

Fig. 6. 3D visualization of the mean shift segmentation. (a) With our algorithm. (b) By using 
EDISON system.  

 
Note that in both images the plates corresponding to the most homogeneous areas are 
appreciated with the same levels of intensities (in the axis z). It is important to point 
out that the same as what happened in the segmented images with the EDISON 
system, with those obtained with our algorithm any maximum was not obtained after 
the convergence was reached. 

The abrupt changes that are appreciated in the fall or elevation from a plate to 
another in the 3D representation are indicative of different regions with different 
intensities. These correspond to the discontinuities (edges). For example, the window 
marked in Fig. 5(a) is represented in three dimensions in Fig. 7 (b). It is possible to 
see in this representation two homogeneous plates corresponding to the sky and the  
 

(a) (b) (c)

(a) (b) 
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Fig. 7. Visualization in 3D. (a) Input, (b) Our algorithm, (c) By using EDISON system. 

 
roof of the school. Note an abrupt change between a zone and the other one. This 
means two totally different regions 

According to the opinion of some observers with our algorithm the segmented 
images have a more natural aspect. An example is the result that appears in Fig. 8. 
Note that the clouds and the sky were better isolated with our algorithm. 

 
 
 
 
 
 
 
 

 
 
 

Fig. 8. (a) Original image, (b) Segmented image according to our algorithm (hs= 12, hr= 15), 
(c) Segmented image by using  EDISON system ( hs=8, hr=7 and M = 20 ) 

It is necessary to point out that in this comparison an analysis from the point of view 
of the computation time was not carried out, due to that our algorithm was implemented 
in MatLab (ver. 6. 5)), while the EDISON system was programmed in C++. 

6   Conclusions 

In this work was proposed a segmentation algorithm using an iterative process of the 
mean shift filtering. It was tested that the algorithm always converges and through the 
3D representation was possible to demonstrate that this convergence always 
addressed to the homogeneous regions; that is, the different objects. It was verified 
through the obtained results that our algorithm was effective and that at worst, these 
(results) were similar to those reported in [8, 12]. From the point of view of the 
algorithmic complexity this strategy is simpler that the proposal in [8], since 
adjacency graphs and hierarchical technique is not necessary to use. It was evidenced 
that this segmentation procedure is a straightforward extension of the filtering 
algorithm. For this reason, our algorithm did not make mistakes; that is, a segmented 

(a) (b) (c) 

    (a)                                               (b)                                              (c) 
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image very different to the original never was obtained. This strategy will be extended 
to the color image segmentation. The results from this preliminary study indicated 
that the proposed strategy was effective.  
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Abstract. In this paper, we present new developments in the formulation of a 
new class of level set method for medical image segmentation. In this work, 
a new speed function of level set framework is proposed. The region statistical 
information, instead of the conventional image gradient information, is fused 
into the level set fundamental model to improve the robustness of the segmenta-
tion for medical images. The new method has some advantages over classical 
level set methods especially in the situations where edges are weak and fuzzy. 
A number of experiments on MR, US and CT images were performed to evalu-
ate the new method. Experimental results are given to illustrate the effective-
ness and robustness of the method. 

1   Introduction 

Medical image segmentation is a fundamental problem in medical image processing 
with numerous applications including but not limited to medical image analysis, 3D 
visualization, etc. It is the process that automates or facilitates the delineation of ana-
tomical structures and other regions of interest (ROI) based on attributes such as their 
intensity and spatial location. Many classical segmentation techniques have been 
developed and detailed surveys can be found in references [1]-[3]. However, medical 
images are often corrupted by noise and sampling artifacts, which cause considerable 
difficulties when applying classical segmentation techniques, such as edge detection 
and thresholding. Therefore, sophisticated automated and semi-automated techniques 
are required. 

To address medical image segmentation problem, active contour model [4]-[5] has 
recently become one of the most studied techniques for medical image segmentation, 
where an initial contour is deformed towards the boundary of the object to be detected 
by minimizing an energy function. 

The classical active contour model is a parametric deformable model. Parametric 
active contour models are very popular and are successfully used in medical image 
segmentation for extracting image contours such as edges by Kass et al. [4]. However, 
they have some disadvantages. To make the final result relatively to be insensitive to 
the initial conditions, Xu and Prince [6] suggested the gradient vector flow (GVF) 
Snake model. The GVF model is useful when there are boundary concavities. How-
ever, the GVF still has topological problems. Chakraborty et al. [7] and Poon et al. [8] 
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proposed methods to integrate the parametric snake with region segmentation. It re-
quires a priori knowledge of the interest, and can suffer from topological problems. 
But the parametric deformable models have difficulty in segmentation of topologi-
cally complex structures. To overcome this problem, the level set approach was intro-
duced by Osher and Sethian [9] in 1988, and was created to follow the evolution of N-
dimensional curves (interfaces) by observing their curvature. Level sets are designed 
to handle problems in which the evolving interfaces can develop sharp corners and 
cusps [10]. Most existing shape modeling techniques require that the topology of the 
object be known before the shape recovery can commence. However, it is not always 
possible to specify the topology of an object prior to its recovery. One important con-
cern is topological change resulting from tracking the evolution of curve or surface 
boundaries through time. During their evolution, interfaces may change connectivity 
and split, thereby undergoing a topological transformation which is often very diffi-
cult to follow using traditional approaches. In the level set approach, the convergence 
to the final result may be relatively independent of the initial shape, and branches, 
splits and merges can develop without problems as the front moves. Generally, the 
method may be applied even when no a priori assumptions about the object’s topol-
ogy are made. Most of the challenges in level set approach resulting from the need to 
construct an adequate model for the speed function.   

In this paper, our main contribution is to define a new speed function model, which 
is based on the image region statistical information. This region statistical information 
is then incorporated into the level set method instead of the conventional image gradi-
ent information. The paper is organized as follows. The level set approach is briefly 
reviewed in section 2 and our proposed level set framework is described in section 3. 
The experimental results are discussed in section 4. Some conclusions are drawn in 
section 5. 

2   Level Set Method Model 

The level set method was devised by Osher and Sethian [9]. The main idea in the 
level set method is to describe a closed curve Γ  in the image plane as the zero level 

set of a higher dimensional function ),( txφ  in 3ℜ . The value of the φ  at some point 

x  is defined by 

   dtx ±== )0,(φ                                                      (1) 

where d  is the distance from x  to )0( =Γ t , and the sign in Equation (1) is chosen  

whether the point x  lies outside or inside the initial hypersurface )0( =Γ t . In this  

manner, Γ  is represented by the zero level set { }0),(|)( 2 =∈=Γ txRxt φ  of the level 

set function, and the initial function )0,( =txφ  with the property that 

{ }0)0,(|)0( 2 ==∈=Γ txRx φ . The evolution of ),( txφ  can be modeled as  

    0=∇+
∂
∂ φφ

F
t

                                                      (2) 



338 Y. Yang 

with a given )0,( =txφ . At any instant, the position of Γ  shall be given as the zero 

level set of evolving function φ . We must have 

 { }0),(|)( 2 =∈=Γ txRxt φ                                              (3) 

The speed function F  in equation (2) depends on factors  like  the image gradient. A  
common choice for F  is 

)1)(( kIPF ε−=                                                       (4) 

where 0 <ε < 1 is a constant, I  is  the  image  intensity  and  k  is  the  curvature,  ob-
tained from divergence of the gradient of the normal vector to the front, curvature k  
can be defined as 

( )2
3

22

22 2

yx

xyyxyyxyxx
k

φφ

φφφφφφφ

+

+−
=                                         (5) 

The term ( )IP  in equation (4) is  an image-dependent halting criteria  that can be cal-

culated as 

( ) IGeIP ∗∇−= σ                                                      (6) 

where IG ∗∇  denotes the image convolved with a Gaussian smoothing filter whose  
characteristic width is σ . This halting criterion allows model to stop on high image 
gradient by reducing speed function to zero, thus aligning it to the object boundary.  
The final level set equation for segmentation is given by 

 0)1)(( =∇−+
∂
∂ φεφ

kIP
t

                                           (7) 

The above motion equation (7) is a partial differential equation in one higher di-
mension than the original problem. Given the initial value, it can be solved by means  
of difference operators in a fixed grid via 

( )
( )∇+

∇
⋅⋅Δ−=

−

+
+

0,min

0,max
1

ij

ijn
ij

n
ij

F

F
htφφ                                 (8) 

where n  is  the  iterative  time, h is  the  grid  step, tΔ  is  the  time  step, ijF  is  the  speed  

value of pixel ( )ji, , n
ijφ  is the level value of pixel ( )ji,  at time n  and where 
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1
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φ 1

                             (12) 

This implementation allows the function φ  to automatically follow topological  

changes and corners during evolution.  

3   Proposed Level Set Method  

In this section, a new speed function is proposed which is based on the image region 
information since the gradient in the conventional level set approach has no meaning 
for very noisy and low contrast images. This region information is achieved at a 
global level by a statistical characterization. The core idea is to utilize the probability 
density function inside and outside of the structure to be segmented. Here, the original 
speed function proposed by Malladi [11] is employed for it simplicity as: 

)( kvhF I ρ−=                                                       (13) 

where v  represents an external propagation force, k  is the local curvature of the 
front and  acts as a regularization term. The weighting ρ expresses the importance 

given to regularization and the term Ih is the data consistency and acts as a stopping 

criterion at the location of the desired boundaries.  
Suppose that the image is partitioned into N pixel, labeled by the integers 

N,,2,1 ⋅⋅⋅ . In most application, the pixel locations or sites will form a regular square 

lattice. Further suppose that each pixel variable, Nixi ≤≤1,  can take any real value, 

Rxi ∈ . The values of the pixel variables are called intensities and arbitrary shading 

will be denoted },,,{ 21 Nxxxx ⋅⋅⋅= , hence NRx ∈ . In general, it is not possible to 

observe x  directly, instead the observed image y  is a degraded copy of x . 

   Nixy iii ≤≤+= 1,ε                                                 (14)  

where ),0(~ 2σε Ni ,and iε  and jε are independent when ji ≠ . Let us consider the 

image ),( yxI  could be the Gaussian distribution: 
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                           (15) 

The goal is to segment the image ),( yxI  into two “homogeneous” regions sepa-

rated by the contour. The region inside the object contour, inI , represents the object 

region. The region outside the contour, outI , corresponds to the background region. 

We use the same method as in [12] to incorporate region information into level set 
method. The sign of v  determines the direction of the external propagation force: 

)}()1()({ outiini IpaIpaSignv −−=                                      (16) 

where )( inIp and )( outIp  denote the likelihood of intensity inside and outside the 

object, and ia  is the prior of a image to be inside the object. The likelihood )( inIp  of 

the curve evolves inside the considered region is given by a Gaussian distribution as 
follows: 
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Ip
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σπ
−

−∝                                  (17) 

In the same case, where the curve outside the considered region, the likelihood is 
described by a translated form of the Gaussian as follows: 

)
2

))((
exp(

2

1
)(

2

2

out

out

out
out

xI
Ip

σ
μ

σπ
−

−∝                             (18) 

Set inN , outN  to be the number of pixels in the image object and background regions. 

The corresponding parameters ( inin σμ , ) and ( outout σμ , ) of the image object and 

background regions are estimated using maximum likelihood (ML) algorithm. 
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As discussed in [13], the maximum likelihood estimation of the target shape can be 

obtained by maximizing the likelihood. 

)|,()( IIIpIp outin=                                             (23)  

Based on the bayes rule: 

     ∏ ∏
∈ ∈

=

in outIyx Iyx

outin IpIpIp

),( ),(

)()()(                                       (24) 

Since the consistency term Ih  is proportion to the probability )(Ip of the closest  

point on the current interface, the final expression of the new consistency term Ih  can  

be defined as: 

   )}(exp{ IpkhI ⋅−=                                                 (25) 

Therefore, according to equation (13) then the new speed function can be defined 
as: 

)}(exp{)()( IpkkvkvhF I ⋅−⋅−=−= ρρ                             (26) 

4   Experimental Results   

To demonstrate the results of our new speed function for the level set framework, we 
carried out a series of experiments on different modalities medical images, such as 
MR, US and CT images. The performance of the proposed method is compared with 
that of standard level set method. 

We first consider segmenting the cerebrospinal fluid (CSF) from a 2D brain MR 
corpus callosum image with poor contrast. Fig.1 (a) shows the original image,  
Fig.1 (b) shows the initial curve. The results of the standard level set method and the 
proposed method are displayed in Fig.1 (c) and (d) respectively. In order to give clear 
vision about the results, Fig.1 (e) and (f) give the contours corresponding to the seg-
mented regions in Fig.1 (c) and (d). It is observed from the results that with the stan-
dard level set method the CSF is under-segmented especially in the middle extended 
region as show in Fig.1 (e), while with the proposed method the CSF is accurately 
segmented as shown in Fig.1 (f).   

We then test the two methods using a US image. As we know, the US image qual-
ity is very poor and the region boundaries seem to be very fuzzy. Fig.2 shows the 
results on a US image with both strong and fuzzy region boundaries. Fig.2 (a) shows 
the original image, Fig.2 (b) shows the initial curve, Fig.2 (c) and (d) give the results 
of the original level set method and our method, respectively. The segmented con-
tours corresponding to Fig.2 (c) and (d) are illustrated in Fig.2 (e) and (f). Compared 
to the standard level set method, it is noted that the proposed method can effectively 
segment the region of interest (ROI) even if the extracting features with fuzzy bound-
ary or with poorly defined edges. 
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               (a)                                              (b)                                              (c) 

  
             (d)                                               (e)                                            (f) 

      
Fig. 1. Brain MR corpus callosum image segmentation results. (a) Original image; (b) Initial 
curve; (c) Standard level set method result; (d) Our proposed method result; (e) Contour of the 
segmented region in (c); (f) Contour of the segmented region in (d). 
 

          
(a)                                     (b)                                     (c)                                

         
                 (d)                                 (e)                                        (f) 

Fig. 2. US image segmentation results. (a) Original image; (b) Initial curve; (c) Standard level 
set method result; (d) Our proposed method result; (e) Contour of the segmented region in (c); 
(f) Contour of the segmented region in (d). 
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We also test the robustness of our algorithm to noise. We add Gussian noise to a 
CT image of the liver as shown in Fig.3 (a), then segment it. Fig.3 (a) is the original 
image and Fig.3 (b) is the degraded noisy image. The results for comparison are given 
in Fig.3 (c)-(g). The results clearly demonstrate the superior segmentation quality of 
our approach in the noisy situation.  

 

Based With  

   
              (a)                                            (b)                                           (c) 

    
                       (d)                                          (e) 

    
                         (f)                                           (g) 

Fig. 3. CT image segmentation results. (a) Original image; (b) Noisy image; (c) Initial curve; 
(d) Standard level set method result; (e) Our proposed method result; (f) Contour of the seg-
mented region in (d); (g) Contour of the segmented region in (e). 

As mentioned above, we have demonstrated that our method seems ideal for use in 
a wide variety of medical images. The proposed method can be used to segment im-
ages with poor image contrast, fuzzy or diffuse boundary and noise. 



344 Y. Yang 

5   Conclusions 

We have introduced a framework of level set method based on region statistical in-
formation. The framework can conveniently incorporate region features into speed 
function. The method incorporated the region statistical information into the level set 
fundamental model, instead of the image gradient information. The method has been 
tested with numerical real modalities medical images, such as MR, US and CT im-
ages. We have presented some preliminary experimental results to illustrate the flavor 
of this technique. The proposed method has been proven to be effective and robust for 
the segmentation. Future work will focus on the validation of the proposed approach 
on a variety of medical images. 
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Abstract. This paper proposed a new framework for color texture segmentation 
which integrated the color and texture features. Quaternion-Gabor filter was 
first introduced in this paper for color texture segmentation. The algorithm 
achieved color texture multichannel Gabor filtering through DRBFT and 
IDRBFT. And the quaternion-Gabor filter extracted the input color image’s 
color features and texture features at the same time. The proposed method was 
tested using different mosaic and natural images.  Despite the simplicity of the 
whole algorithm, the segmentation results were rather encouraging. 

Keywords: DRBFT, RBs, MCF, k-means. 

1   Introduction 

Sangwine introduced the first example of a holistic color image filter based on qua-
ternion convolution in 1998 [1]. Although encouraging results have been achieved in 
color image processing based on quaternions, the multiplication rule of quaternions 
was not commutative, which restricted the applications of quaternions in signal and 
image processing. To address this problem, Pei et al. introduced reduced biquater-
nions (RBs) in digital signal and image processing in 2004 [2]. The multiplication 
rule of RBs was commutative. One of its advantages was that many existing conven-
tional complex Fourier transform algorithm could be used to implement the discrete 
reduced biquaternions Fourier transform (DRBFT).  

The multichannel filtering (MCF) approaches have appeared to be one of the most 
successful grey texture segmentation algorithms among all the grey texture segmenta-
tion methods. The problem of using MCF algorithm to process color image is how to 
implement the color image convolution. In this paper color images are represented 
and processed using RBs. With the DRBFT and corresponding IDRBFT algorithm, 
we can implement the color image holistic convolution successfully. Therefore, many 
existing Gabor filtering algorithms which have ever been used to process grey images 
can be extended to process color images [3][4]. In this paper the Converging Squares 
Algorithm (CSA) algorithm that has described in [4] is used to design the channels of 
the MCF. That is to say the number of channels and channel parameters are automati-
cally determined from power spectrum of input color images. 
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In this paper after the input images are filtered by MCF our method analyzes the 
color texture using the concept of textons. First we combine each pixel’s filtering 
outputs’ amplitudes and phases into a vector. Since the feature vectors are highly 
correlated, we use the principal components analysis (PCA) [7] to reduce the feature 
space’s dimensionality. Then the k-means [6] method is adopted to cluster the re-
duced dimension’s feature vector and then the region merging algorithm is employed 
to combine the adjacent clusters that achieved by the k-means method. At last if the 
texture edge is not very accurate, a special thresholding method will be adopted based 
on the mean grey value, where each pixel’s grey level value is computed with a small 
neighborhoods (e.g. 7 7× ) around it. 

The rest of this paper is organized as follows: the MCF algorithm and the RBs, 
DRBFT and IDRBFT are briefly introduced in Section 2 and Section 3 respectively. 
The principle of the proposed color texture segmentation algorithm is described in 
Section 4 and some experimental results are given in Section 5 to demonstrate the 
effectiveness of the proposed color texture analysis algorithm. Finally, we conclude 
this paper in Section 6 and present future work. 

2   Multichannel Filter Model (MCF) 

Bovik et al. proposed the multichannel texture filtering technique that relies on 2-D 
Gabor filters to isolate regions of perceptually homogeneous texture in an image [3]. 
A special case of the Gabor filter is the daisy petal filter, in which the filter lobes 
radiate from the origin of the spatial frequency domain [3] [4]. In this paper a bank of 
daisy petal Gabor filters is used to encode the input color images into multiple com-
plex-modulated sub-images. 

The continuous domain impulse response function of the daisy petal Gabor filter 
can be wrote as the following general form  

( , ) ( ', ') exp[2 ']h x y g x y jFxπ= ⋅ .     (1) 

where ( ', ') ( cos sin , sin cos )x y x y x yφ φ φ φ= + − + are notation of coordinates, major 

oriented at an angle φ from the x-axis. F is radial centre frequency, and 1j = − . 

The Gaussian component is 

2 2

2 2

1 ( / )
( , ) ( ) exp( ).

2 2

x y
g x y

λ
πλσ σ

+= ⋅ −      (2) 

where σ is the Gaussian scale factor and λ is the aspect ratio between the x and y 
axes. The spatial frequency response of the daisy petal Gabor filter (1) is 

2 2 2 2 2( , ) { 2 [( ' ) ( ') ]}.H u v exp u F vπ σ λ= − − +      (3) 

Like the algorithm used in [4], the Converging Squares Algorithm (CSA) proposed 
by O’Gorman and Sanderson [5] is also used in this paper to detect the spectral peak 
and determine the channels parameters.  
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3   Reduced Biquaternions (RBs)  

In 2004 Pei et al. adopted RBs to represent and process color image [2]. The represen-
tation of RBs is  

( ) ( ) .r i j k r i j k a bq q q i q j q k q q i q q i j q q j= + + + = + + + ≡ +     (4) 

where aq and bq are two complex numbers, rq , iq , jq  and kq  are real numbers, and 

, ,i j k obey the rules as follows: 

2 2 2, , , 1, 1.ij ji k jk kj i ik ki j i k j= = = = = = − = = − =     (5) 

Therefore, from (5) we can find that the multiplication of RBs is commutative. It is 
a unique advantage over the quaternions.  

Similar to the quaternion, an RB can also be uniquely represented by a polar form 
if 0δ ≠ : 

ji k
kji

r i j kq q q i q j q k Ae e e
θθθ= + + + =  (6) 

where ( ] ( ]4| | 0, , , , / 2, / 2i j kA q Rδ θ π π θ θ π π= = ≥ ∈ − ∈ ∈ − ,and the definition 

ofδ and the proof of (5) can be found in [2].  
In paper [2], the author defined two types’ DRBFT. In this paper we use the 

DRBFT of type 1[2]: 

1 1 2 ( )

( 1)
0 0

( , ) ( , ) .
pm snM N i j
M N

RB
m n

F p s f m n e
π− − − +

= =

=  (7) 

where ( , )f m n is a 2-D RBs signal, and 2 2 1i j= = − . The RB Fourier transform 

can be implemented by decomposing the RBFT into a pair of conventional complex 
Fourier transform. So first step is to decompose the RB into following form [2]: 

( , ) ( , ) ( , )a bf m n f m n f m n j= +      (8) 

   Then 

(RB) ( , ) DFT( ( , )) DFT( ( , ) ).a bF p s f m n f m n j= +     (9) 

Thus, two conventional complex 2-D DFTs can be used to implement the RBFT. 
The definition of RB convolution is  

1 1

0 0

( , ) ( , )* ( , ) ( , ) ( , ).
M N

RBg m n f m n h m n f m n h
τ η

τ η τ η
− −

= =

= = − −  
  (10) 

where RB* is RB convolution. 

The multiplication rule of RBs is commutative. Here we can get:  

{ }( ) ( )( , ) IDRBFT ( , ) ( , ) ( , )* ( , ).RB RB RBg m n F p s H p s f m n h m n≡ =    (11) 
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4   The Proposed Color Texture Segmentation New Algorithm 

The principles of the proposed color texture segmentation algorithm can be better 
explained by referring to the block diagram given in Fig. 1. The whole algorithm is 
divided into eight successive steps: spectral peak detection, multichannel filtering, 
channel grouping, dimension reduction, k-means clustering, region merging, thresh-
olding and post-processing. 

Spectral peak detection, just as described in the preceding section, using the CSA 
algorithm determines the number of multichannel filtering channels and frequencies 
and orientations of each channel.  

 

Fig. 1. Block Diagram of the Proposed Algorithm 

Then the next step is multichannel filtering. To computer the convolution be-
tween the input color image and Gabor filter kernel, the input color image and the 
Gabor kernel are expressed using RBs firstly. Then we can calculate the RBBDT of 
the input color image and the Gabor kernel. At last the convolution between the 
input color image and Gabor filter kernel of each channel can be calculated  
using (11). 

After getting the each channel’s filtering result, we compute the amplitudes and 
phases of each channel’s output. And then the amplitudes and phases of each pixel are  
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combined to a feature vector. Just as former explanations, the filtering output of  
each channel is a RB matrix. So each pixel has the form of formula (4). For each 
channel we compute three amplitudes of the filtering result. We use (6) to get the first 
amplitude. And we look on the first two parts of RB: r iq q i+ and the last two parts of 

RB: j kq q i+  as two general complex numbers, so we can use the general definition of 

a complex number’s amplitude compute the other two amplitudes. Through experi-
ments, we find that using three amplitudes can gain much more edge information of 
the input color image. Therefore, in this paper three amplitudes are used rather than 
one which can provide better discriminating power. From (6), we can compute three 
phases from each channel’s output. And the three phases can also be used to identify 
the input color image’s edge. Then we combine each pixel’s filtering outputs’ ampli-
tudes and phases into a vector. Therefore, each pixel ( , )i jm n is now represented by an 

n -dimensional feature vector.  
Since the extracted feature vectors are highly correlated, we use the principal com-

ponents analysis (PCA) [7] to reduce the feature space’s dimensionality. Then the 
following stage is to classify each image pixel using the k-means algorithm in terms 
of the each pixel’s feature vector. This segmentation is often referred to the concep-
tion of textons. From the output of the k-means clustering, we can get the each pixel’s 
rough classification information.  

Then a region merging method is used to combine adjacent clusters which are sta-
tistically similar. The initial clustering is based on k-means cluster with k set to be 
larger than the anticipated number of final regions. As a result, after the initial cluster-
ing some regions still need to be merged. The region merging is done in an agglom-
erative manner where in each iteration the two most similar regions are merged. The 
similarity of two regions iR and jR is given by  

1
, ( ) [ ] ( )T

i j i j i j i ju u u uζ −= − + −    (12) 

where iu , ju are the mean vectors and i , j are the covariance matrices computed 

from the feature vectors of regions iR and jR respectively. Here we use the region 

similarity measure analogous to the one proposed in Nguyen et al.[8]. 
The last stage is obtaining the segmentation image from the region merging result 

by a special thresholding method. Each image pixel’s thresholding value is deter-
mined in terms of average grey level value of w w× window centered on it. Finally 
from the thresholding image, the color texture edge can be detected and superimposed 
on the original color texture image. 

5   Segmentation Results 

The proposed algorithm has been tested extensively with a variety of synthetic and 
natural color textures. And the segmentation results using the proposed algorithm are 
compared with JSEG (J measure based SEGmentation according to [9]) algorithm.  
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The color textures used in this paper are mainly obtained from the VisTex color  
texture images database [10] and the Berkeley Segmentation Dataset [11]. The 
VisTex texture images and Berkeley Segmentation Dataset are both available to the 
public from their web sites. 

Fig. 2 shows the segmentation results of mosaic color images. Owing to only color 
feature can be used to segment, the JSEG algorithm can not obtain good segmentation 
result. Fig. 2(a) shows the JSEG algorithm can not identify the color texture because 
there is only texture feature of different orientation that can be used to segment. Fig. 
2(b)(c) show the JSEG algorithm over segment the input images. Fig. 2(d)(e)(f) show 
the segmentation results of the proposed algorithm. The results are rather good be-
cause of the proposed algorithm can adopt the input image’s color features and texture 
features to segment.  

The segmentation results of natural color images are shown in Fig. 3. The segmen-
tation results of the JSEG algorithm are showed in Fig. 3(a)(c)(e)(g). Because natural 
images have enough color features, the segmentation results of the JSEG algorithm 
are very good. The segmentation results of the proposed algorithm are showed in  
Fig. 3(b)(d)(f)(h). Not that all the important objects in the images are well identified. 
The segmentation results are nearly close to or even exceed the segmentation results 
of JSEG.  

      
(a)                                         (b)                                           (c) 

      
(d)                                          (e)                                             (f) 

Fig. 2. Segmentation results of mosaic images. (a) (b) (c) Segmentation results using the JSEG 
algorithm (d) (e) (f) Segmentation results using proposed algorithm. 
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(a)                                                                (b) 

   
(c)                                                               (d) 

   
(e) (f) 

 
Fig. 3. Segmentation results of some natural images. (a) (c) (e) (g) Segmentation results using 
the JSEG algorithm and (b) (d) (f) (h) segmentation results using the proposed algorithm.    
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(g)                                                               (h) 

Fig. 3. (continued) 

6   Conclusions 

A new framework was developed for color texture segmentation which integrated the 
color and the texture features. The contribution of color features and contribution of 
texture features were both used for color texture discrimination.  And the quaternion-
Gabor filter extracted the input color image’s color features and texture features at 
one time. The method was applied to various mosaic and natural images. And the 
segmentation results obtained showed a remarkable segmentation. In conclusion, 
color texture segmentation and other color image processing techniques based on 
quaternions will become more and more attractive. In the future work, we plan to find 
method to fix the k in k-means automatically.  

References 

1. S. J. Sangwine, “Color image edge detector based on quaternion convolution,” Electronics 
Papers, Vol. 34 No. 10, pp.969-971, May, 1998.  

2. Soo-Chang Pei, Ja-Han Chang, and Jian-Jiun Ding, “Commutative reduced biquaternions 
and their Fourier transform for signal and image processing Applications,” IEEE Transac-
tions on Signal Processing, Vol. 51, No. 7, pp.2012-2031, July, 2004. 

3. A. C. Bovik, M. Clark and W. S. Geisler, “Multichannel texture analysis using localized 
spatial filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, No. 12,  
pp.55-73, 1990.   

4. T. N. Tan, “Texture Edge Detection by Modelling Visual Cortical Channels”, Pattern Rec-
ognition, Vol.28, No.9, pp.1283-1298, 1995.  

5. L. O’Gorman and A. C. Sanderson, “The converging squares algorithm: an efficient 
method for locating peaks in multidimensions,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Vol.6, No. 3, pp.280-288, 1984. 

6. A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice Hall, Advanced Ref-
erence Series, New Jersey, 1988.   



 Color Texture Segmentation Based on Quaternion-Gabor Features 353 

7. M. Kirby, F. Weissor, G. Dangelmayr, “A model problem in the representation of digital 
image sequences,” Pattern Recognition, Vol. 26, No.1, pp.63-73,1993. 

8. H. Nguyen, M. Worring, A. Dev, “Detection of moving objects in video using a robust 
motion similarity measure,” IEEE Transactions on Image Processing, Vol.9, pp.137-141, 
2000.  

9. Y.Deng, and B.S.Manjunath, “Unsupervised segmentation of color-texture regions in im-
ages and video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 
23, No.8, pp.800-810, Aug., 2001. 

10. VisTex. http://vismod.media.mit.edu/vismod/imagery/VisionTexture/vistex.html 
11. Berkeley Segmentation Dataset. http://www.eecs.berkeley.edu/Research/Projects/CS/ 

vision/grouping/segbench/ 



Corner Detection by Searching Two Class

Pattern Substrings

Hermilo Sánchez-Cruz

Centro de Ciencias Básicas. Universidad Autónoma de Aguascalientes
Av. Universidad 940, Col. Universidad, CP. 20100

Aguascalientes, Aguascalientes. México. Fax: (52 449) 9 10 84 01
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Abstract. A new method for corner detection is proposed. Previous ap-
proaches for detecting corners rely on computing angle functions to find
changes of curvature. Generally, those methods employ eight different
symbols to represent contour shapes. The method of this work is based
on using three symbols of a chain code to find pattern substrings, detect-
ing corners in the contour shape. The method relies on searching for the
relationship among neighbor points, finding two basic pattern contour
chain elements, requiring few computing power to obtain shape corners.

Keywords: Corner; Contour; Chain element; Freeman chain code;
Three-symbol chain code; Pattern substrings.

1 Introduction

In literature, usually the aim in obtaining corner points by computing angles of
curvature on the contours of shapes is studied. Freeman and Davis [1] proposed
to find corners by computing incremental curvature to represent contour shapes
by an eight-direction chain code. Since then, many authors have suggested to
use this code when representing contour shapes. Part of the algorithm presented
by Teh and Chin [2] consists on computing the curvature of contour points and
detecting corners by a process of nonmaxima suppression. Liu and Srinath [3]
have compared a number of corner detectors due to Medioni and Yasumoto [4],
Beus and Tiu [5], Rosenfeld and Johnston [6], Rosenfeld and Weska [7] and
Cheng and Hsu [8]. All those authors represented samples of shapes through a
sequence of eight direction changes from 0-7, known as the Freeman Chain Code
[9]. We propose here to use a method of only three relative direction changes
(Fig. 1a). Techniques due to Freeman chain codes in finding corner detection are
based on eight different directions (see Fig. 1b).

An advantage in using three symbols is its low storage power, as can be seen
by the recent work duo to Sánchez-Cruz & Rodŕıguez-Dagnino [10]. They found
that coding with three symbols is sufficient to represent binary shapes saving
storage efficiently. However, recently Yong Kui Liu & Boruk Zalik[11], found
efficient storage properties in using the eight directions of Freeman chain code.
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Fig. 1. Two chain codes: (a) Three-symbol, (b) Freeman chain code

However, the number of symbols of Fig. 1a. constitute an advantage in finding
a small set of pattern substrings.

For each orthogonal change direction code, chain segments are divided in three
parts (given in Fig. 1a.): a reference segment (in Fig. 1a. appears as horizontal
segment in each code), a basis segment (perpendicular to reference segment) and
a segment indicating a direction change with regard to reference segment.

The meaning of the three symbols (see Ref[12] for 3D case), given by the set
C = {0,1,2}, is as follows: the element 0 represents the direction change which
means to go straight through the contiguous straight line segments following
the direction of the last segment; the 1 indicates a direction change upward
with regard to the reference segment; and 2 means to “go back” with regard to
the direction of the reference segment. Under certain constrictions, when this
particular symbol appears in a contour shape, could easily indicate an existing
corner. In Section 2 definitions concerning to this article are presented, seeking
the problem as a pattern substring search to obtain corners. In Section 3 some
rules to detect corner points are proposed; in Section 4 experimental proving
of postulated rules are applied on some binary shapes; and in Section 5 some
conclusions are given.

2 Definitions Related to Pattern Chain Substrings

Our proposal method considers to find a specific set of pattern substrings of
length l, trying to find all those substrings in a chain code that mach with those
patterns. Let us consider, for example l = 9 as the length of the substring. Which
substrings are all composed of 9 symbols and which of them are considered corner
chains? In fact, there are substrings composed of 9 symbols, of course, not all
are considered corner chains due to its low curvature or because the region they
are associated in the contour shape is not “well behaved”, as we explain at once.

Let P denote the complete chain code associated to the shape contour, given
by the string of symbols pi of eq(1).

P = p1p2 · · · pn, (1)

and P the contour discrete perimeter, given by the number of symbols of the
chain code.
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Consider a substring template of l symbols: C ∈ P , given by eq(2).

C = a1a2 · · · al, l � P, (2)

as a contour chain element, or simply: chain element, this is, a small piece of
contour from the whole shape contour.

Let us consider m = l/2 the middle point of a substring of size l, so that am,
the pivot, be the center of the substring. It is possible to associate a pair of line
segments to any chain element. They can be drown up from to the opposite end
points, producing an angle ϕ. We define a well behaved chain element when an
angle has been subtended by a pair of associated line segments such that the
chain does not form loops. In Figure 2 are presented some examples of chain
elements. In Figure 2(a), (b) and (d) angles defined by midpoints denoted by a
small circle, are well behaved, but that presented by Figure 2(c) is not.

Fig. 2. It is associated a pair of line segments to each of the substring from their middle
points

Once well behaved condition is accepted, the angle ϕ between the two well
behaved line segments can be computed, and a threshold is fixed to propose a
chain corner.

We define a neighborhood of radii r, when considering a piece of the complete
string; this region is composed of a small number of symbols in comparing with
the whole contour chain code, r symbols on one hand of a particular pivot
symbol, and r symbols on the other side of the pivot symbol. An example of
neighborhood of radii 5 is: 00000(1+2)10011. This is, a chain element having
00000 in its left first part, 10011 in the right second part, and 1 or 2 (1+2, to
abreviate) as a pivot symbol.

To save calculation of corner-angles or curvature changes directly, instead we
give a family of substrings and whose angle subtended by well behaved line
segments represents a high curvature. Well behaved substrings should not be
considered a corner chain when their corner chains associated angles are so much
obtuse. Quantitatively, how acute or how obtuse has to be an associated angle
to consider a chain element as a corner?

To find pattern substrings, our experimets make us to consider an angle ϕ
associated to a chain corner if ϕ = [0◦,±126◦] ( or ϕ = [0, π ± π

3 ] in radians).
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Fig. 3. A well behaved substring and its associated angle

For example, in Fig. 3 a chain element 110110011 is shown, covering the
chain from bottom to up, with an associated angle ϕ = 165.35, the chain is not
considered a corner.

Another definition we need is a well behaved contour shape, this is, a contour
shape having been smoothed in such a manner that there is no noise or local
defects.

3 Rules for Detecting Chain Corners

Part of the study made to find a simple pattern of substrings that represent
corners, is to analyse the whole universe of a small vicinity of shape contours, the
chain elements. At the begining, to search these patterns, we did our experiments
within a vicinity of nine segments in chain elements, giving good results in finding
chain corners.

Fig. 4. Eight samples of substrings composed of eleven segments
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Fig. 5. Part (1 600) of the 6 432 chain elements in the range [0o,±126o]

We are focused on finding a group of pattern substrings or pattern chain el-
ements considered as chain corners. Eleven chain segments are considered for
our study, nine of them are labeled with symbols, representing ortogonal di-
rection changes. The first two are called reference segment and basis segment,
respectively. There are a huge number of combinations given by nine symbols
(11 segments) in a grid of 10 × 10. Fig. 4 shows only eight samples.

Even more, fixing the reference segment of the chain, there are 39 combinations
duo to the other nine chain directions.

There are many possible combinations of chain elements. From this set, we
are interested on finding chain elements that have no loops. Looking for these
chain elements there are 11 025.

Computing the associated angle to each of these elements, there are 6 432
chain elementes in the range of [0◦,±126◦]. See Fig. 5.

By analizing the different chain sets mentioned, we have observed that pat-
tern substrings representing corners, or even, line elements can be obtained.
Parameters we have to take into account are the next:

l: states for the size of substring.
q: represents “many” times a symbol is repeated in a substring. This quantity

depends on resolution of binary object. By many we define that the number of
symbols is greater than the quantity: l/4, so q ∈ [l/4, l].

A way to obtain a complete set of templates considered chains corners, is to
search all the substrings arrays composed of l symbols from the set C = {0,1,2},
calculate the angle associated to each substring and apply the threshold to see
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Fig. 6. Examples of chain elements, covering the contour on clockwise sense, of kind
S2. The grid is part of the inner shape.

if it is a chain corner. But we propose a small enough set of template substrings
to find the evident chain corners from an arbitrary set of 2D shapes.

As we have computed, from the 6 432 chain elements, there are 4 334 (more
than two third parts of the set) chain elements with symbol ‘2’ near the pivot,
with associated angles in the range 0◦ ± 126◦, whereas only 614 (sligthly more
than a third part) from the range ±18◦, that can be considered as a rect lines
set (1 547 chain elements). So, to simplify the pattern of chain elements that
correspond to chain corners, lets consider only the case where the contour of the
image is also a well behaved contour, and consider only those chains that better
fit to a pair of associated segments. In this case we are talking about pattern
strings of discrete chain corners, postulated by next regular expressions:

S1 = (0 + 1 + 2)l/2(2)(0 + 1 + 2)l/2

S2 = (0q + 1)l/2(1)(0 + 1q)l/2 + (0 + 1q)l/2(1)(0q + 1)l/2+

(0q + 1)l/2(1)(0q + 1)l/2 (3)

where q represents many symbols. For example, pattern S1 means the pivot is a
‘2’ symbol, independently of the symbols on both sides; whereas S2 means that
substring has many zeros or ones behind the middle symbol and many zeros or
ones in the second part of the substring, or many zeros on both sides of a one
pivot. Our proposed method relies on looking for these pattern substrings on
any contour shape.

We consider shapes represented by resolution cells, each having a value 0 or
1. Contour shape is covered in the clockwise sense. For the implementation of
an algorithm to encode this shape we have to visit the ones that represent the
contour shape, i.e., the ones of the boundary. Using the three code symbols we
follow the contour of the shape counter clockwise, and we give one of the three
relative chain codes according to each orthogonal change direction. A manner
to fix every orthogonal change is by defining a 3 × 3 window, then we choose
a starting one as the core of the window, and we analyze its neighborhood by
finding directed vectors on the boundary of the shape. Hence, we calculate the
changes and produce the code. This procedure continues until visiting all ones of
the boundary. The object is confined to a minimum rectangle that is visited line
by line, from left to right and from top to bottom. The first cell resolution, of
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the object to be visited, is that which appears at the leftmost and highest part
of the occupied region. Fig. 6 shows examples of representing part of contour
shape by giving the three symbols of the orthogonal directions given in Figure
1a. When we start to go over the contour the first two discrete segments do not
represent a direction change with regard to reference segment. When one ends
to go over the contour, it is possible to give chain elements at starting point and
contiguous direction change because of last reference segments visited. Given
this representation, we can reconstruct the original image by interpreting the
code of every symbol in terms of the direction changes that can follow. Finally,
the pattern substrings, S1 and S2 are parsing the resulting chain string of the
complete contour.

4 Proving the Postulated Rules

Consider the set of three shapes S = {Plant, Hammer, Circles, Tigger }.
Consider the Plant shape object and its corresponding chain code (Fig. 7), 34

chain corners were found in its contour shape. Some of them are so closed, in
such a manner that their corresponding pivots are in the neighborhood of each
other, in this case we could define only one corner. In Table 1 is listed each of the
chain elements and the corresponding class pattern given by eq(3) of the Plant
shape contour.

(a)
12110000001101101111011011001100110110011000000012101010111111111110111111110111111011110111111011111
10102000000000000000000211101101101101101111110111111011111111011011202100110011001111001100110110110
11011011020001100000021000110110011001101111111111111110110101011011111100110110120001100000000000000
00000000002100001100000020000210001111000111011010101101101011111000110011011000110110110001101100111
10010110111100000000000000000000000021001100000000000110000000000000000000000000000211002101011111101
10000110000000000000000000000000000000000000000000000000110110011001101100101111011001101100110110001
11100011000101001100110111111011010111001011111011110111002000000000000000000000000000110011000011110
01101101200001100011000110011001100110111101111011111101111101011011100002002100011000000000000000000
00000002100000000102011010110101011110111111001111000011001100000000000020211011110111111110101111011
11011111120011000000000000001100000110000000

(b)

Fig. 7. Plant shape and its corresponding 3-symbol chain code: (a) the shape; (b) its
chain code
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Table 1. Chain elements encountered from the Fig. 7 that belong to one of the two
classes of chain patterns postulated. Corners 6,30 and 33 are split by two closed chain
corners.

Num Chain Class Num Chain Class
corner element pattern corner element pattern

1 00001211000 S1 19 00000210011 S1

2 00000110110 S2 20 00000211002 S1

3 00001210101 S1 21 21100210101 S1

4 11010200000 S1 22 00110110010 S2

5 00000211101 S1 23 00110110001 S2

6a 11011202100 S1 24 10001111000 S2

6b 01120210011 S1 25 11000101001 S2

7 10110200011 S1 26 01001100110 S2

8 00000210001 S1 27 11100200000 S1

9 10001101100 S2 28 01101200001 S1

10 01101200011 S1 29 10001100110 S2

11 00000210000 S1 30a 10000200210 S1

12 00000200002 S1 30b 00200210001 S1

13 00000200002 S1 31 00000210000 S1

14 10001111000 S2 32 00010201101 S2

15 00011110001 S2 33a 00000202110 S1

16 10001100110 S2 33b 00020211011 S1

17 00110110001 S2 34 11111200110 S1

18 10001101100 S2

Fig. 8. Sample shapes, (a)Hammer, (b)Circles and (b)Tigger shapes and their corre-
sponding corner points
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Figure 8 shows the results of applying the method proposed to search chain
corners on the sample objects.

5 Conclusions

With this method we have found shape corners including where shape is appar-
ently circular, like happening with figure constructed by intersecting circles. We
used three symbols to represent binary shapes, implying to save time and mem-
ory storage to manage this kind of objects. We found patter substrings to obtain
most important shape corners in contour shapes preventing to compute angles
and curvatures. The method, also, is suitable to find corners on regular shapes,
like Hammer, or on irregular shapes, like Tigger. We have presented a new re-
search topic, in avoiding computing explicitly angles and curvatures. A universal
and simplified set of pattern substrings, comparing with other chain codes in lit-
erature is suggested to be investigated. As future work most be studied if this
method is invariant under scale and rotation transforms.
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Abstract. Non-speech sound processing is of great interest for indoor
mobile robot localization. This paper presents a technique based on fea-
ture extraction from continuous wavelet transform (CWT) and a dy-
namic feed-forward neural network that will approximate the position
of the robot in the spatial domain. The link between the function ap-
proximation stage (ANN) and the feature extraction stage (CWT) is
performed by feature comparative analysis.

1 Introduction

The reverberation effects in a closed room depend mainly on the walls charac-
teristics –such as paralelism, distances and absortion coefficient– and, to a lesser
extent, on the objects characteristics located in the room.

Due to reverberations, a sound source located in a specific and known point
in the room –a milling machine for instance– characterizes the sound register
acquired in different points in the room for the effects of signal bounces feed-
forward and cancellation. Since the reverberation effect in the temporal composi-
tion of the samples depends on the distance and the signal wavelength, a register
composed with different frequencies will also contain information of reverbera-
tions in different frequencies. Based on this effect, this work studies the use of
non-speech sound information to develop a model-based localization method for
mobile robots.

Huang et al. [4] proposed a sound localization method based on a model of
human auditory to cope with echoes and reverberations, performing a psycholog-
ical research over human listener skills, and they propose an acustical preprocess
for inhibite input sound when the composition of echoes and reverberations is
high. By the other hand, Cowling & Citte [5] presented a comparative study for
different techniques that are tipically used in music recognition. They showed
that the use of continuous wavelet transform yields good classification rates. In
[6], the use of neural networks to sound recognition demostrates to be a useful
tool to achieve high rates in patterns identification and recognition.

In a previous work, Bolea et al. [1] have also dealt with non-speech sound
localization using wavelet transform and proposed a polynomical transformation
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from the feature domain to the spatial domain. The work presented interesting
results but it did not cover the non-linealities that sound reverberation presents.
For this reason, in this work we collect a set of sound registers that will be
classified with a dynamic (feed-forward) neural network in the bidimensional
space (Section 4). In [2] the use of continuous wavelet transform has been applied
to recognition of industrial sound sources, and [3] also uses wavelet transform to
detect defects in laser welding by this industrial sound.

In this work we proposed the use of the continuous wavelet transform (Sec-
tion 2) for its great capability of characterize the information contained in the
sound signal. In Section 3 the feature extraction from the wavelet coefficients is
presented, and some interesting experiments with a mobile robot are shown in
Section 5.

In Figure 1 the complet procedure is shown. Firstly, the sound is obtained
with an ommidirectional microphone in a room (later, in Section 5 there is a
description of how the sound is acquired). The signal, digitally sampled and
coped, is entered to the wavelet transform block. The output of this stage are
the coeffcients of the CWT which are used as input for the feature extraction
stage that reduces largely the amount of data and prepares the input for the
neural network. There are two steps: the learning step and the recognition step.
The network is trained with a huge number of sound samples and it is validated
with another subset of samples. In the following sections, the different stages are
explained.

Fig. 1. Localization by non-speech sound features process

2 Continuous Wavelet Transform

Wavelet analysis is similar to Fourier analysis in the sense that it breaks a
signal down into its constituent parts for analysis. Whereas the Fourier transform
breaks the signal into a series of sine waves of different frequencies, the wavelet
transform breaks the signal into its “wavelets”, scaled and shifted versions of the
“mother wavelet”.

When analysing signals of a non-stationary nature, it is often beneficial to
be able to acquire a correlation between the time and frequency domains of a
signal. The Fourier transform, provides information about the frequency domain,
however localised time information is essentially lost in the process. The problem
with this is the inability to associate features in the frequency domain with
their location in time, as an alteration in the frequency spectrum will result
in changes throughout the time domain. In contrast to the Fourier transform,
the wavelet transform allows exceptional localisation in both the time domain
via translations of the mother wavelet, and in the scale (frequency) domain
via dilations. The translation and dilation operations applied to the mother



Model-Based Localization Method by Non-speech Sound 365

wavelet are performed to calculate the wavelet coefficients, which represent the
correlation between the wavelet and a localised section of the signal. The wavelet
coefficients are calculated for each wavelet segment, giving a time-scale function
relating the wavelets correlation to the signal.

We used the Continuous Wavelet Transform algorithm (figure 2). Here ∗ de-
notes complex conjugate

CWT(a,b) =
1√|a|

∫ +∞

−∞
ψ∗
( t−b

a ) · f(x)dx (1)

where b represents translation, a represents scale and ψ(t) is the Morlet mother
wavelet defined as:

ψ(t) = ejate
−t2
2s (2)

Fig. 2. Wavelet coefficients for a sound register and Morlet’s mother wavelet

3 Feature Extraction

Continuous wavelet transform gives frequency and temporal information but,
at the same time, it increases the processed data dimensionality. Hence, from
a temporal signal in �2 (time and intensity) a new signal in �3 (time, scale
and intensity) is obtained (figure 2). In order to process the information in a
reasonable time it is necessary to restrict this processing to a small set of scales
that represent the differences among the signals acquired at different locations.

For decades, principal component analysis (PCA) has been widely used to
decorrelate spectral bands for reducing dimensionality. It is a useful technique if
the spectral class structure of the transformed data is distributed along the first
axes. This process is time consuming but it is only needed at the training stage.

First, we analyze the autocorrelation function of the sound register (figure 3)
in order to find the lowest repetitive cycle delimitated by two global maxima.
Then, the number of samples that feed the ANN will be proportional to this
cycle.
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Fig. 3. A register of sound and its autocorrelation function

When the number of samples is already decided, the PCA is applied to deter-
mine how many data vectors are necessary for describing the information, that is,
the so-called scale vectors. The data to calculate PCA are the vectors formed by
all the scales for an specific sample. That implies to have 100-dimension vectors,
that is, the CWT returns 100 scales for each sample. Figure 4 shows a Pareto
diagram with the percentages of PCA results, and in the table 1 there are their
numerical values. From this table we can observe that with 3 components it is
explained the 75% of the information and with 5 components the 88%. In order
to reduce the amount of information to enter to the ANN, we have chosen 5
components, and despite to have less information in the data, the ANN yields
very good results.

Table 1. The five main Principal Components of a sound register

Principal C. % Information % Accumuled

First 42.84 42.84
Second 20.11 62.96
Third 12.00 74.97

Fourth 8.29 83.26
Fifth 4.73 87.99

4 Neural Networks

Artificial neural networks are biologically-inspired systems, imitating the physi-
cal structure of nervous system with the intention of processing information in
a parallel, distributed and adaptive way.

These systems can be considered as universal solvers for their generalization
feature based on examples (this is the case of the supervised networks) or based
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on reinforcement. This behaviour permits to build a system to solve situations
without having a deep knolwedge of the problem, and therefore, to consider
the neural network systems as black boxes. These features make them specially
useful as classifiers and interpolators (ie. feed-forward networks).

Fig. 4. Pareto diagram of Principal Components

The concept of black box has some drawbacks, such as the fact that it is not
possible to extract the system behaviour since the networks is working correctly
nor, consequently, the procedure to choose the more suitable network parameters
(network structure, number of hidden layers, activation functions, ...).

Dynamic neural networks are divided in only feed-forward connections and
feed-back connections (recurrent). Feed-forward dynamic networks (figure 5)
have a delayed tapped input and so, the output depends not only on the cur-
rent input to the network , but also on the current or previous inputs. They are
specially good systems for input sequences.

In the first tests, we realized about the importance of the tapped delay length,
because the larger the amount of samples the lower the probability of resem-
blance with another sound registers. The ANN configuration is, specifically, 20
previous samples. Then, the hidden layer is made up with one hundred neurons.

Fig. 5. Dynamic feedforward neuronal network
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5 Experimental Results

5.1 Training Data Sets

In order to check the reliability of the method proposed in this paper, we have
obtained a set of signals in a room, as it can be seen in figure 7. As sound sources
we have used three different industrial machines: milling machine, electric drill
and an industrial drill. Each sound source has been placed in three different loca-
tions inside the room: at the center, on edge and in one corner of the room. These
locations are marked with one crosses in the figure. For each sound source and
for each location we have acquired twenty signals in specific locations, where its
x-y spatial coordinate is perfectly known. Each signal is approximately recorded
for two seconds at 8kHz frequency sampling (more than 20,000 samples/signal).
For each signal the CWT is calculated, obtained as many columns of scales as
samples. Since the number of scales is approximately 100, the PCA reduces it
to five scales. The input of the neural network is a vector with these five compo-
nents (with its x-y coordinates for training, and without them for classification).
Furthermore, the number of input vectors for each signal is equal to the number
of samples. This huge amount of data generates the same number of outputs,
with are depicted in figure 6. In this figure, it can be seen some clouds of points
around a central points which is the training example, numbered in rows and
columns as shown in figure 7, together with the sample number. For each set of
twenty sound register, we use 18 registers for training and 2 registers for valida-
tion (crossed validation). In summary, we have obtained 180 signals that will be
used to train three separated neural networks, with the consequent amount of
information explained above.

Fig. 6. Network output: x-y localization for the sound registers. The axes indicate the
label shown in figure 7.
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Fig. 7. Localization map of sounds registers and sound sources (big crosses)

Table 2. Classification ratio for training and validation with the milling machine in a
corner of the room

validation training validation

sound registers % %

1/1 1/4 77.2 62.1
1/2 3/4 76.2 65.1
1/3 5/4 81.1 64.2
2/1 4/3 72.5 69.4
2/2 4/3 76.1 71.5
2/2 4/1 83.7 68.8
2/3 5/3 79.8 78.0
2/3 4/1 81.3 72.1
3/1 2/4 74.1 73.6
3/2 3/3 86.2 45.1
3/2 3/4 80.5 63.0
3/3 4/1 83.1 69.5
3/4 4/2 76.0 61.2
4/2 2/2 84.5 79.5
4/2 5/4 84.9 66.7
4/3 5/1 73.7 71.6
4/4 4/1 87.1 66.5
5/2 3/4 82.6 71.3
5/3 3/3 79.9 61.2
5/4 3/4 86.0 81.3
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5.2 Results

The results are slightly different depending on the localization and the source of
sound. Table 2 shows some of these results, concretely obtained with a milling
machine located in a corner of the room. The neural network have been trained
for giving two coordinates (x,y) of a spatial 2D position. Since the output layer
transfer function is linear, the x-y output from the network will be considered
classified within the area of the closest sample in the training stage. Table 2 shows
the classification results. Each row in the table corresponds to the classification
rate for a pair of samples used as crossed validation. The column “validation”
means the average success in the classification of a specific sound register when
it is used as a validation sample, whereas the column “training” means the
average success in the classification of the eighteen remaining samples in the
training stage.

6 Conclusions

In this work, a non-speech-based localization method is presented. This method
uses the continuous wavelet transform (CWT) to capture frequency-time infor-
mation of sound which, after a dimensionality data reduction process, feeds a
dynamic neural network. The system is trained with samples with known x-y
position which have been acquired from 3 sound sources in three different sites
in a room. The training process is relatively slow as well as the PCA analysis
but this is an off-line process. The results demonstrate that the ANN localizes
the new sound registers with a relative small error.
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Abstract. The article presents a possible solution to a typical tomographic im-
ages generation problem from data of an industrial process located in a pipeline 
or vessel. These data are capacitance measurements obtained non-invasively 
according to the well known ECT technique (Electrical Capacitance Tomogra-
phy). Every 313 pixels image frame is derived from 66 capacitance measure-
ments sampled from the real time process. The neural nets have been trained  
using the backpropagation algorithm where training samples have been created 
synthetically from a computational model of the real ECT sensor. To create the 
image 313 neuronal nets, each with 66 inputs and one output, are used in paral-
lel. The resulting image is finally filtered and displayed. The different ECT sys-
tem stages along with the different tests performed with synthetic and real data 
are reported. We show that the image resulting from our method is a faster and 
more precise practical alternative to previously reported ones. 

1   Introduction 

Process tomography consists of obtaining images from the inside of pipelines, reac-
tors or other type of containers that are part of industrial processes [1] [4]. Such visu-
alization is performed non-invasively. There are several techniques for obtaining 
images, depending on the type of measurement used (acoustic, magnetic resonance, 
electrical, etc.). One way is to obtain capacitance measurements according to the ECT 
technique [1] [3]. 

Image reconstruction techniques from Artificial Neural Nets (ANN) trained by 
means of a supervised learning algorithm, require large number of samples (capaci-
tance measurements for several known permittivity distributions) to be trained.  
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Because of the difficulty in obtaining such examples experimentally, we need to de-
velop a methodology which allows us to generate synthetic examples from a real-
sensor model.  

From the set of generated samples the ANN is trained assuming the capacitance in-
formation as the input and the permittivity distribution information as the output. The 
ANN thusly trained has the capability to respond to new sensor data, giving adequate 
permittivity distribution which allows us to reconstruct a tomographic image. 

1.1   Electrical Capacitance Tomography 

ECT is an innovating technique (late 80s) [1] [10] for industrial multiphase process 
visualization, suitable for electrically insulating materials. Its potential applications in 
the petroleum industry [4] range from multiphase flow measurement and monitoring 
in producing wells to separator and fluidized bed optimization [2]. 

The ECT technique consists in placing an electrode array around a pipeline or ves-
sel made of an insulating material that contains the process to be visualized. By using 
the adequate tools, the capacitances between all possible electrode pairs needs to be 
measured [6]. The obtained readings depend on the dielectric constant value (electri-
cal permittivity) of the different phases or components of the mixture and the way 
they are distributed inside the pipeline or vessel.  The next step is to obtain an image 
of such distribution from the measured capacitance data by means of an adequate 
image reconstruction algorithm. Figure 1 shows a schematic diagram of an ECT sys-
tem with its main components. Besides the capacitance sensor, a basic ECT system is 
made up with a data acquisition system and a computer for image reconstruction [10]. 

 

Fig. 1. ECT system components 

2   ECT Sensor Used 

The number and the size of electrodes depend on the specific application. Most of the 
applications developed until now make use of sensors with 8, 12, or 16 electrodes [1] 
[3] [6], they must be inside a grounded screen to cut down noise and the influence of 
external fields (see Fig 2). Besides, the sensor used has two grounded cylindrical end 
guards to eliminate the changes on the electric field borders. 
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Fig. 2. ECT Sensor Schematic Diagram 

The sensor from the Mexican Petroleum Institute used in this research has 12 elec-
trodes (see Fig. 3a), so it is possible to measure 66 capacitance values between them 
(see Figure 3b). These capacitances are extremely small and, due to this, very sensi-
tive measurement circuits are needed. Such values are in the 0.1 to 500 femtofarads 
range (1 femtofarad = 10 e-15 farads). 

 

Fig. 3. Mexican Institute of Petroleum ECT Sensor. a) Dimensions, b) 66 electrode-pair combi-
nations 

2.1   Numeric ECT Sensor Model 

Although the sensor is a three-dimensional device, it is possible to use a two dimen-
sion model due to the fact that it is representative of a central transversal section. The 
natural deformation of the electric field at the edges of the pipe formed by the meas-
urement electrodes is controlled by means of the grounded electrodes placed in both 
edges (see Figure 2). Apart from the insulating pipe, measurement electrodes, guard 
electrodes and shielded screen dimensions, the model geometry includes the spatial 
discretization of the inner part of the sensor (R1 in Figure 3). It has been discretizated 
into 313 uniform size zones, as shown in Figure 4. 

The model allows us to have a method from which numerical calculation can be 
carried out for the electric potential φ in the space of the sensor. This is necessary as 
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an intermediate step towards the capacitance calculation. An ECT sensor can be  
considered as an electrostatic field problem. The electric potential φ within the sensor 
[3] is calculated by solving the following second order partial differential equation 

( ) ( )[ ] 0,, =∇⋅∇ yxyx φε      (1) 

where φ (x,y) is the potential distribution in two dimensions, and ε (x,y) is the relative 
permittivity distribution in two dimensions. 

To complete the model, the boundary conditions (Dirichlet boundary conditions) 
related to the measurement technique are shown in (2). When electrode i is the excita-
tion electrode, such conditions are: 

Γ+Γ⊆≠=Γ⊆
Γ⊆
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where Γi is the spatial location of the measurement (excitation) electrode; Γj is the 
spatial location of the 11 detecting electrodes; Γs the one of the sensor screen; and Γg 
the one of the 12 grounded guard electrodes placed between the 12 measurement 
electrodes.

The sensor model will be used to simulate a real sensor. This means that it will be 
able to solve the ECT forward problem calculating capacitances between all possible 
electrode pairs. To achieve this, equation (1) has to be solved first such that the poten-
tial distribution φ (x,y) is obtained within the sensor.  

One way to calculate φ (x,y) is through the finite element method (FEM) [7]. Using 
this method, an approximation to the potential φ will be obtained in the sensor at a 
finite set of points corresponding to the nodes of the triangular mesh that is normally 
used in the finite element method. 

Once the potential distribution is found within the sensor, the electric charge Qj on 
each detector electrode is calculated by using Gauss law 

Γ
⋅∇=

j

syxyxQj d)),(),(( nφε      (3) 

where Γj is a closed curve surrounding the detector electrode and n is the normal 
vector along the Γj. 

Finally the capacitance can be computed by an energy method, the energy re-
quired to charge a capacitor is given by the expression 

C
Q

We 2

2

=      (4) 

which is equal to the energy of the electrostatic field. So the capacitance is easily 
obtained from (5). 
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C
2

2
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3   ANN Solution’s Description 

The tomography problem is, mathematically speaking, an inverse problem, since from 
the observed effects (the change in magnitude of capacitances) our aim is to obtain 
the causes which originate them (material distribution in the inner part of the sensor). 
The solution of an inverse problem, for our ECT case, consists on obtaining the dis-
cretized permittivity distribution ε (ε = {ε1, ε2, .. , ε313}) starting from the set of ca-
pacitance measurements, represented by the c vector (c = {c1, c2, .. , c66}). 
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As mentioned before, an ECT process consists of two stages: 1) capacitances ob-
tained in a specific moment; 2) image construction (see Fig. 4). This last stage has 
been implemented by using an ANN.  
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Fig. 4. Pixels distribution that forms the tomographic image 

Multilayer Perceptron is the ANN selected type as they are universal function 
aproximators for a nonlinear input-output mapping [5]. An MLP is used to solve each 
of the 313 fp functions (with p= 1, … , 313) obtaining ε. 

In the image creation stage, c is input by several ANNs (see Fig. 5) calculating in-
dividually the εp pixel values. As a result each pixel is assigned a 1-3 permittivity 
value corresponding to a substances mixture (For instance, petroleum will have a 
permittivity close to 3; gas will have a value close to 1; while in the case of a mixture, 
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an intermediate value will be observed). Afterwards, the pixel value will be mapped 
to the range [0-255] that corresponds to its final gray level (represented with 8 bits). 

3.1   Use of Neural Networks in the Image Reconstruction Stage  

The ANNs are now grouped in a module: Its full architecture consists of 313 ANNs in 
parallel (see Fig. 5). Vector c is fed and the module outputs the corresponding ε vec-
tor. Therefore, ε represents permittivity distribution in the sensor transversal section. 
The image is made up according to the pixel numbers as shown in Figure 4. 

 

Fig. 5. RNA module for solving the TCE problem 

For each εp pixel calculation identical ANNs are used: one per pixel. Its architec-
ture is 66-4-7-1 (see Fig. 6), meaning 66 inputs; a first hidden 4 neuron layer, a sec-
ond 7 neuron one, and a unique neuron in the output layer supplying the permittivity 
value for εp. 

 

Fig. 6. ANN Architecture 
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These ANNs have been trained by using the traditional backpropagation algorithm. 
1000 training and 150 test examples have been created to achieve such training.  Ex-
amples are created in the following manner: a p pixel discretized permittivity distribu-
tion is chosen. Such distribution makes up vector ε which is then fed to the computa-
tional sensor model to get n capacitances making up c vector. Later on, both are 
merged resulting into a training or test example as shown in Figure 7. These items of 
the sample have 379 elements for p=313 and n=66. 

ε

ε 1 ε 2 ε 3 ε 4 … ε p

c 

c 1 c 2 c 3 c 4 … c n

 

Fig. 7. Examples structure for training and test 

A large majority of these examples were randomly generated. 100 training exam-
ples were created by using known distribution patterns of materials in the flow, such 
as: stratified, annular and with bubbles. Training was performed for 1500 epochs, 
reaching a 0.19 training error, and a 0.24 testing error. A 0.1 learning rate has been 
used for the three computational layers. Also, a 0.1 momentum constant has been 
used in them. 

4   ANN Recall and Digital Image Processing Module 

The general method’s performance is now described. As mentioned before capaci-
tance values are in order of femtofarads. Vector c is normalized in the [0, 1] interval, 
and input the trained ANN module. A normalized permittivity value is obtained in [0, 
1] at the module output. Such a value is now denormalized and a grey level value 
(from 0 to 255) is displayed as the output value in the corresponding pixel.  

 

 

Fig. 8. Digital Image Processing steps 

Finally the image made up with the 313 pixel aggregate is passed through a 
Digital Image Processing (DIP) module mainly to get dissemination among the 
pixels to present a tomographic aspect image. The DIP module is made up by  
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applying a ten step sequence (see Figure 8) as follows: 1) Circular mask to elimi-
nate the four black corners, outside the circle, from the treatment; 2) Median filter 
to add blur (slight fading at the edges between the pixels); 3) A lookup table 
(LUT) 1/x type, with x= 0.4, for a better brightness, turning the darker zones into 
even darker ones; 4) Dilation of the light zones; 5) Decreasing brightness; 6) Low 
pass FFT Filter (Consisting of three steps: a) Finding the FFT, b) Filtering low 
frequencies from the resulting images and, c) Going back to the image dominium 
by means of the inverse FFT); 7) Noise elimination from the saturation zones in 
the former step (The noise is inverted and then subtracted from itself); 8) The im-
age is added to itself to double the gray level from the light parts to recover the 
brightness withdrawn in 3 and 5 steps; 9) Brightness and contrast are adjusted; 10) 
A circular mask (as in step one) is applied again.  

5   Test Using Synthetic Data for Validation  

The process for 4 synthetic images is described in what follows. Both the ANN and 
the DIP module results are shown. First the desired image (original image) is defined 
and put in ε form. Later the ECT sensor model is used to get the corresponding c 
vector. Then c and ε are merged and RNA module is used to simulate ECT system 
performance. Finally, the resulting images are passed by the DIP module. The results 
can be easily validated. Figure 9 displays the ANN module’s output and results after 
applying DIP. 

 

Fig. 9. Original Synthetic Images versus generated ones by using the ECT system 

 



 An Application of Neural Networks for Image Reconstruction in ECT 379 

These results show that the ANN method effectively yields satisfactory results for 
tomographic images reconstruction from capacitance measurements. The light zones 
represent gas zones (permittivity close to 1), while the dark zones represent oil (permit-
tivity close to 3). All the examples were integrated with different permittivity values; 
examples 3 and 4 have three different levels, representing oil, foam and gas. The first 
two examples represent a pipeline filled with oil with 1 and 4 gas bubbles respectively. 

6   Experiments Using Real Data 

Results from tests performed with real data from a petroleum reservoir simulator are 
now shown. Real gas and oil at different pressures and amounts were passed through 
the sensor.  

 

Fig. 10. Experiment using gas and oil. Frames were acquired at 10 ms intervals 

 

Fig. 11. Experiment using gas and oil. Frames were acquired at 10 ms intervals 

Figures 10 and 11 show tomographic images obtained from two experiments. Fig-
ure 10 shows an experiment with 0.246 million scfd (standard cubic feet per day) for 
gas and 182.37 bpd (barrels per day) for oil, having a mixture pressure of 5.5 barbg 
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(barg gauge). Experiment in Figure 11 was carried out with 0.248 million scfd and 
2,263.33 bpd, making a 5.7 barbg pressure. 

7   Conclusions 

The ANN is a proven functional method for ECT image reconstruction. Several 
worldwide researchers have already reported promissory results by using this tech-
nique [8] [9] [11]. Experiments displayed in this paper have reached 0.24 maximum 
error image results. This can be measured only when testing known synthetic patterns. 
Error measurements from real data cannot be supplied because the transversal distri-
bution reference from different flow phases going through a pipe is unknown. And it 
is precisely here where our method is most useful. The proven effectiveness of the 
ANN model capabilities allows us to extrapolate the observed and known results to 
unknown areas of operation, thus fulfilling the original aim of accurately modeling 
the phenomenon under study. 
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Abstract. Gait analysis can be defined as the numerical and graphical represen-
tation of the mechanical measurements of human walking patterns and is used 
for two main purposes: human identification, where it is usually applied to se-
curity issues, and clinical applications, where it is used for the non-automated 
and automated diagnosis of various abnormalities and diseases. Automated or 
semi-automated systems are important in assisting physicians for diagnosis of 
various diseases. In this study, a semi-automated gait classification system is 
designed and implemented by using joint angle and time-distance data as fea-
tures. Multilayer Perceptrons (MLPs) Combination classifiers are used to cate-
gorize gait data into two categories; healthy and patient with knee osteoarthritis. 
Two popular approaches of combining neural networks are experimented and 
the results are compared according to different output combining rules. In the 
first one, same set is used to train all networks and afterwards the features are 
decomposed into five different sets. These two experiments show that using en-
tire data set produces more accurate results than using decomposed data sets, 
but complexity becomes an important drawback. However, when a proper com-
bining rule is applied to decomposed sets, results are more accurate than entire 
set. In this experiment sum rule produces better results than majority vote and 
max rules as an output combining rule.  

1   Introduction 

Gait analysis is the process of collecting and analyzing quantitative information about 
walking patterns of people and it is important for developing treatment plans or track-
ing the improvement of persons having gait problems (i.e. Parkinson, cerebral palsy, 
arthritis). This process is facilitated by the use of computer-interfaced video cameras 
to measure patient motion, by the use of electrodes placed on the surface of the skin to 
appreciate muscle activity, and by the use of force platforms imbedded in a walkway 
to monitor the forces and torques produced between the patient and the ground. After 
collecting data the essential part of the process is the interpretation of these by experts 
and related software. Gait analysis, when considered as an automated system, is used 
for two main purposes: human identification and clinical applications.  
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Human identification is an important security issue. In most cases it is not so easy 
to determine the identity of the person but many applications work well for some 
special cases, such as gender classification [1], age classification [2] etc. In most of 
these studies data sources are image sequences, but it is inappropriate to measure joint 
and segment gait kinematics directly from the videotape or monitor. They do not give 
an indication of the cause of the gait abnormality and so have limited value in clinical 
decision-making. 

The application of automatic gait analysis in medicine is also a well-studied sub-
ject. There are studies that have shown that the number of surgical procedures is re-
duced after a three-dimensional (3-D) gait analysis [3]. In medical applications meas-
urements are obtained more sensitively. Kinetic and kinematical temporal changes are 
obtained from the subject. In addition to temporal changes of joint angles and force 
data, time-distance parameters of the gait such as velocity, cadence, stride length, step 
length are recorded.   

The outcome of musculoskeletal diseases can be followed in two ways, as shown 
in Figure 1. The first one is the traditional method, and the second one is the gait 
analysis method. Traditional diagnosis starts with the examination of patients accord-
ing to their complaints. Two mostly used and expensive traditional methods are based 
on determining cartilage damages. The first one is MR technique which determines 
the degree of damage. The second one is the determination of cartilage damage by 
blood and urine analysis. Since these traditional methods are expensive and harmful 
to subjects to some degree, they are not suitable for frequent long term follow-up of 
the patients.    

 

Fig. 1. The role of gait analysis in clinical context 

Gait analysis helps the physician in both the diagnosis and follow-up non-
automatically or automatically. If the physician him/herself interprets the obtained 
gait data, then this is a non-automated diagnosis. But if this data is interpreted by 
software, then it is called automated diagnosis. Since non automated diagnosis re-
quires high level of expertise, only specifically trained orthopedists or physiatrist can 
use gait data. Automated system is expected to decrease this requirement which may 
help to increase the number of physicians and patients, making use of the laboratory. 
In addition, automated systems save experts’ time and decrease the possibility of 
human made errors.  

Following outcome of musculoskeletal diseases 

Traditional 
(MR, chemical tests etc.) 

Gait analysis 

Non-automated 
(interpretation of the gait graphics by 

physician) 

Automated 
(interpretation of the graphics by 

classification algorithms) 
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Here the word automated does not mean that gait systems are tools to replace phy-
sicians. Rather, it is an assisting tool to search the diseases that physicians suspected, 
to determine the level of the already diagnosed diseases, or to examine invisible 
changes of patients.  

For the design of automated diagnoses systems some well known pattern recogni-
tion algorithms are used. These are neural networks (NNs) [2, 4, 5, 6, 11], support 
vector machines (SVMs) [2, 8], and radial basis functions (RBFs) [7]. The use of NNs 
for experimental gait classification is not new. There are studies in which NNs are 
trained by force platform data to distinguish ‘healthy’ from ‘pathological’ gait  
[4, 5, 7, 9].  In addition to these, there are studies to recognize walking people among 
a few subjects (less than 10) by using joint angles as features [6, 10, 12]. These stud-
ies produce reasonable results (about %51-%83 on testing set and about %76-%98 on 
training set) for NNs use in gait classification. Since these studies differ from each 
other in description of gait variables (such as subject type, measurement tools, type of 
variables, anatomical levels), and in construction of classifiers, comparing the per-
formances of them with the current one may not be reasonable.  

As the dimension of the features and the size of the data increase same accuracies 
may not be guaranteed. In similar pattern recognition studies this problem is tried to 
be solved by combining classifiers. Combination of NNs are widely used today espe-
cially in speech recognition [14] and character recognition [13] studies and they have 
showed an increase in the performance of the classifiers. In [16] Sharkey made a 
comprehensive experiment to compare two different NNs combining methods; modu-
lar and ensemble ones. She concluded that using an entire set for training produces 
more accurate results than decomposing it. In this study comparison of these two 
approaches are done in the context of gait classification. There are also different ap-
proaches on combining outputs of classifiers. Kittler et. al. [17] has comparative stud-
ies on efficiency of output combination rules such as majority voting, sum, product, 
max., and min. rules. In [17], they concluded that sum rule is superior to others in 
most of the cases.  

The objective of this study is to design a software system for physicians for supply-
ing accurate and practical ways to diagnose and further classify a musculoskeletal 
disease using only gait data. The accuracy of the proposed system will be safeguarded 
by using all features used for diagnoses. To be able to combine all features in one 
classification system, combination methods are expected to be most suitable. As our 
previous studies [11] and similar studies proved MLP usage for gait classification 
produces reasonable results. A group of MLPs are used to classify the subjects as 
healthy or sick, using temporal changes of knee joint angle and time-distance parame-
ters as features. Current study is one of the first studies in which classifier combina-
tion techniques have been applied to gait data. Two different NNs combination meth-
ods are tried. In the first experiment data set is decomposed into five different sets and 
five MLPs are trained and tested by these sets. Then test set results are combined by 
sum, majority vote and max rules to produce final class label. In the second experi-
ment, entire data set is used to train three different architectural MLPs and again out-
puts are combined by three different rules and accuracy rates on test set are compared.  

The remainder of the report is organized as follows. Section 2 introduces data col-
lection process and the characteristics of data. This is followed by details of our ex-
periments and results. Finally, in last section conclusions are presented. 
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2   Characteristics of Data 

There are many data collection methods in gait analysis literature. However, some 
have disadvantages over others because of harmful effects to the subjects. The stereo 
metric method is the most popular one currently used. It employs visible markers 
attached to the skin on rigid segments of the body structure and tracks their motion 
using imaging equipment. This technique is implemented using charge coupled device 
(CCD) cameras and frame-grabber electronics to allow digital images to be captured 
as the subject moves within the field of view.  Digital image analysis allows the 
physical location of each marker to be computed, using triangulation of the views 
from an array of camera systems. This technique has minimal impact on the natural 
motion of the subject and allows data capture without the need to tether the subject to 
the data acquisition hardware. But, it is not feasible to measure gait patterns or vari-
ability with only one traversal of the instrument walkway. Thus, multiple walking 
trials need to be collected, which may fatigue the subject. 

While data collection techniques for gait analysis have continually evolved over 
the past 40 years, the method of data presentation has not changed much. The data is 
still reported in 2-D charts with the abscissa usually defined as the percentage of the 
gate cycle and the ordinate displaying the gait parameter. Figure 2 shows the graphi-
cal representation of the gait data used in this study for both a healthy and with knee 
osteoarthritis person.  

 

 

Fig. 2. Graphs of the gait data (healthy (a) and knee osteoarthritis (b)) 

In this study, data are collected in Ankara University Faculty of Medicine Depart-
ment of Physical Medicine and Rehabilitation Gait Laboratory by the gait analysis 
experts. In this laboratory, there are standard gait laboratory equipments which are 
supported by “VICON” a commercial system for gait analysis. Subject is walked on 
the platform and in one cycle of gait, temporal changes of joint angles, joint moments, 
joint powers, force ratios and time-distance parameters are gathered and recorded to 
database. Decision of which features to use is done according to inspected illness. In 
this study, Osteoarthritis, a disease that affects knee joints is selected as an example; 
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therefore, by the advice of the medical expert, knee flexion, knee flexion moment, 
knee valgus moment and total knee power are selected as the features of the knee joint 
angle. In addition, walking velocity, single support and step length are selected as the 
time-distance parameters of the gait.  

Each of joint angle related features are represented by a graph that contains 51 
samples taken in equally spaced intervals in the time for gait cycle, which is the time 
spent for one step. These points composed feature vectors which are used as inputs of 
the related MLP. On the other hand, time-distance parameters are static numerical 
values which are also used to train a MLP.  

Before passing to classification phase data is cleaned by eliminating rows having 
missing values. Finally, 91 healthy and 110 sick subjects’ data is prepared for classifi-
cation purpose and shared for training and testing purposes as shown in Table 1  
(H: healthy, S: Sick, SMP: Samples).  

Table 1. Dataset characteristics  

#TRAIN #TEST FEATURE 
VECTOR  

(FV) 
DATASET #SMP. 

H S H S 
FV1 KFlex: Knee flexion/extension 51 

FV2 
KMFlex: Knee flexion/  
extension moment 

51 

FV3 KMVal: Knee Valgus Moment 51 
FV4 KPTot: Total Knee Power 51 

FV5 
Time-dist: Velocity, single sup-
port, step length 

3 

FV6 Entire set (all of above) 207 

61 77 30 33 

3   Experiments and Results 

The basic classifier structure, used in this study is MLPs combination. Weaknesses of 
each classifier are diminished by combining classifiers, and more accurate results are 
expected.  

In [15], two methods are described for combining multiple networks. The first one 
is the modular approach, in which the task is first decomposed into several subtasks 
and a specialist network is then trained using the inputs pertaining to the correspond-
ing subtask. The second approach is the ensemble one, in which each network is 
trained using the same inputs and provides a different solution to the same task. Out-
puts from these networks are combined to reach an integrated result. Complexity is an 
important issue to be considered in this case. Differentiation among classifiers may be 
done by using initial random weights, different topologies, and varying the input data.  

As stated previously the final data that is used here has five feature vectors; four 
for temporal changes of knee joint angle (KFlex, KMFlex, KMVal, KPTot) and one 
for time-distance parameters. Before training all data sets are scaled to interval [-1, 1]. 
Totally eight MLPs are trained using Matlab neural network toolbox. These MLPs are 
combined in different schemas for experiment 1 and experiment 2 as shown in  
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Fig. 3. MLP combination schemas for experiment 1 (a), and experiment 2 (b) H/S: Healthy or 
sick, FV: Feature vector 

Figure3. Table 2 and Table 3 show the topology of each network and their individual 
success rates on test data. For the first five networks number of hidden nodes and 
hidden layers are determined experimentally.  

Experiment 1: Input data is decomposed in five sets composed of different feature 
vectors. Five MLPs are trained by these input sets and then outputs of test set are 
combined by three different combining rules to reach a final result. So, accuracy of 
different combining rules is compared. 

Table 2. Properties of MLPs used in experiment 1 

#NODE NETWORK 
input hidden1 hidden2 

#MIS-
CLASSIFIED 

SUCCESS 
RATE (%) 

MLP1 51 35 10 10 84 
MLP2 51 35 10 8 87 
MLP3 51 35 10 15 76 
MLP4 51 35 10 18 71 
MLP5 3 2 - 13 79 

Experiment 2: Three different MLPs are trained by using the same composite input 
set without any decomposition. Here, differentiation of each network is done by dif-
ferent number of hidden layers and hidden nodes.  

In both experiments different combination approaches are used, but in both cases 
combining outputs of classifiers became and important issue. In this study three of 
these rules, sum, majority vote and max rules, are experimented and results are com-
pared by success rates on test data set.  

After training each network with corresponding input set, test data are presented 
and the outputs are normalized to use them as posterior probabilities. Since tansig 
function is used as the activation function in all layers of networks, outputs are in 
interval [-1, 1]. To normalize an output, its absolute value is taken as posterior  
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Table 3. Properties of MLPs used in experiment 2 

#NODE 
NETWORK 

input hidden1 hidden2 

#MIS-
CLASSIFIED 

SUCCESS 
RATE (%) 

MLP6 207 50 - 6 90 
MLP7 207 150 40 6 90 
MLP8 207 207 50 7 89 

probability, and its sign is taken as class label (i.e minus sign is for normal and plus 
sign is for sick subject). Then, its 1-complement is recorded as posterior probability of 
the other class. Thus, sum and max rules for combining outputs can be applied. 

For sum rule, created posterior probabilities are added up for two classes and 
higher value determined the class label. In max rule, the network, producing the 
maximum of posterior probabilities determined the class label and the others are ig-
nored. To find the majority vote, each networks’ output is converted to class labels by 
applying a threshold and three agreeing classifiers determine the class label of the test 
datum. Table 4 shows the obtained success rates on test set by applying these combin-
ing rules. 

Table 4. Success rates (number and percentage) for combining rules 

Combined networks 
MLP1-MLP5 MLP6-MLP8 Combining rule 

#misclassified success rate (%) #misclassified success rate (%) 
Sum 4 94 6 90 
majority vote 5 92 6 90 
Max 5 92 6 90 

4   Conclusion 

According to these results, it can be concluded that the best individual performance is 
produced by MLP6 and MLP7 in which entire data set is used for training and testing 
purpose. However, as the dimension of the data and relatively network size increase, 
complexity becomes an important drawback. Since it is difficult to process a large set 
of data training time increases. However, smaller MLPs which use only one feature 
vector produce less accurate results and combining their outputs increase the accuracy 
reasonably. 

In addition, combining outputs do not increase the accuracy in experiment 2 as 
much as in the first one. Increasing the number of networks does not cause any im-
provement after an optimum number, which is “three” in our experiment.  

The combining rules show equal performance in experiment 2, but in experiment 1 
sum rule is superior to others. Then, as complexities are considered combining many 
small networks may be preferred when dealing with large dimensional data.  

In further stages of the study, to improve classification accuracy, some feature re-
duction and/or selection techniques can be tried to reduce the dimension of data and 
so more features can be included in classification process. 
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Abstract. This paper deals with a method for training neural networks by using 
cellular genetic algorithms (CGA). This method was implemented as software, 
CGANN-Trainer, which was used to generate binary classifiers for recognition 
of patterns associated with breast cancer images in a multi-objective optimiza-
tion problem. The results reached by the CGA with the Wisconsin Breast Can-
cer Database, and the Wisconsin Diagnostic Breast Cancer Database, were 
compared with some other methods previously reported using the same data-
bases, proving to be an interesting alternative.   

Keywords: Neural networks, genetic algorithms, cellular automata, multi-
objective classification. 

1   Introduction 

The trend of using Multilayer Perceptron Neural Networks (MLP) [1] for the solution 
of classification problems in pattern recognition applications is understandable due to 
their capacity to imitate the nature of the human brain (learning capacity), and the fact 
that their structure can be formulated mathematically. The functionality of the topol-
ogy of the MLP is determined by a learning algorithm able to modify the parameters 
of the net. The algorithm of Backpropagation (BP), based on the method of steepest 
descent [1] in the process of upgrading the connection weights, is the most commonly 
used by the scientific community. The main limitations and problems that present the 
BP algorithm in training the MLP are exposed in [2]. Recently, numerous works have 
been reported trying to overcome their main limitations. However, the topology selec-
tion issue [3] for MLP still leaves margin for improvements. At the same time, it is 
not clear what algorithm, or combination of algorithms, is the most appropriate to 
achieve the objective of reducing complexity of the classifiers and, simultaneously, 
increasing their benefits in terms of classification effectiveness, for a particular appli-
cation, and much less for one with a more general character.   

On the other hand, Evolutionary Algorithms (EA) have demonstrated great effec-
tiveness to solve problems of Multiobjective Optimization (MO) [4]. In addition, the 
use of Hierarchical Codification [5] (Fig. 1), combined with the EA, provides advan-
tages in the determination of solutions for problems where the determination of a 
good structure (ignored a priori), is of vital importance. The enormous capacity of 
computation of the Cellular Automata (CA) [6] gives, in conjunction with EA, a very 
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desirable characteristic: the population, when having a certain space distribution, will 
be more representative of the search space and, therefore, the method will be less 
vulnerable to the phenomenon of premature convergence. 

 

Fig. 1. MLP Hierarchical Codification  

2   Materials and Methods 

This work is conceived to build general purpose classifiers for pattern recognition, so 
its use is feasible for any classification problem where it is necessary to discern be-
tween two or more classes. This kind of problem is very common, therefore, the field 
of application of the developed method is very wide, and the definition of materials to 
be used depends on the problem to be solved.    

2.1   CGA for the Construction of Binary Classifiers Based on MLP   

A cellular genetic algorithm (CGA) [7] is represented by a probabilistic cellular 
automaton where the state of each cell is represented by a chromosome.   

Each cell should reproduce with some other of its neighborhood, being the de-
scending chromosomes those that substitute the previous generation, according to the 
replacement technique that is used. The differences between CGA and conventional 
genetic algorithms reside in three fundamental aspects:   

1. There is a space distribution that determines the reproduction processes.   
2. The selection process is for every element of the population (better or worse 

adapted) and the candidates to mate will be only those that are in the neighbor-
hood inside the cellular automata.   
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3. The replacement will be for the population's individuals and it will be in:    
• Generational Genetic Algorithm, where the offspring always replaces 

the progenitor.   
• Elitist replacement, where the replacement occurs only if the offspring 

has more adaptation than its father.   

These characteristics guarantee a better representation of the population for the 
search space, for being the reproduction mechanism less elitist and the population's 
individual compete only with its neighborhood. 

2.2   Punctuation by Means of Successive Refinement of the Pareto Optimal Set 

From the multiobjective formulation of the problem of construction of binary classifi-
ers, and the description of the cellular genetic algorithms, the combination of both is 
presented to create the CGA that solves the outlined problem.   

Fig. 2 shows the complete process that governs the developed CGA. The relation-
ships among the main stages that compose this process are illustrated here. Next, 
every stage is described, as well as the interactions among them.  

 

Fig. 2. Scheme for construction of classifiers based on MLP by using CGA  

Initial population: A population of chromosomes where each chromosome codes a 
MLP (topology and connection weight randomly assigned) that constitutes a potential 
solution of the problem of MO to solve.  

Evaluation and punctuation of chromosomes: The assignment of fitness is carried 
out by using the punctuation outline developed in [8].  The ranking of an individual is 
calculated as the weighting sum of the dominances of an individual in each one of the 
corresponding schemes, obtained by suppressing objective functions corresponding to 
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the problem.  This method of fitness assignment reduces the effect introduced by not 
dominated solutions in a local way, the specialization phenomenon, and it is capable, 
also, of sampling uniformly regions of the space of solutions. 

Selection: A stochastic scheme of selection is used to allow that the individuals with 
more fitness have bigger probability of being selected and, as a result, they can give 
place to a bigger number of descending.   

Mutation operators and crossover: The characteristics of the structure used in the 
Hierarchical Code of the chromosomes, presuppose the employment of specific ge-
netic operations, developed for levels, by using any variant of the traditional methods: 
one-point crossover, multipoint crossover, or uniform crossover [2].    

Subpopulation of offspring: This stage comprises those descendants that will par-
ticipate in the replacement process.  This offspring subpopulation will be the initial 
population's image and each individual has an offspring that occupies, in the subpopu-
lation, the same place that the father in the initial population.   

Replacement: A strategy of generational or elitist replacement is used. The process 
of optimization finishes when a specific number of iterations has been reached.  

2.3   Evaluation of the Method to Train Multilayer Perceptron by Using CGA   

In this work, specifically, the model developed for the problem of diagnostic of breast 
cancer will be used. Two standard databases, the Wisconsin Breast Cancer Database 
(WBC) and the Wisconsin Diagnostic Breast Cancer Database (WDBC) are used for 
evaluation. Next, these databases are briefly described, along with the works where 
they are used for evaluation of algorithms of classification. 

Wisconsin Breast Cancer Database (WBC). The Wisconsin Breast Cancer Data-
base (WBC) was obtained in the Hospitals of the University of Wisconsin, USA. This 
contains 699 examples belonging to two different classes: malign and benign. Sixteen 
of these cases present incomplete information, so only 683 were used, 444 (65%) of 
the Benign Class and 239 (35%) of Malign class. Each case is described by nine at-
tributes, corresponding to subjective evaluations (Clump Thickness, Uniformity of 
Cell Size, Uniformity of Cell Shape, Marginal Adhesion, Single Epithelial Cell Size, 
Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses), with values between 1 
and 10, corresponding to descriptions of the cells obtained by means of microscopic 
examination. An additional attribute indicates the class associated to this description. 

The methods reported with the WBC and used to compare with the results of the 
cellular genetic algorithms (CGA) here implemented are: 

• M1: Uses the multi-surface method [9], [10], [11].   
• M2: Uses instance-based learning [12].   
• M3: Uses linear programming to train neural networks [13].   
• M4: Uses evolutionary algorithms to build classifiers based on MLP, by 

means of elimination of connections among the hidden neurons [3].   
• M5: Uses neural networks after a previous process of selection of features 

[14], [15].   
• M6: Uses a group of extracted rules of an MLP [16].   
• M7: Uses a fuzzy system built by means of evolutionary algorithms [17].   
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• M8: Uses evolutionary algorithms with hierarchical code to build classifi-
ers based on MLP [2].   

• M9: Uses classification rules by means of a scheme of weighting of the 
nearest neighborhood method [18].   

Wisconsin Diagnostic Breast Cancer Database (WDBC). The Wisconsin Diagnos-
tic Breast Cancer (WDBC), similarly, was obtained in the Hospitals of the University 
of Wisconsin. This database contains a total of 569 cases, 357 Benign (63%) and 212 
Malign (37%). Observations are described by 30 attributes corresponding to three 
statistical values that are calculated from ten geometric measurements of the cells 
(Radius, Texture, Perimeter, Area, Softness, Compactness, Concavity, Number of 
Points of Concavity, Symmetry, and Fractal Dimension), plus one corresponding to 
its classification: benign or malign. The observations are based on descriptions of the 
cells, obtained by means of the microscopic observation. 

The methods reported with the WDBC and used to compare with the results of the 
cellular genetic algorithms (CGA) here implemented are: 

• D1: Uses Machine Learning with linear programming [19].   
• D2: Uses classification rules by means of an outline of weighting of the 

nearest neighborhood method [18].   

During the processing stage, in this work (CGA), the attributes of the WDBC data-
base were normalized between 0 and 1 by using a linear transformation. 

Software CGANN-Trainer. To validate the proposed method, the software 
CGANN-Trainer was implemented. This software allows changing the input parame-
ters of the algorithm such as: MLP topology (the widest), transfer functions, objective 
functions to optimize with their respective grade of importance, dimensionality, and 
type of neighborhood of the CA, crossover and mutation probabilities of the genes of 
every layer in which the chromosome is divided. The process of training can be su-
pervised by monitoring the evaluations of every objective function.  When finishing, 
the nets with the best benefits can be saved in a text file, which can be used by other 
applications later. 

Formulation of optimal binary classifiers, based on MLP, as a problem of  
multiobjective optimization. The formulation of the problem for the construction of 
classifiers based on MLP as a problem of MO tries to find a binary classifier, based 
on a MLP that minimizes some of the objective functions (f1, f2, f3, f4, f5, f6) related 
with the acting of the classifier and, simultaneously, with the complexity of the asso-
ciated topology.   

Five of these objective functions (f1, f2, f3, f4, f5) are calculated by using well-known 
indexes: Sensibility (Se), Specificity (Sp), Positive Predictivity (PP), Negative Predic-
tivity (NP) and Rate of Classification (RC). In turn, these approaches are calculated 
by using four basic measures recommended by the AAMI (American for the Ad-
vancement of Medical Instrumentation): True Positive (TP), False Positive (FP), True 
Negative (TN) and False Negative (FN). 

Sensibility (Se): Is the fraction of elements of the main class (in this case, Malign) 
correctly classified and it is calculated as,         
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Specificity (Sp): Is the fraction of elements of the complementary class (in this case, 
Benign) correctly classified and it is calculated as,   
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Positive Predictivity (PP): Is the fraction of elements of the main class (in this case, 
Malign) correctly classified with regard to the positive classifications and it is calcu-
lated as,   
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Negative Predictivity (NP): Is the fraction of elements of the complementary class 
(in this case, Benign) correctly classified with regard to the negative classifications 
and it is calculated as,   
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Rate of Classification (RC): Is the total fraction of correct classifications and it is 
calculated as,   
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In this context, TP is the number of elements of the main class (Malign) correctly 
classified; FP and TN correspond to the number of elements of the complementary 
class (Benign) incorrectly and correctly classified, respectively, and FN is the number 
of elements of the main class incorrectly classified. 

From these indexes, some of the following objective functions were considered to 
minimize, during the process of optimization: 
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In general, it is desirable that these objective functions, simultaneously, reach val-
ues near to zero. However, solutions of compromise are usually selected. Among the 
used indexes, sensibility is generally considered the most critical one. This is given by 
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the importance that has to classify correctly an element of the main class (Malign), in 
comparison with the false alarms that can be emitted. 

The sixth objective function (f6) is related to the complexity of the topology associ-
ated to the classifier and it is calculated as the number of active neurons (NA) of the 
MLP divided by the maximum number of neurons that admits the topology (NAd):  

Ad

A

N

N
f =6

.                                                           (11) 

The specification of the grade of importance, that is, the associated weight, of 
every objective function is determined by the specific characteristics of the problem 
to solve and corresponds to the specialist its assignment. 

By means of the optimization of these four objective functions simultaneously, it is 
guaranteed that the classifiers have a drop error rate, as well as a topology of reduced 
complexity, increasing the benefits during their exploitation. 

During the process of optimization were used the functions f1, f5 and f6.  f1 depends 
directly on the FN, which is the most sensitive variable of a problem of classification 
of cancerous cells.  The function f5 involves all the other ones. f6 guarantees to find 
the simplest classifier.   

Experiment 1: WBC database classification 
Training Cases: 333 cases from WBC (49 %), randomly selected. The rest (51 %) 

was used as the test set. 
Topology of the MLP:  
9 input neurons; 2 hidden layers; 6 neurons per layer; and one output neuron. 

Hidden layer transfer function: 
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Population Size: 121 
Population Topology: Square with Moore (8-element) neighborhood. 
Objective functions (to minimize): f1, f5, f6 
Weights associated: 0.45, 0.45, 0.10, for f1, f5, f6, respectively. 
Replacement: Elitist. 

Experiment 2: WDBC database classification 
Training Cases: 350 cases from WDBC (61 %), randomly selected. The rest (39 

%) was used as the test set. 
Topology of the MLP:  
30 input neurons; 2 hidden layers; 8 neurons per layers; and one output neuron. 

Hidden layer transfer function: 
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Population Size: 121 
Population Topology: Square with Moore (8-element) neighborhood. 
Objective functions (to minimize): f1, f5, f6 
Weights associated: 0.45, 0.45, 0.10, for f1, f5, f6, respectively. 
Replacement: Elitist. 

3   Results and Discussion   

Fig. 3 and Fig. 4 show how the sensibility and the rate of classification (actually f1 
and f5) behaved during the first 200 iterations of the training process in the experi-
ments 1 and 2, respectively. 

 

Fig. 3. Behavior of sensibility and rate of classification (f1 and f5) during the first 200 iterations 
of the training process in experiment 1 

 

Fig. 4. Behavior of sensibility and rate of classification (f1 and f5) during the first 200 itera-
tions of the training process in experiment 2 
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Table 1 presents the results reached by the two classifiers, based on MLP, built 
by means of the experiments 1 and 2, respectively. Its selection was motivated 
from its behavior in all indexes under optimization, with regard to the rest of the 
solutions corresponding to the set of best individuals of each experiment. Every 
index was calculated for the training cases (TC1), the test cases (TC2) and for the 
complete database (TC1+TC2), in each experiment. The information on the topol-
ogy of the MLP, corresponding to the opposing classifiers is also shown in  
Table 1. 

Table 1. Indexes obtained with the CGA for experiments 1 and 2 
 
 
 
 
 
 
 
 

The results obtained for both experiments were compared with those reported by 
different methods in the specialized literature, for the same databases.    

This comparison is shown in the Table 2, for the experiments 1 and 2. The CGA 
proved to be an interesting alternative for pattern recognition applications, obtaining 
results comparable and sometimes better than those previously reported. The software 
CGANN-Trainer was very useful to generate the neural network and to evaluate its 
performance. 

Table 2. RC (%) reported for different algorithms used to classify cases from the WBC and 
WDBC databases 

WBC 

M1 M2 M3 M4 M 5 M6 M7 M8 M9 CGA 
95.9 93.7 97.4 97.5 97.2 97.9 97.8 95.5 97.0 97.2 

WDBC 

D1 D2 CGA 

97.1 98.1 98.6 

 Experiment 1 Experiment 2 

Criteria TC1 TC2 TC1+TC2 TC1 TC2 TC1+TC2 

Se (%) 98.67 96.95 97.49 98.57 95.77 96.70 

Sp (%) 98.06 95.70 97.07 100 99.27 99.72 

PP (%) 93.67 95.21 94.71 100 99.27 99.51 

NP (%) 99.60 97.27 98.63 99.54 95.80 98.07 

RC (%) 98.19 96.28 97.22 99.65 97.50 98.59 

Topol.  1 hidden layer, 3 neurons 1 hidden layer, 4 neurons 
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Abstract. This paper presents the results obtained in a real experiment for 
object recognition in a sequence of images captured by a mobile robot in an 
indoor environment. Objects are simply represented as an unstructured set of 
spots (image regions) for each frame, which are obtained from the result of an 
image segmentation algorithm applied on the whole sequence. In a previous 
work, neural networks were used to classify the spots independently as 
belonging to one of the objects of interest or the background from different spot 
features (color, size and invariant moments). In this work, clustering techniques 
are applied afterwards taking into account both the neural net outputs (class 
probabilities) and geometrical data (spot mass centers). In this way, context 
information is exploited to improve the classification performance. The 
experimental results of this combined approach are quite promising and better 
than the ones obtained using only the neural nets. 

Keywords: Clustering, Spot, Class probabilities, Neural Nets. 

1   Introduction 

One of the most general and challenging problems a mobile robot has to confront is to 
identify and locate objects that are common in its environment. To this end, a teacher 
may show what the object is from images taken in different views and a robot may 
apply some learning abilities to obtain a certain model of the object and an associated 
recognition procedure.  

A very important issue is to determine the type of object model to learn. In our 
point of view, a useful model should be relatively simple and easy to acquire from the 
result of image processing steps. For instance, the result of a color image 
segmentation process, consisting of a set of regions (spots, from now on) 
characterized by different features (related to color, size and shape), may be a good 
starting point to learn the model. Although structured models like adjacency attributed 
graphs or random graphs can be synthesized for each object from several segmented 
images [1], we have decided to investigate first a much simpler approach in which the 
object is just represented as an unstructured set of spots. One of the main drawbacks 
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of the structural methods is that the segmented images from one frame to the other 
can be quite different, and so, it is difficult to match the actual spots (usually 
represented by nodes of the graphs) with the previous ones. The main aim of our 
approach is to accept these differences between segmented images and use a more 
coarse approach in which the basic element is not the spot or region of the segmented 
image but its pixels. 

In a previous recent work [2], feed-forward neural networks were used to classify 
the spots independently as belonging to one of a finite set of objects or the 
background (defined as everything else). In this work, clustering techniques are 
applied afterwards taking into account both the neural net outputs (class probabilities) 
and geometrical data (spot mass centers). In this way, context information can be 
exploited to improve the classification performance. 

The classification of segmented image regions for object recognition has been 
addressed in several works. Neural networks are used in [3] not only to classify 
known objects but to detect new image objects as well in video sequences. In [4], 
objects of interest are first localized, then features are extracted from the regions of 
interest and finally a neural network is applied to classify the objects. Support vector 
machines are used in [5] to classify a segmented image region in two categories, 
either a single object region or a mixture of background and foreground (multiple 
object region), in order to derive a top-down segmentation method. 

2   Image Acquisition, Pre-processing, Segmentation and Feature  
     Extraction 

The input of our system is a digital video sequence. The images in the sequence were 
preprocessed by applying a median filter on the RGB planes and segmented by the 
Felzenszwalb – Huttenlocher algorithm [6]. The output of the segmentation and 
feature extraction process for each image consists of a list of spots (that represent 
regions) with their features. 

Two types of information were extracted from the spots: color and geometry. With 
regards to color, average and variance values for each one of the three RGB bands 
were calculated for each spot on the basis of the corresponding intensity values of the 
spot pixels in the original image. This is, the result of the segmentation algorithm 
served to identify the pixels of every spot, but their color features were computed 
from the original RGB image.  

Regarding the geometrical information, we were mainly interested in shape 
descriptors that were invariant to translation and scale, and to this end, we decided to 
use the seven invariant geometric moments defined by Hu [7] (whose equations are 
also reproduced in [2]). In addition and since the range of variation of the objects’ 
size was rather limited in the video sequence, we also calculated and used the size of 
each spot, i.e. its area measured in number of pixels. Hence, 14 features (6 for color 
and 8 for geometry) were computed for each spot. Moreover, the mass center was also 
calculated. 
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3   Spot Classification Methodology 

A neural net is first trained to classify each spot within certain regions of the images 
in the sequence. The inputs of the neural net are the features of each spot and the 
target is the class that we impose to each spot. To impose the class of each spot, we 
manually marked on the images a rectangular box for each object of interest. Thus, 
the spots whose mass centers are inside each box are forced to belong to the class that 
the box represents. Figure 1 shows one of the images and its segmentation together 
with the boxes used to impose the classification. 

 

 

Fig. 1. One of the original images (left) and the corresponding segmented image (right), with 
four boxes marked on them. Spot mass centers are also displayed in the right image. 

In the recognition stage, each image from the video sequence is segmented, then 
for each spot of the segmented image, a first classification was made using the neural 
net. 

A second step for spot classification involves the detection and reclassification of 
possibly misclassified spots based on the context information provided by the mass 
centers of the spots classified as the same class (or object) in the same frame. 

For each one of the classes (or objects) o and for each frame f, a weighted mass 
center wmc(o,f) was computed as  
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where ns(o,f) is the number of spots classified as object o in frame f, p(o|s) is the a-
posteriori class probability of object o for spot s given by the net, and a(s) and mc(s) 
are respectively the area and mass center of s.  
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Then, for every spot in the segmented image classified by the net as an object, the 
distance between its mass center and the weighted mass center of the assigned object 
was computed. If this distance exceeded a given threshold, the spot was marked as 
possibly misclassified and it was optionally reclassified to the object with the nearest 
mass center. Note that this step is a kind of spot clustering process that is inspired in 
both the dynamic and k-means clustering algorithms, but starting from the clusters 
(class assignments) given by the neural network. 

 

 
 
Fig. 2. Classification process based on three main steps. First, the extraction of the spots and 
features. Second, spot classification based on a Neural Net and third, reclassification of the 
spots based on its position respect the other spots within the same class. 

Figure 3 displays an example of the beneficial effects of performing the 
reclassification based on structural information. In the left hand image, there are two 
spots that were misclassified by the net, one in the chair was classified as wastebasket 
and one in the wastebasket was classified as chair. These spots could be correctly 
reclassified after this step, as shown in dark green and dark blue in the right hand image. 

  

 

Fig. 3. Spots classified as belonging to the three objects by the net (left) and the result of the 
reclassification after the clustering (right) 

4   Experimental Results 

A digital video sequence of 88 images was captured by an RGB camera installed on 
the MARCO mobile robot at the Institute of Robotics and Industrial Informatics (IRI, 
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UPC-CSIC) in Barcelona. The sequence shows an indoor scene with some slight 
perspective and scale changes caused by the movement of the robot while navigating 
through a room. The objects of interest in the scene were a box, a chair and a pair of 
identical wastebaskets put together side by side (see Figure 1), and the objective was 
to discriminate them from the rest of the scene (background) and locate them in the 
images.  

For the training stage, four rectangular boxes were manually marked on the images 
with a graphics device to encompass the three objects of interest and a large region on 
the floor (figure 1). In order to assign a class label to each spot, to be used as target 
for the spot pattern in the neural network training and test processes, a simple decision 
was made: each one of the four rectangular boxes constituted a class and all the spots 
that had its mass center inside the window and a size large than 100 pixels were 
assigned the same class label. 

We used a neural net with a feed-forward 2-layer perceptron architecture using 
standard backpropagation as training algorithm. From previous experiments reported 
in [2], we set the number of hidden units to 180, although it was shown in [2] that the 
results were not very sensitive to this choice. Hyperbolic tangent and sine functions 
were used as activation functions in the hidden layer and the output layer, 
respectively. For backpropagation, we set a learning rate of 0.003, a momentum 
parameter of zero and a maximum number of 500 training epochs for each run. 

A dataset containing 3,411 labeled patterns (spots) was available after the 
segmentation of all the 88 images. For each subset of features, a double cross-
validation procedure was carried out that generated 90 different partitions of this 
dataset, each including 80% of the patterns for the training set, 10% for the validation 
set and 10% for the test set. The validation sets were used for early stopping the 
training phase. Actually, the network chosen at the end of the training phase was the 
one that yielded the best classification result on the validation set among the networks 
obtained after each training epoch.  

The results of the double cross-validation procedure obtained for different subsets 
of features are displayed in Table 1, ordered decreasingly by test classification 
performance. For each one of the three sets (training, validation and test set), the 
classification performance is measured as the average percentage of correctly 
classified patterns in the 90 cross-validation partitions, evaluated in the networks 
selected after training (the ones that maximize the performance on the validation set). 
It can be noted that similar results are obtained if the average RGB color features are 
taken into account, but the performance falls down dramatically when they are not 
used. The best result was 92.93% test classification performance for a subset 
comprising color features (both RGB averages and variances) and spot size (and 
without the shape invariant moments).  

These results are in agreement with those reported in [2] with regards to the 
relative usefulness of the different spot features (i.e., invariant moments are shown to 
be practically useless and RGB color averages are shown to provide almost all the 
relevant information), but the absolute classification rates are notably better here, due 
to a more accurate definition of the rectangular boxes that eliminated from the dataset 
most of the spots that were incorrectly labeled in [2]. 
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Table 1. It presents the classification results for several groups of selected variables to assess 
the relative importance of the different types of features (size, color averages, color variances 
and shape invariant moments) 

Classification performance (with feature subsets) 

Feature Subsets Training Validation Test 
spot size, average and variance RGB  94.20 93.38 92.93
spot size and average RGB  93.29 93.26 92.75
all 14 features 94.58 93.19 92.72
spot size, average RGB and three first moments 93.47 92.92 92.22
Average RGB and three first invariant moments 92.11 92.37 91.93
Average RGB and the seven invariant moments 92.04 92.35 91.60
spot size and variance RGB 62.12 63.54 63.06
spot size, variance RGB and three first moments 62.46 63.52 62.79
seven invariant moments  and variance RGB 55.98 57.48 57.33
seven invariant moments 32.29 32.49 32.38  

Using spot size and RGB averages and variances as features, the network (and 
associated dataset partition) that gave the best result in the training set (97.25%) was 
selected for computing the weighted mass centers and to assess the effect of the 
clustering process on the spot classification performance. Table 2 compares the 
results obtained without clustering with those obtained after clustering and 
reclassification to the nearest object. A 78.8% of the spots misclassified by the 
network were correctly reclassified by the clustering and only a 0.1% of the correctly 
classified spots were incorrectly reclassified. 

Table 2. Spot classification results before and after clustering using the net that maximized the 
result in the training set 

Classification performance (with the best feature subsets) 

Classifier Training Validation Test 
Only the neural network 97.25 95.01 96.18
Combining the neural net and the clustering 99.34 98.53 99.71  

5   Conclusions and Future Work 

A simple approach to object recognition in video sequences has been successfully 
tested combining neural networks and clustering techniques to classify image 
segmentation regions (spots) as belonging to one of the objects of interest or to the 
background. Objects are implicitly represented as an unstructured set of spots; no 
adjacency graph or description of the structure of the object is used. The method is 
robust to changes between successive frames in the number and shape of the spots 
associated with each object, as given by the image segmentation algorithm. 
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In this work, spatial context information has been obtained through the distances 
between the mass centers of the spots, which allow the formation of semi-supervised 
clusters, since both the classification labels and probabilities given by the neural net 
are taken into account as well for the clustering. Other ways of aggregating spatial 
context can be studied in future work, e.g. relaxation labeling may be used for 
updating the class probabilities of neighboring spots. 

The obtained classification results are quite good, but it must be noted that only the 
spots in some regions of interest were processed and just three objects (plus 
background) were considered as classes. A more realistic experiment would involve 
the spots of whole images in the test phase and eventually more objects to recognize. 
Moreover, the dynamic nature of the visual data should be exploited by somehow 
integrating the tasks of object detection, recognition and tracking in consecutive video 
frames. 

In the long-term, our purpose is to design a robust dynamic approach to object 
recognition and tracking in video sequences based on unstructured sets of spots, 
which can deal with the variations in the object views resulting from the movement of 
a mobile robot in an indoor environment.  
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Abstract. In this paper several approaches of time and frequency domain-based 
algorithms to estimate harmonics-to-noise ratios (HNR) in voice signals are 
compared. The approaches covered incorporate a recent time-domain correction 
to a classic method, as well as a frequency-domain adjustment introduced here. 
The experimental comparisons include the number of pitch periods needed to 
obtain the best HNR estimates, as well as the sensitivity of the methods to 
different perturbations of the periodicity pattern, like shimmer, jitter, noise and 
combinations of them. Time domain methods show better performance than 
frequency-based approaches, and moreover, the correction to the ensemble-
average time domain technique reduces the required number of pulses by an 
order of magnitude. 

1   Introduction 

It has been widely reported that estimates of additive noise levels in voice signals are 
of diagnostic value to several speech pathologies ([20], [8], [4], [18]). The 
determination of Harmonics-to-Noise Ratios (HNR) in voiced speech signals is 
intended to yield a measure of additive noise in the acoustic waveform. For this 
purpose, several methods have been proposed [11], both in time and frequency (or 
transformed) domain, and there is no definitive satisfactory solution. A most troubling 
issue is the interaction of other perturbations of the periodicity pattern, like pulse 
duration variability (jitter) and pulse amplitude variability (shimmer), in the measured 
HNR [5]. According to the derivations described analytically in [17], it is not possible 
to perform separate measurements of each type of perturbation by using spectral-
based methods. On the other hand, time domain methods have been criticized 
([6][15]) for depending on the correct determination of the individual pulse (pitch 
epoch) boundaries, among many other method-specific factors. 

A much referenced time-domain method was proposed by Yumoto et al. [20], who 
introduced the finding of a pitch epoch “template” by averaging the ensemble of 
individual pitch pulses. The averaged waveform is known to present a noise variance 
reduced by a factor of N, the number of averaged pulses. Yumoto proposed to 
measure HNR as the ratio of the variance of the template to the variance of the 
differences of the individual pulses with the template (see equation 5). It has been 
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criticized [7] for the need of a relatively large number of pulses (30-50) to effectively 
remove the noise from the template, and influences of jitter and shimmer in the 
resulting measures of HNR [5]. 

In spite of this, Yumoto’s method remains “the most commonly used time-domain 
technique” [11] and several authors have worked on its improvement. In [1], a single-
pass method was proposed which accounted, under certain considerations, for jitter, 
shimmer and offset effects. Later, Dynamic Time Warping [13] and Zero Phase 
Transforms [14] of individual pulses prior to the averaging were used to reduce 
waveform variability influences in the template. For the same purpose, the ensemble 
averaging technique was applied [11] to the spectral representations of individual 
glottal source pulses. Dealing again with waveform variability, Functional Data 
Analysis was used [9] to perform an optimal time-alignment of pulses prior to 
averaging. Recently, a theoretical formula (see equation 6) was derived to correct the 
ensemble averages estimates of HNR for any number of pulses [3], suppressing the 
need of using a large N. 

The objective of this paper is to address two issues that remain unclear. First, the 
ability of the Ensemble-Averages correcting formula in [3] to actually determine the 
HNR for any number of pulses is tested using simulated signals. Second, the practical 
extent to which the frequency-domain HNR estimation methods are affected by jitter 
and shimmer perturbations. The validity of the results in [3] is tested for different 
pulse lengths, in samples, allowing a more realistic understanding of its practical 
usefulness. The method in [3] is also compared to the original time-domain version 
[20] and a correction (developed in this paper) to a frequency domain method [8][2]. 

2   Description of Signals, Methods and Experiments 

2.1   Signals 

Simulated vowels were generated according to the method used in [10] and [12], 
where the speech signal s(t) is obtained as the convolution of two signals, the vocal 
tract impulse response h(t) and an excitation impulse train i(t): 
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This convolution results in: 
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where tn is the time instant of the n-th excitation and k is its amplitude. The terms am, 
bm and fm represent the amplitude, bandwidth and central frequency, respectively, of 
the M resonators (formants) used to model the vocal tract. The values of am, bm and fm 
used for these resonators are the same as in [10] and [12], corresponding to a vowel 
/a/ and M=5. 
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The use of equations (1) and (2) to synthesize the vowel yields an easy way to vary 
the amount of jitter by controlling tn, while k can be used to vary shimmer, and the 
HNR can be controlled by adding noise to s(t). 

The sampling frequency FS was set to 22.05 kHz, and the mean value of 
fundamental period T0 is tm=1/150 seconds (‘mean’ fundamental frequency F0=150 
Hz, tm=147 samples). These values for Fs and F0 are the same than in [12]. For 
simplicity reasons, only the closest two precedent impulses to the current “t” were 
considered in the synthesis of (2), since h(t) decays to negligible values for 3*tm. In 
any case, a certain amount of interference between two consecutive pulses is 
introduced. The length of the generated speech signals was set to two seconds, 
which gives, together with the value of tm used, an average of 300 pitch pulses on 
each signal. Four types of signals were generated, according to the presence of 
jitter, shimmer, additive noise, or a combination of the three periodicity 
perturbations. 

Jittered Signals: The amplitude factor of equations (1) and (2) is left constant (k=1) 
and no noise is added to the signal s(t). The impulse excitation instants are obtained as 
tn = tn-1 + tm + u(n), where u(n) is a random real value uniformly distributed in the 
interval ±um. The time difference between two adjacent excitation instants will have 
then a uniform probability distribution in the range tm± um. The average pitch duration 
in samples is tm= 147. Different values for um were used, varying from 0 to 35, in 
steps of 5 samples, corresponding to values from 0 to 23.8% of tm in steps of 3.4%. 
According to [10] jitter almost never exceeds the 25% of tm. 

Shimmered Signals: The amplitude k(n) of the impulses used to generate s(t) are 
obtained as: k(n)=1+v(n), where v(n) is a random real value, uniformly distributed in 
the interval ±vm. The values of vm used were twice the values of um in the previous 
experiment, measured in percent of the unaltered amplitude k=1, going from 0 to 
47.6% in steps of 6.8. This relationship was chosen to keep the ratio of usually 
accepted limits of jitter (25%) [10] and shimmer (50%) [19]. The temporal separation 
between the pulses was kept constant, equal to tm. No noise was added to s(t). 

Additive Noise Only: A clean signal s(n), obtained for constant values of k=1 and 
tn+1=tn+tm, was contaminated with additive white gaussian noise e(n), such that the 
ratio of the variances of s(n) and e(n) met an intended value of HNR in dB. The 
values of HNR used (in dB) were ∞, 22, 18, 15, 12, 8, 5, and 2. 

Combined Perturbations: All the parameters (um, vm and HNR) were varied 
simultaneously, in ascending order of perturbation, in the same amounts as in the 
three previous experiments. In this way, eight different cases are obtained, ranging 
from the perfectly periodic s(t) to the most distorted waveform with um=23.8%, 
vm=47.6% and HNR=2 dB. 

2.2   HNR Estimation Methods 

The HNR estimation methods compared in this paper are the original ensemble 
averaging technique [20] and its correction to any number of pulses [3] in the time 
domain. In the frequency domain, the approach proposed in [8] and generalized in [2] 
was chosen. A brief description of the methods follows. 
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Time-Domain Method 
The ensemble averaging technique departs from assuming each pulse representation 
xi(t) prior to averaging as a repetitive signal s(t) plus a noise term ei(t): 
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A “template” of the periodic component is obtained as the average of the N 
individual pulses: 
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and an expression to estimate the HNR is proposed as: 
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with E[] denoting the expected value operation. In 3 it is shown that, if noise and 
signal are uncorrelated, the actual HNR can be expressed in terms of (5) as: 
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Frequency-Domain Method 
The frequency-domain approaches are mostly based in the calculation of a Discrete 
Fourier Transform to a segment of the signal containing several pulses. Amongst the 
many transformed-domain approaches ([2][4][6][7][8][11][15][16]) the one proposed 
by Kojima [8] was chosen, since it shares many of their limitations, but at least 
suppresses the windowing effects in the HNR estimation. The basic difference of [8] 
compared to the others is that the segment of analysis is chosen so that it contains an 
exactly integer number of pulses (N), regardless of its length in samples (T). This 
method has not been favored by researchers, preferring values of T multiples of 2 to 
use FFT algorithms. 

Since the signal is assumed quasi-periodic, the harmonic energy should be 
concentrated every N spectral component, corresponding to the numerator (Num) in 
(8), while the noise energy can be assumed as the difference of the total energy and 
the harmonic one, as written in the denominator (Den) of (8). T is the length in 
samples of the sum of the N pulses. 

 

==

=

−
==

NT

i

T

i

NT

i
Koj

NiXiX

NiX

Den

Num
HNR

/

1

2

1

2

/

1

2

)*()(

)*(
 

    (7) 

 



410 C.A. Ferrer, E. González, and M.E. Hernández-Díaz 

The original approach in [8] used N=3 and established spectral bands where the 
calculated HNR correlated best to the perceived hoarseness. In [2] the method was 
generalized to use any N and frequency bands. 

A Correction to Kojima’s Method 
Revisiting the idea behind Kojima’s method two corrections are apparent: the 
numerator overrates the harmonic energy, due to the contribution of the noise present 
at X(i*N), which has been neglected, and the denominator underrates the noise 
energy, because of the removal of the noise at the same frequencies. 

Assuming that the noise has a flat power spectral density and limiting the analysis 
in the spectral domain to a number of bins B equal to the closest multiple of N smaller 
than L, it can be shown that the total noise energy EN in the interval of B bins is: 
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Similarly, the total harmonic energy EH in the B bins can be expressed as: 
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where NM=EN/B is the mean noise energy, and H=B/N is the number of harmonics 
in the B bins. The actual HNR=EH/EN is then given by: 
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The resemblance of (10) and (6) is remarkable, and it suggests both methods to be 
equivalent. The equivalence of time and spectral domain HNR estimations has also 
been assumed in [15], although the results favored the time-domain approach. It is 
evident that the correction in (10) is largely relevant for Kojima’s method, where 
small values of N were used (N=3). 

2.3   Experiments 

The experiments performed were all programmed in MatLab 6.5, and can be 
separated in two sets: 

Time-Domain HNR Sensibility to the Number of Pulses and Pulse Lengths 
In this set of experiments the actual ability of the theoretical derivation in [3] (given 
by (6)) to correct the results of Yumoto’s approach (5) is tested. Theoretically, (6) can 
correct (5) for any number of pulses (N) given that the noise and the repetitive 
components, as well as each realization of noise, are uncorrelated. A result of zero 
correlation in stochastic processes is more probable as the number of samples 
considered approaches infinity. In practice, pitch pulse duration and sampling 
frequencies impose limits to the pulse lengths (L). For instance, with a typical 
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telephone-quality sampling frequency (8 kHz) a child or an adult woman with 
moderately high F0 = 400 Hz would generate only 20 samples per period. No study of 
HNR is likely to be conducted under such circumstances, but this example is 
illustrative in terms of practical low limits of L. In this work the original [20] and 
corrected [3] ensemble averages approaches were tested for values of N between 2 
and 50, and L between 30 and 10000. 

The experiment consisted in evaluating (5) and (6) for a set of N pulses generated 
randomly by adding N random vectors xi of length L to a common random vector s of 
the same length. The variances of s and xi were chosen to be 4 and 1, respectively, 
such that calculated HNR should be 4, equivalent to 6 dB. This value is in the range 
of HNRs tested in the “Additive Noise Only” signals described in section 2.1, 
allowing the results of this experiment to be extended to those signals. 

Sensitivity of HNR Estimation Methods to Different Periodicity Perturbations 
This set of experiments consists in the evaluation of the different methods (both time 
and frequency-domain based) abilities to estimate HNR in the presence of the 
perturbations shown by the signals described in section 2.1. The objective in this 
paper is to explore each method’s ability to correctly estimate the HNR, and thus, no 
band limits were imposed on the frequency domain estimation of HNR. More specific 
configuration settings are described in section 3. A preliminary experiment is 
conducted comparing the original and corrected Kojima’s frequency-domain method 
(given by (7) and (10)) in the case of “Additive Noise Only”, to illustrate the 
importance of the correction. 

3   Results and Discussion 

The results of the experiments are divided in the same two sets that were described in 
section 2.3. 

Ensemble-Averages HNR sensibility to Number of Pulses and Pulse Lengths 
The results of the comparison of (5) and (6) for different N and L are shown in Fig. 1. 
The figure plots the mean absolute differences between actual and obtained HNRs for 
1000 realizations of the random variables involved in the experiment. The results are 
normalized with respect to the actual HNR (HNR=4). 

The original HNR estimation method shows the criticized need of large N to reach 
values closer to the minimum “steady state” errors, which occurs for N in the range 
from 30 to 50 in correspondence with what is stated in [7]. The plot of corrected HNR 
can be used to realize the limits of the theoretical “complete” suppression of the effect 
of N in HNR estimation. It can be seen that the mean “steady state” error is reached 
for different values of N, depending on the number of samples comprised in a pulse 
length. For a relatively low number of samples (i.e. 30 or 100) a steady error (22% 
and 12%, respectively) is obtained for 8 or 7 averaged pulses. A “medium” sized 
pulse (300 samples) reaches a steady error from 4 to 7 pulses (from 8% to 7% mean 
errors). No more than 4-5 pulses are needed to reach the steady mean error value 
when the pulse L is above 300 samples. 
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Fig. 1. Original (left) and corrected (right) values of HNR obtained for different cases of aver-
aged pulses (N) and pulse lengths (L) 

Sensibility of HNR estimation methods to Periodicity Perturbations 
The illustration of the importance of the correction in (10) of the frequency-domain 
approach in [8] given in (7) is depicted in Fig. 2. Segment sizes were fixed at 3 
(original option in [8]) and 7 pulses, to test the influence of the number of pulses. The 
latter limit was set to avoid the already criticized use of a large N. 
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Fig. 2. Comparison of original (Koj) and corrected (Freq) values of HNR in the presence of 
“Additive Noise Only”, calculated for 3 and 7 pulse segments 
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These results demonstrate that in the absence of other perturbations of the 
periodicity pattern, the correction works better for larger N. It is also relevant that the 
effect of changing N from 3 to 7, moving from “Koj(3)” to “Koj(7)”, causes a larger 
error reduction than the one introduced by correcting “Koj(3)” to “Freq(3)”. The 
frequency-domain alternatives compared to the time domain approaches in the other 
perturbation types are only “Freq(3)” y “Freq(7)”. 

The signals generated according to the procedure described in section 2.1 were 
used to evaluate the ability of the different HNR estimation methods to cope with the 
perturbations present in the signals. Two different N (7 and 50) were considered in the 
original “Orig” and corrected “Corr” time-domain approaches. The lower limit was 
set considering the results of the experiment in Fig. 1 and the pulse length (L) of the 
signals used (147 samples). The results are shown in Fig. 3. 
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Fig. 3. Results obtained in the experiment on HNR sensibility to periodicity perturbations 

The results of the methods facing additive-noise perturbations (upper-left graph in 
Fig. 3) are demonstrative of their intrinsic ability to measure HNR. An important 
issue in the time-domain is the similar results of “Corr(7)” and “Orig(50)”, showing 
the importance of using equation (6). The most accurate of the time-domain 
alternatives is, as expected, “Corr(50)”, but “Freq(7)” performs with similar 
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exactitude with an N almost an order of magnitude smaller. This indicates that in the 
absence of jitter and shimmer, the frequency-domain approach performs better. 

In the presence of shimmer (upper-right graph in Fig. 3) all the methods show 
similar deteriorations in the estimated HNR (theoretically infinite), with the exception 
of “Freq(3)”, which is visibly superior. We don’t have at this moment an elaborate 
explanation for this phenomenon. The only guess we can make is that in so few pulses 
(N=3) the random AM modulation is not so variable to significantly affect the 
spectrum, but a strict mathematical derivation is not readily available. The 
coincidence of the time-domain based methods with “Freq(7)” strengthens the idea 
that all of them are similarly shimmer-sensitive, and the effect in “Freq(3)” should be 
caused by a calculation bias related to the small value of N. 

The “Jitter Only” experiment (bottom-left graph in Fig. 3) confirms the predicted 
[17] sensitivity to jitter of frequency-domain approaches, with estimated HNR 
(theoretically infinite) more than 15 dB below the time-domain methods. After the 
third level of perturbation (maximum jitter of 10.2%) the deterioration due to jitter in 
time-domain HNR calculation stabilizes at 21-22 dB, being less representative than 
shimmer-caused deterioration. The reason for this stabilization is that the HNR within 
the pulse is not constant. The smallest size of the N pulses is used as pulse length in 
the averages (4). Since the synthetic signals consist of exponentially-damped 
sinusoids, the suppressed portions of the pulses, the endings, are the ones with lower 
signal energy, resulting in an overestimation of HNR. As the jitter grows the portions 
removed enlarge, increasing this effect that counters the expected reduction in 
measured HNR. 

When mixed-perturbation signals are used (bottom-right graph in Fig. 3), 
frequency-domain approaches fail due to their jitter sensitivity, with time-domain 
methods showing a similar, more acceptable, performance. The effect of pulse length 
reduction produced by jitter causes the gradual increment of the measured HNR with 
the level of perturbation. 

4   Conclusions and Future Work 

The correction of the ensemble-average time-domain approach demonstrates to 
produce satisfactory results using considerably less pulses (4-7) than the original 
approach (30-50). However, a practical limitation of the correction in (6) has been 
shown in this work, related to the actual lengths, in samples, of the pulses considered. 
In general, time domain approaches produced better results than frequency-domain 
approaches, even with the correction introduced in (10), due to the frequency-domain 
sensitivity to jitter. This is in correspondence with the predictions in [17]. 

The results obtained in this paper can serve as a reference regarding error limits in 
the calculation of Harmonics-to-Noise-Ratios in the presence of different 
perturbations of the periodicity pattern. However, more extensive experiments can 
still be performed, including the use of colored and non-uncorrelated noise. Also, 
other more sophisticated methods could be included in the comparisons, along with a 
richer set of perturbations levels and combinations. 
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Abstract. The present work proposes a combined classifier of infant cry units 
that links in a single structure two focuses: a threshold-based classification and 
ANN-based classification. The threshold-based classifier considers 4 new 
acoustic features: stridor, melody, voicedness, shifts, that show properly their 
robustness in front of alterations of the acoustics of infant cry concerned with 
the presence of some diseases. In order to satisfy the automatic estimation their 
practical implementations are also considered. The ANN-based classifier 
consists in a feed-forward network using the method of   Scale Gradient 
Conjugate (MSGC) as learning algorithm and the MFCCs as input vectors to 
the net. Each focus or classification stage gives in the exit one indicator (FN1 
and FN2) that generates to the output a decision on two classes  with gradation 
(normal, moderately-pathologic and pathologic). The results demonstrate the 
potentiality of these types of combined classifiers when the advantages of each 
focus in particular are properly emphasized  

Keywords: Cry classification, pattern recognition, neural network. 

1   Introduction 

The problem of cry classification has been recently on the centre of many research 
efforts because of the avalanche of new focuses in the soft-computing area like the 
artificial neural networks (ANN´s), genetic algorithms, evolutionary computing and 
fuzzy logic [1-3]. The works of Petroni and Schonweiller using supervised and not 
supervised ANN´s respectively demonstrated the robustness of these models in the 
detection of abnormalities like deafness in newborns and their ability to classify 
different cry types. The Group of  Speech Processing (GPV)  in  the University of 
Oriente developed  several experiences with different ANN architectures (MLP, 
SOM, RBF networks) obtaining good results for the classification of 4 control groups 
of  CNS pathologies (linked  with hypoxia: hypoxia, hypoxia with aggravating 
factors, hyperbilirubinaemia and delay on intra-uterine growth). In the 2000 the 
Mexican group of Cry Analysis of the INAOE began interesting experiences using 

}
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neural networks with fuzzy logic and genetic algorithms. Nevertheless until now no 
cry-based clinical routines have been achieved for diagnostic purpose, at least in the 
reported scientific literature. Probably the above-mentioned could be concerned with: 
the lack of a wide corpus of data to train the learning structures, the inconsistency of 
the soft-computing algorithms in order to generalize all the patterns learned in the 
training tests, and the necessity to measure diverse parameters in the acoustics of the 
cry connected to the infant’s neurophysiologic status.  Because of which research 
efforts looking for new approaches in the cry classification continue still being 
developed.  

A current trend is looking for combinations or hybrids of classifiers that could 
empower the advantages of each one (e.g.  genetic-fuzzy approach)  [2, 4]. The  paper  
presents a new proposal that combines a traditional focus as the threshold-based 
classification   and the focus using ANN-based classification, resulting in a combined 
system which displays  an abnormality  index (with gradation) as output. Moreover 
the combination of 4 acoustic features of the cry signal is also implemented. Those 
features have been reported in the bibliography as moderate indicators of certain 
disorders [5-8] but in this paper, in a combined environment they’ve shown relevant 
performances in front of the presence of abnormal cry.  

2   Methods and Materials 

Despite of the four parameters  above mentioned are well known and reported  in the 
literature, they have received  insufficient attention  according to their potentialities to 
characterize the neurophysiologic status of the child, raising the attention on other 
more robust ones as fundamental frequency, formants, latency, etc. Maybe the lack of 
models or formulas for their automatic calculation has influenced on it. 

First, It becomes indispensable to manage some concepts related to these four 
acoustic parameters:  

Fundamental Frequency   (F0)1: it is the lowest frequency component of a complex 
tone and is the determinant of the pitch that one hears. In infant cries, the fundamental 
frequency mostly resides in the range of 400 to 600 Hz [8].  

Voicedness is defined as being the ratio of the amount of periodic sound versus the 
amount of noise. The higher the voicedness, the weaker the noise component in 
comparison to the periodic sound. Hence, the higher the voicedness, the more clearly 
one could audibly determine the pitch of the sound. Synonyms for a low voicedness 
are turbulence, disphonation, unpitched sound or simply noise. 

                                                           
1  It is known that in a voiced segment when it is passed through a frequency filter of narrow 

band in the spectrogram the harmonics appear. The first of these harmonics is the 
Fundamental Frequency, being the rest of harmonics multiples of the first harmonic. This 
Fundamental Harmonic has the frequency of the Glottal Pulse (The Glottal Pulse is the 
impulse of air of the glottal stream produced by movements of opening or closing of the 
vocal cords. The Fundamental Frequency is proportional in inverse mode to these periods 
and the unity of measurement is the Hertz, Hz). The Fundamental Harmonic tends to 
determine the intonation and the melodic curve of any voiced utterance. 
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Melody is defined as the description of the behavior of the fundamental frequency 
over time, within one cry unit. Normally, cry research identifies six types: rising-
falling, falling, flat, falling-rising, rising and glottal plosive.  

Shift:  it’s a sudden large change in pitch (fundamental frequency) caused by the 
vocal cords crashing into 'overdrive' thereby instantly increasing the fundamental 
frequency to a much higher value. Those sudden changes are a change of melody or 
intonation seen on a very relative short time that shows the relation between the 
fundamental frequency with the stability on the larynx control. [5, 8]. 

Stridor: another form vocal cord hyperfunction. In this case, a rapid increase in air 
pressure causes the vocal cords to enter a turbulent state resulting in the sudden loss 
of pitch. This creates a short noisy (voiceless) segment in the sound, often of about 
the same energy as the voiced regions surrounding it. 

2.1   Acoustical Indicators of Disorder 

Various studies have been undertaken to discover possible acoustical features in the 
infant crying sound that can be correlated to a certain state of the central nervous 
system. Since the goal is to discriminate between normal and abnormal cases, we 
need to find these features to perform this classification, in which we could view upon 
the features as 'decision variables'.  

Our  four parameters considered in this paper have been connected with certain 
abnormalities according with the international scientific reports [5,8]: (1) instant 
changes in the fundamental frequency of four or more octaves occur significantly 
more often in abnormal cases; (2) the melody type in test cases is, more often than in 
normal cases, of the rising type,  (3) the number of turbulent noises (stridors) is 
increased in abnormal cases, (4) in general, the number of  shifts and stridors tends 
to be higher in abnormal cases.  Finally, cries of non-healthy infants are, in general, 
more often considered to be either hyperfunctional (higher, louder and shriller) or 
hypofunctional (lower, weaker and thinner) [8].  

The research goal is to be able to classify a cry sound as originating from either a 
healthy (normal) infant or an infant suffering from a CNS disorder (based on 
hypoxia). In order to perform this classification, the sound needs to be expressed in 
absolute (as opposed to subjective) terms, and therefore variables that describe the 
sound are needed. Then, based on the values of these variables, a decision can be 
made.  Considering all of the above, the acoustic parameters to be extracted from the 
crying sound in order to measure all of the aforementioned indicators are: 

• fundamental frequency over time (just to estimate the melody pattern) 
• voicedness over time 
• number of occurrences of shift 
• number of occurrences of stridor 
• melody type 

2.2   Procedures to Estimate the Acoustic Features 

Voicedness 
To extract a measure of 'voicedness' from the sound data, information from the 
spectral domain can be used. When the data consists primarily of noise, there are few 
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peaks in the spectral domain of a signal at that time point. However, when the sound 
consists mostly of periodic sound, clear peaks can be distinguished.  To get a measure 
of this difference, the spectral information is first smoothed over a few frames. This 
has the effect of a low-pass filter on the frequency data, cancelling out most 
variability due to white noise. After this, a vector is created containing the differences 
from one frequency component to the next, effectively creating a numerical 
derivative. Since peaks in the voiced data create larger differences than the relatively 
'flat' data from the noise, the sum of absolute numerical derivatives results in a 
relatively large value for a voiced region and a small one for a noisy region. The 
voicedness v is now calculated from an array of amplitudes a (where the indices 
correspond to frequencies) with length N: 
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Melody 
When we visually inspect one cry unit in the spectrogram, coupled with aural 
inspection the sound, we can determine which melody type is applicable to the unit. 
For automatic extraction however, things are a bit more complicated. First, there is 
the fact that the pitch detection is not flawless. If we were to take, for example, only 
the first frequency value as start frequency, a measurement error in this one value 
could seriously compromise correct detection. To cope with this, a scheme is devised 
in which all frequency values of one cry unit are pre-processed by multiplying the 
data within a segment with smoothing windows, as shown in Fig. 1. In doing so, the 
influence of a single measurement error is greatly reduced while preserving locally 
relevant information.  For smoothing, the frequency values Fi are convolved with a 
Hanning window to produce a local average, yielding the following equation for 
calculating the averaged midpoint frequency Fm, where M is the total number of 
frequency values in the cry unit: 
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It results in three values: an average frequency representing the beginning of the 
cry (start), one representing the center of the cry (midpoint), and one representing the 
end of the cry (end). Secondly, the decision boundaries for the melody type have to be 
defined in order to answer the question under what numerical situation a certain set of 
values can be assigned to a certain category. Only the occurrence of a rising melody 
type will be used in classification. This is considered a valid strategy since, in earlier 
work, it was concluded that occurrence of the rising melody type was allegedly 
greater in disorder cases, but no similar significance was found for other melody  
types [10]. 
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Stridor 
Since both voicedness and the energy are calculated over time, stridor can be detected 
by using the following rule: when the voicedness suddenly drops within an area of 
high energy, one occurrence of stridor is marked. Tangibly, the following thresholds 
were selected: when the voicedness drops to less than 30% of its maximum 

  

Fig. 1. Windowing procedures used for melody detection 

while the energy level remains above -35dB, one occurrence of stridor is marked [5]. 
An exception is made at the end of a cry unit, because the voicedness of the cry 
usually drops sharply a little bit before the cry stops. This is a normal consequence of 
stopping the air stream and it should therefore not be considered a vocal cord 
hyperfunction. Using this algorithm on the real life data, the number of stridor 
occurrences per cry unit is usually zero, and sometimes one or two. 

Shift 
In detecting shift, the definition as used by the GPV in earlier work is followed [9]: when 
the fundamental frequency instantly (i.e., from one frame to the next) rises four octaves 
or  more, the presence of a shift is marked. One octave represents a doubling of the 
fundamental frequency, so a stridor is marked when, from one frame to the next, 
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2.3    Estimation of Mel Frequency Cepstral Coefficients (MFCC) 

The well-known Mel cepstral coefficients were selected to build up the input vectors 
for the ANN architecture. They have been used with high efficiency in recent works 
concerned with cry classification. [1,11] The Mel scale filter bank is a series of L 
triangular band pass filtering believed to occur in the auditory system  (corresponding 
to series of band pass filters with constant bandwidth and spacing on a Mel frequency 
scale as you see in Fig. 2. 
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As it is also  represented in Fig. 2 the MFCC´s can be computed  by: (1) generating  
small segments from the signal, (2) calculating the DFT for each segment, (3) the 
spectrum is then converted into a logarithmic scale, (4) the scale is transformed into a 
soft Mel spectrum, (5) the discrete cosine transform DCT is calculated.  

 

Fig. 2. The Triangle-filters use for MFCC computation and the steps required for computing the 
cepstrum of a cry signal                                                      

2.4   The Use of an Artificial Neural Network 

 The use of ANN´s  has been a great impact in the development of several research 
areas like computer vision,  autonomous vehicle, pattern recognition, connected-
speech synthesis and more recently into the classification of cry units [3-4, 11-12].  
The ANN used in this work is shown in Fig. 3. It is a Feed-Forward network in which 
x1, x2, ..., xn represent the acoustic features of signals and  y1, y2, ..., yn the n classes 
to be identified.  This kind of supervised ANN has been also used in cry classification 
with succeed [11-12]. 

For an efficient learning of the classification patterns one important aspect to be 
considered is the training method of the ANN. An optimal learning supposes the 
minimization of the error function which depends on the weights. For this purposes 
some algorithms are based on the gradient descendent. Cry data are not static, and any 
cry sample at any instance in time is dependent on crying patterns before and after 
 

 

Fig. 3. A Feed-Forward Artificial Neural network  
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that instance in time. A common flaw in the traditional Back-Propagation algorithm is 
that it does not take this into account. In the paper we choose the Method of   Scaled 
Conjugate Gradient (MSCG)  [13]. 

The MSCG finds out a direction to a new point and then decide what so far to go in 
that direction (step size) using 2nd  order information  

                   ywEyywEwWyE llTTl
qw )(

2

1
)()()( ++=                             (3) 

where  y  is a point in the weight vector. The 2nd order technique uses second derivatives 
of the objective function and, generally it finds a local minimum but with a high 
computational cost.  The algorithm MSGC shows a linear convergence accentuated in 
most of the problems [13]. Using a mechanism to decide what so far to go in a specified 
direction MSGC avoids a time of consumption in the linear learning iteration, which 
makes the algorithm faster  than other second order algorithms. 

The soft tools used in this experience were: BDLlanto database with 12 seconds- 
cry recordings of Cuban children,  BPVOZ soft-package, PCVOX and praat software 
for the acoustic signal processing.  The ANN implementation (including the MSGC 
algorithm) was done with  Neural Network Toolbox of Matlab v. 6.0. [14-15]. The 
Principal Component Analysis (PCA)  was implemented using Matlab v 6.0. 

3   Results and Discussion 

Starting from the primary information in BDLlanto database (32 cases: 16 healthy 
children and 16 pathological children) a segmentation process was developed to 
generate the cry units being obtained 73 healthy (normal) cry units and 68 
pathological cry units (relative to hypoxia). 58 cry units were chosen (for each class) 
for training and 10 for classification. The segmentation stage was semi-automatic 
combining a begin/end detection (based on function energy and zero-crossing rate) 
and a manual correction to reduce the negative effect of considering inappropriate 
sections within the cry unit. From the cry units obtained from database a parameter 
estimation for every cry unit is done, following two possible ways: 

(a) estimation of 4-acoustic features for the threshold-based classifier:  
The estimated feature is then compared with the normal threshold values associated to 
each one of the 4 selected parameters, generating to the exit an index FN1 with the 
following gradation:  

 FN1:  0.25  for 1 parameter altered 2 
 0.5    for 2 parameters altered 
 0.75  for 3 parameters altered 
 1.0    for 4 parameters altered 
   0     for no one parameter altered (normality index) 

(b) estimation of MFCC´s for the ANN-based classifier. 
500  MFCC´s  were computed for each generated cry unit (16 Mel-cepstral 
coefficients were estimated for each 50 milliseconds frame). The original input 
vectors were reduced to 50 components by means of Principal Component Analysis 

                                                           
2 One parameter altered means that it is out of the threshold boundary for normality. 
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(PCA). Then the input vector to the feed-forward ANN was presented, with the 
following structure: 50 nodes in the input layer, 15 nodes for the hidden layer and 
finally 2 nodes for the output layer.  

To detect the cry type in the newborn the output values of the net are analyzed. The 
output values of the net are coded between 0 and 1. If the value of the output node 1 is 
bigger than the value of the output node 2 the sample is assigned to the class ¨normal¨ 
(N) generating a FN2 index equal to  0, otherwise it is assigned to the class 
¨pathologic¨ (P)  generating a FN2 index equal to 1.  

Finally both FN1 and FN2 indexes are processed in a decision block 

(
2

21 FNFN
D

+=   ) resulting in two classes-based decisions with 3 qualitative 

levels:  
Normal                                             D <=0.5 

Moderately- pathologic                    D = 0.75 

Pathologic                                         D = 1.0 

Tables 1, 2, 3 and 4 display the results from the threshold-based classifier, ANN-
based classifier and the Combined Classifier respectively. From these results some 
comments can be done: 

• The present performance  is higher than other similar works [1-2 ] 
• In Table 4 the gradation of the D index let physicians to use properly the 

output of the cry classifier in order to compare and to evaluate its ¨possible 
meaning¨ in front of the results from the neurophysiologic evaluation of the 
newborn (how much abnormal the infant cry is from the acoustical point of 
view and its ¨weight¨ for diagnostic purpose. 

• The need to include more acoustic features in cry classifier for better 
classification rates proposed and argued by Schonweiller in 1996 [2 ], is well 
demonstrated here. As you see the FN1 index displayed a strong correlation 
between the altered status of acoustic feature and the pathologic status of cry 
unit. 

• Of particular interest was the fact that the only two cry units misclassified as 
normal obtained a FN1 equal to  0.75 (abnormal for the threshold-based 
classifier), so both outputs from the classifiers  also offer valuable 
information to be considered by the specialists (see table 2). 

• The higher frequency of altered parameters for pathological cry units seems  
to be representative of the robustness of the four acoustic features used as 
detectors of abnormality. (see table 3) 

Table 1. Results from the Threshold-based classifier 

FN1 Index  

0 0.25 0.5 0.75 1.0 

Normal 10 9 1 - - - 

Pathologic 10 - 2 5 2 1 
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Table 2. Frequency of altered parameters for both classes (p/n) 

Altered Parameter  

Stridor Voicedness Melody Shift 

Normal  (10) - - - 1 

Pathologic  (10) 6 5 5 6 

Table 3. Results from the ANN-based classifier 

Confusion Matrix  

 

 

Cry Units Normal Pathologic 

% 

Classification 

Normal 10 7 3 70% 

Patolog. 10 2 8 80% 

Total 20   75% 

Table 4.  Results from the Combined Classifier 

Confusion Matrix D index  
N P X<= 0.5 0.5<x<=0.75 0.75<x 

%
  

Normal 10 10 0 10 0 0 100 
Pathologic 10 2 8 2 7 1  80 
Total 20   12 7 1  90 

4   Conclusions 

In the presented work we have developed a new combined-cry classifier which uses 
two focuses for cry classification ( a threshold-based classifier and an ANN-based 
classifier) with satisfactory results. Moreover four acoustic features as shift, 
voicedness, melody and stridors were estimated and efficiently combined, showing 
their potentialities to detect abnormal behaviour related to the neurophysiologic status 
of the newborn. Both output indexes FN1 and FN2 offer also valuable information for 
specialists when they analyze them together or in separate environment. 

Another interesting aspect was concerned with the successful use of cry unit as the 
basic processing unit for cry classification validating the assessment done by Ekkel in 
2000 [16]. The asseveration made by Schonweiller in [2] about to include other 
parameters in the domain frequency it is also supported here.  

Further tests should focus on using different acoustic features and different soft-
computing paradigms. Also the use of hybrid structures for cry classifiers seems to be 
a promise alternative. 
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Abstract. This paper describes a detailed analysis and implementation of a 
robust gender detector for audio stream applications. The implementation, 
based on melcepstral features and a Gaussian mixture model classifier, is 
designed to maximize gender classification performance in continuous speech. 
The described detector outperforms other reported systems based on statistically 
significant numbers of gender verifications (2136 unique speakers) obtained 
from the FISHER speech corpus. The system yields high accuracies for long 
and short utterances while a confidence figure of merit score for the decision 
ensures reliability in continuous audio streams.  

Keywords: Gender detection, GMM classification, audio streaming. 

1   Introduction 

The importance of accurate speech-based gender detection is rapidly increasing with 
the emergence of technologies which exploit gender information to enhance 
performance. Currently, gender identification is used in security-related applications 
such as gender mining large volumes of audio recordings, automatic speech 
monitoring, automatic data labeling and multimedia indexing. Other applications use 
gender information to train more effective models for speech recognition or speaker 
identification and verification. Some commercially oriented applications use gender 
detection for closed captioning and gender-oriented advertisement in audio driven 
applications. The emergence of these new applications imposes demanding 
requirements on gender detection system, which may include one or all of the 
following: Real-time audio stream processing; high confidence for the decision and 
analysis of a limited amount of useful speech. 

Previous investigations in gender identification have proposed a variety of features 
and classification techniques. Feature extraction is often performed using gender 
related characteristics of speech such as pitch [1],[3], formant and harmonic structure 
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[3],[4]. Other approaches rely on spectral features such as Mel-Frequency Cepstral or 
Spectral Coefficients (MFCC or MFSC) [2],[5], Linear Prediction Coefficients [6], 
Reflection Coefficients [6] and Log area Ratio Coefficients [5]. Classification 
techniques use Hidden Markov Models (HMM) [1],[4], Gaussian Mixture Models 
(GMM)[5],[7],[8] or Neural Networks [2]. Multi-expert approaches have also been 
developed combining classification techniques [2],[5] . 

Despite the abundance of research literature on gender detection, little is focused 
on its implementation for audio streaming applications and few papers provide 
practical considerations for performance optimization in real world scenarios. 

Harb & Chen [2] have described a general audio classifier for content-based 
multimedia indexing in continuous speech. They used the mean and variance of 20 
MFSCs taken from one second windows to train a collection of eight neural network 
classifiers based on speech coded with different techniques. They obtained a good 
dimensionality reduction of features assuming a linear relationship between MFSCs 
across frames in each one-second segment with results. They performed continuous 
gender identification with no preprocessing of the incoming signal, so, gender 
decisions can be made in segments composed solely of silence segments. The gender 
decisions are also made based upon average MFSCs across one second segments 
allowing the estimation to possibly include speech from both genders. 

This paper describes a detailed analysis of a robust gender detector that addresses 
some of the limitations observed in previous reports, keeping the classification 
technique simple to facilitate the implementation. The detector herein is based on a 
pattern recognition approach where the speech is processed to obtain a representation 
of the most relevant information for gender identification. The system uses a GMM 
classifier approach with preprocessed speech, normalized features and provides a 
decision with a confidence figure of merit (CFM) for each analyzed segment. The 
performance of two features extraction techniques (MFCC and MFSC [2]) is studied. 
Different aspects of the GMM are also optimized and practical issues are considered 
for the real-time implementation of the resulting identification system. 

2   Gender Detector 

Signal Preprocessing: Audio streaming applications require that a decision be made 
within a constrained schedule, regulated by specific performance goals.  This is 
typically achieved by analyzing short segments.  However, the composition of each 
processed segment can vary drastically, as well as the amount of noise that is present. 
Therefore in order to obtain data-independent performance, silent frames are removed 
using speech activity detection.  

The algorithm used herein is based on a combination of zero-crossing (ZC), 
autocorrelation and energy analysis (EN) of the speech. The ZC analysis discards 
those frames that the number of crossings is outside a typical range observed in male 
and female speech (corresponding to a pitch range from 60-400Hz). The computed 
ZC is normalized by the number of samples corresponding to the pre-selected analysis 
window (32ms and 8ms increment) according to the sampling frequency of the 
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utterance. The segments that meet the ZC criteria are submitted to autocorrelation 
analysis where further periodicity of the processed speech is analyzed. A threshold of 
0.15 is applied to the normalized correlation values. The segments meeting both 
previous analyses are then processed with the EN, while the others are used to 
estimate an adaptive energy threshold. The EN is then performed using two 
thresholds: an adaptive and absolute threshold. The adaptive threshold is used to 
discard those frames with energy below the threshold estimated based on the 
estimated noise segments which should provide an estimation of the utterance noise. 
The absolute threshold is a fix maximum and minimum hard thresholds were obtained 
from average telephone speech levels. These thresholds were applied to avoid 
incorrect estimation of the adaptive threshold due to overly noisy data or other 
extraneous data conditions. The incoming data stream is continuously preprocessed 
until a buffer of predefined size is filled with clean data.  

Feature Extraction: The feature extraction was tailored to specifically maximize 
performance for gender detection and not for speech recognition or speaker 
identification1. Consequently, channel compensation and speech normalization 
techniques were specifically chosen to avoid distortion of gender information. In the 
speech domain, the mean was subtracted and variance normalization was 
implemented. The MFCCs were extracted using Hamming windows of 32ms and 8ms 
increments. In the feature domain, Cepstral mean subtraction2 and low-pass filtering 
were implemented. The filtering was used to remove low-amplitude high-frequency 
content of the spectrum which is highly susceptible to noise and typically consists of 
unvoiced fricatives containing little information about gender.  Variance 
normalization was not used because it was found to warp the spectral magnitude 
which decreases observable differences between genders in the extracted features. 
RASTA [7] technique was found to also decrease the gender discrimination power of 
the extracted features. 

Two variants of Mel frequency coefficients, MFSC and MFCC, were studied. 
MFSC places emphasis on spectral differences in the mid and high frequencies while 
MFCC emphasizes differences in the lower spectral content [9]. In each case, 26 Mel 
filters were used with 19 coefficients and deltas. This effectively results in a low-pass 
filtering of the framed data in the feature domain at 3 KHz. 

Classifier: Classification was performed by selecting the maximum of the log 
likelihood produced by two gender-dependent GMMs (λMale and λFemale).  The 
expectation maximization algorithm was used to fit the Gaussians to gender-
dependent data obtained from the Fisher database [10]. Data from 312 unique 
speakers of each gender were used to train gender specific models. The amount of 
training speech per speaker was varied in order to study its effect on classification 
performance. The optimal number of Gaussian components was also studied in terms 
of performance and identification speed.  

                                                           
1 The tailoring of the feature extraction was achieved by empirical optimization of classification 

performance using the Fisher speech corpus. 
2 Consist on subtracting the mean of each MFCC coefficient for the collection of frames. 
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Confidence Figure of Merit (CFM) and Decision: A CFM was added to provide 
feedback about lower quality segments and segments that contain varying levels of 
speech from both genders. The CFM was estimated by mapping the boundaries of the 
difference between the mean-log likelihood for each gender model (Δλ = λMale - 
λFemale) into the interval [0,1] when varying the composition of testing segments 
between male and female. In this case, the threshold between genders is mapped into 
the center of the interval. The effect was observed for 10,000 verifications using 100 
unique speakers from each gender.  All combinations of the test segments were used 
to obtain the performance of the system when presented with segments containing 
both genders (expressed in percentage of speech that is female in Fig 1). 
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Fig. 1. Likelihood ratio when the composition of the testing segment varies from 0-100% 
female speech. Dashed lines indicate absolute value. 

A positive differential of the log likelihood ratios is shown when the composition 
consists of more male than female speech indicating that the male model is 
predominant.  However when the speech becomes predominantly female, the 
differential log likelihood ratio turns negative.  A definite trend away from zero exists 
as a more biased gender composition (greater than 50% male or female) is introduced. 
This reveals that the system’s response is linearly proportional to the constitution of 
the testing segment and the contribution provided by each gender feature is equally 
balanced. Mixed gender utterances result in a lower CFM for the decision because 
their log likelihood ratios tend to be closer to 0. The application controller can 
therefore monitor for segments with low CFM, and perform further analysis.  The 
gender models used in this section were trained with 30s of speech from 312 unique 
speakers of each gender and tested with 15s segments extracted from varying 
combinations of 100 pairs of male-female speakers. 
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3   Experiments 

Three main experiments were conducted throughout this investigation. The first 
compares the use of MFCC and MFSC features for capturing gender information.  
Their impact on the performance of models created with variable amounts of speech 
per speaker (SPS) and variable length of the testing segments (VLTS) was also 
considered. Pairs of gender models were trained with 60s, 30s, 15s, 10s, 5s and 3s of 
speech obtained from unique speakers. The models were validated using testing 
utterances of seven different lengths in order to observe the effect of varying training 
and testing data length on overall performance.  

The second experiment considered the effect of a varying number of GMM 
components on the performance of gender models created with 30s of SPS and VLTS.  
Models were trained with 64, 128, 256, 512 and 1024 Gaussians and tested using test 
utterances of several different lengths. 

The last experiment tests the performance of the best performing models from 
previous sections (MFCC features, 30s SPS, 512 Gaussians) with a continuous stream 
of speech. The audio stream was composed of alternating male/female speech 
segments of random-size (between 20 and 30s) from 200 unique speakers taken from 
the National Institute of Standard Technology (NIST) evaluation data, 2005.  Time 
labels of gender transitions were maintained and used to determine the performance 
of the system.  Trials were completed using 1, 3 and 5 second segments. 

In all tests, the models were trained with speech from 312 unique gender-specific 
speakers obtained from the Fisher database [10]. All utterances were manually 
verified prior to use to avoid mislabeled and cross-gender cross-talk content.  The 
testing speech for experiments 1 and 2 was taken from 2136 unique speakers of NIST 
evaluation data, 2005. 

4   Results 

MFCC-MFSC Performance: The performance of the gender detection system, when 
extracting MFCC and MFSC features, is shown in Tables 1 and 2. The accuracy 
obtained when using each feature set is shown for varying lengths of training and 
testing data for each gender and overall. 

A comparison between both tables show that MFCCs outperform MFSCs, with the 
difference approached 3%. These results contradict those reported in [2], however, the 
classification approach used herein also differs from that used by Harb & Chen. It can 
be observed from Table 1 that the overall performance decreases with diminishing 
amounts of training data.  However, the performance for individual gender does not 
show the same trend for both genders. This could be originated because providing less 
training speech the model captures more non-stationary characteristics of the 
waveform disguising the boundaries between genders. It is appreciated that female 
models perform more consistently across changes in training set length than males. 
This can be caused due to female gender information is more readily captured by the 
MFCC features and requires less data amounts to perform compared to male gender. 
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The spectral differences between each gender, including pitch, formants and high 
frequency energy distribution also accentuate this difference, impacting differently 
the MFCC estimation. 

The testing utterance also has a direct impact on the performance of the system, 
with larger testing segments providing best performances. This is because larger 
testing segments contain more information. However, it is noticeable that the effect of 
the length of training data is more profound. This is beneficial for streaming 
applications because while training can be performed offline with large amounts of 
data, high performance is desired with shorter test utterances. 

Upon further analysis of Table 1, it is appreciated that the performance gap 
between both genders increases while the length of the testing segments decrease. 
This is created by a combination between the differences in the descriptive power of 
the MFCC features for the female gender and the decrement of information provided. 
This creates a fussier delimitation between both genders, causing overlap among 
them. Table 1 shows that no substantial gain when more than 15s of speaker data is 
used for training the models. Therefore, this is a good tradeoff between performance 
and speech length requirements to build the gender models. Table 2 shows deeper 
differences in data trends for each gender since MFSC capture different information. 
However, the overall trend keeps decreasing when the length of the training and 
testing sets decrease.  

Table 1. System Performance with MFCC Coefficients 

Speech Per Speaker Used to Train Gender (Seconds) 

 Gender 60 30 15 10 5 3 

M 96.01 96.01 95.58 95.69 95.36 95.03 

F 98.51 98.59 98.68 98.51 98.18 97.93 60 

Both 97.43 97.47 97.33 97.28 96.95 96.67 

M 95.79 96.12 95.90 95.90 95.79 95.47 

F 98.68 98.43 98.43 98.10 97.44 97.44 30 

Both 97.43 97.42 97.33 97.14 96.72 96.58 

M 95.36 95.68 94.50 95.47 94.50 94.28 

F 98.35 98.18 98.59 97.51 97.68 97.60 15 

Both 97.05 97.09 96.82 96.63 96.30 96.16 

M 93.96 93.42 93.42 91.91 92.56 91.15 

F 96.94 97.44 96.86 97.44 95.62 96.44 5 

Both 95.65 95.69 95.37 95.04 94.29 94.15 
M 93.96 90.83 90.94 90.72 89.32 89.21 

F 94.79 97.02 96.69 96.61 96.53 95.12 3 

Both 94.43 94.33 94.19 94.05 93.40 92.56 

M 87.91 90.06 88.66 86.93 88.76 86.61 

F 95.21 92.98 94.30 94.63 91.32 92.40 

L
ength of the T

esting S
egm

ents (S
econds) 

1 

Both 92.04 91.71 91.85 91.29 90.22 89.89 
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Effect of Number of Gaussians on Performance: The performance of models with 
different number of Gaussians is shown in Table 3. It can be seen that accuracy of 
decisions increases as the number of Gaussians increases, but the computational load 
increases likewise.  For this reason, the optimal selection of performance (a tradeoff 
of speed and accuracy) may be system specific. Applications requiring extremely fast 
processing may forfeit minimal accuracy to achieve speed gains. Offline applications 
desiring peak accuracies may choose a larger number of Gaussians.  Herein, 256 
Gaussians were chosen as the most efficient compromise between speed and 
accuracy. Lower number of Gaussians than 64 followed the same trend as the values 
shown in the table with the respective decrement in performance.  

Audio Stream Evaluation: Fig. 2 shows the performance of the system applied to a 
pseudo-random streaming audio input. The continuous curve represents the gender 
composition of each tested segment (where 1 signifies 100% male and -1 signifies 
100% female). The stem plot denotes the difference of likelihood ratios (clipped to ±1 
for visibility) obtained for the previous segment. It can be seen that the decision made 
in the segments containing speech from both genders (shown as a change in sign of 
the continuous curve) produce lower likelihood values. These lower scores will 
correspond to a decision with low CFM.  It may therefore be desirable for an 
application to further scrutinize, or reject, low CFM for the decisions which tend to 
indicate cross-gender segments. Given this possibility, it is interesting to note the 
performance of the system under specific CFM restrictions.   

Table 2. System Performance with MFSC Coefficients 

Speech Per Speaker Used to Train Gender (Seconds) 

 Gender 60 30 15 10 5 3 
M 95.79 96.12 96.87 97.09 98.17 98.38 

F 96.20 95.53 93.88 92.72 88.01 86.52 60 

Both 95.99 95.83 95.38 94.90 93.09 92.45 

M 94.82 95.79 96.44 97.20 98.06 98.38 

F 96.20 95.53 93.80 92.14 87.01 84.78 30 

Both 95.51 95.66 95.12 94.67 92.54 91.58 

M 94.82 95.47 96.53 96.98 98.17 98.27 

F 96.77 95.12 93.22 91.89 86.10 84.53 15 

Both 95.80 95.30 94.88 94.44 92.14 91.40 

M 92.56 93.20 93.96 95.04 96.44 96.66 

F 94.87 94.46 92.14 90.07 84.45 82.55 5 

Both 93.72 93.83 93.05 92.56 90.45 89.60 

M 90.40 90.51 91.91 92.23 94.28 94.82 

F 94.79 93.80 91.81 90.41 83.95 81.64 3 

Both 92.59 92.15 91.86 91.32 89.19 88.23 

M 86.50 87.58 89.01 90.36 93.20 93.30 

F 91.65 91.16 89.04 87.60 82.56 79.92 

L
ength of the T

esting S
egm

ents (S
econds) 

1 

Both 89.07 89.36 89.02 88.98 87.88 86.61 
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Fig. 2. System performance when applied to an audio stream. Continuous line: composition of 
the testing segment. Stems: Δλ of segment. 

 

Table 3. System Performance with Variable Number of Gaussians 

Number of Gaussians*  

 Gender 
1024 512 256 128 64 

M 97.19 97.74 95.79 94.82 94.61 
F 97.35 96.03 95.20 94.79 94.38 60 

Both 97.27 96.88 95.50 94.81 94.49 
M 96.65 97.09 94.82 94.39 94.18 
F 97.02 96.28 94.96 94.46 94.54 30 

Both 96.83 96.68 94.89 94.43 94.36 
M 96.11 96.66 94.93 94.39 94.07 
F 96.94 96.11 94.87 94.79 94.13 15 

Both 96.53 96.38 94.90 94.59 94.10 
M 94.60 95.47 92.13 91.91 91.48 
F 96.36 94.79 93.38 93.55 92.39 5 

Both 95.48 95.13 92.75 92.73 91.93 
M 93.74 93.74 89.97 89.64 88.89 
F 96.20 94.29 93.30 92.97 92.06 3 

Both 94.97 94.02 91.63 91.31 90.47 
M 90.28 91.36 86.61 86.27 86.01 
F 91.40 90.58 90.89 90.33 89.73 

L
ength of the T

esting S
egm

ents (in S
econds) 

1 

Both 90.84 90.97 88.75 88.30 87.87 
* Gender models were trained with 30s of speech from 312 speakers per gender. 
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Specifically, Fig. 3 (top) shows the overall performance of the system when a 
minimum CFM threshold is applied.  Fig. 3 (bottom) shows the percentage of total 
frames that fall into the accepted CFM. Operation of the system without CFM 
restrictions yields accuracies of 91%, 92.3% and 92.1% on all segments for 1, 3 and 5 
second testing segments, respectively. By applying a CFM threshold of 70% -only 
those segments with CFM over 70% are considered- the system would yield an 
accuracy of 96.18%, 97.02% and 96.73% (for 1, 3 and 5 second segments), using 
approximately 80% of the segments.   

Computational Complexity: The computational complexity required for the 
implementation of the gender detector is proportional to the number of Gaussians 
components used as well as the processing time. The implementation of the 
algorithms reported was accomplished code generated with Visual Studio 2005 on a 
3.2GHz Xeon processor based workstation. The system required 147ms to provide a 
decision with the most computational demanding setting using 60s of testing speech 
and 1024 Gaussians. For the setting using 64 Gaussians and 1s of testing speech 
provided the system required 11ms to provide a decision. In all cases the system 
performed several times real-time. 
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Fig. 3. System performance for testing segments with CFM above threshold (top). Segments 
meeting minimum CFM threshold (bottom). 
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5   Conclusion 

The experiments performed herein address issues dealing with the implementation of 
a gender identification system tailored to operate efficiently for audio stream 
applications. It was observed that the MFCC features that emphasize gender 
differences observed in the lower part of the spectrum provide more discriminative 
ability than MFSC features which accentuate the upper spectral band. It was shown 
that a simple GMM classification approach can be used effectively to provide high 
classification performance with short-length testing segments performing better or 
similar to other more complex techniques reported.  

The results obtained with the classifier revealed that the amount of speech per 
speaker used to train the gender models highly influences the performance of the 
system. Fifteen seconds of speech per speaker was found to be sufficient for 
training gender models, since longer sequences did not significantly improve 
performance.  

The performance of the system was observed to improve with a greater number 
of Gaussians, with diminishing returns beyond 512 Gaussians. For streaming audio 
applications, the optimal number of Gaussians should be chosen to balance 
accuracy and real-time viability.  This research indicated that the system described 
herein, can reliably perform gender classification at several times real-time in audio 
streams. 

The CFM described enables a measure of quality in the gender decision and improve 
significantly the performance of the system when a threshold greater than 50% is 
selected, as showed in experiment 4.3. This metric is very desirable to aid in the detection 
of cross-gender segments, and to permit higher precision of audio stream applications.  

References 

1. Parris, E. S., Carey, M. J.: Language Dependent Gender Identification. Acoustics, Speech, 
and Signal Processing. ICASSP-96 Conference Proceedings, vol. 2. (1996) 685 - 688. 

2. Hurb, H., Chen, L.: Gender Identification Using a General Audio Classifier. ICME '03 
Proceedings, vol. 2. July (2003) 733-736. 

3. Kamran, M., Bruce, I. C.: Robust Formant Tracking for Continuous Speech with Speaker 
Variability. IEEE Trans. Speech and Audio Proc. Accepted for publication, Jan. 19, 
(2005). 

4. Vergin, R., Farhat A., O'Shaughnessy D.: Robust Gender-dependent Acoustic-phonetic 
Modelling in Continuous Speech Recognition Based on a New Automatic Male/female 
Classification. ICSLP-96 Conference Proceedings, vol. 2. October (1996) 1081-1084. 

5. Slomka, S., Sridharan, S.: Automatic Gender Identification Optimised for Language 
Independence. TENCON '97 IEEE Region 10 Annual Conference. Speech and Image 
Technologies for Computing and Telecommunications Conference Proceedings, vol. 1. 
December (1997) 685 - 688. 

6. Childers, D. G., Ke, W., Bae, K. S., Hicks, D.M.: Automatic Recognition of Gender by 
Voice. Acoustics, Speech, and Signal Processing. ICASSP-88 Conference Proceedings, 
vol. 1. (1988) 603-606. 



436 E. Scheme et al. 

7. Torres-Carrasquillo, P. A., Singer, E., Kohler, M. A., Greene, R. J., Reynolds, D. A., 
Deller, J. R.: Approaches to Language Identification Using Gaussian Mixture Models and 
Shifted Delta Cepstral Features, International Conference in Spoken Language. Denver. 
(2002). 

8. Chen, T., Huang, C., Chang, E., Wang, J.: Automatic Accent Identification Using 
Gaussian Mixture Models. Workshop in Automatic Speech Recognition and 
Understanding ASRU '01. (2001) 343 – 346. 

9. Andrianaki, I., White, P. R.: Modeling of Mel Frequency Features for Non Stationary 
Noise.  Institute of Sound and Vibration Research. University of Southampton. Available: 
http://dea.brunel.ac.uk/cmsp/ Projnoise2003/Presentation25052004Ioannis.ppt. 

10. Fisher English Training Speech Part 1, Linguistic Data Consortium, LDC2004S13, 2004. 



J.F. Martínez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 437 – 445, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

On the Processing of Fuzzy Patterns for Text 
Independent Phonetic Speech Segmentation 

Luis D. Huerta-Hernández1,2 and Carlos A. Reyes-García1 

1 Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE)  
Luis Enrique Erro No. 1, Sta. Ma. Tonanzintla, Puebla, 72840, México 

{luisdh2, kargaxxi}inaoep.mx  
2 Instituto Tecnológico Superior de Acatlán de Osorio, 

Unidad Tecnológica, Acatlán de Osorio, Puebla, 73440, México 

Abstract. In this work we propose an algorithm for continuous speech segmen-
tation with text independency. In our approach we do not use feature vectors in 
order to detect phoneme boundaries, instead we only make use of the intensity 
measure. Obtaining with this a remarkable reduction in the amount of informa-
tion needed and simplified rules on the processing. In the process only a pre-
emphasis filter, and one strategy based on a distance measure with normalized 
fuzzy memberships over the signal patterns are used. In the preliminary results 
the method reaches up to 77.54% of correct segmentation with a 20 msec. accu-
racy and an over segmentation rate near to 0%. The algorithm implementation, 
the experiments, as well as some results are shown.  

1   Introduction 

From the arrival of computers, we have the need to communicate with them, and the 
recent tendency is to try to do it by natural means, like through the use of speech. We 
need to implement methods to communicate with machines, by developing friendly 
interfaces. In order to understand human oral expressions by mean of machines, they 
have to perform speech recognition. One way to do it is by first performing speech 
segmentation and later recognizing the found segments. The continuous speech rec-
ognition process is highly dependent of the segmentation process, being a crucial 
factor for automatic speech recognition (ASR) systems. We need to develop methods 
with features aimed to increase the performance and speed, such as the use of reduced 
speech units to be treated; reduced amount of information extracted from the speech, 
and simplified processing. Currently, many speech recognition systems are using 
phoneme like units because they bring the following advantages: phonemes are lin-
guistically well defined units and can be looked up easily on a dictionary; pronuncia-
tion variability due to linguistic context, accent or dialogues can be easily represented 
by applying rules to basic forms; the number of units is small; and the phonemes 
require significantly less data to train than would be needed for whole word modeling 
[1]. There have been reported phoneme segmentation methods; with acceptable re-
sults, but with some of the following restrictions imposed: restricted vocabulary [1], 
speaker dependency [2], isolated words [3], and text dependency [4]. There are some 
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reported works, with complex processing based on rules derived from acoustic pho-
netic knowledge for phoneme segmentation [5, 6, 7, 8]. Recently, new methods have 
been proposed for phoneme segmentation, without the restrictions mentioned above 
but having to deal with over-segmentation and text-independency. They have mini-
mized the complexity of the processing; however, they use speech feature vectors or 
set of features per sequence of time [2, 9, 10,11] and a post processing in order to 
reduce the insertion rate, but increasing the response time. The feature of speech 
commonly used with success in recognition and segmentation are LPC, and bank 
filter of models like MFCC, PCBF (Perceptual Critical Band Features) to mention 
some. Nonetheless, the encoded representation given on vectors is extracted from 
basic features presented on time domain.  

The main goal of this work is to develop a phoneme speech segmentation algo-
rithm with text independency and low computational cost, that can obtain high pho-
neme boundary detection rates without over segmenting, using a simplified ap-
proach on the feature extraction,  segmentation process, fuzzy pattern and distance 
measure. 

We tested the utility of basic features, like intensity, to get phoneme segmentation, 
and we found similar performance to the one reported on the state of art without pre-
senting over-segmentation. It is important to remark that the intensity is one basic 
feature easily obtained from speech with light processing. Two remarkable issues of 
the proposed method are; the reduced information and the simple rules used, obtain-
ing with them an almost real time phoneme segmentation. The testing was done over 
the same corpus and under similar conditions to the used in [9, 10].  

2   The Auditory System Model 

The human ear is able to perceive a range of frequency between 20 and 20000 Hz 
approximately. Since the speech wave is composed by many frequencies, these are 
not perceived with the same sensitivity. The high and low frequencies are perceived 
with less intensity. In general, following the Bark scale, the variations of sensitivity 
below 1000 Hz follow a constant variation with 100 Hz. bands, and when the fre-
quency increases above the 1000 Hz, the sensitivity of frequencies follows a loga-
rithmic scale. These obtained scales, show that low frequencies are increased signifi-
cantly between 100 and 1000 Hz, and are based on the hearing functioning.  

Methods to obtain cepstral vectors using filter banks have been developed, like 
the previously mentioned, which model the hearing functioning. In recent phoneme 
segmentation algorithms, the features of speech have been extracted by following 
some model of the auditory system, having an encoded speech in form of time se-
quence vectors, which has been taken in [10] as a constraint. Depending of the codi-
fication scheme used, the feature extraction might involve a time consuming proc-
ess, and might obtain too much information to be treated. Doubtlessly some of these 
schemes like MFCC have reported success on speech recognition, because they give 
a detailed representation on the speech wave. For segmentation these details are not 
totally necessary, to show this we have used only scalar values of intensity per se-
quence of time.  
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3   The Basic Features of Speech  

The Sound is composed of waves of pressure variations that oscillate from positive to 
negative relative to the surrounding medium, usually the air. The number of air pres-
sure oscillations per second, determines the pitch of the sound, whose physical corre-
late is frequency. The amplitude is defined like the pressure applied by the vibration, 
on the elastic mean. If we have a sine wave, the y-value for any given x-value is the 
amplitude of the sine wave at that point in time. The amplitude is given in Pascal (Pa) 
units. On the other hand, the intensity is the size of the pressure vibrations determin-
ing the loudness of the sound. Acoustic scientists measure the intensity in a base 10 
logarithmic scale called decibels (dB) [13]. The term intensity is used to refer to the 
overall power of a sound.  

The phonemes used in words, have different intensity, for example, most aperture 
of the mouth is required for relative long time in order to pronounce vowels, releasing 
most energy and resulting in high intensity, in contrast with the intensity of the major-
ity of consonants, and although plosives have high intensity their duration is very 
short.  

 
 
 
 
 
 
 
 
 

 

Fig. 1. Speech waveform and its respective intensity 

 
Basic features as zero crossing rate, energy and pitch have been used in previous 

works in order to obtain sentence segmentation without speech recognition; details of 
one of those works are presented in [15]. The authors remark its accuracy comparable   
to methods using speech recognition but to a lower computational cost. Our work is 
oriented in a similar way, it is, to obtain phoneme segmentation based only on inten-
sity changes without phoneme recognition. 

4   The Fuzzy Algorithm  

Some kind of speech codification scheme like the previously mentioned was avoided; 
instead, minimal information like the obtained from the intensity was used. In order 
to carry out the phoneme segmentation, we implemented a fuzzy distance measure 
between contiguous frames, and a set of simples rules aimed to detect significant 
distances, which could be tried like phoneme transition changes on continuous 
speech. We took advantage of fuzzy memberships of the intensity in order to obtain 
details on cases where the differences between frames are vague. Different from 
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other approaches [2], this fuzzy algorithm does not require any training and has a 
reduced computational load due to its simplicity. The details are next described.  

4.1   Preprocessing  

First, the pre-emphasis filter on the speech signal was applied. The pre-emphasis filter 
gives a resultant sound with a high spectral slope. A frequency F, above which the 
spectral slope will be increased by 6 dB/octave, is given.  The pre-emphasis factor  
is computed as:  

( )tFΔ−= πα 2exp     (1) 

Where t is the sampling period of the sound. The resultant sound yi is obtained 
with (2).  

                         1−−= iii xxy α     (2) 

Where every sample xi of the sound is changed, going down from the last sample [14]. 
According to the acoustical theory, in order to approximate the unequal sensitivity of 
human hearing at different frequencies [12], pre-emphasis process is used. In contrast, 
with the smoothing preprocessing techniques, we can enhance certain frequency in-
tervals from another ones containing less relevant information.  In our case, the pre-
emphasis filter setting 50 Hz to the F argument in (1) was applied.   

4.2   Phoneme Segmentation  

The pre-emphasized signal is used in order to obtain the intensity with a minimal 
pitch of 93 Hz, and 3 msec. frames without overlapping were used. We also tested 4 
and 5 msec. frame size, the results are shown in the experiments section.  

For each signal, the maximum and minimum intensity were obtained, in order to 
establish the fuzzy space. The average between the maximum and minimum intensity, 
in order to obtain the medium point of the fuzzy space, was calculated. Three triangu-
lar fuzzy functions, representing low, median and high intensity, were applied. Mem-
bership values from the fuzzy sets are obtained for each intensity measure, and then 
they are normalized as follows: =max(M),  where M represents the fuzzy membership 
obtained from the compared frames. The maximum fuzzy membership denoted as  is 
obtained. Then μi= μi /  ∀ μi  M is applied. Since our strategy is based on the dif-
ference between contiguous frames, in order to detect phoneme boundaries, the nor-
malized memberships are used in (3), and we denote the values obtained as V.  

 

( ) ( ) ( ) ( )2
2lowlow

2
2midmid

2
2highhigh2 )()()()()()(, −−−− −+−+−= tttttttt ffffffffD μμμμμμ      (3) 

 

Our approach is simple, because we focus on detecting the local maxima on the V 
values, which indicate the significant differences between the compared frames, and, 
therefore, the presence of a phoneme boundary. The rules used to detect the local 
maxima are the following:  

 

1) Vt > Vt-1  &  Vt > Vt+1 
2) Vt>46.8 dB 
3) Vt>    
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In condition 1) a V value at time t is treated as local maximum if it is greater than 
the previous and following V value on the sequence of time. Condition 2) is used to 
discriminate potential boundary values, because low intensity Vt values generally are 
not representative of phoneme boundaries. Condition 3) selects local maxima repre-
senting significant changes, when they are over the threshold . The last two condi-
tions are used in order to avoid unwanted insertions; although some valid phoneme 
boundaries are incorrectly discarded by them. On the other hand, erroneous points 
detected by the algorithm are rejected, resulting in a competitive performance. A 
limitation of this algorithm is that segments shorter than 0.021 msec are not allowed, 
this condition reduces the over segmentation problem and, at the same time, some of 
the valid phoneme boundaries are sacrificed too.  

 
 
 
 

 
  
 
 
 
.  

 

Fig. 2.  Algorithm diagram 

5   Implementation and Experiments 

The feature extraction and segmentation processing was implemented using the free-
ware PRAAT v.4.4.04 [14]. 

For the experiments we used continuous speech expressed naturally, and with text 
and speaker independency. The algorithm was tested with 544 speech signals sampled 
at 16 kHz of the American English DARPA-TIMIT database, corresponding to 68 
speakers (34 males and 34 females) of all dialect regions. The phoneme segmentation 
performance of the algorithm was compared with the true phoneme boundaries ob-
tained from the transcription associated to the speech signals, which was made manu-
ally by phonetician experts. The subset of sentences has a total of 20647 phonetic 
boundaries.  

5.1   Measurement Performance 

The performance of the algorithm was evaluated with commonly used measures, like 
the one used in [9, 10, 11].   
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Where D is the measure of over-segmentation, Sd is the number of segmentation 
points detected by the algorithm, and St is the number of the true segmentation points.  
 

   ⋅=
tS
cS

cP 100           (5) 

 

Where Pc is the percentage of correct detection, and Sc is the number of correct seg-
mentation points. The segmentation points detected by the algorithm are defined as 
correct if its distance from the true segmentation point is within the range of ± 20 
msec. 

5.2   Experiments and Results 

Many changes aimed to improve, were implemented on the algorithm. Results of 
different algorithm versions are shown, in order to remark the effects of the experi-
mented modifications. The first version of our algorithm, was using a frame size of 
5msec, without normalized fuzzy memberships, and using the measure computed by 
(6), which obtains the distance between adjacent frames. The results are shown in 
table 1.  

When the frame size was 5 msec without normalized fuzzy memberships, a poor 
performance was observed, and while the frame size was reduced the performance 
was slightly improved. The best observed performance was obtained when a frame 
size of 3 msec was used. That is why, in the remaining experiments, a 3 msec frame 
size was used. 

 

( ) ( ) ( ) ( )2
1lowlow

2
1midmid

2
1highhigh1 )()()()()()(, −−−− −+−+−= tttttttt ffffffffD μμμμμμ      (6) 

 

Table 1. Algorithm performance, with different frame size and its respective parameters 

Size  Sd Sc % Correct  
Detection 

% Over 
Segmentation 

5 msec 0.040 20946 15046 72.87 1.44 
4 msec 0.036 21039 15353 74.35 1.89 
3 msec 0.032 20910 15485 74.99 1.27 

 
Another remarkable improvement was when the fuzzy memberships were normal-

ized, which increased the correct detection rate and reduced over segmentation to near 
to 0%. The results are shown in table 2. 

Table 2. Algorithm performance, using normalized fuzzy memberships 

  
 
 
 

When the distance between adjacent frames is being used, many phoneme changes 
are not detected, because their significant difference does not appear in adjacent 

 Sd Sc % Correct  
Detection 

% Over 
Segmentation 

0.050 20642 15567 75.39 -0.02 
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frames. So a frame distance between compared frames was used in order to detect 
those slowly reflected changes, applying (3). The frame distance between compared 
frames is referred in this work as inter-frame.  Finally, we used a minimum intensity 
of 25 dB instead the relative minimum intensity of each signal, in order to obtain the 
fuzzy space, increasing the performance. The results are shown in table 3.  

Table 3. Algorithm performance, using inter frame 

  
 
 

 

This modification to the distance measure and the minimum intensity of the fuzzy 
space, results on a correct detection increased above of 2 %, maintaining a percentage 
of over segmentation of near to 0%. Starting, in the preliminary experiments, with a 
correct detection performance of near to 73% and an over segmentation rate above of 
1%, with simple modifications like the frame size, normalization of fuzzy member-
ship functions, using an inter frame between compared frames and a minimum inten-
sity of 25 dB in the fuzzy space, we improved the correct detection rate to near to 5%, 
and the over segmentation rate was reduced in more than 1%.  

5.3   Comparison with Similar Works  

The results are compared to algorithms alike [9,10,11], dealing with text and speaker 
independency, with over segmentation and some other previously mentioned condi-
tions. Relevant aspects like amount of phoneme boundaries treated, information ex-
tracted from the speech, number of speakers and percentage of correct detection are 
used for the comparison, they are shown in table 4.  

Table 4. Algorithm comparatives on different issues 

 
In the first row, significant aspects of our algorithm are presented, the remaining 

rows contain the reported aspects of the mentioned algorithms in the listed order as 
presented in [9, 10, 11]. The compared algorithms use feature vectors on frames of 20 
msec, with 10 msec overlapping; and the “jump” term is used to denote significant 
changes (peaks) between compared frames; algorithms [10,11] are modifications of 
the algorithm presented in [9].   

These algorithms have a fundamental process to combine, in a unique indication 
of phoneme boundary, the “jump” events detected around the same frame. The proc-
ess is called “fitting” and was introduced to place the segmentation boundary in the 

 Sd Sc % Correct  
Detection 

% Over 
Segmentation 

0.0855 20668 16010 77.54 0.09 

Used features Extracted  
values per 20 

msec 

Treated 
Speaker 

 

Treated  Phoneme 
Boundaries 

% Correct 
detection 

Intensity 6.66 68 20647 77.54 
PCBF [9] 15 48 17930 73.56 
Mel spectrum [10] 8 48 17930 76.53 
PCBF [11] 15 20   6200 75.80 
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middle of a cluster of quasi-simultaneous “jumps”. The fitting process is used after 
the “jump” detection.  

On the other hand, our approach use scalar values per time sequence, and no fit-
ting process is used. Although the difference in number of features used among the 
algorithms is insignificant, we are not using overlapping frames, and our process to 
extract the features is remarkably simple and effective. Generally, the compared and 
the proposed algorithm present difficulties to detect vowel-vowel phoneme bounda-
ries, and, specifically the proposed algorithm rejects those consecutive correct 
boundaries separated by only 0.021 msec.  

7   Conclusions 

The proposed phoneme segmentation algorithm has shown some advantages over 
others due to its lower computational cost in the extraction of features and boundaries 
detection.  Our approach achieves competitive performance with fast execution due to 
the reduced information used and its simplified processing. In the preprocessing 
phase, only a pre-emphasis filter to enhance spectral changes was used. The strategy 
of using a fuzzy distance measure between frames shows to be simple and effective.  
The use of fuzzy normalized membership in an Euclidean distance, in order to obtain 
details of vague phoneme boundaries difficult to detect, lead to an increase in the 
overall algorithm performance. The use of inter frames was useful to detect phoneme 
boundaries, which present slow changes. The algorithm detected 77.54% of the 
boundaries without over segmentation. As future works we will try to improve the 
performance by enhancing the algorithm with more efficient strategies and rules.  
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Abstract. In this paper, a technique to improve the convergence and to
reduce the ghosting artifacts of a previously developed adaptive scene-
based nonuniformity correction method is presented. The nonuniformity
correction method estimates detector parameters based on the recur-
sive least square filter approach. We propose, three parameters to reduce
ghosting artifacts and to speed up the convergence of such method by
using only the read-out data. The parameters proposed are based in
identify global motion between consecutive frames as well as evaluate
the main assumption used in the previous method in the uncertainty on
the input infrared irradiance. The ability of the method to compensate
for nonuniformity and reducing ghosting artifacts is demonstrated by
employing several infrared video sequences obtained using two infrared
cameras.

Keywords: Image Sequence Processing, Infrared Imaging, RLS.

1 Introduction

Infrared imaging systems are employed in several applications such as defense,
astronomy and medical science. In general, those systems are based on the in-
frared focal-plane array IR FPA technology. An IR-FPA is a die composed of
a group of photodetectors placed in a focal plane forming a matrix of X × Y
pixels, which gives the sensor the ability to collect the IR information.

It is well known that nonuniformity noise in IR imaging sensors, which is due
to pixel-to-pixel variation in the detectors’ responses, can considerably degrade
the quality of IR images since it results in a fixed-pattern-noise (FPN) that is su-
perimposed on the true image. Even more, what makes matter worse is that the
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nonuniformity slowly varies over time, and depending on the technology used,
this drift can take from minutes to hours. In order to solve this problem, several
scene-based nonuniformity correction (NUC) techniques have been developed
[1,2,3,4,5,6]. Scene-based techniques perform the NUC using only the video se-
quences that are being imaged, not requiring any kind of laboratory calibration
technique.

Our group has been given special attention to NUC methods based on es-
timation theory. Seeking for more effectiveness in the reduction of NUC, we
propose to improve our previously published adaptive scene-based NUC method
[7], based in a RLS (recursive least square) filter [8]. The NUC method based in
a RLS algorithm exhibits the advantages of fast convergence rate and unbiased
stationary error [9,10]. However, the method has shown the following weakness:
the supposition that the input scene is constantly moving, in general, is not valid
and ghosting artifacts are generated; the assumption that the best target for the
unknown input infrared irradiance is an average over its neighboring pixels is
scene dependent generating a poor correction in pixels, which are part of objects
boundaries. Then, for improving the performance of the NUC RLS algorithm,
we propose three parameters to mitigate the ghosting artifacts and speed up
the convergence in pixels that are part of the edges of objets being imaged. The
effect of the parameters are tested with simulated and real IR data.

This paper is organized as follows. In Section 2 the IR-FPA model and the
RLS- NUC method with the proposed enhancement are presented. In Section 3
the RLS- NUC technique is tested with video sequences of real raw IR data
captured using two infrared cameras. In Section 4 the conclusions of the paper
are summarized.

2 The RLS NUC Method for Infrared Video Sequences

In this section, the previously published scene-based NUC method [7] is pre-
sented for completeness. We begin reviewing the most common model used for
the nonuniformity presented IR-FPA technology, and we finish developing three
parameters with the ability of being used to reduce ghosting artifacts and to
speed up convergence of such method.

2.1 RLS Filter Method

In this paper, we adopt the commonly used linear model for the infrared detector.
For the (ij)th detector in IR-FPA, the measured read-out signal Yij at a given
time n can be expressed as:

Yij(n) = gij(n) · Xij(n) + oij(n) + vij(n) (1)

where gij(n) and oij(n) are the gain and the offset of the ijth detector, Xij(n) is
the real incident IR photon flux collected by the respective detector, and vij(n)
is the additive electronic noise. Re-writing equation (1) in a vectorial form we
obtain:

Yij(n) = ΨT
ij(n)Θij(n) + vij(n) (2)
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where, Ψij(n) = [Xij(n), 1]T is the IR data vector and Θij(n) = [gij(n), oij(n)]T ,
is the detector parameter vector. Then, an estimator for Θij can be formulated
like:

Ŷij(n) = ΨT
ij(n)Θ̂ij(n) (3)

and the estimation error is given by:

eij(n) = Yij(n) − ΨT
ij(n)Θ̂ij(n) (4)

From (3) is possible to obtain a solution only if the unknown real incident
IR is known. The key assumption of the method is that Xij can be initially
estimated from the read-out data Yij . Then, we initially estimate the real IR
Xij with the spatial mean value of the corrupted image at ij sensor [4], that is:

Xij(n) = Ȳij(n) =
1

(2v + 1) 2

i+v∑
k=i−v

j+v∑
l=j−v

Ykl(n) (5)

where Ȳ is a smoothing version of Y and v fixes the averaging window size. This
assumption is valid when the scene is constantly moving with respect to the
detector. Because Ȳ is more uniform than Y , a spatial nonuniformity correction
is performed. Then, equation (3) will be used to estimate the detector parameters
with Ψij(n) =

[
Ȳij(n), 1

]T , i.e., we suppose that the gain parameters have a
spatial normal distribution with unit mean, and the offset have a spatial normal
distribution with zero mean.

Then, we minimize the functional

εij(n) =
n∑

k=1

λn−k
ij e2

ij(n) (6)

where λ is the forgetting factor which varies to in 0 < λ < 1, and weighs the
influence of past error values. Deriving εij(n) with respect to the parameter
vector Θij(n), equalling to zero and solving for the parameter vector, we obtain

Θ̂ij (n) =

[
n∑

k=1

λn−kΨij (k)ΨT
ij (k)

]−1 n∑
k=1

λn−kΨij (k) yij (k) = Pij (n)ψij (n)

(7)
For a recursive update of the parameters, the RLS algorithm is used, hence

all necessary equations to form the algorithm are:

Θ̂ij(n + 1) = Θ̂ij(n) + Kij(n + 1)
[
Yij(n + 1) − ΨT

ij(n + 1)Θ̂ij(n)
]

Kij(n + 1) = Pij(n)Ψij(n + 1)
[
λ − ΨT

ij(n + 1)Pij(n)Ψij(n + 1)
]−1

Pij(n + 1) =
[
I − Kij(n + 1)ΨT

ij(n + 1)
]
Pij(n) · 1

λ
(8)
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where, Θ̂ij(n) = [ĝij(n), ôij(n)]T , is the estimated parameter vector, Kij(n) is
the gain vector and Pij(n) is the covariance matrix.

Finally, to remove the nonuniformity noise of the corrupted image sequence,
we use the parameters estimated by the RLS algorithm like the following:

X̂ij(n) = Yij(n)/ĝij(n) − ôij(n)/ĝij(n) (9)

where X̂ij(n) is the corrected image.

2.2 Performance of the RLS NUC Method

The main problems detected on the performance of the RLS NUC method are
originated by three basic constraints used in the development of the method.
The first is related to the supposition that the scene is constantly moving with
respect to the detector. Then, the problem is that when the scene is not moving
for a few frames, this equality is not valid, and the ghosting effect appears. This
consists in a ghost present in the next frames.

The second is related to the supposition that the readout data has imaged
object with low spatial diversity in the integrate IR radiation, which in the
general case, is also not valid. The spatial uniformity in the image is used to
obtain an accurate parameter estimation of the RLS NUC method because the
spatial variance of the read-out data and the true IR data are near to zero, and
only variance of the offset and the electronic noise are presented.

The third constraint is that the RLS NUC method does not satisfies the
orthogonality principle. This means that the variance of the error is not minimal.
This generates an estimation with a considerable variability in the error.

In the next section, we propose parameters to be included in the algorithm
to reduce the effects generated by the foregoing constraints.

2.3 Nonuniformity and Ghosting Correction Algorithm

The algorithm is improved considering three parameters,which are based on the
following: motion detection, nonuniformity degree estimation and error variance.
We propose an indicator for the motion detection between consecutive frames,
i.e., between frames at n and n − 1 as follows:

z1 (n) =
∑
k,l

|Yn(k, l) − Yn−1(k, l)|

where z1(n) is used to reduce ghosting. If z1(n) is close to zero, ghosting is pre-
sented on the corrected image. And, we propose an indicator for spatial variance
of the IR radiation by considering the local spatial variance of Yij(n), σ2

Yij(n)

calculated by

σ2
Yij(n) =

1
(2v + 1)2

i+v∑
k=i−v

j+v∑
l=j−v

(Ykl(n) − Ȳij(n))2
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The frame by frame calculus allows us to estimate a new temporal variable
z2(n) = σ2

Yij(n) that is used as an indicator in the algorithm. Note that, small
values of z2(n) means that the input data meets the required assumption, on
the IR radiance, by the proposed method.

The last indicator is obtained using the error defined in equation (4) as z3(n) =
e2

ij(n), i.e., the error variance. In this case, a good performance of the method
takes place when z3(n) is minimal.

Then, the NUC algorithm is enhanced by the use of these parameters as
described in the following steps:

- For each frame, we obtain z1(n), z2(n) and z3(n),
- After L frames, σ2

z2
is calculated

- Then, we calculate the H value, defined as

H =
σ2

z2
z3

1 + z1

- If at the current iteration, the calculated value of H is lower in magnitude
than any previously calculated value, the estimated gain and offset are updated
on this iteration. Otherwise, the gain and offset calculated at the previous iter-
ation are not updated.

(a) (b) (c) (d)

Fig. 1. Four frames of a simulated black bodies sequence (first row) and the correction
with the enhanced NUC RLS method (second row). a) The 335 - th frame. b) The 500
- th frame. c) The 665 - th frame. d) The 845 - th frame.

3 Evaluation of the Proposed Methods Upgrades

The main goal of this section is to test the ability of the proposed method to
reduce nonuniformity on simulated and real infrared video data. In the first
place, we use simulated black body images. In the second place, the algorithm is
tested with two real infrared image sequences taken by two different IR cameras.
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As a quantitative measure of performance, we use the Root Mean Square Error
(RMSE), which measures the difference between the true infrared image with
the corrected image using the proposed method. The RMSE is calculated by:

RMSE(n) = { 1
pm

p∑
i=1

m∑
j=1

(x̂ij(n) − xij(n))2}1/2 (10)

(a) (b) (c)

Fig. 2. Results on Real IR data with emphasis in ghost artifacts reducction. The first
row shows the 770- th frame and the second row shows the 1600-th frame of the first
set of IR data, a) The raw corrupted frames, b) The corresponding frames corrected
by the previous RLS method [7] and c) The corresponding frames corrected by the
enhanced method.

where p×m is the number of detectors in the FPA. A low value of RMSE means
a better correction of the frame data. The evaluation procedure for each set of
data is detailed in the following sections.

3.1 Results with Simulated Black Bodies

The simulated black bodies has been generated using flat images, where the
intensity or gray level indicates the black bodies temperature. FPN is added to
each image generating the corrupted sequence. An example is presented in the
first row of Fig. 1. Those images present only nonuniform noise, hence the black
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bodies constitute a good test for the NUC algorithm. In the second row of Fig.
1, it is clear, using the naked eye, that the proposed method reduced the FPN
and performed an accurate nonuniformity correction.

Fig. 3. The evolution of the RMSE between the reference (set 1 calibrated with black
bodies) and the corrected frames of IR data set 1. Line with a plus represents the
corrupted data; line with a star represents the RMSE computed for the enhanced
Scribners NUC method [4]; line with a dot represents the previous NUC RLS method
[7]; and solid line represents the RMSE computed for the proposed enhanced NUC-RLS
method.

3.2 Results with Two Real Infrared Image Sequences

The first sequence has been collected using a 128×128 InSb FPA cooled camera
(Amber Model AE-4128) operating in the 3 − 5μm range. As an example, Fig.
2a shows a corrupted readout data frame. In Fig. 2b and 2c the corresponding
corrected frame by the NUC RLS method and the enhance RLS method are
presented, respectively. In Fig. 2b and Fig. 2c we have shown a zooming of the
corrected image, specifically of the zones indicated by boxes. In them, using only
the naked eye is clear that the non-uniformity is notably better in the proposed
NUC RLS method (Fig. 2c) than in the previous published method (Fig. 2b).

The NUC performance, in this case, is evaluated by employing the index
RMSE computed between a reference (the real IR sequence calibrated with black
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bodies) and the corrected IR video sequence. Figure 3 shows the calculated
RMSE for the corrupted data, for each frame corrected using enhanced Scribner’s
NUC method [4], the RLS, and the enhanced RLS method. Further, the average
RMSEs computed for the whole infrared sequence are equal to 20.15, 16.62 and
14.23 for the Scribner NUC method, the NUC-RLS algorithm and the enhanced
NUC RLS algorithm, respectively. It can be seen in Fig. 3 that the RMSE value
obtained for the enhanced NUC RLS method has a greater convergence speed,
because, for the same number of frame, it reaches a lower RMSE value than any
other method.

(a) (b) (c)

Fig. 4. Performance of the enhanced NUC-RLS method under real IR data. The first
row shows the 297- th frame and the second row shows the 467-th frame of the second
set of IR data, a) The raw corrupted frames, b) The corresponding frames corrected
first by the RLS method and c) The corresponding frames corrected by the proposed
enhance method.

The second sequence of infrared data has been recorded using a 320 × 240
HgCdTe FPA cooled camera (CEDIP Jade Model) operating in the 8 − 12μm
range. As an example, Fig. 4a shows the corrupted readout data for two frames.
In Fig. 4b, and Fig. 4c the corresponding corrected frames by the previous pub-
lished method and the NUC method proposed in this paper are shown, respec-
tively. The non-uniformity, visually presented in the raw frame, has been notably
reduced by the proposed method; in Fig. 4b and Fig. 4c this is specially noticed
in the marked region. In Fig. 4b it is possible to appreciate the ghosting present
on both frames. This ghost effect disappears when we used the RLS method
with nonuniformity and ghosting correction algorithm, as it is shown in Fig. 4c.
Thus, we have shown experimentally with real IR data that the proposed scene-
based NUC RLS method with ghost correction has the ability of notably reduce
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both the non-uniformity noise presented in IR-FPA sensors and the ghosting
generated by lack of motion in the recorded IR data.

4 Conclusions

In this paper an enhanced version of our previously published NUC method,
based in a RLS filter is presented. The new method has the ability to improve
the nonuniformity correction and to eliminate ghosting artifacts more efficiently
than the previous method. This is obtained by means of three parameters based
in identifying global motion between consecutive frames as well as, evaluate
the main assumption used in the previous method in the uncertainty on the
input infrared irradiance. Furthermore, the evaluation with simulated and real
data has demonstrated that the proposed method reduces ghosting artifacts
and improves the RMSE parameter when compared with the previous published
method. Using read-out data taken from cameras of two different technologies
we were able to observe that the method is capable to reduce nonuniformity,
minimizing ghosting, with fast convergence and low RMSE.

References

1. Torres, S., Hayat, M.: Kalman Filtering for Adaptive Nonuniformity Correction
in Infrared Focal Plane Arrays. The JOSA-A Opt. Soc. of America. 20. (2003)
470–480.

2. Torres, S., Pezoa, J., Hayat, M.: Scene-based Nonuniformity Correction for Focal
Plane Arrays Using the Method of the Inverse Covariance Form. OSA App. Opt.
Inf. Proc. 42. (2003) 5872–5881.

3. Scribner, D., Sarkady, K., Kruer, M.: Adaptive Nonuniformity Correction for In-
frared Focal Plane Arrays using Neural Networks. Proceeding of SPIE. 1541.
(1991) 100–109.

4. Scribner, D., Sarkady, K., Kruer, M.: Adaptive Retina-like Preprocessing for Imag-
ing Detector Arrays. Proceeding of the IEEE International Conference on Neural
Networks. 3. (1993) 1955–1960.

5. Torres, S., Vera, E., Reeves, R., Sobarzo, S.: Adaptive Scene-Based Nonuniformity
Correction Method for Infrared Focal Plane Arrays. Proceeding of SPIE. 5076.
(2003) 130–139.

6. Vera, E., Torres, S.: Fast Adaptive Nonuniformity Correction for Infrared Focal
Plane Arrays. EURASIP Journal on Applied Signal Processing. (2005).

7. Torres, F., Torres, S., San Martin, C.: A Recursive Least Square Adaptive Filter
for Nonuniformity Correction of Infrared Image Sequences. LNCS, 3773. (2005)
540–546.

8. L. Ljung and T. Sderstrm: Theory and practice of recursive identification, MIT
Press, Cambridge, 1983.

9. E. Eleftheriou, D.D. Falconer, Tracking properties and steady-state performance of
RLS adaptive filter algorithms, IEEE Trans. Acoust. Speech Signal Process. ASSP
34 (1986) 1097-1110.

10. E. Ewada, Comparasion of RLS, LMS and sign algorithms for tracking randomly
time-varying channels, IEEE Trans. Signal Process. 42 (1994) 2937-2944.



J.F. Martínez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 455 – 463, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Correlation Filters for Detection and Localization of 
Objects in Degraded Images 

Erika M. Ramos-Michel and Vitaly Kober 

Department of Computer Sciences, Division of Applied Physics, CICESE 
Km 107 Carretera Tijuana-Ensenada, Ensenada, B.C. 22860, México 

rmichel@cicese.mx, vkober@cicese.mx 

Abstract. Several correlation filters are derived to improve pattern recognition 
of a noisy target embedded into nonoverlapping background, when the input 
image is degraded with a linear system. With the help of computer simulation 
we analyze and compare the performance of various correlation based methods 
for reliable detection and localization of objects in blurred and noisy images. 

Keywords: Object recognition, correlation filters, degraded image. 

1   Introduction 

In pattern recognition detection and localization of objects in pictures are tasks of 
extreme importance. Since the pioneering paper by Vanderlugt [1] various correlation 
filters have been suggested. When a correlator is used the pattern recognition can be 
done in two steps. First, the detection is carried out by searching the highest 
correlation peaks at the filter output, and then the coordinates of the peaks are taken 
as position estimations of targets in the scene image [2-13]. 

Several criteria were proposed to characterize the filter performance in terms of 
signal-to-noise ratio, peak sharpness, light efficiency, discrimination capability, etc. 
[3]. Correlation filters can be designed by maximizing one of these criteria. Many 
solutions were proposed when the input scene contains a reference object corrupted 
by additive noise (overlapping model). For instance, the matched spatial filter (MSF) 
[1] is derived by maximizing the signal-to-noise ratio (SNR). Horner and Gianino [2] 
suggested the phase-only filter (POF) that maximizes light efficiency. The optimal 
filter (OF) [13] was proposed to minimize the probability of anomalous errors (false 
alarms) [6, 9]. When the input scene contains a reference object embedded into a 
disjoint background (nonoverlapping model) and additive noise the following 
correlation filters were obtained: the generalized optimum filter, which is designed to 
maximize the ratio of the expected value of the squared correlation peak to the 
average expected value of the output signal energy (POE) [4,5,7,10]; the generalized 
matched filter that maximizes the ratio of the expected value of the squared 
correlation peak to the average output variance (SÑR) [4,7,10]. 

The mentioned filters were derived for the overlapping and nonoverlapping 
models. However, these two models do not take into account possible blurring of 
input scenes. These kinds of degradation frequently appear during image formation 
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and recording [14-16]. For this reason, these degradations should be considered in the 
design process of filters. 

The purpose of this paper is to investigate the performance of correlation filters in 
terms of accuracy of localization and discrimination capability for a modified 
nonoverlapping model, which takes into account blurring of the input scene. Two 
schemes of degradation of the input scene are considered; that is, 1) degradation 
(blurring) is caused by a linear system with a given point spread function (PSF); 2) 
degradation consists of blurring by a linear system and further corruption with 
additive white Gaussian noise. For the proposed signal model new correlation filters 
optimized with respect to pattern recognition measures are derived. With the help of 
computer simulation we analyze the performance of the obtained and known filters in 
terms of discrimination capability (DC) and localization distance errors. We assume 
that the information of degradation is known. In other words, the parameters of 
blurring and noise can be estimated taking into account the nature of the degradations. 
Note that although the degradation information is known, no restoration techniques 
are utilized because the objective is a reliable recognition and localization of a 
reference object. The presentation is organized as follows. In Section 2, new 
correlation filters for the modified nonoverlapping model are presented. Computer 
simulation results are presented and discussed in Section 3. Finally, Section 4 
summarizes our conclusions. 

2   Correlation Filters for Pattern Recognition in Blurred and 
Noisy Images 

Several causes produce blurred images during the process of image formation: optical 
diffraction, atmospheric turbulence, out of focus, relative motion between the 
recording medium and the scene, object moving through a fixed background, etc. In 
our experiments we consider the blurring degradation due to a relative motion of a 
camera, while an input scene is still. In this case the captured image is completely 
blurred. Assume that the input image is always corrupted by additive noise (for 
instance, sensor’s noise).  

Let us consider that an input scene s(x) contains a target t(x-x0) having unknown 
coordinate x0 and a nonoverlapping background b(x,x0). Because of the image 
formation process, this image is degraded by a uniform PSF and additive noise as 
follows: 

( ) ( ) ( ) ( ) ( )0 0 0, , * ds x x t x x b x x h x n x= − + +  , (1) 

where we use the following notations and assumptions.  

1. The nonoverlapping background signal b(x,x0) is regarded as a product of a 
realization b(x) from a wide-stationary random process and an inverse support 
function of the target w(x) defined as zero within the target area and unity 
elsewhere; that is, 

( ) ( ) ( )0 0,b x x b x w x x= −  . (2) 
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2. The coordinate x0 is considered as a random variable with a uniform probability 
density function. 

3. It is assumed that the wide-sense stationary noise and the target location x0 are 
statistically independent of each other. 

4. μb is the expected value of b(x). 
5. B0(ω) is the power spectral density of (b(x) - μb), and it is calculated as 

( ) ( ) ( ){ } 2

0 0, bB F b x x V xω μ= −  , (3) 

where F{.} denotes the Fourier transform. This can be done because b(x) is 
considered as an ergodic process [17]. V(x) is a sinusoidal window that is utilized 
for smoothing the image in order to obtain a better estimation of the power 
spectral density. Actually, other windows can be used as well for the estimation 
[18]. However, the used sinusoidal window is separable, that leads to an easy 
implementation of the estimation. 

6. The input scene is completely degraded by blurring. hd(x) is the real impulse 
response, which is represented with a uniform PSF as  

2

1 1
1

1 1
d

d d

PSF
d

×

=  , (4) 

and Hd(ω) is its transfer function. 
7. n(x) is additive white Gaussian noise with the zero mean and the power spectral 

density N(ω). 
8. T(ω) y W(ω) are the Fourier transforms of t(x) and w(x), respectively. 

 

Next, for the modified nonoverlapping model we derive new optimal correlation 
filters. Actually, these filters are modified versions of the correlation filters: 
generalized matched filter (GMF), generalized phase-only filter (GPOF), and 
generalized optimal filter GOF [4, 9, 10, 11], which are optimal with respect to 
various recognition measures for the nonoverlapping signal model. The proposed 
filters are denoted as follows: GMF+, GPOF+, and GOF+. For simplicity, through 
this paper we use the one-dimensional notation. 

The GOF+ filter can be obtained by maximizing the POE criterion defined as 

( )

( ){ }
( )

( ){ } ( ){ }

2 2

0 0

22

0 0 0

, ,

, , ,

E y x x E y x x
POE

E y x x Var y x x E y x x
= =

+
 . (5) 

First, ( ) 2

0,E y x x , ( ){ }0,Var y x x , and ( ){ } 2

0,E y x x  are calculated taking into 

account (1), and then they are substituted in (5) as follows: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ } ( )

2

2

2 2 2 2

0

1
4

1
2

b d

b d

T W H H d
POE

B W T W H N H d
L

ω μ ω ω ω ω
π

α ω ω ω μ ω ω ω ω ω
π

+
=

+ + +
 . (6) 
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Finally, applying the Schwarz inequality [19], we have the filter that maximizes the 
POE criterion: 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

* * *

2 2 2

0

b d

GOF

b d

T W H
H

T W B W H N

ω μ ω ω
ω

ω μ ω α ω ω ω ω
+

+
=

+ + +
 . (7) 

The asterisk denotes the complex conjugate and the symbol “ ” indicates the 
convolution operation. α is a normalizing constant [10]. 

In a similar manner, the modified filters GMF+ and GOF+ are derived and given, 
respectively, by 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

* * *

2 2

0

b d

GMF

d

T W H
H

B W H N

ω μ ω ω
ω

α ω ω ω ω
+

+
=

+
 , (8) 

( )
( ) ( )
( ) ( )

* *

Hd
b j

GPOF

b

T W
H e

T W

θω μ ω
ω

ω μ ω
−

+

+
=

+
 . (9) 

If the observed image has no blurring, the classical generalized filters and obtained 
modified filters are equal. Note that the filters GPOF and GPOF+ do not take into 
account the additive noise influence. If the PSF is symmetric, its Fourier transform 
has zero phase. 

3   Discussion and Computer Simulations 

In this section computer simulation results are presented and discussed. In our 
experiments the target image t(x) and the background image b(x) possess 
characteristics given in Table 1. All the correlation filters are implemented with the 
use of the Discrete Fourier Transform [15]. 

Table 1. Parameters of the used images 

Statistical Description Background Image Target Image 
Mean 133.0900 143.9833 

Standard Deviation 22.5315 70.23 
Size (pixels) 256 × 256 41 × 69 

 
The signal range is [0-255]. The target is shown in Fig. 1(a). The nonoverlapping 

background scene is shown in Fig. 1(b). The observed image is degraded with 1) only 
a linear system possessing the PSF of different sizes (d); 2) a linear system and 
additive white Gaussian noise (AWGN) with zero mean and the standard deviations 
(σn): 5, 10, 15, 20, 25, 30, 35, 40 and 43. Figure 2 shows an example of the observed 
image, which is degraded by the PSF with d=5, and the noise with σn=20.  
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     (a)         (b) 

Fig. 1. (a) Image target, (b) background image 

 

Fig. 2. Observed image with a uniform PSF (size d=5) and AWGN with μn=0 and σn=20 

The discrimination capability is formally defined as ability of a filter to distinguish 
a target among other different objects. If a target is embedded into a background that 
contains false objects, then the DC can be expressed as follows: 

2

2

0 0
1

0 0

B

T

C ( , )
DC

C ( , )
= −  , (10) 

where CB is the maximum in the correlation plane over the background area to be 
rejected, and CT is the maximum in the correlation plane over the area of target 
position. The area of target position is determined in the close vicinity of the actual 
target location. The background area is complementary to the area of target position. 
The DC gives a detection ability of a filter. The location errors can be characterized 
by deviation between actual and obtained target positions. Formally, the distance error 
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of localization is calculated as the distance between the known exact position of the 
target ( ),T Tx y  and the position corresponding to the coordinates of the maximum 

value in the correlation plane over the area of object to be recognized was 
found ( ),T Tx y . 

( ) ( )2 2
DE T T T Tx x y y= − + −  . (11) 

3.1   Results of Scenario 1 

In this scenario, the observed image is non-degraded. Table 2 shows the performance 
of the correlation filters in terms of the DC. To obtain these results the 30 statistical 
trials were carried out. In each trial the target position randomly was changed. We see 
that all the filters are able to detect and to localize the target. Note that the GOF and 
the OF filters yield the best results.  

Table 2. Mean and Standard Deviation (SD) of DC of Scenario 1 

Statistics MSF POF OF GMF GPOF GOF 
Mean 0.1333 0.8698 0.9284 0.3954 0.8734 0.9395 
SD 0.0078 0.0087 0.0092 0.0080 0.0131 0.0084 

3.2   Results of Scenario 2 

In this scenario, the observed image is degraded only by a linear system with the 
uniform PSFs, whose the sizes are 3, 5, 7, 11, and 15. Table 3 shows the performance 
of the correlation filters in terms of the DC. For each blurring degradation 30 
statistical trails were conducted.  

Table 3. Mean and Standard Deviation (SD) of DC of Scenario 2 

Size of PSF 3 5 7 11 15
Filters Mean SD Mean SD Mean SD Mean SD Mean SD
POF 0.7889 0.0192 0.6359 0.0246 0.4505 0.0311 0.3095 0.0297 0.1710 0.0302
OF 0.9271 0.0076 0.9189 0.0081 0.9172 0.0090 0.8960 0.0173 0.9108 0.0079

GMF 0.2945 0.0081 0.2102 0.0085 0.1484 0.0089 - - - -
GPOF, GPOF+ 0.7611 0.0191 0.6973 0.0120 0.5363 0.0185 0.3796 0.0236 0.2484 0.0260

GOF 0.8794 0.0152 0.8460 0.0207 0.7682 0.0334 0.7405 0.0346 0.6486 0.0690
GMF+ 0.3954 0.0080 0.3954 0.0080 0.3954 0.0080 0.3954 0.0080 0.3954 0.0080
GOF+ 0.9395 0.0084 0.9395 0.0084 0.9395 0.0084 0.9395 0.0084 0.9395 0.0084

 

We see that in this case the proposed filters taking into account the blurring 
parameters yield essentially better performance than those of the classical filters. The 
modified GOF+ is the best. The MSF filter always fails to recognize the object. The 
GMF begins to fail when the size of the PSF is greater than 9. Note that if a filter is 
able to detect the object then this filter localizes exactly the position of the target. 
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Because the number of observations is sufficient, it is possible to employ a normal 
distribution and to calculate a 95% confidence interval as follows: 

1.96 1.96 0.95P DC
N N

σ σμ μ− ≤ ≤ + =  . (12) 

With 95% confidence the DC interval of each of the filters can be calculated. For 
instance, for the GOF+ the confidence intervals for different PSFs are (0.9366, 
0.9424). 

3.2   Results of Scenario 3 

In this scenario, the observed image is degraded both by a linear system with the 
uniform PSFs, whose sizes are 3, 5, 7, 9, 11, 15, and due to additive noise with 
standard deviations of  5, 10, 15, 20, 25, 30, 35, 40, and 43.  
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(c) 

Fig. 3. Distance errors of localization with the PSF’s sizes: (a) d=5, (b) d=9, (c) d=11 

In this case the performance of the correlation filters in terms of the DC is similar 
to that of Scenario 2. However, the distance errors of localization increase, while the 
standard deviation of the noise increases. Figure 3 shows the performance of the 
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filters with respect to the distance errors of localization. It can be seen that the GMF+ 
yields the best performance in terms of this criterion.  

4   Conclusions 

In this paper three correlation filters were proposed in order to improve detection and 
localization of a noisy target embedded into nonoverlapping background degraded 
with a linear system. With the help of computer simulation we showed that the 
proposed filters taking into account information about degradation yield better results 
in terms of detection and localization than those of the known correlation filters. 

It is necessary to investigate the performance of pattern recognition systems 
consisting of the two separate steps; that is, the first step is image restoration, and then 
is object recognition with a correlation filter. 
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Abstract. In this paper, a recursive filter to estimate the offset nonuni-
formity for infrared focal plane array imaging systems, using only the
scene data, is presented. The proposed algorithm operates frame by frame
in a pixel-by-pixel basis and there is not inter-related operations among
the detectors. The method assumes that the input irradiance at each
detector is a random and uniformly distributed variable in a range that
is common to all detectors in the infrared focal plane array. The method
is designed to operate in infrared imaging system, which exhibit im-
portant offset nonuniformities with slow temporal drift. The ability of
the method to compensate for offset nonuniformity is demonstrated by
employing several infrared video sequences obtained using an infrared
camera.
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1 Introduction

Infrared (IR) cameras use an IR sensor to digitize the information, and due to
its high performance, the most employed integrated technology in IR sensors
is the Focal Plane Array (FPA). An IR-FPA is a die composed of a group of
photodetectors placed in a focal plane forming a matrix of X × Y pixels, which
gives the sensor the ability to collect the IR radiation.

Nonuniformity noise in IR imaging sensors, which is due to pixel-to-pixel
variation in the detectors’ responses, can considerably degrade the quality of IR
images since it results in a fixed-pattern-noise (FPN) that is superimposed on
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the true image. Further, what makes matter worse is that the nonuniformity
slowly varies over time, and depending on the FPA technology, this drift can
take from minutes to hours. In order to solve this problem, several scene-based
nonuniformity correction (NUC) techniques have been developed [1,2,3,4]. Scene-
based techniques perform the NUC using only the video sequences that are being
imaged, not requiring any kind of laboratory calibration technique. Our group
has been active in the development of novel scene-based algorithms for NUC
based on statistical estimation theory. In [5,6] we have developed a Gauss-Markov
model to capture the slow variation in the FPN and have utilized the model to
adaptively estimate the nonuniformity in blocks of infrared video sequences using
a Kalman Filter.

In this paper, a recursive filter [7] to estimate the offset of each detector
on the FPA from scene data is developed. The method is developed using two
key assumptions: i) the input irradiance at each detector is a random and uni-
formly distributed variable in a range that is common to all detectors in FPA;
ii) The FPA technology exhibits important offset nonuniformity with slow tem-
poral drift. The proposed algorithm is developed to operate on one block, short
enough to assume that the offset is constant within the block, of infrared images.
In this block, the offset of each detector is optimally and recursively estimated.

This paper is organized as follows. In Sections 2 and 3 the IR-FPA model and
the scene based method for NUC by means of a recursive filtering are presented
respectively. In Section 4 the main parameters that the algorithm needs for
a computer implementation are discussed. In Section 5 the recursive filtering
technique is tested with video sequences of real raw IR data captured using an
infrared camera. In Section 6 the conclusions of the paper are summarized.

2 Model

In this paper, we model the pixel-to-pixel variation in the detectors’ responses
(nonuniformity) using the commonly used linear model for each pixel on the IR
FPA. For the (ij)th detector, the measured readout signal yij at a given time n
can be expressed as:

yij (n) = Aij(n)xij(n) + Bij(n) + vij(n),

where Aij(n) and Bij(n) are the gain and the offset of the ijth detector re-
spectively and xij(n) is the real incident infrared photon flux collected by the
detector. It is assume that xij(n) is a uniform distribute random variable in range
common to all detectors in the IR FPA. The term vij(n) is additive electronic
noise represented by a zero mean Gaussian random variable that is statistically
independent of noise in other detectors.

In this work, we are focused in IR FPA in which the nonuniformity is mainly
generated by spatial and temporal variations in the detectors offset. Then, we
suppose that Aij is a known constant given by the IR camera manufacturer or
it can be initially calculated by using known information of the particular IR
camera. Using the foregoing, we re-write the model of each detector as

y(n) = Ax(n) + B(n) + v(n), (1)
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the subscript ij is omitted with the understanding that all operations are per-
formed on a pixel by pixel basis. In the next section, we present the deduction
of the proposed method: a recursive filtering for estimate the offset B(n) in a
block of frames of read-out IR data.

3 Recursive Estimation of the Offset

The goal of this paper is to develop a scene-based nonuniformity correction
method for estimating the offset of each detector on the IR FPA using a block of
frames short enough to assume that the offset is a constant in noise within the
block. To do so, we first propose to estimate the offset frame by frame recursively
in the form

B̂(n) = CnB̂(n − 1) + Kny(n), (2)

where B̂(n) and B̂(n − 1) are the estimate of B(n) and B(n − 1) respectively,
Cn and Kn are the coefficients of the recursive filter. To find the Cn and Kn

coefficients, we apply the orthogonality principle

E[(B(n) − B̂(n))y(n − l)] = E[(ε(n)y(n − l)] = 0, (3)

where ε(n) is the estimation error and l = 0, 1, ..., n. In order to find an expression
for the error variance, σ2

ε(n), we use

E[ε(n)B(n)] = σ2
ε(n), (4)

where E[·] denotes the expectation operation.
Now, the main assumptions used in the develop of the filter are that the IR

radiance x(n) is random and uniformly distributed [5] within a known range
[Xmin, Xmax]. We also consider that x(n) is independent of B(n) and v(n), and
that B(n) is a zero mean random variable independent of v(n). Before solving
the equation (2), we introduce the necessary expressions for the development of
the method.

The IR radiance x(n) has a mean value given by E[x(n)] = μx = (Xmax+Xmin)
2

and variance σ2
x = (Xmax−Xmin)2

12 , and the correlation function is denoted by
E[x2(n)] = Rx(0) = σ2

x + μ2
x. How x(n) is independent of B(n) and v(n) then

E[x(n)B(n)] = E[x(n)]E[B(n)] and E[x(n)v(n)] = E[x(n)]E[v(n)], are both
equal to zero.

Now, based on the latter deduction, we want to obtain an expression for
E[y(n)y(n − l)] for l = 0, 1, ..., n using equation (1), that is

E[y(n)y(n − l)] = AE[x(n)y(n − l)] + E[B(n)y(n − l)] + E[v(n)y(n − l)]. (5)

It can be easily shown that this expectation is reduced to

E[y(n)y(n − l)] = A2Rx(l) + RB(l) + σ2
vδ(l), (6)

where Rx(l) is the correlation function of the IR radiance x(n), RB(l) is the
correlation function of the offset B(n) and σ2

vδ(l) is the correlation function of
the electronic noise.
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3.1 Solution for Kn: Case Where l = 0

In this case, substituting y(n) by (1) in (3), and using (4) yields

E[ε(n)y(n)] = E[ε(n)Ax(n)] + σ2
ε(n) + E[ε(n)v(n)] = 0, (7)

the first and third terms are calculated individually. In the first term, equations
(1), (2) and (6) are used, since the irradiance x(n) is independent of the offset,
we get

E[ε(n)x(n)] = E[B(n)x(n)]−E[CnB̂(n−1)x(n)]−E[Kny(n)x(n)] = −AKnRx(0), (8)

and in the third term, (1), (2) and (6) are used, and that since the noise is white
and orthogonal to the signal, we can write

E[ε(n)v(n)] = E[B(n)v(n)] − E[CnB̂(n − 1)v(n)] − E[Kny(n)v(n)] = −Knσ
2
v .
(9)

Now, substituting these results in (7) yields

Kn =
σ2

ε(n)

σ2
v + A2Rx(0)

. (10)

3.2 Solution for Cn: Case Where l > 0

In this case,

E[ε(n)y(n− l)] = E[(B(n)y(n− l)]−CnE[B̂(n− 1)y(n− l)]−KnE[y(n)y(n− l)] = 0,
(11)

and using (1), (5) and (6) we obtain

E[ε(n)y(n−l)] = (1−Kn)RB(l)−A2Rx(l)Kn−CnE[B̂(n−1)y(n−l)] = 0, (12)

and for the term E[B̂(n− 1)y(n− l)] we use ε(n− 1) = B(n− 1)− B̂(n− 1) and
(4), getting

E[B̂(n−1)y(n−l)] = E[B(n−1)y(n−l)]−E[ε(n−1)y(n−l)] = RB(l−1), (13)

now, rewriting (12) for Cn we obtain

Cn =
RB(l) − Kn(RB(l) + A2Rx(l))

RB(l − 1)
. (14)

Assuming that RB(l) = αlRB(0), i.e., B(n) is a signal that has an exponential
correlation function, we obtain

Cn = α{1 − Kn(1 + A2 Rx(l)
αlRB(0)

)}. (15)

Using an auxiliary variable β = 1 + A2 Rx(l)
αlRB(0) we finally get

B̂(n) = αB̂(n − 1) + Kn(y(n) − αβB̂(n − 1)). (16)
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3.3 Solution for σ2
ε(n)

We start using (2) and the previous results. Then, we can write

σ2
ε(n) = E[(B(n)− B̂(n))B(n)] = (1−Kn)RB(0)−α(1−βKn)E[B(n)B̂(n− 1)].

(17)
Using the fact that B(n) is a signal with an exponential correlation function,

i.e., B(n) = αB(n − 1) + ω(n), where ω(n) is a zero mean gaussian process
independent of B(n), we obtain that

E[B(n)B̂(n − 1)] = αE[B(n − 1)B̂(n − 1)]. (18)

Note that σ2
ε(n−1) = E[ε(n − 1)B(n − 1)] = RB(0) − E[B(n − 1)B̂(n − 1)].

Then, solving for E[B(n − 1)B̂(n − 1)] result in

σ2
ε(n) = (1 − Kn)RB(0) − α2(1 − βKn)(RB(0) − σ2

ε(n−1)), (19)

and finally replacing Kn and solving for σ2
ε(n) allow us to obtain

σ2
ε(n) =

α2σ2
ε(n−1) + (1 − α2)RB(0)

1 +
α2β(σ2

ε(n−1)−RB(0))+RB(0)

σ2
v+A2Rx(0)

. (20)

In the next section, we modified the foregoing filter to estimate the offset as a
constant in noise.

4 Estimation of the Offset as a Constant in Noise

In this section the theoretical development of the main goal of this paper is
finished. The idea is to develop an algorithm able to estimate the offset B(n)
as a constant in noise. As an example, we know this assumption is practically
valid in block of frames taken within two to three minutes in several IR FPA
technologies.

Then, the foregoing filter will have to be modified using B(n) = B(n−1) = B
a constant, i.e., α = 1 and ω(n) = 0. Then (16) is simplified to

B̂(n) = B̂(n − 1) + Kn(y(n) − βB̂(n − 1)), (21)

and equation (20) is simplified to

σ2
ε(n) =

σ2
ε(n−1)

1 +
(1−β)RB(0)+βσ2

ε(n−1)

σ2
v+A2Rx(0)

. (22)

Note that if β = 1, i.e., the IR irradiance at a current frame is uncorrelated
with previous frames, and equation (22) can be reduced to

σ2
ε(n) =

σ2
ε(n−1)

1 +
σ2

ε(n−1)

σ2
v+A2Rx(0)

. (23)
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Now, each step of the recursive filter for nonuniformity correction is listed.
Algorithm:

1. Establish the range [Xmin, Xmax] and calculate all the initial conditions.
2. Choose the length of the block of frames nb.

3. Update Kn =
σ2

ε(n)

σ2
v+A2Rx(0) and σ2

ε(n) =
σ2

ε(n−1)

1+
σ2

ε(n−1)
σ2

v+A2Rx(0)

from the value n = 1.

4. Obtain the signal estimation B̂(n) = B̂(n − 1) + Kn(y(n) − B̂(n − 1)).
5. Generate the corrected frame using x̂(n) = (y(n) − B̂(n))/A.
6. If n ≤ nb then, go to step 3 and increase n.
7. If n > nb maintains the correction with x̂(n) = (y(n) − B̂(nb))/A.

4.1 Initial Parameters

In order to initialize the algorithm the parameters [Xmin, Xmax], A, σ2
ε(0), RB(0)

and σ2
v have to be calculate for each particular IR camera. First of all, anyone

with experience with his IR camera can easily propose a range [Xmin, Xmax]
for a particular block of frames. Then, Rx(0) = (Xmax−Xmin)2

12 + (Xmax+Xmin)2

4 .
Also, knowing [Ymin, Ymax] from the read-out IR data and employing (1) we can
obtain

A =
Ymax − Ymin

Xmax − Xmin
.

To compute σ2
ε(0), we use (23) and.

σ2
ε(n−1) = RB(0) − E[B(n − 1)B̂(n − 1)],

assuming that no prior observations are available, i.e., B̂(−1) = 0, then σ2
ε(−1) =

RB(0), now replacing in (23)

σ2
ε(0) =

RB(0)

1 + RB(0)
σ2

v+A2Rx(0)

. (24)

Finally, to get a good estimation of RB(0), detectors offsets of a particular
camera obtained previously with another nonuniformity correction method are
used [4]. Also, the variance of electronic noise σ2

v can easily be calculated from
previous IR raw data.

4.2 Convergence Analysis

An important aspect for any nonuniformity correction algorithm is its conver-
gence analysis. For this case, the convergence is determinate by σ2

ε(n), i.e., the

estimation error variance. Let us define a = RB(0)
σ2

v+A2Rx(0) and replacing it in equa-
tion (24)

σ2
ε(0) =

RB(0)
1 + a

, (25)
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then, (23) and (10) can be expressed by

σ2
ε(n) =

RB(0)
1 + a(n + 1)

(26)

Kn =
a

1 + a(n + 1)
, (27)

i.e., σ2
ε(n) and Kn correspond to a decreasing succession, where a parameter is

responsible of the convergence. For the case a > 1, the convergence is faster than
when a < 1. In other words, for the case in which RB(0) > σ2

v + A2Rx(0) the
convergence of the method occurs within a few frames, whereas when RB(0) <
σ2

v +A2Rx(0) a greater number of frames is required. In infrared system, a prac-
tical consideration is that RB(0) is approximately equal to 10% of the dynamic
range of the readout infrared data. Further, supposing that it is possible to con-
sider A2Rx(0) >> σ2

v and that RB(0) is approximately equal to 10% of A2Rx(0),
which implies that a ≈ 0.1. Then, to obtain a reduction of until the 2% of the
initial estimation error we need n = 490 frames. Note that for the case a = 1
the initial error estimation is reduced to 2% when n = 48 frames.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Performance of the proposed method on real IR data. The first row shows the
570 − th frame, and the second row shows the 1570 − th frame of the set of IR data.
(a) (d) Real corrupted frames, (b) (e) Real frames corrected by using black bodies (c)
(f) Real frames corrected by the proposed method.

5 Applications to Real Infrared Image Sequences

The main goal of this section is to test the ability of the proposed method for re-
duce nonuniformity on real infrared video data. The sequence has been collected
using a 128 × 128 InSb FPA cooled camera (Amber Model AE-4128) operating
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in the 3 − 5μm range. In the set data, 3000 frames were collected at a rate of
30 frames per second, with 16 bits of resolution. For purposes of comparison
black bodies radiator are used under laboratory conditions to generate flat-field
images in the linear range of the detectors. These data is used to estimate the
gain and the offset associated with each detector. With these parameters, the
best correction of nonuniformity is performed, obtaining a sequence that is used
like a reference.
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Fig. 2. The evolution of the RMSE between the reference frames (set calibrated with
black bodies) and the corrected frames by the proposed NUC method

As a quantitative measure of performance, we use the Root Mean Square Error
(RMSE), which measures the difference between the reference infrared image
with the corrected image using the proposed method. The RMSE is calculated
by:

RMSE(n) = { 1
pm

p∑
i=1

m∑
j=1

(x̂ij(n) − xij(n))2}1/2, (28)

where p × m is the number of detectors in the FPA. x̂ij(n) is the infrared irra-
diance calculated with the offset estimated by the recursive filter. xij(n) is the
infrared irradiance calculated with the offset estimated by using the black-body
radiator data (Laboratory calibration offset). A lower value of RMSE means a
good correction of the frame data.

Before using the algorithm, the initial conditions are calculated. Firstly, we
have assumed that the range of the input irradiance is between [0, 255], this is
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that all the pixels were exposed to minimum and maximum possible in the gray
scale. We use a block of frames with a length of nb = 500, this is approximate
17 seconds of data. With this and the raw infrared data, Rx(0) = 21.68 × 103,
A = 257, RB(0) = 1.43 × 108 and σ2

v = 3.10 × 105. In addition, a = 9.99 × 10−2

and (%)σ2
ε(500)/σ

2
ε(0) = 2.35%.

Figure 1 (a)(b)(c) (d) (e) (f) shows from left to right a frame of real noisy
readout data, the corresponding corrected frame by using black bodies, and the
corresponding corrected frame by the NUC method proposed in this paper. It
can be clearly seen by using the naked eye that our method mitigate the nonuni-
formity noisy as well as the calibration method. The NUC performance, in this
case, is evaluated employing the index root mean square error (RMSE) com-
puted between a reference (the real IR sequence calibrated with black bodies)
and our corrected IR video sequence. Figure 2 shows the calculated RMSE for
each frame corrected using the proposed method. Figure 3 presents the con-
vergence for the recursive filter. It’s clear that the gain and the error variance
converge to minimal value after the 500 − th frames.
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Fig. 3. Convergence parameters of the proposed method. The dashed line correspond
to the gain Kn and the solid line represents the error variance σ2

ε(n).

6 Conclusions

In this paper a recursive filter for NUC on IR imaging system is proposed. It
was shown experimentally using real IR data that the method is able to notably
reduce the non-uniformity. Indeed, the method has shown good reduction of
nonuniformity after processing only around 300 frames. The main advantage of
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the method is based in its simplicity using only fundamental estimation theory.
Further, the method during the estimation process generates two convergence
parameters, which can be used for determining the method ON-OFF time in
real infrared camera operations. The keys assumptions of the proposed method
are that the input irradiance at each detector is a random and uniformly dis-
tributed variable in a range that is common to all detectors in the infrared focal
plane array and that input infrared sequences of frames exhibits important offset
nonuniformities with slow temporal drift.
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Abstract. We present novel algorithms to suppress impulsive noise in video 
color sequences. They use order statistics, directional and adaptive processing 
techniques. Extensive simulation results in known reference video color 
sequences have demonstrated that the proposed filters consistently outperform 
other filters by balancing the tradeoff between noise suppression, detail 
preservation, and chromaticity characteristics. The criteria used to compare the 
performance or various filters were the PSNR, MAE, and NCD. 

Keywords: Adaptive and directional processing, Order statistics, 3D Video 
color sequences. 

1   Introduction 

Several filters have demonstrated good ability to remove impulsive noise, preserve 
fine details, and provide chromatic properties in multichannel processing applications 
[1-3]. One of the useful and promising approaches being proposed was the 
multichannel signal processing based on vector processing [1-3]. In this case the 
correlation in chromacity that exists between the channels is employed. The value of 
each a 2D pixel is represented by a 3D (three dimensional) vector, so, the color image 
is translated into a set of vectors with the directions and lengths that are related to the 
chromatic properties of the pixels. Nonlinear filtering techniques apply the robust 
order statistics theory that is the basis for design of the different novel approaches in 
digital multichannel processing [4-8].  

In this paper we introduce novel methods to process 3D multichannel images that 
are based on order statistics and vectorial processing techniques [1, 2]. We propose 
the Video Adaptive Vector Directional (VAVDF) filter. This filter can use in its 
filtering scheme the median or -trimmed mean filters to obtain the Video Adaptive 
Vector Directional Median (VAVDMF) filter and the Video Adaptive Vector 
Directional -trimmed mean (VAVDATMF) filter, respectively. We also proposed 
the Video Vector Directional K-Nearest Neighbour (VVDKNNF) filter with the 
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estimation of vector median filter in its filtering scheme to obtain the VVDKNNVMF 
filter.  

Finally, we present some adapted versions of 2D filters that can process 3D video 
colour sequences. The filters used during the implementations were: the median filter 
to obtain the Video Median filter, the Vector -trimmed mean (VATM) filter to 
realize the Video Alpha Trimmed Mean filter, the K-Nearest Neighbour filter that is 
adapted to implement the Video KNNF, and the Vector Median Filter to present the 
Video Vector Median (VVMF) Filter. 

2   Proposed Methods 

We denote an image pixel as ( ), ,I x y t , where (x, y) and t indicate the spatial and 

temporal location in the video sequence or, maybe third spatial coordinate in the case 

of 3D image, respectively. The 3D window (cube) contains the pixels ( )', ', 'x y t  

where ' 3x x− < , ' 3y y− <  and ' 3t t− <  [7]. The window is used to 

compute the filtered value ( )' , ,I x y t . 

2.1   Video Generalized Vector Directional (VGVDF) Filter 

Vector directional processing is one of the most important techniques implemented 
recently [4, 7, 8]. The vector processing separates the signal vector processing in 
directional processing and magnitude processing. The pixels are denoted as vectors in 
m-dimensional spaces, in the case of color images, m = 3. The vectors have to be 
ordered in certain way, in the majority of cases they are ordered as follows: 

( ) ( )
1 1

, ,
n n

BD i j i
i i

A x x A x x
= =

≤ , 1,2, ,j n∀ = , (1) 

where ( ),j iA x x  is the angle among vectors xi and xj, and xBD satisfies to minimum 

deviation value among vectors. So, xBD gives the output of known filter, the Basic 
Vector Directional Filter (BVDF). The Generalized Vector Directional Filter (GVDF) 
is selected from a set of vectors, which present the minimum deviation with respect to 
other vectors: 

( ) [ ]nxxxBVDFx ,,, 21
1 =  (2) 

( ) ( ) ( ){ } [ ] nkxxxGVDFxxx n
k ≤≤= 1,,,,,,, 21

21  (3) 

( ) ( ) ( ){ } [ ]{ }n
k xxxGVDFxxxx ,,,,,, 21

21
0 ℑ=ℑ=  (4) 
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According to (2)-(4) the GVDF produces set of vectors with typical directions and 

this set should be passed after through a magnitude processing filter ℑ  to produce an 
only vector for each a pixel. The GVDF involves the k parameter that needs to be 
specified for each particular implementation. This parameter can be selected in an 
adaptive and non adaptive way described in [1]. 

There are realized two operations using different windows to preserve image 
details and suppress noise effectively. We apply the following operations: 

( ) ( ) ( ){ } [ ]{ }1 2
1 2, , , , , ,K

O nx x x x VGVDF x x x= ℑ = ℑ , (5) 

where VGVDF is the Video Generalized Vector Directional Filter using to find the 
vectors with the minimum angle deviation from the vectors that are under processing 

122 WWx j −∈  and 2'α , which corresponds to jx2  and is defined as: 

( )
=

=
n

i
ijj xxA

1
122

' ,α . (6) 

During the next stage the vector jx2  is added to set 
( ) ( ) ( ){ }kxxx 1

2
1

1
1 ,,,  if the 

condition ( )
2 1' k

jα α≤  is satisfied. In this way, the external window contributes with 

vectors jx2  that diverges less than the last vector considered 
( )kx1  from 1x . 

2.2   Video α -Trimmed Mean Filter 

The α -trimmed mean filter is applicable to process color images [7]. In here, we 
adapt this filter to process 3D video color sequences.  

All pixel values from the 3D window are ordered in one dimensional array 
according to order chosen: 

( )1 2, ,...,
t

L Nx x x x= , (7) 

where N = 27 denotes the number of the pixels in the 3D sliding window. 

Then, the pixels values in Lx  are ordered in ascending order to get a new 1D array, 

( ) ( ) ( )( )1 2, ,...,
t

Nx x x xα = , (8) 

where ( ) ( ) ( )1 2 ... Nx x x> > > . 

Finally, the filter output is calculated as follows: 

( )
[ ]

[ ]*

* 1

1 N N

i
i N

y x
α

αθ

−

= +
= , (9) 
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where [ ]2* *N Nθ α= −  and [ ]⋅  is the ceiling function, which rounds up to the 

nearest integer. 

2.3   Video Vector Directional K-Nearest Neighbour Vector Median 
(VVDKNNVMF) Filter 

The proposed Video KNN filter is based in the approach of ref. [7]. We sort the pixel 

values in Lx  according to their difference with ( ), ,I x y t  to get a new 1D array, 

( ) ( ) ( )( )1 2, ,...,
t

l Nx x x x= , (10) 

where ( ) ( )1 , ,x I x y t=  is the central pixel en the sliding 3D window, 

( ) Nix i ,,3,2, =  are the pixels that satisfy the condition 

( ) ( )( ) ( ) ( )( )1 1, ,i jA x x A x x≤ , ...j i N= , and ( )⋅A  is the angle between the central 

pixel and the other N-1 pixels. So, the novel 1D array can be written as: 

( ) ( )( )2 , ,
t

l Nx x x= . (11) 

The set of the K-Nearest Neighbour vectors with respect to central pixel is 
obtained as,  

( ) ( ) ( ){ } ( ) ( )[ ] )1(1,,,,,, 2
21 −≤≤= NKxxVDKNNFxxx t

N

tK . (12) 

The first K terms of the ordered sequence 
( ){ }tix  constitute the output of VDKNN 

(Vector Directional K-Nearest Neighbour) filter. At the final stage the magnitude 
processing filter should be applied to obtain an only output vector for each a pixel. It 
is done using the Vector Median (VMF) Filter that defines the VVDKNNVMF to 
process 3D video sequences: 

( ) ( ) ( ){ }1 2, , ,
t

K
VMFVMF x x x x= .

 
(13) 

3   Experimental Results 

During the simulations the 176x144 video sequences “Miss America” and “Flowers” 
were corrupted with noise of different intensity. The noise was independently added 
in each a plane of the frame. The criteria applied to evaluate the performance of 
various filters were: the Pick Signal-to-Noise Relation (PSNR) used to characterize 
noise suppression level, the Mean Absolute Error (MAE), which characterizes a 
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quality of edge and detail preservation, and the Normalized Color Difference (NCD) 
to qualify and quantify chromaticity preservation given by color perceptual error. 

The proposed Video Generalized Vector Directional (VGVDF) Filter with the -
trimmed mean and median filters as a magnitude ones, the Video Adaptive Vector 
Directional -trimmed mean (VAVDATM), the Video Adaptive Vector Directional 
median (VAVDMF) filters, the Video Vector Directional K-Nearest Neighbour 
(VVDKNNF) filter, and the VVDKNNVMF filter that have been introduced in this 
paper were compared with other filters proposed here. 

We utilize the following filters as a comparative ones to evaluate the properties of 
noise suppression, detail preservation, and chromaticity preservation of the proposed 
filters: the median filter that was been adapted to 3D processing to obtain the Video 
MF, the Vector Median Filter that gives the Video Vector Median (VVMF) Filter, the 
Vector ATM filter improving the Video ATM, and the KNNF [1] in two variants in 
the 3x3x3 window named as filter KNNF_1, and in the CrossXCrossXCross window 
named as KNNF_2, These filters were adapted to realize 3D processing and to obtain 
the Video KNN Filter.  

Table 1 presents the comparative filtering results in a frame of video sequences 
“Flowers” and “Miss America” obtained by different filters. From the performance 
results one can see that the proposed filters demonstrate the best results in the terms of 
criteria used. 

 
Table 1. Comparative results in a frame of video sequences “Flowers” and “Miss America” 

Flowers (15%) Miss America (20%) 
Algorithm 

PSNR MAE NCD PSNR MAE NCD 

VATM 27,002 6,305 0,01260 34,585 2,534 0,00906 

KNNF_1 26,144 7,386 0,01398 28,113 5,477 0,02021 

KNNF_2 26,903 6,140 0,01150 27,644 5,144 0,01929 

VAVMF 25,384 6,996 0,01300 32,099 2,876 0,00989 

Video-MF 26,973 6,150 0,01241 34,571 2,454 0,00917 

VVMF 26,919 6,108 0,01235 34,446 2,413 0,00876 

VAVDMF_1 26,722 5,871 0,01209 33,256 2,196 0,00836 

VAVDMF_2 27,285 5,240 0,01059 35,237 1,719 0,00674 

VAVDATM 27,331 5,328 0,01068 35,25 1,765 0,00664 

VVDKNNVMF 26,176 6,932 0,01399 32,292 3,208 0,0113 

 
Figure 1 displays the filtered frames and error images in the case of 15% of 

impulsive noise contamination for video color sequence “Flowers”. This figure 
clearly shows that the Video Adaptive Vector Directional Alpha-trimmed Mean 
(VAVDATM) filter can suppress noise corruption and provide detail preservation 
better than other filters.  

Figure 2 presents the processed images in the case of 30% impulsive noise in a 
frame of video sequence “Miss America”. The restored image found applying the 
proposed filters appears to have a very good subjective quality. 
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                  a)                                    b)                                  c)                                  d) 
 
 
 
 
 
 
 
 
 
                   e)                                   f)                                    g)                                 h) 
 

Fig. 1. Visual results in a frame of video sequence “Flowers”, a) Restored frame applying 
VATM filter, b) Restored frame applying VVMF Filter, c) Restored frame applying KNNF_1 
filter, d) Restored frame applying VAVDATM filter, e) Error image applying VATM filter,  
f) Error image applying VVMF Filter, g) Error image applying KNNF_1 filter, h) Error image 
applying VAVDATM filter 

 
 

  
                                            a)                                                             b) 

  
                                             c)                                                            d) 
 

Fig. 2. Filtered Images with 30% of impulsive noise in a frame of video sequence “Miss 
America”: a) Restored frame applying VATM filter, b) Restored frame applying VVMF filter, 
c) Restored frame applying VMMKNN filter [6], and d) Restored image applying VAVDATM 
filter 



480 V. Ponomaryov et al. 

4   Conclusions 

Proposed filtering methods have demonstrated their effectiveness in noise 
suppression, detail preservation and chromaticity characteristics. The novel 
VAVDATM and VAVDMF filters appear to demonstrate the best results in terms 
criteria used and visually in noise suppression and detail and color preservation. 
Several filters that work in 2D processing have been adapted in here to process 3D 
video information demonstrating good properties in terms of criteria PSNR, MAE, 
and NCD. 
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Abstract. This paper describes a methodology that integrates recognition and 
segmentation, simultaneously with image tracking in a cooperative manner, for 
recognition of objects (or parts of them) in image sequences. A probabilistic 
general approach at pixel level is depicted together with a practical heuristic 
simplification in which pixels’ class probabilities are approximated by a finite 
small set of class possibility values. These possibility values are updated 
iteratively along the image sequence for each class and each pixel taking into 
account both the prior tracking information and the spot-based object 
recognition results provided by a trained neural network. A further 
segmentation of the class possibility images allows the tracking of each object 
of interest in the sequence. The good experimental results obtained so far show 
the viability of the approach under certain conditions. 

Keywords: Object recognition, object tracking, image segmentation, neural 
networks, probabilistic approach, video sequences. 

1    Introduction 

This work presents a methodology that integrates segmentation, recognition and 
tracking, for recognition of objects in image sequences. To the best of our knowledge 
there are few existing works that combine segmentation, recognition and tracking in 
an integrated framework [1]. These tasks often are treated separately and/or 
sequentially on intermediate representations obtained by the segmentation and 
grouping algorithms [2, 3, 4]. In [5], object recognition techniques are applied to a 
scene where the objects of interest do not move most of the time and makes tracking a 
discrete process of watching for object disappearances and reappearances. 

The procedure that we used is based on the iterative and adaptive processing of 
consecutive frames. A similar methodology is presented in [6]. Another related work 
is [7], where a probabilistic approach that combines segmentation, object recognition, 
3D localization and tracking in an integrated and unified framework is described. In 
our case, the original images are firstly segmented in homogeneous regions (spots) 
and color and geometric features are extracted from these regions. As reported in [8], 
neural networks can be trained to classify spots into different objects using the spot 
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features as input, provided that an enough large set of labeled spots is given from the 
supervised segmentation of representative views of these objects.  In [8], the trained 
networks were shown to classify quite correctly test spots located in the same regions 
of interest that the training spots (ROI that were defined around each object). 
However, the spot classification performance impairs significantly outside these 
regions or in different images than those used for training. 

In the current work, we address this problem (object recognition in full new 
images) through the use of a dynamic iterative approach in which a probabilistic 
model at pixel level (or an approximation of it) is updated taking into account both the 
neural net outputs and prior object tracking information from the previous image. 

A scheme of the whole process integrating object recognition and tracking is 
displayed in Fig.1. 

 
 
 
 
 
 

 

 
 
 
 

Fig. 1.  Block diagram of the iterative object recognition and tracking process 
 

The rest of the paper is organized as follows. A more formal definition of the 
addressed problem is given in Section 2, together with the entire notation used 
throughout the paper. In Section 3, the proposed methodology is described in more 
detail. Experimental results are included in Section 4 and, finally, conclusions and 
future work are discussed in Section 5. 

2    Problem Statement and Notation   

Let us assume that we have a sequence of 2D color images I t(x,y)  for t=1,…,L, and a 

corresponding sequence S t(x,y) of segmented images resulting from the application of 
an image segmentation algorithm to the former. Also, let us consider that there are (or 
can be) N objects of interest in the sequence of different types (associated with classes 
c=1,…,N), and that a special class c=N+1 is reserved for the background.  
Furthermore, let us assume that the initial position of each object is known and 
represented by N binary images, pc

0(x,y), for c=1,…,N,  where pc
0(x,y)=1 means that 

the pixel (x,y) belongs to a region covered by an object of class c in the first image. 
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We would like to obtain N sequences of binary images Tc
t(x,y), for c=1,…,N,  that 

mark the pixels belonging to each object in each image; these images are the desired 
output of the whole process and can also be regarded as the output of a tracking 
process for each object. Note that we can initialize these tracking images (for t=0) 
from the given initial positions of each object, this is: 

 ),(),( 00 yxpyxT cc =  (1) 

For notational purposes, let MC 
c
t, for c=1,…,N, refer to the mass centers of each 

object in the corresponding tracking image T 
c
t(x,y). 

Suppose that a neural network has been trained to classify regions (spots) of the 
same objects using a different but similar sequence of labeled segmented images. 
Hence, the trained network is able to produce a sequence of class probability images 
Qc

t(x,y)  for t=1,…,L and c=1,…,N+1, where the value Qc
t(x,y)  represents the a-

posteriori probability given by the net output that the pixel (x,y) of the segmented 
image S t(x,y) belongs to the class c. From these probabilities, a class can be assigned 
to each pixel simply by choosing the class with maximum probability: 

)),((maxarg),( yxQyxC t
c

c

t =  (2) 

In order to obtain the tracking images, a probabilistic approach could be followed in 
which we would need to store and update N+1 probability images pc

t(x,y), for 
c=1,…,N+1,  where the value p 

c
t(x,y)  represents the probability that the pixel (x,y) in 

time t belongs to an object of class c (for c=1,…,N) or to the background (for 
c=N+1). In general, these probabilities should be computed as a certain function f of 
the same probabilities in the previous step, the class probabilities given by the neural 
net for the current step and the tracking images resulting from the previous step: 

( ) ),(),,(),,(),( 11 yxTyxQyxpfyxp tttt
c

−−=  (3) 

Now, the tracking images could be computed dynamically using these probabilities 
according to some decision function d: 

( ) ),(),,(),( 1 yxTyxpdyxT t
c

tt
c

−=  (4) 

In the present work, as a first simple approach to test, we have relaxed the 
normalization constraint required for probabilities and have approximated the 
probability values with a small set of “possibility” values (e.g. 0, ½, 1) computed 
heuristically. Hence, instead of using the probability images pc

t(x,y) we have used the 
so-called “possibility” images Hc

t(x,y), that contain the possibility values that a pixel 
(x,y) belongs to a class c in time t. Note that these images can be initialized as well 
from the given initial positions of each object: 

 ),(),( 00 yxpyxH cc =  (5) 

Consequently, the update function f and the decision function d have been defined in 
this work using the possibility images Hc

t(x,y) instead of the probability images  
pc

t(x,y), in the way described in next section. In particular, the class assignments given 
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by the net C t(x,y) have been used instead of the probabilities Q 
c
t(x,y) in the update 

function f.  

3    Methodology 

The methodology proposed can be split in two phases: the object learning phase and 
the object recognition and tracking phase. Next subsections describe both phases. 

3.1   Object Learning 

For object learning, a sequence of segmented images showing the objects of interest is 
required.  Furthermore, a subset of the spots (segmentation regions) obtained must be 
selected and labeled manually (or semi-automatically as described in [8]) with the 
target classes. These target classes include the different object types and a special 
class for the background. In addition, for each selected spot, a number of features 
have to be computed that may include both color and geometric properties. 

The spot features and target classes are collected in a pattern file. Then, a neural 
network is trained to classify the selected spots using most of the patterns as training 
set and the rest as validation set. Once trained, when a new pattern (spot feature 
vector) is introduced, the network is able to estimate the a-posteriori class 
probabilities for this pattern, according to the statistical model it has learnt previously 
from the given examples. From these probabilities, a class can be assigned to each 
spot simply by choosing the class with maximum probability. Note that if we 
represent the probabilities and classes at pixel level rather than at spot level, all pixels 
of a given spot will have the same probabilities and class that the entire spot. 

A more detailed description of the learning phase that includes the specific features 
used for the spots is available in [8]. 

3.2   Object Recognition and Tracking 

For object recognition and tracking, another sequence of segmented images showing 
the same objects of interest is required. Furthermore, for each object of interest, its 
approximate location in the first image of the sequence is needed. This information is 
supposed to come as a binary image for each object, where the white pixels represent 
the object and the black pixels represent the background or other objects. These 
binary images are used to set the initial values of both the tracking images and the 
possibility images, as defined in Section 2, equations (1) and (5). For the following 
time steps t=1, 2, ...L, the binary images that represent the approximate positions of 
the objects of interest (tracking images) will be computed as explained later. 

The neural network obtained in the learning phase is applied to all the spots of all 
the images in the recognition sequence. This means that all the spot features must be 
computed previously. From the network outputs, all spots (and their constituent 
pixels) can be classified according to equation (2). 

In order to update the tracking images, first a possibility image is computed for 
each class and time step. The update function f for the possibility image Hc

t (x, y) is 
defined heuristically taking into account the classification of pixel (x, y) given by the  
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neural network, Ct(x,y), and the previous values of the pixel in the tracking image    
Tc

t – 1(x, y) and the possibility image Hc
t-1(x, y). Specifically, we used as function f the 

mapping shown in Table 1. 

Table 1.  Update function for the possibility image Hc
t (x, y). The two shadowed entries 

correspond to impossible cases, since Tc
t-1(x,y)=1  Hc

t-1≥ ½ . 

T c
t-1 H c

t-1 Cc
t =c H c

t 
0 0 No 0 
0 ½ No 0 
0 1 No 0   
0 0 Yes ½ 
0 ½ Yes ½ 
0 1 Yes ½ 
1 0 No 0 
1 ½ No 0 
1 1 No ½ 
1 0 Yes ½ 
1 ½ Yes 1 
1 1 Yes 1 

 
 

Then, this possibility image Hc
t(x,y) is segmented inside a region-of-interest ROIc

t, 
which is estimated from the bounding box BBc

t-1 of the previous tracking image Tc
t-1. 

In order to compute the bounding box of a binary image, such as Tc
t-1, we use the 

method described in [9]. In fact, ROIc
t and BBc

t-1 share the same center and shape, but 
the size of region ROIc

t is determined to be greater than that of BBc
t-1 according to a 

given fixed scale ratio r (e.g. r=1.25) to take into account a possible displacement of  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 2. Dynamic calculation of  Hc

t(x, y) and Tc
t(x, y) 
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the object between consecutive frames. The region of interest ROIc
t is then passed to a 

seed-based segmentation algorithm [10] that yields the next tracking image Tc
t  by 

finding a single connected region of the image Hc
t(x,y), within the limits of ROIc

t, such 
that all their pixels have a possibility value ≥ than a threshold z (e.g. z=½) , where the 
seed pixel is defined as MCc

t-1 , the mass center of  Tc
t-1. 

 

Summarizing, for the each time step t the next processes are carried out sequentially: 
 

1. Calculate the class assignment C 
t(x, y) from the outputs given by the neural 

network when the features of the spot that includes the pixel (x,y) are entered to the 
net. 

2. Compute Hc
t(x, y) from Hc

t-1(x, y), Tc
t-1(x, y) and C 

t., for each class c=1,…,N, using 
the heuristic mapping defined in Table 1.  

3. Calculate Tc
t(x, y) from Hc

t(x, y) and Tc
t-1(x, y), for each class c=1,…,N, by finding 

the region of interest ROIc
t  and applying within it the seed segmentation algorithm 

to Hc
t(x, y). 

These steps are shown graphically in figure 2 for a sequence of time steps. 

4    Experimental Results 

We illustrate our methodology and approach using two sequences of images that 
correspond to the left and right image sequences of a stereo vision system installed on 
a mobile robot. These sequences display an indoor scene where we chose three 
objects of interest (N=3): a box, a chair and a pair of adjacent wastebaskets. The slow 
relative motion of the objects in the sequences is due to the slow motion of the mobile 
robot during its navigation in an indoor environment, and this small displacement of 
the objects is an expected characteristic of the video sequences we are dealing with. In 
our initial work described in [8], only the left sequence was used and only the spots 
inside some predefined ROIs were selected for neural network training and test; a 
cross-validation procedure was followed using 25% of the spots for testing with a 
correct classification performance of around 76%. In a more recent work [11], this 
performance was raised to a 96% by adjusting more accurately the ROIs and to a 99% 
by combining the neural net with a reclassification process based on clustering. The 
performance of the selected neural net on the right sequence was a 90% of correctly 
classified patterns in the same ROIs. 

However, for the test phase, it is somewhat tricky to restrict the object recognition 
to predefined ROIs, since we cannot rely on having the ROIs marked on every frame 
in a realistic experimental scenario. Hence, in the new experiments reported here, the 
same neural network trained from selected ROIs in the left sequence was used, but the 
whole right sequence including all spots was taken for testing both object recognition 
and tracking. A ROI for each object was only defined in the first image to initialize 
the tracking images. To the contrary of the results in [8] and [11], in this work we 
were not so interested in achieving a high spot classification ratio but a sequence of 
tracking images of good quality for each object of interest, as a first validation of the 
methodology proposed in Section 3. 
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Fig. 3. Recognition and tracking results for class 1 (the box) in the first 4 frames of the test 
sequence 
 

 
Figures 3 and 4 illustrate the process depicted in Figure 2 for two of the objects of 
interest (the box and the wastebaskets, respectively) in some consecutive images of 
the test sequence. Using the obtained tracking binary images as a visualization 
mask, the results of tracking both objects on the original images are displayed in 
Figures 5 and 6. It can be observed that the proposed approach obtained rather 
satisfactory results on these images. Similar good results were obtained for these 
two objects in the rest of the sequence, but those for the other object (the chair) 
were not so stable. Concerning the computation time of our current non-optimized 
implementation, the process of recognition and tracking takes about 20 seconds in 
average for each object and frame in a Pentium IV processor at 3.4 GHz with 512 
MB RAM. 
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Fig. 4.  Recognition and tracking results for class 3 (the wastebaskets) in four frames of the test 
sequence 

 
 

 

 

 
 
 

Fig. 5. Tracking of the box on part of the original image sequence 
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Frame   1595             Frame 1596              Frame 1597               Frame 1598  
 
 
 

 
 
 

Fig. 6. Tracking of the wastebaskets on part of the original image sequence 

5   Conclusions and Future Work  

A dynamic iterative approach for object recognition and tracking in video sequences 
has been presented in which a probabilistic model at pixel level (or an approximation 
of it) is updated taking into account both the spot classification given by a trained 
neural net and prior object tracking information from the previous image. In this 
work, possibility images for each object of interest have been updated using a 
heuristic rule instead of applying a fully probabilistic model. 

The use of the dynamic possibility images combined with the tracking information 
allows the gradual discrimination of the pixels classified as belonging to an object by 
the neural network but which do not really belong to it. It also helps to recover object 
pixels that have been classified as belonging to the background by the network but 
that really belong to an object. This can be made because the values in the possibility 
images save information of how the pixels have been classified in previous steps. 
Thus, this helps to decide at each iteration if a pixel belongs to an object or not. The 
experiments carried out have indicated that the proposed approach is viable and can 
provide satisfactory results. 

In a future work, we would like to substitute the possibility images by actual 
probability images and to define the update and decision functions in a more 
principled way. We would also like to reduce the recognition and tracking 
computation time in order to approach the run-time processing. Our final objective is 
to design a robust dynamic approach to object recognition and tracking in video 
sequences based on unstructured sets of spots, which can deal with the variations in 
the object views resulting from the (relatively slow) motion of a mobile robot in an 
indoor environment. 
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Abstract. The k-means algorithm is the most studied and used tool for solving 
the clustering problem when the number of clusters is known a priori. 
Nowadays, there is only one conceptual version of this algorithm, the 
conceptual k-means algorithm. One characteristic of this algorithm is the use of 
generalization lattices, which define relationships among the feature values. 
However, for many applications, it is difficult to determine the best 
generalization lattices; moreover there are not automatic methods to build the 
lattices, thus this task must be done by the specialist of the area in which we 
want to solve the problem. In addition, this algorithm does not work with 
missing data. For these reasons, in this paper, a new conceptual k-means 
algorithm that does not use generalization lattices to build the concepts and 
allows working with missing data is proposed. We use complex features for 
generating the concepts. The complex features are subsets of features with 
associated values that characterize objects of a cluster and at the same time not 
characterize objects from other clusters. Some experimental results obtained by 
our algorithm are shown and they are compared against the results obtained by 
the conceptual k-means algorithm.   

1   Introduction 

The conceptual clustering problem was first addressed in the 80’s by Michalski [1]. It 
consists on finding, from a data set, not only the clusters but also a conceptual 
interpretation of them. Starting from the Michalski’s works several algorithms have 
been developed to solve the conceptual clustering problem. Some of them can be 
found in [2-8]. 

The k-means algorithm is the most studied and used tool for solving the clustering 
problem when the number of clusters is known a priori. The conceptual k-means 
algorithm proposed by Ralambondrainy [8] is the unique conceptual version of this 
algorithm. Then, we are going to focus in this algorithm. 

The conceptual k-means algorithm [8] was developed to solve problems where the 
number of clusters is known a priori. This algorithm consists of two phases: an 
aggregation phase, in which the clusters are built and a characterization phase, in 
which the concepts are generated. In the aggregation phase, the k-means algorithm 
was extended to work with mixed data. In order to solve the mixed data problem, a 
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distance function given as the weighted sum of the Euclidean distance, for 
quantitative features; and the Chi-square distance, for qualitative features was used. 
For applying the Chi-square distance, a transformation of each qualitative feature into 
a set of Boolean features, must be done. The new features are handled as numeric 
features, which is inadequate. Additionally, this distance function does not work with 
missing data. On the other hand, this algorithm uses the same distance function for 
comparing objects in any problem. 

In the characterization phase, a generalization lattice for each feature is required. 
For the qualitative features, it is difficult to determine the best generalization lattice 
for each feature; moreover there are not automatic methods to build the lattices, 
therefore this task must be done by the specialist; while for the quantitative features a 
codification into qualitative features to allow building a generalization lattice is done. 
In addition, the missing data is not taken into account when the generalization lattice 
is built. 

In this paper, we propose a new conceptual k-means algorithm, which allows 
working with mixed and missing data; our algorithm does not require any 
transformation of features neither generalization lattices for the construction of the 
concepts. 

This paper is organized as follows: in Section 2, some basic concepts are given. In 
Section 3, we introduce a new conceptual clustering algorithm. In Section 4, a 
measure to evaluate the quality of the concepts is proposed. The tests made with the 
proposed algorithm are shown in Section 5. In Section 6, a comparison between the 
conceptual k-means algorithm and the proposed algorithm is presented. Finally, in 
Section 7, conclusions and future work are presented. 

2   Basic Concepts 

The goal of this paper is to propose a new conceptual clustering algorithm, such that 
similar objects belong to the same cluster while dissimilar objects belong to different 
clusters. Besides, the concept associated to each cluster should characterize objects of 
the cluster and at the same time not characterize objects from other clusters. The 
complex features [9] are combinations of values for a subset of features such that 
these values appear sufficiently in the objects into a cluster and at the same time not 
appear in the objects outside the cluster. For this reason, they could be used to 
generate concepts. 

The formal outline of the problem is the following:   
Let { }mO,...,OU 1=  be a set of m objects. Each object is described by a set of n 

features { }nx,...,xR 1= . Each feature xi takes values in a set of admissible values, Di, 

i=1,... ,n. The features can be of any nature (qualitative: Boolean, multi-valued, etc. or 
quantitative: integer, real).    

Also, it is assumed that in Di exists a symbol “?” that denotes missing data, so 
incomplete descriptions of objects can be considered.   

For each feature xi, a comparison function iiii LDD:FC →× , i=1,…,n is defined, 

where Li is a completely ordered set. The FCi function is an evaluation of the 
similarity degree between two values of the feature xi. In addition, let 
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( ) [ ]102

1 ,D...D: n →××Γ  be a similarity function, which allows evaluating the 

similarity degree between two object descriptions.  
The conceptual clustering problem consists on structuring the objects in k clusters 

and also generating the concept associated to each cluster. 
As we mention above, the complex features could be used for generating concepts 

because, they are subsets of features with associated values that characterize objects 
of a cluster and at the same time not characterize objects from other clusters.  

In order to obtain the complex features, some subsets of features, Ω, denominated 
support sets are needed. The support sets indicate the parts of the objects where the 
complex features will be searched. These support sets can be obtained in different 
ways. In this paper, the Γ-discriminating, the Γ-characterizing and support sets that 
are Γ-discriminating and Γ-characterizing at the same time are used. 

In the following definitions, ΩO is a subdescription of the object O taking into 
account only the features of Ω. 

1) Γ-discriminating support sets are subsets of features that do not increase the 
similarity among the objects from different clusters and they are defined as 
follows:   
Def. 1: Ω ⊆ R is a Γ-discriminating support set of features if all pairs of objects 
(Oi,Oj) of different clusters satisfy ( ) ( )jiji O,OO,O Γ≤ΩΩΓ , i.e., Ω is a Γ-

discriminating support set of features, if objects in different clusters do not have a 
greater similarity in Ω than in R.  

2) Γ-characterizing support sets are subsets of features that do not reduce the 
similarity among the objects in the same cluster and they are defined as follows:   
Def. 2:  Ω ⊆ R is a Γ-characterizing support set of features if all pairs of objects 
(Oi,Oj) in the same cluster satisfy ( ) ( )jiji O,OO,O ΩΩΓ≤Γ , i.e., Ω is a Γ-

characterizing support set of features, if objects of the same cluster do not have a 
lesser similarity in Ω than in R.    

3) Support sets that are Γ-discriminating and Γ-characterizing at the same time.   

For calculating the support sets, the degree in which each subset Ω satisfies the Γ-
discriminating, Γ-characterizing or both properties, respectively is evaluated. It is to 
say: 

1) For Γ-discriminating support sets, the degree in which the subset Ω satisfies the 
definition of Γ-discriminating support set is evaluated measuring the number of 
pairs of objects in different clusters, such that their similarity in Ω is lesser or equal 
than their similarity in R, as well as how much their similarity values differ in Ω 
and R.  

2) For Γ-characterizing support sets, the degree in which the subset Ω satisfies the 
definition of Γ-characterizing support set is evaluated measuring the number of 
pairs of objects in the same cluster, such that their similarity in Ω is greater or 
equal than their similarity in R, as well as how much their similarity values differ 
in R and Ω. 

3) For support sets that are Γ-discriminating and Γ-characterizing at the same time, 
the degree in which the subset Ω satisfies both definitions is evaluated. This degree 
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is evaluated as the sum of the degree in which the subset Ω satisfies the definition 
of Γ-discriminating support set and the degree in which the subset Ω satisfies the 
definition of Γ-characterizing support set. 

Additionally to the support sets it is also necessary a set of values associated to 
these features, such that these values appear sufficiently in the objects into the cluster 
and at the same time do not appear in the objects outside the cluster. For this reason 
we use the complex features. 

Def. 3: Let { }
pii x,...,x

1
=Ω  be a support set and ( )pa,...,a1  values associated to the 

features 
pii x,...,x

1
 from an object of the sample, then { }

pii x,...,x
1

 and ( )pa,...,a1  form a 

complex feature of the cluster Ai, if and only if:   

1) ( )( )
∈

≥ΩΓ
iAO

ipa,...,a,O β1  

2) ( )( )
∉

<ΩΓ
iAO

ipa,...,a,O λ1  

where βi is the minimum similarity that the objects of the cluster Ai should have with 
the subdescription ( )pa,...,a1  and λi is the maximum similarity that the objects  

outside of the cluster should have with ( )pa,...,a1 . For this work, we used λi = 1, 

because we are interested in obtaining concepts, with the smallest number of complex 
features, that do not recognize objects of other clusters. We tried λi = 0 but there were 
some clusters without any complex feature. Also, we tried λi = 2 and in this case we 
obtained too much complex features. The value of βi is calculated automatically. The 
procedure to calculate βi is the following: Initially, βi is the number of objects in the 
cluster; then βi is decremented taking as value the maximum similarity obtained by 
the subdescriptions that do not satisfy the complex feature definition. Then the 
complex features are computed with the new value of βi; this process is repeated 
while βi > 0. 

3   Conceptual K-Means Algorithm Based on Complex Features  

We will follow the same idea of Ralambondrainy proposing a conceptual k-means 
algorithm in two phases: a clustering phase, in which the k-means with similarity 
functions algorithm (KMSF) [10] is used to obtain the clusters; and a characterization 
phase, in which the complex features are used to generate the concepts.   

3.1   Clustering Phase 

In this phase, the k-means with similarity functions algorithm is used to build the 
clusters. This algorithm allows working with mixed, qualitative and quantitative, 
features defining a similarity function. In this way, the similarity function does not 
require transformations of features as the distance of the conceptual k-means 
algorithm does. Also, the similarity function is usually defined in terms of comparison 
functions, which express how the values of the features are compared. This algorithm 



 Conceptual K-Means Algorithm Based on Complex Features 495 

contrary to the conceptual k-means algorithm (CKM) allows using different functions 
to compare the values of features depending on the problem to solve.  

For example, in this work we use the following similarity function: 

( )
( ) ( )( )
R

Ox,OxFC

O,O
Rx

jsiss

ji
s ∈=Γ  

where ( ) ( )( )jsiss Ox,OxFC  is the comparison function used for comparing two values 

of the feature xs. 
The comparison functions used for the tests were the following: 

i) For quantitative features: 

( ) ( )( ) ( ) ( ) ( ) ( ) ≥−∨=∨=
=

caseotherin

OxOx?Ox?Oxif
Ox,OxFC jsisjsis

jsiss

1

0 σ
 

where σ is the standard deviation for the feature xs. 
ii) For qualitative features: 

( ) ( )( ) ( ) ( ) ( ) ( )≠∨=∨=
=

caseotherin

OxOx?Ox?Oxif
Ox,OxFC jsisjsis

jsiss
1

0
 

Notice that, when a value for the feature is missing then the value is different from 
any other value even from other missing value. 

On the other hand, the KMSF algorithm, selects objects of the sample as centroids 
of the clusters (see details in [10]) instead of the mean, as occur in the modified k-
means algorithm proposed by Ralambondrainy [8].    

3.2   Characterization Phase 

In this phase, the complex features are used to generate the concepts. In order to use 
the complex features, some support sets are needed. In this work, the Γ-discriminating 
(Γd), Γ-characterizing (Γc) and Γ-discriminating and Γ-characterizing (Γd and Γc) 
support sets are used.   

For calculating the support sets, a genetic algorithm was used. In this genetic 
algorithm, each individual represents a support set and it is formed by n genes, where 
each gene represents a feature. A gene takes value 1 if the feature is included and 0 if 
it is not included. This algorithm uses the 1-point crossover operator, it is to say, a 
cross point is selected and starting from it, the information of the chromosomes is 
exchanged. As mutation operator, the uniform mutation is used, it is to say, a gene of 
a chromosome is randomly selected and its value is changed (0 by 1 or 1 by 0). As 
aptitude function, the degree in which a subset Ω satisfies the definition of Γ-
discriminating, Γ-characterizing or both respectively is used. From these sets, those 
that satisfy with the highest degree the Γ-discriminating property, Γ-characterizing 
property or both, respectively, are selected. 

Example: For the sample of Table 1, suppose that after applying the clustering 
phase, the following clusters were obtained: A1={O1,O2 } and A2={O3,O4 }.  

For these clusters, the genetic algorithm obtained the support sets shown in  
Table 2. 
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Table 1. Sample with four objects described by three features 

Features Objects 
Color (C) Weight (W) Shape (Sh) 

O1 Red 20 Round 
O2 Red 25 Round 
O3 Yellow 30 Triangle 
O4 Yellow 35 Triangle 

Table 2. Support sets obtained by the genetic algorithm for the sample of the Table 1 with 
A1={O1,O2 } and A2={O3,O4 } 

Support sets 

Γd Γc Γd y Γc 
{C} {C,W,Sh} 

{C,W} {C,W} 
{W} 

{C,Sh} 
{W} 

Once obtained the support sets, the complex features are obtained applying the 
definition 3. 

In this phase, the similarity function used to calculate the complex features is the 
same one used in the clustering phase. An advantage of using the same similarity 
function in both phases of the algorithm is that the way in which the concepts are 
generated maintains a relationship with the cluster construction. This does not happen 
in the conceptual k-means algorithm, where the comparison used to generate the 
concepts is different from the one used to build the clusters.   

The complex features obtained with the support sets of Table 2 and the dataset of 
Table 1 are shown in Table 3.   

Table 3. Complex features for the example 

 Complex Features for each support set 
Cluster Γd Γc Γd y Γc 

1 

{C}- (Red) 
{C,W} – (Red,20) 
{C,W} – (Red,25) 

{W} – (20) 

{C,Sh}- (Red,Round) 

{C,W,Sh}- (Red,20,Round) 
{C,W,Sh} – (Red,25,Round) 

{C,W} – (Red,20) 
{C,W} – (Red,25) 

{W} – (20) 

2 

{C}- (Yellow) 
{C,W} – (Yellow,30) 
{C,W} – (Yellow,35) 

{W} – (35) 

{C,Sh}- (Yellow,Triangle) 

{C,W,Sh}- (Yellow,30,Triangle) 
{C,W,Sh} – 

(Yellow,35,Triangle) 
{C,W} – (Yellow,30) 
{C,W} – (Yellow,35) 

{W} – (35) 

Afterwards, in order to generate the concepts, a predicate is associated to each 
complex feature. This predicate is built in the following way: to each feature Rxi ∈  

that appears in the complex feature, the associated value ia  is assigned to this feature; 

and for the features Rxi ∈  that do not appear in the complex feature * is assigned. 

The symbol * means “any value is possible”.   



 Conceptual K-Means Algorithm Based on Complex Features 497 

For the example, the predicates formed for the complex features of Γ-
discriminating (Γd) sets of the cluster 1, in Table 3 are:   

P1:  C=Red ∧ W=* ∧ Sh=*   
P2:  C=Red ∧ W=20 ∧ Sh=* 
P3:  C=Red ∧ W=25 ∧ Sh=* 
P4:  C=* ∧ W=20 ∧ Sh=* 

The set of predicates obtained from the complex features can contain two or more 
predicates that recognize the same objects. Therefore, this set of predicates can be 
reduced by eliminating predicates that recognize the same objects than another 
predicate. This reduction is made using the strategy proposed by Ralambondrainy [8] 
that works as follows: first, the predicates are sorted, in a descending way, according 
to the amount of objects that each one recognizes. The first predicate will be part of 
the concept. For the remaining predicates, if a predicate recognizes some objects not 
recognized by the stored predicates, then it is added to the concept; otherwise it is 
eliminated. The concept is formed by the disjunction of the stored predicates.   

For the example, the concepts obtained after the reduction process are shown in 
Table 4.   

Table 4. Concepts obtained for the example 

Kind of support set Cluster Concept 

Γd 
1 
2 

C = Red 
C = Yellow 

Γc 
1 
2 

C = Red ∧ Sh = Round 
C = Yellow ∧ Sh = Triangle 

Γd y Γc 
1 
2 

C = Red ∧ W = 20 ∧ Sh = Round 
C = Yellow ∧ W = 30 ∧ Sh = Triangle 

4   Quality Measure 

In 1995, Ralambondrainy proposed to take as a quality measure, the percentage of 
objects in the cluster that are recognized by the concept. However, we consider that it 
is also necessary to take into account the objects outside of the cluster that are 
recognized by the concept. Therefore, we propose the following quality measure:   

( ) ( )
( ) ( )= +

=
k

i ii

i
k CmplescounterexaCtotal

Cexamples

k
C,...,Cquality

1
1

1
 

where: 
k  is the number of clusters. 

Ci   is the concept associated to the i-th cluster, i = 1,…,k. 
examples(Ci)  is the number of objects into the i-th cluster, which are 

recognized by the concept Ci. 

counterexamples(Ci)  is the number of objects outside of the i-th cluster, which 
are recognized by the concept Ci. 

Total(Ci)  is the number of objects in the i-th cluster. 
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This function obtains higher values if the number of examples recognized by the 
concept increases and the number of counterexamples recognized by the concept 
decreases. The function obtains 1.0 when the concept recognizes all the objects in 
the cluster and it does not recognize any object outside the cluster, which is the 
ideal case. 

For the example, the quality of the concepts obtained with each kind of support 
sets (see Table 4) is:   

1) for the Γ-discriminating sets = 1.0   
2) for the Γ-characterizing sets = 1.0   
3) for the Γ-discriminating  and Γ-characterizing sets = 1.0   

5   Experimentation 

The CKMCF algorithm was applied on different supervised databases taken from the 
UCI repository [12].   

For selecting the support sets, we did tests using different number of iterations: 10, 
20 and 30, and different number of individuals: 5, 10, 20, 50, 100 and 500. We 
obtained the best results with 10 iterations and 500 individuals. In Table 5, we show 
only the results obtained with the genetic algorithm with 10 iterations and 500 
individuals, using the three kinds of support sets. 

Table 5. Results obtained with the CKMCF algorithm using three kinds of support sets 

Conceptual K-means algorithm based on Complex Features 
  Γd Γc Γd and Γc 

Databases No. 
clusters 

No. 
predicates 

Quality No. 
predicates 

Quality No. 
predicates 

Quality 

Autos_mpg 3 29 0.69 29 0.69 29 0.69 
Credit 2 86 0.99 79 1.00 184 0.99 

Diabetes 2 63 0.72 62 0.72 64 0.72 
Electro 3 31 0.95 32 0.97 35 0.95 
Glass 6 23 0.99 23 0.95 23 0.98 
Hayes 3 32 1.00 31 1.00 32 1.00 

Hepatitis 2 69 0.75 58 0.95 59 0.87 
Import85 6 97 0.65 60 0.87 104 0.94 

Iris 3 5 0.93 5 0.93 5 0.92 
Lenses 3 5 1.00 5 1.00 5 1.00 

Tae 3 24 0.98 24 0.98 24 0.98 
Zoo 7 28 1.00 19 1.00 27 1.00 

Average  45.9 0.89 41.1 0.88 52.5 0.92 

In Table 5, we can observe that the results obtained with the different kinds of 
support sets, in most of the cases, are very similar. Therefore, we can use any of these 
support sets for obtaining good quality concepts. For the Hepatitis and the Import85 
databases, we obtained lowest quality concepts using Γ-discriminating sets (see 
Figure 1).  
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Fig. 1. Comparison among the three kinds of support sets for the CKMCF algorithm 

6   Comparison Between the CKM and the CKMCF Algorithms 

In this section, a comparison between the conceptual k-means (CKM) [8] and the 
conceptual k-means based on complex features (CKMCF) algorithms is presented. In 
Table 6, the results obtained by both algorithms are shown. 

Table 6. Results obtained with the CKMCF and the CKM algorithms 

CKMCF 
Γd Γc Γd and Γc 

CKM 
Databases No. 

Clusters No. 
Pred Quality No. 

Pred Quality No. 
Pred Quality No. 

Pred Quality 

Diabetes 2 63 0.72 62 0.72 64 0.72 307 0.90 
Glass 6 23 0.99 23 0.95 23 0.98 39 0.84 
Hayes 3 32 1.00 31 1.00 32 1.00 26 0.97 

Iris 3 5 0.93 5 0.93 5 0.92 17 0.90 
Lenses 3 5 1.00 5 1.00 5 1.00 13 1.00 

Tae 3 24 0.98 24 0.98 24 0.98 13 0.96 
Zoo 7 28 1.00 19 1.00 27 1.00 13 0.99 

Average  25.7 0.88 24.1 0.95 25.7 0.94 62.13 0.94 

Comparing the results obtained with the CKMCF and CKM algorithms, we can 
observe that, with the Diabetes database the CKM algorithm was better than the 
CKMCF algorithm. However, for the rest of databases the CKMCF algorithm obtains 
concepts with better quality than the concepts obtained by the CKM algorithm (Figure 
2). In Table 6, we can see that, in average, the set of predicates obtained by the 
CKMCF algorithm is smaller than those obtained by the CKM algorithm, then the 
concepts obtained by the CKMCF algorithm are shorter and easier for handling than 
those obtained by the CKM algorithm.  

We compared the CKMCF and the CKM algorithms using only six databases from 
those used in the previous section (see Table 5) since for the Autos_mpg, Credit, 
Electro, Hepatitis and Import85 databases was not possible to apply the CKM 

Γc 
Γd 
Γd and Γc 
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algorithm because these databases contain missing data, which cannot be processed 
by the CKM algorithm. 
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Fig. 2. Comparison between the CKMCF and the CKM algorithms 

7   Conclusions and Future Work 

In this paper, the conceptual k-means algorithm based on complex features (CKMCF) 
for solving conceptual clustering problems when the number of clusters is known a 
priori was proposed. 

We consider that the CKMCF algorithm is a good alternative for the solution of 
conceptual clustering problems, because this algorithm allows working with mixed 
and missing data without any transformation of features; the centroids of the clusters 
are objects of the sample instead of elements that cannot be represented in the same 
space of the sample. Also, this algorithm does not depend on generalization lattices.  

Based on the experimental results, we can observe that the CKMCF algorithm 
obtains very similar results with the three kinds of support sets. Then we can use any 
of these support sets for obtaining good quality concepts.  

From the comparison between the CKMCF and the CKM algorithms we could 
observe that, in most of the cases, the CKMCF algorithm obtains better quality 
concepts with smaller set of predicates than those obtained by the CKM algorithm. 
Even though the number of predicates was decreased, the concepts of the clusters are 
formed by many predicates then as future work we will propose some modifications 
in order to generate smaller concepts. 
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Abstract.  In this paper, we propose the use of a knowledge based system, 
which has been implemented in SWI-Prolog to approach the automatic 
description of spatial data by means of some logic rules. The process to 
establish the predicates is based on the topological and geometrical analysis of 
spatial data. These predicates are handled by a set of rules, which are used to 
find the relations between geospatial objects. Moreover, the rules aid the 
searching of several features that compose the partition of topographic maps. 
For instance, in the case that any road intersects with other, we appreciate that a 
connection relation exists between different destinies, which can be accessed by 
these roads. Furthermore, the rules help us to know each possible access for this 
case. Therefore, this description assists in the tasks of geospatial data 
interpretation (map description) in order to provide quality information for 
spatial decision support systems. 

1   Introduction 

The technique of knowledge-based systems consists of manipulating the information 
to support human decision-making, learning and action. Such systems are capable of 
cooperating with human users and so the quality of support given, as well as the 
knowledge representation (the information quality) are important issues to consider 
when developing such systems. 

Through pattern recognition, the process of acquisition of spatial data is automated, 
which is generally stored in raster or vector format, being this last one the most useful 
to make topological and geometrical analysis from which spatial knowledge is 
acquired. It is necessary to count with a correct representation of this knowledge to 
assist to understand, manage and share information of a spatial domain region.  

Expert systems are attempting to introduce human knowledge about problem 
solving into computer software. The general objective is to emulate the problem-
solving capabilities of the human expert [1]. Traditionally, expert systems were 
employed to aid on specific domain tasks, and its solution set was delimited by the 
knowledge base that constitute them, which could not be extended to other related 
domain tasks without reengineering the database. Knowledge based systems (KBS) 
extend this principle by allowing new knowledge to be inferred from the existing one 
adding it to the database.  
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In this paper, we propose the use of a KBS, which has been implemented in SWI-
Prolog to approach the automatic description of spatial data by means of some logic 
rules. The process to establish the predicates is based on a topological and 
geometrical analysis of the spatial data to find some basic properties. These predicates 
are handled by a set of rules, which are used to find the relations between geospatial 
objects. Moreover, the rules aid the searching of several features that compose 
topographic maps. The focus is on development and execution of knowledge-based 
“micro systems”, specialized for a specific region (case study) by means of logic 
predicates, built in a pattern recognition process. These predicates compose the 
knowledge base and are used by “universal” rules that infer new knowledge for the 
domain of topographic maps.  

For instance, in the case that any road intersects with other, we appreciate that a 
connection relation exists between different destinies, which can be accessed by these 
roads. Furthermore, the rules help us to know each possible access for this case and 
this knowledge is valuable for the tasks of geospatial data interpretation (map 
description), in order to provide quality information for spatial decision support 
systems.  

Because we manage “basic data” obtained by means of a pattern recognition 
process and rely on that data to generate knowledge, we are convinced of its 
importance on the automation of task and data manipulation. 

The rest of the paper is organized as follows. In section 2 we present an overview 
related to knowledge-based systems (KBS), their importance on AI’s research and 
how we address the issues of knowledge representation, acquisition and processing. 
Also we show a brief example on how spatial knowledge can be derived through 
PROLOG’s inference capabilities and what kind of information composes of the 
knowledge base. Section 3 contains the algorithm and logic that we use as the 
workforce toward generating the map description, and also a brief example of a 
description generated so far with the KBS developed. Our conclusions are outlined in 
section 4. 

2   Why Knowledge-Based Systems Are Important? 

Knowledge is of paramount importance, and AI research has shifted its focus from an 
inference-based paradigm to a knowledge-based paradigm. Knowledge is viewed as 
consisting of facts and heuristics. The facts constitute a body of information that is 
widely shared, publicly available, and generally agreed-upon by experts in a field. 
The heuristics are most private, little-discussed rules of good judgment (rules of 
plausible reasoning, rules of good guessing) that characterize expert-level decision 
making in a field [9]. “…however, this does not restrict the knowledge base to a 
traditional ES (Expert System) approach but it could include more indirect forms of 
knowledge representation” [1]. Heuristics are also embedded into the process of 
pattern recognition and in the results obtained by such algorithms.  

Three major research issues of AI’s knowledge-based paradigm are grouped as 
issues of knowledge representation, knowledge utilization, and knowledge acquisition 
[9]. In this paper, we specify how we approach these issues to obtain the automatic 
spatial data description by means of a knowledge-based system (KBS). 
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2.1   Knowledge Representation 

Since we use SWI-Prolog as the platform to develop our KBS, it is necessary to build 
the knowledge in the form of predicates or facts about the spatial data. We propose to 
use these facts to generate a description of the spatial data. 

2.2   Knowledge Utilization  

The knowledge is used as first order logic statements that help us to discover, by 
means of inference procedures, more advanced (or complex) relations that topologic 
and geometric analysis are not aware of because they are out of their scope at 
runtime. 

With that, we would like to state that even when we still use inference to acquire 
new knowledge about spatial relations among the objects that compose a map (the 
spatial data). There is an interesting twist on the way the basic knowledge base is 
constructed; instead of a human expert being the one who inputs the knowledge, this 
is acquired by the automatic process of topologic and geometric analysis (a kind of 
pattern recognition), which is done to a map, whose in turn, uses heuristic methods to 
obtain this information. 

How logic rules can help to describe spatial data? Logic rules are formed by two 
elements: facts and a consequence. The consequence is considered true if all the facts 
that the rule needs to prove turn out to be true (see Fig. 1). 

 
 
 
 
 
 

 

Fig. 1. Methods to express rules. a) From the traditional way. b) To the PROLOG way. 

In Fig. 1 1a) we note that the traditional way is a series of facts (or just a single 
fact) that triggers a consequence. In PROLOG 1b) we search for all those facts (they 
must be in the knowledge base, so they can prove to be true) so if and only if every 
fact proves true then the rule is said to be true [12]. This reveals a new fact, we did 
not know, but always existed implicitly in the knowledge base, we could add this new 
knowledge explicitly to the knowledge base to aid on more advanced inferences. That 
is the very essence of a KBS. 

In Fig. 2, we used first order logic predicates together with the topological relations 
of the 9-intersection model [6][7], because in this model two spatial objects ‘A’ and 
‘B’ share a topological relation, we can group and compare them (even as a single 
entity) with other objects that have the same relation (and different ones) and make 
more complex analysis. 

‘fact’ -- > ‘consequence’

IF {fact is true} 
THEN {consequence}

new_fact :-     /* rule or consequence */
fact_1,    /* Facts to be proved */
…,
fact_n.

a) b)
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If A contains B then B is inside A
also 
if C contains B 
then we conclude that
C contains A or that A is inside C

 

Fig. 2. Example of a inference process, in which a topological relation between A and C is 
discovered, by means of a common relation they both share with B 

2.3   Knowledge Acquisition 

Straight from topologic and geometric analysis [10][11][13], we can automatically 
construct a knowledge base containing the following basic facts about the spatial 
objects that compose a map: 

• Topologic relations: disjoint, meet, overlap, coveredBy, covers, contains, inside, 
equal. 

• Relative directions: north, south, east and west [8]. 
• Geometric measures: area, perimeter, distance, large… 
• Type attribute: area, line, point. 

If the map is already classified into a spatial database, we can import the following 
elements: 

• Theme attribute: road, population, hydrological, land type … 
• Descriptive attribute: name … 

Although there are many possible advanced ‘functions’ or ‘rules’, we would like to 
have in the inference engine of the KBS, we concentrate on a few and we think that 
they are the most useful to describe a map such as Fig. 3, which is very important to 
consider in the following sections. 

 

Fig. 3. Case study map for testing a KBS spatial data description. This map1 is composed of 13 
objects: 4 areal, 6 linear and 3 punctual. They are organized on 4 themes: Population, Hydrology, 
Roads and Soil. 

                                                           
1  The legend of the map shows the geospatial objects types of each thematic, in this case they 

are 11 representations. However the map is composed of 13 objects, because it has 2 rivers 
(R1, R2) and 2 villages (Vi1, Vi2). 
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Interconnects() – Returns those spatial objects that constitute urban places or 
‘destinies’ like villages, towns and cities, that are related (or can be reached) to an 
object that suggests some kind of communication as roads, highways and freeways. 

We shall note that the logic of this relation can be extended to search for 
interconnections of objects of the same theme, such as body of water objects are 
connected by rivers, or even connections among the nodes of river networks. For 
example, the following PROLOG query: 
 

 interconnects(fw3, Ans). 
should return: 
 Ans = vi1 
 Ans = vi2 
 Ans = ct1 

 

It turns out that with this information added to the knowledge base, we could 
generate the following rule: 

Destinations() – Returns all those ‘destinies’ that can be reached from one place by 
any number of ‘roads’ that intersects between them, which turns out to be the ‘cross 
product’ of all the destinies that interconnects each of those ‘roads’. Since the 
highway Hw2 interconnects with town Tw1 and intersects the freeway Fw3 the query 
is the following: 
 

 destinations(ct1, Ans). 
should return: 
 Ans = vi1 
 Ans = tw1 
 Ans = vi2 

 

A more general rule, mainly used for debugging the knowledge base construction 
is: 

What_Relation() – This rule returns true for all the relations that the knowledge base 
states between two specified objects. For this purpose, it is necessary to prove each 
rule seen so far, from the basic to the derived ones, so special care should be taken to 
include in the code every new rule generated or derived. For example the query: 
 

 what_relation(r1, bw1). 
should return: 
 connects = yes. 
 south = yes. 

 

Even though the last rule was conceived for debugging purposes, we can use the 
information provided to construct a rule called: 

Explain() – It mentions everything that we know (that is in the knowledge base) about 
a spatial object. For instance, how it is related to other objects (topology), its name, 
classification attributes as type (line, point, area), also its theme: {[Roads(freeway, 
highway,…)]; [population(city, village, town,…)]; [hydrological(body of water, river, 
drainage,…)]; [land(grassland, forest, breach,…)]} and its metrics, if we have such 
information. The query is: 
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 explain(bw1). 
should return: 
 type = area 
 theme = hydrological 
 is_a = body of water 
 inside = vg1 
 covered_by = vg1 
 meet = vg1 ; meet = r1 
 north_of = hw2 ; north_of = r2 ;  
 north_of = d1 ; north_of = ct1 
 west_of = br1 ; west_of = vi2 ;  
 west_of = tw1 ; west_of = vi1 ;  
 west_of = ct1 

 

It should be obvious that, while all the basic predicates or facts in the knowledge 
base are generated through topological and geometrical analysis and some more 
advanced facts are inferred through rules, is this last rule along with the algorithm 
explained in the following section, the workforce of the map description generation. 

3   Map Description Process 

Verbal descriptions of spatial situations are frequently ambiguous and may easily lead 
to misinterpretations, because geographic concepts are often vague, imprecise, little 
understood, or not standardized [2]. 

Experiments in psychology and cartography showed that topology is among the 
most critical information people refer to when they assess spatial relationships in 
geographic space, while metrical changes are frequently considered to be of lesser 
importance. This is based on the premise topology matters, metrical refines. In [2] 
referring to [4, 5]. 

For this reason, we only consider topology characteristics for the “first levels” of 
spatial descriptions, which involve the metrics only for those spatial objects that are 
selected to be of relevance, as in the rule (early in detail): 

 

explain(object). 

3.1   The Description Generator Algorithm 

The KBS constructs sentences about the spatial state of the map and the relations 
between spatial objects that constitute it, in such a way that this knowledge generated 
as sentences can be looked out on a search by exact word match.  

The description is generated considering the following algorithm: 

1. Start from the ‘leftmost’ spatial object at the top and work to the right toward 
the bottom of the map. 

2. For each spatial object:  
3. Describe its type, theme and name. 
4. Describe its topological relations in order of similitude (more on this later…) 
5. IF the description level > 1 AND we have metric data, describe it. 
6. Search the object to the east with which it has the following topological relation, 

in order of importance: 
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• Overlap. 
• Meet. 
• Disjoint. 

7. Set it as the new work object and repeat from the step 3. 
8. If there is no object to the east, look for objects to the south considering 

conditions in the step 6 
9. Repeat from the step 2 
10.If there are no more objects to the east and south, end. 

In the step 4, we use the “Conceptual neighborhood graph of the eight region-
region relations” [3] shown in Fig. 4 to determine the order in which the elements of 
description should appear, basing on the importance and similarity of topological 
relations. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Conceptual neighborhood graph of the eight region-region relations. It states the 
similitude between the binary topological relations. 

This procedure produces the following map description: 
 

[a body of water](bw1) inside [a forest](vg1) connects  
[a river](r1) {to the east} disjoint [a breach](br1).  

[a forest](vg1) inside [a grassland](vg2) contains [a 
body of water](bw1) contains [a breach](br1) contains 
[a river](r1) contains [a river](r2) covered by [a 
grassland](vg2) meets [a freeway](fw3) intersects [a 
highway](hw2) 

[a grassland](vg2) contains [a river](r1) contains [a 
river](r2) contains [a forest](vg1) contains [a 
village](vi2) contains [a freeway](fw3) contains [a 
highway](hw2) contains [a town](tw1) contains [a 
village](vi1) contains [a drainage](d1) contains [a 
city](ct1)  

. . . 
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4   Conclusions 

In this paper, we propose a set of logic predicates that state some basic characteristics 
of spatial objects, which can be generated after some pattern recognition analysis such 
as topology, relative direction, and geometric measures.  

In addition, we propose automatic methods based on the measures above 
mentioned, to construct the knowledge base. These predicates or facts can be 
managed by rules to infer new knowledge that reveals more sophisticated relations 
that typical analysis are not aware of, or are out of their scope. With this information, 
it is possible to automatically generate richer descriptions that make sense of the map 
as it ‘explains’ more attributes about each spatial object. The rules presented are 
“universal” in the sense that they can be used for any given map to generate its 
description as long as its predicates are formed in the same way suggested in this 
work. 

The advantages of this approach is that the analysis and inference processes are 
executed only once for each map, since the new knowledge is stored on the 
knowledge base, which is the foundation to make more complex analysis and generate 
richer descriptions. Also, this approach is used to share new data and provide them 
for spatial decision support systems.  

Future works are related to allow us changes on the map at runtime in order to 
update the knowledge base, which should reflect the new state of the relations 
between the spatial objects of the map. 
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Abstract. Recently, due to technical improvements of storage devices and net-
works, the amount of data increases rapidly. In addition, it is required to find 
the knowledge embedded in a data stream as fast as possible. Data stream is in-
fluenced by time. Therefore, the itemsets which were not the frequent itemsets 
can become frequent itemsets. The volume of data stream is so large that it can 
hardly be stored in finite memory space. Current researches do not offer appro-
priate method to find frequent itemsets in which flow of time is reflected but 
provide only frequent items using total aggregation values. In this paper we 
propose a novel algorithm for finding the relative frequent itemsets according to 
the time in a data stream. We also propose a method to save frequent items and 
sub-frequent items in order to take limited memory into account and a method 
to update time variant frequent items. By applying the proposed technique, we 
can improve the accuracy of searching for a change in the frequent itemsets ac-
cording to the time in a data stream. Moreover, it will be able to use the limited 
memory space efficiently and store all frequent itemsets. 

Keywords: Data Stream, Frequent Itemsets, Data Mining. 

1   Introduction 

Recently, due to technical improvements of storage devices and network develop-
ments, data continues to increase in a very short time. Huge amount of data, for ex-
ample, have been generated in many fields of applications, such as network invasion 
detection, sensor network and e-commerce. Many efforts have been made to extract 
valuable information from such application environments. One of the key realms of 
research is to extract information from data streams through a data mining method.   

A data stream is data that continues to be inputted at high speed.  In data streams, 
data continues to increase at high speed. So, there are two requirements for dealing 
with data streams by a data mining method. 

First, since it is impossible to store large increments of data in a limited space, a 
new method is required to efficiently store data without losing information by using 
memory space flexibly. 

Second, it is imperative to generate mining results at request because data streams 
generate large amounts of data in a short time period and the result of mining must be 
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output immediately. This implies that the mining result must be generated by one 
reading of each transaction of data streams.[3] 

One of the most fundamental challenges of data streams is to find frequent itemsets 
[4].  The conventional data mining method takes a lot of time and memory because it 
initially reads off from static transactions to compose candidates for frequent itemsets, 
and then searches for items that have values higher than the defined threshold. 

In data streams, items that weren't regarded as frequent itemsets can be converted 
over time. Thus, it is necessary to update actively and store the frequency of each 
item. In addition, all unit items cannot be stored because of continuous inputs of too 
much data in data streams, which makes it improper to apply the conventional data 
mining method. Many researchers come up with new algorithms that can search for 
frequent itemsets in data streams [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. 

Frequent itemset searching methods in data streams, however, can't guarantee the 
reliability of the search because they merely aggregate and search for frequent item-
sets or find them within a time, or a range, after randomly setting a certain size of 
sliding window.  In addition, they again aggregate the total frequent itemsets as time 
goes by, which results in failure to demonstrate efficiently current changes in frequent 
itemsets and overlooks frequent itemsets converted over time. 

To solve these problems, this paper proposes a new mining method which searches 
for frequent itemsets more efficiently, taking into account time in data streams.   

This paper has 5 sections including the introduction.  Section 2 describes related 
works and section 3 proposes a method to search for frequent itemsets. Performance 
of the proposed method is evaluated in section 4 through various experiments.  Sec-
tion 5 gives the conclusion and suggestions for improvement. 

2   Relate Works 

Conventional data mining methods search frequent itemsets by searching max item-
sets with a support higher than the predefined minimum support, which were derived 
by simple searching transactions of the database. Most of algorithms on frequent 
itemsets are based on the principle of Apriori [1]. This principle states that all subset 
of frequent itemsets must also be frequent itemsets. When a frequent itemset has a full 
rank of n, the Apriori algorithm searches up to n+1 to generate candidate sets and 
then begins to search a frequent itemset. Therefore, the Apriori algorithm requires a 
big memory and a lot of time due to repetitive database searches.  

On the other hand, the FP-growth using a divide-and-conquer method does not 
generate candidate sets [8].  

FP-growth is very efficient in mining either long or short frequent itemsets and has 
a feature of expandability. It also proves to be much faster than the Apriori algorithm. 
But, both methods must search data sets more than once and must re-search the whole 
database every time whenever a new transaction takes place. Moreover,  when a data 
set continues to increase at a fast pace, performance drops due to a limited memory.  

Data is being generated very quickly due to advanced storage devices and network 
development. These data are called data stream. Many researchers are studying fre-
quent itemset searching methods in data streams [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].  
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The Count Sketch algorithm focuses on frequency of unit items in data streams [4], 
and the Lossy Counting algorithm searches for frequent itemsets in data streams only 
when a minimum support and a maximum allowable error are given [9]. These algo-
rithms only focus on finding the frequent itemsets without taking account of time.  

The Moment algorithm, which can search for not only frequent itemsets in a slid-
ing window using limited available memory, but also items close to frequent itemsets. 
This algorithm uses a tree structure similar to a prefix tree known as CET (Closed 
Enumeration Tree) [6]. CET stores maximally frequent itemsets, frequent itemsets 
and approximate frequent itemsets. Thus, it can recognize the changes in frequent 
itemsets over time and search for frequent itemsets managing the memory efficiently.  

The FP-stream algorithm is a revision of the FP-growth algorithm to better fit for 
data streams [7]. This algorithm classifies data sets into a frequent itemset, a sub fre-
quent itemset and a non-frequent itemset by using a minimum support and maximum 
allowable errors. It uses a Pattern tree and a tilted time window. Also, it accumulates 
frequent itemsets up to the current point by storing them in a pattern tree and utilizing 
a fixed window, a tilted time window and recognizes the latest changes in frequent 
itemsets efficiently. However, unfixed frequent itemsets are difficult to search for 
since it uses only fixed time slots.  

3   Frequent Itemset Search in Data Streams 

3.1   Searching for Relatively Frequent Itemsets 

In data streams, data continues to accumulate at a fast rate. This is why the data can-
not be stored in a conventional way. Also, a data stream is affected by time, changing 
the frequent itemset over time. Therefore Non-frequent itemsets can't be discarded or 
overlooked. To resolve such problems effectively, we classifies data into 3 groups, 
frequent itemsets, sub frequent itemsets, and non-frequent itemsets, by using a prede-
termined minimum support and maximum support error, as in the FP-stream[7] algo-
rithm. The FP-stream algorithm uses fixed time window, but our method uses unfixed 
time window due to find relative frequent itemset. If the frequency is greater than the 
minimum support value, it is considered a frequent itemset. When the frequency is 
below the minimum support value but has a greater error than the predetermined 
maximum error, it is classified as a sub frequent itemset. Data is disregarded when it 
has less value than the maximum support error. 

The conventional methods search frequent itemsets only by comparing the aggre-
gate values between frequent itemsets and sub frequent itemsets. Hence, time-
sensitive and relatively frequent itemsets cannot be accounted for. This implies a 
necessity of a method to take account of items with a relative frequency of appearance 
higher than the currently frequent itemsets, even though a value aggregated up to now 
is smaller than the currently frequent itemsets. Therefore, we define the relatively 
frequent itemsets as follows: 

A relatively frequent itemset is defined as a set of items having a frequency smaller 
than total frequency of the currently frequent itemsets but greater than current fre-
quency (not total frequency) of the currently frequent itemset, f refers to the currently 
frequent itemset. 
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Table 1. Elements of relative frequent itemset 

Symbol Mean 

N Total number of transactions 

m Number of consecutive transactions 
f A frequent itemset 

th  Time that occurs t’th transactions 

tT  t’th transaction 

tR  Relative Frequent itemset at time of t’th transactions 

)(xAi  Appearance function of x in i’th transactions 

)(xF  Frequency of item x 

)(, xC tm  Interval of appearance of item x with fixed m and time t’th trans-
actions 

)(, xE tm  Relative frequency of item x with fixed m and time t’th 
transacions 

   

)}()(  ),()(|{ ,, fExExFfFxR tmtmt >>=  (1) 

A relative frequency can be regarded as the number of consecutive transactions (m) 
divided by the sum of differences among intervals of appearances. This is the starting 
point of finding the relatively frequent itemsets. 
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Also, a frequency is an aggregate value of appearance of a specific item in con-
tinuous transactions. 

=

=
N

i
i xAxF

1

)()( ,  
otherwise

Tx
xA i

i

∈
=      

0

1
)(  (3) 

Also, the difference of each interval of appearance is meaningful in such that it can 
determine the time when relatively frequent itemsets exist. It represents a time differ-

ence between its current appearance time and the previous appearance time. The ty   

implies the point of time when a transaction tT  containing item x happens. 

We examine relative frequent itemsets based upon the abovementioned materials.  
Figure 1 depicts the concept of relatively frequent itemsets.  Where each x, y, z  is a 
frequent itemset with a value greater than the minimum support or a sub frequent 
itemset with a value smaller than the minimum support but greater than the maximal 

support error, and each dot on the arrow is the frequency. tT  stands for transactions 

up to now. Here, window size is user-defined because window size effects the result, 
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also, the window not overlapped previous that. In the first row x, we see that the fre-
quency is 28, the highest among the three, implying a frequent itemset. The second 
and third rows are sub frequent itemsets. By examining Figure 1, we see that the first 
item shows high frequency in the early period but is dispersed gradually as time goes 
by. The second row shows a sharp increase in frequency in the middle of the row. 
Seemingly, it makes more sense to designate the second item as the frequent itemset 
in this specific time period since it appears more frequently than the past, and even 
more than the first item which is the currently frequent itemset. Thus, the second item 
becomes the relatively frequent itemset compared to the first item in the middle part 
of the time period. 

 

 

Fig. 1. Concept of relative frequent itemset 

The important point here is to find the time when it begins to become a relatively 
frequent itemset. Therefore, this study suggests a standard for relatively frequent 
itemsets as follows: 

 

1. A relative frequency must be greater than the relative frequency of frequent 
itemsets. 

 )()( ,, xEfE tmtm <  (4) 

2. The appearance time of a relatively frequent itemset is the interval from the 
time(a) to the time(b). a is the latest time at which the currently relative frequency is 
larger than the just previous relative frequency. b is the latest time at which the cur-
rently relative frequency is less than zero. 

baxExExExE bmbmamam >>≤ −−   ,)()(  , )()( ,1,,1,  (5) 

That is, it is the time period when a relatively frequency of frequent itemsets be-
comes higher and the interval between each appearance has becomes very short, com-
pared to the frequent itemset. This study takes the relative frequencies only to tenths 
for generalizing the numbers and easing the calculation process. 

3.2   Storing Method Using the FP-Tree Algorithm 

In this section, we suggest an efficient storing method using the FP-Tree algorithm of 
a prefix tree structure that can maintain and manage all frequent itemsets and rela-
tively frequent itemsets within a limited memory. 



516 T.-S. Park et al. 

As stated earlier, a data stream is assumed to be an infinite set of data.  It follows 
that all data cannot be stored.  Hence, the FP-Tree stores only three kinds of key rele-
vant information, items, frequency and TID, to maintain and manage frequent  
itemsets and relative frequent itemsets efficiently. Here, items mean either frequent 
itemsets or relatively frequent items, and frequency refers to the total number of ap-
pearance of such items. TID refers to the current transaction id, which is used to 
measure the starting point of a relatively frequent itemset. 

The FP-Tree algorithm has four main steps, each of which is reiterated when a new 
transaction is added.   

The first step is a phase where data stream transactions are searched to update the 

frequency of each item. The total dataset NS   is incremented by 1 when a new trans-

action occurs. The frequency and TID values are updated when items appearing in 
such a new transaction happen to exist in a node of FP-Tree. 

The second step is a phase where a sub frequent itemset is added. When there is no 
node in the FP-Tree corresponding to the items that appear in the new transaction, 
items with a value smaller than the minimum support but greater than the maximum 
support error are added to the FP-Tree node as sub frequent itemsets. Those with 
errors smaller than the maximum allowable error are discarded in that it has little 
chance to become frequent itemsets. It results in less performing time because it uses 
less memory and reduces a process to insert new nodes to the FP-Tree. 

The third step is searching for the currently frequent itemset. Upon users' request, 
this step outputs those items’ information, items, frequency and TID, with the greatest 
total frequency up to now and a support more than the minimum support value. 

The fourth step is searching for the relatively frequent itemset. When the relative 
frequency of a frequent itemset becomes bigger, that is, when the intervals become 
much shorter, searching items that appear relatively more frequently than the current 
frequent itemset starts at this step.   

This method guarantees reliability and accuracy by searching not only the currently 
frequent itemset but also the relatively frequent itemset which can be easily over-
looked, moreover, it can efficiently utilize the limited memory because it holds only 
three kinds of information, items, frequency and TID. 

4   Test and Evaluation 

Our algorithm was written in C and compiled using gcc. The stream data was gener-
ated by the IBM test data generator [1]. Generated datasets are T10.I4.D1000K and 
T15.I6.1000K, where the numbers denotes the average transaction size (T), the aver-
age large itemset size (I) and the number of transactions respectively. 

The experiment evaluated the accuracy and memory space of the proposed method 
in comparison with Lossy Counting algorithm [9]. Jeffrey Xu Yu’s method is using 
less memory than Lossy Counting algorithm[10]. James Cheng’s method runs faster 
than Lossy Counting algorithm[5]. Figure 2 shows the results of this experiment. 

The Lossy counting algorithm using a minimum support finds frequent itemsets 
through the aggregation. Therefore if the number of transactions is small, then the 
accuracy of the Lossy counting algorithm is low. On the other hand, the proposed 
method finds frequent itemsets with relative frequent itemsets as time goes by.  
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Although the number of transactions is small, the proposed method achieves better 
accuracy than the Lossy counting algorithm. As the number of transactions increases, 
the accuracy of both methods is getting higher because transactions include more 
frequent itemsets. 

 
(a) (b) 

Fig. 2. The result of experiment according to the accuracy and memory space; a) Accuracy 
according to the number of transactions, b) Memory size according to the number of transac-
tions 

Fig. 2 (b) shows the memory size according to the number of transactions. Above 
all, we must find the optimal minimum support value. Because too low minimum 
support value leads to a wide range of permission for frequent itemsets and too high 
minimum support value leads to a narrow range of permission for those. Here, mini-
mum support value sets 0.3 according to our experiments. In the proposed method, 
the FP-Tree stores only three kinds of key relevant information, items, frequency and 
TID, to maintain and manage frequent itemsets and relative frequent itemsets effi-
ciently. Therefore, it is clear that the proposed method uses less memory space than 
the Lossy counting algorithm. 

As shown above, we can see that the proposed method find the frequent itemsets 
more accurately and our method is able to compute all frequent itemsets using less 
memory than the Lossy Counting algorithm. 

5   Conclusion 

One of the most fundamental problems in data streams is how to search frequent item-
sets generated from the stream. The frequent itemsets change because the stream itself 
is affected by time. Therefore Non-frequent itemsets can not be discarded. Data 
streams may be defined as infinite sets of data, making it impossible to store every 
item in the stream. To solve these problems, we introduced relatively frequent items 
and the FP-Tree algorithm in this paper. 

We classify data into 3 groups, frequent itemsets, sub frequent itemsets, and non-
frequent itemsets, by using a predetermined minimum support and maximum support 
error. The suggested algorithm computes the total number of frequencies and relative 
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frequencies derived from intervals between frequencies using unfixed time window. It 
searches the frequent itemset and, by comparing relative frequencies of sub frequent 
itemsets, the relatively frequent itemset that can be easily overlooked. The FP-Tree 
tries to efficiently manage frequent itemsets and sub frequent itemsets by storing only 
3 kinds of information, items, frequency and TID. The FP-Tree has four main steps, 
updating the frequency of each item, adding a sub frequent itemset, searching for the 
currently frequent itemset, searching for the relative frequent itemset. All these enable 
us to search time-sensitive frequent itemsets, to increase reliability of the searches and 
to utilize limited memory efficiently. 

 
Acknowledgement. This work was supported by INHA university Research Grant. 

References 

1. R. Agrawal and R. Srikant.: Fast algorithms for mining association rules. In Proc. of the 
20th Intl. Conf. on Very Large Databases (1994) 

2. B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.: Models and issues in data 
stream systems. In Proc. of SIGMOD/PODS, Madison, Wisconsin, USA (2002) 1–16 

3. J. Chang. and W. Lee.: Finding recent frequent itemsets adaptively over online data 
Streams. In Proc. of the 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery & Data 
Mining, Washington, DC (2003) 226–235 

4. M. Charikar, K. Chen, and M. Farach-Colton.: Finding frequent items in data streams. In 
Procedings of the International Colloquium on Automata, Languages and Programming 
(2002) 693–703 

5. James Cheng, Yiping Ke, and Wilfred Ng, “Maintaining Frequent Itemsets over High-
Speed Data Streams”, PAKDD 2006 

6. Y. Chi, H. Wang, P. Yu, and R. Muntz.: MOMENT: Maintaining closed frequent itemsets 
over a stream sliding window. In Proc. of 4th IEEE Intl. Conf. on Data Mining, Brighton, 
UK (2004) 59–66 

7. C. Giannella, J. Han, J. Pei, X. Yan, and P.S. Yu.: Mining Frequent Patterns in Data 
Streams at Multiple Time Granularities. in H. Kargupta, A. Joshi, K. Sivakumar, and Y. 
Yesha (eds.), Next Generation Data Mining, AAAI/MIT (2003) 

8. J. Han, J. Pei, and Y. Yin.: Mining frequent patterns without candidate generation. In Pro-
ceedings of the SIGMOD Conference, Dallas, Texas, USA: ACM Press (2000) 1–12 

9. G. Manku and R. Motwani.: Approximate frequency counts over data streams. In Proceed-
ings of 28th International Conference on Very Large Data Bases (2002) 346–357 

10. Jeffrey Xu Yu, Zhihong Chong, Hongjun Lu, Aoying Zhou, “False Positive or False Nega-
tive : Mining Frequent Itemsets from High Speed Transactional Data Streams”, VLDB 
2004, 204-215 

11. D. Zhang, D. Gunopulos, V. J. Tsotras and B. Seeger.: Temporal Aggregation over Data 
Streams using Multiple Granlarities. Proc. of 8th International Conference on Extending 
Database Technology (EDBT), Prague, Czech Republic (2002) 



J.F. Martínez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 519 – 528, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Image Compression Algorithm Based on Morphological 
Associative Memories 

Enrique Guzmán1, Oleksiy Pogrebnyak2, Cornelio Yáñez2, and José A. Moreno1 

1 Universidad Tecnológica de la Mixteca 
{eguzman, jamoreno}@mixteco.utm.mx 

2 Centro de Investigación en Computación del Instituto Politécnico Nacional 
{olek, cyanez}@pollux.cic.ipn.mx 

Abstract. A new method for image compression based on Morphological 
Associative Memories (MAM) is proposed. We used MAM at the 
transformation stage of image coding, thereby replacing the traditional methods 
such as Discrete Cosine Transform or Wavelet Transform. After applying the 
MAM, the informative image data are concentrated in a minimum of values. 
The next stages of image coding can be obtained by taking advantage of this 
new representation of the image. The main advantage offered by the MAM with 
respect to the traditional methods is the speed of processing, whereas the 
compression rate and the obtained signal to noise ratios compete with the 
traditional methods. 

Keywords: Image compression, Morphological Associative Memories, 
Morphological Hetroassociative Memories min. 

1   Introduction 

Traditional methods in image compression often use the Discrete Cosine Transform 
(DCT) or the Wavelet Transform at the data transformation stage. Actually, DCT is 
used in many image compression standards like JPEG, MPEG at image 
transformation stage [6], [7]. 

1992 was a vitally important period for the area of image compression. Ronald A. 
DeVore and his collaborators developed a mathematical theory that enables us to use 
the Wavelet Transform in image compression in [8]. Daubechies and his collaborators 
proposed a scheme for image compression by the use of the Wavelet Transform. This 
decomposition provides sub-images corresponding to different levels of resolution 
and orientation [9]. Lewis and Knowles propose a scheme for image compression 
based on the 2-D Wavelet Transform [10]. In this scheme, the image is separated into 
its spatial elements and spectral coefficients using the 2-D Wavelet Transform. 

Various methods for coding of image wavelet coefficients are proposed. The first 
wavelet image coding algorithm "Embedded Zerotree Wavelet Algorithm" (EZW) 
was proposed by Shapiro in 1993 [11]. Next, Said and Pearlman in [12] proposed a 
new and better implementation of the EZW, the SPIHT algorithm (Seth Partitioning 
in Hierarchical Trees), based on the use of data sets organized in hierarchical trees. A 
new algorithm for image compression known as EBCOT (Embedded Block Coding 
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with Optimized Truncation) was proposed by Taubman in 2000 [13]. The Standard 
JPEG2000 is based fundamentally on the Discrete Wavelet Transform and Embedded 
Block Coding with Optimal Truncation (EBCOT) [14]. 

In this paper, a new method for image compression based on Morphological 
Associative Memories (MAM) created by Ritter, Sussner and Diaz de León in 1998 
[15] is proposed. The operations in MAM are based on the morphological operations, 
dilation and erosion; in other words, they make use of maximums or minimums of 
sums [15]. This feature distinguishes them from the Hopfield memories [16], which 
use sums of products. The MAM have turned out to be an excellent tool for 
recognizing and recovering patterns, even if these display dilative, erosive or random 
noise [15], [17], [18]. 

We used MAM (to be more exactly, morphological heteroassociative memories) at 
the transformation stage of an image compression system. The main advantage 
offered by the MAM technique with respect to traditional methods used in this stage 
is the processing speed meanwhile the compression rate and the signal to noise ratio 
obtained compete with the traditional methods. 

2   Morphological Associative Memories 

The “Mg” generic associative memory scheme is shown in Figure 1, the input patterns 
and output patters are represented by x and y respectively. 

 

Fig. 1. Associative memory scheme [23] 

( ) ( )n
T

n
T yyyxxx ,...,,  ;,...,, 2121 == yx  (1) 

n and m are integer positive numbers and represent the dimensions of the input and 
output patters respectively. Henceforth, let ( ) ( ) ( ){ }, ,..., k k1 1 2 2x , y x , y x , y  be k vector 

pairs defined as the fundamental set of associations [18] that is represented by 

( ){ }| 1, 2,...,  .kμ μ μ =x ,y  (2) 

The Mg associative memory is represented by a matrix and it is generated from the 
fundamental set of associations. Once the fundamental set is delineated, we define the 
necessary operations for the learning process and recovery process of a MAM; these 
operations make use of the maximum  and minimum  operators [18], [19]. 

Let D be a column vector of dimension m, and F a row vector of dimension n, the 
maximum product is given by 

  .ij m n
D F C c

×
= =

 
(3) 

where ( )ij i jc d f= + . Ggeneralizing for a fundamental set of associations: 
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( )
1

k

ij il lj
l

c d f
=

= +  (4) 

The minimum product is given by 

ij m n
D F C c

×
= =

 
(5) 

for a fundamental set of associations 
ijc  is defined by 

( )
1

k

ij il lj
l

c d f
=

= +  (6) 

On the other hand, let 
ij m n

D d
×

=  be a matrix and [ ]i n
F f=  a column vector, the 

calculation of the maximum product D F gives as result a column vector [ ]i m
C c= , 

where 
ic  is defined by 

( )
1

n

i ij j
j

c d f
=

= +  (7) 

For the minimum product C = D  F  

( )
1

n

i ij j
j

c d f
=

= +  (8) 

According to the mode of operation, the associative memories are classified in two 
groups: 

 morphological auto-associative memories (MAAM).  
 morphological  hetero-associative memories (MHM).  

2.1   Morphological Heteroassociative Memories min 

A MAM is Hetero-associative if { }1,2,...,kμ∃ ∈  such that μ μ≠x y . There are two 

types of  MHM: max, symbolized by M, and min, symbolized by W. The MHM min 
(W) are those that use the maximum product and the minimum operator in their 
learning phase and the maximum product in their recovery phase. 

Learning Phase: 
1. The matrices, ( )tμ μ−y  x , are calculated for each one of the k elements of the 

fundamental set of associations ( )μ μx , y . 

2. The W memory is obtained having applied the minimum operator  to the 
resulting matrices of step 1. W is given by 

( )
k t

ij m n
wμ μ

μ ×
= =W y -x
=1

, ( )
1

k

ij i jw y xμ μ

μ=
= −

 
(9) 

 

Recovery Phase: 
1. The maximum product ωW  x  is calculated, where { }1,2,...,kω ∈ , obtaining a 

column vector [ ]i m
y=y , which represent the output patterns associated with ωx  input 

patterns, 
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ωy = W  x  , ( )
1

n

i ij j
j

y w xω

=
= +  (10) 

Theorem 2 and Corollary 2.1 of [20] govern the conditions that must be satisfied by 
MHM min to obtain a perfect recall to output patterns. 

Theorem 2: ω ω=W  x y  1,..., kω∀ =  if and only if for each ω  and each row index 

1,...,i m=  there are column indexes { }1,...,ij nω ∈  such that ωω
ωω
ii jiij

xym −=  

1,..., kω∀ = . Corollary 2.1: ω ω=W  x y  1,..., kω∀ =  if and only if for each row index 

1,...,i m=  and each { }1,...,kγ ∈  there is a column index { }1,...,ij nγ ∈  such that 

( )
1i i

k

i ij j
x y yγ γ

γ ε ε γ

ε =
= − +x  (11) 

On the other hand, Theorem 6 of [20] indicates the amount of noise that is 
permissible in the input patterns to obtain a perfect recall to output patterns. 

Theorem 6: For 1,..., kγ = , let γx  be a corrupted input pattern of γx . Then 
γ γ=W  x y  if and only if it satisfies that 

( )1
1,...,j j i i i

i
x x y y x j nγ γ γ ε ε

ε γ= ≠
≤ ∨ − + ∀ =  (12) 

and for each row index { }1,...,i m∈  there is a column index { }1,...,ij n∈  such that: 

( )ji ji i i jix x y y xγ γ γ ε ε

ε γ≠
= ∨ − +  (13) 

 

 

Fig. 2. Scheme of image compression system 

3   Image Transformation Using MHM min 

An image compression system can be composed of three principal stages shown in 
Figure 2. The transformation stage is the main focus of this study; traditional methods 
of image compression use the DCT or the Wavelet transform in this stage. We 
propose the use of the MAM in the transformation stage. MAM satisfies the features 
of a transformation method: the transformed MAM information is concentrated into a  
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minimum of values; the transformed MAM is reversible; the MAM has low memory 
requirements, uses limited arithmetical precision, and few arithmetical operations. 

Let image A is divided into N m n′ ′×  sub-matrix or image blocks, obtaining 

( ) ( )m m n n′ ′=N  blocks, each of these blocks is divided into m′  vectors of dimension 

n′ ; these vectors represent the output patterns, [ ]m
i n

y′
′=y , of the MHM min. On the 

other hand, the input patterns must be known for both image coding and image 
decoding; besides, the generation of these input patterns is governed by  Theorem 2 
and the Corollary 2.1 of [20]. m′  input patterns of dimension n′  are created 

1 1 1 1 1
1 2 3

2 2 2 2 2
1 2 3

3 3 3 3 3
1 2 3

, , ,...,

, , ,...,

, , ,...,

n

n

n

x x x x

x x x x

x x x x

′

′

′

=

=

=

x

x

x

 

 

1 2 3, , ,...,m m m m m
nx x x x′ ′ ′ ′ ′

′=x  

(14) 

To satisfy Theorem 2 and the Corollary 2.1, choose the elements of the input 
patterns with the following conditions: 

0

;
m
n

si m n
x

a si m n a
′

′

′ ′= ≠
′ ′> = ∀ ∈

       

       A
 (15) 

Where a is the maximum value that can take an element of the A matrix. Once the 
input and output patterns are defined, W is obtained by applying (9) to every sub-
matrix of the image with the set of chosen input patterns shown in Figure 3. 

 

Fig. 3. Scheme of the MHM min applied to an image 

As a result of applying a MHM min to an image, N m n′ ′×  associative memories W 
are obtained. The image information remains concentrated in a minimum of values. It 
is possible to take advantage of this new representation of the image in the following 
stages of image coding. 

The next stage of image coding is a uniform scalar quantization. This stage modifies 
each of the associative memories W. Lets remember that the perfect recall to output 
patterns is based on the fact that noise appears in the input patterns and not in the 
associative memories; how, then, does it affect this noise in the associative memory 
for the recovery of the original output patterns (blocks of the original image)? 

 
 



524 E. Guzmán et al. 

To answer this question, let W  be a corrupted version of the associative memory W: 

ij ij

r

w w r

±
= ±

W = W  (16) 

where r represents the noise associated with W. 
Considering Theorem 2, its respective Corollary 2.1 and Theorem 3 of [15], we 

have γ γy = W  x , bearing in mind the corrupted version of the associative memory, 

then γ γy = W  x . 

The equation (17) shows that the noise r associated with the associative memory 
directly affects the output patterns and the perfect recovery of the image. 
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The noise r is associated with the set of associative memories and depends directly 
on the quantization factor Q used. As a uniform scalar quantization is used, then each 
of the associative memories is modified as QW = W . 

This process is realized using R numbers to facilitate the coding process, W  is 
truncated to Z numbers by  

−>−
−≤−−=

5.0
~~

5.0
~~

~
1

~
~

ZR

ZR

WW

WW

W

W
W

if

if
, 

where ∈RW
~

 R, ∈ZW
~

 Z is the integer part of RW
~

. The W  range is [ ]249, 13− − , if 

the recovery value of W is given for Q×W , then noise added to associative memory 

W is from  0 % to 23 %, and this will directly affect the output patterns or sub-blocks 
of the image. 

The range of W  was obtained from three image fields that Y, Cb and Cr. The range 
of noise was obtained from all the levels of quantification, therefore, the highest 
percentage of noise corresponds to 10Q = . Due to characteristics of the quantization, 

the percentage of noise does not affect the entire image, only a very low percentage of 
elements of the same.  

3.2   Decoding Process 

After the stages of entropy decoding and inverse quantification, the recovery process is 
applied using the set of associative memories. 

Once the image is transformed into a set of associative memories and knowing the 
input patterns, the image transformation using MHM min is reversible (see Fig. 4). 

When dealing with MMH min, the inverse transformation process makes use of  the 

maximum product
ωW  x , where { }1,2,...,kω ∈ ,  the input patterns x are defined in 
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(14) and W is an associative memory belonging to the set that forms the transformed 
image. As a result a set of vectors [ ]m

i n
y′

′=y  are obtained that represent a block of the 

original recovery image. Since the associative memory W is affected by noise, then  
γ γ=W  x y . 

 

 

Fig. 4. Recovery algorithm scheme 

4   Results 

The test images are: Lena 512x512, Foreman 352x288 and Akiyo 176x144. The result 
of applying the MHM min to these images can be seen in Figure 5. 

 

 

Fig. 5. Results of applying the MMH min on Y of: (a) Lena 512x512, (b) Foreman 352x288, (c) 
Akiyo 176x144  

 
The image transformed by MHM min is quantified using an uniform scalar 

quantization. Then, standard methods of codification were applied. Such methods 
include statistical coding, such as arithmetical, Huffman, range and PPM, and 
dictionary coding, LZ77 and LZP. The results of compression using MHM min on 
Lena, at different levels of quantification and using diverse codifiers of entropy, is 
available in Table 1.  

From these results one can conclude that the coder which offers best results of 
compression and signal to noise ratio obtained on the image transformed by a MMH 
min is the PPM coding; it is an adaptive statistical method and its operation is based on 
partial equalization of chains, that is, PPM coding predicts the value of an element 
based on a sequence of previous elements.  

The efficiency of the image coder based on an MAM was compared with results of 
other image compression methods, JPEG [21], [22], DCT Based Embedded [21], EZW 
[11], [22], SPIHT [12], [22], EBCOT [13], proving to be competitive with them in the 
characteristics of compression and signal to noise ratio, Table 2 and Fig. 5. 
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Table 1. Comparative results of applying MHM min and several coders on Lena 

Morphological Heteroassociative Memories min (8x8 block) 
Lena (512x512=786486 bytes, 24 bpp) 

Coder Q=1 
PSNR=44.19 

Q=2 
PSNR=42.14

Q=4 
PSNR=38.12

Q=6 
PSNR=35.08 

Q=8 
PSNR=32.84

Q=10 
PSNR=31.02 

Range 
Comp. ratio 
Bit rate 

108238 bytes 
7.27:1 
3.3 bpp 

95971 bytes 
8.19:1 

2.93 bpp 

84246 bytes 
9.33:1 

2.57 bpp 

77937 bytes 
10.09:1 
2.38 bpp 

74124 bytes 
10.61:1 
2.26 bpp 

69919 bytes 
11.25:1 
2.13 bpp 

LZ77 
Comp. ratio 
Bit rate 

76903 bytes 
10.23:1 
2.35 bpp 

56420 bytes 
13.94:1 
1.72 bpp 

37893 bytes 
20.75:1 
1.16 bpp 

30201 bytes 
26.04:1 
0.92 bpp 

25041 bytes 
31.41:1 
0.76 bpp 

20386 bytes 
38.58:1 
0.62 bpp 

LZP 
Comp. ratio 
Bit rate 

74727 bytes 
10.52:1 
2.28 bpp 

58393 bytes 
13.47:1 
1.78 bpp 

40478 bytes 
19.43:1 
1.24 bpp 

31505 bytes 
24.96:1 

0.96 Bpp 

27059 bytes 
29.06:1 
0.83 bpp 

20801 bytes 
37.81:1 
0.63 bpp 

PPM 
Comp. ratio 
Bit rate 

46504 bytes 
16.91:1 
1.42 bpp 

32858 bytes 
23.93:1 
1 bpp 

21682 bytes 
36.27:1 
0.66 bpp 

16793 bytes 
46.83:1 
0.51 bpp 

14205 bytes 
55.36:1 
0.43 bpp 

11426 bytes 
68.83:1 
0.35 bpp 

 

Table 2. Comparison between MMH min and traditional methods on Lena 512x512 

Lena 512x512 
Bit Rate PSNR 

Bseline JPEG [21], [22] 0.25 
0.50 

31.6 
34.9 

DCT-Based Embedded [21] 0.25 
0.50 

32.25 
36.0 

EZW [11], [22] 0.25 
0.50 

33.17 
36.28 

SPIHT [12], [22] 0.25 
0.50 

34.1 
37.2 

EBCOT [13] 0.25 
0.50 

34.40 
37.49 

MHM min 0.43 
0.51 

32.84 
35.08 

Table 3. Processing speed comparison between MHM min, DCT and DWT on Lena 512x512 

 Number of operations 

Discrete Cosine Transform 7,340,032 sums, 1, 310,720 multiplications 

Wavelet Transform (three-stage) 1,032,192 sums, 344,064 shifts 

MHM min 262,144 sums, 262,144 comparisons 

 

 
Fig. 6. MMH min in comparison to traditional methods on Lena 512x512 
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Morphological associative memories were shown to be a more efficient 
transformation process in the processing speed with regard to the traditional methods 
of transformation. Table 3 shows the number of operations the MHM min, the DCT 
and the WT needed to transform the image Lena 512x512. 

5   Conclusions 

The use of Morphological Associative Memories in the transformation stage of an 
image compressor has demonstrated a high competitiveness in its efficiency compared 
to traditional methods based on DCT or wavelet transform. Furthermore, a MAM has 
low computational complexity since its calculation is based on operations of 
comparisons and sums. A better response in the signal to noise ratio can be achieved 
using associative morphologic bidirectional memories (AMBM) that are robust to 
random noise. 

The quantization process used in this coder is the simplest and thereby offers 
limited efficiency in compression. Vector quantization is an alternative method that 
can be used to obtain better results of compression ratio and signal to noise ratio. By 
basing its functioning on an algorithm of search of equalization, vector quantization 
makes it a slow process and of considerable computational complexity.. 
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A Novel Approach to Automatic Color Matching 
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Abstract. In this paper the design and operation of an Automatic Color  
Matching system is presented. This novel system takes advantage of the im-
provements introduced by Alpha-Beta associative memories, an efficient, un-
conventional model of associative memory of recent creation. The results are 
demonstrated through experiments on a relatively small database with 1001 
samples prepared by the authors. However, the approach is considered valid ac-
cording to the tendency of the results obtained, in part, thanks to the perform-
ance exhibited by Alpha-Beta associative memories. 

Keywords: Color matching, Autoassociative memory, Alpha-Beta associative 
memories. 

1   Introduction 

Color mapping or color matching is a process by mean of which, a color is trans-
formed to its visually closest color in a given destination color space. The final goal 
of the system herein presented consisted of industrial application, which is related to 
the problems faced by companies that manufacture paints. It is well known that usu-
ally, the factories that produce paints match colors through a color swatchbook pre-
pared from the paints and mixes of colors particularly produced by them. The cost in 
equipments of color matching in real time is relatively high, and it is done only in 
situ, never at distance over the Internet, which is a potential future extension of our 
system, currently in development [1]. Many industrial, e.g. plastics, paint, and textile 
applications exploit color matching and mixing devices and techniques, but industries 
solve the problem of color matching always in a pragmatic way. Due to industrial 
secret there is not any information in the open literature in order to know the method 
the industry uses for matching colors.  

On the other hand, associative memories have been an active area for research in 
computer sciences by roughly half a century. In this respect, computer scientists are 
interested in developing mathematical models that are able to learn and recall patterns 
(the two phases of an associative memory model) representing objects, organisms, or 
concepts [2-4]. The ultimate goal of an associative memory is to correctly recall com-
plete patterns from input patterns. These patterns might be altered with noise. The 
classical era in associative memories is represented by Hopfield’s memory [5], while 
in recent years the morphological associative memories [6] gave place to the rise of 
the Alpha-Beta ( ) associative memories [7]. This new model is based on two new 
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operators (alpha and beta), and has become the most efficient and robust model of an 
associative memory. 

In this paper we present the design and operation of an Automatic Color Matching 
system. This novel system takes advantage of the improvements introduced by  
associative memories. The results are demonstrated in a relatively small database with 
1001 samples prepared by the authors. However, we consider valid the approach 
according to the tendency of the results obtained, in part, thanks to the performance 
exhibited by  associative memories. The task of color matching is not a trivial one, 
because it depends on the preparation of color samples and their maintenance. Color 
matching is a process by means of which an unknown mix of color is located in a 
particular position in a given known color space. The system was created when it was 
necessary to find a procedure to achieve a fast, robust, and error-free procedure for 
color matching. A different possible solution to carry out the color matching task 
could be the Self-Organizing Maps or Kohonen Maps. However, they present some 
drawback which must be solved first. One major problem with SOMs is getting the 
right data. Another problem is that every SOM is different and finds different simi-
larities among the sample vectors. The final major problem with SOMs is that they 
are very computationally expensive which is a major drawback since as the dimen-
sions of the data increases, dimension reduction visualization techniques become 
more important, but unfortunately the time to compute them also increases [8].  

Our solution is another alternative that gives valid results in a short time, it is not 
computational extensive, and does not need any previous selection or ordering of data 
in the data base. 

The remaining of the paper is organized as follows. In Section 2 some concepts 
about color are provided. Section 3 is focused on explaining the  associative mem-
ory model. Section 4 contains the core proposal and section 5 the experimental re-
sults. Section 6 is finally devoted to conclusions and directions for future research in 
this topic.  

2   Color 

Color is a sensation, such as warmth or a touch in our skin: it is caused by a physical 
reality. Color is not a property of the things that cause the sensation: grass is not green 
and the sky is not blue. Rather, they have physical properties that make us perceive 
them as green and blue, but even that is true only in some circumstances. Also, colors 
are not qualified in the same way by everybody that sees them. It is our trained visual 
system that decides on a color. 

Color mixes can be obtained by means of an additive method or of a subtractive 
method. Primary colors in the additive method are red, green and blue. Every mix of 
two of them produces cyan, magenta or yellow colors. These colors are called secon-
dary colors for this method. The mix of all of them produces white that contains all 
colors. Primary colors in the subtractive method are cyan, magenta and yellow. Every 
mix of two of them produces red, green or blue colors. These colors are called secon-
dary colors for this method. The mix of all of them produces black that is absence of 
color. In both types of mix, complementary colors are those that combining together 
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gives us the color resulting from the mix of three primaries of the respective method, 
that is, white in the additive method and black in the subtractive method. Then, com-
plementary colors are those that when one of them is pure it means the other one is 
not present, so one color in pure state excludes the other. Green and magenta, red and 
cyan, and yellow and blue are complementary colors. In a given color space, each 
color has its particular unique position.  

3   αβ Associative Memories 

Basic concepts, results and notation about associative memories were taken from the 
Yáñez-Márquez's PhD Thesis [8]. An associative memory M is a system that relates 
input patterns, and outputs patterns, as follows: x → M → y with x and y the input and 
output pattern vectors, respectively. Each input vector forms an association with a 
corresponding output vector. For k integer and positive, the corresponding association 

will be denoted as ( )kk yx ,  . Associative memory M is represented by a matrix whose 

ij-th component is mij. Memory M is generated from an a priori finite set of known 
associations, known as the fundamental set of associations. If μ is an index, the fun-

damental set is represented as: ( ){ } 21  , ,p,,yx =μμ  with p the cardinality of the 

set. If it holds that { } ,,2,1 , pyx ∈∀= μμμ  , M is autoassociative, otherwise it is 

heteroassociative. In this case it holds that { }p,,2,1∈∃μ  for which μμ yx ≠  . 

The  associative memories are of two kinds and are able to operate in two differ-
ent modes. Operator  is useful at the learning phase, and operator  is the basis for 
the pattern recall phase. 

The core of the mathematical tools used in the  model, are two binary operators 
designed specifically for these memories. These operators are defined in [9] as fol-
lows: First, we define the sets A = {0,1} and B = {00,01,10}, then the operators  and 
 are defined in tabular form, as shown in Table 1. 

Table 1. Definition of the Alpha and Beta operators 

 BAA →×:α  AAB →×:β  
x y α(x,y)    x y β(x,y) 
0 0 01    00 0 0 
0 1 00    00 1 0 
1 0 10    01 0 0 
1 1 01    01 1 1 
      10 0 1 
      10 1 1 

The sets A and B, the  and  operators, along with the usual ∧  (minimum) y ∨  
(maximum) operators, form the algebraic system ),,,,,( ∨∧βαBA  which is the 

mathematical basis for the  associative memories. The ij-th entry of the matrix 
txy ⊕  is: [ ] ( )jiij

t xyxy ,α=⊕  . If we consider the fundamental set of patterns: 
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( ){ }pyx ,,2,1, =μμμ  where nAx ∈μ  and mAy ∈μ  then:  

( )[ ] ( )μμμμ α jiij

t
xyxy ,=⊕  . 

Because there are two kinds of  associative memories ∨  and ∧  , and consider-
ing that each of these kinds is able to operate in two different modes, heteroassocia-
tive and autoassociative, we have four different available choices. In this issue, we 
only talk about the  autoassociative memories of kind ∨  . Therefore, the funda-

mental set takes the form: ( ){ }pxx ,,2,1, =μμμ . Besides, the input and out-

put patterns have the same dimension n, and the memory is a square matrix: 
[ ]

nnijv
×

=V  . 

Learning Phase (two steps) 
STEP 1: 

For each p,,2,1=μ  , and from ( )μμ xx ,  build the matrix: ( )
nn

t
xx

×
⊕ μμ  . 

STEP 2: 
Apply the binary ∨  operator to the matrices obtained in step 1 to get V as follows: 

( )⊕=∨
=

t
p

xx μμ

μ 1

V  . The ij-th entry is given as: ( )μμ

μ
α ji

p

ij xxv ,
1

∨
=

=  . It is obvious 

that, { } { }njniBvij ,,2,1,,,2,1, ∈∀∈∀∈  . 

Recalling Phase 
A pattern ϖx , with { }p,...,2,1∈ω  is presented to the  autoassociative memory of 

kind V and the following operation is done: ϖ
β

xV  . The result is a column vec-

tor of dimension n, where: ( )= ∨∧
==

ϖμμϖ
β

αβ jji

n

j

n

ji
xxxx ,,

11

V  . 

The greatest limitation of  associative memories is perhaps that they only work 
with binary data, being unable to manipulate integer or real numbers. However, there 
have been numerous efforts to extend the original model [10-11]. With these ad-
vances,  memories can be applied to binary and integer pattern recognition. 

4   Our Proposal 

In this section the proposal of the intelligent system for Automatic Color Matching is 
presented. First, it will be explained how the color samples database was prepared, 
and the methodology used to take measurements. Based on these and the concepts 
given on sections 2 and 3, the design and operation of the proposed intelligent system 
is discussed. 
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4.1   Preparation of Color Samples 

If color samples to be measured are not rigorously prepared, the color recognition is 
prone to errors, making this preparation of utmost importance. The color samples 
produced by mixing three primary colors cyan, magenta and yellow, together with 
black and distilled water in previously defined proportions will constitute the patterns 
to be recognized. On the other hand, colors parameters can be measured by colorime-
ters, spectrophotometers, and other equipments. In our case a spectrophotometer was 
used. The color measurement by means of a spectrophotometer could be by transmit-
tance or by reflectance. Thus, several considerations were imposed to the color sam-
ples to be used to carry out our experiments. 

First, the type of the color source must be selected; that is, the material having the 
required primary colors to prepare the mixes to be recognized. It could be liquid, 
powder, pastes, and others. If transmittance is used to measure the colors, like in the 
case of liquids, the use of expensive quartz vessels is obligatory, since the transpar-
ence of the vessel must be considerably high in order to guarantee that its contribution 
in color be practically null. Therefore it was decided to measure colors by reflectance. 
For all these reasons, it was decided to use as the color source to prepare the color 
samples the Hewlett Packard cyan, magenta, yellow and black printer inks. It was 
used also distilled water in order to simulate the presence of the white color when the 
mixes were prepared over a white substrate [12]. 

As a second step, the choice of the substrate where the printer inks will be applied 
became of great importance. The main characteristic to be fulfilled by the substrate 
was that its contribution in color when the inks are applied over it, be a minimum and 
non-dependent on the mix prepared, according to our convenience. A second re-
quirement was that the application of a liquid or a paste onto it does not moisten the 
substrate in such a form that makes it useless. Also its white color and its reflectivity 
must be uniform in the whole range of visible wavelengths. With all this in mind, 
three types of substrate were considered: photographic paper, white couche paper and 
common white kromekote paper. The reflectance vs wavelength curves obtained from 
the spectrophotometer for these three types of papers showed that the kromekote 
paper gives a better behavior than the other two. 

The number of drops of ink to be deposited over the substrate was crucial also. The 
first condition to be fulfilled was that the reflectance of the paper does not affect the 
reflectance of the color sample. The second condition is that an excessive number of 
drops do not moisten the paper, in a measure that the color reflectances vary with the 
characteristics of the paper. In this sense some tests were done. Table 2 show the 
luminance level L* of the three primary colors cyan, magenta and yellow, respec-
tively, when measured for 1 to 10 ink drops, with respect to the standard cyan, ma-
genta and yellow colors reflectance given by the calibrated spectrophotometer. 

It may be noted that except for yellow, for every color the luminance with six 
drops of ink on the substrate is similar to the standard one (first row in the tables), 
which means that the “pure” primary color covers completely the substrate; that is, 
the influence of the higher luminance of the white color of the substrate is minimum 
or nearly null. It can be noted also that yellow gives higher luminance values than the 
other two primary colors, shows a more uniform characteristic and its luminance 
value is nearest to that of the substrate (94.29). The fact that only five drops of yellow 
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cover the substrate (lesser luminance value), it means that it is the color that better 
covers the substrate. The variable values of luminance obtained in all cases when 
more than six drops of ink were used, is a sign that the substrate has been already 
moistened and due to this, the color properties changed. Then, as a conclusion, using 
only six drops of mixed inks carried out the covering of the substrate with all color 
samples. 

Table 2. Luminance values for cyan, magenta and yellow ink 

 

To achieve different shadows and tints of pure primary colors and their mixes, it 
was necessary to mix pure primary color inks with black ink and distilled water in the 
corresponding proportions, respectively. The white color of the substrate contributed 
to give tint when distilled water was used in the mixes. Afterward, other particular 
mixes were prepared using the corresponding shadowed and tinted primaries. The 
total number of drops used in the preparation of every color mix was limited always 
to one hundred drops. Each color mix prepared was kept in a small previously steril-
ized dropper glass, sealed with a cap and protected from light in order to guarantee 
that its quality does not deteriorate. 

To calculate the exact number of possible color patterns that must be prepared ac-
cording to the conditions stated, generating function models were used [13]. Suppose 

ra is the number of ways to select r objects in a certain procedure. Then )(xg is a 

generating function for ra if )(xg has the polynomial expansion: 

.)( 2
210

n
n

r
r xaxaxaxaaxg ++++++=  

For example as: .
21

1)1( 2 nrn x
n

n
x

r

n
x

n
x

n
x ++++++=+  Then 

nxxg )1()( += is the generating function for ),,( rnCar = the number of ways to se-

lect an r -subset from an n -set. The problem of determining the coefficient of 
rx when we multiply several such polynomial factors together can be restated in 
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terms of exponents. As an example, consider the expansion of 42 )1( xx ++ . The 

number of formal products 20,4321 ≤≤ i
eeee exxxx  equaling rx in the expansion, 

will be the number of integer solutions to: .20,4321 ≤≤=+++ iereeee  In our case, 

the total number of drops of the five possible components to create each color mix 
was limited to 100 drops for convenience. Additionally, the concentration of samples 
created for each one out of five components was established in steps of ten drops, that 
is, r = 100/10 = 10 steps. This means that: .100,10521 ≤≤=+++ iewhereeee  

This is equivalent to solving the polynomial: 510910 )()( xxxxxP ++++=  . In the 

expansion of this polynomial )(xP  in its formal products, the coefficient 10a  of 10x  

gives the total number of combinations under our conditions. That coefficient is 1001. 
Then, the number of combinations (to be) prepared was 1001 combinations. 

4.2   Measurements 

In taking measurements, the spectrophotometer was calibrated to measure the samples 
under a known specific set of conditions. These conditions involve the illuminant 
(light source) type, the observer's viewing angle, and the spectral exclusion (not tak-
ing gloss into consideration). The spectrophotometer used was a Milton Roy COLOR 
MATETM HDS Color Analyzer. Before its use and after warmed, it was always me-
ticulously calibrated with a white tile accompanying the equipment. The parameters 
established in the equipment by us to measure the color samples were: Observation 
Angle: 10º; Sight Window (Area of View): small; Color Space: CIE L*a*b*; Illumi-
nants: D65 and D50; and Average number of lectures: 5. 

Five lectures were done facing onto it different zones of the covered substrate. The 
equipment then averaged the results of the five lectures and finally gave us thirty one 
values of the reflectance of the sample for each one of the thirty one wavelengths 
ranging from 400 to 700 nanometers of the visible spectrum, in steps of ten, of the 
standard and the color sample, as well as the difference between both values. The 
standard color could be selected by the user, between the standard white, standard 
black, one of the primary color selected from cyan, magenta and yellow, or another 
one of our convenience. From the two illuminants selected, that is D50 and D65, the 
spectrophotometer gave us the values of the components L*, a*, b* of the color model 
CIELAB selected and the values of the three primary three-stimulus values X, Y and 
Z, for both the standard and the sample, together with the respective difference. In 
order to carry out the color matching, the value of L* related to the illuminant D65 
was used as reference for daylight. Then, after reading the 1001 color samples, pre-
pared with colors cyan, magenta, yellow, black and distilled water in steps of ten 
drops, and taking into account that the total number of drops be 100 drops for each 
mix prepared and used 6 drops to cover the substrate, a database was created with 
patterns of thirty one values of the reflectance, which vary from 6.24 to 102.58. 

4.3   System Description 

The system consists of three modules: the input module, the processing module and 
the output module; and operates in two phases: the learning phase and the pattern 
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recall phase. The first module has as main purpose to convert each input pattern made 
up of 31 real values into its corresponding binary pattern, requirement imposed for the 
design and operation of the  associative memories. The third module does the re-
verse procedure: converts the binary patterns which result from operating the system 
into their corresponding 31 real components patterns, which make up the pattern for a 
specific color. Module 2 is the core of the system, and is conformed by two comple-
menting redundant sub-modules: the first sub-module is an autoassociative  mem-
ory of type max, and the second sub-module is an autoassociative  memory of type 
min. In this intelligent system, the fundamental patterns of each  associative mem-
ory are precisely the patterns of 31 real valued reflectance components representing 
the different colors. Since the memories are autoassociative, it holds that 

μμ yx = , { } ,,2,1 p∈∀μ  , where p is the fundamental set cardinality; that is, 

p = 1001. 

Learning phase.- 
• Every pattern in the fundamental set is presented to the system and module 1 con-

verts into binary patterns the 31 real component patterns. 
• Both  associative memories, max and min, do their respective learning phases. 

Matching Phase.- 
• An unknown 31 real valued pattern is presented to the system and module 1 con-

verts it to a binary pattern. 
• Each  associative memory, max and min, executes its pattern recall phase, pro-

ducing two binary patterns. 
• Module 3 converts each of these two binary patterns into a 31 real valued pattern. 

Given the redundancy of both submodules of module 2, it is expected that both ob-
tained patterns be equal. However, they were different. The worst case occurs when 
both patterns are a valid version of a color resulting from the matching. It is left to the 
user to select by visual inspection the best of them. 

5   Experimental Results 

The experimental design is quite simple. In each individual experiment, the following 
was done: (a) At random one out of 1001 samples was selected from the database. 
Then, the database had only 1000 elements (color combination) in this case; (b) the 
learning phase of the system was undertaken with the resulting 1000 patterns data-
base; (c) the color that was retired in step 1 was used as sample. Then the results 
given by the system was analyzed by several human observers, who dictated whether 
the color resulting from the matching was close enough to the testing color, or not. 

In Table 3 are shown the values of the number of drops of 24 samples to match se-
lected at random from the database, the number of drops of the matching calculated 
by the matching module and the majority opinion of the observers group. 

In this table we can notice that all results are positive, except when pure colors were 
presented to the system, that is, colors which have presence of only one primary color. 
Since these colors are known in advance, the system failure with them is irrelevant. 
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Table 3. Experimental results 

 

6   Conclusions 

This work has been oriented toward the use of αβ associative memories for colors 
matching. The universe of samples is a relatively small database with 1001 carefully 
prepared samples. The experiments consisted in excluding a randomly selected sam-
ple from the full database, then building both αβ memories with the remaining 1000 
samples, in order to operate the system with the excluded pattern. After the system 
delivered the recalled patterns, a group of observers decided whether the results were 
satisfactory or not. The results manifest the validity of its use in a relatively easy way, 
in this relatively particular application, except when presented with pure colors; that 
is, colors which have presence of only one primary color. Since these colors are 
known in advance, the system failure with them is irrelevant. Therefore, the approach 
can be considered valid according to the tendency of the results obtained. 
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Abstract. The strategies for an associative recall can be based on associative 
memory models. However, the performance of standard associative memories is 
very sensitive to the number of stored patterns and their mutual correlations. 
With respect to huge amounts of spatial patterns (mostly correlated) to be proc-
essed, we have focused on an arbitrary number of associative memories 
grouped into several layers (Hierarchical Associative Memories - HAM). In the 
newly presented HAM2-model, the patterns are hierarchically grouped accord-
ing to the “previous-layer” patterns. The HAM2-model uses the information  
recalled by the “previous-layer” to find an appropriate subset of “next-level”  
associative memories. To evaluate the performance of the HAM2-model, exten-
sive simulations are carried out. The experimental results show the recall ability 
of the model in the area of associative pattern recall. 

1   Introduction 

Let us consider a situation when a traveler moves along a familiar scenery. In such a 
situation, he can usually see only his close surroundings. Based on is previous  
knowledge about the whole area, he might be able to recall also some part of the envi-
ronment that he can not see yet, but will see soon as he moves. The newly recalled 
scenery in his mind can trigger other associations, he is also able to recall another part 
of the environment further ahead of him. Thus, he can recall in his mind the scenery 
of a wide environment by a chain of such recall processes. This process of an associa-
tive recall could be used e.g. when building an autonomous robot “warehouse keeper” 
or an automatic hoover. It would help with robot localization and thus its better over-
all control.  

For an associative recall of patterns, we use the approach introduced by Fukushima 
et al. [5]. The actual “seen” scenery is represented in the form of a spatial pattern with 
an egocentric coordinate system. During the movement, the actual area becomes 
shifted relatively to the previous position of the move (in order to keep the body al-
ways in the center of the pattern to be recalled). As the scenery image shifts following 
the movement, a vacant region appears in the “not yet seen” part of the image. The 
pattern with a vacant “not yet seen” region (the so-called incomplete pattern) is pre-
sented to an associative memory and the empty part of the pattern is expected to be 
filled (see Figure 1). 
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Fig. 1. The associative pattern recall inspired by Fukushima et al. [5] 

Anyway, the associative memory by itself does not reliably recall shifted patterns, 
and each presented pattern has to be placed accurately at the location of one of the 
memorized patterns. Different approaches to an associative recall (e.g. in spatial 
maps) can be based on the so-called cognitive maps. Different approaches have been 
developed to build hierarchical cognitive maps (e.g. [2], [4], [12]).  

For an associative recall, standard associative memories can be used. However, this 
model is not suitable for the associative recall mentioned above, as it cannot cope 
with the need for a high number of stored patterns and the fact that the patterns are not 
orthogonal. Therefore, we decided to focus our research on the models of Hierarchical 
Associative Memories (HAM) developed with an emphasis on the necessity to proc-
ess large amounts of (correlated) data. They consist of an arbitrary number of 
associative memories grouped into several layers. In our original model HAM1 
(described e.g. in [11]), the patterns are stored in “any suitable” associative  memory. 
The HAM1-model does not use the “previous-layer” information to find an 
appropriate associative memory at the “next” layer. In this paper, we present the 
HAM2-model. The associative memories of the HAM2-model form a tree structure. 
A disjoint subset of associative memories is assigned to every “previous-layer” 
associative memory. We expect that the HAM2-model improves the HAM1-model 
and allows a reliable storage and “sufficiently reliable” recall of correlated patterns 
with respect to an associative pattern recall.  

The organization of the paper is as follows: a basic concept of associative 
memories is reviewed in section 2. In section 3, the models HAM1 and HAM2 are 
described. In section 4, we present experimental results evaluating the performance of 
the models HAM1 and HAM2. The paper concludes with Section 5, which  outlines 
the directions of our future work.  

2   Models of Associative Memories 

The standard associative memory is a neural network, for which all its neurons are 
input and output neurons simultaneously and there are oriented interconnections 
among all neurons. All their weights are symmetric and each neuron is connected to 
all other neurons except itself. Other basic notions and characteristics of this memory 
can be found e.g. in [7]. If the number of stored patterns does not exceed the limit 
(0.15n where n is the dimension of stored patterns [7]), the models have robust recall 
ability. Although the robust recall ability is very attractive, patterns to be stored in the 
standard associative memory must be almost orthogonal one to each other. Storing 
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correlated patterns can cause serious problems and previously stored training patterns 
can even become lost because the cross-talk does not average to zero [1].  

To overcome this problem, many researchers have extended the standard associa-
tive memory to process correlated patterns (e.g. [3], [6], [8], [9], [10]). Morita [10] 
proposed a model that enhances the ability of associative memories with non-
monotonic dynamics. Gutfreund [3] proposed a model consisting of two associative 
memories - one for each level of the two-level hierarchy. The first associative mem-
ory (AM1) and the second one (AM2) store the first-level patterns (called ancestors) 
and their second-level patterns (called descendants), respectively. However, Gut-
freund’s model has a parameter on which the storage capacity strongly depends [3]. 
Hirahara et al. [6] proposed a model of Cascade Associative Memory (CASM) similar 
in the structure to Gutfreund’s model. The CASM-model is characterized by the AM2 
storing not the descendants but the so-called difference patterns. The difference pat-
terns become sparser with increasing correlation, which allows the CASM-model to 
have a larger storage capacity. Unfortunately, the upper limit of the storage and the 
recall abilities of the CASM-model are bounded by that of the AM1 (~0.15n) [6]. 

3   The Hierarchical Associative Memory (HAM) 

The performance of standard associative memories is limited by the number of 
patterns which can be stored in it and the fact that the patterns have to be orthogonal. 
To avoid (at least to a certain extent) these limitations, we have designed the 
Hierarchical Associative Memory models. These models are based on the concept of 
the CASM-model [6]. Our goal is to use the CASM-model more generally by 
allowing an arbitrary number of layers with more memories grouped in each layer. 

 

Fig. 2. The structure of the Hierarchical Associative Memory with L layers M1,…, ML 

A Hierarchical associative memory H with L (L>0) layers is an ordered tuple 
H=(M1,...,ML) where M1,...,ML are finite non-empty sets of associative memories (the 
so-called local associative memories). A set Mk (k=1,...,L) is called the layer of the 
memory H. Mk  denotes the number of local associative memories in the layer Mk 
(k=1,...,L). Every local associative memory of the same layer has the same number of 
neurons n (n>0). A training tuple T of H is an ordered tuple T =(T1,..., TL) where Tk 
(k=1,...,L) is a finite non-empty set of training patterns for the layer Mk. The structure of 
the HAM2-model, as well as the HAM1-model, is shown in Figure 2. The difference 
between the HAM1-model and the HAM2-model is in the network dynamics.  
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3.1   The HAM1-Model  

To train the HAM1-model, we have designed the so-called dynamical layer training 
algorithm (DLT-algorithm) [11]. Each of the layers Mk (k=1,...,L) is trained 
separately. The training patterns from the set Tk are stored in local associative 
memories of the corresponding layer Mk.. During the training of the layer Mk, training 
patterns from the set Tk are presented to the layer Mk sequentially. Each training 
pattern x is stored in such a local associative memory of the layer Mk where the 
pattern x (or its “noisy” version1) is recalled correctly. If there is no “suitable” local 
associative memory, a new local associative memory is created, added to the layer Mk 
and the pattern x is stored in the newly created associative memory.  

 

Fig. 3. The recall process in the HAM1-model with the layers M1, ..., ML   

The recall process of the HAM1-model is depicted in Figure 3. During the recall, a 
pattern x is an input to the HAM1-model. The input pattern x represents an input for 
the first layer M1 (i.e. x=1x). Within every time step k (1≤ k≤ L), the layer Mk produces 
the corresponding output ky. The output ky combined with the output k-1y of the 
“previous” layer Mk-1 is used as the input k+1x to the “next” layer Mk+1. The function of 
the circle “⊗” in Figure 3 is to produce the “next” input (in our implementation, the 
difference pattern calculation is used). The output Ly of the “last” layer ML combined 
with the output of the layer ML-1 represents the output y of the HAM1-model. 

At the layer Mk, the input pattern kx is propagated to all local associative 
memories of the layer Mk and each of them recalls the corresponding outputs kyi  
(i=1,...,  Mk  ). The output ky of the layer Mk is an output kyi which is “the most 
similar” to the input pattern kx (we use Hamming distance, but other metrics may be 
considered too). 

3.2   The HAM2-Model  

A basic concept of the HAM2-model is similar to the HAM1-model. The main 
difference is that the local associative memories of the HAM2-model form a tree 
structure. A disjoint subset of local associative memories is assigned to every 
“previous-layer” local associative memory. The HAM2-model groups the associative 
memories according to their “previous-layer” information. The subsets of local 
associative memories are organized in a tree structure (Figure  4). 

                                                           
1 A pattern in which certain number of randomly selected elements change their value. 
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Fig. 4. The tree structure of the HAM2-model with the layers M1, ..., ML 

All layers Mk (k=1,...,L) in the HAM2-model are trained sequentially. The training 
patterns from the training set Tk are presented to the corresponding layer Mk 
sequentially. The training of every pattern x consists of two steps. First, the pattern x 
from Tk is presented to already trained layers M1,…,Mk-1 to be recalled. The output of 
the layer Mk-1 provides the information into which subset of the currently trained layer 
Mk the pattern x belongs (S denotes the corresponding subset of the layer Mk for the 
pattern x). As the corresponding subset S is detected, the “suitable” local associative 
memory in the subset S of the layer Mk is found and the pattern x is stored in it. If 
there is no “suitable” local associative memory in the subset S of the layer Mk, a new 
local associative memory is created and added to the subset S of the layer Mk. In this 
case, the training pattern x is stored in the newly created associative memory.  

The recall process is similar to the recall process of the HAM1-model, but it 
utilizes the tree structure of the HAM2-model. The recall process takes place 
sequentially in the layers of the HAM2-model. During the recall, a pattern x is an 
input to the HAM2-model (i.e. x =  1x). At every time step k (1≤ k≤ L), the layer Mk 
receives the input kx and the recall process at this layer proceeds. First, the output k-1y 
of the “previous” layer Mk-1 (k>1) gives the information into which subset S of the 
layer Mk the input pattern kx belongs. Then, the pattern kx is sent only to such local 
associative memories that belong to the subset S of the layer Mk. Each of these local 
associative memories recalls the outputs kyi (i=1,...,|S|). The output ky of the layer Mk 
is an output kyi which is “the most similar” to the input pattern kx (we use Hamming 
distance, but other metrics may be considered too). The output ky combined with the 
output k-1y of the “previous” layer Mk-1 is used as the input k+1x to the “next” layer 
Mk+1. The output of the “last” layer ML represents the output of the HAM2-model.  

3.3   Characteristics of the HAM2-Model  

In the HAM2-model, there is no need to state the number of the local associative 
memories before the training process starts because the local memories are automati-
cally added to corresponding layers during training. The training process can start 
with one local associative memory in every layer. The initial structure of the HAM2-
model forms a path (i.e. a degenerated tree). Other local associative memories are 
added to the HAM2-model during the training process according to the incoming 
patterns. The number of local associative memories in the HAM2-model varies with 
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the structure of incoming data. The number of subsets in every layer depends on the 
structure of incoming patterns, too. 

In the training algorithm, we use a simple heuristics how to choose the “suitable” 
local associative memory for storing a pattern. The above-sketched heuristics is quick, 
simple and easy to implement, but it is not optimal. A pattern remains stored in such a 
local associative memory (of the corresponding subset) where the pattern or its “noisy 
version” is recalled correctly. However, using this training algorithm we cannot pre-
dict anything about recalling previously stored patterns. After storing another pattern, 
some of the previously stored patterns can be recalled incorrectly or even become 
lost. 

4   Experimental Results 

One of the key points in neural network performance is the recall ability. Applying 
the HAM2-model to obtain an associative recall (e.g. in an autonomous robot), a 
robust recall of presented patterns (images) is required, often unknown in some parts 
of their surface. The experimental simulations are focused on the analyses of the 
HAM2-model recall abilities (in comparison with the HAM1-model and the standard 
associative memory model). 

4.1   The Implementation of the HAM2-Model  

Our experimental simulations are restricted to a two-layer hierarchy of the HAM2-
model (and the HAM1-model as well). The two-layer hierarchy is chosen for an easy 
geometrical interpretation of data. We can believe that the patterns in an input space 
are grouped into clusters. In the centers of the clusters are representative patterns 
(called ancestors) that form the first-layer patterns. Other patterns similar (correlated) 
to any ancestor are distributed in a cluster around it. They represent the second-level 
patterns, called descendants. The generalization of the data structure to an arbitrary 
number of layers is straightforward but the geometrical interpretation does not have to 
be so simple (in the future, we plan to extend the experiments to a high number of 
layers). 

With respect to the robust recall ability requirement, the second layer of the im-
plemented HAM2-model deals with difference patterns instead of descendants. The 
difference patterns contain only the information on the differences between the de-
scendants and the corresponding ancestor. During the training, the ancestors are 
stored in the first layer of the HAM2-model. Afterwards, the corresponding ancestor 
is found for every descendant (e.g. by recalling in the first - already trained - layer of 
the HAM2-model). The difference pattern (descendant – recalled ancestor) is calcu-
lated and stored in the second layer according to the training algorithm. The second 
layer of the HAM2-model is in the form of a pile of associative memory subsets. Each 
subset is responsible for recalling only the difference patterns belonging to the ances-
tor stored in the corresponding local associative memory of the first layer.  

During recalling, an input pattern is presented to the first layer of the HAM2-model 
to recall the corresponding ancestor. Once the ancestor is recalled, the corresponding 
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difference pattern is calculated by combining the recalled ancestor with the input pat-
tern. The difference pattern is propagated to the second layer of the HAM-model to be 
recalled. The output of the HAM2-model is produced by combining the recalled differ-
ence pattern with its recalled ancestor (by the operation inversed to the difference pat-
tern calculation). 

4.2   The Generation of Patterns  

For experiments, we generate 100 sets of 100 randomly generated bipolar patterns; 
each of size 15×15 elements. In a bipolar pattern, every element takes the value +1 or 
-1. Every experiment is run on its set of patterns independently on other sets. Experi-
ments are repeated for every data set. In our experiments, we process “relatively 
small” patterns, as it is necessary to perform huge number of experiments to analyze 
the HAM2-model recall ability. We have performed also experiments with “bigger” 
data (75×75elements) and the results have been very similar (or even a little better). 
After pattern generation, the patterns of every data set with the smallest cumulative 
correlation between the respective patterns are chosen to be the ancestors and the 
remaining patterns are used to form the descendants. We define the pattern rate r as a 
ratio between the number of ancestors and descendants in a set of patterns.  

4.3   The Associative Recall of Stored Patterns 

First, we analyze the HAM2-model ability to recall the stored patterns and compare the 
HAM2-model abilities with the HAM1-model and standard associative memory 
abilities. We measure the percentage of patterns (from a set of patterns) that are recalled 
correctly. A pattern is recalled correctly if it coincides with its original. We define the 
capacity coefficient c that reduces the maximum number of patterns stored in a local 
associative memory. The maximum storage capacity  of a local associative memory is 
given by formula =0.15·n·c. The capacity coefficient c takes the value of 1 for a stan-
dard associative memory. For decreasing c, the maximum storage capacity is reduced 
and the HAM2-model recall ability rises. The results are shown in Figure 5.  

In Figure 5, the surface represents the average number of patterns recalled cor-
rectly. If c  0.5, the results are very similar in both models (for every pattern rate r). 
In this case, more than 97% of stored patterns are recalled correctly. As the capacity 
coefficient c (and the pattern rate r) increases, the differences between the HAM1- 
and the HAM2-model become significant. The increasing pattern rate r corresponds 
to the increasing number of ancestors (and the increasing number of local associative 
memories in the first layer). The recall abilities are enhanced in the HAM2-model 
(especially for r>1/2) due to the influence of the tree structure.  

The same experiments are performed with the standard associative memory. As the 
number of patterns to be stored exceeds the theoretical storage capacity [7], the stan-
dard associative memory is not able to recall correctly any of the stored patterns. The 
experiments show that the HAM2-model has a robust recall ability to recall correctly 
the stored patterns. The performance of the model depends on the capacity coefficient 
c and the pattern rate r. Several patterns are recalled with an error, but the error does 
not exceed 2.5%.  
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Fig. 5. The number of patterns recalled correctly in the HAM1-model (left) and the HAM2-
model (right) with respect to the capacity coefficient c and the pattern rate r  

4.4   The Associative Recall of Incomplete Patterns 

Now, we focus on the HAM2-model ability to recall incomplete patterns (e.g. im-
ages). According to the above-mentioned results (Figure 5), we concentrate on the 
HAM2-model with the capacity coefficient c=0.7 and the pattern rate r=1. We create 
three groups of incomplete patterns containing 13%, 25% and 36% of unknown ele-
ments, respectively. Each of the groups corresponds to a diagonal shift of the pattern 
(image) by 1, 2, or 3 points, respectively. We process four types of diagonal direc-
tions:  (northwest),  (northeast),  (southwest) and  (southeast). In practice, 
other directions are also possible. The experiments are processed for every diagonal 
direction separately and the results are averaged for the corresponding size of the 
shift.  

We analyze the model ability to recall the incomplete patterns with respect to the 
diferent size of the shift. With the increasing number of the „unknown“ elements, the 
recall ability decreases. In practice, it is not necessary to recall the incomplete patterns 
correctly (i.e. a small error is acceptable). The results of incomplete pattern recall 
with the shift by 1 and 2 points are shown in Figure 6.  

The horizontal axis in Figure 6 corresponds to the acceptable error (the number of 
elements in a pattern that can be recalled incorrectly). The vertical axis shows the 
number of patterns in which the recall error is bellow the corresponding acceptable 
error level. Figure 6 shows the recall abilities of the HAM2-model are higher than the 
HAM1-model but the differences are just minor. We also perform the same experi-
ments with the standard associative memory. Because of the incapability to recall any 
of the stored patterns, the standard associative memory is not able to recall the incom-
plete patterns correctly either. The detailed results of the HAM2-model for two se-
lected acceptable errors are summarized in the Table 1. 

With increasing error acceptance the number of patterns increases. When the “un-
known” area is small and the error acceptance is about 6%, the HAM2-model has a 
relatively robust recall ability with respect to the incomplete pattern recall (82%). 
Moreover, theory says that for every pattern associative memories store an inverse 
pattern as well. It is possible that the inverse pattern is recalled instead of the original 
one. In this situation, the pattern is considered to be recalled incorrectly. If we could 
detect the situation, the recall ability of the HAM2-model would be improved.  
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Fig. 6. The number of incomplete patterns recalled by the HAM2-model (the solid line) and 
the HAM1-model (the dotted line) with the error bellow the acceptable error. The “unknown” 
elements correspond to the diagonal shift by 1 point (left) and 2 points (right)  

Table 1. The number of incomplete patterns recalled by the HAM2-model where the recall 
error is bellow 1% and 6% 

Acceptable error Shift by 1 Shift by 2 Shift by 3 
 1%  59% 53% 51% 
 6% 82% 64% 57% 

Experiments for the HAM2-model with different pattern rates r are also performed. 
The results show that the HAM2-model ability to recall incomplete patterns are in-
creased with the increasing pattern rate r. 

5   Conclusions 

Our current research in the area of associative memories is focused on an associative 
pattern recall with necessity to handle large number of correlated patterns. Here, we 
have presented the HAM2-model that improves the storage/recall ability of standard 
associative memories and our previous HAM1-model as well. The HAM2-model has 
a tree structure and the patterns are hierarchically grouped according to the “previous-
layer” information. The recall ability of the HAM2-model can be further improved by 
restricting the storage capacity of local memories. The experiments carried out have 
confirmed the legitimacy of the proposed HAM2-model and shown promising results 
for the associative pattern recall. However, for real applications it is necessary to 
further improve the robustness of  recall process with respect to incomplete patterns. 

The right choice of a local associative memory for storing a pattern represents an 
important point of a successful overall performance of the model. We have used a 
basic straightforward method, which we try to improve. We hope it will further 
increase the robustness of the HAM2-model. In the future, we plan to compare the 
HAM2-model with the CASM-model of Hirahara [6] and carry out  the experiments 
with the HAM2-model consisting of more than two layers. 
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Abstract. In this paper we describe how associative memories can be applied to 
categorize images. If we present to an associative memory (AM) an image we 
would expect that the AM would respond with something that describes the 
content of the image; for example, if the image contains a tiger we would ex-
pect that the AM would respond with the word “tiger”. In order to achieve this 
goal, we first chose a set of images. Each image is next associated to the word 
that better describes the content of the image. With this information an AM is 
trained as in [10]. We then use the AM to categorize instances of images with 
the same content even if these images are distorted by some kind of noise. The 
accuracy of the proposal is tested using a set of images containing different spe-
cies of flowers and animals.  

1   Introduction 

Research on associative memories (AMS) has been carried out during the last 40 
years. AMS can be seen as a particular kind of neural networks. AMS are a mathe-
matical device specially designed to recall output patterns in terms of input patterns 
which can be contaminated by some kind of noise, see for example [1-9]. Some of 
these AMS have several constraints that limit their applicability in the solution real 
life problems. Most common applications of AMS are as filters [5-7]; in this case the 
AM is fed with a signal (an image, for example), possibly altered by noise; at the out-
put the original image (without noise) should be obtained. However, in order to 
achieve the best performance the input patterns have to satisfy some restrictions; for 
example in [5-6] the input pattern can only be distorted by additive or subtractive 
noise, but not both. These conditions limit their applicability in real life problems. In 
[7] the patterns can be contaminated with both types of noise. Another application of 
AMS is as classification tools [8-9], however they were only tested in the classifica-
tion of simple objects. Recently in [10] it was introduced a new associative model 
which has demonstrated to be useful for both applications (as a filter and as a classifi-
cation tool); due to its robustness, the model has been recently applied to retrieve  
images from a database [11].  In this paper, we adopt the same model to solve the 
problem of image categorization.  

Most of the information on the web is disposed as images; however this informa-
tion is not well organized. In order to organize those millions of images it is necessary 
categorize them in some manner. In [12], for example, the authors use objective  
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semantic cues for the semantic indexing and quering of images. In this paper we de-
scribe how images can be categorized using the AM model recently introduced in 
[10]. If we feed an AM with a picture we expect that it would respond with something 
indicating the content of the picture. If, for example the picture contains a tiger, we 
would expect that the AM would respond with the word “tiger”. With this goal in 
mind, we first select a set of images; we then manually associate these images with a 
description of the images. With these associations we finally train the corresponding 
AM. To test the proposal we use a set of images containing different species of flow-
ers and animals; we expect to categorize instances of these images even if they appear 
distorted by noise. 

The remaining of the paper is organized as follows. In section 2, we describe the 
adopted AM model. In section 3, we describe how the proposal is implemented, while 
in section 4, we present the obtained experimental results. In section 5, we finally 
conclude and give some directions for further research. 

2   Associative Model 

An association between input pattern x  and output pattern y  is denoted as 

( )kk yx , , where k  is the corresponding association. The associative memory M  is 

represented by a matrix whose component ijm  can be seen as the synapses neuron i  

and neuron j . M  is generated from a finite a priori set of know associations, known 

as the fundamental set of association and is represented as: ( ){ }pkkk ,,2,1|, =yx  

where p  is the number of associations.  If { }pkkk ,2,1∈∀=   yx  then M  is 

auto-associative, otherwise it is hetero-associative. A distorted version of a pattern x  
to be restored will be denoted as x~ . If an associative memory M  is fed with a dis-

torted version of kx  and the output obtained is exactly ky , we say that recalling is 

perfect. 

2.1   Building and Testing the Associative Memory 

Two main phases are used to build and test the AM model. 

Training Phase: 

1. For each couple ( ){ }pkkk ,,2,1|, =yx  build matrix 
txy Α  as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
nmnmmm
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xyxyxy

xyxyxy
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with ( )A = −x, y x y . 
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2. Apply the median operator to the matrix obtained in step1 to get matrix M . 

( )k
j

k
i

p

k
ij xym ,

1
Α=

=
med     (1) 

Recalling Phase: 
A pattern kx  is presented to the memory M  and the following operation is done to 

recall ky :  

 

( ) ( )k
jij

n

ji
k xm ~,~

1
Β=

=Β midxM    (2) 

 

In this case ( )B = +x, y x y  and operator mid is defined as ( )1 / 2 nx +=mid x .   

2.2   A Dynamic Associate Memory 

Humans, in general, do not have problems to recall patterns even in the presence of 
noise. Before an input pattern is learned or processed by the brain, it is hypothesized 
that it is transformed and codified by the brain. This process can be simulated using 
the algorithm described in [8]: 
 
Procedure 1. Transform the fundamental set of associations into codified patterns 
and de-codifier patterns: 
 
Input: FS Fundamental set of associations: 
{ 

 1. Make d const=  and make ( ) ( )1 1 1 1, ,=x y x y  

 2. For the remaining couples do { 

For 2k =  to p { 

 For 1i =  to n { 

  
1k k

i ix x d−= + ; ˆk k k
i i ix x x= −   

  
1k k

i iy y d−= + ; ˆ k k k
i i iy y y= − } 

} 
} 
 
Output: Set of codified and de-codifier patterns. 
 
This procedure allows computing codified patterns from input and output patterns de-
noted by x  and y , respectively. On the other hand x̂  and ŷ  are the de-codifier pat-

terns. In addition a simplified version of kx  denoted by ks  is obtained using: 

( )k k
ks s= =x mid x     (3) 
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When the brain is stimulated by an input pattern, some regions of the brain are stimu-
lated by its information, also are the synapses belonging to that region. We call these 
regions active regions and are computed as follow: 
 

( ) ( )
1

arg
p

i
i

ar r s s
=

= = ∧ −x x    (4) 

 
Principal synapses (kernel of the AM) are located in the middle column of matrix M  

and is denoted by 
1

 
m

i
i

w
=

=MK mid . The synapses that belong to MK  are modified as 

a response to the input pattern. This pattern stimulates some regions, interacts with 
these active regions and then, according to those interactions modifies the synapses.  
Adjusting factor is denoted by wΔ  and is given as: 
 

( ) ( ) ( )rw s sΔ = Δ = −x x x    (5) 

 
where r  is the index of the active region. 

Finally synapses belonging to MK  are updated as: 

 

( )new oldw w= ⊕ Δ − ΔM MK K    (6) 

 

where operator ⊕  is defined as 1, ,id x d i m⊕ = + ∀ =x . 

Using this dynamic approach an AM can be built using the following procedure: 
 
1. Transform the fundamental set of association into codified 

and de-codifier patterns using procedure 1. 
2. Compute simplified versions of input patterns using equation 

3. 

3. Build matrix M  in terms of codified patters: apply step 1 
and 2 of the training procedure described at the beginning of 
section 2. 

 

Given a pattern kx  or a distorted version of it kx , pattern ky  can be recovered as 

follows: 
 
1. Obtain index of active region ar  by means of equation 4. 
2. Transform 

kx  using de-codifier pattern ˆ arx  as: ˆk k ar= +x x x . 

3. Compute adjusting factor ( )wΔ = Δ x  by using equation 5. 

4. Modify synapses of associative memory M  that belong to MK  

by means of equation 6. 
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5. Apply step 1 of the recalling phase described in section 2. 

6. Obtain 
ky  by transforming 

ky  by using de-codifier pattern 

ˆ ary  as: ˆk k ar= −y y y . 

3   Categorizing Images 

Image categorization is not trivial when pictures are taken from real life situations. 
This implies that categorization must be invariant to several image transformations 
such as translations, rotations, scale changes, illumination changes, orientation 
changes, noise, and so on. 

A first step to solve this problem, we provide a solution when the concerned im-
ages are distorted only by mixed noise. For this we use the associative model de-
scribed in section 2. Firstly, we select a set of images. We then associate these images 
with describing words. The images and the describing words are our set of associa-

tions, with kx  is the k -image and ky  the k -describing word. With this set of asso-

ciations we next proceed to build the corresponding associative memory as explained 
in section 2.1. 

Either for learning or recall, each color image ( )jif k ,  is converted to a vector by 

means of standard scanning method. If image ( )jif k ,  is of size NM ×  pixels, then 

its corresponding vector is [ ]Tk
NM

kkk xxx ×= 21x .  

The elements Rryk
r ,,1, =  of vector ky  correspond to the ASCII codes of the 

letters of each describing word. R  is the number of letters of a given word. 
Something important with this proposal is that we can control the degree of detail 

of categorization going from something general to something particular. Let us sup-
pose, for example, that the set of selected images contain just animals, and that then 
we can categorize these animals into oviparous or viviparous. If we want more detail, 
we can categorize oviparous animal in reptiles and birds, and so on. 

4   Experimental Results 

In this section, we test the accuracy of the proposal with a set of 40 images containing 
flowers and animals as shown Figure 1.  

Three experiments where performed in order to determine the accuracy of the pro-
posal. We use different description levels. In the first experiment we categorized the 
set images into classes: flowers or animals. In second experiment we went more in de-
tail and split flowers and animals into different families of species, eleven families for 
flowers and six families for animals; seventeen classes in total. In the last experiment, 
we categorized each flower and animal into its particular name; here we categorized 
the images into forty classes. 
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Fig. 1. Set of images of flowers and animals used in the experiments 

In the first experiment we associated whole flowers with the description word 
“flowers” and complete animals with the description word “animals”.  These asso-
ciations allow us to categorize the images into two classes; this is a description of 
level 1, see Figure 2. 
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Fig. 2. Description levels used to train the associative memory in the three different experi-
ments 

For the second experiment we decided to categorize the images into different families, 
see Table 1. In this case we associated the flower and the animals belonging to a spe-
cific family with the name of the family. 

Table 1. Different species of flowers and animals associated to a specific family. This implies 
that if the associative memory is fed with an image of a lion, leopard or tiger, the associative 
memory will respond with the word “felines” and so on. 

Family (description word) Species 
Agapanthus Agapanthus 
Calla lily White calla lily, yellow call lily 
Bougainvillea Yellow bougainvillea, purple bougainvillea 
Cactaceae Cactus, nopals 
Dianthus Dianthus 
Dahlia Dahlia 
Other flowers Purple flower, red flower, white flower, green-red flower, black flower 
Geranium White geranium, pink geranium, cranesbills 
Daisy Daisy 
Gazania Gazania 
SunFlower Sunflower 
Birds Ostrich, peacock, flamingo, goose, macaw 
Primates Chimpanzee, spider monkey 
Felines Lion, leopard, tiger 
Dogs Wild dog, domestic dogs 
Big animals Bison, elephant, hippopotamus, rhinoceros, bear 
Small animas Impala, turtle, zebra 

For the last experiment we associated each image with the name of the specie appear-
ing on the image, see Table 2. 
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Table 2.  Each species is associated with the name of the specie. This implies that if the asso-
ciative memory is fed with the image of the tiger, the associative memory will respond with the 
word “tiger” and so on. 

Description word Specie Description word Specie 
Agapanthus Agapanthus White flower White flower 
White calla lily White calla lily Green-red flower Green-red flower 
Yellow calla lily Yellow calla lily Black flower Black flower 
Yellow bougainvillea Yellow bougainvillea White geranium White geranium 
Purple bougainvilie Purple bougainvilie Pink geranium Pink geranium 
Cactus Cactus Sunflower Sunflower 
Dianthus Dianthus Cranesbills Cranesbills 
Dahlia Dahlia Daisy Daisy 
Purple flower Purple flower Nopal Nopal 
Red flower Red flower Gazania Gazania 
Ostrich Ostrich Tiger Tiger 
Bison Bison Turtle Turtle 
Chimpanzee Chimpanzee Zebra Zebra 
Elephant Elephant Domestic dog Domestic dog 
Impala Impala Flamingo Flamingo 
Lion Lion Goose Goose 
Leopard Leopard Hippopotamus Hippopotamus 
Peacock Peacock Spider monkey Spider monkey 
Wild dog Wild dog Bear Bear 
Rhinoceros Rhinoceros Macaw Macaw 

Once the associative memory in each experiment was trained we manually con-
taminated the images with noise and then we fed the associative memories with the 
contaminated image in order to obtain its categorization. 

As you can appreciate in Figure 3, whole images were perfectly categorized in the 
three experiments. These results support the accuracy of the proposal. 

5   Conclusion and Ongoing Research  

In this paper we have described how an associative memory can be used for categoriz-
ing images containing complex objects as flowers and animals. Although only the pro-
posal was tested with images manually modified, the results were highly acceptable. 

It is important to mention that this is the first time that an associative memory is 
used to categorize images, and the most important, complex images with flowers and 
animals. 

In addition, we have categorized images in three different description levels. We 
performed three experiments going from a general description to a particular descrip-
tion. These descriptions can also be arranged into a hierarchical tree of descriptions. 
On the other hand we have demonstrated the robustness of the associative model cate-
gorizing images in more than twenty classes. 

The associative model used is robust under some affine transformations but only 
when the images contain plastic objects; however with complex images the associa-
tive model could provide a low accuracy.  
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Fig. 3. Results obtained in the experiments using altered images. E1:xx represents the descrip-
tion word obtained by feeding the memory with the image in experiment 1. The same occurs 
for E2 and E3. 
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Nowadays we are facing more complex problems, for example when the images 
present illumination changes and some image transformations, such as translations, 
rotations, scale changes, and so on. By solving all of these problems and by combin-
ing the solution with a hierarchical arrangement of associative memories it might be 
possible to develop a powerful image retrieval system. 
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Abstract. The Neural Gas (NG) is a Vector Quantization technique where a set
of prototypes self organize to represent the topology structure of the data. The
learning algorithm of the Neural Gas consists in the estimation of the prototypes
location in the feature space based in the stochastic gradient descent of an Energy
function. In this paper we show that when deviations from idealized distribution
function assumptions occur, the behavior of the Neural Gas model can be drasti-
cally affected and will not preserve the topology of the feature space as desired.
In particular, we show that the learning algorithm of the NG is sensitive to the
presence of outliers due to their influence over the adaptation step.

We incorporate a robust strategy to the learning algorithm based on
M-estimators where the influence of outlying observations are bounded. Finally
we make a comparative study of several estimators where we show the superior
performance of our proposed method over the original NG, in static data cluster-
ing tasks on both synthetic and real data sets.

Keywords: Neural Gas, Robust Learning Algorithm, M-estimators.

1 Introduction

The Neural Gas (NG), introduced by Martinetz et. al. [6], is a vector quantization tech-
nique that has been successfully applied in several areas as pattern recognition and data
mining (see [9]). The NG is a variant of the Kohonen Self-Organizing Map [5] where
the neighborhood relation is adaptively defined by the ranking order of the distance be-
tween the prototypes and the sample data. The NG has the advantage of being flexible
and capable of both quantizing topologically heterogeneously structured manifolds and
learning the similarity relationships among the input signals without the necessity of
specifying a network topology.

The learning algorithm for the parameter estimation of neural networks models rely
on the data. In real engineering and scientific applications, data are noisy with the pres-
ence of outlying observations. Assumptions of the underlying data generation process
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no longer holds and the model estimates are badly affected obtaining a poor perfor-
mance (see for example [1] and [8]).

In [2] and [7] the authors empirically show that the Neural Gas lacks of robustness
and they incorporated several robust strategies such as outlier resistant scheme. In this
paper we show that when deviations from idealized distribution function assumptions
occurs, the behavior of the Neural Gas model can be drastically affected and will not
preserve the topology of the feature space as desired. In particular, we show that the
learning algorithm of the NG is sensitive to the presence of outliers due to their influence
in the adaptation step. We incorporate a robust strategy to the learning algorithm based
on M-estimators where the influence of outlying observations is bounded.

The remainder of this paper is organized as follows. In the next section we briefly
introduce the Neural Gas model. In section 3 we review some concepts of Robust M-
estimator applied to the learning process. In section 4 we investigate the robustness
properties of the NG by casting the learning algorithm as a statistical estimation prob-
lem, furthermore, we introduce the M-estimators as a robust scheme for the parameter
estimation process. In section 5 we provide a comparative study of several estimators
where we show the superior performance of the robust methods over the original NG, in
static data clustering tasks on both synthetic and real data sets. Conclusions and further
work are given in section 6.

2 Neural Gas

The “Neural-Gas” (NG) model consists of an ordered set m = {m1, ...,mM} of M
prototypes, neurons or “codebooks” vectors mj ∈ M ⊆ R

d, j = 1, ..,M arranged
according to a neighborhood ranking relation between the units.

When the data vector x ∈ X ⊆ R
d is presented to the NG model, it is projected to

a neuron position by searching the best matching unit (bmu), i.e., the prototype that is
closest to the input, and it is obtained as c(x) = argminj=1..M {‖x − mj‖}, where ‖·‖
is the classical Euclidean norm. This procedure divides the manifold X into a number
of subregions Vj = {x ∈ X| ‖x − mj‖ ≤ ‖x − mi‖ ∀i}, called Voronoi polygons or
Voronoi polyhedra, where each data vector x is described by its corresponding reference
vector mj .

The neighborhood relation of the prototypes in the NG model is defined by the rank-
ing order of the distance of the codebook vectors to the given sample. When a data vec-
tor x is presented, the “neighborhood-ranking” (mi0 ,mi1 , ...,miM−1) is determined,
with mi0 being the closest to x, mi1 being second closest to x, and mik

, k = 0, ..,M−
1, being the reference vector for which there are k vectors mj with ‖x − mj‖ <
‖x − mik

‖. If kj(x,m) denotes the number k associated with each vector mj , which
depends on x and the whole set m of reference vectors, then the adaptation step for
adjusting the mj’s is given by:

mj(t + 1) = mj(t) + αhλ(kj(x,m))(x − mj) j = 1, ..,M (1)

with both the learning parameter function α = α(t) ∈ [0, 1] and the characteristic decay
function λ = λ(t) are monotonically decreasing functions with respect to time. For
example for α the function could be linear α(t) = α0 + (αf − α0)t/tα or exponential
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α(t) = α0(αf/α0)t/tα , where α0 is the initial learning rate (< 1.0), αf is the final rate
(≈ 0.01) and tα is the maximum number of iteration steps to arrive αf . Analogously
for λ (See [10] for further details).

The neighborhood kernel hλ(kj(x,m)) is unity for kj = 0 and decays to zero for
increasing kj . In this paper we use hλ(ki(x,m)) = expki(x,m)/λ. Note that if λ → 0
then (1) is the K-means adaptations rule, whereas for λ �= 0 not only the “winner”
(bmu) mi0 but the second closest reference vector mi1 , third closest vector mi2 , etc.,
are also updated.

Martinetz et. al. [6] showed that the dynamics of the mj’s obeys a stochastic gradient
descent on the cost function:

Eng(m, λ) =
1

2C(λ)

M∑
i=1

∫
hλ(ki(x,m))(x − mi)2dF (x) (2)

where C(λ) =
∑M

i=1 hλ(ki) =
∑M−1

k=0 hλ(k) is a normalization factor that only de-
pends on λ. F (x) is the probability distribution measure of the data generating process.

3 Robust M-Estimators for the Learning Process

The learning process of the NG can be seen as a parameter estimation process, and their
inference relies on the data [2]. When observations substantially different from the bulk
of data exist, they can influence badly the model structure bringing degradation in the
estimates. In this work we seek for a robust estimator of the NG parameters based on
M-estimators (see [4]).

Let the data set {x1, ...,xn} consists of an independent and identically distributed
(i.i.d.) sample of size n obtained from the input space X ⊆ R

d of dimension d, i.e.,
xi ∈ X . An M-estimator θ̂M

n is defined as

θ̂M
n = arg min{RLn(θ) : θ ∈ Θ} with RLn(θ) =

1
n

n∑
i=1

ρ (xi, θ)

where Θ ⊆ R
D is the parametric space, RLn(θ) is a functional cost and ρ : X×Θ → R

is the function that we will name it robust when it introduces a bound to the influ-
ence of outliers data during the training process. By assuming that the function ρ is
differentiable with respect the parameter θ = (θ1, ..., θD), we obtain the score func-
tion ψ(x, θ) = (ψ1, ..., ψD)′ whose components are the partial derivatives ψj(x, θ) =
∂ρ(xi,θ)

∂θj
, j = 1..D. Then the M-estimator can be defined implicitly as the solution of

the vector equations 1
n

∑n
i=1 ψj (xi, θ) = 0, j = 1..D. Table 1 shows the Least Square

(LS), Huber (H) and Tukey’s biweight (B) methods as examples of M-estimators. Please
refer to [4] for further examples of robust functions.

We consider estimators T which are functionals of the distribution functions, i.e.,
T = T (F ), and estimators that are Fisher consistent T (F ) = θ. The influence function
(IF) of the functional T at the distribution function F = F (x) is defined as

IF (x;T, F ) = lim
t→0

T ((1 − t)F + tΔx) − T (F )
t
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where (1− t)F + tΔx is the t-contaminated model of the distribution F (x), where Δx

is the probability measure which puts mass 1 at the point x. The influence function is
a local measure introduced by Hampel [4] that describes the effect of an infinitesimal
contamination at the point x on the estimate.

Table 1. Examples of M-estimators

Name ρ(x) ψ(x)

Least
square

x2/2 x

Huber
x2/2 |x| ≤ κ
κ |x| − κ2/2 |x| > κ

x |x| ≤ κ
κ sign(x) |x| > κ

Tukey’s
biweight

κ2(1 − [1 − x2/κ2]3)/ |x| ≤ κ
κ2/6 |x| > κ

x[1 − x2/κ2]2 |x| ≤ κ
0 |x| > κ

An important summary value based on the IF is the gross error sensitivity that mea-
sure the worst (approximate) influence which a small amount of contamination of fixed
sized can have on the value of estimator. The gross error sensitivity of the estimator T
at the distribution F is defined as γ(T, F ) := sup

x
{‖IF (x, T, F )‖}. It is a desirable

feature that γ(T, F ) be finite and in such case we say that T is B-Robust at F .

4 Robustness Analysis of the Learning Algorithm

Let the data set {x1, ...,xn}, xi ∈ X ⊆ R
d, consists of an independent and identically

distributed (i.i.d) sample of size n with common probability distribution F (x). The cost
function of equation (2) is generalized to the following form:

Eng(m, λ) =
1

C(λ)

M∑
i=1

∫
χ

hλ(ki(x,m))ρ(x − mi)dF (x) (3)

=
1

C(λ)

∫
χ

M∑
i=1

hλ(ki(x,m))ρ(x − mi)dF (x)

=
1

C(λ)

∫
χ

η(x,m)dF (x)

where the second equation is obtained by interchanging the integral with the summand.
Let the function η : X ×M −→ R be defined as η(x,m) =

∑M
i=1 hλ(ki(x,m))ρ(x−

mi) and ρ : X ×M −→ R is the function of the M-estimator functional cost (see table
1 for examples).

An M-estimator is defined as the value m̂ = {m̂1, ..., m̂M} such that

m̂ = arg min
m

{Eng(m, λ)}
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Assuming that ρ is differentiable whose derivative is given by ψ(r) = ∂ρ(r)
∂r then

ϕj(x,m) =
∂η(x,m)

∂mj
= -hλ(kj(x,m))ψ(x − mj) + Rj j = 1, ...,M

with Rj =
∑M

i=1 h′
λ(kj(x,m))ρ(x − mj)

∂ki(x,m)
∂mj

. Martinez et al. [6] demonstrated

that
∫

RjdF (x) = 0 for each j = 1, ..,M . An M-estimator m̂ can be defined implicitly
by the solution of the vector equation ϕj(x,m) = 0, ∀j = 1, ...,M .

The influence function IFj(x,m, F ) associated to the M-estimator m̂j is given by
the following equation:

IFj(x,m, F ) = hλ(kj(x,m))ψ(x − mj)H−1 ∀j = 1, ...,M

where H = -
∫

∂
∂m [ϕj(x,m)]m̂ dF (x). Note that if the classical Least Square estima-

tor is used, then the gross error sensitivity is γ(m̂LS, F ) = ∞, this reflect the fact that,
for any samples size, even a single outlier can carry the estimates over all bounds (if it
is far enough).

4.1 Robust Learning Algorithm

The updating rule (1) employed in the original NG algorithm lacks of robustness as was
shown in the previous section. The gross error sensitivity is infinity implying that the
learning step is biased toward the location of the outlying observations. To overcome
this problem the following updating rule that obeys a stochastic gradient descent on the
cost function (3) is used instead:

mj(t + 1) = mj(t) + αhλ(kj(x,m))ψ(x − mj) j = 1, ...,M (4)

where the ψ(·) function diminish the influence of the outliers (see table 1 for exam-
ples). Unfortunately, the learning rule of equation (4) is not invariant with respect to
scale, which is often a nuisance parameter. To overcome this problem we can standard-
ized each data sample xi = (x1, ..., xd)′ as Ŝ

−1/2
j (x − mj), where Ŝj is the robust

estimation of the covariance matrix of the difference x−mj of all the data that belong

to the Voronoi polygon Vj , and Ŝ
−1/2
j =

√
Ŝ−1

j is the square root of the inverse of the
covariance matrix. Now we can redefine the robust learning rule as follows

mj(t + 1) = mj(t) + αhλ(kj(x,m))ψ
(
Ŝ
−1/2
j (x − mj)

)
j = 1, ..,M (5)

One could compute m and Ŝ simultaneously as M-estimators of location and scale
respectively. However, simulations have shown the superiority of M-estimators with
scale estimated iteratively during the learning process by the scaled version of the me-
dian of the absolute deviations from the median (sMAD):

sMAD(x1, ..xn) =
1

Φ−1(3
4 )

median
l=1..n

{∣∣∣∣xl − median
k=1..n

(xk))
∣∣∣∣}
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where Φ−1(p) is the inverse of the standard Gaussian cumulative distribution function
at the probability p. The constant 1

Φ−1( 3
4 )

≈ 1.483 is needed to make the sMAD scale

estimator Fisher consistent when the data behave as Gaussian distribution. We apply
the sMAD function for each dimension component of the sample {(xi − mj)}n

i=1 and
for each prototype j = 1..M .

The robust M-estimators of the learning update rule have initialization problems. To
overcome this situation the constant κ of the ψ(·) function is considered as a function
of time and the standard deviation, i.e., κ = κ(t)σ, where κ(t) monotonically decreases
with time. In this paper we use a linear decreasing function κ(t) = κ0 +(κf −κ0)t/tf ,
where κ0 is the initial value (bigger than 6); and κf is the final value (between 3 and 6)
and tf is the maximum number of iteration steps to arrive κf .

5 Simulation Results

In this section we provide a comparative study of the Least Square (LS), Huber (H)
and Biweight (B) M-estimators applied to the learning process of the NG, in static data
clustering tasks on both synthetic and real data sets, the latter were obtain from the UCI
benchmark [3].

In the experiments, all the dimensions of the training data set were scaled to interval
[−1, 1], and the test data set were scaled using the same scale applied to the training
data set. The test data set will not necessarily fall in the same interval. The number of
epochs utilized for all experiments is tf = 500 and the α and λ decay in exponential
form with values: α0 = 0.9, αf = 0.05, λ0 = M/3, λf = 0.01, κH

0 = 30, κB
0 = 40

and κf = 3.

5.1 Performance Evaluation of the NG

In the experiments we use the following metrics to evaluate the performance of the NG
model. The Classification Accuracy (CA) is the right classification percentage

CA =
1
n

n∑
i=1

I(xi,mc(xi)) · 100% (6)

where we label the neuron mj with the class that has the majority in its Voronoi polygon
Vj . I(xi,mc(xi)) takes the value of one if the label of the data xi is equal to the label
of its best matching unit mc(xi), and takes the value of zero in the other case.

The Mean Square Quantization Error is given by

MSQE =
1
n

n∑
i=1

∥∥xi,mc(xi)

∥∥2
(7)

The Mean Distance from the Neurons to the closest cluster Center measures the av-
erage Euclidean distance between the neurons mj and its closest cluster center μ(mj):

MDNC =
1
M

M∑
j=1

‖mj − μ(mj)‖2 (8)
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Finally, the Numbers of clusters Center in the Voronoi polygon is given by

NC =
∑

mj∈M
|τj − 1| (9)

where τj correspond to the number of clusters center that are inside the Voronoi polygon
Vj . A desirable feature is that each neuron model no more and no less than one cluster
center.

5.2 Experiment #1: Computer Generated Data

The synthetic experiments were constructed by generating a square grid of twenty five
cluster drawn from two-dimensional Gaussian distributions Xl ∼ N (μl, Σl), l =
1, ..., L = 25, where μl is the mean vector of the cluster l and Σl = Σ is its co-
variance matrix. A total of 2500 samples for the training and the same quantity for the
test were generated, where each cluster has an expected size of 100 samples.

Fig. 1. Topology adaptation of the NG. Comparative results of the NG model to the synthetic
data with 15% of outliers for the Least Square (left), Huber (middle) and Biweight (right) esti-
mators.

The observational process is obtained by adding additive outliers: Zl = Xl + Vl Ul,
where Vl is zero-one process with P (Vl �= 0) = ε, 0 < ε � 1 and Ul has distribution
N (0, ΣU ) with |ΣU | � |Σ|. The generating process was affected with ε = 5%, 10%,
15% and 20% of outliers with ΣU = 27Σ.

Figure 1 shows the adaptation of the NG to the data with 15% of outliers for the three
estimators: Least Square (left), Huber (middle) and Biweight (right). The LS estimator
was badly affected by locating five prototypes far from the square grid. Nevertheless,
the robust estimators (Huber and Biweight) were much less affected and their respective
neurons were located inside the grid of 25 clusters, with each neuron close to the some
of the clusters center. The robust estimators diminished the influence of the outlying
observations and they had a better topology preservation than the LS-estimator.

Table 2 shows the summary results of the performance evaluation of the NG with
the three estimators.The LS estimator obtained the lowest MSQE evaluated in the data
with outlier for all the experiments (columns E1 and E2), this result was expected
because the LS-estimator minimizes the cost function (3) while the robust estimators
minimize the cost function (3). However, if we compute the MSQE in the data with-
out outliers (columns E3 and E4), the robust estimators outperforms the LS-estimator.
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The CA1 and CA2 show the classification accuracy of the training and test set re-
spectively, as was expected, the robust estimators obtained better performance than the
LS-estimator when the percentage of outliers are increased. The column NC computed
with equation (9) show how the robust estimators remains stable with an increasing
percentage of outliers, while the LS-estimator got worse. Finally, the last column show
that the robust estimators outperforms the LS-estimator, meaning that the former locate
the prototypes closer to the clusters center. Note that the last two columns measures the
quality of the topology preservation of the square grid.

Table 2. Summary results of the performance evaluation of the NG model with 25 prototypes with
the LS, H and B estimators used in the training process. The second column is the percentage of
outliers in the data. From the columns E1 to E4 are the value of Mean Square Quantization Error
(7), column E1 and E2 correspond to the error evaluation of training and test set respectively by
considering the outliers, while columns E3 and E4 are the error evaluation of training and test
data sets without considering the outliers. The columns AC1 and AC2 are the value of the Classi-
fication Accuracy (6) of the training and test sets respectively by considering the outliers. Finally
the column NC and MDNC are the values obtained with equations (9) and (8) respectively.

Estimators % Outliers E1 E2 E3 E4 CA1(%) CA2(%) NC MDNC

LS 5 0.0039 0.0045 0.0009 0.0009 88.7 88.0 3.8 0.0171
H 5 0.0063 0.0066 0.0012 0.0013 86.9 85.5 4.8 0.0004
B 5 0.0064 0.0067 0.0016 0.0016 82.5 81.6 6.8 0.0005
LS 10 0.0054 0.0065 0.0013 0.0013 78.4 77.1 7.6 0.0263
H 10 0.0102 0.0112 0.0011 0.0012 82.4 81.0 5.2 0.0004
B 10 0.0103 0.0113 0.0015 0.0016 80.4 79.1 6.0 0.0005
LS 15 0.0056 0.0069 0.0016 0.0017 69.2 66.4 11.4 0.0388
H 15 0.0134 0.0141 0.0010 0.0011 76.4 75.9 6.0 0.0003
B 15 0.0134 0.0141 0.0013 0.0013 76.7 76.0 5.2 0.0004
LS 20 0.0065 0.0072 0.0019 0.0019 62.5 59.6 13.6 0.0432
H 20 0.0171 0.0170 0.0010 0.0010 74.7 73.9 5.0 0.0003
B 20 0.0175 0.0174 0.0013 0.0014 72.5 71.9 6.2 0.0002

5.3 Experiment #2: Real Data Sets

In the second experiment we test the algorithm with four real datasets obtained from
the UCI Machine Learning repository [3]. The Wine recognition, Glass Identification,
Cancer and Pima Indians Diabetes data sets were selected.

Figure 2 displays the Mean Square Quantization Error of the M-estimators computed
for all the data sets. Similarly to the previous section, the LS-estimator obtained better
performance in this metric with respect to the robust estimators. Nevertheless, we can
not assure the topology preservation of the LS-estimator as the robust estimators, if the
real data are contaminated.

Figure 3 shows the Classification Accuracy of the NG modelling all the real data
sets. In the Cancer data set (upper-left) the best performance were obtained with a low
number of neurons, while in the other experiments better performance were obtained
with increasing number of prototypes. When the number of the prototypes are less than
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Fig. 2. MSQE performance evaluation for the Real data sets. Neural Gas modelling the Cancer
(Upper-Left), Pima Indians Diabetes (Upper-Right), Glass Identification (Bottom-Right) and the
Wine Recognition (Bottom-Left) data sets respectively.

Fig. 3. Classification Accuray for the Real data sets. Neural Gas modelling the Cancer (Upper-
Left), Pima Indians Diabetes (Upper-Right), Glass Identification (Bottom-Right) and the Wine
Recognition (Bottom-Left) data sets respectively.

the number of classes the performance of the NG model for all the estimator was very
poor (the Cancer, the Pima Indians Diabetes, the Glass Identification and the Wine
Recognition data sets were composed of 2, 2, 8, 3 classes respectively). Only in the
Wine Recognition data set one of the estimators (biweight) outperforms the others,
while in the other cases we can not see the superiority of any of the estimators.
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6 Concluding Remarks

In this paper we analyzed the robustness properties of the learning process of the Neural
Gas model based on the M-estimator robust theory. We have demonstrated that the
classical Neural Gas learning algorithm lacks of robustness and with small amount of
contamination the codebooks are biased towards the outliers. We have introduced robust
M-estimator to diminish the influence of outlying observations and making the learning
process more stable.

In the synthetic experiment the robust estimators outperforms the LS-estimator in
the topology preservation. However, we empirically showed that the MSQE was not a
good performance metric of the adaptation quality under contaminated data.

In the real data experiments, all the estimators showed similar performance in the
classification accuracy. But we were not able to assure the topology preservation for the
LS-estimator as in the robust estimator case. It is of great importance find algorithms
to determine the learning parameters and the ordering properties. Finally, due to the
similar behavior in real data sets of all algorithms is better to use a robust function
learning to explore the data because it works with or without presence of outliers.

Further studies are needed to extend the results to other class of estimators (L, M and
R estimators) as well as other self organizing models. Furthermore, index that measures
the quality of topology preservation are needed instead of the MSQE.
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Abstract. Feature selection is a critical procedure in many pattern
recognition applications. There are two distinct mechanisms for feature
selection namely the wrapper methods and the filter methods. The filter
methods are generally considered inferior to wrapper methods, however
wrapper methods are computationally more demanding than filter meth-
ods. A novel filter feature selection method based on mutual correlation is
proposed. We assess the classification performance of the proposed filter
method by using the selected features to the Bayes classifier. Alternative
filter feature selection methods that optimize either the Bhattacharrrya
distance or the divergence are also tested. Furthermore, wrapper feature
selection techniques employing several search strategies such as the se-
quential forward search, the oscillating search, and the sequential floating
forward search are also included in the comparative study. A trade off
between the classification accuracy and the feature set dimensionality is
demonstrated on both two benchmark datasets from UCI repository and
two emotional speech data collections.

1 Introduction

Feature selection is defined as the process of selecting D most discriminatory fea-
tures out of d ≥ D available ones [1]. Feature subset selection aims to identify
and remove as much irrelevant and redundant information as possible. Feature
transformation is defined as the process of projecting the d measurements to a
lower dimensional space through a linear or non-linear mapping. Principal com-
ponent analysis and linear discriminant analysis are probably the most common
feature transformations [2]. Both feature extraction and feature transformation
reduce data dimensionality and allow learning algorithms to operate faster and
more effectively on large datasets and even to improve classification accuracy
in some cases. Depending on the available knowledge of class membership, the
feature selection can be either supervised or unsupervised.

The feature selection problem is NP-hard. So, the optimal solution is not
guaranteed to be found unless except exhaustive search in the feature space is

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 569–577, 2006.
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performed [1]. Two approaches to feature selection are commonly used namely
the wrapper methods and the filter methods. The former use the actual classifier
to select the optimal feature subset, while the latter select features independently
of the classifier. The filter methods use probability based distances independent
of the classification such as the Bhattacharya distance, the Chernoff distance, the
Patrick Fisher distance, and the divergence. Both filter and wrapper methods
may employ efficient search strategies such as branch and bound, best individual
N method, sequential forward selection (SFS), sequential backward selection
(SBS), and sequential floating forward search (SFFS).

A novel filter feature selection method based on mutual correlation is pro-
posed. Both filter and wrapper techniques have their advantages as well as draw-
backs. The major problem with wrapper methods and filter methods employing
search strategies is their high-computational complexity, when applied to large
data sets. For feature sets of large dimensionality, any feature selection method
that would approximate an exhaustive search in these large data spaces is infea-
sible due to the many possible combinations

d!
(d − D)! D!

.

On the other hand, any non-exhaustive search method is not guaranteed to find
the optimal feature set. We can only hope to reach a reasonable local optimum.
While the literature has shown no clear superiority of any particular feature
selection method, some feature selection methods are more suitable for large-
dimension applications than others.

2 Correlation-Based Method

Correlation is a well-known similarity measure between two random variables.
If two random variables are linearly dependent, then their correlation coefficient
is ±1. If the variables are uncorrelated, the correlation coefficient is 0. The
correlation coefficient is invariant to scaling and translation. Hence two features
with different variances may have the same value of this measure. Let us have n
d-dimensional feature vectors

Xi = [ix1, . . . ,
i xd] i = 1, . . . , n

from K possible classes. The mutual correlation for a feature pair xi and xj is
defined as

rxi,xj =
∑

k
kxi

kxj − nx̄ix̄j√
(
∑

k
kx2

i − nx̄2
i )(

∑
k

kx2
j − nx̄2

j )
(1)

If two features xi and xj are independent then they are also uncorrelated, i.e.
rxi,xj = 0. Let us evaluate all mutual correlations for all feature pairs and
compute the average absolute mutual correlation of a feature over δ features

rj,δ =
1
δ

δ∑
i=1,i�=j

|rxi,xj | . (2)
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The feature which has the largest average mutual correlation

α = argmax
j

rj,δ (3)

will be removed at each iteration step of the feature selection algorithm. When
feature xα is removed from the feature set, it is also discarded from the remaining
average correlations, i.e.

rj,δ−1 =
δ rj,δ − |rxα,xj |

δ − 1
. (4)

2.1 Proposed Feature Selection Algorithm

The proposed correlation based feature selection algorithm can be summarized
as follows.

1. Initialize δ = d − 1.
2. Discard feature xα for α determined by (3).
3. Decrement δ = δ − 1, if δ < D return the resulting D dimensional feature

set and stop. Otherwise,
4. Recalculate the average correlations by using (4).
5. Go to step 2.

The algorithm produces the optimal D-dimensional subset from the original
measurements with respect to the correlation criterion

X = [x1, . . . , xD] .

The algorithm is very simple and so it has low computational complexity.

3 Evaluation Criteria

The presented method was compared with three wrapper based alternatives:
SFS [3], SFFS [3], and oscillating search (OS) [4] used to directly optimize the
Bayes error when each class probability density function is modelled by a single
Gaussian. We also compared it with the Bayes error committed by two filter
methods that select optimal feature subsets either with respect to the Bhat-
tacharyya distance

B =
1
8
(μi − μj)T

(
Σi + Σj

2

)−1

(μi − μj) +
1
2

ln
|Σi+Σj

2 |√|Σi||Σj |
, (5)

or the divergence (assuming normality)

DIV = (Pi − Pj) ln
Pi|Σj | 12
Pj |Σi| 12

+
1
2

tr{[PiΣi + PjΣj][Σ−1
j − Σ−1

i ]} +

1
2
(μi − μj)T

(
PiΣ

−1
j + PjΣ

−1
i

)
(μi − μj) , (6)
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where Σi and μi are the class covariance matrices and mean vectors, respec-
tively and Pi are prior class probabilities. The criterion functions (5) and (6)
are extended for multi-class problems by summing the criterion values for all
combinations of 2 out of K classes.

4 Experimental Results

4.1 UCI Datasets

In this section, we demonstrate results computed on 2-class datasets from the
UCI repository [5] namely the SPEECH data originating from British Telecom
(15 features, 682 utterances of the word “yes” and another 736 utterances of the
word “no”) and the mammogram Wisconsin Diagnostic Breast Center (WDBC)
data (30 features, 357 benign and 212 malignant samples). The parameters of
the two datasets are summarized in Table 1.

Table 1. UCI repository set parameters

Parameter SPEECH WDBC

K 2 2
D 15 30
n1 682 357
n2 736 212
n 1418 569

The progress of the algorithm at the several iterations of the proposed algo-
rithm is illustrated in Table 2.

Although the proposed method selects less optimal feature subsets on average
for specific numbers of retained features, as can be seen from Tables 3 and 4,
the corresponding Bayes error increases up to 7%. The latter deterioration in
accuracy is compensated by the speed of the method.

4.2 Emotional Speech Data Collections

In this section, the Bayes error committed by the subset of features determined
with respect to the mutual correlation is compared to that of filter methods em-
ployingB orDIV and wrapper methods employing SFS, and SFFS on 2 emotional
speech data collections. The first data collection is Danish Emotion Speech (DES)
containing recordings of speech utterances expressed by 4 actors in 5 emotional
states [6]. The second data collection uses a subset of Speech Under Simulated
and Actual Stress (SUSAS) data collection which includes words uttered under
low and high stress conditions as well as speech in various talking styles expressed
by 9 native American English speakers [7,8]. Several statistics of pitch, formants,
and energy contours were extracted as features [9]. In Table 5, the parameters of
DES and SUSAS are summarized. For DES, nk = 72, k = 1, 2, . . . , 5, while for
SUSAS nk = 630, k = 1, 2, ldots, 8.
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Table 2. Recalculated average correlation at the several iterations of the proposed
algorithm for the SPEECH dataset

step class 1 class 2

1 r 6,15 = 0.59 r 7,15 = 0.54
2 r 7,14 = 0.57 r10,14 = 0.51
3 r 4,13 = 0.54 r11,13 = 0.48
4 r 9,12 = 0.51 r 4,12 = 0.47
5 r 3,11 = 0.50 r 3,11 = 0.44
6 r11,10 = 0.49 r8,10 = 0.43
7 r 5, 9 = 0.46 r12, 9 = 0.41
8 r10, 8 = 0.44 r14, 8 = 0.39
9 r15, 7 = 0.44 r 1, 7 = 0.38

10 r 1, 6 = 0.39 r 6, 6 = 0.37
11 r 8, 5 = 0.37 r15, 5 = 0.34
12 r13, 4 = 0.32 r 5, 4 = 0.31
13 r 2, 3 = 0.30 r 9, 3 = 0.24
13 r12, 2 = 0.25 r 2, 2 = 0.21
14 r14, 1 = 0.16 r13, 1 = 0.13

Table 3. Bayes error for different feature selection algorithms on SPEECH dataset

Number of
retained
features

Correlation SFS OS B DIV

14 0.077 0.074 0.074 0.081 0.081
13 0.082 0.068 0.066 0.076 0.073
12 0.092 0.069 0.062 0.076 0.076
11 0.089 0.066 0.060 0.072 0.077
10 0.084 0.060 0.056 0.079 0.089
9 0.115 0.061 0.058 0.074 0.087
8 0.113 0.055 0.050 0.074 0.098
7 0.108 0.052 0.052 0.087 0.102
6 0.092 0.053 0.053 0.086 0.118
5 0.113 0.053 0.052 0.076 0.108
4 0.118 0.068 0.061 0.079 0.098
3 0.108 0.081 0.081 0.111 0.111
2 0.119 0.119 0.119 0.187 0.226
1 0.345 0.139 0.139 0.221 0.221

average 0.118 0.073 0.070 0.099 0.112

The feature selection methods are evaluated according to their execution time
and the classification error achieved by the Bayes classifier that classifies the
speech segments into emotional states. The crossvalidation method was used to
obtain an unbiased error estimate [10]. For wrapper techniques based on SFS
and SFFS, the crossvalidation method has been speeded up by two mechanisms
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Table 4. Bayes error for different feature selection algorithms on WDBC dataset

Number of
retained
features

Correlation SFS OS B DIV

30 0.053 0.059 0.084 0.079 0.089
29 0.053 0.052 0.053 0.056 0.053
28 0.053 0.049 0.042 0.053 0.049
27 0.056 0.049 0.032 0.046 0.042
26 0.056 0.053 0.028 0.049 0.049
25 0.053 0.053 0.025 0.046 0.063
24 0.060 0.053 0.021 0.046 0.049
23 0.056 0.046 0.018 0.056 0.060
22 0.067 0.039 0.018 0.053 0.067
21 0.063 0.032 0.014 0.046 0.063
20 0.056 0.028 0.018 0.042 0.067
19 0.056 0.021 0.018 0.039 0.056
18 0.053 0.018 0.011 0.039 0.056
17 0.074 0.014 0.014 0.035 0.053
16 0.056 0.014 0.014 0.042 0.046
15 0.077 0.011 0.011 0.053 0.046
14 0.088 0.014 0.011 0.035 0.056
13 0.074 0.011 0.011 0.039 0.053
12 0.077 0.011 0.014 0.053 0.046
11 0.070 0.011 0.007 0.046 0.053
10 0.074 0.018 0.007 0.053 0.046
9 0.063 0.018 0.004 0.053 0.060
8 0.102 0.018 0.007 0.053 0.062
7 0.105 0.018 0.007 0.053 0.042
6 0.109 0.025 0.011 0.063 0.063
5 0.250 0.028 0.021 0.056 0.053
4 0.253 0.042 0.032 0.077 0.077
3 0.274 0.046 0.042 0.067 0.067
2 0.372 0.049 0.056 0.077 0.077
1 0.345 0.084 0.084 0.109 0.105

average 0.098 0.032 0.025 0.054 0.059

that reduce its computational burden and improve its accuracy [9]. In the ex-
periments, feature set A is declared to be better than feature set B, if the error
achieved by using A is smaller than that obtained using B by at least 0.015. The
error difference 0.015 was chosen according to observations made in [9] and the
available computational power.

A comparison of the execution time needed by each feature selection method is
made in Table 6 for each data collection. Filter methods such as those employing
correlation, B, and DIV are 50 times faster than wrapper ones based on SFS
and SFFS. The execution time for correlation and DIV is comparable, whereas
the filter method based on B is twice slower.
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Table 5. Parameters of emotional speech
data collections

Parameter DES SUSAS

K 5 8

D 90 90

nk 72 630

n 360 5040

Table 6. Execution time (in sec)

Method Databases
DES SUSAS

SFFS 18107 53494

SFS 9446 21092

correlation 276 458

B 351 633

DIV 292 454

To evaluate the efficiency of the proposed filter method based on correlation,
we compare the classification errors measured on DES and SUSAS. The classifi-
cation errors on DES are plotted in Figure 1 for the number of retained features
(SFS,SFFS) and the number of discarded features (correlation, B, DIV ). It is
seen that SFS and SFFS achieve about 48% classification error, whereas the error
for filter methods is about 10% higher. The lowest error rates achieved by wrap-
pers are for 10-15 retained features. Similarly, the lowest error rates obtained
by filter methods are accomplished when 60-70 features are removed from the
entire feature set. From the error rates of the Bayes classifier plotted in Figure 1,
we infer that correlation method is equivalent to the other filter methods but it
is clearly inferior to wrapper methods.

SFFS
SFS
Correlation
B

DIV

300200908070605040302010
# Features

Probability of Error

1

0.324

0.5

0.6

0.7

0.4

Random Classification
0.8

Human Rates

Fig. 1. Probability of classification error versus the number of features re-
tained/discarded by feature selection method on DES

From the experimental results on data collection SUSAS plotted in Figure 2,
it is inferred that the lowest error rates are achieved when almost all the features
are selected, either in the first steps of filters or the last steps of wrappers. So,
feature selection here is not used to reduce error rates but to remove redundant
features. The optimal feature set for wrappers as well for filters is achieved after
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SFFS
SFS
Correlation
B
DIV

100908070605040302010
# Features

Probability of Error

1

0.42

0.5

Random Classification0.875

Human Rates

Fig. 2. Probability of classification error versus the number of features re-
tained/discarded by feature selection method on SUSAS

20-30 iterations. Wrappers select 20-30 features, whereas filters remove 20-30
features out of the 90 initial ones. Therefore, wrappers yield a smaller feature
set than filters. Regarding the time requirements, wrappers select the optimal
feature subset of 20 features within 2000 sec., whereas filters based on correlation
and divergence can yield a subset of 50 features yielding comparable error rates to
wrappers within 150 sec. There is a great difference between the results obtained
for DES and SUSAS. By using all features in DES for classification, the error is
at random level, whereas the error rates in SUSAS are minimized when the entire
feature set is employed. This abnormal behavior of classification error regarding
the size of feature set could be a topic of further research.

5 Conclusions

A filter method for feature selection based on mutual correlation has been pro-
posed. Being a filter method, it yields features independent of the classifier to be
used. Hence, in principle, the proposed method can only approach the feature
selection quality of methods based on direct estimation of the Bayes classifier
error rate (i.e. wrapper methods with SFS or OS, filter methods using B or
DIV ). At the same time, the proposed filter method can easily cope with classi-
fication tasks in feature spaces of large dimensionality. The method is extremely
fast in comparison with the other compared methods (except DIV ). The pre-
sented method can also be used when alternative filter methods based on B or
DIV cannot be applied due to limited measurements which prevent the robust
estimation of necessary covariance matrices. The method can be used either in
supervised or unsupervised mode.
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Abstract. A major characteristic of text document categorization prob-
lems is the extremely high dimensionality of text data. In this paper we
explore the usability of the Oscillating Search algorithm for feature/word
selection in text categorization. We propose to use the multiclass Bhat-
tacharyya distance for multinomial model as the global feature subset
selection criterion for reducing the dimensionality of the bag of words
vector document representation. This criterion takes into consideration
inter-feature relationships. We experimentally compare three subset se-
lection procedures: the commonly used best individual feature selection
based on information gain, the same based on individual Bhattacharyya
distance, and the Oscillating Search to maximize Bhattacharyya distance
on groups of features. The obtained feature subsets are then tested on
the standard Reuters data with two classifiers: the multinomial Bayes
and the linear SVM. The presented experimental results illustrate that
using a non-trivial feature selection algorithm is not only computation-
ally feasible, but it also brings substantial improvement in classification
accuracy over traditional, individual feature evaluation based methods.

1 Introduction

The application of machine learning (ML) and pattern recognition (PR) in the
real-world domain data often encounters problems caused by the high dimen-
sionality of the input space. More and more often, data sets in numerous re-
search fields contain a very large number (from hundreds to tens of thousands)
of features. The situation becomes worse if the ratio of relevant features to the
irrelevant ones is low, as for example in text document categorization problem.
By removing these insignificant features, the learning process becomes more ef-
fective, and the performance of the classifier improves.

Text categorization (also known as text classification) is the task of automat-
ically sorting a set of documents into predefined classes based on its contents.
This task is of great practical importance. Document classification may appear
in many applications including e-mail filtering, mail routing, spam filtering, news
monitoring, selective dissemination of information to information consumers, au-
tomated indexing of scientific articles, and so on.

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 578–587, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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An increasing number of statistical classification methods and ML algorithms
have been explored to build automatically a classifier by learning from previously
labelled documents, e.g., naive Bayes ([1], [2]), k-nearest neighbor ([3]), neural
networks ([4]), decision trees ([1]), symbolic rule induction ([5], [6]), regression
([7]), support vector machines ([8]), boosting ([9]). The overview of Sebastiani
[10] discusses the main approaches to text categorization (TC).

In TC, usually a document representation using a bag of words approach is
employed (each position in the feature vector representation corresponds to a
given word). This scheme leads to very high-dimensional feature space, too high
for conventional classification methods. Dimensionality reduction (DR) is a very
important step in TC because irrelevant and redundant features often degrade
the performance of classifiers both in speed and classification accuracy. Two
approaches for DR exist, either selecting a subset of the original features (feature
selection), or transforming the features into new ones (feature extraction).

In TC problem the dominant approach is feature selection (FS) using various
criteria. Traditional methods for feature subset selection in TC use an evaluation
function that is applied to single words. All words are independently evaluated
and sorted according to the assigned criterion. Then, a predefined number of the
best features is taken to form the best feature subset. Scoring of individual words
can be performed using some measure like, e.g., document frequency (Yang and
Pedersen [11]), mutual information [11], information gain (also known as average
mutual information ) or χ2 statistic (Caropreso et al. [17], Yang and Pedersen
[11], Yang and Liu [18]) and odds-ratio (Mladenić [12]). Yang and Pedersen [11]
and Mladenić and Grobelnik [13] give experimental comparison of the above
mentioned measures in TC. The information gain (IG) and several very simple
frequency measures were reported to work well on text data. Forman [14] presents
an extensive comparative study of twelve FS criteria for the high-dimensional
domain of text categorization.

In Section 2 and 3 the standard methodology of feature selection for text
categorization is discussed. Section 4 introduces our novel approach. Section 5
shows experimental results. Conclusions are given in Section 6.

2 Text Categorization Task

The text categorization task is the task of assigning free documents expressed
in natural language into one or more thematic classes (categories) belonging to
the predefined set C = {c1, . . . , c|C|} of |C| classes. The construction of a text
classifier relies on an initial collection of documents pre-classified under C. Let
D = {d1, . . . , d|D|} be the finite training document set and V = {w1, . . . , w|V|} be
the vocabulary set containing |V| distinct words occurring in training documents.
Given a set of document vectors {d1, . . . , d|D|} and their associated class labels,
the problem is to estimate the true class label of a free document. The construc-
tion of a text classifier consists of essentially three phases: document indexing
and dimensionality reduction, classifier learning, and classifier evaluation.
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In TC a document di is usually transformed into a vector in the term space.
The indexing process is characterized by a definition of what a term is. In TC
applications of the thematic kind, the set of terms for a document is usually
made to coincide with the set of words occurring in the document. The number of
features can be dramatically reduced by the domain dependent methods, which
include the elimination of stop words, stripping of special characters as well
as stemming algorithms or morphological analysis. For further DR the domain
independent methods can be used.

A wide variety of supervised learning approaches have been explored to con-
struct automatically a classifier by learning from previously labelled documents.
All of the classification methods mentioned in Section 1 still retain their popu-
larity, but in recent years Support Vector Machines (SVM) and boosting have
become the two dominant learning techniques in TC. The reasons for this are
twofold. First, these are the two methods that have unquestionably shown the
best performance in comparative TC experiments performed so far. Second,
these are the newest methods in the classifier learning area, and the ones with
the strongest justifications from computational learning theory. A further factor
that has determined their success is the free availability, at least for research
purposes, of respective software packages, such as SVMlight and BoosTexter.

3 Feature Subset Selection

Because of computational complexity the filter approach is preferable over the
wrapper approach to feature subset selection in TC. Given a predefined integer
|V ′ |, the methods for word selection attempt to select from the original set V , the
set V ′

of words with |V ′ | � |V| that, when used for document representation,
yields the highest effectiveness. Different methods for feature subset selection
have been developed in ML and PR using different evaluation functions and
search procedures. In the following we consider the global (a feature subset is
chosen for the classification under all classes) filter FS approach.

3.1 Traditional Feature Selection Evaluation Functions

A simple and effective global word selection function is the document frequency of
a word w, that is, only the terms that occur in the highest number of documents
are retained.

Information-theoretic functions for FS have been used in the literature, among
them mutual information, information gain, χ2 statistic and odds-ratio. The
mathematical definitions of the main functions used for DR in text classification
task are summarized in the paper of Sebastiani [10]. All functions are specified
locally to a specific class cj ∈ C. In order to assess the value of word w in a global
class-independent sense, either the sum or the weighted sum, or the maximum
of their class-specific values are usually computed.
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Information gain, used in our experiments for comparison as a ranking mea-
sure for selection of the best individual features, is defined as

IG(wv) =
|C|∑
j=1

P (cj , wv) log
P (cj , wv)

P (cj)P (wv)
. (1)

Here P (wv) is the probability, that the word wv occurred in document, P (cj) is
the probability of the class cj . P (cj , wv) is the joint probability of the class cj

and the occurrence of the word wv.

3.2 Traditional Feature Selection Search Methods

Most methods for feature subset selection that are used for text processing tasks
are very simple in comparison to the other methods known in ML and PR.

Best individual features (BIF) method (see e.g. [15]) evaluates all the |V|
words individually according to a given criterion, sorts them and selects the best
|V ′ | words. Since the vocabulary usually consists of several thousands or tens
of thousands of words, the BIF methods are popular in TC because they are
rather fast, efficient and simple. However, they evaluate each word separately
and completely ignore the existence of other words and the manner how the
words work together.

Forward selection algorithms start with an empty set of features and add one
feature at a time until the final feature set is reached. Backward elimination
algorithms start with a feature set containing all features and remove features
one at a time. As opposed to the BIF methods these feature selection procedures
reflect to a certain extent the dependencies between words (see e.g. [15]). How-
ever, despite their relative simplicity even these basic sequential methods can
show to be too slow to yield results in reasonable time.

4 Proposed Feature Selection Algorithm

For the exceedingly high-dimensional problem of text categorization we have
found the Oscillating Search (OS) algorithm [16] to be a rare case of a more ad-
vanced algorithm being capable of yielding promising results in reasonable time.
In the following we show the simplified (thus the fastest) modification of the al-
gorithm to consistently improve the selected subsets of terms and, consequently,
improve the classification performance. This is made possible by using the fol-
lowing form of Bhattacharyya distance as the term subset evaluation criterion.

4.1 Bhattacharyya Distance for Multinomial Model

We proposed to use the multiclass Bhattacharyya distance developed for multino-
mial model for class conditional densities in Novovicova [20] as the FS criterion
in text categorization.
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In the multinomial model, the document di is represented by a feature vector,
each feature variable Niv is the number of times certain word wv occurs in that
document. In this model each document di is drawn from a multinomial distri-
bution over the set of all words in the vocabulary V with as many independent
trials as the length |di| (the number of words from V occurring in the document).
The order of the words is lost, however the number of occurrences is captured.
The multiclass Bhattacharyya distance of document di is given as

B(di) =
|C|−1∑
j=1

|C|∑
k=j+1

P (cj)P (ck)Bjk(di), (2)

where P (cj) and P (ck) are the prior probabilities of the class cj and ck, respec-
tively. Bjk(di) is the pairwise Bhattacharyya distance of di defined as

Bjk(di) = −|di| log
|V|∑
v=1

√
P (wv|cj)P (wv|ck). (3)

Here P (wv|cj) and P (wv|ck) are the probabilities of wv in cj and ck, respectively.
The Bhattacharyya distance for one feature corresponding to the word wv be-
tween classes cj and ck, to be denoted individual Bhattacharyya distance is then

Bjk(wv) = −|di| log
(√

P (wv|cj)P (wv|ck) +
√

(1 − P (wv|cj))(1 − P (wv|ck))
)
.

(4)

4.2 Oscillating Search

As opposed to other sequential subset selection methods the Oscillating Search
(OS) [16] is not dependent on pre-specified direction of search (forward or back-
ward). It is based on repeated modification of the current subset Vr of r features.
This is achieved by alternating the so-called down- and up-swings. The down-
swing removes successively o worst features from the current set Vr to obtain
a new set Vr−o at first, then adds o best ones to Vr−o to obtain a new current
set Vr. The up-swing adds o ”good” features to the current set Vr to obtain a
new set Vr+o at first, then removes o ”bad” ones from Vr+o to obtain a new
current set Vr again. The up- and down-swings are repeated as long as the set
Vr gets improved. The value of o shall be set to 1 initially and may be later
increased to allow more thorough search at a cost of more computational time.
The algorithm then terminates when o exceeds a user-specified limit Δ.

The OS algorithm starts the search from some initial set Vr of r features and
brings improvement after each pair of swings (terminates otherwise). This is very
advantageous for the high-dimensional problem we deal with here, as no time is
lost in evaluating term subsets of sizes far from the desired one. Note that while
the sequential forward search (see Section 3.2) needs 400 complex steps to find a
subset of 400 features, the OS may achieve the same or better result in a couple
of steps, provided it is initialized properly. The perfect way of initializing OS for
TC is taking use of some of the standard fast BIF methods.
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Let us describe the essential form of the algorithm formally:

Step 1: (Initialization) Find the initial set Vr. (For TC do it by means of BIF).
Let c = 0. Let o = 1.

Step 2: (Down-swing) Remove such o-tuple from Vr, so that the new set Vr−o

retains the highest criterion value. Add such o-tuple from V \ Vr−o to
Vr−o, so that the new subset Vnew

r yields the highest criterion value. If
Vnew

r is better than Vr, let Vr = Vnew
r , c = 0, o = 1 and go to Step 4.

Step 3: (Last swing did not find better solution) Let c = c + 1. If c = 2,
then none of previous two swings has found better solution; extend the
search by letting o = o + 1. If o > Δ, stop the algorithm, otherwise let
c = 0.

Step 4: (Up-swing) Add such o-tuple from V \ Vr to Vr, so that the new set
Vr+o has the highest criterion value. Remove such o-tuple from Vr+o,
so that the new set Vnew

r yields the highest criterion value. If Vnew
r is

better than Vr, let Vr = Vnew
r , c = 0, o = 1 and go to Step 2.

Step 5: (Last swing did not find better solution) Let c = c + 1. If c = 2,
then none of previous two swings has found better solution; extend the
search by letting o = o + 1. If o > Δ, stop the algorithm, otherwise let
c = 0 and go to Step 2.

The OS algorithm can be considered a “higher level” procedure, as it may take
use of other feature selection methods as sub-procedures in place of up- and
down-swings. One notable property of the OS algorithm is the fact that the
fastest improvement of the target subset may be expected in initial phases of
the search. This behavior is advantageous, because it gives the option of stopping
the search prematurely without too serious result-degrading consequences.

In the context of TC it is desirable to keep the procedure as simple and fast
as possible, thus we consider only the set-up with Δ = 1 and the simplest form
of up- and down-swings as described here. For more details see [16].

5 Experimental Study

Our experiments are conducted to illustrate that using a non-trivial Oscillating
Search feature selection algorithm is not only computationally feasible, but it
also brings substantial improvement in classification accuracy.

We adopted the bag of words approach. After text preprocessing the global
filter feature selection is performed. For evaluating the classification performance
assuming single-label TC we use the standard classification accuracy.

5.1 Data Set

In our experiments we examined the commonly used Reuters-21578 data set.1

Our text preprocessing included removing all non-alphabetic characters, ignoring
1 http://www.daviddlewis.com/resources/testcollections/reuters21578



584 J. Novovičová, P. Somol, and P. Pudil

all the words that contained digits or non alpha-numeric characters, removing
words from a stop-word list. We replaced each word by its morphological root, re-
moved all the words which had less than three occurrences. After pre-processing
the data set contained 33 classes of document-representing vectors of dimen-
sionality 10105. The largest class contained 3924, the smallest only 19 non-zero
documents. All tests have been done by means of 10-fold cross-validation over
the whole data set.

5.2 Examined Criteria and Search Methods

In our experiments we used the Bhattacharyya distance (4) and information
gain (1) as ranking measures for the selection of the best individual features.
The proposed oscillating algorithm then uses the Bhattacharyya distance (2) to
evaluate groups instead of individual features only.

For selecting r salient words from the complete vocabulary set V we used
not only the proposed oscillating procedure (Section 4), but for comparison also
the best individual features method (BIF) based on individual Bhattacharyya
distance (BIF IB) and information gain (BIF IG) presented in Section 3.1. We
initialize the OS algorithm by feature subsets found by means of BIF IB. In our
experiments, we set r = {6, 12, 25, 50, 100, 200, 400, 600, 1000, 1500, 2000,
3000, 4500, 6000}, respectively.

5.3 Classifiers

All feature selection methods were examined on two classifiers: the Bayes clas-
sifier for multinomial probabilistic model and the linear SVM.

Bayes classifier. We use the multinomial model as described by McCallum
and Nigam in [2]. The predicted class for document di is the one that maximizes
the posterior probability of each class given the test document P (cj |di),

P (cj |di) ∝ P (cj)
|V|∏
v

P (wv|cj)Niv .

Here P (cj) is the prior probability of the class cj , P (wv|cj) is the probability
that a word chosen randomly in a document from class cj equals wv, and Niv is
the number of occurrences of word wv in a document di. We smoothed the word
and class probabilities using Bayesian estimate with word priors and a Laplace
estimate, respectively.
Linear Support Vector Machine. The SVM method has been found recently one
of the best performing tools in TC. Especially its excellent generalization ability
in high-dimensional sparse spaces is very suitable for text related problems.
Linear kernel has been found sufficient in this context. For our experiments we
used the LibSVM implementation [21]. We used the standard C-SVC form of
the classifier with default value of C = 1. No data scaling has been done.
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Fig. 1. Multinomial Bayes classifier 10-fold cross-validated classification rate.

Fig. 2. SVM classifier 10-fold cross-validated classification rate

5.4 Results

It can be clearly seen in Figs. 1 and 2 that feature selection based on Oscillating
Search that optimizes Bhattacharyya distance on groups of terms is constantly
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Fig. 3. Oscillating Search computational time

superior to BIF approaches for subset sizes roughly ≤ 1000. For larger subsets
the improvement is hardly observable or not present at all; the search time then
becomes inadequate as well (see Fig. 3). Note, that the improvement is equally
notable for both of the tested classifiers. This also adds to the discussion about
the impact of feature selection on SVM performance.

A second notable observation is the slight superiority of individual Bhat-
tacharyya over information gain in BIF based search.

6 Conclusions and Future Work

We have shown that in text categorization tasks it is possible to achieve consid-
erable classification accuracy improvement by employing a feature search pro-
cedure, that, unlike traditional approaches, evaluates feature groups instead of
individuals. The most notable improvement is to be expected with subsets of
lower sizes, where the time requirements of the discussed Oscillating Search
procedure stay in reasonable limits. We have also shown that the multinomial
Bhattacharyya distance is a good measure for both group-wise and individual
feature selection, capable of identifying features that are good for fundamentally
different classifiers.

In the future we intend to investigate in more detail the applicability of al-
ternative Oscillating Search versions and other even more complex search pro-
cedures to text categorization problems. Another option for further research is
including SVM parameter optimization in the feature selection process.
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Abstract. In this paper we propose a new model of ACO called Two-Step Ant 
Colony System. The basic idea is to split the heuristic search performed by ants 
into two stages. We have studied the performance of this new algorithm for the 
Feature Selection Problem. Experimental results obtained show the Two-Step 
approach significantly improves the Ant Colony System in term of computation 
time needed. 

1   Introduction 

Ant Colony Optimization (ACO) is a metaheuristic used to guide other heuristics in 
order to obtain better solutions than those that are generated by local optimization 
methods. In ACO a colony of artificial ants cooperates to look for good solutions to 
discrete problems. Artificial ants are simple agents that incrementally build a solution 
by adding components to a partial solution under construction. This computational 
model was introduced by M. Dorigo. Information about this metaheuristic can be 
found in [6], [8] and [10]. 

Ant System (AS) is the first ACO algorithm; it was introduced using the Travelling 
Salesman Problem (TSP) [7] and [9]. In TSP, we have a set of N fully connected cities 
{c1, …, cn} by arcs (i,j); each arc is assigned a weight dij which represents the distance 
between cities i and j, the goal is to find the shortest possible trip visiting each city once 
before returning to initial city. When ACO is used to solve this problems, pheromone 
trails ( ij) are associated to arcs which denote the desirability of visiting city j directly 
from city i. Also, the function ij= 1/dij indicates the heuristic desirability of going from i 
to j, where dij is the distance between cities i and j. Initially, ants are randomly 
associated to cities. In the successive steps ant k applies a random proportional rule to 
decide which city to visit next according to expression (1): 
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where α and  are two parameters to point out the relative importance of the 
pheromone trail and the heuristic information respectively. After all ants have built 
their tours the values ij are updated in two stages. First, ij values are decreased by 
evaporation, ij=(1- )* ij, using the parameter , where 0< <1. This to avoid 
unlimited accumulation of pheromone. Second, all ants increase de value of ij on the 
arcs they have crossed in their tours, ij= ij+Incij, where Incij is the amount of 
pheromone deposited by all ants which included the arc (i,j) in their tour. Usually, the 
amount of pheromone deposited by ant k is equal to 1/Ck, where Ck is the length of 
the tour of ant k.  

Some direct successor algorithms of Ant Systems are: Elitist AS, Rank-based AS 
and MAX-MIN AS. A more different ACO algorithm is Ant Colony System (ACS). 
ACS uses the following pseudorandom proportional rule to select the next city j from 
city i.  
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where q is a random variable uniformly distributed in [0,1], q0 which is a constant 
taken in the interval [0,1], controls the amount of exploration. In ACS, ants have a 
local pheromone trail update ( ij=(1- )* ij+ * ij(0)) applied after crossing an arc(i,j), 
where ij(0) represents the initial value for the pheromone, and a global pheromone 
trail update ( ij=(1- )* ij + *Incij) executed only by the best-so-far ant. 

In this paper, we propose a new approach to ACO in which the search process 
developed by ants is splitted into two stages. We have studied the performance of this 
proposal using the ACS algorithm. In the following, we first introduce the new 
algorithm. After that, the performance of it is studied in the case of the Feature 
Selection Problem (FSP). Finally we conclude our findings. 

2  Two-Step ACS Algorithm 

The Two-Step Ant Colony System algorithm proposed in this investigation is based 
on the following idea: to divide the search process made by the ants in two stages, so 
that in the first stage preliminary results are reached (partial solutions) that serve as an 
initial state for the search made by the ants in the second stage. In the case of FSP, 
this means that subsets containing a subset of features are generated in the first stage; 
in the second stage, these subsets will serve like an initial state for the ants. 

The determination of the initial state in which the search process starts has been an 
interesting problem in heuristic search. It is well known that the initial state has an 
important effect in the search process. The aim is to be able to approach the initial state to 
the goal state. Of course, it is necessary to consider an adequate balance between the 
computational cost of obtaining that initial state and the total cost; in other words, the 
sum of the cost of approaching the initial state to the goal state plus the cost of finding the 
solution from that “improved” initial state should not be greater than the cost of looking 
for the solution from a random initial state. 
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More formally, the purpose is the following. Let Ei be an initial state randomly 
generated, or obtained by any other method without a significant computational 
cost, Ei* is an initial state generated by some method M that approaches it to the goal 
state, CM(Ei, Ei*) denotes the cost of obtaining Ei* from state Ei using the method M, 
and CCHSA(x) is the computational cost of finding a solution from state x using a 
Heuristic Search Algorithm (HSA). Then, the objective is that CM(Ei,Ei*) + 
CCHSA(Ei*) < CCHSA(Ei). 

In the TS-ACS approach proposed here, the procedure to generate Ei* and the 
HSA are both the ACS algorithm, so the objective is CACS(Ei, Ei*) + CCACS(Ei*) < 
CCACS(Ei). As ACS is used in both stages, the difference between the 2 stages is 
obtained by giving different values to some parameters of the model in each step. A 
ratio (r) is introduced in order to establish the relative setting of the values of the 
parameters of the algorithm in both stages; the ratio indicates which proportion of the 
complete search is given to the first stage. For example, if r=0.3, means that the first 
step will cover 30% of the search process and the second step the remaining 70%. 

The setting of the ratio r has a high influence on the overall performance of the 
algorithm. A high value of r, that is, about value 1, causes the state Ei* to be closer to 
the goal state, then the value of CACS(Ei, Ei*) may increase and the value of 
CCACS(Ei*) will decrease. But, in addition to this balance between the costs of 
CACS(Ei,Ei*) and CCACS(Ei*), we have the problematic about  how much the space 
search is explored; while more greater is the rate r, the search in the second stage 
decreases for several reasons: (I) there are less ants working, (II) the amount of cycles 
decreases, and (III) although the quantity of possible initial states for the second stage 
must grow when r grows, that amount is already limited by the result of the previous 
stage. 

Therefore, a key point is to study what value of rate r is the best in order to obtain 
the best balance between the searches in both stages. This value must allow: 

• To diminish the value of CACS(Ei,Ei*) +CCACS(Ei*). 
• To allow an exploration of the search space that guarantees to find good solutions. 

3   Two-Step ACS in the Feature Selection Problem 

In this section we dicuss some results we obtained when applying the two stage 
approach to the feature selection problem. Feature selection is useful in different 
computational tasks, for instance, in machine learning processes. An appropriate 
representation space for learning by selecting relevant attributes to the problem 
domain is a crucial issue for learning systems [11], [16] and [17]. Usually, not all 
features describing the examples are relevant to the classification process and some of 
them are irrelevant or redundant. Too many irrelevant features increase the 
complexity of learning process and decrease the accuracy of induced knowledge.  
Feature selection is useful to reduce the dimensionality problem; it results not only in 
improving the speed of data manipulation [14], but even in improving the 
classification rate by reducing the influence of noise [5] and [15]. 

The FSP can be viewed as a particular case of a more general subset selection 
problem in which the goal is to find a subset maximizing some adopted criterion. 
Feature selection methods search through the subsets of features and try to find the 
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best subset among the competing 2N-1 candidate subsets according to some evaluation 
measure, where N denotes the total number of features. 

Each state represents a subset of features in the search space. All feature selection 
methods contain two important components: an Evaluation function used to evaluate a 
candidate feature subset and a Search algorithm to search through the feature space. 
Search strategies are important because the feature selection process may be time 
consuming and an exhaustive search for the “optimal” subset is impractical for even 
moderate sized problems [18]. Examples of search strategies are heuristic search, 
probabilistic methods and hybrid algorithms. 

ACO has been used as a search algorithm for the FSP. Methods which combine 
ACO and Rough Set Theory (RST) to find reducts with promising results were 
proposed in [1], [2], [3] and [12]. They are based on the reduct concept.  

A Decision System is a pair DS=(U, A∪{d}), where U is a non-empty finite set of 
objects called the Universe, A is a non-empty finite set of features, and d∉A is the 
decision feature. The basic concepts of RST are the lower and upper approximations 
of a subset X⊆U [13]. These were originally introduced with reference to an 
indiscernibility relation  IND(B), where objects x and y belong to IND(B) if and only 
if x and y are indiscernible from each other by features in B. 

Let B⊆A and X⊆U. It can be proved that B defines an equivalence relation. The 
set X can be approximated using only the information contained in B by constructing 
the B-lower and B-upper approximations of X, denoted by B*X and B*X respectively, 
where B*X={x : [x]B ⊆X } and B*X={x : [x]B ∩ X≠φ}, and [x]B denotes the class of x 
according to B-indiscernible relation. The objects in B*X are sure members of X, 
while the objects in B*X are possible members of X. If B*X- B*X is not empty, then X 
is a rough set. 

RST offers several measures about a Decision System. Among them is the quality 
of the approximation of classification (expression 3). It expresses the percentage of 
objects which can be correctly classified into the given classes Y= {Y1,..., Yn} 
employing only the set of features in B. 
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An important issue in the RST is feature reduction based on the reduct concept. A 
reduct is a minimal set of features that preserves the partitioning of universe and 
hence the ability to perform classifications. The subset B is a reduct if 
IND(A)=IND(B); that is, A(Y)= B(Y). The concept of reduct is one of the most 
important concepts in the Rough Set Theory. 

However, this beneficial alternative is limited because of the computational 
complexity of calculating reducts.  The problem of finding a globally minimal reduct 
for a given information system is NP-hard.  For that reason, methods for calculating 
reducts have been developed using heuristic search, such as is studied in [12]. 

When ACO is used to solve the feature selection problem the graph representation 
is lightly different to the TSP case. This problem can be modeled in the following 
way. Let A={a1, a2, ana} be a set of features. You can view this set as a network in 
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which nodes represent features, and all nodes are connected by bi-directional links. 
Pheromone values i are associated to nodes ai, i represents the absolute contribution 
of the feature ai to a reduct. In the first step, each ant k is assigned to one node, it can 
move to all nodes in the network (bk  {ai}, where bk is the subset ant k has to build). 
Ants perform a forward selection in which each ant k expands its subset bk step-by-
step by adding new features; for performing it, each ant k looks for all features in the 
set A-bk  and selects the next feature among them to include in bk according to the 
ACO rule. This rule is the pseudorandom proportional rule (expression 2) in the case 
of ACS. The quality of the approximation of classification measure of RST 
(expression (3)) is used like a heuristic function ( ) in the ACO model ( (B)= B(Y)). 

The ACS algorithm showed the best performance when a comparative study about 
several ACO algorithms was developed to solve the feature selection problem, see [2] 
and [3]. For this reason, we use the Ant Colony System algorithm to study the two 
stage approach. 

The Two-step ACS algorithm in the FSP is based in the following key idea: to split 
the process of finding reducts in two stages. In the first stage, the algorithm builds 
candidate subsets, which are used in the second stage as initial subsets for each ant. In 
order to apply the two stage approach we need to decide how to set some parameters. 
The number of ants and the number of cycles per stage is calculated according to the 
ratio r; that is, let m the quantity of ants to use and NCmax the number of cycles to 
perform, these values are divided for each stage in the following form: First stage 
{m1=m*r and NCmax1=NCmax*r}, and Second stage {m2=m*(1-r) and 
NCmax2=NCmax*(1-r)}. Also, we must define what a partial solution is in the first 
stage. In this case, the reference value is the quality of the approximation of 
classification measure γA(Y), and ants have to build subset of features with a quality 
of the approximation of approximation equal to r*γA(Y). In the second stage we are 
looking for a solution to the original problem, so the subset has to obtain the value 
γA(Y). 

In other words, in the first stage m1 ants during NCmax1 cycles will be looking for 
subset of features with a quality of the approximation of classification equal to 
r*γA(Y). In the second stage, m2 ants will perform NCmax2 cycles using the subsets 
resulting from the first stage as initial states in order to generate reducts. 

The TS-ACS-RST-FS algorithm has the following structure: 

Given parameters alpha, beta, NCmax (total number of cycles), na, ratio, ro and 
epsilon 

P0: Calculate the quantity of ants (m) according to the 
number of features (na). 

 Calculate the quality of the classification using 
all features (γB(Y) for B=A). 

P1: Stage 1 
Calculate value for parameters in the first stage: 
 NCmax1=ratio*NCmax 
 m1= ratio*m ; γB1(Y)=ratio* γA(Y) 
Apply ACS-RST-FS algorithm. 
Candidate subsets ← subSetselected by the ACS-RST-
FS algorithm. 
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P2: Stage 2 
Calculate value for parameters in the second stage: 
 NCmax2=NCmax-NCmax1 
 m2= m-m1   ;  γB2(Y)= γA(Y) 

 Apply ACS-RST-FS algorithm, in each cycle assign a 
random subset from Candidate subsets as initial 
subset for each ant. 

The value of the ratio is an important parameter. Values near to 1 produce subsets 
near to the definition of reducts in the first stage. 

For the experiments, we have used the following values for parameter ratio 
{0.2, 0.3, 0.36, 0.5, 0.6, and 0.8}. We have studied the effect of the ratio in three 
aspects, the quantity of reducts, the length of reducts and the computation time. 
Each algorithm was executed 10 times and the results were averaged over these 10 
runs. 

In Table 1, we present the results obtained using a decision system that contains 20 
objects which are described by 16 discrete features (na=16) and belongs to two 
classes. The first class contains 9 objects and the second one contains 11 objects, the 
quality of the approximation of classification is equal to 1 ( A(Y)=1); so, this is a 
consistent decision system (each pair of indiscernible objects belongs to the same 
class). The quantity of cycles was 21 (NCmax=21). In columns number 6 and 7 the 
information is presented in the following form: averaged number of reducts/averaged 
length of reducts/time. 

Table 1. A comparison between algorithms ACS-RST-FS and TS-ACS-RST-FS 

Algorithm   NC 
max1 

  NC 
max2 

m1 m2 beta=5 
q0=0.9 

beta=1 
q0=0.3 

ACS   --  -- 46.7/3.95/228s 123/4.19/274s 
TS-ACS 
rate=0.2 4 17 3 13 32.7/4.2/82s 76.3/4.2/89.9s 

TS-ACS 
rate=0.3 6 15 5 11 43.3/4.1/53s 71/4.2/64s 

TS-ACS 
rate=0.36 8 13 6 10 38.7/3.9/39s 67.3/4.1/47s 

TS-ACS 
rate=0.5 10 11 8 8 29.7/3.8/32s 43.3/4.1/44s 

TS-ACS 
rate=0.6 13 8 10 6 20.33/3.8/41s 37/4.2/49s 

TS-ACS 
rate=0.8 17 4 13 3 9/3.8/82s 10.67/4.2/97s 

You can see the ratio about to 0.3 yields the best results. This setting obtains a 
quantity of reduct near to ACS-RST-FS algorithm [3] but only in the 23% of the 
time. Similar results were obtained using other databases. This is an expected 
result, because the value ratio=0.3 offers a good balance between both stages; a 
higher numbers of ants and cycles in the second stages allows the algorithms to 
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perform a larger exploration of the search space from of initial subsets having 
certain quality. 

In Table 2, we present a similar study using Breast Cancer database from UCI 
Repository [4], in this database na=9 and we used 9 ants (m=9). In columns number 4 
and 5 the information is presented in the following form. In the first row, the results 
obtained by the ACS algorithm (average number of reducts/time) are presented; in the 
rest of the rows we present the results yielded for the TS-ACS-RST-FS algorithm 
(percent of average number of reducts/percent of time) respects to the results showed 
in the first row. For instance, the TS-ACS-FSP algorithm with r=0.3, =5 and q0=0.9 
obtained an average of 50.9 reducts (109% respects to 46.7 reducts) in only 71 
seconds (31% respects to 228s). These results are very interesting because the Two-
Step ACS approach enable us to obtain equal or greater quantity of reducts in lower 
time than ACS-RST-FS algorithm. 

From tables 1 and 2, it is possible to see the time cost in the case of TS- ACS-RST-
FS algorithm is very low. From this advantage, we propose a second idea: to increase 
the quantity of ants in order to yield a greater exploration of the search space. We 
developed experiments in which the number of ants was increased by the factors 
{1.33, 1.5, 1.8, 2.1}. In the last row of Table 2 the results with value 2.1 are showed. 
The relation is established respect the quantity of reducts and the time. For instance,  
when the number of ants is increased to 2.1*m (m=2.1*9=19), the algorithm TS-ACS-
RST-FS obtains 124% number of reducts respect to the quantity of reducts obtained 
by ACS-RST-FS algorithm in only 67% of the time used by this last algorithm (for 
beta=5 and q0=0.9). We used the rate=0.3 because this value shows the best results in 
experimental results. 

Table 2. A comparison between ACS-RST-FSP algorithm and several alternatives to TS-ACS-
RST-FS algorithm (NCmax1=6, NCmax2=15) 

Algorithm m1 m2 beta=5 
q0=0.9 

beta=1 
q0=0.3 

ACS 
m=9 -- -- 46.7/228s 123/274s 

TS-ACS 
rate=0.2 2 7 60%/34% 70/49% 

TS-ACS 
rate=0.3 3 6 109%/31% 73%/37% 

TS-ACS 
rate=0.36 3 6 105%/25% 77%/31% 

TS-ACS 
rate=0.5 4 5 100%/22% 73%/26% 

TS-ACS 
rate=0.6 5 4 65%/13% 50%/20% 

TS-ACS 
rate=0.8 7 2 33%/27% 31%/26% 

TS-ACS 
rate=0.3 
m=2.1*m=19 

6 13 124%/67% 103%/83% 
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4   Conclusion 

We have presented an improvement of the Ant Colony Optimization which consists 
on splitting the search process developed by ants into two stages. The study was 
developed using the Ant Colony System algorithm. In this approach some parameters 
(number of ants, quantity of cycles, etc.) receive different values in each stage 
according to a ratio parameter which indicates what proportion of the complete search 
corresponds to each stage. 

We studied the performance using different ratio values in the Feature selection 
problem. The experimental results showed the performance of ACO was increased 
strongly; the best results were obtained when the value of ratio is about 0.3. 

This new approach to ACO which produces an important reduction of the 
computation time cost, yet preserving the solution quality. 
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Abstract. In this paper a new simultaneous editing and feature selection 
method for the Most Similar Neighbor classifier is proposed. It is designed for 
databases with objects described by features no exclusively numeric or 
categorical. It is based on Testor Theory and the Compact Set Editing method, 
mixing edited projections until a good accuracy is achieved. Experimental 
results with several databases show a good performance compared to previous 
methods and the classifier using the original sample. 

1   Introduction 

The Nearest Neighbor classifier [1] is widely used on supervised classification. This 
classifier stores a training set (T) and each new object is assigned to the class of its 
closest object on T. According to this rule, a distance function is necessary for 
comparing objects.  

In many applications we usually deal with Mixed and Incomplete Data (MID), 
because objects are described by features not purely numeric or categorical. Also, 
missing values could be present. In these cases, we usually have a similarity measure 
that is not an opposite of a distance function: it is not positive defined or does not 
assure the triangle inequality or is not symmetric. So, the Nearest Neighbor rule 
should be extended to the Most Similar Neighbor rule (MSN), allowing any similarity 
function. Though, it has the main disadvantages of the Nearest Neighbor rule: 
significant computational costs (similarities with all the objects in the training sample 
T must be assessed) and high storage requirements (all T must be stored). 

Researches to reduce these drawbacks have been focused mainly on two separated 
approaches: reducing the number of objects and selecting a feature subset. Nevertheless, 
few studies have been addressed to solve the two problems jointly [2-5].  

In this paper we introduce a new method for solving both problems with MID over 
non-metric spaces. In section 2 we summarize some jointly approaches reported in  
the literature. We also underline some of the main drawbacks of these methods. In 
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section 3 our method is described, and section 4 contains the experimental results. 
Finally, conclusions and future works are presented.  

2   Related Works 

Just a few authors (Skalak [5], Kuncheva [4], Ishibushi [3] and Dasarathy [2]) have 
faced the problems of simultaneously (or combined) feature and object selection for 
the NN classifiers.  

Skalak [5] uses a Random Mutation Hill Climbing algorithm. It consists on the 
random generation of a binary string, which represents the inclusion/exclusion of an 
object or feature in the current solution. At each step, an element of the string is 
mutated, generating a new one.  Accuracy with 1-NN is computed, and the best 
solution (in a fixed number of iterations) is selected.  

Kuncheva [4] uses a Genetic Algorithm. In this case, the chromosome is a binary 

string of length TF +  (where F is the feature set and T is the training sample) 

which represents the selected features and objects. A value 1 in a bit of the string 
means the inclusion of this feature/object in the selected sample, 0 otherwise. 

The fitness function used by the Genetic Algorithm is:  

( )
+
+−−=

TF

sosf
V

NN
Afitness α
1

 (1) 

where 
NN

A −1
is the 1-NN accuracy in a validation sample V, sf is the number of 

the selected features, so is the number of the selected objects and α  a constant 
parameter (user defined). 

Analogously, Ishibushi [3] employs a Genetic Algorithm, but with a different 
fitness function: 

sowsfwTnwcwfitness ofNN **)(*1 −−= −  (2) 

where nwc  is the number of well classified objects in a training sample T, sf is the 

number of the selected features, so is the number of the selected objects and NNw −1 , 

fw  and ow  are the user defined weights associated with the accuracy, feature count 

and object count respectively.  
The chromosome encoding of the algorithm is similar to the strategy used by 

Kuncheva.  
These approaches have an important random component, so two different 

application of the algorithm with the same data could have dramatically different 
results. Besides, the results reached by these methods lack of a comprehensive 
meaning in the problem domain. Also, as pointed out by Kuncheva [4], Genetic 
Algorithms spent a long time to get to a good solution.  

Dasarathy [2] proposes the application of a Sequential Backward Search (SBS), 
introduced by Kittler [6]. The SBS uses as Optimization Function a combined 
measure of the reduction ratio and the accuracy of the classifier with respect to (wrt) 
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the edited sample. This sample is obtained applying the Relative Neighborhood Graph 
based Editing (RNG-Edit) [7] and the Minimal Consistent Subset (MCS) [8].  

This method have a big computational cost because their components (SBS, RNG-
Edit and MCS), are all time consuming.  

3   The Proposed Method 

Specially designed to feature subsets selection with MID is the typical testors 
computation [9]. Typical testors are feature subsets that have two main properties: 
they do not confuse objects of different classes and are irreducible. So, a typical testor 
is a highly discriminative feature subset, with a clear meaning for specialists such as 
physicians, geologist, etc. 

Typical testors have two main drawbacks: the computational cost and, in some 
databases, the amount of typical testors. 

An object selection method designed to deal with MID is the Compact Set Editing 
(CSE) [10]. This algorithm has the desired property that is subclass consistent. So, the 
inner subclass structure of the training sample is preserved. CSE calculates the 
maximum similarity graph and make an ascending sort of the vertexes according to 
their indegree and outdegree. The nodes are iteratively discarded, starting from the 
firs, taking some actions to guarantee the subclass consistency.  

The proposed algorithm is designed to deal with mixed and incomplete data, 
finding a new sample by reducing the numbers of features and objects in a 
simultaneous way. Besides, it tries to keep the 1-MSN classifier accuracy wrt a 
validation set as high as possible, using the selected sample.  

The Simultaneous Object and Feature Selection Algorithm (SOFSA) proceeds as 
follows: firstly, we calculate the typical testors (TT) using the LEX algorithm [11], 
 

x1 x2 x5
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x1 x2 x5 x7 x10 xn
o1
o2
o3
o7
o10

x7 x2 x5 x10
o1
o2
o10

 

Fig. 1. Joint subsamples procedure used by SOFSA. All the features and objects of the parents 
are in the new subsample. 
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which has a good computational behavior for this task. Then, the TT are sorted 
according to their informational weights. Objects in the training sample are projected 
by the features presented in the first TT and CSE is applied to this projection. If 
accuracy wrt the validation sample is greater than the initial accuracy, calculated 
using all features and objects, a solution is returned, else the next TT is considered. In 
each previous step, we obtain a subsample. These subsamples generate a new 
subsample formed by the union of objects and features of each of them. See Fig 1.  

Note that the process could be repeated for finding more accurate solutions than 
the initial one, but with more features and / or objects; until all projections are 
explored. In the cases that no solution improves the initial accuracy, we can choose an 
optimization function [2-4] that depends on accuracy result, object reduction ratio and 
feature reduction ratio. For example, we could use: 

T

so
w

F

sf
wVAwfitness ofNNNN **)(* 11 −−= −−  (3) 

where NNA −1 is the classifier accuracy wrt the validation set, sf is the number of the 

selected features, so is the number of the selected objects and NNw −1 , fw  and 

ow are the user defined weights associated with the accuracy, object reduction ratio 

and feature reduction ratio respectively.   

Algorithm Parameters: 
T Training Sample 
V Validation Sample 
CSE Compact Set based Editing method 

)(VClasif
Mε  Accuracy function wrt V, using Clasif as classifier and M as 

training sample 
MΩ  Partial objects descriptions of sample M using only the features 

in Ω   

To compute the relevance of a feature x, we use the equation in [12]: 

)(*)(*)( XLxPx βαρ +=  (4) 

where )(xP  and )(xL  are the frequency informational weight and the length 

informational weight of feature x, respectively. 
 
The frequency informational weight of x is given by: 

τ
τ xxP =)(  (5) 

where xτ is the amount of typical testors in which x appears and τ is the total typical 

testors amount. 
The length informational weight of feature x is given by:  
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x

TTt
t

TT
xL x∈=

1

)(  (6) 

where xTT is the family of all typical testors in which x appears.  

In our experiments, we useα = β  = 0.5 following [12]  

SOFSA Algorithm: 
1. )(TLEXTT ←  Typical testors of T are computed using the LEX 

algorithm. 
2. TTinttforEach  

←
∈tt

tt x
xWeight )(ρ  

The informational weight of each typical testor is 
calculated as the sum of the relevance of the 
features in the testor. 

3. )(TTSortTT ←  The typical testors are sorted according to their 
weights. 

4. )(1 VInitialAcc MSN
T

−← ε  The accuracy of 1-MSN classifier is computed. 

5. []←Solution   

6. falsefound ←   

7.   foundnotwhile  

TTnext ∈Ω←Ω )(  

While no solution is found, the 
algorithm proceeds to project the 
objects of the training sample by 
the features of the typical testor 

TT∈Ω . 

)( TCSEEdited Ω←  Then, the CSE method is applied 
to obtain an edited sample. 

),( EditedSolutionJoinSolution ←  The edited sample is joined with 
the last solution, that is, all 
objects in the edited sample and 
all features in the typical testor 
are added to the solution. 

If InitialAccVMSN
Solution >− )(1ε  

   then 

If the accuracy of the 1-MSN 
using the new solution is greater 
than initial accuracy, 

truefound

VInitialAcc

Solutionreturn

MSN
Solution

←

← − )(1ε  

a new solution is found and 
returned.   

 
8. End  

4   Experimental Results  

Traditional methods for selecting features and objects simultaneously assume metric 
spaces. In this paper they were extended to deal with MID in non-metric spaces, for 
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making numerical comparisons. For brevity, we name the extensions as: eDasarathy, 
eKuncheva, eIchibushi and eRMHC-FP respectively. 

The experimental results were made using 4 databases from UCI, with Mixed and 
Incomplete Data. The description of these databases is shown in Table 1. In the 
experiments the databases were divided in Training (10% of the total of objects), 
Validation (20%) and Testing (70%).  

Table 1. Description of the used databases  

UCI name Objects Numerical  
Features 

Categorical 
Features 

Missing 
Values 

Credit-screening 690 6 9 67 
Hepatitis 155 6 14 167 
Heart 270 6 7 0 
Import-85 (symboling) 205 16 10 59 

The similarity function used in our experiments was: 

{ }
F

poCFr
po rrr 1),(|

),(
=∈

=Γ  (7) 

where F is the set of all features, Cr the comparison criterion for the feature r ; ro  

and rp are the values of the feature r  of the objects o y p , respectively.  

The Boolean similarity comparison criteria for numeric features were: 
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where “?” denote a missing value, and  is the standard deviation of the values of the 
feature.  

For categorical data we use the criterion: 

≠∨=∨=
=

otherwise1

)(?)(p?)(o if0
),( rrrr

rrr

po
poC  (9) 

The results for each used database are shown in tables 2-5. The accuracy 
function used was the ratio of well classified objects and the total amount of 
objects. The difference between accuracy without editing and accuracy after 
editing is shown in the Delta (Δ) column. As the databases are split randomly, we 
repeated the process 3 times to reduce the influence of randomness in partition, 
showing the mean in tables.  
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Table 2. Experimental results for database credit-screening. Accuracy without editing: 0.7428. 

Method 
Object 

Reduction (%) 
Feature 

Reduction 
(%) 

Edited 
Accuracy 

Delta (Δ) 

SOFSA 33.40 29.17 0.7590 0.0125 
eDasarathy 83.61 6.67 0.7514 0.0086 
eRMHC-FP 42.62 68.89 0.6707 -0.0722 
eKuncheva 73.22 77.78 0.6071 -0.1357 
eIshibushi  62.30 66.67 0.7377 -0.0052 

In database credit-screening, the best method according to classifier accuracy is 
SOFSA, followed by eDasarathy. Both outperform the original accuracy of the 1-
MSN classifier using only a reduced number of features and objects.  According to 
reduction in both features and objects, eKuncheva shows the best performance; 
although the classifier accuracy is degrade in about 10%. Finally, eIshibushi shows a 
good reduction with a slightly drop in accuracy.  

Table 3. Experimental results for database hepatitis. Accuracy without editing: 0.7161. 

Method 
Object Reduction 

(%) 
Feature 

Reduction 
(%) 

Edited 
Accuracy 

Delta (Δ) 

SOFSA 27.50 36.84 0.6938 -0.0223 
eDasarathy 85.42 5.26 0.6615 -0.0547 
eRMHC-FP 47.92 43.86 0.6797 -0.0365 
eKuncheva 58.33 71.93 0.6094 -0.1068 
eIshibushi  56.25 54.39 0.5000 -0.2161 

In database hepatitis, no method outperforms classifier accuracy. SOFSA and 
eRMHC-FP give the best results according to accuracy. Both methods slightly 
degrade classifier accuracy, using a reduced number of features and objects. 
According to reduction, eKuncheva and eIshibuchi show the best performance, but 
the classifier accuracy is dropped in approximately 10% and 20% respectively.  

Table 4. Experimental results for database heart. Accuracy without editing: 0.7619. 

Method 
Object 

Reduction (%) 
Feature 

Reduction 
(%) 

Edited 
Accuracy 

Delta (Δ) 

SOFSA 26.09 30.77 0.7619 0 
eDasarathy 88.41 5.13 0.7904 0.0285 
eRMHC-FP 44.93 51.28 0.6761 -0.0857 
eKuncheva 52.17 79.49 0.6000 -0.1619 
eIshibushi  52.17 61.54 0.6571 -0.1047 
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On database Heart, the best method according to accuracy results is eDasarathy. 
This method outperforms the unselected 1-MSN. SOFSA maintains original accuracy, 
reducing the 30% approximately of features and objects. All the other methods show 
a significant drop in accuracy. According to reduction, eKuncheva and eIshibushi 
both reduce about 50% to 70% of features and objects, with a drop of 10% in 
accuracy.  

Table 5. Experimental results for database import-85. Accuracy without edititng: 0.4603. 

Method 
Object 

Reduction (%) 
Feature 

Reduction 
(%) 

Edited 
Accuracy 

Delta (Δ) 

SOFSA 8.33 37.00 0.4583 -0.0060 
eDasarathy 84.03 4.00 0.4048 -0.0556 
eRMHC-FP 45.14 42.67 0.4087 -0.0516 
eKuncheva 27.08 36.00 0.2778 -0.1825 
eIshibushi  27.08 36.00 0.3452 -0.1151 

Finally, on database import-85, no method improves the classifier accuracy. 
SOFSA shows a little degradation, followed by eRMHC-FP. This last method shows 
the best results according to reduction in features and objects. The eRMHC-FP 
method obtains about a 45% of reduction in both features and objects. 

The experimental results show that our method has a good performance over most 
of the databases. It reduces approximately 25 percent the number of features and 
objects with none or little degradations in classifier accuracy. In the numerical 
experiments it outperforms the other methods, except for database Heart, although in 
the database import-85 no significant reduction could be done.  

eDasarathy had a stable behavior over all databases, but with insignificant 
reductions in the number of features. Random Mutation Hill Climbing and Genetic 
Algorithms show a good performance in some cases and in others the classifier 
performance is dramatically degraded. In these last three methods the reduction 
percent is always around half of features and objects. 

5   Conclusions  

Simultaneously (or combined) feature and object selection for improving the 
classifiers accuracy is a very important task in supervised classification problems. It 
was faced by several authors, but assuming metric spaces for 1-NN classifier.  No 
procedure has been developed for MID in non-metric spaces for MSN classifiers.  In 
this paper the methods introduced for metric spaces were extended for dealing with 
MID in non-metric spaces.  Besides, a new algorithm is proposed to select jointly 
features and objects for the 1-MSN classifier. This is the first simultaneous features 
and objects selection algorithm specially designed to deal with databases containing 
objects described by features no exclusively numeric or categorical.  



 Simultaneous Features and Objects Selection for Mixed and Incomplete Data 605 

In most databases a good performance is showed by the proposed method, with 
respect to our extensions of earlier reported methods. Improvements or little 
degradations in the 1-MSN accuracy with a reduced number of features and objects 
are obtained by the method in all databases.  

Several solutions could be returned by the method, which could be selected based 
on certain optimization criterion. These solutions have better accuracy, but the 
reduction in the number of objects and/or features is lesser. 

All solutions returned by the method are formed by a highly discriminative feature 
subset, with a clear meaning for specialists. Also, the selected objects preserve the 
inner structure of the domain classes. Furthermore, this is a deterministic procedure, 
so we get unique solutions in two different application of the algorithm with the same 
data.  
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Abstract. ALVOT is a model of supervised classification based on partial 
precedences. In this paper a new object selection method based on a voting 
procedure for ALVOT is proposed. The method was developed for dealing with 
databases having objects described by features that are not exclusively numeric 
or categorical. A comparative numerical experiment was performed with 
different algorithms of object selection. The experimental results show a good 
performance of the proposed method with respect to the other algorithms. 

1   Introduction 

To achieve high-quality results, supervised classifiers need a good training matrix. It 
is usually accomplished by removing “noisy” as well as redundant objects. Several 
techniques have been developed to deal with these two problems, increasing the 
quality of classification: editing and condensing methods respectively [1]. 

On the other hand, in real world problems, sometimes the objects are described 
simultaneously in terms of qualitative and quantitative features. Some of the object 
descriptions could also be incomplete (missing values). In these cases, the tools of the 
Logical Combinatorial Pattern Recognition (LCPR) [2] should be used. 

ALVOT [3, 4], introduced by Zhuravlev, is a model of supervised classification in 
the LCPR. The original algorithm has been applied to different real world situations, 
with the introduction of new similarity functions. Also, the fuzzy set theory concepts 
have been used in order to adequately model some problems in geosciences, 
medicine, and others [5, 6].  

ALVOT is based on partial precedence. Partial precedence is the principle of 
calculating the similarity between objects using comparisons between their partial 
descriptions. A partial description is a combination of features with a clear meaning in 
the problem domain. This is the way that physicians, and other natural scientists, 
establish comparisons among objects in real world problems [4].  

For a new object to be classified, many partial comparisons with all the objects in 
the training matrix have to be calculated. This can be very time consuming, while the 
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cardinality of the matrix increases. That is why we propose an object selection 
method, which improves the quality of classification with ALVOT. 

2   Previous Works 

The first editing method for ALVOT was introduced in [7, 8]. This method uses a set of 
genetic algorithms to select the support sets system, the features weights, and the objects 
in the training matrix. Nevertheless, there are several problems where this optimization 
procedure can not be applied, because the parameters have a meaning in the problem 
definition domain. For example, the specialist might determine the support sets system 
and assign the feature weights according to his background knowledge. He can also use 
some procedures, with a comprehensive meaning in his model. Based on these facts, we 
compared our algorithm only with the object selection procedure. 

The chromosomes used by the genetic algorithm were binary strings consisting of 
m  bits, one for each object, representing the subsets of those which are selected. The 
i th bit has value 1 when the respective element is included, and 0 otherwise. 

In general, the algorithm works as follows: 

1 The initial population is generated randomly. The population size and iteration 
number are input parameters of the algorithm. 

2 The population’s individuals are sorted according to their fitness. The first and last 
individuals are crossed, the second is crossed with the penultimate and this process 
is repeated until finishing the population. They are crossed using a 1-point 
crossover operator in the middle of the individual. The fitness function is the ratio 
of well classified objects. 

3 For each individual in the population the mutation operator is applied. It takes 
randomly an individual’s gene and changes its value. The fitness is evaluated for 
this new population. 

4 The original individuals together with those obtained by crossing and mutation are 
sorted in descending order according to their fitness and those with highest fitness 
are chosen (taking into account the population size). The new population is used in 
the next iteration of the algorithm. 

This method has an important random component, so two different executions of 
the algorithm with the same data could have dramatically different results. Besides, 
the results reached by this procedure lack of a comprehensive meaning in the problem 
domain. As pointed out by Kuncheva and Bezdek [9] selecting prototypes by Random 
Searches and Genetic Algorithms could be computationally demanding and, for large 
data sets, may be infeasible. 

3   A First Approach to a New Object Selection Method for  
     ALVOT 

For selecting objects for ALVOT we can apply a classical editing methods based on 
NN rule. An analogue solution were reported by Decaestecker [10] and Konig et. al 
[11], in which the training matrix is edited for a Radial Based Function network, 
using a procedure originally designed for k-NN. A deep study about editing methods 
is outside of the scope of this paper, but a revision can be found in [1].  
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Considering that we are working with MID, in this paper we use the Compact Set 
Editing method(CSE) [12], an extension of Wilson’s [13] Edited Nearest Neighbor 
rule (ENN) for MID, and a modification of the ENN using ALVOT as classifier 
(EALVOT). 

Despite these procedures can be applied, as we can see below, a better solution 
could be achieved considering the way ALVOT works.  

4   Voting Based Object Selection (VOS) 

Any algorithm of ALVOT A  works in six stages: 

Stage 1.- Determine the support sets system AΩ , which is a set of subsets of 

features. 
Stage 2.- Find out the feature comparison criteria and similarity function between 

sub-descriptions of objects ( )iOO ΩΩ ,β , AΩ∈Ω . OΩ  is a sub-description of object 

O  using only features in Ω ; and β  is a similarity function. 

Stage 3.- Rule for evaluating the partial similarity between a fixed sub-description 
of a new object and the corresponding sub-descriptions of previously classified 
objects ( )OOp ,ΩΓ  (partial evaluation by rows). 

Stage 4.- Rule for summarizing the partial evaluation by rows of a fixed sub-

description of a new object for each class ( )Oj
ΩΓ  (partial evaluation by classes). 

Stage 5.- Rule for summarizing all partial evaluations by class with respect to the 

whole support sets system of a new object ( )OjΓ  (total evaluation by classes). 

Stage 6.- Decision-making rule based on the total evaluation by classes AΓ . 

In this paper we introduce a new method to select objects for ALVOT, named 
Voting based Object Selection (VOS). Objects are selected according to their voting 
power in the training data, which is calculated with the following expression: 
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O  gives to iO , being )( pOρ  the weight of the object pO , ( )
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WAccWVSQ oaA ⋅−⋅=,  a quality function; where aW  is the weight 

associated to the accuracy obtained from classifying the objects in V  using S  as 

training matrix; T the original training matrix; and oW , the weight associated to the 

reduction ratio. 
The algorithm VOS works as follows: 

Step 0: Calculate ( )VTQA , = 0q , the quality of A  classifying the validation matrix 

V  using the training matrix T . 
Step 1: Calculate the voting power of each object using (1). 
Step 2: Sort descendent the objects per class according to )(Oι . 

Step 3: Calculate 0c = ( ){ }{ }0:min
...1

>∈
∈

OKO i
ri

ι , where r  is the total amount of 

classes. This value is the minimal number of objects in any class with a positive 

( )Oι . Select an initial solution 0S  taking the first 0c  objects from each class. 

Step 4: Calculate 1q , the quality of A  classifying V  using 0S  as the training 

matrix. 

Step 5: If  01 qq ≥ , keep removing from 0S  the object with less )(Oι  per class, 

while the quality is above 0q  and no empty class is obtained. 

Step 6: If  01 qq < , keep adding from 0\ ST  to 0S  the object with greater )(Oι  

per class, until the quality reaches at least 0q . 

Step 7: Return 0S . 



610 M.A. Medina-Pérez et al. 

5   Experimental Results 

The experiments were made using 7 databases from UCI [14] Repository of Machine 
Learning, with mixed and incomplete data. A description of these databases can be 
found in Table 1. 

Table 1. Databases used in the experiments 

Database Objects Features Missing Values Classes 
Breast-cancer 286 9 9 2 
Breast-cancer-breast 286 9 9 2 
Credit-screening 690 15 37 2 
Credit-screening-A9 690 15 37 2 
Credit-screening-A12 690 15 37 2 
Hepatitis 155 19 75 2 
Import-85 205 25 46 7 

Breast-cancer-breast is the same database as Breast-cancer, but with the feature 
breast used as class feature. Credit-screening-A9 (Credit-screening-A12) is the same 
database as Credit-screening, but with the feature A9 (A12) used as class feature.  

Each database was split taking 70% for training and 30% for testing. We repeated 
the process 5 times and average the results. 

In our experiments we used a voting algorithm A  with the following parameters: 

• The support sets system was the set of all typical testors of the training matrix. 
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• The weight of the feature iχ  is calculated, following [15], with the equation: 

( ) ( ) ( )iii LP χβχαχρ ⋅+⋅=  with 0, >βα  and 1=+ βα , being α  and β  two 

parameters, which weight the influence of ( )iP χ  and ( )iL χ  respectively in 

( )iχρ . We used 5.0== βα . ( )iP χ  is computed: ( ) ( )
τ

τχ i
P i = , where ( )iτ  is the 

number of typical testors, which contain the feature iχ  and τ  the amount of all 
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• The quality function used, ( )VSQA ,0 , was the well classification ratio; hence, 

1=aW  and 0=oW . 

• The training matrix was used as validation matrix; TV = . 

To make numerical comparisons, we denoted as GA the algorithm introduced in 
section 2. 

The accuracy of A with the original matrix, CSE, ENN, GA, EALVOT and VOS 
are shown in Table 2 and 3. These results show that no method was clearly superior in 
all databases. 

The compression ratios achieved by the algorithms are shown in Table 4.  
It is clear that the proposed method reach higher compression ratios affecting lesser 

the classifier accuracy than any other methods. 

Table 2. Accuracy of A  without editing compared with methods that do not use ALVOT 

Database A  CSE ENN 

Breast-cancer 0.754 0.767 0.774 
Breast-cancer-breast 0.58 0.624 0.547 
Credit-screening 0.801 0.790 0.785 
Credit-screening-A9 0.739 0.744 0.734 
Credit-screening-A12 0.620 0.606 0.598 
Hepatitis 0.738 0.691 0.740 
Import-85 0.495 0.498 0.451 



612 M.A. Medina-Pérez et al. 

Table 3. Accuracy of A  without editing compared with methods that use ALVOT 

Database A  GA EALVOT VOS 

Breast-cancer 0.754 0.714 0.785 0.749 
Breast-cancer-breast 0.58 0.522 0.560 0.578 
Credit-screening 0.801 0.788 0.773 0.782 
Credit-screening-A9 0.739 0.738 0.717 0.705 
Credit-screening-A12 0.620 0.616 0.614 0.616 
Hepatitis 0.738 0.738 0.740 0.743 
Import-85 0.495 0.422 0.460 0.489 

Table 4. Compression ratio 

Database CSE ENN GA EALVOT VOS 
Breast-cancer 0.29 0.21 0.51 0.27 0.60 
Breast-cancer-breast 0.22 0.21 0.53 0.32 0.55 
Credit-screening 0.50 0.10 0.50 0.13 0.60 
Credit-screening-A9 0.44 0.11 0.50 0.14 0.52 
Credit-screening-A12 0.21 0.24 0.49 0.42 0.48 
Hepatitis 0.54 0.12 0.51 0.19 0.69 
Import-85 0.44 0.13 0.50 0.61 0.87 

6   Conclusions 

ALVOT is a model for supervised classification based on partial precedences. It is 
mainly used in problems where the objects are described in terms of qualitative and 
quantitative features simultaneously, and some features have missing values. 

Classifying with ALVOT turns expensive while the training matrix increases. In 
this paper a new object selection method (VOS) for ALVOT is introduced. It is based 
on the voting power of the objects, a magnitude calculated according the way 
ALVOT works. Several experiments were carried out and the comparisons with other 
methods showed that the proposed method reaches higher compression ratios 
affecting lesser the classifier accuracy than any other method. 
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Abstract. In this paper we investigate the usage of a clustering algorithm as a 
feature extraction technique to find new features to represent the protein 
sequence. In particular, our work focuses on the prediction of HIV protease 
resistance to drugs. We use a biologically motivated similarity function based 
on the contact energy of the amino acid and the position in the sequence. The 
performance measure was computed taking into account the clustering 
reliability and the classification validity. An SVM using 10-fold crossvalidation 
and the k-means algorithm were used for classification and clustering 
respectively. The best results were obtained by reducing an initial set of 99 
features to a lower dimensional feature set of 36-66 features. 

Keywords: HIV resistance, SVM, clustering, k-means, similarity function. 

1   Introduction 

Nowadays, Bioinformatics is an area of research that is rapidly gaining in importance 
worldwide. It comprises several scientific fields, and is becoming a multidisciplinary 
science where input from e.g. machine learning research plays an important role.  

Most of the problems in bioinformatics concern the analysis of DNA or protein 
sequences. In order to analyze these sequences, a common approach is to use the 
representation based on the sequence. However, in the case of protein sequences, 
more information could be conveyed by the three-dimensional structure. Studies on 
3D structure are just another investigation problem in bioinformatics, yet 
unfortunately predicting the structure from the sequence is not evident. For this 
reason, we focus in this paper on a classification problem, starting from the primary 
sequence. The classification problem we consider here is the prediction of HIV drug 
resistance. 

Given the protein sequence of protease, which is an important viral protein, the 
goal is to predict its resistance to drugs. The protease protein mutates constantly, and 
therefore resistance emerges easily after the application of a drug. 
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To solve the resistance prediction problem, several machine learning techniques 
have been applied previously, such as decision trees, k-nearest neighbor technique 
(KNN) classifiers, and support vector machines (SVM) [1], [4], [10]. 

Usually, in problems on sequence analysis, the primary sequence is described using 
a feature for each amino acid. This representation consists of too much features. 
Given a problem where the length of the sequences is n and taking into account that 
there exist 20 amino acids, this results in 20n  possible features, the value of which 
correspond to the possible mutations of the sequence. The large number of possible 
mutations results in the fact that existing databases only represent a few of them, 
mostly having no known instances for each possible type of mutation. However, it can 
be considered that positions in the protein sequence that never mutate, will not 
influence the solution found by a machine learning algorithm. 

On other hand, sequences are frequently very large, resulting in many possible 
features. These two observations motivate our work on reducing the dimensionality of 
the features that represent the protein sequence. Thinking in a first step, we start from 
a clustering process that looks for associations between amino acids in the sequence. 
Subsequently, an SVM is used as classification algorithm, where the idea is to find a 
small number of features that are sufficient to obtain good performance (i.e. values 
better or at less equivalent to the results obtained using all features). 

2   Methods 

2.1   Datasets 

We used the information in the Stanford HIV Resistance Database Protease to 
develop our work because it is the one mostly used in the literature and it contains 
information about the genotype and phenotype for seven of the most widely used 
protease inhibitors. These inhibitors are: amprenavir (APV), atazanavir (ATV), 
nelfinavir (NFV), ritonavir (RTV), saquinavir (SQV), lopinavir (LPV) and indinavir 
(IDV). The genotype is described by the mutated positions with the corresponding 
change in amino acid. The phenotype is described by the resistance-fold based on the 
concentration for the drug to inhibit the viral protease as the resistance value. This 
database is available at http://hivdb.stanford.edu/cgibin/PIResiNote.cgi. 

To eliminate missing values, the instances in the dataset with unknown changes in 
amino acid were discarded. Finally, seven databases were constructed, one for each 
drug. We took as reference sequence (wild type) the HXB2 protease and built the 
mutated sequences by changing the amino acid in the corresponding reported mutated 
positions. For the resistance-fold we used the 3.5 cut-off value, as previously reported 
in the literature for these drugs [2], [10].  If the drug resistance is greater than this cut-
off value, the mutant is classified as resistant and otherwise as susceptible. In this way 
we obtain a binary (i.e. two-class) classification problem: {resistant, susceptible}. 

2.2   Pattern Representation 

As in any classification problem, one of the first steps is looking for appropriate 
features to represent the input information. In problems of sequences analysis like 
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this, it is common to use each amino acid as the information for the features. In this 
way, we will have the same number of features as the sequence has amino acids. 

In some approaches, the simple representation of each sequence position being a 
binary vector of 20 elements (i.e. the amino acids) has been used. In that case, a value 
of 1 is given to the analyzed amino acid position and a 0 to all the others. Mutual 
information profiles have also been used to represent each sequence of the Protease 
enzyme [1].  

Some methods using information of protein structure have also been reported in the 
literature [4]. The idea to use the information related to the 3D structure would be 
ideal, because this structure would allow us to know whether the drug has perfect 
contact with the protein to inhibit its functionality or not. However, the amount of 
available 3D data on HIV mutants is not enough in order to build a good training 
database. Since the amount of primary structure data is significantly higher than the 
number of 3D structures available, we used data based on primary structures. 
However, we use a representation of the sequence that allows to some extent to take 
into account some features related to the 3D-structure. In particular, we chose the 
amino acid contact energy as an adequate representation because it determines the 
(un)folding of the protein. Miyazawa and Jernigan (1994) showed that the contact 
energy changes the protein structure,  and the substitution of a simple amino acid 
suffices to observe this [13], [14]. For this reason, the energy associated with each 
amino acid is used to represent the Protease sequence and will be referred to from 
now on as Energy (equation 1). 

 

Energy: A R                                                     (1) 

 
where A is the set of 20 amino acids and R is the set of real numbers. 

In particular, we have 7 databases, one for each drug. The problem was 
transformed into seven similar binary classification problems. The target function of 
each problem is the same (equation 2). 

 

F: A O                                                         (2) 

 
where O = {resistant, susceptible} and A ⊆ R99, because the database consists of 
sequences of the same length, namely 99 amino acids. Each element of A is a protease 
sequence identified by an amino acid vector. All amino acids are represented by their 
Energy, which is a real value.  

As was explained in the introduction, the databases have some features that never 
change, which have the same value in all cases. One of the possible solutions to this 
problem is to find association between positions in the sequence and to do a 
transformation in the space building new features. Feature extraction can be a 
technique to compute new features taking into account the information of other 
features. 
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2.3   Feature Extraction 

In mathematical terms, dimensionality reduction is based on the following:  given a p-
dimensional variable that defines the features x = (x1;…; xp)

T; look for a lower 
dimensional representation of it  (s1;…;sk)

T with k<p, that captures the content in the 
original data, according to some criterion. 

Dimensionality reduction can be focused on feature selection or feature extraction. 
The first idea is based on finding a subset s of features from the original data x. The 
second objective is focused on finding a transformation that can be applied to the 
space in all features. 

Any of these techniques can be chosen. Features selection can help to select the 
positions with more influence in the resistance. However, in our case we did not want 
to lose the information of each position, as it could be biologically relevant in having 
an influence on the classification of the resistance. Therefore, we focus in this work 
on feature extraction. 

Feature extraction consists of finding a matrix Ck×p, with k<p, from the matrix Xn×p 

where n is the number of data in the database and p the number of features.  The idea 
is to transform the matrix X from the matrix C to obtain the matrix U representing the 
new features (equation 3). 

 

UT= C × XT                                                        (3) 

 
There are many feature extraction techniques commonly used in the literature for 

different problems [6]. Due to the characteristics of the problem, the transformation 
was focused on finding associations between the positions with biological meaning. In 
this way we can find groups of positions that relate to each other for reasons of 
resistance modeling. To compute the associations, there exist many statistical and 
artificial intelligence techniques. We select a clustering method to find the groups of 
positions in the sequence, as a fast way to do feature extraction. This technique has 
been used by other authors in other problems of pattern recognition [5], [15], [16]. 

Clustering is a technique that groups patterns into classes (termed clusters) based 
on similarity.  

Any clustering task can be characterized by the following three principles [9]: 

1. Pattern representation 
2. Definition of a pattern similarity measure 
3. Clustering algorithm 

The first step was described in the section 2.2. Step 2 will be explained further in 
the paper. The last step includes the selection of the clustering algorithm In the 
literature there are several clustering techniques., reviewed by  Jain, A. K. et al. 
(1999) [9]. One of them, k-means, is a classical algorithm and was chosen to be used 
in this work.  

2.4.1   K-Means 
k-means is a popular clustering algorithm which has been used in several applications. 
Given a set of n data points in Rp and an integer k, the k-means algorithm finds a set 
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of k points Rp, called “centroids”, and associates each point in the data to the nearest 
centroid. It is very important to select an appropriated similarity function [11]. 

This method has the disadvantage that it needs the number of clusters as input 
information (prior information). However, for our application this is not problematic, 
as we want to test all possible clusters number. 

For the implementation of the clustering, we used Weka, which is a free software 
package that has implemented this algorithm. Furthermore, it has the advantage that it 
is easy to add a new similarity function. Weka is available at the following URL: 
http://www.cs.waikato.ac.nz/ml/weka. 

2.4.2   Similarity Function 
Selecting a similarity function is a key step for a good clustering process. There are 
already several functions defined in the literature, depending on the problem. Between 
the most popular are: Euclidean distance, Minkowski metric, squared Mahalanobis 
distance [3], [7]. 

In this paper, we defined our own similarity function, which has a biological 
meaning related to the clustering of sequence positions for drug resistance modeling  
With this type of function we can keep the interpretability of the data that precisely is 
a disadvantage of most feature extraction techniques. 

As already discussed above, the data of our problem are defined by equations 1 and 
2. Each element represents the Energy associated to the corresponding amino acid. 
However, we need to group the positions of the sequences taking into account the 
repercussions of the mutations in these positions. Using only the Energy information 
is not enough to build these groups. One can observe that the positions with the same 
amino acid will be member of the same group and this result is not valid. In order to 
keep the idea to find information relative to the 3D structure, we take the position as 
an additional type of information into account. We combined both Energy and 
position of each element in the sequence to obtain the following similarity function:  
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where Z(x) represents the Z-score normalization of the variable x, defined in the 
equation 5: 
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Here, X  is the mean of X and Sx is the standard deviation. In our case: 
You can define k*eak=X1 and l*eal=X2, and one can consider equation 4 as the 

square of the Euclidean distance (see equation 6). 
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2.5   Classification Method 

2.5.1   SVM 
Support Vector Machines (SVM) are a technique developed by Vapnik in 1996 from 
statistical learning theory [17]. SVM have become an important machine learning 
technique for many pattern recognition problems, especially in computational 
biology. For SVM training and testing we also used the Weka software.  

2.5.2   Performance Measure 
The performance measures used in this work were divided in two parts: one to 
evaluate the clustering, and the other to evaluate the classification.  

To evaluate the classification results we use the Receiver Operating Characteristic 
curve (ROC curve) to evaluate the results of an SVM [12]. 

ROC curves have the advantage that they encapsulate all information contained in 
the confusion matrix. It is a plot of the true positive rate (TPr) against the false 
positive rate (FPr). To measure the classification performance, we used the area under 
the curve (AUC) [8]. 

3   Results and Discussion 

The objective of this paper is focused on searching the best features to predict HIV 
drug resistance starting from feature extraction. We used k-means as clustering 
algorithm to find associations between the amino acids that describe the protein 
sequence. In a next step, we used an SVM as a classification method, and compared 
the results obtained using all features to those using the new features derived from the 
clustering.  

First, we train the SVM using all features and afterwards, we applied k-means for 
all possible values of k, k=1,,.., p-1 (p denotes the sequence length). With small values 
of k we obtained good results, as is shown in Table 1. The first row in this table 
represents the results for all features (i.e. 99 amino acids). The rows 2 and 3 describe 
the results of 25 and 28 clusters respectively for each drug. As can be observed, the 
results for 25 clusters are better or at least as good as those using all features, for 6 of 
the 7 drugs. Using 28 clusters we already obtain good results for all drugs. 

Table 1. Prediction performance (AUC) of SVM for the seven drugs using 99, 25 and 28 
features 

Number 
of features 

APV ATV IDV NFV RTV SQV LPV 

99 83.5 75.2 89.3 85.7 89.9 85.2 65 
25 83.6 81 89.8 83.8 92.9 87.6 77.2 
28 84 80.2 90.3 85.9 92.7 86.8 78.1 
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With these results, however, we only check the validity of the SVM prediction. In 
this case we use a non-supervised technique (k-means) and a supervised technique 
(SVM). To do the validation of the results we need to check the validity of the 
classification, but we also need to check the reliability of the clustering.  

In short, our process is based on the following steps:  
 

1. Run k-means with the matrix XT for k=1,2,..,p-1. Where k is the number of clusters 
and p is the number of features. 

2. Check clustering reliability. Compute the subset SK of reliable clusters number. 
3. Build new features and new data matrix. 
4. Run SVM for each ski  SK. 
5. Check validity of results. 

 
In the first step, we use the algorithm k-means implemented in Weka, with a 

variation of the similarity function, as was shown in equation 4. This algorithm is run 
with all possible values of k.  

However, the way to check the performance of a clustering process depends on the 
distribution of the elements in the clusters. In other words, if an element is very far 
from the centroid of a cluster, this could means that we do not have chosen enough 
clusters to group our data, i.e. this element could define another cluster. 

To check the reliability, we defined another measure that from now on will be 
called “maxim centroid distance” (MCD) defined as follow: 

 

)(max( ifCDMCD = ) (7) 

 
where F is the feature set for clustering. For each fi  F, CD(fi) represent the distance 
of the feature fi to the centroid of the corresponding cluster. 

A value of MCD being too large is not desirable, because it would mean that at 
least one of the clusters contains some points that are located too far from the 
centroid. In order to answer the question of finding an appropriate value for MCD, we 
first need to analyze the similarity function (defined in equation 4) into more detail. 
The normalization of a variable using equation 5 guarantees that the mean and the 
standard deviation will be 0 and 1 respectively. The difference of two variables, 
normalized in this way, has mean 0 and constant variance 2.  Based on a basic 
probability theory the square sum of variables with normal distribution, mean zero 
and constant variance has a chi-square (χ2) distribution. For this reason, equation 4 is 
χ2 distributed.  

Due to the χ2 distribution of the similarity function, we can do a reliability analysis 
based on a χ2 test. We can define the MCD value as χ2

observed. We compute χ2
critic 

depending on the number “n” of proteins and the level of significance α. We work 
with α=0.05 i.e., in such a way that the probability or χ2 was greater than χ2

critic is 
lesser than 0.05. This constant χ2

critic will be compared with χ2
observed (for each k of 

clustering). That is, the idea is the following: if the maximum square Euclidean 
distance between the instances and the centroid (χ2

observed) is greater than the value of 
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χ2
critic we have too few clusters. The objective is then to take a low number of clusters, 

without elements being too far from the corresponding centroids. 
The second step is then to check the reliability of the clustering technique, in other 

words, to look for the minimum number of clusters needed to describe the variability 
of the data, and select the subset SK of value of k, which χ2

observed < χ2
critic.  

The next step is based on the computation of the matrix U (defined in equation 3), 
after finding the matrix C in the previous step with the clustering. For a given k, a 
clustering with k clusters is obtained. In general, the elements cij of the matrix C 
represent the membership of feature j (fi) to the cluster i (Ki) as shown the following 
equation: 

 

∈
=
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SK is the subset of all clusters chosen in the previous step. For each ski  SK we 

build a new database. The database i has ski features computed from the matrix U 
defined in equation 3. 

For each ski, a matrix Cp×ki is represented in order to compute the matrix UT, where 
U represents the new database with the new features. This database will have as 
features the clusters present in C. Each feature represents a cluster and it is computed 
as the sum of all features grouped in the cluster. 

In short, in this step for each ski  K, we compute the matrix U, which represents a 
new database. An SVM is then trained for this new database using Weka. 

In the last step we check the classification performance of the SVM using AUC 
criterion, using 10-fold crossvalidation. 

Table 2. Classification measure (AUC ROC) of the better cluster for each database take into 
account the classification validity and clustering reliability 

Clusters APV ATV IDV NFV RTV SQV LPV 
36         94     
39             82.3 
41           89.4   
54   84.3           
62 85             
65     92.2         
66       89.7       

Table 2 shows the results obtained in the process described above for the seven 
databases. It can be observed that the best results for each drug are obtained using a 
different number of clusters. These results could be expected, because the associations 
of positions are related in a different way with regard to each drug. In all cases we 
obtained results that were better than those obtained using all features. This 
demonstrates that the clustering process effectively reduces the dimensionality. 
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Table 3. Comparison of the best cluster for each drug with previuos results. Prediction 
performance is measured in terms of accuracy. (1) Results by James (2004) (2) Results by 
Beerenwinkel et al. (2002). (3) Results using SVM with all features. (4) Results using SVM 
with the features computed from the best clustering. 

Drug KNN 
(1) 

Dtree 
(1) 

New 
DTree 
(1) 

Dtree
(2) 

SVM 
(3) 

SVM 
(4) 

APV 80.9 75.8 75.8 87.4 83.5 87.3 
ATV         75.2 84.3 
IDV 80.6 85 85.5 89.1 89.3 92 
NFV 73.6 91.8 93.7 88.5 85.7 93.1 
RTV 82 89 89.5 89.8 89.9 94.1 
SQV 81.7 80 85.7 87.5 85.2 89.4 
LPV 81.1  - 89.5  - 65 91.4 

Table 3 shows the comparison between the results obtained previously by James 
(2004) and Beerenwinkel (2002) [1],[10]. The column 5 represents the results using 
SMV with the 99 features and these are similar or better than the previous results 
obtained by James or Beerenwinkel. All results in this table are described using the 
accuracy as classification measure. Last column represent the results based on the best 
clustering described in the Table 2 for each drug. Only in APV and NFV the results 
are similar to the best results obtained previously, in the rest of the cases, our new 
method performs best.  

4   Conclusions 

In this paper, we focused on the problem of predicting Human Immunodeficiency 
Virus (HIV) Drug Resistance. We applied a clustering technique as a feature 
extraction method to sequence features in protein sequences. In applying this 
technique, a new similarity function with a biological meaning was defined, in order 
to look for associations between positions in the protein sequence of HIV protease. 

We define a process to find the appropriate number of cluster based on the 
reliability of the results obtained with the k-means algorithm as a clustering 
method.  

SVMs were then used to classify, and averaging using a 10-fold cross-validation 
we can conclude that the clustering process is a good way to do feature extraction, as 
well as reduce the dimensionality of the problem.  We compared the results to those 
using all features, and to existing techniques for resistance prediction, concluding that 
our approach yields better results.  
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Abstract. A theoretical analysis for comparing two linear dimensionality reduc-
tion (LDR) techniques, namely Fisher’s discriminant (FD) and Loog-Duin (LD)
dimensionality reduciton, is presented. The necessary and sufficient conditions
for which FD and LD provide the same linear transformation are discussed and
proved. To derive these conditions, it is first shown that the two criteria preserve
the same maximum value after a diagonalization process is applied, and then the
necessary and sufficient conditions for various cases, including coincident covari-
ance matrices, coincident prior probabilities, and for when one of the covariances
is the identity matrix. A measure for comparing the two criteria is derived from
the necessary and sufficient conditions, and used to empirically show that the
conditions are statistically related to the classification error for a post-processing
quadratic classifier and the Chernoff distance in the transformed space.

1 Introduction

Linear classifiers have been widely used in pattern recognition due to their simplic-
ity and processing speed. Various schemes that lead to linear classification have been
proposed, including the well known Fisher’s discriminant (FD) approach [5,20], the
perceptron algorithm (the basis of the back propagation neural network learning al-
gorithms) [7,11,14,15], piecewise recognition models [12], random search optimization
[13], removal classification structures [1], adaptive linear dimensionality reduction [10]
(which outperforms Fisher’s classifier for some data sets), linear constrained distance-
based classifier analysis [4] (an improvement to Fisher’s approach designed for hy-
perspectral image classification), and recursive Fisher’s discriminant [3]. Rueda et al.
[18,19] have shown that the optimal classifier between two normally distributed classes
can be linear even when the covariance matrices are not equal. In [16], a new approach
to selecting the best hyperplane classifier (BHC), which is obtained from the optimal
pairwise linear classifier, has been introduced.

A generalization of linear classification can be seen as the process of linear dimen-
sionality reduction (LDR), which aims to reduce high-dimensional data to a lower di-
mension in such a way that the classification of the new data is more tractable, and
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can still be done efficiently. In this paper, we consider the traditional two-class case,
and assume that we are dealing with two classes, ω1 and ω2, which are represented
by two normally distributed n-dimensional random vectors, x1 ∼ N(m1,S1) and
x2 ∼ N(m2,S2), and whose a priori probabilities are p1 and p2 respectively. The
aim is to linearly transform x1 and x2 into new normally distributed random vectors y1

and y2 of dimension d, d < n, using a matrix A of order d × n, in such a way that the
classification error in the transformed space is as small as possible.

A typical approach to reduce the dimension of the data is principal component analy-
sis (PCA) [5,20,21], but it better applies to unsupervised learning problems, since it
takes the whole data as a “single” class, losing the discriminability power of labeled
data. We consider two well-known LDR techniques, Fisher’s discriminant (FD), and
Loog-Duin (LD) dimensionality reduction, and theoretically analyze their common as-
pects. Let SW = p1S1 + p2S2 and SE = (m1 − m2)(m1 − m2)t be the within-class
and between-class scatter matrices respectively. The FD criterion consists of maximiz-
ing the distance between the transformed distributions by finding A that maximizes the
following function [5]:

JFD(A) = tr
{
(ASW At)−1(ASEAt)

}
. (1)

The matrix A that maximizes (1) is obtained by finding the eigenvalue decomposi-
tion of:

SFD = S−1
W SE , (2)

and taking the d eigenvectors whose eigenvalues are the largest ones. Since the eigen-
value decomposition of the matrix (2) leads to only one non-zero eigenvalue, (m1 −
m2)t(m1 − m2), whose eigenvector is given by (m1 − m2), we can only reduce to
dimension d = 1.

Loog and Duin have recently proposed a new LDR technique for normally distrib-
uted classes [8], namely LD, which takes the Chernoff distance in the original space
into consideration to minimize the error rate in the transformed space. They consider
the concept of directed distance matrices, and a linear transformation in the original
space, to finally generalize Fisher’s criterion in the transformed space by substituting
the within-class scatter matrix for the corresponding directed distance matrix. The LD
criterion consists of obtaining the matrix A that maximizes the function [9]:

JLD(A) = tr
{
(ASW At)−1[

ASEAt − AS
1
2
W

p1 log(S− 1
2

W S1S
− 1

2
W ) + p2 log(S− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
WAt

]}
(3)

The solution to this criterion is given by the matrix A that is composed of the d
eigenvectors (whose eigenvalues are maximum) of the following matrix:

SLD = S−1
W

[
SE − S

1
2
W

p1 log(S− 1
2

W S1S
− 1

2
W ) + p2 log(S− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
W

]
. (4)
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In [2], it has been empirically shown that LD outperforms FD in many cases when
coupling the LDR technique with a quadratic (Bayesian) classifier in the one dimen-
sional space, namely when the optimal classifier under the assumption of normally dis-
tributed classes. As opposed to this, for the linear classifier, FD performs better than
LD. In this paper, we derive the necessary and sufficient conditions for which both cri-
teria FD and LD yield the same linear transformation. We also show empirically that
the theoretical analysis is related to the probability of error obtained by coupling the
LDR technique with quadratic and linear classifiers in the one-dimensional space.

2 Theoretical Comparison

Prior to deriving the necessary and sufficient conditions for which FD and LD produce
the same linear dimensionality reduction transformation, we show that the maximum
for both criteria can be preserved after a simultaneous diagonalization process is ap-
plied. We see afterwards that diagonalization allows to simplify the derivations and
understanding the conditions. The following lemma shows that if simultaneous diago-
nalization is applied, the maximum for the FD criterion is preserved.

Lemma 1. Let x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2) be two normally distributed
n-dimensional random vectors whose a priori probabilities are p1 and p2 respectively,
where S1 and S2 are two arbitrary positive definite and symmetric matrices. Then, there
exist two diagonal positive definite matrices D1 = I and D2, and an n-dimensional
vector ν, such that max{A}JF (A) = max{A}J ′

F (A), where JF (A) is given by (1)
and

J ′
F (A) = tr

{
(ADW At)−1(AMEAt)

}
, (5)

with DW = p1D1 + p2D2 and ME = ννt. �

The proof of this lemma is accomplished by considering the the following linear trans-

formation: T (x) = Φt
2S

− 1
2

1 (x − m1). Then, the transformed random vectors have the
following parameters: N(0; I) y N(ν;D2), where ν = m1 − m2. Defining DW =
p1I+p2D2 and ME = ννt, it follows that DW = (Φt

2S
− 1

2
1 )SW (Φt

2S
− 1

2
1 )t and ME =

(Φt
2S

− 1
2

1 )SE(Φt
2S

− 1
2

1 )t, which are used to prove that J ′
F (A) = JF (A(Φt

2S
− 1

2
1 )),

and so the maximum values are the same. The complete proof can be found in the
unabridged version of this paper [17].

In the following two axioms we prove that the maximum for the LD criterion is the
same for any parameters of the normal distribution, and for the corresponding parame-
ters after diagonalization. Although the maximum for both cases coincide, we do not
provide the linear transformation that relates the transformation matrix in both cases,
before and after diagonalization. This is quite intricate and remains an open problem
that we are currently investigating.

Lemma 2. Let x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2) be two normally distributed
n-dimensional random vectors whose a priori probabilities are p1 and p2 respectively,
where S1 and S2 are two arbitrary positive definite and symmetric matrices. Then, there
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exist two diagonal positive definite matrices D1 = I and D2, and an n-dimensional
vector ν, such that tr{SLD} = tr{DLD}, where

DLD = D−1
W

[
ME − D

1
2
W

p1 log(D− 1
2

W D1D
− 1

2
W ) + p2 log(D− 1

2
W D2D

− 1
2

W )
p1p2

D
1
2
W

]
(6)

with DW = p1D1 + p2D2 y ME = ννt. �

The proof of this lemma follows by observing that the eigenvalues of a matrix of
the form B− 1

2 CB− 1
2 , where B is a non-singular matrix, are the roots of the poly-

nomial |C − λB|. In this way, it follows that the eigenvalues of D− 1
2

w D1D
− 1

2
w co-

incide with those of S− 1
2

w S1S
− 1

2
w . Also, it is easy to see that the eigenvalues of

D− 1
2

W D2D
− 1

2
W and S− 1

2
W S2S

− 1
2

W coincide. The proof is accomplished by proving that
tr{SLD} = tr{DLD}, after showing that tr{S} = tr{D}, where:

D =
p1 log(D− 1

2
W D1D

− 1
2

W ) + p2 log(D− 1
2

W D2D
− 1

2
W )

p1p2
, (7)

and

S =
p1 log(S− 1

2
W S1S

− 1
2

W ) + p2 log(S− 1
2

W S2S
− 1

2
W )

p1p2
. (8)

The complete proof can be found in [17].

Conjecture 1. Let x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2) be two normally distributed
n-dimensional random vectors whose a priori probabilities are p1 and p2 respectively,
where S1 and S2 are two arbitrary positive definite and symmetric matrices. Then, there
exist two diagonal positive definite matrices D1 = I and D2, and an n-dimensional
vector ν, such that max{A}JLD(A) = max{A}J ′

LD(A), where JLD(A) is given by
(3) and

J ′
LD(A) = tr

{
(ADW At)−1[

AMEAt − AD
1
2
W

p1 log(D− 1
2

W D1D
− 1

2
W ) + p2 log(D− 1

2
W D2D

− 1
2

W )
p1p2

D
1
2
W At

]}
(9)

with DW = p1D1 + p2D2 y ME = ννt. �

Proving this result for d = n, follows by using Lemma 2, which states that tr{SLD} =
tr{DLD}. It can be shown that tr

{
(ADW At)−1A [ME − · · ·)At]

}
= tr{DLD},

and hence using the same reasoning, this can be shown for tr{SLD}. For d < n, al-
though tr{SLD} = tr{DLD}, it does not easily follow that the d (d < n) eigenvalues
of SLD and DLD are the same. This has been verified numerically1, but formally prov-
ing it remains an open problem. The complete sketch of proof can be found in [17].

1 Proving this formally is not trivial, since one needs to find a linear transformation of the matrix
A from the original to the diagonalized space. However the underlying expressions contain
non-linear functions such as, log and powers of 1

2
.
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Note that even if we would have shown that the eigenvalues of DW and SW are
the same, this does not imply that the eigenvectors are coincident too. This can be
easily seen as follows. Let D be any diagonal, non-singular matrix of order n × n, and
S = F−1DF any non-singular matrix of order n × n, where F �= I is an arbitrary
non-singular matrix of order n × n. Clearly, the eigenvalues of S can be obtained by
means of the decomposition FSF−1, resulting in D. Then, the eigenvalues of S and
D are the same; however, the corresponding eigenvectors are given by F and I. For
this reason, showing that the eigenvectors of SLD and DLD (whose eigenvalues are the
largest) are given by A and AC respectively, where C is an arbitrary transformation
matrix, is an interesting problem in the sense that it would allow to find the solution
in the “diagonalized” space, allowing to transform the matrix A back to the “original”
space. This is a problem that we are currently investigating.

We now formalize the necessary and sufficient conditions for which the two LDR
methods we study, FD and LD, produce the same linear transformation.

Theorem 1. Let x1 ∼ N(m1,S1) and x2 ∼ N(m2,S2) be two normally distributed
n-dimensional random vectors whose a priori probabilities are p1 and p2 respectively,
where S1 and S2 are two diagonal positive definite and symmetric matrices. Then,
JF (A) = JLD(A) if and only if:

Sp1
1 Sp2

2 = p1S1 + p2S2 . (10)

�

The proof of this theorem is accomplished by finding the conditions for which JF (A) =
JLD(A) holds if and only if:

S
1
2
W

p1 log(S− 1
2

W S1S
− 1

2
W ) + p2 log(S− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
W = 0 , (11)

where 0 is a zero matrix of order n× n. Using Lemma 1 and Conjecture 1, it is always
possible to obtain the same result for both criteria). We ensure, in this way, that S1 =
diag(λ1i) and S2 = diag(λ2i). For the two LDR criteria to coincide the following
must hold:

∀i : λp1
1i

λp2
2i

= p1λ1i + p2λ2i , (12)

which can be written in a matrix-form-like manner as in (10). The complete proof
of this theorem can be found in [17]. The following results show the necessary and
sufficient conditions for various cases, including coincident covariance matrices, coin-
cident prior probabilities, and for when one of the covariances is the identity matrix.
The complete proofs of the corollaries can be found in [17].

Corollary 1. Under the conditions of Theorem 1, if S1 = S2, then JF = JLD for any
values of p1 and p2. �

Corollary 2. Under the conditions of Theorem 1, if S1 �= S2, and (10) holds, then
p1 �= p2. �
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Corollary 3. Under the conditions of Theorem 1, if S1 = I and S2 = diag(λi),
JF (A) = JLD(A) if and only if:

λp2
i − p2λi − p1 = 0 . (13)

�

Note that the formulas we found, although are the necessary and sufficient conditions
for the coincidence of both criteria, can also be used to evaluate the “similarity” between
the classifiers used after the transformation. Also, this kind of analysis can be done
using the parameters of the distributions without transforming the data onto the new
“diagonalized” space, as it is required by Lemma 1 and Conjecture 1. As a measure
for this similarity, and assuming that the underlying covariance matrices are given by
I and Λ = diag(λ1, . . . , λn) respectively, we can use the condition given in (13), and
average over all the n dimensions as follows:

δ =
1
n

n∑
i=1

|λp2
i − p2λi − p1| (14)

=
∣∣∣∣ 1n [tr {Λp2} − p2tr {Λ}] − p1

∣∣∣∣ . (15)

In the following section, we utilize this measure to empirically compare the result of
the two LDR techniques when coupled with either of two classifiers, linear or quadratic.

3 Empirical Results

The tests involve ten different datasets of dimensions n = 10, 20, . . . , 100 each with
two randomly generated normally distributed classes. The underlying parameters of the
distributions were generated as follows. Each element of the means, m1 and m2, was
generated by following distributions U[0, b/n] and U[b/n, 2b/n], where b was set to
10. Dividing by n makes sure that the classification task is not easier when increasing
the dimension. The eigenvalues of the covariances, S1 and S2, were randomly gener-
ated as U[0, b], and the corresponding eigenvectors from a random matrix in U(0, b/n)
followed by a QR decomposition, taking the orthogonal matrix Q. This ensures that

the covariances are positive and definite. A linear transformation using S− 1
2

1 was ap-

plied, obtaining covariances I and S− 1
2

1 S2S
− 1

2
1 respectively, followed by a subsequent

linear transformation using Φ2, which contains the eigenvectors of S− 1
2

1 S2S
− 1

2
1 . After

all the transformations, the underlying covariance matrices resulted in I and Λ2. We
also randomly generated p1 as a U[0.3, 0.7] and assigned p2 = 1 − p1. We trained two
LDR techniques, FD and LD, using these parameters, and for each dataset we generated
10,000 samples for testing purposes. After a linear transformation to dimension d = 1
is performed we have tested two classifiers: the linear (L) classifier, which is obtained
by averaging the covariances matrices in the transformed space, and the quadratic (Q)
classifier which is the one that minimizes the error rate assuming that the parameters in
the transformed data are given by Ami and ASiAt.
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The classification error for FD and LD and the corresponding values of δ are shown
in Table 1. The second and third columns contain the classification error for FD and LD
coupled with a quadratic (Q) classifier, and the fourth column the difference (in absolute
value) between the two errors. The fifth, sixth and seventh columns represent the same
but for the linear (L) classifier, and the last column contains the value of δ, which is
computed as in (15). For the quadratic classifier, the smallest value of δ coincides with
the smallest difference, and the third difference corresponds to the fourth value of δ.
Note that the four largest values of δ correspond to values which are among the five
largest difference of errors. For the linear classifier, we note that the four largest values
of δ correspond to the differences which are among the fifth largest ones; however not
all small values of δ correspond to the smallest error differences. To numerically assess
this correspondence, we computed the Spearman rank correlation coefficient for two
pairs of lists [6], the differences for the quadratic classifier and δ, and the differences
for the linear classifier and δ, respectively. The coefficients obtained are 0.62 for the
quadratic classifier, and 0.32 for the linear classifier. This denotes that in both cases,
the values of δ and the differences are positively correlated. The high value for the
quadratic classifier indicates that the latter is quite related with the differences between
the eigenvalues of the underlying covariance matrices for the optimal classifier in the
transformed space. This is not the case for the linear classifier.

Table 1. Error rates and differences for two LDR techniques, FD and LD, coupled with quadratic
and linear classifiers

d FD(Q) LD(Q) Diff. FD(L) LD(L) Diff. δ

10 0.2629 0.2460 0.0169 0.2639 0.3404 0.0765 0.1280
20 0.2004 0.1132 0.0872 0.2012 0.2083 0.0071 0.4572
30 0.2865 0.1803 0.1062 0.2870 0.4296 0.1426 0.4801
40 0.2747 0.2179 0.0568 0.3053 0.3524 0.0471 0.4690
50 0.2646 0.1262 0.1384 0.2659 0.2858 0.0199 0.2712
60 0.2190 0.0778 0.1412 0.2216 0.3646 0.1430 0.6132
70 0.2026 0.0407 0.1619 0.2281 0.3809 0.1528 0.6919
80 0.3313 0.0989 0.2324 0.3318 0.3500 0.0182 0.6702
90 0.3859 0.0835 0.3024 0.3920 0.2968 0.0952 0.9946

100 0.3191 0.1433 0.1758 0.3195 0.3417 0.0222 0.2308

To analyze the relation between δ and the quadratic classifier, we computed the Cher-
noff distance between both distributions in the transformed space as follows

k(β,A) =
β(1 − β)

2
(Am1 − Am2)t[βAS1A + (1 − β)AS2A]−1(Am1 − Am2)

+
1
2

log
|βAS1A + (1 − β)AS2A|

|AS1A|β |AS2A|1−β
. (16)

where β = p1 and A is the linear transformation matrix obtained by either FD or
LD, and compared it with the corresponding values of δ. The results are tabulated in
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Table 2. The Chernoff distances in the transformed space for FD and LD are given in
the second and third columns, while their difference in absolute value is given in the
fourth column. We observe that, as in the error for the quadratic classifier, the four
largest values of δ correspond to those differences which are among the five largest
ones. A similar situation occurs with the smallest values of δ. Again, to numerically
assess the relation between the difference (“Diff.” in the table) and δ, we computed the
Spearman rank correlation coefficient, resulting in 0.65, which is a significantly large
value, and indicates a high positive correlation between the two lists.

Table 2. Chernoff distance in the transformed space after the two LDR transformations, FD and
LD, are applied

d FD LD Diff. δ

10 1.5286 2.2260 4.2803 0.1280
20 0.7924 4.5833 0.6974 0.4572
30 1.1314 3.5879 3.7908 0.4801
40 1.1156 2.5607 2.4565 0.4690
50 0.4929 5.1266 1.4452 0.2712
60 2.1272 8.5170 4.6337 0.6132
70 2.6234 12.2768 6.3899 0.6919
80 0.3178 6.8664 9.6534 0.6702
90 0.3454 7.3926 6.5486 0.9946

100 0.2593 4.5395 7.0472 0.2308

4 Conclusion

We have formalized the necessary and sufficient conditions for which two well-known
LDR techniques, FD and LD, provide the same linear transformation. To derive these
conditions, we have first shown that the two criteria preserve the same maximum value
after a diagonalization process is applied. For FD, we have found the linear transforma-
tion that allows to obtain the LDR in the original space. For the LD criterion, however,
we have only shown that the maximum values coincide in both original and diagonal-
ized space, and conjectured that this holds for lower dimensional spaces.

We have derived the necessary and sufficient conditions for various cases, including
coincident covariance matrices, coincident prior probabilities, and for when one of the
covariances is the identity matrix. We have empirically shown that the conditions are
statistically related to the classification error for a post-processing quadratic classifier
and the Chernoff distance in the transformed space.

One of the problems that constitute a future extension of this work is to analyze
the correspondence between the two LDR methods for more than two classes. Another
problem involves deriving the expressions for obtaining the LD dimensionality reduc-
tion in the original space, when the diagonalized distributions are given. This is, though
quite intricate, an interesting problem as it would allow to speed up the LDR derivation
significantly.
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Abstract. Linear dimensionality reduction (LDR) is quite important in pattern
recognition due to its efficiency and low computational complexity. In this pa-
per, we extend the two-class Chernoff-based LDR method to deal with multiple
classes. We introduce the criterion, as well as the algorithm that maximizes such
a criterion. The proof of convergence of the algorithm and a formal procedure
to initialize the parameters of the algorithm are also given. We present empiri-
cal simulations on standard well-known multi-class datasets drawn from the UCI
machine learning repository. The results show that the proposed LDR coupled
with a quadratic classifier outperforms the traditional LDR schemes.

1 Introduction

The linear dimensionality reduction (LDR) problem is well-known in pattern recogni-
tion due to its linear time complexity and its simplicity to be implemented and under-
stood. Various schemes that yield LDR to dimension one have been proposed,
including the well known Fisher’s discriminant analysis approach [5], direct Fisher’s
discriminant analysis [6], the perceptron algorithm (the basis of the back propagation
neural network learning algorithms) [12], piecewise recognition models [11], removal
classification structures [1], adaptive linear dimensionality reduction [9] (which outper-
forms Fisher’s classifier for some data sets), linear constrained distance-based classi-
fier analysis [4] (an improvement to Fisher’s approach designed for hyperspectral image
classification), recursive Fisher’s discriminant [2], pairwise linear classifiers [16,17],
and the best hyperplane classifier [13].

The problem we deal with consists of k classes, ω1, . . . , ωk, whose a priori probabil-
ities are given by p1, . . . , pk, and which are represented by k n-dimensional normally
distributed random vectors, x1 ∼ N(m1;S1), . . . ,xk ∼ N(mk;Sk). The aim is to lin-
early transform x1, . . . ,xk into new normally distributed random vectors y1, . . . ,yk of
dimension d, d < n, using a matrix A of order d×n, in such a way that the classification
error in the transformed space is as small as possible.

J.F. Martı́nez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 634–643, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A typical approach to reduce the dimension of the data is principal component analy-
sis (PCA) [5,18,21], but it better applies to unsupervised learning problems, since it
takes the whole data as a “single” class, losing the discriminability power of labeled
data. As opposed to this, linear discriminant analysis (LDA) aims to consider the class-
conditional distributions to maximize the separability of the data in the transformed
space. One of such approaches is Fisher’s discriminant (FD). Let SE =

∑k
i=1 pi(mi −

m)(mi − m)t, where m =
∑k

i=1 pimi, be the between-class scatter matrix, and
SW =

∑k
i=1 piSi be the within-class scatter matrix. The FD approach aims to find

a matrix A that maximizes the following criterion function [5]:

JFD(A) = tr
{
(ASW At)−1(ASEAt)

}
, (1)

and which is obtained by finding the d eigenvectors (whose eigenvalues are the largest
ones) of S−1

W SE .
The Loog-Duin LD criterion for the multi-class problem aims to find the transfor-

mation d × n matrix A that maximizes the following function [8]:

JLD(A) =
k−1∑
i=1

k∑
j=i+1

pipjtr
{
(ASW At)−1AS

1
2
W[

(S− 1
2

W SijS
− 1

2
W )−

1
2 S− 1

2
W SEijS

− 1
2

W (S− 1
2

W SijS
− 1

2
W )−

1
2 +

1
πiπj

(
log(S− 1

2
W SijS

− 1
2

W )

−πi log(S− 1
2

W SiS
− 1

2
W ) − πj log(S− 1

2
W SjS

− 1
2

W )
)]

S
1
2
W At

}
, (2)

where SEij = (mi − mj)(mi − mj)t, πi = pi

pi+pj
, πj = pj

pi+pj
, and Sij = πiSi +

πjSj . The LD criterion is maximized as it is done for the two-class case, by finding the
matrix A composed of the d eigenvectors (whose eigenvalues are the largest ones) of
the following matrix:

SLD =
k−1∑
i=1

k∑
j=i+1

pipjS−1
W S

1
2
W

[
(S− 1

2
W SijS

− 1
2

W )−
1
2 S− 1

2
W SEijS

− 1
2

W (S− 1
2

W SijS
− 1

2
W )−
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2

+
1

πiπj

(
log(S− 1

2
W SijS

− 1
2

W ) − πi log(S− 1
2

W SiS
− 1

2
W ) − πj log(S− 1

2
W SjS

− 1
2

W )
)]

S
1
2
W ,(3)

The traditional classification problem has usually been solved by maximizing the
separability between the underlying distributions using different criteria. FD aims to
minimize the error by maximizing the Mahalanobis distance between distributions,
resulting in an optimal criterion when the covariance matrices are equal. In case the
covariances are different, the optimal classifier is quadratic; the linear classification
results in maximizing the separability between the distributions by generalizing the
Mahalanobis distance [7]. On the other hand, the LD criterion utilizes, as pointed out
above, a directed distance matrix, which is incorporated in Fisher’s criterion assuming
the within-class scatter matrix is the identity.
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In this paper, we extend the two-class LDR criterion as proposed in [14], and which
takes advantage of the properties of the Chernoff distance to maximize the separabil-
ity of the distributions in the transformed space. Since we are assuming the original
distributions are normal, the distributions in the transformed space are also normal.
Thus, the Bayes classifier in the transformed space is quadratic and deriving a closed-
form expression for the classification error is not possible. However, the probability of
classification error in the transformed space can be bounded in terms of the Chernoff
distnace between two distributions given by:

k(β,A) =
β(1 − β)

2
(Am1 − Am2)t[βAS1A + (1 − β)AS2A]−1(Am1 − Am2)

+
1
2

log
|βAS1A + (1 − β)AS2A|

|AS1A|β |AS2A|1−β
. (4)

The larger the value of k(β,A) is, the smaller the bound for the classification error
is, and hence, in this paper, we propose to maximize (4). To clarify this, we note that the
FD criterion also aims to maximize the separability between distributions in the trans-
formed space, but coincides with the optimal classifier only when the latter is linear, i.e.
when the covariance matrices are coincident, a rare case. As observed above, the LD
criterion utilizes the Chernoff distance in its directed distance matrix but in the original
space. This criterion, however, does not optimize such a distance in the transformed
space, as it can be observed in the following example.

Consider two normally distributed random vectors, x1 ∼ N(m1,S1) and x2 ∼
N(m2,S2), whose parameters are: m1 = [0.5001, 0.4947]t, m2 = [2.1069, 1.4324]t,
S1 = [0.8205, 0.4177; 0.4177, 2.8910], S2 = [5.1150,−4.3990;−4.3990, 5.7119],
p1 = p2 = 0.5. Consider also a linear transformation y = Ax to the one-dimensional
space, i.e. A is of order 1 × 2, namely a two-dimensional vector. As shown later in
the paper, we can just “rotate” A and produce different values for the Chernoff dis-
tance in the transformed space, and only one value for each angle. Thus, in Fig. 1, we
plot three different criteria for all possible values of the angle θ between A and [0, 1]t,
including JF (A) computed as in (1), JLD(A) computed as in (2), and the Chernoff
distance in the transformed one-dimensional space computed as in (4), where β = 1/2.
As we will also see later, we note that maximizing the criterion JF (A) or JLD(A) does
not necessarily imply maximizing the Chernoff distance in the transformed space (as
our criterion aims to), and hence minimizing the classification error. Also, we observe
that the k(β,A) function has more than one peak and so, as shown later, this makes it
difficult to find a closed-form expression for the optimal solution.

2 The Proposed LDR Criterion

In this section, we formalize the proposed LDR criterion for the multi-class case, which
aims to maximize the Chernoff distance in the transformed space. We suppose that
we are dealing with k classes, {ωi}, whose a priori probabilities are given by {pi},
with i = 1, 2, . . . , k. By following the notation used above, we define SEij = (mi −
mj)(mi −mj)t and SWij = πiSi +πjSj as the between-class and within-class scatter
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Fig. 1. Plot of three different dimensionality reduction functions, namely Fisher’s, Loog-Duin’s,
and the Chernoff distance in the transformed space, for a two-dimensional to one-dimensional
reduction example. The x-axis represents the different angles of the transformation vector A.

matrices respectively, where mi and Si are the mean and covariance matrices for ωi

respectively, πi = pi/(pi + pj) and πj = pj/(pi + pj).
The extension of the two-class classification is not straightforward, as there is no

general formula for the Chernoff distance between more than two distributions. This is
also the case of other classifiers, such as the well-known support vector machines or
kernel-based classifiers, for which majority votes of k(k − 1)/2 decisions are among
the most efficient schemes [19], as opposed to other schemes like one-against-all or all-
at-once, which suffer the problem of yielding unclassifiable regions [5,20]. In our case,
however, it is natural to maximize the weighted sum of pairwise Chernoff distances
between classes ωi and ωj , for all i = 1, . . . , k−1, j = i, . . . , k. The “weights” used for
the pairwise class criterion are given by the normalized joint prior probabilities between
classes ωi and ωj , πiπj . Thus, the criterion that we propose for multiple classes consists
of finding the transformation Ax, where A is a matrix of order d × n that maximizes
the function, where we have adopted a natural way to set the value of β, as β = π1 and
1 − β = π2.:

J∗
c (A) =

k−1∑
i=1

k∑
j=i+1

J∗
cij

(A) , (5)

with:

J∗
cij

(A) = tr
{
πiπj(ASWij A

t)−1ASEij A
t

+ log(ASWij A
t) − πi log(ASiAt) − πj log(ASjAt)

}
(6)



638 L. Rueda and M. Herrera

Taking the Chernoff distance between xi and xj as in (4), and doing some algebraic
manipulations, it can be written in terms of tr{. . .} as in (6) (cf. [15]). We show there
always exists an orthogonal matrix Q for which the Chernoff distance in the new space
is the same as that of using the matrix A. The proof of the lemma can be found in [15].

Lemma 1. Let A be any real d×n matrix, d ≤ n, whose rows are linearly independent,
and J∗

c (A) be defined as in (5). Then:

max{A}J∗
c (A) = max{A:AAt=Id}J

∗
c (A) . (7)

Proof (Sketch). Let A be any matrix of order d ≤ n whose rows are linearly inde-
pendent. Then, by applying the QR decomposition [3], A can be decomposed as fol-
lows A = RQ, and it follows that J∗

c (A) = J∗
c (Q). In this way, we ensure that

max{A}J∗
c (A) = max{A:AAt=Id}J

∗
c (A). �

To obtain A, we first find the gradient matrix given by the first-order necessary condi-
tion. That is, we differentiate (5) with respect to A, resulting in:

∇J∗
c (A) =

∂J∗
c (A)
∂A

=
∂

∂A

k−1∑
i=1

k∑
j=i+1

J∗
cij

(A) =
k−1∑
i=1

k∑
j=i+1

∇J∗
cij

(A) , (8)

where

∇J∗
cij

(A) = 2πiπj

[
SEijA

t(ASWij A
t)−1

−SWijA
t(ASWij A

t)−1(ASEij A
t)(ASWij A

t)−1
]t

+2
[
SWij A

t(ASWij A
t)−1 − πiSiAt(ASiAt)−1 − πjSjAt(ASjAt)−1

]t
(9)

To maximize J∗
c (A) we propose Algorithm Chernoff LDA Multi given below.

Algorithm Chernoff LDA Multi
Input: Threshold τ
begin

A(0) ← maxA{J∗
c12

(AFD), J∗
c12

(ALD)} // Maximum of FD or LD
k ← 0
repeat

ηk ← maxη>0φk(η)
B ← A(k) + ηk

∑k−1
i=1

∑k
j=i+1 ∇J∗

cij
(A(k))

Decompose B into R and Q
A(k+1) ← Q
k ← k + 1

until |J∗
cij

(A(k−1)) − J∗
cij

(A(k))| < τ

return A(k),
∑k−1

i=1

∑k
j=i+1 J∗

cij
(A(k))

end
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At each step, the value of ηk is obtained as the one that maximizes the following
function:

φk(η) = J∗
c (A(k) + η∇J∗

c (A(k))) . (10)

The algorithm initializes the matrix A by using the result of either FD or LD, de-
pending on the one that gives the maximum value of the Chernoff distance in the trans-
formed space. At each step, the matrix A is decomposed using the RQ decomposition,
as shown in Lemma 1. Let us now see how the algorithm converges, using the conver-
gence properties of the two-class case [15].

Theorem 1. Let {A(k)}∞k=1 be the sequence of matrices generated by Algorithm Cher-
noff LDA Multi. If ∇J∗

c (A(k)) �= 0, then J∗
c (A(k)) < J∗

c (A(k+1)). Otherwise, the
algorithm terminates.

Proof (Sketch). From (5), we have that J∗
c (Ak)) =

∑k−1
i=1

∑k
j=i+1 J∗

cij
(A(k)). By us-

ing the result of the two-class case [15], it is true that J∗
cij

(A(k)) < J∗
cij

(A(k+1))
if ∇J∗

cij
(A(k)) �= 0. Also, since for all i, j = 1, . . . , k, J∗

cij
(A(k+1)) ≥ 0, we

have that J∗
c (A(k)) =

∑k−1
i=1

∑k
j=i+1 J∗

cij
(A(k)) <

∑k−1
i=1

∑k
j=i+1 J∗

cij
(A(k+1)) =

J∗
c (A(k+1)).

On the other hand, if ∇J∗
c (A(k)) = 0, we have that A(k) = A(k+1). Since we also

know that τ > 0, then we have that |J∗
c (A(k+1)) − J∗

c (A(k))| < τ , and hence the
algorithm terminates. The complete proof can be found in [15]. �
We note that it is quite important to compute, at each step, a value of ηk that maximizes
the function φk given in (10). Computing the first derivative of this function results in:

dφk

dη
(η) = [∇J∗

c (A(k) + η∇J∗
c (A(k)))] · ∇J∗

c (A(k)) . (11)

Using this expression, we compute η(j+1) as follows:

η(j+1) = η(j) − η(j) − η(j−1)

dφk12
dη (η(j)) − dφk12

dη (η(j−1))

dφk12

dη
(η(j)) , (12)

where the values of η(0) and η(1) are obtained using the following theorem.

Theorem 2. Let φk : Rd×n → R be the continuously differentiable function defined in
(10), where J∗

c (·) is defined in (5), and whose first derivative is given by (8).
Then, the initial values of the secant method are given by η0 = 0 and

η1 =
d2ε − d

tr{A(k)[∇J∗
c (A(k))]t} , (13)

where ε = cos θ, with θ being the angle between A(k) and [A(k) + ηk∇J∗
c (A(k))].

Proof (Sketch). From Lemma 1, we have that1 [A(k)][A(k)]t = [A(k+1)][A(k+1)]t =
Id, and hence both matrices are located in the boundary of the environment of zero (null

1 Note that we are considering that A(k) is the matrix Q, which is orthogonal and obtained by
means of the RQ decomposition.
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matrices) of radius d in the matrix space. The angle difference between the matrices at
steps ‘k’ and ‘k + 1’ are given by:

cos θ =
1
d

+
ηktr{[A(k)][∇J∗

c (A(k))]t}
d2

(14)

The result follows by setting cos θ̂ = ε, and observing that the secant leads to a
maximum. The complete proof can be found in [15]. �

To conclude this section, we emphasize that the geometric interpretation of A(k) that we
did for the two-class case is also valid for the multi-class case [14]. Again, the rows of
the matrix A(k) are “rotated” independently using the same scalar, nk. In the same way,
we could also imagine a more general mechanism for updating A(k) using a vector, η,
instead of a scalar. This problem is a possible future avenue for extending this work.

3 Empirical Results

In order to evaluate the classification performance of the proposed criterion, we present
an empirical analysis of the classification accuracy and Chernoff distance in the trans-
formed space on real-life data drawn from the UCI machine learning repository [10].
Three LDR techniques are compared, namely FD and LD as discussed in Section 1,
and the proposed method, as presented in Section 2, namely RH. In order to analyze
the classification power of the LDR techniques, two classifiers are used in the trans-
formed space, the linear (L) and quadratic (Q) classifiers. The datasets involved in the
experiments are Iris plants, Letter recognition, Pendigits, Thyrod gland, Wine, Glass
identification, Landsat satellite, and Vowel context. In order to avoid ill-conditioned co-
variance matrices, we have applied principal component analysis (PCA) to Glass and re-
duced the data from dimension nine to eight, and removed class ‘6’ to apply the 10-fold
cross validation method. As in the two-class case, we trained the three LDR techniques,
namely FD, LD and RH, followed by a quadratic or linear classifier, in a 10-fold cross-
validation experiment. The average classification errors are given in Table 1, in which
d∗ indicates the dimension that yields the lowest error rate. For each classifier, quadratic
and linear, the LDR method(s) that produce(s) the lowest error rate is(are) marked with
a ‘*’. For the quadratic classifier, we note that the RH method yields to lower error rate
in four times, while FD and LD reach the best error rate in three times. For the linear
classifier, both FD and LD are superior to RH. This is as expected, since the RH aims
to maximize the Chernoff distance in the transformed space, which is related to the
Bayesian quadratic classifier, but not necessarily to the linear classifier. Also, the error
rates obtained using RH and the quadratic classifier are in all cases (except in Iris and
Glass) much smaller than the corresponding rate for the linear classifier, independently
of the LDR technique coupled with the latter.

Fig. 2 (a) shows the plots for the error rates obtained after coupling the LDR tech-
niques with the quadratic classifier on the Pendigits dataset. The plot shows the error
rates for dimensions d = 1, . . . , 15. After dimension d = 3, the error rates correspond-
ing to LD and RH become relatively lower than that of FD, and in general, the error rate
of RH is lower than that of LD, showing the superiority of the former over the latter on
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Table 1. Average error rates obtained from the three LDR techniques coupled with quadratic and
linear classifiers on the multi-class datasets drawn from the UCI machine learning repository

Dataset FD+Q d∗ LD+Q d∗ RH+Q d∗ FD+L d∗ LD+L d∗ RH+L d∗

Iris 0.0266 1 0.0200* 1 0.0200* 1 0.0200* 1 0.0200* 1 0.0200* 1
Letter 0.1186 15 0.1169* 15 0.1200 15 0.2973* 15 0.2997 14 0.3048 14
Pendigit 0.0493 9 0.0232 15 0.0223* 14 0.1240* 9 0.1291 15 0.1301 15
Thyroid 0.0329* 1 0.0422 1 0.0374 4 0.0935* 1 0.0935* 4 0.0935* 1
Wine 0.0111 2 0.0055* 2 0.0055* 2 0.0222 2 0.0111* 5 0.0164 2
Glass 0.4333* 2 0.4468 4 0.4496 4 0.3387* 4 0.3968 6 0.4106 6
Landsat 0.1518* 5 0.1597 18 0.1543 5 0.1722 5 0.1705* 10 0.1857 5
Vowel 0.3788 9 0.3222 6 0.3040* 6 0.4656 6 0.4444* 2 0.4444* 2

the quadratic classifier. For the linear classifier, the error rates for different dimensions
are shown in Fig. 2 (b). After dimension d = 4, the error rate for FD is relatively lower
than that of LD and RH, while the error rate for the latter is higher than that of LD.
In all cases, the error rate tends to decrease as the reduced dimension becomes larger.
Fig. 3 (a) shows the error rates for the quadratic classifier on the Vowel dataset. The error
rate of FD is quite larger than that of the other two methods, while the error rate for RH
starts decreasing to reach its minimum at d = 6, to increase a little bit on greater dimen-
sions. Although LD exhibits a similar behavior, it does not reach the minimum as RH,
which demonstrates that the former does not capture all the information for the Cher-
noff distance in the transformed space. For the linear classifier on the Vowel dataset,
Fig. 3 (b), LD and RH lead to a minimum error rate for most of the values of d, but they
show the minimum is reached early at dimension d = 2. Also, the peak shown by RH at
d = 3 shows how maximizing the Chernoff distance in the transformed space does not
necessarily imply minimizing the error rate for the linear classifier. Note, however, that
the converse is not always true for the quadratic classifier, but the behavior exhibited in
the figures shows how the RH criterion is more appropriate for a quadratic classifier in
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Fig. 2. Error rates for all reduced dimensions on Pendigits
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Fig. 3. Error rates for all reduced dimensions on the Vowel dataset

the transformed space, because it captures more information on the Chernoff distance
which provides a good approximation of the error rate for that classifier.

4 Conclusion

We have introduced a new criterion for linear dimensionality reduction (LDR), which,
unlike previous approaches such as Fisher’s and Loog-Duin’s, aims to maximize the
Chernoff distance in the transformed space. We have extended the corresponding crite-
rion for the multi-class case, and provided proofs for the convergence of the optimizing
gradient-based algorithms. The empirical results on real-life datasets show the superior-
ity of RH over the existing FD and LD criteria, mainly when the techniques are coupled
with the quadratic classifier, demonstrating the importance of maximizing the Chernoff
distance in the transformed space for such a classifier. One of the possible extensions
for this work is to use a vector η to update the matrix A(k), instead of a scalar. This is
a problem that we are currently investigating.
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Abstract. Feature selection and dimensionality reduction are crucial research
fields in pattern recognition. This work presents the application of a novel tech-
nique on dimensionality reduction to deal with multispectral images. A distance
based on mutual information is used to construct a hierarchical clustering struc-
ture with the multispectral bands. Moreover, a criterion function is used to choose
automatically the number of final clusters. Experimental results show that the
method provides a very suitable subset of multispectral bands for pixel classifi-
cation purposes.

1 Introduction

Works in multispectral imaging are producing many emerging applications in several
disciplines. Multi or hyperspectral sensors acquire information from a range of wave-
lengths in the spectrum and, unquestionably, they have produced an important improve-
ment of the results obtained from just one or three bands in some demanding application
fields, like remote sensing, medical imaging, product quality inspection, fine arts, etc.
The work we present here is not focused on a specific field and could be applied to any
kind of multispectral images. However, due to the lines of work that we follow, we are
strongly interested in SAR images as well as in fruit quality inspection tasks.

Obviously, from the point of view of pixel classification tasks, a very desirable step
when we have a large amount of input spectral information is a process to reduce this
initial information without losing classification accuracy in a significant way. This re-
duction could be done in two different ways: feature extraction [9,7] or feature selection
[2]. In feature extraction we would obtain a new and reduced data set representing the
transformed initial information, whereas in feature selection we would have a subset
of relevant data from the original information. In this work we will focus on feature
selection rather than feature extraction due to the fact that in feature extraction the to-
tal amount of information is needed to obtain the new set of input bands. On the other
hand, selecting the relevant range of wavelengths in the spectrum, where the process
obtains better results, allows the acquisition step to deal with a reduced set and makes
the analysis simpler.

In multispectral applications, the question is how to select the correct bands from the
multispectral range to characterise the problem. In this case, regarding to feature selec-
tion for pixel classification, this question could be addressed using information theory
and, more concretely, by measures based on the mutual information concept [11].

In recent years, clustering techniques are becoming more popular, being hierarchi-
cal clustering one of the most used approaches. Important advances have been made
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in different fields as segmentation [1] [10], text classification [3] or even in semanti-
cally meaningful grouping [12]. A comprehensive analysis of these methods can be
also found in [4]. In our work, we take advantage of this representation because it is a
very intuitive way to group the input data in order to progressively reduce the amount
of information.

The methodology of the algorithm presented in this work can be summarised as fol-
lows. A similarity space is defined among image bands, where a dissimilarity measure
is defined based on the mutual information between a pair of bands. From the initial set
of bands that form a multispectral image, the process starts with a hierarchical cluster-
ing in the defined dissimilarity space. In order to progressively construct a hierarchical
family of derived clusters the method uses a linkage strategy with an inter-cluster dis-
tance as the objective function to optimise. The number of final clusters is calculated
automatically by means of a functional. The maximum values in this function indicate
which number of clusters is suitable in order to form an accurate partition. Finally, for
each of the final clusters, a band representing the cluster is chosen, providing the final
bands selected, which are considered the most relevant.

2 Band Selection Algorithm

In this section the dimensionality reduction algorithm is introduced. To this end, the
method proposed tries to identify the subset of bands that are as much independent as
possible among them. It is known that independence between bands [9] is one of the key
issues to obtain relevant subsets of bands for classification purposes. As we will show in
the experimental results, the resulting bands obtained by means of our method produce
very satisfactory classification rates with respect to other feature selection approaches.

To find the subset of K bands that are as much independent as possible among them,
our approach defines a dissimilarity space based on mutual information between bands.
In this dissimilarity space, a clustering process is performed. As a result of the cluster-
ing, bands are grouped according to the amount of information they share. Therefore,
all the bands in the same cluster are highly dependent among them. In a final stage, a
band representing each cluster is chosen, in such a way that the band selected will be
the band that share as much information with respect to the other bands in the cluster.
Eventually, the K selected bands from the final K clusters will have a significant de-
gree of independence, and therefore, will provide an adequate reduced representation
that will provide satisfactory classification results.

2.1 Mutual Information-Based Distance

Let us calculate mutual information from entropy measures according to the well-
known expression I(X,Y ) = H(X) + H(Y ) − H(X,Y ), where H(X), H(Y ) are
the entropies of random vectors X , Y respectively and H(X,Y ) is the joint entropy.
I is an absolute measure of common information between two sources, however, as
we can infer from the previous equation, I by itself would not be a suitable distance
measure. The reason is that it can be low because the X , Y variables present a weak
relation (such as it should be desirable) or because the entropies are small (in such case,
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the variables contribute with few information). Thus, it is convenient to obtain a proper
measure so that it works independently from the marginal entropies and also measures
the statistical dependence as a distance.

Let us consider a set of n bands X1, ..., Xn from a multispectral image and let us sup-
pose that each band represents a random variable. From this input data, we shall employ
a measure of similarity between any two random images, NI(Xi, Xj) = 2·I(Xi,Xj)

H(Xi)+H(Xj) ,
which is a normalised measure of I . This measure is used to calculate distance DNI =(
1 −√

NI(Xi, Xj)
)2

. Both DNI and NI had been proposed in [5].

2.2 Hierarchical Clustering

The hierarchical structures are commonly represented by a tree diagram or dendrogram
with a nested set of partitions. In this representation, called hierarchical clustering, the
sequence of disjoint partitions is obtained using only the information contained in a
distance matrix. This matrix of dissimilarities calculates the distance DNI for each pair
of groups and is used to decide how to link nested clusters in consecutive levels of the
hierarchy.

There are several linkage strategies that we can use as the rule to decide how the
distance matrix has to be updated [6]. Different linkage strategies create different tree
structures. The algorithm here proposed uses an agglomerative strategy, that is, it starts
with n initial clusters and, at each step, merges the two most similar groups to form
a new cluster. Thus, the number of groups is reduced 1 by 1 until there is just one
cluster. Our hierarchical clustering algorithm is based on a Ward’s linkage method [13].
Ward’s linkage method has the property of producing minimum variance partitions.
Thus, this method is also called minimum variance method because it pursues to form
each possible group in a manner that would minimise the loss associated with each
grouping (internal cohesion). To this end, the hierarchical grouping merges the pair of
clusters that minimise the increment in the square error of the whole partition. The error
used to this calculation is the intra-cluster dispersion. In addition to several studies that
conclude that this method outperforms other hierarchical clustering methods [6], the
process helps us to form groups with not much variance in their level of independence,
that is, clusters with similar DNI distances will be joined together.

2.3 Fully Automated K-Assessment

Most of the applications that imply a band selection process suffer from a lack of an
automatic−K−selection, that is, the final number K of selected bands is not chosen
automatically. This drawback is usually solved by a manual introduction of the K value
or by determining a threshold value in order to control the progression of certain func-
tional [4]. Therefore, a method with an automatic−K−selection would be desirable
in order to finish correctly the hierarchical process and make the method completely
unsupervised.

In this paper, we introduce a functional that automatically calculates how many clus-
ters would be desirable as a final subset, that is, the K number. In our work, we have
compared this result with the classification rates for each number of final clusters in
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order to check the validity of the K taken. Thus, a valid K number would be a value
from which the classification accuracy does not improve or even become worse.

The developed functional will begin in the stage where each band, from the N start-
ing bands, is a single cluster and will finish in the stage with only two clusters. Let us
suppose certain stage where the bands are grouped in n clusters (where n ≤ N ) form-
ing a partition C = {c0, c1, ..., cn}, that is, a set of clusters. Let us also suppose that
we have a cluster of bands ci and C̄i = {c0, c1, ..., cn} is the complementary subset of
clusters where ci /∈ C̄i, C ≡ {ci} ∪ C̄i.

Let us define I(ci) as the average of the internal distances1 among the bands bi

belonging to ci. We shall also define E(ci) as the average of the external distances
between the bands belonging to ci and the bands in C̄i. Thus,

I(ci) =
1

‖ci‖2

∑
bi∈ci

∑
bj∈ci

DNI(bi, bj) E(ci) =
1

‖Ci‖ · ‖C̄i‖
∑
bi∈ci

∑
bj∈C̄i

DNI(bi, bj)

Note that I(ci) calculates an intra-cluster average difference whereas E(ci) calcu-
lates the inter-cluster average difference. Both of them use mutual information among
bands (as described in 2.1) and are related to a particular cluster ci. Hence, we will
define PI(C) and PE(C) as the global average measures among all the clusters in a
particular partition C as follows:

PI(C) =
1

‖C‖
∑
ci∈C

I(ci) PE(C) =
1

‖C‖
∑
ci∈C

E(ci)

In an ideal partition, we would hope the inter-cluster value PE(C) to be very large,
and the intra-cluster value PI(C) to be very small. Thus, left side of figure 1 plots
the function PE(C) − PI(C) against the number of clusters in C. As we can see,
the maximum difference between PE(C) and PI(C) is obtained when each band is
considered as an independent cluster. Since our aim is a band reduction, this measure is
not enough by itself. Hence, we plot the linear function that ranges from 0 to PE(C0)−
PI(C0) where C0 is the initial partition when each band is considered as a single cluster.
This linear behaviour would be the graph we will expect if all steps in the clustering
process would provide the same variation in the values of PE(C) and PI(C).

Taking into account the two described functions, we shall consider the resulting func-
tional from the difference between the first one, which could be considered as the real
behaviour, and the second one, which could be considered as the expected linear behav-
iour. The maximum value in this K functional is considered the better K value for
the final number of clusters. For some application, other local peaks around the max-
imum of the K functional could also be taken into account. Plotting the functional
values for each number of clusters (Fig. 1 on the right) we can see that the graph draws
an increasing function from right (where each band is an independent cluster) to left
(where several bands are grouped in a few clusters) until a maximum value which is the
selected K number. In short, the functional equation has the following form:

K func(C) = (PE(C) − PI(C)) − ‖C‖PE(C0) − PI(C0)
‖C0‖

1 It is important to point out that when we talk about distance we are referring to DNI .
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Fig. 1. Left picture shows real and expected linear graphs for NIR database. Resulting
K functional is plotted on the right.

2.4 Choosing the Cluster Representatives

After the distance matrix is initialised, the algorithm looks for the two most similar
clusters that will have the minimum distance value in the matrix. These two clusters are
merged into one and the matrix is updated using Ward’s linkage method. Of course, the
rows/columns corresponding to the merged clusters are deleted and a row/column for
the new cluster is added.

The described process is repeated until the stage with just one band. After that, by
means of the previous described functional, the algorithm selects the K number of final
clusters. The resulting mutually exclusive groups represent groups of highly correlated
bands, and bands from two different clusters will have low correlation. Thus, let us
consider now the resulting cluster ci with n bands. The weight of each band i ∈ ci

is calculated as Wi = 1
n

∑
j∈ci,j �=i

1
ε+D(i,j)2 where ε is a very small value to avoid

singular values, and function D(i, j) returns the distance value between bands i,j. The
representative band from each group is selected as the band with the highest W of the
cluster. A low value of Wi means that the band i has an average large distance with
respect to the other bands in the cluster, that is, in this case, the band i will have an
average low correlation with respect to the other bands in the cluster. In a reverse way,
a high value of Wi means that band i has, in average, a high correlation with respect to
the other bands in the cluster. Thus, choosing the band in the cluster with the highest
average correlation (mutual information) with respect to the other bands in the cluster,
what we are doing is choosing the band that better predicts the information content
of the other bands, since the more mutual information two random variables have, the
more can predict one of the variable about the other one.

As a result of the algorithm, K bands will be selected that represent K clusters.
These K bands will be significantly separated in the dissimilarity space defined, thus,
having a low correlation and, therefore, having a high degree of independence among
them.

3 Results

To test the proposed approach, several multispectral images from different databases
are used in the experimental results:
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1. Multispectral images of oranges obtained by an imaging spectrograph (RetigaEx,
Opto-knowledge Systems Inc., Canada). This database has two groups, VIS col-
lection (400-720 nm in the visible) and NIR collection (650-1050 nm in the near
infrared). In both cases, the camera has a spectral resolution of 10 nm. The database
includes several kinds of orange defects. It has eight classes, obtaining 1463346 la-
belled pixels from VIS and 1491888 labelled pixels from NIR.

2. The 92AV 3C source of data corresponds to a spectral image (145 X 145 pixels,
220 bands, 17 classes) acquired with the AVIRIS data set and collected in June
1992 over the Indian Pine Test site in Northwestern Indiana2.

3. DAISEX ′99 project provides useful aerial images about the study of the variabil-
ity in the reflectance of different natural surfaces. This source of data corresponds to
a spectral image (700 X 670 pixels, 6 classes) acquired with the 128-bands HyMap
spectrometer during the DAISEX-99 campaign (http:/io.uv.es/projects/daisex/).

In addition to the previous description, images in Fig. 2 show some instances of the
database collections used. These images are presented as RGB compositions.

Fig. 2. Examples of RGB composition. First for an orange image in the Visible spectrum, second
for HyMap spectrometer and third for AVIRIS (92AV3C)

On 92AV 3C and DAISEX ′99 databases, because of the labelled ”background”,
which corresponds to pixels with an undetermined class, we can divide each database
into two groups, one with background and another without background.

Since we perform the Ward’s linkage method using a distance based on Mutual
Infor-mation, we shall name hereafter WaLuMI to our proposed algorithm. It has
been tested with these six databases described, that is, the VIS and NIR collections
from the database of oranges, 92AV 3C database with and without background and
DAISEX ′99 database with and without background.

In order to assess the performance of the method, a Nearest Neighbour (NN) clas-
sifier was used to classify pixels into the different classes. The performance of the NN
classifier was considered as the validation criterion to compare the significance of the
subsets of selected image bands obtained by the proposed approach.

To analyse the accuracy of the ranking of bands obtained by the proposed approach,
two supervised filter feature selection methods were also tested. Thus, the band selec-
tion process was considered as a supervised feature selection approach, in this case

2 http:/dynamo.ecn.purdue.edu /∼biehl/MultiSpec
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using the labelled data set for the feature selection process. The main motivation about
comparing the proposed method with supervised approaches is that the labelled data
contains information about the distribution of classes existing in the hyperspectral data,
and they allow the search for relevant feature subsets. By comparing the performance
with those approaches, we can measure the capability to obtain subsets of relevant fea-
tures (image bands) by the introduced algorithm without a prior knowledge of the class
distributions in the multispectral image, allowing the labelling of data.

The first method is the well-known ReliefF algorithm [8] based on pattern distances.
This algorithm initialises every feature weight to zero and then iterates m times looking
for a set of feature weights that optimises a criterion function.

The second technique is related to divergence measures between classes. One of the
best-known distance measures used for feature selection in multi-class problems is the
average Jeffries-Matusita (JM) distance [2].

In terms of class separability, the higher is the JM distance between two classes,
the more separability between them. To obtain suboptimal subsets of features, we have
applied a search strategy based on a Sequential Forward Selection applying this distance
((SFS)JMdistance). This technique starts from an empty feature subset and adding
one feature at a time, reaching a feature subset with the desired cardinality.

3.1 Performance Evaluation Including Background Pixels

During the image labelling process, there are always pixels in an image that are not as-
signed to any class of interest, mainly because they are pixels that either do not clearly
belong to some of the predefined classes or they are assigned to a complementary class.
The pixels that have not been assigned to any class are labelled as “background” class.
In this subsection, we include the background information in the databases for its eval-
uation.

In order to increase the statistical significance of the results, the experimental results
shown in this section about the classification rates correspond to the average classifica-
tion accuracy obtained by the NN classifier over five random partitions. The samples in
each partition were randomly assigned to the training and test set with equal sizes as
follows: VIS = 43902 pixels, NIR = 44758 pixels, HyMap = 37520 pixels, 92AV3C =
2102 pixels.

On the other hand, given the huge size of the data sets and the trouble in compu-
tational cost to apply the supervised approaches, particularly in the case of VIS, NIR
and HyMap, the following independent partitions with respect to the data sets were ran-
domly extracted maintaining the prior probability of the classes: VIS = 87805 pixels,
NIR = 89516 pixels, HyMap = 93804 pixels and 92AV3C = 10512 pixels. Using these
databases, the supervised approaches and the proposed method were applied in order to
obtain a ranking of relevance of the features, that is, of bands.

Figures 3, 4 (left) and 5 (left) represent in their top row the classification rates with
respect to the subset of N bands selected by each method for each database. In all cases,
we show the performance of the NN classifier with respect to the number of features
obtained by WaLuMI , (SFS)JMdistance and ReliefF . Note that the proposed
method obtained better performance with respect to the rest of methods in all databases.
It is worthwhile mentioning that the WaLuMI approach has a good behaviour in all
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cases when choosing the smaller sets of bands (one to ten), where the decision is more
critical.

ReliefF performs poorer with respect to the other approaches except with HyMap
image, where the performance of (SFS)JMdistance is worse.

Therefore, regarding to the band selection problem, where there exists high correla-
tion among different features (image bands), the principle of looking for non-correlated
bands from the different regions of the spectrum, by reducing the mutual information
in the ensemble of image bands, has proven to be an effective approach to obtain sub-
sets of selected image bands that also provide satisfactory results from the classification
accuracy point of view.

3.2 Performance Evaluation Without Background Pixels

The hyperspectral data assigned to the “background class” are usually very scattered
and overlapped with other classes, and this fact damages the classification accuracy.
Moreover, the elimination of this information supposes a supervised knowledge to de-
tect those regions of the image.

These regions are very difficult to detect with precision from unsupervised informa-
tion. Therefore, the goal of this experiment is analysing the advantages that suppose
the knowledge of the class distribution without the noise that the background class can
introduce. In this case, we will focus on HyMap and 92AV3C hyperspectral data, where
the background information is much more undefined.

In the case of HyMap, we added the background class to the training set and valida-
tion set: training = 26190 pixels and validation = 65479 pixels. The test set contains all
classes except the background class. The total number of test samples is 327336 pixels.
Thus, the experiment classifies the test using the ranking of relevance of the features
obtained by the validation set with the proposed method and the supervised methods
used in the comparison.

The image 92AV3C only contains 10366 instances without the background class.
Therefore, we apply a holdout partition, where the training and the validation set have
the same size with 5181 pixels and the rest of pixels represent the test set = 5185 pixels.

Figures 4 and 5 represent, in their right side of the top row, similar classification
results than the previous subsection, but without “background class”. The best perfor-
mance is obtained by WaLuMI , even better in the first bands where the decision is
more critical.

3.3 Selection of the K Final Clusters

For the experiments shown in previous subsections, we also present the values of the
K functional described in section 2.3. Figures 3, 4 and 5 show the results3 of this
automatic − K − selection process in their bottom rows. We can realise how the
maxima of the functional approximately fit with K values which provide satisfactory
classification rates. Of course, we could make this comparison each time we carry out a

3 Note that, in order to achieve a clearly graph, figures only show the 30 last partitions in V IS
and NIR databases and the 50 last partitions in HyMap and 92AV 3C databases.
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Fig. 3. Automatic−K − selection (x-axe) in V IS/NIR databases. Top row shows the classi-
fication rates. Bottom row shows the corresponding K functional. Left column shows the results
for V IS multispectral image. Right column shows the results for NIR multispectral image.

Fig. 4. Automatic − K − selection (x-axe) in HyMap database. Top row shows the classifi-
cation rates. Bottom row shows the corresponding K functional. Left column shows the results
for HyMap multispectral image. Right column shows the same results, but this time the image is
considered without “background class”.
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Fig. 5. Automatic − K − selection (x-axe) in 92AV3C database. Top row shows the classifi-
cation rates. Bottom row shows the corresponding K functional. Left column shows the results
for 92AV3C multispectral image. Right column shows the same results, but this time the image
is considered without “background class”.

band reduction, that is, testing the classification rates for each possible number of final
clusters. The problem is the high computational/temporal cost it involves. So, in order
to avoid this expensive process, we provide an automated method that selects as good
partitions as we would choose manually according to classification rates but without
having to run the classification experiments.

Figures 3 and 4 show in their bottom row the K functional values for the oranges
and HyMap databases respectively. In both databases a good number of clusters has
been selected according to the classification accuracy graph. On the other hand, figure
5 does not achieve as good results as would be desirable because the selected K is a
little bit away from the values that we manually would have chosen. However, taking
into account that this image starts from 220 clusters (image bands), the K selected is a
reasonable band reduction.

4 Conclusions

An unsupervised approach to select image bands in multispectral images based on mu-
tual information measures has been introduced. The method uses a clustering process to
group bands correlated among them, and selecting a subset of bands with a high degree
of independence in a completely unsupervised way.

The results obtained from the point of view of pixel classification in multispectral
images provide experimental evidence about the importance that independence among
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bands plays in the problem of classification. The method here presented is computa-
tionally affordable, avoiding the problem of labelling, and providing very satisfactory
classification results with respect to other well known supervised feature selection cri-
teria. In addition, an automatic−K− selection process contributes to achieve a fully
unsupervised algorithm that improves our previous work.
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Abstract. We present a framework for object recognition based on sim-
ple scale and orientation invariant local features that when combined
with a hierarchical multiclass boosting mechanism produce robust clas-
sifiers for a limited number of object classes in cluttered backgrounds.
The system extracts the most relevant features from a set of training sam-
ples and builds a hierarchical structure of them. By focusing on those
features common to all trained objects, and also searching for those fea-
tures particular to a reduced number of classes, and eventually, to each
object class. To allow for efficient rotation invariance, we propose the use
of non-Gaussian steerable filters, together with an Orientation Integral
Image for a speedy computation of local orientation.

1 Introduction

Object detection is a fundamental issue in most computer vision tasks; par-
ticularly, in applications that require object recognition. Early approaches to
object recognition are based on the search for matches between user-generated
geometrical object models and image features. To overcome the need of such
models, appearance-based object recognition gained popularity in the past two
decades using dimensionality reduction techniques such as PCAs for whole-image
matching. Unfortunately, appearance based matching as such, is prone to fail in
situations with modest occlusions or under varying backgrounds. Lately, a new
paradigm for object recognition has appeared based on the matching of geomet-
rical as well as appearance local features. The most popular of these, perhaps,
the SIFT descriptor [1].
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Instead of using general saliency rules for feature selection as in the case of the
SIFT descriptor, the use of boosting techniques for feature selection has proven
beneficial in choosing the most discriminant geometric and appearance features
from training sets. Despite their power in achieving accurate recognition from
trained data, early boosting mechanisms such as [2], were tailored to single class
object recognition, and are not suitable for multiclass object recognition given
the large amount of features that need to be trained independently for each
object class. Lately however, there have been some extensions to the general
idea of classfication with boosting that allow the combined training of multiple
classes [3,4]. In the computer vision doamin, Torralba et al. [5] proposed an
extension to one such boosting algorithm (gentleboost), with the purpose of
sharing features across multiples object classes so as to reduce the total number
of classifiers. They called it JointBoost, and in this approach, all object classes
are trained jointly, and for each possible subset of classes (2n − 1 excluding the
empty set), the most useful feature is selected to distinguish that subset from the
background class. The process is repeated until the overall classification error
reaches a minimum, or until a limit on the number of classifiers is achieved.

The type of weak classifier features used in [5] are very simple template match-
ing masks, that would presumibly fail if sample objects are to be found at dif-
ferent orientations than as trained. In this work we investigate on the use of
similar multiclass feature selection, but with keen interest in fast computation
of orientation invariant weak classifiers [6] for multiclass rotation invariant object
recognition.

In [2], Viola introduced the integral image for very fast feature evaluation.
Once computed, an integral image allows the computation of Haar-like features
[7] at any location or scale in real time. Unfortunately, such system is not in-
variant to object rotation or occlusions. Other recognition systems that might
work well in cluttered scenes are based on the computation of multi-scale local
features such as the previously mentioned SIFT descriptor [1]. One key idea be-
hind the SIFT descriptor is that it incorporates canonical orientation values for
each keypoint. Thus, allowing scale and rotation invariance during recognition.
Even when a large number of SIFT features can be computed in real time for one
single image, their correct pairing between sample and test images is performed
via nearest neighbor search and generalized Hough transform voting, followed
by the solution of the affine relation between views; which might end up to be a
time consuming process.

Yokono and Poggio [8,9] settle for Harris corners at various levels of resolu-
tion as interest points, and from these, they select as object features those that
are most robust to Gaussian derivative filters under rotation and scaling. As
Gaussian derivatives are not rotation invariant, they use steerable filters [10] to
steer all the features responses according to the local gradient orientation around
the interest point. In the recognition phase, the system still requires local feature
matching, and iterates over all matching pairs, in groups of 6, searching for the
best matching homography, using RANSAC for outlier removal. Unfortunately,
the time complexity or performance of their approach was not reported.



Orientation Invariant Features for Multiclass Object Recognition 657

In [6] we realized that filter response to Haar masks can be not only be
computed efficiently with an integral image scheme; but also, that such masks
can be approximately rotated with some simplifications of the Gaussian steerable
filter. Thus, allowing for fast computation of rotation invariant filter responses
as week classifiers.

In this paper, we incorporate these two ideas, multiclass boosting, and rota-
tion invariance, for the selection of joint and specific local features to construct a
hierarchical structure that allow recognizing multiples objects independently of
position, scale and orientation with a reduced set of features. In our system, key-
points are chosen as those regions in the image that have the most discriminant
response under convolution with a set of wavelet basis functions at several scales
and orientations. Section 2 explains how the most relevant features are selected
and combined to classify multiples objects. The selection is based on JointBoost,
in which a hierarchical structure is composed by sets of joint and specific classi-
fiers. A linear combination of these weak classifiers produces a strong classifier
for each object class, which is used for detection. Rotation invariance is achieved
by filtering with oriented basis functions. Filter rotation is efficiently computed
with the aid of a steerable filter, that is, as the linear combination of basis filters,
as indicated in Section 3.

During the recognition phase, sample image regions must be rotated to a
trained canonical orientation, prior to feature matching. Such orientation is dic-
tated by the peak on a histogram of gradient orientations, depicted in Section
4. Section 5 explains our proposed Orientation Integral Image for the speed of
kernel orientation computation, and Section 6 presents some experiments.

2 Feature Selection

The set of local features that best discriminates an object is obtained by con-
volving positive sample images with a simplified set of wavelet basis function
operators [7] at different scales and orientations. These filters have spatial ori-
entation selectivity as well as frequency selectivity, and produce features that
capture the contrast between regions representing points, edges, and strips, and
have high response along for example, contours. The set of operators used is
shown in Figure 1. Filter response is equivalent to the difference in intensity in
the original image between the dark and light regions dictated by the operator.
Figure 1 d) exemplifies how an object can be represented by a small set of the
most useful local features.

Convolving these operators at any desired orientation is performed by steering
the filter (Section 3), and fast convolution over any region of the entire image is
efficiently obtained using an integral image (Section 5).

Feature selection is performed as in JointBoost [5], choosing one at a time,
from the 2n − 1 subsets of the classes c = 1...n (empty set excluded), the weak
classifier h(I, s) that best discriminates any subset s from the background class
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Fig. 1. Simplified wavelet basis function set. a) center-surround b) edge, and c) line;
and d) object local features.

(lowest classification error). The weak classifier is defined by the parameters
filter type, size, location, orientation and threshold, taking the binary decission
value

h(I, s) =
{

1 : I ∗ f > t
0 : otherwise (1)

where I is a training sample image of class c in the subset s, f is the filter being
tested, with all its parameters, ∗ indicates the convolution operation, and t is
the filter response threshold.

At each iteration during the training phase, the algorithm must find for all of
the 2n − 1 subsets, the weak classifier that best discriminates that subset from
the background class by minimizing the squared error over weighted samples of
all classes in that subset

Jwse =
n∑

c=1

m∑
s=1

wc
i (z

c
i − h(I, s))2 (2)

where zc
i and wc

i are the membership label and weight of the sample i for class
c respectively, and m the total number of training samples. The algorithm also
updates sets of weights over the training samples. The number of sets corre-
sponds with the number of classes to learn. Initially, all weights are set equally,
but on each round, the weights of missclassified samples are increased so that
the algorithm is forced to focus on such hard samples in the training set the
previously chosen classifiers missed. Finally, choosing the weak classifier for the
subset that had the minimum squared error J , and iteratively adding it to the
Strong Classifier for every class c in s, H(I, c),

H(I, c) := H(I, c) + h(I, s) (3)

Scale invariance is obtained by iterating also over scaled filters within the clas-
sifier H . Scaling of the filters can be performed in constant time for a previously
computed integral image.
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3 Steerable Filters

In order to achieve orientation invariance, the local filters must be rotated previ-
ous to convolution. A good alternative is to compute these rotations with steer-
able filters [10], or with its complex version [11]. A steerable filter is a rotated
filter comprised of a linear combination of a set of oriented basis filters

I ∗ f(θ) =
n∑

ki(θ)I ∗ f(θi) , (4)

where f(θi) are the oriented basis filters, and ki are the coefficients of the bases.
Consider for example, the Gaussian function G(u, v) = e−(u2+v2), and its

first and second order derivative filters G′
u = −2ue−(u2+v2) and G′′

u = (4u2 −
2)e−(u2+v2). These filters can be re-oriented as a linear combination of filter
bases. The size of the basis is one more than the derivative order.

Consequently. the first order derivative of our Gaussian function at any direc-
tion θ is

G′
θ = cos θG′

u + sin θG′
v , (5)

and, the steered 2nd order Gaussian filter can be obtained with

G′′
θ =

3∑
i=1

ki(θ)G′′
θi

(6)

with ki(θ) = 1
3 (1 + 2 cos(θ − θi)); and G′′

θi
precomputed second order derivative

kernels at θ1 = 0, θ2 = π
3 , and θ3 = 2π

3 . See Figure 2.
Convolving with Gaussian kernels is a time consuming process. Instead, we

propose in [6] to approximate such filter response by convolving with the Haar
basis with the objective of using the integral image. Thus, we approximate the
oriented first derivative response with

I ∗ f1(θ) = cos θI ∗ f1(0) + sin θI ∗ f1(π
2 ) . (7)

and in the same sense, the filtering with our line detector at any orientation θ
is obtained with

I ∗ f2(θ) =
3∑

i=1

ki(θ)I ∗ f2(θi) . (8)

The similarity of the response between the Gaussian and the Haar filters
allows us to use the later basis instead as weak classifiers for the detection of
points, edges, and lines; just as the Gaussian filters do. The main benefit of the
approach is in speed of computation. While convolution with a Gaussian kernel
takes time O(n) the size of the kernel, convolution with the oriented Haar basis
can be computed in constant time using an integral image representation. Figure
3 shows some results.
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Fig. 2. First and second order steerable filters. (a-b) Gaussian basis, (c-d) Gaussian
oriented filters, (e-f) Haar basis, (g-h) Haar oriented filters.

Fig. 3. Filter responses. (a) original image, (b-e) filter responses.

4 Local Orientation

Consider a training session has produced a constellation H of local features h as
the one shown in Figure 4. Now, the objective is to test for multiple positions
and scales in each new image, whether such constellation passes the test H or
not. Instead of trying every possible orientation of our constellation, we chose
to store the canonical orientation θ0 of H from a reference training image block,
and to compare it with the orientation θ of each image block being tested. The
difference between the two indicates the amount we must re-orient the entire
feature set before the test H is performed.

On way to compute block image orientation is with ratio of first derivative
Gaussians G′

u and G′
v [9], tan θ = I∗G′

v

I∗G′
u
. Another technique, more robust to

partial occlusions, is to use the mode of the local gradient orientation histogram
(see Figure 4 c-d), for which it is necessary to compute gradient orientations
pixel by pixel, instead of a region convolution as in the previous case.
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Fig. 4. Local orientation a) canonical orientation, b) rotated constellation, c) image
gradients, b) gradient orientation histogram

Fig. 5. Integral Images, a) Integral Image b) Orientation Integral Image

5 The Local Orientation Integral Image

An integral image is a representation of the image that allows a fast computation
of features because it does not work directly with the original image intensities.
Instead, it works over an incrementally built image that adds feature values
along rows and columns. Once computed this image representation, any one of
the local features (weak classifiers) can be computed at any location and scale
in constant time.

In its most simple form, the value of the integral image M at coordinates u, v
contains the sum of pixels values above and to the left of u, v, inclusive.

M(u, v) =
∑

i≤u,j≤v

I(i, j) (9)

Then, it is possible to compute for example, the sum of intensity values in a
rectangular region simply by adding and subtracting the cumulative intensities
at its four corners in the integral image (Figure 5a). Then, the response from
the Haar-filters can be calculated in a fast way independently of size or location.

Area = A + D − B − C (10)
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Extending the idea of having cumulative data at each pixel in the Integral
Image, we decide to store in it orientation histogram data instead of intensity
sums. Once constructed this orientation integral image, it is possible to compute
a local orientation histogram for any given rectangular area within an image in
constant time. see Figure 5b.

Histogram(Area) = Histogram(A) + Histogram(D)
−Histogram(B) − Histogram(C) (11)

6 Experiments

In this communication we report on initial recognition results for a limited number
of objects in gray scale images. The training set had 100 images for each class, and
500 negatives or background images. These negatives images were extracted from
exterior and interior scenes. The positive class images used for training presented
some small translation, orientation, and scale, as shown in Figure 6.

Figure 7 a) and b) show examples of extracted feature constellation for each
object class. Each one is composed by 8 weak classifiers (Haar-like features), with
4 of them common to both classes, and the remaining 4 specific to each class.

a) b) c)

Fig. 6. Training object classes. a) dice images, b) CD box images, and c) background
images.

(a) (b) (c) (d)

Fig. 7. Constellations. a) dice constellation b) CD box constellation (c-d) joint classi-
fiers.
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(a) (b)

Fig. 8. Training performance. a) dice b) CD box.

Fig. 9. Examples of correct detection of classifiers trained jointly (dice and Cd box).
The last image shows also under what circumpstances a false detection might occur.

Thus, producing a hierarchical structure of weak classifiers. Frames c) and d)
show only those four classifiers that are common to both classes. They capture
simmilar local information in both classes, separating them from the background
set, without the need to be class specific.

The Strong Classifiers can be expressed as the combination of joint and specific
weak classifiers. Consider the dice to be class 1, the CD box to be class 2, and
c12 the set of training samples containing either one or both objects. Then

H(I, c1) =
∑

h(I, c12) +
∑

h(I, c1) (12)
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H(I, c2) =
∑

h(I, c12) +
∑

h(I, c2) (13)

The training curves are shown in Figure 8.They illustrate how the correct
classification of the training set is achieved. Some results in detection process
over a image sequence are visualized in Figure 9.

7 Conclusions

In this paper we have introduced a hierarchical feature selection structure that
reduce the total number of weak classifiers needed to detect multiples object
classes. With this method the system finds common features among objects and
generalizes the detection problem.

Our approach is based on boosting over a set of simple local features. In
contrast to previous approaches, and to efficiently cope with orientation changes,
we propose the use of Haar basis functions and a new orientation integral image
for a speedy computation of local orientation.
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Abstract. Typical testors are a useful tool to do feature selection in supervised 
classification problems with mixed incomplete data. However, the complexity 
of computing all typical testors of a training matrix has an exponential growth 
with respect to the number of columns in the matrix. For this reason different 
approaches like heuristic algorithms, parallel and distributed processing, have 
been developed. In this paper, we present a configurable custom architecture for 
the efficient identification of testors from a given input matrix. The 
architectural design is based on a brute force approach that is suitable for high 
populated input matrixes. The architecture has been designed to deal with 
parallel processing and can be configured for any size of matrix. The 
architecture is able to evaluate if a vector is a testor of the matrix in a single 
clock cycle. The architecture has been implemented on a Field Programmable 
Gate Array (FPGA) device. Results show that it provides runtime 
improvements over software implementations running on state-of-the-art 
processors. FPGA implementation results are presented and implications to the 
field of pattern recognition discussed. 

1   Introduction 

Feature selection is an important task in supervised classification. It consists in 
identifying those features that provide relevant information for the classification 
process. Into the framework of the Logical Combinatorial Pattern Recognition [1], 
feature selection is solved using Testors Theory [2]. 

Yu. I. Zhuravlev introduced the testor concept to Pattern Recognition problems [3]. 
Zhuravlev defined a testor as a subset of features that allows differentiating objects 
from different classes. 

This concept has a special application in the problem of feature selection for 
supervised classification; working in situations where there are qualitative and 
quantitative features and may be incomplete object descriptions, this is, mixed 
incomplete data. Since, computing all typical testors is very expensive, all the 
algorithms developed until now have exponential complexity, different approaches 
have been developed like heuristic algorithms, parallel and distributed computing, etc. 
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Although the theoretical aspect of testor identification algorithms is advanced, 
there is not practical hardware implementations reported previously. The intensive 
computational requirements due to the exponential complexity of the algorithms can 
only be met by a combination of technology improvements and efficient hardware 
architectures based on parallel computational models. Specific parallel architectures 
can be designed to exploit the parallelism found in the algorithms to speed up the 
processing. Further optimizations such as incremental processing and the use of 
multiple processing elements are also possible. 

The rest of the paper is organized as follows. Section 2 provides the theoretical 
foundation of testor identification. Section 3 presents a data parallelism analysis of the 
algorithms and details of the proposed hardware architecture. In section 4 the FPGA 
implementation and experimental result are presented. In section 5, a brief discussion 
on the performance improvements is presented and the obtained results are compared 
against software implementation. Finally, section 6 presents the concluding remarks 
and directions for further research. 

2   Algorithms for Testor Identification 

Let TM be a training matrix with K objects described through N features of any type 
(x1,…,xN) and grouped in r classes. Let DM be a dissimilarity Boolean matrix 
(0=similar,1=dissimilar), obtained from feature by feature comparisons of every pair 
of objects from T belonging to different classes. DM has N columns and M rows, 
where M>>K. 

Testors and Typical Testors are defined as follows: 
 

Definition 1. A subset of features T is a testor if and only if when all features are 
eliminated, except those from T, there is not any row of DM with only 0´s. 
 
Definition 2. A subset of features T is a typical testor if and only if T is a testor and 
there is not any other testor T ' such that T '⊂T.  

 
We can find two main strategies to compute all typical testors. One of them is to 
analyze the matrix and find conditions, which guarantee that a feature subset is a 
typical testor. The algorithms that use this strategy are called internal scale 
algorithms. The other one is to look over the whole power set of features. The 
algorithms that use this strategy are called external scale algorithms. In this paper we 
are interested in the last strategy. An example of this kind of algorithms is BT. In 
order to review all the search space, BT codifies the feature subsets as binary N-tuples 
where 0 indicates that the associated feature is not included and 1 indicates that the 
associated feature is included. BT supposes the order induced by the increasing order 
of binary natural numbers. The BT algorithm is as follows: 

 
Step 1.- Generate first no null N-tuple α=(0,...,0,1).  
Step 2.- Determinate if the generated N-tuple is a testor of DM.  
Step 3.- If α is a testor of DM, store it and and take α’=α+2n-k-1 where let k be the 

index of the last 1 in α. 
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Step 4.- If α is not a testor of DM, determine a row ν of DM with only 0´s in the 
columns where α has 1´s and generate α’ as: 

jα ′ =

>
=
<

kjif

kjif

kjifj

0

1

α
, 

where let k be the index of the last 1 in ν. 
Step 5.- Take α=α’   
Step 6.-  If α  is not after (1,1,...,1,1) then, go to step 3 
Step 7.- Eliminate from the stored testor those, which are not typical testors. 

 
For the proposed architecture, we used the next modified algorithm, which follows 

the reverse order: 
 

Step 1.- Generate first N-tuple α=(1,...,1,1).  
Step 2.- If α is a testor of DM, store it and take α’=α−1  
Step 3.- If α is not a testor of DM, take α’=α−2k-1, where k is the index of the first 0 

in α, (index starts from the right or least significant bit LSB). 
Step 4.- Take α=α’   
Step 5.- If α  is not (0,0,...,0) then, go to step 2 
Step 6.- Eliminate from the stored testor those, which are not typical testors. 

3   Parallel Hardware Implementation 

3.1   Analysis of Algorithms 

In most of the algorithms for computing typical testors, deciding if a candidate is a 
testor is a task that must be done many times. This decision involves comparing the 
candidate against each one of the DM’s rows, but for matrices with many rows, these 
decisions could take a lot of time. For this reason, we addressed the problem of 
deciding if a candidate is a testor as fast as possible, taking advantage of the 
concurrency that can be implemented through a specific hardware architecture based 
on a parallel computational model.  

3.2   Configurable Architecture 

The main hardware components of the architecture are a register file, a counter and a 
control unit. (See Fig. 1). The counter produces an N-tuple that is evaluated by the 
register file to find out if it is a testor of DM. If the N-tuple is a testor, the output port 
Is_testor will be TRUE and the value present at the output port Testor is stored. If the 
N-tuple is not a testor, the counter will decrease its value as indicated by the Step 3 of 
the modified algorithm shown in Section 2.  
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Fig. 1. Top-level architecture 

The core of the architecture consists of the register file module shown in Fig 2. The 
module takes data from the input port during the initialization process. The data are 
read in a linear-stream based scheme and sent to the register file where propagates 
through the registers until the full DM has been loaded. Once the register file has been 
completely filled, the control unit starts the testor identification process. It is 
important to mention that only one clock cycle is needed to test if an N-tuple is a 
testor of DM.  This is possible because the input data are fed simultaneously to the M 
Store-and-Compare (SC) modules to be processed in parallel. 

 

Fig. 2. Register file 

The basic element of the architecture is shown in figure 3. The SC module is 
composed of an N-bit wide register plus a number of gates. The register in each SC 
module stores a row of the DM. A bitwise AND operation is performed between the 
value stored in the register and the input port Count. If at least one bit of the result is 
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TRUE, then the output port Is_testor will be TRUE. Finally, if the output port 
Is_testor of all SC modules is TRUE, then the N-tuple Count is a testor of DM. 

 
 

Fig. 3. Store-and-Compare (SC) Module 

The register file is the configurable element in the architecture as it can be adapted 
for any size of the DM. In the following section, the hardware implementation of the 
proposed architecture, targeted to an FPGA device, is presented. 

4   FPGA Implementation and Results 

The proposed architecture was modeled using the VHDL Hardware Description 
Language under a structural approach. The VHDL model of the proposed architecture 
for the register file and counter unit is fully parameterizable in terms of the matrix 
dimensions (N,M). The VHDL model was simulated and validated both functional 
and post-synthesis with ModelSim v6.0. The VHDL model was synthesized with 
Xilinx ISE Software targeted for a XC3S200 Spartan-III device from Xilinx [4]. The 
use of the FPGA technology was chosen because it provides a rapid prototyping 
platform and is specially suited for implementing algorithms based on bit level 
operations. Some important advantages of FPGAs over general-purpose processors 
are: 
 

i) FPGAs provide massive parallel structures and high density logic arithmetic 
with short design cycles compared to ASICs. 

ii) In FPGA devices, tasks are implemented by spatially composing primitive 
operators rather than temporally. 

iii) In FPGAs, it is possible to control operations at bit level to build specialized 
data-paths. 

iv) FPGA technology can offer potentially several orders of magnitude more raw 
computational power per unit of area than conventional processors. 

v) FPGA technology is well suited for implementing parallel architectures such 
as pipelined and systolic processors. 

 



670 R. Cumplido, J.A. Carrasco-Ochoa, and C. Feregrino 

Table 1 summarizes the FPGA hardware resource utilization and timing 
performance for a case study with N=38 and M=45. According to the FPGA synthesis 
results, the proposed architecture provides good trade-off between performance and 
hardware resource utilization and it is suitable to be used as a high performance 
processing module in a hardware-in-the-loop approach [5]. Most FPGA resources are 
employed as storage elements to implement a SC module within the register file.  

Table 1. FPGA resource utilization for N=38 and M=45 

Synthesis summary for the architecture targeted for a XC3S200 
Spartan-III device  

Number of slices 1210 (63%) 
Number of 4-input LUTs 1276 (33%) 
Number of flip-flops 1711 (44%) 
Maximum clock frequency 87 MHz 

The hardware resource utilization is directly proportional to the size of the matrix. 
Due to the regular structure of the register file, the size of the matrix does not affect 
the speed at which the architecture can operate. This makes possible to accurately 
estimate the processing time for a specific input matrix, based on the value of N and 
the operating frequency according to the following equation: 

 

f
t

N2=  

where t is the processing time and f is the clock frequency of the architecture. 
 
The design was implemented on a Spartan-III based board. To program the device, 

the System Generator tool from Xilinx that runs in the Matlab/Simulink environment 
was used. This tool allows performing hardware-in-the-loop type of simulation using 
a JTAG interface. The system set-up is illustrated in Fig. 4. 

 

Fig. 4. System set-up 
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Although the synthesis results show that the architecture can operate up to 87MHz, 
the clock oscillator on the board is limited to an operating frequency of 50MHz. Thus 
the reported results were calculated considering the latter frequency. 

4.1   Results 

In order to show the performance of the proposed architecture it was compared 
against software implementations of the original BT algorithm, which is an external 
scale algorithm, and the CT algorithm, an internal scale algorithm that is one of the 
most successful algorithms for calculating all typical testors. For the experiments, 
square matrices from 18 to 30 columns were randomly generated. Figure 5 shows the 
processing time for the proposed architecture and software implementations of BT 
and CT for these matrices. For BT and CT we used optimized programs, which 
implements modifications for performance improvement, such as sorting the matrix 
[8].  These experiments show that the proposed architecture allows computing all 
typical testors about 20 times faster that BT and about 3 times faster than CT.  The 
experiments were done on a PC with an Intel Pentium 4 processor running at 2.8GHz 
with 512MB of RAM memory. In the figure 5, the runtimes of the proposed 
architecture were estimated for the worst case, where the step 3 of the modified 
algorithm never happens. 
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Fig. 5. Processing times in seconds, for several values of N 

5   Discussion 

The proposed architecture provides high performance processing capabilities with low 
hardware resource utilization. The architecture performs the number of operations 
needed to know if a value is a testor of the matrix in a single clock cycle. The 
architecture efficiently stores data in a flexible register like structure. The initial 
latency period is just M clock cycles. The latency arises at the start of processing 
since the register file must be full before processing can begin.  

According to the reported maximum clock frequency from the synthesis process 
for the case of study, the architecture can operate up to 87MHz. The performance 
comparison of the architecture is difficult since there are not similar architectures 
reported in the literature. 
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The experiments show that the proposed architecture allows computing all typical 
testors much faster than BT and slightly faster than CT. However, the proposed 
architecture needs the same time to process any matrix of N columns, independently 
of the number of rows, whereas BT and CT performance will decrease when the 
number of rows grows.  

It is important to highlight that the proposed architecture compute testors and the 
decision about which of them are typical has to be make after each testor is found (as 
in BT).  

Even though the proposed architecture is a first approach to computing testors and 
typical testors in a reconfigurable intensive computing special architecture, it allows 
computing testors and typical testors much faster than following a similar strategy by 
a computer program, and for problems with not too many features, it is faster than the 
most sophisticated algorithms for computing typical testors. 

6   Conclusions 

In this work, an efficient hardware implementation of a testor identification algorithm 
was presented. The high performance of the proposed architecture was feasible due to 
the high level of parallelism implicit in the BT algorithm that can be efficiently 
implemented on the FPGA.  

As future work, a number of optimizations are being considered for to further 
improve the performance. Such optimizations include modifying the control unit for 
implementing steps 2-4 of the BT algorithm in order to reduce the number of 
candidates to be verified, and including a post-processing unit for reducing the 
number of testors, which would speed up the typical testor selection. In addition, 
because the architecture resource requirements are relatively small, a new scheme 
where the processing core can be replicated is also explored; this will effectively 
reduce the processing times proportionally to the number of processing cores that can 
be accommodated on the FPGA device. Early results show that a state-of-the-art 
Virtex-4 XCE4LX200 FPGA [7] could accommodate 100+ processing cores and run 
up to 190MHz, potentially resulting on 380x processing time improvement over CT 
runtimes. Another research direction is exploring the construction of architectures for 
implementing more sophisticated external scale algorithms like LEX [9], which 
follows a different search order. 
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Abstract. There is presently no unified methodology that allows the evaluation 
of supervised and non-supervised classification algorithms. Supervised prob-
lems are evaluated through Quality Functions that require a previously known 
solution for the problem, while non-supervised problems are evaluated through 
several Structural Indexes that do not evaluate the classification algorithm by 
using the same pattern similarity criteria embedded in the classification algo-
rithm. In both cases, a lot of useful information remains hidden or is not consid-
ered by the evaluation method, such as the quality of the supervision sample or 
the structural change generated by the classification algorithm on the sample. 
This paper proposes a unified methodology to evaluate classification problems 
of both kinds, that offers the possibility of making comparative evaluations and 
yields a larger amount of information to the evaluator about the quality of the 
initial sample, when it exists, and regarding the change produced by the classi-
fication algorithm.  

1   Introduction 

When one works in pattern recognition, whether in field applications or in research, it 
is a common need to evaluate the result of a classification algorithm [1-4]. On many 
occasions the objective of such evaluation is, either to study the behavior of the classi-
fication algorithm used, or to establish the appropriateness of applying such algorithm 
to the type of problem being evaluated. Classification problems may be shown in 
three different ways [5] known as supervised problems, partially-supervised problems 
and non-supervised problems. Unfortunately, nowadays there is no methodology that 
allows us to evaluate, under the same criteria, the action of an algorithm in any of the 
forms of a problem.  

A classification problem is informally called supervised when there is previous 
knowledge (called supervision sample or learning information) on the classes or cate-
gories into which it is possible to classify the objects or patterns being studied. 

A classification problem is considered non-supervised when such previous knowl-
edge does not exist. In that case, the problem starts with a universe of patterns without 
structure that must be classified. Finally, the other form that a classification problem 
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can adopt is an intermediate state between supervised and non-supervised problems. 
A classification problem is considered partially-supervised when the previous knowl-
edge regarding the nature of its solution is partial. 

2   Traditional Evaluation Methods 

In order to evaluate supervised problems, the classification algorithm is applied to a 
test sample and its result is compared with a previously known solution considered as 
valid [3,4].  This comparison is made by means of a Quality Function that generates a 
score, which is typically a real number, that synthesizes the evaluation of the problem 
and thus measures the performance of the classification algorithm. 

In many cases, simple quality functions, such as the following, are applied: Let A 
be a supervised classification algorithm and let ( )AΦ  be the quality function that 

evaluates it and which expression is 1( ) ( )A x x y zΦ = + + , where x is the number of 

patterns correctly classified by the algorithm, y is the number of patterns incorrectly 
classified, z is the number of abstentions. Other times, much more detailed quality 

functions are applied, such as ( ) ( )2 1 1

1 k k k

ij ij s si i s
A E A

n
α β

= = =
Φ = + , where: n is 

the total number of patterns in the control sample, k is the number of classes in the 
problem, ijα is the amount of objects that belong to class i, mistakenly classified in 

class j, ijE is the specific weighting of the mistake counted in ijα , sβ  is the amount 

of objects that belong to class i in which the algorithms refrained from classifying, 
and sA is the specific weight of the error counted in sβ . 

Of course, the decision regarding the quality function to be used in the evaluation 
of a specific problem depends largely on the conditions and semantics of the problem, 
so there is an infinite amount of possible quality functions. Regardless of how com-
plex the selected quality function may be, the result of the evaluation is always ex-
pressed with only one number, which hides the details and the specific reasons for the 
assigned classification.  

In the case of non-supervised problems, there is no explicit formula to evaluate the 
quality of the classification algorithm. However, opposite to what happens in the 
supervised case, the idea of measuring the quality of the resulting covering in terms of 
its structural conditions [6] is quite common. The structural aspects evaluated in a 
covering are several, but commonly aspects considered include the compacting of 
clusters, the separation between clusters, the max and min degree of membership of 
each cluster, etc. (See [7,8] ). 

Several indexes have been proposed to evaluate partitions and coverings.  Three of 
the more widely used are the Partition Coefficient and the Entropy index proposed by 
Bezdek [9], and the Xie-Beni index[6].  Let us examine each one of them. 

For a non-supervised classification problem, with n patterns and with  k being  
the pre-determined number of classes to be formed,  Bezdek defines the  partition 

coefficient (PC) in [9] as ( ) nPC
n

i

k

j ij= =
=

1 1
μ , with jiμ  being the membership 

of pattern i to class j. Under the same assumptions, Bezdek also defines the partition 
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entropy (PE) as ( )( )1 1
log

n k

ij iji j
PE nμ μ

= =
= . The main disadvantage of 

these indexes, as Bezdek himself states in [9] is that they evaluate each class by con-
sidering exclusively the degrees of membership assigned to the patterns and not their 
(geometric) structure or the structure of the whole covering. X. L. Xie and G. Beni 
proposed an index that evaluated two structural aspects: the Compactation and the 
Separation of the classes [6]. For them, an optimum partition is that which has a 
strong compacting and a noticeable separation between clusters. Therefore, they pro-

posed the compacting measure as 
= =

−=Ψ
k

i

n

j
ijij vx

1 1

2
 μ with iv  being the centroid 

of each class. The second factor then represents the Euclidean norm of the difference 
between each object and the corresponding centroid in each class. The separation 

between classes, is calculated as −=Ξ
≠

2
min ki

ki

vvn . Lastly, the Xie-Beni (XB) 

index is formed as the quotient of these two quantities, i.e., ΞΨ=XB . 

Like in the case of supervised problems, all of these structural indexes limit their 
evaluation to only one number which, in this case, represents the quality of the struc-
turing in the solution covering generated by the classification algorithm. 

Most authors do not even consider partially-supervised problems as a different 
category of problems [10].  These problems are treated as supervised in what regards 
the evaluation of the classification algorithms. Therefore, in the rest of this paper, no 
explicit reference will be made to partially-supervised problems and the same condi-
tions of  supervised problems will be assumed for them. 

3   Advantages and Disadvantages of Traditional Evaluation 
     Methods 

The most evident advantage of evaluating supervised problems through quality func-
tions is the flexibility of the latter.  The researcher can build a quality function as 
thorough as the problem requires, and one that can encompass situations of very dif-
ferent kind, such as abstentions of the classifying algorithm or a different weighing 
for each type of error made in assigning memberships. In return for this, the way of 
evaluating supervised problems has some evident disadvantages.  The first and most 
noticeable one is the need for having a previously known solution for the problem 
being evaluated, and its consideration as “the correct solution to the problem”.  This 
requirement makes it impossible to evaluate problems for which such a solution is not 
available, and even more: the consideration of such solution as the correct one may 
cause important biases in the evaluation of the algorithm. There are two main reasons 
for these biases in the evaluation: first, the quality of the supervision sample used for 
the evaluated classification algorithm.  Second: the quality of the structure induced on 
the solution covering by the evaluated algorithm is not measured. 

Not evaluating the quality of the supervision sample used for a supervised problem 
seriously limits the ability to judge the action of the classifying algorithm. It is not 
hard to imagine that a very well built sample (with the more representative patterns of 
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each class) may induce the generation of the same solution even by less precise algo-
rithms, while a poorly built sample (with patterns not very representative of each 
class) may induce errors or abstentions in the algorithms based on the similarity of 
patterns.  The criteria through which a solution can be selected and considered as 
correct, are not clear. Should the methodology include any type of measurement of 
the structure of the solution covering generated by the classification algorithm, the 
evaluation would not depend so much on the quality of the supervision sample. None-
theless, the quality function is limited to comparing the membership to each of the 
classes assigned by the classifying algorithm to each pattern. Lastly, notice that most 
of the classification algorithms (both for supervised and for non-supervised problems) 
are based on measuring the similarity between two patterns.  The criterion or set of 
criteria through which the similarity is measured is called  Pattern Analogy Function 
and it is evident that in spite of the fact that this function is the most important ele-
ment for the algorithm, it is in no way considered by the evaluation methodology for 
supervised problems. In summary, the following disadvantages may be noticed: 

1. The quality of the supervision sample is not measured. 
2. The structural quality of the solution covering is not measured. 
3. The pattern analogy function is not involved in the evaluation. 

The way to evaluate non-supervised problems has very different characteristics.  
The evaluation is made based on the quality of the structure of the solution instead of 
comparing  with a previously known solution is by far the most evident advantage of 
this method.  Unlike what happens with supervised problems, no elements, such as 
the magnitude of the membership assigned to each pattern or the number of absten-
tions in which the algorithm incurs are considered (although non-supervised classifi-
cation algorithms almost never have the possibility of abstaining from classifying any 
pattern).  In general, the elements considered to make the evaluation are precisely 
those which are not considered in supervised problems. These evaluation methods are 
radically different in both cases, but the diverse conditions of each type of problem do 
not allow the indiscriminate use of the respective methods.  Nevertheless, in both 
cases the evaluation of the algorithm is reduced in its expression to only one number 
which generally hides more information than the one it gives, because it does not 
allow an analysis of the specific situation of a pattern or category. Therefore, the list 
of deficiencies of classical methods may be completed as follows: 

4. The evaluation is synthesized in only one number which does not allow alter-
native interpretation. 

5. The evaluation methods are not unified for all types of problems.  

This leads us to ask the following question: Is it possible to devise an evaluation 
methodology that can overcome the deficiencies found in the present methods and 
produces unified criteria to evaluate classification algorithms applied to any type of 
problem? 

4   The Main Definitions and Proposed Methodology 

Before presenting the methodology proposed by the authors for the solution of the 
question mentioned above, we now introduce the three most important theoretical 



678 S. Godoy-Calderón, J. Fco. Martínez-Trinidad, and M. Lazo Cortés 

concepts on which the design and methodology are based. These concepts are: the 
Covering, the Classification Problem  and the  Classification Algorithm.  For a more 
detailed description see [10]. 

Let Ω  be a known universe of objects under study and let Ω⊆O . 

Definition 1. A Covering of O  is a tuple ( )fO ,C,Q,,,, cπδℜ  where O , ℜ  and Q 

(called structural sets) are respectively sets of objects, descriptive features for the 
objects and classes. Components δ  and π  (called structural relations) are, respec-
tively, description and membership functional relations. The first one describes the 
objects of O  in terms of the features in ℜ  and the second one assigns to each oi 
object a membership to each of the Cj classes.  Last, Cc and f are respectively a set of 
comparison criteria and the pattern analogy function (see [10]). 

According to the definition given above, the special types of coverings shown in  
the following table may be characterized. 

Table 1. Types of Coverings. 

Covering   Conditions 

Total Every object belongs to a class 

Partial There is an object that does not belong to any class 
Blind No object belongs to any class 

Strict All classes are not empty 

Flexible There is an empty class 

Definition 2. A classification problem is a tuple of the form ( )Θ,0Z where Z0 is an 

initial cover. 
Following definition 2 a problem is supervised if and only if its initial covering is 

strict; partially supervised if and only if its initial covering is flexible and non-
supervised if and only if its initial covering is blind. 

Definition 3. A classification algorithm is an algorithm of the form ( ) 1ZPA =  such 

that, as a parameter, it receives a classification problem (in any of its forms) and de-
livers a total final covering which is the solution to this problem. 

When the design of this evaluation methodology was made, two general objectives 
were established: 1) to generate a unified methodology for all types of classification 
problems, and  2) to keep the advantages of each classical method, but to overcome 
their disadvantages. According to the definitions of the previous section, the method-
ology designed to evaluate classification algorithms is based on the structural com-
parison between the initial covering of a problem and the final covering generated as 
a solution by the classifying algorithm.  Such a comparison can always be made, even 
in cases in which one of the two compared coverings is a blind covering (as in the 
case of an initial covering in non-supervised problems).  The comparison of all types 
of properties in the covering that involve the membership of patterns to classes and 
the similarity between them, in accordance with the analogy function between pat-
terns is considered as a structural comparison.  
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The proposed evaluation methodology obviously starts with the application of the 
classifying algorithm to the problem being solved. From that moment on, the evalua-
tion process is developed in the following three stages: 

Stage 1 (Structural Analysis of the coverings) During this stage the initial and final 
coverings of the problem are analyzed separately, calculating for each of them the 
same set of structural properties. These properties are discussed in detail in a later 
section. The analysis takes place at three levels for each covering: 

Level of the Objects: The structural properties are calculated for each object, mak-
ing reference to each class in the covering. 

Level of the Classes: The values corresponding to each of the structural properties 
in the patterns that form the support of each class are accumulated and averaged. 

Level of the Covering: The indexes for the structural properties for the covering 
under study are calculated. 

Stage 2 (Comparison between Coverings) The difference in the value of each one 
of the structural properties calculated for each covering during the previous stage is 
calculated. The calculated set of differences is called Difference Tuple and it is the 
score assigned to the classifying algorithm. This tuple expresses the structural change 
generated by the classifying algorithm in the initial covering of the problem. 

Stage 3 (Interpretation of the Score) Once we have the partial results of each of the 
previous stages, particularly those corresponding to the three levels of structural 
analysis of the coverings, the researcher interprets the obtained score. 

Unlike classical methods, the one proposed here refrains from reducing the evalua-
tion process to only one final score that hides the details involved in the evaluation 
process.  The partial results obtained in each stage are valuable sources of information 
for the researcher, where he can study particular situations regarding the problem 
being solved. Another distinctive characteristic of this methodology is the fact that it 
is useful independently of the quantity and selection of the structural properties calcu-
lated during the first stage. Sometimes the researcher may be interested in using a 
specific set of structural properties, according to the characteristics of the problem 
under study. For this reason, the methodology described above was introduced with-
out any reference to the specific properties used in the analysis of coverings. In this 
sense, the set of structural properties that have been used and are described in the next 
section are shown for the sole purpose of clarifying all of the elements involved in the 
methodology.  Nonetheless, the researcher is free to use the set of properties that he 
deems to be more adequate for his particular study. 

5   Application Details 

For the structural analysis stage, only four properties, considered as determining fac-
tors in the structure of a covering, are calculated: 

The Tipicity (T) of an oi object, with regard to a jC class, understood as the degree 

to which the object is representative of such class and it is calculated as follows: 

( ) ( ) ( ) ( )jjssiji CSopCooofCoT = ,,, π  
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where f(oi,os) is the similarity between the objects (calculated by the pattern analogy 
function), ( )js Co ,π  is the membership of the oi object to the jC  class, ( )  jSop C  is 

the cardinality of support of the jC  class. 

The Contrast (C) of an oi object with regard to a jC  class, understood as the de-

gree to which the object is representative of all of the other classes in the covering is 
defined as: 

( ) ( ) 1,, −=
≠

kCoTCoC
CjCs siji  

where T(oi,Cs) is the tipicity of the oi object, in the jC class, and k is the total number 

of classes in the covering. 
The  Discrimination Error ( ε ) of an oi object with regard to a jC  class, under-

stood as the degree of confusion of the object in the covering is defined as: 

( ) ( )
≠

=
CjCs jsiji CoCo ,, πε  

where ( )jsi Co ,π  is the degree of membership  of oi to the intersection of the jC  and 

sC classes. 

The Characterization Error ( γ ) of an oi object with regard to a jC  class,  under-

stood as the difference between the belonging of the object to the class and its Tipicity 
in this same class is defined as: 

( ) ( ) ( )jijiji CoTCoCo ,,, −= πγ  

During the analysis at the level of the classes, each of these structural properties is 
averaged in the analyzed class. During the analysis at the level of the covering, the 
structural indexes corresponding to each property are calculated.  In every case, the 
index is calculated as one minus the corresponding property averaged  in the whole 
covering. 

Striving to give this methodology the same flexibility shown by the quality func-
tions in supervised problems, a special technique for the structural analysis of the 
coverings during the first stage was developed.  This technique consists of adding to 
each covering an additional class which represents the complementing set for the rest 
of the classes in the covering and then calculating all the structural properties, also 
regarding this class.  In the initial covering of a problem all of the patterns that are not 
classified will be considered to have maximum membership to the complementing 
class.  This technique allows the proposed analysis to account for the abstentions 
incurred by the classification algorithm although, evidently, without achieving the 
same degree of flexibility achieved by the quality functions. 

6   Experimental  Results 

In order to test the designed methodology, we used the famous IrisData set consisting 
of 150 Iris flowers, described by 4 features (length and width of petals and sepals, all 
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measures in centimeters) and grouped in 3 classes called  Iris Setosa, Iris Versicolor 
and Iris Virginica (See [11]).   This data set was used to evaluate two different algo-
rithms: a (supervised) simple voting algorithm and the (non-supervised) Fuzzy C-
Means algorithm. Two experiments were performed with the supervised algorithm, 
one of them with a very well built training sample and the other one with a badly built 
one. In the non-supervised case the algorithm was simply applied to the whole Iris-
Data set to study the solution covering generated.  In every experiment, the action of 
the classification algorithm was evaluated with the traditional methods as well as with 
the proposed methodology, and both evaluations were compared. 

Table 2. Training samples for the supervised experiments 

Well-built sample:
Iris Setosa Iris Versicolor Iris Virginica

object
No.

length &
width
Petals

length &
width
Sepals

object
No.

length &
width
Petals

length &
width
Sepals

object
No.

length &
width
Petals

length &
width
Sepals

27 5 3.4 1.6 0.4 84 6.0 2.7 5.1 1.6 117 6.5 3.0 5.5 1.8
8 5 3.4 1.5 0.2 56 5.7 2.8 4.5 1.3 148 6.5 3.0 5.2 2.0

24 5.1 3.3 1.7 0.5 64 6.1 2.9 4.7 1.4 104 6.3 2.9 5.6 1.8
29 5.2 3.4 1.4 0.2 74 6.1 2.8 4.7 1.2 138 6.4 3.1 5.5 1.8
40 5.1 3.4 1.5 0.2 79 6.0 2.9 4.5 1.5 105 6.5 3.0 5.8 1.8

Badly-built sample:
Iris Setosa Iris Versicolor Iris Virginica

object
No.

length &
width
Petals

length &
width
Sepals

object
No.

length &
width
Petals

length &
width
Sepals

object
No.

length &
width
Petals

length &
width
Sepals

16 5.7 4.4 1.5 0.4 94 5 2.3 3.3 1 107 4.9 2.5 4.5 1.7
42 4.5 2.3 1.3 0.3 58 4.9 2.4 3.3 1 110 7.2 3.6 6.1 2.5
15 5.8 4 1.2 0.2 51 7 3.2 4.7 1.4 114 5.7 2.5 5 2
82 5.5 2.4 3.7 1 22 5.1 3.7 1.5 0.4 25 4.8 3.4 1.9 0.2

121 6.9 3.2 5.7 2.3 113 6.8 3 5.5 2.1 80 5.7 2.6 3.5 1  

In the supervised experiments, both training samples consisted of five objects rep-
resenting each class.  For the well-built case the five objects with more intra-class 
similarity were selected and for the badly-built case, each class was represented by 
the three less intra-similar objects and two more objects randomly selected from the 
other two classes.  Both samples are shown in table 2. 

Table 3. Traditional evaluation for the two supervised experiments 

 
1( )AΦ  

2 ( )AΦ  
Case 1  well-formed sample  0.793  0.854 
Case 2  badly-formed sample  0.760  0.837 

The two quality functions 
1( )AΦ  and 

2 ( )AΦ  introduced in section 2 were used for 

the traditional evaluation of these supervised experiments.  When the rest of the ob-
jects not contained in the training sample were submitted for classification, the super-
vised algorithm produced, for each experiment, the results shown in table 3. 
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Notoriously, in both cases, the traditional evaluation showed very similar results 
for the well-built and the badly-built samples. This can only be explained due to the 
restrictive nature of evaluation methodology using quality functions.  This traditional 
evaluation method measures only the degree of matching between the results obtained 
by the algorithm and the results contained in the previously known solution. All other 
aspects of the evaluation are not taken into account, including the quality of the test 
sample.      

In contrast, the unified methodology proposed herein measures the structural qual-
ity of both the initial and final coverings on the problem. As stated in section 4, this 
unified methodology unfolds over three stages.  During stage #1 both coverings (ini-
tial and final) are analyzed separately and the four structural properties introduced in 
section 5 are calculated for each one (tipicity, contrast, discrimination and characteri-
zation).  Since the analysis of each covering takes place at three levels (objects, 
classes and covering), this stage produces very large tables of intermediate results. 
These tables are not included in this paper for space reasons.  During stage #2, the 
analysis of both coverings is compared and the Difference Tuples depicted in table 4 
are produced. 

Table 4. Unified methodology results for the supervised experiments 

Case 1 (well-built sample):                                  Case 2  (badly-built sample): 

T C ε  γ   T C ε  γ  

-0.213 -0.016 -0.299 -0.114  -0.038 -0.196 -0.411 +0.342 

Finally, during stage #3 the difference tuples are interpreted. The interpretation of 
these results indicates that by establishing the quality of the initial sample given to the 
algorithm, the unified methodology manages to evaluate both cases in a notoriously 
different way.  The above results show the structural change produced by the algo-
rithm between the initial and final coverings of each experiment. Interpreting each 
index of the above table the following observations may be stated: 

1. The Tipicity index (T) was reduced reduced much more in the well-built case 
than in the badly-built one.  This means that in the first case the quality of the 
training sample was so high that the algorithm did not manage to group the rest 
of the objects with the same representativity in each class.  By contrast, in the 
second case the quality of the sample was low enough that the algorithm kept 
almost the same covering quality while classifying the rest of the objects. 

2. The Contrast index (C) had the expected opposite behavior of the tipicity in-
dex, meaning that classified objects kept to be equally representative to all 
classes in the first case but not in the second one. 

3. The Discrimination index ( ε ) reduction in the second case nearly doubled that 
of the first case.  This means that, after applying the classification algorithm in 
the second case,  the resulting covering has more overlapping in its member-
ships than the first case.  This is an expected result if one considers the quality 
of the respective samples and the behavior of the tipicity and contrast indexes. 
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4. The Characterization index ( γ ) shows the most dramatic change by reducing 

its value in the first case and growing considerably in the second case.  This is 
also the most unexpected and significant result of this evaluation. In the first 
case the slight reduction is explained because of the high quality of the training 
sample.  In the second case, the classification algorithm behaves very consis-
tently with the low inter-class similarity of the objects contained in the sample, 
so by classifying the rest of the objects it reduces the average difference be-
tween the membership and the tipicity of all objects. 

These arguments lead to the following conclusion: the supervised algorithm used 
in this experiments is highly sensitive to the quality of the initial sample, especially to 
the inter-class similarity of the objects.  The proposed evaluation methodology allows 
the researcher to consider different structural aspects that the traditional evaluation 
methods hide when synthesizing to only one number.  This evaluation takes into ac-
count both, the structure of the initial and final coverings in the problem, and the 
change induced by the classification algorithm separately. 

In order to traditionally evaluate the non-supervised experiment, the PE and XB 
indexes were used yielding the results shown in table 5. 

Table 5. Traditional evaluation for the non-supervised experiment 

 PE  XB  
non-supervised experiment 0.157 0.395 

The low partition entropy is a good score for the classification algorithm and it 
means that the final covering has a very clear structure. Nevertheless the middle-range 
magnitude of the XB  index indicates an unbalanced ratio between compactation and 
separation among classes. So these indexes are not very consistent with each other. 

For this experiment, the proposed methodology overcomes the inconsistency of 
the structural indexes and their inability to evaluate by using the same pattern analogy 
function used by the classification algorithm. Again, the unified methodology unfolds 
over its three stages and once more the tables containing intermediate results for stage 
#1 are not shown.  Stage #2 (comparison between coverings) yields the difference 
tuple shown in table 6. 

Table 6. Unified methodology results for the non-supervised experiment 

T C ε  γ  

+0.421 +0.421 +0.883 +0.815 

During stage #3 the interpretation of each index in the same way as it was done in 
the supervised experiments, leads to the following observations: 

1. In contrast with the supervised experiments, the change in all indexes has a 
positive magnitude. This is to be expected since the initial covering was blind 
and so it had no structure. 
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2. The growth in tipicity and contrast is exactly the same.  Also the growth in dis-
crimination and characterization is very similar and notoriously high.  

3. Tipicity and contrast are consistent with each other, and they mean that the 
classification algorithm produces an increase in the tipicity of all classes al-
most in 42%. 

4. Discrimination and characterization are also consistent with each other and 
they indicate that the algorithm produces 80% more distinguishable objects 
with 80% more consistency between their tipicity and their membership in 
each class. 

5. The pattern analogy function used by the algorithm is also used in the calcula-
tion of each of the four indexes. 

In summary, this experiment shows that the consistency of interpretation among 
the four structural indexes is far superior to that of other structural indexes used in 
traditional evaluation methods, and that each calculation uses the same pattern anal-
ogy function employed by the classification algorithm. So, the methodology proposed 
herein showed that it fulfills its design objectives and at the same time, it gives more 
information and flexibility to the researcher.  

7   Conclusions 

Comparison between the initial and final coverings of a problem allow the evaluation 
of the behavior of the classifying algorithm independently from other circumstantial 
factors in the problem, such as the quality of the control sample in the case of super-
vised problems.  Thanks to the definitions previously established, such comparison is 
a common element between supervised and non-supervised problems and unifies the 
evaluation methodology. 

The specification of what is meant by structural properties allows us to include in 
the analysis of the coverings both, the basic elements considered by the quality func-
tions (membership assigned to each pattern in each class), and those considered by 
most of the structural indexes with which non-supervised problems are evaluated.  At 
the same time, the main disadvantages of classic methodologies are avoided.  Notori-
ously, the discussed methodology neither requires a previously known solution to the 
problem, nor evaluates the algorithm by considering such solution as a reference 
point.  

The flexibility of the discussed methodology may be seen in two main aspects: 
first, the possibility of changeing the set of structural properties to be used during the 
analysis of the coverings, and second, the possibility of accounting for the abstentions 
of the classifying algorithm by using the complementing class technique. 
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Abstract. In this work, we present a Monte Carlo approach to com-
pute Hausdorff distance for locating objects in real images. Objects are
considered to be only under translation motion. We use edge points as
the features of the model. Using a different interpretation of the Haus-
dorff distance, we show how image similarity can be measured by using
a randomly sub-sampled set of feature points. As a result of comput-
ing the Hausdorff distance on smaller sets of features, our approach is
faster than the classical one. We have found that our method converges
toward the actual Hausdorff distance by using less than 20 % of the fea-
ture points. We show the behavior of our method for several fractions
of feature points used to compute Hausdorff distance. These tests let
us conclude that performance is only critically degraded when the sub-
sampled set has a cardinality under 15 % of the total feature points in
real images.

1 Introduction

Shape matching is necessary for several robotic vision tasks such as visual object
tracking and visual servoing [1]. Locating a model in an image consists in, given a
template composed by a set of features that characterize an object, determining
its position and pose in a target image. A pose is the set of parameters, e.g.,
size and orientation, that defines the object appearance in the image under test.
Many methods have been developed for model based recognition (for example,
Zitova [2] and Zhang [3] present recent surveys). A non exhaustive list includes
correlation methods, template matching, frequential methods and scale-space
methods. Each approach has its advantages and drawbacks in view of the specific
application.

Hausdorff distance [4] is a similarity measure between two sets of points is-
sued from a feature extraction step. Features like line segments [5], curves and
skeletons[6], edge points and salient points [7] have been used for image match-
ing. In our work, we use the edge points as features of the model obtained by
applying a Canny-like edge operator. We can compare how similar is our model
to a region in the image under test. If we use an exhaustive search approach, we
need to look at all the possible positions and at each location, all the possible

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 686–695, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Monte Carlo Evaluation of the Hausdorff Distance for Shape Matching 687

poses of our model in the zone where the model could be present in the image
under test. Recent applications of Hausdorff distance for shape matching include
face detection and tracking [8]. Medical image registration also uses Hausdorff
distance techniques for kidney images acquired using CT devices [9]. A generic
object tracking framework is presented by Polat [10]. Another application ad-
dressed recently using Hausdorff distance-based methods is image retrieval [11].

Main drawback of Hausdorff distance is the high computational complexity
involved in its calculation. When the object model presents some transformation
in the test image, some works report search times up to 6s [4]. We need then
to implement some heuristics to reduce necessary time for locating the object in
an image. Monte Carlo techniques [12] enable us to compute static properties of
models by using only a fraction of the points (chosen in a random manner) where
these properties apply. Computing the static properties with randomly sampled
points reduces the computational load. The only question consist in how to
determine if the value converges toward the value computed using all the points
where the property holds. Monte Carlo techniques have been used previously in
Hausdorff-based shape matching for the generation of outlier shapes by Boykov
in the testing of a Bayesian recognition method [13] and for the reduction of an
affine transformation parameter space search by Jian-qiu [14].

Our approach is to use Monte Carlo sampling to obtain a pattern with a
lesser number of feature points and to apply Hausdorff-based shape matching
on the sampled patterns. We have applied this approach and experimentally we
have found that it converges by using only a small fraction f = 0.12 of the
points composing the original model. Rest of this paper is organized as follows:
In Section 2, we present the formal definition of Hausdorff distance and an
alternative interpretation of it. This analysis leads in Section 3 to define the
Monte Carlo version that we propose. Test and results for our experimental
validation related to the convergence of the proposed approach are found in
Section 4. Finally, our conclusions and perspectives are presented in Section 5.

2 Hausdorff Distance and an Alternative Interpretation

2.1 Hausdorff Distance Formulation

Hausdorff distance is computed as follows:
Given two set of points A = {a1, . . . , ap} and B = {b1, . . . , bq}, Hausdorff

distance H(A,B) is:

H(A,B) = max(h(A,B), h(B,A)) (1)

where h(A,B) = max
aεA

min
bεB

‖a − b‖ and ‖.‖ is a two-dimensional Hilbert metric

applied to points a and b.
The function h(A,B) is named the forward Hausdorff distance from A to B

and defines the point a εA that is farther from any point in B according to the
norm ‖ · ‖. Distance h(B,A) is known as the reverse Hausdorff distance. Thus,
Hausdorff distance H(A,B) is the maximum between h(A,B) and h(B,A).
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In computer vision tasks, sets A and B are usually named M and I, standing
for the model set and the image set respectively. Rest of this paper will use this
notation.

2.2 Alternative Interpretation of the Hausdorff Distance

Let us define distance df
m as follows:

df
m = min

iεI
‖m − i‖ for all m ∈ M (2)

Thus df
m is the minimal distance from the point m ∈ M to any point i ∈ I. We

have then for the computation of h(M,I) a decreasing ordered set of distances,
called Df , such that:

Df = {df
0 , d

f
1 , . . . , d

f
p} (3)

where p is the cardinality of M ; (i.e., p =  (M)) and in a similar way, we define
distance dr from the point i ∈ I to any point m ∈ M . We have then for the
computation of h(I,M) a decreasing ordered set of distances, called Dr, such
that:

Dr = {dr
0, d

r
1, . . . , d

r
q} (4)

q =  (I). Evaluation of Hausdorff distance can be interpreted according to these
two sets Df and Dr where, The Hausdorff distance (Equation 1) can be re-
defined as:

H(M, I) = max(df
0 , d

r
0) (5)

3 Monte Carlo Hausdorff Distance (MCHD)

3.1 Random Sampling for the Hausdorff Distance Evaluation

Hausdorff distance is a very time demanding method. Even if some works have
proposed optimizations for computing the current pose of the model [15,16], com-
putational load remains heavy specially when considered for dynamical vision
applications as visual servoing, where 4Hz operating frequencies are typical.
The proposed method evaluates the Hausdorff distance by using a Monte Carlo
approach. This method provide, in one hand, efficiency because we will compute
the similarity property between a model M and an image I by using only a
randomly sampled points subset for each model. In the other hand, our method
is robust because we can overcome some of the problems associated with model
based recognition methods as a result of random sampling.

Let us consider the sets IMC ⊂ I and MMC ⊂ M . The sets IMC and MMC are
random samples of cardinality n taken using an uniform probability sampling
function from the sets I and M , respectively. Thus, we can also say:

lim
n→p

IMC = I (6)
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 1. (a) A synthetic target, (b) its edges, (c) the sampled edges using 75 %, (d) 50
%, (e) 25%, (f) 15 % and (g) 5 % of the feature points

lim
n→q

MMC = M (7)

Probability of a point belonging to the random sample subset is defined by
the ratio of points being kept to the total number of feature points in the I
and M sets. For each feature point in both sets, we decide to include it in the
sampled subset by using a random number ζ chosen from a uniform distribution
in [0, 1]. The feature point will be included in the Monte Carlo sampled subset
if 0 ≤ ζ < th, th being a a priori chosen threshold.

Figure 1 shows the effect of random sampling for choosing feature points (in
this case, edge points). In this example, we use a synthetic image (a) and the
resulting edge points models when we use all the edge points (b). The subset
MMC is also shown when using (c) 75 %, (d) 50 %, (e) 25 %, (f) 15 % and (g)
5 % of the feature points.

3.2 MCHD Definition

We can define Monte Carlo variants for the forward and reverse Hausdorff dis-
tances by using the sub-sampled sets of I and M .

hMC(M, I) = h(MMC , I) = max
mεMMC

min
iεI

‖m− i‖ (8)

hMC(I,M) = h(IMC ,M) = max
iεIMC

min
mεM

‖i − m‖ (9)

We define the Monte Carlo Hausdorff Distance (MCHD) as:

HMC(M, I) = max(hMC(M, I), hMC(I,M)) (10)

If M and I present a perfect matching (as only arises in ideal images) then

HMC(M, I) = H(M, I) (11)
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(c) (d) (e)

(a) (b)

Fig. 2. (a) Image for model selection, (b) the selected model and its feature map, (c)
near perfect matching zone, (d) partial matching zone and (e) non matching zone.
Images (c), (d) and (e) were taken from a second image acquisition.

regardless of the cardinalities for IMC and MMC . The fraction of points con-
sidered for the computation will influence the MCHD estimation when we deal
with real images (i.e., images that present different feature maps even in very
similar environmental conditions).

For example, in Figure 2, we consider two images where the time interval
between acquisitions was approximately 100ms. Camera position was fixed and
the environment had not any mobile objects. This setup let us know ground
truth about the object of interest in the scene. We define the model M (shown
in Figure 2b) from the first image and we try to locate it in the second one. If we
compute h(M, I) in the best matching point (the image zone shown in 2(c)), the
value is typically not zero. This behavior is caused mainly by acquisition noise
and varying illumination conditions.

We analyze the matching behavior for three cases: i) A near perfect matching,
where the model is compared against the image subset located in the same
position than the previous model location. These sets of points differ only in the
outlier points caused by the imaging artifacts cited above. ii) A partial matching,
where we compute the distance between the model zone and the image subset
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Fig. 3. Graph of the set ‖m − i‖ for a (a) Correct, (b) Partial and (c) Null matching
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Fig. 4. Selected points belonging to MMC for a (a) near perfect, (b) partial and (c)
null matching of the model in the image under test

located on a zone that has a similar feature map than the model zone and iii)
A null matching, where the distance between the image zone and the image
subset located on a non matching nor similar zone in the image is computed. In
each of these cases we have plotted the sorted values of ‖m − i‖ in decreasing
order. Figure 3 shows these plots for: (a) a near perfect matching, (b) a partial
matching and (c) a null matching when the original Hausdorff distance definition
is used.

Our proposed approach uses randomly sampled subsets of M and I. In Figure
4 we show the randomly selected points to evaluate the Hausdorff distance in a
run where we have used only 20 % of the points. In this graph, randomly selected
points are marked with a small square and with a vertical dotted line.

Let us consider how the random sampling influences the computation of the
Hausdorff distance and the Monte Carlo variants proposed in this paper. Con-
sider again the sets Df and Dr (defined in Section 2.2).

For the computation of hMC(M, I), we have a set Df
MC such that:

Df
MC = {df

MC0
, df

MC1
, . . . , df

MCn
} (12)

and for the computation of hMC(I,M), we have a set Dr
MC such that:

Dr
MC = {dr

MC0
, dr

MC1
, . . . , dr

MCn
} (13)
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where n is the cardinality of the sets MMC and IMC .
We can then apply the alternative interpretation of the Hausdorff distance

and obtain the following definition for the Monte Carlo variant of the Hausdorff
distance:

Monte Carlo Hausdorff distance (MCHD) is defined as:

MCHD(M, I) = max(df
MC0

, dr
MC0

) (14)

Next section presents how the proposed approach converges toward a useful
estimate of Hausdorff distance between a model and a target region in the image
under test.

4 Experimental Work

4.1 Convergence Validation of the MCHD

The fraction of points f taken into account for the computation of HMC (M, I)
impacts on the precision of the estimation. In this section, we use the cumulative
histogram of the DMC and D vectors to show the effect of random sampling in
the performance of the computation of Hausdorff distance and the determination
of what is a good choice for f .

Each point hici in the cumulative histogram HISC is defined as

hici =
i∑

j=1

fj

n
(15)

Let us consider the cumulative histogram HISC of those points in the D
set from h (M, I) and DMC (M, I) from hMC (M, I), from the three cases of
matching presented in the previous section.

The cumulative histogram for the set D for the near perfect matching is shown
in Figure 5a. In Figure 5d, we have the D HISC for the partial correspondence.
The plots in Figure 5b and 5e show HISC for the DMC for the correct and partial
matching cases, respectively, but using only 20% of the points. In the histogram
in Figure 5a, we can see that the point distribution has a significant upward
slope, indicating that the 100% of the points in D has a very small distance
value. From this plot we can see that the distance for the 80% of the points is
equal to 0. The same tendency is observed in Figure 5b. Plots in Figures 5d and
5e have similarities each other. Because of the cumulative histograms show the
tendencies in function of the point percentage, we can over plot the graphs for
D and DMC . In Figure 5c, we can observe the histograms in 5a and 5b in the
same axes. Plots in Figures 5d and 5e are compared in Figure 5f. From these
graphs, we can say that D and DMC follow the same trend in their cumulative
histogram. A certain difference between the DMC histogram with respect to the
D one is observed in Figures 5c and 5f. Such a deviation depends on the amount
of points taken into account.
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Fig. 5. Cumulative histograms for D and DMC , respectively (a) and (b) for a near
perfect matching (d) and (e) for a partial matching. (c) Comparison between histograms
(a) and (b). (f) Comparison between histograms (d) and (e).

Figure 6 shows the HISC results using (a) 75%, (b) 25%, (c) 15%, and (d)
5% of the points. We see that the number of points taken for MMC determines
the deviation of the DMC HISC from the one for D. Taking the 75% of points,
vector DMC has the same tendency than D, but with less points the variation
increases. Using the 5% of the points produces a great variation. Such a variation
implies a variation in the HMC (M, I) with respect to the H (M, I) value. From
Figure 6, we can see that the deviation between (a) and (b) is lower than that
between graphs (c) and (d). All the results were estimated as the mean value for
100 experiments in each test. Main conclusion we can infer from these results is
that variance of the cumulative histograms augments as we reduce the fraction
of points we use to estimate MCHD. Nevertheless, accuracy is only degraded
when we use a fraction of points lower than 15 % (Figure 6d). So if we use some
f = 0.15 we will have an enough accurate estimate of Hausdorff distance but a
reduced computation time (only about 15 % of the original computational time).

Applying an evaluation method for determining the Hausdorff distance to the
DMC vector, the result can be a lower or an equal distance than the obtained if
we would apply such an evaluation to vector D.

|h (M, I) − hMC (M, I)| ≤ ε ε ≥ 0 (16)

where ε depends on the amount of points taken into account in the MMC set.
The higher the number of points is, the lower the maximum ε will become, but
computation time will not be reduced significantly. A design choice has to be
made to select f . For example, in an application developed for a robotic object
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Fig. 6. Variation of cumulative histograms of DMC with respect to D using (a) 75%,
(b) 25%, (c) 15%, and (d) 5% of the points. All data were computed for 100 runs of
each case.

tracking and visual servoing system, f = 0.15 has shown to be a good choice for
successful results.

5 Conclusions and Perspectives

We have presented a method for computing image similarity using a novel ap-
proach to compute Hausdorff distance. Our method computes Hausdorff distance
on a random subsample of the feature point set and consequently it reduces the
computational time needed to compute Hausdorff distance on real images that
are linked by a translational transformation. We have shown the trend that fol-
lows the cumulative histograms for different fractions of randomly subsampled
sets of feature points. We have found that our method’s performance critically
degrades when use under 15 % of the total of feature points of real images.
Over this threshold, our method converges toward the classical Hausdorff dis-
tance value but as mentioned before, reducing the computational time needed
to compute image similarity.

In the near future, we will also apply the alternative interpretations for the
partial (PHD) and modified (MHD) Hausdorff distance in methods similar to the
one presented here. That will result in even more substantial time reduction for
complexity management in robotic vision tasks using shape matching. Specially,
we aim to apply this approaches to dynamic vision problem as the visual tracking
and visual servoing problems.
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A Fast Probabilistic Model for Hypothesis Rejection in 
SIFT-Based Object Recognition*

 

Patricio Loncomilla and Javier Ruiz-del-Solar 

Department of Electrical Engineering, Universidad de Chile 

Abstract. This paper proposes an improvement over the traditional SIFT-based 
object recognition methodology proposed by Lowe [3]. This improvement 
corresponds to a fast probabilistic model for hypothesis rejection (affine 
solution verification stage), which allows a large reduction in the number of 
false positives. The new probabilistic model is evaluated in an object 
recognition task using a database of 100 pairs of images.  

1   Introduction 

Object recognition approaches based on local invariant features have become 
increasingly popular and have experienced an impressive development in the last years 
([1][3][5][8][11]). Typically, local invariant features are extracted from a test image, 
then characterized by invariant descriptors and finally matched against a reference 
database. Most employed local detectors are the Harris detector [2] and the Lowe’s 
sDoG+Hessian detector [3], being the Lowe’s detector multiscale and the Harris 
detector single scale. Best performing affine invariant detectors are the Harris-Affine 
and the Hessian-Affine [10], but they are too slow to be applied in general-purpose 
object recognition applications. The most popular and best performing invariant 
descriptors [9] are the SIFT (Scale Invariant Feature Transform) features [3].  

When building real-world object recognition applications as for example robot 
self-localization systems based on invariant visual landmarks [12] or robot head pose 
detection systems [6], the algorithm recognition capabilities and processing speed are 
both important. Lowe’s system [3] using the sDoG+Hessian detector, SIFT 
descriptors and a probabilistic hypothesis rejection stage has acceptable recognition 
capabilities and works in near real-time (1-3 images per second). However, Lowe’s 
system main drawback is the large number of false positive detections. This is a 
serious problem when using it in vision tasks that need to process video sequences of 
images.  

For that reason, the aim of this paper is to improve the traditional SIFT-based 
object recognition method from Lowe, by proposing a fast probabilistic model for 
hypothesis rejection (affine solution verification stage), which allows a large 
reduction in the number of false positives. The new probabilistic model is evaluated 
                                                           
* This research was partially supported by FONDECYT (Chile) under Project Number 

1061158. 
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in an object recognition task using a database of 100 pairs of images (UCH100 
database). 

This article is structured as follows. In section 2 we describe the proposed fast 
probabilistic model for hypothesis rejection. Experimental results of applying this 
probabilistic model in the recognition of objects present in real work images 
(UCH100 database) are presented in section 3. Finally, in section 4 some preliminary 
conclusions of this work are given. 

2   Fast Probabilistic Model for Hypothesis Rejection 

As already mentioned Lowe’s system use the sDoG+Hessian detector, SIFT 
descriptors and a probabilistic hypothesis rejection stage. The system is very 
complex, having several sub-stages (local extrema detection, accurate keypoint 
localization, orientation assignment, etc.). A detailed description can be found in [3]. 

One of the main weaknesses of Lowe’s algorithm is the use of just a simple 
probabilistic hypothesis rejection stage, which cannot successful reduce the number 
of false positives. Lowe’s method for calculating a probabilistic model for hypothesis 
rejection [4] requires that the explicit affine transformation must be known in 
advance, and that all matches that fall onto the projected region must be counted. 
Given that the probabilistic model is applied after the matching stage, all bins with 
more than 4 votes must be full-processed. This computation can slow down the 
process if the number of bins and matches is large. 

In this section an additional fast probability rejection test is proposed. It consists on 
assigning a probability value to all bins with more than 4 votes, without knowing an 
explicit transformation. This probability values are calculated directly in the 
quantized Hough bins space. This allows the rejection of bins with very low 
probability without the requirement of additional processing. 

A general similarity transformation from 2RR  to 2RR  has the following 
expression: 
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 ⇔ x'= Ax + t                (1) 

A,t  depend on the Δx,Δy,Δθ ,Δn( ) differences of the object pose between the two 

compared images, Δn being the differences in the scale dimension. 
A similarity transformation that quantizes the pose difference 

Δx,Δy,Δθ ,Δn( )= x1 − x2, y1 − y2,θ1 −θ2,n1 − n2( ) in bins of size 
LX
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a function of integer variables i, j,k,z( ), has the following expression [3]: 
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From (1) and (2) we obtain fractional values for ),,,( zkji : 
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iFRAC = 2
n1 −n2

2 x2 − x1 cos(θ1 −θ 2) + y1 sin(θ1 −θ2)

(1/4)LX × 2
n1−n2

2

jFRAC = 2
n1−n2

2 y2 − y1 cos(θ1 −θ2) − x1 sin(θ1 −θ2)

(1 /4)LY × 2
n1−n2

2

kFRAC = θ1 −θ2

30º

zFRAC = n1 − n2

2

                    (3) 

Each match (x1, y1,θ1,n1) ↔ (x2, y2,θ2,n2)  has 16 nearest values ),,,( zkji  for which 

it must vote. It can be observed that (i, j)  quantizes translation, k  quantizes rotation 
and z  quantizes scale difference in the similarity transformation. 

The probability that a random incorrect match votes for a given bin B = (i, j,k,z) 
in the bin-space is pB = p(i, j,k,z) = p(z) p(k) p(i, j | k,z) . When a correct mapping 
mB  for the bin B  does not exist, all the votes in bin B  are of random origin. Each 
random match votes for the 16 different nearest bins. We can estimate the probability 
that k  or more random incorrect matches of a total of n  vote for a bin B  (cumulative 
binomial distribution): 

P # B ≥ k |¬mB( )=
N

α
 

 
 

 

 
 pB

α (1− pB )N−α

α= k

N

                      (4) 

with # B  the number of votes in the bin B  and N = 16 × n  the total number of 
random votes generated by the n  matches that exists in all the bin-space. This 
approximation is acceptable when k  is much smaller than n , as each random match 
produces 16 random (distinct) votes. 

The probability of a bin B  representing a true mapping mB  of an object can be 
approximated as [4]: 

P(mB |# B ≥ k) = P(mB )

P(mB ) + P(# B ≥ k |¬mB )
                      (5) 

An exact value of pB = p(z)p(k) p(i, j | k,z) is essential for obtaining an exact 
computation of (4) and (5). Lowe approximates p(z) = 0.5. But, if it is assumed that 
the density of interest points along the sub-sampled scale space is constant, an 
analytical value for p(z) exists and can be computed. Lowe also approximates 
p(i, j | k,z)  as a fixed value. But, p(i, j | k,z)  can be estimated as a ratio between the 

space covered by the matches compatibles with the bin (i,j,k,z) and the space covered 
by all the possible matches that can be generated between the pair of images. Finally, 
the probability p(k)  can be calculated as w/360°, where w is the angular width of a 
bin. 

 
 



 A Fast Probabilistic Model for Hypothesis Rejection 699 

2.1    Analytical Computation of p(z)  

Suppose we have a pair of images I  and I ' . {D0,D1,...} and {D'0 ,D'1 ,...}  will be 
their respective sub-sampled scale space representations, and two images per octave 
will be used. The area of a scale space image can be expressed as: 

area(Dk ) = area(D0)

4 floor(k / 2)
,  area(D'k ) = area(D'0 )

4 floor(k / 2)
 

If the density of interest points is constant in each of the scale spaces, and the 
point-matches are of random origin, the probability that a random match will be 
associated to a (m,n)  scale space level can be written as: 

P(match : m → n) = area(Dm )area(D'n )

area(Di)area(D' j )
j= 0

∞

i= 0

∞  

If we simplify the last expression, a simple analytical probability expression can be 
obtained: 

P(match : m → n) = 9

64

1

4

 
 
 

 
 
 
floor(m / 2)
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floor(n / 2)

 

It will be defined a Z  function that depends on m,n : 
Z (m,n) = FLOOR(m / 2) − FLOOR(n / 2) . Now, the following set can be evaluated:
  

B(z) = {(m,n) | Z (m,n) = z}  

=
{ 2k,2k + 2z( ), 2k +1,2k + 2z( ), 2k,2k +1+ 2z( ), 2k +1,2k +1+ 2z( )∀k > 0},z > 0

{ 2k − 2z,2k( ), 2k +1− 2z,2k( ), 2k − 2z,2k +1( ), 2k +1− 2z,2k +1( )∀k > 0},z < 0

 
 
 

 

 
Using this set, probabilities in the (m,n)  space can be mapped to the z  space. 

p(z | z ≥ 0) = P(match : 2k,2k + 2z)
k= 0

∞

+ P(match : 2k +1,2k + 2z)
k= 0

∞

+

           + P(match : 2k,2k + 2z +1)
k= 0

∞

+ P(match : 2k +1,2k + 2z +1)
k= 0

∞
      (6) 

p(z | z < 0) = P(match : 2k − 2z,2k)
k= 0

∞

+ P(match : 2k +1− 2z,2k)
k= 0

∞

+

             + P(match : 2k − 2z,2k +1)
k= 0

∞

+ P(match : 2k +1− 2z,2k +1)
k= 0

∞
     (7) 

Finally, (6) and (7) can be simplified to: 

p(z) = 3

5

1

4

 
 
 

 
 
 
z
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It can be easily demonstrated than p(z)
z=−∞

∞

= 1. The new p(z) expression can be 

used to get a modified probability test to reject incorrect bins. 

2.2   Analytical Computation of p(i, j | k,z)  

The p(i, j | k,z)  calculation considers the space of all positions (x1,y1)  in the test 
image and all the (x2,y 2)  positions in the reference image. Random matches between 
the images generate random (x1,y1, x2 ,y 2) points in a 4D space. If the reference image 
size is LX × LY  and the test image size is M X × MY , the 4D random points belong to 
the following space: 

c = (x1, y1, x2, y2) ∈ S = [0,M X ]× [0,MY ]× [0,LX ]× [0,LY ] 

The S space has a 4D volume that can be expressed as LX LY M X MY . A bin B 
covers a subset of S that will be named Q(B). If the 4D volume contained by Q(B) is 
known, the probability p(i, j | k,z)  can be estimated as: 

p(i, j | k,z) = Q(i, j,k,z)

LX LY M X MY

 

The last equation can be approximated and written in terms of the (i, j)  space 
instead of the (x1, y1, x2,y2) space. We will analyze 3 cases: 

 
Case 1: If we assume that Δθ = 0°  in (3), the equations for iFRAC  and jFRAC  are 

reduced to: 

iFRAC = 2z x2 − x1

(1/4)LX × 2z

jFRAC = 2z y2 − y1

(1 /4)LY × 2z

 

The minimum and maximum admissible values for iFRAC  and jFRAC  while 
(x1,y1, x2 ,y 2) belongs to S are the following.  

iFRAC ∈ M X

(1/4)2z LX

,
2z LX

(1/4)2z LX

 

 
 

 

 
 , jFRAC ∈ − MY

(1/4)2z LY

,
2z LY

(1/4)2z LY

 

 
 

 

 
        (8) 

We define the following variables. 

RXX = M X

2z LX

,RYY = MY

2z LY

 

Then, expression (8), which expresses the domain for (i, j) , can be rewritten as: 

(iFRAC , jFRAC ) ∈ [−4RXX ,4]× [−4RYY ,4] 

All the (i, j)  bins have size 1 in the (iFRAC , jFRAC )  space. Them the probability that 
a random (x1, y1, x2,y2) match produces a random (iFRAC , jFRAC )  which vote for a 
particular (i, j)  bin can be expressed as: 
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p(i, j | k,z) ≈ 1

4(RXX +1) ⋅ 4(RYY +1)
 

 
Case 2: If we assume that Δθ = 90°  in (3), a calculation similar to case 1 gives 

the following results: 

RYX = MY

2z LX

,RXY = M X

2z LY

 

p(i, j | k,z) ≈ 1

4(RXY +1) ⋅ 4(RYX +1)
 

 
Case 3: If we do not assume a particular Δθ  it is difficult to get an analytical 

solution. But an approximation can be obtained by mixing the two results. As RXX  
and RYX  stands for two different orthogonal cases, they can be mixed as 
RX

2 = RXX
2 + RYX

2 . In a similar way, RY
2 = RXY

2 + RYY
2  can be assumed. This leads to the 

following equations: 

RX (θ1 −θ2) =
M X

2 cos2 (θ1 −θ 2) + MY
2 sin2 (θ1 −θ2)

2z LX

RY (θ1 −θ2) =
MY

2 cos2 (θ1 −θ2) + M X
2 sin2 (θ1 −θ2)

2z LY

 

p(i, j | k,z) ≈ 1

4(RX +1) ⋅ 4(RY +1)
 

3   Experimental Results 

In this section is presented an experimental evaluation of the proposed improvement 
over Lowe’s work. The performance of the introduced verification and merging 
hypothesis stages are tested in the UCH100 object recognition database (available in 
[13]). This database is composed by 100 pairs of real-world images 

{(I2k−1, I2k ),k = 1,...,100} , being I2k−1 a reference image and kI2  the corresponding 

test image. Each reference image shows a different, single object. The same object 
appears in the corresponding test image, viewed under different conditions (position, 
view angle, partial occlusion, in-plane and out-of the-plane rotation). In the test 
images can also appear objects not included in the reference images. In figure 2 are 
shown some examples of reference-test images pairs. 

Object recognition experiments were performed in all image’s pairs 
{(I j ,I k ),k, j = 1,...,100} . The experiments consist on finding the mapping that relates 

each pair of images. A pair of images has a common object only in 100 of the 10,000 
cases to be analyzed. In these pairs of images (100) the recognition methods generate 
a variable number of transformations (0 to 10, or even more in some cases), although 
ideally just one transformation should be obtained. For the proposed experiment, a 
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pair of images is solved when the transformation with the best priority, i.e. the highest 
probability value, is a good-mapping transformation, and almost all the associated 
point-matches are correct. The other obtained transformations are not analyzed. The 
algorithms are compared in terms of: 

− DR (Detection Rate): DR is computed as the rate of correct best-priority 
transformations. Just one per image can be correct in the 100 pairs having a 
common object. 

− FPR (False Positive Rate): FPR is computed as the rate of incorrect best-
priority transformations. Just one incorrect transformation per image is 
added when incorrect objects are matched. 

− DR/FPR Ratio: Ratio between correct and incorrect best-priority 
transformations. 

− Mean PT: Mean Processing time for the matching and verification stages. 
 

The algorithms under comparison are: 

− Lowe: Lowe’s recognition system without any improvement. 
− FastProb: Lowe’s recognition system using the fast probabilistic model for 

hypothesis rejection. 
− Lowe+OVS: Lowe plus other verification and merging stages proposed in 

[7]. 
− FastProb+OVS: FastProb plus other verification and merging stages (see 

[7]). 

Table 1. Comparative evaluation of the different algorithms. DR=Detection Rate. FPR=False 
Positive Rate. Mean PT: Mean Processing time for the matching and verification stages. 

Algorithms DR (%) FPR (%) DR/FPR Ratio Mean PT [ms] 

Lowe 41% 85.5% 0.48 21.56 

FastProb 39% 78.3% 0.50 14.38 

Lowe+OVS 44% 4.87 9.03 26.56 

FastProb+OVS 49% 3.74 13.10 19.38 

The comparative evaluation of these algorithms is displayed in table 1. As it can be 
observed, the new FastProb rejection test reduces the FPR from 85.5% to 78.3%, 
while keeping the DR in about 40%. More important, the time required for 
performing the matching and verification processes is reduced from 21.56ms to 
14.38ms (about 33% reduction). However, the FPR is still too high and other 
verification stages are required (see detailed explanation in [7]). When using these 
additional stages together with FastProb (FastProb+OVS) the DR is increased to 49%, 
while the FPR is strongly decreased to just 3.74, achieving a DR/FPR ratio of 13.10. 
When using the Lowe’s algorithm together with the additional verification stages 
(Lowe+OVS), DR increases to 44%, FPR decreases to 4.87, and the resulting 
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Fig. 1. Some examples of object recognition results that can be obtained with the new proba-
bilistic model for hypothesis rejection  

DR/FPR ratio is 9.03. Thus, FastProb+OVS achieves a DR/FPR ratio 45% higher 
than Lowe+OVS. That means that the proposed fast probability model for hypothesis 
rejection is essential for obtaining high recognition rates. Figure 1 shows some 
examples of the excellent object recognition results that can be obtained when using 
this new model. 
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Fig. 2. Selected images from the UCH100 database (see [13]). Left: reference images. Right: 
corresponding test images. 
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4   Conclusions 

In this work was proposed an improvement over the traditional SIFT-based object 
recognition methodology proposed by Lowe. This improvement corresponds to a fast 
probabilistic model for hypothesis rejection (affine solution verification stage), which 
allows a large reduction in the number of false positives. The new probabilistic model 
was evaluated in an object recognition task using a real-world database of 100 pairs of 
images. Objects in these images are very hard to recognize. The obtained results show 
that with the probabilistic model for hypothesis rejection is obtained a reduction in the 
number of false positives of about 9%, and the time required for the matching and 
verification processes is reduced in about 33%. This reduction is very important for 
several real-world applications. 
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Abstract. In this paper, we evaluate the effectiveness of four Bayesian network 
classifiers as potential tools for the histopathological diagnosis of chronic  
idiopathic inflammatory bowel disease (CIIBD) using a database containing en-
doscopic colorectal biopsies. CIIBD is the generic term for referring to two ail-
ments known as Crohn’s disease and ulcerative colitis. The results show that the 
defined histological attributes, considered relevant in the medical literature for 
the diagnosis of CIIBD, are very good for the distinction between normal sam-
ples and CIIBD samples (Crohn’s disease and ulcerative colitis combined into a 
single category) but less good for the explicit distinction between Crohn’s dis-
ease and ulcerative colitis. The findings suggest an intrinsic impossibility of se-
lecting a set of features for achieving good balance for both sensitivity and 
specificity for Crohn’s disease and ulcerative colitis. 

1   Introduction 

Chronic idiopathic inflammatory bowel disease (CIIBD) is the generic term for refer-
ring to two disorders of the digestive tract known as Crohn’s disease and ulcerative 
colitis (UC) [5, 12, 15, 16, 19, 21]. Both of them are characterized by acute and chronic 
inflammation of the bowel. Crohn’s disease involves the small intestine at its junction 
with the large intestine, or the small and the large intestines or the colon alone; the ul-
cerative colitis is restricted to the large intestine. Because the two diseases involve 
common symptoms, the distinction in the diagnosis of one or another is not an easy 
task. Needless to say, the correct diagnosis is imperative for a proper patient man-
agement, which, among other things, can help treat the disease properly and reduce 
the danger for the patient to develop cancer. Actually, there are two important distinc-
tions in making the diagnosis: a) does the patient have CIIBD or not? b) If the patient 
has CIIBD, is it Crohn’s disease or ulcerative colitis? In the first distinction, this im-
plies that the patient receives/does not receive a long-term follow-up. Such a follow-
up might include a colonoscopy every year; a procedure that unfortunately has a small 
associated mortality, high discomfort for the patient and high cost. However, if a pa-
tient who has CIIBD is not treated, it is possible that she/he could develop colorectal 
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carcinoma. In the second distinction, this implies that the patient, who has ulcerative 
colitis and is not responding to the medical therapy, can have her/his colon removed. 
If the patient has Crohn’s disease, such a surgical removal is not recommended. 

Histopathology is considered the gold-standard technique for the diagnosis of 
CIIBD [5]. However, it is important to mention that the accurate diagnosis of CIIBD, 
by means of histopathology, heavily relies on the histopathologist’s expertise [5, 19]. 
This situation can be perceived when noticing the fact that the time it normally takes 
in some countries (such as United Kingdom) to a medical doctor to become an inde-
pendent histopathologist is about 5 years as a minimum [5]. Such a fact gives certain 
indication of the very complex learning process through which medical doctors have 
to pass and the subjective nature of the histopathological diagnosis. In other words, a 
well-trained eye is needed for the correct and consistent diagnosis of CIIBD. Regard-
ing this subjectivity, it is often the case that even expert histopathologists disagree on 
the interpretation of a sample; the so-called interobserver variability problem. This 
might suggest that there could be many factors responsible for impeding the repro-
ducibility of the results, ranging from their expertise and the amount of stress and 
tiredness to the level of diligence when looking at the specimens. Due to the men-
tioned situations, a natural and sensible question arises: is it possible to construct 
computational support tools that help reduce this subjectivity? In this paper, we will 
explore the possibility of extracting some “objective” features, from a database, rele-
vant for determining the presence/absence of CIIBD using a graphical-modeling  
approach called Bayesian networks [20]. Such an approach allows both the visual rep-
resentation of the probabilistic interactions among variables of interest and the quanti-
tative measure of the impact of those interactions. These two important properties 
permit to perform some inferential processes, such as prognosis and diagnosis. In or-
der to do this, we assess the performance of four Bayesian network classifiers so as to 
determine their effectiveness for accurately diagnosing CIIBD using a real-world 
dataset. 

Although some researchers have analyzed the same datasets using different tech-
niques such as logistic regression and GCS (growing cell structure) [5], there are no 
studies, to the best of our knowledge, involving the analysis of CIIBD using Bayesian 
networks. The double nature of Bayesian-network classifiers (qualitative and quanti-
tative) [9] can give some other insights of the phenomenon under study. For instance, 
an intrinsic limitation of logistic regression is the change in the classification accuracy 
if different orderings of the explanatory variables are considered [4]. Bayesian net-
works not only permit to visualize the interactions among variables but also provide 
local probability distributions which, despite their numerical nature, can be traced 
from beginning to end so that it is possible to know why and how a Bayesian network 
arrived at a specific conclusion. Furthermore, in contrast to logistic regression, the 
Bayesian network classifiers we use here are not sensitive to variable ordering. 

The remainder of this paper is organized as follows. In section 2, we present the 
materials and methods used for the experiments reported here. In section 3 we present 
the experimental methodology and the results. In section 4, we provide a discussion of 
these results and finally, in section 5, we give some conclusions and mention future 
work. 
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2   Materials and Methods 

2.1   The Datasets 

The real-world database for this study comes from the field of histopathological diag-
nosis of endoscopic colorectal biopsies received at the Department of Histopathology, 
Royal Hallamshire Hospital in Sheffield, United Kingdom, between 1990 and 1995 
inclusive. This database is partitioned in three subsets. The first one is the complete 
dataset (called “All IBD & Normal”), which contains 809 cases of which 165 are 
normal, 473 are ulcerative colitis (UC) and 171 are Crohn’s disease. The second one 
(“All IBD”) contains 644 cases of which 473 are UC and 171 Crohn’s disease. The 
third one (“Active IBD”) contains 370 cases of which 283 are active UC and 87 active 
Crohn’s disease (“active” refers to the presence of active inflammation as indicated 
by polymorphs in the lamina propria). 23 independent variables and one dependent 
variable (the outcome) form part of these datasets. The diagnosis was confirmed by 
endoscopy, radiology and microbiological culture results. Continuous variables were 
 

Table 1. The observed features of CIIBD 

Variable Type 
1. Age Real number 
2. Sex Binary 
3. Active inflammation Binary 
4. Mucosal surface Ordinal, categorical 
5. Crypt architecture Ordinal, categorical 
6. Crypt profiles Real number 
7. Increased lamina propria cellularity Binary 
8. Superficially increased lamina propria cellularity Binary 
9. Increased lymphoid aggregates Binary 
10. Patchy increased lamina propria cellularity Binary 
11. Transmucosally lamina propria cellularity Binary 
12. Cryptitis: extent Ordinal, categorical 
13. Cryptitis: polymorphs Ordinal, categorical 
14. Crypt abscesses: extent Ordinal, categorical 
15. Crypt abscesses: polymorph Ordinal, categorical 
16. Increased lamina propria polymorphs Binary 
17. Epithelial changes Ordinal, categorical 
18. Mucin depletion Ordinal, categorical 
19. Intraepithelial lymphocytes Binary 
20. Subepithelial collagen Binary 
21. Lamina propria granulomas Binary 
22. Submucosal granulomas Binary 
23. Basal histiocytes Binary 
24. Outcome Binary 
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discretized using the CAIM algorithm [18]. Table 1 briefly explains the meaning and 
types of each of the variables. Most of them have to do with the dimension, architec-
ture and counts of the cells coming from endoscopic colorectal biopsies. For more de-
tails on these variables, the reader is referred to [15]. 

2.2   Bayesian Network Classifiers 

Classification refers to the task of assigning class labels to unlabelled instances. In 
other words, given a set of cases having values for each variable or attribute (includ-
ing a special kind called class), we have to build a model (in our case a Bayesian net-
work) that best describes the class or concept using the rest of the attributes. Once this 
is done, the model is used for classifying new cases that do not have a label for the 
class. This kind of learning is known as supervised learning [8, 13, 17]. For the sake of 
brevity, we do not write here the code of the 4 procedures used in the tests carried out 
in this work. Instead, we only describe them briefly and refer the reader to their origi-
nal sources. The procedures used in these tests are: a) the Naïve Bayes classifier, b) 
MP-Bayes, c) Greedy and d) algorithm B [1, 2, 6, 7]. 

1. The Naïve Bayes classifier (NB) is one of the most effective classifiers [7, 8, 13] 
and against which state of the art classifiers have to be compared. Its main appeals 
are its simplicity and accuracy: although its structure is always fixed (the class 
variable has an arc pointing to every attribute), it has been shown that this classifier 
has a high classification accuracy and optimal Bayes’ error [7, 13]. In simple terms, 
the NB learns, from a training data sample, the conditional probability of each at-
tribute given the class. Then, once a new case arrives, the NB uses Bayes’ rule to 
compute the conditional probability of the class given the set of attributes selecting 
the value of the class with the highest posterior probability. 

2. MP-Bayes [6] is a constraint-based algorithm that uses information measures for 
building a Bayesian network structure from data. Its parsimonious nature allows it 
to represent the joint probability distribution underlying the data with the least 
number of arcs. 

3. Greedy [6] is a search and scoring algorithm, which uses greedy-hill climbing for 
the search part and the Bayesian Information Criterion (BIC) metric for the scoring 
part [10, 11, 14]. For the experiments reported here, procedure Greedy takes as input 
an empty graph and a database. Other alternatives for the initialization space are a 
complete graph, a random graph or a graph suggested by a constraint-based proce-
dure. In every search step, it looks for a graph that minimizes the BIC score. Such 
an algorithm is a modification of that proposed by Friedman et al. [8]. In brief, pro-
cedure Greedy applies, whenever possible, 3 different operators: the addition of an 
arc (in either direction), the deletion of an arc and the reversal of an arc. In every 
step, the BIC score is calculated and procedure Greedy keeps the structure with the 
best (minimum) score. It finishes searching when no structure improves the BIC 
score of the previous network. 

4. Power Constructor is a software package which contains two different algorithms 
(algorithms A and B) to build BN structures from data [1]. For the tests carried out 
here, we used algorithm B because it does not need a node ordering to work. Algo-
rithm B uses mutual information and conditional mutual information tests to decide 
when to connect/disconnect a pair of nodes. 



710 N. Cruz-Ramírez et al. 

We have selected different types of Bayesian network classifiers: the Naïve Bayes-
ian classifier, two constraint-based classifiers (b, and d) and one search and scoring 
classifier c). We have chosen them to check the behavior and performance of different 
statistical measures, heuristics and metrics in classification tasks. 

3   Experimental Methodology and Results 

In this section, we describe the experimental methodology and present the results for 
3 different experiments. In section 4, we discuss such results. Because of the lack of 
space, the Bayesian network structures resultant from running these databases are not 
presented. 

Experiment 1. We used the “All IBD and Normal” database split into 2 subsets: the 
training and the test sets. The size of the training set is 2/3 of the data (540 cases) and 
the remaining 1/3 of the data forms the test set. All the algorithms described in the 
previous section use these training data to learn a classification model. Then, they use 
such a classification model and the test set to compute two tests, commonly used in 
the medical domain, for comparing the performance of these four classifiers: sensitiv-
ity (the ability to correctly identify those patients who actually have the disease) and 
specificity (the ability to correctly identify those patients who do not have the dis-
ease). The central goal of Experiment 1 is to assess the discriminant power of the in-
dependent variables to tell normal samples from CIIBD samples (Crohn’s disease and 
UC are combined into a single category). The results of experiment 1 are shown in ta-
ble 2, which shows the sensitivity and specificity for Normal vs. CIIBD samples. For 
these tests, their respective 95% confidence intervals (CI) are shown in parentheses. 

Table 2. IBD vs. Normal’s sensitivity and specificity with their respective 95% confidence 
intervals in the “All IBD vs. Normal ” dataset 

 Naïve-Bayes MP-Bayes Greedy Algorithm B 
Sensitivity 96% (92-100) 0 0 0 
Specificity 69% (63-75) 100% (100) 100% (100) 100% (100) 

Experiment 2. We used the “All IBD” database split into 2 subsets: the training and 
the test sets. The size of the training set is 2/3 of the data (430 cases) and the remain-
ing 1/3 of the data forms the test set. All the algorithms described in the previous  
section use these training data to learn a classification model. Then, they use such a 
classification model and the test set to compute sensitivity and specificity tests. The 
main objective of Experiment 2 is to assess the discriminant power of the independent 
variables to tell Crohn’s disease samples from UC samples. The results of experiment 
2 are shown in tables 3 and 4, which show the sensitivity and specificity for Crohn’s 
disease and UC respectively. For these tests, their respective 95% confidence intervals 
(CI) are shown in parentheses. 
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Table 3. Crohn’s disease’s sensitivity and specificity with their respective 95% confidence 
intervals in the “All IBD” dataset 

 Naïve-Bayes MP-Bayes Greedy Algorithm B 
Sensitivity 65% (53-78) 16% (7-26) 20% (9-31) 27% (16-39) 
Specificity 68% (61-75) 93% (89-97) 96% (92-99) 94% (90-97) 

Table 4. UC’s sensitivity and specificity with their respective 95% confidence intervals in the 
“All IBD” dataset 

 Naïve-Bayes MP-Bayes Greedy Algorithm B 
Sensitivity 68% (61-75) 93% (89-97) 96% (92-99) 94% (90-97) 
Specificity 65% (53-78) 16% (7-26) 20% (9-31) 27% (16-39) 

Experiment 3. We used the “Active IBD” database split into 2 subsets: the training 
and the test sets. The size of the training set is 2/3 of the data (247 cases) and the re-
maining 1/3 of the data forms the test set. All the algorithms described in the previous 
section use these training data to learn a classification model. Then, they use such a 
classification model and the test set to compute sensitivity and specificity tests. The 
main objective of Experiment 3 is to assess the discriminant power of the independent 
variables to tell active Crohn’s disease samples from active UC samples. The results 
of experiment 3 are shown in tables 5 and 6, which show the sensitivity and specific-
ity for active Crohn’s disease and active UC respectively. For these tests, their respec-
tive 95% confidence intervals (CI) are shown in parentheses. 

Table 5. Crohn’s disease’s sensitivity and specificity with their respective 95% confidence 
intervals in the “Active IBD” dataset 

 Naïve-Bayes MP-Bayes Greedy Algorithm B 
Sensitivity 57% (39-75) 14% (1-27) 14% (1-27) 14% (1-27) 
Specificity 72% (63-81) 99% (97-100) 99% (97-100) 99% (97-100) 

Table 6. UC’s sensitivity and specificity with their respective 95% confidence intervals in the 
“Active IBD” dataset 

 Naïve-Bayes MP-Bayes Greedy Algorithm B 
Sensitivity 72% (63-81) 99% (97-100) 99% (97-100) 99% (97-100) 
Specificity 57% (39-75) 14% (1-27) 14% (1-27) 14% (1-27) 

4   Discussion of the Results 

According to the medical literature, all 22 defined histological observations men-
tioned in table 1 are considered relevant for the histopathological diagnosis of CIIBD 
[4]. Age is also considered relevant as it provides useful information for making the 
final diagnosis. All variables are random variables and take on values as described in 
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table 1. In the experiments we call such variables a1, a2, and so on. The 4 procedures 
presented here select the relevant attributes according to their own metrics, as de-
scribed in section 2.2. Now, let us describe our findings for the described experi-
ments. 

Experiment 1. The central goal of Experiment 1 is to assess the discriminant power 
of the independent variables to tell normal samples from CIIBD samples. Table 2 
shows a high sensitivity value for the NB classifier (96%) but 0% sensitivity for the 
remaining classifiers. This significant difference strongly suggests that it is important 
to consider all the attributes in order to achieve high sensitivity values. If only few at-
tributes are considered relevant for explaining the outcome (a7 for MP-Bayes; a2, a3 
and a4 for Greedy; and a5 and a16 for procedure B), 0% sensitivity is achieved. On 
the other hand, a regular specificity value is achieved by NB (69%) but a perfect 
specificity value (100%) is reached by the remaining classifiers. The attributes se-
lected by MP-Bayes, Greedy and procedure B (a7; a2, a3 and a4; and a5 and a16 re-
spectively) as the most discriminant attributes for the absence of CIIBD seem to work 
excellently. This supports the findings in Cross and Harrison [5]: histopathological 
examination of endoscopic colorectal biopsies is very good for the distinction be-
tween Normal samples and CIIBD samples. It is important to mention that the human 
expert achieves 82% for sensitivity and 99% for specificity [5] for this same database. 
This important finding suggests that the expert is taking into account more informa-
tion than that portrayed by the variables in table 1 for making the final decision; oth-
erwise, the NB classifier would perform as well as he does. 

Experiment 2. The main objective of Experiment 2 is to assess the discriminant 
power of the independent variables to tell Crohn’s disease samples from UC samples 
(see tables 3 and 4). Both tables 3 and 4 show a regular performance of the NB classi-
fier in terms of sensitivity and specificity (65%-68% and 68%-65% respectively). 
These results seem to indicate that the consideration of all attributes for deciding 
whether a sample belongs to one or the other disease is insufficient. The human expert 
reaches a sensitivity value of 44% and a specificity value of 99% for the same ex-
periment of table 3 and a sensitivity value of 58% and a specificity value of 99% for 
the same experiment of table 4 [3]. These results also support the findings in Cross 
and Harrison [5]: histopathological examination of endoscopic colorectal biopsies is 
less good for the distinction between Crohn’s disease and UC than that between Nor-
mal samples and CIIBD samples. Furthermore, in the case of specificity, it also seems 
that the expert is taking into account more information than that portrayed by the at-
tributes in table 1 for making the final decision. The remaining classifiers select the 
following attributes as the most discriminant ones: a1 and a2 for the case of MP-
Bayes; a1, a2, a4 and a21 for Greedy; and a1, a5 and a21 for procedure B. This selec-
tion is very bad for detecting the presence of Crohn’s disease (sensitivity values of 
16%, 20% and 27%) but excellent for detecting its absence (specificity values of 93%, 
96% and 94%; see table 3). This same selection shows the opposite result for detect-
ing the presence of UC (sensitivity values of 93%, 96% and 94%) and for detecting its 
absence (specificity values of 16%, 20% and 27%; see table 4). Such mixed results 
reveal the difficulty in differentiating samples belonging to one or the other disease. 

Experiment 3. The main objective of Experiment 3 is to assess the discriminant 
power of the independent variables to tell active Crohn’s disease samples from active 
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UC samples (see tables 5 and 6). Both tables show a regular performance of the NB 
classifier in terms of sensitivity and specificity (57%-72% and 72%-57% respec-
tively). Once again, these results seem to indicate that the consideration of all  
attributes for deciding whether a sample belongs to one or the other active disease is 
insufficient. The human expert reaches a sensitivity value of 30% and a specificity 
value of 93% for the same experiment of table 5 and a sensitivity value of 61% and a 
specificity value of 76% for the same experiment of table 6 [5]. These results also 
support the findings in Cross and Harrison [5]: histopathological examination of endo-
scopic colorectal biopsies is less good for the distinction between active Crohn’s dis-
ease and active UC than that between Normal samples and CIIBD samples. Further-
more, in the case of specificity, it also seems that the expert is taking into account 
more information than that portrayed by the attributes in table 1 for making the final 
decision. The remaining classifiers select the following attributes as the most dis-
criminant ones: a21 for the case of MP-Bayes; a10 and a21 for Greedy; and a10 and 
a21 for procedure B. This selection is very bad for detecting the presence of active 
Crohn’s disease (sensitivity values of 14% for all the classifiers) but excellent for de-
tecting its absence (specificity values of 99% for all the classifiers; see table 5). This 
same selection shows the opposite result for detecting the presence of active UC (sen-
sitivity values of 99% for all the classifiers) and for detecting its absence (specificity 
values of 14% for all the classifiers; see table 6). Such mixed results reveal the diffi-
culty in differentiating samples belonging to one or the other active disease. 

5   Conclusions and Future Work 

In this paper, we have explored the possibility of extracting some “objective” fea-
tures, from a database, relevant for determining the presence/absence of CIIBD using 
the Bayesian network framework. The results show that, in sum, the attributes se-
lected by procedures MP-Bayes, Greedy and B allow us to accurately detect the ab-
sence of CIIBD. On the other hand, the results also show that it is much more difficult 
to clearly differentiate samples belonging to Crohn’s disease or to ulcerative colitis. 
Thus, such results suggest an intrinsic impossibility of selecting a set of features for 
achieving good balance for both sensitivity and specificity for Crohn’s disease and 
UC, given that the only information we can use is that portrayed by the attributes. In 
other words, these results seem to indicate that the attributes in table 1 are not enough 
for making the final diagnosis and that the human experts are taking into account 
more information for arriving to their conclusions. 

In the paper by Cross and Harrison [5], they run the same tests described in tables 2 
and 6 using logistic regression and a technique known as GCS (growing cell struc-
ture); this last technique is described in [22]. The sensitivity and specificity results for 
logistic regression running the same tests as in table 2 are 78%% and 89% respec-
tively. The results for these same tests for GCS are 76% and 86%. The sensitivity and 
specificity results for logistic regression running the same tests as in table 6 are 84% 
and 62% respectively. The results for these same tests for GCS are 66% and 66%. It is 
important to mention the root of such differences: while in a Bayesian network differ-
ent value combinations of the same set of variables determine whether it is a normal 
sample or a CIIBD sample (or whether it is Crohn’s disease or UC), in the logistic  
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regression and in GCS different sets of variables determine the presence or absence of 
the disease being considered. As can be inferred, different combinations of such vari-
ables for both techniques, as well as the order of the explanatory variables for logistic 
regression, are a key ingredient for obtaining good/bad results. In the case of proce-
dures MP-Bayes, Greedy and B, there is no prior knowledge that privileges specific 
variables in the analysis; i.e., not a single variable is treated with a special distinction. 
Moreover, the very nature of these three procedures is to follow Occam´s razor: they 
keep the least number of arcs among variables. The Bayesian network structures not 
only show the interactions between the attributes and the class but also the interac-
tions among the attributes themselves. Such features may be helpful for both describ-
ing the phenomenon under study and classifying new samples with unknown class  
label. In contrast, logistic regression and GCS only allow the classification of new 
samples but do not provide a description of the phenomenon under investigation. 

It is important to keep in mind that the process or processes that histopathologists 
follow to make their final diagnoses have not been yet fully understood and can only 
be partially explained in terms of pattern recognition with occasional use of heuristic 
logic. Hence, the information provided there is subjective rather than objective. To 
ameliorate this problem, alternative data collection methods such as image analysis 
techniques could be used so that objective measures from sample raw digitalized im-
ages can be extracted. In sum, our contribution has mainly to do with the discovery of 
an intrinsic impossibility of manually selecting a set of features for achieving a good 
balance for sensitivity and specificity in Crohn’s disease and UC. We plan to investi-
gate the possibility of building a pre-processing vision module capable of extracting 
“objective” features from raw images and, again, check the performance of the Bayes-
ian network classifiers using the dataset produced by this module. 
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Abstract. Motivated by the problems of vision-based mobile robot map build-
ing and localization, in this work, we show that using statistical learning meth-
ods the performance of the standard descriptor based methodology for matching 
image features in a wide base line can be improved. First, we propose two kinds 
of descriptors for image features and two statistical learning methods. Later, we 
present a study of the performance of descriptors with and without the statistical 
learning methods. This work does not pretend to present an exhaustive descrip-
tion of the mentioned methods but to give a good idea the effectiveness of using 
statistical learning methods together with descriptors for matching image fea-
tures in a wide base line.  

1   Introduction  

Possibly the hardest problem in robotic mapping is the correspondence problem, also 
known as the data association problem [13]. The correspondence problem is the prob-
lem of determining if sensor measurements taken at different points in time corre-
spond to the same physical object in the world. For example two instances of the  
correspondence problem in robot mapping are closing cycles in large cyclic environ-
ment and the kidnapped problem. When a mobile platform moves through its envi-
ronment a single video camera can be used in order to build a map of its surroundings 
and to determine its position (absolute or relative). Because in computer vision a great 
amount of information is available, this information can be used for solve or at least 
to reduce the challenging correspondence problem. In computer vision, sparse image 
statistics called features are used in order to create a model that is rich enough to rep-
resent the environment and sparse yet to be stored efficiently. A descriptor can be 
viewed like a distinctive representation of the feature and its variations among the 
time in a compact way respect the original data without lose of its statistical meaning. 
In this scenario, the correspondence problem is represented for matching image fea-
tures descriptors in a wide base line. We understand “wide base line” as a big differ-
ence in time and camera point of view, between learning and recognition phases. To 
address the whole problem descriptors can be very helpful because they can provide 
distinctive signatures of different locations in space. Furthermore, descriptors have  
to be as much invariant as possible to changes in scale, rotation, illumination or  
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projection (point of view) and algorithms must be efficient and robust to a number of 
environmental variations such as lighting, shades, and occlusions among others. 

Some approaches [3, 4] have been presented to address the problem of image fea-
tures representation for tracking, recognition or reconstruction, the affine invariant 
descriptors. Generally these methods search for extrema in image scale space for  
obtaining good candidates locations for detection. Lowe’s scale invariant feature 
transform (SIFT) [5] has showed to match reliably across a wide range of scales and 
orientation changes; it uses a cascade filtering approach in an isotropic Gaussian scale 
space to identify points of interest, then it samples gradients to create an orientation 
histogram represented in a 128-element descriptor. In [6] an approximate version of 
Kernel Principal Component Analysis (KPCA) was used to estimate features descrip-
tors for wide base line matching.  

Invariance to some changes like point of view or illumination are difficult to repre-
sent in descriptors created from a single frame since there does not exist a single-view 
statistic that is invariant with respect to viewpoint or lighting conditions. In applica-
tions like structure from motion or robot localization a video stream is available mak-
ing possible to detect and then track the features across the images with small base 
line (frame to frame); several trackers [1, 2] can be used for this. The correspondence 
problem is easy in a small base line. While a robot move through their environment 
and detect image features with its camera, the appearance of the features changes due 
to natural changes in illumination and changes in the point of view. We can take ad-
vantage of matching in a small base line for capture the variations in the appearance 
of each feature along the time to make the feature descriptors more robust to changes 
like illumination and point of view. 

In our previous work [14] we design a image feature descriptor called ICAD based 
in ICA (independent component analysis) for matching image features with a wide 
base line from the incoming video at real time with the feature descriptors previously 
stored in a data base. Now, in this work we propose to use statistical learning methods 
for capture variability of image feature appearance. In the learning phase we use small 
base line tracking methods for capturing the appearance of the image feature along the 
time, then we build their descriptors, assigning a specific label; these labeled descrip-
tors will be the input to the statistical learning method. In the recognition phase we 
use the statistical methods to identify the labels of the image features from the incom-
ing video, in real time. 

In section 2, we explain the general methodology followed by the implementation 
of the methods. In section 3 we briefly explain the image feature descriptors and the 
statistical learning methods used in this work. In section 4 we show the experiments 
and discuss their results, and finally in section 5 the conclusions and future work are 
presented. 

2   General Methodology 

We consider the feature matching wide baseline problem under the context of map 
building and localization of mobile robots. The viewing conditions change drastically 
between the phases of map building (learning) and localization (recognition). Such 
changes affect both the domain of the image (deformations of the scene and geometric 
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distortion due to changes of the viewpoint) as well as its range (changes in illumina-
tion). Such changes are due to both intrinsic properties of the scene (shape, reflec-
tance) and to nuisance factors (illumination, viewpoint). 

A feature is a statistic of the image that is intended to make easier the matching 
process; ideally one would want a statistic feature invariant to all kind of changes. In-
variant descriptors to changes like scale or rotation can be created from one single 
view and they are suitable for many applications, nevertheless in the context of mo-
bile robot, changes like viewpoint or illumination can be appreciably significant  
between learning and recognition stages. Unfortunately there exist no single view sta-
tistic that is invariant respect to the point of view or lighting conditions. On the other 
hand in the context of mobile robots a high frame-rate video is available during both 
building and localization. So multiple adjacent views of the same scene are available, 
as for instance in a video from a moving camera and, at least in theory, the point of 
view could be explicitly accounted for. Additionally, changes in viewpoint cause ir-
radiance changes that are due to the interplay of reflectance and illumination. 

In this work we want to find if the performance of a scheme for matching image 
features in a wide base line based in a single feature descriptor is increased, if we use 
multiple descriptors from the same feature taken at different time, for training a statis-
tical learning method, and then use this learning method for the matching process.  

So in this work we are interested in the results of a general scheme for matching 
images features in a wide base line, instead of a specific method performance. Next, a 
general and modular scheme is presented to address the problem, the idea is to at-
tempt different kind of descriptors and statistical methods of learning and classifica-
tion, the modularity makes possible to interchange different methods and descriptors. 
Therefore, the scheme is divided into two stages: learning (map building) and recog-
nition (localization).  

 
Learning phase: 

 
1. Small base-line tracking: Features are detected and tracked using a conven-

tional small base-line tracker, specifically in this work the Lucas-Kanade 
Tracker (KLT) was used, but any efficient tracker could be used. 

2. Window extraction: For each feature detected a p-by-p pixels window around 
the feature center is extracted, in our work we used a 12-by-12 pixel window. 
Other window sizes have been tested but the results were worse. 

3. Descriptor creation: A descriptor xi is obtained for each window area. A good 
descriptor has to be as invariant as possible to changes like rotation or scale 
and insensitive to changes like illumination. We used two statistical tech-
niques: principal component analysis (PCA) and independent component 
analysis (ICA), but others descriptors like SIFT can be used. 

4. Storage in database: For each frame, descriptors have to be scaled and stored 
in a data base. Descriptors created from the same feature tracked along the 
time with small base-line are stored with the same label yi.  

5. Feature class creation: A statistical method is used in order to create and rep-
resent the descriptors stored in the database with the same label yi like a unique 
class V that represent the feature. This feature class V is created with the pur-
pose of capturing the variations in the appearance of the feature along the time. 
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The capacity of V to represent these variations depends on the number of de-
scriptors and the changes of scene conditions in which it was created. For this 
study we used Support Vector Machine (SVM) and variations of K-Nearest 
Neighbor (KNN). 

 
Recognition phase: 

 
1. Feature Detection: In order to improve the computational performance in the 

recognition phase, the same small base-line tracker in the learning phase is 
used to detect features, but it is not used to track feature candidates to match. 

2. Descriptors candidates: For each candidate feature a descriptor xj is created 
in the same way that it was created in the learning phase. 

3. Recognition: The same statistical method used in the learning phase is used 
now to classify the candidate descriptor xj in the more adequate feature class 
V. Depending on the kind of selected statistical method a quality scheme of 
correspondence between the candidate descriptor and its associated class can 
be implemented. 

3   Statistical Methods for Matching Features in a Wide Base-Line 

In this work we employ two image features descriptors: The ICAD [14] and the 
PCAD, based in [14] too, but using PCA (principal component analysis) instead of 
ICA (independent component analysis). We used two statistical learning methods: 
KNN (k-nearest neighbor) and SVM (support vector machine). The idea is comparing 
the performance of ICAD and PCAD alone, with their performance using them to-
gether with KNN and SVM. Consequently in the experiments we are comparing six 
methods: ICAD, PCAD, SVM-ICA, SVM-PCA, KNN-ICA, and KNN-PCA. In this 
section first we explain the theoretical bases for ICA, PCA, SVM and KNN, and later, 
we briefly explain our methods used in this work. 

3.1   PCA and ICA 

Principal Component Analysis (PCA) [7] is a standard statistical tool used to find the 
orthogonal directions corresponding to the highest variance. It is equivalent to a 
decorrelation of the data using second-order information. The basic idea in PCA is to 
find the components p1, p2, …, pn that explain the maximum amount of variance, by n 
linearly transformed components. Then, the principal components are given 
by Xwp T

ii = , where X = [x1, …, xm]T, xi is an observed data vector, and wi is a basis 

vector (an eigenvector of the sample covariance matrix E{XXT}). It can be written, in 
matrix form, as:  

P = WX (1) 

where P = [p1, …, pn]
T and pi is a principal component vector.  

The Independent Component Analysis (ICA) [8] attempts to go one step further 
than PCA, by finding the orthogonal matrix H which transforms the data P into Z hav-
ing Z1,Z2,…Zm statistically independent. The ICA is thus more general than PCA in 
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trying not only to decorrelate the data, but also to find decomposition, transforming 
the input into independent components. The simplest ICA model, the noise-free linear 
ICA model, seems to be sufficient for most applications. This model is as follows: 
ICA of observed random data X consists of estimating the generative model: 

X = AS (2) 

where X = [x1, …, xn]
T xi is an observed random vector, S = [s1, …, sn]

T, si is a latent 
component, and A is the constant mixing matrix. The transform we seek is B = VW, 
then 

Z = BX = BAS = CS (3) 

If an orthogonal matrix D that transforms the mixed signals X into Z with independent 
components could be found, and assuming that at least one independent source sk is 
normally distributed, then Z=CS with C being a non-mixing matrix. The ICA algo-
rithms attempt to find the matrix B which ensures that Z is independent. 

 

Fig. 1. a) Applying ICA or PCA a matrix is formed where each row is a feature i tracked in 
frame n. b) ICA or PCA finds a weight vector w in the directions of statistical dependencies 
among the pixel locations. In the case of ICA, data are decorrelated and decompositions found, 
transforming the input into independent components. 

3.2   ICA and PCA Applied to Window Based Images Features 

If we consider a feature as a window of p x p pixels in a frame, we can organize 
each feature as a long vector with as many dimensions as number of pixels in the fea-
ture. ICA or PCA can be applied to this data organizing each vector into a matrix X 
where each row is the same image feature for different frames (Fig.1 left). In this ap-
proach, images features are random variables and pixels are samples (Fig.1 right). 

3.3   SVM and KNN 

Support Vector Machine (SVM) is a technique used in data classification. The goal of 
SVM is to produce a model which predicts target value of data instances in the testing 
set which are given only the attributes. 

Given a training set of instance-label pairs (xi,yi),i = 1,…,l where xi ∈Rn and 
y∈{1,-1}l , the SVM [9] require the solution of the following optimization problem: 
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Here training vectors, xi, are mapped into a higher (maybe infinite) dimensional 

space by the function ϕ. Then SVM finds a linear separating hyper-plane with the 
maximal margin in this higher dimensional space. C is the penalty parameter of the 
error term. Furthermore, K(xi,xj)= ϕ(xi)

T ϕ(xj) is called the kernel function. In this 
work a radial basis function (RBF) was used like kernel function: 

 

 0),||||exp()( 2 >−−≡ γγ jiji xxxxK  (4) 

 
The K-nearest neighbor (KNN) is a statistical method of classification well known 

and very simple, nevertheless has come to demonstrate to be very effective in a wide 
variety of applications. It works based on minimum distance from the query instance 
xj to the training samples (xi,yi), to determine the K-nearest neighbors. After we gather 
K nearest neighbors, we take simple majority of these K-nearest neighbors to be the 
prediction of the query instance.  

In this work we use a 5-nearest neighbor; we use a parameter α like a threshold for 
considering a good match between an xj candidate descriptor and the selected more 
voted feature class V: 

 

 
2

1
),(

l

xxdK
l

j j==α  (5) 

 
where xj∈V, d(xj,x) is the Euclidean distance and l is the number of votes for the 
more voted class V. In this way the average Euclidean distance is used like threshold 
but is penalized according to the number of votes received for V respect to K. 

3.4   ICAD and PCAD Methods 

Many ICA and PCA algorithms are available. A computationally efficient ICA algo-
rithm, called the FastICA [10] algorithm and the PCA Snapshot Method [11] have 
been chosen for this work. 

When the KLT (small base-line tracker) locates a feature (feature i at frame f), a p-
by-p pixels window around the feature center is stored as a vector ufi of length p-by-p, 
with a distinctive label; in the following frames the feature is tracked and repeating 
the above process, storing the window with the same label. Immediately vectors with 
the same label (same feature i) are regrouped in a matrix Ui = [u1i, …, uni]

T where n  
is the number of frames where the feature has been tracked. 

Then for each matrix U the ICA or PCA is applied as it has been shown in the sec-
tion 3.2 along with dimensional reduction selecting the largest eigenvalue to be re-
tained. At the output of the ICA or PCA we obtain a descriptor qi with a dimension 
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that equals to the feature window size. The descriptors are stored in a database with a 
unique label for each feature. 

In the recognition phase features are detected but not tracked by the KLT for each 
incoming frame. Then for each feature detected a window is obtained in the same way 
than the learning stage and sorted in a vector vi, the ICA or PCA is directly applied to 
this vector without dimensional reduction producing a descriptor xj. A fast k-nearest 
neighbor algorithm is applied to the database in order to look for the 2-nearest 
neighbor descriptors qi1 and qi2. Be k1 = d(xj, qi1) and k2 = d(xj, qi2) (d is the Euclidean 
distance), k1  k2, and η=k1 / k2, this factor will be used by our algorithm as a thresh-
old for considering a good match between the candidate descriptor ri and its corre-
sponding nearest descriptors qi1 and qi2 in the database. When η tends to 0 means a 
great distance between candidates and, empirically, the results are better.  

3.5   SVM-ICA and SVM-PCA Methods 

We used the LIBSVM [12] for the implementation of the SVM. The method follows 
exactly the same steps than the feature-class method (section 2): In step 3 (descriptor 
creation) unlike the ICAD and PCAD methods, the ICA or PCA is applied directly to 
the vector ufi obtained from de p-by-p pixels window (step 2) and stored in the data-
base (step 4). In the output of the ICA or PCA we obtain a descriptor with the same 
dimension than the pixel window. 

For step 5 (feature-class creation) we employ the descriptors-database for training 
a SVM classifier with a radial basis function (RBF) as a kernel function, equation 4. 
The parameters C = 8 and γ = 1 used in RBF were selected by cross-validation and 
grid search. For the recognition phase the SVM output model is used to predict the 
feature class V of the candidate descriptor xj, as it has been explained in section 2 
(recognition phase). 

3.6   KNN-ICA and KNN-PCA Methods 

For the implementation of KNN we employ a computationally efficient algorithm 
called approximate nearest neighbor (ANN). The method follows the same steps than 
SVM-ICA and SVM-PCA except that a training model is not generated from the de-
scriptor-database. Prior to the recognition phase the whole database is loaded in 
memory by the ANN algorithm. In experiments we used 5-NN. For recognition phase 
ANN is applied as it has been explained in section 3.3. The threshold α is used to 
consider a good match between a candidate descriptor xj and the more voted selected 
feature class V (equation 5). 

4   Experiments 

We have implemented a C++ version of the methods that runs on a PC 2GHz Pentium 
IV processor, 512MB RAM. A non-expensive USB Webcam with a maximum resolu-
tion of 640-by-480 pixels and 30 fps has been used.  

We performed a variety of experiments in order to show the performance of the 
aforementioned methods. For each method in the learning phase, a video sequence of 
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a rigid environment desktop scene was recorded moving the camera slowly and con-
tinuously in order to obtain a change of some degrees in the 3D point of view and ro-
tation of the camera. Later, twenty descriptors were created from this video sequence 
as it was described in section 3. In Fig. 2 (center image) the scene used in the learning 
phase is showed.  

Together with these 20 descriptors, the database contains another 1000 descriptors 
corresponding to other video sequences. The objective of these experiments consists of 
observing the response of the methods when a set of descriptors coming from an online 
video sequence (close to the learning sequence, as it is explained below) will be matched 
with the descriptors database. The response was observed in four different situations:  

• case a) change in 3D viewpoint with respect to the position in the learning phase 
and little change in illumination, 

• case b) change in 3D point of view plus change in rotation and little change in illu-
mination, 

• case c) change in 3D point of view plus change in scale (camera zoom) and little 
change in illumination, 

• case d) change in 3D point of view plus great change in illumination.  

Fig. 2(left and right) show some frames used in the recognition phase. 
 

 

Fig. 2. Descriptors created in the learning phase (central image). Examples of descriptors 
matched in the recognition phase: (left and right image) we can observe changes in the point of 
view and illumination. 

We define the response of the methods in terms of two measurements:  

1) Error of classification: It is the ratio between the percentage of false positive 
and percentage of classification. We define percentage of false positive as the ratio 
between the number of features wrong classified and the total of features classified in 
the scene (correctly or incorrectly). We define percentage of classification as the ratio 
between the total of features classified in the scene (correctly or incorrectly) and the 
total that potentially could be matched (we consider only a finite number of possible 
locations in each frame to be matched, step 1 of recognition phase). For example in 
the methods based in KNN the percentage of false positive for a threshold α =0 .6 
could be 16 percent but the percentage of classification is 50 percent, consequently 
we define the error of classification as 0.32. On the other hand in SVM is difficult to 
establish a threshold for classification, because SVM is a method of the kind “choose 
the best candidate”. Therefore we consider the percentage of classification for SVM 
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as 100 percent. For example a 38 percent of false positive in SVM means 38 percent 
of classification error. 

2) Computational cost: We have calculated the time for each frame (or the fre-
quency, it is the same) that the different methods take to classify 30 possible features 
with the 1000 descriptors that are in the database.  

The results for the experiments and the measurements are shown in Table 1. 
 

Table 1. Error of classification for each condition case (a, b, c and d) in the recognition phase 
and their computational cost. CPU* does not include the time to detect features by KLT tracker. 

Case PCAD ICAD SVM-
PCA 

SVM-
ICA 

KNN-
PCA 

KNN-
ICA 

a .40 .35 .33 .21 .26 .21 
b .47 .45 .44 .38 .31 .32 
c .47 .33 .41 .28 .50 .35 
d .48 .47 .43 .42 .37 .32 

CPU 5.34 Hz 5.05 Hz 2.32 Hz 2.20 Hz 5.34 Hz 3.84 Hz 
CPU* 16.30 Hz 10.70 Hz 3.22 Hz 2.94 Hz 21.72 HZ 7.09 Hz  

5   Conclusions 

In this work we propose the use of statistical methods for learning variability of image 
feature appearance, for matching image feature in a wide base line.  

In the results of the experiments (Table 1), we can observe a lower error of classi-
fication in the methods based in statistical learning (SVM-PCA, SVM-ICA, KNN-
PCA and KNN-ICA) comparing with ICAD and PCAD methods. Therefore the per-
formance of the ICAD and PCAD methods was increased using statistical learning 
approaches. 

On the other hand, as we expected, ICA-based descriptors show lower error of classi-
fication than PCA-based descriptors but computationally the cost for ICA is greater than 
PCA. We observe a similar computational cost in the case PCAD and ICAD with KNN-
PCA and KNN-ICA. Finally we also observe that KNN shows better performance than 
SVM in error of classification as well as in computational cost. 

A feature of our approach is the modularity, so in a future work we pretend to use a 
more robust descriptor like SIFT. Looking the results of this work, we can expect that 
using SIFT together with a scheme of statistical learning we can improve the per-
formance of SIFT alone, for applications like a mobile robot where an incoming 
stream video is available. 
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Abstract. In this paper we study a method for the detection of shot
boundaries using interframe histogram differences. Instead of using tradi-
tional distance between histograms, we use a probabilistic distance that
indicates the chance of a given distance to be a shot boundary. We de-
clare a shot change when the interframe histogram difference is a large
deviation from the expected histogram interframe differences given past
evidence. Like other histogram based methods the proposed one is very
simple while being very robust and effective. The proposed method out-
performs similar methods proposed in the literature for the detection
of hard cuts and achieves good recall and precision performances for
gradual transitions.

1 Introduction

Shot boundary (SB) detection algorithms are one of the most important methods
for video analysis. They allow the segmentation of the original video sequence
into basic units called shots that facilitate high level processing and abstraction
of the video signal. Although it may seem a simple task, the automatic and
reliable extraction of SB it has some difficulties, mainly due to the different
types of video sequences. Since a video sequence contains a great amount of
data, we should avoid unnecessarily complicated methods. For this reason we
will explore possible improvements of classical and simple methods. In this work
we will present a simple online method based on color histograms with only a few
parameters that performs well for a representative set of tested video sequences.

Existing methods for SB detection can be divided into the following basic
categories: pixel, histogram, block matching, object segmentation and tracking,
and feature tracking based methods. Pixel based methods usually compute in-
terframe differences between frames (adjacent or not). The main drawback of
pixel-based methods is their sensitivity to camera and object motion and noise.
For this reason filtering is usually applied before computing interframe differ-
ences [1]. Regarding the measure of difference, we can make a distinction between
distance based methods and thresholding ones. Usually these methods are not
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very reliable and therefore are mostly used as indicators of probable SB that are
the confirmed by more sophisticated methods [2].

Histogram based methods compare the histograms of a pair of frames using
a suitable histogram distance [3]. In contrast to pixel based methods, histogram
based methods are robust against camera and object motions since histograms
do not contain any spatial information. Unfortunately, the main limitation is
that frames of different shots can have similar histograms and in this way these
methods will fail. In addition, like pixel-based methods, these methods are not
robust against lighting changes. Strong color changes in part of the image may
produce false detections.

Block-matching methods divide each frame into blocks and then match a given
set of block features (pixel colors, histograms, and so on) between frames. That
is, the best match for each block in the source frame is found in the destination
frame and the similarity of these block is used as an indicator for SB existence
[3,1].

Segmentation and object tracking are typically computational demanding.
The main idea behind these methods is that frames within a shot contain the
same objects, therefore, they use algorithms for object tracking and segmentation
to achieve SB detection.

Feature tracking methods detect shot transitions when there is an abrupt
change in the number of features tracked. For example, if the frame edges have
strong variations [1]. In [4] the authors propose feature tracking as a measure of
frame dissimilarity. Instead of tracking edges, they propose to track fine grained
features as corners and textures. SB are then detected as points with high inter-
frame feature loss.

Nearly all of the previous methods rely on a set of thresholds in order to de-
cide whether there is a SB in a given frame. The problem of selection of the right
threshold is a key point that has big influence in the overall system performance.
Unfortunately, it has received little attention in the literature [1] and most of the
authors propose heuristics for their selection. Furthermore, it has been demon-
strated that global thresholds led to sub optimal methods, with too many false
positives or false negatives [1]. To solve this problem adaptive thresholds have
been proposed. However, when using adaptive thresholds we must design an up-
dating rule based on, for example, the statistics of non-boundary frames. This
introduces additional problems concerning the correct estimation of this statisti-
cal information. Traditionally the problem is solved introducing a learning stage
where several video sequences are processed to obtain the desired statistics.

In this paper we introduce a simple method for the detection of SB using
only interframe histogram differences. The method is inspired in the works of
Computational Gestalt [5,6]. The key idea in this framework is to define a mean-
ingful event as large deviation from a known background process. Here we will
extend those ideas to label a SB when its interframe histogram differences have
little probability to be produced given past interframe histogram differences of
non-SB frames. The use of past information of non-SB differs from other existing
methods which usually evaluate distances between adyacent histograms. This is



728 A. Pardo

a difference between our proposal and other existing probabilistic histogram (or
probability distribution) distance. Also, the use on non-SB allows using a non-
supervised technique; we do not use any training step considering known SB
information. Even though the mentioned limitations of histogram based meth-
ods will show that they achieve reasonable results. Furthermore, they are less
sensitive to compression artifacts as some of the other discussed methods (fea-
ture and pixel based for example). In our case all sequences are compressed in
mpeg format; some of them with strong compression artifacts.

In the first step of the algorithm we compute a measure of SB probability
or meaningfulness. Then in a second stage we apply an adaptive thresholding
technique that only uses the information of the video sequence being processed
to find the SB. This makes our method very simple and fast.

2 Proposed Method

As we said in the previous section our method is based on interframe histogram
differences. In what follows we will consider histograms of image pixels computed
over a predefined set of bins. Let Hi(t) be the histogram of the i color component
of the frame t1, and Hd the histogram of (color) histogram differences computed
also over a predefined set of bins. That is, if we define d = |Hi(t + 1) − Hi(t)|,
Hd will contain the histogram of d for previous frames. That is, in each bin it
counts the number of points (bins from Hi) where the difference falls within it.

Now let Pμ = Probability(d(b) > μ) be the probability of the interframe his-
togram difference at bin b to be above μ. If there is no shot change we expect the
histogram differences to be small, and in agreement with previous histogram dif-
ferences. On the other hand, when a shot change occurs the histogram differences
do not follow previous evidence.

Given a fixed threshold μ we can compute the number of bins in d exceeding
the threshold μ, Nμ. To obtain a probabilistic measure of shot change meaning-
fulness we follow [5,6] and compute its probability of occurrence given previous
interframe histogram differences. This can be done computing the probability of
at least Nμ bins out of the total number of bins Nb exceeding the threshold μ
by using the Binomial distribution:

B(Nb, Nμ, Pμ) =
Nb∑

k=Nμ

CNb

k P k
μ (1 − Pμ)Nb−k

Using this probability, we say that the actual histogram difference is mean-
ingful if its probability is very low given previous histogram differences 2. This
means that we say that the event is meaningful if it is a large deviation of what
is expected given past information.
1 In this work we use the YUV color space.
2 In the computational gestalt theory instead of working only with the probabilities

the authors propose to estimate the expectation via multiplying the probability by
the number of test performed [6].
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Finally, the meaningfulness of a histogram difference is obtained as the mini-
mal probability over a set of fixed thresholds:

M = min
μi

B(Nb, Nμi , Pμi) (1)

where each term corresponds to a threshold μi ∈ {μ1, ..., μn}. The smallest
threshold μ1 is estimated from the past values of histogram differences using an
α − β filter. The upper threshold is set to a reasonable value. In this work we
set μn = 512. According to our experiments this parameter does not influence
the results.

The probabilities Pμ are obtained from past histogram differences. To deal
with non-stationary statistics we use an α−β filter. The histogram Hd is updated
with the following rule:

Hd(t + 1) = αHistogram(d(t)) + (1 − α)Hd(t) (2)

with α = 0.2.
For the computation of the binomial distributions we use the Hoeffding ap-

proximations [7] to obtain an upper bound for the logarithm of M when k/n ≥ p
using3:

log(B(k, n, p)) ≤ k log
(pn

k

)
+ n

(
1 − k

n

)
log

(
1 − p

1 − k
n

)
Since we propose an online method we must decide the occurrence of a shot

change using only past values. In fact we introduce a delay in the response in or-
der to consider a window, W = [t−4, ..t+4], centered in t. We will say that there
is a SB at frame t if the following conditions are fulfilled: M(t) = mins∈W M(s),
M(t) < δ mins∈{t−4,..,t−1} M̂(s) or M(t) < δ mins∈{t+1,..,t+4} M̂(s), M(t) <

γThreshold(t) where M̂ are the local maxima of M and Threshold(t) adaptively
computed using only the accumulated values for non-SB X [1]:

Threshold(t) = αThreshold(t − 1) + (1 − α)Mean(X)

For the all the results presented in next section we set: δ = 4, γ = 10 and
α = 0.01.

3 Results and Evaluation

To validate the results of the proposed method we are going to test our algorithm
against a set of sequences used in [4] where a method for hard cut detection was
presented. In figure 1 we show the first frame and the outcome of the proposed
method for three sequences. As we can see there are a set of well defined peaks
that correspond to SB. In table 1 we present the our results restricted to hard

3 Since the probabilities are very small is more combinient to work with logarithms.
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Table 1. Comparison for the detection of hard cuts for sequences in figure 1

Proposed Method Feature tracking [4] Pixel based [4] Histogram based [8]
Seq Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
A 1 1 1 1 1 1 1 1 1 1 1 1
B 1 1 1 1 1 1 .825 .825 .825 1 .375 .545
C .946 .898 .922 .595 .870 .707 .764 .778 .771 .936 .536 .682
D 1 1 1 1 1 1 1 1 1 1 .941 .969
E 1 .957 .978 .938 1 .968 .867 .867 .867 .955 .700 .808
F 1 1 1 1 1 1 0 0 0 1 1 1
G 1 1 1 .810 .944 .872 .708 .994 .809 1 .666 .800
H .769 .976 .860 .895 .895 .895 .927 1 .962 .971 .895 .932
I 1 1 1 1 1 1 1 1 1 1 .500 .667

Average .968 .981 .973 .915 .968 .938 .788 .829 .804 .985 .735 .823
Variance .006 .001 .002 .019 .003 .010 .099 .104 .099 .001 .055 .027
Std dev .077 .035 .050 .137 .052 .100 .314 .323 .315 .025 .234 .165

cuts for comparison purposes with [4]. As in [4] we measure the performance of
our method using precision (Prec), recall (Rec) and F1 defined as:

Prec =
T+

T+ + F+
, Rec =

T+
T+ + F-

, F1 =
2 × Prec × Rec

Prec + Rec

where T+, F+ and F− means true positives, false positives and false negatives
respectively.

The precision of the proposed method (PM) outperforms, on average, the fea-
ture tracking (FT) and pixel based (PB) methods while performs close to the
histogram based (HB) one. On the other hand, considering the recall capabil-
ities, PM outperforms, on average and for each sequence, the precision of the
other three methods. Finally, the F1 measure of PM outperforms on average and
for each sequence but the H, the results of the other methods. Looking at the
individual sequences, the only sequence where PM is defeated is sequence H. For
this sequence, the precision is worse than other three methods while its recall
outperforms FT and HB methods and is close to the PB one.

We conclude that PM outperforms (specially looking at the F1 figures) the
other three methods reported for the same sequences. The sequence H is a prob-
lematic case with too many false positives. These false positives are located
around frame 3000 where strong lightning change occur, and may be eliminated
using a better detection strategy. Particularly, a strategy adapted for this se-
quence. In our case we used the same strategy (with the same parameters) for
all sequences.

When considering the detection of gradual transitions, PM detected all of
them in the tested sequences achieving 100% of precision and recall. Although
the obtained results seem very promising the total number of gradual transition
considered is not big enough to expect this kind of performance in every case.
The numbers of gradual transitions for each sequence are: A 1, C 2, E 4, F 2
and G 2. However, it is important to note that the detected gradual transitions
are of different type. For example, even though the transitions in sequence F
expand along several frames the output of the proposed method has two clear
peaks at boundary positions, see figure 1.
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Fig. 1. Top: Sequences. A (Lisa): Cartoon video with substantial object motion.
B(Jamie): Strong motions. C(Psycho): Black and white movie with substantial action
and motions and many close hard cuts. D(Sex in the city): High quality digitalization
TV show. E(Highlander): Low quality digitalization of TV show. F(TV Commercial):
TV Commercial with only a dissolve. G(TV Commercial): TV commercial with hard
cuts and gradual transitions. H(Video): Movie with strong lightning changes. I(News):
TV news program. Bottom: Comparison of proposed method (meaningfulness M) and
standard bin-wise histogram difference for sequences A and H. Results for sequence F.

To exemplify the advantages of PM against traditional histogram based meth-
ods we compare the outputs of PM and standard histogram difference. We nor-
malized both results dividing each one by its maximum. The results are presented
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in figure 1 for videos A and H. As we can see the results of PM are less noisy
and the peaks at SB positions are clearly separated from non-SB ones.

4 Conclusions and Future Work

We have presented a simple method that uses histogram differences and improves
the results of previously reported methods. The method obtains a measure for
shot change meaningfulness with clear peaks at SB. This allows for simpler
adaptive threshold and offline detection methods. We formulated the problem
inspired in the computational gestalt theory and presented a novel method to
compute shot changes based on histogram differences. In future work we will
address the limitations of the method with respect to strong color and lightning
changes together with better detection strategies.
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Abstract. In this work we consider a mobile robot with a laser range
finder. Our goal is to find the best set of lines from the sequence of
points given by a laser scan. We propose a probabilistic method to deal
with noisy laser scans, in which the noise is not properly modeled using
a Gaussian Distribution. An experimental comparison with a very well
known method (SMSM), using a mobile robot simulator and a real mobile
robot, shows the robustness of the new method. The new method is also
fast enough to be used in real time.

1 Introduction

This paper focuses on methods to resolve the problem of fitting a set of lines to
a sequence of points. Specifically, the sequence of points are acquired by using
a laser range finder mounted on a mobile robot. The set of lines can be used in
complex activities such as Localization and Mapping in indoor environments.

Localization is a key activity for mobile robots which consists of determining
the robot’s position in its environment. Localization can be done by matching
the newest sensed data against information in a priori map. There are two com-
mon matching techniques that have been used in mobile robotics: point–based
matching and feature–based matching.

In the feature–based matching approach it is necessary to learn features from
the environment. Features are recognizable structures of elements in the envi-
ronment [12]. The simplest feature is a line or a line segment. A Line Based Map
(LM) is a set of lines which represent the robot’s environment. Owing to indoor
environments are usually rich in planar surfaces, LMs are the natural way to
represent them. In addition, LMs are more compact and more accurate than
point–based maps.

For extracting a LM from a laser scan, many algorithms have been proposed,
but all of them have their shortcomings. Forsyth [6] identifies three principal
difficulties in this process: 1) find the best number of lines, 2) determine which
points belong to which line, and 3) estimate the line parameters given the points
that belong to a line. Furthermore, if the robot navigates within a high cluttered
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environment, a lot of points do not belong to any line, and the process becomes
more difficult.

This paper introduces a new approach called WSAC–GE, Window SAmpling
Consensus with Global Evaluation. The algorithm begins with an empty map,
and successively proposes a new map by adding or removing lines from the previ-
ous map. The current map is selected from two maps: the proposed new map or
the previous map, according to which map is best evaluated by a global function.
Problems associated with outliers (atypical data) are handled by a probabilistic
search and different segments of the same line are identified easily. Other meth-
ods have difficulties with outliers or report many disconnected segments when
in fact they belong to the same line.

This paper is organized as follows: Section 2 describes how a laser acquires
information from the environment. Section 3 describes related works, and it
focuses on the most used algorithms to extract lines. Section 4 describes the
proposed method. Section 5 compares the performance of WSAC–GE against a
good and well known method called SMSM (Split–Merge–Split–Merge). Finally,
section 6 explains the advantages of the proposed method.

2 Data Acquisition

In a single measurement, a laser range finder calculates the distance to the
object in a given orientation. Usually, each measurement is expressed in the
form (ri, αi); where ri is the distance from the sensor to the detected object at
direction αi. A laser scan performs n consecutive measurements from the envi-
ronment changing the orientation in Δα. Also, the laser scan can be expressed
in its equivalent cartesian form P = {(xi, yi) |i = 1 . . . n}.

3 Related Works

Toobtain a LM froma 2D laser scanmany algorithmshave been proposed.Two ap-
proaches, Line Tracking (LT) [4] and Iterative End-Point Fit (IEPF) [4] represent
the classical way to solve the problem. These two algorithms take advantage of the
sequentiality of the laser scan. The principal drawbackofLT and IEPF is their poor
performance when the laser scan is noisy. On other hand they are extremely fast.
The Hough Transform Algorithm (HT) [8] is another common alternative used to
generate line Maps . This technique has a good performance even when there are
outliers. However, the principal drawbacks are associated with the discretization,
its slow speed and that it ignores the uncertainty for estimating the line parame-
ters. Finally, the well known Expectation-Maximization algorithm (EM) [3] is a
technique used in several kind of problems with missed data. But it requires to
know in advance how many line models exist in the environment. In [7] this dif-
ficult is solved by incrementally adding and removing models. Due to the SMSM
algorithm has been widely used with good results [11], we compare the proposed
method against SMSM. The next section describes the SMSM algorithm and sec-
tion 3.2 focuses in methods commonly used to manage atypical data.
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Fig. 1. Iterative End Point Fit

Algorithm 1. IEPF Algorithm
Input: The laser scan P = (p1, p2, . . . , pn) and a threshold t
Output: The map of lines M
1. Initialize the set of sequences L ← {P} and M ← {}.
2. While L 	= {} do

(a) Move an element of L to S
(b) Calculate the line Θ joining the first and last point of S.
(c) Detect the point pj with maximum distance e⊥max to the line Θ
(d) If e⊥max > t then Put S0 = (pk|k = 1 . . . j − 1) and S1 = (pk|k = j . . . nj)

into L
(e) If e⊥max ≤ t then Fit a line Θ∗ to all the points in S and put Θ∗ into M.

3. Merge collinear segments in M.

3.1 The SMSM Algorithm

The Split–Merge Split–Merge algorithm (SMSM)[17] is based in the IEPF al-
gorithm. The IEPF algorithm [4] is described by the algorithm 1. and it is
illustrated graphically in the figure 1.The SMSM algorithm is an extended and
more robust version of the IEPF algorithm. At the beginning it finds clusters
applying a breakpoint detector [1]. The idea behind this step is to detect and
eliminate outliers, because they are not going to be included into any cluster.
Then it merges two consecutive clusters if their distance (the distance between
the final point of the first cluster and the first point of the second cluster) is
less than a predefined threshold. In the second phase, SMSM applies the IEPF
algorithm to all clusters. Finally it combines collinear segments.

3.2 Robust Regression

The goal of regression is to describe data using a model. Unfortunately, in the
data set often exists a kind of data called outliers that makes the regression a
hard problem. An outlier is a single observation far away from the rest of the
data. Two techniques are frequently used to obtain a model from data conta-
mined with outliers: The Random Sample Consensus Algorithm (RANSAC) [5]
and the M–Estimators [9].
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Algorithm 2. RANSAC Algorithm
Input: The laser scan P = (p1, p2, . . . , pn), a threshold t and a maximum number of
iterations m
Output: Θ∗ (the best line given P)

1. j ← 0, n∗ ← 0.
2. While j < m do

(a) j ← j + 1
(b) Select randomly two points from P and compute the line Θ , that joins them
(c) Count the number of inliers, n, from P given Θ and t
(d) if n > n∗ then n∗ ← n, Θ∗ ← Θ

3. Reestimate Θ∗ using all the inliers.

The Random Sample Consensus algorithm consists in to iteratively propose
new random models, and to evaluate each model proposed. After a number of
tries, RANSAC selects the best evaluated model to represent the data. The ver-
sion of RANSAC applied to the problem of fitting a line is described in the
Algorithm 2.. The RANSAC algorithm has the advantage of estimating para-
meters of a model with accuracy even when outliers are present in the data
set. Frequently RANSAC is a better choice than other algorithms due it can be
better adapted to complex data analysis situations [10]. One of the problems of
RANSAC is deciding the threshold t for considering a point as an inlier. If t is
set too high then the model estimation can be very poor.

Algorithm 3. A generalized RANSAC Algorithm which uses a M–Estimator
Input: Tha laser scan P = (p1, p2, . . . , pn) a weight function g and a maximum
number of iterations m
Output: Θ∗ (the best fit line given P )

1. j ← 0, n∗ ← 0.
2. While j < m do

(a) j ← j + 1
(b) Select randomly two points from P and compute the line Θ , that joins them
(c) Calculate n = n

i=1 g (ei). Where ei is the distance from the point pi to the
line Θ

(d) if n > n∗ then n∗ ← nj , Θ∗ ← Θ
3. Reestimate Θ∗.

In the other hand, M–Estimators reject outliers by weighting each point using
a so called weight function. Under certain circumstances, M-estimators can be
vulnerable to high-leverage observations [2]. Many authors [13,16,15] proposed
the combination of the RANSAC and M–Estimator methods to improve the
performance. As an example, the algorithm 3. shows a RANSAC algorithm where
the count of inliers in the algorithm 2. is replaced using a weighting function g.
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4 Proposed Method: WSAC-GE

Suppose that there is an evaluation function H (M,P) which returns a real value
related with the correspondence of the map M (a set of lines) given the laser
scan P (a sequence of points). Using H it is possible to decide if the map M′

is better than M, for a given laser scan P , if H (M′,P) > H (M,P). It is the
basic idea under the WSAC-GE algorithm. The algorithm 4. proposes a new
map M′ from the previous one M and then it decides which one is better. The
line addition and line deletion mechanisms provide ways to obtain M′ from M.

Algorithm 4. WSAC–GE
Input: The laser scan P = (p1, p2, . . . , pn) and a maximum number of iterations m
Output: A line based map M
1. Let M ← {} and i ← 0
2. While i < m do

(a) i ← i + 1
(b) Line addition

i. Select randomly a window w of consecutive points in P
ii. From the point in w, fit a line Θ
iii. Propose a new map M′ ← M∪ {Θ},
iv. If H (M′, P ) > H (M, P ) then M ← M′ and i ← 0.

(c) Line Deletion
i. Select randomly a line Θj ∈ M,
ii. Propose a new map M′ ← M− {Θj},
iii. If H (M′, P ) > H (M, P ) then M ← M′ and i ← 0.

3. Associate points with lines and refine the final lines.

4.1 Line Addition Mechanism

The first mechanism, line addition, generates a new map M′ by adding a new
line Θj to M, where j = |M| + 1. The line’s parameters Θ are obtained by
fitting a line into a small quantity of points w called a window.

Given the line Θj the algorithm calculates the weighted–error cij , from each
point pi to line Θj , using:

cij = g(e⊥ij)

Where eij is the orthogonal distance of the point pi to the line Θj and the
function g (x) is the Beaton-Tukey function [14] (an M-Estimator):

g(e) =
{

[1 − (e/k)2]2 if |e| < k inliers
0 elsewhere outliers

To improve the results we propose to penalize points which belong to small seg-
ments. Recalling that the weighted function g(·) is evaluated with 0 for |e⊥ij | > k
and then it is possible to get a set of inliers S. With the ordered set S and using
a breakpoint detector [1] it is possible to find the segments of Θ . A Breakpoint
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finds the segments of a line by finding the discontinuities of a ordered set of points.
Finally, the algorithm penalizes every point pi which belong to small–length seg-
ments by doing: cij ← k (cij),.where 0 ≤ k < 1 is a penalization constant.

4.2 Line Remotion Mechanism

The objective of the line–remotion mechanism is to remove small-length seg-
ments supported by points which belongs to larger segments. This mechanism
randomly selects a line Θ from the map M and generates a new maps by re-
moving Θ , as showed in the algorithm 4..

4.3 The Global–Evaluation

Let M = {Θ1, . . . ,Θl} be a map with l lines. Table 1 shows a matrix represen-
tation of M, each cell has the weighted error cij . The i–th column represents
the point pi ∈ P and the j–th row represents the line Θj ∈ M.

Table 1. Weighted–Errors cij

p1 p2 . . . pn

Θ1 c11 c21 · · · cn1

...
...

. . .
...

Θl c1l c2l · · · cnl

s1 s2 · · · sn

Where si in Table 1 is computed by

si =
{

s′i if s′i > u
1 elsewhere

and s′i is the maximum value of the i-th column (cij , j = 1, · · · , l) and u is a
threshold. Using si, a normalized weight hj of the j–th line is given by

hj =
n∑

i=1

cij

si
(1)

A high value for hj denotes a line with a high support given the set of points.
Finally the function H is given by

H(M,P) =
l∑

j=1

h2
j (2)

4.4 Associating Points with Lines

If After m tries the algorithm can not find a better map, then it finishes. The
result is the best map Ṁ. WSAC–GE associates the point pi to its the closest
line by selecting the maximum value of the i–th column in the table 1.
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5 Experimental Tests

We perform two tests: the first one is based on simulated data of a laser range
finder mounted on a mobile robot in a structured environment and in the second
one we use our mobile robot equipped with a LMS209-S02 laser.
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Fig. 2. Synthetic Environment

5.1 Test Using Synthetic Data

The computer–simulated environment has 12 walls, as shown in figure 2. The
aim of this experiment is to evaluate the robustness of the proposed method
against the popular SMSM method. In the experiment the robot follows the
path ABCDEFGHIJKLM getting a total of 300 synthetic laser scans.

The parameters of the laser are Δα = 0.5◦, maximum distance 32m and
the number of lectures n = 361. Also, 20 percent of the measures distances
were contaminated by spurious noise simulated by adding a uniform random
value between 0 and the maximum distance. The remaining measures were only
contaminated with a Gaussian random noise with σr = 0.03m.

For this test we use a laptop HP Pavilion with Celeron processor, 1.1 GHz
with 256 Mb and we use the C language to program the algorithms. The table 2
summarizes the results in the simulated environment. As it is shown, WSAC–GE
is getting favorable results both in the parameters of the line (|Δr| and |Δα|)
and in the assertivity. The assertivity a is given by a = (100) · ns

nn
where ns is

the number of lines that match with lines in the simulated environment, and nn

is the total of lines extracted.



740 L. Romero and C. Lara

Table 2. Test Results for 300 simulated cases

Maximum time |Δσr| |Δα| lines Assertivity
Algorithm [ms] [mm] [◦] nn %

SMSM 29.5 6.37 0.2670 1557 87.4
WSAC–GE 94.5 4.12 0.1323 1620 94.8

door

(a) Ideal LM

Θ4

Θ3

g1

g2

(b) SMSM

breakpoints

(c) WSAC–GE

Fig. 3. Results on real environment
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5.2 Test Using Real Data

Figure 3 shows the results of SMSM and WSAC-GE methods in a real environ-
ment. The figure 3(a) shows the ideal map for this sample. As shown in the figure
3(b) the SMSM algorithm does not associate some points with lines (groups g1

and g2). In other cases, SMSM merges segments which do not represent the same
object, lines Θ3 and Θ4 obtained does not represent precisely the environment.
As shown in the figure 3(c) WSAC–GE finds lines more precise than SMSM and
the asociation between points and lines is better.

6 Conclusions

We propose a robust method to find multiple lines in a laser scan, avoiding prob-
lems due to noisy data (outliers). Outliers typically does not follow a Gaussian
Probability Distribution and in most cases do not have known probability dis-
tributions. While simple and fast algorithms work fine with Gaussian noise, the
presence of outliers increase the complexity of the problem. The new method
merges local and global strategies to solve the problem of outliers. We use a
M-Estimator within a RANSAC method to find a line from a short sequence of
points of the laser scan (the local strategy), then the line is evaluated and re-
fined using the whole set of points (the global strategy), discarding those points
belonging to very small segments. Once a line segment is found, the process
continues looking for more lines. The key idea of this approach is to use a global
evaluation function to add or remove lines from the map. The global evaluation
function have higher values when more points are assigned to lines, when points
belongs to single lines and when lines have more points. The proposed method
is fast enough to be used in real time and it is able to find better results than
the SMSM method, a very well known method reported in the literature as a
very good and fast algorithm. Given its probabilistic nature WSAC–GE is able
to deal with noise (outliers) with unknown probability distributions.
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Abstract. In this paper a probabilistic approach is considered to develop a 
methodology to solve the problem of estimation of the position of the observer. 
The base of this methodology is the appearance vision with which an 
environment map is constructed using Kernel PCA. For the experiments an 
image set is acquired in unknown locations in the same environment. The 
performance of Kernel PCA technique was tested according to the optimum 
dimension of the environment model and the quantity of images correctly 
classified using a Bayesian algorithm. To validate the results obtained with 
Kernel PCA the same experiments were performed with PCA and APEX 
techniques, then the results were compared showing that Kernel PCA has better 
performance than PCA and APEX.  

Keywords: Egomotion estimation, probabilistic approach, Kernel PCA. 

1   Introduction 

One of the key tasks inside the systems of visual navigation is the estimation of the 
position of the observer, which allows an autonomous mobile robot to have constant 
feedback of its position regarding to a reference point in the environment. By means 
of this information a mobile robot can make more complex tasks like target pursuit or 
optimum route planning. 

The estimate of the position has been approached using geometric focuses that 
allow to estimate the observer position calculating the rotation and translation speeds 
[1], [2], [3], [4], [5], [6], [7], nevertheless this approach requires the consideration of 
restrictions in the environment conditions, for example, illumination conditions must 
be uniform. In this work we use a probabilistic focus; the base of this focus is the use 
of appearance based models, where the appearances of the environment depends on 
the positions – the location T:(x, y) and the orientation  –, from which the observer 
captures images. This finite set of images is used to create an environment model, 
against which the current appearance of the environment (a new captured image) is 
compared in order to estimate the current position of the observer.  

This approach has been applied to solve different problems, for example, object 
recognition [8], tracking of human figures [9] and face recognition [10]. However, the 
main complexity in this focus resides in the quantity of images (and the dimension of 
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these) employed to create the environment model. This problem has been overcome 
by means of the use of techniques of compression of images like PCA (Principal 
Components Analysis) [11].  

The contribution of this paper is the use of a variant of classic PCA known as 
Kernel PCA (Section 3 no. 2), which recently has been used to solve classification 
tasks, for example, face recognition [12], showing a better performance than classical 
compression techniques (PCA). In addition this technique is combined with a 
Bayesian algorithm and an Active Vision strategy (Section 3 no. 4), which allowed us 
to improve the obtained results. 

2   Formal Definition of the Egomotion Estimation from a  
     Probabilistic Approach 

A sequence of images of an environment is obtained from 1{ ,  ...,  }NT T T= different 

locations. In each one of them a set of images is captured 1{ ,...,  }pΩ = Ω Ω , where Ω  

is a set of the possible orientations from a T-esim location, each orientation is 
separated X degrees of the subsequent orientation, see Section 5.1, creating a database 
indexed by the N locations. This database is used to create an environment model by 
means of the technique of principal components analysis “Kernel PCA”. The 
probability that a new image AI  is obtained in the same environment (environment 

model) in a location Ti  and with certain orientation Ωj is given by eq. 1 [13].  

( : )j i A
p T IΩ  (1) 

Where jΩ  is the observer orientation in the environment iT  is the location of the 

observer (x, y) in the environment and I is an image captured by the observer in the 
current position in the environment.  

Using the equation (1) the problem of estimating the position of the observer can 
be solved as an image classification problem; this means, now the objective is to 
classify a new image (obtained by the observer in an unknown position) into a set of 
known images.  

Considering the a priori information (environment model) the current observer 
position ( : )j iTΩ  can be recovered, rewriting the equation (1) by means the Bayes 

theorem ( | : )A j ip I TΩ  as it is shown in the (Section 3 no. 4). 

3   Solution Methodology 

The solution methodology consists of four steps (Fig. 1). 

1. - Capture of images: The locations (T) and the orientations (Ω) are defined for 
the capture of the gray tone images. These images are indexed for location so a 
location contains all the possible appearances of the environment from that specific 
point; that means, the appearance of the environment from a location Ti is captured 
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rotating the camera X degrees and captures an image in each turn until completing the 
360º. The obtained images are of dimension 60 x 60, each of those are vectorized, the 
resulting images are m-dimensional (m = 60 x 60), 1,..., m

nx x ∈ . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Solution methodology 

2. – The model of the environment: In order to deal with the amount of images and 
the dimensionality to them, the Kernel PCA technique was used. The basic idea of 
this technique is to find a map function to a space of characteristics (generally of 
greater number of dimensions), which allows to simplify the classification. The 
disadvantage is that the problem gets complicated when increasing the number of 
dimensions in that the original data are represented. However, by means of the use of 
the functions Kernel we can obtain the advantages in the classification without the 
need of having to use or knowing the map function [14], this means, the work is 
directly done in the characteristics space by means of the map function as follows: 

Applying the Kernel PCA technique the information is taken from the input space 

1,..., m
nx x ∈  to a space of characteristics F by means of a function of non-linear 

mapping and later the linear PCA is applied in F. The covariance matrix is calculated 

1
1 ( ) ( )

n T
j jj

C n x x
=

= Φ Φ , and the principal components are calculated solving the 

Eigenvalue problem, calculating the eigenvalues 0λ ≥  and the eigenvectors  \ {0}V  

and solving 
1

1 ( ( ) ) ( )
n

j jj
V CV n x V xλ

=
= = Φ Φ . 

Every solutions of V with  0λ ≠  are inside of the mapped data set, for example, 

1{ ( ), ( )}..., nV span x x∈ Φ Φ this is expressed by means of 
1

( )
n

i ii
V xα

=
= Φ . By 

multiplying both sides of V CVλ =  by ( )kxΦ  (to 1,...,k n= ) the eq. 5 is obtained.  

( ( ) ) ( ( ) )k kx CV x CVλ Φ ⋅ = Φ ⋅  (2) 

 

Until 360° 

1.- Images 
Capture. 

2.- Environment 
model creation 

using Kernel PCA.

3.- New Image 
Capture. 

4.-Calculation and evaluation 
of the probability of 

ownership of a new image to 
the set of know images.

If the probability of the 
observation overcomes a 

defined threshold in a specific 
model position, the robot is 

assigned to that position. 

If the probability 
doesn’t overcome the 
threshold the active 

vision strategy is 
applied and we 

capture a new image.
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Substituting the values of C  and V  in eq. 2 and considering a n n×  matrix 
( , ) ( ( ) ( ))ij i j i jK k x x x x= = Φ ⋅ Φ , the resulting equation can be reduced to 2n K Kλ α α= , 

whereα represents the column eigenvectors. In order to obtain the solutions of the 
equation 2 the eigenvalue problem n Kλα α=  is solved for nonnegative eigenvalues. 

Once obtained the new space F it is necessary to centre the projected data (by 
means the kernel function K) using the following equation 

1 1 1 1n n n nK K K K K= − − +  [15], where (1 ) 1/n ij n=  that is a measure of proportion 

necessary for the normalization of K, and n is the number of elements of the main K. 
Now that we already have centred the data in F we calculate the λ’s eigenvalues of 

the matrix K, with their corresponding α’s eigenvectors. It is defined the optimal 
number of principal components to carry out the projection by means of this equation 

1 1
60%

p n

i ii i
λ λ

= =
= , which represents a variation percentage used in this work for 

the reconstruction of the original space, in this case 60%, and p the number of 
necessary main components to obtain variation percentage. 

To obtain a reduction of the images (matrix K), in terms of the edges 
(eigenvectors) that represent 60% of the space original, a projection function is 
applied multiplying the eigenvectors by the matrix K. T

i i= (K)Y λ , where 1, ...,i p=  

are the vectors and iY  represent the images projected to the principal axes in the space 

of characteristic F. 
3. Captures of a new image: To test the classification a new image is captured in a 

different position to those of the obtained model, but in the same environment. With 
the purpose of being able to compare this image with those of the model the new 
image is projected to the eigenspace calculated by means of eq. 3. 

1
( ) ( ) ( ( )) ( , )

pn n
n i ii

kPC x V x k x xα
=

= ⋅Φ =  (3) 

4. Bayesian Algorithm with an Active vision strategy for searching in F: The 
probability of generating a vector image Y (random variable Y) in the eigenspace 
starting from a localization Ti and an orientation Ωj  of the robot in a continuous 
environment (because the number of positions in the environment is infinite) is given 
for ( | , )i jP Y T Ω . By means of the rule of Bayes we can calculate the probability that 

the robot is in a position (localization and orientation) starting from an image YA in the 
eigenspace:  

( , | ) ( | , ) ( , ) ( | , ) ( , )i j A A i j i j A i j i jij
P T Y P Y T P T P Y T P TΩ = Ω Ω Ω Ω  (4) 

Where ( , )i jP T Ω is the a priori probability of the location Ti and orientation Ωj. 

Because the projected data to the eigenspace are samples taken from a population 
where it was considered the same mean (environment mean) and the same covariance 
matrix, by means of the central limit theorem is considered that their probability 
distribution approaches to a multivariate normal distribution. This allows us to 
calculate the probability ( | , )A i jP Y T Ω by means of the eq. 5, considering as centre an 

image of the database (image projected to the eigenspace) 
i iTY Ω . 
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1 / 2 1/ 2
, ,( | , ) exp[ 1 2( ) ( )] 2 | |

i j i j

T k
A i j A T A TP Y T Y Y Y Y− −

Ω ΩΩ = − − Σ − Π Σ  (5) 

This formula allows us to know the distance between the vector AY  and a known 

vector in the database ,i jTY Ω . The probability that the robot is in a position Ti, starting 

from an image Y observed from a localization Ti and an orientation Ωj  can be 

calculated by means of ( | ) ( | , ) ( , )A i A i j i jij
P Y T P Y T P T= Ω Ω . 

Applying the Bayes rule we can obtain the probability distribution of the 

independent location of the orientations ( | ) ( | ) ( ) ( | ) ( )i A A i i A i ii
P T Y P Y T P T P Y T P T= . 

If the probability of the observation overcomes a defined limit (50% of probability) 
the robot is assigned to that position, otherwise an active vision strategy is used, 
active vision basically says that in accordance with the necessities are the actions 
taken, if the new image does not obtain a bigger probability than 50% (that which 
indicates that the current information is insufficient) a rotation movement of (X°) is 
performed in order to obtain a new probability of a new image besides considering the 
current information:  

( | , ) ( , | ) ( ) ( , | ) ( )i A B A B i i A B i ii
P T Y Y P Y Y T P T P Y Y T P T=  (6) 

Considering that YA and YB are conditionally independent events the equation 6 is 
rewritten as follow: 

( | , ) ( | ) ( | ) ( ) ( | ) ( | ) ( )i A B A i B i i A i B i ii
P T Y Y P Y T P Y T P T P Y T P Y T P T=  (7) 

The success condition is that the obtained probability overcomes the defined limit, 
or the number of images settled down by location are captured until reaching the 360º, 
if these conditions are not completed it is determined that the current position of the 
robot is unknown. 

4   Experiments and Results 

4.1   Algorithms for the Validation of the Proposed Method 

To measure the efficiency of the results obtained of the proposed techniques for the 
performance in the compression of the data we will use the results obtained by two 
techniques: Linear PCA which has been employed in the solution of the problem of 
the estimate of the position [16] considering a covariance matrix between the pixels, 
and APEX which although it has not been proven in this problem, possesses an 
important characteristic, according to its authors that it is the adaptation, that allows 
us to optimise the process of the extraction of the main components [17] [18], the 
results of the experiments are shown next. 

Basically two types of experiments were carried out. The variations among the 
experiments consist in: the quantity of positions, initial orientation in the positions as 
well as the distance between each one of these. The quality of the solutions was 
measured according to the precision in the classification, that means, the number of 
test positions were classified in the positions of the environment model. 
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4.2   Experiment 1 

Conditions for the creation of the environment model. In order to not capture the 
information repeatedly, pixels variations from 50 to 70% were searched in the 
consecutive images, for this, 12 locations were defined with “1 distance meter” 
among each one of them. In each one of the locations the robot rotates 360° with the 
objective of capturing with the camera all the possible appearances of the 
environment from the current location. It was defined that the rotation intervals to 
capture an image are of 20°, this way, when we refer of orientations we refer to the 
20° that the robot should rotate before stopping, once detained a new image is 
captured, this image belongs to the location Ti and orientation Ωj  (see Fig. 4-a). 

Table 1. Results of the realized tests in experiment 1. N.C. means that the test position was not 
classified in a position of the environment model. 

PCA A K
Pr

PEX ernel PCA
Test Images Real Positions Estimation Classification Estimation Classification Estimation Classification

1 1 or 2 2 Correct 1 X 2 Correct
2 3 or 4 N.C. X 12 X 5 X
3 5 or 6 N.C. X 3 X N.C. X
4 7 or 8 N.C. X N.C. X 4 X
5 9 or 10 11 X N.C. X N.C. X
6 10 6 X N.C. X 10 Correct
7 11 or 12 N.C. X N.C. X N.C. X
8 8 or 9 8 Correct 12 X 8 X
9 7 or 6 N.C. X N.C. X 7 Correct

Learning Peercentage 22,22% 0,00% 33,33%

ecisionof the Algorithms intheClassification
P A A K A

E .
C PEX ernel PC

Number of PC 11 26 9
Time to calculate the PC 10minutes 15minutes 4minutes
Time to classify a test image 1,36secs. 1,42secs. 1,3secs.

ficiency: Principal Components (PC)

 

To prove the compression techniques as well as the classification algorithm the 
robot was positioned in 9 unknown random locations and initial orientation, but 
within the same environment, and the same process of compression of images was 
applied. The random positions allowed us to simulate the real conditions in which the 
position estimation would be done. The results in the experimentation are shown in 
the Table 1.  

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Inconsistency in the classification. Y1 Image belongs to the position 5 with 300º 
orientation, Y2 Image belongs to position 7 with 320º of orientation. Test Image acquired 
between the position 5 and 7 with 310º of orientation. 

          
(YA)

    
(Y2) 

  
(Y1) 
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In the percentages of correctly classified images the superiority of the Kernel PCA 
technique is appreciated with 33.33% in comparison with 0% (APEX) and 22.22% 
(PCA). Also the number of components required for the 60% reconstruction, and the 
time to calculate them was smaller using the Kernel PCA technique, because as is 
shown in the methodology, the matrix dimension employed to calculate PCA are of a 
smaller dimension (n x n in the Kernel PCA (by means of a covariance among 
images) instead of m x m (covariance among pixels of the images) in the PCA and 
APEX, where n is the quantity of images and m is the pixel number in each image) 
using the technique Kernel PCA. 

The reason for which the classification percentages were very low is: the variation 
that existed in the pixels of the images was such that in occasions only 30% of  
the image coincided with the next one, this produced ambiguity in calculating the 
ownership from an image to a well-known position. For this reason when varying the 
initial orientation in the test images the possibility that the test images did not coincide 
with some of the database increased; since the pixels of the test image could belong in a 
part to the beginning of an image and the rest to the final-center of another different 
image (see Fig. 2). 

4.3   Experiment 2 

The solution proposed for the problem in the experiment 1 is by means of the reduction 
of the pixels variation between an image and another, reducing the turn angle in each 
position (orientation angle in the positions), this way instead of having variations of 
between 50 and 70%, variations of between 25 and 35% were obtained. To achieve this 
new positions (27 in total) and orientations (24 in total) were defined, the positions now 
would take half a meter with 15° turns in each one of them, this allowed us to reduce the 
variations among the images. The distribution of the positions is shown in the Fig. 4-b. 
The results obtained in the experiment 2 are shown in the Table 2. 

Table 2.  Results of the realized tests in experiment 2. N.C. means that the test position was not 
classified in a position of the environment model. 

PCA APEX Kernel PCA
Test Images Real Positions Estimation Clasification Estimation Clasification Estimation Clasification

1 5 or 6 2 Correct 5 Correct 5 Correct
2 5 or 8 N.C. X 8 Correct 5 Correct
3 8 or 11 11 Correct 3 X 11 Correct
4 12 12 Correct N.C. X 12 Correct
5 14 or 17 11 X N.C. Correct N.C. X
6 17 or 18 or 19 10 Correct N.C. X 10 Correct
7 20 or 23 N.C. X N.C. X 23 Correct
8 23 or 22 or 27 8 Correct 1 X 22 Correct
9 25 or 26 N.C. X 12 X 19 X
10 20 or 21 20 Correct 23 X 20 Correct
11 17 or 16 2 X 16 Correct N.C. X
12 14 or 15 11 X N.C. X 15 Correct
13 10 or 11 15 X 10 Correct 10 Correct

Learning Percentage 46,15% 38,47% 76,98%

Precision of the Algorithms in the Classification
PCA APEX Kernel PCA

Number of PC 15 33 7
Time to calculate the PC 13 minutes 19 minutes 8.4 minutes
Time to classify a test image 2,26 secs. 2,43 secs. 2,21 secs.

Eficiency: Princial Components (PC).

 

With a time average of classification of 2.64 seconds in each image, this time 
increased (according to the time classification average in the experiment 1) because 
the number of images was increased from 216 to 648. Although the quantity of 
images in the model increased, the precision of the three algorithms was also 
increased.  
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To show the operation of the classification Bayesian algorithm in the Fig. 1 the 
behaviour of the probabilities of ownership of the position of test 8 is shown as 
mentioned in Table 2 in experiment 2. In this position an image was captured with 
random initial orientation (8°), the initial orientation is different to the initial 
orientation of the positions in the model, the calculated probability did not overcome 
the established threshold (50%), for this reason strategy of active vision was applied 
to register more information of the environment by means of capturing a new image 
in the same position but now in the orientation 1, rotating the robot 360/24º. 
Combining the information of the first one with the second image it is possible to 
overcome 50% of ownership in the position 22 although the biggest probability of 
ownership in the first image was obtained in the position 8 of the model (see Fig. 3). 
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Fig. 3. Probabilities of Ownership for the classification of the position of test 8. The graphic 
shows the behaviour of the Bayesian algorithm, in the first stage (initial orientation) the success 
condition wasn’t reach; the active vision strategy was performed and a second image was taken. 
Considering all the available information (the two images), the ownership probability was 
computed. The result is the classification of the current position of the robot into the twenty-
two position in the environment model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                     a)       b) 

Fig. 4. Situation of the environment for the experiment 1 (a) and experiment 2 (b), the arrows 
indicate the orientation of the test positions. The numbers in the stalls indicate the position in 
the environment. The arrows indicate the initial orientation in each test position. 
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5   Conclusions 

The results obtained in the experimentation show that the Kernel PCA technique 
allowed us to improve the acting (bigger percentage of correct classifications, smaller 
time of calculation and number of required principal components) of the algorithms 
PCA and APEX. It can bee easily seen that the algorithm APEX requires more time to 
calculate the eigenvalues and the eigenvectors and the resulting components are not 
completely orthogonal, this explains the biggest quantity of necessary components to 
achieve the percentage. 
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Abstract. Error correcting output codes (ECOC) represent a successful
extension of binary classifiers to address the multiclass problem. Lately,
the ECOC framework was extended from the binary to the ternary case
to allow classes to be ignored by a certain classifier, allowing in this way
to increase the number of possible dichotomies to be selected. Neverthe-
less, the effect of the zero symbol by which dichotomies exclude certain
classes from consideration has not been previously enough considered in
the definition of the decoding strategies. In this paper, we show that
by a special treatment procedure of zeros, and adjusting the weights at
the rest of coded positions, the accuracy of the system can be increased.
Besides, we extend the main state-of-art decoding strategies from the
binary to the ternary case, and we propose two novel approaches: Lapla-
cian and Pessimistic Beta Density Probability approaches. Tests on UCI
database repository (with different sparse matrices containing different
percentages of zero symbol) show that the ternary decoding techniques
proposed outperform the standard decoding strategies.

1 Introduction

Machine learning studies automatic techniques for learning to make accurate
predictions based on past observations. There are plenty of classification tech-
niques reported in literature: Support Vector Machines [1][2], decision trees [3],
nearest neighbors rules, etc. It is known that for some classification problems,
the lowest error rate is not always reliably achieved by trying to design a single
classifier. An alternative approach is to use a set of relatively simple sub-optimal
classifiers and to determine a combination strategy that pools together the re-
sults. Different types of systems of multiple classifiers have been proposed in the
literature, most of them use similar constituent classifiers, which are often called
base classifiers (dichotomies from now on). Adaboost [4], for example, uses weak
classifiers as predictions that showed to be slightly better than random guessing
and combines them in an ensemble classifier.

Although binary classification is a well-studied problem, building a highly ac-
curate multiclass prediction rule is certainly a difficult task. In those situations,
the usual way to proceed is to reduce the complexity of the problem by dividing
it into a set of multiple simpler binary classification subproblems. One-versus-
one pairwise [5] or one-versus-all techniques are some of the most frequently used

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 753–763, 2006.
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schemes. In the line of the aforementioned techniques Error Correcting Output
Codes [6] were born. ECOC is a general framework based on coding and decod-
ing (ensemble strategy) techniques to handle multiclass problems. One of the
most well-known properties of the ECOC is that it improves the generalization
performance of the base classifiers [7][5].

In this technique the multiclass to binary division is handled by a coding
matrix. Each row of the coding matrix represents a codeword assigned to each
class. On the other hand, each column of the matrix (each bit of the codeword)
defines a partition of the classes in two sets. The ECOC strategy is divided in
two parts: the coding part, where the binary problems to be solved have to be
designed, and the decoding technique, that given a test sample, looks for the
most similar codewords. For the coding strategies, the three most well-known
strategies are one-versus-all, all-pairs (one-versus-one) and random coding.

The decoding step was originally based on error-correcting principles under
the assumption that the learning task can be modelled as a communication
problem, in which class information is transmitted over a channel [8]. The de-
coding strategy corresponds to the problem of distance estimation between the
test codeword and the codewords of the classes. Concerning the decoding strate-
gies, two of the most standard techniques are the Euclidean distance and the
Hamming decoding distance. If the minimum Hamming distance between any
pair of class codewords is d, then any [(d − 1)/2] errors in the individual di-
chotomies result can be corrected, since the nearest codeword will be the correct
one. The original two-symbol coding matrix M was extended to the ternary
case M ∈ {−1, 0, 1}Nc×n by Allwein et. al [5]. The new zero symbol indicates
that a particular class is not considered by a given dichotomy. This fact allows
to obtain a higher number of possible dichotomies that create different decision
boundaries, allowing more accurate results for multiclass classification problems.
Nevertheless, the effect of increasing the sparseness of the coding matrix has not
been previously analyzed enough.

The goal of this article is twofold: firstly, we extend the standard state-of-art
decoding strategies to the ternary case. We analyze the effect of the zero symbol
in the ECOC matrix M . We show how this symbol affects to the decoding
strategy, and we take into account the two main properties than define the
problem: the zero symbol may not introduce decoding errors, and the coded
positions have different relevance depending on the number of zeros contained
on each coding matrix M row. We compare the evolution results for standard
decoding strategies as Hamming (HD), inverse Hamming (IHD) or Euclidean
distance (ED) when the number of zeros is increased. Secondly, we extend the
state-of-art coding strategies to the ternary case: Attenuated Euclidean distance
(AED), and Loss-based decoding (LB). In this context, we propose two new
decoding techniques to solve the exposed problem: Laplacian decoding (LAP),
and Beta Density Distribution Pessimistic score (β-DEN).

The paper is organized as follows: section 2 explains the ECOC framework,
section 3 reviews the state-of-art decoding strategies, shows the ternary adapta-
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Fig. 1. Example of ternary matrix M for a 4-class problem. A new test codeword is
missclassified due to the confussion of using the traditional decoding strategies.

tion and the new decoding approaches. Section 4 contains the experiments and
results, and section 5 concludes the paper.

2 ECOC

The basis of the ECOC framework is to create a codeword for each of the Nc

classes. Arranging the codewords as rows of a matrix, we define a ”coding matrix”
M , where M ∈ {−1, 0, 1}Nc×n in the ternary case, being n the code length. From
point of view of learning, M is constructed by considering n binary problems
(dichotomies), each corresponding to a matrix column. Joining classes in sets,
each dichotomy defines a partition of classes (coded by +1, 0 or -1, according to
their class set membership). In fig. 1 we show an example of a ternary matrix M .
The matrix is coded using 7 dichotomies h1, ..., h7 for a four multiclass problem
(c1, c2, c3, and c4). The white regions are coded by 1 (considered as positive for
its respective dichotomy, hi), the dark regions by -1 (considered as negative),
and the grey regions correspond to the zero symbol (not considered classes for
the current dichotomy). For example, the first classifier is trained to discriminate
c3 versus c1 and c2, the second one classifies c2 versus c1, c3 and c4, and so on.
Applying the n trained binary classifiers, a code is obtained for each data point
in the test set. This code is compared to the base codewords of each class defined
in the matrix M , and the data point is assigned to the class with the ”closest”
codeword.

To design an ECOC system, we apply a coding and a decoding strategy. The
most well-known decoding strategies are Hamming and Euclidean distance. The
Hamming distance is estimated by d(x, yi) =

∑n
j=1 | (xj − yi

j) | /2, where
d(x, yi) is the distance of the codeword x to the class i, n is the number of
dichotomies (and thus, the components of the codeword), and x and y are the
values of the input vector codeword and the base class codeword, respectively.
For the Euclidean distance, the measure is based on minimizing the distance
d(x, yi) =

√∑n
j=1(xj − yi

j)2. To classify a new input x = [−1, 1, 1, 1,−1, 1, 1]
in fig. 1, the traditional Hamming or Euclidean distances are applied, obtaining
in both cases the minimum distance corresponding to class one. Note that the
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correct decoding corresponds to c2 since both first dichotomies trained on c2

classify the new example correctly.
Most of the discrete coding strategies up to now are based on predesigned

problem-independent codewords. When the ECOC technique was first developed
it was designed to have certain properties to enable them to generalize well.
A good error-correcting output code for a k-class problem should satisfy that
rows, columns (and their complementaries) are well-separated from the rest in
terms of Hamming distance. These strategies are one-versus-all, dense and sparse
random techniques [5], and one- versus-one [9]. Crammer et. al [10] were the first
authors reporting improvement in the design of the ECOC problem-dependent
codes. However, the results were rather pessimistic since they proved that the
problem of finding the optimal discrete codes is computationally unfeasible since
it is NP-complete [10]. Specifically, they proposed a method to heuristically
find the optimal coding matrix by changing its representation from discrete to
continuous values. Recently, new improvements in the problem-dependent coding
techniques have been presented by Pujol et. al. [11]. They propose embedding
of discriminant tree structures in the ECOC framework showing high accuracy
with a very small number of binary classifiers. Escalera et. al [12][13] propose
a multiple tree structures embedding to form a Forest-ECOC and design of
a problem-dependent ECOC-ONE coding strategy. The procedure is based on
generating a code matrix by searching for the dichotomies that best split the
difficult classes in the training procedure guided by a validation subset.

Many decoding strategies have been proposed in the ECOC framework. Nev-
ertheless, very few attention has been given to the ternary case. Often techniques
add errors due to the zeros, while other approaches do not consider the effect
of this symbol for the decoding strategy. In the next chapter, we address the
ternary case of the decoding strategies in depth.

3 Ternary ECOC Decoding

The zero symbol allows to ignore some classes for a certain dichotomy. Although
the binary matrix M is extended with the zero symbol, the decoding strategies
are not adapted to the influence of that symbol. The use of standard decoding
techniques that do not consider the effect of this symbol frequently fail (as shown
in fig. 1). To understand the extension to the ternary case, first we define the
reasons why the zero symbol needs special attention. As shown in fig. 1, the error
accumulated by the zero symbol has to be non-significative in comparison with
the failures at coded positions. Another important aspect is that if a codeword
of length n has k zeros, the rest of the positions (n − k) not containing zeros
must have more importance either in case of coincidence or failure. For example,
if we consider two codewords y1 and y2, we can not consider the same error
for the codeword y1 if it has one fail and two coded positions than if there
are ten coded positions in y2. Therefore, the large difference in the number of
coded positions between codewords is an important issue that must be taken into
account. Allwein et. al [5] studied numerically the effect of the symbol zero and
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they proposed the Loss-based decoding technique in order to take this symbol
into account.

3.1 Traditional Decoding Strategies

Analyzing the Hamming distance in the ternary case, we can observe that it in-
troduces a high error for the zero values (ignored classes by certain dichotomies)
and all positions obtain the same importance at the decoding step. Euclidean
distance accumulate half of the error estimated by Hamming distance. Equally,
it still assigns a considerable error to the symbol zero and does not increase
the relevance of the rest of the coded codeword positions. Another traditional
strategy for decoding is the Inverse Hamming distance.

Inverse Hamming Distance. Let D(x) = [d(x, y1), d(x, y2), ..., d(x, yNc)] be
define as the set of estimated distances from a test codeword to the Nc classes
codewords. Let us define Δ as the matrix composed by the Hamming distances
between the codewords of M . Each position of Δ is defined by Δ(i, j) = d(yi, yj),
where d(yi, yj) defines the Hamming distance between codeword i and j. If the
set D is evaluated using the Hamming distance, Δ can be inverted to find the
vector Q = [q1, q2, ..., qNc ] containing the Nc individual class probabilities by
means of Q = Δ−1DT . This approach is based on the Hamming minimization
theory, hence its properties are the same for the ternary case.

3.2 Extended Decoding Strategies

The following techniques are adaptations of some traditional decoding strategies
to the ternary case.

Attenuated Euclidean Decoding. This technique is an adaptation of the
Euclidean distance to take into account the symbol zero. To solve the previ-
ously commented problem of the Euclidean distance, we redefine the decoding
as d(x, yi) =

√∑n
j=1 | yi

j | (xj − yi
j)2, where the factor | yi

j | rejects the errors
accumulated by the zero symbol at codeword of class i. Using this technique,
we consider that the relevant information is only represented by the coded posi-
tions, though the rest of coded positions still obtains the same relevance in the
decoding process. Extending this discrete idea of the importance of zeros to the
probabilistic case, we find the Loss-based decoding strategy.

Loss-based Decoding. The loss-based decoding method [5] requires that the
output of the binary classifier is a margin score satisfying two requirements.
First, the score should be positive if the example is classified as positive, and
negative if the example is classified as negative. Second, the magnitude of the
score should be a measure of confidence in the prediction.

Let f(!, j) be the margin score for example ! predicted by the classifier cor-
responding to column j of the code matrix M . For each row i of M and for
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each example !, we compute the distance between f(!, j) and yi = M(i, j)
∀j ∈ {1, ..., n},

di(!, i) =
n∑

j=1

L(M(i, j) · f(!, j)) (1)

where L is a loss function that depends on the nature of the binary classifier.
The two most common loss functions are L(h̄) = −h̄ and L(h̄) = e−h̄, where
h̄ = M(i, j) · f(!, j). We label each example x with the label that minimizes
dL. Note that this technique attenuates the error for the zero symbol while
maintaining the weight for all the coded positions independently of the number
of zeros from each codeword. This technique attenuates the errors introduced by
zeros in the same way that the discrete Attenuated Euclidean distance strategy
extending the measure estimation to an additive probabilistic model.

3.3 Novel Decoding Strategies

The previous methods attenuate the errors from the zero symbol in a discrete and
probabilistic way. The following novel approaches are based on considering the
distance and probability conditions to decode the coding matrices depending on
their structure, adding new conditions on coded positions to adjust the analysis
of the ternary case.

Laplacian Strategy. We propose a Laplacian decoding strategy to give to
each class a score according to the number of coincidences between the input
codeword and the class codeword, normalized by the errors without considering
the zero symbol. In this way, the coded positions of the codewords with more
zero symbols attain more importance. The decoding score is estimated by:

d(x, yi) =
Ci + 1

Ci + Ei + K
(2)

where Ci is the number of coincidences from the test codeword and the codeword
for class i, Ei is the number of failures from the test codeword and the codeword
for class i, and K is an integer value that codifies the number of classes considered
by the classifier, in this case 2, due to the binary partitions of the base classiers.
The offset 1/K is the default value (bias) in case that the coincidences and
failures tend to zero. Note that when the number of C and E are sufficiently
high, the factor 1/K does not contribute:

lim
C→0,E→0

d(x, yi) =
1
K

lim
C→∞,E→∞

d(x, yi) =
C

C + E
(3)

Beta Density Distribution Pessimistic Strategy. The method is based on
estimating the probability density functions between two codewords, extending
the Laplacian ternary properties from the discrete to the probabilistic case. The
main issue of this strategy is to model at the same time the accuracy and un-
certainty based on a pessimistic score to obtain more reliable predictions. We
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use an extension of the continuous binomial distribution, the Beta distribution
defined as:

ψ(z, α, β) =
1
K

zα(1 − z)β (4)

where ψi is the Beta Density Distribution between a codeword x and a class
codeword yi for class i, α and β are the number of coincidences and failures
respectively, and z ∈ [0, 1]. The expectation E(ψi) and the variance var(ψi)of
the distribution are:

E(ψi) =
α

α + β
var(ψi) =

αβ

(α + β)2(α + β + 1)
(5)

where the expectation tends to the Laplacian estimation when C → ∞, E → ∞
in (2).

Let Zi be the value defined as Zi = argmaxz(ψi(z)). To classify an input
codeword x given the set of functions ψ(z) = [ψ1(z), ψ2(z), ..., ψNc(z)], we select
the class i with the highest score (Zi −ai), where ai is defined as the pessimistic
score satisfying the following equivalency:

ai :
∫ Zi

Zi−ai

ψi(z) =
1
3

(6)

(a) (b) (c) (d)

Fig. 2. Pessimistic Density Probability estimations for the test codeword x and the
matrix M for the four classes of fig. 1. The probability for the second class allows a
successful classification in this case.

In fig. 2 the density functions [ψ1, ψ2, ψ3, ψ4] of fig. 1 for the input test code-
word x are shown. Fig. 2(b) corresponds to the correct class c2, well-classified by
the method with the highest pessimistic score. One can observe that the Beta
Density Probability decreases faster in c1 compared to c2 due to the failure of
one code position for the codeword of class 1 compared to the pessimistic score
of the second codeword with five zeros and two code coincidences.

It can be shown that when a function ψi is estimated by a combination of
sets α and β of z and (1-z) respectively, the sharpness is higher than when it is
generated by a majority of one of the two types. Besides, this sharpness depends
on the number of code positions different to zero and the balance between the
number of coincidences and failures.
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4 Results

To test the different decoding strategies, we used the UCI repository databases.
The characteristics of the 5 used databases are shown in table 1. As our main
goal is to analyze the effect of the ternary matrix M , we have generated a set of
matrices with different percentages of zeros. Once generated the coding matrices,
the dichotomies are trained. The generated set of experiments is composed by 6
sets of matrices for each database, each one containing 10 different random sparse
matrices of different percentage of zeros. We increase the number of zeros by 10%
starting from the previously generated matrices to obtain more realistic analysis.
Besides, each matrix from this set is evaluated with a ten-fold cross-validation.
The decoding strategies used in the comparative are: Hamming distance (HD),
Euclidean distance (ED), Inverse Hamming distance (IHD), Attenuated Euclid-
ean Distance (AED), Loss-based decoding with exponential loss-function (ELB),
Loss-based decoding with linear loss-function (LLB), Laplacian decoding (LAP),
and Beta Pessimistic Density Probability (β-DEN).

Table 1. UCI repository databases characteristics

Problem #Train #Test #Attributes #Classes
Dermathology 366 - 34 6

Ecoli 336 - 8 8
Glass 214 - 9 7
Vowel 990 - 10 11
Yeast 1484 - 8 10

Table 2. Mean ranking evolution for the methods on the UCI databases tests when
the number of zeros is increased

Strategy 0% zeros 10% zeros 20% zeros 30% zeros 40% zeros 50% zeros Global rank
HD 3.2 3.2 4.4 4.2 4.6 4.0 3.9
ED 3.2 3.2 2.4 2.2 2.6 3.2 2.8

AED 3.2 3.6 4.6 3.8 2.4 4.0 3.6
IHD 3.4 4.0 5.8 4.0 6.0 5.2 4.7
LLB 1.6 6.8 7.0 6.8 6.6 7.2 6.0
ELB 1.6 4.2 6.8 5.2 5.8 5.6 4.9
LAP 2.4 2.2 2.2 2.0 1.8 1.6 2.0

β-DEN 2.4 2.4 1.8 1.0 2.4 1.2 1.9

The tests for the five databases are shown graphically in fig. 3(a)-(e). The
graphics show the error evolution for all the decoding strategies at each database.
In table 2 and fig. 3(f) the ranking of each method at each percentage step
of zeros is shown. The ranking values of the table correspond to the average
performance position for each method for all runs on all databases. One can
observe that some methods obtain reasonable well-positions at the ranking in
all percentages of sparseness, as our proposed Laplacian and Beta Pessimistic
Density Probability decoding. Euclidean distance also can contribute to reduce
the error of zeros better than techniques as loss-based function, although the
last one shows the best accuracy with dense matrices (0% of zeros). However, its
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Error evolution for decoding strategies on Dermathology (a), Glass (b), Ecoli
(c), Yeast (d), and Vowel (e) UCI databases. (f) Mean ranking evolution for the methods
on the UCI databases tests. The x-axis correspond to the percentage of ceros (increased
10% by step) of 10 sparse matrices M .

performance is reduced as the number of zeros increases. Observing the global
rank of table 2, the first position is for Beta Pessimistic Density Probability
followed by Laplacian decoding.
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Table 2 shows that Loss based decoding is the best option for the dense matrix
case, and Beta Pessimistic Density Probability and Laplacian decoding are the
best choices when we have an increase of the sparseness degree. If we do not have
information about the composition of the code matrix M , we can use the general
rank of table 2, being the Beta Pessimistic Density Probability and Laplacian
strategies the more suitable for each case.

5 Conclusions

The ternary ECOC when applying a decoding strategy has not been previously
enough analyzed. In this paper, we show the effect on reliability reduction when
the number of zeros (non considered class by a given dichotomy) is increased.
We analyzed the state-of-art ECOC decoding strategies, adapting them to the
ternary case, taking into account the effect of the ternary symbol and the weights
of the code positions depending on the number of containing zeros. We propose
two new decoding strategies that outperform the traditional decoding strategies
when the percentage of zeros is increased. The validation of the decoding strate-
gies at UCI repository databases gives an idea about the techniques that are
more useful depending of the sparseness of the ECOC matrix M , where our pro-
posed Pessimistic Density Probability and Laplacian strategies obtain the best
ranking in the general case. We are planning to extend the proposed decoding
strategies to the continuous case.
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3 ITESM Campus Cuernavaca

Av. Reforma 182-A, Lomas Cuernavaca, Morelos, México

Abstract. Most gesture recognition systems are based only on hand
motion information, and are designed mainly for communicative ges-
tures. However, many activities of everyday life involve interaction with
surrounding objects. We propose a new approach for the recognition of
manipulative gestures that interact with objects in the environment. The
method uses non-intrusive vision-based techniques. The hands of a per-
son are detected and tracked using an adaptive skin color segmentation
process, so the system can operate in a wide range of lighting conditions.
Gesture recognition is based on hidden Markov models, combining mo-
tion and contextual information, where the context refers to the relation
of the position of the hand with other objects. The approach was im-
plemented and evaluated on two different domains: video conference and
assistance, obtaining gesture recognition rates from 94 % to 99.47 %. The
system is very efficient so it is adequate for use in real-time applications.

1 Introduction

In everyday life, humans make intensive use of their hands to communicate with
other humans, or to manipulate their environment. We denote such hand mo-
tions as gestures. The automatic recognition of human gestures is useful for many
applications, such as human computer interaction (HCI), surveillance, collabo-
rative environments, training and entertainment systems, and medical support.
In many domains, gestures are characterized by the spatio-temporal structure
of their motion patterns. These structures are intrinsically probabilistic and of-
ten ambiguous. In general, they can be treated as temporal trajectories in a
high dimensional feature space representing closely correlated measurements on
visual observations. For example, the spatio-temporal structure of a simple be-
havior such as moving the hand towards a key, could be represented by the
trajectory of an observation vector given by the position and displacement of
the hand centroid (Fig. 1). However, there are many gestures, in particular ma-
nipulative gestures [6], where the motion trajectory information is not sufficient
to discriminate the gestures; for example, gestures realized with the same ob-
ject (erasing/writing on a notebook). In these cases it is necessary to use addi-

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 764–773, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Trajectory described by the hand centroid while realizing the gesture opening
the key

tional information relative to the interacting objects (context) so the recognition
process is more reliable.

An adequate selection of the visual features is very important for the success
of gestures recognition systems. Current non intrusive approaches use a single
camera (or a stereo system) to extract relevant features while detecting and
tracking the hands, or other parts of the body of a person; which are used as
input to a recognition system. The most commonly used methods for feature
representation are: trajectory-based features [6], optical flow, and region-based
features [11]. The choice is closely related to application and environmental
conditions, and as mentioned before, this type of features are not enough for
manipulative gestures.

The task of gesture recognition is a very challenging problem in computer
vision. In most previous approaches, the gestures are confined to a predefined
set, which requires that the subjects are well trained and the motions are uni-
form. The features and recognition algorithms are totally data-driven without
any high level context information. For example, in [3], functions of different
coordinates (cartesian, polar, angular) are used as feature vectors and applied
in the recognition of six Tái Chi movements. Joint arm angles have been used
by Quan, as a feature vector for human activities recognition [8]. However, the
gestures realized in many real environments (office, washstand) where the person
interacts with surrounding objects, are much more difficult than the above. In
these cases, the motion is more natural, complex and dependent on the scenario.
Then, it is necessary to use context information.

Hidden Markov Models (HMMs) are widely used for modeling temporal struc-
tures. They have been applied to speech recognition [9], learning and more
recently to gesture recognition [6]. In this work we propose a novel approach
that integrates motion and context features using HMMs to recognize manipula-
tive gestures. These features are obtained using a single ceiling mounted camera
observing the user hand interacting with surrounding objects. The motion or
trajectory-based features selected are based on a previous study performed by
the authors [12], and consist of the orientation and the magnitude in polar
coordinates. The context features consider the relative position of the objects
that interact with the user hand. We use these features to train HMMs and per-
form recognition. We evaluated experimentally the gesture recognition system in
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two different domains: a video conference environment and a scenario in which a
someone is washing his hands (for assisting senior or disabled persons). We focus
our attention on human gestures performed by the hand that include interaction
with surrounding objects and do not have a characteristic trajectory.

Given that the features are continuous, we discretized them into a set of
symbols using vector quantization [4]. We then tested the recognition rate using
HMMs with different number of hidden states and different number of training
data. The results show a variation on the recognition rate depending on these
parameters, ranging from 94 % to 99.47 %. We contrasted our models to those
based only on motion information.

This paper is organized as follows. In Section 2 we describe hand localization
and tracking using color-based, adaptive histograms techniques. Section 3 de-
scribes the feature extraction process. In Section 4 we present the learning and
recognition system using HMMs. Section 5 includes the experimental results. We
conclude with a summary and directions for future work.

2 Hand Detection and Tracking

For this work we consider hand gestures performed in two environments (office
and washstand). Hand gestures are made on a planar space. The view of the
scene is provided by a downward pointing, ceiling-mounted camera which offers
several advantages for hand and object tracking, such as a less unobstructed
perspective of the gestures. Our hand detection and tracking approach is divided
in two phases. The first phase is the hand localization process that obtains the
hand region using an adaptive color histogram. The second phase consists of
the tracking algorithm, that generates the gesture trajectory by connecting the
hand centroid along the continuous time sequence.

2.1 Hand Detection

For detection of the hand region in an image we use a color-based approach
[10]. The human skin color is usually more distinctive and less sensitive to il-
lumination changes if we use the rgy normalized color space proposed by [5].
Table 1 compares the rgy color space with others models for skin detection. Color
histograms is the technique used to model the skin color space. To determine
if a blob in the image contains skin pixels we apply the technique proposed by
Ballard and Swain known as histogram intersection [10]. However, to improve
the constraint of a fixed threshold value used by Swain, we are using Otsu’s
algorithm [7]. Based on Otsu’s algorithm, our method incorporates adaptive
thresholding, so it is able to tolerate changes in lighting conditions. Initial de-
tection of the hand combines the color-based approach with motion information
(Fig. 2), to make it more robust with respect to occlusions and illumination
changes in real environments.

2.2 Hand Tracking

Once we have detected skin regions in an image sequence, the next step consists
on tracking the hand using only color information. (Currently we assume that
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Table 1. Average recognition obtained with the Bayesian classifier used to determine
the skin class on different colors spaces

Color Average
Space Recognition

RGB 94.42
HSV 93.50
Y crcb 91.46
RGY 97.20

Fig. 2. Detection of human body parts using integration of color and motion infor-
mation. (a) image original, (b) image segmented using color information, (c) image
segmented using motion information, (d) integration of regions using color and motion
segmentation.

the person performs all the gestures with the right hand.) For hand tracking, we
first have to decide if the skin regions in the image are the face or the hand of
a person. Hand/face detection is based on three rules. The first rule considers
that only the hands and face of the person cause a significant movement in the
images sequence. The second rule establishes a minimum threshold (number of
skin labeled pixels) than a region must have to be considered a hand or face of
a person. Experimentally we found that the region with the biggest skin area
corresponds to the face of the person. The third rule indicates that the person is
near the objects of interest, and his hand is the only skin region that establishes
contact with the objects.

Based on these rules we detected the user hand in an image sequence, so the
system starts tracking it. During tracking, we obtain the center points of the
hand region. The center point of an object is defined using the centroid (Xc, Yc):

Xc =

∑
x

∑
y B(x, y)x
A

, Yc =

∑
x

∑
y B(x, y)y
A

. (1)
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where A is the number of pixels in the object and B is the binarized input object
which takes two values, 1 for the hand and 0 for the background. Then we adjust
a search window over the region defined by Xc, Yc.

Hand tracking is realized by applying the hand detection process over the
search window based on motion heuristics (maximum motion between frames),
in the images sequence. The sequences of centroid points are detected by the
hand localization algorithm, and thus, the gesture trajectory, G, is produced by
connecting centroid points (see Fig. 1):

G = (x1, y1), ..., (xn, yn) . (2)

Our system detects the gestures realized by a person in real environments
when his hand interacts with relevant objects.

3 Object Detection and Tracking

Context information for supporting gesture recognition has been used in others
works [1,11,6], but their methods impose many restrictions or are computa-
tionally complex, so it difficult apply them to real environments. We propose a
simple approach based on the color and position of relevant objects in a domain.
We use this information to support the gesture recognition process. The object
detection and tracking process is a color-based approach. The objects existing in
a scenario represent the contextual information that supports the gesture recog-
nition process. The detection and localization of relevant objects is done using
an adaptation of the work of Swain [10] and Bradsky [2]. Objects are modeled
using color histograms for hue-saturation in the hsv color space. Training images
are used to generate color histograms for each object using 30x32 bins. Initially
each object is searched over the full image, and then only in a search window
(Bradsky applies the search over the entire image). Objects are detected using
histogram intersection [10], so we obtain an image in gray scale where pixels
close to 255 are from the object detected. Once an object is detected, we use a
tracking algorithm proposed by Bradsky [2] over an appropriate search window

Fig. 3. Objects detected in two domains. Left image: towel, soap and key in a wash-
stand. Right image: screen, book, mouse and note pad in an office environment.
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for each object. The system maintains the position of each object in the scene.
Figure 3 illustrates the object detection process in two domains: washstand and
office environment. Objects detected in the washstand domain are: (1) a towel
(pink rectangle), (2) a soap (green rectangle), and (3) a key (blue rectangle). Ob-
jects detected in the office environment are: (1) a notepad (blue rectangle), (2)
a book (red rectangle), (3) a mouse (green rectangle), (4) a screen (aquamarine
rectangle).

Objects interacting with the hand of a person represent contextual informa-
tion. The gesture recognition system integrates this information with the motion
attributes from the hand trajectory.

4 Recognition System

Gesture recognition is based on hidden Markov models (HMMs), integrating
motion and contextual features.

4.1 Feature Selection

Motion features are obtained from the trajectory described by the right hand
centroid when interacting with surrounding objects. In a previous analysis, we
found that magnitude and orientation in polar coordinates are the best motion
features for describing this type of gestures [12]. Context features include the
distance from the hand centroid to each of the relevant objects that are detected
in the scene. An example is shown in Fig. 4. Thus, we use the following set of fea-
tures: (i) orientation, ρ, (normalized value) in polar coordinates, ii) magnitude,
φ, (normalized value) in polar coordinates, and iii) context information (rela-
tive position of the objects in the scene). To obtain those features the following
procedure is applied.

The center point, (Cx, Cy), of the gesture trajectory is obtained:

(Cx, Cy) = (
1
n

n∑
t=1

Xt,
1
n

n∑
t=1

Yt) . (3)

Based on this center point, the angle, θt, and distance, rt, of each sample in the
trajectory is obtained, relative to the center point:

θt = tan−1(
Yt − Cx

Xt − Cy
) . (4)

rt =
√

(Xt − Cx)2 + (Yt − Cy)2 . (5)

By calculating the longest distance from the center point to any point in one
gesture, rmax:

rmax = maxn
t=1(rt) . (6)

the normalized (0 − 1) distance, ρt; and normalized angle, φt, are:

ρt
rt

rmax
, φt =

θt

2π
. (7)
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By integrating the motion and context parameters, we obtain the following
feature vector:

F = (ρ, φ, Context) . (8)

Given that these are continuous variables and we are using discrete models,
these features are codified in 64 discrete observation symbols using the k-means
algorithm [4].

Fig. 4. The distance between the user hand and objects determine the context. In this
case, the red line shows the closest object.

4.2 Hidden Markov Models

HMMs have the ability to accurately characterize data exhibiting sequential
structure in the presence of noise, such as human gestures, finding the most
likely sequence of states that may have produced a given sequence of observa-
tions. The HMM topology used in this paper is the classical left–right structure,
which is typical for motion ordered paths. As usual, one model was trained for
each gesture class, and for recognition we selected the model with the highest
probability. The complete parameter set of the HMM can be expressed com-
pactly as λ = (A,B,Π), where A is the probability transition matrix, B is the
observation probability matrix, and Π is the initial probability vector. Three
basic problems must be solved for the application of HMMs: evaluation (clas-
sification), decoding, and training. We approach the above problems with the
standard techniques [9]: forward algorithm, Viterbi algorithm, and the Baum-
Welch algorithm.

5 Experimental Results

In this study, we focus our attention on human gestures performed by the hand
that include interaction with known objects. The type of gestures considered in
the experiments are the realized in two domains: office environment and wash-
stand room. The gestures that recognition system will try to identify are the
following: erasing, writing, using the mouse and turning the leaves of a book, in
the office environment (see Fig. 5); and using soap, opening the key, closing the
key, drying the hands, taking the towel, and washing hands, in the washstand
domain (see Fig. 5).
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Fig. 5. Example of gestures recognized in the two domains: left image office environ-
ment, right image washstand

Fig. 6. Gesture recognition rates with and without context information vs. number of
hidden states for the office domain

5.1 Training

We use two different training data set: one set for the office domain and another
for the washstand domain. In the office domain a data base with 4200 data points
was generated for training and testing. Data stored in the DB was obtained from
100 gestures sequences with 5 different gestures realized by a person in a sitting
position and interacting with objects in the office environment. We used 2100
data points for training and 2100 for testing. In the washstand domain, we use a
data base with 3600 data points generated for training and testing. These data
were obtained from 50 gestures sequences with 6 different gestures realized by a
person in a standing position and interacting with surrounding objects. In this
case, we used 2560 data points for training and 1040 data points for testing.
In both cases, gesture data was captured by a ceiling mounted camera pointed
downward, under normal illumination conditions in an office and in a bathroom.

5.2 Results

We tested the gesture recognition system for the 11 different types of gestures,
related to the manipulation of each object in the two scenarios.
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For the office environment, we compared the recognition rate with only motion
information vs. motion and context, for different number of hidden states in the
HMM. Figure 6 shows graphically the difference between both schemes. With
only motion, the recognition rate varies from 75% for 3 hidden states to 97%
for 10 hidden states. In the other case, when we integrate motion and context,
the recognition rate varies from 88% using 3 hidden states to 99.47% using 10
hidden states. There is a significant improvement by incorporating context.

For the washstand domain, we only show the results with motion and context
features. The confusion matrix is depicted in Table 2. The recognition rate varies
from 80% to 100%. The average recognition in this domain is 94%.

Table 2. Confusion matrix for the washstand domain

Open/close Washing Take Soaping Take Dry Av %
Key hands soap towel hands

Open/close Key 15 0 0 0 0 0 100.00
Washing hands 0 14 0 0 1 0 99.33
Take soap 0 1 12 0 1 1 80.00
Soaping 0 0 0 14 1 0 93.33
Take towel 0 0 0 0 14 1 93.33
Dry hands 0 0 0 0 0 15 100.00

5.3 Implementation

The system was implemented in a personal computer, Intel Pentium 4, with a
1.3 Ghz processor; and a Sony TRV19 CCD color video camera. The video card
(PixelView) captures 30 frames of 320x240 pixels per second. The processing
rate of the recognition system is between 12 and 15 fps. The system is codified
in Visual C++ 6.0 over Windows XP.

6 Conclusions

In this work we propose a novel approach that integrates motion and context
features using HMMs to recognize manipulative gestures. These features are ob-
tained using a single ceiling mounted camera observing the user hand interacting
with the surrounding objects. The motion features consist of the orientation and
the magnitude in polar coordinates. The context features consider the relative
position of the objects that interact with the user hand. We evaluated experi-
mentally the gesture recognition system in two different domains: a video con-
ference environment and a scenario in which a someone is washing his hands.
The results in both domains are very good, showing a significant improvement in
relation to using only motion features. We believe that using additional context
information, such as the relation between hands, or hands and face, could pro-
vide another important set of features to improve gesture recognition for more
complex scenarios.
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Abstract. Generalized median graph is a general concept useful to cap-
ture the essential information of a set of graphs. In addition, spectral
techniques can be used to obtain approximate solutions of graph match-
ing problems in a reasonable time. In this work we use the novel concept
of spectral median graph which takes advantage of both the median con-
cept and the spectral techniques, to synthesize the representative of a set
of graphical symbols. The results show that this concept represents ap-
propriately the most important intra-class features, while rejecting small
distortions and, for extension, it can be used to infer a prototype of a
set of symbols.

1 Introduction

Graphs, specially labelled or attributed relational graphs, are general and pow-
erful data structures for object representation in structural pattern recognition
and computer vision applications. When objects are represented by graphs, graph
matching is used to compare such objects. Algorithms for graph matching in-
clude graph and subgraph isomorphism [1]. However, due to errors and noise in
the input data, many times it is not possible to find a perfect match between two
elements and then, algorithms for approximate or error-tolerant matching must
be considered. These algorithms compute a similarity measure between two given
graphs. Numerous applications for exact and error-tolerant graph matching such
as character recognition, schematic drawing analysis, 2D shape analysis, 3D ob-
ject interpretation and machine learning have been reported in the literature [2].

In some of these applications it may be necessary to obtain the prototype of
a set of objects. Given a set of noisy samples of a certain object, error-tolerant
graph matching can be useful to infer a representative model that captures the
essential information of the class while rejecting small distortions due to noise. In
this context the concept of median graph [3] can be very useful and it has already
been applied to the synthesis of a prototype of a set of graphical symbols[4].
1 This work was sponsored research Fellowship number 401-027 (UAB) / Cicyt

TIC2003-09291 (Ministerio Ciencia y Tecnoloǵıa).
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It is well-known that one of the drawbacks of graph matching is its compu-
tational complexity. However, in the last years, spectral graph theory have been
applied to graph matching as an alternative way to obtain approximate solutions
in a reasonable time [5]. We have used spectral graph theory to develop an effi-
cient algorithm to compute the generalized median graph [6]. In this paper, we
propose an application of the spectral median graph to compute the represen-
tative prototype of a set of graphical symbols. Graph matching has been widely
used for recognition of graphical symbols and the definition of symbol proto-
types is one of the open issues [7]. Thus, we will define a graph representation
of symbols that is suitable for applying spectral techniques and we will show
how the spectral median graph yields a good prototype of the set of symbols, in
terms of recognition rates and theoretic definition. Results are compared with
those obtained using the Graduated Assignment Algorithm [8].

The rest of the paper is organized as follows. In section 2, we present some the-
oretical concepts required to understand the rest of this work. Section 3 presents
the concept of spectral median graph. In section 4 we introduce the representa-
tion of graphical symbols used to perform the experiments. Section 5 presents
the experiments and the results obtained. We terminate with some conclusions
and possible future research lines.

2 Definitions and Notation

In this work, we consider undirected labeled graphs. Given LV and LE, the sets
of vertex and edge labels respectively, formally speaking a labeled graph G is a
4-tuple G = (V,E, μ, β) where V is the set of nodes, E ⊆ (V × V ) is the finite
set of edges, μ : V −→ LV is a function which labels each vertex v ∈ V and
β : E −→ LE is a function which labels each edge e ∈ E.

2.1 Median Graph

Median graph [3] is an useful concept in object prototyping. Given a set of graphs,
the median is defined as the graph that has the smallest sum of distances to all
graphs in the set. We can distinguish between set and generalized median graph.
Formally speaking, median graph can be defined as follows:

Definition 1. Let Z be the set of graphs that can be constructed using labels
from LV and LE. Given S = {G1, G2, ..., Gn} ∈ Z, the generalized median graph
ḡ and set median graph ĝ of S are defined as follows:

ḡ = arg

(
min
G∈Z

∑
Gi∈S

d(G,Gi)

)
(1)

ĝ = arg

(
min
G∈S

∑
Gi∈S

d(G,Gi)

)
(2)



776 M. Ferrer, E. Valveny, and F. Serratosa

For the median graph computation of a similarity or distance measure between
two given graphs, d(G1, G2) is needed. Error-tolerant graph matching [9] can
be used to find the best correspondence between two graphs, providing such a
measure of similarity.

The only difference between both definitions is the space where the median
is computed. The generalized median graph is computed among the set of all
possible graphs. Thus, it is a more general concept and usually gives a better
representation than set median graph, which is computed among the set of sam-
ple graphs. Notice that ḡ is usually not a member of S, and in general more than
one generalized and set median graph can be found for a given set.

Conceptually, while the computation of set median graph is exponential in the
size of input graphs and polynomially bounded in the number of those graphs
(we must compute 1

2n(n − 1) pairwise graph distances), the computation of
generalized median graph is exponential in both the size of input graphs and the
number of those graphs. As a consequence, we are committed to use suboptimal
methods to compute approximate solutions in a reasonable time.

An application of median graph used in the synthesis of graphical symbols
has been presented in [4]. In this work a genetic algorithm has been employed to
compute the generalized median graph. The results obtained by such algorithm
have been compared with those obtained by an A∗-search optimal algorithm.

3 Spectral Median Graph

Spectral graph theory is concerned with understanding how the structural prop-
erties of graphs can be characterized using the eigenvalues and eigenvectors of
the adjacency matrix of a graph. A pioneering work concerning inexact graph
matching using spectral techniques is [5]. Using this work, we have extended the
median graph concepts to the spectral graph theory to define set and general-
ized median eigenmode [6] using the modal matrices (matrices containing the
eigenvectors obtained from an adjacency matrix):

Definition 2. Let K be the set of all modal matrices of order n. Given a set
of modal matrices L = {U1,U2, . . . ,Um}, the generalized median eigenmode U

and the set median eigenmode Û of L are defined by:

Ū = arg

(
max
U∈K

∑
Ui∈L

Γ (U,Ui)

)
(3)

Û = arg

(
max
U∈L

∑
Ui∈L

Γ (U,Ui)

)
(4)

where Γ (A,B) is the correlation between two matrices A and B and is computed
with the method described in [5].

The generalized median eigenmode and the set median eigenmode maximize
the sum of the correlations to all modal-matrices in K or L. Nevertheless, the
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computation of both medians is drastically different. While Û is obtained in
polynomial time with respect to the number of elements, Ū is obtained in expo-
nential time (see [6] for more details).
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Fig. 1. Synthesis of median spectral graph

Synthesis of the Generalized Median Eigenmode: An incremental algo-
rithm has been used in [6] to compute the generalized median eigenmode. First,
we maximize the correlation between the modal matrices of two graphs in the
set using the procedure explained in [5], giving an intermediate median graph.
Then, the modal matrix of this intermediate median graph is used to maximize
the correlation to the next graph in the set, and the process is repeated itera-
tively until the last graph in the set is processed, giving the final median graph.
Figure 1 shows an example of such algorithm.

4 Synthesis of Graphical Symbols

In order to test the spectral median graph we have applied this method to com-
pute the prototype of a given set of graphical symbols. We have chosen a subset of
the symbols used in the Sixth IAPR International Workshop on Graphics Recog-
nition - GREC 2005 [10]. This subset contains 80 different symbols (classes),
extracted from architectural, electric and other technical fields. Some represen-
tative symbols of such subset are shown in figure 2. Notice that all of them are
composed of a set of straight lines. Each segment terminates either with a termi-
nal point or a junction point (confluence point between two or more segments).
For convenience, from now to the end of this work, we will refer to these kinds
of points as TP and JP respectively.
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Fig. 2. Six symbols corresponding to GREC 2005 database

In order to prove the robustness of the prototypes against noise, 7 different
levels of distortion have been introduced. Distortion is generated moving each
TP or JP randomly within a circle of radius r, given as a parameter for each
level, centered at original coordinates of the point. If a JP is randomly moved, all
the segments connected to it are also moved. With such distortion, gaps in line
segments, missing line segments and wrong line segments are not allowed. But
the number of nodes of each symbol is not changed. Figure 3 shows an example
of such distortions. For each class and for each distortion, we have created 100
images. Thus for each class we have 700 elements (100 for each distortion).
Therefore, we have 5600 (80*700) images to perform the experiments.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Original model (a) and distorted models from level 1, (b) to level 7, (h)

In order to compute the prototypes a graph-based representation of the sym-
bols must be defined. This representation must take into account some restric-
tions imposed by the two approximate methods that have been used to compute
the prototypes, namely the spectral median graph and the Graduated Assign-
ment algorithm. Spectral techniques can only work with graphs with the same
number of nodes. On the other hand, the adjacency matrices used in the grad-
uated assignment algorithm must have 0-element in the main diagonal. In addi-
tion, in both cases the attributes of nodes or edges must be real positive numbers.

We have defined two different representations, namely node-based representa-
tion and edge-based representation. In both of them a symbol is represented as
an undirected labeled graph, where the TPs and JPs are represented as nodes.
Edges correspond to the segments connecting those points. The information as-
sociated to nodes or edges are their coordinates (x, y). As labels can only be real
numbers we have created two adjacency matrices for each symbol, one of them
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containing x-coordinates and the other containing y-coordinates. In the edge-
based representation, information associated to nodes is always 0 while edge
labels are the coordinates (x, y) of the mid point of the segment. In the node-
based representation, labels of nodes are the coordinates (x, y) of the point while
labels of edges are always 1. In both cases we store a 0 when no edge exists be-
tween two nodes. The distance between two symbols will be the mean between
the x and y distances. Figure 4 shows the two representations of a symbol.
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Fig. 4. Two graph-based representations of a graphical symbol

5 Experiments and Results

In this paper, two methods are compared, namely spectral median graph and the
graduated assignment algorithm for graph matching. While the spectral graph
method has been tested using the two graph-based representations cited above,
the graduated assignment has only been tested using the edge-based representa-
tion. We will refer to such combinations as S-edge, S-node (for spectral applied
to both edge and node-based representations) and GA-edge (for graduated as-
signment). In addition, we propose three measures in order to test the accuracy
and the robustness of such methods to compute the prototype of a set of a given
models. We call these measures Intra-class Median Accuracy, Recognition Rate
and Median Evolution. The two first measures are quantitative measures while
the third one is more qualitative and is useful to perform a visual evaluation
of the methods. In order to make the results more general, we have calculated
for each class and for each level of distortion, the corresponding median using
1,5,10,30,50,70 and 100 images in the class. In the next lines, these three exper-
iments will be explained and the results obtained for each one will be presented.

Intra-class Median Accuracy: This measure computes the similarity between
the computed median graph and the true median graph. The sum of distances
(SOD) of the median to all the other elements in the class is computed and
compared to the SOD of all the elements in the class. According to its definition,
the median graph would always have the minimum SOD. So, if we rank the
median and all the other elements according to SOD, the lower is the position of
the median, the better is the representation for the median. The results obtained
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Fig. 5. Experiment 1: Intra-Class Accuracy

for all the classes are shown in figure 5. Curves show the mean accumulate
position of the median over all distortion levels for a certain number of images
used to compute the median.

When the median is computed with only one model, the position of the SOD
of the median with respect to the rest of the elements in the class is distributed
randomly. As a consequence, the accumulative frequency tends to be linear from
0 to 100. For the other cases, we can see that S-edge and GA-edge methods have
a very similar behavior. In both cases, the SOD of the median is the minimum
around the 20-25% of times and around 40-45% is among the fifth best positions.
Results are much better for the S-node method. The accumulative frequency at
the fifth position is between 80-90% depending on the number of images. More-
over, the evolution is much more abrupt than for S-edge and GA-edge. From
these results we can draw three main conclusions: firstly, the node-based rep-
resentation is more appropriate to compute the median; secondly, there is no
significant differences between spectral methods and graduated assignment with
respect to the correctness of the computed median; and thirdly, there is no sig-
nificant improvement in the median accuracy when using more than 5 images
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per class. It seems that using between 5 and 10 images per class is enough to
compute the median.
Recognition Rate: In this case, one median was computed for each class.
Then, all the models in the database were matched against the computed medi-
ans and classified according to the median with minimum distance. It must be
noticed, that, as spectral graph matching requires the two graphs to have the
same number of nodes, only 20 classes, those with the same number of nodes in
their elements, have been used. Table 1 shows the mean recognition rates. On
the left, recognition rates are the mean for each level of distortion while on the
right, recognition rates are the mean (over all classes and distortion levels) for
the median computed with 1,5,10,30,50,70 and 100 images/class.

Results show that S-edge and GA-edge methods have similar recognition rates,
being S-edge slightly better than GA-edge while S-node has the best results in
all cases. As expected, recognition rate decreases as distortion level increases,
being this tendency more clear in the S-node results. No significant improvement
of recognition rates can be seen as a function of the #images, beginning with
5 images. Thus, the behavior pattern of the methods is very similar to that
detected with the intra-class median accuracy measure.
Median Evolution: This experiment shows the evolution of the median as a
function of the distortion level and the #images used to compute the median.
Since experiments 1 and 2 show that the best combination is the S-node method,
this third experiment has only been performed with such method. Figure 6 shows
the results obtained for a particular class (the ideal model for this class is shown
in figure 2). In this figure, rows correspond to the distortion level while columns
correspond to the number of images used to compute the median. We can see
that the largest is the number of symbols used to compute the median graph, the
bigger is the similarity between it and the ideal model. Obviously, the number of
images to obtain a close representation of ideal symbol by means of median graph
depends on the distortion level. For instance, we obtained a similar results in
median computation using 5 symbols for a distortion level of 10 and 100 symbols
for a distortion level of 7. It must be noticed that even with high degrees of
distortion, using enough number of images, the median always tends to the ideal
shape.

Table 1. Experiment 2: Recognition Rate

Recognition Rate vs. Distortion Recognition Rate vs. #symbols
Distortion S-edge GA-edge S-node # symbols S-edge GA-edge S-node

1 96.10 93.54 99.78 1 92.02 93.22 94.50
2 93.19 92.43 98.28 5 93.35 92.62 96.62
3 93.46 90.75 97.24 10 93.17 91.87 96.45
4 92.94 92.81 96.27 30 93.35 92.71 97.03
5 92.55 92.19 96.10 50 94.68 93.52 97.12
6 93.54 93.97 94.84 70 94.27 92.14 97.23
7 92.05 93.12 93.78 100 93.01 92.72 97.35
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Fig. 6. Experiment 3: Median Evolution

Table 2. Computation time (minutes): S-edge, GA-edge and S-node algorithms

Algorithm # Symbols/median
1 5 10 30 50 70 100

S-edge 15.6 16.2 16.5 18.1 20 20.9 23
GA-edge 14.7 27.7 45.1 109.6 174.3 241.23 337.05
S-node 9.87 10.15 10.25 11.56 13.37 14.71 16.26

Computation Time: Table 2 shows the computation time required for S-edge,
GA-edge and S-node to perform experiment 3 on a Intel Centrino 1.73 GHz with
512 MB of RAM. In the case where the median is computed with one symbol
all the methods have similar computation times. In the other cases, GA-edge
computation time is always greater than those obtained by S-edge and S-node,
being this difference bigger as the number of symbols used increases. The dif-
ference in computation times in S-edge and S-node is due to the representation,
but in both cases is practically constant with respect to the number of symbols.

6 Conclusions

Median graph is a useful concept to compute the prototype of a given set of
symbols. In this work we adopted a spectral approach to compute the generalized
median graph of a set of graphical symbols. We compared the results obtained
by our method with those obtained using the graduated assignment algorithm.

We have shown the practical usefulness of the proposed approximate method
to represent the concept of median graph. In particular, the experimental results
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have demonstrated the ability of the solutions to represent the prototype of
graphical symbols keeping the most important information in the class and re-
jecting small distortions due to some form of noise. Although S-edge and GA-
edge have similar intra-class accuracy and recognition rate results, computation
times are drastically different being significantly lower in the S-egde. We have
defined two graph representations of graphical symbols, obtaining better results
with the node-based representation. These results suggest that a deep study
of the influence of the representation and the structure of the adjacency ma-
trix should be done in order to characterize as well as possible the behavior
of spectral techniques. In this sense it would be useful to extend this study to
other matrices such as the Laplacian matrix, and compare the results with those
obtained with the adjacency matrix.

References

1. Ullman, J.R.: An algorithm for subgraph isomorphism. Journal of ACM 23(1)
(1976) 31–42

2. Bunke, H., Messmer, B.T.: Recent advances in graph matching. IJPRAI 11(1)
(1997) 169–203
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Abstract. Textures are important visual attribute used in image analy-
sis. This paper presents a novel methodology, based on a deterministic
walk, to texture analysis and texture characterization. Most of the meth-
ods adopted to classify textures deal with a defined fixed scale of texture.
The method proposed here explores the set in all scales and is able to
characterize efficiently different texture classes. The paper presents the
deterministic walk technique and its results for two experiments using
Brodatz images.

1 Introduction

Image Analysis is a field of computer vision and artificial intelligence responsi-
ble for the extraction of meaningful information from images. Among several at-
tributes, texture is an important visual attribute used in image analysis. Texture
analysis has a broad range of applications, such as: aid of diagnoses in medical
images [1], remote sensing [2], analysis of geological images [3] and microscope
images [4].

Although there is not a formal specification of the texture analysis, this at-
tribute is directly related to the distribution of pixels in a certain region of the
image. It represents an important source of information. Generally, textures can
be classified as micro and macro textures according to the size of the set of pixels
analyzed. By micro textures we mean the analysis of a small parts of the image,
while for macro texture the analysis of the whole image. Most of the techniques
used in image retrieval are devoted to the micro textures analysis [5,6]. The num-
ber of methods applied to macro textures is still restricted, due to the inherent
difficulty in the analysis [7].

Recently we have proposed a new method for texture characterization based
on a deterministic dynamics. Consider walkers leaving each pixel of an image.
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Each walker does not interact with the others. For a given time step, each walker
has information about the eight next nearest neighbor pixels and moves towards
the direction of minimum intensity difference among the ones that have not
been visited in the previous μ time steps. For μ = 0, no dynamics is allowed.
For μ = 1, the walker always goes to the mininum intensity difference direction,
so that after a time transient, the trajectories end on cycles of period two. This
cycle consists of two pixels having mutually the minimum intensity differences
between themselves. More interesting cycle distributions occur for μ ≥ 2. In this
case each trajectory, after a transient time, ends in a cycle with period p ≥ μ = 1.
In particular, cycles with period p much greater that the memory μ are allowed.
It is the range of cycle periods which allows the image analysis from the local
scale of μ pixel up to a large scale of size of the number of pixels N .

Our main interest is to obtain an image signature from the time transient
and cycle period joint distribution. A naive approach to this analysis has been
described in Ref. [8], where we have shown the potential use of these joint dis-
tributions for texture analysis in images. A more sofisticated analysis, using the
non-parametric Flexible Discriminant Analysis (FDA) on the joint distribution
furnished a more reliable classification [9].

Our presentation is divided as follows. A brief review of the considered deter-
ministic walk in Section 2. In Section 3, we modify these walks t apply them to
image analysis. In Section 4, from the transient time and cycle period obtained
from the walker trajectory we build texture signatures vectors. Also we set up
experiment sets to compare the performance of two of the proposed texture signa-
ture vectors to 400 images of 40 different Brodatz’s texture classes. In Section 5,
we show the superior performance when multiple μ values are used. Finally in
Section 6, the conclusions and improvement of the methods are discussed.

2 Deterministic Tourist Walk

Although not as thoroughly studied as random walks [10,11], the study of de-
terministic walks has attained the interest of researchers [12,13,14,15]. Here, we
are interested in exploring a partially self-avoiding deterministic walk algorithm,
known as the tourist walk (TW) [16,17,18,19,20,21] for image analysis purposes.

The tourist walk algorithm can be pictorially viewed as a tourist wishing
to visit N cities randomly distributed in a map of d dimensions. The tourist
starts his route in a given city of this map and moves according to the following
deterministic rule: go to the nearest city, which has not been visited in the last
μ time steps. For μ ≥ 1, self-avoidance is limited to the memory window τ =
μ − 1, which represents a characteristic time to the city to become attractive
to the tourist again (refractory time). The trajectories can intersect outside this
memory range. Each tourist trajectory consists of a transient part of length t
(new cities are visited) and a final cycle of period p (no new cities are visited any
longer). The trajectory is complex and depends strictly on the starting point and
on the configuration of the data set. The only known relation that holds is p ≥
μ+1. The tourist movements are entirely performed based on the neighborhood
rank. These ranks are conveniently represented by a neighborhood table, which
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neglects the distances among the cities. This feature leads to invariance in scale
transformations [21].

We call the attention to several aspects of these deterministic walks:

1. At each time interval the tourist moves from one city to another, regardless
the distance between them.

2. Starting from different cities in the map, the tourist performs different tra-
jectories with variable transient times (which can even be null t = 0) and
end in cycles with period p ≥ μ + 1.

3. The trajectories are different for different initial conditions, but several tra-
jectories can end in the same cycle with a given period p.

Although easy to formulate and not too complicated to implement numerically,
this algorithm may present a complex behavior according to the chosen memory
window μ. This intriguing behavior can be captured with the transient time and
period joint distribution S

(N)
d,μ (t, p). Here we show that the joint distributions

S
(N)
d,μ (t, p) can be efficiently used as features for image analysis. In the following

we show some examples of known analytical joint distributions for Poissonic
landscape.

The deterministic tourist walk with memory μ = 0 is trivial since the walker
does not move at each time step. The joint distribution is simply given by:
S

(N)
d,0 (t, p) = δt,0δp,1, where δi,j is the Kronecker’s delta.
With memory μ = 1, the walker must leave the visited city at each time

step. The transient and period joint distribution is obtained for N � 1 [22]:
S

(∞)
d,1 (t, p) = Γ (1 + I−1

d )(t + I−1
d ) δp,2/Γ (t + p + I−1

d ), where t = 0, 1, 2, . . ., Γ (z)
is the gamma function and Id = I1/4[1/2, (d+1)/2] is the normalized incomplete
beta function. We stress that this transient time distribution has been calculated
for Poissonic process. It does not lead to exploration of the random medium since
after a short transient time, the tourist gets trapped in pairs of cities that are
mutually nearest neighbors.

Interesting phenomena occur when greater memory values are considered.
In this case, the cycle distribution is no longer peaked at pmin = μ + 1, but
presents a whole spectrum of cycles with period p ≥ pmin, with possible power-
law decay [16,17,18]. Determinism imposes serious restrictions as it can be seen
in μ = 2 one-dimensional systems, where all odd periods above pmin = 3 are
forbidden, as well as the even period p = 6.

3 Modified Tourist Walk

In the context of images (d = 2), one can consider each pixel as a point (or city).
In the original algorithm the neighborhood table has size of the order N2, where
each point is ranked with respect to the remaining N − 1 other points. Notice
that μ ranges from zero to N − 1, where all cities are visited (full self-avoiding
circuit).

For images, the algorithm has been modified since each pixel interacts only
with its first and second neighbors and the walker goes always to the direction
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of minimum intensity difference (gradient). Thus the neighborhood table has a
maximum size of N × 8. For open boundary condition, the surface and corner
pixels have five and three next and second next nearest neighbors, respectively.

Starting from each pixel, the walker moves according to the deterministic
rule of going to the pixel with nearest intensity compared to the present pixel
intensity, so that the given intensity difference has not been attained in the
preceeding μ steps. From these walks, the transient time and cycle period of the
trajectories are calculated and the joint distribution is constructed.

The occurrence of ties is resolved by choosing the first pixel in the counter
clockwise direction, preserving the deterministic nature of the algorithm. This
approach is not invariant to image rotation. For a given image and the same
image with 90o-tilt feeded to the algorithm, different joint distributions are pro-
duced. This suitable difference for texture characterization is due the determin-
istic way of resolving intensity difference ties.

Differently from the original problem, the tourist walk is not performed in
a non-correlated random media but in a correlated medium, the image. Simi-
larly to the previous studies [8,9], the image analysis consists exploring the joint
distribution properties over the image and compose a texture signature curve.

4 Experiments

The tourist walk transient time and cycle period joint distributions have been
obtained for different memory values using open boundary conditions to the
images from the book of Brodatz [23]. These images form a set largely used in
computer vision and image processing literature as benchmark for texture analy-
sis. In the computer experiment, each image has 200×200 pixels with 256 gray
levels and 40 classes, with 10 samples each, have been employed. One example of
each these 40 classes are dipicted in Figure 1. Experiments have been idealized
to show the high potential of the method to analyze and characterize texture
images.

4.1 Transient Time and Cycle Period Joint Distribution

It is important to stress that the transient time has the role of counting different
intensity gradients while the cycle detects a kind of pattern that eventually an
image may display. The memory μ has the role of setting the minimum pattern
scale.

In Figure 2 three different classes of Brodatz’s textures are dipicted and for
each class, the transient time and cycle period joint distribution of the modified
tourist walk is display for three different memory values. Observe the existence
of a pattern for the joint distribution for each considered texture class. This
stresses the potentiability to discriminate different texture classes from these
distributions. Also, it is clear that the large the memory values are, the broader
the distribution is. This means that different μ values sample different image
characteristics indicating the possibility to have an optimum μ value for better
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Fig. 1. One example of each of the 40 Brodatz’s classes considered. Each image has
200×200 pixels and 256 grey levels.

image classification. The signature curves obtained from the joint distributions
have been used to characterize and classify the images used in the experiment.

Operationally one has a three-dimensional array where one of the axis repre-
sents the transient time. The other axis represents the cycle period. When these
two axes are combined, they represent the joint distribution S

(N)
μ (t, p). The third

axis represents the memory, so that slices along the μ axis give S
(N)
μ (t, p).

A large amount of information is contained in this three-dimensional array.
This implies to difficulties when dealing with pattern recognition. Our main
objective is to extract texture information, in a simple form, using signatures.

4.2 Texture Signature Vector

Signatures concentrate the desired texture information to few elements of a vec-
tor. For instance, for images of 200×200 pixels, signatures are vectors is a typical
size of 25 elements.

The signature curves are feature vectors extracted from the joint distribu-
tions and they are used to characterize and classify the images by the texture
pattern. In the first approach the feature vector ψ is constructed from the joint
distribution of a specific μ value. The parameters t and a indicate the maxi-
mum number of transient time and the maximum number of attractors to be
considered, respectively:

ψμ(t, a) = [S(N)
2,μ (0 : t, μ + 1)S(N)

2,μ (0 : t, μ + 2) . . . S(N)
2,μ (0 : t, μ + a)] . (1)



Deterministic Tourist Walks as an Image Analysis Methodology Based 789

Fig. 2. Three different classes of Brodatz’s textures are dipicted in panels from (a),
(e) and (c). For each class, the transient time and cycle period joint distribution of
the modified tourist walk is display for three different memory values: μ = 2 (pannels:
(b), (f) and (j)), μ = 3 (pannels: (c), (g) and (k)) and μ = 5 (pannels: (d), (h) and
(l)).

To study the influence of the memory on the time transient and cycle period
distribution and consequently its influence in the sample classification, the ex-
periments have been performed with t = 4 and a = 5 so that each signature
vector has 25 elements. Experiments have been carried out for μ = 2, 3, 5, 7
and 11.

In the second experiment only the first two time transients (t = 0 and t = 1)
and two cycle periods a = 2 are considered for μ = 2, 3, 5, 7 and 11 and the
signature vector in this case is the concatenation of the simpler fixed signature
vectors

ϕ(μi, μf ) = [ψμi(2, 2) . . .ψμf
(2, 2)] . (2)

4.3 Flexible Discriminant Analysis

In both experiments, the Brodatz’s images have been characterized by modi-
fied tourist walk texture signature. A discriminant data analysis technique has
been performed, based on these features. The statistical analysis has been car-
ried out with the R 2.1.1 system [24] and the employed technique has been the
flexible discriminant analysis (FDA) [25]. This is a generalization of linear dis-
criminant analysis (LDA). It is more sofisticate analysis than LDA, once it uses
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non-parametric fits to achieve a more flexible classifier than LDA. The experi-
mental results and the discussion about the performance of the modified tourist
deterministic walks are presented in the following.

5 Results

Table 2 shows the confusion matrix obtained for the first experiment, i.e., when
the μ values are not combined. The signature vector has the most 24 represen-
tative elements of the transient time and cycle period joint distribution of the
modified tourist walk. This signature vector has been submitted to a flexible
determinant analysis. Table 1 shows that as the memory μ increases, the error
tends to increase.

The second set of experiments have been performed concatenating part of the
μ image signature vector from the first set of experiments into a single image

Table 1. The error as a function of the memory μ for the fixed memory experiment

μ 2 3 5 7 11 multiple μ
error 0.1225 0.1775 0.2025 0.1725 0.2625 0.0525

Table 2. Confusion matrix showing the classification results for 40 classes of texture
images, for signature extracts for μ = 5. Classification error = 0.2025.

true
obj 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
01 5 1 1 1 1 1 1
02 5 1 1 1
03 1 7 1
04 1 8 1
05 8 1
06 10
07 1 9 1 1 1
08 1 4 1 1 1
09 8 1
10 1 9
11 1 1 8 1
12 9
13 7 1 1
14 10
15 1 8 1
16 7 1 1
17 6 2 1 1
18 1 1 8 1
19 7 1
20 10
21 101
22 9
23 1 1 8 1 1 1
24 1 1 3 8
25 1 1 7 1 1
26 1 1 7 1 1
27 10
28 10
29 8
30 2 1 9 1
31 1 1 1 1 8
32 1 1 1 1 1 6
33 1 1 7
34 10
35 10
36 101
37 9
38 1 7
39 1 7
40 1 1 1 6
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Table 3. Confusion matrix showing the classification results for 40 classes of texture
images, for the combining μ method. Classification error = 0.0525.

true
obj 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
01 8
02 9 2
03 9 1 1
04 9 1 1
05 10
06 10
07 10
08 1 8 1
09 10
10 10
11 10
12 9
13 10
14 10
15 10
16 10
17 10
18 9
19 10
20 10
21 10
22 10
23 102
24 8 1
25 8
26 10 1
27 10
28 10
29 10
30 10
31 1 9 1
32 1 7
33 9
34 101
35 9
36 9
37 1 10
38 10
39 1 10
40 2 1 9

signature vector. This approach leads to a significant increase of the method clas-
sification capacity. The composed signature vector has been generated colecting
the five more significant elements from each single μ signature vector leading
to 25 elements. The confusion table of this set of experiments is presented in
Table 3 and the error is of 0.0525.

Collecting six elements from the single signature vector leading to 30 elements
in the composed signature, the error is of 0.0500.

The results of these preliminary experiments with the modified tourist walk
transient time and cycle period joint distribution with several memory values
combined with a signature vector and a powerfull statistical multivariate analysis
show the potential use of them as an efficient image classification method.

The new treatment proposed here diminishes the individual importance for
each μ value, but stresses the role of small values either for μ or the transient
time and cycle period. This conclusion is corroboreted with the small error taxes
for the second experiment

6 Conclusion

We have presented a new method of feature extraction of image textures based
on the deterministic tourist walk. The methods most commonly used deals with
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defined scales of pixel distributions. The distribution of transient times and
periods of a set of data (image) present a wide range, capturing details on the
organization of pixels from the micro to the macro scales and the resulting
curve is strictly related to the configuration of the data set. We have showed
that the joint distribution of the modified TW is an efficient tool for texture
classification. We have realized two experiments using the modified TW and
discriminant analysis to classify Brodatz textures. The results presented in this
paper, show the great potential of the modified TW to be used as a texture
analysis methodology.
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Abstract. The comparison of different approaches to classification of 
multichannel remote sensing images obtained by spaceborne imaging systems  
is presented. It is demonstrated that it is reasonable to compress original  
noisy images with appropriate compression ratio and then to classify the 
decompressed images rather than original data. Two classifiers are considered: 
based on radial basis function neural network and support vector machine. The 
latter one produces slightly better classification results.  

Keywords: Multichannel image classification, image compression, remote 
sensing. 

1   Introduction 

Nowadays airborne and spaceborne remote sensing (RS) systems produce a lot of data 
that are valuable for such applications like ecological monitoring, forestry, 
agriculture, catastrophe prediction, etc [1]. Most of such systems operate in the so 
called multichannel mode [2]. Term “multichannel” means that for some terrain lot 
several component images are formed in different bands or using different 
polarizations of transmitted and/or received signals. Multichannel RS systems are 
potentially able to provide more reliable retrieval of useful information from RS data 
and/or more accurate estimation of sensed terrain parameters.  

Multichannel data can be transferred from airborne or spaceborne carrier to an on-
ground processing center without any compression, coded in a lossless manner, or 
lossy compressed. In case of lossless coding the provided compression ratio (CR) is 
commonly within the limits from 2 to 3 [3, 4] that often is inappropriate. Recently, 
several papers that report on possibilities of applying lossy compression to multi- and 
hyperspectral images have appeared (see, e.g., [5-7]). It has been demonstrated that 
quite good classification of multichannel RS data can be provided even if the used CR 
is from 20 to 50. It can be explained by the fact that the original multichannel RS 
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images often are noisy [8] and noise suppression using image compression techniques 
leads to increasing the reliability of correct classification simultaneously decreasing 
the data size [8-10]. The only important item is that CR should be adjusted in 
correspondence with noise variance for providing a proper trade-off between noise 
suppression and distortions introduced due to lossy compression [9,10]. This allows 
expecting that the probability of correct classification of multichannel RS data can be 
of the same order for two cases: a) applying classification procedure to original 
(noisy) data; b) applying classification to data compressed in a lossy manner with 
proper selection of a compression ratio.  

The aim of this paper is twofold. The first goal is to compare both aforementioned 
approaches and to make up the corresponding practical recommendations. The second 
goal is to consider two modern classifier types based on using support vector 
machines (SVM) and radial basis function (RBF) neural networks (NN), both trained 
in a supervised manner.  

2   Lossy Compression of Noisy Images  

First, it is worth noting that in case of lossy compression of noisy images it is 
reasonable to use not typical criteria of compressed image quality [9, 10]. Recall that 
if one deals with traditional lossy compression of still images, the compression is 
basically characterized by the rate-distortion curve (PSNR vs CR) [11]. PSNRor for 
decompressed image is calculated with respect to the corresponding original image. 
On the contrary, if a noisy image is subject to compression, it is also expedient to 
control similarity of decompressed and noise-free images that can be characterized by 
PSNRnf calculated with the use of MSE between decompressed and noise free images. 
Certainly, PSNRnf can be obtained by simulations with test images to which noise has 
been artificially added.  

Fig. 1 presents the corresponding curves for the test gray-scale image Lena 
corrupted by additive, zero mean Gaussian noise with variance 2=50. Two 
compression methods have been considered, the standard JPEG 2000 [12] and the 
recently introduced AGU coder [13].  

For both considered coders the dependencies of PSNRor behave in conventional 
manner, i.e., PSNRor becomes smaller when the compression rate increases. The 
behavior of the PSNRnf curve is more specific. As seen, for both considered coders 
PSNRnf increases when CR reduces from 2 to approximately 0.35 bpp. At 
CR≈0.35bpp the maximums for both curves are observed, and further reduction of CR 
leads to rapid PSNRnf decreasing. Such a compression rate for which the maximum of 
PSNRnf is observed called optimal operation point (OOP). Intuitively, this can be 
favorable for image classification.  

As shown in [9], for OOP determination one should know in advance or to pre-
estimate the noise characteristics, and it can be done in a blind manner [15, 16]. 
Approaches to provide OOP in an automatic manner have been proposed in [9, 17]. 
Since AGU coder provides for OOP better PSNRnf than JPEG2000 (see [9] and 
particular data in Fig. 1), below we will consider the application of AGU coder for 
compressing multichannel images.  
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Fig. 1. Dependencies PSNRnf and PSNRor vs CR for JPEG2000 and AGU techniques for test 
image Lena corrupted by additive noise with 2=50 

3   Considered Approaches to Classification of Original Noisy and 
Compressed Images 

Classification has been applied to the three-channel test image presented in Fig. 2,a. 
This image has been obtained by using Landsat TM images of three bands 
(ftp://ftp.glcf.umiacs.umd.edu/glcf/Mosaic_Landsat), for which the corresponding 
ground truth map is available.  

There are five basic classes in the observed scene, namely, soil, grass, water 
surface, roads and urban areas, bushes. The percentage of pixels (more exactly, 
voxels) belonging to each class is rather different and it varies from 7.4% for roads 
and urban areas to 43.6% for grass. Two classifiers have been employed. The first one 
is based on Support Vector Machines (SVM) that has superior performance 
comparing to many standard classification techniques in various applications [18]. 

The SVM classifier uses a “kernel trick” method for mapping the original feature 
space of classified data into a higher-dimensional non-linear feature space. For  
 

     
a                                                                b 

Fig. 2. The test three-channel image in RGB representation (a) and the corresponding 
classification map for noise-free multichannel data (b) 
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two-class (binary) classification problem the SVM classifier uses a hyperplane to  
subdivide the feature space into two regions and attributes the input feature vector to 
one of two classes. There are different ways for choosing a hyperplane in a feature 
space. One of them is a maximum margin approach that maximizes the distance from 
the hyperplane to the nearest training samples in a feature vector space. This approach 
is not applicable for training data with classification errors and data corrupted by 
noise, such as multichannel RS images considered in this paper. Obviously, 
classification errors are natural for some part of noisy data used for SVM training, and 
maximum margin condition can not be satisfied for all vectors of the training data set. 

For training the SVM classifier we used a more practical approach. It is based on 
choosing a soft margin hyperplane that allows a small amount of errors in training 
data by introducing slack variables in the objective function. For binary classification 
the soft margin hyperplane is found by solving the primary optimization problem [18] 
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where N is a number of training samples, N
nnn y 1)} ,{( =x  is the training dataset and 

yn=1 for the first class and yn=-1 for the second class of training data. nξ  are slack 

variables. If 0>nξ , the slack variables indicate training data with classification 

errors. C>0 is an error penalty parameter that determines the trade-off between the 
hyperplane margin and classification errors; w and b are the parameters of hyperplane 

0)( =+⋅ bnxw . By introducing Lagrange multipliers 0≥nα , the constrained 

optimization problem (1) can be expressed as dual optimization problem [20] 
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where 0≥nα . For Lagrange multipliers nα  not equal to zero the corresponding 

training vectors are named “support vectors”. 
The dot product of two feature vectors in (3) is calculated indirectly by application 

of “kernel trick” method. A kernel function ),( yxK  is expressed as  

 )()(),( yxyx ϕϕ TK =  (5) 

where function ),( yxK  is subject to Mercer's condition [18, 20]. One of the 

frequently used kernel functions is a radial basis function (RBF) 

 )exp(),(
2yxyx −−= γK , 0>γ  (6) 
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where γ  is the function control parameter. The RBF kernel has only one parameter, it 
provides the same performance as linear kernel, for certain parameters it behaves like 
some other kernel types and is a reasonable choice for the considered classification 
task. Application of (5) for a hyperplane equation gives the output of SVM classifier  

 +=
=

N

n
nnn bKyf

1

),(sgn)( xxx α  (7) 

where x is the input feature vector. For the considered scenario of classifying three-
channel test images, the feature vector is composed of three pixel values for RGB 

image components 3),,( Rxxx BGR ∈=x . 

The SVM classifier given by equations (1)-(7) is designed for solving binary 
classification tasks. Several approaches have been proposed for solving multi-class 
problems based on direct classification of all data in one optimization formulation and 
combining several binary SVM classifiers [21]. The first one has to deal with all SVM 
parameters for the objective function optimization and it is usually more 
computationally expensive than the second approach that we applied for classification 
of the test image in Fig.2,a. It is based on one-against-one classification strategy that 
divides multi-class problem into K(K-1)/2 separate binary classification problems for 
all pair combinations of K classes. The binary classification problems are solved by 
SVM classifiers and a majority voting rule is applied to find the output class [21].  

While the number of class training samples is not equal, we used different error 
penalty parameters Ci in the objective function (1) to provide equal contributions from 
every image class and achieve similar probability of correct classification. For i-th 
class the parameter Ci is given by  
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where C* is a constant. Ni is a number of training samples for class i and N is a total 
number of samples. The error parameter C* and the RBF control parameters are 
evaluated by cross-validation [19].  

Another approach presumes the use of radial basis function (RBF) neural network 
(NN) classifier [22]. The RBF NN demonstrates high efficiency, low computational 
demands and simplicity of software and hardware implementation at training and 
classification stages [23, 24]. The RBF NN classifier we used had an input layer, 
single hidden layer with nonlinear neurons and an output layer with linear neurons. 
The number of neurons in the input layer was the same as the number of input 
features, and the number of output layer neurons was equal to the number of data 
classes. The number of neurons in the hidden layer depends on such factors, as   
classification complexity and feature space dimensionality. The activation function of 
the hidden layer neurons had the same form as the RBF kernel function (6) we 
considered for SVM classifier. The training of RBF NN was performed by 
minimizing the mean square error E of the NN output  
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where Zn,k is the output of the NN output layer representing the accumulated 
membership of the n-th data sample to the object class k. yn,k is the desired output of 
neural network, N is the number of training samples and K is the number of classes. 
The error function (9) was weighted by wk values to provide equal contributions from 
every image class for the different numbers of class training samples. The weight for 
every class is equal to the reciprocal of the number of class training samples.  

A cascade-correlation algorithm that provides nearly optimal training results with 
the extended number of neurons in the RBF NN hidden layer was used to minimize 
the objective function (9). Training starts with one hidden layer neuron and the new 
ones are added iteratively to reduce the total residual error. The weighting coefficients 
of new hidden neuron are selected to provide the condition of maximum correlation 
between the new unit output and the trained NN output error [25]. The optimal 
number of hidden layer neurons is selected automatically by cross validation [19].  

Classifiers have been trained in a supervised manner using small portions of 
images from 181 to 1610 pixels depending upon the class. In Fig. 3 the lots from 
which the training sets were taken are shown. After learning, the classifiers have been 
applied to the entire image. The pixels to which classification has been applied are 
depicted by black color in Fig. 3.  

Learning of classifiers has been performed for each particular case of the test 
image. First, it was done for the original noisy image and, second, for the image 
compressed with optimal CR. Note that different sets of classifier parameters have 
been obtained for these cases. Two values of additive Gaussian noise variance have 
been used in simulations: 49 and 100 for byte component images. In the first case the 
optimal CR was about 8, and for 2=100 the optimal CR≈10.7.   

 

Fig. 3. The lots (image fragments) used for training the SVM and RBF NN classifiers 

4   Experimental Result Analysis 

The results obtained for SVM classifier for both variance values ( 2=49 and 2=100) 
are presented in Table 1. For the class bare soil we have obtained 87.25% of correctly 
classified pixels, for grass 99.71%, for water surface – 98.38%, for roads and urban 
areas – 67.34%, and for bushes – 87.13% with overall accuracy 91.48%P ovcor  = . As 
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seen, the lowest probability of correct classification is observed for classes for which 
RS data are either rather heterogeneous of appear themselves as prolonged or small 
size objects.  

Some tendencies observed from data in Table 1 are trivial and expectable. In 
particular, the probabilities Pcor k for particular classes as well as Pcor ov for noisy 
images are smaller than for noise-free data irrespectively is classification applied to 
original images or to compressed ones. Practically for all classes increasing of 2 
leads to decreasing of Pcor k and, respectively, these results in reduction of Pcor ov.  

Table 1. Precentage of correctly classified pixels for the trained SVM 

Noise 
variance 

Classified 
image 

Bare 
soil 

Grass Water Roads Bushes Overall 

49 Original 82.00 94.37 96.17 67.62 71.27 85.46 
49 Compressed 83.39 91.57 95.59 65.60 81.43 85.80 

100 Original 74.90 91.68 94.24 59.81 67.30 81.13 
100 Compressed 83.43 93.43 92.76 62.07 76.23 85.21 

The most interesting fact is that for both considered values of 2 the probabilities  
Pcor ov are larger if classification is applied to compressed RS data. For the case 2=100 
the benefit attained due to classifying compressed data in comparison to classifying 
original multichannel images is considerable. This means that a positive effect due to 
the noise suppression taking place in case of image compression is larger than a 
negative effect due to the introduced distortions. Concerning particular classes, 
sometimes better values of Pcor k are provided if classification is applied to the original 
data.  

The classification maps for applying the SVM based approach to original and 
compressed data in the case of 2=100 are presented in Fig 4,a, and Fig. 4,b, 
respectively. Comparison of these classification maps between each other and to the 
more accurate classification map (Fig. 2,b) shows the following. Being applied pixel-
wise to original noisy image, the classification results in quite many misclassifications 
represented as separate pixels surrounded by the pixels referred to another class (see 
Fig. 4,a). This effect appears in less degree if trained SVM classifier is applied to the 
compressed data.  

The classification results for RBF NN are presented in Table 2. For all cases of 
NN training the number of hidden units was 17. The percentages of correctly 
classified pixels are equal to 82.42, 99.67, 97.76, 71.72, 85.14% for the classes bare 
soil, grass, water, roads and urban areas, and bushes, respectively; Pcor ov=0.9062. As 
seen, these probabilities are, in general, slightly worse than for SVM classifier.  

The obtained results are quite similar to those ones presented in Table 1. The 
values Pcor ov for the corresponding classifiers and noise variances differ by less than 
0.01. SVM recognizes better the class “soil” while RBF NN provides better 
classification of water surface. Again, the overall percentage of correctly classified 
pixels is larger if the classifier is applied to the compressed RS data. And the 
difference becomes more evident if the noise variance increases (see data for 2=100).  
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a                                                                          b 

Fig. 4. Classification maps for SVM applied to original (a) and compressed (b) RS data 

Table 2. Precentage of correctly classified pixels for the trained RBF NN 

Noise 
variance 

Classified 
image 

Bare 
soil 

Grass Water Roads Bushes Overa
ll 

49 Original 75.22 95.81 99.48 66.50 75.51 85.41 
49 Compressed 76.41 94.95 99.56 65.41 80.80 85.98 

100 Original 73.62 91.58 99.66 67.14 65.50 81.79 
100 Compressed 74.59 93.21 99.52 64.24 78.29 84.32 

   
a                                                                          b 

Fig. 5. Classification maps for RBF NN applying to original (a) and compressed (b) RS data 

 
Examples of multichannel image classification using RBF NN for 2=49 are given 

in Fig. 5. There are some noticeable differences in the spatial structure of the 
classified data. In particular, there are more separate pixel misclassifications if RBF 
NN classifier is applied to the original noisy data (see Fig. 5,a). The most problematic 
class is “roads and urban areas”. Both classifiers recognize the corresponding regions 
with the smallest probability of correct classification. One possible reason is that we 
have considered pixel-by-pixel classification without taking into account any spatial 
features. Besides, no post-processing of the obtained primary classification maps has 
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been utilized. These opportunities for further classification improving can be subject 
of the future work.  

5   Conclusions 

Two approaches to classification of multichannel RS data are considered. It is shown 
that in case of presence of rather intensive noise in obtained images it is reasonable to 
perform on-board lossy compression and then to apply on-land classification of 
decompressed images instead of data lossless compression and using the classification 
of original noisy images. The CR provided for such lossy compression can be about 
10 and this is considerably better than in case of lossless coding. Moreover, we 
considered component-wise compression of multichannel images. And if the noise 
level is approximately the same in all component images, the same quantization step 
can be used in compressing multichannel images as multidimensional data. This can 
lead to further improvement of CR for given performance of the coder.  

The obtained results and observed tendencies are in good coincidence for two 
different approaches to classification, one based on SVM and the other exploiting 
trained RBF NN. No obvious superiority between these two classifiers has been 
observed.  
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Abstract. It is a very demanding task to design a reliable fingerprint matching 
approach with high accuracy and speed. An algorithm based on the novel 
structure combining the singular point with its neighborhood minutiae proposed 
in this paper can solve this problem efficiently. The structure introduced in this 
paper has two novel ideas as follows: First, we give an efficient singular points 
detection method by the inter-relationship between the singular points and the 
minutiae around them. It can reject the spurious singular points detected by the 
Poincare index. Second, an improvement of minutiae pairing strategy is 
introduced, which can sharply decrease the number of candidate minutiae pairs. 
Experiment results show that these improvements can highly speed up the 
matching with a preferable accuracy. This algorithm can be used in the one-to-
many matching of the on-line fingerprint identification system.  

Keywords: Fingerprint; Matching; Singular Point; Minutiae Pairing. 

1   Introduction 

Fingerprint is one of the most widely used features in biometric identification. The 
most crucial technology in the Automated Fingerprint Identification System (AFIS) is 
the matching method. A big challenge to the matching method is to reduce the 
matching error and to improve the matching speed. The features used in the matching 
process can be basically divided into two types: the global features and the local 
features. The most widely used global features in fingerprint recognition are the 
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orientation field and the singular points, including cores and deltas, while the local 
features are mostly minutiae, such as the ridge endings and bifurcations.  

For seeking a high accuracy, many matching algorithms use minutiae as the main 
features because that the local structure is more stable. Nandakumar and Jain used 
local correlation of minutiae to ascertain the quality of fingerprint image [1]. Jiang 
and Yau used the minutiae matching based on the local structure and global structure 
respectively [2]. And a fingerprint matching using the minutiae triangulation is 
provided by Parziale and Niel in [3]. The stability of triangle structure is efficient in 
avoiding the non-linear deformations of the fingerprint image. But at the same time, 
the traditional minutiae-based method encounters some difficulties in the matching 
process.  

1. The minutiae extraction process could be difficult if the input image has a very 
low quality. The lost of true minutiae and the extraction of spurious minutiae caused 
by the low quality image would heavily affect on the following matching process. It 
will directly cause the matching failure.  

2. The arrangement of all minutiae in a fingerprint is a time consuming process. 
Usually there are 30-60 minutiae in a fingerprint, if we construct local structures for 
all minutiae, the template size will be very large, and the large template will decrease 
the system's efficiency.  

As a result, the matching method only using the minutiae cannot perform the one-
to-many matching efficiently. Though many state-of-art AFIS have good performance 
on small databases, it is not satisfactory for large-scale applications. A fast and 
reliable matching strategy is necessary for the fingerprint identification system.  

As global features, singular points are used as important features in fingerprint 
recognition, mostly in the classification. By the relative position of the singular 
points, a fingerprint database can be primarily classified under the Henry 
classification scheme as NIST4 fingerprint database [4]. Jain et al. used a multi-
channel approach to fingerprint classification including the singular points [5]. The 
correlation between singular points was also used in indexing the fingerprint in Liu et 
al.'s paper [6]. But the singular points were seldom used in the matching process. The 
main reason is that is difficult to detect all the genuine singular points and reject the 
spurious ones. In order to do matching efficiently, one of the singular points can be 
chosen as the reference point to accelerate the matching speed as part of the matching 
structure.  

In this paper, we provide a matching algorithm based on the novel structure 
combining the singular point with its neighborhood minutiae, which gives attention to 
both efficiency and accuracy. The paper is organized as follows: In Section 2, a new 
method based on the relationship between singular points and their neighborhood 
minutiae is used in the singular point detection. The matching process using the novel 
structure is illuminated in Section 3. Experimental results are presented in Section 4. 
Finally, we finish with conclusions and future directions in Section 5.  

2   Singular Point Detection 

After pre-processing of the input image, the orientation field is calculated by the 
method described in [7]. There have been several approaches for the detection of 
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singular points on the orientation field map. The most popular method is the one 
proposed by Kawagoe and Tojo [8] and is based on the Poincare index. For these 
algorithms, a point in the orientation field is classified as a singular point if along a 
closed curve around that point the orientation changes 180o, but it heavily depends 
on the quality of the input image. The noise of the input image always causes spurious 
singular points detection by Poincare index. And the impact of singular points 
detection on matching is discussed by Chikkerur and Ratha in [9]. It is proved that the 
singular point detection will be not reliable if only based on the traditional Poincare 
index. In this paper, we define the novel structure including the singular points and 
their neighborhood minutiae. By computing the inter-relationship of them, we can 
detect the spurious singular points efficiently and give a reliable reference point to the 
following matching process.  

2.1   Defining the Singular Point Area 

In a fingerprint image, the singular points detection algorithm is described below.  

1. Estimate and smooth the directional fields of the input fingerprint image; 
2. In each block (8 8× ), we compute the Poincare index. The Poincare index is 

defined and computed as follows:  
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whereθ is the orientation field, '( )X k and '( )Y k denote coordinates of the thk point on 

the arc length parameterized closed cure. We consider as singular point candidates 
those pixels whose Poincare index calculated from Eq. (1) exactly equals to 2/1± . 

2.2   Spurious Singular Points Detection and Reference Point Selection 

After computing the Poincare index of the orientation field of the input image, several 
singular points may be detected as candidate points, including the genuine and some 
spurious singular points. Certainly, if the input fingerprint belongs to the arch class, or 
its singular point was missed in the fingerprint collection, there is no singular point 
can be detected. So we will still use all minutiae to form local structures for matching. 
In fact, the arch class contains a very small portion of 3.7% in nature [10], it will 
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affect very little on the matching performance of the whole database. With little affect 
of no singular point in the image, we continue matching with our novel algorithm.  

iS
r

( (c)a)           (b)                    

iP

 

Fig. 1. The spurious singular points detection using their neighborhood minutiae. (a) illustrates 
the singular points detected by Poincare Index. The minutiae are marked in (b), and (c) is the 
sketch map of structure in the detection of spurious singular point, which takes the singular 

point
i

S as the centre. The red points P are minutiae around the singular point.  

Wu and Zhou presented a model-based spurious singular points detection method 
in [11]. But these model-based approaches need much orientation field calculation 
and are time consuming. As illustrated in Fig. 1, we can see that the spurious singular 
points always occurs in the borders of the foreground region, where there are little 
other local features can be detected. We use the inter-relationship of singular points 
and there neighborhood minutiae to detect the spurious singular points as follows:  

1. As shown in Fig. 2, at the same time of singular point detection, we get all the 
minutiae of the fingerprint image by the minutiae extraction process.  

2. Defining each of the singular point iS ( 1i ≥ ) as the centre, several circles can be 

drawn with the equal radius of r pixels, which is shown in Fig. 1. In this process, r is 
defined by an experimental value as 14.  

i i
P S r− ≤  (4) 

3. Computing the number of minutiae
i

M and the average distance
i

d between each 

minutia with the centered singular point of each circle. As the Eq. (6), the singular 

point which has the smallest
i

d and a reasonable number
i

M ( 2≥iM ) can be defined 

as the reference point.  

1

1 i
M
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After these processes, we acquire the most reliable singular point of the fingerprint. 
According to the experiment results, this reference point is often the core point and 
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the centre area of the image, where most minutiae occur. Therefore, it is a perfect 
feature for the fast matching.  

3   Fingerprint Matching 

Matching is the key step of fingerprint recognition. Many approaches were taken to 
improve the speed and accuracy of matching process. In Wang and Rong's algorithm, 
they mainly abandoned the global features and controlled the number of evolutionary 
species [12]. Ratha et al. employed an elastic matching algorithm to keep the 
matching accuracy [13]. In this paper, we get the reference point after the singular 
points detection. In order to keep the matching accuracy with a smaller template and a 
higher speed, the novel structure combining the global feature and the local features is 
constructed for the matching step. The algorithm's process using the combined 
template of singular point with minutiae is illustrated in Fig. 2.  

 

Fig. 2. The algorithm's process based on the novel structure combining the singular point with 
its neighborhood minutiae 

In the matching process, we firstly give the definition of the novel structure, which 
contains the reference point and the minutiae around it. Then, many minutiae pairs are 
generated under defined rules in the structure. Finally, we complete the matching 
process by comparing the matching pair vectors and calculating the matching score. 

3.1   Definition of Novel Structure 

In the traditional core-based matching algorithms, the information of the singular 
points doesn't participate in the matching process for two reasons as follows: First, the 
singular points detected often vary in position and type. It is difficult to choose the 
most suitable singular point as the reference point. Second, the uncertainty of singular 
points can decrease the performance of the algorithm. In Section 2, the reference point 
choosing problem has been solved. Further, to improve the performance of matching, 
a novel structure is defined combining the reference point and the minutiae around it.  
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The equation above is the traditional definition of minutiae, where ( )yx, is the 

position, θ is the orientation and ZOD is the orientation field information of the 
minutiae. In our algorithm, the new definition of minutiae also contains the 

information of the reference point as follows, which can be seen in Eq. (8) as '
iP . 

( )[ ]' , , , ,
i

P x y ZODθ=  (8) 

i
P R

r

−
=  (9) 

where is the level which iP belongs to. As illustrated in Fig. 3, defining the reference 

point R as the centre, we draw several circles around R with the radii kr ( 151 ≤≤ k ), 
where r is the pre-defined radius 14 pixels, the same as r in the singular points 
detection process. Then, we can divide the neighborhood area around R into k levels. 

Minutiae belonging to the thk level have the parameter equals to k . If there is no 
singular point in the input image, is defined as 0.  

Each is wide enough to avoid excursion of the reference point in fingerprint 
image. On the other hand, since classifies different minutiae, it will speed up the 
searching process of the matching minutiae.  

 

Fig. 3. Sample of the novel structure for matching. Every circle takes the reference point as the 
centre, and the radius is kr . Different color denotes different level around the reference 

points. The red points such as
i

P and
j

P are minutiae and the thin lines denote minutiae pairs 

defined in our algorithm.  

3.2   Minutiae Pairing 

The traditional minutia-to-minutia matching algorithm is heavily affected by the low 
quality and the distortion of fingerprint image, so it is necessary to use a kind of 
minutiae combination to perform matching. It can both reduce the affect of noise and 
distortion to matching and increase the matching speed. But many minutiae pairing 
strategy such as [14] encounter a problem that too many minutiae pairs will cause a 
large template and a low speed. In this paper, we use the minutiae pair to do 
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matching. It can cut down the size of the template and increase matching speed with 
little accuracy losing, and it is suitable to the one-to-many matching system.  

In the fingerprint matching algorithm based on the minutiae pairs, the number of 
minutiae pairs will affect the performance heavily. The theoretical number of the 
matching pairs is calculated as:  

( 1) ( 1) / 4Num M M N N= − × −  (10) 

where M is the number of input minutiae and N is the number of matching minutiae. 
In this case, many false matching pairs waste a lot of searching time. In our fast 
matching algorithm, the level of minutiae is used in matching as the a rule of 
matching minutiae pairs' selection.  

If iP and jP are the minutiae of input minutiae set, iQ and jQ are the minutiae of 

template minutiae set. The minutiae pair ji pp and ji qq will be selected as the possible 

matching pairs as: 

| 1

| 1

i j

i j p p

i j

i j q q

p p

q q

− ≤

− ≤
 (11) 

where i

p , j

p , i

q and j

q are the levels which the minutiae iP , jP , iQ and jQ belong to. 

Because the minutiae are pre-classified by the level , the number of possible 
minutiae pairs will be rapidly decreased. And the searching process for the matching 
minutiae pairs will be highly speeded up.  

3.3   Matching by the Novel Structure 

Since the candidate minutiae pairs are selected, the matching process can be done 
favourably. An improved method using alignment-based matching [2] is provided in 
our algorithm, where the fingerprint minutiae information is like the following 
structure. The fingerprint minutiae matching process includes 4 steps as follows: 

1. Getting the minutiae vectors as
i

P . All minutiae vectors represent the unique 

fingerprint. Since these vector structures only contain the local information, so the set 
of these fingerprint minutiae possesses excellent differentiability.  

2. In the first match, we use the fingerprint minutiae vector to get the matching 
pairs like the following structure.  

(           ), , , , , , , , , , T

k ki kj ki kj ki kj ki kj k i j
Fl d d Z Z n n t t tθ θ=  (12) 

The structure was generated as a kind of multi-dimensional vector, where
ki

d ,
kj

d is 

the distance between the minutia k and minutia i , j ;
ki

z ,
kj

z is the minutiae orientation 

difference between k and i , j ;
ki

θ ,
kj

θ is the angle between ik , 
j

k ; and
k

ϕ ,
ki

n ,
kj

n is the 

number of crossed ridge line respectively.  
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3. Using '

k
Fl as the template to match the structure

k
Fl with '

k
Fl . Through the 

process, two matching arrays can be obtained, one records the power of the position 
shift, another posts the power of angle deviation. The shifting parameter and rotation 
parameter are calculated by the two arrays. 

4. After getting the shifting and rotation parameters, we translate the template 
minutiae set into the aligned minutiae set through the global shifting and rotation 
translation. Since the aligned minutiae set is very close to the inputting minutiae set, 
the second match only compares the position of corresponding minutiae and gets the 
matching score. 

4   Experimental Results 

The experiments reported in this paper have been conducted on the public domain 
collection of fingerprint images. Both DB1 in FVC2002 and FVC2004 [15] are 
selected to be computed the matching performance of our algorithm. Each database is 
100 fingers wide and 8 impressions per finger deep (800 fingerprint in all). The image 
size of DB1 in FVC2002 is 374388× pixels, and that of DB1 in FVC2004 
is 480640 × pixels with much lower quality. They both have the resolution of 500 dpi.  

 

Fig. 4. ROC-curves of experiments on DB1 in FVC2004. The red line denotes the performance 
of our algorithm based on the novel structure, the green line denote that of the algorithm based 
on the traditional matching strategy of minutiae pairing.  

We employed a set of experiments in order to validate our algorithm. Both the 
accuracy and speed were considered in the matching experiments. Firstly, we 
employed an experiment of our algorithm with novel structure on DB1 in FVC2002. 
There were 2800 genuine matches and 4950 imposter matches executed in the 
experiment under the test protocol of FVC. The Equal Error Rate (EER) was 1.64%. 
This proves that our algorithm can have a good performance on the public database. 
Secondly, under the same protocol on DB1 in FVC2004, we employed two 
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experiments of algorithm with novel structure and without the novel structure to 
validate our algorithm. The Receiver Operating Characteristic (ROC) curves obtained 
by the two algorithms are illustrated in Fig. 4.  

The average template size is 0.8 KB in experiment with the novel structure, and we 
employed the experiments on CPU of 2.8GHz, 512MB RAM. The average match 
time was 0.001 second in the experiments, and it was far less than the time consuming 
of most of the algorithms. Because the tests of FVC2004 were performed on CPU of 
1.4GHz, the time consuming of P068 was divided by 2 as shown in Table 1. P068 is 
the algorithm in FVC2004 on DB1 which obtain the 10th place ranked by EER.  

Table 1.  Comparison of our algorithm with P068 in light category on DB1 in FVC2004. Each 
time consuming is supposed on CPU of 2.8GHz. 

Algorithm EER Average enroll 
time 

Average match 
time 

Average model 
size 

Our algorithm with  
novel structure 

9.25%  0.031s  0.001s  0.8KB 

Our algorithm without  
novel structure 

7.31%  0.221s  0.034s  1.0KB 

P068 9.92%  0.080s  0.090s  2.0KB 

 
From Table 1. we can see that our algorithm has a considerable improvement on 

the time consuming of matching, and the rank of EER is also in the first 10 place in 
FVC2004. The least average match time of DB1 in FVC2004 is 0.035 second 
(supposed on CPU of 2.8GHz), far more than that of our algorithm. The template size 
is also reduced by using the novel structure as shown in Table 1. Because of the high 
speed, the preferable accuracy and the small template, our algorithm has a better 
performance in the large scale application.  

5   Conclusions and Future Directions 

With the increasing demand of on-line verification for large scale fingerprints 
database [16], the time and memory consuming of the matching algorithm is 
becoming more and more important in AFIS designing. In this paper we define a 
novel structure by choosing the most reliable singular point and reducing the number 
of candidate minutiae pairs in our algorithm. The experiment results show that these 
improvements can highly speed up the matching with only a little accuracy loss. 
Because the novel structure performed in this paper centralizes much useful 
information for the following matching process, the template size will be decreased 
and the time consuming in matching can be cut down remarkably. It can have a good 
performance in the real-time matching system for large scale fingerprint database.  

Furthermore, if different thresholds can be defined in the detection of spurious 
singular points, all the genuine singular points can be correctly detected by the novel 
structure rather than only one reference point. By the relative positions of core(s) and 
delta(s), we may get useful classification information of the input fingerprints, and 
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write it into the templates. This classification work can give a further considerable 
acceleration to the following matching process, which can reduce the size of scanning 
database. And the matching error can be further reduced by improvements in 
generating minutiae vectors in the novel structure. Future works on the integration of 
classification with fast matching can make the AFIS more efficient in performing the 
one-to-many matching task in public use.  
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Abstract. The nearest neighbor (NN) rule is usually chosen in a large number of
pattern recognition systems due to its simplicity and good properties. In particu-
lar, this rule has been successfully applied to text categorization. A vast number
of NN algorithms have been developed during the last years. They differ in how
they find the nearest neighbors, how they obtain the votes of categories, and which
decision rule they use. A new NN classification rule which comes from the use
of a different definition of neighborhood is introduced in this paper. The exper-
imental results on Reuters-21578 standard benchmark collection show that our
algorithm achieves better classification rates than the k-NN rule while decreasing
classification time.

1 Introduction

Text Categorization (TC - also known as text classification) is the task of assigning
documents to one or more predefined categories (or classes, or topics). This task relies
on the availability of an initial corpus of classified documents under these categories
(known as training data). Depending on the application, TC may be either single-label
(i.e., exactly one category must be assigned to each document) or multi-label (i.e., any
number of categories may be assigned to each document). This task, that falls at the
crossroads of Information Retrieval and Machine Learning, has witnessed a booming
interest in the last ten years from researchers and developers alike [1].

Text Categorization is an important component in many information management
tasks such as spam filtering, real time sorting of email or files into folders, document
routing, document dissemination, topic identification, classification of Web pages and
automatic building of Yahoo!-style catalogs. Different learners have been applied in the
TC literature, including probabilistic methods, decision tree and decision rule learners,
example-based methods, support vector machines and classifier committees.

Nearest neighbor (NN) rule [2] is a very popular nonparametric and example-based
method. This approach classifies an unknown sample into the categories of its nearest
neighbors, according to some similarity measure. A particular case of NN classifiers is
the k-nearest neighbor rule (k-NN), which assigns the category most frequently repre-
sented among the k nearest training samples. The NN classifiers include the following
features: 1) conceptual simplicity, 2) easy implementation, 3) they can be designed even
if training samples are few, 4) known error rate bounds, 5) they can be implemented
when categories are overlapped with each other, 6) good performance, 7) they have no
design phase and simply store the training set, and 8) they can be performed in time
linear in the cardinality of the training set.

J.F. Martínez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 814–823, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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During the last years, a large number of NN algorithms have aroused from various
scientific communities. Many of them focus on reducing classification time [3,4]. Other
algorithms focus on increasing classification rates, either changing the method to find
nearest neighbors [5], varying the voting schema [6] or improving the training data [7].

NN classification rule has shown to be very effective in Text Categorization tasks.
WAKNN [8] is a k-NN classification algorithm that learns importance of attributes and
utilizes them in the similarity measure. Galavotti [6] proposed a variant of the basic
k-NN approach based on the exploitation of the negative evidence. Yang [9] presents an
examination of thresholding strategies on the performance of the k-NN classifiers under
various conditions.

In this paper we introduce a new NN classification rule that obtains classification
rates better than k-NN algorithm while decreasing classification time. This approach is
based on a new definition of neighborhood. The effectiveness of the proposed algorithm
is evaluated on different subsets of Reuters-21578 test collection, which is the standard
benchmark for the Text Categorization tasks.

2 A New Classification Rule

As mentioned above, the nearest neighbor algorithms classify an unknown document
d into the categories of its nearest neighbors. These classifiers usually involve three
phases: (i) the nearest neighbor finding from the training documents, (ii) a voting phase,
in which each category assigns a vote to d, and (iii) a decision rule, in which a decision
is made from these votes.

The first phase assumes a neighborhood definition. Intuitively, the concept of neigh-
borhood should be such that the neighbors are as close to an unknown document d as
possible. The traditional k-nearest neighbor rule starts at d and grows a spherical re-
gion until it encloses k training documents. This kind of neighborhood suffers from
some drawbacks: 1) the k nearest neighbors may be too far from the document to clas-
sify d (see Figure 1(a)), and 2) it may be not spatially homogeneous, that is, there are
few neighbors very similar whereas others are not sufficiently close to d (see Figure
1(b)), and hence the far documents can be decisive in the classification. The second
one could occur, for example, when the training set is imbalanced (some categories are
represented by a very small number of examples compared to the other categories).
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Fig. 1. Drawbacks of k-NN neighborhood. The big circles denote the “influence area” of the
classifier. Here, we consider k=7. Note that, for ease of illustration, document similarities are
here viewed in terms of Euclidean distance rather than in terms of cosine measure.
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In order to tackle these problems just described, we propose an alternative of neigh-
borhood definition. The lower the neighborhood density of d, the greater the radius of
spherical region defined by the k nearest neighbors is. A natural way of avoiding that
far documents influence in the classification is to fix a radius β and take into account
the training documents only whose similarities with d are greater than or equal to β.
Thus, documents which are not close to d are excluded from the neighborhood.

However, this solution is not enough. A large value of β may be very restrictive
because many documents can not be classified. On the contrary, a small value of β
could cause many documents in the neighborhood, which may produce an important
deterioration of the classification accuracy, in particular with documents belonging to
the less represented categories. In order to focus on a sufficiently small neighborhood of
training examples homogeneously distributed, we propose to automatically adjust the
neighborhood radius from the nearest neighbor of d. With this aim, we define a spherical
region, whose radius is the difference between the similarity of nearest neighbor of
d and a certain threshold α. Thus, the neighborhood of the document to classify is
defined by the intersection between this region and the spherical region of radius β.
Notice that the conventional neighborhood takes into account the k neighbors from the
nearest neighbor. The neighborhood we propose takes into account instead all neighbors
enclosed within a spherical region defined from the nearest neighbor. The parameters α
and β provide a convenient way of obtaining such a neighborhood.

The neighborhood definition proposed is graphically depicted in Figure 2. In the first
case, the similarity (max) between the document to classify d and its nearest neighbor is
less than β; hence, the neighborhood is empty and the document can not be classified.
The figures 2(b) and (c) show the cases where β < max − α and β > max − α,
respectively. In both cases, the shady region represents the neighborhood of d.

Nearest neighbor

(a) (b) (c)

α

d

max

d

maxαmax

β β β
d

Fig. 2. Our neighborhood definition

Different methods have been used to calculate the votes of each category (second
phase). In the basic k-NN classifier, the vote of the category ci is the number of nearest
neighbors labeled with it. Another well-known method considers the similarity of the
nearest neighbors and their category association to calculate the votes [10], i.e.,

V (ci, d) =

∑
dj∈N(ci)

cos(d, dj)∑
dj∈N cos(d, dj)

(1)

where N is the set of all nearest neighbors of the document d, N(ci) is the set of the
nearest neighbors labeled with the category ci, and cos(d, dj) is the cosine between the
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two document vectors, which is the similarity measure commonly used in TC tasks. In
this paper, we used the second method.

From these category votes, several rules can be applied for deciding whether d should
be classified under ci (third phase). A simple decision rule classifies the document into
the category that has the greatest vote. Instead, we used the thresholding decision rule.
According with this rule, the document is assigned to categories with the score greater
than a certain threshold value γ. Notice that this decision rule allows a multi-label cat-
egorization. There are various policies for determining the thresholds [9]. We adopt the
policy CSV thresholding, which consists in testing different values on a validation set
and choosing the value which maximizes effectiveness (we use γ = 0.3).

To sum up, the steps of our NN classifier is shown in Algorithm 1.

Algorithm 1. Our NN classifier.
1. Let d be the document to classify.
2. Build the set Nβ = {dj/cos(d, dj) ≥ β}.
3. Let max be the similarity between d and its nearest neighbor.
4. Let Nαβ be the neighborhood of d, Nαβ = ∅.
5. For each dj ∈ Nβ :

(a) If cos(d, dj) ≥ max − α:
i. Add dj to Nαβ .

6. Compute the votes V (ci, d) for each category ci using formula 1 and Nαβ .
7. For each ci:

(a) If V (ci, d) ≥ γ:
i. Assign d to ci.

Like k-NN, in our algorithm the classification of a document is performed in linear
time with respect to the cardinality of the training set.

3 Experiments

We have conducted some experiments to test the validity of our NN rule for Text Cate-
gorization tasks.

3.1 Document Indexing

Because of texts cannot be directly interpreted by a classifier, an indexing procedure
that maps a document into a compact representation of its content needs to be applied.
In this paper, we adopt the traditional vector space model, in which a document dj

is represented as a vector of term weights dj = (wj
1, ..., w

j
|τ |), where τ is the set of

terms that occur in the document collection and quantifies the importance of term tl
in characterizing the semantics of dj . The selection of terms includes removing tags
and stop words, lemmatization and proper name recognition. Weights are computed by
using the standard ltc variant of tf-idf function [11], i.e., wj

l = (1 + log TF (tl, dj)) ·
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log |Tr|
dfT r(tl)

, where TF (tl, dj) denotes the number of times tl occurs in dj , Tr is the
set of training documents and dfTr(tl) is the number of documents in Tr in which tl
occurs at least once.

In TC, unlike in Information Retrieval, a dimensionality reduction phase is often
applied so as to reduce the size of the document representations from |τ | to a much

smaller, predefined number |τ ′|; the value ε =
|τ |−|τ ′|

|τ | is called the reduction fac-
tor [12]. Dimensionality reduction techniques reduce overfitting (i.e., the tendency of
the classifier to better classify the data it has been trained on than new unseen data),
and makes the problem more manageable for the classifier. Also, standard classification
techniques cannot deal with a large feature set, since processing is extremely costly
in computational terms, and the results become unreliable due to the lack of sufficient
training data.

Usually, these techniques consist in scoring each term in τ by means of a category-
based term evaluation function f and then selecting a set τ ′ of the highest scoring terms.
The information gain [13] is a standard function of the trade in the dimensionality
reduction literature, i.e.,

f(tl, ci) =
∑

c∈{ci,ci}

∑
t∈{tl,tl}

P (t, c) · log2

P (t, c)
P (t) · P (c)

In this formula, probabilities are interpreted on an event space of documents (e.g.
P (tl, ci) indicates the probability that, for a random document d, term tl does not occur
in d and d belongs to category ci), and are estimated by maximum likelihood. We use
this function to select terms according to the maximum global policy, i.e.,

fmax =
|C|
max
i = 1

f(tl, ci)

3.2 Experimental Settings

In our experiments we have used the Reuters-21578, Distribution 1.0 corpus1, currently
the most widely used benchmark in TC research. Reuters-21578 consists of a set of
12902 news stories classified under 135 categories related to economics. This collection
is partitioned (according to the “ModApté” split we have adopted) into a training set of
9603 documents and a test set of 3299 documents.

Several researchers have preferred to carry out their experiments on different subsets
of categories. The three subsets that have been most popular [12] are: 1) the set of the
10 categories with the highest number of positive training examples, hereafter, reu10,
2) the set of 90 categories with at least one positive training example and one test exam-
ple, hereafter, reu90, and 3) the set of 115 categories with at least one positive training
example, hereafter, reu115. The characteristics of these subsets are summarized in Ta-
ble 1. The last four columns contain the average number of categories per document,
and the maximum, minimum and average number of training examples per category,
respectively.

1 The Reuters-21578 collection may be freely download from http://kdd.ics.uci.edu.
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Table 1. Characteristics of Reuters-21578 subsets

Collection # Train Docs. # Test Docs. Multi-label Category size
Max Min Average

reu10 5920 2313 1.11 2709 160 657
reu90 7058 2740 1.24 2709 1 98
reu115 7063 2740 1.25 2709 1 76

TC effectiveness is usually measured in terms of the classic Information Retrieval
notions of precision (πi), the proportion of documents classified into ci that indeed
belong to ci, and recall (ρi), the proportion of documents belonging to ci that are indeed
classified into ci. Since a classifier can be tuned to emphasize precision at the expense
of recall, or vice versa, only combinations of the two are significant. The most popular
combination nowadays is: F1(ci) = 2 πi ρi

πi+ρi
= 2 TPi

2 TPi+FPi+FNi
, where TPi, FPi and

FNi refer to the sets of true positives wrt ci (documents correctly deemed to belong
to ci), false positives wrt ci (documents incorrectly deemed to belong to ci), and false
negatives wrt ci (documents incorrectly deemed not to belong to ci), respectively.

When effectiveness is computed for several categories, the results for individual cat-
egories must be averaged in some way. Two methods may be adopted: micro-averaging
(categories count proportionally to the number of their positive test examples) and
macro-averaging (all categories count the same). Micro-averaging gives equal weight to
every document, while macro-averaging gives equal weight to each category. The for-
mer rewards classifiers that behave well on heavily populated (“frequent”) categories,
while classifiers that perform well also on infrequent categories are emphasized by the
latter.

3.3 Results

The first experiments we have conducted compare the categorization performance of
our NN rule against k-NN classifier on the three above-mentioned Reuters-21578 sub-
sets. Both approaches use the same method to calculate the votes of each category and
the thresholding decision rule.

Different values of parameters have been tried on each algorithm to ensure that the
experimental results can reflect the best performance. The values of k tried for the k-
NN algorithm include 1, 3, 5, 7, 10, 20, 30, 40 and 50. There are two parameters of
importance in our NN algorithm: α and β. The values of α tried are 0.1, 0.15, 0.20,
0.25 and 0.3. However, the value of β is fixed to 0.1, since its role is only to guarantee
that far documents do not influence in the classification. Then, we chose the parameters
with the best performance according to micro-averaged F1 to represent each algorithm.

The results of our experiments are reported in Figure 3. This figure includes 6 plots:
the leftmost plots show micro-averaged F1 scores while the rightmost show macro-
averaged F1 scores. Each individual plot, which corresponds to a dimensionality reduc-
tion factor, includes the results for both NN approaches in each document collection.

Several observations can be made by analyzing the results in Figure 3. First, the
best performance is obtained in Reu10 subset for both algorithms. This was largely to
be expected, given that its categories are the ones with the highest number of training
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Fig. 3. F1 scores obtained with k-NN (white bars) and our NN rule (black bars)

examples, and as such allow taming the “curse of dimensionality” more effectively.
The decrease of performance in going from Reu10 to Reu90 is much larger for macro-
averaged F1 than micro-averaged F1. However, the performances of Reu90 and Reu115
have a similar behavior. This can be explained by the fact that micro-averaged effective-
ness is dominated by the performance of the classifiers on the most frequent categories.
Note that the 10 categories in Reu10 have altogether 2313 test examples, while the
other 80 categories in Reu90 have altogether just 427 them. Also, the differences be-
tween Reu90 and Reu115 are limited to 5 documents and 25 very small categories.
These conclusions are in agreement with the results presented earlier in [12].

A second fact that also emerges clearly from the figure 3 is that the best micro-
averaged F1 scores are achieved with the most aggressive reduction in all collections.
Macro-averaged effectiveness maintains this behavior in Reu10 subset. Instead, in the
other subsets the behavior of the algorithms is different. Our NN rule obtains the same
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Fig. 5. Impact of the parameters in our NN rule

macro-averaged F1 score disregarding the reduction factor whereas k-NN improves
effectiveness when term reduction is 50%, but decreases it with 90% of reduction.

Finally, the micro-averaged F1 scores obtained by both algorithms are similar in
all collections. However, with regard to the macro-averaged F1 our NN rule clearly
overcomes k-NN in Reu90 and Reu115 subsets. This observation seems to suggest that
our algorithm yields better results when categories have few training examples. In order
to know what really happens, Figure 4 shows a percentage diagram of F1 scores per
category in Reu90 collection with 90% of reduction factor.

As it can be noticed, both algorithms obtain similar results for the most frequent cat-
egories. Nevertheless, our approach achieves better results than k-NN when categories
have few training examples. This can be explained because the best results in k-NN
algorithm are obtained with k=30, and hence it is difficult that small categories achieve
the required votes. Since the number of neighbors in our algorithm is not fixed, this
problem is reduced. It must be pointed out that there are still some less represented
categories whose documents are not well-classified.

Our second experiment was focused on evaluating the impact of the parameters α and
β in the classification rates. Figure 5 shows the F1 scores obtained when disregarding
the β parameter (white bars), disregarding the α parameter (gray bars) and considering
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both parameters (black bars). As it can be noticed, the F1 scores are similar when we
only consider the α parameter and both parameters together. Despite these results, we
believe that β parameter is useful to avoid that far documents influence in the classifi-
cation, although it seems that this problem is not presented in the Reuter collection.

Finally, Figure 6 shows the time spent by k-NN and our algorithm. As can be seen,
despite both algorithms have a linear behavior, our algorithm clearly overcomes k-NN.
This can be explained because we do not need to create a sorted list of k nearest neigh-
bors.

4 Conclusions

A new NN classification rule has been proposed in this paper. It is an attempt to mini-
mize the drawbacks pointed out for the k-NN rule. This approach is based on the general
idea of estimating the category of an unknown document d from its neighbors, but con-
sidering a kind of neighborhood which allows one to inspect a sufficiently small and
near area to d. In our rule the number of neighbors is not fixed, but rather the neighbor-
hood radius is automatically adjusted from the nearest neighbor of d.

The experiments carried out on Reuters-21578 standard benchmark collection show
that our rule not only obtains similar micro-averaged F1 scores, but it also achieves
better macro-averaged F1 scores than k-NN. It is very important since producing clas-
sifiers that perform well also on infrequent categories is the most challenging problem
of Text Categorization [1]. Furthermore, our algorithm reduces the classification time.

In the future, one key issue we face is the automatic choice of the threshold value
α. Future work also includes exploring the use of our NN rule in adaptive document
filtering tasks, where the category distribution is not given a priori and it must be learned
incrementally over time.
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Abstract. Parallel text alignment is a special type of pattern recognition task 
aimed to discover the similarity between two sequences of symbols. Given the 
same text in two different languages, the task is to decide which elements—
paragraphs in case of paragraph alignment—in one text are translations of 
which elements of the other text. One of the applications is training training sta-
tistical machine translation algorithms. The task is not trivial unless detailed 
text understanding can be afforded. In our previous work we have presented a 
simple technique that relied on bilingual dictionaries but does not perform any 
syntactic analysis of the texts. In this paper we give a formal definition of the 
task and present an exact optimization algorithm for finding the best alignment. 

1   Introduction 

Given the same text in two different languages, the parallel text alignment task con-
sists in deciding which elements of one text are translations of which one of the other 
text 9. The task is useful in learning bilingual dictionaries and in training statistical 
machine translation algorithms. Viewed more generally as a pattern recognition task, 
the problem consists in identifying correspondences in two sequences of objects, 
which could be, say, text and speech or video recordings from different cameras 1314. 
While both the task and our suggested method are quite general, in this paper we 
concentrate on alignment of paragraphs in bilingual texts. 

Various researchers have tried different approaches to text alignment, usually at 
sentence level 3517, and a number of alignment tools are available.1 Some methods 
rely on similarity between certain words in the two text—for example, words that are 
graphically similar can be considered pivots for rough alignment 18. In a previous 
                                                           
* Work done under partial support of Mexican Government (CONACyT, SNI) and National 

Polytechnic Institute, Mexico (CGPI, COFAA). We thank an anonymous reviewer for at-
tracting our attention to valuable resources and publications. 

1 Bilingual Sentence Aligner by Robert C. Moore, research.microsoft.com/research/downloads/ 
default.aspx; Geometric Mapping and Alignment (GMA) by Dan Melamed, nlp.cs.nyu.edu/ 
GMA/; Champollion Toolkit by LDC, champollion.sourceforge.net/; an on-line sentence 
aligner, 143.107.183.175/site2001/projetos/pesa.htm. 
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paper 8 we have suggested an alignment method based on measuring similarity using 
bilingual dictionaries and presented an approximate heuristic greedy alignment algo-
rithm. In this paper our goals are: 

– To formalize the paragraph alignment task, casting it as an optimization problem; 
– To introduce an algorithm that finds the exact optimum of this problem, instead 

of the approximate heuristic-based algorithm; 
– To suggest a distance measure for paragraphs that guarantees unbiased solution; 
– To propose a baseline distance measure and to compare the results obtained with 

our suggested measure against such a baseline. 

The optimization problem resulting from our formalization of the task strongly re-
sembles string alignment problems, such as optimal string alignment or calculating 
the Levenshtein distance between strings. Inspired in standard methods for solving 
problems of this class, we developed a dynamic programming algorithm. However, 
our formalization differs from the optimal string alignment. That latter task requires 
aligning some symbols in a string with at most one symbol in the other string; in our 
case, we align every symbol with at least one symbol in the other string. This leads to 
a modification of the algorithm. 

The paper is organized as follows. In Section 0, we explain the task in detail and 
formalize it as an optimization problem. In Section 0, we introduce a baseline and a 
suggested distance measures between paragraphs, which are used for calculation of 
the cost function to be optimized. In Section 0, we present a dynamic programming 
algorithm that finds the exact optimum of the problem. In Section 0, we discuss its 
complexity. Finally, in Section 0 we present the experimental results and in Section 0 
give conclusions and discuss the possible future work. 

2   Paragraph-Level Text Alignment 

Given a text and its translation into another language, the text alignment task consists 
in determining which text elements (such as words) are translations of each other, as 
shown in Fig. 1, where words that are translations of each other are connected by 
lines. In such simple cases the text alignment task can be formalized as building a 
bipartite graph whose vertices are the text elements and an arc connects two vertices 
if the corresponding elements are translations of each other. 

 

English        Spanish  English        Spanish 

John  Juan  John  Juan 
loves  ama  eats  come 
Mary  a  a  una 

  María  red  manzana 
    apple  roja 

 (a)    (b)  

Fig. 1. Word-level alignment for the sentences John loves Mary and John eats a red apple 
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However, in more complex cases a whole set of text elements are translated by an-
other set of elements, while this correspondence cannot be broken down into pair-
wise correspondences of individual elements, as shown in Fig. 2. In Fig. 2 (a), one 
word is translated by a whole run of words. In Fig. 2 (b), a whole run is translated by 
another run, while there is no pair-wise translation correspondences between the indi-
vidual words in these two runs. Finally, Fig. 2 (c) shows the most general case: the 
correspondence holds between (non-contiguous) sets of elements. 

While the structure shown in Fig. 1 can be formalized by a graph, the structure 
shown in Fig. 2 (c) is formalized by a generalization of the notion of a graph called 
hypergraph. Given a set of vertices V, a hypergraph G on V is defined as a graph 
whose vertices are non-empty subsets of V, a hyperarc a being a pair of subsets of V: 
a = {X, Y}, X, Y ⊆ V, X, Y ≠ ∅. A hyperarc can be graphically represented by a link 
with several “ends”, as in Fig. 2 (c), or in a simplified form as a connection between 
grouped vertices, as in Fig. 2 (a, b). The bilingual text alignment task deals with bi-
partite hypergraphs. A (hyper)graph is called bipartite if its vertices are of two kinds: 
V = A ∪ B, A ∩ B = ∅, and arcs connect elements of different kinds: X ⊆ A, Y ⊆ B. 

The peculiarities of the task depend on the text units considered: words (as in our 
examples) 12, clauses 10, sentences 146, paragraphs, sections, etc.; see Fig. 3. 

If the units are too large, such as whole sections, the task is usually trivial: the text 
and its translation consist of the same number of sections, which correspond to each 
other in the natural order. On the other hand, if the text units are too small—such as 
morphemes or words—the very definition of the task becomes complicated, as Fig. 2 
shows. In particular, in this case there are elements without translations, as in 
Fig. 1 (a), the order of the elements is not preserved, as in Fig. 1 (b), or even the indi-
visible groups of elements may be not contiguous, as in Fig. 2 (c). 

The medium-size units such as sentences and paragraphs are an intermediate  
case: while the alignment task is not trivial, it does not usually present most of the  

English        Spanish  English        Spanish  English        Spanish 

John  Juan  John  A  John  A 
uses  usa  cares       Juan  cares      Juan 

a  una  a           le  Mary         María 
typewriter      máquina  damn           vale  a           le 

     de        gorro  damn           vale 
     escribir             gorro

 (a)    (b)    (c)  

Fig. 2. Set-to-set alignment (literally: (a) ‘device of writing’, (b, c) ‘is worth a cap to him’). 
The dotted lines mark single hyperarcs. 

English       Spanish
John loves Mary. Juan ama a María. 

She is pretty.   Es bonita y estudia la contabilidad. 
She studies accounting.    

Fig. 3. Sentence-level alignment (literally: ‘She is pretty and studies accounting’) 
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complications discussed above. Particularly in the case of paragraphs, the order of the 
elements is preserved and every element has a translation, cf. Fig. 1. What is more, 
we assume that the translator can join two or more source paragraphs into one trans-
lated paragraph or split one source paragraph into several translated paragraphs, as in 
Fig. 4, cf. Fig. 2 (a) and Fig. 3, but cannot re-arrange the sentences in the paragraphs 
in such a way that, say, a final part of a paragraph be translated as a beginning of 
another paragraph, as in Fig. 5, which would lead to patterns such as those shown in 
Fig. 2 (b, c). Though these assumptions are not completely true to life, they signifi-
cantly simplify formalization of the task and the algorithm. 

Thus, we define the paragraph-level bilingual text alignment task as the problem of 
constructing a bipartite hypergraph (cf. Fig. 2 (c)) whose vertices are the paragraphs 
of the texts in the two languages, respectively, and whose hyperarcs—standing for the 
sets of vertices to be mutual translations—satisfy the following conditions: 

- Every vertex is incident to an arc, i.e., no paragraph disappears or appears from 
nothing in the translation process; 

- At least one side of each arc has only one end, i.e., an arc can connect element to 
element, element to group, group to element, but not group to group; 

- The ends of each arc are contiguous, i.e., a group of paragraphs that is the transla-
tion of a paragraph in the other language occupy a contiguous run of the text; 

- The arcs are not crossing, i.e., the order of paragraphs is preserved in translation. 

The (sets of) paragraphs that are translations of each other are similar in the sense 
of Section 0 below. This similarity measure can be assigned to the hyperarc connect-
ing the paragraphs; we call this value the weight of the hyperarc. Our hypothesis is 
that the total weight of all hyperarcs gives the quality of a particular alignment. With 
this, the task is reduced to finding, among all possible hypergraphs satisfying the 
above conditions, the one with the maximum total weight of its hyperarcs. 

English           Spanish 

When she saw my baffled look, she corrected 
herself: "My grandmother." 

 Luego, al percatarse de mi gesto 
estupefacto, corrigió: 

  — No. Es mi abuela. 

Fig. 4. One-to-many paragraph alignment (here the direct speech is translated as a separate 
paragraph) 

 

English              Spanish

John loves Mary.  She is pretty. She 
studies economy. 

Her father is a professor. They live in 
Boston. 

Juan ama a María. Es bonita. 

Estudia economía. Su padre es
profesor. 

Viven en Boston.
 

Fig. 5. An artificial example of many-to-many paragraph alignment (here the third and fourth 
sentences are translated as a separate paragraph) 
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3   Distance Measure 

To assign the weight to a hyperarc as described in Section 0 above, we need to calcu-
late the similarity between two sets of paragraphs (in our algorithm at least one of the 
two sets consists of only one paragraph). We define it as the similarity between the 
two texts that are obtained by concatenation of the corresponding paragraphs.  

3.1   Baseline Distance Measure 

Common sense suggests that the corresponding pieces of texts are located at ap-
proximately the relative same distance from the beginning of the whole text. We de-
fine the baseline distance between two pieces of text, TA in the language A and TB in 
the language B, as follows: 

Distance(TA, TB) = |start(TA) – start(TB)| + |end(TA) – end(TB)|, (1) 

where start(TX) is the relative position of the first word of the text TX measured in 
percentage of the total number of words in the text in the corresponding language, and 
similarly for end(TX). We could also use the position of the paragraph instead of word 
as percentage of the total number of paragraphs, but the measure based on word 
counts has been reported as better than the one based on paragraph counts, which 
agrees with our own observations. 

3.2   Proposed Distance Measure 

We define the similarity between two texts in different languages as the number of 
words in both texts that are not mutual translations of each other 12. For this, we first 
define which words are such translations. 

1. Set TX, := the shortest one of TA and TB; TY := the longest 
2. Set translations := 0 
3. for each word token w in TX 
4.  if any of its translations DXY (w) is found in TY 
5.   increase translations by 1 

where DXY (w) is a function returning a set of the dictionary translations of the word 
w. Then the number of word tokens without translation in both paragraphs, under the 
hypothesis that these two paragraphs correspond to each other, is: 

Distance(TA, TB) = | TA | + | TB | – 2 × translations. (2) 

The cost of an alignment hypothesis is the total number of words in both texts that 
are left without translation under this hypothesis. Note that under different hypotheses 
this number is different: here we consider two word tokens to be translations of each 
other if both of the following conditions hold: (a) they are dictionary translations (as 
word types) and (b) the paragraphs where they occur are supposed to be aligned. 

Note that we represent the texts as vectors of word frequencies, ignoring the order 
of the words. In particular, concatenation of the paragraphs into text pieces is per-
formed simply as summation of the corresponding vectors. 
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The above algorithm for calculating the number of translations has a drawback: in 
line 828, the same word in TY can potentially be counted twice, as in the English sen-
tence TA = “The bank is at the French border” and Spanish sentence TB = “Juan vive a 
la orilla de la ciudad” ‘John lives at the border of the city.’ However, addressing this 
problem would lead to a more complicated and computationally more expensive algo-
rithm, which we may consider in our future work. 

Recall that in our formalization of the task we select the optimal hypergraph out of 
hypergraphs with different number of arcs. This leads to that the algorithm would 
usually prefer a smaller number of hyperarcs: in an extreme case it might tend to align 
the firs paragraph of A with all but one paragraphs of B, and the rest of A with the last 
paragraph of B, which gives only two hyperarcs. However, the specific measure we 
suggest here is linear in the sense that it does not depend on the number of arcs: the 
cost is proportionally greater for the hyperarcs that align more paragraphs with one. 
Thus with this particular measure the algorithm is not biased towards a smaller num-
ber of larger pieces being aligned. Note that our experiments show (see Table 2) that 
our baseline measure suffers from such a bias. 

4   Algorithm 

To find the exact optimal alignment, we apply a dynamic programming algorithm. It 
uses a (NA + 1) × (NB + 1) chart shown in Fig. 6, where NX is the number of para-
graphs in the text in the language X.  

The algorithm works as follows. First, the chart is filled in: 

1. a00 := 0, ai0 := –∞, a0j := –∞ for all i, j > 0. 
2. for i from 1 to NA do 
3.  for j from 1 to NB do 
4.   aij := min (axy + Distance (TA [x + 1 .. i], TB [y + 1 .. j])) 
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Fig. 6. The chart of the dynamic programming algorithm 
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Here, aij is the value in the (i,j)-th cell of the chart, TX [a .. b] is the set of the para-
graphs from a-th to b-th inclusive of the text in the language X, and the minimum is 
calculated over all cells (x,y) in the -shaped area to the left and above the (i,j)-th 
cell, as marked with a triple-line border in Fig. 6. In our implementation we star from 
the corner of this area, thus preferring of equal variants the ones with fewer para-
graphs being aligned with one paragraph. Note that at least one of the two TX [a .. b] 
consists of only one paragraph, according to the conditions from Section 0. In Fig. 6, 
arbitrary values such as 0.3 are shown only to indicate that the corresponding cells 
have been already filled by the step of calculating aij.  

As in any dynamic programming algorithm, the value aij is the total weight of the 
optimal alignment of the initial i paragraphs of the text in the language A with the 
initial j paragraphs of the text in the language B. Specifically, upon termination of the 
algorithm, the bottom-right cell (marked by “?” in Fig. 6) contains the total weight of 
the optimal alignment of the whole texts. The alignment itself is printed out by restor-
ing the sequence of the assignments that led to this cell: 

5. (i,j) := (NA, NB). 
6. while (i,j) ≠ (0, 0) do 
7.  (x,y) := argmin (axy + Similarity (TA [x + 1 .. i], TB [y + 1 .. j])) 
8.  print “paragraphs in A from x + 1 to i are aligned with 
9.  print “paragraphs in B from y + 1 to j.” 
10.  (i,j) := (x,y) 

Here, again, the minimum is sought over the same -shaped area to the left and 
above the current cell (i,j). Upon termination, this algorithm will print (in the reverse 
order) all pairs of the sets of paragraphs in the optimal alignment. Note again that in 
each pair at least one of the two sets consists of only one paragraph. We omit here the 
proof of optimality, which is quite standard for dynamic programming algorithms. 

5   Complexity Analysis 

In this paper our goal was to prove that the task of finding the exact optimal align-
ment is tractable, and present the general idea of the algorithm. We did not have the 
goal of discussing its fast implementation. 

The algorithm as presented here has the complexity O(N 4), where N = NA ≈ NB is 
the size of the text to be aligned. Indeed, the chart contains O(N 2) cells, calculating of 
each cell requires O(N ) calculations of similarity between one paragraph and a set of 
paragraphs, which in turn can require O(N ) comparisons of individual words. We 
assume that the size of a paragraph and the number of translations for a word in the 
dictionary are O(1). 

The algorithm can be trivially modified to have the complexity O(N 3.5). Indeed, the 
Heaps law 2 states that the number of different word types in a text of length N is 
O(N 0.5). Assuming a faster implementation of the algorithm from Section 0 dealing 
with word vectors and not with individual tokens, we get the complexity of the  
function Similarity (TA, TB) to be O(N 0.5) instead of O(N). In case of our suggested 
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distance measure, the complexity can be even lowered to O(N 3) by incremental calcula-
tion of the distance in the inner loop of the algorithm, due to linearity of our measure.  

In practice, the complexity can be lowered to O(N 2) by limiting the size of the 
-shaped area in the chart calculation (which will also reduce to O(1) the calculation 

of the similarity function). Indeed, as reported in 8, the correspondences longer that 1 
to 3 paragraphs are low-probable. 

We even believe that a linear on average (though not in the worst case) algorithm 
can be constructed, but this should be a topic of a future research. 

6   Experimental Results 

We experimented with a science fiction novel Advances in genetics by Abdón Ubídia 
and its original Spanish text De la genética y sus logros, downloaded from Internet. 
The English text consisted of 114 paragraphs and Spanish 107, including the title.2 
The texts were manually aligned at paragraph level to obtain the gold standard, see 
Table 1. In this table, only non-one-to-one pairs are shown: e.g., 2–3=2 stands for the 
fact that English paragraphs 2 and 3 constitute the translation of Spanish paragraph 2. 
The one-to-one pairs are trivially inferred from the data shown in the table: for exam-
ple, 48–50=47 continues as 51=48, 52=49, etc. 

Table 1. Comparison of the methods 

Method Alignment 

Gold 2–3=2; 4–5=3–4 (4–5=3, 5=3–4); 6=5–6; 9–10=9; ∅=21; 46–47=46; 48–50=47; 
51–53=48; 58–59=53; 87–88=81 

Proposed 
2–3=2; 4–5=3; 6=4–6; 9–10=9; 22=21–22; 46–47=46; 48–50=47; 51–53=48; 
58–59=53; 67=61–62; 68=63–64; 69–71=65; 85=79–80; 86–88=81 

Baseline 

2–3=2; 4–6=3; 7=4–7; 9–10=9; 11–12=10; 13=11–13; 15–16=15; 22=21–23; 
23–24=24; 25–32=25; 33=26–27; 35=29–32; 36–37=33; 38=34–35; 39=36–38; 
41=40–41; 42–43=42; 44=43–44; 46–47=46; 48–50=47; 51–53=48; 54=49–50; 
55–56=51; 57–58=52; 59–60=53; 61=54–55; 63–64=57; 65=58–60; 66–68=61; 
69=62–63; 72–73=66; 76–77=69; 78=70–71; 79=72–73; 82=76–77; 83–84=78; 
85=79–80; 86–87=81; 88–89=82; 91–92=84; 94–96=86; 97=87–89; 98=90–91; 
99–100=92; 101–102=93; 103–104=94; 105=95–99; 106–108=100; 109=101–
102; 111–112=104; 113=105–106 

As often happens with literary texts 15, the selected text proved to be a difficult 
case because of violation of two of our assumptions; see the underlined pairs in 
Table 1. In one case, two paragraphs were aligned with two: the translator broke 
down a long Spanish paragraph 3 into two English paragraphs 4 and 5, but joined the 
translation of a short Spanish paragraph 4 with the English paragraph 5; in Table 1 we 
illustrate this situation in parentheses. In another case, the translator completely omit-
ted the Spanish paragraph 21. This illustrates that our assumptions from Section 0 
above are not always correct. Obviously, our algorithm (with both distance measures) 
did not align correctly these cases.  
                                                           
2 We did not experiment with a larger corpus because we are not aware of a gold-standard 

manually aligned Spanish-English parallel corpus. 
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Both texts were preprocessed by lemmatizing 7, 19 and POS-tagging, which al-
lowed for correct dictionary lookup. Stop-words were removed to reduce noise in 
comparison; leaving the stop-words in place renders our method of comparison of 
paragraphs completely unusable. Then our algorithm was applied, with both baseline 
and suggested distance measures. The resulting alignments are shown in Table 1. 

We evaluate the results in terms of precision and recall of retrieving the hyperarcs 
10; see Table 2: precision stands for the share of the pairs in the corresponding row of 
Table 1 (including one-to-one pairs not shown explicitly in the table) that are also 
found in its first row; recall stands for the stare of the pairs in its first row that are also 
found in the row corresponding to the method. Alternatively, we broke down each 
hyperarc into pair-wise correspondences: 48–50=47 was broken down into 48 ~ 47, 
49 ~ 47, 50 ~ 47, and calculated the precision and recall of our algorithm on retrieving 
such pairs; see the last two columns of the table. 

Table 2. Comparison of the distance measures 

Hyperarcs Single arcs 
Measure 

Precision, % Recall, % Precision, % Recall, % 
Proposed 89 85 88 90 
Baseline 65 28 43 54 

 
One can see that the proposed distance measure based on the bilingual dictionaries 

greatly outperforms the pure statistically-based baseline. 

7   Conclusions and Future Work 

We have suggested a formalization of the paragraph alignment task as finding a least-
cost hypergraph with certain properties. We also described a dynamic programming 
algorithm that finds the exact optimum of the corresponding problem. The assump-
tions that allowed for our formalization and thus the algorithm hold most of the time 
though not always, as our test corpus showed. 

The following directions of future work can be mentioned: 

- Error analysis: to analyze the causes of the errors made by the algorithm on our 
corpus. Actually only such analysis will define the ways of future improvements. 

- Algorithm improved as to its complexity, preferably linear. 
- More accurate similarity measures, for example, to avoid possibly counting some 

translations more than once. However, this is complicated and would lead to much 
higher complexity: in fact it implies word-level alignment. 

- A similarity measure taking into account the order of words in the paragraphs. 
- Weighting schemes such as TF-IDF instead of removing keywords. 
- Formalization of the task considering many-to-many correspondences. 
- Application of the method to sentence-level alignment. 
- Using the results of alignment to enrich existing bilingual dictionaries. 
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Abstract. This paper presents a new paradigm for mining documents by 
exploiting the semantic information of their texts. A formal semantic 
representation of linguistic inputs is introduced and utilized to build a semantic 
representation for documents. The representation is constructed through 
accumulation of syntactic and semantic analysis outputs. A new distance 
measure is developed to determine the similarities between contents of 
documents. The measure is based on inexact matching of attributed trees. It 
involves the computation of all distinct similarity common sub-trees, and can be 
computed efficiently. It is believed that the proposed representation along with 
the proposed similarity measure will enable more effective document mining 
processes. The proposed techniques to mine documents were implemented as 
components in a mining system. A case study of semantic document clustering 
is presented to demonstrate the working and the efficacy of the framework. 
Experimental work is reported, and its results are presented and analyzed. 

Keywords: Document mining, semantic understanding, text representation, 
similarity measure, document clustering. 

1   Introduction 

As the sheer number of documents that are available online grows exponentially, the 
need to manage these documents also grows. The result of this exponential growth is 
what has become known as the information overload problem. Taking into 
consideration only the volume of information available via the Internet and the World 
Wide Web (WWW) presents a non-trivial real problem. The extent of this problem is 
immediately apparent to anyone who has tapped into the WWW, and attempted to 
locate specific desired information. Solving this problem involves processes such as 
information gathering, information filtering (IF), information retrieval (IR), 
information extraction (IE), document classification, and document clustering. The 
goal of these processes is to help users to have better access to documents that satisfy 
their information needs. The needs can be to discover or derive new information from 
documents, to find patterns across documents, and to separate the desired information 
from the noise. These computational processes constitute cornerstone tasks in the 
ever-developing study field of document mining. 

The goal of this work is to introduce, build, and demonstrate a novel document 
mining system that is based on semantic understanding of the document contents. The 
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system is composed of components that facilitate semantic analysis of text, measuring 
similarity between documents, and applying the different mining processes. The aim 
is to show the working of the method and how this system can provide better 
performance than it is possible otherwise.  

There are three aspects pertain to document mining approaches: a) Representation 
models. b) Similarity measures. c) Mining processes. 

Representation Models: Conventional text representation models focus on whether a 
document contains specific keywords, and their appearance frequencies. For example, 
in the vector space model (VSM) [ 5,  21,  22], documents are represented by vectors 
containing the frequency of all possible words (features) in a document set. Since 
many words rarely occur in a particular document, many of these features will have 
zero or low frequencies. Therefore, features are selected according to their importance 
as dictated by criteria such as Document Frequency-Inverse Document Frequency, 
Information Gain, Mutual Information, a Chi-Square–test, and Term Strength [  1,   29]. 
Moreover, before applying feature selection, a common practice is to reprocess text 
by removing stop-words and applying word-stemming algorithms. Stop-words, such 
as the, and, and a, are believed to have no significance in capturing meaningful 
information. Word-stemming algorithms convert different word forms into a similar 
canonical form. Two popular stemming algorithms are used; the Porter stemmer [  20], 
and using a lexicon dictionary lookup, such as WordNet [ 18]. 

Despite the widespread use of these word-based approaches to represent 
documents, it is believed that these approaches contribute to the lack of reliable 
performance of document mining systems. These approaches consider the document 
as a bag of words, and ignore meanings and ideas the document wanted to convey. It 
is this deficiency that causes the similarity measures to either fail to perceive 
contextual similarity of text passages due to the variation of words the passages 
contain, or perceive contextually dissimilar text passages as being similar because of 
the resemblance of words the passages happen to have. An illustration of this 
deficiency that causes the failure is the two sentences 'John eats the apple standing 
beside the tree' and 'The apple tree stands beside John’s house', where despite using 
the same words, their meanings are different. Moreover, the following two sentences 
have more or less the same meaning but have been constructed from different sets of 
words, 'John is an intelligent boy', and 'John is a brilliant lad'. 

Similarity Measures: Similarity measures are used to determine distances between 
documents, after transforming the textual data into a useable and intelligible format. 
There are various techniques to measure similarities and they all rely on the chosen 
model to represent the text. In VSM, for instance, the feature space constitutes a 
geometric space where documents are represented as points in a multidimensional 
space. Thus, measuring the similarity can be easily calculated. Two measures are 
often used; they are the cosine measure, and the Jaccard measure [ 12,  25]. The cosine 
measure is defined as: cos(x,y)=(x.y)/(|x||y|), where (x.y) denotes the vector dot 
product of x and y, and |x| and |y| are the lengths of vectors x, y, respectively. The 
cosine measure gives high similarity values to documents that share the same set of 
words with high term frequencies, and lower values to those that do not. The Jaccard 
measure is defined as: sim(x,y)=|x∩y|/|x∪y|. It finds the overlap between two 
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documents by calculating the number of terms that are common between them. The 
Jaccard measure can work for both continuous and binary feature vectors.  

Although these techniques could be appropriate to measure distances between 
vectors of numerical features, the inherent inadequacy of word-focused approaches 
still exist. There is no perfect correlation between comparing words and comparing 
meanings. As the example sentences in the previous section show, the correlation can 
be very low indeed. Better mining results can be attained by measuring meanings 
instead of counting words found in documents. Thus it is imperative to develop 
semantic representations of text, and distance measures that can determine whether 
one statement is an instance of, or quite different from, another statement. 

Mining Processes: Document mining processes may vary in their requirements and 
specifications, yet their goals are to discover and extract knowledge from documents. 
IR is concerned with finding relevant documents in response to a user request and 
ranking them accordingly [ 2,   17]. This is normally done by measuring the distances 
between documents and queries in their transformed form in an index. When 
relevancy and similarity measuring is performed with the intent of transmitting a 
document to a user(s), it is usually referred to as IF [ 3,  19]. It is also used to either 
accept or reject an incoming document, as in e-mail filters that attempt to screen for 
junk mail. The goal of IE is to locate specific information and produce structured 
format from unstructured or semi-structured documents [ 24]. The output of an 
extraction system is usually tabular or fixed-format forms that are filled out with 
unambiguous data. This is done through analyzing those portions of each document 
that contain relevant information. Relevance here is determined by predefined domain 
guidelines which specify what types of information the system is expected to find. 
The aim of the document classification task is to assign a new document to one of a 
pre-existing set of document classes. In this setting, the task of creating a classifier 
consists of discovering useful characterization of the documents that belong to each 
class. Although this can be done by hand, the standard approach is to use supervised 
machine learning. In particular, classifiers can be trained on a set of documents that 
have been labeled with the correct class. The classification task assumes existing 
categories, or clusters, of documents. By contrast, the task of document clustering is 
to create, or discover, a reasonable set of clusters for a given set of documents. A 
reasonable cluster is defined as one that maximizes the within-cluster document 
similarity, and minimizes between cluster similarities [  4]. 

2   The Semantic-Based Document Mining System 

The proposed approach is based on analyzing text in documents before proceeding 
with the different mining processes requirements. The text analysis step comprises 
syntactic analysis to extract syntax structural descriptions (e.g. part of speech tags, 
phrasal chunks, and parse trees), and semantic analysis that produces formal 
knowledge representations of the documents contents. Thus, a generic semantic-based 
document mining system consists of three major components: (1) Text parser, (2) 
Similarity estimator, and (3) Mining processes. These components are interconnected, 
which makes the system highly integrated, but yet modular. 
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2.1   Semantic-Based Text Representation 

We introduce a representation, called the Semantic Graph Model (SGM), where the 
focus is on the ability to express distinct readings of sentences as distinct formulas 
that capture their intuitive structures and meanings. We start by creating predicate 
structures of sentences, augmenting the structures elements with valuable attributes, 
and taking all parsed sentences as the document representation (Figure 1). The 
representation is a graph-based data structure where entities, such as agents, objects, 
states, actions, events, and locations are represented as vertices, and relations between 
them are represented as arcs. Each node holds information that could include its 
original text, syntactic information, semantic meaning, and relations with other nodes.  

 

 

2.2   Semantic-Based Similarity Measure 

The similarity estimator component is responsible for searching the abstract 
representations of two documents, finding elements that are sufficiently similar, and 
yielding an overall similarity index. An inexact graph matching technique to 
approximately match graphs is utilized to calculate semantic distances between 
documents. Since SGMs are in essence trees with multiple symbolic node attributes, 
the semantic distance measure is defined over attributed-trees. The measure involves 
the computation of all similarity common sub-trees that do not overlap. 

Figures 2 (a) and (b) demonstrate the proposed distance estimator. The figures 
depict the finding of the common similarity sub-trees in the SGMs of two sentences. 
The symbol (x) denotes the nodes that are not matched, while (⇔) represents the 
similarity matching of nodes that are included in the common similarity sub-trees.  
Note that in order to match only distinct sub-trees the overlapping resulting from 
considering one node in Figure 2 (a) (status: 'stands beside John's house') should be 
eliminated.  Thus, only one matching node (Action 2 or Object 2) would be 
considered as a match. 
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Sent. 1 
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Sent. 2 Sent. n 

Clause 1 Clause 2 Clause n 

Predicate 1 Predicate 2 Predicate n 

Argument 1 Argument 2 Argument n 

Document x 
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Syntactic/Semantic 
Analysis 

Fig. 1. SGM Skeleton for a Document 
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Clearly, the summing up of similarities for the first pair of sentences is lower than 
the second pair, which reflects the closeness of their meaning distances.  An index 
number indicating the similarity between a pair of sentences (or documents) can be 
determined by normalizing the similarity of all found similarity sub-trees.  Applying 
this on the sample sentences in figure 2 (a) and (b), assuming the similarity values 
between the sub-trees are estimated through matching of nodes attributes will produce 
a low similarity for the first sentence pair an a high similarity for the second pair. 

 

 
 

Fig. 2. (a) Similarity Estimation for Sample Texts. (b) Similarity Estimation for Sample Texts. 

2.3   Semantic-Based Mining Processes 

At a certain level of abstraction we can look at the different mining processes as 
being relatively similar. We maintain that they can all benefit from the semantic-
based representation, i.e., the SGM, produced by a text parser, and can make use of 
the similarity measure estimator as needed. And then proceed with their specific 
tasks. The text analysis and the similarity estimation should be as much independent 
as possible of the specific mining process to allow for modularity and scalability. In 
Section 3, a case study of the proposed approach on one of these document mining 
processes (semantic-based document clustering) is presented. Implementations and 
experimental work have been carried out and results are also presented and 
analyzed. 
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3   Semantic Document Clustering: A Case Study 

While a large number of statistical document clustering approaches have become 
available, relatively, a little attention has been paid to the clustering of documents 
represented using symbolic structures. In principle, however, given suitable 
documents similarity (or dissimilarity) measurements, many of the clustering 
algorithms originally developed in the context of statistical pattern recognition, can be 
applied in the symbolic domain. This is the course we have adapted to cluster 
documents represented semantically. Text documents were syntactically and 
semantically parsed and represented by their SGMs. Pair-wise similarities were 
computed using our developed inexact tree similarity measure. The similarity matrix 
was fed to different clustering algorithms to produce clusters for the data sets. The 
clustering results were then evaluated using standard evaluation techniques in 
document mining. In what follows we detail the steps taken and give an analytical 
discourse on findings. 

Text Parser: A parsing system, which performs the syntactic analysis, and builds the 
semantic structures of SGM is implemented. We are utilizing the open source GATE 
(General Architecture for Text Engineering) project from University of Sheffield in 
the UK (http://gate.ac.uk) [ 11], and a commercial integrated development 
environment (IDE), Visual Text [ 26], from Text Analysis International, Inc. GATE 
provides an extensible framework for information extraction and text analysis, and 
Visual Text integrates NLP++ programming language for rapid parsers building. We 
have based the design of our text analysis system on a multi-pass, and a multi-strategy 
architecture that could be implemented within Visual Text IDE. The syntactic and 
semantic parser developments are built upon the TAIParse general analyzer [ 27] that 
is provided as an open source from Text Analysis. The analyzer contains 123 passes 
that build syntactic (parse trees), and semantic (the SGM) structures. Many other 
external processing components and language resources are wrapped and made usable 
interchangeably within the system. Specifically, every document in the processed data 
set goes through tokenization, part of speech tagging, syntactic parsing, semantics and 
discourse analysis. 

Data Set: A Web documents collection is used. The document set is a collection of 
2340 Reuters news articles posted on Yahoo! News. This corpus is especially 
interesting for evaluation, as it comes along with a hand-crafted classification. All 
documents have been classified manually by Yahoo experts to one or more of six 
main categories of Reuter's news feed, namely, business, entertainment, health, 
politics, sports, and technology. The data set has been collected and used by Boley et 
al [ 6,  7,  8] for clustering. 

Text Representations: All text documents are represented using the proposed 
semantic graph model (SGM). The SGM representation model constitutes trees that 
have attributes for their nodes. Each document is represented as a tree rooted in a 
node describing its file name, and branches to sub-trees represent paragraphs, 
sentences, clauses, and predicate-argument nodes with attributes describing the 
arguments. As applicable, the node attributes include Name: a unique identification 
for the node, Type: the semantic role of concept, Text: the original text, Syntax: the 
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part of speech tag, Synonyms: dictionary senses of the concept, Semantic: the 
disambiguated meaning of the concept, and Relation: other nodes IDs that are 
connected to the node. Different algorithms are employed and integrated in the parser 
to produce the SGM representations. The documents are also represented by the 
VSM. Some pre-processing procedures are performed such as normalizing words, 
analyzing words globally, and words weighting. To normalize words, numeric, and 
stop words are removed. All words are converted to lowercase, and words of length 2 
or less are also removed. Note that no stemming is done. Analyzing words globally is 
done by building a list of unique words from all documents, and calculating the 
document frequency of each word. Then, for each document, the word frequency is 

calculated and weighted using the following formula: )log(,,
j

jiji df

N
fw = , where fi,j is 

the term frequency of word j in document i, N is the number of documents, dfj is the 
document frequency of word j. Finally, an output of the term-by-document matrix is 
produced. 

Similarity Measures: Our distance measure technique is used to measure distances 
between documents. It follows the similarity calculation approach that is based on 
finding all distinct common similarity sub-trees. The algorithm is applied to the 
semantic trees of the SGMs produced by the semantic parser. Various attributes are 
considered in the testing. Attribute consideration starts from taking into account only 
the original text to represent a node and extends to consider other attributes the parser 
accumulates. Specifically, we carried out the experiments with mainly five options of 
sets of attributes to include in measuring the similarities. These options are (1) 
original text only, (2) original text, and syntax tag, (3) original text, syntax tag, and 
semantic role, (4) original text, syntax tag, semantic role, and semantic disambiguated 
sense, and (5) original text, syntax tag, semantic role, semantic disambiguated sense, 
and semantic variation. To measure similarities of documents represented in the 
vector space, the commonly used cosine correlation measure is utilized. 

Clustering Algorithms: The semantic approach to represent text and determine 
similarity between them is evaluated by allowing clustering algorithms to use the 
produced similarity matrix of the document set. We run the test with standard 
clustering algorithms that accept the pair-wise (dis)similarity between documents, 
rather than the internal vector-space or SGM representations of the documents. The 
employed algorithms included: Single-Pass Clustering [ 10,  15], k-nearest neighbour 
(k-NN) Clustering [ 10,  13], and Hierarchical Agglomerative Clustering (HAC) [ 16]. 
The different parameters of these algorithms (i.e., the clustering threshold parameters) 
are tuned so the best results of clustering are obtained. 

Evaluation: To evaluate results, we used a benchmark of manually classified 
document set; Routers news feeds. The main aspect of the evaluation is the quality of 
the clustering task output, which is measured in terms of clusters quality. The widely 
used evaluation indices, F-measure that combines precession (P) and recall (R) [ 9, 14, 
28], Entropy, and Overall-Similarity are used for this purpose as clustering quality 
evaluation measures. R for cluster c is the ratio of processed documents manually 
classified as c with regard to the whole document set, and P is the ratio of these 
documents clustered as c by the process that were also manually classified as c 
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regarding the produced set of results. The F-measure is calculated as: 
F=[(β2+1)PR]/[β2P+R], the parameter β influences how much to favor recall over 
precision. The F1 score where β=1, weighs precision and recall equally. The entropy 
Ei of a cluster i is calculated using Shanon [ 23] standard formula: −=

j ijiji ppE )log( , 

where Pij is the probability of documents of cluster i belong to class j. An overall 
entropy E for all clusters can also be calculated as the sum of entropies for each 
cluster weighted by the size of each cluster as follows:

×=
n

i
i

i EN
N

E )(
, where Ni is the 

size of cluster i, and N is the total number of documents. Overall similarity uses the 
weighted similarity of the internal cluster similarity as: OverallSimilarity(S) = 

∈Syx

yxsim
S ,

2
),(

1 , where S is the cluster under consideration, and sim(x, y) is the 

similarity between the two objects x and y. 

3.1   Analysis of Results   

The clustering algorithms were utilized to cluster the data set using document-to-
document similarities produced by the semantic-based approach, and the vector space 
model. Results show the effectiveness of the semantic-based approach for clustering. 
In addition, the experiments illustrate improvements when more semantic clues are 
included in the process of measuring similarity between SGMs of documents. The 
improvements were achieved at a factor up to 72% from the base case of considering 
only the original text of nodes (option 1) to considering all five semantic analysis 
results (option 5). The threshold parameters for the different clustering algorithms 
were manually tuned and the ones that produced the best results were reported. The F-
measure index showed noticeable improvement. The same can be noticed about the 
entropy and the overall similarity indexes. 
 

Fig. 3. Clustering Results 
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To better understand the effect of the inclusion of semantic information when 
calculating similarity on the clustering quality, we plot the clustering quality profile 
indices against the similarity options in Figure 3. The plotted values are the averages 
of F-measure, entropy, and overall similarity of the different clustering algorithms. 
We also plot the value of these measures with regard to the VSM. It is easy to notice 
the enhancement of the clustering as we consider more semantic information. The 
enhancement is, however, non-linear. Options 2 and 3 seem not to have as much 
effect on the clustering quality, but they never bring it down. Option 5 had the most 
effect to bring up the quality of clustering. As anticipated; keywords alone cannot 
capture all the similarity information between documents, thus the quality of semantic 
clustering with option 1 was as low as the VSM. 

4   Conclusions 

We demonstrated a system composed of semantic components in an attempt to 
improve the accuracy of measuring the similarity between documents and using the 
similarity in applying document mining. We considered semantic document clustering 
as a case study. By exploiting the semantic analysis findings we could achieve better 
clustering results. We implemented document analysis components that are capable of 
identifying the meaning structures of text in documents. The second part is to measure 
similarity between parsed documents. The measure has the most impact on the 
performance as how much of semantic information it considers. Using the maximum 
amount of the semantic information enables us to perform similarity calculations 
between documents in a very robust and accurate way. The quality of clustering 
achieved using this model significantly surpasses the traditional vector space model 
based approach. 
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Abstract. Authorship attribution is the task of identifying the author of a given 
text. The main concern of this task is to define an appropriate characterization 
of documents that captures the writing style of authors. This paper proposes a 
new method for authorship attribution supported on the idea that a proper iden-
tification of authors must consider both stylistic and topic features of texts. This 
method characterizes documents by a set of word sequences that combine func-
tional and content words. The experimental results on poem classification dem-
onstrated that this method outperforms most current state-of-the-art approaches, 
and that it is appropriate to handle the attribution of short documents. 

1   Introduction 

Authorship attribution is the task of identifying the author of a given text. It can be 
considered as a typical classification problem, where a set of documents with known 
authorship are used for training and the aim is to automatically determine the corre-
sponding author of an anonymous text. In contrast to other classification tasks, it is 
not clear which features of a text should be used to classify an author. Consequently, 
the main concern of computer-assisted authorship attribution is to define an appropri-
ate characterization of documents that captures the writing style of authors. 

There are several methods for authorship attribution, ranging from those using sty-
listic non-topic features such as the vocabulary richness of the author and the fre-
quency of occurrence of some functional words1 [12], to those based on the traditional 
bag-of-words representation that consider all content words of documents [5, 8]. In 
this paper, we propose a new method for authorship attribution. This method relies on 
the hypothesis that a proper identification of authors must consider both stylistic and 
topic features of texts. Therefore, an adequate characterization of documents must 
effectively combine functional and content words. Our proposal is to construct this 
characterization by means of word sequences. 

It is important to mention that word sequences (specially, fixed-length word n-
grams) have been applied without much success in topic-based text classification [3]. 
                                                           
1  Words having little semantic content of their own, such as prepositions, conjunctions, and 

articles. In information retrieval, they are also known as stopwords. 
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Nevertheless, there are not enough studies on their application to non-topic-based 
classification, and in particular to the task of authorship attribution [10]. 

On the other hand, another less studied difficulty is the impact of the document 
size on the classification accuracy. It is known that some approaches for authorship 
attribution are very sensible to the length of documents. Specially, the methods based 
on stylistic features tend to fail when confront short documents [11]. This behavior 
motivates us to apply our method on the classification of poems by authors. Given 
that poems are very short documents, our experiments not only contribute to evaluate 
the usefulness of word sequence features for authorship attribution, but also allow 
analyzing their appropriateness to handle difficult classification scenarios. 

The rest of the paper is organized as follows. Section 2 discusses some previous 
works related to the task of authorship attribution. Section 3 introduces the proposed 
method. Section 4 describes the experimental setup. Section 5 presents some experi-
mental results on the use of word sequences features. Finally, section 6 depicts our 
conclusions and future work. 

2   Related Work 

The analysis of style for authorship attribution is mainly based on the assumption that 
each author has habits in wording (i.e., in the use of words) that make their writing 
unique. However, this assumption is not completely true, since the style of an author 
may be variable depending on the target audience, or may change because of differ-
ences in topics or genre. For this reason, it is difficult to determine a set of features 
stable to these variations but adequate to distinguish between writings of different 
authors. 

There are several methods for authorship attribution. These methods may be clus-
tered in the following three main approaches: 

Stylistic measures as document features. This approach considers features such as 
the length of words and sentences as well as the richness of the vocabulary [7, 9]. Its 
results are not conclusive, but have demonstrated that these features are not sufficient 
for the task. It seems that they vary depending on the genre of the text, and that they 
lost most of their meaning when dealing with short texts. 

Syntactic cues as document features. This approach uses a set of style markers. 
These markers go beyond the stylistic measures by integrating information related to 
structure of the language, which is obtained by an in depth syntactic analysis of docu-
ments [4, 5, 11]. Basically, texts are characterized by the presence and frequency of 
certain syntactic structures. This characterization is very detailed and relevant; unfor-
tunately, it is computationally expensive and even impossible to build for languages 
lacking of text-processing resources (e.g. POS tagger, syntactic parser, etc.). Besides, 
it is also clearly influenced by the length of documents. 

Word-based document features. This approach includes at least three different kinds of 
methods. The first one characterizes documents using a set of functional words, ignor-
ing the content words since they tend to be highly correlated with the document topics 
[2, 12]. This method works properly, but it is also affected by the size of documents. In 
this case, the document length not only influences the frequency of occurrence of the 
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functional words but also their sole presence. The second method applies the traditional 
bag-of-words representation and uses single content-words as document features [5, 8]. 
It is very robust and produces excellent results when there is a noticeable relation be-
tween authors and topics. Finally, a third method considers word n-gram features, i.e., 
features consisting of sequences of n consecutive words. This method attempts to cap-
ture the language structure of texts by simple word sequences instead of by complex 
syntactic structures [10]. Somehow, it purpose is to obtain a rich characterization of 
texts without performing an expensive syntactic analysis. Nevertheless, due to the fea-
ture explosion, it tends to use only n-grams up to three words. 

In general, our method is very similar to the n-gram based approach. In both cases, 
documents are characterized by a combination of function and content words. How-
ever, ours considers a special kind of word sequences (namely, maximal frequent 
word sequences), which are determined by their frequency of occurrence instead of by 
their length. Using this strategy, it selects the most relevant word sequences, and 
indirectly tackles the problem of feature explosion. The following section describes in 
detailed the proposed method. 

3   Our Method 

As we previously mentioned, this paper presents a new method for authorship attribu-
tion. This method characterizes documents by a set of relevant sequences that com-
bine functional and content words. The idea is to use these sequences to classify the 
documents in view that they express the most significant lexical collocations2 used by 
an author. Traditionally, these sequences are extracted by applying a general n-gram 
computation. In contrast, we propose to discover them by means of a process for 
mining maximal frequent word sequences. 

The following subsections define the maximal frequent word sequences, the proc-
ess for their extraction, as well as a classification algorithm using them as document 
features. 

3.1   Mining Maximal Frequent Word Sequences 

Assume that D is a set of texts (a text may represent a complete document or even just 
a single sentence), and each text consists of a sequence of words. Then, we have the 
following definitions [1]. 

Definition 1. A sequence p = a1…ak is a subsequence of a sequence q if all the items 
ai, 1  i  k, occur in q and they occur in the same order as in p. If a sequence p is a 
subsequence of a sequence q, we also say that p occurs in q.  

Definition 2. A sequence p is frequent in D if p is a subsequence of at least  texts of 
D, where  is a given frequency threshold. 

Definition 3. A sequence p is a maximal frequent sequence in D if there does not exist 
any sequence p´ in D such that p is a subsequence of p´ and p´ is frequent in D. 

                                                           
2  A collocation is defined as a sequence of words or terms that co-occur more often than would 

be expected by chance. 
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Once introduced the maximal frequent word sequences, the problem of mining them 
can formally state as follows: given a text collection D and an arbitrary integer value 
 such that 1    |D|, enumerate all maximal frequent word sequences in D.3 

It is important to mention that the implementation of a method for sequence mining 
is not a trivial task because of its computational complexity. The algorithm used in 
our experiments is described in [6]. 

3.2   Classification Algorithms 

Authorship attribution is a classification problem, where a set of documents with 
known authorship are used for training and the aim is to automatically determine the 
corresponding author of an anonymous text. Table 1 shows the direct classification 
algorithm based on the use of maximal frequent word sequences as document fea-
tures. 

Table 1. Direct Algorithm 

Let DT be the set of labeled documents that will be used for training 
Let d be an anonymous document 

TRAINING 
1. Set the value of the frequency threshold  
2. Enumerate all maximal frequent word sequences in DT corresponding to 

the given frequency threshold 
3. Build the training instances using the discovered word sequences as Boo-

lean features 
4. Give the learning algorithm the training instances and perform training 

CLASSIFICATION 
1. Build the representation of d in accordance to the training feature space 
2. Let the trained classifier label the new instance 

 
The proposed direct algorithm is conceptually simple and appropriate. However, it 

greatly depends on the adequate definition of the frequency threshold . It is expected 
that different values of  generate different sets of word sequences, and consequently 
produce different performance rates. For instance, low -values allow for extracting 
large sequences and favor the precision rate, while high -values tend to generate 
many short sequences that support the recall percentage. Unfortunately, the most 
adequate -value is influenced by the size of the given document collection, and 
therefore, it need to be empirically determined for each particular situation.  

In order to reduce the dependency of the classification performance to the used fre-
quency threshold, we propose to construct the feature set by combining the maximal 
frequent sequences extracted by different -values. The idea is to construct the feature 
set by an iterative process, incrementing the -value at each step. This process starts 
with the inclusion of sequences corresponding to the frequency threshold  = 2, and 
ends when there are no more lexical collocations (sequences of at least two words) to 
aggregate to the feature set. Table 2 describes the enhanced algorithm. 
                                                           
3  It is important to notice that a maximal frequent sequence may consist of only one single 

word. 
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Table 2. Enhanced Algorithm 

Let DT be the set of labeled documents that will be used for training 
Let d be an anonymous document 

TRAINING 
1. Set the value of the frequency threshold  = 2 
2. Set the feature set F1 = {∅} 
3. DO 

a. Enumerate all maximal frequent word sequences in DT correspond-
ing to the frequency threshold . Name the set of sequences S  

b. Integrate new sequences to the feature set, i.e., F  = F -1 ∪ S  
c. Increment the frequency threshold; i.e.,  =  + 1 

     WHILE (S -1 contains at least one sequence of two or more words not in-
cluded in F -2) 

4. Build the training instances using the discovered Boolean features 
5. Give the learning algorithm the training instances and perform training 

CLASSIFICATION 
1. Build the representation of d in accordance to the training feature space 
2. Let the trained classifier label the new instance 

4   Experimental Setup 

4.1   Corpus 

Unfortunately, there is not a standard data set for evaluating authorship attribution 
methods. Therefore, we had to assemble our own corpus. This corpus was gathered 
from the Web. It consists of 353 poems written by five different authors. Table 3 
sums up some statistics about this corpus. It is important to notice that, on the one 
hand, the collected poems are very short documents (176 words on average), and on 
the other hand, that all of them correspond to contemporary Mexican poets. In par-
ticular, we were very careful on selecting modern writers in order to avoid the identi-
fication of authors by the use of anachronisms. 

Table 3. Corpus Statistics 

Poets Number of 
documents 

Size of 
Vocabulary 

Number of
Phrases 

Average 
Words by 

Documents 

Average 
Phrases by 
Documents 

Efraín Huerta 48 3831 510 236.5 22.3 

Jaime Sabines 80 3955 717 155.8 17.4 

Octavio Paz 75 3335 448 162.6 27.2 

Rosario Castellanos 80 4355 727 149.3 16.4 

Rubén Bonifaz 70 4769 720 178.3 17.3 

4.2   Classifier 

The Naïve Bayes classifier has proved to be quite competitive for most text process-
ing tasks including text classification. This fact supported our decision to use it as 
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main classifier for our experiments. It basically computes the probability of a docu-
ment d to belong to a category ci given the set of features F = {f1, f2,…, f|F|}.4 This 
probability can be expressed using Bayes’ rule as follows: 
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where N is the number of documents in the whole collection, Ni the number of docu-
ments of category ci, and Nji the number of documents from category ci having the 
feature fj. Finally, |F| indicates the number of features. 

4.3   Baseline Configurations 

Because of the difficulty of comparing our approach with other previous works –
mainly caused by the absence of a standard evaluation corpus–, we performed several 
experiments in order to establish a baseline. These experiments consider the use of 
four different kinds of word-based features: (i) functional words, (ii) content words, 
(iii) the combination of functional and content words, and (iv) word n-grams. Table 4 
shows the results corresponding to each one of these approaches. 

Table 4. Baseline Configurations 

Features Accuracy 
Average 
Precision 

Average 
Recall 

Functional words 41.0% 0.42 0.39 
Content words 73.0% 0.78 0.73 
All kind of words 73.0% 0.78 0.74 
n-grams (unigrams plus bigrams) 78.8% 0.84 0.79 
n-grams (from unigrams to trigrams) 76.8% 0.84 0.77 

 
It is important to mention that because our main interest was to determine an ap-

propriate document characterization for authorship attribution, we used in all cases 
the same classification algorithm, namely, the naïve Bayes classifier. As well, we 
applied the same technique for dimensionality reduction (information gain) and the 
same evaluation schema (a 10-cross-fold validation).  

The results shown in Table 4 are very interesting since they confirm some of our 
major assumptions. First, functional words by themselves do not help to capture the 
writing style from short documents. Second, content words contain some relevant 
information to distinguish between authors, even when all documents correspond to 

                                                           
4  Text classification is the problem of assigning a document d to one of a set of |C| predefined 

categories C = {c1, c2,…, c|C|}. 
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the same genre and discuss similar topics. Third, the lexical collocations, captured by 
word n-gram sequences, are useful for the task of authorship attribution. Fourth, due 
to the feature explosion and the small size of the corpus, the use of higher n-gram 
sequences does not necessarily improve the classification performance. 

5   Experimental Results 

In this paper, we have proposed the use of maximal frequent word sequences as 
document features for authorship attribution. This section presents the results of two 
basic experiments. The first one evaluates the classification performance of the direct 
algorithm using different frequency thresholds ( ). The second experiment applies the 
enhanced algorithm. Its goal is to evaluate the impact of using a feature set that com-
bines maximal sequences extracted by different -values.  

In these experiments, as in the baseline generation, we used sequences considering 
not only content words, but also function words as well as punctuation marks. In the 
same way, we used the naïve Bayes classifier, the information gain technique for 
dimensionality reduction5, and a 10-cross-fold validation schema. 

5.1   Experiments with the Direct Algorithm 

Table 5 shows the results obtained using different frequency threshold values. It can 
be noticed that for all -values our results were worst than those obtained using the n-
gram features (combining unigrams and bigrams). However, it is interesting to point 
out that the number of sequences –for the best case– was much less than the number 
of n-grams, 4276 and 45245 respectively. Moreover, after the dimensionality reduc-
tion, the number of sequences was less than the number of n-grams, 203 and 455 
respectively. This condition indicates that even when our method did not outperform 
the n-gram based approach, it could obtain a reduced set of features with a better 
discrimination capacity. 

Table 5. Results of the Direct Algorithm 

 
Number of 
Sequences 

Average 
Words per 
Sequence 

Accuracy Average 
Precision 

Average
Recall 

2 141 2.59 68.60% 0.76 0.69 
3 203 2.32 77.30% 0.82 0.77 
4 225 2.26 77.30% 0.82 0.77 
5 195 1.67 77.10% 0.81 0.77 
6 156 1.59 75.40% 0.79 0.75 
7 129 1.57 74.80% 0.78 0.74 
8 124 1.50 74.20% 0.76 0.74 
9 105 1.46 71.40% 0.73 0.71 

10 94 1.45 70.50% 0.72 0.70 

In addition, the results of Table 5 demonstrate the great influence of the frequency 
threshold on the classification process. It is clear that the -value determines the  

                                                           
5 In particular, we selected all attributes with information gain greater than 1. 
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number and kind of discovered sequences and, therefore, it has a direct effect on the 
overall classification performance. In particular, it is noticeable that the accuracy 
decreases while increasing the frequency threshold. This is because high -values tend 
to fragment sequences, losing several relevant lexical collocations. 

5.2   Experiment Using the Enhanced Algorithm 

The Enhanced Algorithm (refer to section 3.2) constructs the feature set by combining 
maximal frequent sequences corresponding to different -values. In this way, it at-
tempts diminishing the dependency of the classification performance on the used 
frequency threshold. Table 6 shows some data on the construction of the feature set. 
This process started with the inclusion of large sequences (those having more dis-
criminatory capacity) and ended with the insertion of short sequences (those having 
more coverage). In total, we assembled a set of 425 features. 

Tabla 6. Construction of the Enhanced Feature Set 

 Extracted 
Sequences 

Added 
Sequences 

Average
Length of 

Added 
Sequences 

Number 
of Features 

2 141 141 2.58 141 
3 203 100 1.71 241 
4 225 80 1.76 321 
5 195 53 1.74 374 
6 156 23 1.35 397 
7 129 13 1.46 410 
8 124 12 1.25 422 
9 105 3 1 425 

 
Table 7 shows the results related to the enhanced algorithm. From these results, it 

is clear that the enhanced algorithm not only does better than the direct algorithm, but 
also that it outperforms all baseline configurations. Furthermore, given that the resul-
tant feature set is comparable in size to the n-gram set, the obtained results validate 
our hypothesis that determining the word sequences by their frequency of occurrence 
instead of by their length is a good strategy, which allows to select the most relevant 
word sequences and to tackle the problem of feature explosion. 

Table 7. Results of the Enhanced Algorithm 

Poets Precision Recall 
Efraín Huerta 1.00 0.75 
Jaime Sabines 0.83 0.83 
Octavio Paz 0.95 0.75 
Rosario Castellanos 0.65 0.91 
Ruben Bonifaz 0.94 0.87 
Average Rates 0.87 0.82 
Overall Accuracy 83% 
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6   Conclusions 

In this paper, we proposed a new method for authorship attribution. This method is 
supported by the idea that a proper identification of author must consider both stylistic 
and topic features of documents. In particular, it characterizes the documents by a set 
of word sequences that combine functional and content words.  

Other previous approaches for authorship attribution also characterized documents by 
word sequences. Specifically, they used word n-gram features, that is, word sequences 
of a fixed predefined size. In contrast to these approaches, our method considers a spe-
cial kind of word sequences (namely, maximal frequent word sequences), which are 
determined by their frequency of occurrence instead of by their length. The experimen-
tal results demonstrated that this kind of sequences are superior to the n-grams, since 
they allow capturing the more significant lexical collocations used by an author. 

It is also important to mention that our method, without using any sophisticated lin-
guistic analysis of texts, could outperform most of the state-of-the-art approaches for 
authorship attribution. Furthermore, our method, on the contrary to other current ap-
proaches, is not very sensitive to the size of documents and the document collection.  

As future work, we plan to apply the proposed method (document characterization) 
to other problems of text classification. In particular, we want to investigate the con-
tribution of function words to topic-based text classification. 
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Abstract. In document clustering, documents are commonly represented 
through the vector space model as a word vector where the features correspond 
to the words of the documents. However, there are a lot of words in a document 
set; therefore the vector size could be enormous. Also, the vector space model 
does not take into account the word order that could be useful to group similar 
documents. In order to reduce these disadvantages, we propose a new document 
representation in which each document is represented as a set of its maximal 
frequent sequences. The proposed document representation is applied for 
document clustering and the quality of the clustering is evaluated through inter-
nal and external measures, the results are compared with those obtained with 
the vector space model. 

1   Introduction 

Currently there is a lot of digital information in the World Wide Web and the amount 
of digital text documents is growing every day. In consequence, we need automatic 
methods for organizing these text documents, because if we have organized the text 
documents it is easier to look for the information that we want.  

Document clustering consists in dividing, automatically, a set of documents into 
different groups [1]. Therefore, the document clustering methods can be seen as tools 
which allow us to organize documents. Document clustering has been used for tasks 
such as information retrieval and generating hierarchies of documents [2]. 

In order to cluster documents, we need to represent them in a suitable way to be 
compared. Commonly, text documents are represented with the vector space model 
proposed by Salton in 1975 [3]. This model represents the documents as a word vector 
in which the features correspond to the words of the documents. However, the vector 
space model presents some disadvantages such as very high dimensionality, because a 
document collection can have a huge amount of different words. Another drawback, of 
the vector space model, is that it does not preserve the word sequential order.  

The words are not the only features that can be used in order to represent docu-
ments; there is another kind of information that can be extracted from the documents, 
for example word sequences which appear frequently in the document. But the 
amount of frequent word sequences could be large; however, the amount of frequent 
word sequence can be reduced if only the maximal frequent sequences are used. 
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In this work, we propose a new document representation using the maximal fre-
quent sequences, with this proposed representation each documents is represented as a 
set of its maximal frequent sequences which reduce the number of features used and 
preserve part of the word sequential order of the document. In order to test the pro-
posed document representation, some document clustering experiments were done 
with two document collections: the English document collection Reuters-21578 [4] 
and the Spanish document collection Disasters. The quality obtained in the document 
clustering experiments, with the proposed representation, was compared against the 
one obtained with the vector space model, through internal and external clustering 
quality measures. 

This paper is organized as follows. Section 2 describes the maximal frequent se-
quences. Section 3 introduces the new document representation. Section 4 gives the 
methodology used in this works and the experimental results. Finally, in section 5 we 
present our conclusions and some directions for future work. 

2   Maximal Frequent Sequences 

The text of a document is expressed by words in a sequential order. Therefore, it 
could be useful determining the consecutive word sequences that appear frequently in 
a document. Also, it is possible to determine which of the frequent sequences are not 
contained in any other frequent sequence i.e. which of them are maximal. In this work 
we will focus in the MFS’s because they are a compact representation of the frequent 
sequences. 

Ahonen [5] developed the first algorithm to find sequential patterns in a document 
collection. Recently, the MFS’s have been used by Doucet [6] in the document re-
trieval task, his algorithm finds the MFS’s from a document collection too. In [7] an 
algorithm to find efficiently the maximal consecutive frequent sequences of words but 
unlike Ahonen and Doucet algorithms from a single document was proposed. 

The maximal frequent sequences are formally defined as follows [7]: 
 

Definition 1. A sequence P=p1p2…pn is a subsequence of a sequence S=s1s2…sm, de-
noted P⊆S, if there exists an integer 1 i such that p1=si,p2=si+1, p3=si+2,…,pn=si+(n-1). 
 

Definition 2. Let X⊆S and Y⊆S then X and Y are exclusive if X and Y do not share 
items i.e., if (xn=si and y1=sj) or (yn=si and x1=sj) then i<j. 
 

Definition 3. Let T be a text expressed as a sequence, a sequence S is frequent in T if 
it is contained at least  times in T in an exclusive way, where  is the user-specified 
threshold. 
 

Definition 4. A frequent sequence is maximal if it is not a subsequence of any other 
frequent sequence.  

 

Table 1 presents, as example, two documents and their MFS’s with =2  
The MFS’s present some important characteristics. First, they keep the sequential 

order of the words; it means the MFS’s do not lose the sequential order of the text. 
Second, the length of the MFS’s is not previously determined; it is determined by the 
document content. And third, the MFS’s can be obtained independently of the lan-
guage of the documents.  
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In this work, the algorithm proposed in [7] was used to obtain the MFS’s of each 
document. 

Table 1. MFS’s for two documents 

d1= bank said had provided money market further billion assistance bank afternoon session 
brings billion bank  total help compares revised shortage forecast money market.  

 
MFS’s = bank, money market, billion 
 
d2= bank billion provided money market late assistance system brings bank total help  com-

pares money market latest forecast shortage system today. 
 
MFS’s = bank, money market, system 

3   Representation Based on MFS Sets 

The document representations such as vector of words have some disadvantages like 
high dimensionality and loss of important information from the sequential order of the 
original text. In order to reduce these drawbacks we propose a new document repre-
sentation using MFS’s. This representation consists on obtaining the MFS’s from 
each document and use them to represent the document as a set of MFS’s. For exam-
ple, in Table 1 two documents, D1 and D2, are given and they are represented with the 
set of their MFS’s. The first document is represented with the MFS’s “bank”, “bil-
lion” and “money market” and the document D2 is represented with “bank”, “money 
market” and “system”. 

In the example from table 1, with the proposed document representation, each 
document is represented with 3 MFS’s while using the vector space model, each 
document would be represented with a vector of 22 words. Therefore, the number of 
features which are used in the proposed document representation is less than the num-
ber of features used to represent each document with the vector space model. In this 
sense, the problem of high dimensionality presented in the vector space model could 
be reduced with the proposed document representation.  

It is important highlight that with the MFS’s, the sequential order of the words is 
preserved which could help to distinguish among documents with almost the same 
words but in different order. 

The similarity between two documents represented as MFS sets is based on the in-
tersection of their MFS’s and it is obtained with the next expression. 

 

 (1) 

     Where: MFS(dj) is the set of MFS’s of the document j 
                  j=1, 2 
      

Following the idea of the vector space model, the TF-IDF weighting can be used in 
order to assign a weight to each MFS in the set. Thus the weight w of each MFS Si for 
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a document dj can be computed as the product of its frequency f in dj and the log of its 
inverse frequency in the collection C.  

 

 
 

(2) 

   The expression (3) is another way to evaluate the similarity between two documents 
represented as MFS sets and taking into account the TF-IDF weighting. 
 

 

 
 
 
 

(3) 

  

Where:   wd1(Si)= weight in document dj of the MFS Si.  j=1,2  
If the Boolean weight is used, instead of the TF-IDF weighting, in expression (3), 

this expression will be the same one that the expression (1).  

4   Experimentation 

In order to test the proposed representation we used the Reuters-21578 and Natural 
Disasters collection which are written in English and Spanish, respectively. Table 2 
and 3 present a description of the data used for the experiments done with Reuters-
21578 and Natural Disasters collection. For each experiment, the name of the used  
 

Table 2. Data used for the experiments with the Reuters-21578 collection 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Classes 
Acq 
 earn 

Money, 
 acq, earn 

Acq,  
earn, crude 

Gold,acq,trade, 
reserve,earn 

Documents 100 120 120 253 
Required clusters 2 3 3 5 
Total words 1546 2354 2541 4294 
Average of MFS’s  per document 5 6 7 7 

Table 3. Data used for the experiments with the Natural Disasters collection 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 
 
Classes 

Forest, 
 hurri-
cane 

Forest, 
 inundation

Drought, 
Inundation

Forest, earth-
quake, 

inundation 

Forest, 
 drought, 

 inundation 

Forest,  
drought, 
hurricane 

Documents 80 80 80 120 120 120 
Required clusters  2 2 2 3 3 3 
Total Words 4611 4583 4825 5963 6059 4593 
Average of MFS’s  per 
document 
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classes, number of documents and the number of required clusters are shown. Also, 
the number of words and MFS’s, from each experiment, are provided. A =2 was 
used in order to extract the MFS’s. 

4.1   Methodology  

In all the experiments, the methodology showed in figure 1 was used. We pre-
processed the documents removing punctuation, numbers, special characters and stop 
words. Then the MFS’s from each document were obtained in order to represent each 
document as a set of its MFS’s. For extracting the MFS’s, we have used the algorithm 
described in [7] taking the threshold  equal to 2 since it is the lowest threshold which 
produced longer MFS’s. On the other hand, in order to represent the documents with 
the vector space model, the bag of words was obtained. Then, with this word set, the 
documents were represented as word vectors using the Boolean and TF-IDF weight-
ing. After documents were represented with the vector space model and as MFS sets, 
a clustering algorithm was applied in both document representations. 

For documents represented with the vector space model the cosine similarity was 
used. It is calculated with the next expression: 

 (4) 

For our proposal document representation, the expressions 1 and 3 were used to 
evaluate the similarity among documents. The used clustering algorithm was the k-
means algorithm. 

Finally, the clustering was evaluated with internal and external quality measures 
[8]. Internal measures evaluate the internal cohesion and external separation of the 
resulting groups without using previous knowledge about the original classes of the 
collection. In this work, the global similarity and the global silhouette were used as 
internal measures. For both internal measures, higher values represent better quality 
of the clusters. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Methodology of the experiments 

 
It is appropriate to underline that in real clustering problems the original classes are 

unknown and for this reason the internal measures have been widely used for evaluat-
ing clustering. In spite of this, the external measures [8] are employed to evaluate the 
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clustering quality by comparing the obtained groups against the previously defined 
classes, which have been determined by a human criterion. In this paper, we evaluated 
the clustering quality with the external measures total entropy and general F-measure. 
For general F-measure higher values represent better quality of the clusters and for the 
total entropy, smaller values represent better quality. 

The internal and external measures used in this work are described in table 4. 
 

Table 4. Internal and external measures for evaluating clustering quality 

INTERNAL MEASURES 
 

   Silhouette value of the ith document 
 

 
 

   AVGD_BETWEEN(i,k):average distance from the i-th document to all documents in other clusters. 
   AVGD_WHITHIN(i): average distance from the i-th0 document to the others documents in its own cluster. 

 
   Cluster Silhoutte                                  |Cj| = number of documents in cluster Cj   

 
  

                                                                   K = number of clusters 
 

 
 
 
 

where: 
K = number of clusters 
Ci = cluster i 
 
Similarity(Ci) = 

 
EXTERNAL MEASURES 

 
 
 

 

where:   
K = number of classes = number of clusters 
|classi| = number of documents in the class i 
N = total number of documents  
 
Fmeasure(i,j)= 
 
Pij = precision of class i with cluster j 
Rij = recall of class i with cluster j 

 
 
 
 

where: 
K = number of clusters 
nj = number of documents in cluster i 
N = total number of documents  
 
Entropyj=  
 
pij= probability that a documents from the cluster j belongs to class i. 
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4.2   Results 

The results of the experiments for the Spanish and English collections are show in 
tables 5 and 6, respectively. In these tables, the first column specifies the used docu-
ment representation while second column shows the term weighting used for each 
representation, the next columns provide the results of each experiment. For each 
experiment the best results are highlighted. 

For the experiments whit the Natural Disasters collection, table 5 shows the quality 
clustering, obtained by the two document representation, evaluated with the internal 
measures. We can observe that the document representation using MFS’s obtained 
clusters with higher internal cohesion and external separation than the groups ob-
tained with the word vector. This shows that using MFS’s as a document representa-
tion is a good option. Also, we can observe that the best clustering quality was ob-
tained by document representation using MFS’s with Boolean weights, and the small-
est quality was obtained by the word vector with TF-IDF term weighting. 

Table 5. Clustering quality for the Spanish collection evaluated with the internal measures 

   GLOBAL SILHOUETTE    

DOCUMENT 
REPRESEN 

TATION 
WEIGHT Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 

Words Boolean 0,0460 0,0421 0,0651 0,04218 0,05084 0,1623 

Words TF-IDF 0,0186 0,0213 0,0351 0,02487 0,04895 0,0612 

MFS’s Boolean 0,4417 0,3144 0,7192 0,2889 0,3976 0,5230 
MFS’s TF-IDF 0,1402 0,0848 0,2425 0,1032 0,1354 0,3240 

  GLOBAL SIMILARITY    
DOCUMENT 
REPRESEN- 

TATION 
WEIGHT Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 

Words Boolean 0,0334 0,0331 0,0167 0,0159 0,0158 0,0618 

Words TF-IDF 0,0156 0,0164 0,0086 0,0077 0,0268 0,0169 

MFS’s Boolean 0,1959 0,1863 0,4372 0,1892 0,0853 0,0999 
MFS’s TF-IDF 0,0668 0,0596 0,1725 0,0660 0,0268 0,0599 

Table 6. Clustering quality for the Spanish collection evaluated with the internal measures 

GLOBAL SILHOUETTE 

DOCUMENT 
REPRESENTATION

WEIGHT Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Words Boolean 0,1211 0,1039 0,10314 0,1315 

Words TF-IDF 0,0722 0,0607 0,07701 0,0948 

MFS’s Boolean 0,4295 0,3654 0,34480 0,1564 
MFS’s TF-IDF 0,1825 0,1595 0,13696 0,0827 

GLOBAL SIMILARITY 
DOCUMENT 

REPRESENTATION
WEIGHT Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Words Boolean 0,0484 0,0456 0,0194 0,0251 

Words TF-IDF 0,0228 0,0228 0,0108 0,0136 

MFS’s Boolean 0,1619 0,0689 0,1512 0,2173 
MFS’s TF-IDF 0,0543 0,0213 0,0482 0,0335 
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Table 6 presents the results of the clustering quality trough internal measures,  
obtained with the documents in English. The results show that using MFS’s for repre-
senting documents, the formed groups have high internal cohesion and external sepa-
ration. The biggest clustering quality was obtained by the document representation 
using MFS’s with Boolean weights, and the smallest quality was obtained by the 
word vector with TF-IDF term weighting. In both tables, 5 and 6, we can see a great 
difference of the quality clustering obtained by the MFS’s and the word vector is  
very huge. 

In all the experiments, the number of features which were used in the proposed 
document representation was less than the number of features used to represent each 
document with the vector space model. For example, in table 2 for the English ex-
periment 3, using the vector space model the documents were represented with 4294 
features, words; and using the proposed document representation the average number 
of MFS’s used to represent each document was 7. 

In real clustering problems the original classes are unknown and for this reason the 
internal measures are widely used for evaluating clustering. However, in this paper, 
the quality clustering was evaluated with external measures too. These measures 
could be used because we knew the categories of the documents collections that  
were used. 

Table 7 presents the result of the experiments with the Spanish document collec-
tion, evaluating the clustering quality with the external measures. Although the 
document representation using MFS’s was not the best in all the experiments it was 
the best in most of the cases. As we mentioned before, these external measures are 
based on evaluating the clusters according to a previously defined classification. 
However we do not always have this information in real problems of document 
clustering. 

Table 7. Quality clustering for the English collection evaluated with the external measures 

   GENERAL F-MEASURE    

DOCUMENT 
REPRESEN- 

TATION 
WEIGHT Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 

Words Boolean 0,9875 1 0,9624 0,9492 0,9412 0,9499 

Words TF-IDF 1 1 0,9498 0,9492 0,9497 0,9499 

MFS’s Boolean 0,9875 1 0,6521 0,9749 0,9751 0,9834 

MFS’s TF-IDF 0,9875 1 0,9750 0,9624 0,9916 0,9833 

TOTAL ENTROPY 
DOCUMENT 
REPRESEN- 

TATION 
WEIGHT Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 

Words Boolean 0 0 0,1450 0,0565 0,2141 0,1921 

Words TF-IDF 0 0 0,1962 0,0565 0,2141 0,1526 

MFS’s Boolean 0 0 0,9344 0,1450 0,1537 0,1133 

MFS’s TF-IDF 0 0 0,1686 0,1962 0,0565 0,1127 

Table 8 presents the results of the experiment with the English document collec-
tion, evaluating the clustering quality with the external measures. The word vector 
and document representation using MFS’s, both obtained very similar results, and in 
some cases they were tied.  
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Table 8. Quality clustering for the English collection evaluated with the external measures 
 

GENERAL F-MEASURE 
DOCUMENT 

REPRESENTATION 
WEIGHT Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Words Boolean 0,8886 1 0,90756 0,9123 

Words TF-IDF 0,8886 1 0,90756 0,9123 

MFS’s Boolean 0,8782 0,9007 1 1 
MFS’s TF-IDF 0,8782 0,8946 1 0,8547 

TOTAL ENTROPY 
DOCUMENT 

REPRESENTATION 
WEIGHT Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Words Boolean 0,4152 0 0,39332 0,4229 

Words TF-IDF 0,4152 0 0,39332 0,4229 

MFS’s Boolean 0,4394 0,4099 0 0 
MFS’s TF-IDF 0,4394 0,4381 0 0,4678 

5   Conclusion 

In this paper, we have introduced a new document representation based on MFS’s 
where each document is represented as a set of MFS’s. The number of features which 
are used in the proposed document representation is less than the number of features 
used to represent each document with the vector space model. In this sense, the prob-
lem of high dimensionality presented in the vector space model could be reduced with 
the proposed document representation. The experiments established that using the 
maximal frequent as document representation is a good option for document clustering.  

Some experiments were made using two documents collections, the results showed 
that the documents represented as sets of MFS’s always obtained clusters with best 
internal cohesion and external separation. Also, the quality clustering was evaluated 
with external measures and the document representation using MFS’s obtained better 
quality in most of the experiments. 

The objective of the work was to analyze the MFS’s performance as document 
representation for document clustering. However the MFS’s have some useful charac-
teristics that could improve even more the document clustering, therefore as future 
work we propose defining a new way to evaluate the similarity among documents 
represented by MFS’s.  
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Abstract. In Senseval workshops for evaluating WSD systems [1,4,9], no one 
system or system type (classifier algorithm, type of system ensemble, extracted 
feature set, lexical knowledge source etc.) has been discovered that resolves all 
ambiguous words into their senses in a superior way. This paper presents a 
novel method for selecting the best system for target word based on readily 
available word features (number of senses, average amount of training per 
sense, dominant sense ratio). Applied to Senseval-3 and Senseval-2 English 
lexical sample state-of-art systems, a net gain of approximately 2.5 - 5.0% 
(respectively) in average precision per word over the best base system is 
achieved. The method can be applied to any base system or target word in any 
language.  

1   Introduction 

Based on recent evaluation of WSD systems, progress in disambiguation methods 
have reached a standstill. The 15 best systems in Senseval-3 English sample task 
ended up within 2% of each other [10] while in Senseval-2 the number of systems 
within that range was only five [1]. Numerous methods of disambiguation have been 
tried out in Senseval evaluations. For instance, most classifiers found effective in data 
mining experiments have been tried out: in Senseval-3 for example there were 
experiments with support vector machines (IRST-kernel, nusels), Naive Bayes 
(CLaC1, all htsa systems), Neural Networks (MC-WSD, UJAEN) and Maximum 
Entropy algorithms (HKUST-me, CLaC2) [10]. Multi-classifier experiments have 
also been very popular [3,19,12,17]: in Senseval-3 evaluation, classifier ensembles 
were as popular as single-classifier systems (e.g. SyntaLex, NRC, HKUST-all and 
BCU systems, and Duluth-ELSS) [10]. 

The first conclusion from these experiments has been that different disambiguation 
methods result in different performance results. A second conclusion is that there is a 
'word bias', i.e. each word poses a different set of learning problems. To solve these 
biases, all we need is an exact definition of the type of system that is best equipped to 
handle a particular target word. [18] showed that word grain, amount of training and 
most frequent (dominant) sense bias in training data are factors that have a profound 
influence on system performance. For instance, disambiguating a hard word (40 
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senses, average of 4 training examples per sense out of which dominant sense gets 
25%) is a different type of learning task than disambiguating an easy word (2-sense 
word with 40 examples at 80% dominant share). Since classifiers have different 
solutions to deal with the different learning tasks, it is reasonable to assume that 
system strengths tend to follow changes (drops and rises) in these three word factors.  
We further propose that system strength is focused on a particular region of this 'word 
space' (see Figures 1 and 2), which allows effective predictors of best system per 
word to be built. 

This paper presents a novel method using the three word features that fairly 
accurately predicts the strong regions of given base systems. To our knowledge, only 
one such per-word ensemble using word features as system selection criterion has 
been implemented [11] where they selected the system according to target word part-
of speech. Despite the fact that the two-system ensemble ended up at the bottom of 
the Senseval-2 evaluation (20% off the state of the art), it still achieved three 
wordwins, which indicates the viability of the per-word selection method in general. 

In section 2, we present the machine-learning tools we used for predictions. In 
section 3, we define the three word-based factors and the predictors built on them. In 
section 4, we present the disambiguation method based on those predictors, and in 
section 5, we test the method in practice on two different datasets. Sections 6 and 7 
discuss and conclude on the findings.  

2   MOA-SOM Toolkit 

Study of disambiguation systems lacks a diagnostic tool that could be used to meta-
learn the effects of these factors. As a result, the following types of questions are 
largely unanswered: Which are the words where a system is at its strongest? What 
type of ensembles of systems achieve optimum performance for give target word? 

We are developing a meta-classifier (MOA-SOM, 'mother-of-all-self-organizing-
maps') to handle such learning tasks. The tool clusters publicly available WSD system 
scores [10,1,4] stored in database [13] based on features defining the systems (e.g. 
classifier algorithm, feature sets) and  target words (e.g. PoS, training, word grain) by 
calculating the amount of correlation between systems and words. The output from 
MOA-SOM is the optimal classifier, feature and configuration for that target word. 
The feature matrix can be fed to SOM using either system names as labels and words 
as data points or vice versa. The SOM used is based on hierarchically clustering 
DGSOT [7] which was found useful in earlier WSD experiments [6]. For these tests 
we additionally employed the machine-learning algorithms implemented in Weka 
toolkit [16] for predictors. 

In the next section, we present the three factors in more detail and how we 
combined them to build machine-learning predictors of system differences. 

3   Predictor Building 

In this section we present the factors predicting system performance and the 
predictors using those factors for prediction of system differences. 
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3.1   Factors 

We introduce here the three word-based factors in explaining variations in system 
performance (Train, Grain, and DomSub). Train is average number of training 
instances per sense, Grain is the number of senses (as recorded in WordNet / 
WordSmyth sense repositories used in Senseval evaluations). DomSub is aimed to 
differentiate between systems that differ in their inherent bias to deal with big vs 
small dominant (most frequent) sense shares. The formula we used for DomSub is  
DomSub = dom2 + sub2 where dom and sub are the shares of dominant and 
subdominant sense out of all training instances for the current target word1. For 
example, for a word with 80% / 20% shares for dominant / subdominant senses, 
DomSub is 0.82 + 0.22 = 0.68.  

Next we present the types of predictors we used in our experiments. 

3.2   Predictors 

A few factor formulas emerged as best predictors of system difference predictors. To 
train the predictors, we used both manual rules and machine-learning algorithms:  

 

(1) Bisections (baseline). To achieve a bisection baseline, we first sort the data 
according to a selected factor (e.g. T, G, D, T+G+D), then split the data in two and 
calculate the net gain by each system for each half and average that by dividing it by 
two. The best weighting scheme we found was the square root of the unweighted sum 
of normalized values of the three factors: sqrt (a*T + b*G + c*D) where G 
stands for Grain, T for Train, D for DomSub values of target words and integers a, b 
and c normalize the weights of the three factors. Note that since this set of predictors 
is limited to one factor at a time, it cannot express decision rules containing multiple 
factors which tends to make them less reliable. 

 

(2) Machine-learned models. To predict the best system for words, we trained some 
of the most efficient learning algorithms implemented in Weka toolkit [16] (Support 
Vector Machine, Maximum Entropy, Naive Bayes, Decision Trees, Random Forests 
as well as voting committee, training data bagging and algorithm boosting methods). 
For training we used the abovementioned word factors both individually and in 
various permutations (e.g. T-G).  

Next we outline the method of using these predictors for system-word pairing.  

4   Method 

In this section, we outline a method for defining and selecting maximally 
complementary base systems integrated inside a disambiguation algorithm: 
 

1. Base system selection. Run candidate base systems on training words. 
Investigate their performance at different types of words. Based on their 
performance at training words, select systems whose strong regions are as 
large and as distinct as possible using the following criteria:  

                                                           
1 We consider the increment from the rest of the senses (typically < 0.05) as largely negligible.  
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 biggest gross gain (see Evaluation) from candidate base systems 
 largest number of training words won by the system 

2. Training the predictor. Using the training run data, train the predictors to 
recognize the best base system using readily available factors (e.g. word 
grain). Predictor can be constructed by setting decision rules manually, e.g. 
“use system#1 (Decision Tree -based) when number of senses (grain) < 5, 
system#2 (Naive Bayes -based) when grain is > 5 but not when 20 < train < 
25”.  Alternatively, use a machine-learning algorithm to induce the rules 
from the training data. 

3. Testing. Run selected base systems and the ensemble (according to the best 
predictor for that ensemble) on test words. 

4. Evaluation. Evaluate the ensemble by comparing it to the better of the base 
systems. Also evaluate the predictor using net gain measure calculated from 
the following formula: 

 

((PredictionAccuracy - (1.0 / NumberOfSystems)) 
*2)  

* GrossGain 
 

PredictionAccuracy is the number of correct system-for-word predictions out 
of all test words and NumberOfSystems is the number of classes/systems to 
predict. GrossGain is a measure of the potential of the base systems when 
they form an ensemble, resulting from a perfect system-for-word prediction 
for all test words. It is calculated from all-words average net gain by either 
base system (e.g. in a test set of two words, if system#1 wins over system#2 
by 2% at word#1 and system#2 wins over system#1 by 4% at word#2, then 
gross gain for all test words is (2+4) / 2 = 3%). Net gain is then calculated as 
follows: in a two-system ensemble with 0.80 prediction accuracy and 8.0% 
gross gain, net gain is ((0.80-0.50)*2)) * 8.0% = 4.8%. It should be noted 
that in a two-system prediction task, prediction accuracy of 0.50 results in 
zero net gain, same as random selection of system.  

 

Next we apply this method to two separate Senseval datasets (four prediction tasks 
each), using state of the art systems and predictors that proved best in our tests. 

5   Testing 

In this section, we apply the method to two Senseval evaluations.  

5.1   Senseval-2 English Lexical Sample 

System Selection. We trained the predictors with 39 words 2 and considered all 
supervised systems as candidates for base systems 3. We selected the systems based 
on criteria in Step 1 of the method: looking at wins by best systems in training words, 
SMU [9] got 10 wins, JHU [17] nine, KUN(LP) [14] got four and CS(224N) [8] three. 

                                                           
2 We discarded words where the wordwinner system's margin over next best system was < 2%. 
3 We ignored low-recall  (<99%) and low-precision (> 4% behind best) systems.  
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Strong region of the latter was almost identical the same as that of JHU, yet smaller, 
and even though the abovementioned Alicante system [8] scored 3 wordwins, it 
cannot be used because of its poor overall performance (20% behind top) (criteria 3). 
In Figure 1, we see the Train-Grain regions (most important criteria 1) of the two top 
'wordwinners' (SMU and JHU). 

 

 

Fig. 1. Strong regions of two Senseval-2 systems in Train-Grain space (sample of training 
words shown). JHU region can be found on right (mid/high-grain), SMU region on left (low-
grain, mid/high-train). 

Table 1. Results from applying the method on selected base systems from Senseval-2 
 

system pair  
(gross gain) 

best predictor 
(factor/classifier)  

prediction 
accuracy 

net gain 
of ensemble 

JHU+SMU (8.0%) (1) (T-G) / (T+G) 0.63 2.6% 
 (2) SVM *  0.80 4.8% 
SMU+KUN (8.4%) (1) T+G+D 0.70 3.4% 
 (2) SVM  0.82 5.0% 
JHU+KUN (5.5%) (1) T+G+D 0.56 1.7% 
 (2) SVM 0.75 2.8% 
JHU+SMU+KUN (9.5%) (3) SVM 0.55 4 4.2% 

 
 

We see from Figure 1 that SMU and JHU populate distinct and large learning regions 
in Grain-Train space. KUN (not showing) also occupies a large region, focused on 
high-grain, low-train words such as call and dress and would be located 
approximately between JHU's strong words keep and leave.  

                                                           
4 Note that having three systems to predict yields a naturally lower prediction accuracy. 
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Strength of KUN is, however, in the steady quality of its performance with all 
words, not manifesting any huge drops with any word. 
 

Testing. We tested the model(s) on 19 words and three possible two-system 
combinations of the three top wordwinning systems (SMU, JHU and KUN) as well as 
an ensemble of all three systems. 

SMU+KUN appears to have the highest gross gain, prediction accuracy and net 
gain, making it the maximally complementary system pair for this dataset. 
Furthermore, it seems that 3-system prediction (JHU+SMU+KUN) with more gross 
gain loses to 2-system predictions in prediction accuracy ending up with a slightly 
lower net gain. 

5.2   Senseval-3 English Lexical Sample 

System Selection. We trained the predictors again with 39 words and considered 15 
top systems and selected the three top wordwinners for candidate base systems: IRST-
kernel [15] with 8, htsa3 [2] 4 and nusels [5] with 3 training words won. Let us 
investigate the strong Train-Grain regions of the two top wordwinners. 

 
Fig. 2. Strong regions of two Senseval-3 systems in Train-Grain space (sample of training 
words shown). htsa3 is the lighter shade intact region in the middle, IRST-kernel holds the 
other two regions, one on left, one on top. 
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These two systems (htsa3 and IRST-kernel) complement each other very well. 
IRST-kernel occupies two regions but since training data contains no words from this 
area the regions cannot be merged.  
 

Testing. We tested the model on 19 words and three two-system combinations of the 
three wordwinning systems (htsa3, IRST-kernel and nusels)  as well as an ensemble 
of all three systems. 
 

Table 2. Results from applying the method on selected base systems from Senseval-3 
 

system pair  
(gross gain) 

best predictor 
(factor/classifier) 

prediction 
accuracy 

net gain 
of ensemble 

htsa3+IRST-kernel (4.1%) (1) T+G+D 0.80 2.5% 
 (2) NaiveBayes 0.82 2.7% 
htsa3+nusels (3.6%) (1) T+G+D 0.65 1.2% 
 (2) DecisionTree 0.70 1.4% 
nusels+ IRST-kernel  (4.4%) (1) (T-G) / (T+G) 0.80 2.6% 
 (2) SVM 0.80 2.6% 
htsa3+IRSTk+nusels (6.1%) (2) MaxEnt 0.55 2.7% 

 
Table 2 shows nusels+IK is the maximally complementary system pair in terms of 

net gain but another system pair (nusels+IRST-kernel) has the higher potential (gross 
gain). It should also be noted that the more challenging three-system prediction task 
(htsa3+IRSTk+nusels) produces equally high net gain as htsa3+IRST-kernel pair.  

6   Discussion 

Best predictors turned out to vary according to base system pair, both in terms of 
learning algorithm and input features. The most reliable learning algorithms turned 
out to be Support Vector Machines and slightly less consistently Maximum Entropy 
and Naive Bayes classifiers. Machine-learning models (2) tend to work better than the 
corresponding bisection baseline (1). The contribution of individual factors to system 
differentiation seems to depend heavily on the base system pair: combination of 
factors tended to work better than individual factors but there were (e.g. T+G+D for 
SMU/JHU pair) but sometimes one factor differentiated better (e.g. DomSub for 
IRST-kernel/htsa3). These findings lead us to conclude that this system prediction 
task - just like word sense disambiguation task itself - is in fact a set of tasks 
dependent on details and the difficulty of the task, and therfore, a customized 
predictor may need to be developed for given system pair. 

7   Conclusion 

We have presented a novel method for constructing effective WSD system ensembles. 
Predictors built on word-based factors (Grain, Train, DomSub) seem to yield very 
good predictions of optimal systems for words. The method was tested with two 
evaluations: in Senseval-2 the best net gain was 5.0% (out of maximal 8.4%) for 
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SMU/JHU pair, while in the more contested Senseval-3 it was 2.7% (out of 4.1%) for 
three-system ensemble (htsa3/IRST-kernel/nusels). The method is scalable to any 
ambiguous word and any assortment of base systems and the factors used to build 
predictors are readily available for all words. 

Although most predictors exceed random selection baseline (zero net gain), further 
work is needed to make the prediction method more accurate and thereby maximize 
net gain. It should be kept in mind that base systems and their optimal predictors form 
a pair. Based on a more covering set of factors, we can then learn more reliable 
predictors, including for more than two or three systems. Particularly we need to 
account for other factors found influential to system performance: choice of feature 
sets [6,18] as well as choice of the classifier algorithm as well as the specifics of its 
sense decision procedure [2,18,19]. We also believe it is possible to fabricate two 
strong, 'opposite' systems that together optimally cover the word space, which 
probably makes predictions more reliable too. Furthermore, as with any supervised 
prediction system, providing more training words to a machine learner is likely to 
improve prediction accuracy (e.g. all the 165 English words and around 100 systems 
that have participated in the three English Senseval evaluations). Evaluation data from 
other languages can also be used since our preliminary comparisons with Spanish 
Senseval-2 data indicate that the same systems (JHU, CS, Duluths, UMCP) that 
excelled in a particular region in the English evaluation did so in Spanish as well. 
This phenomenon can be explained by the language-independence of both word 
factors and WSD systems and suggests that it is possible to build one 'optimal 
ensemble' that would be as effective for all languages. 
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Abstract. In this work we present an overview of several methods that
extract information from a video segment using pixel-wise histograms
or pixel-wise probability distributions. We will show that most of these
algorithms that have been presented in the literature are specific imple-
mentations of a more general approach. Finally, we will present some
applications based on these ideas to video segment retrieval and tar-
get detection in surveillance applications with static and dynamic back-
grounds. We present a visual segment descriptor based on pixel-wise
histograms that outperforms similar reviewed methods. In this way we
show the advantages on this approach for this kind of problems.

1 Introduction

The idea of pixel-wise information for video segment processing has been exten-
sively studied in the literature. Probably, one of the most known algorithms in
this area is the one of static background learning for object detection. In this
case each pixel from the background is represented by its mean value. The mean
value can be calculated online or offline taking a set of frames and estimating
the mean or median for each pixel in the background. When the background is
static these procedures estimate the true value of the background removing un-
desired variations. In other cases, although the background is physically static,
for instance a street crossing, it changes along time due to illumination changes.
Although, the same ideas can be applied taking a long set of frames to esti-
mate the background, the most effective systems remove lightning and shadows
computing an intrinsic image of the scene [1].

Another possible improvement is to assign to each pixel a Gaussian distrib-
ution that is represented with its mean and variance [2]. That is, in each pixel
we have a probability distribution of background pixels along time. With this
probability distribution we can evaluate each pixel in a new frame to judge if
it belongs to the background or moving object. Once again, the estimation of
the mean and variance can be done online or offline. The advantage of Gaussian
distributions is that all the information is encoded in only two values per pixel.
On the other hand, the disadvantage of this approach is that not always the
� Supported by Proyecto PDT-S/C/OP/17/07.
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background obeys a Gaussian distribution. This can be considered true when
the background is static and background variations can be taken as Gaussian.
However, when the background is slowly changing due to waving trees, water,
etc, its variations do not follow a Gaussian distribution and other methods must
be considered.

To capture more general background distributions we can consider a mixture
of Gaussians (MoG) or any other parametric distribution [3]. Parametric dis-
tributions are interesting since they can be encoded with a set of parameters.
For now on, we will consider MoG. The most difficult problem in the use of
MoG is the selection of the number of Gaussians to be used. Although there are
methods that automatically estimate the number of Gaussians [4] they tend to
overestimate it leading to overfitting to the training data.

This led us to non-parametric probability estimators like histograms or kernel
methods, for instance see [5,6,7]. In this case no assumptions need to be made
on advance; only the kernel must be selected. The drawback is the great amount
of data that is obtained as we end up with a vector of probabilities with a length
equal to the number of colors bins used. Nevertheless, we must consider the
following facts. First, data storage is no longer a limitation nowadays. Second,
the process done in each pixel is exactly the same so it can be successfully
implemented in hardware or in parallel.

The problem of static background estimation has received a lot of attention
in the literature. Although, there is always room for improvement we believe one
of the most challenging problems is dynamic backgrounds. This is an important
and practical case. In outdoor surveillance the cameras are exposed to wind
and other factors that affect the captured background resulting in backgrounds
which are rarely completely static. Weaving trees, water, weather conditions, etc,
causes that background to slowly change along time. Abrupt and big changes are
difficult to model with low level features because they cannot be distinguished
from other truly moving objects. Recently several approaches have been proposed
to deal with non-static backgrounds [6].

Now we are going to discuss other applications where information from a
set of frames must be extracted either online or offline. In video analysis, the
entire video is partitioned into basic units which we define as video segments
(VS). Each VS is composed by a set of consecutive frames. For video indexing
and retrieval the visual content of the VS must be extracted. In the literature
there are several approaches to this problem. The most basic solutions is to
summarize the VS in one or more key frames. These key frames can be any of
the frames within the video segment, or other criteria such as color or motion
can be used to select the best set of key frames [8]. Although this is a straight
forward solution its performance is relatively poor. To obtain a more stable and
global visual description color histograms computed using all frames in the video
segment must be used [9]. For example, mean histogram, median histogram or
alpha-trimmed histograms. As is well known, global histograms do not provide
any spatial information and different VS with similar color content may produce
erroneous retrievals.
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As a solution to this problem in [10] the authors propose to compute pixel-
wise based histograms. In this way this description provides the probability
of occurrence of a given pixel in a given spatial position. They propose two
VS descriptors. The first one constructs a frame where each pixel corresponds
to the value with maximum probability. To improve the retrieval power, the
second descriptor considers more values for each pixel. That is, in the pro-
posal, after the computation of the histogram the descriptors retain only a
small set of values representing the most likely ones defined as peaks in the
histogram.

As we can see in both problems overviewed above, we need to extract the
visual content of VS. In the first case of background modeling, we need to learn
the visual content of the background to detect moving objects in the scene. For
VS indexing and retrieval we need visual content descriptions to unambiguously
describe them. As we saw in the literature there are several algorithms that pro-
pose online or offline pixel-wise estimators for the VS visual content. Here we
are going to show that most of them fall in the same category and can be seen
as specific implementations of a more general method of pixel-wise histogram or
probability estimation. Contrary to existing methods we are going to exploit all
the information in the pixel-wise histograms to show its potential. We do not
want to address the study of the different techniques for effective and efficient es-
timators. Our goal is to formulate the problem in a general setting while showing
the possible improvements that can be achieved when using all the information
from the pixel-wise probability distributions estimators.

2 Proposed Method

Lets suppose that we have a video segment with a set of frames {f1, ..., fn}.
Then we define the pixel-wise video segment histogram at pixel x as H(x; q) and
the probability of occurrence p(x; q) of each color bin q.

Once we have H(x; q) we can compute several statistical descriptions used
for background modeling such as: mean or median background, fit a Gaussian
to each pixel distribution, fit a MoG or any parametric distribution to this
data [2,3], compute minimal and maximal values per pixel as used in [11]. So,
H(x; q) contains all the information needed to implement these methods. Fur-
thermore, some of them summarize the information contained in H(x, q) in a
small set of parameters: mean, median, variance, maximal and minimal values,
etc.

For video indexing and retrieval applications with H(x; q) we can compute
the classical per-frame histograms [9] or the recently proposed keyframe in [10].

As we can see several methods can be seen as simplifications of pixel-wise
H(x; q) and p(x; q). In order to support the benefits of increasing the amount
of data retained, in next section, we evaluate the performance of the proposed
method with two applications: VS description and background modeling. In the
case of VS description we are going to apply an offline method while in the later
one we are going to test an online one.
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3 Applications

3.1 VS Description

Here we present a VS descriptor that considers all the information in H(x; q) or
p(x; q), i.e., we are going to compute and store them for each VS.

For VS retrieval we consider g(x) as the query frame. The distance between
this frame and the VS is computed in a probabilistic sense. For each pixel we
have the probability of g(x) to occur at x within the VS as: p(x,B(g(x))) where
B(g(x)) maps colors to bin histograms. Assuming independence and taking the
logarithm the probabilistic distance between g(x) and the visual segment is de-
fined as:

PD(g, V S) =
n∑

k=1

log p(xk, B(g(xk))),

where n is the number of pixels in the frame.
Now we are going to show that this method improves the results of the method

proposed in [10] since it considers the entire histogram and not a representative
set of values. In this way we capture a more precise description of the VS. As we
can see in Figures 1 and 2 it has two main advantages. First, if we concentrate on
the distances of frames within the VS our method produces more stable results.
Second, if we compare the distance for frames outside the VS the PD is always
greater than the one proposed in [10] (TMOF). In [10] the authors propose
another descriptor that uses the k pixels with maximum frequencies to improve
the results. According to our experiments, several histograms within VS have a
unique maximum.

In Figure 1 we show the distance of each frame to a given VS (shot) in the
sequence using PD and TMOF. The results are normalized in each case with
respect to the closest frame to the descriptor. This sequence is a challenging one
due to its almost constant blueish color. In Figure 1(b) we show the distance
to the first VS (frames 1 to 154), in Figure 1(c) the distances to the second VS
(frames 155 to 215), and in Figure 1(d) the last VS (frames 791 to 959). In all
cases the proposed PD outperforms the method TMOF. The last VS (frames
791 to 959) contains strong variations in scene content, however, the results are
still very stable. In this case is clear how the PD outperforms TMOF. When
considering TMOF there are frames outside the VS that are closer than other
frames within the VS. This is not a problem in the case of PD. Furthermore, the
variations inside the VS are almost constant and its variations are insignificant
with respect to the ones of TMOF.

For the second example in Figure 2 we consider a sequence with a gradual
transition at frame 128. Therefore, the descriptors of adjacent VS contain some
mixing of information. Even though this, the results of PD outperforms the ones
of TMOF.

To further test the performance of PD against TMOF we segmented three
sequences in shots, computed the VS description for each shot in the sequences,
and retrieved the shot using each frame in the sequence as a query. The first
sequence used was Jamie (Figure 1(a)). In this case PD gave a 0% of errors.
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Fig. 1. Jamie sequence. (a) First frame. Comparison of PD(solid) against
TMOF(dotted) for three VS. In (b) first VS (frames 1 to 154), (c) second VS (frames
155 to 215), in (d) last VS (frames 791 to 959).
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Fig. 2. Dissolve sequence. (a) First frame. (b) Comparison between PD and TMOF
for first VS (frames 1 to 128).

Fig. 3. Comercial sequence. First frames of some of the VS.

TMOF, on the other hand, failed in 41 frames out of 959 giving a 4.3% of errors.
The second sequence contains a series of TV commercials (see Figure 3) with
several shots. We proceeded in the same way and found that PD produced no
errors while TMOF failed in 20 out of 500 frames giving 4% of errors. Finally
we considered a TV commercial with only smooth transitions (see Figure 4). We
identified three shots with boundaries at frames 56 and 159. While PD gave 0%
of errors TMOF gave 16.3% (34 errors over 209 frames).
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Fig. 4. Comercial sequence. First frames of the VS.

Fig. 5. Original frames of sequence crossing ladies

To test the method when the sequence used for computing the VS descriptor
and the one used for the query have different dimensions, we downsampled the
sequences with factors two and four. For the sequence Jamie PD produce 0% of
errors in both cases and TMOF produced erorrs around 4.2% in both cases. In
the case of the commercial sequence PD produced no errors in both downsampled
versions while TMOF gave 16.2% of error.

Although more extensive testing must be carried out to assess the quality of
this descriptor for indexing and retrieval, the results presented here clearly show
its potential. In [10] the authors show how their methods outperform other global
histogram methods, for this reason we concentrated our efforts in comparing
against their work.

3.2 Background Modeling

In this section we apply the pixel-wise histograms to the problem of background
learning. First we consider the offline scenario where a set of frames from the
background are used for learning p(x, q). Once we have learned the background,
each for each pixel x in a new frame g we compute the probability of g(x) given
the background: p(x,B(g(x))). If this value is below a given threshold, it has
a small probability to correspond to the background the pixel is classified as
foreground.
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Fig. 6. First and second columns likelihood of each pixel and final detection using online
histogram estimation. Second and third columns results without online learning.
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For static background this approach has no big differences with respect to
other solutions proposed in the literature. When considering dynamic back-
grounds, the advantage of pixel-wise histograms is that we only may need to
specify the kernel parameters but we do not need to set other critical parame-
ters such as the number of Gaussians in MoG. Other parameters may be used
in the detection step when based on the background we must decide if a pixel
in a new frame corresponds to background or moving object.

In Figure 6 we show the results of offline and online pixel-wise background
learning for the sequence in Figure 5. In the online version the histogram of
background pixels are adapted with a α − β filter. As we can see the proposed
method can be successfully adapted to work in an online fashion and improves
the results of the offline versions in the case of dynamic backgrounds.

4 Conclusion

In this work we reviewed different algorithms that exploit pixel-wise estimators.
The algorithms came from two different areas, background estimation and visual
segment indexing and retrieval. First, we showed that several of these algorithms
have a lot of elements in common that can be summarized in the pixel-wise
histograms. Also, we showed that the information used in these algorithms can
be extracted from pixel-wise histograms. In this way we connected two different
areas and showed that a more general algorithm can be used.

Based on the discussion of pixel-wise histograms we presented a novel method
for VS description that considers all the information in the histograms and not
a small set of values as in [10]. The presented VS descriptor outperforms, in the
experiments conducted, the VS descriptor proposed in [10]. Also we presented
an example of online pixel-wise histogram estimation applied to dynamic back-
ground learning. Based on the results here presented, we presented importante
evidence on the advatages of pixel-wise statistics.

We believe that this work can give some light to these problems. We expect to
improve the performances of other algorithms considering pixel-wise statistics.
Here we considered temporal pixel-wise statistics but spatio-temporal ones may
improve even more the performances of the algorithms. In future work we will
address the complete evaluation of the proposed VS descriptor for video indexing
and retrieval and the application of these ideas to sureveillance.
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Abstract. Very Long Baseline Interferometry (VLBI) is a geometric
technique which measures the time difference between the arrivals of
a radio wavefront emitted by a distant quasar to at least two Earth
based radio telescopes. Because the time difference measurements are
precise to a few picoseconds, VLBI determines the relative positions of
the cooperating radio telescopes to a few millimeter and the positions
of the quasars to a few milliarcseconds. The transfer of the collected
data from the radiotelescopes to the correlation centers is made through
physical shipment of data discs which implies a delay of weeks in the
turnaround. eVLBI is a technique which allows the direct transmission of
the data to the correlators through Internet with multiples advantages.
TIGO is a VLBI station located in Concepción, Chile with a limited
bandwidth of few Mbps which must be increased in order to achieve an
usable speed to work as an eVLBI station. The challenge and approaches
to dodge the difficulties of achieving eVLBI in TIGO are explained in
the present paper.
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Routing.

1 Introduction

Global reference systems are realized by measuring platforms, which represent
reference points in the universe or on the Earth. Measurements between refer-
ence markers contain information about the relationship between them. This
relationship can be expressed as directions or distances at a given epoch.

The existing reference frames are used in a hierarchical manner. The geodetic
principle from the big to the small is applied here. Therefore quasars at the
edge of the known universe form a quasi-inertial celestial reference frame (CRF)
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Fig. 1. Geodynamic phenomena with significant signals in measurements with geodetic
space techniques. A proper modelling of the phenomena allows the determination of
precise global reference frames [10].

comes the terrestrial reference frame (TRF). Any other continental, national,
regional or local geodetic network appears in subsequent steps in the hierarchy
of reference frames and makes use of reference points of the preceding level
as an outer large scale frame. It is therefore mandatory that the most precise
measuring techniques are applied at geodetic observatories, which have to supply
data for the generation of the celestial and terrestrial reference frames. The
reference points at different continents require measurements with techniques,
which provide the relation between them. These techniques are summarized as
geodetic space techniques.

The measurements of geodetic space techniques are biased due to geodynamic
phenomena which vary the observation conditions at individual network stations.
These local effects must be monitored in local surveys in order to complement the
geodetic space techniques. The correct modeling of the geodynamic phenomena
(Figure 1) allows finally the determination of precise reference frames.

The most remote objects in the universe are quasars in a distance of
about 3-15 billion light years. Those objects can be detected with very sensitive
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radiotelescopes. With the Very Long Baseline Interferometry (VLBI) technique
it is possible to relate the position, orientation and rotation of the Earth to the
quasi-inertial reference frame realized by quasars. Due to the large distance of
the quasars the gravity field of Earth is not predominant in the VLBI measure-
ments.

eVLBI is a technique which allows to analyze the data for the correlators as
long as they are captured. TIGO (http://www.tigo.cl) is a VLBI station located
in Concepción, Chile, with a limited bandwidth of few Mbps. This paper deals
with the challenge and approaches for achieving eVLBI in TIGO.

2 VLBI

Very Long Baseline Interferometry (VLBI) is a geometric technique which mea-
sures the time difference between the arrivals of at least two Earth based radio
telescopes of a radio wavefront emitted by a distant quasar as is shown in Figure
2. Because the time difference measurements are precise to a few picoseconds,
VLBI determines the relative positions of the cooperating radio telescopes to a
few millimeter and the positions of the quasars to a few milliarcseconds [1]. The
very distant quasars provide an inertial reference frame which is two orders of
magnitude more accurate than the well-known fundamental catalog of fix stars
FK5. Since the radio telescopes are fixed on the rotating Earth, VLBI tracks
instantaneously the orientation of the Earth in an inertial reference frame, in-
dispensable information for any kind of satellite orbit determinations and space
navigation.

VLBI observations, as a microwave technique, can be performed under all
meteorological conditions. The elements of a geodetic VLBI station consists in
general of:

– A radio telescope with a cryogenic dual band S/X-band receiver.
– A data acquisition terminal for bandwidth frequency synthesis
– A hydrogen maser as very precise frequency standard to which all local

oscillators in a VLBI-system must be phase-locked.
– A data formatting and a recording device for the temporary storage of digi-

tized quasar noise.

Usually the VLBI-data are acquired during 24h on about 30 quasars in about
300 different directions. The VLBI-data consists of digitized noise from the
quasar and is recorded with a time stamp on magnetic tapes or hard disks arrays
at the stations. After the completion of the observations within an experiment,
the magnetic tapes or disc arrays must be shipped from all co-observing stations
to a VLBI correlator. After the arrival of these tapes the interferometer is setup
at the correlator. The correlation process plays back the recorded data from
all the station simultaneously and the processor searches for the maximum of
the cross-correlation function. The correlator output are the fringe phase and the
fringe amplitude from which the delay and delay rate of the wavefront can be de-
rived. The delay is the primary observable in geodetic VLBI. Radioastronomers
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are using from the VLBI data the fringe phase and amplitude of the correlation
process to derive images of the radio objects.

Usually the VLBI operation is scheduled within the International VLBI Ser-
vice (IVS). The main program is the continuous observation of the rotation of
Earth (CORE) in which a VLBI station observes in different global VLBI net-
works one to three times a week for 24 hours. Each 24 hours experiment consists
of about 300 quasar observations about 3-5 minutes each.

3 eVLBI

Every year near 3 Petabytes of VLBI data are recorded on magnetic tapes or
hard disks and physically transported to one of the few VLBI correlator sites
(3 in The U.S., 2 in Europe, 2 in Japan and 1 in China). It’s expected that
this data volume will increase rapidly in the coming years. Disks and/or tapes
are erased and re-cycled to between the telescopes and the correlation centers
after correlation processing. This means that the data is ready to be used by the
correlator near one week after the data is captured. This fact and other technical
reasons had pushed to develop research about e-VLBI implementations.
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e-VLBI has been developing rapidly in past 2-3 years, with increasing amounts
of data transferred electronically, around 50 TB transferred in 2004 and 300 TB
were transferred in 2005.

e-VLBI technique offers many advantages over the current operation:

– Bandwidth growth potential for higher sensitivity. VLBI sensitivity (SNR)
is proportional to square root of bandwidth resulting in a large increase
in number of observable objects. The only alternative is the use of bigger
antennas but this is a more expensive alternative.

ΔS ≈ 1√
B × T

Tsys

A
(1)

where ΔS is the noise in flux density, Tsys is the noise expressed as system
temperature, B is the bandwidth, T is the integration time and A is the
radiotelescope area.

– Rapid processing turnaround. In astronomy it gives the ability to study
transient phenomena with feedback to steer observations. In geodesy higher
precision measurements for geophysical investigations can be achieved and
better earth-orientation predictions can be obtained, particularly UT1, im-
portant fact for military and civilian navigation. The growth of the band-
width will produce a need of growth of storage capacity therefore a near
real-time processing will be necessary at the correlator side.

– Lower costs. The media pool represents a great cost that can be removed.
Big bandwidths make possible to lead the VLBI stations to an automated
operation eliminating manual handling and shipping of storage media.

– Increased reliability. Removal of recording equipment and tapes or disks
shipping will increase the robustness of the process. The use of high speed
networks will allow at the same time remote performance monitoring and
control capability in near real-time which can lead the station to a full au-
tomation.

4 Current Status

The international Internet connection of TIGO can be divided in 3 sections as
is shown in Figure 3:

– The path from the TIGO facility to the University backbone.
– The link between the University and the REUNA (Red Universitaria Na-

cional) academic Chilean network.
– The REUNA International link.

The current configuration has a total speed of 5Mbps. In the last mile con-
nection from TIGO to the University there is an optical path with a monomode
optical fiber with a speed of 100Mbps. The connection between the University
and REUNA has a speed limited to 15 Mbps for national traffic with a capacity
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Fig. 3. Current status of TIGO connection
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Fig. 4. a) Speed results of transferring from Concepción to Boston during working
hours. b) Speed results of transferring from Concepción to Boston during non-working
hours. c) Speed results of transferring from Concepción to Bonn during working hours.
d) Speed results of transferring from Concepción to Bonn during non-working hours.

of 155 Mbps. The international link of REUNA has a capacity of 96 Mbps, but
the University has a contract for 5 Mbps only.

A test of the real speed connection from Concepción to United States and
Germany is shown in Figure 4. This test was conducted during working and non-
working hours sending a 4 MB file to show the influence of the Universidad de
Concepción traffics. The results show a clear influence of the difference between
working and non-working hours and the destiny. The transmission to United
States is slower due to high demand of commercial sites over there. The average
speed obtained for a transfer to Boston during working and non-working hours
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was 21.8 and 38.8 KBps respectively. For a transmission to Bonn the speed was
58.9 and 73.5 Kbps for working and non-working hours, respectively.

5 Approaches

There are two possible solutions to increase the final speed of the connection.
It’s possible to use Multipath Routing or increase the bandwidth identifying the
bottlenecks and upgrading the links and/or equipments.

In 2004 the first world wide eVLBI test was made among Britain, Sweden,
Holland, Poland and Puerto Rico with a total speed of 32 Mbps. At the end of
2005 United States, Japan, Sweden and Holland were connected at 512 Mbps
in other eVLBI experiment. Therefore a minimal speed of 32 Mbps can convert
TIGO into an eVLBI station, however higher speeds will benefit the sensitivity
of the station.

5.1 Multipath Routing

eVLBI has special requirements since it needs a fix point to point path between
the VLBI station and the correlation facilities. It has been proved that the use of
multiple streams can increase the final speed of a connection since it’s possible
to bypass bottlenecks using alternative routes [5].

A closer look of the Reuna network shows that while the infrastructure can
support higher speeds, the final speed of every connected university is limited
due the inherent sharing feature of Reuna. Besides the speed achieved for in-
ternational connections is limited by contract for each university. This scenario
gives the opportunity to apply the Multipath Routing as a plausible solution for
eVLBI transmissions at high speeds.

In Figure 5 a Multipath Routing scheme is presented. The main route path
is what is obtained when a connection is done using default routing algorithms,
like OSPF [12] or BGP [13] limited by the constraints described before. The al-
ternative routes can be used to send data as parallel streams to the destination.
In the Reuna particular case, Universidad de Concepción has a bandwidth of 15
Mbps for national traffic but the international traffic is limited to 5 Mbps, with
the installation of custom eVLBI data routers in other universities it is possible
to bypass the international speed restriction of Universidad de Concepción mas-
querading the data to the correlators as national traffic increasing the total speed.

The expected result is a theoretically raise of the transmission speed from 5
Mbps to 15 Mbps. However, the imminent upgrade of Reuna network to 1 Gbps
will allow higher speeds.

5.2 Expres Project

The Expres project [14] aims to identify the bottlenecks of the route from the
TIGO VLBI station to a correlator in Europe and expand the bandwidth in order
to join the European VLBI network as an eVLBI station. The lowest speed of
the path from TIGO to Europe is limited by a contract bandwidth of 5 Mbps
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Fig. 5. Multipath Routing in Reuna Network
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Fig. 6. a) Speed results of transferring from Concepción to Netherlands when Reuna
restrictions applied. b) Speed results of transferring from Concepción to Netherlands
without any kind of restriction.

provided by Reuna. This speed can be increased buying more bandwidth up to
64 Mbps (96 Mbps are available but ∼ 32 Mbps are in use as normal traffic).
Besides, in order to achieve this maximum speed it’s necessary to release the 15
Mbps constraint of Universidad de Concepción, which can be selectively made
by Reuna for the TIGO traffic only. The path from TIGO to Universidad de
Concepción has a total speed of 100 Mbps which is not a problem but there are
plans to upgrade this path to 1 Gbps. Therefore, 64 Mbps is the expected total
speed for the Expres project if no change is made in the Reuna network.

The first step is to find the bottlenecks along the path in order to identify
a needed upgrade of the equipments/links involved. According to this, Reuna
opened their restrictions with interesting results. Two test were conducted to
JIVE VLBI correlator in Netherlands which are shown in Figure 6. The first
test was made using two parallel streams with a per flow restriction applied in
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the Reuna border router linked to Concepción. The first streams was started
with an upload speed of ∼ 200 KBps, at 68 and 98 minutes of transmission a
second stream was started with a resulting total upload speed of ∼ 400 KBps.
The second test was made without any restriction in TIGO, Universidad de
Concepción, Reuna or JIVE VLBI correlator networks showing that a restriction
of 10 Mbps exists.

6 Conclusions

The VLBI technique and its contribution to the earth geometry measurements
and rotation parameters has been shown. At the present time, the speed achieved
by TIGO is not enough to be an eVLBI competent station for the VLBI network.
However two approaches were discussed. The use of cooperative nodes from
other universities connected to Reuna is a plausible solution. Also, the Expres
project in execution can remove the bottlenecks buying bandwidth or upgrading
equipments where it’s possible. Further, in the near future a creation of custom
VLBI data routers software for Linux is planned.
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Abstract. This paper describes a new system for ”Finding Satellite
Tracks” in astronomical images based on the modern geometric ap-
proach. There is an increasing need of using methods with solid math-
ematical and statistical foundation in astronomical image processing.
Where the computational methods are serving in all disciplines of science,
they are becoming popular in the field of astronomy as well. Currently
different computational systems are required to be numerically optimized
before to get applied on astronomical images. So at present there is no
single system which solves the problems of astronomers using compu-
tational methods based on modern approaches. The system ”Finding
Satellite Tracks” is based on geometric matching method ”Recognition
by Adaptive Subdivision of Transformation Space (RAST)”.

Keywords: Satellite Tracks, Geometric Matching, Astronomical Images,
RAST.

1 Introduction

1.1 Motivation

Astronomical images play an important role in man’s effort to understand the
universe. These images are taken by space observatories spread across the globe.
Acute weather conditions are required for image capturing. It takes several
minutes to take a single astronomical image. Therefore it is important to ex-
tract maximum information from the astronomical images. These images con-
tain important information about stars and galaxies and irrelevant information
(like satellite tracks) which appear quite often. The target of our application
is ”weak lensing”, which is a statistical method to estimate mass distributions
in the universe by measuring galaxy ellipticities. Therefore, astronomers want
to measure the ellipticity of very many small objects in an image which has
to be done automatically. The presence of satellite tracks would disturb those
measurement. Since data collection is time consuming, the images containing
additional objects can not be simply discarded. Instead, irrelevant objects have
to be removed from these images [5].

Currently astronomers remove these satellite tracks manually from images ac-
cording to [4]. We replace this traditional approach by using a computational
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system. This system is based on a Geometric Matching technique called ”Recog-
nition by Adaptive Subdivision of Transformation Space (RAST)”. A working
system will help in saving a lot of human effort to remove these tracks manually.

1.2 Problem Formulation

The objective of this research work is to find satellite tracks in the images taken
by astronomers. The images taken from the sky are contaminated by a lot of noise
(Cosmic rays, CCD defects, ghost images and satellite tracks) which disturbs
the detection or identification of important objects in the images like stars and
galaxies. These tracks can be characterized as straight lines in the images. The
major aim of this part of work is to develop a system to find and remove satellite
tracks in astronomical images. In this system a well known algorithm RAST is
applied based on Geometric Matching techniques.

1.3 Related Work

There is no computational method to reliably identify and remove satellite tracks
at present. Currently astronomers do this job by hand after selecting and mask-
ing the images having satellite track. After masking satellite tracks they ignore
the masked area while doing further processing of the objects. A general adap-
tive method Cleaning Sky Survey databases using Hough Transform and Renewal
String Approaches was introduced by A.J. Storkey et al. (2004) to remove un-
usual objects in the astronomical images. This method was developed to remove
four types of objects - satellite or aeroplane tracks, scratches, fibres and other
linear phenomena introduced to the plate, circular halos around bright stars
due to internal reflections within the telescope and diffraction spikes near to
the bright stars in the sky survey data using catalogue of objects as described
in [8]. The system we present is different from the adaptive method. As our
system uses pixel based representation of images instead of using catalogue of
objects. This system is based on geometric matching techniques a modern ap-
proach. This paper is organized as follows: Section 2 gives a brief overview of
image pre-processing and related work including data preparation for satellite
tracks system. Then the use of RAST algorithm in the system is described for
finding straight lines in the image in Section 3 and Section 4. Section 5 presents
the evaluation of the tasks and Section 6 leads to the conclusion, discussion of
unsolved problems and future work.

2 Finding Satellite Tracks

2.1 Image Pre-processing

The available astronomical images are generally in Flexible Image Transport
System (FITS) format. This format is widely used in astronomy for convenient
exchange of astronomical data. FITS images are composed of a sequence of
header data units (HDUs). A header data unit contains keywords (value state-
ments) that describe the organization of the data in HDUs and the format of
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(a) original grayscale
image

(b) with contrast
stretching

(c) after binarization

Fig. 1. Example of binarized image (foreground objects become visible), the binarized
image is inverted to white background and black foreground

the data contents. Based on the special structure of these header data units,
FITS images may provide additional information like used instrument, status
and history of the data etc. [6]. The given images were binarized and converted
from FITS grayscale images to Portable BitMap (PBM) images. In this work
the binarization is done by using global thresholding. Global thresholding sets
all pixels above a defined value to white and the rest of the pixels to black in the
image. It is very important to decide the appropriate threshold value to binarize
the image, though it is difficult to decide a global value which is suitable for
all images [7]. In this case the intensity range does not vary much from image
to image. After looking at grayscale values in different images on the available
data set, 102 were founded as a suitable value (40 %) threshold of total intensity
range 0− 255. Convert, a utility in the ImageMagick software package was used
to binarize the grayscale images. An example image before and after binarization
is shown in Figure 1.

(a) binary image (b) after opening

Fig. 2. Example of opening effect (CCD defect and bad pixels are removed), Both the
images are inverted to white background and black foreground
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After binarization the morphological operation Opening was applied to remove
noise and CCD defects in the images. Opening is based on the morphological
operations Erosion and Dilation. Opening smoothes the inside of the object
contour, breaks narrow strips and eliminates thin portions of the image. It is
done by first applying erosion and then dilation operations on the image. Erosion
shrinks the foreground objects in the image by certain amount. The amount of
growing and shrinking the size of objects depends on the structuring element.
CCD defects and noise have to be eliminated. These defects have a typical size
of one to three pixels. So the opening is performed by using 3 × 3 structuring
element. Pgmmorphconv is used for the opening operation. It is a utility in the
Netpbm software package, a graphics programming library. The opening effect
is demonstrated in Figure 2.

3 Geometric Matching

3.1 General Description

There are different algorithms to perform geometric matching. Many geometric
matching problems in computer vision are based on image models. A model
of an image can have geometric features like points, lines, arcs etc. Different
algorithms are developed to match these geometric features in the model image
[3]. As satellite tracks have geometric resemblance to straight lines, we look for
line features in the image. In this work the RAST algorithm is applied for finding
satellite tracks in the image.

3.2 Data Preparation

RAST takes sample points as input features. The computation of these sample
points is described in this section. In binarized images these input features consist
of the pixel positions of the foreground objects. The binarized images contains
white foreground objects on a black background. A routine is written in C++,
which computes the (x, y) positions of all the white pixels in the image. These
pixels constitute the sample points.

3.3 Recognition by Adaptive Subdivision of Transformation Space
(RAST) Algorithm

The RAST algorithm was developed by Breuel [1]. RAST consists of a family of
geometric matching algorithms, one of these are for finding lines.

3.4 Geometric Transformation

The RAST algorithm is applied on prepared sample data points. RAST is based
on forward transformation (model to image) and an error model [2]. In this case,
the algorithm takes a collection of sample data points and tries to fit an optimal
line on these sample points in the image.
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The algorithm is implemented using hierarchical and adaptive subdivision of
the space of line parameters. RAST implements a ”best first” search by a binary
tree based on recursive subdivision of the parameter space [2].

The RAST algorithm considers a set of all possible parameters as region of
interest before execution. Then it recursively divides the parameter space into
sub regions. For each region in the parameter space there is a set of consistent
image features under bounded error. During the execution RAST eliminates the
regions of disinterest. These are the regions which do not contain a solution [2].
An illustration of sample points and RAST line fitting is presented in Figure 3.

(a) points (b) RAST line fitting

Fig. 3. A hand made image with sample data points and reconstructed copy of the
hand made image with RAST line fitting

3.5 Parametrization

The RAST algorithm for finding lines based on the parametric model, described
by line parameters (r, θ). In the xy-plane, r is the distance of the line from the
origin and θ is the angle between the perpendicular and the x-axis. The angle θ
is always measured anticlockwise from the positive side of the x-axis. As shown
in 1.

xcosθ + ysinθ = r (1)

An illustration of line parameters in xy-plane is presented in Figure 4. There
are different parameters to the algorithm like the epsilon, quality, tolerance and
angle tolerance.

X

Y

r

Fig. 4. Representation of r and θ in xy-plane
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– The epsilon (eps) parameter defines the distance up to which a point can
contribute to the line.

– The quality (minquality) parameter specifies the minimum acceptable qual-
ity of a line as given by:

q(ϑ, P ) =
N∑

k=1

max(0, 1 − d2
k

ε2
) (2)

where ϑ is the set of parameters (r,θ), P is set of points, N is total number
of points and dk is the distance of kth point from the line.

– The tolerance (tol) and angle tolerance (atol) parameters specifies the al-
lowed deviation of the parameters r and θ respectively from their optimal
values.

The RAST algorithm is used with default values of these parameters. The default
values of tolerance is set to 0.1 and the value of angle-tolerance is set to 0.001 in
the implementation by Breuel [2]. To find lines in the astronomical images the
the epsilon (eps) parameter value is set to 2 and the weight (minweight) of the
line is set to 1000.

3.6 The Algorithm

The algorithm is used with the interest of finding the best match of all possible
lines in the image. The execution steps of RAST algorithm are explained to
calculate the quality function and error tolerance function. [2]. Following are the
steps involved in the execution of RAST for finding lines.

– Step 1. Choose an initial region T in parameter space containing all specified
parameter values.

– Step 2. Define a priority queue Q, where the priority of the queue Q is based
on the upper bound on the quality of possible best match in that region
as defined by the equation 2. The initial region is inserted into the priority
queue Q.

– Step 3. Extract the element of the highest priority from the queue Q.
– Step 4. If the upper bound on the quality of the match in the extracted

region T is less than the minimum quality threshold, go to step 7.
– Step 5. If the size of the region T is less than the tolerance size of the region

dimensions r and θ then the region T is reported as a solution and continue
to step 3.

– Step 6. If the specified size of the region T is greater than the minimum size
of the interval for a solution then it is subdivided into two sub regions T 1
and T 2 and these sub regions are pushed into the priority queue Q and the
algorithm continues to step 3.

– Step 7. Terminate
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3.7 Output

The algorithm returns a list of parameter values r and θ. The RAST algorithm
provides an output parameter maximum result to find more than one lines in
the images.

4 Image Reconstruction

4.1 General Description

To remove lines from the image the position of the lines are computed by the
RAST algorithm. To visualize the removal of the satellite tracks having geometric
resemblance to lines, a new image is reconstructed from the binarized copy of
the image. It is important to make a decision whether a line founded by RAST
algorithm is a satellite tracks or not. This decision is based on the size of the
line, that is how many pixels contribute to this line. An assumption is made that
if the weight of the line is 1000 or greater, then the line found by the algorithm
is considered as satellite track.

4.2 Painting Image

This algorithm reads the original image (PGM file) and data (line file) of pixel
positions computed by the RAST algorithm. The number of lines returned by
the RAST algorithm depends on the value of maxresult parameter. By setting
the value of the maxresult parameter to more than one, the algorithm returns
the optimal quality lines in decreasing order. The line found by the algorithm is
painted black in the reconstructed image with a width of 20 pixels. The painted
width of the line is decided on the basis of observed thickness of the satellite
track. Examples of binarized image before and after the removal of a satellite
track are shown in the following 5.

5 Evaluation

The evaluation of the satellite tracks removal system is done using a large data-
base of astronomical images. This database consists of 1000 images. A total of
102 random images are chosen to evaluate this method. To generate ground truth
information, the images are visually examined and annotated whether they con-
tain satellite tracks or not. The system described in Section 2 is applied to find
satellite tracks in the given dataset of images.

5.1 Results

The results of the system are presented in table 1. The table gives true positive
(Tp), true negative (Tn), false positive (Fp) and false negative (Fn) number of
satellite tracks detection.
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(a) binarized (b) reconstructed (c) binarized (d) recon-
structed

Fig. 5. Example: Binarized image containing satellite track : Reconstructed image after
removal of satellite track, in these images few objects are removed because they were
very close to the satellite track

Table 1. Different types of errors made by satellite tracks detection application. Each
column represents the different type of error. The column labels are: total true positive
(Tp), total true negative (Tn), total false positive (Fp), total false negative (Fn).

Total Images Tp Tn Fp Fn

Satellite Track Detection 102 2 87 5 8

True positive (Tp) are the satellite tracks which actually exists and are re-
ported as tracks as well. True negative (Tn) are the images without satellite
tracks, which are correctly separated as free of tracks. False positive (Fp) are
the images which do not contain satellite tracks but are detected as images con-
taining satellite tracks. False negative (Fn) are the images containing satellite
tracks but are not reported as images containing satellite tracks. The system
has detected 2 true positive (Tp) images containing satellite tracks which are
processed by the system as well. There are 87 true negative (Tn) images identi-
fied by the system where there is no satellite track exists. Therefore the accuracy
of system for finding satellite tracks is 87.3%, which is the total number of cor-
rect detections. The system has detected 5 false positive (Fp) images. The false
positive (Fp) images are analyzed and it turned out to some expanded stars
and galaxies in the image due to the brightness and make a Light Spike in the
available database of images. These light spikes look like vertical satellite tracks.
While considering these light spikes as satellite tracks the algorithm detects and
removes them as well. These light spikes are removed completely except the cir-
cular shaped bright stars or galaxies due to their thickness. An illustration of the
images having stars and galaxies affected with the telescope light spikes before
and after removal of these light spikes are presented in the Figure 6.
The system has detected 8 False negative (Fn) images. These False negative

(Fn) images are analyzed and the images were found to contain satellite tracks
but in very low brightness. The system was not able to detect satellite tracks
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Fig. 6. The original image containing light spikes, there after the removal of these light
spikes a few points of the galaxies still remains visible in the output image

Table 2. Different types of results made by RAST algorithm while finding satellite
tracks in the images. Each column represents different type of error. The column labels
are: true positive (Tp), true negative (Tn), false positive (Fp), false negative (Fn).

Algorithm Total Images Tp Tn Fp Fn

RAST 94 2 87 5 0

in them. After analyzing False negative (Fn) images deeply, it is found that the
original FITS images do not contain DATAMIN and DATAMAX fields. As the
header data units (HDUs) of FITS images have DATAMIN and DATAMAX
containing the range of grayscale values in the images. DATAMIN describes the
minimum and DATAMAX describes the maximum gray value in the image. The
foreground objects are lost already in the conversion step, so there is no chance
of detection by RAST algorithm. This failure was not because of the RAST algo-
rithm but was due to the missing information about DATAMIN and DATAMAX
in FITS header data units (HDUs) which are the essential information required
for the conversion process. Therefore a new evaluation scheme was decided where
these black images were removed from the test set. The results of this new eval-
uation scheme is presented in a separate table 2. As the table shows that the
RAST algorithm did not find any false negative (Fn) results. The accuracy of
our algorithm is increased to 94.7% with this evaluation scheme.

6 Conclusion and Future Work

In this paper a computation method for identification and removal of satellite
tracks in astronomical images is presented as an alternative of manual approach.
This computation method is based on geometric matching techniques for finding
lines in the images. There are different methods available for finding geometric
shapes in images. As satellite tracks has geometric resemblance to lines, so the
focus of this part of thesis was to find lines in the astronomical images. The RAST
algorithm is applied to find these satellite tracks. The problem in this method
was to find the right size of a satellite track. The problem of measurement of
the size of satellite track is solved by visualizing satellite tracks of different sizes.



Satellite Tracks Removal in Astronomical Images 901

While identifying the satellite tracks in astronomical images, it is important to
know the actual size of the satellite tracks. Currently, the system is implemented
based on the assumption that if 1000 or more pixels contribute to make a line
then this line is considered as a satellite track. This assumption could be refined
after knowing the minimum size of the satellite track. Results of this method
are visualized by reconstructing the image after removal of satellite tracks. The
provided solution is quite fast. It can find and remove satellite tracks from an
image of size 2000X4000 pixels on a pentium 4 processor running at 2 GHz with
a typical computational time less than 30 seconds. This computation time could
be decreased with high performance hardware. The system did not have any
false negatives, which means that all satellite tracks were removed, which is the
main priority of the system when it should be applied for weak lensing. This
solution will provide ease to astronomers for their further processing of objects
in the images.
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Abstract. Due to the non-uniform distribution of codons in coding regions, a 
three-periodicity is present in most of genome coding regions which, after a 
previous numeric conversion, show a notable peak at frequency component N/3 
when calculating the Fourier Transform. Taking into account the veracity of 
this result, the Short Time Fourier Transform has been applied to large DNA 
sequences to predict coding regions. This paper presents a new approach to 
reduce the computational burden associated with STFT computation, for coding 
regions detection purposes. Experimental results show significant savings in 
computation time when the proposed algorithm is employed. 

1   Introduction 

Bioinformatics has become one of the most exciting areas of research in science 
today. The whole description of the human genome is about three billion characters in 
length. In the last years, scientists have completed the sequencing of a few other 
organisms, which are very useful in the study of general features and the architecture 
of entire genomes. The speed at which data is currently being acquired is growing at 
very high rates. Interpreting the meaning of these genome sequences is a big 
challenge for scientists today.  

The standard approach used to represent genome sequences consists in 
representing the genomic information by sequences of nucleotide symbols in the 
strands of DNA and RNA molecules, by symbolic codons (triplets of nucleotides), or 
by symbolic sequences of amino acids in the corresponding polypeptide chains (for 
the genes). This approach limits the methodology for handling the genomic 
information to mere pattern matching or statistical procedures. However, numerical 
assignments can also be made as an alternative for analysis purposes. Many 
approaches [1-6] have been used in order to transform a DNA sequence into a 
numerical signal. For example, one of the most used approaches is the computation of 
four binary sequences (one per each base A, T, C and G), called binary indicator 
sequences, where 1 at position k indicates the presence of the base at that position, 
and 0 its absence. Another approach consists in assigning numerical values to each 
one of the nucleotide bases, as is used in this work and explained in detail below. 
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It is known that due to the non-uniform distribution of codons in coding regions, a 
three-periodicity is present in most of genome coding regions, which show a peak at 
frequency N/3 when calculating their Discrete Fourier Transform (DFT). Many 
authors have used this result to propose approaches to detect coding regions in large 
DNA sequences. In [1], the Short Time Fourier Transform (STFT) is used to detect  
five coding regions in an 8000 base pairs DNA stretch of C. elegans, and in [7] a new 
measure, based on the DFT phase at a frequency N/3, is presented. It is important to 
notice that when applying the STFT in these cases, usually the frequency component 
that corresponds to the periodicity three is the only one to be calculated. 

In this paper a new approach to reduce the computational load when calculating the 
STFT for coding regions detection purposes is presented. It is based on a 
computational simplification obtained when calculating the Fourier Transform (FT) 
for a data window centered in a certain point, knowing the FT of a data window of the 
same size, but shifted one point backwards in the sequence. To complement this 
result, the Goertzel algorithm was used to calculate the frequency content in the first 
window of the entire sequence. 

2   Materials and Methods 

In the following paragraphs there is a presentation of the method introduced in this 
work to perform the computations associated to the spectral analysis of a genomic 
sequence. For this purpose, the nucleotide bases are previously mapped into a 
sequence of complex numbers according to  

 

                                           A=1+j;     T=1-j;     C=-1-j;     G=-1+j . 
 

As a result a discrete sequence of complex numbers is obtained, that can be 
analyzed through standard techniques like the Discrete Fourier Transform [1]. 

2.1   Reducing the Computational Load When Calculating the Discrete Fourier 
Transform for Sliding Windows 

The STFT uses a sliding window along the sequence and calculates the Fourier 
Transform of each subsequence. We consider here the case where a rectangular 
window is used, so that we do not have to multiply the data samples by any 
coefficient, as occurs when using a weighting window.    

The k-th coefficient of the Discrete Fourier Transform of a signal x[n] of length N 
can be computed as: 
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Assume now that Xp[k] is the k-th coefficient of the DFT for the subsequence 
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So Xp+1[k] can be computed as: 
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Making the change of variables m = n + 1 (n = m – 1) we can show that  
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Now it is possible to compute Xp+1[k] using the previous result (2) for Xp[k]: 

])[][][(][ /2
1 NpxpxkXekX p

Nkj
p ++−=+

π  

In the particular case of interest in this study, for the periodicity three when k = 
N/3 we have:  

])[][]3/[(]3/[ 3/2
1 NpxpxNXeNX p

j
p ++−=+

π               (5) 

Using the previous equation, we can just calculate the DFT for the first 
subsequence (window) instead of calculating a Fourier Transform for each window, 
and then use its N/3 frequency component to calculate the same component in the 
next subsequence. This procedure can be continued for all the window displacements 
until the whole DNA sequence is analyzed. Notice that with this approach, only one 
DFT, corresponding to the first subsequence, is to be fully calculated. This is the basis 
for the significant reduction in the computational cost that was obtained. The same 
savings in computational load can be obtained for every frequency component of the 
STFT, which makes the proposed method very suitable to detect any periodicity that 
could appear in the DNA sequence [8]. 

2.2   The Goertzel Algorithm 

To calculate the DFT frequency component at N/3 for the first subsequence, we can 
use the Goertzel algorithm [9] instead of using the DFT in order to increase the 
computational efficiency. The Goertzel algorithm computes the DFT for specific 

indexes in a vector or matrix by using the periodicity of the sequence e Nknj /2π− to 
reduce the computational load. It computes the k-th DFT coefficient of the input 
signal x[n] using a second-order filter. The algorithm can be implemented as: 

 

( ) ]2[]1[/2cos2][][ −−−+= nvnvNknxnv kkek π              (6) 

where 

0]1[]2[ =−=− kk vv  

[ ]
≥<
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10    ,
][                                     (7) 
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and 

]1[][][ −−= NvWNvkX k
k
Nk                                     (8) 

It can be seen that this method uses recursion to compute 

( )Nk /2cos π  and eW Nkjk
N

/2π−= , which are evaluated only at n = N. The 

direct DFT does not use recursion and must compute each complex term separately. 
The real cost of this algorithm is 2N+4 real multiplications, and 4N real sums, for 

the general case of a complex signal.  
Notice that although there is a computational saving by using the Goertzel 

algorithm when it is desired to compute only one DFT coefficient, the main savings 
result from the application of equation (5). This makes useful the proposed method 
even for the case in which more than one frequency component is to be evaluated and 
DFT calculations could be more efficient than the Goertzel algorithm.  

3   Results 

Using the Goertzel algorithm to compute the N/3 frequency component of the first 
subsequence and then the algorithm developed previously to compute the same 
frequency component for the next subsequences, we reduced considerably the 
computation complexity of the application of the STFT to detect coding regions in 
large DNA sequences. 

In Table 1 it is shown a detailed comparison between the direct method and the 
algorithm we propose, when a complex signal is used to describe the DNA sequence, 
assuming that the length of the DNA sequences is L and the sliding rectangular 
window has length N.  

Table 1. Comparison between the direct method and the proposed algorithm when calculating 
the STFT for a complex signal 

Direct method Proposed algorithm
Per point Total Goertzel Per point Total

Real multiplications 4N 4L*N 2N+4 4 4L+2N
Real sums 4N-2 L*(4N-2) 4N 6 6L+4N-6
Computational load Order L*N Order L+N  

As Table 1 shows, the proposed algorithm can reduce significantly the 
computational burden for the calculation of the Short Time Fourier Transform to 
detect coding regions in DNA sequences. If we use binary indicator sequences to 
obtain the power spectrum of the signal like in [1] the reduction is more significant 
because we need to compute 4 times the DFT per point, although in this case the 
signals are real. The use of the STFT involves completing the sequence with 2N/3 
ceros at the beginning and with N/3 ceros at the end, and this reduces the amount of 
operations when computing the N/3 frequency component in the first 2N/3 windows 
and last N/3 windows of the cero-padded sequence. However, this reduction is not 
shown in Table 1 because it is not significant for large sequences. 



906 A. Rodríguez Fuentes, J.V. Lorenzo Ginori, and R. Grau Ábalo 

It is also important to compare the computation load between the Fast Fourier 
Transform and the proposed algorithm when it is necessary to compute all frequency 
components per window, which is the case when calculating complete spectrograms.                 
The FFT computation load is N*log2N for a window, which is totalized as L*N*log2N, 
for L windows, while the computation load for the proposed algorithm when 
computing all frequency components is L*N*(1+(log2N)/L)). Here an FFT is used 
instead the Goertzel algorithm to compute all frequency components of the first 
window. Comparing log2N and 1+(log2N)/L it is possible to realize that a noticeable  
saving in computational load is obtained when using the proposed algorithm. 

In Table 2 it is shown the average execution time, in seconds, of the expression:  
|aA + tT + cC + gG|2, where A, T, C and G are respectively the DFT values at N/3 

for each subsequence of length N corresponding to binary indicator sequences Xa, Xt, 
Xc and Xg, and a, t, c and g are complex constants obtained in [1] as the solution of an 
optimization problem to maximize the discriminatory capability between protein 
coding regions and random DNA regions. The values of these complex constants are: 

 

a = 0.10 + 0.12j  t = – 0.30 – 0.20j 
c = 0   g = 0.45 – 0.19j                                (9) 

 

In the computer experiments, different DNA strings contained in Chromosome III 
of C. elegans were analyzed, and both approaches, the direct method and the 
algorithm we propose, were used for this purpose. The 8000 base pairs DNA stretch 
was the same used by Anastassiou in [1] for a sliding window of length 351. 

Table 2. Computation time comparison, in seconds, between the direct method and the 
algorithm we propose for different DNA strings contained in Chromosome III of C. elegans 

DNA stretch 8000 bp
DNA stretch

15100 bp
DNA stretch

42799 bp
DNA stretch

Window Length 351 702 351 702 351 702

Direct Method (DM) 4.9370 8.6130 8.8630 15.6730 26.1270 46.4470

Proposed Algorithm 0.0550 0.0551 0.0800 0.0800 0.2300 0.2310

% of DM time 1.11% 0.64% 0.90% 0.51% 0.88% 0.50%
 

Practical results confirm the computational orders shown in Table 1.  Notice that 
when we increase the length of the window, the execution time using direct method is 
increased at about the same rate, whereas the time spent by the proposed algorithm is 
almost invariable.  In general sense, our algorithm employs less that 1% of the time 
required when the direct method is used. 

The graph shown in Figure 1, obtained using our algorithm, coincides with the one 
obtained by Anastassiou in [1]. Figure 2 shows the graph for the first 42799 bp of the 
same Chromosome. Most of the notable peaks correspond to coding regions.  
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Fig. 1. Plot of |aA + tT + cC + gG|2 for the 8000 bp stretch starting at position 7020 inside 
Chromosome III of C. elegans. using a sliding window of length 351. Noticeable peaks 
correspond to coding regions, which are represented using dashed lines. 

 

             

Fig. 2. Plot of |aA + tT + cC + gG|2 for the first 42799 bp inside Chromosome III of C. elegans 

4   Discussion and Conclusions 

Various Digital Signal Processing based methods are being used currently to detect 
coding regions in large DNA strings. Among them, there are several frequency-
domain techniques that make extensive use of the Discrete Fourier Transform. Some 
of these techniques use the amplitudes of the DFT coefficients and others their phase 
angles. When using these methods, a typical situation arises in which it is necessary to 
calculate only the frequency component at N/3 in a repetitive process, which involves 
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the calculation of the DFT for many subsequences obtained from a sliding window 
applied to the whole sequence. This could mean a high computational load when 
dealing with large DNA databases. 

In this work, an algorithm was introduced to reduce the computational burden 
associated to the calculation of the N/3 frequency component of the STFT for a 
sliding window with a one-sample step. The proposed algorithm was derived from the 
properties of the DFT, and combined with the well-known Goertzel algorithm, which 
allowed further improvements when calculating only one DFT coefficient for a 
particular frequency, that is precisely the situation in this application. 

The computational experiments performed consisted in the calculation of the STFT 
for long sequences using both the proposed algorithm and the conventional method, 
and using the computation time as the basis to evaluate the computational efficiency. 
The results showed that the application of the algorithm introduced in this work, 
reduced at great extent (typically less than 1% for the computed cases) the 
computational load associated to this task. It is worth to mention that the precision of 
the results is not affected significantly, given that this is only influenced by the 
different way in which roundoff errors propagate. These errors are usually negligible 
when using floating point as is usual in modern computers.  

A very significant reduction in computation time can be also expected when 
calculating more frequency components, or even the complete STFT (with all the 
frequency components). The results obtained suggest that the proposed algorithm can 
be used efficiently in analyzing long DNA strings, even in large studies involving 
many sequences. Practical comparison results demonstrated the good performance of 
the proposed algorithm.  
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Abstract. The methods of pattern recognition in time series based on moving 
approximation (MAP) transform and MAP image of patterns are proposed. We 
discuss main properties of MAP transform, introduce a concept of a MAP 
image of time series and distance between time series patterns based on this 
concept which were used for recognition of small patterns in noisy time series. 
To illustrate the application of this technique to recognition of perception based 
patterns given by sequence of slopes, an example of recognition of water 
production patterns in petroleum wells used in expert system for diagnosis of 
water production problems is considered. 

Keywords: Moving approximation transform, local trend association, time 
series, pattern recognition. 

1   Introduction 

Time series contain important information about measured parameters of systems 
changing in time. Such systems can be found in meteorology, economics, finance, 
geophysics, industry, and telecommunications. Time-series analysis is an important 
research area in these domains and more accurate analysis tools are consistently 
sought. Conventional techniques of time series analysis are based on statistical 
modeling, Fourier and wavelet transforms [4-6], [8], [12-14], [16], [17]. Techniques 
developed for noise suppression, data filtering and pattern recognition often suppose 
that time series describe some signal propagation or oscillating processes, contain 
large patterns, small noise, or noise with known statistical parameters. Many of these 
conditions are not fulfilled for time series describing economic or industrial systems 
[7], [9], [10]. In these application domains (i) time series are already obtained as a 
result of averaging of some parameter during given time intervals; (ii) they do not 
represent some oscillating processes; (iii) recognition of small patterns is important 
for decision making; and (iv) small patterns in time series can exist in presence of a 
noise. Moreover, in decision making procedures related with time series analysis in 
these domains, a trend or a tendency in a change of a parameter during some time 
interval usually becomes an important characteristic and the powerful signal 
processing techniques can not be applied.  
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The formal technique for analysis of such “local trends” was introduced in [1], [2]. 
The basis of this technique is an analysis of slopes of linear approximations of time 
series in a sliding window. This technique consists of two parts: i) moving 
approximation (MAP) transform calculates slopes in sliding window of a given size; 
and ii) a “local trend” association measure calculates a similarity between time series 
or time series patterns. This technique was applied in [1], [2] for analysis of 
associations between time series and representation of these associations as an 
association network of time series. The paper [3] considered the method of 
application of this technique to time series forecasting. In this paper we discuss the 
methods of application of MAP transform and local trend association measures to the 
recognition of time series patterns.  

The rest of the paper is organized as follows. In the next section, we consider the 
basic notions of MAP transform and local trend associations. In section 3, we propose 
novel methods of coding of time series patterns by local trends and a pattern 
recognition procedure for extraction of given patterns from time series. Several 
measures of local trend association between time series patterns (E-distance, J-
distance and EJ-distance) are introduced and compared on examples of time series 
pattern recognition in the presence of noise. Finally we discuss an application of this 
approach to the recognition of water production patterns in petroleum wells which are 
important for diagnosis of water production problems in petroleum industry. In 
Conclusions we discuss the main results presented in the paper and possible 
application and extension of the proposed technique.  

2   Basic Notions of MAP Transform and Local Trend Associations 

A time series (y,t) is a sequence {(yi,ti)}, i∈I = (1,…, n), such that  ti < ti +1 for all  i = 
1,.., n-1, where yi and ti are real numbers called time series values and time points, 
respectively. A time series (y,t) will be denoted also as y. A window Wi  of a length k 
> 1 is a sequence of indexes Wi= (i, i+1,…, i+k-1), i∈{1,…, n-k+1}. The sequence 

),...,,( 11 −++= kiiiiW yyyy  of the corresponding values of time series y is called a 

partial time series induced by window Wi. A sequence J = (W1, W2,…, Wn-k+1) of all 
windows of size k, (1 < k ≤ n), is called a moving (or sliding) window. Such mowing 
window is used, for example, in statistics in moving average procedure for smoothing 
time series when the value in the middle of the window is replaced by the mean of 
values from this window.  

Suppose J is a moving window of size k and ),...,,( 11 −++= kiiiiW yyyy , i∈ 

(1,2,…, n-k+1), are corresponding partial time series in time points (ti, ti+1,…, ti+k-1). A 
linear function fi = ait+bi with parameters {ai,bi} minimizing the criterion  
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is called a moving (least squares) approximation of yWi. The solution of (1) is well 
known and optimal values of parameters ai, bi can de calculated as follows: 
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Definition 1. A transformation MAPk(y,t)= a, where a = (a1, …, an-k+1) is a sequence 
of slope values obtained as a result of moving approximations of time series (y,t) in 
moving window of size k is called a moving approximation (MAP) transform of time 
series y. The slope values a1, …, an-k+1 are called local trends.  

Elements ai, (i = 1,…, n-k+1) from MAPk(y,t) will be denoted as MAPki(y,t). 
In many applications time points t1, …, tn are increasing with a constant step h such 

that ti+1 - ti = h for all i = 1,…, n-1. In such cases, in MAP transform the set of time 
points t= (t1, …, tn) can be replaced by the set of indexes I = (1,…, n) as follows: 
MAPk (y,t) = (1/h)MAPk (y,I) and the formula (2) for local trends can be simplified  as 
follows [2]. 

Theorem 1. Suppose time points t1, …, tn are increasing with a constant step h then 
the values of MAP transform MAPk (y,t) can be calculated as follows: 
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(3) 

Formula (3) gives a simple method to calculate MAP transform for time series with 
a fixed step. Further, for such time series we will replace time points by indexes I= 
(1,…, n) and in (3) the value h =1 will be used. We will denote time series also as y = 
(y1,…,yn) and will use a notation MAPk(y) for k∈{2,…,n-1}. 

As a measure of similarity between time series one can use measures of similarity 
between their MAP transforms.  

Definition 2. Suppose y = (y1,…,yn), x = (x1,…, xn) are two time series and MAPk(y) = 
(ay1, …, aym), MAPk (x)= (ax1, …, axm), (k∈{2,…,n-1}, m= n- k+1), are their MAP 
transforms. The following function is called a measure of local trend associations:  

cossk(y,x)= 
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(4) 

Suppose p,q,r,s, (p,r≠ 0) are real values and (y,t) is a time series. Denote py+q = 
(py1+q, …, pyn+q) and rt+s = (rt1+s, …, rtn+s). A transformation L(y,t) = (py+q, rt+s) 
is called a linear transformation of time series (y,t).  
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Theorem 2. Suppose L1 and L2 are two linear transformations of time series (y,t) and 
(x,t) given by the sets of parameters (p1,q1,r1,s1) and (p2,q2,r2,s2), respectively, where 
p1, p2, r1, r2 ≠ 0, then 

cossk(L1(y,t), L2(x,t)) = sign(p1)⋅sign(r1)⋅sign(p2)⋅sign(r2)⋅cossk((y,t), (x,t)). (5) 

From this Theorem it follows a very nice invariance property of local trend 
association measure under various types of normalization of time series. For the lack 
of space, we leave the proving of the Theorems 1 and 2 out of the scope of this paper. 

Analysis of associations between time series is based on the analysis of 
associations between them for different window size. The sequence of association 
values AV(y,x)= (coss2(y,x),…, cossn(y,x)) for all sizes of window is called an 
association function [2]. A specific measure of association between time series is 
defined by the subset of window sizes J ⊂ {2,…,n} as a maximum or average of all 
associations cossk(y,x), k∈J. Examples of application of this association measure to 
the classification of time series are considered in [2]. In Section 3 it will be introduced 
a J-MAP image of time series pattern defined by a subset of window sizes J. 

3   MAP Image and J-MAP Distance in Time Series Pattern  
     Recognition 

Suppose y = (y1, …, yn) is a time series with a constant time step. Our goal is to 
propose a method to find a pattern p = (p1,…, pm) in time series y. This problem is 
trivial if the pattern p coincides with some subsequence x = (yi, yi+1,…,yi+m-1) of y such 
that yi= p1, yi+1 = p2,…, yi+m-1 = pm. In real applications, such trivial cases usually do 
not take place and the problem is to find a subsequence in y which is most similar to 
the goal pattern. A simple algorithm to find such pattern is following: to move a 
window Wi of size m along time series and calculate a distance between goal pattern 
and partial time series ),...,,( 11 −++= miiiiW yyyy  induced by this window. The 

partial time series minimizing this distance can be chosen as a found pattern. As a 
commonly used distance one can use Euclidean distance between time series patterns: 

−=
=

−+
m

k
kkiE pypxd

1

2
1 )(),( . (6) 

Before searching patterns in time series one can apply some methods of data 
smoothing, data filtering or noise suppression, but in the presence of large errors such 
procedures developed mainly for signal processing can essentially deform time series 
which do not describe some wave propagation or oscillating process but, instead, 
describe a change of some time dependent economical, financial or industrial 
parameter. Fig. 1 gives an example of such time series distorted by different types of 
errors. 

Here we propose a novel method of pattern recognition in time series based on 
MAP transformation of patterns. MAP transform smoothes data in a sliding window. 
For this reason we can suppose that it is less sensitive to errors in data than original 
data. 
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Fig. 1. Example of a synthetic time series (on the top of figure) taking values between 1 and 10 
and noisy time series obtained from it by adding the following errors: 01, 03, 05, 08 denote 
time series with errors uniformly distributed in the intervals [0,1], [0,3], [0,5], [0,8], 
respectively; 01n, 03n, 05n, 08n denote time series with standard normal distribution errors 
multiplied by 1, 3, 5, 8, respectively. 

Definition 3. A MAP image of pattern p = (p1,…, pm) is a sequence MAPI(p)= 
(MAP2(p),…, MAPm(p)) of MAP-transforms of p for all possible window sizes. 
Suppose J is a subset of indexes {2,…, m}. A J-MAP image of p is a sequence of 
MAP-transforms of p for all possible window sizes from J.  

Fig. 2 shows an example of moving approximations of a pattern for different 
window sizes. The MAP transforms corresponding to these moving approximations 
contain the following sets of slope values of approximating lines: MAP2(p) = (1, 3, 5, 
-1, -3), MAP3(p) = (2, 4, 2, -2), MAP4(p) = (3, 2.6, 0.2), MAP5(p) = (2.4, 1.2), 
MAP6(p) = 1.4571. The corresponding MAP image of p will be represented by a 
sequence: ((1, 3, 5, -1, -3), (2, 4, 2, -2), (3, 2.6, 0.2), (2.4, 1.2), (1.4571)). For J =  
{3, 4} a J-MAP image of p will be equal to: ((2, 4, 2, -2), (3, 2.6, 0.2)). 

Instead of a distance (6) between goal pattern p and partial time series x = yWi in 
sliding window we propose to calculate a distance between J-MAP images of goal 
pattern p and partial time series x = yWi.  This distance, called J-MAP distance, will be 
defined as follows: 
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Fig. 2. Moving approximations of a pattern (given on the top of the figure) for all possible 
window sizes 
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As a distance measure combining both Euclidean distance and J-MAP distance we 
propose the following distance, which will be called EJ-MAP distance: 
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It is clear that instead of Euclidean distance one can use a normalized distance: 
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In this case (8) will be presented as follows: 

),(),(),( pxdpxdpxd NEJEJ += . (10) 

Experiments show that results of pattern recognition based on these distances can 
be different. Fig. 3 depicts an example of recognition of time series patterns in time 
series with noise. Fig. 3a shows search patterns in original time series and Fig. 3b 
depicts results of recognition of these patterns in time series distorted by noise. 

Table 1 contains the results of comparison of considered three distance measures in 
their ability to recognize time series patterns in time series distorted by random errors. 
From time series shown on top of Fig. 1 were generated 300 random time series for 
each type of error described in the caption of Fig. 1. The distances for two sets of 
indexes J = {3,4,5,6} and J= {4,5,6} were applied. The results obtained for J = 
{3,4,5,6} are slightly better than for J = {4,5,6}. As one can see from Table 1, the J-
MAP distance is more suitable for recognition of patterns in the presence of large 
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Fig. 3. a) Goal patterns (shown by circles “o”) in original time series depicted also on top of 
Fig. 1; b) Two goal patterns in time series distorted by random errors are shown by circles (o). 
Patterns found by J-distance, E-distance and EJ-distance are shown by diamonds ( ), squares 
( ) and triangles (∇) respectively 

uniformly distributed errors and Euclidean distance has some advantage in 
recognition of patterns with normally distributed errors. EJ-MAP distance can be used 
as a compromise between these two distances when the type of error is unknown. 

4   Recognition of Water Production Patterns in Petroleum Wells  

The proposed methods of time series pattern representation and recognition were 
realized as modules of the Percept-Miner toolbox [15]. They were also used in 
SMART-Agua, an expert system for diagnosis of water production problems in 
petroleum wells.  

In petroleum industry it is convenient to describe a water production patterns in 
petroleum wells by slopes. MAP transform and local trend associations based on 
MAP give a natural method for analysis of such patterns. As an example of the 
application of the proposed technique we consider the case of the recognition of the 
four water entrance patterns important for diagnosis of water production problems. 
The real data are analyzed against four typical patterns describing “quick increase” 
and “slow increase” of water production related to the certain problems of excessive 
water production (Fig. 4). A methodology for interpreting the behavior of 
waterflooding is applied in order to analyze the behavior of the water oil ratio vs. time 
curve in various time domains (for example, following the breakthrough).  

Since expert patterns were given by sequences of slopes, J-MAP distance was 
applied for search patterns in time series closest to the goal patterns. A screenshot 
(Fig. 4) shows found patterns most similar to given ones. The first column shows goal 
patterns defined by expert. The second column shows found patterns in time series 
most similar to the goal patterns. The columns 3 and 4 give numerical values of 
slopes in goal patterns and in found patterns. Depending on the importance of the 
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particular time interval for the expert, he can select the most appropriate pattern based 
on the similarity measure. This tool was developed as a support for knowledge 
engineer in describing his perceptions about water production patterns important both 
for diagnosis and for testing the expert rules considering such patterns.  

Table 1. Percentage of correct recognition of patterns for different types of errors 

Type of error E-distance EJ-distance J-distance J = 
08 36 58 67 4,5,6 
08 32 61 70 3,4,5,6 
05 83 92 90 4,5,6 
05 75 91 95 3,4,5,6 
03 100 100 99 4,5,6 
03 100 100 100 3,4,5,6 

08n 17 16 16 4,5,6 
08n 19 14 13 3,4,5,6 
05n 28 24 21 4,5,6 
05n 27 23 22 3,4,5,6 
03n 64 62 55 4,5,6 
03n 74 71 62 3,4,5,6 
01n 100 100 96 4,5,6 
01n 100 100 100 3,4,5,6 

 

Fig. 4. Moving approximations of four patterns for all possible window sizes 

5   Discussion and Conclusions  

Human decision making in different application domains like economics, finance, or 
industry is often based on analysis of time series data bases. The main reasons for 
exploring a pattern recognition tools for time-series analysis are [17]: i) pattern 
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recognition methods are more flexible than other available tools in signal processing, 
statistics and neural networks and offer the user the ability to optimize their design for 
the best results; ii) results using such tools are easy to explain to the users as opposed 
to neural networks whose behavior is often difficult to rationalize; and iii) pattern 
recognition methodologies already offer a range of existing techniques that are well 
suited for time-series analysis. Pattern recognition methods offer different services for 
time-series analysis including its recognition, classification and prediction, e.g. speech 
classification, source separation or forecasting.  

Such analysis usually contains description of time series patterns important for 
decision making. Two tasks arise from searching for such patterns in time series. 
First, time series data can be noisy and can contain large errors. Many of conditions 
supposed by techniques developed in time series data mining, signal processing and 
time series analysis for noise suppression, data filtering and pattern recognition are 
not satisfied in time series describing economic or industrial time series. Moreover, 
the goal patterns can be small and known methods of smoothing of time series can 
delete them. New methods of recognition of such patterns in noisy time series are 
proposed in this paper. Section 3 introduces the new concepts of MAP-image and J-
MAP distance which give possibility to recognize small patterns in time series in the 
presence of large evenly distributed errors. For noisy time series J-MAP image acts as 
a filter. This novel technique is based on analysis of slopes of moving approximations 
of time series in a sliding window. It can be used also for recognition of patterns in 
time series given by sequences of slopes. It is a natural way to describe time series 
patterns important for decision making in several application areas. As an example, in 
Section 4 the use of this technique for recognition of water production patterns in 
petroleum wells given by sequences of slopes is discussed. 

Several directions of future research can considered: 1) combination of proposed 
methods with traditional time series analysis technique like smoothing and filtering; 
2) development of special methods based on the proposed technique for recognition 
of specific complex patterns in real time series; 3) extension of the proposed 
technique to solution of perception based time series data mining tasks where 
linguistically described patterns are used in decision making procedures. 

Acknowledgements 

The research work was supported by projects D.00006 and D.00322. Special thanks to 
R. Herrera for his invaluable support in the development of the software. Authors also 
highly appreciate the valuable comments of the reviewers of the paper. 

References 

1. Batyrshin I., Herrera-Avelar R., Sheremetov L., Suarez R.: Moving Approximations in 
Time Series Data Mining. In: Proc. of the Int. Conf. Fuzzy Sets and Soft Computing in 
Economics and Finance, June 17-20, St. Petersburg, Russia, Vol. I (2004) 62-72 

2. Batyrshin I., Herrera-Avelar R., Sheremetov L., Panova A.: Association Networks in Time 
Series Data Mining. In: Soft Computing for Real World Applications, Proc. of the Int. Conf. 
NAFIPS, June 22-25, Ann Arbor, Michigan, USA. IEEE Comp. Soc. (2005) 754-759 



 Time Series Pattern Recognition 919 

3. Batyrshin I., Sheremetov L.: Perception Based Time Series Data Mining with MAP 
Transform. In: Advances in Artificial Intelligence, Lecture Notes in Computer Science, 
Vol. 3789, Springer-Verlag, Berlin Heidelberg New York (2005) 514 – 523 

4. Bowerman, B.L., O’Connell, R.T.: Time Series and Forecasting; An Applied Approach. 
Duxbury Press, Massachusetts (1979) 

5. Brockwell, P.J., Davis, R.A., Fienberg, S.E.: Time Series: Theory and Methods, Springer 
Series in Statistics, Springer-Verlag, Berlin Heidelberg New York (1991) 

6. Chatfield, C.: The Analysis of Time Series, an Introduction, Sixth Edition. London: 
Chapman and Hall/CRC (2004) 

7. Cheung, J.T.: Representation and Extraction of Trends from Process Data. D.Sci. Th., 
Massachusetts Institute of Technology, Cambridge/MA, USA (1992) 

8. Hand, D.J.: Intelligent Data Analysis: Issues and Opportunities. In: Proc. of the Int. Conf. 
IDA97. Lecture Notes in Computer Science, Vol. 1280. Springer-Verlag, Berlin 
Heidelberg New York (1997) 1-14 

9. Kivikunnas, S.: Overview of Process Trend Analysis Methods and Applications. In: Proc. 
of Workshop on Applications in Chemical and Biochemical Industry. Aachen, Germany. 
(1999) 

10. Konstantinov, K.B., Yoshida, T.: Real-time Qualitative Analysis of the Temporal Shapes 
of (Bio) Process Variables. J. of Am. Inst. of Chem. Eng., Vol. 38 No. 11 (1992)  
1703-1715 

11. Least Squares Fitting. Wolfram Research. Mathworld. URL: 
http://mathworld.wolfram.com/LeastSquaresFitting.html 

12. Mörchen, F.: Time Series Feature Extraction for Data Mining Using DWT and DFT. Data 
Bionics, Philipps-University Marburg, Germany, October 9 (2003) 

13. Ponomaryov, V., Gallegos-Funes, F., Sansores-Pech, R., Sadovnychiy, S.: Real-time noise 
suppression in 3D ultrasound imaging based on order statistics. Electronics Letters, Vol. 
42, No. 2 (2006) 80-82 

14. Ponomaryov, V., Pogrebnyak, O.: Novel Robust RM Filters for Radar Image Filtering. J. 
of Electronic Imaging, Vol. 5 No 3, (1996) 410-421 

15. Sheremetov, L.B., Batyrshin, I.Z, Filatov, D.M.: Perception Based Hybrid Intelligent 
Systems in Petroleum Applications. In: Proc. of the NAFIPS’06 Int. Conf., June 3-6, 
Montréal, Canada. IEEE Comp. Soc. (2006) 

16. Shumway, R.H., Stoffer, D.S.: Time Series Analysis and its Applications, Springer-
Verlag, Berlin Heidelberg New York (2000) 

17. Singh, S.: Noise Impact on Time-Series Forecasting Using an Intelligent Pattern Matching 
Technique, Pattern Recognition, Vol. 32, Issue 8 (1999) 1389-1398 

 



J.F. Martínez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 920 – 928, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

System Classification by Using Discriminant Functions  
of Time-Frequency Features  

Miguel Mendoza Reyes1, Juan V. Lorenzo-Ginori1, 
A. Taboada-Crispí1, and Yakelin Luna Carvajal2 

1 Center for Studies on Electronics and Information Technologies, Universidad Central 
“Marta Abreu” de Las Villas, Carretera a Camajuaní, km 5 ½, Santa Clara, VC, Cuba, 

CP 54830 
{mmendoza, juanl, ataboada}@uclv.edu.cu 

2 Ministry of Public Health, Santa Clara, VC, Cuba 
yakelin@uclv.edu.cu 

Abstract. Time-frequency representations (TFR) convey relevant information 
about systems that can not be obtained under stationary conditions. In this 
paper, a methodology to classify systems using the information obtained from 
time-frequency representations during transient phenomena is described and 
tested experimentally. The study includes an assessment of the features to be 
extracted from the TFR, which are relevant for the desired classification, as 
well as the construction of the appropriate discriminant functions using them. 
The methodology is tested by means of a biomedical example related to 
patient’s classification. 

Keywords: time-frequency distributions, feature extraction. 

1   Introduction 

System classification can be done through the analysis of the signals they produce. 
When the analysis is to be done in the frequency domain, there are considerations that 
should be addressed. In the case of a signal whose spectral characteristics vary with 
time, if there is a need of knowing the spectral content of that signal for every time 
instant, in order to perform a dynamic spectral analysis, the use of a time-frequency 
representation (TFR) of that signal is commonly required. This dynamic 
representation of the spectral behavior can be obtained by processing signals through 
the time-frequency distributions (TFD). 

From the TFR of signals, a set of features can be extracted to characterize them. 
The selection of the most appropriated features depends mainly on the type of TFD 
used to process the signal, and the application where they will be employed. For those 
TFR that allow energetic interpretations, features values serve to estimate the form in 
which signal energy is locally distributed in the time-frequency (t-f) plane. For TFR 
computation, TFD from the Cohen group have been commonly assessed. The TFDs 
from this group of bilinear distribution have the general form  
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where z(t) is the analytic signal and ϕ( ,τ) the kernel function, whose behavior in the 
( ,τ) plane, or ambiguity domain, defines the general properties of the TFD 1. 

A typical TFR contains a large amount of information. To reduce this, features 
are extracted from particular zones in the t-f plane. The size and location of these 
zones are mainly defined according to the specific application. After computing the 
features, the selection of the suitable ones is a mandatory task in the classification 
procedures. 

To determine the feasibility of features for classification purposes, they must be 
evaluated in order to find their discriminatory possibilities. The combination of these 
selected features in discriminant functions allows system classification. 

All the process should be repeated in order to find the configuration with the 
greater amount of features with discriminatory possibilities. This process includes the 
selection of the appropriate TFD used to obtain the TFR, and the sizes and location of 
the proper zones in TFR from which the features will be extracted. 

This paper presents a methodology for system classification by using discriminant 
functions of statistical parameters of time-frequency features. Section two depicts the 
methodology proposed and describes the systems under classification. The methods 
used for the computation of TFR and its features, and the selection of statistical 
parameters and its combination, are also presented in this section. Section three shows 
the results of the system classification by following the proposed methodology. 
Finally, section four encloses the discussion of obtained results and resulting 
conclusions.  

2   Materials and Methods 

The global procedure followed to find the discriminant functions could be 
summarized in the following steps: 

1. Set initial configuration for TFR computation: TFD type and parameters, window 
type and parameters. 

2. Select zones of TFR to compute features: (depending on application) 
3. Extract features from TFR zones. 
4. Compute statistical parameters of features in selected zones. 
5. Select parameters for analysis of variance (ANOVA): normality and 

homogeneity test. 
6. Select parameters with discriminatory abilities: ANOVA and multiple 

comparisons. 
7. Select the setup for TFR computation according to the number of parameters with 

discriminatory abilities.   
8. Find combinations of parameters to form discriminant functions: LDA 
9. Test discriminant functions: Wilk’s lambda, Cross-validation. 

In the present work, the systems to be classified were patients with different blood 
pressure (BP) behavior and therefore different influence on their autonomic nervous 
system (ANS). ANS controls heart rate through its sympathetic and parasympathetic 
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branches. High blood pressure (HBP) can affects the performance of the ANS and, as 
a result, also influences the behavior of the heart rate variability (HRV) signal 2 3 4. 

Spectro-temporal features of HRV, derived from an appropriate TFR, were used in 
this example for the classification of patients with different BP behavior. Features 
selection was done according to the proposed methodology. 

2.1   Patients 

Patients under study belonged to one of three categories: hyperreactive (HR) that 
comprised individuals whose levels of cardiovascular response to the left-arm 
isometric exercise (LAIE) were greater than the limits set to the normotensive (NT) 
group, but lower than those set for the hypertensive (HT). HR group has been 
considered prone to develop HBP 5.  

The LAIE consists of three stages. During the first one, lasting two minutes, the 
rest stage, the patient sits relaxed with his hands on his legs. Then the effort stage 
begins, the patient extends his left arm horizontally with respect to the floor, while 
holding a 500 gram weight during two minutes. Finally, the patient releases the 
weight and put his left arm back to the rest position, keeping it that way for the two 
minutes that last this final recovery stage. The whole procedure lasts for six minutes. 

The group of patients comprised 27 individuals, all male. Subjects with health 
conditions that are known, or suspected, to cause autonomic disorders, such as 
diabetes, epilepsy and asthma, were excluded. 

Patients were selected according to confirmed diagnosis reached by a team of 
physicians after various studies and laboratory tests. The characteristics of the groups 
evaluated are shown in table 1. 

Table 1. Groups of patients 

Group Number of patients Age (m ± std), years 

Normotensive  (NT) 11 31.18 ± 5 

Hypertensive  (HT) 10 41.20 ± 7 
Hyperreactive (HR) 6 36.85 ± 12 

m: mean value, std: standard deviation  

2.2   TFD Configuration  

Spectral analysis of HRV is the recommended method when the study of the effect of 
one of the systems that modulates this signal through the ANS is needed 3. To 
highlight the influence of a particular system on the ANS, HRV is commonly 
obtained from electrocardiographic (ECG) records acquired during the execution of 
exercises 2 6, as in this case. Due to the non-stationary characteristics of such records, 
the use of time-frequency analysis (TFA) is the most suitable approach for HRV 
dynamic spectral analysis 1.  

In HRV studies, Wigner-Ville Distribution (WVD) and its smoothed versions have 
been commonly used 7–10. Choi-Williams distribution (CWD), a representative case 
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of the reduced-interference distributions (RID) group, have also been addressed 11. In 
this study TFR were obtained by using the Choi-Williams distribution,  
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where h(τ) is the frequency smoothing window or data window,  g(u) is the time 
smoothing window and z(t) is the analytic version of time signal x(t) 7. 

In (2), the parametrization function, or distribution kernel, ϕ(ν,τ), has the form 
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In this study, the value σ = 0.1 was used to favor interference reduction 12. 

2.3   Feature Extraction 

After computing the TFR of HRV, there were extracted instantaneous estimates of 
frequency, power and bandwidth from the LF band, 0.04 Hz to 0.15 Hz, and from HF 
band, 0.15 Hz to 0.4 Hz, as defined in 3 These features have been linked to the ANS 
in previous studies 2 3 6. Their values were computed from the moments and 
marginals of TFRs 1 7. A list of the TFR features evaluated in this study is presented 
in table 2. 

Table 2. TFR features evaluated in this study   

Feature  Meaning  
IF Instantaneous frequency 
IB Instantaneous bandwidth 
IP Instantaneous power 
PS Power spectral density 
E Local energy 

The feature vectors, containing the values computed for the whole record, were 
divided according to the three exercise stages. Stages 2, effort, and 3, recovery, were 
subsequently divided in sections where statistical parameters were computed. 

An appropriate configuration was elected after considering several alternatives. 
These involved different analysis windows, TFDs, and number of sections in which 
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the stages of effort and recovery were divided. A preliminary selection of the 
configuration was made heuristically. 

The statistical parameters evaluated were: mean value, M, trimmed mean, TM, and 
standard deviation, SD. The values corresponding to the effort and recovery stages 
were normalized with respect to those corresponding to the rest stage, to reduce inter-
individual variations. 

The names of the parameters were formed by appending the numbers of the 
corresponding stage and section, in that order, to the name of the feature. For 
example, L_H31SD represents the standard deviation of the values of the 
instantaneous LF to HF bands power ratio, computed for the first section of the 
recovery stage. MATLAB toolboxes were used for TFR computation and feature 
extraction 13. 

2.4   Parameter Selection 

For each evaluated configuration the parameters with higher probability to 
discriminate patients, according to the group to which they belonged, were searched. 
One-way ANOVA was used to determine if the parameter under test was significantly 
different in the groups evaluated, p<0.05. Previously to ANOVA analysis, these 
parameters were analyzed to ensure distribution normality and homogeneity of 
variances. Anderson-Darling test and Levene’s test were used, respectively, for these 
purposes 14. 

Parameters selected, according to ANOVA results, were further evaluated by using 
the Tukey-Kramer’s multiple comparisons test, to investigate their possibilities for the 
discrimination of at least one group from the others. Statistical processing was 
performed with SPSS 15. 

2.5   Discriminant Analysis 

Linear discriminant analysis (LDA) was performed in order to find functions fi(pk) of 
the N previously selected parameters pk, suitable for the classification of patients. 
These functions have the form, 

−

=
= 1

0
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N
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where  
i =1..G-1, is the function number, 
G = 3, is the number of groups, 
aik: are the function coefficients. 
 
The Mahalanobis distance in a stepwise analysis was used to obtain the functions. 

A significance level p<0.05 was selected for the inclusion of parameters. Functions 
were tested using leave-one-out cross-validation, a process in which every case is 
classified by using discriminant functions obtained from the rest of them.  
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3   Results 

3.1   TFD Configuration Selection 

Among the different configurations assessed to obtain the TFR, the one that used the 
CWD with Gaussian windows and six sections per stage had the greater amount of 
parameters with discriminatory possibilities, p < 0.05. The list of parameters and the 
corresponding p vales are shown in table 3. 

According to multiple comparisons tests, none of the listed parameters was able to 
differentiate every group from the rest. For example, parameter L_H31SD, the standard 
deviation of the power ratio in the first section of recovery stage, was significant different 
for the group HT, but it could not discriminate the groups NT and HR. Figure 1  
shows the time progression of this parameter during the effort ant recovery stage. 

Table 3. Parameters selected according to established criteria  

Parameter p 
L_H31SD 0.002 
IPL31M 0.006 
IPL31MT 0.009 
IFH31DSD 0.012 
L_H32DSD 0.015 
IPL31SD 0.017 
IFL34DMT 0.034 
IFH22DMT 0.036 
IFL26SD 0.038 
IFL34DM 0.039 
IFH22DM 0.040 
IFL35DM 0.047 

1 2 3 4 5 6 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

1.2

1.4
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NT 

HT 
HR

effort recovery

sections  

Fig. 1. Time progression of the parameter L_HSD 

3.2   Discriminant Functions 

Two discriminant functions were obtained from the set of selected parameters. The 
coefficients are shown in table 4. 
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Table 4. Coefficients of discriminant functions 

Coefficients k pk 
a1k a2k 

0 (constant)  2,075 -0,996 
1 L_H31SD  0,114  0,270 
2 IFH31DSD  162,845  37,339 
3 IFL34DMT  157,605 -23,029 
4 IFH22DMT -917,906  756,490 
5 IFL26SD -290,709  14,561 
6 IFH22DM  832,625 -763,422 
7 IFL35DM  75,769 -64,371 

The feasibility of the use of discriminant functions for the classification of different 
cases was tested by determining Wilks’ Lambda and significance value, Sig, table 5. 

Table 5. Discriminant functions evaluation 

Function  Wilks’ Lambda  Chi-square df Sig. 

1 through 2 0.051 62.351 14 0.000 

2 0.407 18.861 6 0.004 

The low value of Wilks’ lambda, below 0.1, and the null value of significance, 
confirmed that the mean values of the functions were different for the groups, and 
proved the sufficiency of their application as discriminant functions. Figure 2 shows 
the scatter plot of the cases, classified by using the discriminant functions. 
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Fig. 2. Scatter plot for all groups 

To get a more realistic evaluation of discriminant functions, leave-one-out cross-
validation was performed; table 6 shows the results of this evaluation. 
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Table 6. Classification results with original cases and cross-validated evaluation  

 
 

 Predicted Group 
Membership 

 

   group NT HT HR Total 
NT 11 0 0 11 
HT 1 9 0 10 cases 
HR 0 0 6 6 
NT 100.0 0.0 0.0 100.0 
HT 10.0 90.0 0.0 100.0 

Original 
Data 

  
% 

HR 0.0 0.0 100.0 100.0 
NT 10 1 0 11 
HT 3 7 0 10 cases 
HR 0 0 6 6 
NT 90.9 9.1 0.0 100.0 
HT 30.0 70.0 0.0 100.0 

Cross-
Validated 

 
% 

HR 0.0 0.0 100.0 100.0 

The difference between classification results obtained with original data from those 
of cross-validation is satisfactory according to the sample size. This suggests that the 
number of predictors accounted in the discriminant functions is acceptable. 

4   Discussion and Conclusions 

Due to the great amount of parameters that can be extracted from a TFR, the search of 
the appropriate features for classification purposes should be done through a 
combination of techniques.  

The proposed methodology contributed to control the amount and quality of 
parameters with discriminatory abilities. The appropriate selection of feature 
parameters benefits dimensionality reduction, which is an almost obligatory process 
in the case of TFR analysis, due to the high dimensionality of the data to be 
processed. 

The discriminant functions, obtained by following the proposed approach, gathered 
the most appropriate statistical parameters of spectro-temporal features of the signal 
used to represent the systems under study. 

Cross-validation should be used to confirm classification results obtained with the 
discriminant functions. This procedure generates more realistic results, and is 
particularly useful if the number of available cases is small. 
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Abstract. A Gabor based representation for textured images is pro-
posed. Instead of the ordinary filter bank, a reproducing kernel repre-
sentation is constructed consisting of a sum of several local reproducing
kernels. The image representation coefficients are computed by a basis
pursuit procedure, and are then considered as the feature vectors. The
feature vectors are used to construct a kernel for a support vector clas-
sifier. Results are presented for a set of oriented texture images.

1 Introduction

Classification and segmentation of digital images based on the texture content
is a fundamental problem in computer vision. A lot of different techniques have
been considered in literature, from signal processing [1,2,3], to statistical model-
ing based [4,5]. In the signal processing approach, the Gabor filter is the preferred
building block. The textured image is submitted to a linear transform system
named filter bank, consisting of a set of Gabor filters. The output of each filter
is another image, applied then to a feature extractor. Several feature extractors
are considered in literature [6], some use only the magnitude response, others
the real component and some authors apply a full-wave rectifier, or a sigmoidal
function to each filter’s output. For every image, a large set of features are usu-
ally considered, those features are then applied to a classifier to identify the
corresponding texture in the image.

In this work a Gabor based representation for the image is proposed. Instead
of a filter bank, the image is considered as an element of a reproducing ker-
nel Hilbert space. A kernel is constructed consisting of a sum of several local
reproducing kernels. The image representation is assembled by a basis pursuit
procedure, and the coefficients of the representation are taken as the feature
vectors. The feature vectors are then used to construct a kernel for a support
vector classifier. Results are presented for a set of test images from the Brodatz
album.
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2 Signal Representation

The Gabor transform is a fundamental tool for signal representation and decom-
position. When a function f in L2(IR) is used to represent an analog signal with
finite energy, its Fourier transform

F (ω) =
∫ ∞

−∞
e−iωtf(t)dt (1)

reveals the spectral information of the signal. But the Fourier transform is not
very useful for extracting information of the spectrum from a local observation
of the signal f . The Gabor approach consider a window for time localization.
The optimal window for time localization is obtained using a Gaussian function:

gσ(t) =
1

2
√

πσ
e−

t2
4σ (2)

where σ > 0 is fixed. Optimality is characterized in terms of the uncertainty
principle [7].

If f(t) ∈ L2(IR), the Gabor transform Fμ,σ(ω) is the Fourier transform of the
product f(t)gσ(t − μ):

Fμ,σ(ω) =
∫ ∞

−∞
e−jωtf(t)gσ(t − μ)dt. (3)

The Gabor transform is also represented as Fμ,σ(ω) = (Gσ
μf)(ω), and can be

interpreted as a dot product relation that measures the similarity of f(t) to the
Gabor elementary function (GEF) Gσ

μ,ω(t) = gσ(t − μ)ejωt [7]:

(Gσ
μf)(ω) = 〈f,Gσ

μ,ω〉. (4)

Gabor elementary functions, also named as Gabor atoms or windowed Fourier
atoms, have great applicability to spectral analysis of textures. Some authors
consider only the real part of the GEF to construct filter banks employed in the
classification task [1,6]. Texture analysis with Gabor filters is usually performed
by obtaining a bank of Gabor filters tuned at different μ, ω parameters. Then,
a non linearity is applied to every Gabor function in order to select the proper
feature of every filter. In this work, we are interested in the construction of a
reproducing kernel Hilbert space (RKHS) for images with a kernel derived of the
Gabor elementary functions. RKHS have acquired great importance in the learn-
ing community because they form the basis of the Kernel learning methodology
[8,9]. By definition, a Hilbert space H es called a reproducing kernel Hilbert
space if the following conditions are satisfied[10]:

1. the elements of H are (complex or real valued) functions defined on any set
D;

2. for every t ∈ D there exists Kt > 0 such that

‖f(t)‖ ≤ Kt|f | f ∈ H.
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In an RKHS H, for every t ∈ D there is a function R(·, t) ∈ H such that

f(t) = 〈f,R(·, t)〉 f ∈ H

by the Riesz representation theorem and the evaluation functionals are deter-
mined by the function R(s, t) on D × D, called the kernel of the RKHS H.
The kernel R(s, t) of an RKHS is a symmetric and positive definite function,
i.e. R(t, s) = R(s, t) and for any finite set {si ∈ D; i = 1, 2, . . .} and complex
numbers λi (i = 1, 2, . . . , n),

n∑
i,j=1

λiλjR(si, sj) ≥ 0.

Besides, the RKHS H with kernel R is generated by {R(·, t); t ∈ D}. Another
approach to construct a RKHS consist in considering the Loéve Transform [10].
For x ∈ H1, a closed subspace of H generated by {h(t); t ∈ D}, the function
x̂(t) := 〈x, h(t)〉 is called the Loéve transform of x. The Loéve Transform form
an RKHS with kernel

R(s, t) = 〈h(t), h(s)〉 s, t ∈ D.

For example, considering a finite interval [−A,A] and the subspace of
L2[−A,A] generated by h(t) = e−iωt for −∞ < t < +∞. In this case the
kernel is

〈h(t), h(s)〉 =
1

2A

∫ A

−A

eiωte−iωsdω =
sinA(t − s)
A(t − s)

,

and the Loéve transform of F ∈ L2[−A,+A] is the Fourier transform

f(t) =
1

2A

∫ A

−A

eiωtF (ω)dω.

Then, the finite Fourier transforms with fixed band limit A form an RKHS, the
Hilbert space LA of band-limited signals. Here, we are interested in an RKHS
for band-limited signals but considering the Gabor representation. Consider the
kernel obtained with the dot product of the GEF’s:

Q(s, t) = 〈Gσ
μ,ω(s), Gσ

μ,ω(t)〉 = (5)

1
2A

∫ A

−A

eiωte−iωsgσ(t − μ)gσ(s − μ)dω =

gσ(t − μ)gσ(s − μ)
sinA(s − t)
A(s − t)

,

by this formulation, we can represent an element of the Hilbert space of band-
limited signals in terms of the kernel (5).
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3 Image Representation

In the usual Gabor expansion texture recognition approach, a bank of Gabor
filters is applied to a portion of the image [2]. The basic even-symmetric Gabor
filter oriented at 0◦ is the real part of G with a variance parameter for each axis
σx, σy:

h(k, l) = e
− 1

4 ( k2
σx

+ l2
σy

) cos(2πf0k),

where f0 is the radial center frequency. Other orientations are obtained by rotat-
ing the reference coordinate system (k, l) some angle θ. We consider the image
representation in terms of a kernel:

f(t) =
i=N∑
i=0

βiQ̃(si, t), (6)

where Q̃ =
M∑

j=1

Rj(s, t).

Each Rj(s, t) with different parameters μx, μy, σx, σy, θ. N is the number of
pixels, M the number of kernels and the space coordinates are two-dimensional
t = (tx, ty), s = (sx, sy). For the kernel construction we have used the property
that a sum of kernels is a kernel [9]. Observe that the number of coefficients is
the same as the number of image pixels, contrary to the filter bank approach,
where we have a much more large feature set.

The selection of the β coefficients is considered by a basis pursuit (BP) pro-
cedure [11]. In the BP approach, the basis dictionary is assumed overcomplete,
and there may exist many representations as (6). In our implementation, the
kernel is constructed by a sum of several local kernels, and we assume that the
representation may not be unique. The BP technique consist on finding a rep-
resentation whose coefficients have a minimal l1 norm. For that purpose, the
minimization problem is:

min ‖β‖1 subject to Φβ = d (7)

with Φ the Gram matrix of kernel evaluations Φi,j = Q̃(si, tj), d is the image
representation in a lexicographically ordered vector. The minimization problem
is implemented by solving the equivalent linear program

min ctx subject to Ax = b, x ≥ 0, (8)

making the translations A = (Φ,−Φ), b = d, x = (u,v), β = (u − v), and
considering c a vector of ones. The solution of (7) is obtained by solving the
linear program (8). The linear program can be efficiently solved with public
available software like PCx [12].
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4 Image Classification

For the image classification process, the kernel representation (6) is obtained
for every element of a set of sub-images extracted from the training and test-
ing images. The corresponding coefficients of the kernel representation are em-
ployed to construct a kernel machine; a support vector classifier (SVC). The SVC
is constructed assuming a kernel function k(x, z) implementing a dot product
among elements of a feature space: 〈Φ(x), Φ(z)〉. The usual kernel construction
for image classification has been to perform dot products of sub-elements of the
image, then raise the resulting dot product to a power d1 to form a local ker-
nel. The final kernel is the sum over the whole image of the local kernels [8].
In this work, the kernel is constructed as a function of the dot product of the
image coefficients, 〈βi, βj〉. The SVC is aimed to construct the classifier function
c(x) = sign(

∑l
i yiαik(x, xi) + b) in terms of a Gram matrix

Ki,j = k(xi, xj), (9)

by solving the system:

max W (α) =
l∑

i=1

αi − 1
2

l∑
i,j=1

αiαjyiyjk(xi, xj),

subject to 0 ≤ αi ≤ C

l
for all i = 1, . . . , l.

and
l∑

i=1

αiyi = 0.

Where l is the number of patterns, y the corresponding output (±1) and b is
the threshold [8]. We construct our SVC kernel matrix K by performing the
dot product among coefficients. Several other kernels can also be obtained using
kernel properties [8,9].

5 Application Results

A set of 560 non-overlapping images of 40×40 pixels were extracted of the images
observed in Fig. 1. The images correspond to textures D1,D11,D17,D20,D21,D22,

Table 1. Classification accuracy results for SVC’s with different kernel functions

kernel Classification Accuracy (%)

< x, y > 41.7
< x, y >2 67.85
< βi, βj > 36.26
< βi, βj >2 94.78
< βi, βj >3 52.47

RBF 86.26
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Fig. 1. Brodatz images (upper left to lower right) D1,D11,D17,D20,D21,D22 and D77

Table 2. Parameters of the kernel functions Rj(s, t)

kernel μx μy σx σy θ

1 20 20 40 40 0
2 20 20 40 10 45
3 20 20 40 10 90
4 20 20 40 10 135
5 10 10 20 20 0
6 10 10 20 5 45
7 10 10 20 5 90
8 10 10 20 5 135
9 10 20 20 20 0
10 10 20 20 5 45
11 10 20 20 5 90
12 10 20 20 5 135
13 10 30 20 20 0
14 10 30 20 5 45
15 10 30 20 5 90
16 10 30 20 5 135
17 20 10 20 20 0
18 20 10 20 5 45
19 20 10 20 5 90
20 20 10 20 5 135

kernel μx μy σx σy θ

21 20 20 20 20 0
22 20 20 20 5 45
23 20 20 20 5 90
24 20 20 20 5 135
25 20 30 20 20 0
26 20 30 20 5 45
27 20 30 20 5 90
28 20 30 20 5 135
29 30 10 20 20 0
30 30 10 20 5 45
31 30 10 20 5 90
32 30 10 20 5 135
33 30 20 20 20 0
34 30 20 20 5 45
35 30 20 20 5 90
36 30 20 20 5 135
37 30 30 20 20 0
38 30 30 20 5 45
39 30 30 20 5 90
40 30 30 20 5 135

and D77 of Brodatz’s album [13]. For each class, 28 images were used as train-
ing, and 52 as testing data. The coefficients of (6) were obtained considering the
kernel parameters shown on Table 1. Results for different kernel functions are
presented in Table 2, observe that the first two kernels are constructed with dot
products of the raw images.

From Table 2 observe also that using the dot products of the images or
the dot product of coefficients alone produce similarly wrong results. The main
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improvement is obtained when the second order polynomial kernel is constructed.
For the second order of the bare images an improvement to 67.85 % is obtained.
But when the second order polynomial kernel for the coefficients is constructed,
an increase of accuracy to 94.78% is observed. The result for the radial basis
function (RBF) kernel ki,j = e‖βi−βj‖2

was obtained with parameter γ = 0.004.
All the results are presented for a νSVC with parameter ν = .5.

6 Conclusions

An image representation is proposed to detect texture. The representation is
based on an RKHS constructed using the Gabor elementary functions. The rep-
resentation is assembled using a basis pursuit approach, and the coefficients are
employed to implement kernels of support vector classifiers. Results are presented
for a set extracted of Brodatz texture images, achieving 94% of classification ac-
curacy.
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Abstract. In this paper we present a new kernel, the Railway Kernel,
that works properly for general (nonlinear) classification problems, with
the interesting property that acts locally as a linear kernel. In this way, we
avoid potential problems due to the use of a general purpose kernel, like
the RBF kernel, as the high dimension of the induced feature space. As a
consequence, following our methodology the number of support vectors is
much lower and, therefore, the generalizacion capability of the proposed
kernel is higher than the obtained using RBF kernels. Experimental work
is shown to support the theoretical issues.

1 Introduction

Support Vector Machines (SVM) have proven to be a successful method for the
solution of a wide range of classification problems [1], [6]. In particular, linear
SVMs are optimal in the classical setting in which two normally distributed
populations have to be separated. This assertion is supported by the fact that
SVM classifier approaches the optimal Bayes rule and its generalization error
converges to the optimal Bayes risk [4]. Our aim in this paper is to build a
global kernel for general nonlinear classification problems that locally behaves as
a linear (optimal) kernel. Within this approach we expect to avoid the problems
due to the use of a general purpose kernel like the RBF kernel: in this latter
case, the data are embedded in a high dimensional feature space and problems
of overfitting and poor generalization may appear. Since the proposed kernel
behaves locally as a linear kernel, the good properties of the SVM classifier will
be inherited by our method. In particular, the number of support vectors will
be much lower and, therefore, the generalizacion capability will be higher than
the obtained using RBF kernels.

To motivate our approximation, consider the situation presented in Figure 1.
The decision function is clearly nonlinear. However, this function can be ap-
proximated locally by linear functions. For instance, a linear SVM (with kernel
K3) solves the classification problem in the oval area. We build a global kernel
that will behave locally as the linear kernels whose decision functions are shown
in the figure. We denote this kernel by ‘Railway Kernel’. The name for this

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 936–944, 2006.
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3K

Fig. 1. Illustration of the Railway Kernel performance

kernel has been choosen because it is build like a railway where their wagons are
the local decision functions.

The paper is organized as follows. The general framework for the proposed
kernel is presented in Sections 2 and 3. The experimental setup and results on
various artificial and real data sets are described in Section 4. Section 5 concludes.

2 Railway Kernel

In this section we will study our new type of locally linear kernel, the Railway
Kernel. We proceed as follows: First, the kernel is defined on ‘simple’ areas where
the linear SVM works. Then the kernel is extended to the intersection of such
‘pure’ areas.

Next we introduce a special kernel that acts as an indicator function on the
proccess.

2.1 Indicator Kernel Functions

Given a data set, let assume that we are able to identify specific space areas
where the problem can be solved using a linear SVM. In this section we define
a special indicator function to identify such areas. For the sake of simplicity
only spherical areas are considered in this paper. The generalization to more
elaborated shapes is straightforward. The indicator kernel function takes value 1
if the point under consideration is in the circular area defined by a given center
and a radius, and decreases to zero quite fast as the distance to the center grows.
Assumming smoothness in the boundary of the areas, we can define the following
indicator kernel function λ(x):

λ(x) =

{
1 if‖x − c‖1/2 ≤ r

e−γ(‖x−c‖2−r2) if‖x − c‖1/2 > r
. (1)

where ‖ · ‖ denotes the Euclidean distance, x ∈ Rd is a sample point, c ∈ Rd is
the center of the sphere and r > 0 is the radius. Parameter γ > 0 is fixed in order
to obtain a fast transition from 0 to 1 and, in this case, λ(x) will aproximate
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Fig. 2. Indicator kernel funcions. (a) 2D case. (b) 1D case for a two-class classification
problem. Class density functions are shown.

an indicator function. It is immediate to check that λ(x) is a kernel. The two
dimensional case is shown in Figure 2a. Figure 2b represents a two-class classifi-
cation problem in one dimension and the corresponding indicator function. If a
SVM kernel built from this indicator function is used to solve the classification
problem, points outside the indicator influence will not be considered.

2.2 Railway Kernel for a Two Areas Problem

First consider the case of two areas without intersection. Kernel K1 solves the
classification problem in area A1 and so does K2 in area A2. Let x and y be
two sample data points. We define two functions: H1(x, y) = λ1(x)λ1(y) and
H2(x, y) = λ2(x)λ2(y), where λ1 and λ2 are indicator kernel functions (with
appropriate c and r parameters). The functions H1 and H2 take the value 1
when x and y belong to the same area, and 0 otherwise. In this particular case,
we define the global Railway Kernel KR as follows:

KR(x, y) = H1(x, y)K1(x, y) + H2(x, y)K2(x, y) . (2)

Notice that the new kernel is obtained as a functional combination of linear
kernels.

The Railway Kernel will approximate piecewise a global non-linear function
by local linear functions. Notice that KR(x, y) is a block-diagonal matrix. This
fact can be used to improve the optimization method used to solve the SVM
problem (see [10] for details about the SVM optimization problem).

By the Representer Theorem (see [9] for details), the SVM solution takes the
form: f(x) =

∑
i αiK(x, xi) + b. In this case, due to the particular Railway

Kernel structure the solution is given by:

f(x) =
∑

xi∈A1

αiK1(x, xi) +
∑

xj∈A2

αjK2(x, xj) + b (3)

Notice that KR behaves like K1 in the domain of indicator function H1 and like
K2 in the domain of indicator function H2.
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We have not yet studied neither a multiarea problem, nor intersection between
areas. These issues will be considered in Section 2.4.

2.3 A First Example

We generate four groups of observations (50 observations per group) corre-
sponding to four bivariate normal distributions: N(μi, Σi) for group i, with
μ1 = (3, 5), μ2 = (7, 5), μ3 = (15, 17), μ4 = (15, 13) respectively, and Σ1 = Σ2 =
diag(0.5, 1.5) and Σ3 = Σ4 = diag(1.5, 0.5). Points in groups 1 and 3 belong to
class +1 and points in groups 2 and 4 belong to class −1. Consider two areas
defined by indicator kernel funcions with centers c1 = (5, 5), c2 = (15, 15) and
radii r1 = r2 = 5 respectively. The point in this example is that the classes are
linearly separable in each of these areas; however there is no a global proper lin-
ear kernel. In this case, the problem could be solved with a RBF kernel (σ = 1).
Nevertheless when the Railway Kernel is used several advantages appear. The
number of support vector is significatively lower than in the RBF case (13.5% vs.
73.5%). Figure 3a and 3b show the decision functions for the Railway and RBF
kernels respectively. In addition, the number of positive eigenvalues of the kernel

Fig. 3. Two solutions for a modified XOR problem (support vectors are highlighted)

matrix is clearly lower using the Railway Kernel (2.0% vs. 25%). Therefore, the
manifold induced by the Railway Kernel is of lower dimension than the obtained
using the RBF kernel. Figures 4a and 4b show the eigenvalues for the Railway
and RBF kernels respectively.

2.4 Building the Railway Kernel in the Intersections

Next we deal with the problem of intersection between areas. Let A1 and A2 the
areas under consideration. In this case, the Railway Kernel is built as follows:

KR(x, y) =

⎧⎪⎪⎨⎪⎪⎩
K1(x, y) if x, y ∈ A1 ∩ Ac

2 ,
K2(x, y) if x, y ∈ Ac

1 ∩ A2 ,
1
2 (K1(x, y) + K2(x, y)) if x, y ∈ A1 ∩ A2 ,
0 otherwise ,

(4)

where Ac
i represents the complementary set of Ai.
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Fig. 4. Eigenvalues of the kernel matrices for the modified XOR problem

Intersections between areas can be seen as areas where both kernels achieve the
same performance, and should be equally weighted. Thus, the average of the
kernels (which is a kernel [2]) is computed for points in the intersection. Figure
5a shows graphically the idea of intersection, and Figure 5b shows the Railway
Kernel perfomance in a simple example.

Fig. 5. The Railway Kernel performance in an simple example with intersection

The matrix computed in (4) is a semidefinite positive and block diagonal
matrix. Thus, it comes from a Mercer kernel. It is possible to find an analytical
expression for (4). Consider the example given in Figure 5a). Without loss of
generality suppose that our sample is distributed in 3 zones: Hc

1 , Hc
2 and H1 ·H2,

where Hc
1(x, y) is the region of the space where the funcion H1 vanishes and it

is given by Hc
1 = (1 − λ1(x))(1 − λ1(y)). Thus, it represents those points in A2

and not in A1. Hc
2 represents those points in A1 and not in A2. The final kernel

(KR) will be the sum of three matrices. KR(x, y) = 0 when x and y belong to
different zones. In other case, KR(x, y) is exactly the kernel that works on the
zone x and y belong to. The expression for the kernel is as follows:

KR(x, y) = Hc
1(x, y)K2(x, y) + Hc

2(x, y)K1(x, y) +
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(H1(x, y)H2(x, y))
1
2
(K1(x, y) + K2(x, y)) . (5)

As before, KR is a block-diagonal matrix where each block is a kernel matrix.
Then, KR is a positive semidefinite matrix and thus a kernel. The generalization
of (5) to the case of more than 2 areas is straightforward.

Notice that, to compute the Railway Kernel it is enough to use the areas
information and the local linear kernels on that areas. We have built a method
to compute an aproximation to a nonlinear decision function with a sum of local
linear hiperplanes.

3 Areas Location

In Section 2 we have assumed that each point in the sample belongs to one or
more previously defined areas. Now we present a local algorithm to detect such
areas in a classification problem. The algorithm works in two main steps. First,
single labelled areas are created. A sample point is assigned to its nearest area
if the label of the point is the same that the label in the area. In other case,
a new area is defined. A new area is built when the distance between the new
point under consideration and its nearest area is higher than the maximun of the
average distances into the areas. We repeat the process until each sample point
belong to an area. Once the areas A1, . . . , AM have been built, the final areas
are obtained joining the nearest areas with different labels. In order to obtain
the indicator function kernels needed to build the Railway Kernels, centers and
radii are needed. Centers are computed as the A1, ..., AM centroids, and radii in
each area are computed as the maximun distance between the center and the
farthest point in this area.

An example to illustrate of the performance of the algorithm is presented in
Figure 6. Figure 6a presents a two class problem in two dimensions. In Figure
6b the result of applying the areas location algorithm is shown. The procedure
is as follows. First, area 1 is created and completed. Next, we look for the next
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(a) Initial problem.
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Fig. 6. An example of the Areas Location algorithm performance
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nearest point. Since a data point belongs to another class a new area is defined
(area 2). This new area is completed and a new point is evaluated. Since the
distance between the previous area (2) and the nearest point (the new point) is
large enough, a new area is created (area 3), and so on. Figure 6b shows the six
final spherical areas detected.

4 Experiments

To test the performance of the proposed method, a SVM (with the upper bound
on the dual variables fixed to 1) has been trained on artificial and real data sets
using the Railway Kernel matrix previously constructed. We have compared the
proposed methods with two SVM classifiers built using RBF kernels. For the first
classifier (SVM1) the parameter σ is choosen as a function of the data dimension
(see [8] and [7] for details). For the second (SVM2), σ and the upper bound on
the dual variables of the optimization problem are choosen following the ideas
in [3].

4.1 Two Areas with Different Scattering Matrices

The first data set under consideration is presented in Figure 7 and corresponds
to 400 points in IR2. There are two areas of points (80% of the sample is in area
A1 and 20% is in area A2). Each area Ai corresponds to a normal cloud. The
first area center is (0, 1) and the second group center is (1, 1), while the diagonal
covariance matrices are σ2

i I where σ1 = 10−2σ2, and σ2 = 1. The point on this
example is that the areas do not coincide with the classes {−1,+1} that are to
be learned. Half of the points in each class belongs to area A1, and the other
half to area A2. Within each area, the classes are linearly separable. Therefore,
the only way to build a proper classifier for this data set is to take into account
the area each point belongs to. We use 50% of the data for training and 50% for
testing.

To compare the performance of the Railway Kernel, consider a set of three
RBF kernels with parameters σ =0.5, 5 and 10 respectively.
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Fig. 7. Two areas with different scattering matrices. The first area center is (0, 1) and
the second area center is (1, 1). The areas do not coincide with the classes {−1, +1}.
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Table 1 shows the performance of our proposal for this data set. The results
have been averaged over 10 runs. Given the geometry of the data, it is clear that
is not possible to choose a unique best σ for the whole data set. As σ grows, the
test error increases for the data contained in area A1, and decreases within area
A2. The Railway Kernel clearly improves the best RBF kernel.

Table 1. Percentage of missclassified data and percentage of support vectors for the
two different scattering data set: A1 stands for the less scaterring group, A2 stands for
the most dispersive one

Train Test Support
Error Error Vectors

Method Total A1 A2 Total A1 A2 Total

RBFσ=0.5 2.4 3.0 0.0 13.4 4.1 51.0 39.2
RBFσ=5 4.6 5.8 0.0 13.6 8.6 35.0 82.6
RBFσ=10 29.1 36.2 0.5 36.0 44.1 10.0 94.4

Railway Kernel 3.7 3.6 15.6 4.2 0.1 20.6 14.1
SVM1 2.1 2.6 0.0 13.5 4.1 51.0 39.6
SVM2 2.1 2.6 0.0 11.0 3.3 41.5 37.6

4.2 The Breast Cancer Data Set

In this section we have dealt with a database from the UCI Machine Learning
Repository: the Breast Cancer data set [5]. The data set consists of 683 obser-
vations with 9 features each. We use 80% of the data for training and 20% for
testing.

Table 2 shows the performance of the Railway Kernel on this data set. Again,
the results have been averaged over 10 runs. Our method clearly improve the
RBF kernel with σ parameter choosen as a function of the data dimension. Our
method does not take into account the penalization parameter of the SVM.
However, our results are similar to the classification results obtained when both
parameters, σ and the upper bound on the dual variables of the optimization
problem, are choosen, but using significantly less support vectors.

Table 2. Percentage of missclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors for the cancer data set. Standard deviations in brackets.

Train Test Support
Method Error Sens. Spec. Error Sens. Spec. Vectors

Railway Kernel 2.5 (0.3) 0.979 0.974 2.9 (0.4) 0.975 0.876 18.6 (3.6)
SVM1 0.1 (0.1) 1.000 0.999 4.2 (1.4) 0.989 0.942 49.2 (1.0)
SVM2 0.0 (0.0) 1.000 0.999 2.9 (1.6) 0.963 0.975 49.2 (1.0)
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5 Comments and Conclusions

In this paper we have presented a new kernel, the Railway Kernel. This global
kernel takes advantage of the good generalization properties of the local linear
kernels for classification tasks. We have shown that the potential problems due
to the use of a general purpose kernel like the RBF kernel have been avoid.
The generalization capability of the proposed kernel is higher than the obtained
using RBF kernels. The method could be generalized by using alternative non-
linear local kernel. Further research will focus on the theoretical properties of
the Railway Kernel and extensions.
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Abstract. In this paper we propose some methods to build a kernel ma-
trix for classification purposes using Support Vector Machines (SVMs) by
fusing Gaussian kernels. The proposed techniques have been successfully
evaluated on artificial and real data sets. The new methods outperform
the best individual kernel under consideration and they can be used as
an alternative to the parameter selection problem in Gaussian kernel
methods.

1 Introduction

It is well known that the choice of kernel parameters is often critical for the good
performance of Support Vector Machines (SVMs). Nevertheless, to find optimal
values in terms of generalization performance for the kernel parameters is an open
and hard to solve question. An a priori kernel selection for SVM is a difficult task
[1]. The Gaussian kernel (or radial basis function (RBF) kernel) function is one
of the most popular classical SVM kernels. The effect of RBF kernels parameter
within a SVM framework has been studied from a theoretical point of view [5].
Several practical proposals to choose the RBF kernel parameter have been made
[14,7,3,13]. However, there is not a simple and unique technique to select the
best set of parameters to build a kernel matrix. Our proposal is based on the
fusion of the different RBF kernel matrices that arise with the use of a range
of values for the unkown parameters. Fusing kernels provides a solution that
minimizes the effect of a bad parameter choice. An intuitive and usual approach
to build this fusion is to consider linear combinations of the matrices. This is the
proposal in [6], which is based on the solution of a semi-definite programming
problem to calculate the coefficients of the linear combination. Nevertheless,
the solution of this kind of optimization problem is computationally very
expensive [16].

In this paper we propose several methods to build a kernel matrix from a col-
lection of RBF kernels generated from different values of the unkown parameters
in the RBF kernel function. The functions involved in the proposed methods take
advantage of class conditional probabilities and nearest neighbour techniques.

The paper is organized as follows. The general framework for the methods is
presented in Section 2. The proposed methods are described in Section 3. The

J.F. Mart́ınez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 945–953, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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experimental setup and results on artificial and real data sets are described in
Section 4. Section 5 concludes.

2 General Framework

Consider the general expression of the RBF kernel function:

K(xi, xj) = exp

(
−‖xi − xj‖2

2σ2

)
, (1)

where σ > 0 is the kernel parameter, and xi and xj are data points in the
sample. The kernel parameter controls the flexibility of the kernel. Small values
of σ gradually reduce the kernel to the identity matrix. On the other hand, large
values of σ imply that the kernel matrix become close to a constant function.
Notice that the RBF kernel matrix defines a similarity measure. As already
mentioned, our proposal is based on the generation of a collection of kernel
matrices using a wide range of values for the unkown RBF kernel parameter.
Once the collection has been built, we will fuse the matrices in order to build a
unique kernel.

In order to fuse the kernel matrices we make use of the concept of functional
fusion of matrices. This concept is based on the one introduced originally in [10].
Let K1,K2, ...KM be a set of M normalized input RBF kernel matrices defined
from (1) on a data set X , and denote by K∗ the desired output combination.
Let y denote the label vector, where for simplicity yi ∈ {−1,+1} (the extension
to the multiclass case is straightforward).

Consider the following (functional) weighted sum:

K∗ =
M∑

m=1

Wm ⊗ Km , (2)

where Wm = [wm(xi, xj)] is a matrix whose elements are nonlinear functions
wm(xi, xj), and ‘⊗’ denotes the element by element product between matrices
(Hadamard product). Notice that if wm(xi, xj) = μm, where μm ,m = 1, . . .M
are constants, then the method reduces to calculate a simple linear combination
of matrices:

K∗ =
M∑

m=1

μmKm . (3)

Several methods have been suggested to learn the coefficients μm of the linear
combination [2,6]. Thus, the formulation used in these papers is a particular case
of the formula we propose. For instance, if we take μm = 1

M , the average of the
input matrices is obtained.

Regarding our proposals, consider the (i, j) element of the matrix K∗ in (2):

K∗(xi, xj) =
M∑

m=1

wm(xi, xj)Km(xi, xj) . (4)
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This is the general formula of our approximation. In this way, we will generate
a particular weight for each pair of elements under consideration.

An aspect that has to be treated before describing the methods is the fact
that the kernel matrix arising from the combination has to be a positive semi-
definite matrix. Since this can not be guaranteed in advance, we make use of some
of the several solutions that have been proposed to solve this difficulty [12]. For
instance, consider the spectral decomposition K∗ = QΛQT , where Λ is a diagonal
matrix containing (in decreasing order) the eigenvalues of K∗, and Q is the
matrix of the corresponding eigenvectors. Assume that Λ has at least p positive
eigenvalues. We can consider a p-dimensional representation by taking the first
p columns of Q: QpΛpQ

T
p . We will refer to this technique as ‘Positive Eigenvalue

Transformation’. A computationally cheaper solution is to consider the definition
of a new kernel matrix as K∗2. Notice that, in this case, the new kernel matrix is:
QΛ2QT . We call this method ‘Square Eigenvalue Transformation’. In practice,
there seems not to be a universally best method to solve this problem [11].

3 Some Specific Proposals

The next section describes a common feature to the methods we will propose:
The use of conditional class probabilities in order to build the weights wm(xi, xj)
introduced in the previous section.

3.1 Conditional Class Probabilities

Consider the pair (xi, yi) and an unlabelled observation xj . Given the observed
value xj , define P (yi|xj) as the probability of xj being in class yi. If xi and
xj belong to the same class this probability should be high. Unfortunately, this
probability is unknown and has to be estimated. In our proposals, we will esti-
mate it by:

P (yi|xj) =
nij

n
, (5)

where nij is the number of the n-nearest neighbours of xj belonging to class yi.
Notice that each kernel matrix induces a different type of neighborhood. In fact,
there is an explicit relation between a kernel matrix and a distance matrix. For
instance, consider a matrix K of inner products in an Euclidean space F (a
kernel). Then D2 = veT + evT − 2K is a matrix of square Euclidean distances
in F [4], where v is a vector made up of the diagonal elements of K. Hence,
it is advisable to estimate this probability for each representation, that is, for
the matrix Km we will estimate the conditional probabilities Pm(yi|xj) using
the induced distances matrix D2

m. We will need the average of this conditional
probabilities over the kernel matrices:

ρ̄(xi, xj) =
P̄ (yi|xj) + P̄ (yj |xi)

2
, (6)

where P̄ (yi|xj) = 1
M

∑M
m=1 Pm(yi|xj).
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To estimate the conditional class probabilities, the appropriate size of the
neighbourhood has to be determined. We propose a dynamic and automatic
method: given two points xi and xj , we look for the first common neighbour.
For each data point (xi and xj), the size k of the neighbourhood will be de-
termined by the number of neighbours nearer than the common neighbour.
To be more specific, let R(xi, n) = {n-nearest neighbours of xi}, then k =
argminn{R(xi, n) ∩ R(xj , n) �= ∅}. Obviously, the size k of the neighbourhood
depends on the particular pair of points under consideration.

At this point, we have the tools to implement some particular proposals of com-
bination methods.

3.2 The ‘MaxMin’ Method

The ‘MaxMin’ method (first used in [10]) produces a functional fusion of two
kernel matrices, namely, the maximum and the minimum of the ordered sequence
of similarities, being zero the weight assigned to the rest of the similarities.
Consider the ordered sequence:

min
1≤m≤M

Km(xi, xj) = K[1](xi, xj) ≤ . . . ≤ K[M ](xi, xj) = max
1≤m≤M

Km(xi, xj) ,

where the subscript [·] denotes the position induced by the order. This method
builds each element of K∗ using the formula:

K∗(xi, xj) = ρ̄(xi, xj)K[M ](xi, xj) + (1 − ρ̄(xi, xj))K[1](xi, xj) . (7)

If xi and xj belong to the same class then the conditional class probabilities
ρ̄(xi, xj) will be high and the method guarantees that K∗(xi, xj) will be large.
On the other hand, if xi and xj belong to different classes the conditional class
probabilities ρ̄(xi, xj) will be low and the method will produce a value close to
the minimum of the similarities. In the following, this method will be refered as
MaxMin.

3.3 The Percentile-In Method

Next we propose a method whose assignment of positive weights wm(xi, xj) is
based on the order induced by the similarities. The method builds each element
of K∗ using the following formulae:

K∗(xi, xj) = K�ρ̄(xi,xj)M� , (8)

where the subscript �· denotes the upper rounding of the argument.
We denote this method by ‘Percentile-in’ method [10] . If the class proba-

bility ρ̄(xi, xj) is high, we can expect a high kernel between xi and xj and the
method will guarantee a high K∗(xi, xj). If the class probability ρ̄(xi, xj) is low,
K∗(xi, xj) will be also low.
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3.4 The Percentile-Out Method

As in the previous method, the last proposed technique is based on the order
induced by the similarities. However, in this case two similarities are considered.
Each element of the K∗ matrix is built as follows:

K∗(xi, xj) =
1
2

(
K�P̄ (yi|xj)M� + K�P̄ (yj |xi)M�

)
, (9)

where the subscript �· denotes the upper rounding of the argument. We denote
this method by ‘Percentile-out’ method [10] .

If the conditional class probabilities P̄ (yi|xj) and P̄ (yj |xi) are high, we can
expect a high kernel between xi and xj and both methods will guarantee a high
K∗(xi, xj). If the conditional class probabilities P̄ (yi|xj) and P̄ (yj |xi) are both
low, K∗(xi, xj) will be also low.

4 Experiments

To test the performance of the proposed methods, a SVM (with the upper bound
on the dual variables fixed to 1) has been trained on several real data sets using
the output matrix K∗ constructed.

In order to classify a non-labelled data point x, K∗(x, i) has to be evaluated.
We calculate two different values for K∗(x, i), the first one assumming x belongs
to class +1 and the second assumming x belongs to class −1. For each assump-
tion, we compute the distance between x and the SVM hyperplane and assign x
to the class corresponding to the largest distance from the hyperplane.

Since our technique is based on the calculation of the nearest neighbours, we
have compared the proposed methods with the k-Nearest Neighbour classifica-
tion (k-NN, using the optimal value k = l

4
p+4 , where l is the sample size and p

is the data dimension [15]). In order to evaluate the improvement provided by
our proposals, we have carried out a Wilcoxon signed-rank test (see for instance
[8]). This nonparametric test is used to compare the median of the results for
different runs of each method. So, the null hypothesis of the test is that our
methods do not improve the individual kernels.

4.1 Two Areas with Different Scattering Matrices

This data set, shown in Figure 1, is made up of 400 points in IR2. Visually there
are two areas of points (80% of the sample is in area A1 and 20% is in area
A2). Each area Ai corresponds to a circle with radio σi. Here σ1 = 10−2σ2, with
σ2 = 1. The first group center is (0, 1) and the second group center is (1, 1).
Nevertheless, the areas do not coincide with the classes {−1,+1} that are to be
learned. Half of the points in each class belongs to aread A1, and the other half
to area A2. Within each area, the classes are linearly separable. Therefore the
only way to built a classifier for this data set is to take into account the area
each point belongs to. We use 50% of the data for training and 50% for testing.
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Fig. 1. Two areas with different scattering matrices. The first area center is (0, 1) and
the second area center is (1, 1). The areas do not coincide with the classes {−1, +1}.

Let {K1, . . . ,K5} be a set of five RBF kernels with parameters σ =0.5,
2.5, 5, 7.5 and 10 respectively. We normalize the kernel matrices: K(x, z) =

K(x,z)√
K(x,x)

√
K(y,y)

. In order to get a positive semi-definite kernel matrix K∗, we

use the Square Eigenvalue Transformation technique described in Section 2.
Table 1 shows the performance of our proposals for this data set. The results

have been averaged over 10 runs. Given the geometry of the data, it is clear that
is not possible to choose a unique best σ for the whole data set. As σ grows, the
test error increases for the data contained in area A1, and decreases within area
A2. The LC method seems to work fairly. Nevertheless, the MaxMin method
achieves the best results on classification. Regarding the Wilcoxon signed-rank
test for the comparison of our methods with the LC technique, the p-value is
smaller than 0.001 for the MaxMin method.

4.2 Cancer Data Set

In this section we have dealt with a database from the UCI Machine Learning
Repository: the Breast Cancer data set [9]. The data set consists of 683 obser-
vations with 9 features each. Let {K1, . . . ,K12} be a set of RBF kernels with
parameters σ =0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 respectively. We
use the Positive Eigenvalue Transformation to solve the problem of building a
positive semi-definite matrix.

Table 2 shows the performance of the proposed methods when combining all
these kernel matrices. Again, the results have been averaged over 10 runs. The
MaxMin method, the Percentile-in method, and the Percentile-out method im-
prove the best RBF kernel under consideration (test errors of 2.8% for the three
methods vs. 3.1%). The results provided by all the combination methods are
not degraded by the inclusion of kernels with a bad generalization performance.
Our methods clearly outperform the SVM classifier using an RBF kernel with
σ =

√
d/2, where d is the data dimension (see [14] for details). Regarding the

Wilcoxon signed-rank test for the comparison of our methods with the SVM tech-
nique, the p-values are smaller than 0.05 for the MaxMin and the Percentile-out
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Table 1. Percentage of missclassified data and percentage of support vectors for the
two different scattering data set: A1 stands for the less scaterring group, A2 stands for
the most dispersive one

Train Test Support
Error Error Vectors

Method Total A1 A2 Total A1 A2 Total A1 A2

RBFσ=0.5 2.1 2.6 0.0 13.5 4.1 51.0 39.6 25.1 97.5
RBFσ=2.5 4.8 6.0 0.0 13.5 6.5 41.5 62.2 53.4 97.5
RBFσ=5 6.6 8.2 0.0 14.0 10.1 29.5 82.8 79.2 97.0
RBFσ=7.5 16.0 19.9 0.5 22.2 22.6 20.5 94.6 94.2 96.0
RBFσ=10 30.7 38.2 0.5 37.3 44.1 10.0 94.2 95.4 89.5

MaxMin 0.3 0.4 0.0 4.9 0.9 21.0 27.7 9.6 100.0
Percentile-in 4.2 5.1 0.5 9.0 3.1 32.5 35.9 20.1 99.0
Percentile-out 0.7 0.9 0.0 7.7 1.1 34.0 29.0 11.4 99.5
k-NN 14.5 3.5 58.5 15.5 3.5 63.5 — — —
LC 1.6 2.0 0.0 8.1 2.5 29.5 46.6 33.2 100.0

Table 2. Percentage of missclassified data, sensitivity (Sens.), specificity (Spec.) and
percentage of support vectors for the cancer data using a battery of RBF kernels.
Standard deviations in brackets.

Train Test Support
Method Error Sens. Spec. Error Sens. Spec. Vectors

Best RBF 2.3 (0.3) 0.979 0.976 3.1 (1.6) 0.976 0.966 13.6 (1.3)
Worst RBF 0.0 (0.0) 1.000 1.000 24.7 (2.3) 1.000 0.627 74.0 (2.4)

MaxMin 0.1 (0.1) 0.999 0.998 2.8 (1.6) 0.963 0.975 14.2 (1.5)
Percentile-in 2.0 (0.4) 0.982 0.979 2.8 (2.8) 0.975 0.969 7.8 (0.7)
Percentile-out 0.2 (0.1) 0.999 0.997 2.8 (1.7) 0.964 0.975 19.2 (4.5)
k-NN 2.7 (0.5) 0.961 0.980 3.4 (1.5) 0.949 0.974 — (—)
LC 0.0 (0.0) 1.000 1.000 3.2 (1.6) 0.976 0.964 41.5 (4.4)
SVM 0.1 (0.1) 1.000 0.999 4.2 (1.4) 0.989 0.942 49.2 (1.0)

methods, and smaller than 0.1 for the Percentile-in method. Again, the improve-
ment obtained by the use of our proposals is statistically significant.

5 Conclusions

In this paper, we have proposed some methods for the fusion of RBF kernels in
order to improve their classification ability. The proposed techniques are specially
usefull when does not exist an overall and unique best RBF kernel. The suggested
kernel fusion methods compare favorably to the single use of one of the RBF
kernels involved in the combination. Further research will focus on the theoretical
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properties of the methods. In particular, the methods shown in this paper do not
take full advantage of the concept of the functional weighted sum described in
(2): we think that there is room for improvement and more sophisticated ways for
the calculus of the weights for the particular case of RBF kernel matrices may be
designed. There are two natural extensions of this work. Firstly, the application
of this methodology to kernels not defining a similarity (for instance, polynomial
kernels). In this case, care has to be taken when transforming the kernel into
a similarity. A second extension would be the generalization for the fusion of
different types of kernels. In this case, the normalization of the kernels has to be
carefully studied.
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Abstract. Support Vector Machines (SVM) have been applied extensively to 
classification and regression problems, but there are few solutions proposed for 
problems involving time-series. To evaluate their potential, a problem of 
difficult solution in the field of biological signal modeling has been chosen, 
namely the characterization of the cerebral blood flow autoregulation system, 
by means of dynamic models of the pressure-flow relationship. The results 
show a superiority of the SVMs, with 5% better correlation than the neural 
network models and 18% better than linear systems. In addition, SVMs produce 
an index for measuring the quality of the autoregulation system which is more 
stable than indices obtained with other methods. This has a clear clinical 
advantage.  

Keywords: Support Vector Machine, biological signals, cerebral autoregu-
lation.  

1   Introduction 

Support Vector Machines (SVMs) have shown their usefulness by improving over the 
performance of different supervised learning methods, either as classification models 
or as regression models. But the small number of papers involving the prediction of 
temporal series or signal modeling [1-2] shows a lack of assessment in this respect. 
When these applications are restricted to the field of biomedical signals, SVMs are 
used as classical classifiers following a process of extraction of signal characteristics 
[3-4]. At this time we are not aware of any applications that use SVMs as recurrent 
structures for modeling biomedical signals. 

To evaluate SVMs in the field of biomedical signal modeling and prediction we 
have chosen to model the Autoregulation Blood Flow System (ABFS). Describing 
this system adequately is a complex problem for which currently there is no model 
that represents the phenomenon properly. This means that we can not have reliable 
methods that allow detecting, diagnosing and monitoring different cerebrovascular 
                                                           
* This works was supported by FONDECYT, Chile, under project 1050082. 



 SVM with External Recurrences for Modeling Dynamic Cerebral Autoregulation 955 

conditions such as stroke, carotid artery disease, severe head injury, Alzheimer’s 
disease, vascular dementia, arterial hypertension and others. 

The ABFS performs the function of maintaining Cerebral Blood Flow (CBF) 
approximately constant within a given range, even if there are changes in Arterial 
Blood Pressure (ABP). The study of this system has been possible due to the 
development of Transcranial Doppler as a tool for measuring Cerebral Blood Flow 
Velocity (CBFV), which can be assumed to be equivalent to CBF from the studies of 
Newell et al [5].  

The classical way of representing this system is to attempt the dynamic 
characterization of the ABP-CBFV relationship. Different techniques have been used 
to provoke changes in ABP and then observe the corresponding CBFV. Chiefly 
amongst them is the sudden release of thigh cuffs inflated above systolic pressure for 
3 min. [5-9]. Different system identification methods have been used to evaluate the 
dynamic ABP-CBFV relationship. Those carried out in the time domain should be 
noted; they model the ABP-CBFV relation by means of a differential equation 
proposed by Aaslid-Tiecks (A-T) [9] which has the advantage of measuring the 
autorregulation of each subject with a unidimensional index. These methods assume 
that there is a linear relation between ABP and CBFV, but it is well known that there 
are a number of nonlinearities in the system [6,10-12].  

As far as we know, the only papers that modelled the thigh cuff maneuver 
responses in a nonlinear way are those of Panerai [10-11]. The first of them uses 
Winer-Laguerre filters (with second order polynomials) and the second uses artificial 
neural networks (Time Lagged FeedForward, with Laguerre memory), but neither of 
them improved the predictive capacity of linear models such as those of A-T [9]. 

To carry out this work we have used 84 thigh cuff maneuvers performed to 15 
healthy subjects. We propose to use the SVMs as static regression machines, adding 
to them external recurrences, allowing the temporal ABP-CBFV relation to be treated. 
To compare the results we used the same data to build models with neural networks 
and we also applied the equations of Aaslid-Tiecks [9]. 

2   Methods 

2.1   Data Collection and Pre-processing 

The study considers 16 voluntary subjects who did not have a history of 
cardiovascular problems, hypertension or nervous system disease. The average age ± 
SD of the subjects was 30 ± 7 years, with a range of 23 to 47 years. The 
measurements were made in a room at a temperature of approximately 30 ºC at the 
University of Leicester, in England. The study was approved by the Leicestershire 
Ethics Committee.  

Each of the 16 subjects underwent six thigh cuff maneuvers (a total of 96). Seven 
maneuvers (in four subjects) had excessive noise at their origin, and three of them 
were concentrated in one subject. In order to have maneuvers that would allow a 
symmetric performance of training and tests (2 or 3 maneuvers for training and the 
same number for testing), the subject who had the fewest maneuvers was discarded 
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and three subjects remained with only four maneuvers. As a result, 15 subjects 
underwent a total of 84 maneuvers. 

CBFV was monitored in the middle cerebral artery using a Scimed QVL-120 
Transcranial Doppler system with a 2-MHz transducer. ABP was measured with a 
noninvasive Finapres 2300 Ohmeda pressure monitor. 

Pressure and flow data were collected and stored on a digital audio tape on an eight 
channel recorder (Sony PC108M) for later processing. The data from the tape were 
transferred to a microcomputer in real time. Fast Fourier transform was used to 
extract the maximum frequency (i.e.velocity) envelope with a 5-ms time window. The 
ABP signal was sampled at 200 [samples/sec]. Both signals were filtered with an 
eighth order lowpass Butterworth filter with a 20-Hz frequency cut-off. The 
beginning of each cardiac cycle was detected from the diastolic value of the ABP 
wave, and mean values for ABP (MABP) and CBFV were calculated for each cardiac 
cycle, interpolated with a spline and resampled at 0.2 s interval to produce signals 
with a uniform sampling rate (5 samples/s). 

2.2   Modeling Techniques 

Support Vector Machine 
The SVM algorithm that we used corresponds to the one called ν-SVM, which was 
introduced by Schölkopf et al. [13] in the late 1990s. This algorithm is based on the 
results of the statistical theory of learning given by Vapnik [14], which introduces 
regression as the fitting of a tube of radius ε to the data. The decision boundary for 
determining the radius of the tube is given by a small subset of training examples called 
Support Vectors (SV). 

Vapnik’s SVM Regression estimates the values of w  to obtain the function  

bxwxf += • )()( ,                      , ,, RR ∈∈ bxw N  (1) 

by introducing the so called ε-insensitive loss function shown in equation 2: 

{ }εε −−=− )(,0max)( xfyxfy , (2) 

which does not penalize errors smaller than ε > 0  (where ε corresponds to a value chosen 
a priori). 

The algorithm is implemented by minimizing the functional risk 
2

w  to which is 

added a penalty for leaving points outside the tube (identified by slack variables  ξ). In 
this way the risk function to be minimized is given by equation 3, where C is a constant 
that determines the trade-off between the complexity of the model and the points that 
remain outside the tube. Figure 1 shows a geometric interpretation for the case of a linear 
regression. 
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Fig. 1. Geometric interpretation of the SV regression in which the regression equation is estimated 
by means of a tube of radius ε. The trade-off between the complexity of the model and the points 
left outside the regression tube is controlled by the slack variables ξ. The dark points correspond to 
the SVs. 

The variation of the ν-SVM introduced by Schölkopf et al. [13], consists in adding a 
variable ν≥0 that weights the size of ε making a trade-off between the complexity of the 
model and the slack variables (equation 4). 
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The solution of this minimization problem for obtaining the weight vectors w is found 
by the standard optimization procedure for a problem with inequality restrictions when 
applying the conditions of Kuhn-Tuker to the dual problem. The main advantage of 
introducing parameter ν ∈ [0-1] is that it makes it possible to control the error fraction 
and the number (or fraction) of SVs with only one normalized parameter. 

To solve a nonlinear regression problem it is sufficient to substitute the dot product 
between two independent original variables ji xx •  by a kernel function 

))()(( ji xxk ΦΦ • . This function carries out the dot product in a space of higher 

dimension such that it ensures the linearity of the regression function in the new space via 
a nonlinear map Φ. Several functions may be used as kernel, such as the Gaussian 

))2/(exp(),( 22
σjiji xxxxk −−=  or the polynomial function p

jiji xxxxk )(),( •= . 

In this way the nonlinear regression equation is given by equation 5. 

bxwkxf += ),()(  (5) 

To implement the recurrence in the SVM we used external feedback from the delayed 
outputs (v(t-i)=CBFV), and the present input (p(t)=MABP) and past time instants (p(t-j)) 
are considered, as shown in figure 2. 
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Fig. 2. Regression SVM with external recurrences for modeling the ABP-CBFV relation 

Neural Networks 
To implement the neural models we used the ideas that are introduced in the work of 
Nerrand et al. [15], where it is shown that a static neural network with external 
recurrences is equivalent to the neural networks with internal recurrences. The resultant 
model is similar to that shown in fig. 2 when the SVM is replaced by a static neural 
network.  

The training algorithms for the static network correspond to variations of the 
backpropagation method, which is carried out by approximations of second order 
gradient descent methods. 

The two methods used correspond to algorithms of the quasi-Newton type which 
avoid the direct calculation of the Hessian matrix. The One Step Secant method was used 
first; it uses an approximation for calculating the search direction of the best descending 
slope as the combination of the slopes calculated in previous steps. The second method 
corresponds to the algorithm of Levenbert-Marquardt, which uses a multiplication of 
Jacobian matrices to estimate the Hessian matrix.  
 
Linear Model 
As reference model, use implemented the most widely used linear method in the 
autoregulation literature, which is that of A-T [9]. This method estimates the CBFV 
from a second order linear differential equation that uses two state variables, x1 and x2, 
as shown in equations 6. 
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     (6) 

where f is the sampling frequency and CCP refers to the Critical Closing Pressure. 
NP(t) is the change in the mean MABP normalized from a reference value. The 
model’s parameters are given by K, D and T, where K is a parameter that represents 
the system’s autoregulatory gain, D is the damping factor, and T is a time constant.  

For every maneuver produced in the p(t), a corresponding model velocity )(ˆ tv  is 

predicted, which can be compared with the actual velocity v(t). To choose the velocity 
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given by the model, 10 different responses by the differential equation are generated, 
corresponding to 10 different values of parameters K, T and D. The combination of 
parameters to generate the )(ˆ tv outputs has been tabulated previously [9]. The 

model’s response signal is chosen as the curve that shows the largest correlation (or 
smallest error) with the actual velocity signal v(t).  

This method has the advantage that the 10 tabulated responses for the combination 
of parameters correspond to an index that measures the quality of the autoregulation 
(ARI index) of the subjects who undergo the thigh cuff techniques. The ARI index 
classifies the subjects on a 0 to 9 scale in which 0 represents the complete absence of 
autoregulation and 9 refers to perfect autoregulation. 

2.3   Selection of Parameters and Statistical Analysis 

The main objective is to compare the different methods in terms of their predictive 
capacity, with the purpose of obtaining a method that generates models that represent 
adequately the ABFS. To evaluate the methods’ predictions, the data were divided 
into two disjoint groups of similar size. One group consisted of odd-numbered 
maneuvers (1 3 5 for subjects with 6 maneuvers) and the other group contained the 
even-numbered maneuvers (2 4 6 for subjects with 6 maneuvers), in this way trying 
to avoid any bias due to physiological accomodation between one maneuver and 
another [11]. Therefore, a “balanced” cross-validation process takes place that 
consists in training with even-numbered maneuvers and performing the test with odd-
numbered maneuvers, and vice versa. The model chosen corresponds to the training 
that produced the best correlation (or the smallest error) with the test set. 

For the nonlinear models we have not made any a priori assumptions with respect 
to a general structure for autoregulation. Consequently, every parameter of the model 
must be fitted for each of the subjects; thereby obtaining what we call models 
“parametrized by subject”.  

In the case of the SVM one must seek the best combination of MABP and CBFV 
delays and of parameters ν, C and σ for each subject, and similarly for the case of the 
neural networks, where in addition to fitting the delays, the optimum number of 
neurons in the hidden layer must be established.  

To measure the performance of the models, the correlation coefficient  r  as well as 
the mean square error (MSE) were used. The latter is defined according to equation 7.  
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     (7) 

In order to compare different model results in terms of error and correlation, 
Wilcoxon’s non-parametric sign test was used, and two results were considered 
significantly different when p<0.05. 

In addition to evaluating the predictive capacity of each method, it is important to 
analyze the variability of the autoregulatory indices generated by each method. To 
calculate the autoregulatory indices in the nonlinear cases, it is possible to enter a step 
signal into the trained models and to fit the A-T equations [9] to obtain the 
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corresponding autoregulatory index (ARI). To analyze the variability of this index, we 
simply calculated the coefficient of variation ( xCV /σ= ). 

It is also important to find out if the nonlinear models succeed in determining 
whether the model is able to capture the physiological dynamics of the ABFS, or if 
the model has only managed a numerical fit for the data. One way of determining 
whether this is or is not the case is to input an ABP step signal that simulates a thigh 
cuff technique to an already trained model, and examine the CBFV response signal. 

3   Results 

The three methods were applied to each of the 15 subjects, generating a parametrized 
model by subject in the case of the nonlinear models.  

To build a model by subject using the SVM,  from 1 to 10 delays were tested in the 
CBFV (which corresponds to the order of the model) and from 1 to 14 delays in the 
MABP. Parameter ν was evaluated from 0.1 through 1 in intervals of 0.1. Parameter σ 
was tested from the units to the hundreds in an incremental way. Parameter C was 
increased by powers of two [16], and the best results were obtained when C reached 
higher values, deciding to leave it at infinity. This means that the solution is 
concentrated on minimizing the empirical risk, without considering the complexity of 
the model.  

For the SVM, parameter ν varied form 0.1 to 0.9, with a predominance of 0.9 
values. Parameter σ  varied between 5 and 60, with a predominance of a value of 15. 

In the case of the neural networks, the same delayed ranges used for the SVMs 
were applied to MABP and CBFV, and for the neurons of the hidden layer a range of 
2 to 20 was used. When this parameter combination was applied to the subject 
population, the following results were obtained: the most frequent numbers of 
neurons in the hidden layer were 4 and 6; the delays in CBFV varied between 1 and 3, 
with 1 being the most frequent; the delays in MABP varied between 4 and 10, with 7 
as the most frequent. The best results in the neural networks were obtained when the 
training method of Levenbert-Marquardt was used. Table 1 shows the correlation and 
MSE results for both the training and the test. 

Table 1. Training and test correlations for the different methods that model the ABP-CBFV 
relation  

Method Training 
Correlation 

Training 
MSE  

Testing 
Correlation 

Testing 
MSE 

SVM 0.97 0.004 0.83 0.028 
NN 0.85 0.043 0.79 0.066 
A-T 0.77 0.074 0.70 0.094 

To evaluate if there is a significant difference between the models, Wilcoxon’s test 
was applied to the correlations between the SVMs and the neural networks, showing 
that there is no significant difference, with p=0.233. When this test was applied to the 
SVMs and the linear model of A-T, the differences were significant,  (p=0.0001). 
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Finally, the differences between the neural networks and the linear model were also 
significant (p=0.0006). 

Figure 3 shows the average signals of the step response for the SVM and the 
neural network methods. 

 

Fig. 3. CBFV response to the step signal for SVM (left) and Neural Networks (right). Solid 
line: step signal; dotted line: average CBFV response; dashed line:  ± 1 standard deviation.  

After applying a step signal to each nonlinear model, the method of A-T was used 
to obtain the ARI index of each subject represented by the model. In the case of the 
linear model of A-T, the ARI indices are obtained directly.   

The mean ARI indices, standard deviations and coefficients of variation for all the 
subjects are shown in table 2.  

Table 2. Mean values, standard deviations and coefficients of variation for the autoregulatory 
indices of the different methods  

Method Mean 
ARI  

Standard 
Deviation  

CV 
( % ) 

SVM 5.38 1.44 26.7 
NN 6.30 2.52 40.0 
A-T 4.39 1.47 33.5 

4   Discussion and Conclusions 

The correlation and error values in the test show that the method that best predicts, on 
the average, the CBFV responses for unknown cases is that of the SVMs, followed 
closely by neural networks. The same order, but with greater differences, is kept in 
the training sets. 

The largest differences are found between the nonlinear and the linear methods, 
and they are significantly different when Wilcoxons test is applied. When the 
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nonlinear methods are compared, even though there are differences between the 
average correlation values, they are not significant (p>0.05). 

Evaluating the predictive capacity by means of the errors made in the test set is not 
sufficient to infer that the model represents the ABFS adequately. It is also necessary 
to know if the model captures the physiological dynamics of the ABFS. When 
examining the responses of the CBFV to the step signal (figure 3), it can be seen that 
the responses of the nonlinear models correspond to normal responses, recovering the 
CBFV level in less than 6 s. It is also seen that the ranges of the standard deviations 
are different, with the neural networks showing the greatest deviations, which means 
less precision of the neural networks compared to the SVMs. 

Table 2 shows that the highest mean ARI indices correspond to the neural 
networks, but they also have great variance, in agreement with the results of the step 
responses. ARI values greater than 6 are those closest to the actual values, because 
they correspond to normal autoregulation values, in agreement with the set of subjects 
in the study. But the variance that exists between these indices must also be analyzed, 
and in this case the smallest corresponds to the SVMs. A way of combining in a 
single measure the mean ARI values and their variance is by through the coefficient 
of variation, which in this case shows that SVMs are the best method. Reducing the 
variability of the ARI index is of great clinical importance, because this variability is 
the main limitation to use this index in measuring the autoregulation system [17]. 

The results of this work show that the nonlinear models are significantly better 
than the linear models for representing the ABFS. Similar approaches had only been 
tested with other types of ABFS signals, such as spontaneous pressure changes [12-
16, 18], but so far, the available work with thigh cuff maneuvers had not succeeded in 
improving on the linear models [10-11]. 

The idea of using external recurrences in the SVMs for the treatment of biological 
signals has proved to be adequate. Although the SVM predictive correlation and error 
were not significantly different from the corresponding figures for the neural network 
(Table 1), the trend showed by the slightly higher numerical values of correlation and 
smaller error, together with the much smaller coefficient of variation (Table 2) for 
estimating the autoregulatory index of individual subjects, suggest that this approach 
should take precedence as the best technique for modelling cerebral autoregulation by 
non-linear methods, as assessed by the thigh cuff technique. Future work should be 
performed to compare the performance of SVMs with alternative approaches in other 
conditions, such as spontaneous fluctuations in ABP or changes induced by the 
Valsalva maneuver or CO2 reactivity tests. 
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Abstract. This paper introduces an Automatic Target Recognition (ATR) 
method based on X Band Radar image processing. A software which 
implements this method was developed following four principal stages: digital 
image formation, image preprocessing, feature selection through a combination 
of C4.5 Decision Tree and PCA and classification using SVM. The automatic 
process was validated using two images sets, one of them containing real 
images with natural noise levels and the other with different degrees of 
impulsive noise contamination. The method achieves a very nice computation 
behavior and effectiveness, high accuracy and robustness in noise environments 
with a low storage memory and high decision speed. 

Keywords: target recognition, X Band radar, SVM, image processing, feature 
selection. 

1   Introduction 

X-band radar systems have been of great interest in the last few decades. The relative 
short wavelength at X-band frequencies (8-12 GHz) makes possible the obtaining of 
high-resolution radars (HRR) images for target identification and discrimination [1]. 
Some civil, military and government institutions often use X-band radar systems for: 
maritime and air traffic control, defense tracking, weather monitoring, and others 
applications. Target recognition is a challenging problem intensified on the extraction 
of target features from the available raw data as the recognition performance is 
strongly determined by the informative power of the features [2]. Furthermore, the 
objects feature extraction is an especially difficult problem highly dependent on three 
aspects: Radar Cross Section (RCS1) of targets; image formation process and 
particularly on the image preprocessing sequence applied. Target detection on the sea, 
under some abnormal conditions, is possible with an image of the sea surface. This 
                                                           
1 RCS is “a measure of the reflective strength of a radar target” [3]. 
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image is created with information given by the standard marine X-band radar. In these 
images we can visualize the changes in the wave behavior produced by the presence 
of objects as sea clutter, clouds or ships in sailing. The automatic recognition of ships 
navigating is the main purpose of this work. 

This paper introduces an automatic target recognition (ATR) method based on X 
Band Radar image processing and it is organized as follows: digital image formation, 
image preprocessing, feature extraction and feature selection through a combination 
of C4.5 Decision Tree and PCA and classification using SVM. The automatic process 
was validated using two images sets, one of them containing real images with natural 
noise levels and the other with different levels of impulsive noise contamination. The 
method achieves a high accuracy in the classification process, permitting a good 
identification of the target of concern. 

2   Radar Image Formation and Preprocessing 

The formation of a radar image takes place starting from the digitization of the 
captured echoes when the electromagnetic signal emitted by the radar is reflected by 
the objects. The reception of the echoes depends on the maritime object 
characteristics, in particular on its RCS. The reception of the echoes also depends on 
the radar technical characteristics as: the power of transmitted signal, impulse time 
duration, width of the signal band and the antenna gain. 

Received echoes digitization is obtained through a specialized acquisition 
hardware. It has an analog/digital converter used as the communication interface 
between radar and computer. The echoes are one-dimensional electromagnetic signals 
synchronized in time and also in exploration angles. At each angle, a one-dimensional 
signal is captured by the sensor during its rotation. Its digitized values are converted 
into a two-dimensional representation [4] from where an image is formed and whose 
intensity levels are normalized in the interval [0 ...255]. 

The RCS of maritime targets is expressed in square meters (m2). Generalized 
values of RCS for a variety of ships are given in [5]. Taking averages values of RCS a 
division in small targets (<500 m2), medium targets (500 to 2000 m2) and big targets 
(>2000 m2) was made. Present research attention focus was put on big targets in 15 
miles scale. 

The main objective of image preprocessing stage is to prepare the image for the 
automatic analysis, which includes the reduction of the impulsive noise, and some 
objects that are not of interest (sea clutter) applying a 3x3 pixels median filter and a 
3x3 pixels high pass filter [6]. The next step is the image binarization in order to 
achieve the objects (target/no target) segmentation applying an automatic threshold 
algorithm following the iterative procedure proposed by González and Woods in [7]. 

3   Feature Extraction and Selection 

The next step is to represent and describe these objects in a form suitable for further 
computer processing. A representation with 11 boundary and region descriptors was 
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Fig. 1. Graphical representation of the 11 features in an ideal object present in a preprocessed X 
Band Radar image 

chosen using a Geometric and Topologic Model [8] [9]. Fig. 1 shows the full feature 
set designed for the textural characterization of objects.  

To known the most significant features to describe the Targets (object of interest), 
C4.5 Decision Tree and Principal Component Analysis (PCA) were used. Both 
techniques were applied separately on a set of samples, described by original features, 
composed by objects from different images in order to guarantee a high 
representativeness. We will refer to this set as “S”, which contains 470 objects, 178 in 
the Target class and 292 in the No Target class. 

3.1   C4.5 Decision Tree Used for Feature Selection 

In general, decision trees represent a disjunction of conjunctions of constraints on the 
attribute-values of examples. The selection is based on a statistical property called 
information gain that measures how well a given attribute separates the training 
examples according to their classification. In this sense the tree’ nodes will contain 
the more relevant features, being the more important feature located at the high levels 
of tree [10]. 

An instance is classified by starting at the root node of the decision tree, testing the 
attribute specified by this node and moving down by the tree branch corresponding to 
the value of the attribute. This process is then repeated at the node on this branch and 
so on, until a leaf node is reached which provides the classification of the instance. 

Three different experiments were designed and applied to the set “S” (Fig. 2). In 
the Experiment 1, “S” was randomly divided in four disjoint training sets which have 
the same number of samples and also a good balance among target and no target ones. 
Four decision trees were built; each of them validated using 10 folds Cross 
Validation. In the Experiment 2, four different sets were prepared using resampling 
on “S”; each of them was divided in 75% of the samples for training and the other 
25% for testing. This means that each classifier was built with training sets that could 
be contain common samples. In the Experiment 3, only one decision tree was built 
using the set “S” as training set and it was validated with 10 folds Cross Validation. 
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Results show that some of the initial features do not appear in any of the trees. This 
mean that they are not relevant for targets characterization and recognizing and it is 
possible to eliminate them. Finally were selected a, ac, pe, p1, p2, per as a result of 
the union of the partial results of each decision tree. 

 

Fig. 2. Features selected with C4.5 Decision Tree 

3.2   PCA Used for Feature Selection 

PCA is a powerful tool used in exploratory data analysis. It provides a way to reduce 
the dimensionality of the data finding linear combinations of the original features 
which account for maximal amounts of variation, known as principal components or 
eigenvectors. PCA eigenvectors have several desirable properties. First, they are 
mutually orthogonal, which is the same as saying they are uncorrelated. Second, 
eigenvectors can be computed in order of decreasing variance. Thus, the first 
eigenvector accounts for the maximum amount of variance and each successive 
eigenvector accounts for less of the remaining variance in the data [11]. 

PCA is based on the idea of expressing a matrix X as the product of two other 
matrices, the scores matrix T and the transpose of the loadings matrix L: TTLX = . If 
only the first k columns of the scores and loadings matrices are retained, 
then T

kk LTXX =≈ ˆ . The concentration of variance in the first several PCs permits the 

omission of later factors without significant loss of information, so the transformed 
and preprocessed data matrix is imperfectly reconstructed from the trimmed scores 
and loadings, that is, within some residual error T

kkk LTXE −= . 

PCA has been done in a set of samples “S”. With the aim to give the same 
importance to all features we scale our data before doing PCA to zero mean and unit 
variance. From the analysis of the correlation matrix obtained with PCA and some 
plots of features against features we conclude that the features pe and per are highly 
correlated. 
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To reduce the dimensionality of the data implies that it contain irrelevant or 
random variation, some of which can be removed by retaining only the principal 
components that capture relevant information. Only the first three principal 
components which explain 94.14 % of world variance were retained, as we can see in 
Fig. 3. 

 

Fig. 3. Cumulative variance versus principal components and contribution of the original 
features to the first three components 

The contribution of the original features to the first three principal components is 
shown in the same figure. All the original variables contribute in a significant manner 
to any one of the PCs. For this reason none of them can be removed in this step. In 
order to look for the relevant features is necessary to obtain the modeling power of 
them. 

Modeling Power 
Modeling Power varies with the number k of principal component selected (k = 3 in 
our case) but is variable-oriented. Typically, it is not helpful in determining the 
optimal number of factors to retain, but does point out important variables.  
Modeling Power of a variable is defined as: 

j

j
j S

S
MP

0

ˆ
1 −=  (1) 

where 
jŜ is the root square of variable residual variance 2ˆ

jS , which is calculated using 

the jth column of the residual matrix kE  defined above: 

1

ˆˆˆ 2

−−
=

kn

ee
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T
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j
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and 
jS0
is the root square of the total variance of that variable calculated as: 
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When the power of a variable to model information in the data increases, MP 
approaches 1; contrary when it decreases, MP approaches 0. Even with random data, 
some features will exhibit high modeling power, so an absolute threshold cannot be 
specified. Instead, the different variables should be compared based on their relative 
modeling power. 

 

Fig. 4. Modeling power versus features 

Comparing the 11 original features by their modeling power value (Fig. 4) is 
possible to conclude that features a, ac, pe, per, p1, p2, raa, almx have the highest 
values of discriminator power. 

As we can notice there are interceptions between features selected as relevant by 
both techniques. For final feature selection, a combined interpretation of the results 
was made and the union of the features selected as relevant by both methods was used 
as final criterion. Taking into account the high correlation that exist between pe and 
per it is necessary to reject one of them. The selection of pe instead of per was based 
in the fact that pe appears more times in the experiments realized with Decision 
Trees. 

The features selected (a, ac, pe, p1, p2, raa, almx) were used to build an 
automatic classifier. 

4   Classification 

In our case a binary classification problem (Target and No Target objects) is 
necessary to solve. One of the relatively new and promising methods for learning 
separating functions in pattern recognition (classification) tasks are the Support 
Vector Machines (SVM) developed by Vapnik and Chervonenkis [12] [13] [14] [15]. 

In a SVM learning for two linearly separable classes, one aims at finding a 
separating “maximal margin” hyperplane which gives the smallest generalization 
error among the infinite number of possible hyperplanes [12]. The data on margin 
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and/or the closest ones are called support vectors. They are found by solving a 
quadratic programming (QP) problem. Very often the separation function between the 
classes is nonlinear. In this case, the data will be mapped from an input space into a 
high dimensional feature space by a nonlinear transformation )(xφ . Because the QP 

problem in a feature space depends only on a dot product )()( j
T

i xx φφ  the every 

learning can be performed by using Mercer theorem [13] for positive definite 
functions that allows replacement of )()( j

T
i xx φφ  by a positive definite symmetric 

kernel function )()(),( j
T

iji xxxxK φφ= . In our case a non-linear SVM with a Gaussian 

radial basis function (RBF) kernel [13] was used. 
The QP optimization problem also have the convex properties and hence not local 

minima, given us a unique and optimal solution. 
There are two basic design parameters that determine the goodness of an SVM 

Classifier. Here, they are, C which determines a tradeoff between maximizing the 
margin and minimizing the numbers of errors and γ that define the width of 7-
dimensional Gaussian functions contained on the diagonal of the covariance matrix. 
Both parameters can be selected performing a “grid-search” using k folds cross-
validation. Basically, pairs of (C,γ) values are tested and the one with the best cross-
validation accuracy is picked. 

The used of grid search is recommended when we may not feel safe to use methods 
which avoid doing an exhaustive parameter search by approximations or heuristics. 

5   Results and Discussion 

SVM were training with data given as vectors ( x , y ), where x  is a seven-

dimensional input vector of values of selected features, i.e., vector 7ℜ∈x , the desired 
value y  is a binary value variable, i.e., { }1,1 −+∈y  for Target and No Target objects 

respectively. The set “S” defined in section 3 was used to train.  
In order to obtain the best parameters value to train the SVM a grid search using 10 

folds Cross Validation was done. The ranges assigned to each hyperparameter were 
log2C = (-5,-4,…, 14,15) and log2γ = (-15,-14,…,4). Then, with the values obtained by 
 

 

Fig. 5. Left: The best pair of parameter (C, γ) values was extracted from the area within the 
circle marked. Right: The general characteristic of the obtained model are presented. 
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grid search, the SVM Classifier was trained again and the model was validated using 
10 folds Cross Validation, giving us an accuracy of 99.15 %. 

The accuracy of SVM trained using different training parameters combination and 
the characteristic of the obtained model are shown in Fig. 5.  

In order to SVM training and classification process was used the LIBSVM library 
[16]. 

In processed X Band radar images there are much more No Target objects than 
Target objects. In learning extremely imbalanced data, the overall classification 
accuracy is often not an appropriate measure of performance. A trivial classifier that 
predicts every case as the majority class can still achieve very high accuracy. We use 
metrics such as true negative rate, true positive rate, G-mean and Precision [17] to 
evaluate the performance of our learning algorithms on imbalanced data. These 
metrics are functions of the confusion matrix [17]. Different test sets were prepared in 
order to obtain statistics about the performance of the automatic method proposed. 
The process was applied repeatedly on each image belonging to these sets. 

5.1   Performance with Real Images 

In this experiment, a set of 27 X Band radar real images never employees during the 
training process were used as validation set. These images were collected during six 
months. They were processed using our method and the confusion matrix and metrics 
are shown in Fig. 6. 

 

Fig. 6. Confusion Matrix and metrics calculated 

The good results obtained in the classification task demonstrated the advantages 
attributed in the literature to the SVM as a two class classifier. The complete 
automatic process of an image was very fast, 3 sec by image approximately, doing 
this method very good and robust for a real time detection of maritime targets. 

5.2   Performance with Artificial Noisy Images 

In this experiment, the principal objective was investigated the performance of our 
method at different levels of signal-to-ratio (SNR) noise. An arbitrary X Band Radar 
image containing all kind of targets and not targets was chosen. A set of noisy images 
were synthesized adding Salt and Pepper noise with levels of 0.01, 0.02, 0.03, 0.04 
and 0.05 noise density (dB). Table 1 presents the accuracy of the automatic method in 
noisy test conditions. 
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Table 1. Results of our method in a set of noisy image at different levels of noise 

Original Image + Salt & Pepper Noise Density  Original 
Image 0.01 0.02 0.03 0.04 0.05 

True positive (%) 100 99.08 96.33 93.58 84.40 85.32 

True negative (%) 98.55 98.27 98.19 98.11 98.01 97.93 

G-mean 99.27 98.67 97.25 95.81 90.95 91.40 

Noise Level 
Tolerance 

  OK OK OK No OK No OK 

We can notice that our method has robustness in noisy images, staying above 90% 
for all tested levels of noise. However, only up to 0.03 noisy density levels were 
accepted as a consequence of the risk that implies a failure in the detection of Target 
objects. It is important to point out that these levels of not accepted noise are hardly 
found in real images after preprocessing stage. 

Fig.7 shows a set of images representatives of all the process. After the final results 
are obtained, the user has the possibility of change any wrong response given by the 
automatic process. 

 

6   Conclusions and Future Work 

In this paper, the main concern was to obtain a novel and efficient approach for 
automatic target recognition in X band radar images. Its usefulness in two image sets, 
one of them with real image containing natural level of noise, and the other with noisy 
images at different levels of impulsive noise contamination was verified. We also 

 

Fig. 7. Process for marine targets automatic recognition using X band radar sensor 
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applied successfully a combination of PCA and C4.5 Decision Tree to find out the 
relevant features among all features calculated by us. 

The experimental results show that this method has a very good computational 
behavior and provide a very useful tool for real time ATR systems due to its 
simplicity and high decision speed. 

We consider necessary to experiment with new king of features specially obtained 
from the frequency domain of the image. 
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Abstract. We discuss how algebraic explicit expressions modeling a complex 
phenomenon via an adequate set of data can be derived from the application of 
Genetic Multivariate Polynomials (GMPs), on the one hand, and Support Vec-
tor Machines (SVMs) on the other. A polynomial expression is derived in 
GMPs in a natural way, whereas in SVMs a polynomial kernel is employed to 
derive a similar one. In any particular problem an evolutionary determined 
sample of monomials is required in GMP expressions while, on the other hand, 
there is a large number of monomials implicit in the SVM approach. We make 
some experiments to compare the modeling characterization and accuracy ob-
tained from the application of both methods. 

1   Introduction 

Function approximation from experimental data is an issue that many researchers 
have tackled in the past. The specification of certain functions given a dataset is 
commonly used to model interesting phenomena. Genetic Multivariate Polynomials 
(GMPs) modeling [2] relies on specific polynomial functions given a dataset. A sim-
ple and explicit algebraic expression is derived form the application of GMPs. The 
relationship and specification of the explanatory variables arises in a natural way. In 
classical methodologies a full polynomial model is attained from an exhaustive explo-
ration of the linear combinations of the set of monomials corresponding to the inde-
pendent variables. In this case the number of possible combinations can increase un-
manageably. In the latter case, it turns out to be not only impractical but impossible to 
tackle the modeling problem for even a modest number of independent variables. This 
drawback is eliminated in GMPs by a) Changing the commonly used approximation 
least square error norm by a minimax norm and b) Employing Genetic Algorithms 
(GAs) to reduce the number of monomials in the final model. This is achieved  
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without losing the capability of this model (“learning machine”) to represent the phe-
nomenon under analysis. 

Another approach that has been proved to be successful relies on Support Vector 
Machines (SVMs). This methodology relies on finding a functional that is nonlinear 
in the input space, but linear in a higher dimensional feature space and is capable of 
making classification, regression or function approximation [10]. Acting, in effect, as 
a Neural Network with one hidden nonlinear layer, SVMs, as all other connectionist 
schemes, have been labeled “black boxes” [1], since the complex relationships be-
tween explanatory variables are not explicit in its structure. However, one of the main 
goals of this paper is to show that we are able to build algebraic explicit expressions 
(which depend on the appropriate selection of the kernel function) from such SVMs. 
In particular, we use a polynomial kernel that allows us to find an expression compa-
rable to the ones arising from GMPs.     

In section 2, we point out the main theoretical characteristics of GMPs and the ad-
vantage of using genetic algorithms (GAs). In section 3, the general foundations of 
SVMs are presented. Particularly, we discuss the way in which, via SVMs, one may 
find a solution to the nonlinear regression problem. We also show how a polynomial 
kernel can be used in SVMs in order to derive an explicit algebraic expression from 
the support vector solution. In section 4, some experiments and results are shown 
applying both methodologies to a set of representative regression problems. Finally, 
in section 5 we advance some conclusions and discuss the results of the previous 
section. 

2   Genetic Multivariate Polynomials 

Given a training sample ( ){ }N
iii ,y 1== xς , where xi denotes the i-th input vector pattern 

and yi its corresponding target output, the goal of GMPs is to find an explicit algebraic 
expression of the form: 
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The sets of coefficients in (1) (denoted as C’) yield an explicit mathematical rela-
tionship between the independent variables (xi) and dependent variables (yi). This 
approximation problem has been the subject of many studies in the past and it has 
been pretty much solved except for certain practical issues. First of all, we have to 
contend with the fact that the cardinality of C’ (which we denote as ’) is large 
enough to make it unwieldy for all except the simplest cases. Second, considering a 
certain floating point number representation (8 bytes for example), the storage of a 
hypothetical solution will normally require a huge number of bytes. Third, and most 
important, the usual numerical methods with which these approximations are nor-
mally tackled imply the solution of systems of linear equations of large order with the 
consequent inevitable numerical instability. Finally, fitting a relatively large set of 
data under least squares error measure leads to Hilbert matrices which are known to 
be particularly sensitive to rounding error [13]. Hence, even though it is theoretically 
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possible to solve the approximation problem even for large samples, in practice it is 
both impossible and impractical to do so with the usual methods [2]. The approxima-
tion given by GMPs replaces the equation (1) by another one in which we retain the 
algebraic polynomial of the solution while removing the need for large ’ by introduc-
ing the constant  as shown by: 
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The coefficients are represented as 
niic ...1
where di represents the maximum allowed 

exponent of the i-th independent variable. The elements of  determine whether a 
given monomial in (2) is to be included in the purported polynomial solution. For this 
reason we must establish a priori the cardinality of . Obviously, we want to have a 
manageable number of coefficients so that we do not longer need to contend with the 
problems derived from large storage needs. Therefore, we will replace the least 
squares (or L2) norm with less common minimax (or L ) norm. In so doing we will 
avoid the need to solve large systems of equations and get around the inherent preci-
sion problems. The minimax norm is not as popular as least squares because the ap-
proximation algorithms are normally slower. In what follows we give a brief account 
of the principles behind the minimax multivariate approximation algorithm. Once this 
is done we will discuss the genetic algorithm that allows us to determine C’ for a 
given . 

2.1   The Ascent Algorithm 

The algorithm to approximate the sample under the minimax norm is based on three 
observations: a) The minimax approximation coefficients of a set M of size m are 
uniquely determined by finding the adequate signs of the errors for the elements of 
the set, b) if a larger set N of size n has elements outside the minimax solution it is 
always possible to exchange one of elements in M by an element in N such that the 
minimax condition is still met for the new M and c) Continuing exchanges will even-
tually lead to a target set M which satisfies the minimax norm for all elements in N. 

In what follows we denote with F(x) the function which is able to minimize the er-
ror ( ) iii dxF −= maxϕ . In order to find the approximator of (2) we map the vectors x 

to a higher dimensional space yielding matrix V of dimension p × N where 

( )∏ =
+= n

i idp
1

1 . Let us arbitrarily select a sub-matrix of V of size m× m (call it V’). 

Then we solve the following system: 
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Denoting the approximation error for the i-th vector as i  and the largest absolute 

such error as θ  we may define θη ii = ; clearly, θη ≤ii . We also denote the ele-

ments of row i column j of (3) as ij and the i-th cofactor of the first column as i. 
From Cramer’s rule we immediately have: 
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To minimize θ  we have to maximize the denominator of (4). This is easily 

achieved by a) selecting the maximum value of the i’s and b) making the signs of the 
i’s all equal to the signs of i’s. Obviously the i’s are maximized iff abs( i)=1 for 

i=1,…,m which translates into the well known fact that the minimax fit corresponds to 
approximation errors of the same absolute size. On the other hand, to achieve (b) we 
must simply set the signs of the i’s to those of the cofactors. Making ( )ii sign κσ = , 

system (3) is simply re-written as: 

=

− mmmmm
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    (5) 

Once having all the elements in (5) it suffices to solve this system to obtain, both, the 
value of θ  and the coefficients C’ which best fit the elements of x in the minimax 

sense. To obtain the coefficients for the whole sample we apply the Exchange Algo-
rithm (EA) (for details see [2]).  

2.2   Genetic Algorithm 

Another reason to choose the minimax norm is that the EA is not dependent on the 
origin of the elements in V. We decided them to be monomials of a full polynomial 
but it makes no difference to the EA whether the vi  are gotten from a set of monomi-
als or they are elements of arbitrary data vectors. This is important because the num-
ber of monomials in (3) grows geometrically. One way to avoid the problem of such 
coefficient explosion is to define  a priori and then properly select which of the ’ 

possible ones these will be. There are 
γ
γ '  possible combinations of monomials and 

even for modest values of  an exhaustive search is out of the question. This optimiza-
tion problem may be tackled using genetic algorithms as follows. 

The genome of the GA is a binary string of size ’. Every bit in it represents a mo-
nomial. If the bit is ‘1’ it means that the corresponding monomial remains while, if it 
is ‘0’, such monomial is not to be considered. This simple strategy corresponds to 
determining the values of  in equation (2). All one has to ensure is that the number of 
1’s is equal to .  
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It is well known that an elitist GA will converge to a global optimum [3]. It has 
also been shown that a variation called Vasconcelos’ GA (VGA) displays superior 
behavior on a wide range of functions [4]. VGA uses: a) Deterministic selection, b) 
annular crossover, c) uniform mutation. All results reported here are based on VGA’s 
application. 

3   Support Vector Machines 

SVMs were developed by Vapnik et al [5] based on statistical learning theory. 
Particularly, a SVM is an approach to the problem of structural risk minimization, 
based on the fact that the generalization error rate is bounded by the sum of the 
training-error rate and a term that depends on the Vapnik-Chervonenkis (VC) di-
mension [6].  

SVMs have been successfully used in practical applications [7]. In the case of clas-
sification tasks, the objective is to build a linear surface that separates points belong-
ing to different classes. The objective in regression problems is similar, but in this 
case the data is enclosed in a -tube of the function approximation.  

Given the training sample , the goal of SVMs for non-linear regression problems 
is to find a function f(x) that has at most  deviation from the actually obtained targets 

iŷ  for each element of  and, at the same time, is as flat as possible. In other words, 

errors are disregarded as long as they are less than . This functional has the form 
( ) ℜ∈ℜ∈+= bbf k , with  wxx . As in the case of classification problems, f(x) can be 

obtained by solving a quadratic optimization problem (QOP) of the form [8]: 
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    (6) 

According to this formulation, the objective is to minimize the empirical risk 

( )
=

−=
N

i
iiemp yyL

N
R

1

1 ˆε , where ( )ii yyL ˆ−ε  is called the -insensitive loss function1. 

The formulation (6) is known as the primal problem for nonlinearly separable pat-
terns, where the constant C>0 determines a trade off between the flatness of f(x) and 
the tolerated amount of points which deviations larger than . The appropriate selec-
tion of C is a very important issue not only in regression, but in classification prob-
lems [9] for an appropriate approximation. The value of  is inversely proportional to 

                                                           
1 Other loss functions may be used, but we use the most common ( ) εξεξε >−=−  if ˆ ii yyL  

and 0, otherwise. 
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the number of support vectors (sv) [10], which are a subset of , resulting from the 
solution of (7) and which defines completely f(x); i. e., increasing -insensitivity de-
creases the number of sv. In this paper we use the approach of [11] for the selection of 
C and , where ( ) NNC d ln and 3 ψσεσ == ; d,  and  are the standard deviation of 

output values of , the noise standard deviation and a constant, respectively. The de-
termination of  and  is explained in section 4.  

For the solution of this problem it is more appropriate to solve the so-called dual 
problem [8], which is derived applying the Karush-Kuhn-Tuker (KKT) [8] conditions 
to (6). The dual formulation is as follows: 

( )( ) ( ) ( ) ( )
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    (7) 

The solution of (7) is given by , which is a vector of Lagrange Multipliers, where 
the values that satisfy ( ) 0* ≠− ii αα  correspond to the sv of the problem. Once sv are 

determined, the regression function f is given by: 

( ) ( ) ( ) bKf i

N

i
ii +−=

=
xxx ,

1

*αα  
 

    (8) 

This function is non-linear in the input space, but linear in a high dimensional fea-
ture space. The translation of input data to a higher dimensional space is possible 
because the use of K(.) in (7). These functions must satisfy certain known conditions 
to be admissible as kernels in a SVM. Specifically they must satisfy Mercer´s condi-
tion [6]. Many functions may be used as kernels [10], but the most popular are: a) 
Polynomial learning machines (PLM), b) Radial-basis functions (RBF) and c) Two-
layer perceptrons (LP) [6]. 

In this paper, the selection of Polynomial learning results very appropriate for the 
construction of an explicit algebraic expression, as we explain below. 

3.1   Polynomial Kernel 

As shown in (8), f(x) is determined by the kernel function and the values of x that 
appear in that expression as function of K(.,.). The theory of SVM asserts the con-

struction of Kernels of the form ( ) ( ) ( )i
T

iK xxxx ϕϕ=, ; ( ).ϕ  is a mapping that allows 

the transformation of points from input space to higher dimensional spaces. The 
knowledge of ( ).ϕ  is relevant because it allows f(x) to be expressed in an explicit way 

and shows the functional relation involved between independent variables of some 
specific problem. 
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However, for many kernels the functional ( ).ϕ  is given implicitly and it is very dif-

ficult (even impossible) to derive it form the particular Kernel chosen.  For example, 
if a Radial Basis Function Kernel is used, it is very difficult to propose a function 

( ).ϕ , such that ( ) ( ) ( )10tanh. ββϕϕ += i
T

i
T xxxx .  

In the case of polynomial kernel, ( ).ϕ  can be known because it represents a poly-

nomial expression. Its monomials are combinations of independent variables with 

distinct exponents. The polynomial kernel is given by ( ) ( )ρ
ββ 10, += i

T
iK xxxx . In 

this paper, we consider 0= 1=1 and applying recursively the Newton’s binomial 
theorem, this Kernel can be expanded as:  
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 (9) 

With (9) we conclude that the binomial coefficients for a polynomial with degree  
and k independent variables can be obtained from the following expression:  
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  (10) 

The number of elements in the vector ( ).ϕ  is equal to the number nm of monomials 

in (9), where ( )ixϕ  contains the section of the corresponding monomial where terms 

xi appears (xi1, xi2, …, xik) and ( )xϕ  contains the section of the monomial where ele-

ments of x appears (x1, x2, …, xk). In each case, both terms are multiplied by the 
square root of the coefficient monomial’s given by (10).  For instance, if =2 and 
k=2, ( )ixϕ , ( )xϕ  and K(x, xi) we have:  
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  (11) 

Finally, f(x) can be obtained from (8) and (9) once the sv are estimated. The coeffi-
cients of f(x) are combinations of ( ) 0* ≠− ii αα  and binomial coefficients (10). As in 
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the case of GMPs, the
miiiC ...21

 are the coefficients of the final expression, where ij is 

the power of the j-th independent variable for that particular monomial. 

4   Experiments 

A set of two nonlinear regression problems is presented here in order to illustrate the 
application of GMPs and SVMs methodologies. The set of problems are explained as 
follows: 

mpg. This data is available in UCI Machine Learning Repository2. The data concerns 
city-cycle fuel consumption in miles per gallon, to be predicted in terms of 3 multi-
valued discrete and 4 continuous attributes: 1) cylinders, 2) model year, 3) origin, 4) 
displacement, 5) horse power, 6) weight and 7) acceleration. Attributes 1 and 2 were 
eliminated from our analysis because they turned out to be highly correlated. We 
considered 392 instances in this dataset.  

bodyfat. This dataset was obtained from the StatLib--Datasets Archive3 and corre-
sponds to some estimates of the percentage of body fat determined by underwater 
weighing and various body circumference measurements for 252 men. The dataset 
consists of 14 independent variables: 1) Percent body fat, 2) Age (years), 3) Weight 
(lbs), 4) Height (inches), 5) Neck circumference (cm), 6) Chest circumference (cm), 
7) Abdomen 2 circumference (cm), 8) Hip circumference (cm), 9) Thigh circumfer-
ence (cm), 10) Knee circumference (cm), 11) Ankle circumference (cm), 12) Biceps 
(extended) circumference (cm), 13) Forearm circumference (cm), 14) Wrist circum-
ference (cm).  

4.1   Results of GMPs and SVMs Applied in mpg 

The experiments we performed for in this article (applying GMPs and SVMs to the 
mpg dataset) are: 

GMPs. The VGA was run in this experiment with probability of crossover equal to 
0.9 (Pc=0.9) and probability of mutation of 0.005 (Pm=0.005)4. The number of 
individuals was 50 (np) over 50 (ng) generations. The maximum value allowed for di 
was 2, for the 5 independent variables. The number of monomials was  = 20. The 
RMS of this method was 14.5%. The coefficients are shown in Table 1.  

SVMs. A Polynomial Kernel of degree =35 was applied here. The value of C=0.62 
was determined as explained in section 3. The noise variance 2 was calculated with 

the equation ( )
=

−
−

=
N

i
ii yy

dn 1

22 ˆ
1σ̂  [11], where iŷ  is the output of a polynomial 

                                                           
2 http://www.ics.uci.edu/~mlearn/MLSummary.html. 
3 http://lib.stat.cmu.edu/datasets/. 
4 The values for Pc and Pm were chosen after vast experimentation with several plausible values. 
5 A value of =3 allows more coefficients of Polynomial SVM to match with different coeffi-

cients of GMPs (given di=2). 
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SVM with degree d = 5 (degrees of freedom). The value of  was set to 3, as is done 
in [11]. Once  and  are determined, the value of  used for training was 0.0228. 
With a polynomial Kernel of degree 3 and 5 independent variables, the total number 
of monomials that represent  f(x) is 56. All of them are shown in table 1. The RMS of 
this method was 6.6%. We use LIBSVM (ver 2.81) in our experiments [12].  

Table 1. Results of GMPs and SVMs methods for mpg problem 

COEF SVM GMP COEF SVM GMP COEF SVM GMP

C00003 0.02 - C10101 -0.09 - C10010 -0.16 -
C00012 -0.04 - C10110 -0.17 - C10100 0.02 -

C00021 0.15 - C10200 0.07 - C11000 0.02 -

C00030 -0.21 - C11001 -0.14 - C20000 -0.06 -

C00102 -0.09 - C11010 0.14 - C00001 -0.02 -

C00111 -0.05 - C11100 -0.02 - C00010 0.10 -

C00120 -0.03 - C12000 0.05 - C00100 0.00 -

C00201 0.11 - C20001 -0.04 - C01000 -0.33 -

C00210 0.24 0.57 C20010 0.09 - C10000 -0.10 -0.70
C00300 -0.08 - C20100 -0.14 - C00000 0.57 0.72

C01002 -0.02 - C21000 0.06 - C02020 - -2.35

C01011 0.26 - C30000 0.03 - C01112 - 3.84

C01020 0.00 1.81 C00002 0.01 - C11222 - 0.88

C01101 -0.10 - C00011 -0.11 - C12002 - 2.35

C01110 -0.01 - C00020 0.23 - C12100 - 5.48

C01200 0.03 - C00101 0.12 - C10221 - -0.92

C02001 -0.09 2.33 C00110 -0.02 -0.30 C11102 - -13.94

C02010 0.17 - C00200 -0.12 - C11122 - -14.40

C02100 0.15 - C01001 0.04 - C12201 - 15.99

C03000 0.02 - C01010 -0.20 - C21211 - 165.70

C10002 0.06 - C01100 -0.07 -2.05 C22100 - -3.00

C10011 -0.08 - C02000 0.07 -0.04 C22211 - -425.66
C10020 0.07 - C10001 0.04 -  

4.2   Results of GMPs and SVMs Applied in Bodyfat 

The experiments applied to bodyfat dataset with GMPs and SVMs are as follows: 

GMPs. The parameters used for VGA in this experiment were: Pc =1.0, Pm =0.0054, 
np=50 and np=50. The maximum value allow for di was 1, for the 14 independent 
variables. The number of monomials was =20. The RMS of this method was 8.0%. 
The coefficients are shown in Table 2.   
 

SVMs. A Polynomial Kernel of degree =2 was applied here. The value of C was 0.5 
and the value of =0.024, where the noise variance was also estimated applying first a 
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polynomial SVM with d=5 degrees of freedom. With a polynomial kernel of degree 2 
and 14 independent variables, the total number of monomials that represent f(x) is 
120. Only those coefficients that also appear in the GMP approach are shown in Table 
2, the rest (118) are not displayed because of lack of space. The RMS for this problem 
was 2.5%. Likewise, we used LIBSVM (ver 2.81) [12].   

Table 2. Results of GMPs and SVMs methods for bodyfat problem 

COEF SVM GMP COEF SVM GMP

C01001000000000 0.005 -1.27 C10010100110000 - 8.740
C00000000000000 0.871 0.93 C11000111000100 - 7.475

C00010110111000 - -15.81 C10011001100010 - -2.069
C00011001010111 - -22.50 C01010101100010 - -20.024
C00100111111001 - 13.37 C10100000001110 - 1.657
C00001110111101 - 53.13 C11000110011011 - -116.780
C00100000101111 - -6.17 C10110110001011 - 43.529
C01100010110100 - -16.57 C11001101011011 - 78.219
C01011011101101 - 26.18 C11100100100111 - -34.857
C01011110100011 - 34.23 C01001000110010 - 6.291

 

5   Conclusions 

From both of our methods we are able to achieve the explicit algebraic representation 
of the behavior of complex dynamic systems. This is a goal that has eluded many 
researchers in the past. We believe that this is a major contribution of our paper. In 
determining which approach is better we have to point out that SVMs are theoretically 
sounder than GMPs. However, as shown in the previous experiments, the number of 
monomials in SVM approach is substantially greater than those obtained with GMPs. 
Even though the accuracy of SVMs is superior in both experiments, this is so only at 
the expense of having to consider larger sets of monomials. The results also suggest 
that GMP can approximate very well, displaying an explicit algebraic expression with 
a relatively few number of terms (monomials). Many more experiments are necessary 
to establish a proper comparison between these methods. In this paper we focused on 
the fact that GMPs and SVMs with polynomial kernels can build similar expressions 
for some tasks, particularly nonlinear regression problems. A more detailed analysis 
with other kind of problems is a matter for future work. 

References 

1. Salcedo, S., Fernández, J., Segovia, M., Bousoño, C.: Genetic programming for the predic-
tion of insolvency in non-life insurance companies, Computers & Operations Research 32 
(2005) 749–765. 

2. Kuri, A., Approximation and Classification with Genetic Multivariate Polynomials, 
WSEAS Transactions on Computers, Issue 3, (2006) 645-652. 



984 Á. Kuri-Morales and I. Mejía-Guevara 

3. Rudolph, G.: Convergence Analysis of Canonical Genetic Algorithms, IEEE Transactions 
on Neural Networks, Vol. 5, Issue 1, (1994) 96-101. 

4. Kuri, A.: A Methodology for the Statistical Characterization of Genetic Algorithms. Pro-
ceedings of the Mexican International Congress on Artificial Intelligence, Springer-
Verlag, (2002) 79-88. 

5. Boser, E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. 5th 
Annual ACM Workshop on COLT, ACM Press, (1992) 144-152. 

6. Haykin, S.: Neural Networks. A comprehensive foundation. 2nd ed., Prentice Hall, New 
Jersey (1999). 

7. Chapelle, O., Haffner, P., Vapnik, V.: Support vector for histogram-based image classifi-
cation. IEEE transactions on Neural Networks Vol. 10, 5, (1999) 1055-1065. 

8. Smola, A., Schölkopf B.: A Tutorial on Support Vector Regression. NeuroCOLT Techni-
cal Report NC-TR-98-030, Royal Holloway College, University of London, UK, (1998). 

9. Kuri, A., Mejía, I.: Evolutionary Training of SVM for Classification Problems with Self-
Adaptive Parameters. Advances in Artificial Intelligence Theory, (Gelbukh, A., Monroy, 
R., Eds.), IPN, (2005) 207-216. 

10. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer-Verlag, NY, (1995). 
11. Cherkassky, V., Ma, Y.: Practical Selection of SVM Parameters and Noise Estimation for 

SVM Regression. Neural Networks, Vol. 17 No. 1, (2004) 113-126.  
12. Chang, C., Lin, C.: LIBSVM: a library for support vector machines, (2001). Software 

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.  
13. Choi, M. D.: Tricks or Treats with the Hilbert Matrix. American Mathematical Monthly 

Vol. 90, (1983) 301-312. 
 
 



J.F. Martínez-Trinidad et al. (Eds.): CIARP 2006, LNCS 4225, pp. 985 – 992, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Image Compression by a Time Enhanced Self Organizing 
Map 

Pascual Campoy and Pedro Gutiérrez* 

Departamento de Automática, Ingeniería Electrónica e Informática Industrial 
Universidad Politécnica de Madrid, Spain 

pascual.campoy@upm.es, pgutierrez@etsii.upm.es 

Abstract. This paper presents the promising results of an innovative 
modification of the Kohonen’s algorithm, the time enhanced self-organizing 
map (TESOM), when used for low bitrate image compression. The time 
enhanced map is used in this paper to learn codebooks of subimages, in a 
similar way as other classical algorithms based on LVQ or SOM do, but taking 
advantage of the fact that it learns the sequence order of the input data (i.e. 
subimages) during the training phase. The codebook learned by the new 
proposed algorithm TESOM presents the advantage that the vicinity of the 
codes in the output map is not only established by their visual similarity, as in 
SOM, but also by the sequential order of the subimages during the training 
phase. Since this sequential order of the subimages determines the vicinity of 
the codes, the increment of the representative code of two consecutive 
subimages has been proved to have a lover Entropy and can therefore be 
codified by a lower bit rate. The advantage of the proposed algorithm is 
thoroughly evaluated and quantified over a set of experiments, which include 
several images, used in different ways in the training phase for codebook design 
and in the compression phase, and a variety of parameters. 

Keywords: Time enhanced, self-organizing map, image compression, vector 
quantization, low bitrate, entropy.  

1   Introduction 

Millions of digital images are generated each day: from the few daily shots of an 
amateur photographer to the countless files at a newspaper’s multimedia archive, and 
there is a real and pressing need to store these images at the lowest possible cost. 
Furthermore, the advent of the Internet has set a new requirement: the transmission of 
digital content through bandwidth-limited channels. A very effective, although partial, 
solution to these problems is the use of lossless and lossy image compression 
algorithms. There are many lossy compression methods but when high compression 
ratios are sought codecs based on vector quantization (VQ) represent an attractive 
alternative because they easily attain 64:1 or higher compression ratios without a 
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noticeable quality loss 1]. For the design process of the codebook Linde, Buzo and 
Gray's algorithm 2] is the classical method, but in the 1980s Kohonen 3] opened the 
way for a new generation of design processes with his well-known work on artificial 
neural networks (4] and 5] for example). 

The original self organizing map has, however, an inherent limitation: it was 
designed for spatial representation and can not model the sequential aspects of the 
data. It is open to discussion whether modeling the sequentiality of the input stream 
yields better results for a particular problem, but several researchers have modified 
the original SOM to model non spatial relations 6] –[8]. Campoy et al.[9] developed a 
novel self organizing map that models the temporal redundancy of the input data: the 
time enhanced self organizing map (TESOM). By training both a classical map and a 

TESOM with ordered vectors of known probability density function in  ℜ2 , Campoy 
et al. showed that the time enhanced map had better performance, expressed as a 
lower entropy of the incremental position in the template index. Here this novel 
algorithm will be reviewed and compared to a standard SOM for image compression. 
The capacity of the time enhanced map for lower entropy and equivalent image 
quality will be showed, as will its ability to learn long and complex sequences. 

2   Time Enhanced SOM Algorithm for VQ Image Compression 

A k-dimensional memoryless vector quantizer (VQ) consists, in general, of a coder-
decoder pair: the coder maps input vectors to channel symbols and the decoder maps 
these symbols to values of a reproduction alphabet. In this particular scenario a finite 
index set I of N consecutive integers, beginning with 0, represents the channel 
symbols. The alphabet is a set of carefully selected reproduction vectors, the 

codebook, which sets the partition of the  ℜk  space into Voronoi cells through a 
closest neighbor rule, using the Euclidean distance as the criterion. These conditions 
define a codec that is fully described by the indexed vectors of the codebook: the 
compressor matches   w× h  subimages to indexed templates and stores the increment of 
the index, then the decompressor constructs a mosaic with said templates. Therefore 
the codebook design is critical. 

The self organizing map can be used to design VQ codebook, but instead of fully 
describing the standard algorithm and its modification we will present only the latter 
and state that for the SOM     RAi( j) = 0. Campoy et al [9] introduced the concept of 
Residual Activity: each neuron holds energy, which decays with time and is 
reinforced by the Neighborhood Activity. The Residual Activity changes the criterion 
for selecting the best matching node: past ”winners” are more likely to be selected. 
The Residual Activity decay is modeled with a Gaussian function and at the 
beginning of each iteration of the learning algorithm   RAi( j) is updated to reflect the 
energy decay: 

    RAi( j) = e
−

1+ −2σ t
2 ( j)*log[R ′ A i ( j−1)]

 
  

 
  

−2σ t
2 (k )  

where   R ′ A i  is the Residual Activity that was reinforced by the Neighborhood Activity 
at the end of the last iteration: 
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    R ′ A i( j) = 1− (1− NAi( j))* (1−RAi( j))  

This novel modification is remarkable because it does not store several past states 
of the network; for a full description of the time enhanced map and its properties 
consult [9]. 

2.1   Algorithm 

1.  Create the network of N nodes and set the synaptic weights to random values. 
2.  Map the input vector     x( j)  and the synaptic weights   wi( j)  to   x ( j)  and     w i( j)  in 

the     ℜk +1 space: 

    v = [v, v k +1] , where 
  
v k +1 = 1− v1

2 − v2
2 − − vk

2  

3. Calculate both the Instantaneous Activity  IAi  and the Residual Activity   RAi  for 
each neuron. Then compute the Total Activity  TAi  and select the winning node 

  
i j: 

  ii( j) = max(TAi( j)) , where   TAi( j) = 1− (1− IAi( j))* (1−RAi( j))  and 

  IAi = w i( j)• x i( j)  
4. Compute the Neighborhood Activity and Learning Factor: 

    
dim( j) = Pi( j) −Pm      σ v ( j) =σ v0 ⋅e

− j
tc    NAi( j) = e

−dim
2 ( j)

2σ v
2 ( j)

   α( j) =α0( j) ⋅e
− j

tc  
where 

    
Pi( j) is the of the i-th neuron and  Pm is the index of the winning neuron, both 

expressed as the position in the output map. 
5. Update the Residual Activity  R ′ A i  (see previous section). 
6. Update the synaptic weights: 

    wi( j +1) = wi( j) +α( j) ⋅ NAi( j) ⋅[x( j)− wi( j)]  
7. Iterate from step 2 until     j = 5tc . No significant adaptation occurs beyond this 

value. 
 

3   Benchmarking 

3.1   Input Data 

For image compression systems, where the probability density function of the data is 
unknown, it is common to use a large set of vectors from a reference image or group 
of images. The training vectors are used in no particular order because the SOM only 
models the similarity of the inputs, but the TESOM needs ordered training data so it 
can learn its patterns. Obviously the input sequence used for training must be used for 
image coding, and because there is no previous knowledge on this topic one of the 
simplest sequences is used, as shown in Fig. 1. As the order of the training vectors is 
not relevant for the SOM performance the same training data will be used for both 
design processes. 
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Fig. 1. Input sequence 

3.2   Input Data Correlation 

The VQ compressor transforms a digital image into a set of increments of indexes 

    ′ A = { ′ i 0, ′ i 1, ′ i 2, } . As the input vectors are neighboring partitions of the digital image 
they are, presumably, correlated: they are similar and there exist sequence patterns. 
As the TESOM models both the spatial and temporal aspect of the input data vectors 
close in the input space map to indexes close in the output space, like the typical 
SOM, but it is also true that vectors close in the input sequence map to a sequence of 
indexes close in the output space. These rules, while not mutually exclusive, compete 
at the learning stage and produce a better codebook when the patterns are also present 
when compressing data. 

3.3   Training parameters 

To train a self organizing map five parameters must be set: the order of the input 
space, the number of neurons, the characteristic time, the initial neighborhood 
variance and the initial learning factor. For the TESOM an extra parameter exists: the 
initial temporal variance. For each parameter a fixed value or range is selected. 

The order of the input space is set by the size of the partitions of the digital image: 
  k = w× h, and in this case only the results for  8× 8 and  12×12 subimages will be 
reported. Previous experience with SOMs lead to fixed values of the initial 
neighborhood variance (  σ 0 = 0.25) and the initial learning factor (  α0 = 1.5), as they 
guarantee a good differentiation and specialization of neurons. The remaining 
parameters are discussed below. 

- Number of neurons (  N ): small values boost compression ratio but maximize 
the quantization error. Since subimage size has a bigger impact in image 
quality than the value of  N standard values may be used: 64, 128 and 256. 

- Characteristic time (  tc): it sets the number of learning iterations (    5* tc). It is 
assumed that the training data is a large collection of patterns that must be 
recycled several times so the map will be able to learn them, hence the 
training data will be recycled 25, 50 and 100 times, being the characteristic 
time a multiple of the quantity of vectors. 

- Initial temporal variance (   σ t0 ): in the range  (0,∞)  this is the extra parameter 
of the time enhanced algorithm. For small values the TESOM is less 
enhanced as the effect of past inputs decays more rapidly, but large values 
distort the learning process with neurons that win all the time. To gather 
additional data on the properties of the TESOM 20 different values will be 
tested: 1-15, 20, 25, 30, 35 and 40. This means that for each SOM codebook 
there will be 20 TESOM codebooks with equivalent parameters. 
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3.4   Performance Evaluation 

Two indexes are used to establish the comparison between the algorithms: entropy of 
the compressed data and the PSNR of the decoded image. The entropy     H ( ′ A )  is 
calculated for each compressed image, and for the TESOM-compressed images is 
reported as a percentage gain or loss against a reference SOM-compressed image: 

 

    
Δ = 100* 1−H ( ′ A )tesom

H ( ′ A )som

 
 
 

 
 
 %     ,where 

  

H ( ′ A ) = P( ′ i j )* log2 P( ′ i j )
j

 

 
A positive Δ represents a higher compression ratio of the TESOM algorithm. This 

is possible because the time enhanced algorithm has an extra training parameter (    σ t0 ) 
with 20 different values, so each one of those maps may be compared to one SOM 
with identical standard parameters. 

4   Results 

The full suite of tests comprises 4,326 codebooks: 7 images were used for training 
and 13 images for compression test over a wide range of training/coding parameters, 
that has yield to 60,564 different experiments for compression of 8bpp (grayscale) 
images. A subset of the compressed images is shown in Fig. 2. From left to right: 
Lena (  512×512 pixels), Mandrill (  512×512), self-portrait (  400×500) of Dutch 
neoimpressionist Vincent van Gogh, “Woman with parasol” (  288× 360) and “Woman 
with parasol – Madame Monet and her son” (  268× 400) of French impressionist 
Claude Monet. They will be referred hereafter as lena, mand, gogh, mon1 and mon2, 
respectively. It is important to note that the training data is a set of subimages (quarter 
of total area) of the test images. 

The presented results are clustered into three possible scenarios: best-case, where 
the compressed image fully contains the training image; normal-case, where the 
compressed image is of the same class (i.e. visually similar)  as the training image 
(i.e. gogh and mon1); and a worst-case, where the compressed image is not related to 
the training image. 

     

Fig. 2. Subset of test images 

The first battery of tests uses  12×12 subimages and reveals that the TESOM 
algorithm has an average of  10% performance advantage over the SOM in terms of 
the Entropy of the code increment, i.e. in actual terms of bitrate. The leftmost graph of 
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Fig. 3 shows the better compression of the TESOM for a range of   σ t0  values when a 
lena-subimage is used to train the map and lena and mand are compressed. The image 
quality is equivalent for both cases, as shown as values of PSNR in Table 1 and 
visually in Fig. 4. The middle graph of Fig. 3 shows a similar situation when  training 
with a mand-subimage, and the results are consistent with the previous test. These 
graphs demonstrate both the best and worst case scenarios with two unrelated images 
while the rightmost graph of Fig. 3 presents the results for a normal scenario where 
one image is representative of the group of images to be compressed and shows even 
better performance (see Table 1 for the image quality comparison). 

Compression with smaller templates of  8× 8 pixels leads to a smaller TESOM 
advantage, down to an average value of 6% in the bitrate. Image quality is still 
equivalent, and even if in some cases the TESOM performs equally than a SOM it can 
be said that in general the time enhanced algorithm keeps a small lead in performance. 

 

 
Code lena and mand, trained with lena  Code lena and mand, trained with mand 

 
Code mon1-2 and gogh, trained with mon1 

Fig. 3. Bitrate reduction for  12×12 subimages and   N = 128 

Table 1. Image quality comparison in dB (PSNR) 

Training 
subimage 

Compressed image SOM-coded 
PSNR 

TESOM-coded 
average PSNR 

lena Lena 23.55 23.46 
12x12 mand 18.42 18.42 
mand mand 18.62 18.61 
12x12 lena 21.62 21.77 
mon1 mon1 22.10 22.08 
12x12 gogh 21.14 21.05 

 mon2 21.56 21.53 
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 som tesom som tesom 

Fig. 4. Visual results: TESOM vs. SOM (trained with lena,  12×12 subimages,     σ t0 = 30) 

5   Conclusions 

A new and innovative modification to Kohonen’s algorithm, the time enhanced self 
organizing map TESOM, has been reviewed and its application extended for the 
design of VQ codebooks for digital image compression. The performance of the time 
enhanced algorithm was compared to that of a standard SOM using two quality 
indexes: the compression ratio (measured as the entropy of the of the code increment) 
and the objective quality of the decoded images (PSNR). 

Tests show that maps obtained by TESOM are able to learn the sequence order of 
th long and complex sequences that exist in the training data (i.e. subimages). This 
additional information is taken into account for a better ordering of the vectors in the 
codebook, which leads to a performance advantage when coding data with similar 
patterns. This bitrate improvement is most remarkable when compressing with big 
subimages (  12×12 pixels), when the subimages are not very similar and the 
sequential order is therefore more relevant. 

It is important to note that the TESOM algorithm introduces only one extra training 
parameter and that its value is not critical, since a good performance is possible for a 
wide range of temporal variances   10 ≤σ t0 ≤ 30. Furthermore, typically the worst 
performing TESOM is equivalent to the reference SOM in both compression ratio and 
image quality. Additionally better performance was demonstrated for the three 
scenarios tested: a best case where the compressed image fully contains the training 
data, a normal case where the compressed image is of the same class as the training 
data and a worst case where the compressed image is not related to the training data. 

Future work will focus on different ordering sequences of the subimages, video 
compression and enhancements to the algorithm based on the knowledge and data 
acquired with the experiments and results. 
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Garćıa, Maŕıa M. 588, 614
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Grau Ábalo, Ricardo 614, 902
Grim, Jǐŕı 287
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Rodŕıguez, Roberto 326
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