

Lecture Notes in Artificial Intelligence 4248
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Steffen Staab Vojtěch Svátek (Eds.)

Managing Knowledge
in a World of Networks

15th International Conference, EKAW 2006
Poděbrady, Czech Republic, October 2-6, 2006
Proceedings

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Steffen Staab
University of Koblenz-Landau, Institute for Computer Science
56016 Koblenz, Germany
E-mail: staab@uni-koblenz.de

Vojtěch Svátek
University of Economics
Department of Information and Knowledge Engineering
13967 Prague 3, Czech Republic
E-mail: svatek@vse.cz

Library of Congress Control Number: 2006933225

CR Subject Classification (1998): I.2, H.4, J.1, C.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-46363-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46363-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11891451 06/3142 5 4 3 2 1 0

Preface

The 15th International Conference on Knowledge Engineering and Knowledge
Management (2006), held on October 6-10, 2006 in Poděbrady, Czech Republic,
followed a long tradition of European Knowledge Acquisition Workshops (from
1987), which eventually acquired the format of conference (in 2000) while keeping
their open-minded and interactive spirit.

During the nearly 20 year lifespan of the series, the discipline of knowledge
engineering (KE) evolved greatly. While knowledge acquisition (KA) techniques
dominated in the very first years, formal approaches to knowledge-based infer-
ence and various new streams such as knowledge discovery from data/texts later
came into play. During the late 1990s and afterwards, EKAW became a founding
community for ontology and Semantic Web Research, which was also reflected
in the sub-titles of the 2002 and 2004 editions: “Ontologies and the Semantic
Web” and “Engineering Knowledge in the Age of the Semantic Web,” respec-
tively. The 2006 edition, in turn, only slightly refocussed this trend. Its sub-title
is “Managing Knowledge in a World of Networks,” which reflects the fact that
semantics typically arises not only as a result of explicit engineering activities
(as in Semantic Web) but also emerges from interaction of a high number of
interconnected documents, ontological concepts, software applications and —
especially — human users. The importance given to the interconnection of hu-
man users in a sense loops back to the knowledge acquisition roots of EKAW
and its ‘holistic’ view of knowledge engineering.

Another special flavor was given to the 2006 edition by the fact that it was
for the first time that the EKAW series crossed the border from ‘Western’ to
‘Eastern’ Europe. This can be viewed as recognition that knowledge engineering
research in the new EU member (and candidate) states in this region is becoming
increasingly popular, with new groups sprouting all around.

EKAW-2006 attracted 119 paper submissions, which represents an almost
60% increase over the last (2004) edition; this reflects a stable and growing
interest in EKAW key topics. The submissions came from 28 countries of 4
continents, Europe being, however, prevalent with 63%; the top three countries
were the UK (18%), Korea (16%) and France (14%). Each paper was evaluated
by at least three reviewers. Discussion then took place for all papers with uneven
reviews. Eventually, 33 submissions were accepted, which yields an acceptance
rate of 27.7%. Due to space limitations, accepted papers were further divided
into long (16 pages) and short (8 pages) ones, following the ranking resulting
from the review; there are 17 long and 16 short papers in the proceedings.

The invited talks were chosen so as to represent the current blend of EKAW’s
topics of interest. The talk by Alan Rector (“Whose Knowledge? Whose Ques-
tions? Whose Answers? Conflicting Preconceptions for Knowledge Intensive Sys-
tems”) examined the roots of mainstream KE. The one by Pedro Domingos

VI Preface

(“Learning, Logic, and Probability: A Unified View”) attempted to build a com-
mon formal foundation for core, but so far separate, building blocks of knowledge
engineering research and practice. Finally, the talk by Andrzej Nowak (“Infor-
mation and Influence in Social Networks”) underpinned the specific focus of this
year’s EKAW from the point of view of a social scientist.

Similarly, the topics of contributed papers reflect the usual as well as new
foci of KE. The largest session was that of Knowledge Acquisition, with seven
accepted papers. Other traditional sessions were those devoted to different as-
pects of the ontology lifecycle: Ontology Engineering, Ontology Learning and
Ontology Mapping and Evolution. Somewhat more end-user-oriented research
was reported in the sessions on Semantic Search and User Interfaces. In the
Knowledge Discovery session, a specific mode of exploiting ontologies and other
kinds of prior knowledge—for the discovery of new knowledge from data—was
addressed. The session on Semantics from Networks and Crowds was devoted to
KE aspects of (analysis of) large networks. Finally, there was a session dedicated
to Applications developed for specific domains.

Additionally, the scientific programme of the conference featured two tutori-
als, a workshop, and a poster and demo session, each with their notes published
separately. Most materials not present in this volume can be retrieved from the
conference Web page http://ekaw.vse.cz.

We would like to express our cordial thanks to invited as well as contribut-
ing presenters for inspiring talks and papers, the PC members and additional
reviewers for their careful work, and the Action M agency for handling most
organizational issues. We also acknowledge the uneasy task of Heiner Stucken-
schmidt as Workshop/Tutorial Chair, Helena Sofia Pinto as Poster Chair and
Martin Labský as Demo Chair, and the effort of all tutorial presenters and work-
shop organizers. The efforts of Olaf Görlitz and Thomas Franz were invaluable
as they tended to tedious administration issues of reviewing management and
proceedings compilation. We thank Jan Nemrava and Marek Růžička, who took
care of the conference Web site and the printable CFP.

Finally, special thanks go to the sponsors of this conference: the K-Space,
NeOn and X-Media projects of the 6th EU Framework programme and our home
institutions, the University of Economics, Prague, and University of Koblenz-
Landau.

July 2006 Steffen Staab
Vojtěch Svátek

Organization

Conference Co-chairs: Steffen Staab, University of Koblenz-Landau,
Germany

Vojtěch Svátek, University of Economics, Prague,
Czech Republic

Workshop Chair: Heiner Stuckenschmidt, University of Mannheim,
Germany

Tutorial Chair: Heiner Stuckenschmidt, University of Mannheim,
Germany

Poster Chair: Helena Sofia Pinto, Technical University of Lisbon,
Portugal

Demo Chair: Martin Labský, University of Economics, Prague,
Czech Republic

Programme Committee

Karl Aberer, Epfl, Switzerland
Stuart Aitken, University of Edinburgh, UK
Hans Akkermans, Free University of Amsterdam, The Netherlands
Nathalie Aussenac-Gilles, IRIT- CNRS Toulouse, France
Richard Benjamins, iSOCO, Spain
Paulo Bouquet, University of Trento, Italy
Joost Breuker, University of Amsterdam, The Netherlands
Philipp Cimiano, University of Karlsruhe, Germany
Paul Compton, University of New South Wales, Australia
Olivier Corby, INRIA Sophia-Antipolis, France
Stefan Decker, DERI Ireland, Ireland
Rose Dieng, INRIA-Sophia-Antipolis, France
John Domingue, The Open University, UK
Martin Dzbor, The Open University, UK
Jerôme Euzenat, INRIA Rhône-Alpes, France
Dieter Fensel, University of Innsbruck, Austria
Aldo Gangemi, ISTC-CNR, Italy
Jennifer Golbeck, University of Maryland, USA
Asun Gomez-Perez, Universidad Politécnica de Madrid, Spain
Marko Grobelnik, JSI, Slovenia
Udo Hahn, Jena University, Germany
Michele Missikoff, CNR, Italy
Riichiro Mizoguchi, Osaka University, Japan
Enrico Motta, The Open University, UK
Mark Musen, Stanford University, USA

VIII Organization

Enric Plaza I Cervera, Spanish Scientific Research Council, CSIC, Spain
Alun Preece, University of Aberdeen, UK
Alan Rector, University of Manchester, UK
Ulrich Reimer, University of Applied Sciences St. Gallen, Switzerland
Marie-Christine Rousset, University of Paris-Sud, France
Guus Schreiber, Free University of Amsterdam, The Netherlands
Nigel Shadbolt, University of Southampton, UK
Wolf Siberski, University of Hannover, Germany
Derek Sleeman, University of Aberdeen, UK
Pavel Smrž, Technical University of Brno, Czech Republic
Rudi Studer, University of Karlsruhe, Germany
Gerd Stumme, University of Kassel, Germany
York Sure, University of Karlsruhe, Germany
Annette ten Teije, Free University of Amsterdam, The Netherlands
Frank van Harmelen, Free University of Amsterdam, The Netherlands
Hannes Werthner, Vienna University of Technology, Austria
Mike Wooldridge, University of Liverpool, UK

Additional Reviewers

Sudhir Agarwal, AIFB Institute, Karlsruhe, Germany
Anupriya Ankolekar, AIFB Institute, Karlsruhe, Germany
Stephan Bloehdorn, AIFB Institute, Karlsruhe, Germany
Luka Bradesko, Jozef Stefan Institute, Slovenia
Janez Brank, Jozef Stefan Institute, Slovenia
Adriana Budura, EPFL, Switzerland
Vasilios Darlagiannis, EPFL, Switzerland
Rainer Endl, University of Applied Sciences St. Gallen, Switzerland
Blaz Fortuna, Jozef Stefan Institute, Slovenia
Rafael Gonzalez-Cabero, UPM, Spain
Elias Gyftodimos, University of Aberdeen, UK
Peter Haase, University of Karlsruhe, Germany
Robert Jäschke, University of Kassel, Germany
Martin Kejkula, University of Economics, Prague, Czech Republic
Fabius Klemm, EPFL, Switzerland
Markus Kroetsch, University of Karlsruhe, Germany
Steffen Lamparter, University of Karlsruhe, Germany
Holger Lewen, AIFB Institute, Karlsruhe, Germany
Edith Maier, University. of Applied Sciences St. Gallen, Switzerland
Ivana Podnar, EPFL, Switzerland
Quentin Reul, University of Aberdeen, UK
Christoph Ringelstein, University of Koblenz-Landau, Germany
Sebastian Rudolph, AIFB Institute, Karlsruhe, Germany
Jan Rupnik, Jozef Stefan Institute, Slovenia
Carsten Saathoff, University of Koblenz-Landau, Germany

Organization IX

Roman Schmidt, EPFL, Switzerland
Christoph Schmitz, University of Kassel, Germany
Christph Tempich, University of Karlsruhe, Germany
Edward Thomas, University of Aberdeen, UK
Johanna Völker, AIFB Institute, Karlsruhe, Germany
Denny Vrandecic, University of Karlsruhe, Germany
Le Hung Vu, EPFL, Switzerland
Yimin Wang, AIFB Institute, Karlsruhe, Germany

Poster Programme Committee

Stuart Aitken, Edinburgh University, UK
Harith Alani, University of Southampton, UK
Philipp Cimiano, University of Karlsruhe, Germany
Oscar Corcho, University of Manchester, UK
Mariano Fernandez Lopez, CEU, Spain
Marko Grobelnik, Jozef Stefan Institute, Slovenia
Siegfried Handschuh, DERI, Ireland
Andreas Hotho, Kassel University, Germany
Michel Klein, Vrije Universiteit Amsterdam, The Netherlands
Andreia Malucelli, Pontifical Catholic University of Paraná, Brazil
Peter Mika, Vrije Universiteit, The Netherlands
Alun Preece, University of Aberdeen, UK
Marta Sabou, The Open University, UK
Christoph Schmitz, Kassel University, Germany
Sergej Sizov, Koblenz-Landau University, Germany
York Sure, University of Karlsruhe, Germany
Maria Vargas-Vera, KMI, The Open University, UK

X Organization

Sponsors

K-Space (IST-FP6-027026) University of Economics, Prague

NeOn (IST-FP6-27595) X-Media (IST-FP6-026978)

ISWeb, University of Koblenz-Landau

Table of Contents

Invited Talks

Information and Influence in Social Networks . 1
Andrzej Nowak, Robin Vallacher,
Wies�law Bartkowski

Learning, Logic, and Probability: A Unified View . 2
Pedro Domingos

Knowledge Acquisition

KARaCAs: Knowledge Acquisition with Repertory Grids and Formal
Concept Analysis for Dialog System Construction . 3

Hilke Garbe, Claudia Janssen, Claus Möbus, Heiko Seebold,
Holger de Vries

Capturing Quantified Constraints in FOL, Through Interaction
with a Relationship Graph . 19

Peter M.D. Gray, Graham J.L. Kemp

Assisting Domain Experts to Formulate and Solve Constraint
Satisfaction Problems . 27

Derek Sleeman, Stuart Chalmers

Knowledge Acquisition Evaluation Using Simulated
Experts . 35

Tri M. Cao, Paul Compton

Stochastic Foundations for the Case-Driven Acquisition
of Classification Rules . 43

Megan Vazey

From Natural Language to Formal Proof Goal . 51
Ruud Stegers, Annette ten Teije,
Frank van Harmelen

Reuse: Revisiting Sisyphus-VT . 59
Derek Sleeman, Trevor Runcie,
Peter Gray

XII Table of Contents

Ontology Engineering

Role Organization Model in Hozo . 67
Eiichi Sunagawa, Kouji Kozaki, Yoshinobu Kitamura,
Riichiro Mizoguchi

Verification and Refactoring of Ontologies with Rules 82
Joachim Baumeister, Dietmar Seipel

Ontology Selection for the Real Semantic Web: How to Cover
the Queen’s Birthday Dinner? . 96

Marta Sabou, Vanessa Lopez, Enrico Motta

Ontology Engineering, Scientific Method and the Research Agenda 112
Hans Akkermans, Jaap Gordijn

Ontology Learning

Ontology Enrichment Through Automatic Semantic Annotation
of On-Line Glossaries . 126

Roberto Navigli, Paola Velardi

Discovering Semantic Sibling Groups from Web Documents
with XTREEM-SG . 141

Marko Brunzel, Myra Spiliopoulou

Designing and Evaluating Patterns for Ontology Enrichment
from Texts . 158

Nathalie Aussenac-Gilles, Marie-Paule Jacques

Ontology Mapping and Evolution

Semantic Metrics . 166
Bo Hu, Yannis Kalfoglou, Harith Alani, David Dupplaw, Paul Lewis,
Nigel Shadbolt

Matching Unstructured Vocabularies Using a Background Ontology 182
Zharko Aleksovski, Michel Klein, Warner ten Kate,
Frank van Harmelen

Distributed Multi-contextual Ontology Evolution – A Step Towards
Semantic Autonomy . 198

Maciej Zurawski

Table of Contents XIII

An Evaluation Method for Ontology Complexity Analysis in Ontology
Evolution . 214

Dalu Zhang, Chuan Ye, Zhe Yang

Semantic Search

Semantic Search Components: A Blueprint for Effective Query
Language Interfaces . 222

Victoria Uren, Enrico Motta

SemSearch: A Search Engine for the Semantic Web . 238
Yuangui Lei, Victoria Uren, Enrico Motta

Rich Personal Semantic Web Clients: Scenario and a Prototype 246
G. Tummarello, C. Morbidoni, M. Nucci, F. Piazza, P. Puliti

User Interfaces

I2dee: An Integrated and Interactive Data Exploration Environment
Used for Ontology Design . 256

Fabien Jalabert, Sylvie Ranwez, Vincent Derozier, Michel Crampes

Evaluating a Thesaurus Browser for an Audio-visual Archive 272
Véronique Malaisé, Lora Aroyo, Hennie Brugman, Luit Gazendam,
Annemieke de Jong, Christian Negru, Guus Schreiber

Knowledge Discovery

Frequent Pattern Discovery from OWL DLP Knowledge Bases 287
Joanna Józefowska, Agnieszka �Lawrynowicz, Tomasz �Lukaszewski

Engineering and Learning of Adaptation Knowledge in Case-Based
Reasoning . 303

Amélie Cordier, Béatrice Fuchs, Alain Mille

A Methodological View on Knowledge-Intensive Subgroup Discovery 318
Martin Atzmueller, Frank Puppe

Iterative Bayesian Network Implementation by Using Annotated
Association Rules . 326

Clément Fauré, Sylvie Delprat, Jean-François Boulicaut,
Alain Mille

XIV Table of Contents

Semantics from Networks and Crowds

Multilayered Semantic Social Network Modeling by Ontology-Based
User Profiles Clustering: Application to Collaborative Filtering 334

Iván Cantador, Pablo Castells

Towards Knowledge Management Based on Harnessing Collective
Intelligence on the Web . 350

Koji Zettsu, Yasushi Kiyoki

A Formal Approach to Qualitative Reasoning on Topological Properties
of Networks . 358

Andrea Rodŕıguez, Claudio Gutierrez

Applications

Towards a Knowledge Ecosystem . 366
Piercarlo Slavazza, Roberto Fonti, Massimo Ferraro,
Christian Biasuzzi, Luca Gilardoni

A Tool for Management and Reuse of Software Design Knowledge 381
Paulo Gomes, André Leitão

The ODESeW Platform as a Tool for Managing EU Projects:
The Knowledge Web Case Study . 389

Asunción Gómez-Pérez, Angel López-Cima,
M. Carmen Suárez-Figueroa, Oscar Corcho

Posters and Demos . 397

Author Index . 399

Posters and Demos

Lylia Abrouk, New approach for document automatic annotation

Riccardo Albertoni, Monica De Martino, Semantic Similarity of Ontology In-
stances tailored on the Application Context

Georg Buscher, Joachim Baumeister, Frank Puppe, Dietmar Seipel,
Semi-Distributed Development of Agent-Based Consultation Systems

Sylvain Dehors, Catherine Faron-Zucker, Rose Dieng-Kuntz, QBLS:Semantic
Web Technology for E-learning in Practice

Gyorgy Frivolt, Maria Bielikova, Growing World Wide Social Network by Bridg-
ing Social Portals Using FOAF

David Hyland-Wood, David Carrington, Simon Kaplan, A Semantic Web Ap-
proach to Software Maintenance

Afraz Jaffri, Hugh Glaser, Ian Millard, Benedicto Rodriguez, Using a Seman-
tic Wiki to Interact with a Knowledge-Based Infrastructure

Lobna Karoui, Ontological Concepts Evaluation Based on Context

Tomáš Kliegr, Clickstream analysis - the semantic approach

Cristian Pérez de Laborda, Matthäus Zloch, Stefan Conrad, RDQuery - Query-
ing Relational Databases on-the-fly with RDF-QL

Yaozhong Liang, Harith Alani, Nigel Shadbolt, Ontologies Change and Queries
Break: Towards a Solution

Helena Lindgren, Introducing a Formalisation of an Activity-Theoretical Model
of the Clinical Investigation of Dement

Angel Lopez-Cima, Asun Gomez-Perez, M. Carmen Suarez, Oscar Corcho, Man-
aging R&D European Projects with ODESeW

David Manzano-Macho, Asun Gomez-Perez, Daniel Borrajo, HOLA: A Hybrid
Ontology Learning Architecture

Christian Morbidoni, Giovanni Tummarello, Michele Nucci, Francesco Piazza,

398 Posters and Demos

Paolo Puliti, DBin – enabling SW P2P communities

Miklos Nagy,Maria Vargas-Vera, Similarity Mapping with Uncertainty for Knowl-
edge Management of Heterogeneous Scientific Databases

Jan Nemrava, Refining search queries using WordNet glosses

Giang Nguyen, Michal Laclavik, Babik Marian, Gatial Emil, Ciglan Marek,
Zoltan Balogh, Oravec Viktor, Ladislav Hluchy, Knowledge acquisition, orga-
nization and maintenance for heterogeneous information resources

Sodel Vazquez Reyes, William Black, Toward a Knowledge Base for Answer-
ing Causal Questions

Chantal Reynaud, Brigitte Safar, Hassen Kefi, Structural Techniques for Align-
ment of Structurally Dissymetric Taxonomies

Zdenek Zdrahal, Paul Mulholland, Trevor Collins, Exploring Paths Across
Stories

Information and Influence in Social Networks

Andrzej Nowak, Robin Vallacher, and Wies�law Bartkowski

Warsaw University, Poland

Abstract. Most research on social networks is concerned with infor-
mation transmission per se Our aim here is to supplement the social
network perspective by incorporating mechanisms that govern social in-
fluence Research in social psychology suggests that individuals interact,
in large part, to construct a shared reality that consists not only of shared
information but also of agreed upon opinions. In this process, they do
not simply transmit information, but more importantly, they influence
one another to arrive at a common interpretation of information. We
will discuss similarities and differences in how networks structure shapes
the spread of information and governs social influence. Both simulation
and empirical data concerning these two processes show that they op-
erate in a very different way. The spread of information, described as
a contagion process describes how individuals learn about new facts.
Social influence process describes how individuals evaluate and weight
different items of information and how they change their opinions and
attitudes. The results of numerous experiments have shown that three
critical factors determine the impact of social influence: (1) the number
of sources exerting the influence, (2) the immediacy of the source(s) to
the target(s), and (3) the strength of the source(s). The process by which
humans construct social reality may prove informative for designing rules
of interaction among intelligent agents. The primary implication of the
present model is that information is not merely acquired, but also eval-
uated and negotiated in a social context. The process by which humans
evaluate information and construct social reality may prove informative
for designing rules of interaction among intelligent agents. The primary
implication of the present model is that information is not merely ac-
quired, but also evaluated and negotiated in a social context.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, p. 1, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning, Logic, and Probability: A Unified View

Pedro Domingos

University of Washington

Abstract. AI systems must be able to learn, reason logically, and handle
uncertainty. While much research has focused on each of these goals in-
dividually, only recently have we begun to attempt to achieve all three at
once. In this talk I will describe Markov logic, a representation that com-
bines first-order logic and probabilistic graphical models, and algorithms
for learning and inference in it. A knowledge base in Markov logic is a
set of weighted first-order formulas, viewed as templates for features of
Markov networks. The weights and probabilistic semantics make it easy
to combine knowledge from a multitude of noisy, inconsistent sources,
reason across imperfectly matched ontologies, etc. Inference in Markov
logic is performed by weighted satisfiability testing, Markov chain Monte
Carlo, and (where appropriate) specialized engines. Formulas can be re-
fined using inductive logic programming techniques, and weights can
be learned either generatively (using pseudo-likelihood) or discrimina-
tively (using a voted perceptron). Markov logic has been successfully ap-
plied to problems in entity resolution, social network modeling, informa-
tion extraction and others, and is the basis of the open-source Alchemy
system.

(Joint work with Stanley Kok, Hoifung Poon, Matt Richardson and
Parag Singla.)

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, p. 2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

KARaCAs: Knowledge Acquisition with

Repertory Grids and Formal Concept Analysis
for Dialog System Construction

Hilke Garbe1, Claudia Janssen2, Claus Möbus1, Heiko Seebold2,
and Holger de Vries2

1 University of Oldenburg, Germany
{garbe, moebus}@uni-oldenburg.de

2 OFFIS Oldenburg, Germany

Abstract. We describe a new knowledge acquisition tool that enabled
us to develop a dialog system recommending software design patterns by
asking critical questions. This assistance system is based on interviews
with experts. For the interviews we adopted the repertory grid method
and integrated formal concept analysis. The repertory grid method stim-
ulates the generation of common and differentiating attributes for a given
set of objects. Using formal concept analysis we can control the reper-
tory grid procedure, minimize the required expert judgements and build
an abstraction based hierarchy of design patterns, even from the judge-
ments of different experts. Based on the acquired knowledge we semi-
automatically generate a Bayesian Belief Network (BBN), that is used
to conduct dialogs with users to suggest a suitable design pattern for
their individual problem situation. Integrating these different methods
into our knowledge acquisition tool KARaCAs enables us to support the
entire knowledge acquisition and engineering process. We used KARa-
CAs with three design pattern experts and derived approximately 130 at-
tributes for 23 design patterns. Using formal concept analysis we merged
the three lattices and condensed them to approximately 80 common
attributes.

1 Introduction

Design patterns are an accepted method for improving the quality of software.
The standard book about design patterns in object oriented software design is
Gamma et al. [1], where a citation of Christopher Alexander is used to explain
what patterns are: “ Each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution to
that problem, in such a way that you can use the solution a million times over,
without ever doing it the same way twice.” [2]. Although Alexander was an
architect his description is also suitable for patterns in the domain of object
oriented software design. One purpose of design patterns is to capture design
experience and make it available to other developers, so they can improve their
designs. The standard elements of a pattern description are:

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 3–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

4 H. Garbe et al.

Name. Every design pattern has a name.
Problem. This section describes the problem situation in which a pattern is

applicable.
Solution. The solution describes how objects and classes can work together to

solve the problem. The solution is a template that has to be instantiated for
each specific situation.

Consequences. The consequences describe e.g. trade-offs that have to be con-
sidered if a design pattern should be applied.

Gamma et al. [1] describe 23 design patterns organized as a catalog. In addition
there is an increasing amount of new patterns including for example architectural
andJ2EEpatterns.Nevertheless, knowledge about designpatterns is not verywide
spread among software developers and the literature about patterns is often orga-
nized as catalogs; pattern bypattern. A software engineer has to read all (or at least
many) pattern descriptions before he can decide which pattern is suitable for his
problem situation. Tool support for selecting appropriate design patterns is rare.
Meffert [3] supposes semantic source code annotations which can be analysed to
capture the intent of a piece of software. These annotations can be compared to
given pattern templates and if a match can be found, the source code elements
can gradually be transfered to a pattern. Gomes [4] describes a case based reason-
ing approach for reusing software which uses Baysian Networks and WordNet as
a common sense ontology. Both approaches work on source code or UML model
artifacts. Our goal was to develop a dialog system that is able to approve possi-
ble design patterns [5] without analysing given source code or models. This dialog
system can assist software developers in choosing a design pattern. Who, even if
he has not read all the design pattern descriptions is able to benefit from the ex-
periences of other software developers. Our dialog system questions him about his
design problem and makes a suggestion which pattern might be applicable.

This article is organized as follows: Section 2 provides an overview of our
proposed knowledge acquisition and engineering process. Section 3 describes our
knowledge acquisition procedure containing repertory grids (3.1), formal concept
analysis (3.2), and their integration in KARaCAs (3.3). The merging process
for the results of different expert interviews is outlined in section 4. Our dialog
system is based on BBNs (section 5) that are generated semi-automatically from
the data we obtained in the expert interviews with KARaCAs. In section 6 we
discuss conclusions and further work.

2 Requirements and Proposed Knowledge Acquisition
Process

Our goal was to design an efficient dialog system that assists software developers
to choose a design pattern for their specific problem situation. The intended
dialog system should question the user about his specific problem situation. The
user answers these questions with “yes”, “no” or “I don’t know”. During this
dialog the system successively reduces the set of applicable patterns until it
proposes one.

KARaCAs 5

This dialog system has to fulfill the following requirements:

1.1 User input. Requirements on how user input is processed:
1.1.1 Undo. The user should have the possibility to reconsider a given answer

and change it. The dialog has to adjust itself to the altered information.
1.1.2 Fault Tolerance. The dialog has to be “fault tolerant”. Even if a user

gives a wrong answer about his problem situation he should have the
possibility to continue the dialog and get a pattern suggestion.

1.1.3 No answer. Additionally, he should be able to skip questions, since
he might not be able to classify his problem situation completely and
therefore might not be able to answer every question.

1.2 Probabilities for suggestions. The dialog system may not be able to
comprehend the entire problem situation and context. This may be because
the user has a diverging conception of his situation or the posed question
and therefore enters misleading information in the dialog system. Another
reason might be that there are institutional programming standards that are
unknown for the dialog system. Because of this, a certain pattern can only
be suggested with an approximated probability. The user should be informed
about this probability. This information should be presented to him during
the entire dialog.

As we were not able to extract the required knowledge from design pattern
literature, we used a knowledge acquisition with design pattern experts. Deduced
from the requirements for the dialog, we had the following requirements for the
knowledge acquisition procedure:

2.1 Free generation and naming of attributes. The experts should not be
restricted in generating and naming attributes for the problem situations a
specific pattern can be applied to. We were interested in the terms experts
use to describe problem situations for software engineers.

2.1.1 Shared attributes. To set up an efficient dialog, attributes were required
that are sharedbetween two ormore patterns.These attributes canbe used
to successively reduce the set of patterns that are relevant for the ongoing
dialog. This is a very difficult task for design pattern experts. We made
the experience that they first think of specific problem situations for every
pattern, and finding shared attributes was a difficult task for them.

2.1.2 Differentiating attributes. To identify a situation in which one spe-
cific design pattern can be suggested by the dialog system, every pattern
should be identifiable by its attributes. Therefore the attribute sets of
the patterns should be pairwise disjoint.

2.2 Probabilities. A design pattern is a template that can be adjusted to a
given situation and the situations to which it can be applied can vary. There-
fore the attributes of these situations can vary and so a specific attribute
must not always be present. To capture this, we needed a method that can
deal with probabilities.

2.3 Visualization of results. The results of the knowledge acquisition should
be visualized in such a way, that the domain expert can understand them.

6 H. Garbe et al.

2.4 Merging. As we wanted to integrate the knowledge of different experts who
can freely name attributes, the knowledge acquisition procedure should allow
the possibility to merge different sets of attributes for the design patterns.
This includes for example the assistance in identifying attributes that are
used synonymously, as generalisation or specialisation of others. Because of
the amount of attributes we have to deal with, this procedure has to be
supported by the knowledge acquisition method.

To fulfill these requirements we propose a three stage knowledge acquisition
process (Fig. 1). We first acquire knowledge from different experts. For these
interviews we adapted the repertory grid technique and integrated Formal Con-
cept analysis. The results of these interviews are merged with support of Formal
Concept Analysis. From this aggregated information we semi-automatically gen-
erate a BBN for the dialog system. Using these different knowledge acquisition
methods and engineering and integrating them into our tool KARaCAs we can
support the whole process.

The three stages of the process will be described in sections 3 - 5.

Fig. 1. Proposed Knowledge Acquisition Process

KARaCAs 7

3 Knowledge Acquisition

For our knowledge acquisition process we used modified repertory grids and
formal concept analysis. Both methods have distinct advantages but also some
strong disadvantages in regard to our requirements. By combining the two the
disadvantages for our application could be overcome.

3.1 Knowledge Acquisition with Repertory Grids

The Repertory Grid techniques was proposed by Kelly [6]. It was embedded in
his Personal Construct Psychology. Delugach states: “In accordance with the
theory, the repertory grid technique distinguishes the objects of a problem do-
main (called elements) through their attributes (called constructs).” [7]

The Repertory Grid technique has three steps.

1. The elements for the procedure are chosen. In Personal Construct Psychology
the considered elements are usually persons or situations. Often elements are
preselected instead of being acquired through an interview.

2. At the second step constructs are acquired by classification from three ran-
domly chosen elements (triade) into two classes. The interviewed person has
to explain in which way two elements of the triade are similar and how
they differ from the remaining one. Elements and constructs are listed in a
two-dimensional matrix called grid.

3. The last step is to rate all elements concerning the given constructs. This
is normally done by rating each element on a given scale between the two
poles.

Gaines and Shaw state: “The repertory grid was an instrument designed by
Kelly to bypass cognitive defenses and give access to a persons underlying con-
struction system by asking the person to compare and contrast relevant examples
(significant people in the person’s life in the original application).” [8]

Since 1955 several variations of the repertory grid technique have been de-
veloped, Castro-Schez et al. [9] give a short overview. Apart from the use in
psychology (e.g. Spangenberg and Wolff [10]) Repertory Grids and its variations
have often been used for knowledge acquisition in different domains (e.g. Gaines
and Shaw [8], Richards [11] and Castro-Schez et al. [9]).

The repertory grid technique has a lot of advantages that makes it well suited
for our knowledge acquisition process:

– It can be performed in natural spoken language without given items (re-
quirement 2.1). Nevertheless we obtain formal and structured results which
can be used as input in other procedures.

– The method supports the experts in generating shared (requirement 2.1.1)
and differentiating (requirement 2.1.2) attributes for design patterns. By
asking them to group two of three items they can concentrate on these.
At each step only a small subset of the design patterns has to be consid-
ered. Therefore the expert is supported in generating these differentiating
attributes.

8 H. Garbe et al.

– The two poles of every construct can be interpreted as attributes. By rating
the attributes for the design patterns probabilities can be assigned to the
relations (requirement 2.2).

There are some disadvantages:

– The triads are randomly chosen. In the worst case this leads to a very large
amount of needed triads to get enough differentiating attributes. In addition,
the repertory grid method can not assure that the sets of attributes for all
design patterns are pairwise disjoint. (Requirement 2.1.1) If for example two
very similar elements are presented in a triad, it can be expected that they
are always grouped together (cp. Choisel and Wickelmaier [12]).

– The generated attributes depend on the presented triads, so possibly not
every attribute the expert thinks to be important might be generated. If
for example all elements have a very important attribute in common this
would never be mentioned during the procedure. Considering the attributes
that are generated during the repertory grid for a specific design pattern the
expert might miss one or more attributes that are relevant for this pattern.
The expert should have the possibility to complete the set of attributes to
properly describe the design pattern.

– Bruder, Lengnink and Prediger [13] used repertory grids to ask mathematics
students about their subjective theories about mathematical tasks. As a
result of their studies they describe an additional problem: It was often very
difficult for the students to find exact antipodes for attributes.

The result of the repertory grid method is a matrix with ratings for the el-
ements concerning the constructs. This data has to be analysed and visualized
properly to be understood and interpreted by the domain expert and the knowl-
edge engineer. Several methods have been used for this and were implemented
in tools (cp. Gaines and Shaw [8]). In our work we focus on Formal Concept
Analysis for this purpose.

3.2 Ontology Engineering and Formal Concept Analysis

This section gives a short introduction to formal concept analysis. The combi-
nation of repertory grids and formal concept analysis is described in section 3.3.
Formal Concept Analysis (FCA) is a method for qualitative analysis of data.
Subject to FCA is a formal context. A formal context (G, M, I) is a subset of
the Cartesian product (I ⊆ G × M) of a quantity of objects G (Gegenstände in
German) and a quantity of attributes M (Merkmale in German). The term gI m
means: object g owns attribute m [14]. FCA structures data into units, which are
formal abstractions of concepts of mind. A formal concept comprises two parts,
its extension and its intension. The extension enfolds all objects belonging to
this concept. The intension covers all attributes shared by those objects. The
extension of a concept determines the intension and the intension determines
the extension [14]. This approach allows gathering all concepts of a context and
introduces a subsumption hierarchy between them. The amount of all formalized

KARaCAs 9

concepts is called concept lattice of the formal context. This lattice can be visu-
alized as a conceptual hierarchy (Hasse Diagram), which enables a different view
on the structure of the data and supports its analysis. An area of application for
FCA is Ontology Engineering by utilizing the ability to structure data by means
of concept lattices. The generated hierarchies may be used as a starting point
for the manual or semi-automatic creation of ontologies [15]. The concept lat-
tice enables domain experts to identify incorrectness or missing coherence in the
dataset (requirement 2.3). Gaps in the conceptual hierarchy indicate probable
missing objects or attributes. With these hints the data ascertainment can be
completed [16]. Because the concept lattices represent the data in a way domain
experts intuitively understand [16,17].

3.3 Integrating the Methods - KARaCAs

A combination of repertory grids and FCA has already been used in different
domains.

Spangenberg and Wolf used FCA [10] to reduce the amount of data acquired
with repertory grids and discuss alternative approaches. They transform the
repertory grid data into a multivalued context, which has to be reduced to an
univalent context. Their repertory grid has a rating scale from 1 to 6. They
interpret votes with values from 3 to 4 as indecisiveness and ignore those votes.

Bruder, Lengnink and Prediger [18] used line diagrams produced by FCA to
visualize the structure of the repertory grid results. They asked mathematics
students about their subjective theories about mathematical tasks and inves-
tigated the change over time. Based on their studies they describe two major
problems [13]:

1. The set of objects (tasks) has a direct influence on the acquired attributes,
therefore it must be possible for the students to add additional relevant
attributes after the repertory grid procedure is performed.

2. Often it was very difficult for the students to find exact antipodes for at-
tributes.

Delugach and Lampkin presented a method for knowledge acquisition us-
ing repertory grids, Formal Concept Analysis and Concept Graphs. They used:
“repertory grids for acquisition, formal concept analysis for analysis, and con-
ceptual graphs for representation.”[7]

These groups mainly used FCA to analyse the results of repertory grids. They
first questioned experts with repertory grids and analysed the data using formal
concept analysis after the interviews. We integrated the two methods for a better
use of the advantages and to overcome some of the disadvantages. We developed
two versions of KARaCAs with an ascending level of integration.

We adapt the repertory grid method to allow attributes that are not exact
opposite of each other (cp. Bruder et al. [13]). Steps 1 and 2 are performed the
same way as describe in section 3.1. Step 3 is modified as follows:

3.1 First the expert is asked to assign one of the two attributes to each object
(pattern in our case), if possible. This is done due to the fact that these two

10 H. Garbe et al.

attributes are not necessarily the opposite of each other and neither may
apply in some cases.

3.2 In the next step the expert has to quantify how certain a given attribute
applies to a pattern. In contrast to Kelly’s repertory grid method this eval-
uation is not done with the two attributes as boundary or poles.

Similar to the card sorting method Kelly proposed for the Grid we designed
our graphical user interface using the card sorting metaphor (Fig. 2).

Fig. 2. KARaCAs: GUI for the adapted Repertory Grid

After each triad KARaCAs analyses the data with formal concept analysis.
The elements and the associated attributes are transferred to a formal context.
In the formal context each attribute is set in relation to an element it is assigned
to. From this context a concept lattice is generated. The lattice in Fig. 3 shows
a part of the generated attributes from an expert interview.

This new integration of FCA and Repertory Grid in one tool has two distinct
advantages:

On the one hand performing the formal concept analysis after each triad
gives the domain expert the possibility to inspect the results in form of a lattice
(Fig. 3, Requirement 1.7) even during the interview with the repertory grid. By
integrating both methods into one tool it is possible to switch between two dif-
ferent views of the acquired data, resulting in synergistic effects. The knowledge

KARaCAs 11

Fig. 3. KARaCAs: Corresponding Line Diagram for the context

engineer is able to present the lattice representing the so far obtained attributes
to the expert during the acquisition and discuss it. The expert can see if a suf-
ficient set of attributes was already acquired. The lattice in Fig. 3 e.g. shows
that the design patterns Abstract Factory and Factory Method can not be dis-
tinguished by the attributes given so far. If the expert identifies such missing
attributes while looking at the graph (compare Bruder, Lengnink and Prediger
[13]) they can be directly added to the formal context and are also available after
switching back to the repertory grid. The first version of KARaCAs contained
this integration level of the two methods. It was used to acquire approximately
130 attributes from three different experts. Each of the interviews lasted about
an hour which is a relatively short time span for the given task and shows the
data acquisition efficiency of our method.

Furthermore, we can control the ongoing repertory grid. The second version
of KARaCAs analyses the data with respect to the following questions:

1 Are there any two or more elements with attribute sets that are not pairwise
disjoint?
In this case, the next triad will be chosen so that the domain expert is forced
to generate a differentiating attribute.
1.1 Are there three or more elements with equal sets of attributes?

The algorithm produces a triad containing three of these elements. Doing
so, the expert is forced to distinguish one of these elements from the
others and generate an appropriate attribute.

12 H. Garbe et al.

1.2 Are there two elements with equal sets of attributes?
A third element for the triad has to be chosen that has a maximum
amount of attributes in common with the other two elements. Otherwise
it is likely that the two remain grouped together and the third one is
separated. We choose an element contained in a superconcept node or a
subconcept node of a shared superconcept node as third element because
they have the most attributes in common. It is assumed that elements
contained in concepts near to each other in the concept lattice are more
similar than object in concepts far from each other.

1.2.1 Are there two elements with equal sets of attributes that have been
presented together in five triads without being separated? Or is no
new triad possible containing these two elements?
The elements are presented as pairs and separating attributes have
to be generated. At this point we use this limit because we assume
that the two are very similar in relation to the remaining elements
and would always be grouped together when presented with a third
element.

2 If the attribute sets for all elements are pairwise disjoint no new triad is
presented.

Using this algorithm we can ensure that the acquired attribute sets for all ele-
ments are pairwise disjoint at the end of the procedure. By choosing elements as
similar as possible for triades we increase the efficiency of the repertory grid tech-
nique in regard to our requirements and minimize the required expert judgements.

4 Merging

Ontology merging is widely discussed and a lot of tools are developed to sup-
port this process (Stumme and Maedche [19] give a short overview). Ganter and
Stumme describe the general task of ontology merging as follows: ”Merging two
ontologies means creating a new ontology in a semi-automatic manner by merg-
ing concepts of the source ontologies.” [20] Stumme proposed the use of FCA for
this purpose [19,21]. Our acquired source ontologies share the same objects: the
given design patterns. Therefore, we only have to merge the acquired attributes
for these objects. KARaCAs enables us to merge the results of different expert
interviews (requirement 2.4) by aggregating the attribute sets in one large for-
mal context. From this joint context a line diagram is generated, which helps
the knowledge engineer to analyse the attributes.

We primarily investigated the lattices concerning the following two questions:

– Are different attributes used synonymously?
If this is the case, one (or more) of them is redundant and is deleted from
the merged context. In the corresponding lattice these attributes would be
annotated to the same nodes (concepts).

KARaCAs 13

– Do different experts assign very similar attributes A and B to different design
pattern sets?

This might occur if an attribute is only weakly connected to a specific
design pattern. One expert might assign this attribute with a low probability
to a specific design pattern and the other does not connect the two. Another
possibility is that one expert forgot that an attribute is relevant for a design
pattern. In this case, starting at the node that A is assigned to B would be
annotated to a node on an upwards or downwards path.

Supported by this feature we condensed the approximately 130 acquired at-
tributes to about 80 which form the basis for our dialog system.

5 Knowledge Representation with Bayesian Belief
Networks

Bayesian Belief Networks ([22,23]) are the representation of choice for modeling
uncertain knowledge (e.g.[24,25,26,27]). A BBN models this knowledge as a di-
rected acyclic graph that represents a probability distribution. The nodes of the
graph represent propositional variables and directed arcs represent probabilistic
relationships between them. Probabilistic independence between variables is in-
dicated by the types of path in the network and the lack of them. Furthermore,
the relations are conditional probabilities (each variable conditioned on its par-
ents in the network) that define a joint probability distribution of the variables.

We used BBN to express knowledge about the applicability of design patterns
for a given problem situation. For this purpose the qualitative structure of the
BBNs is grouped in two levels (see Fig. 4): the first level contains the actual
design patterns while the second contains the attributes of a problem situation.
Due to this template it is possible to create the qualitative and quantitative
structure of the BBN automatically from the acquired data as presented in the
following section.

5.1 Generating Bayesian Belief Networks

The generation of the BBN was performed in two steps: In the first step the qual-
itative structure of the network was created. The acquired attributes assigned
to the corresponding design patterns and the necessary conditional probabilities
were identified. For each attribute assigned to a design pattern in KARaCAs a re-
lation between these two was created in the qualitative network. This step could
be done automatically by KARaCAs. In the second step a quantitative structure
of the networks was build. While acquiring the different attributes to the design
patterns the experts were asked to judge the probability of the relation between
design patterns and attribute. This probability statements were taken as simple
conditional probabilities like P (attribute A = yes|design pattern singleton =
yes) = 0.9, i.e. the expert judged that in 90% of the cases where a singleton is
used the attribute A applies. However, to build the quantitative structure of the
network more complex conditional statements which expressed the validity of an

14 H. Garbe et al.

Fig. 4. Small Part of the generated Bayesian Belief Network

attribute under the influence of several design patterns were necessary. These
probabilities could be calculated by using the ”noisy-or” ([23]) by making some
assumptions:

1. The chance that an attribute is valid without any of the regarding design
patterns present is 0.05. This states how probable it is for an attribute to
apply, if no design pattern is given. To get more accurate values for these
probabilities it would be necessary to perform a more general statistical
study about the frequency of occurrence of the attribute without a design
pattern associated.

2. We assume that the factors inhibiting the influence of design patterns on an
attribute are independent from each other.

3. In the early stage of the project the experts had to identify attributes for
design patterns without stating the probability of the relation. Because in
this stage the experts were asked to state only attributes which certainly
apply, we assumed the probability of the relations to be 0.9.

Under these assumptions we were able to calculate the necessary conditional
probabilities from the expert statements by using the “noisy-or” approach ([23]).
Finally we had to obtain the a-priori-probability of the design patterns. Since
we had no information if a design pattern is appropriate for a given problem, we
assumed it has a 50% chance of being applicable at the beginning. To get a more
accurate value for this probability a general statistical study about the frequency
of application of the design patterns has to be performed. The calculation of the
necessary probabilities is done automatically by KARaCAs.

5.2 A Dialog System Using Bayesian Belief Networks

The generated BBN is the basis for our dialog system. This system questions the
user successively about his problem situation using the acquired design pattern
attributes. The dialog is performed using the following algorithm:

1. Determine the design pattern node with the highest probability for the state
“yes”. If this probability is higher than 0.9 recommend the design pattern as
applicable to the user. If the probability is lower proceed with the algorithm.

KARaCAs 15

2. Determine the relevant attribute nodes for this design pattern node. This is
done using Shachter’s Bayes Ball algorithm [28].

3. Determine the node with the highest probability for “yes” from this set and
question the user about the associated attribute of this node.

4. If the user answers “yes” or “no” enter this as evidence in the BBN and
perform an inference on the net. If the user answer with “I don’t know”
mark the node as being asked already.

5. Restart with 1.

By always determining the design pattern that is applicable with the high-
est probability and asking about it’s attributes we try to conduct the dialog
according to the users expectations. We assume this dialog strategy minimizes
questions that astonish the user because they are not related to his problem
situation. Using BBN for the dialog we can fulfill the requirements listed in sec-
tion 2. Each answer a user gives is entered as evidence in the BBN and the new
probabilities for all design patterns and attributes are calculated. An undo (re-
quirement 1.1.1) function for user inputs is easily implemented by deleting one
piece of evidence and doing an inference on the BBN.

If probabilities of 0 or 1 are avoided in the specification of the attribute nodes
the dialog can be made fault tolerant for unexpected user input (requirement
1.1.2). If a user answers for example “no” where the situation would imply a
“yes” the applicable design pattern would get a very low possibility. But after
the user answered the following questions (that try to establish an alternative
design pattern) also with “no”, the suitable pattern is assumed to get the pattern
with the highest probability again. In this case the dialog will last longer than in
the best case, but the user has the possibility to get a suggestion. If the user is
not quite sure about how to answer a certain question he also has the possibility
to say “I don’t know” (requirement 1.1.3). The attribute node in the BBN is
then marked and will not be answered again, but no evidence is entered into
the BBN. Because new evidence is directly propagated through the network, it
is possible to present a ranking list of the design patterns after each answer.
The user always has an overview of the probabilities with which each pattern is
suitable concerning his so far entered information.

Using Bayesian Belief Networks as knowledge representation for the dialog
enabled us to fulfill the requirements from section 2. Alternative representations
could have been for example the concept lattice produced by FCA or a decision
tree. But both can’t fulfill our requirements. Especially the representation of
probabilities and the required opportunity to change any already given answer
during the dialog is difficult to implement with these techniques.

6 Conclusion and Further Work

6.1 Conclusion

A knowledge acquisition method was presented that combines repertory grids
and formal concept analysis on two ascending levels of integration. The first

16 H. Garbe et al.

version of KARaCAs was used to acquire approximately 130 attributes from
three design pattern experts. Each of the three interviews only lasted about one
hour. During the interviews the visualization was used to analyse the data so far
obtained. The concept lattice was easy to understand for the experts and helped
them to reflect on their answers. Based on the experiences from these interviews
we developed the second version of KARaCAs. The results of the three interviews
were merged as described and condensed to about 80 attributes. These attributes
are the basis for our dialog system. KARaCAs supports the entire knowledge
acquisition process and automatically generates a BBN from the data that is
used in the dialog system.

6.2 Further Work

The dialog system will be evaluated with computer science students at the Uni-
versity of Oldenburg. A special question for this evaluation is whether the at-
tributes given by design pattern experts can be understood by beginners. An-
other one is the suitability of the dialog strategy which determines the questions
that are presented to the user. To further support the experts in generating at-
tributes we plan to do interviews with a dyad of experts. A small test with two
experts showed that they discuss the grouping of design patterns and the naming
of the attributes a lot. It seemed promising to do interviews with a peer group
of experts to increase the quality of the acquired data. Furthermore we want to
expand the dialog system. Our focus is on the domain dependent applicability
of design patterns.

Acknowledgements

The development of KARaCAs and the dialog system was embedded in the
multi-partner project InPULSE which was granted by the BMBF (German Fed-
eral Ministry of Education and Research). We thank Jan-Patrick Osterloh and
Lars Weber for implementing our ideas and algorithms in KARaCAs and Steffen
Kruse and Malte Zilinski for critical comments.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addision-Wesley (1995)

2. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language. Oxford University Press, New York (1977)

3. Meffert, K.: Supporting design patterns with annotations. In: 13th Annual IEEE
International Symposium and Workshop on Engineering of Computer Based Sys-
tems (ECBS’06). (2006) 437–445

4. Gomes, P.: Software design retrieval using bayesian networks and wordnet. In:
Proceedings of the 7th European Conference on Case-Based Reasoning, ECCBR
2004. (2004) 184–197

KARaCAs 17

5. Möbus, C., Seebold, H., Garbe, H.: A greedy knowledge acquisition method for
the rapid prototyping of knowledge structures. In Clark, P., Schreiber, G., eds.:
Proceedings of the 3rd International Conference on Knowledge Capture, 2005, New
York, NY: ACM Press (2005) 211 – 212

6. Kelly, G.A.: Psychology of Personal Constructs. New York: W. W. Norton (1955)
7. Delugach, H., Lampkin, B.: Troika: Using grids, lattices and graphs in knowledge

acquisition. In Stumme, G., ed.: Working with Conceptual Structures: Contribu-
tions to ICCS 2000, Aachen, Germany: Shaker Verlag (2000) 201–214

8. Gaines, B., Shaw, M.: Knowledge acquisition tools based on personal construct
psychology. The Knowledge Engineering Review 8(1) (1993) 49–85

9. Castro-Schez, J.J., Jennings, N.R., Luo, X., Shadbolt, N.: Acquiring domain
knowledge for negotiating agents: a case study. International Journal of Human-
Computer Studies 61(1) (2004) 3–31,

10. Spangenberg, N., Wolff, K.: Datenreduktion durch die Formale Begriffsanalyse
von Repertory Grids. In: Einführung in die Repertory Grid-Technik, Band 2,
Klinische Forschung und Praxis. Bern, Göttingen, Toronto, Seattle: Verlag Hans
Huber (1993) 38–54

11. Richards, D.: Ripple-down rules with formal concept analysis: A comparison to
personal construct psychology. In Gaines, B., Musen, M., eds.: Proceedings of 11th
Workshop on Knowledge Acquisition, Modeling and Management, Banff Canada,
SRDG Publications, Calgary, Canada (1998)

12. Choisel, S., Wickelmaier, F.: Extraction of auditory features and elicitation of at-
tributes for the assessment of multichannel reproduced sound. In: 118th Convention
of the Audio Engineering Society, Barcelona, Spain (2005)

13. Bruder, R., Lengnink, K., Prediger, S.: Ein Instrumentarium zur Erfassung sub-
jektiver Theorien über Mathematikaufgaben. Preprint Nr. 2265 des Fachbereichs
Mathematik, TU Darmstadt (2003)

14. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin, Heidelberg, NewYork (1999)

15. Cimiano, P., Hotho, A., Stumme, G., Tane, J.: Conceptual knowledge process-
ing with formal concept analysis and ontologies. In: Proceedings of the Second
International Conference on Formal Concept Analysis - ICFCA04. (2004) 189 –
207

16. Kollewe, W.: Begriffliche Wissensverarbeitung: Wie Begriffsstrukturen die Pflege
und Recherche in Wissensdatenbanken unterstützen. In: Bitkom KnowTech. (2002)

17. Düwel, S.: BASE - ein begriffsbasiertes Analyseverfahren für die Software-
Entwicklung. PhD thesis, Philipps-Universität Marburg (2000)

18. Lengnink, K., Prediger, S.: Development of the personal constructs about mathe-
matical tasks - a qualitative study using repretory grid methodology. In: Proceed-
ings of the 27th Annual Meeting of the International Group for the Psychology of
Mathematics Education (PME), Hawaii (2003)

19. Stumme, G., Maedche, A.: FCA - MERGE: Bottom-up merging of ontologies. In:
IJCAI. (2001) 225–234

20. Ganter, B., Stumme, G.: Creation and merging of ontology top-levels. In de Moor,
A., Lex, W., Ganter, B., eds.: Conceptual Structures for Knowledge Creation and
Communication, 11th International Conferebce on Conceptual Structures, ICCS
2003, Proceedings, Springer (2003) 131 – 145

21. Stumme, G.: Ontology merging with formal concept analysis. In Kalfoglou, Y.,
Schorlemmer, M., Sheth, A., Staab, S., Uschold, M., eds.: Semantic Interoperability
and Integration. Number 04391 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany (2005)

18 H. Garbe et al.

22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Revised second printing edn. Morgan Kaufman Publishers, San Mateo,
CA. (1998)

23. Jensen, F.: Bayesian Networks and Decision Graphs, Statistics for Engineering and
Information Science. Berlin: Springer (2001)

24. Folckers, J., Möbus, C., Schröder, O., Thole, H.J.: An intelligent problem solv-
ing environment for designing explanation models and for diagnostic reasoning
in probabilistic domains. In Frasson, C., Gauthier, G., Lesgold, A., eds.: Intelli-
gent Tutoring Systems. LNCS (1086), ITS 96, Montreal, Canada, Berlin: Springer
(1996) 353–362

25. Mislevy, R., Almond, R.G., Yan, D., Steinberg, L.: Bayes nets in educational
assessment: Where do the numbers come from? CSE Technical Report 518, Center
for the Study of Evaluation, University of California, Los Angeles (2000)

26. Bunt, A., Conati, C.: Assessing effective exploration in open learning environ-
ments using bayesian networks. In Cerri, S.A., Gouardres, G., Paraguacu, F., eds.:
Intelligent Tutoring Systems, Berlin: Springer (2002) 698 – 707

27. Zapata-Rivera, J., Greer, J.: Student model accuracy using inspectable bayesian
student models. In Hoppe, U., Verdejo, F., Kay, J., eds.: Artificial Intelligence
in Education: Shaping the Future of Learning through Intelligent Technologies,
Amsterdam: IOS Press (2003) 65 – 72

28. Schachter, R.D.: Bayes-ball: The rational pastime (for determining irrelevance
and requisite information in belief networks and influence diagrams). In Cooper,
G.F., Moral, S., eds.: Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence (UAI-98), Morgan Kaufmann (1998) 480487

Capturing Quantified Constraints in FOL,

Through Interaction with a Relationship Graph

Peter M.D. Gray1 and Graham J.L. Kemp2

1 Department of Computing Science, University of Aberdeen,
King’s College, Aberdeen, AB24 3UE, UK

pmdgray@bcs.org.uk
2 Department of Computing Science, Chalmers University of Technology,

SE-412 96, Göteborg, Sweden
kemp@cs.chalmers.se

Abstract. As new semantic web standards evolve to allow quantified
rules in FOL, we need new ways to capture them from end users in
RDFS(XML). We show how to do this against a graphic view of Entities
and their Relationships (associated or derived). This even allows inclu-
sion of existential quantifiers in readable fashion. The captured constraint
can be tested by generating queries to search for violations in stored data.
The constraint can then be automatically revised to exclude specific cases
picked out by the user, who is spared worries about proper syntax and
boolean connectives.

1 Introduction

As new semantic web standards evolve to allow quantified rules in First Order
Logic (FOL), we need new ways to capture them from end users, with names and
terms taken from a specific ontology or data model. We concentrate on domain-
specific constraints, such as the constraint that “the age of a pupil’s teacher must
exceed 21” expressed in FOL as:

(∀p) pupil(p) ⇒ ((∀a,t) teacherof(t,p) ∧ age(t,a) ⇒ a>21)

Extensions to an XML based syntax (FOL RuleML) to capture this, with
explicit forall and exists quantifiers, are under discussion by W3C 1. This format
is, of course, intended for exchanging rules between computer systems, not for
direct human readability. What we need is a way to generate them, by a sound
theory, from a declarative and more readable expression of the constraints, e.g.
for the above constraint:

constrain each p in pupil
so that each t in teacherof(p) has age(t) > 21;

The functional form teacherof(p) would be written as p.teacherof in Java or
SQL. However, such variations in syntax can easily be changed to suit end-user
1 http://www.w3.org/Submission/2005/SUBM-FOL-RuleML-20050411/

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 19–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

20 P.M.D. Gray and G.J.L. Kemp

preference, since the captured version is in RDFS. For convenience, we modified a
version of the constraint language CoLan which was used in the KRAFT project
[4] to describe both design constraints and small-print constraints (extracted
from product databases).

Note that we are not concerned just with simple constraints that can be
captured easily by filling slots in forms, or columns in tables, since they usually
refer just to the range bounds for a single attribute, e.g. “the age of a pupil
must be between 12 and 17”. Instead, we consider complex constraints, which
may have several named attributes and variables with different quantifiers, for
example: each guidance teacher over 30 must be assigned at least one pupil. This
constraint uses entities of the types teacher and pupil, but uses an existential
quantifier exists at least one for the pupil instead of the universal quantifier for
each used with teacher. These differences are subtle, and require a background
in predicate logic in order to spot them. Natural language programs are not yet
good at recognising them and their many different equivalents.

Because of the key role of entity types (like teacher), which are connected
to other entity types through relationships or associations (like be assigned), we
needed to build an interactive graphical user interface to help an end user to
visualise the entities and relationships involved. This relationship graph gave us
something on which the user could point and click, and build up the constraint
through well-formed intermediates, so that they could not possibly enter a con-
straint that used terms outside the ontology, or that would fail a syntax check
or type check.

This overcomes a problem that often fatally discourages end-users of a formal
language; they write something that looks plausible but the machine rejects it
with a confusing comment. Instead, we generate only well-formed constraints, in
stages. We even provide the means, described later, to test it against data. Some
might argue that the real challenge for KA is to discover the constraint from data
by Machine Learning. However, this is very hard for such complex constraints,
and we need to bear in mind that scientists often have rich background knowledge
about their data, and its experimental conditions, that may not be illustrated in
the sample data. Thus it is worth providing a means to help them capture it in
a form unfamiliar to them, which we require to be mathematically manipulable
and web compatible.

We believe this use of a relationship graph is crucial to capturing complex
FOL constraints. Its use in database schema design is of course well known,
since over 30 years ago. More recently it is used in the well known UML Class
Diagram, where it has been extended to include entity subclasses and cardinality
information, just as we have it.

We had already pioneered using a relationship graph in a previous interactive
query builder [3]. However, it was initially unclear how to present FOL visually
to the user, and how to deal with the features of existential quantifiers. Further,
for any captured constraint, we needed also to create a query that would compute
the set of combinations of instances that violated it (hopefully empty). Here, as
we show later, the use of well-formed set expressions and boolean connectives

Capturing Quantified Constraints in FOL 21

with quantifiers made this straightforward and sound. If we had used a language
looking more like SQL we would have come up against many hard syntactic
oddities and special cases, besides working at a low symbolic level instead of the
higher (data format independent) knowledge level.

In addition to relationships that are stored in the database, the interface can
also shows derived relationships on an entity-relationship diagram which enables
the user to formulate constraints involving these. We demonstrate this with ex-
amples [6], based on the Biomolecular Interaction Network Database (BIND)
[2]. This contains data about biomolecular interactions, complexes and path-
ways. Several key relationships between entity sets in the BIND database are
not declared explicitly in the XML DTD file, but they can be defined in our
algebraic language (currently by a database curator) for computation on de-
mand. To illustrate this point, the DTD does not specify an explict relationship
between BIND Pathway and BIND Interaction. However, the attribute path-
way for the “epidermal growth factor” entity is {116, 118, 145, 148, 167, 1444,
1448, 1451} where these integers are the identifiers, i.e. the iids, of instances
of BIND Interaction. This attribute can be used to define a function relating
pathway objects p to sets of interaction objects i:

define pathway_interactions(p in BIND_Pathway) ->> BIND_Interaction

i in BIND_Interaction such that iid(i) in pathway(p);

This derived relationship is shown as the labelled arc pathway interactions in the
diagram in Figure 1. The end user needs some such arcs to navigate and capture
constraints. Other examples in 2 illustrate the mathematical richness of the set
operations used in defining these derived functions.

The design principles of our interactive graphical interface and its use in
formulating universally quantified constraints are described in section 2. Its ex-
tension to support existential quantifiers is described in section 3. Related work
involving visualisation and capture of integrity constraints is discussed in section
4 and the contributions of this paper are summarised in section 5.

2 Design Approach

2.1 Key Principles

The constraints are built incrementally using a major extension of a previous
query builder [3] and continuing to use its two essential principles, which are
widely applicable. The first was to have both a graphical depiction of the data
model, in the style of an ER diagram or UML Class diagram, and an expanding
textual description of the query, which was hyperlinked to the ER diagram, as
shown in Figure 1. Thus the user can click on text which highlights the graphic
object or vice versa. Note that the diagram is generated directly from textual
schema declarations, and the user can drag the entities to get the diagram looking
how they want.
2 http://www.csd.abdn.ac.uk/∼pgray/ekaw2006extended.pdf

22 P.M.D. Gray and G.J.L. Kemp

Fig. 1. Part of the BIND schema as an ER diagram. Thick arrows connect entity types
to their subclasses. Labelled arcs show stored or derived relationships.

The second principle was to build the query incrementally, with opportunities
to inspect intermediate results. Typically, a step involves adding a line to the
query that brings in another variable ranging over a related entity type. This can
only be done by clicking on a relationship arc starting from the current entity
type in the ER diagram. This corresponds in SQL to adding an extra variable to
the FROM clause. However, we make the user click on the relationship to help
them see the data semantics, whereas frame-based systems such as Protégé)
often do not distinguish relationships from other named attributes. In Figure 1
one can see examples of different relationships defined between the same pair of
entity types. Also, observe relationship division on class BIND CoreObj which
is inherited by its subclasses (such as BIND Interaction), so the GUI treats a click
on the division relationship arc accordingly. As usual, any constraint captured
on a superclass also applies to its subclasses.

The user may also extend the current query line with restrictive filters. These
may involve comparisons with attribute values, computed expressions, subset-
inclusion and set-membership tests. At any stage, one can undo a step or else
choose to print extra attributes of any of the variables in the query so far. Thus,

Capturing Quantified Constraints in FOL 23

at every stage, the user is sure that the query or constraint they have so far
generated is syntactically correct, and refers to items named in the ontology.

2.2 Adding an Insist Clause

In order to adapt the query generator to generate a constraint, (which is just a
query delivering an invariant True value), we added an extra user action through
the Insist button. This generates a line with the keyword insist followed by an
empty box, which will specify the constrained expression to be held true. The
keyword distinguishes it from a query and is easier for most users to understand
than an implication in FOL, although it is isomorphic to it. It also allows them
to think in terms of nested loops familiar to scientists and programmers.

The user then clicks on the empty box, to bring up an expression builder which
helps them to fill in the box with known variables and ontology items. Thus, the
constraint that the pid assigned to a BIND Pathway must have a higher value
than any of the iid values of the BIND Interactions that make up that pathway
would be as in Figure 1:

for each B0 in BIND_Pathway
for each B1 in BIND_Interaction such that
B1 in pathway_interactions(B0)
insist pid(B0)>iid(B1)

print(pid(B0),iid(B1));

The keyword insist captures the intention that, for the set of values of B0
and B1 selected by the enclosing loops, the boolean expression following insist
has to be true. When the user is happy with the constraint, they can press
the Submit button. This generates a query to find any counterexamples to the
constraint, listing the values from the print statement in columns in a separate
‘results’ window. The constraint can then be revised using the built-in query
editor facilities. Finally, when there are no counterexamples, a Write Constraint
button is enabled which the user can press in order to capture and save the
constraint in CoLan and XML form.

2.3 Using the Copy-and-Paste Facility

If one is searching a large amount of representative data, and a few counterexam-
ples show up which are typical of a special case to be excluded, then the expert
user may just click on these combinations, and ask for the correct boolean filter
to be added to the constraint. Thus the following, apparently complex piece of
FOL can be generated just by clicking on two data values:

for each B0 in BIND_Pathway
for each B1 in BIND_object such that ...
... and not((pid(B0)=13042) and

(short_label(B1)="GTP"))

24 P.M.D. Gray and G.J.L. Kemp

This works for both and and or and for multiple values. Effectively they are
controlling a rudimentary form of case-based adaptation, but are saved from
struggling with boolean expression syntax.

3 Dealing with Existential Constraints

The next challenge is to include existential quantifiers such as:
Each Molecular Complex must be related through a BIND object to interac-

tions on its interaction list.

(∀B0) Molecular Complex(B0) ⇒ (∀B1) complex objects(B0,B1) ⇒
((∃B2,I,L) object interactions(B1,B2) ∧ iid(B2,I) ∧ interaction list(B0,L)
∧ I in L)

Following the approach of the insist construct, we define an insist exist con-
struct which introduces an existentially quantified variable ranging over an entity
type followed by such that specifying the relationship and (optionally) a boolean
expression as used in the insist construct. We can then build the above constraint
as:

for each B0 in BIND_Molecular_Complex
for each B1 in BIND_object such that B1 in complex_objects(B0)

insist exist B2 in BIND_Interaction
such that B2 in object_interactions(B1)
and iid(B2) in interaction_list(B0);

We can easily extend this to several enclosing levels of for each. The insist
exist construct introduces the last and innermost variable in the constraint (B2
in this case). This variable has to be connected by some relationship arc to one
of the earlier variables (here B1 or B0). This differentiates it from the insist
construct, where we do not introduce another variable.

Once again, we can algebraically manipulate the constraint to generate a
query searching for counter examples:

for each ...
for each e1 in entity such that ... and
(no e in entity such that e in rel(e1) and (<predicate>) exists)
print(...);

Because standard boolean algebra is being used, this still works correctly even
when <predicate> includes several combinations of and and or inserted by copy
and paste (as described above).

4 Discussion and Related Work

Although GUI builders for SQL are quite common, it is very unusual to see them
related to an ER diagram. However, we believe relationships are crucial because

Capturing Quantified Constraints in FOL 25

they are the glue that links the different entity variables together. Thus, in order
to introduce an extra variable quantified over an entity type, the user has to find
an arc in the ER diagram relating that entity type to one already introduced.

One of our design aims, from early experience, was to eliminate the need for a
user to key in brackets, partly because this might change expression meaning in
subtle ways, and also because it might need extra levels of sub-expression builder
which are confusing. Thus any existential quantifier must be on the right of the
last implication. Likewise, any arithmetic expressions must have an unbracketed
sequence of terms, but the constraint may include well formed bracketed terms
generated by copy and paste. More complex formulae are rare, and can be pre-
stored as a derived function.

Colan can express Cardinality Constraints by e.g. constrain at most 2 x in D
to ... but we do not yet include such quantifiers in our GUI. 3

Recently the developers of the Protégé-2000 system [8] have introduced a
Protégé Axiom Language (PAL) also based on Predicate Logic, and using their
frame-based data model. Recent papers show how it can be used to check consis-
tency of the Gene Ontology [9]. It is with the arrival of such systems as Protégé
and FOL RuleML that there will come a need to formulate and test increasingly
complex constraints. Currently Protégé has neither a GUI builder for PAL, nor
any means to query an instance of the knowledge base for counterexamples, such
as we provide.

5 Conclusions

Recent developments, such as FOL RuleML and Protégé PAL, allow rules in
FOL to be transformed and interchanged between different intelligent systems
on the Semantic Web. We believe that capturing complex domain-specific con-
straints as rules requires the user to be able to relate them to a diagram showing
relationships (derived or stored associations), to build them in stages (with the
option to undo edits) and to be able to express quantifiers in a simple consistent
fashion, as used in FOL. Thus we need graphic aids to help experts, particularly
scientists; we cannot routinely learn such rules from often incomplete data.

We have shown a systematic and novel way to do this, by using an analogy
with the familiar concept of nested loops, which makes a visual correspondence
between quantifiers and relationships in the ER diagram. This has been imple-
mented and tested and made available.4 It includes the option at each stage to
find counterexamples by runnning the embryo constraint against remote data-
bases. Values from these can then be fed back by copy-and-paste to refine the
constraint.

We have transformation programs [5,7] that can take the output and turn
it into XML(RDFS) constructs which completely capture the ER diagram. The
system is Data Independent, in that its abstract form applies across a wide range
of data storage systems. Also it is independent of any program language; instead
3 Full CoLan syntax at http://www.csd.abdn.ac.uk/∼pfdm/colan syntax.html
4 software downloadable from http://www.csd.abdn.ac.uk/∼pgray/

26 P.M.D. Gray and G.J.L. Kemp

we give quantified formulae in FOL which can be mathematically transformed
and combined with others across the web [4].

Acknowledgements

This work extends the GUI implemented by Ignacio Gil. The schema and data
used in this work were derived from BIND DTD and XML files by Selpi. Re-
lated work [1,7] at Aberdeen is supported by EPSRC (GR/N15764) under the
Advanced Knowledge Technologies (AKT) Collaboration.

References

1. S. Ajit, D. Sleeman, D.W. Fowler, and D. Knott. ConEditor: Tool to Input and
Maintain Constraints. In E. Motta, N. Shadbolt, A. Stutt, and N. Gibbins, editors,
EKAW 2004, Proceedings, volume 3257 of LNCS, pages 466–468. Springer, 2004.

2. G.D. Bader, D. Betel, and C.W.V. Hogue. BIND: the Biomolecular Interaction
Network Database. Nucleic Acids Research, 31:248–250, 2003.

3. I. Gil, P.M.D. Gray, and G.J.L. Kemp. A Visual Interface and Navigator for the
P/FDM Object Database. In N.W. Paton and T. Griffiths, editors, Proceedings of
User Interfaces to Data Intensive Systems (UIDIS’99), pages 54–63. IEEE Com-
puter Society Press, 1999.

4. P.M.D. Gray, S.M. Embury, K.Y. Hui, and G.J.L. Kemp. The Evolving Role of Con-
straints in the Functional Data Model. J. Intelligent Information Systems, 12:113–
137, 1999.

5. P.M.D. Gray, K. Hui, and A.D. Preece. An Expressive Constraint Language for
Semantic Web Applications. In A. Preece and D. O’Leary, editors, E-Business and
the Intelligent Web: Papers from the IJCAI-01 Workshop, pages 46–53. AAAI Press,
2001.

6. G.J.L. Kemp and Selpi. Pathway and Protein Interaction Data: from XML to
FDM Database. In E. Rahm, editor, Data Integration in the Life Sciences, First
International Workshop, DILS 2004, Proceedings, volume 2994 of LNCS, pages 212–
219. Springer, 2004.

7. C. McKenzie, P.M.D. Gray, and A.D. Preece. Extending SWRL to Express Fully-
Quantified Constraints. In G. Antoniou and H. Boley, editors, Rules and Rule
Markup Languages for the Semantic Web: Third International Workshop, RuleML
2004, Hiroshima, Japan, November 8, 2004. Proceedings, volume 3323 of LNCS,
pages 139–154. Springer, 2004.

8. N.F. Noy, R.W. Fergerson, and M.A. Musen. The Knowledge Model of Protégé-
2000: Combining Interoperability and Flexibility. In R. Dieng and O. Corby, edi-
tors, Knowledge Acquisition, Modeling and Management, EKAW 2000 Proceedings,
volume 1937 of LNCS, pages 17–32. Springer, 2000.

9. I. Yeh, P.D. Karp, N.F. Noy, and R.B. Altman. Knowledge acquisition, consis-
tency checking and concurrency control for Gene Ontology (GO). Bioinformatics,
19(2):241–248, 2003.

Assisting Domain Experts to Formulate and Solve
Constraint Satisfaction Problems

Derek Sleeman and Stuart Chalmers

Department of Computing Science, University of Aberdeen,
Aberdeen, AB24 3UE, Scotland, UK

{sleeman, schalmer}@csd.abdn.ac.uk

Abstract. Constraint satisfaction is a powerful approach to solving a wide class
of problems. However, as many non-experts have difficulties formulating tasks
as Constraint Satisfaction Problems (CSPs), we have built a number of interfaces
for particular kinds of CSPs, including crypt-arithmetic problems, map-colouring
problems, and scheduling tasks, which ask highly focused questions of the user,
c.f., the earlier MOLE/MORE, and SALT knowledge acquisition systems. Infor-
mation from each of these interfaces is then transformed initially into a struc-
tured format which is semantic web compliant and is secondly transformed into
the format required by the generic constraint satisfaction problem solver. When
this problem solver is run, the user is either provided with solution(s) or feed-
back that the problem is underspecified (when many solutions are feasible) or
over-specified (when no solution is possible). The system has 3 distinct phases,
namely; information capture, transformation of the information to that used by a
standard problem solver, and thirdly the solving and user feedback phase.

1 Introduction

Constraint Satisfaction constitutes a powerful approach to problem solving, and over
the last decade or so a range of tools have been implemented [4,7]. However, there are
distinct skills involved in formulating tasks as CSP problems, the so called modelling
problem. The format required by the solvers is deceptively simple: one has to specify
a set of relevant variables, their domain values, and constraints between the variables.
However the modelling process is still seen as challenging because the problem is often
specified in a verbal form (eg as brain teasers), and it is the modeller’s task to decide
the relevant variables, the ranges associated with each variable, and most challengingly
the constraints (relationships) which exist between the identified variables [8].

This paper addresses the modelling problem mentioned early by implementing a
series of interfaces which ask for specific information about particular types of CSPs,
e.g. map-colouring, cryptarithmetic problems and scheduling. This information is then
transformed into representational schema currently used on the web, namely an OWL1

ontology (for the domain knowledge) and CIF/SWRL 2 rules for the constraints. As
we shall see this is further transformed into the representation required by a generic
constraint satisfaction solver.

1 www.w3.org/TR/owl-features/
2 www.csd.abdn.ac.uk/research/akt/cif/

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 27–34, 2006.
© Springer-Verlag Berlin Heidelberg 2006

28 D. Sleeman and S. Chalmers

One of the aims of this project is to produce a UI which corresponds to each of the
types of CSPs (see section 4.2 for details). We then plan to produce a more generic UI
which will handle a number of different CSP task types.

The overall architecture of the system implemented has 3 components. The role of
the first is to CAPTURE information about a particular task, the second is to transform
that information / knowledge into a form which a generic Constraint Problem Solver
can use, and the third solves the task and reports the results to the user. We made a
conscious decision to use OWL and SWRL as representational formalisms, as then it
is, in principle, possible to augment the information created in the interfaces by other
knowledge sources available on the web.

The rest of the paper is organized as follows: section 2 gives an introduction to CSPs;
Section 3 gives a conceptual overview of the 3-staged system implemented; section 4
discusses a classification of CSPs and describes Knowledge Acquisition (KA) interfaces
built for some of these types/classes; section 5 describes the implementation of a CSP
solver; section 6 outlines future work and describes some related work.

2 Formulating Tasks as CSPs

CSPs have 3 aspects, namely (i) variables which are associated with (ii) domains (i.e.
ranges of values) and (iii) the actual constraint expressions. Below we give examples of
all 3 components:

a �→ D1{0..5}, b �→ D2{0..5}, c �→ D3{0..5}
The above states that the variables a, b and c can be assigned any of the corresponding
values given in the domains D1,D2,D3 respectively. The following constraints, C1 and
C2, restrict the possible assignments that the variables can take.

C1: a-b > c, C2: a*c < b

Given these constraints, the assignments of possible values are now restricted to:

a �→ D1{2..5}, b �→ D2{1..4}, c �→ D3{0..1}
In general, a constraint satisfaction problem (CSP) is the process of satisfying a given
set of statements by restricting the assignments of a given set of variables.

3 Main Aspects of the System: A Conceptual Architecture

Previous projects in constraint modelling (see section 6) have focused on creating new
meta-languages for specifying problems [4] or have required the user to model the CSP
task using an existing representation formalism e.g. UML and OCL [7]. Here we are
focusing on classifying the types of CSP problems which exist, with a view to creating
an interface for each type to enable the non-CSP specialist to communicate the essence
of their task. For some CSP tasks it is clear the nature of the interface required, e.g.
Map–colouring problems or Cryptarithmetic problems (of the form SEND + MORE =
MONEY) whereas the differences between Scheduling / Configuration / Assignment /

Assisting Domain Experts to Formulate and Solve Constraint Satisfaction Problems 29

Constraints / Positioning are in general much more subtle, and will need some further
analysis before helpful distinctions can be made. (In fact, as noted in section 4.2, the
Cryptarithmetic and Map–colouring tasks are both members of the Assignment class).

The general inspiration for this approach is the Knowledge Acquisition (KA) work
done in the early 80’s when several groups realised that KA could be made more fo-
cused if one acquires knowledge for a particular purpose. The MOLE [2] and MORE
[5] systems, for instance, acquired knowledge which would support only classifica-
tion/diagnosis and thus only needed to capture the several diagnostic classes and the
corresponding diagnostic rules. Similarly, the SALT KA system [6] was designed to
acquire knowledge to support the propose–and–revise algorithm and so elicited 3 types
of knowledge/information from the domain expert namely:

– procedural knowledge to specify how an existing entity (such as a motor) could be
enhanced/changed

– constraints to specify relationships which must or must not hold between variables
– fixes: what to do if a particular constraint is violated.

So the argument then is that a KA interface will be implemented for each of the classes
of CSPs which will ask relevant focused questions. (We will address later the taxing
question of how a non-CSP expert can choose the relevant KA interface for a particular
problem they wish to solve.) In fact as figure 1 shows, we have conceptualised the task
of formulating and solving CSP as three phases:

– CAPTURING the essence of the task (outlined above & discussed in section 4)
– TRANSFORMING the task from the information collected from each interface to

a common formalism. In fact, we have chosen SWRL and OWL, emerging WWW
standards, so that the information acquired can, in principle, be enhanced by other
Web based Knowledge Sources.

– SOLVING & Providing User Feedback. The final phase attempts to solve the task
and either provides the user with a result or information which indicates that the
task is over- or under - specified.

4 Capturing Information: Creating KA Interfaces

4.1 Model Generation vs. Model Selection

Systems such as a CONJURE [4] provide the non-CSP expert with a high-level lan-
guage in which to formulate the task s/he wishes to solve. This approach has the ad-
vantage of allowing a wide range of problems to be specified (in principle) but the
disadvantage that it gives the user little guidance. We refer to this as the Model Gener-
ation approach. By contrast we refer to the approach being followed here as the model
selection approach. Conceptually, at least we can think of this approach as providing
the user with a series of templates (one corresponding to each of the CSP classes or
perhaps subclasses). Each template has a number of slots which the user has to com-
plete. If a user is able to provide a consistent set of responses to all the slots associated
with a template, then we shall say that this task corresponds to that CSP class (e.g. As-
signment). In practice we believe that this part of the system will be implemented as a

30 D. Sleeman and S. Chalmers

Fig. 1. Conceptual System Design showing 3 principal phases

series of “linked templates”, so that at any stage of the specification of a task, it will be
possible to specify:

– which classes have been ruled out (because certain information is not available)
– which classes are currently completely satisfied (could be null)
– which information is needed, to satisfy the remaining possible classes

4.2 Classes of CSP Tasks

As mentioned in section 3, we are interested in describing the number of CSPs in suffi-
cient detail, so that we can identify distinctive classes and sub-classes. Miguel et. al3, in
their work with ESSENCE and CONJURE, have introduced a classification and suggest
the following definitions:

– Scheduling - characterised by assigning start times to a series of tasks that have
to be performed by some deadline with the possibility of precedence constraints
between them (e.g. process A must be completed before process B can start).

– Configuration - where the problem involves assigning a unique value to a variable
according to constraints between the values and their variables.

– Assignment - similar to configuration problems, but the assignment of values to
variables is not a one-to-one relationship. Subsets of this class include permutation
and partitioning problems.

– Construction - the object is to construct a set of variables according to a goal (such
as maximising the values assigned to the set of variables). Constraints here can be
on the membership of this set, and on the position of the variable in that set.

3 http://www.cs.york.ac.uk/aig/constraints/AutoModel/Essence/Tree/

Assisting Domain Experts to Formulate and Solve Constraint Satisfaction Problems 31

– Positioning - involve arranging objects according to spatial/geometric constraints.
Typically all objects must lie within a boundary and objects are not permitted to
overlap (where these restrictions are specified as a series of constraints).

Generally, we can classify each problem type by the relationship between the Vari-
ables (described as Objects by Miguel) and Assigned Domain Values (defined as La-
bels). For instance, in permutation problems each label is used only once (effectively
saying that the values assigned to a set of variables must all be different), whereas with
partitioning problems the actual assignment of the label value is unimportant, but what
is important are the groups of variables which have the same values.

Fig. 2. The Map–colouring KA Interface

4.3 Implemented KA Interfaces

In the previous sub-section we discussed in some detail a classification for CSPs. Here
we outline 2 User Interfaces which we have recently developed, namely:

– A Mapping task (this being a subset of the assignment class)
– A Cryptarithmetic Problem (which is a particular kind of assignment task)

A screen shot for the Mapping interface is given in Figure 2. The map colouring task
specifies a number of physical areas (eg countries, counties, areas of a town) and spec-
ifies that adjacent areas should have different colours. So the task involves specifying
the set of colours available, and the adjacency relationships between the several areas.
A solution to the problem is one where all the adjacent areas have different colours. So
for example if the objects to be assigned a colour are the 4 counties of the SouthWest of
England, namely: Cornwall, Devon, Somerset & Dorset, and the relationships between
the 4 objects are as given in the left hand diagram in figure 3, and the 3 colours to be
assigned are white, grey & black, then the right hand figure would be an acceptable
solution. The UI in figure 2 used to collect information about the task, initially asks the
user to provide the names of the 4 objects (top left hand corner), then the user is asked to
indicate the spatial relationships between the objects (this is done in the window called
Positions), at which point the system allows the user to revise the relationships provided

32 D. Sleeman and S. Chalmers

Cornwall
Somerset

Devon

Dorset

\=

\=
\=

\=

Grey
Grey

White

Black

\=

\=
\=

\=

Fig. 3. An example Map Colouring Specification and solution

until they are happy with the resulting model. Finally, the system asks the user for the
available colours, and then the complete task is passed to the problem solver.

Cryptarithmetic problems are of the form:

CROSS +
ROADS

DANGER

Where one is told that each of the letters is in the range 0..9, each letter has a distinct
value, and D �=0. So it is usual to formulate the problem as a series of variables (in the
case of this task: C, R, O, S, A, D, N, G & E). Note in this case the 2 entities
are to be added to give the result DANGER. In formulating the main constraint for this
problem we need to remember the significance/semantics of a column in an arithmetic
task. The right hand column consists of units, the adjacent column represents units of
10s, and the next column represents 100s, etc. Bearing this in mind the main constraint
can be expressed as4: 10000*C + 10000*R + 1000*R + 1000*O + 100*O + 100*A + 10*S +
10*D + S + S = 100000*D + 10000*A + 1000*N + 100*G + 10*E + R

The KA interface which we have implemented for this type of problem allows the
user to input a wide range of cryptarithmetic problems; to date we have implemented
both addition & subtraction tasks.

5 Solving: The CSP Implementation

A major design decision behind the implementation of this solver was to make the
solving process freely available as a re-usable component. To this end, we have devel-
oped the CSP as a web service with an open queryable interface. We use AXIS5 as the
platform, with the interface defined using a combination of OWL–lite to represent the
variables and their domains and CIF/SWRL to represent the actual constraints6. We also
implement a number of parsing algorithms, to support the following information flow:

4 There are 2 further constraints: C>0, R>0.
5 http://ws.apache.org/axis/
6 For a detailed description of the design and capabilities of the semantic interface implementa-

tion, see Aberdeen University Computing Science Technical Report AUCS/TR0604.

Assisting Domain Experts to Formulate and Solve Constraint Satisfaction Problems 33

KA Interface �→ CIF/SWRL + OWL �→ CHOCO Solver data structures

For the principal classes of CSPs covered here, we have written a generalised finite
domain constraint solver in CHOCO7. To formulate a problem in CHOCO we create a
finite domain CSP instance. We then use mapping rules for each CIF/SWRL construct
to transform the CIF/SWRL representation into CSP constraints.

6 Discussion and Future Work

A number of projects have looked at the problem of CSP modelling. An approach
taken by [4] is to provide a high–level language, ESSENCE, for specifying CSP prob-
lems. This language is then translated into a CSP by a system, CONJURE, that refines
the specification. Renker [7] uses UML and OCL to provide a modelling framework
for constraints. Alternative approaches include Fish et. al [1] who look at diagram-
matic modelling of constraints using “spider diagrams”, a formalisation based on Venn
diagrams.

We plan to evaluate the web-based KA interfaces for the cryptarithmetic and map-
ping problems. We will compare the numbers of tasks formulated and the average time
taken by two groups namely one doing the task using pen-and-paper and the other us-
ing the CSP interfaces. We will also administer a questionnaire about how the interfaces
could be enhanced. A further aim of our future work is to implement a KA interface for
each of the CSP types identified in section 4.2, and then to link them so as to reduce the
number of questions that a user needs to answer.

Another major issue we wish to explore is that of providing user feedback on prob-
lems to help with remodelling and repair. When a user specifies a set of constraints
on a problem, there may be no solution returned for that set as the problem is over–
constrained. In such circumstances, constraint relaxation [3] techniques aim to partially
solve a given problem by maximizing the number of constraints applied. Alternatively,
we may find a problem under-defined (i.e. there are a vast number of possible valid
solutions) where we may wish to elicit more information from the user to constrain the
problem further.

Our CSP implementation is based on a simple generalised finite domain solver, so
we are not be able to solve the range of problems that a language such as ESSENCE
can support. While it is not our intention to do this, we do wish to classify the subset
of problems which can be solved as well as explore the representation of CSPs using
existing semantic web technology. As discussed earlier in the paper, there were sev-
eral motivations for using a semantic-web compliant representation for the CSP. The
principal issues still to be investigated, is whether it is possible to exploit the fact that
the intermediary representation of the CSPs is OWL and CIF/SWRL, by enhancing the
initial user-provided information about a task with relevant information available from
the semantic web [9].

In this paper, we have described a set of user interfaces to aid in the formulation of
tasks as CSPs. We have described our representation of the CSPs using semantic web
technology, namely OWL for variable and domain representation and CIF/SWRL for

7 http://choco.sourceforge.net/

34 D. Sleeman and S. Chalmers

representing constraints. We have also described the flow of information, from the KA
interfaces, to a semantic web representation and finally to the native constraint solving
language.

Acknowledgments

This work is supported by the Advanced Knowledge Technologies (AKT)8 Interdisci-
plinary Research Collaboration (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council (EPSRC). The AKT IRC comprises the Univer-
sities of Aberdeen, Edinburgh, Sheffeld, Southampton, and the Open University. The
authors are also grateful to Lin Lin and Xuezhou Yuan, who provided the implementa-
tion of the web service gateway plus the CIF/SWRL transformation tools.

References

1. Fish A. and Flower J. Investigating reasoning with constraint diagrams. In VLFM04, Visual
Languages and Formal Methods, volume 127, pages 53–69. Elsevier, Rome, April 2005.

2. L Eshelman. Mole: a knowledge-acquisition tool for cover-and-differentiate systems. In
S. Marcus (Ed.), editor, Automating Knowledge Acquisition for Expert Systems, pages 37–80.
Kluwer Academic, Norwood, Mass, 1988.

3. Eugene C. Freuder. Partial Constraint Satisfaction. In Proceedings of the Eleventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-89, Detroit, Michigan, USA, pages
278–283, 1989.

4. A.M. Frisch, M. Grum, C. Jefferson, B. Martinez-Hernandez, and I. Miguel. The essence
of essence: A constraint language for specifying combinatorial problems. In Proceedings
of the 4th International Workshop on Modelling and Reformulating Constraint Satisfaction
Problems, pages 73–88, 2005.

5. G Kahn. More: From observing knowledge engineers to automating knowledge acquisition. In
S. Marcus, editor, Automating Knowledge acquisition for Expert Systems, pages 7–35. Kluwer
Academic, 1988.

6. Sandra Marcus and John McDermott. Salt: a knowledge acquisition language for propose-
and-revise systems. Artif. Intell., 39(1):1–37, 1989.

7. Gerrit Renker. A modeling framework for constraints. In 8th International Conference on
Constraint Programming, pages 8–13, September 2002.

8. Barbara Smith. A tutorial on constraint programming. Technical Report 95.14, School of
Computing Research Report, University of Leeds, April April 1995.

9. Yi Zhang, Wamberto Vasconcelos, and Derek Sleeman. Ontosearch: An ontology search en-
gine. In The Twenty-fourth SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence, Cambridge, 2004.

8 http://www.aktors.org

Knowledge Acquisition Evaluation Using

Simulated Experts

Tri M. Cao and Paul Compton

School of Computer Science and Engineering
University of New South Wales

Sydney 2052 , Australia
{tmc, compton}@cse.unsw.edu.au

Abstract. Evaluation of knowledge acquisition (KA) is difficult in gen-
eral because of the costs of using a human expert. In this paper, we use a
general simulation framework to evaluate some aspects of KA. We focus
on the importance of acquiring domain ontological structures and the
use of stored or cornerstone cases to validate changes. We find that the
for a higher level of expertise, an ontology is very useful, but cornerstone
cases less so, but the weaker the level of expertise, the more valuable the
cornerstone cases and the less helpful an ontology.

1 Introduction

Evaluation of KA tools and methodologies is difficult [7,9]. The essential problem
is the cost of human expertise to build a KBS. A solution to this is the use of
simulated experts in evaluation studies. A simulated expert is not as creative or
wise as a human expert, but it readily allows for control experiments. We have
previously described simulations using machine learning data sets [4], but the
simulations then depend on the structure of domain. In the work here we use
a more abstract simulation. The framework for this is described in [1]. In this
section, we outline the main features of this framework.

We characterise an expert by two parameters: overspecialisation and overgen-
eralisation. Overspecialisation is the probability that a definition excludes data
which it should cover. Overgeneralisation, on the other hand, is the probability
that a definition includes data which it should not cover. This is depicted in
Figure 1. In this figure, the human expert tries to capture a target concept by
providing the system a rule or rules; however as the expert is not perfect, the
defined concept deviates from target concept. The deviation can be quantified
through two parameters: overspecialisation and overgeneralisation.

In classification based systems, errors of overspecialisation and overgenerali-
sation are often called false negative and false positive, respectively. These errors
not only apply to individual classification rules, but to complex classifiers too.
Moreover, they also apply to other aspects of knowledge based system. With a
planning system, the KBS has error components that that cause an incorrect
plan to be produced for the data provided. That is, the data was covered in-
appropriately; there was overgeneralisation. However, the system also failed to

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 35–42, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

36 T.M. Cao and P. Compton

����
����
����
����

����
����
����
����

Expert−Defined Concept

Target Concept

overspecialisation

overgeneralisation

Fig. 1. Overspecialisation and overgeneralisation

cover the data correctly, and that was overspecialisation. In a similar manner,
these errors also apply to ontology acquisition. The definitions of concepts, or the
relations between them result in objects failing to be covered or being covered
inappropriately. If an expert provides too many repeated low level definitions
rather than developing abstractions, there is an overspecialisation error.

In this study, we simulate obtaining rules from the expert and so apply these
errors at the rule level. A given rule may cover data for which the conclusion
is not appropriate; that is, it is too general. Or the rule is too specific and
so excludes some data that should be covered. The intuitive response to an
overgeneralised rule is to remove conditions and for an overspecialised rule to
add conditions. However, whether one does this or corrects the system in some
other way depends on the KA tool or method being used.

These characterisations can be used to describe different levels of expertise
(for example, experienced experts and trainees). These errors also increase with
the difficulty of the domain. Trainees will be associated with higher overgeneral-
isation and/or overspecialisation errors than experienced experts in the domain.
One major problem with previous work that used simulated experts is how to
model levels of expertise. For example in [4], levels of expertise are represented
by picking various subsets of the full condition. There is no such difficulty in our
approach as we model the effects of different levels of expertise by using different
combinations of overgeneralisation and overspecialisation.

As mentioned above, the simulation here is restricted to classification. Sec-
ondly the domain is assumed to be made up of non-overlapping regions. The
minimum number of rules required is therefore the number of regions in the
domain. This assumption is made for the sake of simplicity and can easily be
relaxed to allow for more complex domains.

2 Knowledge Structure

We have used a very simple knowledge structures in these studies. Either simple
rules where each rule make a conclusion, or rules which make an intermediate
conclusion which is then refined to a final conclusion with a further rule. We
assume that knowledge acquisition consist of adding rules and refining or nar-
rowing rules. The details have been described previously in [1]. We assume that

Knowledge Acquisition Evaluation Using Simulated Experts 37

there is a stream of cases in random order and that experts add rules or correct
rules to ensure the KBS provides the right classification for each case. This is
motivated by our work on Ripple-Down Rules (RDR) [3,5]. Of course an expert
may build a KBS off-line by imagining scenarios and creating and correcting
rules, but when the KBS is put into use, correction of addition of rules will be
because of the cases seen. In these simulations we simply construct the whole
KB based on the cases seen. The simulation follows the same process. A case is
presented to the KBS; if it is given a wrong conclusion or no conclusion a rule
is added or corrected or both and the process repeated. Knowledge acquisition
cost is measured simply as the number of cases for which the KBS needs to be
changed. With RDR systems the time taken to correct a KBS for a case is a
minute or two and does not increase or increases only slightly with KB size [5].

3 Cornerstone Cases

Cornerstone cases are data cases that trigger the creation of new rules. One
of the hallmark features of RDR is the employment of cornerstone cases. They
serve two purposes:

– as a means of maintaining past performance by imposing consistency
– as a guide to help the experts make up the new rules.

The cornerstone cases are used in the following manner: when a data case in
misclassified by the system, an expert is consulted and asked to provide a new
rule (or rules) to deal with this case. The new rule then is evaluated against
all the cornerstone cases stored in the system. If any of the cornerstone cases is
affected by the new rule, the expert is asked to refine it. Only when the system
confirms that the new rule does not affect any of the cornerstone cases then it is
added to the knowledge base, and the current data case becomes the new rule’s
cornerstone. In practice, the expert might decide to allow the rule to apply an
existing cornerstone case, but this evaluation excludes this.

The first question for the evaluation is the importance of cornerstone cases.
Or more generally, what is the importance of validating performance against test
data after modifying a KBS.

3.1 Experimental Settings

The simulations here are restricted to two level of expertise:

– Good Expertise: the human expert is characterised by (0.2, 0.2), i.e a rule
made by this expert will include cases that it should not with probability
0.2 and exclude cases that it should cover also with probability 0.2.

– Average Expert: the human expert is characterised by (0.3, 0.3).

Our naming of these levels of expertise is arbitrary; our intention is simply to
distinguish higher and lower levels of expertise. With each level of expertise, we
run the simulation with two options: with or without cornerstone cases. The
simulation is run with 100000 data cases from a domain of 20 regions, and the
number of required KA sessions is recorded.

38 T.M. Cao and P. Compton

3.2 Result and Discussion

The following figures show the number of KA acquisition sessions as a function
of data cases presented to the system. As a KA is required each time a data case
is misclassified, the slope of this graph can also be considered as the error rate
for the acquired system.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20000 40000 60000 80000 100000

Number of KA sessions

Without cornerstones
With cornerstones

Fig. 2. Good expertise

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20000 40000 60000 80000 100000

Number of KA sessions

Without cornerstones
With cornerstones

Fig. 3. Average Expertise

It can be seen from the graphs that when a good level of expertise is available,
there is not much difference in the performance of the acquired knowledge base
whether or not cornerstone cases are employed. However, when the available
expertise is average, the system with cornerstone cases clearly outperforms the
one without, in terms of the number of KA sessions (or error rate). In a KA
session with the system that uses cornerstone cases, the expert is usually asked
to create more primary rules. However, this is perfectly acceptable since the

Knowledge Acquisition Evaluation Using Simulated Experts 39

number of KA sessions is a better measure of human experts’ time than the
number of primary rules.

4 Domain Ontology Acquisition

In recent years, the use of explicit ontologies in knowledge based systems has
been intensively investigated [11,6,8,10]. Heuristic classification was first intro-
duced by [2] and remains a popular problem solving method (PSM). It can be
understood as a PSM using a very simple ontological structure of intermediate
conclusions. It is comprised of three main phases:

– abstraction from a concrete, particular problem description to a problem
class definition that applies to

– heuristic match of a principal solution to the problem class
– refinement of the principal solution to a concrete solution for the concrete

problem

This process can be seen in the following figure

Concrete Problem

Problem Class Principle Solution

Refinement Solution

match

In practice, it is not always the case that all three phases of heuristic classification
are employed. The example we look at in the next subsection will show how a
simple taxonomy is used with classification systems.

Domain A. Domain B.

4.1 Example

We look at two domain structures as in the picture above. The task here is
to acquire a classifier for this domain from human experts. There are nine ele-
mentary classifications as shown in case A. In case B, however, we assume that
there is a known taxonomy of classifications: the domain is divided into three
general classes and each general class contains three elementary classifications.

40 T.M. Cao and P. Compton

This taxonomy can be considered as a very simple ontology. We now describe
how this explicit taxonomy of classification is used in a classification system and
how we evaluate its usage.

In case A, the classifier produces one of the nine classifications. Revision of the
knowledge base when a data case is misclassified is done similarly as in Section 3.
On the other hand, in case B, classification is done in a two-step process. First,
the classifier assigns a general class (from three classes in this particular example)
to the input data. After that, the data is passed to a second sub-classifier which
(based on the general class assigned) gives the sub-classification associated with
this case. When there is a misclassification, the classifier (or classifiers) will be
revised. As a consequence, one can argue that, revision in this case is likely to be
more complex than that in case A. However, in our experiments, we still count
each revision to deal with a case as a KA session.

4.2 Experiment Settings

The simulations here are restricted to two levels of expertise:

– Average Expertise: the human expert is characterised by (0.3, 0.3),
– Bad Expert: the human expert is characterised by (0.4, 0.4).

and two domain structures

– (A) the domain is composed of 25 non-overlapping regions
– (B) the domain is composed of 5 non-overlapping regions, and each region,

in turn, is composed of 5 sub-regions.

Again, the naming of the levels of expertise is arbitrary. The simulation is run
with 100000 data cases and the number of required KA sessions is recorded.

4.3 Result and Discussion

The following figures shows the number of KA sessions as a function of number of
data cases presented to the system. The result is surprising because even with a
fixed taxonomy in the experiments, a difference in expertise level can lead to such
a difference in the performance of the acquired knowledge bases. While there is
a reasonable expertise available, the classifier with a domain taxonomy clearly
outperform the one without. However, when the level of available expertise is
poor, performance is similar so it might be better not to use the domain ontology
because knowledge acquisition is simpler.

5 Conclusion

In this paper, we use the simulation framework developed in [1] to investigate
two interesting aspects of knowledge acquisition, namely, the usage of supporting
data cases and explicit domain ontology. We do not claim that our model accu-
rately reflects the real life situation, or our results quantitatively apply to the a
real knowledge based system, the simulation still shows interesting observations.

Knowledge Acquisition Evaluation Using Simulated Experts 41

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20000 40000 60000 80000 100000

Number of KA sessions

With taxonomy
Without taxonomy

Fig. 4. Average Expertise

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 20000 40000 60000 80000 100000

Number of KA sessions

With taxonomy
Without taxonomy

Fig. 5. Bad Expertise

We observe that the use of cornerstone cases in Ripple Down Rules system
shows a real improvement of the knowledge base performance. While the expert
has work a bit more at each knowledge acquisition session, the number of KA
sessions will be less over time. In particular, when a high level of expertise is
not available, the use of cornerstone cases significantly improves the experts’
performance.

The second observation is that explicit domain ontology brings significant
improvement in the resulting system’s performance if high levels of expertise
are available. However, explicit ontologies do not have as much positive effect
when the domain is dynamic (due to its changing nature, or unestablished tacit
knowledge).

Aspects of these conclusions are entirely obvious and would be accepted by
all: that validation and ontologies are both useful. However, the methodology

42 T.M. Cao and P. Compton

also raises the question that as we move into less well defined areas relating
to personal and business preferences, validation becomes more critical while
perhaps ontologies are less valuable. The question also arises that whether less
certain ontologies in the Semantic Web will more value than simpler techniques.

In the future, we would like to investigate other aspects of evaluating KA:
more complex domain structures or in multiple experts settings.

Acknowledgements

This work is supported by Co-operative Research Centre for Smart Internet
Technologies, Australia.

References

1. T. Cao and P. Compton. A simulation framework for knowledge acquisition eval-
uation. In Proceedings of 28th Australasian Computer Science Conference, pages
353–361, 2005.

2. W. J. Clancey. Heuristic classification. Artificial Intelligence, 27:289–350, 1985.
3. P. Compton and R. Jansen. A philosophical basis for knowledge acquisition. Knowl-

edge Acquisition, 2:241–257, 1990.
4. P. Compton, P. Preston, and B. Kang. The use of simulated experts in evaluat-

ing knowledge acquisition. In B. Gaines and M. Musen, editors, 9th Banff KAW
Proceeding, pages 1–12, 1995.

5. Paul Compton, Lindsay Peters, Glenn Edwards, and Tim Lavers. Experience with
ripple-down rules. Knowledge Based Systems, to appear, 2006.

6. Asuncion Gomez-Perez. Evaluation of ontologies. Int. J. Intelligent Systems,
16:391–409, 2001.

7. T. Menzies and F. Van Hamelen. Editorial: Evaluating knowledge engineering
techniques. Journal of Human-Computer Studies, 51(4):715–727, 1999.

8. Natalya Fridman Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W.
Fergerson, and Mark A. Musen. Creating semantic web contents with protégé-
2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

9. N. Shadbolt and K. O’Hara. The experimental evaluation of knowledge acquisition
techniques and methods: history, problem and new directions. Journal of Human-
Computer Studies, 51(4):729–775, 1999.

10. York Sure, Asunción Gómez-Pérez, Walter Daelemans, Marie-Laure Reinberger,
Nicola Guarino, and Natalya Fridman Noy. Why evaluate ontology technologies?
because it works!. IEEE Intelligent Systems, 19(4):74–81, 2004.

11. G. van Heijst, A. Th. Schreiber, and B. J. Wielinga. Using explicit ontologies in
kbs development. Journal of Human-Computer Studies, 45:183–292, 1997.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 43 – 50, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Stochastic Foundations for the Case-Driven Acquisition
of Classification Rules

Megan Vazey1

1 Department of Computing,
Division of Information and Communication Sciences,

Macquarie University,
Sydney NSW 2109

Australia
megan@excelan.com.au

Abstract. A predictive mathematical model is presented for the expected case-
driven transfer of classification rules. Key insights are offered for Knowledge
Acquisition in expert systems, machine learning, artificial intelligence,
ontology, and folksomonies.

Keywords: Knowledge Acquisition, Group Decision Support Systems, Colla-
borative Tagging, Folksonomies, Knowledge Based Systems, Machine
Learning, Knowledge Discovery in Databases, Case Based Reasoning, Ripple
Down Rules, Expert Systems.

1 Introduction

In this paper, I examine the case-driven transfer of knowledge in which one or more
parties transfers classification rules to another party as a result of a continuous and
randomized stream of incoming cases, and I present a predictive stochastic model for
the case-driven acquisition of classification rules. Importantly, my analysis does not
assume any particular underlying Case-based Knowledge Acquisition (KA)
technique. The resultant trajectories reflect the natural slowing of knowledge
exchange in an environment where incoming repetitive and randomized cases are
mapped to a bounded set of classes1, and where the class mappings are defined by
rules that examine the attributes of the incoming cases. The derived model provides
very good insight to the rule acquisition data presented in previous machine-learnt
and case-based KA simulations for Single Classification Ripple Down Rules
(SCRDR) and Multiple Classification Ripple Down Rules (MCRDR) as discussed in
[1] and [2], as well the tag acquisition data observed in folksomonies i.e. collaborative
tagging forums as shown in [3, Fig. 3].

1 Note that both over-specialisation and over-generalisation errors may result in more

RuleNodes being acquired than is optimal. In the former scenario, multiple RuleNodes with
different rules may refer to identical classifications. In the latter scenario, RuleNodes with
different rules may be required to create exceptions to an invalid parent RuleNode.

44 M. Vazey

2 An Analysis of Case-Driven Knowledge Acquisition

The type of knowledge that this research concerns itself with is that which can be
codified in the form of rules or RuleNodes that examine the properties (i.e. attributes)
of incoming cases, and then map those cases to representative classes or
classifications. Classification Knowledge can be acquired directly as top-down
knowledge-based rules, or as bottom-up experience-based rules derived by examining
specific cases. This paper focuses on the latter case-driven KA approach.

2.1 A Single Classification Case-Driven Equal Frequency KA Example

Say that the target knowledge domain will be comprised of m RuleNodes in a
decision tree that maps incoming cases to their representative classes. In order to
examine the case-driven KA process I randomly generated N = 1000 cases each
comprising one of m = 100 different integers. The m different integers were
represented with equal frequency in the example. In this experiment, a case with a
novel integer was used to represent an exemplar case for a novel class or
classification. For single classification case-driven KA, each novel exemplar case
represents an opportunity for the KBS to acquire a new RuleNode in the decision tree.

Next, I took the sequential set of cases and cumulatively counted the number of
times a case with a novel integer was seen. I then plotted the number of novel
integers seen versus the number of cases seen. Fig. 1 shows the Actual trajectories for
5 independent case-driven KA scenarios, together with the Expected trajectory, and
the Best Case straight-line trajectory for m = 100.

Fig. 1. Expected, Actual and Best-Case Single-Class Case-Driven KA trajectories

 Stochastic Foundations for the Case-Driven Acquisition of Classification Rules 45

Every time newly generated random data is used a slightly different KA trajectory
results with varying quantum KA steps. For instance on one draw, the system might
fetch 50 consecutive cases all being exemplars for the same class, where-as on
another draw the system might fetch 50 consecutive cases all being exemplars for
novel classes. The varying trajectories represent the stochastic nature of the
randomized incoming case data.

The formula for the Expected case-driven KA trajectory is provided in Theorem 1:

Theorem 1: The expected number of RuleNodes Kn that will be acquired after n cases
by a single classification case-driven KBS is given by:

Kn = n – (1/m * (i = 1 to n) Ki-1) (T1)

where:
n is the number of cases seen;
Kn is the number of RuleNodes accumulated after n cases and K0 = 0 and K1

= 1; and
m is the total number of classes or RuleNodes in the domain M .

This theorem was used to construct the Expected KA trajectory that is the smooth

monotonically increasing and rapidly slowing asymptotic curved line shown in Fig. 1.
It provides a way of predicting how much knowledge Kn in the form of RuleNodes
will be acquired after n cases have been seen by a case-based knowledge acquisition
system. Unfortunately, proofs and some formulas have had to be omitted from this
paper in order to comply with the EKAW short paper format. Please contact the
author for proofs and additional formulas as required.

Let KError n refer to the difference between the amount of knowledge Kn acquired
after n cases, and the maximum amount of knowledge that could be acquired m.
Hence the remaining error KError n is as follows:

KError n = m – Kn (1)

where Kn is given by Theorem 1.
A reciprocal formula for the Expected case-driven KA trajectory is provided in

Theorem 2:

Theorem 2: The expected number of cases nK needed to acquire K of m RuleNodes
in a single classification case-driven KBS is given by:

nK = (i = 1 to K) [(m-(i-1))/m) * (j = 1 to) {j * ((i-1)/m)^(j-1)}] (T2)

where:
n is the number of cases required;
K is the amount of RuleNodes to be accumulated; and
m is the total number of classes or RuleNodes in the domain M .

Theorem 2 provides a method for discovering how many cases would be required

to acquire some number of the m RuleNodes in a domain M . However its formula is
computationally more expensive than the reciprocal formula in Theorem 1 since it

46 M. Vazey

involves a complex summation of an infinite number of terms. This reflects the
asymptotic nature of the expected trajectory. Depending on the number of classes,
and the required resolution of the solution, for K < m it is possible to trade-off the
accuracy of the solution with the number of terms used in Theorem 2.

In an optimal (manual or machine learning) KA scenario all of the knowledge
would be acquired up front. In that way the knowledge base would be prepared for all
future scenarios up front, and in the case of manual KA, experts wouldn’t have to put
up with the tedious review of repeat exemplar cases2 while offering their knowledge
for novel exemplar cases.

Hence optimally, each new case would represent a unique class and the best-case
KA trajectory would be a straight line as shown in Fig. 1. The likelihood of achieving
the best case (shortest path) KA using a case-driven KA method is given by:

PBestCase = m! / m^m (2)

Hence for case-driven KA with a significant number of classes m the best case KA
outcome is extremely rare.

It is possible to construct a matrix that shows the probability of arriving at a given
class after a given number of cases for an m class system. The matrix is constructed
by recognizing that the probability Pyx of achieving y classes with x repeats is given
by the probability of achieving (y-1) classes with x repeats, followed by achieving the
yth class; plus the probability of achieving y classes with (x-1) repeats, followed by
yet another repeat. This can be expressed as follows:

Pyx = P(y-1)(x) * Py0 + Py(x-1) * P01

Pyx = P(y-1)(x) * (m-(y-1))/m + Py(x-1) * y/m

(3)

The derived matrix offers an insight to the distribution one might expect to see of
actual KA trajectories about the expected trajectory.

Table 1 shows an example matrix for a 10 class system for the situation where
repeat exemplars are drawn up to 10 times between each class. In Table 1, we can see
that for a 10 class system, the probability of achieving 7 classes with only 4 repeats is
0.39 which is the same as the probability of achieving 6 classes with only 4 repeats
(0.35) multiplied by the probability of achieving the 7th class (10-7+1)/10 plus the
probability of achieving 7 classes with only 3 repeats (0.36) multiplied by the
probability of yet another repeat 7/10.

From Table 1 it becomes clear that the probability of repeats is relatively low and
almost zero in the early stages of KA (only two decimal places are shown but the values
are actually non-zero), but as more classes are achieved, the probability of repeats and
the variance of the number of repeats becomes much higher. The probability of repeats
decreases with the number of repeats seen for all but the final class acquisition. For the
final class acquisition, the probability of repeats actually increases, and the variance is
infinite reflecting the asymptotic nature of case-driven KA.

2 Note that repeat exemplar cases can offer some useful auxiliary knowledge in that they allow

statistics to be gathered as to the number of times a particular RuleNode has been applied.
This can lend credibility to the validity of RuleNodes in the knowledge base.

 Stochastic Foundations for the Case-Driven Acquisition of Classification Rules 47

Table 1. An example KA probability matrix for a 10 class system

 classes (y)
 1 2 3 4 5 6 7 8 9 10

0 1.00 0.90 0.72 0.50 0.30 0.15 0.06 0.02 0.00 0.00

1 0.10 0.27 0.43 0.50 0.45 0.32 0.17 0.07 0.02 0.00

2 0.01 0.06 0.18 0.33 0.42 0.40 0.28 0.14 0.04 0.01

3 0.00 0.01 0.06 0.18 0.32 0.40 0.36 0.22 0.08 0.01

4 0.00 0.00 0.02 0.09 0.21 0.35 0.39 0.29 0.13 0.03

5 0.00 0.00 0.01 0.04 0.13 0.27 0.38 0.34 0.19 0.05

6 0.00 0.00 0.00 0.02 0.07 0.20 0.35 0.38 0.24 0.07

7 0.00 0.00 0.00 0.01 0.04 0.14 0.30 0.39 0.30 0.10

8 0.00 0.00 0.00 0.00 0.02 0.10 0.25 0.39 0.35 0.13

9 0.00 0.00 0.00 0.00 0.01 0.06 0.20 0.37 0.39 0.17

re
pe

at
s

(x
)

10 0.00 0.00 0.00 0.00 0.01 0.04 0.16 0.34 0.42 0.21

Remark 1. Please note: This table has been truncated at 10 repetitions.

Another interesting property of the matrix is that the probabilities on the diagonals
add to 1. For example if you have seen 3 cases, you’ve either seen 1 novel exemplar
and 2 repeats, 2 novel exemplars and 1 repeat, or 3 novel exemplars.

2.2 Generalising to Multiple Classification KA systems

For case-driven KA where cases are mapped to more than one class it is possible that
more that one RuleNode may be acquired for each case.

In order to examine the multiple-classification case-driven KA process I created 3
sets of data, each with N = 1000 randomly generated cases. Cases in the first set of
data were each mapped to one classification represented by one of m = 100 different
integers. Cases in the second set of data were each mapped to two classifications
represented by two of m = 100 different integers. Cases in the third set of data were
each mapped to three classifications represented by three of m = 100 different
integers. The m different integers were randomly distributed and occurred with equal
frequency in each example. Again, each novel integer represented a novel class or
classification and hence an opportunity for the KBS to acquire a new RuleNode.

I cumulatively counted and plotted the number of novel integers seen versus the
number of cases seen. Fig. 2 shows the expected and actual trajectories for a KA
system with m = 100 classes and N = 1000 cases in which 1, 2, and 3 classes are
mapped to each case. Since more than one classification may occur for each novel
exemplar case in a multiple classification KA system, we can expect that its case-
driven KA trajectory would rise faster than in an equivalent single classification KA
system i.e. less cases need to be seen before the same level of knowledge is acquired.
It turns out that this corresponds to a linear shrinking of the x-axis (see Theorem 2) in

48 M. Vazey

Fig. 2. Expected and Actual Multi-Class Case-Driven KA trajectories

proportion to the number of classes acquired per case. For example, in Fig. 2, 80% of
the classes are achieved after 150 cases for a uni- classification system, after 75 cases
for a bi- classification system, and after 50 cases for a tri-classification system.
Please contact the author for the formulas for the expected trajectories as required.

Note that in a real-life multiple classification scenarios, certain combinations of
classes may be more likely to co-occur than others. In the next section I discuss
classes that occur with different frequencies for single classification systems.

2.3 Classes occurring with Different Frequencies

In many domains, the classes being acquired do not occur with equal frequency across
the cases seen. To model this scenario I generated a Pareto distribution of classes and
cases: I randomly generated N = 1000 cases each comprising one of m = 100 different
integers. The first 20% of the m different integers = m1 were represented in 80% of
the cases = r1. The last 80% of the m different integers = m2 were represented in only
20% of the cases = r2. I sorted the cases so that the order of classes represented by
them was completely random. Again I took the sequential set of cases and
cumulatively counted the number of times a case with a novel integer was seen. I then
plotted the number of novel classes seen vs the number of cases seen.

Fig. 3 shows the Best Case, Actual and Expected trajectories of the randomly
generated case data for m = 100 for the single classification equal frequency class
example and for this unequal (Pareto) frequency class example. The component parts
of the expected Pareto trajectory are also shown. From this figure we can see that the

 Stochastic Foundations for the Case-Driven Acquisition of Classification Rules 49

Fig. 3. KA for classes with both equal and different frequencies

total rate of knowledge acquisition for data with a Pareto style distribution is much
slower than for data that represents a number of different classes with equal
frequency. Please contact the author for the formulas for the expected Pareto
trajectory as required.

What we can see from Fig. 3 is that although the total KA is much slower for a
Pareto-style distribution, the most frequently demanded knowledge is generally
acquired first, and the least frequently demanded knowledge is generally acquired
last. Hence the variation of frequencies between the classes acquired is unlikely to
reduce the effectiveness of case-driven KA as a KA mechanism. In fact, in many
domains knowledge acquired for the highest volume problems has the best potential
to save on labor costs and is therefore of top priority.

2.4 Multiple Parties Transferring Knowledge

If multiple parties are randomly transferring knowledge to the KBS we can model
their contributi3on as a round-robin contribution on the basis of cases seen. In that
case the knowledge acquired as a function of the cases seen by a particular user will
be much more rapid since other users are contributing to the same KBS and the user
will need to see fewer cases for the same amount of knowledge gain.

3 Conclusions

In this paper I have presented formulas and trajectories for the expected number of
classes that will be acquired as a function of the number of cases seen, and the

50 M. Vazey

expected number of cases seen as a function of the number of classes acquired in
case-driven single classification KA systems. I have also discussed how these
trajectories change when multiple classifications are acquired per case, when
classifications occur with unequal frequencies, and when multiple parties are
contributing to the knowledge base. In all of these scenarios, the case-driven KA
trajectory is asymptotic such that in the expected KA trajectory 100% of knowledge is
seldom if ever acquired. Mathematically, transition to the final class is extremely
unlikely since the probability of transitioning to the last class is miniscule compared
to the probability that repeat cases will be seen.

The model calls for a hybrid bottom-up case-driven and top-down rule-driven
approach to knowledge acquisition. A rule-driven KA system allows users to enter
top-down general knowledge, background knowledge, or ground rules in an order and
manner that makes sense to them. It allows experts to anticipate problems and share
them in advance with novices; edit and correct over-generalisation or over-
specialisation errors; and optimise the knowledge structure to enhance system
performance. In contrast, a case-driven KA mechanism like SCRDR or MCRDR
allows relative knowledge to be entered in the context of specific cases. A hybrid
Case- And Rule-Driven (CARD) approach can offer the best of both of these
approaches.

Acknowledgments. Many thanks to Terje Petersen for valuable insight and
discussions leading to Theorem 1. Thanks also to Oden, Zac and Jasmin. Thanks to
Debbie Richards and Lee Flax at Macquarie University. Finally, thanks to my
industry sponsor for ongoing financial support.

References

1. Compton, P., Preston, P. and Kang, B. (1995). The Use of Simulated Experts in Evaluating
Knowledge Acquisition in B Gaines & M Musen, Proceedings of the 9th AAAI-Sponsored
Banff Knowledge Acquisition for Knowledge-Based Systems Workshop (Banff, Canada,
University of Calgary), pp 12.1-12.18.

2. Kang, B. H., Lee, K., Kim, W., Preston, P., Compton, P. (1998). Evaluation of Multiple
Classification Ripple Down Rules. Eleventh Workshop on Knowledge Acquisition,
Modeling and Management (KAW 18-23 April) Banff, Alberta, Canada

3. Golder S. A., Huberman B. A. The Structure of Collaborative Tagging Systems. (2003). HP
Labs.

4. Compton, P., Simulating Expertise in Compton, P., Hoffman, A., Motoda H., Yamaguchi T.
(2000). Proceedings of the 6th Pacific Knowledge Acquisition Workshop, Sydney, p51-70.

5. Kang, B., Compton, P. and Preston, P. (1995). Multiple Classification Ripple Down Rules :
Evaluation and Possibilities. Proceedings of the 9th AAAI-Sponsored Banff Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, University of
Calgary.

From Natural Language to Formal Proof Goal�

Structured Goal Formalisation
Applied to Medical Guidelines

(Extended Abstract)

Ruud Stegers, Annette ten Teije, and Frank van Harmelen

Vrije Universiteit, Amsterdam

Abstract. The main problem encountered when starting verification
of goals for some formal system, is the ambiguity of those goals when
they are specified in natural language. To verify goals given in natural
language, a translation of those goals to the formalism of the verification
tool is required. The main concern is to assure equivalence of the final
translation and the original. A structured method is required to assure
equivalence in every case.

This article proposes a goal formalisation method in five steps, in
which the domain expert is involved in such a way that the correctness of
the result can be assured. The contribution of this article is a conceptual
goal model, a formal expression language for this model, and a structured
method which transforms any input goal to a fully formalised goal in the
required target formalism. The proposed formalisation method guaran-
tees essential properties like correctness, traceability, reduced variability
and reusability.

1 Introduction

The main problem encountered when starting verification of goals for some for-
mal system, is the ambiguity of those goals when they are specified in natural
language. No matter what domain, or what source of the goals: there are always
many implicit assumptions and interpretations that must be made explicit be-
fore they can be used for formal verification. An ad-hoc method, in which the
expert on the formal system makes the translation by hand directly into the
logic of the target system, may work sometimes, but is error prone due to the
obvious domain specific choices and interpretations that have to be made.

Incorporating a domain expert in the formalisation process seems to be a ne-
cessity, however the gap between the natural language representation and the
logic of the verification tool is far to big to close without help. This article pro-
poses a structured method, understandable by the domain expert and yet with
enough expressive power for the formal methods expert. This article will focus
on suitable representations and required steps for the formalisation of natural
language goals. The contribution of this article is a common frame of reference
� This work has been partially supported by the European Commission’s IST program,

under contract number IST-FP6-508794 Protocure-II.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 51–58, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

52 R. Stegers, A. ten Teije, and F. van Harmelen

for all the experts involved (the goal model), a formal expression language for
this model (GDL), and a five-step method which transforms any input goal to a
fully formalised goal in the required target formalism. The proposed formalisa-
tion method may be applied to any domain and guarantees essential properties
like correctness, traceability, reduced variability and reusability.

Although the proposed method is domain independent, its origins can be
found in the medical domain. An example from this domain will be used to
illustrate the individual steps throughout this article. The goal shown below is
used to verify medical guidelines as used by care providers. Those guidelines
provide directives and instructions for the diagnosis and treatment of selected
deceases and injuries. By applying verification techniques to guidelines, these
may be improved: the aim is both to increase the quality of the care, and to
prevent unnecessary medical tests and treatment.

Original - Example

“The percentage of patients in the last year, with whom the pos-
sibility of breast reconstruction was discussed before mastectomy
was performed.”

The example goal is what is called an indicator : in hospitals indicators are used
to measure the quality of the care on a periodic basis (typically each year). With
help from a doctor and the proposed method, this indicator will be formalised
so it becomes a suitable goal for formal verification.

The proposed formalisation method has been evaluated on several goals from
the medical domain[1]. The four chosen goals apply to guidelines for treatment of
diabetes, jaundice and breast-cancer. In the Protocure project[2,3], these guide-
lines have been formalised for that purpose using Asbru, a plan oriented mod-
elling language. In the same project, these models were translated to the tempo-
ral logic of KIV, a tool that allows the guidelines to be verified using symbolic
execution[4]. The example of this article is one of those four goals. The result-
ing formalised goal has successfully been proven for the breast-cancer guideline
using KIV.

In the next section the goal model which provides the shared frame of refer-
ence for both experts (e.g. medical expert, formal methods expert) is explained.
Subsequently, Sect. 3 defines five requirements for the formalisation process fol-
lowed by a discussion of the method itself. Section 4 discusses related work,
followed by the conclusion in Sect. 5.

2 The Goal Model

To provide a common frame of reference for both the domain expert, and the
formal methods expert, a high level goal model is required. This model is depicted
in Fig. 1.

A goal is expressed in terms of a start event, a (pre) condition for this event, an
end event, and some desired behaviour in between.Fromthemoment the start event

From Natural Language to Formal Proof Goal 53

time

Condition true
+ some start event Some end event

Desired observations

Observed process

Fig. 1. Shared goal model

is seen while the condition is true, the process model (i.e. the guideline) should
adhere to the prescribed behaviour for as long as the end event does not occur.

The simple nature of this shared goal model makes is easy to understand,
however practical use has also shown that the model allows for sufficiently ex-
pressive goal descriptions. The next sections will show that the common goal
model maps naturally to both natural language and to a formal representation
(i.e. GDL).

3 The Formalisation Method

Having a shared frame of reference is only the start. The process itself of how
to get from an arbitrary natural language goal to the target formalism via the
goal model is equally important. The following requirements must be met by the
formalisation process:

– Ambiguities. Identify and clarify all assumptions and ambiguities present
in the original goal.

– Correctness. Ensure correctness of every change to the goal: the domain
expert should be able to validate changes to ensure their validity.

– Traceability. Ensure traceability. The formalisation must be completely
reproducible by means of the intermediate results and the documentation.

– Reusability. Enable reusability of work at different stages. Maintain gen-
erality for as long as possible.

– Variability. Reduce variability of the formalisation result.

The numbered steps depicted in Fig. 2 assure compliance with those require-
ments. The blocks on the left hand side represent the goal in natural language.
On the right side the blocks represent the formal expression of the same goal.
The individual steps will now be demonstrated for the example.

1. Reduction. Due to the variety of the source of goals, the first step is to make
sure that the desired behaviour is explicitly described. This explicit description
preserves the quality aspects of the goal, while getting rid of non-essential infor-
mation. The domain expert is the one primarily performing the reduction. The
main responsibility of the domain expert in this and subsequent steps, is that

54 R. Stegers, A. ten Teije, and F. van Harmelen

Goal in any form

Explicit description of desired behavior

Goals from different sources

Formal GoalStructured Goal using goal model

Structured Goal using goal model in

terms of the process model

Formal Goal in terms of the process

Formal Goal in terms of

the process model

Natural language

Formal oal efinition anguageG D L

Final formal language

1. Reduction

3. Formalisation

2. Normalisation

Process model

4. Attachment

5.Translation

Fig. 2. Life-cycle of a goal

the essence of the goal is not altered, or if it is, that this happens deliberate and
well documented.

Reduction - Example

“The possibility of breast reconstruction should be discussed with
all patients prior to mastectomy.”

For the example (refer to Sect. 1 on page 52), the knowledge of the medical
expert is used to establish that the percentage mentioned in the original version
should preferably be as high a possible. This allows removal of references to
this percentage (the percentage of patients becomes all patients). Additionally,
by realising that this indicator is repetitively applied every year, it is concluded
that in this case the patient must always be informed about possibilities for
breast reconstruction prior to mastectomy:

2. Normalisation. After the reduction, the next task is to rewrite the goal
in terms of the goal model: some behaviour that should be adhered to between
some start and some end event. Not only the terms, but also the structure of the
goal model is imposed on the goal: the goal is transformed into a normal form.

The normal form consist of four elements in brackets (Condition, Start, End
and the Behaviour), however, the whole sentence must be well-formed. During
the normalisation ambiguities and implicit assumptions concerning temporal re-
lations between events are almost automatically being taken care of: rewriting
into this structure raises questions which, when answered by the domain ex-
pert, clarify the ambiguities of this kind. The reduction and normalisation are
just another way of writing down the original goal. By not making adjustments

From Natural Language to Formal Proof Goal 55

specific to the object of verification (models), the normalised goal may be reused
for verification of many models.

Normalization - Example

C [For women with breast-cancer],S[after start of the medical care]
but E[before commencing mastectomy], B[the possibility of breast
reconstruction should have been discussed with the patient].

3. Formalisation. The next step is to transform the structured natural lan-
guage version to a formalised version which can be used by the formal methods
expert. The formal expression of the goal will be provided by GDL, the Goal
Definition Language1. This newly developed language is specifically designed to
reflect the structure of the goal model and will therefore also stay very close to
the structured version. Due to this close relation, changes in one version are eas-
ily duplicated in the other version. This makes that the formal methods expert
and the domain expert can discuss the same goal using their own representations.

The Goal definition Language, GDL, consists of two parts: A general part,
Generic GDL, that represents the goal model itself, and a task specific extension
to GDL that defines the exact conditions and events that can be used. The
formalisation of the example is shown here in presentation syntax. Only Generic
GDL is used at this stage for the formalisation:

Formalisation - Example

Goal Example
Precondition

For women with breast-cancer

Time-specification
From the start of the medical care
Until start of mastectomy

Observe-during-period ≥ 1
discuss possibility of breast reconstruction with the patient

The elements from the goal model are easily recognised (Condition, Start, End
and the Behaviour). Although the overall structure is fixed, several elements may
be replaced. The most important of those is the behaviour. The available choice
of elements raises questions which clarify behaviour related ambiguities. (e.g. the
difference between ‘observe once’ or ‘observe at least once’.)
1 A full language specification including formal semantics are available in [1].

56 R. Stegers, A. ten Teije, and F. van Harmelen

4. The Attachment. Given the formalisation result so far, the only thing left
is to formalise the natural language parts with according to concepts available
in the process model (i.e. the guideline model). The task consists of finding an
equivalent concept in the process model, for every concept in the goal. During
the attachment the domain expert makes sure that the concepts which are ‘at-
tached’ are indeed equivalent, and where necessary, adjustments may be made.
To be able to evaluate every adjustment, both versions of the goal (GDL and
structured natural language) are kept synchronised: changes made to one, should
be reflected in the other. That way, both experts can evaluate the (intermediate)
result using their own representation. Also here, documentation is essential in
order to be able to verify the formalisation result. Notice the additional informa-
tion about the model to which the goal has been attached to between brackets
in the example.

Attachment - Example (BC Ch1 23.11.2005)

Goal Example
Precondition

always-true

Time-specification
From Transition ch1-treatment enter active
Until Transition mastectomy-proper enter active

Observe-during-period
Planstate patient-information-reconstruction = completed

Since the process model may be described by any formal language – each
with specific elements and features – a specialised GDL extension is needed
for the specific modelling language used. The model verified using the example
goal is the Dutch guideline for treatment of breast cancer which has been for-
malised in Asbru. Therefore, an Asbru specific extension – GDL-Asbru – was
developed, which consists of Asbru specific conditions and events. Asbru is a
plan-specification language defined as part of the Asgaard/Asbru project[5].

5. Translation. The translation of GDL to the logic of the verification tool
should be a strictly mechanical step. This is essential since changes at this stage
would be impossible to detect and validate by the domain expert. The mechanical
nature of the translation makes it trivial from a process perspective. The only
consideration that must be taken into account is that the translation must have
the same semantics as GDL.

The guidelines under investigation are being verified in KIV, a tool which –
amongst others – allows symbolic execution of parallel programs[4]. To this end,
the Asbru models were translated to parallel programs in KIV. For the goals,
an efficient modular translation of Generic GDL and GDL-Asbru to KIV has

From Natural Language to Formal Proof Goal 57

been made. Using this translation, KIV was successfully used to close the proof
on the example goal.

4 Related Work

In the software engineering area the same problem is investigated, namely the
transition from natural language to a formal representation, for instance [6,7,8].
[6] presents the approach of lightweight formal methods which starts with natural
language and ends up with a semi-formal representation. Our proposal goes
further and continues to the end (i.e. to a full formal representation).

In contrast with [6], [7,8] mainly focus on the transition from the semi-formal
to the formal representation. This means the first step from natural language
to semi-formal is rather large. In our case this step is more fine grained. Fur-
thermore in our case the both experts (domain, formal methods) have their own
representation. Whereas in [7,8] one representation is used. The final result with
[7,8] consists of the pseudo-code respectively the objects of the application. Our
method aims to end up with the logic of the verification tool. Notice that in re-
quirements engineering part of the effort goes into identifying the requirements
of the user, whereas for the proposed method of this article, the requirements in
natural language are considered given.

5 Conclusion

This article has proposed a method of formalising natural language goals in
such a way that the domain expert is involved in every step that may change
the meaning of the goal. The contribution of this article is a common vocabulary
between the domain expert and the formal methods expert in the form of the goal
model. The five step method adds a structured and controlled way of rewriting
goals via this goal model to any target formalism. Five requirements have been
formulated in section 3, which will be evaluated below.

- Ambiguities. During the formalisation process, each step targets different
kinds of ambiguities. The biggest reduction of ambiguity is achieved during
the normalisation. To rethink a goal in terms of the goal model automatically
raises questions. During the formalisation details of the behaviour are made
specific by forcing a choice for a specific kind of behaviour. During the attach-
ment, conceptual ambiguities are resolved by connecting the concepts in the
goal to available concepts in the model: by evaluating their equivalence the
exact meaning needs to be established. By following the steps, ambiguities are
naturally solved.

- Correctness. The main instrument to achieve correctness is the continuous
involvement of the domain expert. An up-to-date natural language version of
the goal is maintained throughout the process which allows the expert to focus
on the meaning of the goal in a familiar form. The domain expert decides
whether a proposed change is correct or not. By means of the formal GDL
semantics the correctness of the translation step can be confirmed.

58 R. Stegers, A. ten Teije, and F. van Harmelen

- Traceability. The main tool to achieve traceability is by adding documenta-
tion to the intermediate result after each step. Additionally, the subdivision
in steps with specific tasks reduces the amount of required documentation: in
the context of the task, many transformations are straight forward and don’t
need to be explained. In that respect, traceability follows from the method.

- Reusability. During the formalisation process, there are two distinct points
where the intermediate result may be reused. First of all, the formalisation
result may be reused for different process models. The attachment result may
be translated to different tools. One example of reuse of an attached goal would
be the translation both to KIV and to the SMV model checking environment.

- Variability. The task oriented subdivision of the formalisation process causes
the first reduction in variability. The fixed order of steps works towards a
uniform result. Additionally, the canonical forms force the result into the right
direction. Finally, the vocabulary of the goal model in general, and of GDL
specific, do not allow many different ways to express a single goal. Every step
tries to achieve convergence to the unique GDL expression. The mechanical
nature of the translation enforces invariance in the last step. The only real
source of variance in the result are differences in interpretation by the domain
expert of the original goal. However, this cannot be avoided.

References

1. Stegers, R.: From natural language to formal proof goal: Structured goal
formalisation applied to medical guidelines. Master’s thesis, Free Univer-
sity Amsterdam, department of artificial intelligence (2006) Available from:
http://www.stegers.info/Ruud/MastersThesis.pdf.

2. ten Teije, A., et al.: Improving medical protocols by formal methods. Artificial
Intelligence In Medicine 36(3) (2006) 193–209

3. Deliverable D4.2: Specification of guideline properties & indicators, Protocure
Project-II, IST-FP6-508794 (2006) http://www.protocure.org/.

4. Balser, M.: Verifying Concurrent Systems with Symbolic Execution. PhD thesis,
University of Augsburg, Augsburg (2005)

5. Shahar, Y., Miksch, S., Johnson, P.: The asgaard project: A task-specific framework
for the application and critiquing of time-oriented clinical guidelines. In: Artificial
Intelligence in Medicine. Volume 14. (1998) 29–51

6. George, V., Vaughn, R.: Application of lightweight formal methods in requirement
engineering. In: CrossTalk. The Journal of Defence Software Engineering. (2003)

7. Bryant, B.R.: Object-oriented natural language requirements specification, Can-
berra, Australia (2000)

8. Cooper, K., Ito, M.: Formalizing a structured natural language requirements speci-
fication notation. In: Twelfth Annual International Symposium of the International
Council On Systems Engineering (INCOSE), Las Vegas, Nevada USA (2002)

Reuse: Revisiting Sisyphus-VT

Derek Sleeman, Trevor Runcie, and Peter Gray

Department of Computing Science, University of Aberdeen,
Aberdeen, AB24 3UE, Scotland, UK

{sleeman, truncie, pgray}@csd.abdn.ac.uk

Abstract. Reuse has long been a major goal of the Knowledge Engineering com-
munity. The focus of this paper is the reuse of domain knowledge acquired for an
initial problem solver, with a further problem solver. For our analysis we chose a
knowledge base system written in CLIPS based on the propose-and-revise (PnR)
problem solver, and which had a lift/elevator knowledge base (KB). Given the
nature of the problem solver, the KB contained 4 components, namely an on-
tology, procedural statements which specify how the artifact, the lift, could be
enhanced/modified, a set of constraints to be satisfied, and a set of fixes to be
applied when constraint violations occurred. These 4 components were first ex-
tracted manually, and were used with both an Excel spreadsheet and a constraint
problem solver (ECLiPSe) to solve a range of tasks. The next phase was to im-
plement ExtrAKTor which extracts the same 4 knowledge sources virtually au-
tomatically from the CLIPS knowledge base (held by Protégé), and transforms
these so that they are usable with a number of problem solvers. To date Excel &
ECLiPSe have been selected, and again we have demonstrated that the resulting
systems are able to solve a variety of lift configuration tasks. This is in contrast
to earlier work which produced abstract formulations of the problem but which
were unable to perform reuse of actual knowledge bases.

1 Introduction

Reuse has long been a major goal of the Knowledge Engineering community. The vision
being that if knowledge sources/bases about particular topics, and domain-independent
problem solvers were available, then it should be possible to create a new Knowledge
base System by selecting from these components and in some way linking them. This
vision was partly materialised in the early days of Expert Systems, when a number
of domain independent ”Inference Engines” were implemented and used with a wide
range of domains. For instance, the EMYCIN [2] shell was used with Knowledge Bases
(KBs) for Infectious Diseases and Civil Engineering - to mention just 2 applications.

Subsequently, the Expert System community in the later 70’s / early 80’s described
a range of Problem Solving methods which, they claimed, would cover the whole spec-
trum of problem solving, [5,15]. The important theme of articulating and defining PSMs
was developed subsequently, for example, by the KADS project [12,3] (section 2);
however, as we shall see, these activities produced a largely theoretical framework.
Reuse was still seen as an issue in 2000 when the Advanced Knowledge Technologies
(AKT) project included it as one of the challenges it intends to address in supporting

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 59–66, 2006.
© Springer-Verlag Berlin Heidelberg 2006

60 D. Sleeman, T. Runcie, and P. Gray

the KB lifecycle, [16]. The other 5 challenges being: Knowledge Acquisition/Capture,
Knowledge Modeling, Knowledge Retrieval, Knowledge Publishing and Knowledge
Maintenance.

On the other hand, Reuse has become a reality for the software engineer, who reg-
ularly, once the specification of a system has been finalised, starts the implementation
process by searching for suitable (Java) libraries. The vision of the Knowledge Engineer
is that, having built at considerable cost (largely due to the cost associated with building
the domain Knowledge Base) a KBS which is able to design, say a lift, it is highly de-
sirable to reuse most/all of the domain knowledge, when developing a KBS to diagnose
faults in the same domain. Further, the vision has also always been that this process
should be relatively straightforward and could be handled by a domain expert rather
than by a highly specialised Knowledge Engineer/ Researcher in Knowledge Represen-
tation. The following paragraphs give a scenario for a user-friendly Reuse system.

A technician has access to a domain ontology & related design information (such
as procedural upgrades, constraints & fixes) necessary to complete a design task. The
technician invokes a Problem Solving (PS) agent to provide a plausible configuration.
The PS agent then selects an appropriate Problem Solver. Subsequently, the Problem
Solver (or the agent) recognizes that certain initialization information is missing and
prompts the technician for it. The PS Agent then ideally provides a design solution;
or prompts the user for further information; or reports that there is no solution. The
important aspects of this scenario are that the technician should:

– not require a high level of computing science expertise
– not require detailed experience of the Problem Solvers

1.1 Opportunities and Challenges for Knowledge Engineering in the Context of
the Semantic Web

The opportunities which the world-wide-web provides for Knowledge Engineering is
very considerable in principle as the types of components involved, once made avail-
able on the web, can then be reused by a sizeable number of users. Additionally, a
further mode of operation is possible where domain-independent inference engines are
made available as web services; then to use such a service it is only necessary to ”send”
the web service, Knowledge Source(s) in the required format and an answer would be
returned. The great challenge of the Web, on the other hand, is being able to locate
appropriate domain-independent problem solvers and domain-dependent Knowledge
Sources. This requires, for instance, that the capabilities of the problem solvers are
adequately described; various languages such as DAML-OIL & OWL-S, have been de-
veloped to allow services to be described, and these could be used again in this context.
Such approaches require the developer of the service to describe its purpose, as well
as the nature of the inputs required by the service and the nature of the output pro-
duced. Searching for an appropriate Knowledge Source is a related problem. However,
some sophisticated search engines such as Swoogle [6,17] and OntoSearch [14,18] en-
able users to specify keywords to describe the sorts of content required of Knowledge
Sources such as Ontologies; OntoSearch additionally allows users to specify other desir-
able properties which should hold in the retrieved Knowledge Sources such as structure
between classes, properties of some key attributes, etc.

Reuse: Revisiting Sisyphus-VT 61

The structure of the rest of the paper is as follows: Section 2 describes the VT (Ver-
tical Transport) design task, the Sisyphus-II challenge [24], outlines related work, and
gives an overview of constraint satisfaction techniques; Section 3 reports the work done
to manually extract domain knowledge from a CLIPS [19] Propose and Revise algo-
rithm for the lift domain, and describes a system developed to (semi)-automatically
extract the same domain knowledge; and Section 4 reviews the work and suggests pos-
sible future work.

2 The VT Problem, Sisyphus-II Challenge, and Related Work

2.1 VT Problem

The Vertical Transportation (VT) domain is a complex configuration task involving
the interaction of all of the components required to design a lift (elevator) system.
These components are shown in Figure 1. The parameters such as physical dimen-
sions, weight and choice of components are regulated by physical constraints. The VT
domain [7] was initially used to solve real-world lift design by Westinghouse Eleva-
tor Company. The original VT Domain included some potentially conflicting fixes.
For example, if the ”traction ratio” is exceeded then one fix is to increase the ”car-
supplement-weight”, but if the ”machine-groove-pressure” is exceeded, one fix is to
decrease the ”car-supplement-weight”. The conflict occurs if both the ”traction ratio”
and the ”machine-groove-pressure” are exceeded. Should the ”car-supplement-weight”
be increased or decreased? This original VT domain knowledge was simplified and the
above conflicts removed to form the Knowledge Acquisition Sisyphus-II Challenge.
The Sisyphus [24,11,21] version of the VT domain was created so that researchers
would have a common KB for experimentation. It is the Protégé version of the VT
system from Stanford University which has been used in this project, [20].

2.2 A Review of Problem-Solving Methods (PSMs)

Problem-solving methods (PSMs) describe the principal reasoning processes of knowl-
edge based systems (KBs). Benjamins and Fensel [1] provides a summary of PSM
related research up to 1998; examples of PSMs are ”heuristic classification” [4] and
”propose-and-revise” [8]. In the mid-80s, researchers realised that PSMs all have goals
to be achieved, actions needed to achieve the goals, and knowledge required to perform
the actions. For the next decade or so there was a detailed investigation of the nature
and number of PSMs, before the field attempted to analyze in detail the subcomponents
which make up the PSMs. It was appreciated that the benefits that accrue from such
a PSM library could be significant, as new KBSs constructed using proven reusable
components rather than building from scratch should reduce development time and im-
prove reliability. This area of research has been most notably investigated through the
KADS/CommonKADS Expertise Modeling Library, the Protégé PSM Library, and also
the IBROW project. For details of these approaches see [10].

The biggest issue with these three approaches is that none support the execution of
a KBS. Having stated that CommonKADS has hundreds of PSMs [5], the same Fensel
and Motta paper states ”None of these methods is implemented”. A recent critique of

62 D. Sleeman, T. Runcie, and P. Gray

Fig. 1. VT System Components

CommonKADS [15] suggests that in addition to the three levels of knowledge descrip-
tion a fourth type of ”operationalisation” or ”code” should have been included since
there is no executable PSM code. There is a similar issue with the Protégé-2000 PSM
Library, as the PSM librarian webpage [22] states ”the current version of the PSM Li-
brarian tab does not support actual activation”. Fensel and Motta [5] highlights a major
issue with work in the PSM and PSM library field as ”Configuring the optimal problem
solver may have an order of magnitude higher complexity than the problem that should
be solved by the problem solver.” In our view Problem Solving Methods serve little
purpose if they do not support the development of operational KBS [9].

2.3 An Overview of Constraint Satisfaction Techniques

Constraint Satisfaction [13] techniques attempt to find solutions to constrained combi-
natorial problems, and there are a number of efficient toolkits in a variety of program-
ming languages. The definition of a constraint satisfaction problem (CSP) is:

– A set of variables X= X 1,..., X n,
– For each variable Xi, a finite set Di of possible values (its domain), and
– A set of constraints C<j> ⊆ Dj1 × Dj2 × . . . × Djt, restricting the values that sub-

sets of the variables can take simultaneously.

A solution to a CSP is a set of assignments to each of the variables in such a way
that all constraints are satisfied. The main CSP solution technique is consistency

Reuse: Revisiting Sisyphus-VT 63

enforcement, in which infeasible values are removed from the problem by reasoning
about the constraints. ECLiPSe [23] is a software system for the cost-effective develop-
ment and execution of constraint programming applications.

3 Extraction of Components and Their Reuse

3.1 Introduction and Manual Reuse

The initial task undertaken here was to analyse the VT-Sisyphus code which consisted
of 20,000 lines of CLIPS code that included domain knowledge and a version of the
Propose and Revise (PnR) algorithm. This was done manually in order to reveal the
underlying processes involved, which could then be automated. The manually extracted
data was then reused in both an Excel ”emulator” spreadsheet and ECLipSe constraint
solver.

3.2 Semi-automatic Reuse

The next stage of the project was to create a tool that could semi-automate the extraction
and transformation processes that had been demonstrated manually. The tool developed
is known as ExtrAKTor and was designed to support the idealized design session de-
fined in Section 1. The starting point for the process was the VT domain ontology rep-
resented in Protégé. This ontology was part of the Stanford solution to the VT-Sisyphus
challenge [24]. The development tools used to implement ExtrAKTor were the Protégé
PrologTab and GNU Prolog. PrologTab provides a tight coupling between the Protégé
environment and GNU Prolog. A Prolog environment was selected because of the avail-
ability of PrologTab and its syntactical similarities to ECLiPSe. Conceptually there are
three phases to the basic ExtrAKTor process, namely extraction of knowledge, creation
of a new KBS, and KBS execution.

Extraction of Knowledge. Firstly the various knowledge components have to be
extracted from the original KB. They are essentially: the ontology, the procedures to
enhance/modify the artifact (in this case a lift), the domain constraints and the fixes.
ExtrAKTor assumes that the constraints and fixes have been gathered together in a sin-
gle class. This was the case for the Stanford Protégé based VT ontology. To initiate
the analysis ExtrAKTor requires the analyst to provide slots names for the constraints
and a parent class for components information. In VT, for constraints these slots are
”constraint.condition”, ”constraint.variable”, ”constraint.expression”; for components
the class is ”elvis-models”. Because different ontologies use different names for these
entities it is at present necessary for the analyst to identify these variables. Alternatively,
if these names were to be standardized then this stage could be done automatically.
Clearly, the current situation where the analyst is required to have some knowledge of
the implementation (the domain variables) is at odds with the vision outlined in Sec-
tion 1. Further, it has been assumed that variable names in the formulae correspond to
slot names in the ontology. PrologTab allows these slots to be accessed directly using
”mapped” predicates. More details can be found in Runcie [9].

64 D. Sleeman, T. Runcie, and P. Gray

Creation of a New KBS (CSP). The next phase in the process was the creation of a
new KB from the extracted knowledge for use with an appropriate domain-independent
problem solver, in this case ECLiPSe. The processing of the component information is
simply a case of taking as input the component data from the intermediate ASCII file
which is formatted as a Prolog list structure and reformatting and outputting this in a
Prolog database format. The constraint information requires a little more work since the
expressions are stored in a CLIPS format and these need to be parsed and reformulated
in a Prolog format (including variable names). Once all of this information has been
stored to a file, the KB is ready for the execution phase.

Execution of the New KBS (CSP). In order to execute the ECLiPSe KB, a goal must
be specified. The goal, entered as a variable name or a list of variable names, can be used
to find the value for a single variable, or many variables. So the ”‘ALL”’ option solves
for all (unknown) variables; to solve for variables Counterweight to platform rear, and
Counterweight space, the user must enter the goal vt(Counterweight to platform rear,
Counterweight space). One of the main advantages of ECLiPSe for use with this class
of design problem is that it supports real numbers. Additionally, if a number cannot
be precisely determined, a range will be reported. e.g. 2.345...3.456. This is a major
benefit, because it gives the user feedback as to the ”‘flexibility”’ of the resultant designs
and the user can then further refine the input. After refinement, the user can treat this as
input for a new scenario (i.e. a sub-design) and can re-execute the solver again.

Similarly the information which has been extracted from the original CLIPS program
could also be used with other problem solvers. The processes involved in producing
KBs are captured in Figure 2.

An Extension to the ExtrAKTor System. In the simple process the desired goal is
specified after the entire knowledge base has been extracted and the new KBS created.
If the goal is specified earlier in the process, it is possible to generate a simplified
and more focused KBS only containing the knowledge required to solve the desired
problem. The size of the original KB is probably the deciding factor in determining the
most efficient choice. For a large ontology or KB, creating a simplified and focused
KBS is probably more appropriate. The disadvantage of this approach is that every goal
specification requires a separate extraction process, and a separate KBS is produced for
each.

4 Discussion and Future Work

The main focus of this paper is the extraction of components from the VT-Sisyphus do-
main so that they can be reformulated and re-used in conjunction with different problem
solvers. There have already been some early successes in this project, as the automated
extraction of an ontology, formulae, constraints, and fixes has demonstrated. Signifi-
cantly, this extracted information has been used to solve real problems with different
problem solvers. Further, as far as we have ascertained, no other research has used con-
straint solvers with the VT domain.

As noted earlier the KBS based on the ECLiPSe system executes the standard lift
configuration task very rapidly (0.01 second). However, it is important to note that the

Reuse: Revisiting Sisyphus-VT 65

Fig. 2. Overview of ExtrAKTor and the stages needed to create both ECLiPSe and Excel KBs

equational nature of this problem may make it highly suited for solution by ECLiPSe
and hence delivers the exceptional execution speed observed. Additionally, the VT
problem may be under-constrained, or even deterministic, and this could also explain
the exceptional performance.

Planned future work includes:

– Introducing fixes into the CSP formulation of a task
– Dealing with mutually inconsistent fixes; these fixes were removed in the Sisyphus-

II simplification of the VT domain KB
– Using ExtrAKTor with additional KBs (it is planned to use the UHAUL task)
– Developing a Java based open source version of ExtrAKTor
– Making ExtrAKTor a web-service

Acknowledgments

This project has benefited from an association with the Advanced Knowledge Tech-
nologies (AKT) Interdisciplinary Research Collaboration (IRC) which is sponsored by
the UK’s Engineering and Physical Sciences Research Council (EPSRC) under grant
GR/N15764/01. We acknowledge useful discussions of Research issues with Tomas
Nordlander & David Corsar. Additionally, we also acknowledge discussions with var-
ious members of the Protégé team at Stanford University, including Mark Musen who
also made available their version of the Sisyphus-VT code.

66 D. Sleeman, T. Runcie, and P. Gray

References

1. R. Benjamins and D. Fensel. Editorial: problem-solving methods. IJHCS, 49:305–313, 1998.
2. J. Bennett and R. Engelmore. Experience using EMYCIN in Rule-Based Expert Systems.

AISB Journal Special Issue on Agent Technology, 1(1):314–328, 1984.
3. J. Breuker and W. Van de Velde. The CommonKADS Library for Expertise Modeling. IOS

Press, Amsterdam, Holland, 1995.
4. W.J. Clancey. Heuristic Classification. Artificial Intelligence, 27:289–350, 1995.
5. D. Fensel and E. Motta. Structured Development of Problem Solving Methods. In 11th

Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, Canada, 1998.
6. et al Li Ding. Swoogle: A Search and Metadata Engine for the Semantic Web. In Thirteenth

ACM Conference on Information and Knowledge Management, Washington DC, 2004.
7. S. Marcus, J. Stout, and J. McDermott. VT: An Expert Designer That Uses Knowledge-Based

Backtracking. AI Magazine, pages 95–111, 1988.
8. J. McDermott. Preliminary Steps Toward a Taxonomy of Problem-Solving Methods. Auto-

matic Knowledge for Acquisition for Expert Systems. Artificial Intelligence, pages 225–254,
1998.

9. T. Runcie. PhD Thesis (in Preparation). PhD thesis, University of Aberdeen, August 2006.
10. T. Runcie, D. Sleeman, and P.M.D. Gray. Pragmatic Approaches to Knowledge ReUSe: the

Sisyphus-VT Case Study. Technical report, May 2006.
11. A.T. Schreiber and W.P. Birmingham. The ”Sisyphus” knowledge-acquisition benchmark

experiments. IJHCS, 44(3/4):275–280, 1996.
12. et al. Schreiber, G. CML: the CommonKADS conceptual modeling language. In EKAW94,

1994.
13. Barbara Smith. A Tutorial on Constraint Programming. Technical Report 95.14, School of

Computing Research Report, University of Leeds, April April 1995.
14. E. Thomas. OntoSearch: a Semantic Web Service to Support the Reuse of Ontologies. In

Artificial Intelligence, 2004.
15. A. Valente, J. Breuker, and W. Van de Velde. The CommonKADS library in perspective.

IJHCS, 49:391–416, 1998.
16. AKT. http://www.aktors.org/publications/reuse, August 2004.
17. Swoogle. http://swoogle.umbc.edu, March 2006.
18. OntoSearch. http://www.onsosearch.org, March 2006.
19. CLIPS. http://www.ghg.net/clips/CLIPS.html, December 2005.
20. Protege VT Sisyphus Ontology. ftp://ftp-smi.stanford.edu/pub/protege/S2-WFW.ZIP, August

2004.
21. Sisyphus II. http://ksi.cpsc.ucalgary.ca/KAW/Sisyphus, December 2005.
22. PSMTab. http://protege.stanford.edu/plugins/psmtab/PSMTab.html, December 2005.
23. ECLiPSe. http://eclipse.crosscoreop.com/eclipse, April 2006.
24. G. Yost. Sisyphus 1993 - Configuring Elevator Systems. Technical report, SMI, 1994.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 67 – 81, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Role Organization Model in Hozo

Eiichi Sunagawa, Kouji Kozaki, Yoshinobu Kitamura, and Riichiro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan

{sunagawa, kozaki, kita, miz}@ei.sanken.osaka-u.ac.jp

Abstract. The establishment of a computational framework of roles contributes
effectively to the management of instance models because it provides us with a
useful policy for treatment of views and contexts related to roles. In our
research, we have developed an ontology building environment, which provides
a framework for representation of roles and their characteristics. In this paper,
as an extension of the framework, we present a framework for organizing roles
according to their context dependencies. We especially focus on defining and
organizing compound roles, which depend on several contexts.

Keywords: Role Modeling, Context Dependency, Ontology Development.

1 Introduction

Currently, Ontological Engineering attracts a lot of attention in many research areas
and has been investigated from various view points; fundamental theory,
development, application, and so on. One of the major roles of ontology is to properly
represent the underlying conceptual structure of the messy world reflecting the reality
as much as possible. All the existing ontology building tools are designed to help
people develop such a good ontology. However, few ontology development tools
have enough frameworks to provide an advanced framework for ontology description
compliant with fundamental theories of ontology.

It is one of the important and essential topics for ontology development to
discriminate role concepts from the others [1, 2, 3, 4]. By a role concept, we mean a
concept of a role itself which an entity plays in a context. And, by a basic concept, we
mean the other concept which can be defined without referring to other concepts. For
example, role concepts include Lerner, Fuel and Food. Then, we strictly distinguish
them from basic concepts such as Human, Gasoline and Yogurt.

However, it is difficult to represent roles in computer properly. For example, a
parent is often represented by a property such as a parent-of property or a parent
property in RDF(S) or OWL without fundamental discussion of their
conceptualization. Furthermore, these representations are often confused with each
other in spite of that they have to be differentiated from each other. The former is a
relation which is conceptualized according to a parent-child relation and represented
also as a binary relation like “parent-of(A, B)”. On the other hand, the latter is
conceptualized according to a parental characteristic and represented as a unary

68 E. Sunagawa et al.

predicate like “parent(A)”. Without recognition of such a difference, they are often
represented as properties in the same manner.

Needless to say, parent is a role which is specified according to a manner of a
person’s participation in a relation between a parent and a child. This
conceptualization of a Parent Role is based on a clear discrimination of a parent-child
relation from a parental characteristic. However, it is not easy to represent this
definition only in the framework which most of the ontology description languages
provide, since we are often confused by the gap between our recognition of concepts
and the conceptual framework of ontology languages.

In order to represent characteristics of roles and to ensure their semantic
interoperability, developers need to specify conceptualization of roles based on a
consistent policy for dealing with them. One of the approaches to this issue is to
realize a framework which helps to make necessary and sufficient differentiation
among concepts and represent them with a high fidelity to conceptualizations by
developers. This is why intensive work has been done on OWL representation
patterns of part-of, has-part, attribute, etc. in the best practice working group1.

In this background, we have developed an ontology building environment, named
Hozo, which provides a framework based on the theory of role concepts and their
characteristics [4, 5]. Although Hozo allows users to represent roles better than other
existing tools, its theoretical foundation is left unclear and it has some room for
improvement concerning the generality of how to deal with roles. In the Hozo
framework, role concepts are organized in a basic-concept-centered view and their
definitions are scattered around in the respective related concepts which give the
context of the roles. This is why Hozo users still have some amount of difficulty in
representing relations among role concepts. In this paper, as an extension of the
previous framework, we present a framework for organizing role concepts in a
hierarchy in the role-centered view. After an overview of the idea of role concept in
Hozo, we investigate how to organize role concepts according to their contextual
dependencies. We especially focus on defining and organizing a role concept which
depends on several contexts, that is, the case where a role plays a role by introducing
the idea of role aggregation. And we design a system to realize organization of role
concepts. We also discuss related work followed by concluding remarks.

2 Role Concepts

2.1 Needs of Differentiation of Role Concepts

Context-dependence is one of the important characteristics of roles and explains how
and why an entity changes its roles to play according to the context it depends on. For
example, John is regarded as a Teacher in his School and as a Husband in his Marital
Relationship. While such roles can be modeled in connection with time passing, its
context-dependence is also necessary semantics for properly capturing roles.

Improper modeling of roles will greatly influence the semantics of is-a hierarchy of
concepts. We focus here on the semantics of is-a that an instance of a concept is always

1 http://www.w3.org/2001/sw/BestPractices/

 Role Organization Model in Hozo 69

recognized also as an instance of its super-concept. For example, in WordNet2, Dairy
Product and Food are treated as hypernyms of Yogurt. If role concepts are not
discriminated from the others and these lexical hyponymies among the words are
regarded as is-a relations among concepts with no distinction, instances of Yogurt are
always recognized as an instance of Dairy Product and also Food. In such a model,
however, we may often have to struggle for faithful representation of events in the real
world. To represent that some yogurt has been eaten, we delete the instance of Yogurt.
And, it in turn means deleting instances of Dairy Product and Food, which is totally OK.
However, in the case where a yogurt has rotted and become inedible, we need to
manage instances more sophisticatedly. Because the instance of Yogurt has lost an
identity as Food but keeps one as Dairy Product, we can delete only the instance of
Food. These managements of an instance model might force us to make different
semantics of is-a relation and to establish routines for ad-hoc management of instances.
Such a strategy detracts from the value of an ontology, which ensures consistency of an
instance model. Moreover, it is difficult in such a model to represent the instance of
Yogurt changes its roles to play such as Load, Merchandise, Foodstuff, etc. according to
the changes of its contexts or aspects. We believe it is advisable for a computer model
and an ontology behind it to correspond to the real world as truly as possible.

On the other hand, based on fundamental theories of roles in an ontology [2, 5], we
can clearly differentiate role concepts, e.g. food, from the others and can cope with
the problems caused by adulterating role concepts and the others. For example, the
hyponymy between yogurt and food is not regarded as an is-a relation. And, we
acquire a consistent policy to manage instances of yogurt and food consistently. It is
not easy but worth for ensuring quality of an ontology as a backbone of an instance
model to differentiate role concepts from others and organize them.

2.2 Role Concepts in Hozo

2.2.1 Role Concepts and Basic Concepts
With citing work by Charles S. Peirce, Sowa introduced the firstness, the secondness
and the thirdness of concepts [1, 6]. The firstness can be roughly defined as a concept
which can be defined without mentioning other concepts. Examples include iron, a
man, a tree, etc. In a similar way, the secondness can be defined as a concept which
cannot be defined without referring to other concepts. Examples include a wife, a
teacher, a child, etc. The thirdness links the firstness and the secondness. Examples
include paternity, brotherhood, etc. Based on these theories, we call one kind of the
secondness type a role in this paper.

Roughly speaking, by role, we mean what is recognized according to the way of
participation of an entity in a context. Because, roles cannot be discussed without
their context, we have been focusing on their context-dependencies as essential
attributes rather than “player” link to date. The idea of dependency on the context
corresponds roughly to “founded” of roles and “Role-of” [7, 8]. And, by basic
concept, we mean a thing except roles in order to bring the contrast.

2 http://wordnet.princeton.edu/

70 E. Sunagawa et al.

2.2.2 Role Concept, Potential Player and Role-Playing Thing
Here, we introduce important distinctions among Role Concept, Potential Player and
Role-Playing Thing (Role-Holder). A role concept represents a role itself and is defined
as a concept played by something. By a potential player, we mean a thing which is able
to play a role. It is called also a class constraint from the view point of that it constraints
classes which can be a player of the role. And, while an entity is actually playing the
role and behaving as its role-playing thing, the entity becomes a role-holder.

The fundamental scheme in which we capture roles is “In a context, a player (class
constraint) can play a role concept and then becomes a role-holder.” In the case of
school teacher, for example, “in a school, a person plays a teacher role3 and then,
becomes a teacher.” This means that roles are divided into two kinds: a role concept
and a role-holder in our terminology. And, players are also divided into two kinds: a
potential player and a role-playing thing (a role-holder). The latter is applied only to
relations among individuals.

Fig. 1 shows the conceptual framework of role we have proposed. These are
properties of teacher role, person and teacher role-holder. They are divided into three
groups. Properties in group A are determined by the definition of a role concept itself
independently of its player. The second group B is shared by both of the role concept
and the player. And, the last group C is what the role concept does not care about. In
the case of a Teacher, his/her Subject and Class can be determined only by its role
independently on its player (a Person). On the other hand, a teacher’s Name and the
Age limit are defined in relation with properties of a Person. And, his/her Height and
Weight does not matter for description of a Teacher Role.

Role-Holder

Role Concept
Teacher

Subject

Age (>22)
Name

Teacher
Role

Class

Height

Weight

Context

depend on Person

Player

play

School

Group A Group B Group C

Fig. 1. Conceptual framework of role

In general, a role concept is defined by describing these properties in the context.
Its player is defined by oneself. And, the role-holder is defined as a result and
eventually includes all of these properties. Therefore, the individual corresponding to
a teacher is the composite of these two individuals and totally dependent on them.

In these considerations of role concepts, we have developed an ontology building
environment, which provides a framework for representation of role concepts and

3 When we mention a particular role, we put “role” after the role name like “a teacher role”.

 Role Organization Model in Hozo 71

their characteristics. The system is named Hozo4 [4, 5] and composed of Ontology
Editor, Onto-Studio, Ontology Server and Ontology Manager. Users of Hozo can
browse and modify ontologies with its ontology editor (in Fig.2). In Hozo, two kinds
of basic concepts: a whole concept and a relational concept are defined. And, a role
concept is defined within the context specified by the basic concept. The system
manages some basic concepts as contexts of role concepts and provides a framework
to define a role concept. Fig.2-a) shows the form of presentation for definitions of
concepts on a browsing panel of Ontology Editor. A role concept is represented as a
node connected with the other node representing a concept as its context. The
connection is shown as a link representing a part-of relation (denoted by “p/o”) or a
participate-in relation (by “p/i”) according to the classification of its context. For
example, Fig.2-b) represents that a Person, who is referred to as the class constraint,
plays a Teacher Role, and then becomes a role holder a Teacher.

Browsing
PanelDefinition

Panel

Tool Bar & Menu Bar

Is-a
hierarchy
browser Class Constraint

a) a legend

School

Teacher
Teacher Role

Personp/o *

b) an example: a Teacher Role

Basic Concept (as Context)

Role Conceptrelation
Role Holder Class Constraint

a) a legend

School

Teacher
Teacher Role

Personp/o *

b) an example: a Teacher Role

Basic Concept (as Context)

Role Conceptrelation
Role HolderRole Holder

Fig. 2. Ontology Editor in Hozo and its form of presentation for definitions of role concepts

3 Organizing Roles

In this section, we present a framework for organizing roles in an ontology. By
organizing roles, we mean mainly constructing a hierarchy of role concepts in order to
explicitly grasp and represent relations among them and structures of their context
dependences. In the following sections, we explain some considerations as guides to
organizing roles through discussions on two hierarchies: hierarchies of basic concepts
and role concepts constructed with using Hozo. The hierarchies are composed of
some concepts in school5 (in Fig.3 and Fig.4).

To begin with, a Role is defined at the top of the hierarchy of role concepts (in
Fig.4-a) as a class which has three slots: context, holder, role part. The first is related
by a participate-in relation and describes in what context the role concept is
recognized. The second is also related by a participate-in relation and show a basic
concept which can carry the role concept. The third is related by a part-of relation and
associated with role aggregation (described in 3.2).

4 http://www.hozo.jp
5 This ontology is developed in order to discuss semantics of role concepts. So, it is incomplete

and concepts are not defined in detail.

72 E. Sunagawa et al.

b

d

c

a

Fig. 3. An example of the hierarchy of basic concepts

a

b

c

f

d

g

e

Fig. 4. An example of the hierarchy of basic concepts

 Role Organization Model in Hozo 73

3.1 Organizing Role Concepts According to Classification of Their Contexts

Roles are recognized in a context. So, in order to classify role concepts, we can utilize
them as the foundation. For example, task knowledge for solving problem can be
discriminated from domain knowledge of a target world. Then, we can identify task-
specific roles such as symptom role in a fault diagnostic task and conclusion role in a
reasoning task. And, in a functional context in the artifact world, a steering wheel role
(played by a wheel) and a level control valve role (played by flow control valve) are
classified into a functional role [9]. Note here that we do not claim artifact is role. We
believe wheel is a wheel and flow control valve is a flow control valve in its nature.
We are claiming that they can play another role according to functional contexts.
Likewise, we can classify role concepts into an action-related role, a relational role
and so on. Although the enumeration is not exhaustive, Fig. 5 shows typology of
typical roles.

In Fig. 4, an Action-related Role and an Organizational (Social) Role are defined
and classified into a Role as a top-level category of the hierarchy (Fig.4-b). The
relations among these role concepts describe from the role-centered view that an
Action and an Organization are categorized as contexts at the top-level of the
hierarchy of basic concepts (Fig.3-a, b).

• Task Role
– Symptom Role (Fault Diagnosis)

– Conclusion Role (Reasoning)

• Functional role
– Steering Wheel role (Steering Function)

– Level control valve role: played by a flow control valve (Function)

• Action-related role
– Actor role (Any action)

– Teaching Agent role (Teaching Action)

– Target object role (Action object)

• Process-related role
– Product role (Final output)

– Residue role (How it is processed)

• Relational role
– Friend role (Friendship)

– Parent role (Parent-Child Relation)

Fig. 5. Categories of role concepts

3.2 Aggregation of Role Concepts

Because some roles are conceptualized from several viewpoints and depend on
several contexts, it is difficult to organize them simply according to their contexts. For
example, a Teacher is recognized not only as a Teaching Agent but also as a School
Staff. Such a role needs to be played together with other roles. In other words, some
role will automatically become un-played if its player stops to play any one of
the other roles. This kind of relation between roles cannot be explained only with a

74 E. Sunagawa et al.

well-known characteristic of roles: an entity can play multiple roles simultaneously.
Some other researchers discusses it as “requirement” [7] or “roles can play roles”
(“role-holders can play roles” in our terminology) [3].

We differentiate role concepts into two kinds: a primitive role concept and a
compound role concept which have single-context and multiple-context dependences,
respectively. Primitive role concepts can be organized simply and easily according to
the categories of their contexts as described in 3.1. In order to deal with compound
role concepts, we devise the idea of Role Aggregation. It is represented in both
hierarchy of basic concepts and role concepts. And, the two representations have the
same semantic information on role aggregation. Fig.6 shows hierarchies extracted
from the hierarchies shown in Figs. 3-c and 4-f in order to focus on role aggregation.

Two central purposes of role aggregation are decomposition of a compound role
concept and clear decision on its essential context6. To summarize an outline of role
aggregation, we here organize an example of a compound role concept which depends
on two contexts. At the start, the essential context is chosen among the two contexts
after investigating and decomposing the context dependence of the role concept.
Assume that a Teacher Role depends on two contexts: an Organization as its
essential (primary) context and a Teaching Action as its secondary one. And then,
two primitive role concepts are identified; a Staff Role and a Teaching Agent. They
depend on each of those contexts respectively.

In our framework as described in 2.2, we can constrain on a class whose instances
may play certain roles. In our previous work, a class constraint refers to only basic
concepts. Here, we extend our framework and enable the class constraint to refer to
also role holders. In this way, a role holder, which is playing some role(s) already, can
play other role(s). It also means aggregating context dependences of these roles. This
role aggregation is represented in the following manner (Fig.6-a); a Teacher Role is
defined as a specialized concept of a Staff Role and a Teaching Agent (role holder)
is referred to as a class constraint of a Teacher Role. Then, a Teacher Role is
defined as a role concept which depends on both contexts of a Staff Role and a
Teaching Agent Role.

Next, we explain role aggregation in a hierarchy of role concepts (Fig.6-b). A
compound role concept is classified into a role concept which depends on an essential
context of the compound role. Role aggregation is represented by using is-a relation
and part-of relation7 as the following manner; a Teacher Role is defined as a sub-
concept of a Staff Role through is-a relation, and a Teaching Agent Role is defined
as a part concept of a Teacher Role through part-of relation. By Role Part, we mean
a role concept defined as a part of a compound role concept.

6 The decision on essential contexts of compound roles enables to organize them in an is-a

hierarchy. We do not discuss and conclude what the essential context should be in general.
Based on the relativity of essence, we think essences of concepts are decided by the
developers intended as far as the decision is consistent in the while ontology.

7 Here, we focus on a semantics of is-a relation that a sub-concept inherits properties of its
super-concept and part-of relation that a whole concept possesses properties of its part
concepts. Besides this, the part-of relation among roles here represents that a compound role
concept (the whole one) can not exists without its role-part(s) (the part one(s)). As far as our
discussion, that relation among roles has general common semantics of part-whole relation
like transitivity, anti-symmetry and so on.

 Role Organization Model in Hozo 75

a b

Fig. 6. An example of role aggregation

Our framework for ontology development is based on the consistent policy that an
is-a hierarchy of concepts are formed according to their essential properties. The
policy is indispensable for organizing roles, especially compound roles because, if
their essential properties are not determined, they might be just listed in disorder. In
this reason, we represent inheritance of dependence on an essential context between
roles with an is-a relation and discriminate it clearly from the inheritance of other
characteristics of the roles. Thus, we did not adopt other methods, say, multiple
inheritance, to organize role concepts which might cause an unnecessary disorder to
role aggregation.

3.3 Further Considerations for Organizing Roles

After classifications of role concepts according to categories of their contexts
(described in 3.1), they are organized in detail. This kind of organizing role concepts
is located in a middle layer of a hierarchy of role concepts between top categories of
role concepts and aggregated role concepts from the bottom (described in 3.2). Here,
we mention three significant points of organizing role concepts.

The first is to organize role concepts according to the aspects of entity playing the
roles and manners of its participation into contexts. They are clarified in definitions of
the contexts and their categories depend on the definitions. For example, we classified
a Weapon Role and a Learner Role as an Action-related Role. And, with
investigation of them in more detail, we conclude that the former participates in an
action context as an instrument and the latter participates as an agent. Then, we can
define an Action Instrument Role and an Action Agent Role and classify them as
subclasses of an Action-related Role. In the example of the hierarchy of role
concepts (in Fig.4-d), a Staff Role and a Non-staff Role are classified into
Organizational Role depending on an Organization as its context. This
classification represent that a Staff Role and a Non-staff Role are defined as parts of
an Organization in the hierarchy of basic concepts (in Fig.3-a).

The second is to organize role concepts based on an is-a relation between basic
concepts as contexts. In general, role concepts related to an is-a relation depends on
the same category of context. Assume that there are a sub-concept and its super-
concept in a hierarchy of basic concepts. A role concept depending on the sub-
concept is recognized by specialization of the context of the role concept depending
on the super-concept. Then, in a hierarchy of basic concepts, a relation between these
role concepts is represented by using overriding. And, in a hierarchy of role concepts,
it is represented as an is-a relation. In the example of the hierarchy of basic concepts

76 E. Sunagawa et al.

(in Fig.3-d), a High School Teacher Role is defined as a part of a High School and is
recognized by specialization of the context of Teacher from a School to a High
School. Then, according to this specialization, in the hierarchy of role concepts (in
Fig.4-f,g), <High School Teacher Role is-a Teacher Role> is determined.

The third is also based on an is-a relation between basic concepts, but it is shown
only in a hierarchy of role concepts. For organizing role concepts appropriately, it is
indispensable to define role concepts which cannot be described in a hierarchy of
basic concepts. Such role concepts are defined for constraint of contexts as
intermediate concepts among role concepts described in a hierarchy of basic
concepts. They are used mainly for constraint of contexts and not instantiated
directly. We call them Abstract Role Concepts like an abstract class in an object
oriented programming. In the example of the hierarchy of basic concepts (in Fig.3-
c), a Teacher Role and a Janitor Role as parts of a School is defined by
specializing a Staff Role as a part of Organization. So, in the hierarchy of role
concepts, <Teacher Role is-a Staff Role> and <Janitor Role is-a Staff Role> are
held (in Fig.4-d,f). And then, according to <School is-a Organization>, <School
Staff Role is-a Staff Role> is described (in Fig.4-d,e). In this case, according to
their context dependences, a School Staff Role is classified into a Staff Role and
defined as a super class of a Teacher Role and a Janitor Role in the hierarchy of
role concepts (in Fig.4-e).

4 Instances of Roles

In this section, we discuss what characteristics of instances of role concepts should be
represented in their instance model. Instance model provides us with semantics of
classes and individuals by specifying their interdependencies concerning their
appearance and extinction. It is indispensable for application of ontologies developed
with Hozo and clarification of our strategy for treatment of roles to consider the
characteristics of the instances of role concepts.

While we have investigated basic issues of role concepts in our previous work [4],
it does not include consideration of compound role concepts. So, in this paper, we
generalize the framework of role concepts. In the following, R denotes a compound
role concept, C1…Cn its depending contexts, R1…Rn role concepts aggregated into R
as its role-parts and P a concept referred to as the class constraint by R. An instance
of P can play the role conceptualized as R. We explain the framework using an actual
example of a Teacher Role described in section 3.

(A) States of an instance of a role concept
An instance of R has the following two states. (1) Only the role conceptualized as R
is instantiated (realized). (2) An instance of P plays the R.

For example, an instance of a Teacher Role has two states. One is a teacher role
just defined as a part of an instance of School. As a vacant position, it is
undetermined about who will play it. The other is a role which some person is playing
when he/she is recognized as a Teacher (role holder).

 Role Organization Model in Hozo 77

(B) Dependence of instances of role concepts on their context
An instance of R exists only if all instances of C1…Cn are instantiated. When, at
least, one of them is deleted, so does the instance of R.

For example, a Teacher Role is instantiated and a Teacher is recognized, on the
assumption that a School and a Teaching Action are instantiated. When the school is
closed down or when a teaching class is finished, an instance of a Teacher Role is
deleted.

(C) Dependence of instances of role concepts on their players
In general, an instance of a role is dealt with as a incomplete instance until an entity
plays the role because roles can not behave without its players. When instances of
R1…Rn as constituents of R are played by the same instance of P, a role holder of R
is recognized with being composed by an instance of R.

For example, when someone is employed as a staff by a school and he/she teaches,
all values or ranges of properties of Teacher (role holder) are fixed. Then, a Teacher
Role can be instantiated and he/she is recognized as a teacher.

(D) Extinction of a role holder
A role holder of R is recognized as the summation of both instances of R and P. Here,
they are denoted Ri and Pi. Then, there are four cases in which the role holder is
disappear: (1) Pi has been disappeared. (2) Ri has been disappeared. (3) Pi has
stopped playing Ri. (4) At least, one of role holders of R1…Rn is disappeared.

For example, there are three cases in which a person is not recognized as a
Teacher. They are (1) when he/she has died, (2) when the post he/she filled has
disappeared because of closing down his/her school, personnel reduction and so on,
(3) when he/she has retired his/her job as a teacher and (4) when his/her teaching class
has been finished.

5 Implementation

As an extension of the ontology editor in Hozo, we provide a pane for constructing a
hierarchy of role concepts and function to support organizing role concepts.

We add a pane for building and editing a hierarchy of role concepts to the ontology
editor in a line of panes for basic concepts provided previously (Fig.7). The pane
provides almost the same functions as those of the panes for basic concepts. And, we
improve the ontology editor to support organizing role concepts in the strategies
described in section 3. Firstly, we extend the framework to define concepts for
representation of role aggregation. Secondly, we add a function for keeping
consistency between role concepts defined in the hierarchies of basic concepts and
those defined in the one of role concepts. This function is based on the fact that some
parts of the role concepts defined in both of the hierarchies share the common
semantics. For example, if a developer aggregates role concepts in a hierarchy of role
concepts, this aggregation is represented automatically also in a hierarchy of basic
concepts. And, we provide some wizards for organizing role concepts. They support
operation to deal with role concepts and guide ontology developers.

78 E. Sunagawa et al.

Role ConceptRole ConceptRole ConceptRole Concept

A Hierarchy of
Basic Concepts

A Hierarchy of
Role Concepts

Fig. 7. Panes for building and editing hierarchies of basic concepts and role concepts in
Ontology Editor

Besides this, we are investigating how to deal with characteristics of roles in OWL.
See Fig.8 and Fig.9. We define hozo:BasicConcept class and hozo:RoleConcept class
to expresses basic concepts and role concepts. And so, the domain of hozo:dependOn
property is a hozo:RoleConcept Here, we emphasize that role concepts are dealt with
not as an owl:ObjectProperty but as an owl:Class. A hozo:playedBy property
represents a relation between classes of role concepts and classes of their potential
players. Its domain is hozo:RoleConcept, and its range is hozo:BasicConcept. The
definition of hozo:RoleConcept has a restriction on this property, and there the
property indicates role-playable thing discussed in 2.2. And when a relation between
an instance of a role concept and its player is represented as a hozo:playedBy
property, the property means a playing relation between them. And a
hozo:RoleHolder class represents a role-holder. It is composed of a role concept and a
player, and hozo:inheritFrom property expresses its semantics that only definitions
(properties) are inherited without identity. And, at the present, we are trying to clarify
and regulate behaviors of roles with using SWRL (Semantic Web Rule Language) in
more detail. The model presented here is utilized for extension of the function for
exporting ontologies which are developed with Hozo in OWL.

hozo:Role
Concept

Teacher
Role

School

Person

hozo:Role
Holder

Teacher

hozo:Basic
Concept

hozo:depend
On

hozo:hasStructural
Component

hozo:inheritFrom

hozo:inheritFrom

hozo:heldBy

hozo:has
component hozo:

heldBy

rdfs:subClassOf
rdfs:subClassOf

rdfs:sub
ClassOf

hozo:playedBy

rdfs:sub
ClassOf

hozo:playedBy

Fig. 8. Role representation in OWL

 Role Organization Model in Hozo 79

���������	���
���
����	�����

���������
�����������	���

���������	���
���
��	��
���

���������
�����������	��

��������
������������	���

���������	���
���
�������������

���������
��������������

���������	���
���
��������	�����

��������
������������	���

���������	���
���
������������������	�����

��������
�����������	���

��������
������������	� 	������

������������������
�����������	� ��
��������������

��������
�����������	� 	������

��������������
����	����� ����������
� ��

��������������
��	��
���
 ��!����������
� ���

��������������
�������
 ��!����������
� ���

��������
������������ 	������

��������������
������������� ����������
�"��

��������������
������������� ����#������������
�����������	���

��������������
������������� ����#������������
������������	����

������$���������� 	������%��
�����������	�

��������������
����	����� ���#������������������

��������������
��	��
���
 ���#����������	��������

������$������ 	������ ��
������������

��������������
������������� ����#����������$������������

��������������
������������� ����#�������������������

������������ 	������

��������������
������������������	�����

����#����������$������������

��������������
��������	����� ����#�������������������

Fig. 9. Role representation in OWL (Abstract Syntax)

6 Related Work

Guarino and his colleagues aim to establish a formal framework for dealing with roles
[2, 7]. And Gangemi and Mika introduce an ontology for representing a context and
states of affairs, called D&S, and its application to roles [10, 11]. Their research is
concerned with formalities and axioms of an ontology. In contrast, we do not
formalize role concepts because our goal is to develop a computer environment for
building ontologies. Our notions of role concepts share a lot with their theory of roles;
that is, context-dependence, specialization of roles, and so on. According to their
theory, our framework can be reinforced in terms of axioms. They describe
specialization and requirements as kind of sub-class relations between role concepts.
The former corresponds to is-a and the latter to role aggregation in our framework.
However, they do not describe clearly that is-a relations between role concepts are
established only if the two concepts share the same category of context-dependency.
While we have discussed how to define a role concept which has complicated
context-dependences, they only point out a requirement relation. Our notions differ
from their work on other two points; that is dynamics of a role and clear
discrimination of a role from its player (role holder). Firstly, we focus on context-
dependence of a role concept and its categories. So, time dependence of a role
concept is treated implicitly in our framework because an entity changes its roles to
play according to its aspect without time passing. As opposed to this, their framework
deals with time-dependency explicitly. Secondly, we distinguish role concepts and

80 E. Sunagawa et al.

role holders [4, 5]. On the basis of this distinction, we propose a tool for properties
and relations on roles, such as an aggregation of role concepts.

Fan also recognizes the importance of constructing a hierarchy of role concepts
based on differentiation of them from the others and shows an example in that a Thing
is classified into an Entity and a Role in [12]. And, he gives an Agent and an
Instrument as sub-concepts of a Role. However, he does not clarify a point of view for
organizing them. To our knowledge, they are regarded as being organized according
to their manner they participate in their contexts.

Breuker develops ontologies for legal domains based on epistemology and
discusses characteristics of roles in [13]. He also mentions adulteration between a role
itself and playing role and others between a role and its player. We share his notion in
discriminations of these concepts and differentiate a role concept, a class constraint
and a role holder from one another [4, 5]. He describes two kinds of roles; as a
concept and as a relation. However, he does not organize them�in more detail. And,
in contrast of that he defines roles according to behavioral requirements and so on, we
allow developers of an ontology to define role concepts just as the developers
intended because it is outside the scope of our research to discuss how to
conceptualize roles.

7 Conclusion

In this paper, we have discussed a framework for organizing role concepts in a
hierarchy according to their context-dependences. Then, we investigated instances of
role concepts to give semantics of role-related concepts. Although it was not
discussed explicitly, our framework solves the so-called counting problem and
universal/individual problem of roles. The definitions of role concepts can be
translated into statements in OWL. In conclusion, our framework in Hozo provides a
layer in which developers can construct ontologies with high quality description of
role concepts and a mechanism for setting it in the current linguistic expression. As
future work, we plan to implement the framework in Hozo and investigate a theory of
organizing role concepts (e.g. semantics of is-a relation between role concepts).

References

1. Sowa, J. F.: Top-level ontological categories, International Journal of Human-Computer
Studies, Vol.43, Issue 5-6, pp.669-685 (1995)

2. Guarino, N.: Some Ontological Principles for Designing Upper Level Lexical Resources.
In Proceedings of the First International Conference on Language Resources and
Evaluation, pp.527–534, Granada, Spain (1998)

3. Steimann, F.: On the Representation of Roles in Object-oriented and Conceptual
Modeling, Data & Knowledge Engineering, Vol.35, Num.1, pp.83-106 (2000)

4. Kozaki, K., Kitamura, Y., Ikeda, M. and Mizoguchi, R.: Hozo: An Environment for
Building/Using Ontologies Based on a Fundamental Consideration of Role” and
“Relationship”. In Proceedings of the 13th International Conference Knowledge
Engineering and Knowledge Management (EKAW2002), pp.213-218, Sigüenza, Spain
(2002)

 Role Organization Model in Hozo 81

5. Kozaki, K., Kitamura, Y., Ikeda, M. and Mizoguchi, R.: Development of an Environment
for Building Ontologies which is based on a Fundamental Consideration of "Relationship"
and "Role", In Proceedings of the 2000 Pacific Knowledge Acquisition Workshop
(PKAW2000), pp.205-221, Sydney, Australia (2000)

6. Sowa, J. F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations (2000)

7. Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A. and Guarino,
N.: Social Roles and their Descriptions. In Proceedings of the 9th International Conference
on the Principles of Knowledge Representation and Reasoning (KR2004), pp.267–277,
Whistler, Canada (2004)

8. Loebe, F.: Abstract vs. Social Roles - A Refined Top-Level Ontological Analysis. Papers
from the AAAI Fall Symposium Technical Report FS-05-08, pp.93-100, Virginia, USA
(2005)

9. Mizoguchi, R., Kozaki, K., Sano, T., and Kitamura, Y.: Construction and Deployment of a
Plant Ontology. In Proceedings of 12th International Conference on
KnowledgeEngineering and Knowledge Management, pp.113-128, Juan-les-Pins, France
(2000)

10. Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening
Ontologies with DOLCE, In Proceedings of the 13th International Conference Knowledge
Engineering and Knowledge Management (EKAW2002), pp.166-181, Sigüenza, Spain
(2002)

11. Gangemi, A., Mika, P.: Understanding the Semantic Web through Descriptions and
Situations. International Conference on Ontologies, Databases and Applications of
SEmantics (ODBASE 2003), Catania, Italy (2003)

12. Fan, J., Barker, K., Porter, B., and Clark, P.: Representing Roles and Purpose. In
Proceedings of the International Conference on Knowledge Capture (K-Cap2001), pp.38–
43, Victoria, B.C., Canada (2001)

13. Breuker, J. and Hoekstra, R.: Epistemology and ontology in core ontologies: FOLaw and
LRI-Core, two core ontologies for law, In Proceedings of the EKAW04 Workshop on
Core Ontologies in Ontology Engineering, pp.15-27, Northamptonshire, UK (2004)

14. Kozaki, K., Sunagawa, E., Kitamura, K. and Mizoguchi, M.: Fundamental Consideration
of Role Concepts for Ontology Evaluation�In Proceedings of the 4th International EON
(Evaluation of Ontologies for the Web) Workshop (to appear) (2006)

Verification and Refactoring of Ontologies with Rules

Joachim Baumeister and Dietmar Seipel

Institute for Computer Science
University of Würzburg, Germany

{baumeister,seipel}@informatik.uni-wuerzburg.de

Abstract. Currently, the introduction of an appropriate rule representation layer
for the semantic web stack is discussed. However, with the inclusion of rule-based
knowledge new verification issues for rule-augmented ontologies arise.

In this paper we investigate the detection of anomalies as an important sub-
task of verification. We extend and revise existing approaches for the syntactic
verification of ontologies with respect to the existence of rules, and we introduce
new anomalies considering the understandability and maintainability of such
ontologies.

1 Introduction

The use of ontologies has shown its benefits in many applications of intelligent systems
in the last years. Whereas, the implementation of lower parts of the semantic web stack
has successfully led to standardizations, the upper parts, especially rules and the logic
framework, are still heavily discussed in the research community, e.g., see Horrocks et
al. [1].

It is well agreed that the combination of ontologies with rule-based knowledge is
essential for many interesting semantic web tasks, e.g., the realization of semantic web
agents and services. This insight has led to many proposals for rule languages com-
patible with the semantic web stack, e.g., the definition of SWRL (semantic web rule
language) originating from RuleML and similar approaches [2]. 1 SWRL allows for the
combination of a high-level abstract syntax for Horn-like rules with OWL [4], and a
model theoretic semantics is given for the combination of OWL with SWRL rules. An
XML syntax derived from RuleML allows for a syntactical compatibility with OWL.
However, with the increased expressiveness of such ontologies new demands for the
development and for maintenance guidelines arise. Thus, conventional approaches for
evaluating and maintaining ontologies need to be extended and revised in the light of
rules, and new measures need to be defined to cover the implied aspects of rules and
their combination with conceptual knowledge in the ontology.

In this paper, we revisit known approaches for the syntactic verification of ontologies
and extend existing definitions with respect to rules if needed. Furthermore, we define
novel measures detecting parts of the ontology that may create problems for the main-
tainability of the overall ontology. Such knowledge fragments are usually not respon-
sible for inconsistencies, but their elimination often can improve the understandability
and compactness of the ontology.

1 Currently, SWRL [3] has the status of a W3C member submission.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 82–95, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Verification and Refactoring of Ontologies with Rules 83

We focus on the basic features of SWRL and OWL, e.g., we omit a discussion of
SWRL built-ins. Due to the use of rules with OWL DL the detection of all anomalies
is an undecidable task, cf. [2]. Here, we only consider a subset of OWL DL, i.e., the
combined use of rules with subclass relations and some property characteristics like
transitivity, complement, and disjointness. In addition, we do not consider the evalua-
tion of an ontology with respect to the intended semantical meaning, which for example
is implemented by the OntoClean methodology [5] for taxonomic decisions made in an
ontology. We also do not consider common errors that can be implemented due to mis-
takes with the logical understanding of OWL descriptions, e.g., as described by Rector
et al. [6].

Here, the term verification denotes the syntactic analysis of ontologies for detecting
anomalies. On one hand, the discussed issues of the presented work originate from the
evaluation of taxonomic structures in ontologies introduced by Gómez-Pérez [7]. On the
other hand, in the context of rule ontologies classical work on the verification of rule-
based knowledge has to be reconsidered as done, e.g., by Preece and Shinghal [8,9].
However, the combination of taxonomic and other ontological knowledge with a rule
extension leads to new evaluation metrics that can cause redundant or even inconsistent
behavior. Here the concept of dependency graphs/relations from deductive databases
can be used [10]. For the sake of simplicity we will use the term ontology with the
meaning of ontology with rules in this paper.

We distinguish the following categories of anomalies: 1) Redundancy due to du-
plicate or subsuming knowledge in the ontology. 2) Circularity in taxonomies or rule
definitions. 3) Inconsistency because of contradicting definitions. 4) Deficiency as a
category comprising subtle issues affecting parts of an ontology with questionable de-
sign. Anomalies can occur for many reasons. For example, the integration of ontologies
can yield redundant knowledge, and the manual development and evolution of a (large)
ontology may introduce inconsistent definitions. Obviously, anomalies make the under-
standability, extensibility and evolution of ontologies more difficult.

The elimination of anomalies is done by refactoring. This term originates from soft-
ware engineering research [11,12], and it denotes the modification of source code with-
out changing the external behavior of the program. The modification only focuses on
the improvement of the code design rather than on its functionality. Analogously, the
refactoring of ontologies should target the improvement of the design of the ontology,
especially its understandability and maintainability.

The rest of the paper is organized as follows: Section 2 introduces the basic notions
that are necessary for the analysis of ontologies with rules. In Section 3 we present
measures to detect redundancy in ontologies, and in Section 4 variants of circularity are
given. Section 5 describes the identification of syntactic inconsistency, and Section 6 in-
troduces typical examples for deficient parts of the ontology and appropriate refactoring
actions are sketched. Section 7 concludes the paper and gives directions for future work.

2 Basic Notions and Scope

For the analysis of ontologies with rules we restrict the range of considered constructs
to a subset of OWL DL: we investigate the implications of rules that are mixed with

84 J. Baumeister and D. Seipel

subClassOf relations and/or the property characteristics transitivity, complement, and
disjointness.

For the following it will be useful to extend the relations on classes and properties
to relations on class and property atoms. Given two atoms A, A′, we write �(A, A′), if
both atoms have the same argument tuple, and their predicate symbols are related by �,
i.e., if A and A′ both are

– class atoms, such that A = C(x), A′ = C′(x), and �(C, C′), or
– property atoms, such that A = P (x, y), A′ = P ′(x, y), and �(P, P ′).

For example, the relation � can be is-a , disjoint, complementOf, etc. Note, that from
a relationship �(A, A′) it follows that A and A′ are of the same type.

The detection of anomalies has been implemented in SWI–PROLOG. Due to their
compactness and formal manner we give the corresponding PROLOG definitions for the
discussed anomalies. Rules β ⇒ A are represented as A-Body, where Body is the list
of body atoms (representing the conjunction β) and A is the head atom. Since SWRL
rules with conjunctive rule heads can be split into several rules, we can (without loss of
generality) assume rule heads to be atomic.

2.1 Classes and Properties

Given a class C and a property P . When used in rules we call C(x) a class atom and
P (x, y) a property atom. Variables such as X , X ′, or Xi can denote both classes and
properties, and A, A′, or Ai can denote both class atoms and property atoms.

element(A) :-
(class(A)
; property(A)).

In PROLOG, disjunction (or) is denoted by ”;”. Classes and properties are taxonomi-
cally related by is-a relations. In OWL such is-a relations are defined by subClassOf
constructs. We denote a relation A is-a A’ by isa(A, A’), where A, A′ are either
classes or properties.

2.2 Complements and Disjointness of Classes

For classes there exists the construct complementOf to point to instances that do not
belong to a specified class. The complement relation between a class C1 and a class C2
is denoted by complementOf(C1,C2) in PROLOG.

In OWL the disjointness between two classes is defined by the disjointWith con-
structor; with disjoint(C1,C2) we denote the disjointness between two classes
C1 and C2. A set C = {C1, . . . ,Cn } of mutually disjoint classes defines a disjoint
partition; in PROLOG we denote this by disjointP([C1,...,Cn]).

We call two classes C1 and C2 incompatible, if there exists a disjoint or (even) a
complement relation between them.

incompatible(C1,C2) :-
(complementOf(C1,C2)
; disjoint(C1,C2)).

Verification and Refactoring of Ontologies with Rules 85

2.3 Taxonomic Relations and Rules

Obviously, relations B is-a A – where A and B are both class atoms or both property
atoms with the same arguments – are equivalent to rules of the form B ⇒ A with a single
atom B in the body, and we can combine the two into a single formalism B → A. We
denote the transitive closure of → by →∗. In PROLOG, B → A can be described as
follows:

derives(B, A) :-
(isa(B, A)
; rule(A-[B])).

In the following we will need implementations of the transitive closure of various pred-
icates <P>, which all look like follows:

tc_<P>(A, C) :-
(<P>(A, C)
; <P>(A, B), tc_<P>(B, C)).

I.e., for every predicate <P> for which we need the transitive closure we have a rule
of the form above.2 We will use the generic transitive closure for the predicate isa,
where tc isa(A, A) expresses that A is envolved in a cycle of the taxonomy (the
is-a relation), and for the predicate derives.

3 Redundancy

Parts of the ontology are redundant due to duplicate definitions or subsuming defini-
tions. Moreover, there could be redundant atoms in rule bodies, and the consequent of
a rule could be unsatisfiable.

3.1 Identity

We call identical formal definitions of classes, properties or rules, that can be only
discriminated by their different names, identity errors. They can occur if some implied
knowledge is not explicitly stated in the ontology, thus uncovering an incompleteness
error. For example, identically defined classes may be distinguished by the developer by
the introduction of an additional property for one of the identical classes. Also identity
of classes or rules can be created by the integration of overlapping ontologies that share
(partially) identical concepts.

3.2 Redundancy by Subsumption Between Rules

The redundant definition of taxonomic knowledge of classes and properties was already
described by Gómez-Pérez [7]. Let X, Y be either two classes or two properties, such

2 Note that a generic implementation of the transitive closure as a predicate tc(<P>, A, C)
would of course be possible, but it would be less efficient, since the atoms <P>(A, C) and
<P>(A, B) would have to be built repeatedly at run time.

86 J. Baumeister and D. Seipel

that X is-a Y is stated in the taxonomy. Then we distinguish direct repetition, where
X is-a Y is stated more than once, and indirect repetition, where X is-a Y is stated and
can at the same time also be derived by a chain X is-a X1 is-a . . . is-a Xn is-a Y with
n ≥ 1. Direct and indirect repetition corresponding to the instantiation of classes and
properties can be also defined on instance-of instead of is-a .

The redundancy of rule-based knowledge (in extended Horn clause representation)
was considered for example by Preece and Shinghal [8]. A rule r is redundant with
respect to the rule base, if for every environment (set of base facts) the exclusion of
r would derive the same conclusions. In the following we define rule subsumption in
general as well as two typical special cases.

Rule Subsumption. A rule r = β ⇒ A subsumes another rule r′ = β′ ⇒ A’, if β
subsumes β′ and A subsumes A′. Then r fires more often than r′ and derives more
general consequences. This happens, e.g., if A = A′ and β′ is a specialization of β.

anomaly(rule_subsumption, A1-Body1, A2-Body2) :-
subsumes(Body1, Body2),
subsumes([A1], [A2]).

This rule tries to instantiate A1-Body1 and A2-Body2 to A1’-Body1’ and A2’-Body2’,
respectively, such that A1’ subsumes A2’ and Body1’ subsumes Body2’. The instantia-
tions generated in the call subsumes(Body1, Body2) are used in the subsequent
call subsumes([A1], [A2]). There are two alternative implementations for the
predicate subsumes/2 depending on whether the first rule subsumes an instance of
the second rule (partial subsumption), or it totally subsumes the second rule.

– The call subset non ground(As1, As2) in the first variant tries to instanti-
ate As1 and As2 to As1’ and As2’, respectively, such that As1’ is a subset of As2’.
In that case As1 partially subsumes As2.

subsumes(As1, As2) :-
subset_non_ground(As1, As2).

– In the second variant, before the call subset non ground(As1, As2) a copy
As of As2 is made, which is afterwards compared to the new value of As2. If both
are variants of each other, then As1 totally subsumes As2.

subsumes(As1, As2) :-
copy_term(As2, As),
subset_non_ground(As1, As2),
variant(As2, As).

Implication of Superclasses. If A, Ai are either class or property atoms, then a rule
A1 ∧ · · · ∧ An ⇒ A, such that Ai →∗ A for some Ai, is redundant.

anomaly(implication_of_superclasses, A-Body) :-
member(Ai, Body), tc_derives(Ai, A).

Verification and Refactoring of Ontologies with Rules 87

Here classes are only subsuming under certain conditions that are given in the rule
condition, i.e., an incorrect assignment of the subclass relation may exist.

If Ai ≡ A, then the equivalence may be incorrectly assigned, since the rule condition
denotes a restriction on the implication.

This can be seen as a special case of rule subsumption, since the fact Ai →∗ A can
be seen as a rule Ai ⇒ A, which subsumes the first rule given above.

Redundant Implication of Transitivity. If P is a transitive property, then a rule P (x, y)∧
P (y, z) ∧ β ⇒ P (x, z) embodies a redundant definition of P , which can be already
derived by the OWL reasoner from the fact that P is transitive. Often such a redundancy
can be explained by an erroneous assumption of the transitivity during an ontology
integration process, since the rule defines a more restrictive condition of transitivity, if
the conjunction β is non-empty.

anomaly(redundant_transitivity, P_xz-Body) :-
P_xz =.. [P, X, Z],
P_xy =.. [P, X, Y], P_yz =.. [P, Y, Z],
subset_non_ground([P_xy, P_yz], Body).

This is a also special case of rule subsumption, since the transitivity of a property P
can be expressed as a rule P (x, y) ∧ P (y, z) ⇒ P (x, z), which subsumes the first rule
given above.

3.3 Redundancy in the Antecedent of a Rule

For a rule A1 ∧ · · · ∧ An ⇒ A we have Ai →∗ Aj for two atoms in its antecedent. In
this case the atom Aj is redundant and can be removed from the rule antecedent.

anomaly(redundancy_in_antecedent, A-Body) :-
tc_derives(Ai, Aj),
member(Ai, Body), member(Aj, Body).

As a special case, this form of redundancy can occur if Ai ≡ Aj in the ontology.
This anomaly may alternatively point to an incorrect mapping between the elements Ai

and Aj .

3.4 Unsatisfiable Rule Condition

A rule has an unsatisfiable condition, if at least one literal neither unifies with an input
literal (e.g., a given instantiation of the ontological concepts) nor with the consequent
of another rule.

anomaly(unsatisfiable_condition, _-Body) :-
member(A, Body),
\+ fact(A),
\+ rule(A-_).

With the rich semantics of OWL an unsatisfiable condition can also occur due to the
contradictory use of complementOf or disjointWith descriptions.

88 J. Baumeister and D. Seipel

anomaly(unsatisfiable_condition, _-Body) :-
member(A, Body), member(B, Body),
incompatible(A, B).

4 Circularity

Circular definitions in the ontology have a severe impact on the reasoning capabilities
of the underlying knowledge. Here we distinguish circular definitions in the taxonomic
structure of the ontology as described by [7], circular dependencies in the rule base
as considered, e.g., by [8], but also circular dependencies that can occur due to the
intermixture between taxonomic and rule-based knowledge.

Circularity in Taxonomy. There is a cyclic chain X1 is-a X2 is-a . . . is-a Xn, such that
X1 = Xn, where all Xi are classes or all Xi are properties.

anomaly(circularity_in_taxonomy, A) :-
tc_isa(A, A).

Circularity Between Rules and Taxonomy. There exists a rule A1∧· · ·∧An ⇒ A, such
that for some atom Ai from the antecedent it holds A →∗ Ai.

anomaly(circularity_in_rules_and_taxonomy, A-Body) :-
member(Ai, Body), tc_derives(A, Ai).

The specified rule should be considered as a restricted is-a relation between A and Ai,
which may result in the detection of a misapplied taxonomic definition between the two
concepts. This error is similar to implication of subclasses, but with an inverse is-a
relation.

5 Inconsistency

Ambivalent definitions of ontological knowledge often cause unintended reasoning be-
havior. Besides partition errors concerning the taxonomic structure of the ontology,
cf. [7], also ambivalent definitions within the rule base may occur, cf. [8]. However,
due to the mixture of basic ontological knowledge and rules other ambivalence can be
identified.

Partition Error in Taxonomy. Consider a disjoint partition of a class C into subclasses
C1, . . . , Cn. On the class level, there is a partition error, if a class C′ is a subclass of (at
least) two disjoint subclasses Ci, Cj of C. On the instance level, a partition error, where
some element e is an instance of (at least) two disjoint subclasses Ci, Cj of C, would
lead to an inconsistency. The following rule defines a partition error on the class level:

anomaly(partition_error, A-[B, C]) :-
disjoint(B, C),
isa(A, B), isa(A, C).

Verification and Refactoring of Ontologies with Rules 89

Self-contradicting Rule. For a rule A1∧· · ·∧An ⇒ A there exists a complementOf or a
disjointWith relationship between A and one of its body atoms Ai. Note that, according
to our definitions in Section 2, this means that A = C(x) and Ai = Ci(x) are class
atoms with the same argument x, and that C and Ci are disjoint or complements.

anomaly(contradicting_rule_consequent, A-Body) :-
member(B, Body), incompatible(A, B).

If such a rule would fire, then the derived conclusion A of the rule would contradict the
assumption Ai in its antecedent.

Contradicting Rules. We say that a rule r = β ⇒ A contradicts another rule r′ =
β′ ⇒ A’, if β subsumes β′, but A and A′ are contradicting. If r′ would fire, then also the
stronger r would fire and the derived conclusions A′ and A would be contradicting. The
subsumption β subsumes β′ can be defined by equivalentClass/Property relations as
well as is-a relations. The consequents A = C(x) and A′ = C′(x′) are contradicting,
if the corresponding classes C and C′ are disjoint or complements.

anomaly(ambivalent_rule_pair, A1-Body1, A2-Body2) :-
incompatible(A1, A2),
subsumes(Body1, Body2).

An even more general form of the anomaly is given, if there are two sets of rules (not
necessarily disjoint) that are deriving two semantically contradicting conclusions.

6 Deficiency

Deficiency is a subtle category comprising anomalies in an ontology that neither can be
identified as redundant nor define inconsistent knowledge. Such anomalies can originate
from the manual development of (large) ontologies, the evolution of ontologies, or as
a side-effect of the integration of ontologies. Deficiency is usually not responsible for
reasoning errors but affects the completeness, understandability or maintainability of
the underlying knowledge.

Originally, such design anomalies had been identified and investigated for relational
databases. In the last years, software engineering research has coined the term bad
smells for parts of the source code that do not produce false behavior but are badly de-
signed and should be improved for better maintainability, cf. [11]. Recently, a first step
was taken to transfer this idea to the conceptual properties of rule-based knowledge [13]
and OWL ontologies [14], respectively.

The identification of a bad smell is the starting point of a refactoring. Refactor-
ing methods describe precise procedures to eliminate the corresponding smell without
changing the meaning of the remaining knowledge. The following measures can be only
seen as indicators for the occurrence of an anomaly. In any case the user has to decide
whether and how to remove the possible anomaly. Then, refactoring methods provide
constructive procedures that restructure the ontology and rule base by eliminating the
anomaly.

In the following we present heuristics for the identification of some design anom-
alies, and we sketch the use of appropriate refactoring methods.

90 J. Baumeister and D. Seipel

6.1 Lazy Class/Property

An element (class or a property) in the ontology that is actually never used in the real-
world application is called lazy. The following facts indicate that an element could be
lazy:

– the element represents a leaf in the hierarchy,
– no rules use this element,
– there exist no instances of the element.

Laziness can occur due to many reasons: The merge or the integration of two ontologies
may include terms that are not useful or relevant in the actual domain. In addition, an
element can evolve to be lazy if it was specialized or generalized to elements more ap-
propriate to the application domain; consequently, the element was kept in the ontology
although it is not used anymore. In PROLOG, a possibly lazy element A can be detected
as follows:

anomaly(lazy_element, A) :-
element(A),
\+ isa(_, A),
\+ in_rule(A),
\+ instance(_, A).

in_rule(A) :-
rule(H-Body),
(A = H
; member(A, Body)).

The constraints stated above can be relaxed by tolerating very few rules with the con-
sidered object in their head or body. Then, these rules have to be inspected by the user
and marked as not usable any more. Removing the unused element with the refactoring
delete element should be considered with reasonable care:
1. The hierarchy has to be reconnected, i.e., every child of the term has to be linked

as a child to every parent of the element.
2. The attributions of the term have to be reattached to its children, e.g., transitivity

for a lazy property.
3. The corresponding rules have to be edited, i.e., every rule that contains the element

either in its antecedent or in its consequent has to be reconsidered: rules with the
element in their consequent should be removed from the ontology. Rules with the
element in their antecedent are either removed (default for rules with the element
as the only literal in the antecedent) or changed (remove literal with the element
from the antecedent). For the latter we have to consider the creation of anomalies,
such as the creation of redundant or ambivalent rules. In any case, changed rules
should be presented to the developer for a manual revision.

6.2 Chains of Inheritance

The backbone of an ontology is described by classes with corresponding taxonomic
relations, i.e., classes are hierarchically connected by is-a relations. If ontologies are

Verification and Refactoring of Ontologies with Rules 91

manually build in a distributed environment or are developed by the integration using
parts of other ontologies, then the indented subclass structure can degenerate to is-a
cascades in some areas of the taxonomy.

A taxonomic chain
C1 is-a C2 is-a . . . is-a Cn ,

of classes Ci, such that all intermediate concepts C2, . . . , Cn−1 are contained in no
other is-a relations except the ones in the chain is called a chain of inheritance. The
following observations for these intermediate classes Ci can be used as a heuristic to
strengthen the suspicion that a chain is anomalous:

– there exist no or very few instances for the Ci,
– the Ci are not extensively used in rules or other ontological definitions, e.g., prop-

erty restrictions

In any case the user has to decide if the chain should be eliminated by the refactoring
collapse hierarchy. Then, the chain is reduced to

C1 is-a Cn ,

and the intermediate concepts Ci (2 ≤ i ≤ n − 1) are subsequently removed from the
ontology as follows:

1. All properties where Ci occurs as the domain, as the range, or in a restriction have
to be modified. In many cases the occurrence of Ci can be changed to the upper
class C1. But in some cases these properties may appear to be redundant or useless,
then the property should be considered to be removed as well.

2. All rules containing Ci have to be modified. If there exist many rules containing Ci

in the antecedent or consequent, then the refactoring may not be practical. However,
a reasonable heuristic may be to change the occurrences of Ci to C1, if 2 ≤ i ≤
n/2, or to Cn, if n/2 < i ≤ n− 1, i.e., to change the class to the nearest remaining
neighbor.

3. For all instances of Ci – similar to the handling of rules – the user has to decide if
the existing instances should be translated to instances of C1 or Cn.

Finally, a new subclass relation C1 is-a Cn, which replaces chain, is created, and the
classes C2, . . . , Cn−1 are removed from the ontology.

6.3 Lonely Disjoint Class

The anomaly lonely disjoint class can occur as a result of an ontology integration task.
A lonely disjoint class is a concept that is not disjoint with any of its siblings, but has
disjoint relations to a collection of classes that are mutual siblings in another branch of
the taxonomy.

anomaly(lonely_disjoint, C) :-
siblings(Cs),
disjointP([C|Cs]),
\+ (sibling(C, M), disjoint(C, M)).

Besides an integration task such a lonely disjoint class can also occur due to the man-
ual modification of the ontology, i.e., moving a class into another branch without the
subsequent adaptation of the disjoint relations.

92 J. Baumeister and D. Seipel

If the user has classified the disjoint relation as an actual error, then the elimination
of this anomaly is quite simple: the disjoint property can be removed from the lonely
disjoint class. However, its existence can cause unindented reasoning behavior.

6.4 Over-Specific Property Range

Developers tend to be very specific when manually defining value ranges for the partic-
ular properties. For example, the value range of a property temperature may be

Rtemperature = { very high, high, normal, low, very low }.
During the practical use of the ontology it might turn out that the values are too specific
and that the coarser value range R′

temperature = { high, normal, low } would work much
better. If rules are defined containing this property, then the anomaly can be identified
by the existence of many analogous rules for the particular values. In our example,
rules for the values high and very high could be present. In such cases, the refactoring
coarsen value range forms groups of equivalent values, e.g., high’ = { high, very high }
and low’ = { low, very low }.

The following rule determines pairs of rules having variants has value(P, Vi), i=1,2,
of property values in their antecedent (after deleting these variant atoms their bodies are
identical):

anomaly(over_specific,
R1, R2, has_value(P, [V1, V2])) :-

rule(R1), rule(R2),
R1 = A1-Body1, R2 = A2-Body2, R1 \= R2,
delete(has_value(P, V1), Body1, B1),
delete(has_value(P, V2), Body2, B2),
A1-B1 = A2-B2.

An analogous rule can be stated for rule consequents. The refactoring also replaces the
original values with the aggregated ones in the corresponding rules, which is illustrated
by the following example.

For the automatic refactoring of the corresponding rules the developer needs to de-
fine a mapping M : Rtemperature �→ R′

temperature from the original range to the coarsened
range, e.g.:

v very high high normal low very low
M(v) high high normal low low

Every rule containing the property temperature is refactored by the application of the
mapping function. Every atom in the head or body with has value(temperature, v) is
replaced by another atom has value(temperature, v’), where v’ = M(v). Analogously,
we have to replace all values in OWL constructs where values are explicitly used, e.g.,
in hasValue property restrictions.

With the application of the refactoring coarsen range redundant rules may be pro-
duced. In the case of a semantically inconsistent mapping function map even inconsis-
tent rules can occur. In consequence, the existence of such anomalies has to be checked
in a subsequent step.

Verification and Refactoring of Ontologies with Rules 93

6.5 Property Clump

The manual and distributed development of a larger ontology or the integration of ex-
isting ontologies can produce unintentionally repeated definitions in different classes of
the ontology.

A property clump is a set C of classes having a relatively large set P of properties in
common. These properties include the instantiation of DataType properties and Object
properties.

For refactoring, the repeated use of the property clump P can be caught by a new
class CP , which gets the properties in P . The original classes C ∈ C are linked to
CP instead of linking them to the properties in P . For ontologies with rules, we have
to change all rules having property atoms P (x, y) for P ∈ P in their antecedent or
consequent.

The use of such an abstract property class CP may increase the compactness and the
maintainability (with respect to chances, extensions, fixes) of the ontology. A property
clump in ontologies is comparable to the repeated use of code fragments in traditional
software, so-called clones. The extraction of such repetitions into a single method or
data structure is a common refactoring, which improves the compactness and maintain-
ability of the code. The procedure of the corresponding refactoring extract concept is
sketched for ontologies by the following example.

Example (Extract Concept for Property Clump)
The repeated definition of the String DataType properties

P = { hasAddress, hasPhone, hasEmail }

having the classes C = { person, company} as domain can be aggregated to a new con-
cept CP = addressInfo. If the user decides that the aggregation of these properties is a
meaningful self-contained concept, then the refactoring extract concept can automati-
cally perform the following steps:

1. Create a new class CP = addressInfo and add the class addressInfo as a new
possible domain for all identified properties in P .

2. Create a new object property hasAddressInfo connecting the classes C ∈ C with
the new class addressInfo, where range(hasAddressInfo) = {addressInfo} and

domain(hasAddressInfo) =
⋃

P∈P
domain(P).

3. Create and redirect instances: For each instance of a class in C, create an appro-
priate instances of class addressInfo and property hasAddressInfo and redirect the
original properties in P with respect to the newly created property hasAddressInfo
and class addressInfo.

4. Change rules having properties P ∈ P in their antecedent. E.g., for the property
hasAddress(X,Y) a new rule is created

hasAddressInfo(C, C′) ∧ hasAddress(C′, A) ⇒ hasReAddress(C, A) (1)

94 J. Baumeister and D. Seipel

and every original rule, e.g.,

hasAddress(C, A) ∧ hasLoc(A, L) ⇒ hasAdrLoc(C, L) (2)

is changed to

hasReAddress(C, A) ∧ hasLoc(A, L) ⇒ hasAdrLoc(C, L) (3)

We see that for each property P ∈ P a new rule (1) is created, and the property P
of the original rule (2) is replaced by the newly created property which was defined
in rule (1), see adapted rule (3). This is reasonable if the property is used in many
rules and these rules should be kept as compact as possible. Otherwise, we would
encode the redirection in the original rules, i.e., instead of rule (1) and rule (3) we
simple would modify rule (2) by exchanging the atom hasAddress(C, A) in the
antecedent by the conjunction

hasAddressInfo(C, C′) ∧ hasAddress(C′, A),

which enlarges the antecedent by one literal.
5. Change rules having properties P ∈ P in the consequent. For example, the rule

hasLoc(C, L) ∧ hasAdrLoc(L, A) ⇒ hasAddress(C, A) (4)

with hasAddress(C, A) in the consequent is replaced by the rule

hasLoc(C, L) ∧ hasAdrLoc(L, A)∧hasAddressInfo(C ,C ′)
⇒ hasAddress(C′, A)

(5)

7 Conclusions and Future Work

The implementation of the semantic web stack currently focuses on the integration of
rules into the web ontology language OWL. At the moment, SWRL, the semantic web
rule language, is a proposal for such an integration, and it has the status of a W3C mem-
ber submission. With the use of rule-based knowledge in combination with taxonomic
definitions of the ontology, new evaluation questions arise. In consequence, evaluation
measures have to be revisited and extended in order to include rules.

In this paper, we have presented a revised approach for the verification of rule aug-
mented ontologies which also includes extended measures for the verification of on-
tologies with respect to more subtle anomalies concerning the understandability and
maintainability. With the description of the anomalies we also sketched appropriate
refactoring methods for eliminating the detected problems.

In general, the work is not limited to the expressiveness of the SWRL ontologies,
but it can be also applied to similar rule extensions of ontologies. However, the pre-
sented approach is only a starting point for an extensive framework for the verification
and refactoring of ontologies. Here, only parts of the expressiveness of OWL DL were
considered; e.g., the implications of possibly existing property restrictions (universal
and existential quantification, cardinalities) are not investigated in the presented work.

Verification and Refactoring of Ontologies with Rules 95

Besides the consideration of the full expressiveness of OWL DL and of SWRL and its
extensions, e.g., to first-order logic by SWRL FOL [15], we also need to consider the
availability of non-monotonicity, which is expected to play an important role in real life
ontologies and knowledge bases. Here, some work has been done on the verification
of non-monotonic rule bases [16], that should be also integrated in a more elaborated
framework.

References

1. Horrocks, I., Parsia, B., Patel-Schneider, P., Hendler, J.: Semantic Web Architecture: Stack
or Two Towers? In Fages, F., Soliman, S., eds.: Principles and Practice of Semantic Web
Reasoning (PPSWR). Number 3703 in LNCS, SV (2005) 37–41

2. Horrocks, I., Patel-Schneider, P.F., Bechhofer, S., Tsarkov, D.: OWL Rules: A Proposal and
Prototype Implementation. Journal of Web Semantics 3(1) (2005) 23–40

3. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language - Combining OWL and RuleML, W3C Member Submission .
http://www.w3.org/Submission/SWRL/ (May 2004)

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference – W3C Recommen-
dation. http://www.w3.org/TR/owl-ref/ (Feb. 2004)

5. Guarino, N., Welty, C.: Evaluating Ontological Decisions with OntoClean. Communications
of the ACM 45(2) (2002)

6. Rector, A.L., Drummond, N., Horridge, M., Rogers, J., Knublauch, H., Stevens, R., Wang,
H., Wroe, C.: OWL Pizzas: Practical Experience of Teaching OWL-DL: Common Errors
& Common Patterns. In: Engineering Knowledge in the Age of the Semantic Web: 14th
International Conference, EKAW, LNAI 3257, Springer (2004) 157–171

7. Gómez-Pérez, A.: Evaluation of Ontologies. International Journal of Intelligent Systems
16(3) (2001) 391–409

8. Preece, A., Shinghal, R.: Foundation and Application of Knowledge Base Verification. In-
ternational Journal of Intelligent Systems 9 (1994) 683–702

9. Preece, A., Shinghal, R., Batarekh, A.: Verifying Expert Systems. A Logical Framework and
a Practical Tool. Expert Systems with Applications 5(3/4) (1992) 421–436

10. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Berlin (1990)
11. Fowler, M.: Refactoring. Improving the Design of Existing Code. Addison-Wesley (1999)
12. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, University of Illinois,

Urbana-Champaign, IL, USA (1992)
13. Baumeister, J., Seipel, D., Puppe, F.: Refactoring Methods for Knowledge Bases. In: Engi-

neering Knowledge in the Age of the Semantic Web: 14th International Conference, EKAW,
LNAI 3257, Springer (2004) 157–171

14. Baumeister, J., Seipel, D.: Smelly Owls – Design Anomalies in Ontologies. In: Proc. of the
18th International Florida Artificial Intelligence Research Society Conference (FLAIRS),
AAAI Press (2005) 215–220

15. Patel-Schneider, P.F.: A Proposal for a SWRL Extension to First-Order Logic.
http://www.daml.org/2004/11/fol/proposal (Nov. 2004)

16. Zlatareva, N.: Testing the Integrity of Non-Monotonic Knowledge Bases Containing Semi-
Normal Defaults. In: Proc. of the 17th International Florida Artificial Intelligence Research
Society Conference (FLAIRS), AAAI Press (2004) 349–354

Ontology Selection for the Real Semantic Web:

How to Cover the Queen’s Birthday Dinner?

Marta Sabou, Vanessa Lopez, and Enrico Motta

Knowledge Media Institute (KMi) & Centre for Research in Computing,
The Open University, Milton Keynes

{r.m.sabou, v.lopez, e.motta}@open.ac.uk

Abstract. Robust mechanisms for ontology selection are crucial for the
evolving Semantic Web characterized by rapidly increasing numbers of
online ontologies and by applications that automatically use the asso-
ciated metadata. However, existing selection techniques have primarily
been designed in the context of human mediated tasks and fall short of
supporting automatic knowledge reuse. We address this gap by propos-
ing a selection algorithm that takes into account 1) the needs of two
applications that explore large scale, distributed markup and 2) some
properties of online ontology repositories. We conclude that the ambi-
tious context of automatic knowledge reuse imposes several challenging
requirements on selection.

1 Introduction

The effort of the Semantic Web community to migrate and apply its semantic
techniques in open, distributed and heterogeneous Web environments has paid
off: the Semantic Web is evolving towards a real Semantic Web. Not only has the
number of ontologies dramatically increased, but also the way that ontologies are
published and used has changed. Ontologies and semantic data are published on
the open Web, crawled by semantic search engines (e.g., Swoogle [3]) and reused
by third parties for other purposes than originally foreseen (e.g., Flink [9] de-
rives social networks from automatically crawled FOAF profiles). Many ontology
based tools are evolving from relying on a single, fixed ontology to harvesting
the rich ontological knowledge available on the Web [6].

Robust mechanisms for selecting ontologies are crucial to support knowledge
reuse in this large scale, open environment. The context of reuse has a major
influence on the requirements for the selection algorithm and should be taken
into account when developing such algorithms. We further discuss and contrast
the requirements imposed by the contexts of human mediated and automatic
reuse. As background for our discussion, consider the following news snippet1:

The Queen will be 80 on 21 April and she is celebrating her birthday with a
family dinner hosted by Prince Charles at Windsor Castle.2

1 Example inspired by Her Majesty’s birthday coinciding with the submission deadline.
2 http://news.billinge.com/1/hi/entertainment/4820796.stm

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 96–111, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ontology Selection for the Real Semantic Web 97

Human mediated tasks. Imagine a person wishing to annotate this news
snippet and in search of an ontology containing the Queen, birthday and dinner
concepts. When queried for these terms, a selection mechanism is expected to
return an ontology that best covers them. It is not a problem if the returned
ontology contains only a subset of the terms (partial coverage) as the user can
extend the ontology according to his needs. It is also admissible for the system
to make mistakes when mapping between the query terms and ontology con-
cepts as the user can filter out such errors (imprecise coverage). For example,
ontologies containing the concept Queen as a subclass of Bee or dinner fork as
an approximation for dinner will be rejected as irrelevant for this user’s context.
Finally, users are willing to wait some minutes for reusable ontologies, since this
time is negligible compared to that needed to build an ontology from scratch.

Automatic knowledge reuse. As opposed to the previous scenario, imagine
that the output of the selection is automatically processed. For example, a se-
mantic browser such as Magpie [4] which identifies and highlights entities of a
certain type in Web pages needs to find an ontology according to which to de-
scribe the page above. The requirements are much stricter than before. First,
a complete coverage of the query terms is needed to fully support the sense
making activity offered by the browser. If no completely covering ontology is
found, a set of ontologies that jointly cover the query could be returned. Or,
alternatively, an ontology with more generic concepts such as woman, event and
meal could be useful, provided that a machine interpretable explanation of the
relation between the query terms and the returned concepts is available (e.g.,
a dinner is a kind of meal). Indeed, another requirement relates to the quality
of mappings between terms and concepts. Errors such as those described in the
context of human mediated tasks are not admissible. Finally, a quick response
becomes more important when the selection is used at run time as in this case.

The four selection mechanisms that we are aware of (see [11] for a detailed
description and comparison) have been developed in the context of human medi-
ated tasks. OntoKhoj [10] and Swoogle [3] complement automatically populated
ontology libraries and use a PageRank-like algorithm on semantic relations be-
tween ontologies (e.g., imports) to select the most popular ontology containing
a certain term. OntoSelect [2], also part of an ontology library, combines mea-
sures about coverage, popularity and the richness of ontology structure. Finally,
the ActiveRank [1] algorithm is independent of an ontology library and uses a
set of ontology structure based metrics. These metrics were inspired by and re-
flect characteristics that human ontology builders find important, for example,
coverage, compactness, density (richness of knowledge structure).

All these approaches function well in the context of human mediated tasks,
but are insufficient when it comes to automatic knowledge reuse. Regarding the
level of coverage, none of the existing approaches enforces complete coverage.
Further, the quality of the mapping between query terms and concept labels
is quite low, as all these approaches rely only on syntactic matches. For exam-
ple, ActiveRank, currently the most advanced algorithm, uses a fuzzy match
between terms and concept names (i.e., project is mapped to projectile) but

98 M. Sabou, V. Lopez, and E. Motta

makes no provision to filter out obviously irrelevant hits. The meaning of the
concepts given by their position in the hierarchy is not considered by any of the
approaches. Finally, our only indication about performance is that ActiveRank
needs 2 minutes to evaluate each ontology - a baseline that needs improvement
in the case of automated tasks.

We consider that, while ambitious, the context of automatic reuse comple-
ments that of human mediated reuse and raises novel challenges that can lead
to further development of existing selection algorithms. In this paper we derive
a set of requirements imposed by two applications that are extended to perform
automatic knowledge reuse (Section 2) and we present an initial design of a selec-
tion algorithm that balances between obtaining a complete and precise coverage
and offering a good performance (Section 4). We also consider characteristics of
online ontologies explored through a set of indicative experiments (Section 3).

2 Requirements for Supporting Automatic Knowledge
Reuse Scenarios

While current ontology selection tools primarily target human users, we are
working on two Semantic Web tools (Sections 2.1 and 2.2) that are evolving from
using a single, rich and manually crafted ontology to exploring and combining
ontologies available on the Web. These tools rely on automatic ontology selection
on which they pose a set of requirements (Section 2.3).

2.1 Ontology Based Question Answering

AquaLog [7] is an ontology based question answering system which relies on the
knowledge encoded in an underlying ontology to disambiguate the meaning of
questions asked using natural language and to provide answers. To shortly give
an impression about how the system operates, consider that it is aware of an
ontology about academic life3 which has been populated to describe KMi related
knowledge4. Also, suppose that the following question is asked5:

Which projects are related to researchers working with ontologies?

In a first stage the system interprets the natural language question and trans-
lates it to triple-like data structures. Then, these triples are compared to the
underlying ontology centered knowledge base using a set of string comparison
methods and WordNet. For example, the term projects is identified to refer to
the ontology concept Project and ontologies is assumed equivalent to the on-
tologies instance of the Research-Area concept. After the modifier attachment is
resolved by using domain knowledge, two triples are identified:

(projects, related to, researchers) and (researchers, working, ontologies)

3 http://kmi.open.ac.uk/projects/akt/ref-onto/
4 See the populated ontology at http://semanticweb.kmi.open.ac.uk
5 See the AquaLog demo at http://kmi.open.ac.uk/technologies/aqualog/

Ontology Selection for the Real Semantic Web 99

The relations of the triples are also mapped to the ontology. For example, for
the second triple, there is only one known relation in the ontology between a
Researcher and a Research-area, namely has-research-interest. This relation is
assumed to be the relevant one for the question. However, when disambiguating
the relation that is referred to by related to, the system cannot find any syntac-
tically similar relation between a Project and a Researcher (or between all more
generic and more specific classes of the two concepts). Nevertheless, there are
four, alternative relations between these two concepts: has-contact-person, has-
project-member, has-project-leader, uses-resource. The user is asked to choose
the relation that is closest to his interest. Once a choice is made, the question is
entirely mapped to the underlying ontological structure and the corresponding
instances can be retrieved as an answer.

While the current version of AquaLog is portable from one domain to an-
other, the scope of the system is limited by the amount of knowledge encoded
in the ontology used at that time. The new implementation of AquaLog, Power-
Aqua [6], overcomes this limitation by extending the system in the direction of
open question answering, i.e., allowing it to benefit from and combine knowledge
from the wide range of ontologies that exist on the Web. One of the challenges
is the selection of the right ontology for a given query from the Web.

2.2 Semantic Browsing

The goal of semantic browsing is to exploit the richness of semantic informa-
tion in order to facilitate Web browsing. The Magpie [4] Semantic Web browser
provides new mechanisms for browsing and making sense of information on the
Semantic Web. This tool makes use of the semantic annotation associated with
a Web page to help the user get a quicker and better understanding of the in-
formation on that page. Magpie is portable from one domain to another as it
allows the user to choose the appropriate ontology from a list of ontologies that
are known to the tool. However, similarly to AquaLog, the current version relies
on a single ontology being active at any moment in time. This limits the scope
of the sense making support to the content of the current ontology.

Our current research focuses on extending Magpie towards open browsing.
This means that the tool should be able to bring to the user the appropriate
semantic information relevant for his browsing context from any ontology on
the Web. This extension relies on a component that can select, at run time, the
appropriate ontologies for the given browsing context.

In the case of Magpie, the query for the ontology selection is more complex
than for AquaLog as it is defined by the current browsing context. This includes
the content of the currently accessed Web pages and, optionally, the browsing
history and the profile of the user. Web pages typically span several different
topics. For example, the following short news story6 is both about trips to exotic
locations and talks. Therefore, the query sent to the selection mechanism is likely
to contain terms drawn from different domains.

6 http://stadium.open.ac.uk/stadia/preview.php?s=29&whichevent=657

100 M. Sabou, V. Lopez, and E. Motta

“For April and May 2005, adventurer Lorenzo Gariano was part of a ten-
man collaborative expedition between 7summits.com and the 7summits club from
Russia, led by Alex Abramov and Harry Kikstra, to the North Face of Everest.
This evening he will present a talk on his experiences, together with some of the
fantastic photos he took.”

2.3 Requirements for Ontology Selection

Hereby we formulate the requirements imposed by our applications on ontology
selection and discuss to which extent they are addressed by current approaches.
These requirements drove the design of our selection algorithm (Section 4).

1. Complete coverage. A complete coverage is probably the most important
requirement for our applications (though it might not be so important for
other tools). Because in these applications the retrieved knowledge is auto-
matically processed, they require that all the needed knowledge should be
retrieved. While existing approaches rank ontologies that cover most terms
as best, they do not enforce a complete coverage.

2. Precise coverage. Automatic knowledge reuse requires a rigorous mapping
between query terms and ontology concepts as well as a formal representation
of the mapping relation (e.g., more generic). Assuming that a human user
would filter out (and eventually enrich) the returned ontologies, current tools
treat the comparison between query terms and ontology concepts rather
superficially, relying only on (often approximate) lexical comparisons.

3. Returning ontology combinations. Our preliminary experiments
indicate that the sparseness of knowledge on the Web often makes it im-
possible to find a single ontology that covers all terms (Section 3). How-
ever, it is more likely to find ontology combinations that jointly cover the
query terms. Existing tools return lists of single ontologies rather than their
collections.

4. Performance. Our applications rely on the results of selection at run time
and therefore require a good performance. While simple selection tools per-
form rather well, the more complex ActiveRank needs 2 minutes per ontol-
ogy to compute all its metrics. This is acceptable for supporting ontology
building, but needs to be improved in an automatic scenario.

5. Dealing with relations. Our applications, especially PowerAqua, illustrate
a need for considering relations and not just concepts when selecting an
ontology. Currently, only OntoSelect considers relations.

6. Dealing with instances. Our applications help users in their information
gathering activities. Most often, people are interested in finding out things
about certain entities rather than generic concepts. This requires that se-
lection should consider instances as well (i.e., match between instances in a
query and those in online ontologies). Matching instances is a difficult prob-
lem in itself given the large number and high level of ambiguity when dealing
with instances (e.g., many instances can share the same or similar names).

Ontology Selection for the Real Semantic Web 101

7. Modularization. Knowledge reuse is closely related to ontology modular-
ization. Indeed, our tools would require selection mechanisms to return a
relevant ontology module rather than a whole ontology. Note that the work
in [1] has already considered this issue when introducing a metric to mea-
sure how close the hits in an ontology are (assuming that this indicates the
existence of a module). As with instance mappings, ontology modularization
is a difficult and as yet unsolved issue, though a large amount of work in this
area [13] could be reused to some extent.

3 Preliminary Experiments

To better design our algorithm, we wanted to get an insight in the characteris-
tics of the ontological data available online. Since the requirement of complete
and precise coverage of the query terms was identified as the most important
one in the context of automatic knowledge reuse, our experiments are centered
towards 1) exploring the factors that hamper obtaining a complete coverage and
2) getting an insight in the nature of compound concept labels in preparation to
provide a more precise mapping to query terms. We performed both experiments
on top of Swoogle7 because it is currently the largest ontology repository. It is
important to note that our experiments have an exploratory role rather than
trying to rigourously test our hypotheses.

3.1 Experiment 1 - Obtaining Complete Coverage

The goal of this experiment is to get an indication about how difficult it is to
find a completely covering ontology when using Swoogle. One of the motivations
for this experiment was that, while important, complete coverage has not been
investigated in any previous work (although best covering ontologies are rated
best). In fact, with the exception of OntoSelect, all selection algorithms are
tested for the rather trivial case of one or two query terms. On the contrary,
our tools require ontologies that cover at least three query terms (e.g., AquaLog
translates each question in one or more triples).

Our intuition was that the number, topic relatedness and type of the query
terms will influence the success of obtaining an all covering ontology. Namely, a
single, all covering ontology is difficult to find if 1) there are many query terms,
2) if query terms are drawn from different topic domains or 3) relations are
considered. According to these considerations, we devised four sets of queries.
The first three queries represent an optimal scenario where few concepts are
drawn from the same domain (we chose a well covered domain in terms of online
ontologies, the academic domain). The second set of queries (4 - 6) have terms
drawn from different (and less covered) topic domains. They were inspired by the
actual text snippets in Section 1 and Section 2.2, therefore being representative
for real life scenarios encountered with Magpie. The queries in set three (7 -
10) have terms drawn from the same domain but, unlike the first set, contain a
7 We use Swoogle 2005 as our software was written before Swoogle 2006 was released.

102 M. Sabou, V. Lopez, and E. Motta

relation as well (these are typical AquaLog queries). Our final queries (11 - 14)
explore overcoming failure of finding a completely covering ontology by replacing
query terms in queries 4, 6, 9 and 10 with their hypernyms.

The experimental software queries Swoogle for ontologies that contain con-
cepts/properties that exactly match the query terms (variations in capitalization
are allowed)8. For each query, the software outputs the number of ontologies that
cover each term, their pairwise combinations and all terms.

Table 1. Number of ontologies retrieved for a set of queries. (X+ refines X.)

Query (t1, t2, t3) (t1) (t2) (t3) (t1, t2) (t1, t3) (t2, t3) (t1, t2, t3)
1 (project, article, researcher) 84 90 24 19 13 9 8
2 (researcher, student, university) 24 101 64 16 15 38 13
3 (research, publication, author) 15 77 138 8 5 36 4

4 (adventurer, expedition, photo) 1 0 32 0 1 0 0
5 (mountain, team, talk) 12 25 9 2 1 1 1
6 (queen, birthday, dinner) 0 9 2 0 0 1 0

7 (project, relatedTo, researcher) 84 11 24 0 13 0 0
8 (researcher, worksWith, Ontology) 24 9 52 0 3 0 0
9 (academic, memberOf, project) 21 36 84 0 3 5 0
10 (article, hasAuthor, person) 90 14 371 8 32 2 0

11 (4+) (person, trip, photo) 371 7 32 1 20 1 1
12 (6+) (woman, birthday, dinner) 32 9 2 1 1 1 1
13 (9+) (person, memberOf, project) 371 36 84 16 46 5 5
14 (10+) (publication, hasAuthor, person) 77 14 371 2 52 2 2

The results are summarized in Table 1. Notice that as the number of terms
increases less completely covering ontologies are found. The drop in the num-
ber of returned ontologies is significant when adding even one extra term. This
phenomena is evident throughout the table even in our optimal scenario where
terms were chosen from the same, well covered domain.

Our second set of queries containing terms drawn from different topic domains
return less ontologies than previously (mostly zero). At a closer look, however,
one might argue that the null results are caused by the fact that the domains
from which the terms were drawn are weakly covered in Swoogle in the first place
(indicated by the low number of ontologies returned for individual terms). While
this observation does not necessarily undermine the intuition that topic hetero-
geneity has negative effects, it indicates that the knowledge currently available
online is sparse, as many domains are weakly covered (or not at all). Therefore,
null results can be expected even when query terms are topically related but
refer to a weakly covered topic.

The third set of experiments indicates that the presence of relations seriously
hampers retrieving an all covering ontology even when the query terms are chosen
from the same, well represented domain.

8 Exact matching is an extreme case (e.g., hasAuthor, authorOf, authored all mean
the same thing) and as it will be evident from the results, it is too limiting.

Ontology Selection for the Real Semantic Web 103

In the last four queries, by refining query terms through hypernym replace-
ment, better results were obtained. An obvious worry is that if the refinement
uses too generic terms (e.g., Entity) the returned ontologies will be too generic
to be of any use for the concrete knowledge reuse task at hand.

While only preliminary, our experiments do indicate that query size, topic
heterogeneity and type might influence the chance to find an all covering on-
tology. They have also revealed the sparseness of the online knowledge. As a
bottom line, independently of having verified our intuitions, we can observe that
the chance to find an all covering ontology is rather low, especially in scenarios
such as those provided by Magpie (many terms, drawn from different, possibly
weakly represented domains) and AquaLog (properties as query terms).

3.2 Experiment 2 - Dealing with Compound Labels

Considering the results of the previous experiment, some mechanisms might
be needed to expand the search for potentially relevant ontologies. Besides the
synonym/hypernym extension, the more lexical oriented strategy of selecting
concepts whose labels partially match the query terms can be explored. For ex-
ample, Swoogle’s fuzzy search functionality returns concept labels that contain
the query term as a substring. This mechanism is rather brittle, and, while it re-
turns several important hits (e.g., GraduateStudent when searching for Student),
it also generates clearly invalid hits (e.g., update when searching for date).

To ensure our second requirement referring to precise coverage, all the com-
pound labels returned by fuzzy search need to be interpreted in order to un-
derstand their relation with the query term. A special case of compound labels
are those containing conjunctions (e.g., BlackAndWhite). Some researchers have
proposed a set of rules to interpret such labels [8]. Naturally, reading, splitting
and interpreting all these labels can seriously hamper the time performance, thus
questioning the usefulness of performing a fuzzy search at all.

In this experiment we explore the feasibility of performing fuzzy search. We
illustrate some cases when it pays off and some when it does not. We also evaluate
how frequently conjunctions are used in compound labels.

To support our experiments we implemented a program (LabelSplitter) that
splits compound labels according to the most common naming conventions and
checks if a given term is a well formed part of that label (i.e., its base form is
the same as the base form of one of the components of the label). For example,
TeachingCourse is a relevant compound label (CL) for the term teach, but an
irrelevant one for the term tea. In Table 2 we summarize the results obtained
when querying some random terms and then some conjunctions showing the total
number of hits returned by Swoogle, which is broken down into the number of
exact matches, relevant and irrelevant CLs.

As expected, fuzzy search is a good mechanism to broaden the search space
as it can return a lot of broader hits that contain the term. In general, in the
case of longer words (less likely to be substrings of other words) more relevant
than irrelevant compound labels are found. This is not true in the case of shorter
words such as tea where an overwhelming number of irrelevant hits are returned.

104 M. Sabou, V. Lopez, and E. Motta

Table 2. Analysis of the appearances of some conjunctions and other terms

Word Total Exact Relevant CLs Irrelevant CLs
project - project PastProject Projectile

(clarifying example) ProjectPartner Projector

project 644 90 413 141

student 190 84 97 9

tea 492 3 23 466

mountain 36 12 21 4

university 86 64 22 0

and 2363 37 444 1882

or 18178 11 184 17983

of 6353 4 4743 1606

not 840 23 77 740

except 45 0 0 45

but not 0 0 0 0

Therefore, taking into account that fuzzy search is rather expensive, it should
be used only when all other alternatives fail.

Regarding the frequency of conjunctions, in current online ontologies “or”
appears the most frequently but in the large majority of cases as a substring
and not a well formed part. While the “of” conjunction appears less often than
“or” it is the most frequently used as a proper part of the compounds (mostly
as part of property labels). “And” appears quite frequently as well in its role of
well formed part (444). Surprisingly, negation and disjunction indicators appear
infrequently or at all in the collection that we have queried. We conclude that
interpretation rules for some conjunctions have to be written.

4 The Algorithm

In this section we present the design of an algorithm which aims to address
some of the requirements stated in Section 2.3 and also draws on our conclusions
regarding the nature of online ontologies detailed in the previous section. We first
give an overview of the method in which we motivate our main design choices
and then explore each major step of the algorithm in detail. The algorithm has
been entirely specified and partially implemented (with the exception of the
ideas reported in Sections 4.4 and 4.6) .

4.1 Overview

For our first implementation we wish to satisfy the first five requirements: we
aim to identify ontologies (or combinations of ontologies - R3) that completely
and precisely cover our query (R1 and R2). The query can contain both concepts
and relations (R5). The performance of the algorithm should be such that it can
be used by other applications at run time (R4). The final two requirements,
related to instances and modularization, are not addressed yet.

Ontology Selection for the Real Semantic Web 105

Fig. 1. The main tasks and stages of the selection algorithm

From our experiments we have learned that in cases when query terms are
drawn from different domains or when they represent relations it is challenging to
find ontologies that would cover all terms (therefore R1 is not so easy to fulfill).
We have also seen that in such cases the search space can be expanded either 1)
by query expansion with semantically related terms or 2) by searching for labels
that incorporate the query term. However, our second experiment indicates that
fuzzy search should be used only when absolutely needed.

Given these considerations, we have designed an algorithm that adapts itself
to the particular context and can employ increasingly complex methods in order
to achieve a complete coverage. The algorithm in Figure 1 executes increas-
ingly complex combinations of a couple of main steps until complete coverage is
achieved. We will first explain the role of each step and then describe how they
are combined in increasingly complex stages.

Step 1: Query Expansion. This step supplements the query terms with their
semantically related terms such as synonyms and hypernyms.

106 M. Sabou, V. Lopez, and E. Motta

Step 2: Ontology identification. In this step we identify ontologies that
cover to some extent the query terms. After an initial syntactic mapping
between query terms (either exact or fuzzy) and ontology concepts, we per-
form a more in depth analysis of these mappings and define their semantic
type (i.e., exact, generic or more specific). We call this task semantic match.

Step 3: Identify ontology combinations. Using the output of the previous
step, here we decide on the ontology combinations that provide a complete
coverage of the query terms.

Step 4: Generality Ranking. The ontologies that are returned contain hits
that can be more generic or more specific than the query terms. In this step
we evaluate the ontology combinations according to their level of generality
and choose those with the appropriate level of abstraction.

These basic steps are combined in the following increasingly complex and
expensive stages. The algorithm enters in a new stage only if the previous stage
has failed:

Stage I relies on the simplest combination of the main steps. It uses an exact
match to identify relevant ontologies thus circumventing complex semantic
matching and the generality ranking step. This stage is likely to succeed only
if the query terms are few or drawn from the same, well covered domain.

Stage II is used only if Stage I fails (no ontology was found for at least one
term) and some kind of broadening of the search space is needed. Query
expansion is used for the problematic terms and then the same ontology
identification and combination steps as in stage I are performed. Notice that
at this stage we can already use the generality ranking step because query
broadening is likely to identify hypernyms for some of the query terms.

Stage III is the most complex one, as besides query expansion, it also relies
on more flexible syntactic matching to identify even more concepts poten-
tially related to the query terms. This fuzzy match complicates the semantic
matching step as the retrieved compound labels need to be split and in-
terpreted. After the semantic match has identified the semantic relations
between query terms and ontology concepts we apply the ontology combi-
nation and generality ranking steps.

4.2 Step 1: Query Expansion

Query expansion is needed in order to broaden the search space for ontologies
in cases when no or few ontologies are returned for a term. Our experiments
indicate that such cases will be often encountered given the knowledge sparseness
of online ontology collections. Term expansion allows searching not just for the
term but for all its semantically related terms (e.g., synonyms, hypernyms). This
can be allowed because we aim to perform a semantic rather than a syntactic
selection and therefore synonyms that denote the same concept as the query
term are relevant. Currently, we use WordNet to augment each query term with
their synonyms and hypernyms The only system that uses a similar expansion
approach is OntoKhoj [10].

Ontology Selection for the Real Semantic Web 107

4.3 Step 2: Ontology Identification

In this step we identify ontologies that contain the concepts specified in our
query. This is in essence a mapping stage between the query terms and the
concepts of the ontologies. We distinguish two substages:
Step 2.1. Syntactic Match. The syntactic match identifies lexically similar
concept labels. It can be either exact (the query term is exactly the same as the
concept label) or fuzzy (the query term is a substring of the concept label, e.g.,
the term Student is part of GraduateStudent). In the case when a fuzzy match
is performed, this step is also responsible for splitting the compound labels and
returning only the compound labels that are relevant for the given term (as done
by the LabelSplitter module described in Section 3.2). Current ontology selection
techniques only use syntactic matches when identifying relevant ontologies.
Step 2.2 Semantic Match. Semantic matching goes beyond the state of the
art in ontology selection as it checks the soundness and the semantic nature of
the previously identified syntactic mappings. Concretely, the input to this step
is a term and a concept in an ontology that is lexically related to the term. The
task is to find out the semantic relation between the term and the concept. This
can be equivalence, more specific or more general.

An obviously relevant body of work is that on mapping techniques. However,
according to a recent survey of mapping techniques [12] most matchers return
a probability coefficient to describe the significance of a mapping rather than
its semantic interpretation. A notable exception is the S-Match algorithm which
returns the semantic category of each mapping in terms of (among others) the
exact, more generic or more specific operators [5]. Following the general model of
the S-Match algorithm, we distinguish two steps to obtain a semantic matching:

A. Acquiring the sense of the concept label also taking into account its
position in the hierarchy (i.e., parent and children nodes).

B. Deriving the semantic relations between the term and the concept.

A. Acquiring the Sense of the Concept Label. We use information about the
position of a concept in the ontology to determine its sense according to a method
originally presented in [8]. In a nutshell, given a concept c and either one of its
ancestors or descendants r all WordNet synsets for both labels are retrieved.
Then, if any of the senses for c is related to any of the senses of r either by being
a synonym, hypernym, holonym, hyponym or a meronym, then that sense of c
is considered the right one. For example, if Apple (which can have two senses:
tree and fruit) has Food as its ancestor, then there exists a hyponym relation
between apple#1 (fruit) and food#1, so we retain this sense and discard the one
referring to apple being a tree.

B. Deriving Semantic Relations. After identifying the sense of the concept, we
derive semantic relations between the terms and the concepts such as equiva-
lence, more generic or more specific. We use a WordNet based comparison be-
tween the senses of the term and that of the concept label. Therefore, equivalence

108 M. Sabou, V. Lopez, and E. Motta

is established when two terms share a synset, and more general/more specific
relations are indicated when hyponym/holonym (or even meronym/holonym) re-
lations exist between their senses. In cases when none of these relations hold we
investigate whether there is any similarity at all between the terms (and return
a weaker “related” relationship). For this we investigate whether there exists
an allowable “is-a” path in WordNet connecting their synsets by relying on the
depth and common parent index (C.P.I) measures described in [7].
Matching relations. Our previous experience in AquaLog [7] was that mapping
relations is more difficult than mapping concepts. One of the reasons is that
many relations are vaguely defined (a classical example is relatedTo which can
have a variety of meanings) and therefore can have a large number, hard to
automatically predict lexical variations. Also, the meaning of a relation is given
by the type of its domain and its range so the precondition of a mapping between
two relations is that their domain and range classes match to some extent.

Inspired by our previous work [7], we treat relations as “second class citizens”
and concentrate on finding matches for the classes that denote their domain and
range first. Then, if only one relation exists between these classes we adopt it
as such. If more relations exist we attempt a lexical based disambiguation of
the one that is closest to the relation that we seek. An interesting case is when
some relations are present in other ontologies as concepts (e.g., hasAuthor can
be modeled as a concept Author in another ontology). This case is also explored.

4.4 Step3: Identifying Relevant Ontology Combinations

Ideally, one would expect that the selection mechanism finds a single ontology
which contains all the query terms. However, in practice this is seldom the case.
Most often query terms are spread over two or more ontologies. Unfortunately,
previous approaches provide a set of ontologies ranked by the coverage of each
individual ontology. Our task therefore is to identify the best combinations of
ontologies that cover the query.

There are two criteria to rank ontology combinations. On one hand, the num-
ber of ontologies should be minimal. On the other hand, the number of terms
that they cover should be maximal. The ultimate best is one ontology covering
all terms, and the worst is a collection of ontologies each covering a single term.
We are currently working on an optimal implementation of this multiple criteria
optimization problem.

4.5 Step4: Generality Ranking

Due to our semantic matching, the returned concepts can be more generic or
more specific than the query terms. In this step we identify the ontology combi-
nations that are closest in terms of abstraction level to the query terms.

We are not aware of any work that directly addresses the issue of measuring
the generality of an ontology or evaluating the generality of an ontology with
respect to a set of terms. A recent publication investigates evaluating the gen-
erality of a document with respect to a query [14]. After concluding that most

Ontology Selection for the Real Semantic Web 109

of the generality related work in the field of IR is based on statistical measures,
they propose a method to compute the generality of a document with respect to
a domain ontology (in that case, Mesh) by relying on the depth and proximity
of the concepts in the domain ontology (i.e., the deeper and closer the concepts
are in the ontology the more specific the document/query is). Generality is com-
puted both for the query and the document and then the obtained scores are
compared. The major drawbacks of this approach are that (1) it is time con-
suming because all terms need to be looked up in the oracle and their positions
have to be computed and (2) it depends on the coverage of the used oracle.

We agree with [14] that generality computation should be based on the mean-
ing of the terms rather than on statistical measures. Instead of computing gen-
erality both for the query and an ontology and then comparing them, we assume
that the query provides the baseline and we only compute the generality devi-
ation of the ontology from this baseline. Another optimization is that we cir-
cumvent the use of an external oracle by reusing the generality relation between
terms and concepts as established by the semantic mapping step (we consider a
function genRel between a term and its hit returning -1 if the concept is more
specific, 0 if it is equivalent and 1 if it is more generic than the query term).

RD(T, O) =
�n

i=1 |genRel(ti,ci)|
n ; GS(T, O) = σ(

∑n
i=1 genRel(ti, ci))

Given a set of n query terms (t1,n) and their semantically related concepts
(c1,n) we compute the relative generality (RD(T, O)) of the ontology/ontologies
containing these concepts with respect to the query as the mean of the absolute
value of the genRel function. We also compute the sign of the generality devia-
tion as the sign of the sum of all the values of the genRel function.

4.6 Extending Semantic Match to Deal with Compound Labels

Compound labels derived in Stage III complicate semantic matching. Hereby we
describe some of the problems and the solutions that we are investigating.
A. Acquiring the sense of a compound concept label. Establishing the sense of
compound labels by using WordNet is difficult as WordNet does not have an ex-
tensive coverage of compound words. We are currently investigating the strategy
of interpreting the meaning of compound labels in terms of logical relations that
hold between the senses of their constituents (similarly to work in [8] and [5]).
According to this previous work, compound labels can be interpreted as the
conjunction of their constituents and according to these rules:

Rule1. Commas and coordinate conjunctions are interpreted as a disjunction;
Rule2. Prepositions like in and of are interpreted as a conjunction;
Rule3. Exclusion expressions (e.g., except, but not) translate into negation.

However, we are not convinced that all these rules are useful in the context
of online ontologies. For example, only five labels returned by Swoogle contain
commas, so this is just an isolated case. Also, we found that no labels contain
“except” and “but not”, thus making the third rule redundant.

110 M. Sabou, V. Lopez, and E. Motta

B. Deriving Semantic Relations between compound terms. The limited multi-
word coverage of WordNet also prohibits using it to derive semantic relations
between compound labels. We investigate a solution along the lines of that pre-
sented in [5] where compound labels, after being interpreted as logical formulas,
are compared with the help of a reasoner.

5 Discussion and Future Work

Taking a step back from the details of the algorithm, the key contribution of this
paper is that of exploring ontology selection in the context of automatic knowl-
edge reuse. Indeed, as discussed in the introduction, this complements current
selection techniques which have focused on human mediated tasks so far. While
both contexts are equally important, we think that exploring the automatic
context can lead to novel challenges and improvements of this technology.

We have analyzed the requirements of two Semantic Web tools, a question
answering tool and a semantic browser, and concluded that current approaches
only marginally address them. This is not a surprise in itself because these re-
quirements raise hard to address research issues. In fact, our proposed algorithm
limits itself to tackle only five of the seven requirements. These requirements
indicate that selection will need to adapt techniques from currently developing
research directions such as ontology evaluation, mapping and modularization.

Ontology mapping has been the focus of the proposed algorithm which bal-
ances between providing a complete, precise coverage and an acceptable perfor-
mance. Our strategy is to use a self-adaptation metaphor, the algorithm adapts
its complexity to the case of each query by invoking increasingly complex stages
as necessary. As such, the simplest stage is just a bit more complicated than state
of the art techniques, while the most complex stage raises yet unsolved research
issues. The major difference from existing approaches is the emphasis on the
correctness of the mapping between query terms and ontology concepts. We go
beyond current techniques which exclusively rely on lexical matches by perform-
ing a semantic match. Naturally, establishing a semantic mapping at run-time
without interpreting the entire ontology structure is a challenging issue by itself.

While, obviously, there are several complex issues to address, our immediate
future work will concentrate on finalizing the implementation of a first prototype.
In parallel, we will adapt our tools to use this selection algorithm. They will be
used as a case study for evaluating selection in an automatic knowledge reuse
scenario, thus paving the way towards a selection mechanism that fits the needs
of the real Semantic Web.

Acknowledgements. We thank Yuangui Lei and Victoria Uren for their com-
ments on this paper. This work was funded by the Advanced Knowledge Tech-
nologies (AKT) Interdisciplinary Research Collaboration (IRC), sponsored by
the UK Engineering and Physical Sciences Research Council under grant num-
ber GR/N15764/01, and the Open Knowledge and NeOn projects sponsored by

Ontology Selection for the Real Semantic Web 111

the European Commission as part of the Information Society Technologies (IST)
programme under EC grant numbers IST-FF6-027253 and IST-FF6-027595.

References

1. H. Alani and C. Brewster. Ontology Ranking based on the Analysis of Concept
Structures. In Proceedings of the Third International Conference on Knowledge
Capture(K-CAP 05), Banff, Canada, 2005. ACM.

2. P. Buitelaar, T. Eigner, and T. Declerck. OntoSelect: A Dynamic Ontology Library
with Support for Ontology Selection. In Proceedings of the Demo Session at the
International Semantic Web Conference. Hiroshima, Japan, 2004.

3. L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng, and P. Kolari. Finding and Ranking
Knowledge on the Semantic Web. In Y. Gil, E. Motta, V.R. Benjamins, and M.A.
Musen, editors, Proceedings of the 4th International Semantic Web Conference,
volume 3729 of LNCS, pages 156 – 170. Springer-Verlag GmbH, 2005.

4. M. Dzbor, J. Domingue, and E. Motta. Magpie - towards a semantic web browser.
In Proceedings of the Second International Semantic Web Conference, 2003.

5. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. SMatch: An Algorithm and Imple-
mentation of Semantic Matching. In The Semantic Web: Research and Applica-
tions. Proceedings of the First European Semantic Web Conference, volume 3053
of LNCS, pages 61 – 75. Springer-Verlag, 2004.

6. V. Lopez, E. Motta, and V. Uren. PowerAqua: Fishing the Semantic Web. In
Proceedings of the Third European Semantic Web Conference, 2006.

7. V. Lopez, M. Pasin, and E. Motta. AquaLog: An Ontology-portable Question
Answering System for the Semantic Web. In Proceedings of the European Semantic
Web Conference, 2005.

8. B. Magnini, L. Serafini, and M. Speranza. Making explicit the semantics hiden
in schema models. In Proceedings of the Human Language Technology for the
Semantic Web workshop at ISWC’03, 2003.

9. P. Mika. Flink: Semantic Web Technology for the Extraction and Analysis of Social
Networks. Journal of Web Semantics, 3(2), 2005.

10. C. Patel, K. Supekar, Y. Lee, and E. K. Park. OntoKhoj: A Semantic Web Portal
for Ontology Searching, Ranking and Classification. In Proceeding of the Workshop
On Web Information And Data Management. ACM, 2003.

11. M. Sabou, V. Lopez, E. Motta, and V. Uren. Ontology Selection: Ontology Eval-
uation on the Real Semantic Web. In Proceedings of the Evaluation of Ontologies
on the Web Workshop, held in conjunction with WWW’2006, 2006.

12. P. Shvaiko and J. Euzenat. A Survey of Schema-Based Matching Approaches.
Journal of Data Semantics, IV:146 – 171, 2005.

13. S. Spaccapietra. Report on modularization of ontologies. Knowledge Web Deliv-
erable D2.1.3.1, July 2005.

14. X. Yan, X. Li, and D. Song. Document Generality: Its Computation and Ranking.
In Proceedings of the Seventeenth Australasian Database Conference, 2006.

Ontology Engineering, Scientific Method
and the Research Agenda

Hans Akkermans1,2 and Jaap Gordijn1

1 Free University Amsterdam VUA
Business Informatics Department (FEW/BI)

Amsterdam, The Netherlands
gordijn@cs.vu.nl

2 AKMC Knowledge Management BV
Koedijk, The Netherlands

Hans.Akkermans@akmc.nl

Abstract. The call for a “focus on content” in ontology research by Nicola Guar-
ino and Mark Musen in their launching statement of the journal Applied Ontology
has quite some implications and ramifications. We reflectively discuss ontology
engineering as a scientific discipline, and we put this into the wider perspective
of debates in other fields. We claim and argue that ontology is a new scientific
method for theory formation. This positioning allows for stronger concepts and
techniques for theoretical, empirical and practical validation that in our view are
now needed in the field. A prerequisite for this is an emphasis on ontology as
a (domain) content oriented concept, rather than as primarily a computer repre-
sentation notion. We propose that taking domain theories and the associated sub-
stantive or content reference of ontologies really seriously as first-class citizens,
will actually increase the contribution of ontology engineering to the develop-
ment of scientific method in general. Next, ontologies should develop from the
current static representations of relatively stable domain content into actionable
theories-in-use, and a possible way forward is to build in capabilities for dynamic
self-organization of ontologies as service-oriented knowledge utilities that can be
delivered over the Web.

1 Introduction: Focus on Content?

Many believe that ontologies are first of all a computer science (CS) construct. There
is some truth in this if one takes as a measure where the main locus and focus is in
ontology engineering activities. On the other hand, in other scientific fields there is a
significant interest in ontologies for (predominantly non-CS) reasons that relate to the
development and growth of the respective domains. Many in computer science, and
in knowledge engineering (KE) as well, have however a tendency to see this as ‘just
another application’: something to be happy with because it proves the relevance of on-
tology engineering, but at the same time as something that is also of lesser (scientific)
importance than the core CS issues in ontology such as computer-oriented representa-
tion, languages, reasoning techniques, systems development and tools.

In other sciences, we (amusingly?) see a mirror image with regard to CS. The pre-
occupation in CS with computing and systems-related issues is there often pejoratively

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 112–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Ontology Engineering, Scientific Method and the Research Agenda 113

viewed as ‘just programming’, in other words, as technical engineering that is important
and useful to do — but it’s not really (and at the very least, not necessarily) science.
This view, commonly found among both natural and social scientists, also extends to
ontology engineering.

In this reflective essay we argue that both views, the CS one as well as the non-CS
one, are misguided. This has its roots in an inadequate positioning of what ontologies
are and can do.

For the CS and KE side, the emphasis on representation and systems aspects is per-
haps an understandable attitude, but it is also a self-limiting approach that in the end
will not be able to exploit the full potential of the ontology idea. Outside ‘application’
domains are to be taken much more seriously, as first-class citizens in CS and KE. In
their launching statement of the new journal Applied Ontology, Nicola Guarino and
Mark Musen [1] call for a “focus on content” in ontology research. Offen [2] points
out that “domain understanding is the key to successful system development”. In this
paper we explore some of the consequences for ontology research as a field of scientific
endeavour.

For the non-CS side, we argue why and how ontology engineering is contributing
to the further development of scientific method in general. The central contribution of
this paper is our argument that ontology is to be seen as a novel and distinct method for
scientific theory formation and validation. But to fully establish this, there are certain
specific consequences to be drawn by CS and KE for the ontology research agenda.

2 Domain Understanding and the Dual Reference of Ontologies

Ontologies are generally defined as explicit and formal specifications of a shared con-
ceptualization for some domain of interest [3]. The term shared refers to an agreement
within a community of interest or practice over the description (i.e. conceptualization)
of the domain, while formal indicates that the representation of this agreement is in
some sort of computer-understandable format. Note the rather open notion of a domain
conceptualization in the definition: ontology research makes no claim about the nature
of the knowledge to be modelled [4].

Thus, as depicted in Figure 1, ontologies have a dual reference. They are not only
‘CS’ specs referencing a computational implementation (like conventional information
systems (IS) or database models or schemas), but they have an explicit real-world con-
tent or substantive reference as well [5,6,1,7]. In current CS and KE research the com-
putational reference seems to get more of the attention. However, we believe that the
domain content reference is at least equally important, and not just because this is where
future massive application of ontologies will be. Offen [2] makes the important general
comment that “domain understanding is the key to successful system development”. In
our view, this is where the real value of ontologies lies.

We observe that developing this understanding — which is a key practical use of
today’s ontology building [4] — is in fact a (real-world domain) conceptualization and
theory formation act. The content or substantive reference of ontologies means that
ontologies function as ways to build and test what are in fact theories that purport to
adequately model an, often empirical, domain or phenomenon. In other words, ontology

114 H. Akkermans and J. Gordijn

Ontology

Real-
World

Domain

Computer
Information

System

Theoretical
Model of

Computational
Specification for

Ontology

Real-
World

Domain

Computer
Information

System

Theoretical
Model of

Computational
Specification for

Fig. 1. The conceptualization triangle and the dual reference of ontologies

engineering can be viewed and employed as a method for theory formation. And it is
one that appears to be useful for a wide variety of domains and disciplines.

3 The Conception of Theory in Other Sciences

Many works in the philosophy of science (e.g. [8,9,10,11]) and in scientific research
methodology (e.g. [12,13,14,15,16]) emphasize the key importance, and difficulty, of
conceptualization and theory formation in scientific research. We believe that the role
of ontology as a rigorous instrument for conceptualization and theory formation in this
sense is currently often overlooked, within CS and KE as well as outside.

Ontology engineering as a theory formation method is admittedly still at a relatively
early stage. It potentially widens the scope and importance of ontology engineering as
a scientific method of general interest, but it also comes with additional scientific issues
and duties. And first of all, we have to ask the question what actually counts as a theory
in scientific research.

Already a quick scan of the above-cited literature covering different disciplines,
shows that there are very different notions in science what a theory is, ought to be,
or looks like. There is sometimes the attitude among researchers that such ‘philosoph-
ical’ issues are external to the scientific debate in a research discipline. Nothing could
be further from the truth. Perhaps this inside-the-box thinking is adequate for progress
in mainstream normal puzzle-solving science (as Kuhn [8] calls it). In times of change
it is different.

For example, in the constitutive era of classical mechanics, scientists such as New-
ton were not called physicists but (rightly) natural philosophers. Quantum mechan-
ics as formulated by Bohr, Schrödinger, Heisenberg, and others was driven very much
by a conceptual and philosophical discussion on foundations. The famous Einstein-
Podolski-Rosen ‘paradox’ debated with Bohr in the 1930’s in the Physical Review (not
a philosophical journal, by the way) is a case in point [10]; there was not even any tech-
nical disagreement about the formalism or the equations or on how to compute things.

Ontology Engineering, Scientific Method and the Research Agenda 115

The birth of (symbolic) AI as a discipline in the 1950’s is another good example (as are
the debates concerning the pros and cons of symbolic vs. subsymbolic AI).

And closer to home, the history of Knowledge Engineering itself shows how strongly
views concerning the broad conceptual and philosophical foundations of a field are
influential in actually shaping it. There is a big difference between the mainstream view
on KE during the heydays of expert systems (of, say, the late seventies to mid eighties)
to the later conceptual model-based approach (see e.g. [17]) that is closely connected
to today’s ontology approaches. This becomes clear already by simply glancing over
the (about twenty) years of the Proceedings of the present conference, EKAW (or its
North-American counterpart KAW, now K-CAP).

Accordingly, different seemingly ‘philosophical’ views on the foundations of a field
do have important practical consequences for research as it is actually organized, car-
ried out, and reviewed (and so, accepted or rejected), cf. [18,19]. Elsewhere, we have
discussed at some length various scientific disciplines and research approaches that turn
out to have fundamentally different views on what a theory is and how it can or should
be evaluated [20].

As pointed out there, theory in the natural sciences appears to be basically equated
with formal math and its associated machinery. The logic-oriented research approaches
in CS and KE are clearly heavily influenced by this image of science in what a theory
is. However, another important element in natural science theorizing is the underly-
ing assumption that the scientific method is first of all about uncovering the (abstract)
fundamental ‘first’ principles as the (axiomatic) basis for universal theories and laws.
This is not really the same as formal mathematical representation of theory (witness for
example the mentioned Einstein-Bohr debate). It is first of all a matter of conceptual-
ization that precedes the formal representation. Einstein is said to have the habit to start
lectures with extensive fundamental conceptual discussions and only after some time to
move to the formal equations: “Nun wollen wir x-en” — Now we will write down the
x’s, the formal symbolism. An example of ontology research in this area attempting to
combine formal math with conceptual modelling is the PHYSSYS ontology of [21] for
physical systems modelling and simulation (Figure 2).

The social sciences provide yet other images of science that are relevant to ontology
research (cf. Peter Mika’s viewpoint article [22]). A major distinction here is that be-
tween the ‘quantitative’ and ‘qualitative’ schools of methodological thought (for exten-
sive overviews, good sources are Robson [13] and Bryman [15]). Characteristic for the
quantitative school is the reductionist approach from complex conceptual frameworks
and concepts (‘constructs’) to variables as its theoretical languange and its preference
for statistical methods for testing. Cohen’s work on Empirical Methods for Artificial
Intelligence [23] is in fact to a significant extent a translation of the school thought and
empirical testing methodology of quantitative social research to AI and CS. Information
Systems research as published in journals such as the MIS Quarterly, an important fo-
rum for much business school related research on IT, is also strongly influenced by this
quantitative school. The prototypical form that theory assumes here is that of a small
directed graph with variables as nodes; the edges represent the putative relationships
between the variables and so supply the hypotheses to be tested.

116 H. Akkermans and J. Gordijn

Fig. 2. The PHYSSYS ontology has for example been used in the computer-aided design of this
car. Constable Rob Piper shows the new electric patrol car of the Kidderminster police, England.
Courtesy photograph: Associated Press Photo/David Jones.

The qualitative school in social research also has an empirical focus [24] but em-
phasizes that (unlike the natural sciences) it is not so much the outside and context-
free view of the researcher/observer that is important in explaining the world, but the
context-inclusive interpretation and meaning that people themselves attach to their so-
cial world. Works in KE close to the ‘interpretive’ or ‘social constructivist’ approach
to science are for example the volumes Knowledge Acquisition as Modeling edited by
Ken Ford and Jeffrey Bradshaw [25], and Expertise in Context edited by Feltovich et
al. [26]. Characteristic for the qualitative and interpretive approach are methods such as
interview, focus group, observation, ethnography, action research, case study — empir-
ical research methods widely used in Information Systems research and practice (e.g.
[27]) and, to a lesser extent, also employed in ontology research [6,5,28]. Theory in
the qualitative school of thought is typically in the form of an extensive conceptual
framework and argument put forward in an essay-like style, although there are attempts
toward more formal approaches (cf. [24]; a specific example is grounded theory —
which interestingly has similarities with good old bottom-up knowledge elicitation). In
Knowledge Management theory, a good example is [29], but we also find it in AI (e.g.
[30]; by the way, it also applies to the present paper). With respect to this style of the-
orizing, ontology methods and representations can add significant clarity and rigour, as
we will argue below.

In sum, we believe it is important to investigate the underlying but often tacit
assumptions made in researching, publishing and reviewing in the (theoretical as well
as applied) ontology field. The content/substantive reference of ontologies implies that
ontology engineering is an inherently multidisciplinary approach to theory formation.
Therefore, it has to deal with very different conceptions and styles of scientific research
and of what the form and nature of a scientifically acceptable theory is. This impacts for
example the representation of ontologies: it is unlikely that with RDF and OWL as Web

Ontology Engineering, Scientific Method and the Research Agenda 117

standards we have reached the end of representation (and even less so, of reasoning
methodology), given the indicated highly diverse forms of scientific theorizing.

4 Ontology as Scientific Method for Theory Formation

The content reference of ontologies is the primary entry that makes ontologies inter-
esting and useful for experts outside the CS domain. Ontologies as substantive theories
offer ways to model phenomena of interest, and in particular model theories that are
cast in the form of a conceptual framework (common in social sciences, as discussed
above) in a much more rigorous fashion. In addition, and this is where the second, com-
putational reference of ontologies comes in, they offer ways for testing such models
by means of simulation, calculation, or other computational means. But even more im-
portantly, ontology engineering — as an advanced branch of conceptual modelling —
is providing richer and more flexible ways for conceptualization and theory formation
than currently in use in many domains and scientific disciplines.

Scientific theory generally seems to assume two extreme forms: either formal-
mathematical (as typically encountered in the ‘exact’ natural sciences), or informal in
natural language and essayistic (common in social sciences and the humanities). In con-
trast, IS-style conceptual modelling and particularly ontology engineering have over the
years developed novel methods for conceptualization that are more formal and rigorous
than theories in natural language, thus allowing for stronger, computational and other
forms of validation for example by CASE and simulation tools.

At the same time, the graphical and diagram representations developed and em-
ployed in conceptual modelling and ontology engineering make the associated theories
much more understandable and accessible to experts and practitioners in other domains
compared to formal math and logic. Conceptual and ontological analysis, graphical

Value
Interface

Value
Offering

Value
Exchange

Value
Port

Value
Activity

Value
Object

hashas

consists-of

has-in offers-
requests

0..1 1..* 1..* 0..1

1

1..*

1..*

0..* 1

10..*0..* 1
has-out

Actor

in

assigned-
to-ac

assigned-
to-va

in

offered-re-
quested-by

in-connects

out-connects

performed-by performs

0..* 1

consists-of1

1..2

Value
Transaction

1..*

1..* in

consists-of

Fig. 3. The e3value ontology for networked business models

118 H. Akkermans and J. Gordijn

diagramming methods, and their combination with formal computational reasoning
techniques have over the years been elaborated into a fine art at a level of sophistication
not found elsewhere.

A practical example that demonstrates several of the above points is the e3value
ontology for networked business modelling (Figure 3; [31,6,5,28]). As a theory, it ef-
fectively formalizes existing concepts from business research literature about which
there is a good deal of consensus [31]. A formal ontology goes however much further:
it includes rules and constraints (many of them present but rather implicit in the domain
literature) which with it is possible to reason, and so to find out what the inferential
consequences of a theory are. It is here that the computational paradigm shows its value
with regard to other disciplines. In the present example, it makes it possible to design
and reason about the potential of new business model ideas (including net present value
and cashflow analyses in a business network). Given the complexity of such reasoning
methods that surpasses the possibilities of manual analysis, computational tooling is
necessary and important.

Fig. 4. Visual representation of an e3value business model for a news media e-service

However, tooling should be ideally such that it hides the complexity ‘under the hood’
as far as possible, in order to facilitate work with users and practioners. Figure 4 shows an
example of the graphical diagram representation of an ontology instance. The associated
e3value tool for networked business modelling (www.e3value.com) employs internally
the formal ontology, but enables the user to develop the application ontology in an al-
most fully graphical way. The RDF(S) representation of the application ontology is not
constructed by the user or ontology developer, but is automatically generated by the tool.

In summary, looking at ontologies from their content reference point of view sug-
gests that ontology engineering can be usefully interpreted as a scientific method for
conceptualization and theory formation, and one that brings several novel contributions.

Ontology Engineering, Scientific Method and the Research Agenda 119

5 Reuse: Ontologies as Middle-Range Theories

Conceiving the content/domain reference of ontologies as ‘the application view’ is quite
natural for CS researchers, but overly limiting. Domain experts, on their turn, often see
it equally simply the other way around: the CS work as the application side (or even
worse: as ‘just programming’).

Ontologies as theories — that are to be sharable and reusable — go significantly
beyond the application view. Already in ontology research quite long ago (e.g. [32,21]),
distinctions have been made in different types of ontologies that have different levels of
generality, and therefore of reusability. A simplified picture distinguishes three different
levels of generality:

1. At the top level, with maximum genericity, we have the upper ontologies
that formalize highly generic (‘universal’) concepts concerning, say, mereology,
taxonomy, space, time, etc. (see for example IEEE Upper Ontology work at
http://suo.ieee.org/SUO/SUMO/, or some ontology engineering patterns of the
W3C Semantic Web Best Practices & Deployment Working Group, http://www.
w3.org/2001/sw/BestPractices/Overview.html).

2. At the bottom level, we have the application ontologies that are key in driving spe-
cific applications and tasks, but in terms of their generality tend to trade reusability
for practical usability.

3. In-between we have what we call middle-range ontologies: they concern a domain,
are less universal than the top-level ontologies, but generic and reusable across
many different applications. The e3value ontology is an example of an ontology as
such a middle-range theory.

What in CS and KE are called application domains are in fact themselves broad ar-
eas where ontologies can be (made) sharable and reusable beyond a specific application
context. Here, ontologies have the capability to express what in social science research
are called “middle-range theories” (hence our terminology): theories that have a much
wider applicability than the situations, contexts, or cases from which they actually orig-
inate.

For an interesting methodological discussion how to develop middle-range theories
in scientific research, we refer to the book of one of the grand old men of sociology,
Howard Becker [12]). One practical recommendation he gives to come to middle-range
theories and hypotheses, is to describe case-study conclusions without being allowed to
mention the specific case itself anywhere. This forces one to come up with and consider
more generally valid formulations. It is also good advice for knowledge acquisition in
ontology development.

6 Ontology Evaluation and Validation

Scientific theories are supposed to be empirically and/or pragmatically valid in their
domain of reference. In terms of the dual reference of Figure 1, ontologies are to be
both computationally and epistemologically adequate.

CS tends to focus on methods for the former, and indeed here it has a lot of added
value for scientists and practitioners in other domains: it is usually impossible to foresee

120 H. Akkermans and J. Gordijn

all consequences that a theory has manually, or to get a grip on all possible paths that
motivating domain scenarios might follow. Computational implementation and test of
ontologies is thus necessary and useful, but its strength is in forms of consistency and
validity that are internal to the theory that is tested. It is restricted to what in philosoph-
ical terms is called a coherence conception of truth, and this is what logic-based and
computational evaluation does for us.

If however we take the content reference aspect of ontologies seriously, a much
stronger emphasis on empirical ontology validation is called for. Ontologies are good
only insofar as they are empirically valid from the domain theory point of view. This
requires more and different validation activities than just computer-oriented ones. This
is a KE theme recurring in the work of Tim Menzies, e.g. [33], and it is also the thrust
of Cohen’s [23] call to AI. We believe that these authors make a point that is very valid
in current ontology research. Richer and stronger notions of validation, in particular
external validity, are in need of more emphasis in the ontology research field.

How can ontology evaluation and validation be practically done? In our view, there
are several different approaches that may be employed in parallel. Not only there are, as
discussed above, several different conceptions of theory, there are also multiple notions
of validity that are applicable. In other sciences (notably social research), the various
notions of validity have been discussed in quite some more depth than is the case in CS,
and many corresponding suitable scientific methods for evaluation and validation have
been developed. However, mainstream ontology research tends to employ an (overly)
limited repertoire of available scientific methods for testing its claims.

As we have argued elsewhere [20], validation of claims to knowledge assumes in
science the form of a rational communicative argument that must be defended and
made credible. In scientific work, available empirical data and theory are systematically
brought together such that knowledge claims follow in a step-by-step and transparent
process of rational reasoning. Ontologies, as they represent knowledge structures that
are reusable and community-sharable, should satisfy general criteria of validity con-
cerning rational communicative argument.

The general structure and rules of argument have been investigated in past years in
philosophy [34], communication theory [35], and critical thinking and informal logic
[36]. A simple model of the general layout of arguments due to Toulmin [34] is depicted
in Figure 5.

Data

Warrant

Restrictions

Qualifications

Claim

Backing(Theory)

(Interpretation of
Data into Theory)

(Reasons)Data

Warrant

Restrictions

Qualifications

Claim

Backing(Theory)

(Interpretation of
Data into Theory)

(Reasons)

Fig. 5. The structure of argument

Ontology Engineering, Scientific Method and the Research Agenda 121

This model suggests a checklist of criteria and questions [20] that is also practically
useful to review the adequacy of the computational and especially content references of
ontologies:

1. Descriptive validity D: do the supplied empirical (domain) data provide a truthful
description of the situation or problem that is considered?

2. Theoretical validity T: are the employed theories or conceptual frameworks expli-
cated and shown to be appropriate for the (domain) purpose?

3. Interpretive validity I: is the way in which all available data are mapped onto or
interpreted in the employed theories or frameworks clear and adequate?

4. Reasoning validity R: are all steps in the reasoning sound and, in addition, consis-
tent and coherent with other knowledge that we possess?

5. Internal validity Cint : are the claims made acceptable ‘beyond reasonable doubt’
within the situation or context (or sample) considered in the study?

6. External validity Cext : are any generalization claims that go beyond the studied
situation sufficiently credible?

These different questions as to validity require different kinds of test methods
[20,18,19]. In CS and KE, methods for logico-mathematical demonstration (‘proof’)
are well developed: if a theory is sufficiently rigorously specified, certain desired prop-
erties may be strictly mathematically or logically derived. This is seen in formal ontol-
ogy, from description logics to OntoClean.

A further step, one that is also well developed, is computational simulation and
analysis: the computer has made it possible to run very high numbers of scenarios and
explore a large parameter space. This approach to validation might be viewed as the
computational extension of the thought experiment (a very ancient technique, famous
as a result of the Einstein-Bohr debate on the interpretation of quantum mechanics —
in today’s terms very much a discussion on ontologies). In ontological analysis, the
direct analogy with thought experiments are walkthrough methods that employ men-
tal or paper simulations of simple application scenarios; they are in our experience a
quite effective method at an early stage of development. A main caveat here is that in
the end the motivating scenarios selected for computational evaluation should not be
toy examples, but be sufficiently real-world like and cover a good part of the design
space, in order to be convincing in terms of validation of claims. There is some room
for improvement here in current CS and KE research.

These methods can establish the validity of the computational reference of ontolo-
gies. In terms of the above validity checklist, they establish reasoning validity and,
but only partially, help answer other validity questions such as theoretical and inter-
nal validity. To validate the substantive content reference of ontologies, however, other
notions of validity are more prominent, in particular descriptive and external valid-
ity, and they require other methods for their evaluation. It is here that CS and KE can
learn quite a lot from other disciplines that have put major efforts into the development
and refinement of experimental methods (in the lab, but for our purposes especially in
the field) as well as of empirical methods for practice/experience-oriented field studies
[13,15,14,16,24,37,12].

An essential issue for ontology evaluation and validation that needs to be more ex-
plicitly considered in research is the aspect of context. Ontologies are usable because

122 H. Akkermans and J. Gordijn

they function successfully in specific domain, task, and/or application contexts that exist
in the field. Ontologies are reusable only if we succeed in solving the (external valid-
ity) question to what extent they work satisfactorily across different contexts (compare
also [22]). This issue is behind our above-discussed idea of ontologies as middle-range
theories.

Our position here is that approaches to ontology evaluation and validation need to be
(field) context inclusive, in ways that are in clear contrast with the orthodox context-free
scientific ideals of empirical confirmationist/falsificationist research (often associated
with writers such as Popper). These issues have been discussed extensively in social
research, especially in the context of case study methodology [37] and action research
[13,27], but they are too much ignored in CS and KE. Avoiding to deal with context
is minimally a very (and in our view too) high price to pay for scientific research in
ontologies, an important point that was already made in older KE work [25,26] but
needs to be reiterated. Focus on content entails dealing with context.

7 No Ontology Without Methodology

The call for a “focus on content” in ontology research by Nicola Guarino and Mark
Musen [1] in their launching statement of the journal Applied Ontology has quite some
implications and ramifications. In particular, we have argued that:

– Ontology engineering offers a potential contribution to scientific method in general,
as a fundamental approach to conceptualization and theory formation with new
techniques valuable to many (non-CS) domains and disciplines.

– This however requires that the content or substantive reference of ontologies is
taken to heart by ontology engineers in addition to the common CS issues.

– This goes against the not uncommon attitude that outside domains represent ap-
plication research (that academically speaking has a lower rank than fundamental
research).

– Especially, this requires that issues and methods of empirical and practical vali-
dation of theories — as much further developed in other scientific disciplines —
become more prominent and adopted in ontology engineering.

Taking application domain theories and the associated content reference of ontolo-
gies really seriously as first-class citizens in our research will actually increase the con-
tribution of ontology engineering to the development of scientific method in general.

A further step on the research agenda to be taken in our view is that ontologies should
develop from the current static representations of relatively stable domain content into
actionable theories-in-use (as opposed to ‘espoused theories’; these are concepts stem-
ming from organizational learning [38,39,40]). We believe it is a fair characterization
of the state of the art to say that ontologies are still quite generally perceived as static
representations and metadata annotations of knowledge.

However, ontologies have to do something for people: they are to provide actionable
knowledge, and this involves system dynamics. Ontologies can therefore not (or no
longer) be specified ‘as such’. In addition, the specific forms and methods of reasoning
they employ or presuppose is to become an inherent part of the specification.

Ontology Engineering, Scientific Method and the Research Agenda 123

An observation resulting from the mentioned context-relatedness of ontologies is
that in practice there are many different methods that make them do useful work.
This is already true if we limit ourselves to the formal logic-based approaches that
go with different deduction engines. It is even more true if we consider reasoning ma-
chineries needed for Semantic Web Services. And the scope of dynamic methods is
even broader if we consider ontologies as part of rational communicative argument (cf.
Figure 5) constructed and shared within a community of practice, a perspective com-
mon in ontology-based Knowledge Management. In other words: no ontology without
methodology.

Beyond this, a further way forward for the research agenda would be to start to
employ the computational paradigm for the dynamic feedback loops in Knowledge En-
gineering and Knowledge Management themselves. Given the significant amounts of
knowledge available on the Web, plus a broad repertory of dynamic reasoning methods
available, it seems well possible to build in capabilities for self-organization of systems
and services, in which ontologies act as service-oriented knowledge utilities that can be
delivered over the Web. There are currently several useful hooks from ongoing research,
although they are still in an early stage of technical development, content and detail. So
that is a story to be told elsewhere, another time.

Acknowledgments. This work was partially supported by the European Network of
Excellence KnowledgeWeb, the BSIK Freeband/FRUX project, and the VU∗ centre
VUBIS for Business Information Sciences in Amsterdam. We are also grateful for the
many interesting reactions by the Semantic Web and GREETING meeting participants
in Amsterdam, where a first version of the present views was discussed by the first
author.

References

1. Guarino, N., Musen, M.: Applied ontology: Focusing on content. Applied Ontology 1(1)
(2005) 1–5

2. Offen, R.: Domain understanding is the key to successful system development. Requirements
Engineering 7 (2002) 172–175

3. Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisi-
tion 5(2) (1993) 199–220

4. Mika, P., Akkermans, J.: Towards a new synthesis of ontology technology and knowledge
management. The Knowledge Engineering Review 19(4) (2004) 317–345 DOI Online 11
November 2005.

5. Akkermans, J., Baida, Z., Gordijn, J., Peña, N., Altuna, A., Laresgoiti, I.: Value webs: Using
ontologies to bundle real-world services. IEEE Intelligent Systems 19(4) (2004) 57–66

6. Gordijn, J., Akkermans, J.: Value-based requirements engineering: Exploring innovative e-
Commerce ideas. Requirements Engineering 8(2) (2003) 114–134

7. Evermann, J., Wand, Y.: Ontology based object-oriented domain modelling: Fundamental
concepts. Requirements Engineering 10 (2005) 146–160

8. Kuhn, T.: The Structure of Scientific Revolutions. The University of Chicago Press, Chicago
(1970) Second Edition.

9. Lakatos, I., Musgrave, A., eds.: Criticism and the Growth of Knowledge. Cambridge Uni-
versity Press, Cambridge (1970)

124 H. Akkermans and J. Gordijn

10. Jammer, M.: The Philosophy of Quantum Mechanics. Wiley-Interscience, New York (1974)
11. Feyerabend, P.: Against Method. Verso, London (1993) Third Edition.
12. Becker, H.: Tricks of the Trade — How to Think About Your Research While You’re Doing

It. University of Chicago Press, Chicago (1998)
13. Robson, C.: Real World Research. Blackwell Publishers, Oxford, UK (2002) Second Edition.
14. Bowling, A.: Research Methods in Health: Investigating Health and Health Services. Open

University Press, Maidenhead, Berkshire, UK (2002) Second Edition.
15. Bryman, A.: Research Methods and Organization Studies. Routledge, London, UK (1989)
16. Babbie, E.: The Practice of Social Research. Wadsworth Publishing Company, Belmont, CA

(1998) Eighth Edition.
17. Schreiber, A., Akkermans, J., Anjewierden, A., de Hoog, R., Shadbolt, N., der Velde, W.V.,

Wielinga, B.: Knowledge Engineering And Management — The COMMONKADS Method-
ology. The MIT Press, Cambridge, MA (2000)

18. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper classifi-
cation and evaluation criteria: A proposal and a discussion. Requirements Engineering 11(1)
(2006) 102–107

19. Hevner, A., March, S., Park, J., Ram, S.: Design science research in information systems.
MIS Quarterly 28(1) (2004) 75–105

20. Akkermans, J., Gordijn, J.: What is this science called requirements engineering? In Glinz,
M., Lutz, R., eds.: Proceedings 14th IEEE International Conference on Requirements Engi-
neering (RE06), Los Alamitos, CA, IEEE Computer Society (2006)

21. Borst, W., Akkermans, J., Top, J.: Engineering ontologies. International Journal of Human-
Computer Studies 46 (1997) 365–406

22. Mika, P.: Social networks and the semantic web: The next challenge. IEEE Intelligent
Systems 20(1) (2005) 80–93

23. Cohen, P.: Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge, MA
(1995)

24. Miles, M., Huberman, A.: Qualitative Data Analysis. Sage Publications, Thousand Oaks,
CA (1994) Second Edition.

25. Ford, K., Bradshaw, J., eds.: Knowledge Acquisition as Modeling. Wiley, New York, NY
(1993)

26. Feltovich, P., Ford, K., Hoffman, R., eds.: Expertise in Context. AAAI Press / The MIT
Press, Menlo Park, CA / Cambridge, MA (1997)

27. Checkland, P., Holwell, S.: Information, Systems and Information Systems — Making Sense
of the Field. John Wiley & Sons Ltd, Chichester, UK (1998)

28. Gordijn, J., Yu, E., Van der Raadt, B.: e-Service design using i∗ and e3value modeling. IEEE
Software 23(3) (2006) 26–33

29. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company. Oxford University Press,
Oxford, UK (1995)

30. Ford, K., Glymour, C., Hayes, P., eds.: Thinking About Android Epistemology. The MIT
Press, Cambridge, MA (2006)

31. Gordijn, J., Akkermans, J., van Vliet, J.: What’s in an electronic business model? In Di-
eng, R., Corby, O., eds.: Knowledge Engineering and Knowledge Management — Methods,
Models, and Tools. Volume 1937 of LNAI., Berlin, D, Springer Verlag (2000) 257–273 (12th
International Conference EKAW-2000).

32. Van Heijst, G., Schreiber, A., Wielinga, B.: Using explicit ontologies in KBS development.
International Journal of Human-Computer Studies 45 (1997) 183–292

33. Menzies, T.: Model-based requirements engineering. Requirements Engineering 8 (2003)
193–194

34. Toulmin, S.: The Uses of Argument. Cambridge University Press, Cambridge, UK (1958)
Updated Edition 2003.

Ontology Engineering, Scientific Method and the Research Agenda 125

35. van Eemeren, F., Grootendorst, R.: A Systematic Theory of Argumentation — The Pragma-
Dialectical Approach. Cambridge University Press, Cambridge, UK (2004)

36. Fisher, A.: The Logic of Real Arguments. Cambridge University Press, Cambridge, UK
(2004) Second Edition.

37. Yin, R.: Case Study Research — Design and Methods. SAGE Publications, Thousand Oaks,
CA (2003) Third Edition.

38. Argyris, C.: On Organizational Learning. Blackwell Publishers, Cambridge, MA (1992)
39. Argyris, C.: Knowledge for Action. Jossey-Bass Publishers, San Francisco, CA (1993)
40. Argyris, C.: Reasons and Rationalizations — The Limits to Organizational Knowledge.

Oxford University Press, Oxford, UK (2004) See especially Ch. 5: ‘Features of Scholarly
Inquiry that Inhibit Double-Loop Learning and Implementable Validity’.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 126 – 140, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Ontology Enrichment Through Automatic Semantic
Annotation of On-Line Glossaries

Roberto Navigli and Paola Velardi

Dipartimento di Informatica
Università di Roma “La Sapienza”

00198 Roma Italy
{navigli, velardi}@di.uniroma1.it

Abstract. The contribution of this paper is to provide a methodology for
automatic ontology enrichment and for document annotation with the concepts
and properties of a domain core ontology. Natural language definitions of
available glossaries in a given domain are parsed and converted into formal
(OWL) definitions, compliant with the core ontology property specifications.

To evaluate the methodology, we annotated and formalized a relevant
fragment of the AAT glossary of art and architecture, using a subset of 10
properties defined in the CRM CIDOC cultural heritage core ontology, a recent
W3C standard.

Keywords: Ontology Learning, Core Ontology, Glossaries.

1 Introduction

Large-scale, automatic semantic annotation of web documents based on well
established domain ontologies would allow various Semantic Web applications to
emerge and gain acceptance. Wide coverage ontologies are indeed available for
general-purpose domains (e.g. WordNet, CYC, SUMO1), however semantic
annotation in unconstrained areas seems still out of reach for state of art systems.
Domain-specific ontologies are preferable since they would limit the domain and
make the applications feasible.

Recently, certain web communities began to believe in the benefits deriving from
the application of Semantic Web techniques. Accordingly, they produced remarkable
efforts to conceptualize their competence domain through the definition of a core
ontology. Relevant examples are in the area of enterprise modeling (Fox et al. 1997;
Uschold et al. 1998) and cultural heritage (Doerr, 2003).

Core ontologies are indeed a necessary starting point to model in a principled way
the basic concepts, relations and axioms of a given domain. But in order for an
ontology to be really usable in applications, it is necessary to enrich the core structure
with the thousands of concepts and instances that “make” the domain.

1 WordNet: http://wordnet.princeton.edu, CYC: http://www.opencyc.org, SUMO: http://www.

ontologyportal.org

 Ontology Enrichment Through Automatic Semantic Annotation 127

In this paper we present a methodology to automatically annotate a glossary G with
the semantic relations of an existing core ontology O. The annotation of documents
and glossary definitions is performed using regular expressions, a widely adopted text
mining approach. However, while in the literature regular expressions seek mostly for
patterns at the lexical and part of speech level, we defined expressions enriched with
syntactic and semantic constraints. A word sense disambiguation algorithm, SSI
(Velardi and Navigli, 2005), is used to automatically replace the high level semantic
constraints specified in the core ontology with fine–grained sense restrictions, using
the sense inventory of a general purpose lexicalized ontology, WordNet.

From each gloss G of a term t in the glossary G, we extract one or more semantic
relation instances R(Ct,Cw), where R is a relation in O, Ct and Cw are respectively the
domain and range of R. The concept Ct corresponds to its lexical realization t, while
Cw is the concept associated to a word w in G, captured by a regular expression.

The annotation process allows to automatically enrich O with an existing glossary
in the same domain of O, since each pair of term and gloss (t,G) in the glossary G is
transformed into a formal definition, compliant with O. Furthermore, the very same
method can be used to automatically annotate free text with the concepts and relations
of the enriched ontology O’. We experimented our methodology in the cultural
heritage domain, since for this domain several well-established resources are
available, like the CIDOC-CRM core ontology, the AAT art and architecture
thesaurus, and others.

The paper is organized as follows: in Section 2 we briefly present the CIDOC and
the other resources used in this work. In Section 3 we describe in detail the ontology
enrichment algorithm. Finally, in Section 4 we provide a performance evaluation on a
subset of CIDOC properties and a sub-tree of the AAT thesaurus. Related literature is
examined in Section 5.

2 Semantic and Lexical Resources in the Cultural Heritage Domain

In this section we briefly describe the resources that have been used in this work.

2.1 The CIDOC CRM

The core ontology O is the CIDOC CRM (Doerr, 2003), a formal core ontology
whose purpose is to facilitate the integration and exchange of cultural heritage
information between heterogeneous sources. It is currently being elaborated to
become an ISO standard. In the current version (4.0) the CIDOC includes 84
taxonomically structured concepts (called entities) and a flat set of 141 semantic
relations, called properties. Entities are defined in terms of their subclass and super-
class relations in the CIDOC hierarchy, and a scope note is used to provide an
informal description of the entity. Properties are defined in terms of domain (the class
for which a property is formally defined) and range (the class that comprises all
potential values of a property), e.g.:

128 R. Navigli and P. Velardi

P46 is composed of (forms part of)
Domain: E19 Physical Object
Range: E42 Object Identifier

The CIDOC is an “informal” resource. To make it usable by a computer program, we
replaced specifications written in natural language with formal ones. For each
property R, we created a tuple R(Cd,Cr) where Cd and Cr are the domain and range
entities specified in the CIDOC reference manual.

2.2 The AAT Thesaurus

The domain glossary G is the Art and Architecture Thesaurus (AAT) a controlled
vocabulary for use by indexers, catalogers, and other professionals concerned with
information management in the fields of art and architecture. In its current version2 it
includes more than 133,000 terms, descriptions, bibliographic citations, and other
information relating to fine art, architecture, decorative arts, archival materials, and
material culture. An example is the following:

maestà
Note: Refers to a work of a specific iconographic type, depicting the Virgin Mary and Christ
Child enthroned in the center with saints and angels in adoration to each side. The type
developed in Italy in the 13th century and was based on earlier Greek types. Works of this type
are typically two-dimensional, including painted panels (often altarpieces), manuscript
illuminations, and low-relief carvings.
Hierarchical Position:
 Objects Facet
 Visual and Verbal Communication
 Visual Works
 <visual works>
 <visual works by subject type>
 maestà

We manually mapped the top CIDOC entities to AAT concepts, as shown in Table 1.

Table 1. Mapping between AAT and CIDOC

AAT topmost CIDOC entities
Top concept of AAT CRM Entity (E1), Persistent Item (E77)
Styles and Periods Period (E4)
Events Event (E5)
Activities Facet Activity (E7)
Processes/Techniques Beginning of Existence (E63)
Objects Facet Physical Stuff (E18), Physical Object (E19)
Artifacts Physical Man-Made Stuff (E24)
Materials Facet Material (E57)
Agents Facet Actor (E39)
Time Time-Span (E52)
Place Place (E53)

2 http://www.getty.edu/research/conducting_research/ vocabularies/aat/

 Ontology Enrichment Through Automatic Semantic Annotation 129

2.3 Additional Resources

To apply semantic constraints on the words of a definition (as clarified in the next
Section), we need additional resources. WordNet (Miller, 1995) is used to verify that
certain words in a gloss-string f satisfy the range constraints R(Cd,Cr) in the CIDOC.
In order to do so, we manually linked the WordNet topmost concepts to the CIDOC
entities. For example, the concept E19 (Physical Object) is mapped to the WordNet
synset “object, physical object”. Furthermore, we created a gazetteer I of named
entities extracting names from the Dmoz3, a large human-edited directory of the web,
the Union List of Artist Names (ULAN) and the Getty Thesaurus of Geographic
Names (GTG) provided by the Getty institute, along with the AAT.

3 Enriching the CIDOC CRM with the AAT Thesaurus

In this Section we describe in detail the method for automatic semantic annotation and
ontology enrichment in the cultural heritage domain. Let G be a glossary, t a term in
G and G the corresponding natural language definition (gloss). The main steps of the
algorithm are the following:

1. Part-of-speech analysis. Each input gloss is processed with a part-of-speech
tagger, TreeTagger4. As a result, for each gloss G = w1 w2 … wn, a string of part-of-
speech tags p1 p2 … pn is produced, where pi ∈P is the part-of-speech tag chosen by
TreeTagger for word wi, and P = { N, A, V, J, R, C, P, S, W } is a simplified set of
syntactic categories (respectively, nouns, articles, verbs, adjectives, adverbs,
conjunctions, prepositions, symbols, wh-words).

2. Named Entity recognition. We augmented TreeTagger with the ability to capture
named entities of locations, organizations, persons, numbers and time expressions. In
order to do so, we use regular expressions (Friedl, 1997) in a rather standard way,
therefore we omit details. When a named entity string wi wi+1 … wi+j is recognized, it
is transformed into a single term and a specific part of speech denoting the kind of
entity is assigned to it (L for cities (e.g. Venice), countries and continents, T for time
and historical periods (e.g. Middle Ages), O for organizations and persons (e.g.
Leonardo Da Vinci), B for numbers).

3. Annotation of sentence segments with CIDOC properties. We developed an
algorithm for the annotation of gloss segments with properties grounded on the
CIDOC-CRM relation model. Given a gloss G and a property5 R, we define a relation
checker cR taking in input G and producing in output a set FR of fragments of G
annotated with the property R: <R>f</R>. The selection of a fragment f to be included
in the set FR is based on different kinds of constraints:

3 http://dmoz.org/about.html
4 TreeTagger is available at: http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger.
5 In what follows, we adopt the CIDOC terminology for relations and concepts, i.e. properties

and entities.

130 R. Navigli and P. Velardi

 a part-of-speech constraint p(f, pos-string) matches the part-of-speech (pos)
string associated with the fragment f against a regular expression (pos-string),
specifying the required syntactic structure.

 a lexical constraint l(f, k, lexical-constraint) matches the lemma of the word in k-
th position of f against a regular expression (lexical-constraint), constraining the
lexical conformation of words occurring within the fragment f.

 semantic constraints on domain and range sD(f, semantic-domain) and s(f, k,
semantic-range) are valid, respectively, if the term t and the word in the k-th
position of f match the semantic constraints on domain and range imposed by the
CIDOC, i.e. if there exists at least one sense of t Ct and one sense of w Cw such
that: Rkind-of

*(Cd, Ct) and Rkind-of
*(Cr, Cw)6.

More formally, the annotation process is defined as follows: a relation checker cR for
a property R is a logical expression composed with constraint predicates and logical
connectives, using the following production rules:

cR → sD(f, semantic-domain) ∧ cR’
cR’ → ¬cR‘| (cR’ ∨ cR’) | (cR’ ∧ cR’)
cR’ → p(f, pos-string) | l(f, k, lexical-constraint) | s(f, k, semantic-range)

where f is a variable representing a sentence fragment. Notice that a relation checker
must always specify a semantic constraint sD on the domain of the relation R being
checked on fragment f. Optionally, it must also satisfy a semantic constraint s on the
k-th element of f, the range of R.

For example, the following excerpt of the checker for the is-composed-of relation
(P46):

(1) cis-composed-of(f) = sD(f, physical object#1) ∧ p(f, “(V)1(P)2R?A?[CRJVN]*(N)3”)
∧ l(f, 1, “^(consisting|composed|comprised|constructed)$”)
∧ l(f, 2, “of”) ∧ s(f, 3, physical_object#1)

reads as follows: “the fragment f is valid if it consists of a verb in the set { consisting,
composed, comprised, constructed }, followed by a preposition “of”, a possibly empty
number of adverbs, adjectives, verbs and nouns, and terminated by a noun
interpretable as a physical object in the WordNet concept inventory”. The first
predicate, sD, requires that also the term t whose gloss contains f (i.e., its domain) be
interpretable as a physical object.

Notice that some letter in the regular expression specified for the part-of-speech
constraint is enclosed in parentheses. This allows it to identify the relative positions of
words to be matched against lexical and semantic constraints, as shown graphically in
Figure 1.

Checker (1) recognizes, among others, the following fragments (the words whose
part-of-speech tags are enclosed in parentheses are indicated in bold):
(consisting)1 (of)2 semi-precious (stones)3 (matching part-of-speech string: (V)1(P)2

J(N)3)
(composed)1 (of)2 (knots)3 (matching part-of-speech string: (V) 1(P)2(N)3)

6 Rkind-of* denotes zero, one, or more applications of Rkind-of.

 Ontology Enrichment Through Automatic Semantic Annotation 131

(V)1(P)2R?A?[CRJVN]*(N)3

(composed)1 (of)2 two or more (negatives)3

part-of-speech string

gloss fragment

Fig. 1. Correspondence between parenthesized part-of-speech tags and words in a gloss fragment

As a second example, an excerpt of the checker for the consists-of (P45) relation is
the following:

 (2) cconsists-of(f) = sD(f, physical object#1) ∧ p(f, “(V)1(P)2A?[JN,VC]*(N)3”)

∧ l(f, 1, “^(make|do|produce|decorated)$”) ∧ l(f, 2, “^(of|by|with)$”)
∧ ¬s(f, 3, color#1)∧ ¬s(f, 3, activity#1)
∧ (s(f, 3, material#1) ∧ s(f, 3, solid#1) ∧ s(f, 3, liquid#1))

recognizing, among others, the following phrases:

 (made)1 (with)2 the red earth pigment (sinopia)3 (matching part-of-speech string:
(V)1(P)2AJNN(N)3)

 (decorated)1 (with)2 red, black, and white (paint)3 (matching part-of-speech
string: (V)1(P)2JJCJ(N)3)

Notice that in both checkers (1) and (2) semantic constraints are specified in terms of
WordNet sense numbers (material#1, solid#1 and liquid#1), and can also be negative
(¬color#1 and ¬activity#1). The motivation is that CIDOC constraints are coarse-
grained due to the small number of available core concepts: for example, the property
P45 consists of simply requires that the range belongs to the class Material (E57).
Using WordNet for semantic constraints has two advantages: first, it is possible to
write more fine-grained (and hence more reliable) constraints, second, regular
expressions can be re-used, at least in part, for other domains and ontologies. In fact,
several CIDOC properties are rather general-purpose.

4. Formalisation of glosses. The annotations generated in the previous step are the
basis for extracting property instances to enrich the CIDOC CRM with a
conceptualization of the AAT terms. In general, for each gloss G defining a concept
Ct, and for each fragment f ∈ FR of G annotated with the property R: <R>f</R>, it is
possible to extract one or more property instances in the form of a triple R(Ct, Cw),
where Cw is the concept associated with a term or multi-word expression w occurring
in f (i.e. its language realization) and Ct is the concept associated to the defined term t
in AAT. For example, from the definition of tatting (a kind of lace) the algorithm
automatically annotates the phrase composed of knots, suggesting that this phrase
specifies the range of the is-composed-of property for the term tatting:

Ris-composed-of(Ctatting, Cknot)

In this property instance, Ctatting is the domain of the property (a term in the AAT
glossary) and Cknot is the range (a specific term in the definition G of tatting).

132 R. Navigli and P. Velardi

Selecting the concept associated to the domain is rather straightforward: glossary
terms are in general not ambiguous, and, if they are, we simply use a numbering
policy to identify the appropriate concept. In the example at hand, Ctatting=tatting#1
(the first and only sense in AAT). Therefore, if Ct matches the domain restrictions in
the regular expression for R, then the domain of the relation is considered to be Ct.
Selecting the range of a relation is instead more complicated. The first problem is to
select the correct words in a fragment f. Only certain words of an annotated gloss
fragment can be exploited to extract the range of a property instance. For example, in
the phrase “depiction of fruit, flowers, and other objects” (from the definition of still
life), only fruit, flowers, objects represent the range of the property instances of kind
depicts (P62).

When writing relation checkers, as described in the previous paragraph of this
Section, we can add markers of ontological relevance by specifying a predicate r(f, k)
for each relevant position k in a fragment f. The purpose of these markers is precisely
to identify words in f whose corresponding concepts are in the range of a property.
For instance, the checker (1) cis-composed-of from the previous paragraph is augmented
with the conjunction: ∧ r(f, 3). We added the predicate r(f, 3) because the third
parenthesis in the part-of-speech string refers to an ontologically relevant element (i.e.
the candidate range of the is-composed-of property).

The second problem is that words that are candidate ranges can be ambiguous, and
they often are, especially if they do not belong to the domain glossary G. Considering
the previous example of the property depicts, the word fruit is not a term of the AAT
glossary, and it has 3 senses in WordNet (the fruit of a plant, the consequence of some
action, an amount of product). The property depicts, as defined in the CIDOC, simply
requires that the range be of type Entity (E1). Therefore, all the three senses of fruit in
WordNet satisfy this constraint. Whenever the range constraints in a relation checker
do not allow a full disambiguation, we apply the SSI algorithm (Navigli and Velardi,
2005), a semantic disambiguation algorithm based on structural pattern recognition,
available on-line7. The algorithm is applied to the words belonging to the segment
fragment f and is based on the detection of relevant semantic interconnection patterns
between the appropriate senses. These patterns are extracted from a lexical knowledge
base that merges WordNet with other resources, like word collocations, on-line
dictionaries, etc.

For example, in the fragment “depictions of fruit, flowers, and other objects” the
following properties are created for the concept still_ life#1:

Rdepicts(still_ life#1, fruit#1)
Rdepicts (still_ life#1, flower#2)
Rdepicts (still_ life#1, object#1)

Some of the semantic patterns supporting this sense selection are shown in Figure 2.
A further possibility is that the range of a relation R is a concept instance. We

create concept instances if the word w extracted from the fragment f is a named entity.
For example, the definition of Venetian lace is annotated as “Refers to needle lace

7 SSI is an on-line knowledge-based WSD algorithm accessible from http://lcl.di.uniroma1. it/ssi.

The on-line version also outputs the detected semantic connections (as those in Figure 2).

 Ontology Enrichment Through Automatic Semantic Annotation 133

created <current-or-former-location> in Venice</current-or-former-location>
[…]”. As a result, the following triple is produced:

Rhas-current-or-former-location(Venetian_lace#1, Venice:city#1)

where Venetian_ lace#1 is the concept label generated for the term Venetian lace in
the AAT and Venice is an instance of the concept city#1 (city, metropolis, urban
center) in WordNet.

fruit#1

flower#2

object#1

depiction#1

bunch#1

rela ted- to

re
la

te
d-

to

flower
head#1

related-to

has-part

cyme#1

related-to

inflorescence
#2

kind-of

related-to

still life#1

related-to

related-to

description#1

kind-of

statement#1

kind-of

thing#5

related-to
related-to

appearance#1

portrayal#1

re
la

te
d-

to

related-to

kind-of

forest#2

land#3

ki
nd

-o
f

related-to

related-to

plant#1

rel
ate

d-to

organism#1 living thing#1

kind-of

kind-of

ki
nd

-o
f

Fig. 2. Semantic Interconnections selected by the SSI algorithm when given the word list:
“depiction, fruit, flower, object”

4 Evaluation

Since the CIDOC-CRM model formalizes a large number of fine-grained properties
(precisely, 141), we selected a subset of properties for our experiments (reported in
Table 2). We wrote a relation checker for each property in the Table. By applying the
checkers in cascade to a gloss G, a set of annotations is produced. The following is an
example of an annotated gloss for the term “vedute”:

Refers to detailed, largely factual topographical views, especially <has-time-span>18th-
century</has-time-span> Italian paintings, drawings, or prints of cities. The first vedute
probably were <carried-out-by>painted by northern European artists</carried-out-by> who
worked <has former-or-current-location>in Italy</has former-or-current-location><has-

134 R. Navigli and P. Velardi

time-span>in the 16th century</has-time-span>. The term refers more generally to any
painting, drawing or print <depicts>representing a landscape or town view</depicts> that is
largely topographical in conception.

Figure 3 shows a more comprehensive graph representation of the outcome for the
concepts vedute#1 and maestà#1 (see the gloss in Section 2.2).

maestà

Virgin Mary

Christ child

Italy13th century

painted panel

carving

altarpiece

illuminations

de
pi

ct
s

depicts

is-com
posed-of

is-com
posed-of

is-composed-of
is-composed-of

has-current

or-former-
location

ha
s

tim
e-s

pa
n

vedute

landscape

town view

Italy

18th century

artist

de
pi

ct
s

depicts

carried-out
by

has-current

or-former-
location

ha
s

tim
e-

sp
an

16th century has

time-span

work

has-type

topographical
views

has-type

Fig. 3. Extracted conceptualisation (in graphical form) of the terms maestà#1 and vedute#1
(sense numbers are omitted for clarity)

To evaluate the methodology described in Section 3 we considered 814 glosses
from the Visual Works sub-tree of the AAT thesaurus8, containing a total of 27,925
words. The authors wrote the relation checkers by tuning them on a subset of 122
glosses, and tested their generality on the remaining 692. The test set was manually
tagged with the subset of the CIDOC-CRM properties shown in Table 2 by two
annotators with adjudication (requiring a careful comparison of the two sets of
annotations).

We performed two experiments: in the first, we evaluated the gloss annotation
task, in the second the property instance extraction task, i.e. the ability to identify the
appropriate domain and range of a property instance. In the case of the gloss
annotation task, for evaluating each piece of information we adopted the measures of
“labeled” precision and recall. These measures are commonly used to evaluate parse
trees obtained by a parser (Charniak, 1997) and allow the rewarding of good partial
results. Given a property R, labeled precision is the number of words annotated
correctly with R over the number of words annotated automatically with R, while
labeled recall is the number of words annotated correctly with R over the total
number of words manually annotated with R.

Table 3 shows the results obtained by applying the checkers to tag the test set
(containing a total number of 1,328 distinct annotations and 5,965 annotated words).
Note that here we are evaluating the ability of the system to assign the correct tag to
every word in a gloss fragment f, according to the appropriate relation checker. We
choose to evaluate the tag assigned to single words rather than to a whole phrase,

8 The resulting OWL ontology is available at http://lcl.di.uniroma1.it/tav

 Ontology Enrichment Through Automatic Semantic Annotation 135

because each misalignment would count as a mistake even if the most part of a phrase
was tagged correctly by the automatic annotator.

The second experiment consisted in the evaluation of the property instances
extracted. Starting from 1,328 manually annotated fragments of 692 glosses, the
checkers extracted an overall number of 1,101 property instances. We randomly
selected a subset of 160 glosses for evaluation, from which we manually extracted
344 property instances.

Table 2. A subset of the relations from the CIDOC-CRM model

Code Name Domain Range Example

P26 moved to Move Place
P26(installation of public
sculpture, public place)

P27 moved from Move Place
P27(removal of cornice
pictures, wall)

P53
has former or

current location
Physical Stuff Place P53(fancy pictures, London)

P55
has current

location
Physical
Object

Place P55(macrame, Genoa)

P46
is composed of

(is part of)
Physical Stuff Physical Stuff P46(lace, knot)

P62 depicts
Physical

Man-Made
Stuff

Entity P62(still life, fruit)

P4 has time span
Temporal

Entity
Time Span

P4(pattern drawings,
 Renaissance)

P14
carried out by
(performed)

Activity Actor
P14(blotted line drawings,
 Andy Warhol)

P92
brought into
existence by

Persistent
Item

Beginning of
Existence

P92(aquatints, aquatint process)

P45
consists of

(incorporated in)
Physical Stuff Material P45(sculpture, stone)

Table 3. Precision and Recall of the gloss annotation task

Property Precision Recall
P26 – moved to 84.95% (79/93) 64.23% (79/123)
P27 – moved from 81.25% (39/48) 78.00% (39/50)
P53 – has former or current location 78.09% (916/1173) 67.80% (916/1351)
P55 – has current location 100.00% (8/8) 100.00% (8/8)
P46 – composed of 87.49% (944/1079) 70.76% (944/1334)
P62 – depicts 94.15% (370/393) 65.26% (370/567)
P4 – has time span 91.93% (547/595) 76.40% (547/716)
P14 – carried out by 91.71% (343/374) 71.91% (343/477)
P92 – brought into existence 89.54% (471/526) 62.72% (471/751)
P45 – consists of 74.67% (398/533) 57.60% (398/691)
Average performance 85.34% (4115/4822) 67.81% (4115/6068)

136 R. Navigli and P. Velardi

Two aspects of the property instance extraction task had to be assessed:

 the extraction of the appropriate range words in a gloss, for a given property
instance

 the precision and recall in the extraction of the appropriate concepts for both
domain and range of the property instance.

An overall number of 233 property instances were automatically collected by the

checkers, out of which 203 were correct with respect to the first assessment (87.12%
precision (203/233), 59.01% recall (203/344)).

In the second evaluation, for each property instance R(Ct, Cw) we assessed the
semantic correctness of both the concepts Ct and Cw. The appropriateness of the
concept Ct chosen for the domain must be evaluated, since, even if a term t satisfies
the semantic constraints of the domain for a property R, it still can be the case that a
fragment f in G does not refer to t, like in the following example:

pastels (visual works) -- Works of art, typically on a paper or vellum support, to which designs
are applied using crayons made of ground pigment held together with a binder, typically oil or
water and gum.

In this example, ground pigment refers to crayons (not to pastels).

The evaluation of the semantic correctness of the domain and range of the property
instances extracted led to the final figures of 81.11% (189/233) precision and 54.94%
(189/344) recall, due to 9 errors in the choice of Ct as a domain for an instance R(Ct,
Cw) and 5 errors in the semantic disambiguation of range words w not appearing in
AAT, but encoded in WordNet (as described in the last part of Section 3). A final
experiment was performed to evaluate the generality of the approach presented in this
paper.

As already remarked, the same procedure used for annotating the glosses of a
thesaurus can be used to annotate web documents. Our objective in this third
experiment was to:

 Evaluate the ability of the system to annotate fragments of web documents with

CIDOC relations
 Evaluate the domain dependency of the relation checkers, by letting the system

annotate documents not in the cultural heritage domain.

We then selected 5 documents at random from an historical archive and an artist’s
biographies archive9 including about 6,000 words in total, about 5,000 of which in the
historical domain. We then ran the automatic annotation procedure on these
documents and we evaluated the result, using the same criteria as in Table 3.

Table 4 presents the results of the experiment. Only 5 out of 10 properties had at
least one instance in the analysed documents. It is remarkable that, especially for the
less domain-dependent properties, the precision and recall of the algorithm is still
high, thus showing the generality of the method. Notice that the historical documents

9 http://historicaltextarchive.com and http://www.artnet.com/library

 Ontology Enrichment Through Automatic Semantic Annotation 137

influenced the result much more than the artist biographies, because of their
dimension.

In Table 4 the recall of P14 (carried out by) is omitted. This is motivated by the
fact that this property, in a generic domain, corresponds to the agent relation (“an
active animate entity that voluntarily initiates an action”10), while in the cultural
heritage domain it has a more narrow interpretation (an example of this relation in the
CIDOC handbook is: “the painting of the Sistine Chapel (E7) was carried out by
Michelangelo Buonarroti (E21) in the role of master craftsman (E55)”). However, the
domain and range restrictions for P14 correspond to an agent relation, therefore, in a
generic domain, one should annotate as “carried out by” almost any verb phrase with
the subject (including pronouns and anaphoric references) in the class Human.

Table 4. Precision and Recall of a web document annotation task

Property Precision Recall
P53 – has former or current location 79.84% (198/248) 77.95% (198/254)
P46 – composed of 83.58% (112/134) 96.55% (112/116)
P4 – has time span 78.32% (112/143) 50.68% (112/221)
P14 – carried out by 60.61% (40/66) - -
P45 – consists of 85.71% (6/7) 37.50% (6/16)
Average performance 78.26% (468/598) 77.10% (468/607)

5 Related Work and Conclusions

This paper presented a method, based on the use of regular expressions, to automatically
annotate the glosses of a thesaurus, the AAT, with the properties (conceptual relations)
of a core ontology, the CIDOC-CRM. The annotated glosses are converted into OWL
concept descriptions and used to enrich the CIDOC.

Several methods for ontology population and semantic annotation described in
literature (e.g. (Thelen and Riloff, 2002; Califf and Mooney, 2004; Cimiano et al.
2005; Valarakos et al. 2004)) use regular expressions to identify named entities, i.e.
concept instances. Other methods extract hypernym relations using syntactic and
lexical patterns (Snow et al. 2005; Morin and Jaquemin 2004) or supervised clustering
techniques (Kashyap et al. 2003). Evaluation of hypernymy learning methods is
usually performed by a restricted team of experts, on a limited set of terms, with
hardly comparable results, usually well over 40% error rate (Caraballo, 1999;
Maedche et al, 2002). When the evaluation is an attempt to replicate the structure of
an already existing taxonomy, the error rate is over 50-60% (Widdows, 2003).

As far as the adopted ontology learning technique is concerned, in our work we
automatically learn formal concepts (not simply instances or taxonomies, as in the
literature) compliant with the semantics of a well-established core ontology, the
CIDOC. In AAT the hypernym relation is already available, since AAT is a thesaurus,
not a glossary. However we developed regular expressions also for hypernym

10 http://www.jfsowa.com/ontology/thematic.htm

138 R. Navigli and P. Velardi

extraction from definitions11 (Velardi et al. 2006). When applying these patterns to the
AAT (for sake of space this is not discussed in this paper) we found that in 34% of the
cases the automatically extracted hypernym is the same as in AAT, and in 26% of the
cases, either the extracted hypernym is more general than the one defined in AAT, or
the contrary, wrt the AAT hierarchy. This result quite favorably compares with
available results in the literature.

Semantic annotation with relations other than hypernymy are surveyed in (Reeve and
Han, 2005), and again, regular expressions are a commonly used technique. Reeve and
Han’s survey presents a table to compare system’s performance, but in absence of well-
established data sets of annotated documents, a fair comparison among the various
techniques is not possible. Similarly, comparing the performance of our system with
those surveyed in (Reeve and Han, 2005) is not particularly meaningful.

The method presented in this paper is unsupervised, in the sense that it does not
need manual annotation of a significant fragment of text. However, it relies on a set of
manually written regular expressions, based on lexical, part-of-speech, and semantic
constraints. The structure of regular expressions is rather more complex than in
similar works using regular expressions, especially for the use of automatically
verified semantic constraints. The issue is however how much these expressions
generalize to other domains:

 A first problem is the availability of lexical and semantic resources used by the
algorithm. The most critical requirement of the method is the availability of sound
core ontologies, which hopefully will be produced by other web communities
stimulated by the recent success of CIDOC CRM. On the other side, in absence of
an agreed conceptual reference model, no large scale annotation is possible at all.
As for the other resources used by our algorithm, glossaries, thesaura and
gazetteers are widely available in “mature” domains. If not, we developed a
methodology, described in (Navigli and Velardi, 2005b), to automatically create a
glossary in novel domains (e.g. enterprise interoperability), extracting definition
sentences from domain-relevant documents and authoritative web sites.

 The second problem is about the generality of regular expressions. Clearly, the
relation checkers that we defined are tuned on the CIDOC properties, however many
of these properties are rather general (especially locative and temporal relations) and
could easily apply to other domains, as demonstrated by the experiment on automatic
annotation of historical archives in Table 4. Furthermore, the method used to verify
semantic constraints is fully general, since it is based on WordNet and a general-
purpose, untrained semantic disambiguation algorithm, SSI.

Finally, the authors believe with some degree of convincement that automatic pattern-
learning methods often require non-trivial human effort just like manual methods12

11 In the referenced paper we apply hypernymy-seeking patterns to automatically learn a

taxonomy from an (automatically extracted) glossary of terms in the field of enterprise
interoperability. The results have been evaluated in the large by the members of the
INTEROP EC network of excellence (http://www.interop-noe.org).

12 A similar concern is expressed also in the concluding remarks of the already mentioned
survey by Reeve and Han: “all SAPs [semantic annotation platforms] require some type of
lexicon and resource. Rule-based systems require rules, pattern discovery systems require an
intial set of seeds, machine learning system require a training corpus.”.

 Ontology Enrichment Through Automatic Semantic Annotation 139

(because of the need of annotated data, careful parameter setting, etc.), and further-
more they are unable to combine in a non-trivial way different types of features (e.g.
lexical, syntactic, semantic). A practical example is the full list of automatically
learned hypernymy-seeker patterns provided in (Morin and Jacquemin, 2004). The
complexity of these patterns is certainly lower than the regular expression structures
used in this work, and many of them are rather intuitive, they could have easily
written by hand.

However, we believe that our method can be automated to some limited degree (for
example, semantic constraints can be learned automatically), a research line we are
currently exploring.

References

S. A. Caraballo “Automatic construction of a hypernym-labeled noun hierarchy from text” In
37th Annual Meeting of the Association for Computational Linguistics: Proceedings of the
Conference, pages 120-126,1999

M. E. Califf and R.J. Mooney, “Bottom-up relational learning of pattern matching rules for
information extraction” Machine Learning research, 4 (2)177-210, 2004

E. Charniak, “Statistical Techniques for Natural Language Parsing”, AI Magazine 18(4), 33-44,
1997

P. Cimiano, G. Ladwig and S. Staab, “Gimme the context: context-driven automatic semantic
annotation with C-PANKOW” In: Proceedings of the 14th International WWW Conference,
Chiba, Japan, May, 2005. ACM Press.

M. Doerr, “The CIDOC Conceptual Reference Module: An Ontological Approach to Semantic
Interoperability of Metadata”. AI Magazine, Volume 24, Number 3, Fall 2003.

M. S. Fox, M. Barbuceanu, M. Gruninger, and J. Lin, "An Organisation Ontology for
Enterprise Modeling", In Simulating Organizations: Computational Models of Institutions
and Groups, M. Prietula, K. Carley & L. Gasser (Eds), Menlo Park CA: AAAI/MIT Press,
pp. 131-152. 1997

J.E. F. Friedl “Mastering Regular Expressions” O’Reilly eds., ISBN: 1-56592-257-3, First
edition January 1997.

V. Kashyap, C. Ramakrishnan, T. Rindflesch. "Toward (Semi)-Automatic Generation of Bio-
medical Ontologies", Proceedings of American Medical Informatics Association, 2003

A. Maedche V. Pekar and S. Staab , “Ontology learning part One: On Discovering Taxonomic
Relations from the Web” in In Web Intelligence. Springer, Chapter 1, 2002.

G. A. Miller, ``WordNet: a lexical database for English.'' In: Communications of the ACM 38
(11), November 1995, pp. 39 - 41.

E. Morin and C. Jacquemin “Automatic acquisition and expansion of hypernym links”
Computer and the Humanities, 38: 363-396, 2004

R. Navigli and P. Velardi, “Structural Semantic Interconnections: a knowledge-based approach
to word sense disambiguation”, Special Issue-Syntactic and Structural Pattern Recognition,
IEEE TPAMI, Volume: 27, Issue: 7, 2005.

R. Navigli, P. Velardi. Automatic Acquisition of a Thesaurus of Interoperability Terms, Proc.
of 16th IFAC World Congress, Praha, Czech Republic, July 4-8th, 2005b.

Reeve, L., & Han, H. (2005). Survey of Semantic Annotation Platforms. Proceedings of the
20th Annual ACM Symposium on Applied Computing, Web Technologies

R. Snow, D. Jurafsky, A. Y. Ng, "Learning syntactic patters for automatic hypernym
discovery", NIPS 17, 2005.

140 R. Navigli and P. Velardi

M. Thelen, E. Riloff, "A Bootstrapping Method for Learning Semantic Lexicons using
Extraction Pattern Contexts", Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2002.

M. Uschold, M. King, S. Moralee and Y. Zorgios, “The Enterprise Ontology”, The Knowledge
Engineering Review , Vol. 13, Special Issue on Putting Ontologies to Use (eds. Uschold. M.
and Tate. A.), 1998.

Valarakos, G. Paliouras, V. Karkaletsis, G. Vouros, “Enhancing Ontological Knowledge
through Ontology Population and Enrichment” in Proceedings of the 14th EKAW conf.,
LNAI, Vol. 3257, pp. 144-156, Springer Verlag, 2004.

Paola Velardi, Alessandro Cucchiarelli and Michaël Pétit “Supporting Scientific Collaboration
in a network of Ecellence through a semantically indexed knowledge map” I-ESA 2006,
Bordeaux, France, March 2006

D. Widdows “Unsupervised methods for developing taxonomies by combining syntactic and
statistical information” HLT-NAACL 2003, Edmonton, May-June 2003

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 141 – 157, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Discovering Semantic Sibling Groups
from Web Documents with XTREEM-SG

Marko Brunzel and Myra Spiliopoulou

Otto-von-Guericke-University Magdeburg
{forename.name}@iti.cs.uni-magdeburg.de

Abstract. The acquisition of explicit semantics is still a research challenge.
Approaches for the extraction of semantics focus mostly on learning
hierarchical hypernym-hyponym relations. The extraction of co-hyponym and
co-meronym sibling semantics is performed to a much lesser extent, though
they are not less important in ontology engineering.

In this paper we will describe and evaluate the XTREEM-SG (Xhtml TREE
Mining - for Sibling Groups) approach on finding sibling semantics from semi-
structured Web documents. XTREEM takes advantage of the added value of
mark-up, available in web content, for grouping text siblings. We will show that
this grouping is semantically meaningful. The XTREEM-SG approach has the
advantage that it is domain and language independent; it does not rely on
background knowledge, NLP software or training.

In this paper we apply the XTREEM-SG approach and evaluate against the
reference semantics from two golden standard ontologies. We investigate how
variations on input, parameters and reference influence the obtained results on
structuring a closed vocabulary on sibling relations. Earlier methods that
evaluate sibling relations against a golden standard report a 14.18% F-measure
value. Our method improves this number into 21.47%.

1 Introduction

The discovery of semantic relations among terms is a crucial task in many
applications on the understanding of text and of semantics: ontologies, the backbone
of the Semantic Web, rely on making semantic relations explicit. There are many
methods for the discovery of vertical, hypernym-hyponym relations. There is less
work on the discovery of concepts that stand in a horizontal relation to each other
and are the children of a common, not a priori known (and possibly not interesting)
parent concept. This horizontal relation can be referred to as co-hyponymy and
co-meronymy.

In the field of ontology engineering, there are different approaches for the
discovery of semantic relations. There are many approaches which use unstructured
plain text (also semi-structured content is converted to plain text) as input [FN99,
MS00, and BCM05]. On the other hand, there are approaches using existing structures
such as dictionaries, glossaries or database schemas as input [K99, SSV02]. But these

142 M. Brunzel and M. Spiliopoulou

approaches are practically limited to the rare case that such resources are available.
Out method uses semi-structured content as input.

In [BS06], we have presented the first version of XTREEM. In this publication we
extend the workshop publication with an improved description of the process,
including formalization and evaluation. We will show that the XTREEM-SG method
helps to discover groups of terms that indeed stand in sibling relation with higher
accuracy than earlier methods. The main contribution of XTREEM-SG is the
identification of siblings in a data driven way without any a priory restrictions: No
linguistic resources are needed, beyond the input vocabulary.

The paper is organized as follows: In the next section, we discuss related work. In
section 3, we present XTREEM-SG. Section 4 and 5 are devoted to evaluation using
two golden standard ontologies from the domain of tourism.

2 Related Work

The broad domain of research is ontology learning: A comprehensive overview on
this subject has appeared recently in [BCM05]. Those approaches are focusing on
ontology learning from text. There are also approaches performing Ontology Learning
from structure [K99, SSV02]: However, these methods use existing database schemas
or other conceptualizations as input and are therefore limited to cases where such
schemas are available, which is usually not the case. Closer related are studies also
discovering semantics on the Web.

Hearst patterns [H92] are used to find relations among terms in text collections.
Also co-hyponym relations can be found with this approach. But the disadvantage is
that such patterns are rare, the coverage is low, even on big document collections.
Cimiano et al also discover (co-)hyponymy relations by finding examples of Hearst
patterns via the Google API and then analyzing retrieved content [CS04]. In [P05]
instances of WordNet concepts are found within big Web document collections with a
rule base mechanism ignoring the mark-up. The document structure is also taken into
account for the establishment of a knowledge base of extracted entities from the
WWW in [E04]. There are also approaches from the field of ontology learning and
ontology enhancement using the WWW [FS02, AHM00].

Kruschwitz [K01a, K01b] uses mark-up sections of Web documents to learn a
domain model. Similarly to our approach, Kruschwitz exploits the mark-up for the
representation of similar concepts inside Web documents. However, as opposed to our
approach, the tree structure of (X)HTML documents is not incorporated. [ST04] uses
also different tags of HTML documents for acquiring hyponymy relations. They only
use list itemizations. There is no mentioning of using the tree structure of (X)HTML
documents in general, where contributions also from other tags than item elements
can be expected.

The idea of using structural similarities [ZLC03, B04], including path structures, of
XHTML/XML documents is used for several goals, such as clustering documents on
structural similarities [DCWS04, TG06, and CMK06]. In contrast we use the path
information to infer siblings. The constitution of the paths is not used itself; no
comparison with paths from other documents is performed with XTREEM-SP.

 Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG 143

3 Finding Sibling Groups with XTREEM-SG

We present the XTREEM-SG method for the extraction of semantic relations through
the exploitation of Web document Structure (Xhtml TREE Mining - for Sibling
Groups). XTREEM-SG is based on mark-up conventions that are present in almost all
Web documents in the (X)HTML format. Authors use different nested tags to
structure pieces of information in Web documents, as shown in Fig. 1. We find terms
that adhere to the same syntactic structure within an XHTML document and apply
data mining to reduce the potential large amounts of candidate sets to find
semantically related sibling terms. These desired semantically related “pieces of text”
are not necessarily physically "co-located" i.e. appearing in the same narrow context
window as can be seen in the headings example of Table 1. Both text-spans
{WordNet, Germanet} share a common syntactic structure, the series of HTML tags
they are placed in. We aim to use such syntactic structures to infer semantic
relatedness.

Table 1. Semantically related terms, located in different paragraphs or separated by other terms

Headings, located in
different paragraphs

Highlighted keywords, separated by normal text

…
<h2>WordNet</h2>
<p>Was developed
…</p>
<h2>Germanet</h2>
<p>Analogous …</p>
…

… <p> … there are different
important standards for building
the Semantic Web.
… is RDF. …
RDFS adds …
whereas OWL is …
</p> …

The XTREEM-SG procedure, which aims to organize a given vocabulary of terms
into co-hyponym groups, entails pre-processing (the innovative core of the XTREEM-
SG approach), processing (clustering) and post-processing (cluster labelling), which
are shown in the following data–flow diagram and described in the following
sections.

Fig. 1. Data-Flow Diagram of the XTREEM-SG procedure

144 M. Brunzel and M. Spiliopoulou

3.1 The Group-by-Path Operation on Web Documents

First we will describe the operation which represents the core of the overall
XTREEM-SG method. We consider Web documents to find sibling relations among
terms. Specifically we use the following definitions.

Definition 1: A Web document (web page) D is a semi-structured document following
the W3C XHTML standard. D is a tree structure.

XHTML is a XML dialect, wherein the former HTML standard has been adopted to
meet the XML requirements. Traditional legacy HTML documents are converted to
XHTML documents, as it is performed by all popular web browsers too. Hence, an
XHTML document can be seen as a tree, text is represented by leaf nodes and the
intermediate nodes are mark-up elements. We use the term text-span to denote the
textual contents, the character data sequences of XML elements. The XML elements
formed by the tags we will denote as mark-up elements or tags.

Definition 2: Let M be the set of tags supported in the XHTML format and let d be a
Web document in XHTML format. A “tag path” p in d is a sequence of tags leading
from the root tag element of d to a text-span appearing in d, i.e. p has the form
p=<m1,m2,…,mv>, where mi∈M i=1,…,v. We use the notation (p,e) to indicate that e
is the text-span to which p leads.

By this definition, p is a branch of an XHTML tree; for each mi, mi+1 (i=1,…,v-1) it
holds that mi is the tag surrounding mi+1. A Tag Path is therefore a special kind of
Xpath expression. Moreover, a document D is a collection of pairs of the form (p,e),
where p is a Tag Path and e is the text-span to which p leads.

For example, consider the example document of Fig.2: In line 8, we see the Tag
Path “<html><body><h2>” leading to the text-span “Wordnet”.

Let B={e1,...,er} be a set of text-spans. For one document several B can be found
by the following Group-By-Path algorithm (Algorithm 1). This is different to
traditional “text treatment”, where for one text unit (e.g. document, paragraph or

<html>
<html><head>
<html><head>…
<html></head>
<html><body>
<html><body><h1>Lexical Resources …</h1>
<html><body><p>…</p>
<html><body><h2>WordNet</h2>
<html><body><p>Was developed …</p>
<html><body><h2>Germanet</h2>
<html><body><p>Analogous to WordNet for the English
…</p>
<html><body>…
<html></body>
</html>

Fig. 2. A XHTML Document viewed as a collection of Tag Path - Text-Span Pairs

 Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG 145

sentence) a corresponding “Bag of Words” is obtained. Here a b is obtained for each
distinct path p of a document d.

Let A={B1,…,Bt} be the collection which contains the sets of text-spans. The
following Algorithm reflects the way A is obtained from D. This grouping operation
is the core of the XTREEM-SG procedure.

Algorithm 1: The Group-By-Path algorithm on a XHTML document
Input: Web document D
Output: Collection A of sets of text spans Bi, i=1,...,t

1: extract from D the set Y=Y(D) of (p,e) - pairs, where p is a tag path
according to Def. 2 and e is its target text-span

2: A= ø
3: let Z be the set of tag paths in Y
4: for all p in Z
5: set B={e | (p,e) in Y}
6: insert B to A
7: end for
8: return A

We group text-spans that have the same tag path as its predecessor. E.g. in our
example (Fig. 2), WordNet and Germanet both have <html><body><h2> as
document path, and, thus become members of the same set of terms {WordNet,
Germanet}. Usually, authors use different tags and therefore things separate according
to different tags, resulting in different documents paths, therefore several text-span
sets stemming from one document are possible. Here precision is preferred over
recall, since only “valuable” sets of terms will frequently re-occur in a bigger Web
document collection. D is now represented as a collection of text-span sets.

Summary: The Group-By-Path approach performs a transition of a Web document
from a tree, to a collection of tag-path/text-span pairs to a collection of text-span sets.

3.2 The XTREEM-SG Procedure

We now introduce our algorithm XTREEM-SG that takes as input a collection of
documents, observing each document as collection of text-span sets. A following
clustering is used to perform a “compression”; groups of related terms are the result,
such that the terms in each group stand in sibling relationship to each other.

Step 1 – Querying & Retrieving: The XTREEM procedure operates on a Web
Document Collection. Such a Web document collection is obtained by querying a
Archive+Index Facility on a Query Q with a Web document collection W={D1,...,Ds}
as result, for which Q is satisfied. Q constitutes the domain of interest whereupon
semantics should be discovered. It should therefore encircle the documents which are
supposed to entail domain relevant content, e.g. “touris*”.

The Web document collection should be big enough to contain manifold
occurrences of the desired concepts. The Web document collection is not supposed to

146 M. Brunzel and M. Spiliopoulou

be a small manually handcrafted document collection; bigger amounts of web content
which have an appropriate coverage of the domain are more desirable. Here, recall is
more important than precision. To obtain such a comprehensive Web document
collection, alternatively a focused web crawl can be performed; when a vocabulary is
given, this vocabulary can also be used to obtain Web document references via the
web services of internet search engines.
Step 2 - Group-By-Path: For each Di∈W with i=1,…,s the Group-By-Path
algorithm (Algorithm 1, described in section 3.1.) is applied. As result we obtain the
collection of text-span sets H'={B1,…,Bu}.
Step 3 - Filtering: The aim of the procedure described in this publication is to group
a given Vocabulary into semantically motivated sibling groups. Let V={v1,…,vp} be
the vocabulary of terms given as input. For the following steps we only consider all
text-spans e∈B which are contained in V. H''={B1,…,Bu} so that for all e∈B it is
also true e∈V.

In the following we will eliminate all sets b with cardinality of less than two, since
only sets containing at least two elements are able to reflect a sibling relation among
their elements. H'''={B1,…,Bn}, H'''= ⊆ H'' where Bi∈H''' if the cardinality of
Bi∈H''>1 for i=1,…,u.
Step 4 - Vectorization: Let F=(f1,…fp) be the Feature Space of Vectorization X. F
corresponds to the vocabulary V. X is obtained by creating vectors for each term set
B∈H’’’. TF-IDF [SB88] weighting is applied. X is a 2-dimensinal matrix given by
values xij per term set 1 i n and feature 1 j p. Thus each set of sibling terms is
represented by a vector xi=(xi1,…,xip) over the feature space.
Step 5 - K-Means Clustering: The vectorization obtained in the prior step has a bias
towards sibling related features. Clustering is a method to reduce the potentially large
number of instances to a presentable limited number of patterns. Association Rules
Mining would be an alternative method. For clustering a K-Means algorithm with
cosine distance function was applied. The amount of clusters to be generated can be
set on the algorithm. A cluster C ⊆ X is a set of vectors. The clustering consist of k
clusters C={c1,…,ck}. A cluster can be empty (cardinality=0).
Step 6 - Cluster Labelling: The clustering algorithm creates clusters of instances,
which are not useful on our objectives themselves. The desired result (related terms)
has to be obtained by the following post processing step.

A cluster label is a set L of frequent features f of a cluster c. A frequent feature is a
feature which has an in-cluster-support over a threshold .

Definition 3: (in cluster support): Let C ⊆ X be a cluster, where X is the vector space
over the instances H''' for the feature space F. Let f∈F denote a feature. The in-
cluster-support of a feature f in C is the count of vectors x∈X that contain feature f
(i.e. xk 0) divided by the cardinality of C.

Let Lk={f1,…fv} denote the set of features which have a in-cluster-support >
within Ck. According to our hypothesis, the elements of L are siblings to each other.

Let M={l1,…,lw} be the overall set of generated sibling groups. The cardinality of
M may be less than K, since some clusters can be empty and some clusters may not
have at least two features with an in-cluster-support > .

 Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG 147

Summary: XTREEM-SG performs a transition from potentially big numbers of
syntactic siblings, obtained from Web documents, to a reduced number of semantic
motivated sibling sets, to be presented to an ontology engineer.

4 Evaluation Methodology

There is an ongoing discussion on how evaluation of ontology learning can be
performed. Despite that golden standard evaluation can be criticized; we will compare
the automatic obtained results against reference semantics. The measured quality is
not easily comparable (over different references), but it can help to show tendencies.

Our evaluation objective is: “How good does the method perform on structuring a
given vocabulary into co-hyponym groups”. We evaluate against golden standards,
i.e. ontologies that deliver both the vocabulary (the terms) and the co-hyponymy
relations among them. Our goal is to find those relations. The evaluation of sibling
relations is performed in [CS05] with the average sibling overlap measure. We will
compare our results on this measure.

First we investigated how much sibling characteristics are present in the instances
obtained by the traditional Bag-of-Words vector space model. Further we used mark-
up of the Web documents, without the path grouping. This approach [K01a] is also
based on text-spans created by Tag boundaries.

There are different influences on the results which can be produced with
XTREEM-Group-By-Path. First, we vary the documents used as input. We also vary
the number of clusters, the cluster labelling thresholds and the required support of the
features. The evaluation is performed against two reference ontologies.

It is stressed here that the objective of the evaluation is not the reconstruction of
the complete hierarchy, i.e. the naming of the hypernym for each co-hyponymy set. In
fact, XTREEM-SG is meant to discover co-hyponym sets, for which the hypernym
may or may not be a priori known.

4.1 Description of Experimental Influences

Evaluation Reference: The Evaluation is performed on two golden standard
ontologies (GSO), from the tourism domain. The concepts of these ontologies are also
terms, thus in the following the expressions “concepts” and “terms” are used
interchangeably. The “Tourism GSO”1 contains 293 concepts grouped into 45 sibling
sets; the “Getess annotation GSO”2 contains 693 concepts grouped into 90 sibling
sets.

There are three Inputs to the XTREEM-SG procedure described in the following:

Input(1): Archive+Index Facility: We have performed a topic focused web crawl on
the “tourism” related documents. The overall size of the document collection is about
9.5 million Web documents. The Web documents have been converted to XHTML.
With an n-gram based language recognizer non-English documents have been

1 http://www.aifb.uni-karlsruhe.de/WBS/pci/TourismGoldStandard.isa
2 http://www.aifb.uni-karlsruhe.de/WBS/pci/getess_tourism_annotation.daml

148 M. Brunzel and M. Spiliopoulou

filtered out. The documents are indexed, so that for a given query a Web document
collection can be retrieved.
Input(2): Queries: For our experiments we consider three document collections
which result from querying the Archive+Index Facility. The constitution is given by
all those documents adhering to Query1 - “touris*”, Query2 - “accommodation” and
by the whole topic focused Web document collection reflected by Query3 – “*”.
Input(3): Vocabulary: The GSO’s described before, are lexical ontologies. Each
concept is represented by a term. These terms constitute the vocabulary and the
feature space.

The overall XTREEM procedure is constituted of pre-processing, processing and
post- processing:

Procedure(1): Pre-Processing method: For the evaluation of the Group-By-Path sub
procedure we will contrast our Group-By-Path (GBP) method with the traditional
Bag-Of-Words (BOW) vector space model and against the solely usage of mark-up
(MU) [K01a]. The BOW is the widespread established method on processing of
textual data, while MU is a rather new approach which also incorporates the mark-up
of Web documents. The variation of these influences is object of our Experiment 1
and Experiment 2.
Procedure(2): Processing – Cluster Number: Each data set (vectorization) is
processed by a K-Means clustering with different numbers of clusters to be generated,
ranging from rather small to rather big numbers of clusters. For K we used values of
50, 100, 150, 200, 250, 500, 750 and 1000. These numbers encircle the range of
numbers of clusters which are appropriate to be shown to a human ontology engineer.
This variation is undertaken on all Experiments with exception of Experiment 1.
Procedure(3): Post-Processing – Cluster Labeling Support Threshold: The
generated clusters are afterwards post-processed by applying the support threshold
cluster labelling strategy. The support threshold is varied from 0.1 to 0.9 in steps
of 0.1.

In our experiments we found that some of the terms of the vocabulary are never or
very rarely found on rather big Web document collections. E.g. one reference contains
the errors “Kindergarden” instead of the correct English “Kindergarten”. To eliminate
the influence of errors in the reference, we also vary the Required minimum feature
support. The support is given by the frequency of the features (terms) in the overall
text of the Web document collection. We used minimum support thresholds from 0
(all features are used, nothing is pruned) to 100000 (0, 1, 10, 100, 1000, 10000,
100000). When the support is varied, only those features of the vectorization and of
the reference fulfilling these criteria are incorporated into the evaluation.

4.2 Evaluation Criteria

Each of the golden standard ontologies delivers a number of reference sets of terms in
co-hyponymy relation. Each run of XTREEM-SG delivers a number of term clusters
that are suggested as potential co-hyponyms. Intuitively, one would compare each of
the suggested clusters against each of the reference sets, select the best match and

 Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG 149

then count the number of matches; clusters without match and reference sets for
which no match was found would be observed as false positives or false negatives.
However, the identification of a “best match” is not straightforward, nor is the
selection of a “single” best match the most appropriate evaluation strategy.

To highlight this, consider an extreme but not unrealistic example: All towns of the
world are co-hyponyms. Within this enormous reference set, there are many subsets
of co-hyponyms in different contexts: all towns of the same country, all towns across
the same river, all towns close to the same airport, all towns where the same language
is spoken etc. Discovering that two towns are co-hyponyms in some of these contexts
is more likely than assessing co-hyponymy for 3, 4 ..., n towns. Finding all co-
hyponyms of some reference set is more challenging and finding the complete set of
co-hyponym towns (all tourist towns of the world) from text analysis is quite
improbable. At the same time, finding out that London and Tokyo are co-hyponyms
according to several reference sets (capital cities, cities with airport, cities in island
countries, very large cities) is information of interest for each of those reference sets.
Therefore, we need for our evaluation a measure on the contribution of each cluster of
terms to the reference sets of co-hyponyms. To this purpose, we use the “average
sibling overlap” measure proposed by Cimiano and Staab in [CS05].

The average sibling overlap SOaverage is used in [CS05] to compare sets of siblings
generated by an automated approach to reference sets of siblings, as delivered by an
ontology. This measure is then used to compute F-measure values.

Definition of Average Sibling Overlap (according to [CS05]): Let A and B be two
sets of co-hyponymy relations where a co-hyponymy relation is a set of sibling terms.
Typically one of e.g. A comes from a reference while the other e.g. B is produced by
a semi-automated approach. The average Sibling overlap SOaverage(A,B) between a set
GA (e.g. co-hyponym groups) of sets HA (e.g. concepts/terms) from source A to
another set GB of sets HB from source B, is calculated as follows: For each HA the
relative overlap with each HB is calculated. This relative overlap is the number of
terms present in both sets, divided by the number of unique terms from both sets
together. For each HA, the HB with the maximal relative overlap value is identified.
Over all those maximal values the mean is calculated, representing the average
Sibling overlap SOaverage(A,B). SOaverage(B,A) is calculated accordingly. The F-
Measure on average sibling overlap (FMASO) combines both values:

FMASO =
),(),(

),(),(2

averageaverage

averageaverage

ABSOBASO

ABSOBASO

+
⋅⋅

5 Experiments

In the following we will show the results obtained from the experiments. Table 2
shows the number of documents which adhere to a certain Query. This corresponds to
the size of the Web document collection which is processed by the subsequent
following processing steps.

150 M. Brunzel and M. Spiliopoulou

Table 2. Number of Web documents returned by the Web Archiv+Index Facility for the
Queries used in the evaluation experiments

Query Name Query Phrase Number of Documents
Query1 “touris*” 1,468,279
Query2 “accommodation” 1,612,108
Query3 “*” 9,437,703

5.1 Experiment 1: The Sibling Semantics of the Group-by-Path Method

In our first experiment we want to investigate how much sibling semantics are captured
by the Group-By-Path (GBP) method in contrast to the traditional Bag-Of-Words
(BOW) vector space model and against the solely usage of mark-up (MU) [K01a]. To
do so, the GBP step of the XTEEM-SG procedure was changed to BOW and MU.

We evaluated the collections of sibling sets for the following constellations of Query
(Query1, Query2, and Query3); Pre-Processing Method (BOW, GBP and MU) against
the reference sibling sets (GSO1 and GSO2) of two golden standard ontologies. Since
the two ontologies have different numbers of terms, each constellation of Web
document collection results in a different number of vectors after the Vectorization.

Table 6. Results of FMASO for different constellations of queries, pre-processing methods and
references; column 2 (cardinality=0) and column 3 (cardinality=1) show the number of
candidate sets which are filtered out because they are not true sets

Number of Sibling Sets
(separated according to the cardinality of the set)

Constellation
(Query,Method,Reference)

Card.=03 Card.=14 Card.>1

FMASO

Query1-BOW-GSO1 18,012 29,104 1,421,163 0.206
Query1-GBP-GSO1 12,589,016 817,289 222,037 0.247
Query1-MU-GSO1 794,325 343,891 323,428 0.235
Query2-GBP–GSO1 12,712,295 1,034,741 293,225 0.252
Query3-GBP-GSO1 63,049,135 3,485,782 924,045 0.256
Query1-BOW-GSO2 19,399 18,494 1,430,386 0.160
Query1-GBP-GSO2 12,478,364 831,969 318,009 0.208
Query1-MU-GSO2 753,657 332,973 375,014 0.199
Query2-GBP–GSO2 12,677,515 988,944 373,802 0.196
Query3-GBP-GSO2 62,572,763 3,559,356 1,326,843 0.229

From these results can be seen that for GSO1 the FMASO is higher for all
constellations where the GBP method was involved (0.247, 0.252, and 0.256)
compared to the alternative methods (0.235, 0.206). Though it was never claimed that
the traditional BOW method is strong on capturing sibling semantics it resulted in the
weakest results on capturing sibling semantics. For GSO2 the result of Query1 and
MU is slightly better than the result of Query2 and GBP, though for the same Query,
GBP performs again best. BOW performs gain worst.

3 No match with given vocabulary.
4 Single match with given vocabulary, no true sets, will not be processed.

 Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG 151

Conclusion: The candidate sets (text-span siblings) generated by the Group-By-Path pre-
processing reveal a stronger sibling characteristic than the traditional BOW vector space
model. Though it was never claimed that BOW has significant sibling characteristics, it
can be concluded that the GBP method does not capture sibling semantics by chance; the
path information of Web document structure can be used to infer semantics.

5.2 Experiment 2: Sibling Semantics Obtained from Labelled Clusters

Additionally to the intermediate sibling sets evaluated in Experiment 1 also a K-
Means clustering was performed for Query1 and the pre-processing methods (BOW,
MU, and GBP). The cluster labelling threshold was set to =0.2.

0.00

0.05

0.10

0.15

0.20

0.25

10 100 1000

Number of Clusters (log)

F
-M

ea
su

re
 A

ve
ra

g
e

S
ib

li
n

g
 O

ve
rl

ap

BOW MU GBP

Fig. 3. FMASO on different K for different Pre-Processing methods (Query1, =0.2, GSO1)

Fig. 3 shows that the Group-By-Path approach performs also better when the
sibling sets are clustered. There is a general trend to better results when higher
number of clusters are generated, which is objetive of experiment 4. The analogous
diagram for GSO2 (which is not shown) reveals the same finding but with lower
values for all three approaches.

The difference between MU and GBP seems to be marginally. A possible
explanation for this circumstance is, that when instances are created with MU, those
instances have a big overlap with the instances created by GBP since they stem from
the same Web mark-up created text-spans, caused by the rather small vocabularies
used, which only allow for a fraction of the terms occurring in the Web document
collections. Here, also the insensitivity of the FMASO may be responsible for the low
measured difference: Whereas siblings not stated by the reference are regarded as false
to the same extent as truly not sibling related nominations. This could only be solved
by a human expert evaluation. On experiments judged by a human expert one can say
that the strong sibling character caused by GBP is recognizable compared to MU.

Conclusion: These results are compatible with the Conclusions of Experiment 1 and
verify our hypothesis that GBP performs well on capturing sibling semantics.

152 M. Brunzel and M. Spiliopoulou

5.3 Experiment 3: Varying the Cluster Labelling Threshold

For Query1 in combination with GBP we varied the cluster labeling support threshold
from =0.1 to =0.9 in steps of 0.1 resulting in the following chart of Figure 4. The
best results have been obtained on the biggest used number of clusters (K=1000) in
combination with a cluster labeling strategy using a support threshold of =0.2,
resulting in an FMASO of 21.47% (Fig. 6). The results on GSO2 are (again) worse
than the results for GSO1. The best FMASO of 15.88% for GSO2 is obtained on
K=1000 and =0.3. The second reference ontology is more than twice as big as the
first one, so structuring the vocabulary into sibling sets may be more difficult. We
suspect that this has to do large size of the ontology. There are many terms, but not all
sibling relations which can be found in the world, are explicit in the reference. For
GSO2 we show only the diagramm of Experiment 5 (Fig. 8), for all other diagrams of
GSO2 the charts are compatible to the findings obtained for GSO2.

0.00

0.05

0.10

0.15

0.20

0.25

10 100 1000

Number of Clusters (log)

F-
M

ea
su

re
 A

ve
ra

g
e

S
ib

lin
g

 O
ve

rl
ap

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 4. FMASO on different K for different (Query1, GSO1)

5.4 Experiment 4: Observing the Number of Clusters

As already shown in Experiment 2 and Experiment 3, with an increasing number of
clusters generated, the F-Measure on average sibling overlap increases too, but with
saturation (the number of clusters is logarithmic scaled).

The increasing number of clusters has the drawback that the amount of
information, which is compared against the reference, increases too. For automatic
evaluation this is not a problem, but if a human would inspect the generated data, this
is relevant. We additionally count the number of features appearing in the cluster
labels for all clusters of a clustering. This sum of terms/features in the cluster labels
over all clusters of a clustering we will refer to as “Sum of Features in Cluster Labels”
(SOFICL). The number of distinct features/terms used for cluster labeling we will
refer to as “Number of distinct Features in Cluster Labels” (NODFICL).

 Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG 153

50 100 150 200 350 500 750 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of clusters
la

b
el

in
g

 s
u

p
p

o
rt

 t
h

re
so

ld

0-500 500-1000 1000-1500 1500-2000 2000-2500 2500-3000

50 100 150 200 350 500 750 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of clusters

la
b

el
in

g
 s

u
p

p
o

rt
 t

h
re

sh
o

ld

60-80 80-100 100-120 120-140 140-160 160-180

Fig. 5 (SOFICL) and Fig. 6. (NODFICL) for different K and (Query1, GSO1)

As Fig. 5 and Fig. 6 show, the values of SOFICL and NODFICL are correlated,
with an increasing K (and decreasing) more terms are used for labeling in the sum
(SOFICL) but also more distinct terms (NOFICL) are incorporated into the labeling.
An increasing NOFICL means that a bigger share of the vocabulary is indeed
incoprorated in the results. The lower right corner of Fig. 6 shows that for high
numbers of clusters 160-180 out of 293 of the features are used for cluster labeling.
The circumstance that on lower numbers of cluster many terms/features are not used
for labeling may be caused by the different support the features have within the
vectorization. The low frequent features may have never the chance to be frequent
enough for cluster labelling. But this is rather a problem for automatic evaluation. In
semi-automatic settings, one can present a ranked list of features for a cluster to the
user, who is free to choose also lower frequent features.

5.5 Experiment 5: Variations on the Web Document Collection

Now we will investigate the influence of the processed Web document collection.
Since the Web document collection is given by a Query, we will apply the XTREEM-
SG procedure for Query1 (“touris*”), Query2 (“accommodation”) and Query3 (“*”;
whole topic focused web crawl).

0.00

0.05

0.10

0.15

0.20

0.25

10 100 1000

Number of Clusters (log)

F
-M

ea
su

re
 A

ve
ra

ge
 S

ib
lin

g
O

ve
rl

ap

Query1 Query2 Query3

0

0.05

0.1

0.15

0.2

0.25

10 100 1,000

Number of Clusters (log)

F-
M

ea
su

re
 A

ve
ra

ge
 S

ib
li

ng
 O

ve
rl

ap

Query1 Query2 Query3

Fig. 7 and Fig. 8. FMASO on different K for different Queries (=0.2) for GSO1 and GSO2

154 M. Brunzel and M. Spiliopoulou

The results depicted by Fig. 7 show, that there are no big differences on the results
measured by the FMASO regarding the choice of a domain constituting query for
GSO1. This is in so far a positive finding, that the domain expert should only roughly
state which topic he is interested in. While doing so, minor varyations do not lead to
significantly worse or better results. The results are quit stable. For GSO2 Query1
(“touris*”) and Query3 (big tourism focused web crawl) shield the best results. An
explanation for this may be, that Query1 and Query3, which are more broad than
Query2 (“accommodation”), encircle more sibling semantics which have also been
encoded in the GSO2.

5.6 Experiment 6: Variations on the Required Support

For Query1 we set a threshold on the required support of terms in the Web document
collection. This means, terms/features which are rather weakly support are more and
more ignored; both for cluster labeling as well as in the reference sets.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 100 1000

Number of Clusters (log)

F-
M

ea
su

re
 A

ve
ra

g
e

S
ib

lin
g
 O

ve
rl

ap

0 1 10 100 1000 10000 100000

Fig. 9. FMASO for different frequency support levels (Query1, =0.2, GSO1)

Fig. 9 shows that while only observing frequent terms, better results on FMASO
are shown. With a required minimum support also errors in the reference are
smoothed. This is relevant in so far that the relatively low F-Measure values given by
our and by other approaches on ontology learning are also caused by “not perfect
golden standards”, the parts of the reference which are supported by real world data
are found reasonably well.

5.7 Conclusion of Evaluation

The application of a Group-By-Path pre-processing with a following K-Means-
clustering processing enable to reduce the initial candidate sets significantly by
retaining most of the quality measured by the F-Measure on average sibling overlap.

 Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG 155

In [CS05] is described, that Cimiano and Staab have obtained average sibling overlap
F-Measures from 12.40% to 14.18% on the tourism GSO. With these results, they
realized a significant improvement in contrast to Caraballo’s method [C99], which gave
a sibling overlap F-Measures of 8.96%. We can get good results on this evaluation
measure. Our best result gives an F-Measure of 21.47% using a K-Means clustering
with 1000 clusters and labeling the clusters by using all features which have a support
within the cluster of 20%. This is a significant improvement and confirms that the
XTREEM approach delivers good results for mining co-hyponym semantics.

The amount of clusters influences the abstraction forced on the constitution of the
resulting sibling groups. For real world settings the expert may decide to handle the
tradeoff between reachable quality and the amount of generated information
according to his objectives of how detailed the semantics should be. This golden
standard evaluation does not capture this aspect, but this can be seen by manually
inspecting the results. Cimiano and Staab reported that the results of their approach
get better quality valuation by a human expert inspection; the same holds true for the
results obtained with XTREEM-SG. The found sibling groups are surprisingly
meaningful. On the other side this is not astonishing, the results are based on many
thousands, often hand crafted, manifestations on the WWW.

6 Conclusions and Future Work

We have presented XTREEM-SG, a method for the discovery of semantic sibling
relations among terms on the basis of structural conventions in Web documents.
XTREEM-SG processes Web documents collected from the WWW and thus
eliminates the need for a well-prepared document corpus. Furthermore, it does not
rely on linguistic pre-processing or NLP resources. So, XTREEM-SG is much less
demanding of human resources.

We investigated how variations on input, parameters and reference influence the
obtained results on structuring a vocabulary on sibling relations. The reported results
from the literature of an F-measure on average sibling overlap regarding a golden
standard evaluation of 14.18% are improved by our approach to 21.47%.

Our method is only a first step on the exploitation of the structural conventions in
Web documents for the discovery of semantic relations. In our future work we want to
investigate the impact of individual mark-up element tags like <p>, , and <dt> on
the results. Discovering the corresponding hypernym for the co-hyponyms is a further
desireable extension. We are also interested in minimizing the number of clusters
which have to be inspected to find co-hyponym relations.

References

[AHM00] E. Agirre, O. Ansa, E. Hovy, and D. Martinez. Enriching very large ontologies
using the WWW, In Proc. of the Workshop on Ontology Construction ECAI-2000

[B04] D. Buttler. A short survey of document structure similarity algorithms. In Proc. of
the International Conference on Internet Computing, June 2004.

156 M. Brunzel and M. Spiliopoulou

[BCM05] P. Buitelaar, P. Cimiano, Bernardo Magnini, Ontology Learning from Text:
Methods, Evaluation and Applications, Frontiers in Artificial Intelligence and
Applications Series Volume 123, IOS Press, Amsterdam, 2005

[BS06] M. Brunzel, M. Spiliopoulou. Discovering Multi Terms and Co-Hyponymy from
XHTML Documents with XTREEM. In Proc. of PAKDD Workshop on
Knowledge Discovery from XML Documents (KDXD 2006), LNCS 3915,
Singapore, April 2006

[C99] S. Caraballo, Automatic construction of a hypernym-labeled noun hierarchy from
text. In Proc. of the 37th Annual Meeting of The Association for Computational
Linguistics ACL

[CMK06] I. Choi, B. Moon, H-J- Kim. A Clustering Method based on Path Similarities of
XML Data. Data & Knowledge Engineering, Feb. 2006

[CS04] P. Cimiano and S. Staab. Learning by googling. SIGKDD Explorations, 6(2):24-
34, December 2004.

[CS05] P. Cimiano, S. Staab. Learning concept hierarchies from text with a guided
hierarchical clustering algorithm. Workshop on Learning and Extending Lexical
Ontologies at ICML-2005, Bonn 2005.

[DCWS04] T. Dalamagas, T. Cheng, K. J. Winkel, T. Sellis, Clustering XML documents using
structural summaries, In Proc. of the EDBT Workshop on Clustering Information
over the Web (ClustWeb04), Heraklion, Greece, 2004

[E04] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked, S.
Soderland, D. S. Weld, A. Yates. Web-Scale Information Extraction in KnowItAll.
In Proc of the 13th International WWW Conference, New York, 2004.

[FN99] D. Faure, C. Nedellec. Knowledge acquisition of predicate argument structures
from technical texts using machine learning: the system ASIUM. EKAW 99,
LNCS 1621

[FS02] A. Faatz, R. Steinmetz, Ontology Enrichment with Texts from the WWW, In Proc.
of the First International Workshop on Semantic Web Mining, European
Conference on Machine Learning 2002, Helsinki 2002

[H92] M. Hearst, Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 14th International Conference on Computational Linguistics,
pp. 539–545, (1992).

[K01a] Kruschwitz, U. "A Rapidly Acquired Domain Model Derived from Mark-Up
Structure". In Proc. of the ESSLLI'01 Workshop on Semantic Knowledge
Acquisition and Categorization, Helsinki, 2001.

[K01b] U. Kruschwitz. Exploiting Structure for Intelligent Web Search. In Proc of the
34th Hawaii International Conference on System Sciences (HICSS), Maui Hawaii
2001, IEEE

[K99] V. Kashyap. Design and creation of ontologies for environmental information
retrieval. In Proc. of the 12th Workshop on Knowledge Acquisition, Modeling and
Management. Alberta, Canada. 1999.

[MS00] A. Maedche and S. Staab. Discovering conceptual relations from text. In Proc. of
ECAI 2000, pp. 321-325.

[P05] M. Pasca. Finding Instance Names and Alternative Glosses on the Web: WordNet
Reloaded. In Proc CICLing-2005, Springer LNCS 3406, 2005.

[SB88] Gerard Salton and Chris Buckley. Term weighting approaches in automatic text
retrieval. Information Processing & Management, 24(5):513-523, 1988.

 Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG 157

[SSV02] L. Stojanovic, N. Stojanovic, R.Volz. Migrating data-intensive Web Sites into the
Semantic Web. In Proc. of the 17th ACM symposium on applied computing. ACM
press, 2002. 1100-1107.

[ST04] K. Shinzato and K. Torisawa. Acquiring hyponymy relations from Web
Documents. In Proceedings of the 2004 Human Language Technology Conference
(HLT-NAACL-04), pages 73--80, Boston, Massachusetts, 2004.

[TG06] A. Tagarelli, S. Greco. Toward Semantic XML Clustering. 6th SIAM International
Conference on Data Mining (SDM ’06). Bethesda, Maryland, USA, April 20-22,
2006

[ZLC03] Z. Zhang, R. Li, S. Cao, and Y. Zhu. Similarity metric for XML documents. In
Proc. of the Workshop on Knowledge and Experience Management, October 2003.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 158 – 165, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Designing and Evaluating Patterns for Ontology
Enrichment from Texts

Nathalie Aussenac-Gilles1 and Marie-Paule Jacques2

1 Institut de Recherche en Informatique de Toulouse (IRIT) - CNRS,
UPS, 118, route de Narbonne, 31062 Toulouse Cedex, France

aussenac@irit.fr
http://www.irit.fr/~Nathalie.Aussenac

2 Équipe de Recherche en Syntaxe et Sémantique (ERSS) - CNRS,
Maison de la Recherche, UTM, 5, allées Antonio Machado, 31048 Toulouse Cedex, France

marie-paule.jacques@univ-tlse2.fr
http://www.univ-tlse2.fr:8880/erss/index.jsp?perso=mpjacques

Abstract. Pattern-based approaches for knowledge identification in texts as-
sume that linguistic regularities always characterise the same kind of knowl-
edge, such as semantic relations. We report the experimental evaluation of a
large set of patterns using an ontology enrichment tool: CAMÉLÉON. Results un-
derline the strong corpus influence on the patterns efficiency and on their mean-
ing. This influence confirms two of the hypotheses that motivated to define
CAMÉLÉON as a support used in a supervised process: (1) patterns and relations
must be adapted to each project; (2) human interpretation is required to decide
how to report in the ontology the pieces of knowledge identified with patterns.

1 Introduction

Relation extraction from texts can be an efficient means to rapidly structure a con-
ceptual model and identify significant domain concepts. Possible approaches to
identify relations from corpora include: using existing relations in lexical resources
like WordNet [16] [5]; matching lexico-syntactic patterns [9] [10] [16]; learning
dependencies between phrases through term distribution analysis [3]. Pattern-based
approaches for knowledge identification in texts assume that linguistic regularities
always characterise the same kind of knowledge, such as semantic relations. We
defined CAMÉLÉON, a method and a supervised tool that supports a knowledge en-
gineer to identify relations and concepts for ontology engineering [15]. CAMÉLÉON

provides a set of generic patterns and relations to be adapted and applied on tagged
corpora [2].

This paper reports how we built and evaluated a set of 70 generic patterns for the
French language. After a presentation of the CAMÉLÉON process (§ 2), we describe
how the tool supports pattern definition and evaluation (§ 3). Then we detail the cor-
pora and method used for this experiment (§4), we report its results and discuss them
(§5). We conclude by underlying the role of human interpretation to adapt patterns, to
evaluate their instances, and later to enrich a conceptual model. This experiment also
proves that, rather than generic, patterns should be adaptable and reusable.

 Designing and Evaluating Patterns for Ontology Enrichment from Texts 159

2 Semantic Relation Identification with CAMÉLÉON

CAMÉLÉON is a method and tool to extend an existing network of concepts with new
terms, concepts and semantic relations by applying a pattern-based approach [15]. A
conceptual model built up with CAMÉLÉON is a semantic network where concepts are
associated with a set of terms (synonym terms). This model may be the starting point
to design an ontology or it may be considered as a result by itself. Knowledge engi-
neers and linguists are the intended users of the CAMÉLÉON

1 tool. This tool can be one
of the components of a natural language processing and modelling chain from texts to
ontologies, such as the one proposed in KAON [16], TERMINAE [1] or [7].

2.1 Pattern-Based Knowledge Identification

Patterns are lexical, semantic and/or syntactic characterizations of linguistic contexts
in which one expects to find some specific piece of information. Hearst was the first
one to experiment a pattern-based approach for the identification of lexical relation
and semantic classes [9]. Hearst tested some general patterns mainly expressing defi-
nitions or hyperonymy. She noticed that linguistic regularities had to be tuned for
each corpus and domain. Over the last ten years, patterns were widely used with suc-
cess for information extraction or relation extraction like in [13]. To gain efficiency,
research has investigated two mains tracks. Firstly, to reduce the cost of pattern defi-
nition and tuning, patterns may be learned from manually tagged corpora [5] [6][16];
they may refer to named entities and known semantic classes [8]. Secondly, to reduce
the time required to select valid pattern instances and the noise of the overall process,
various statistical text analyses have been experimented. Like [8], we consider that an
alternative contribution would be to capitalize robust patterns and know-how about
their use, together with information about their semantics, their precision and recall in
various types of domains and documents.

2.2 Overview of the Approach

For a given project and corpus, CAMÉLÉON suggests a two-steps supervised process.

1) Defining project-specific patterns: The user is expected to define a specific set
of domain relations and valid patterns for his project and corpus. They may be ob-
tained first by adapting some generic patterns already available in CAMÉLÉON, second
by manually defining new patterns for known domain relations, third by defining new
relations and patterns after observing the contexts in which pairs of related terms
occur (according to Riloff’s suggestion [14]). Fixing patterns also includes evaluating
the sentences obtained after pattern-matching. The pattern will be modified in order to
reduce its noise and increase its precision.

2) Extending the conceptual model: The knowledge engineer checks one by one
the sentences identified by matching patterns in the corpus. Validated sentences may
suggest new concepts and relations. To save time, a default validation is possible.
Then, suggestions of relations are presented in CAMÉLÉON ontology browser, when

1 http://developer.berlios.de/projects/cameleonirit/

160 N. Aussenac-Gilles and M.-P. Jacques

editing one of the concepts. The knowledge engineer must decide whether to define a
new relation or not, and whether the concepts to be connected and the semantics of
the relation are those suggested or other ones.

2.3 Building the Base of Generic Patterns

One of the strengths of CAMÉLÉON is to provide a set of robust and valid generic pat-
terns as a bootstrap. This paper reports how this set was defined and evaluated. By
doing so, we used and tested the available functions in the CAMÉLÉON software. It
contributes to CAMÉLÉON global evaluation, which would be far more complex. A full
evaluation should include the design of a real ontology for a well-determined applica-
tion. Nevertheless, our experiment contributed to validate two foundational hypothe-
ses (the need for pattern adaptation and human interpretation).

3 How the Tool Supports Relation Extraction

The CAMÉLÉON tool contains a project management interface and two main modules:
one supports pattern definition, matching and evaluation; the other one helps to inter-
pret the sentences that contain the patterns and to enrich the conceptual model. The
first module includes a concordancer, KESKYA, which matches patterns on texts
tagged with a Part Of Speech (POS) tagger. We used Tree-Tagger, but any tagger
would do. The second module includes an ontology editor.

A CAMÉLÉON project entails a set of tagged texts - the corpus -, a set of specific
patterns and relation types, and a conceptual model. To promote reusability and to
avoid starting from scratch, the tool database stores several corpora and a set of ge-
neric patterns and relations. A project corpus may include reused corpora and/or
tagged new texts. Project patterns are adapted from generic patterns or user-defined.

3.1 Pattern Design, Adaptation and Evaluation

The internal representation of patterns is the one required by the KESKYA concor-
dancer. Patterns are supposed to be included in a single sentence. They are ex-
pressed mainly with lemmas and user defined semantic classes combined with POS
tags, and a set of operators like or (| symbol), negation or iterations (joker). The
interface makes it easier to define (or modify) each pattern, chunk after chunk. The
user selects one of the listed options and adds it to the pattern (Fig. 1). Patterns
characterize linguistic contexts where semantic relations between concepts may
appear in texts. So the knowledge engineer must specify which parts of the pattern
will refer to the related concepts (X and Y). Each of these chunks is turned into a
particular colour that will be used later on to colour the words that may correspond
to the related concepts.

Evaluating a pattern means checking some of the sentences where the pattern ap-
pears in each of the corpora (Fig. 2). The goal is to decide whether the pattern is to be
rejected, modified or retained as a relevant pattern for this project.

 Designing and Evaluating Patterns for Ontology Enrichment from Texts 161

Fig. 1. CAMÉLÉON Pattern Editor. The edited pattern (définir) searches for forms like “X is
defined as Y”. The user preferred not to specify where X exactly could appear in a sentence
(BEGIN is in the X colour), but the list above END constrains how Y could be formulated.

Fig. 2. CAMÉLÉON Pattern Evaluation Screen. Given a text (texte), a relation type (relation)
and a pattern, the pattern is matched in the text (projeter). Results are sentences listed for
checking. When selecting a sentence, its full content is displayed in the editor on the bottom.
Coloured words correspond to possible related concepts (X and Y). The pattern may be modi-
fied (Editer patron), rejected or validated (invalide or valide radio-button). The precision score
(on the right) may guide this decision.

162 N. Aussenac-Gilles and M.-P. Jacques

3.2 Text Fragment Selection and Model Enrichment

Given the set of project-specific patterns, the user must check each of their occur-
rences in the corpus. If a relation between concepts can be identified, the user stores
the sentence as a relation hypothesis and selects the words that may correspond to
related concepts (X and Y), guided by the coloured words.

The next step consists in browsing the conceptual model and the list of terms iden-
tified as possible concept labels. When editing a concept, all the available relation
hypotheses are shown. The user may decide to define new concepts or relations. This
process is quite complex and time-consuming. It requires some know-how in knowl-
edge modelling and a good appreciation of the intended role of the ontology.

4 Corpora and Method

Since CAMÉLÉON is intended to retrieve semantic relations within specific domains,
our 8 corpora are all made up of specialized texts. They are grouped into 3 categories:

1. technical writings in the fields of electric networks (GDP), electricity (MOUG)
and telecommunication (CRAT);

2. scientific papers in knowledge engineering [4] (IC), archeology (ARCH) and
geomorphology (ENC);

3. handbooks of geomorphology (GEO) and of paragliding (PAR).

The patterns which fill in the generic base were not designed from scratch, they

were adapted from three sources: 1. a previous experiment on semi-automatic re-
trieval of definitions [12], also applying to tagged texts and carried out by L. Tanguy
and J. Rebeyrolle, who kindly provided us with the patterns they designed; 2. various
studies within the framework of knowledge engineering and ontology [11] and 3. the
previous version of CAMÉLÉON [15]. The last two both provided patterns devoted to
semantic relations such as hyperonymy and part-hood.

In order to build the pattern base, we had to enter the various patterns so as to
benefit from tagging. The patterns in the previous version of Cameleon did not in-
clude tags, only lexical forms. For instance, a pattern devoted to the relation of inclu-
sion lists the different forms of the verbs bearing such a relation:

inclut|incluent|incluant|intègre|intègrent|integrant (the symbol | means or)

Since we could use lemmas and part-of-speech tags (with help of the TreeTagger2)
to design patterns, a pattern such as the above one has been replaced by a combination
of lemmas (inclure|intégrer) and tags (present tense or past participle or present parti-
ciple) which are easy to choose in a list, as shown in Fig. 1.

Each pattern has been sought, if necessary after having been refined, and the con-
texts have been evaluated. Note that this evaluation has been carried out by only one
of the authors. After this, we obtained for each corpus a measure of the precision of
each pattern, which was supposed to help us decide which patterns have to be retained
to fill in the generic-pattern base.

2 www.ims.unistuttgart.de/projekte/corplex/TreeTagger/

 Designing and Evaluating Patterns for Ontology Enrichment from Texts 163

5 Results and Discussion

5.1 Results

We entered 71 patterns: 19 for definitions, 35 for hyperonymy, 14 for meronymy, 1
for reformulation, 2 ‘varia’. Due to lack of room, Table 1 below gives only a sample
of the precision rates we obtained for the 8 corpora.

Table 1. Sample of the evaluation results (N= Number of contexts; P= Precision percentages)

 GDP IC GEO MOU
 N P N P N P N P
définir 3 100 43 98 0 2 100
être-un 258 17 489 18 641 23 120 8
et Adv 10 10 15 7 56 30 6 17
sorte de 0 7 57 3 67 0
inclure 75 51 32 41 16 50 18 61
partie de 0 0 7 0 0
situé dans 40 53 63 38 38 24 4 50
c-à-dire 6 67 37 54 40 80 3 100
 ENC PAR ARCH CRAT
 N P N P N P N P
définir 2 100 1 0 - -
être-un 375 15 62 40 181 29 -
et Adv 66 5 2 0 13 38 19 58
sorte de 1 100 0 0 4 100
inclure 29 62 2 100 27 19 267 48
partie de 1 100 1 0 1 0 11 18
situé dans 55 24 4 75 36 56 291 59
c-à-dire 14 29 2 100 8 63 11 64

To give an example of pattern, ‘définir’ is ‘lemma of verb définir (to define) fol-
lowed by a joker followed by lemma of comme (as)’: <définir> 1 <comme>. It yields a
context3 such as:

Un Projet Logiciel peut se définir comme un Processus de Développement.
A software project may be defined as a development process.

The major comment on Table 1 is that patterns differ considerably from each other
regarding numbers of contexts and precision. Furthermore, the results of a one pattern
may vary to a great extent as far as the corpus is concerned. To give but one example,
the inclure (include) pattern ranges from 2 to 267 contexts yielded and from 19% to
100% in terms of precision.

Our experiment gives rise to two major issues: issues related to the elaboration of
patterns itself and issues related to the results.

3 Original sentences are in French, and we give a translation below. Bolded parts of the sen-

tence are those that match the pattern.

164 N. Aussenac-Gilles and M.-P. Jacques

5.2 Pattern Elaboration

In our experiment, the point of departure was a set of already-existing patterns which
had to be adapted by replacing lexical forms with lemmas combined with tags. We
could then see that a tagset offers a convenient method for designing patterns in that it
facilitates the expression of abstract features while avoiding tedious entries of lists of
forms. However, the accuracy of the tagset must represent a trade-off between the
need for precision and manageability: the more accurate the tagset, the more difficult
it is to understand the tags, especially when the user is not attuned to dealing with
morpho-syntactic categories, and the more difficult the handling of the tagset.

Another point is the adaptation of the patterns to the different corpora. A given pat-
tern is seldom convenient for each corpus; it is therefore necessary to modify it, gen-
erally to reduce irrelevant contexts. For example, the pattern NP1 <être> 1 DEF_ART
NP2 DEF_ART (plus|moins) captures the following context:

La méthode KOD en est l'exemple le plus frappant
The KOD method is the most striking example of this

which does not express hyperonymy. To avoid it, we needed to specify that NP2
must not have exemple, cas or résultat as its head, which is an ad-hoc constraint.

Generally, it must be kept in mind that the so-called ‘generic’ patterns capture the
most frequent or the most widespread constructions for a given relation. To a certain
extent, it would be unrealistic to hope to take such a pattern and use it without modifi-
cation. In this sense, one may wonder whether some patterns are really generic.

5.3 What Is a “Generic Pattern”?

The results presented in section 5.1, together with the above observations, challenge
the notion of “generic pattern”. If a generic pattern is the lexico-syntactic formulation
of a semantic relation, which is said to invariably retrieve the same number of rele-
vant contexts, whatever the corpus is, then we can conclude from our experiment that
a generic pattern does not exist. Even the is-a pattern shows a huge difference be-
tween corpora, although it is acknowledged to be as generic as possible, in the sense
that it “occurs frequently and in many text genres” [9: 540]. If one tests this pattern
only on the PAR corpus, one will conclude this pattern is worth retaining since it has
a 40% precision rate; while if the same pattern is tested only on the MOUG corpus, it
is likely to be rejected, for the precision rate is 8%. If one wants to enhance the results
for each corpus, one will have to introduce new constraints and to “fine-tune” the
patterns, which is the contrary of what would be expected for a “generic” pattern.

6 Conclusion

We have presented a tool and an approach for supervised relation and concept identi-
fication. Our experiment shows that the performance of the semantic patterns used to
retrieve conceptual relations within texts is highly corpus-dependent and that human
supervision is therefore needed at various stages: pattern definition, sentence evalua-
tion and model enrichment. Hence, the generic pattern base that comes with the

CAMÉLÉON tool is thought of as a ‘bootstrap’ for elaborating and adapting convenient

 Designing and Evaluating Patterns for Ontology Enrichment from Texts 165

patterns and is not intended to be used “as is”. Therefore, future work must be de-
voted to facilitating pattern elaboration and to browsing the resulting contexts. Firstly,
we must ensure that “human-made” patterns actually surpass machine-learning ap-
proaches, which we would expect because of the complexity of their lexico-syntactic
structures. Secondly, we must reduce the number of contexts the user has to check by
filtering them via statistical methods. Thirdly, we must test how easy users find the
overall pattern creation or adaptation task with CAMÉLÉON and improve on it.

References

1. Aussenac-Gilles N., Biébow B., Szulman S.: Revisiting Ontology Design: a method based on
corpus analysis. Knowledge engineering and knowledge management: methods, models and
tools. R Dieng and O. Corby (Eds). LNAI 1937. Berlin: Springer Verlag. (2000) 172-188

2. Aussenac-Gilles, N.: Supervised Text Analysis for Ontology and Terminology Engineer-
ing. Proc. of the Dagstuhl Seminar 05071 on “Machine Learning for the Semantic Web”
(2005)

3. Bourigault, D.: Upery : un outil d’analyse distributionnelle étendue pour la construction
d’ontologies à partir de corpus, Actes de Traitement Automatique des Langues Naturelles,
Nancy (France) (2002) 75-84

4. Charlet, J., Zacklad, M., Kassel, G., Bourigault, D. (Eds): Ingénierie des connaissances
Evolutions récentes et nouveaux défis. Paris : Eyrolles (2000).

5. Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S., Learning Taxonomic Relations from
Heterogeneous Evidence. ECAI-2004 WS on Ontology Learning and Population, Valencia
(Spain) (2004) 59-73

6. Faure, D., Poibeau, T.: First experiments of using semantic knowledge learned by ASIUM
for information extraction task using INTEX. ECAI-2000 WS on Ontology Learning, Ber-
lin (Germany) (2000) 7-12

7. Gillam, L., Tariq, M., Ahmad, K.: Terminology and the construction of ontology. Termi-
nology, Volume 11, Number 1, (2005) 55-81

8. Girju, R., Moldovan, D.: Text Mining for Causal Relations. AAAI Conference (2002)
9. Hearst, M. Automatic Acquisition of Hyponyms from Large Text Corpora. In Proc. of the

15th Inter. Conf. on Computational Linguistics (COLING-92), Nantes (F) (1992) 539-545
10. Kavanagh, J.: The Text Analyzer: a Tool for Extracting Knowledge from Text. Master’s of

computer science Thesis, Univ. of Ottawa Canada (1996)
11. Marshman, E., Morgan T., Meyer I.: French patterns for expressing concept relations.

Terminology, 8 (1) (2002) 1-30
12. Rebeyrolle, J., Tanguy, L.: Repérage automatique de structures linguistiques en corpus : le

cas des énoncés définitoires. Cahiers de grammaire, 25 (2000) 153-174
13. Reinberger, M.-L., Spyns, P.: Discovering Knowledge in Texts for the learning of

DOGMA-inspired ontologies. ECAI-2004 WS on Ontology Learning and Population, Va-
lencia (Spain) (2004) 19-24

14. Riloff, E.: Automatically Generating Extraction Patterns from Untagged Text. Proc. of the
13th National Conference on Artificial Intelligence (AAAI-96). Portland (1996) 1044-1049

15. Séguéla, P.: Construction de modèles de connaissances par analyse linguistique de
relations lexicales dans les documents techniques. Mémoire de thèse en Informatique,
Université Toulouse 3, France (2001)

16. Staab, S., Maedche, A.: Ontology Learning for the Semantic Web, IEEE Intelligent
Systems, Special Issue on the Semantic Web, 16(2) (2001) 72-79

Semantic Metrics

Bo Hu, Yannis Kalfoglou, Harith Alani,
David Dupplaw, Paul Lewis, Nigel Shadbolt

IAM Group, ECS, University of Southampton, SO17 1BJ, UK
{bh, y.kalfoglou, ha, dpd, phl, nrs}@ecs.soton.ac.uk

Abstract In the context of the Semantic Web, many ontology-related
operations, e.g. ontology ranking, segmentation, alignment, articulation,
reuse, evaluation, can reduced to one fundamental operation: comput-
ing the similarity and/or dissimilarity among ontological entities, and
in some cases among ontologies themselves. In this paper, we review
standard metrics for computing distance measures and we propose a se-
ries of semantic metrics. We give a formal account of semantic metrics
drawn from a variety of research disciplines, and enrich them with se-
mantics based on standard Description Logic constructs. We argue that
concept-based metrics can be aggregated to produce numeric distances at
ontology-level and we speculate on the usability of our ideas in potential
areas.

1 Introduction

We are currently witnessing a shift of participation in ontology authoring from
knowledge engineers to interested practitioners. This change is fueled, partly, by
ever growing interest in the Semantic Web and in semantic technologies in gen-
eral. It is causing an unprecedented influx of ontologies in the public domain. For
instance, as of March 2006 we encountered at least 100 Wine related ontologies
in various formats (e.g. OWL, RDF(S), DAML, etc.) and some 200 ontologies
with definitions of the omnipresent concept person. This emerging “grass roots”
approach to ontology engineering has put the onus on ontology management
and calls for a variety of new tasks, such as ontology ranking, segmentation and
evaluation, to name but a few. A common ingredient to accomplish these tasks
is the assessment of similarity/dissimilarity between concepts within ontologies
or between entire ontologies themselves.

We see several areas as relevant: knowledge representation, statistical clus-
tering, data mining, information retrieval, all of which have contributed to the
problem of computing similarity/dissimilarity between concepts. The very fact
that there are so many options indicates that reaching a consensus on how to
capture semantics embedded in ontologies is hard to achieve in the first place. We
are particularly interested in building upon all the work from different disciplines
and focusing on metrics leveraging the semantics of concepts.

In this paper we narrow our focus to the description logic (DL) based OWL
language. We investigate a series of distance measures that our semantic metrics

and

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 166–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

.

draw upon. These are discussed in Section 2. We then explore how different
metrics can be semantically enriched and applied to the computation of distances
between concepts in Section 3, and how can they be extended to ontologies
themselves (Section 4). Finally, in Section 5, we present three major applications
in which our metrics can be used as a complementary means of working with
and enhancing existing technology and we conclude the paper with several issues
that need further investigation.

2 Background

In this section, we review the meanings of distances in different disciplines from
which our semantic metrics are drawn. We restrict our focus on ontology lan-
guages whose underlying logic satisfies the Beth property, e.g. OWL-DL.

2.1 Distance easures

In mathematics, the concrete idea of distance between two spatial points has
been abstracted as a metric or distance function over a set S so that ∆ : S×S →
R where R, the set of real numbers, is the numeric representation of distance.
Stemming from the spatial distance between two points, the term distance has
been used in various domains and situations ranging from geometry and physics
to information theory. An orthodox distance function must be non-negative
and symmetric and satisfy the triangle inequality.

In two dimensional euclidean space, the distance between points, {p1, p2} and
{q1, q2}, can be computed as the City Block (Manhattan) Distance, the Euclidean
Distance, or the Chebyshev Distance. Analogous to the two dimensional space
distance, the Euclidean Distance is generalised in an m dimensional space to
Minkowski Distance, ∆Min (p, q) = (

∑
i | pi − qi |m)1/m.

The idea of distance, in the broader sense of measuring how far apart two
objects are, has been applied to the computation of the discrepancy between
documents in Information Retrieval (IR), disagreement between words in a lexi-
cal taxonomy in Knowledge Representation, and dissimilarity between strings in
Information Theory. The semantic metrics that we propose in this paper stem
from the general distance measures that are discussed as follows.

The vector space model (VSM) [19] has been widely used in traditional IR
to compute the similarity of documents. VSM creates a space in which both
the candidate documents and the queries are represented as vectors. Normally,
VSM proceeds in three steps: 1) document indexing: by extracting content bear-
ing terms from the document text, a document can be reduced to a vector of
indexing key-words; 2) index weighting: the key-words are weighted to enhance
the relevance between documents and the query; and 3) document ranking: the
numeric similarity values between vectors of key-words are obtained (see Equa-
tion 1, [19]) based on which, the documents can be sorted.

M

Semantic Metrics 167

∆V SM (p, q) = − log simV SM (p, q) = − log

∑
i

pi × qi

√∑
i

p2
i

√∑
i

q2
i

. (1)

In information theory, entropy (denoted as H(X)) is borrowed from thermo-
dynamics to measure the information content of a message or uncertainty of a
message from the receiver’s perspective [21]. A full account of Shannon’s view
of the mathematical theory of information, however, is beyond the scope of this
paper. We restrict our focus to information gain with respect to one variable
based on the observation of another and use such a measure as distance between
arbitrary objects. This is captured by conditional entropy which measures how
much uncertainty a variable Y has, if the knowledge regarding another variable
X is completely known. Representing conditional entropy as H(Y | X), it may
be defined as

H(Y | X) = −
∑

x,y

p (x, y) log
p (x)

p (x, y)
(2)

In practice conditional entropy can be regarded as a divergence measure between
two variables, where H(X | X) = 0. The larger the conditional entropy, the less
information one gains from X with regard to Y and the further apart X and Y
are.

Meanwhile, in a discrete domain, the Kullback-Leibler divergence measures
the disagreement of two distributions. Let p and q be discrete distributions of a
variable, the “distance” between p and q is computed as

∆KL (p, q) =
∑

i

p i log
(

p i

q i

)

Note that the Kullback-Leibler divergence is not symmetric and is positive def-
inite [5]. It has several symmetrised variants that fit better as distance metrics.

2.2 Ontology and ntology anguages

“What counts as an ontology?” is still a highly debated question with answers
ranging from simple taxonomies to logically sound and coherent constructs whose
underlying model supports logic inferences [2]. In order to discuss distances with
regard to ontological entities and with regard to ontologies themselves, we need
first to clarify our intuitions about ontologies. Instead of giving a full philosoph-
ical reflection on the term ontology, we take the Artificial Intelligence (AI) ap-
proach and restrict an ontology to be “a specification of a conceptualisation” [8].
Although the fact that many models, e.g. database schemata, UML models, and
Semantic Network models [22], can be considered ontologies in a broader sense,
we normally confine our view of conceptualisation to the following formalisation:

O L

168 B. Hu et al.

an ontology is a four-tuple 〈C,R, τc, τp〉, where C is a set of unary predicates
called concepts, R ⊆ C × C a set of binary relations called properties and τc and
τp introduction axioms of concepts and properties respectively.

Description Logics (DLs) are a family of knowledge representation and
reasoning formalisms that have attracted substantial research recently, especially
after the endorsement of DL-based ontology modelling languages (e.g. OWL [14])
by the Semantic Web initiative [3]. Among the three “sub-species” of OWL,
OWL-Lite is based on SHIF DL and OWL-DL is based on SHOIN DL [9].
DLs are based on the notions of concepts (i.e. unary predicates) and properties
(i.e. binary relations). Using different constructs, complex concepts can be built
up from primitive ones. Let CN denote a concept name, C and D be arbitrary
concepts, R be a property, n be a non-negative integer, oi (1 ≤ i ≤ n) be an
instance and �, ⊥ denote the top and the bottom. A SHOIN concept is:

CN | C � D | C 	 D | ¬C | ∃R.C | ∀R.C | ≥n R.� | ≤n R.� | {o1, . . . , on}
Meanwhile, SHOIQ extends SHOIN with qualified number restrictions, ≥n

R.C and ≤n R.C.
An interpretation I is a couple (DI , ·I) where the nonempty set DI is the

domain of I and the ·I function maps each concept to a subset of DI while
mapping each property (role) to a subset of DI × DI . The uniform syntax and
unambiguous semantics of DLs lend themselves to powerful reasoning algorithms
that can automatically classify the domain knowledge in hierarchical structures.

Thus far, many ontology languages have been proposed and standardised,
e.g. RDF(S) [12], OWL [14], etc. Despite the apparent differences, many of the
current ontology languages aiming at facilitating semantic web applications can
be regarded as tractable and decidable subsets of description logics.

3 Semantic etric of oncepts

Distance between concepts is by no means a new idea. It can be approached from
two directions, extensional and intensional. Extensional approaches normally
assume an unbiased population of instance data from which a numeric similar-
ity/dissimilarity can be obtained by applying probability distributions, concept
co-occurrences and cosine measures of vectors, e.g. in [6] and [23]. Intensional ap-
proaches exploit features defined directly over the concepts and apply measures
such as Tversky’s model (e.g. in [4]) and graph-based ones (e.g. in [15]). More
specifically, graph-based methods represent ontologies as directed acyclic graphs
and count the total number of weighted edges, where the edges could be inheri-
tance relationships and/or properties. Feature-based methods characterise con-
cepts with discrete semantics bearing components, e.g. concept names, property
names, domains, etc. and take a weighted average of the similarity/dissimilarity
between each pair of components [13]. Both extensional and intensional meth-
ods have advantages and disadvantages. On one hand, it may be argued that
instance data can best capture the semantics and there are plenty of well stud-
ied techniques that can be leveraged. In reality, however, an unbiased population

CM

Semantic Metrics 169

is not always available, especially for ontologies published on the loosely regu-
lated Web. The applicability of such approaches, therefore, is highly suspect. On
the other hand, the intensional approaches would probably not win the battle
due to: 1) the ambiguity of converting semantic distinctions—e.g. equivalent,
more general than, etc.—into numeric values, 2) the computational complexity
demonstrated by both graph-matching and SAT problems, and 3) their reliance
on good modelling habits of those people constructing the ontologies. Intensional
ones might also require more involvement from human observers, e.g. weighting
different types of edges in graph-based algorithms. In this paper, we adopt an
eclectic approach: we produce signatures characterising the logical restrictions
of concepts and the distances of concepts are reduced to the distances between
different vectors of such semantics bearing signatures.

In this section and throughout the rest of the paper, two ontologies are used
as examples and test-beds for the proposed metrics. They are bibliography on-
tologies revised and simplified from publicly available ones and are denoted as
Om

1 and Op
2 respectively.

3.1 Concept as a et of ignatures

Each concept in an ontology encapsulates a subset of instance data from the do-
main of discourse. In a broader sense, concepts are effectively constraint systems
against which instance data are evaluated. For instance, concept Book (defined
as in Figure 1 using DL-based constructs) specifies that a book is a Document
that has at least one title, at least one publisher, etc.

Book
.
= Document� ≥1 hasTitle� ≥1 hasYear

� ≥1 hasPublisher� ≥1 humanCreator.Author

Author
.
= Human� ≥2 hasPublication.Document

Document � � Human � �

Fig 1. Book in Op and related concepts

Unfolding concepts Semantics of concepts are embedded in DL-based con-
structs which need to be explicated before computing the distance. Concepts are
recursively unfolded till only primitive ones (i.e. concepts that are only defined
by names) appear on the righthand side of the concept introduction axioms. If
cyclic definitions are not allowed, i.e. such that no primitive concepts appear on
both sides of a concept introduction axiom, it is possible to unfold the righthand
side of all concept introduction axioms and guarantee the termination of such

1 http://visus.mit.edu/bibtex/0.01/bibtex.owl.
2 http://www.aktors.org/ontology/portal.

an unfolding process. For instance, let CN .= C′ ∈ O, CNi and RNj be concept
and property names appearing in C′ respectively, and (CNi

.= Ci) ∈ O and
(RNj

.

= Rj) ∈ O. It is possible to thoroughly expand C′ by recursively replac-

SS

170 B. Hu et al.

.

.

ing defined concept names appearing on the righthand side of CN .= C′ with
the concept definitions in O, i.e. C [CNi/Ci, RNj/Rj] where [x/y] defines the
process of replacing all occurrences of x with y. Such a process terminates due to
the acyclic nature of O and results in a finite set of logic formulae. Subsequently,
semantic signatures are extracted from the unfolded concepts.

S: a non-empty set of instances; L: associating each a ∈ S with a set of
concepts; R: mapping each property to a subset of S × S. For all a, b ∈ S, if
C, C1, C2 are concepts and R is property:

r�: C1 � C2 ∈ L(a), then C1 ∈ L(a) and C2 ∈ L(a).
r�: C1 � C2 ∈ L(a), then C1 ∈ L(a) or C2 ∈ L(a).
r∀: ∀R.C ∈ L(a) and 〈a, b〉 ∈ R(R), then C ∈ L(a).
r∃: ∃R.C ∈ L(a), then ∃b.b �= a and 〈a, b〉 ∈ R(R) and C ∈ L(b).
r≥: ≥n R.C ∈ L(a), then ∃b1, . . . bk.bi �= bj and 〈a, bi〉 ∈ R(R)

and C ∈ L(bi) and k ≥ n.
r≤: ≤n R.C ∈ L(a), then ∃b1, . . . bk.bi �= bj and 〈a, bi〉 ∈ R(R)

and C ∈ L(bi) and k ≤ n.

Fig 2. Transformation rules of some DL constructs [2]

We adopted the tableau construction rules used in many DL-based inferential
systems to facilitate the concept unfolding and the signature extraction process.
In Figure 3, we present an example of how Book (defined in Figure 1) is unfolded
by repetitively applying the transformation rules defined for each and every
DL construct (see Figure 2 for the rules of some DL constructs)—a detailed
description of such rules can be found in [2]. The unfolding process for Book stops
when only primitive concepts and properties, namely Document and Human,
remain. � is included for completeness.

As illustrated in Figure 3, concept Book is associated with one set of semantics-
bearing signatures that fully capture the meaning of Book by means of primitive
concepts and properties. There are two points to be addressed further. Firstly,
there might be cases where concepts are defined as the union of other concepts
that are either fully defined elsewhere in the same ontology or introduced as
anonymous ones. Applying indeterminate 	 unfolding rules (see Figure 2) results
in alternative sets of formulae, each of which captures part of the intended mean-
ing of the original concept. For instance, if we have “Human

.= Man	Woman” and
Man and Woman as “. . .�∀hasGenderMale�. . .” and “. . .�∀hasGenderFemale�. . .”
respectively. After unfolding, we have two separate sets of signatures.

iCHuman
1 = {. . . , x : ∀hasGender.Male, . . .} or

iCHuman
2 = {. . . , x : ∀hasGender.Female, . . .}

Secondly, property universal quantifications can only be further expanded when
there are instances defined over the property, i.e. y : Male is included, in the above

Semantic Metrics 171

.

Matching Unstructured Vocabularies sing a
Background Ontology

Zharko Aleksovski1,2, Michel Klein2, Warner ten Kate1, and Frank van Harmelen2

1 Philips Research, Eindhoven
2 Vrije Universiteit, Amsterdam

Abstract. Existing ontology matching algorithms use a combination of lexical
and structural correspondence between source and target ontologies. We present
a realistic case-study where both types of overlap are low: matching two unstruc-
tured lists of vocabulary used to describe patients at Intensive Care Units in two
different hospitals. We show that indeed existing matchers fail on our data. We
then discuss the use of background knowledge in ontology matching problems.
In particular, we discuss the case where the source and the target ontology are
of poor semantics, such as flat lists, and where the background knowledge is of
rich semantics, providing extensive descriptions of the properties of the concepts
involved. We evaluate our results against a Gold Standard set of matches that we
obtained from human experts.

1 Introduction

Semantic integration of heterogeneous datasources is widely regarded as technologi-
cally one of the most urgent and scientifically one of the most challenging problems
[1–8]. Consequently, much recent work has appeared in this area. In the fields of AI,
Knowledge Engineering and Semantic Web research, this problem goes by the name of
ontology matching (see [1, 6, 7] for a number of recent surveys of this very active field).

According to [6], the methods to solve the problem of ontology matching can be
divided into: terminological methods which try to identify lexical correspondences be-
tween the labels of concepts in the source and target ontologies, instance-based meth-
ods which use instance data in both source and target ontologies to discover matches
[9], structural methods which use the structure of the ontologies, and semantic methods
which use additional logical methods to induce the matches [5].

The majority of the approaches use a combination of terminological and structural
methods, where the lexical overlap is used to produce an initial mapping, which is
subsequently improved by using the structure of source and target. Hence, this majority
of approaches crucially relies on two assumptions:

– sufficient lexical overlap exists between the source and target ontology
– source and target ontology have sufficient structure

In this paper, we will present a case-study where neither of these assumptions hold.
In this case study, not only there is insufficient lexical overlap between source and
target, but more crucially, the structures to be matched contain no structure at all: they

U

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 182–197, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

are simply lists of terms, instead of richly structured ontologies. Consequently, current
state-of-the-art matchers are expected to fail.

We believe that our case-study is representative of many realistic cases. Experience
with Semantic Web applications shows that many of them rely on rather lightweight
semantic structures, providing at most a hierarchy of terms, where often this hierarchy
is only a 2-3 levels deep [10]. Hence, the reliance of existing ontology matchers on such
structure is indeed an important limiting factor.

After showing indeed the failure of a number of state-of-the-art matchers in our
case-study, we present a novel method for ontology matching that uses an additional
source of background knowledge to compensate for the lack of structure to be found in
source and target vocabularies as well as the freedom in choice of terminology.

The basic idea of our approach is to first align the concepts from the source and
target ontologies with the background knowledge, then use the structure of this back-
ground knowledge to derive semantic relationships between the source and target con-
cepts, and finally use these relationships to induce a mapping between them.

We built a system that implements this approach and tested it with the data from
our case-study. We then score the performance of our system against a human-created
Gold Standard, and show that on such poorly structured data, our system performs
significantly better than existing state-of-the-art matchers.

In the following sections we first describe the details of our case (section 2), and
we show the low success rate of some existing state-of-the-art matchers on these data
(section 3). We then proceed to explain our own matching process, based on the use
of background knowledge (section 4 and 5), and show in section 6) that we achieve
considerably higher success rates than the existing matchers. The final section 7)
concludes.

2 The ata in ur ase tudy

In this section we describe the data involved in our case study. The challenge was to
match two vocabularies that were taken from the medical domain. The vocabularies
are lists of reasons for admission in the Intensive Care Unit (ICU) of two Amsterdam
hospitals. A reason for admission describes a problem, why a patient was brought into
the ICU. Each patient arriving at the ICU in either hospital is classified using one or
multiple terms from the corresponding list. These classifications are used for monitoring
patient progress, for planning of required ICU resources, and for off-line nationwide
quality comparison of different ICU’s.

Source vocabulary: As source vocabulary for our mapping case-study, we use a set
of reasons for admission from the OLVG hospital in Amsterdam. It is a flat list of
terms with no structure. The list is partly based on the ICD-9-cm vocabulary, and
on the Dutch “Classificatie van Medisch Specialistische Verrichtingen” (CMSV) , a
classification of medical procedures. During its use in the past three years, the OLVG
list has been extended with additional descriptions of medical conditions of patients

http://www.cdc.gov/nchs/about/otheract/icd9/abticd9.htm

http://www.nictiz.nl/kr_nictiz/2527

1

2

1

2

O SCD

Matching Unstructured Vocabularies Using a Background Ontology 183

at the ICU. The resulting list is a mixture of problem descriptions at several levels of
abstraction with minor redundancy. It does not only contain reasons for admission to
the ICU, but also other medical conditions that are relevant during the stay of patients
at the ICU. We limited our experiments to the list-elements actually used at admission,
identified as those terms that are used for describing patients during the first 24 hour of
their stay. The resulting list contains 1399 problem descriptions consisting of maximal
7 words each. 95% of these descriptions consist of no more than three words. The list
is mainly in Dutch but also contains English terms.

Target vocabulary: As target vocabulary, we use a second set of reasons for admission,
used at the AMC hospital in Amsterdam. The AMC vocabulary consists of a flat list of
1460 reasons for admission at the intensive care unit of the AMC hospital. This list was
used as the target vocabulary in our experiments.

Background ontology: As outlined above, the essential idea of our aproach is to first
align the unstructured source and target vocabularies with a given background ontology,
and then to use the structure of the background ontology to derive matching relation-
ships between the source and target vocabularies. In our case study, we use the DICE
ontology as background knowledge. DICE has been developed by the Medical Infor-
matics group at the AMC hospital. It is a medical terminology, formalized in OWL DL ,
of some 2300 concepts, described by some 5000 lexical terms. These concepts are re-
lated to each other with some 4300 relational links of 50 different relation types. DICE
mainly aims to cover concepts in the Intensive Care domain, and is structured in five
different hierarchies (called “aspects” in DICE): abnormalities (255 concepts), medical
procedures (55 concepts), anatomical locations (1512 concepts), body subsystem (13
concepts), and causes (85 concepts). Together, these five vocabularies are the main or-
ganisational structure of DICE. Each aspect has a domain of possible values, organized
in a tree structured taxonomy. The concepts in the aspect taxonomies are labeled with a
language attribute, in the current version either Dutch or English. If a concept is named
with multiple terms, one of the terms functions as ‘preferred’ term - label, and the others
as synonyms.

3 Performance of tate-of-the- rt ools on ur ase tudy

3.1 Ontology lignment ools

There are several other approaches for ontology matching. An overview can be found
in [6, 1, 7]. In this section, we summarize three of the most prominent approaches.

– FOAM is an ontology alignment framework to fully or semi-automatically align
two or more OWL ontologies, developed by the university of Karlsruhe [11]. It is
based on heuristics (similarity) of the individual entities (concepts, relations, and
instances). As result, it returns pairs of aligned entities. It can handle ontologies
within the DLP-fragment of OWL. Part of FOAM is a machine learning component
that optionally takes user feedback into account.

http://www.w3.org/TR/owl-guide/3

3

S SCA OT

A T

184 Z. Aleksovski et al.

– Falcon-AO [12] is an automatic ontology matching tool, developed by the South
East University of China. It outperformed all other ontology matchers in the 200
ontology alignment initiative [13].Falcon-AO regards ontologies asgraph-likestruc-
tures, and then produces mappings between elements in the two graphs that corre-
spond semantically to each other. Both of linguistic similarity and structural sim-
ilarity are taken into account. There are two matchers integrated in Falcon-AO:
LMO for syntactic comparison based on edit distance, and GMO for graph-based
comparison.

– S-Match is a algorithm and tool developed by the University of Trento [14], based
on CTXmatch[5]. S-Match takes two trees, and for any pair of nodes from the two
trees, it computes the strongest semantic relation holding between the concepts
of the two nodes. For this, it uses lexical techniques, background knowledge in
the form of relations between synsets in WordNet, and the structure of the tree.
S-Match is restricted to tree-like structures used for classification purposes.

As is already illustrated in the descriptions above, most alignment tools exploits a com-
bination of syntactical comparison techniques and structural comparison techniques.
This mixed approach can work well in practice, as the results in the ontology alignment
initiative show. However, when one of the sources to be matched merely is a unstruc-
tured list, the mixed approaches reduce to lexical comparison of labels.

Only one of the tools, i.e. S-Match, exploits background knowledge to do the map-
ping. However, in the current version S-Match can only use a predefined set of back-
ground knowledge sources, such as Wordnet and UMLS. Moreover, it only uses the
class hierarchy of background ontologies.

3.2 Performance of ther ools

We have applied two of the ontology matching tools described above to the data that is
described in our case study. We loaded an OWL representation of both the OLVG list
and the AMC list plus the DICE background knowledge into the tools. In this section we
only describe the amount of matches that we found, in section 6.1 we give an analysis
of the correctness of these matches.

When using FOAM to align the two lists, we initially got 326 matches, but those
included symmetric matches. Effectively FOAM found 159 matches. An analysis re-
vealed that many obvious matches were missing because synonym labels were ignored.
To solve this, we have regenerated the AMC list with separate concept definitions for
each known synonym. This resulted in 696 effective matches.

We also used Falcon-AO. Initially, the files were too large to run in one step.
After splitting the AMC-ontology in several files, we were able to run the tool, and
extrapolated that we would end up with less than 100 matches. However, because all
matches were necessary based based on lexical measures only, we tried to use the lexical
matcher component (LMO) in a stand-alone configuration. This has two advantages.
First, the stand-alone LMO matcher is much more efficient, so that matching can run on
the complete AMC ontology. Second, it returns a a ranking of all matches found, and not

Experiments performed in collaboration with Dr. Wei Hu, South East University of China.4

TO

4

5

Matching Unstructured Vocabularies Using a Background Ontology 185

just the ones that are above the threshold. As a result, we get much more matches, but
many of them with a low confidence level. When using the stand-alone LMO matcher,
683 matches were returned.

Unfortunately, because S-Match isn’t freely available, we haven’t yet been able to
use S-Match on our dataset with a medical thesaurus as background knowledge.

4 Semantic atching of oncepts from nstructured ocabularies

The scheme of our matching approach is depicted in Figure 1. The task is to match the
source vocabulary to the target vocabulary, where both vocabularies are unstructured
(flat) lists. Our approach consists of finding semantic matches by using a (richly struc-
tured) ontology that holds background knowledge about the domain. First, the source
and target vocabulary are each matched with the background knowledge ontology pro-
ducing so-called anchoring matches. Anchoring matches connect a source or target
concept to one or more concepts in the background knowledge ontology, which we
call anchors. Then, based on the relationships among the anchors entailed by the back-
ground knowledge, we induce in a second step how the concepts from the source are
matched to the concepts in the target vocabulary, yielding the semantic match we are
looking for. A concept can match to several anchors, in which case the collection of
anchors is combined according to the semantics of the background knowledge.

In the following, we will describe the anchoring process (subsection 4.1) and the
process of inducing the source-to-target semantic match (subsection 4.2) in more detail.

Fig. 1. Our general approach: Matching a source vocabulary to a target vocabulary using an on-
tology describing background knowledge.

4.1 Anchoring ocabulary oncepts with the ackground knowledge

As explained, the source and target vocabularies are anchored to concepts in the back-
ground ontology. The anchoring matches can be established manually by a domain
expert, or automatically using existing concept matching techniques.

M C U V

V C B

186 Z. Aleksovski et al.

The automatic anchoring in our approach, is performed by a simple lexical heuristic
that discovers partial matches between two strings. It makes use of the concept’s labels
and synonyms only. A concept’s label is the string name assigned to the concept. Quite
often, these labels come with a list of synonyms for the concept. We used both the
labels and the synonyms in our comparison. Our heuristic is based on comparing the
number of matching words: If all the words in a label or synonym of a concept A are
found in a label or synonym of concept B, it concludes that A is an anchor of B. We
also used some simple Dutch morphological rules to deal with the common Germanic
construction of compound words that do not have a delimiting space between the words.
For example, “hersentumor” (brain tumor) is a special case of “tumor”.

Figure 2 depicts an example of discovering an anchoring match.
Clearly, these heuristics are very simple, and it is not difficult to think of cases where

they fail: In Figure 2, for example, “long brain tumour” would also end up being a
special case of “brain”.

It would seem that such a simplistic lexical mapping would not suffice, and it would
seem that we are replacing one ontology matching problem (source to target) by two on-
tology matching problems (anchoring source and target to the background knowledge).
Why then, would this make our problem any easier? The surprising thing is, as revealed
in our experiments, that this is indeed the case. After presenting our experimental data
in the next section, we will discuss why the use of such simple lexical heuristics is suf-
ficient for the anchoring process, while it is not sufficient for the direct source-to-target
matching.

Fig. 2. An example of lexical anchoring by comparing two labels: “Long brain tumor” and “Long
tumor”. The first consists of a superset of the words from the second label, so the second can be
considered a property value filler of the first.

The anchoring process implicitly adds structure to the unstructured source and target
vocabularies, and has established relations between source and target concepts through
the relations between their anchors in the background ontology. We exploit this structure
in the next step, to discover semantic matches between the source and target vocabulary
concepts.

4.2 Semantic atching - he se of ackground nowledge

As said, we make use of the background knowledge ontology to perform the discoveries
of semantic matches. When comparing two concepts A and B having anchors A′ and
B′ respectively, we compare A′ and B′, and, if they are related, infer that A and B are
related as well.

M T U B K

Matching Unstructured Vocabularies Using a Background Ontology 187

An example is given in Figure 3: the concept “Dissection of artery” is found to
have location “Artery”, and the concept “Aorta thoracalis dissection” is found to have
location “Aorta thoracalis”. A relation is inferred between these two medical concepts,
since they describe related anatomical locations: according to the background ontology
“Aorta thoracalis” is a kind of “Artery”. Hence, the source concept can be inferred
to have a more specific location than the target concept. Notice that with pure lexical
methods, no meaningful match between these two concepts could have been derived.
The use of background knowledge was essential to derive this match.

Fig. 3. An example of relating two medical concepts using background knowledge. A semantic
match is discovered using the location taxonomy.

In general, either the source concept A or the target concept B could be anchored
to multiple anchors and the background knowledge could reveal relationships on an-
chors that represent different properties. On the one hand, this makes the comparison
more complex. On the other hand, if multiple anchors are related in similar ways, they
reinforce that the main concepts A and B are related in the same way. In case the multi-
ple anchors are related in incompatible ways (e.g. anchor A′

1 subsumes anchor B′
1, but

anchor A′
2 is subsumed by anchor B′

2), a subsumption relation between the concepts
cannot be inferred. However, they do reveal the source and target concepts have some
relationship and are within some semantic distance.

This is illustrated in the example depicted in Figure 4, where we try to match the
concepts “Heroin intoxicatie” and “Drugs overdosis”. According to the background
knowledge, “Heroin” is a kind of “Drugs”, while “Overdosis” is a kind of “Intoxi-
catie”, i.e. the two aspects have a subsumption relationship to each other, however, in
reverse direction between the concepts. Hence, the concepts are neither equivalent nor
one subsuming the other. However, in the everyday understanding the two concepts do
have a big semantic overlap. Again, note that these concepts do not have any lexical
similarity - their describing labels consist of entirely disjoint sets of words. It was only
possible to discover this match by using the background knowledge.

188 Z. Aleksovski et al.

Fig. 4. An example of matching two concepts using background knowledge. The concepts are not
equivalent but do have a big semantic overlap.

The successful application of the method depends on the richness of the background
knowledge. As discussed later in Section 6, with increasing richness, the more likely it
becomes that anchoring matches can be established in the first place, but, more impor-
tantly, the more likely it becomes a relation between the anchors can be found.

Experience in practice has shown that concepts from two matching ontologies are
rarely precisely equivalent, but rather have some (otherwise unspecified) semantic over-
lap. Consequently, finding such semantic relationships seems more useful for integra-
tion purposes, than finding precise equivalences.

4.3 Comparison with ther pproaches

Our approach can be compared with the semantic coordination approach proposed by
Bouquet et al. [5]. That approach assumes the source and target vocabularies do have
some structure and each concept does have a label that is meaningful in natural lan-
guage. It proceeds in two phases. In the first phase, called explicitation, the concepts
from source and target ontology are transformed into propositional expressions, using
the labels and surrounding structure such as ancestor and sibling labels. The words in
the label are considered as propositional atoms. An additional source, such as Word-
Net , may be used to enrich the explicitation, by taking the senses returned by WordNet
on each word in the label as the propositional atoms. In the second phase, the obtained
propositional expressions are tested whether one implies the other, for example, in a
SAT solver. Since the propositional expressions capture the semantics of the original
concepts, valid implications indicate a semantic subsumption relation between the
concepts.

http://wordnet.princeton.edu/

O A

5

5

Matching Unstructured Vocabularies Using a Background Ontology 189

In our scheme, we also assume the labels are meaningful in natural language. How-
ever, we do not assume a (semantic) structure to be present. We also create logic ex-
pressions and subsequently evaluate them, however, in our case, the logic framework is
given by the background knowledge.

Usually, the description in a background knowledge ontology are expressed in a
logic richer than propositional logic. Accordingly, after the anchoring (which may be
compared with the “explicitation” phase) we obtain richer logic representations. In par-
ticular, we include concept relations. In line with frame-based systems, quite often con-
cept relations have the character of properties: one concept is the filler of a property
of the other concept. In our reasoning paradigm we took the fillers apart in a separate
classification and combined the different classifications of all fillers to derive the match
between the main concepts.

5 Experiments to est ur pproach

In our experiments we matched the source and target lists (i.e. the unstructured OLVG
and AMC vocabularies) both lexically, i.e. directly, and semantically, i.e. using the
DICE ontology as background knowledge.

Experiment 1: Lexical matching. In the lexical match, we directly matched pairs of
terms from the two vocabularies, using the lexical matching method described in Sec-
tion 4.1. In testing for equality of terms, we allowed for edit-distance of two characters
using Levenshtein string distance [15], to compensate for the typing mistakes in the
lists. The result is a list of pairs of terms, that were either equivalent or related in a
more-general-than relation.

Hypothesis: We expect that the results of this lexical matching step are comparable to
the performance of existing tools on this data, such as discussed in Section 3, since on
these data the existing tools are also reduced to performing lexical matching only.

Experiment 2: Semantic matching. When matching the vocabularies semantically, we
followed the general scheme of our approach, depicted in Figure 1, using the five aspect
taxonomies in DICE as the background knowledge. First, in the anchoring step, we lex-
ically matched the terms from the OLVG and AMC source and target vocabularies to
each of the five DICE aspects taxonomies, producing anchors in the background ontol-
ogy for the terms from the vocabularies. For the AMC-DICE anchoring, besides anchor-
ing through the lexical matching procedure, we also used a given anchoring schema that
was created manually by experts from the AMC hospital. Important to notice is that our
lexical matching is not crucial in this step, instead any matcher can be used to establish
the anchoring matches. We used such simple lexical technique because our manual anal-
ysis indicated that using other more advanced techniques will only marginally change
the result. After obtaining the anchors we used the relationships specfied between the
anchors in the DICE taxonomies to infer a semantic match between the source and tar-
get concepts. Figure 5 depicts the scheme (which is essentially the general scheme from
Figure 1 instantiated for our experiment). Note that each term from source and target
ontology is matched multiple times to the background ontology, viz. once per aspect
taxonomy.

AOT

190 Z. Aleksovski et al.

Hypothesis: We expect the results of semantic matching to be better than the results of
direct lexical matching between the two vocabularies.

Evaluation: For measuring the performance of the various methods and tools, we cre-
ated a Gold Standard solution for this problem. A medical expert was invited to create
manually mappings between the OLVG and AMC vocabularies. Because the intended
use case of the mapping is to classify patients that have been registered with OLVG
terms in the AMC taxonomy, the expert was asked to specify for each OLVG term the
AMC term that he would use to describe the medical problem.

The expert was given a random sample set of 200 concepts from the OLVG list,
for which he was asked to find the matching concepts in the AMC list. This set was
created as follows: 30 terms were selected for which we knew that good anchorings in
DICE would be available, together with the top 15 most frequently used terms from the
OLVG vocabulary, supplemented with randomly drawn terms to a total of 200 terms.
For these 200 terms, the expert created matches for 125 concepts, leaving the other 75
“unknown”. For each of the matched OLVG concepts he proposed one AMC concept
as the most appropriate match. No statements about alternates were made. This yields
a Gold Standard on the order of about 10% of the entire vocabulary, which is sufficient
for reliable performance measurements.

Fig. 5. Matching the OLVG and AMC vocabularies using the aspect taxonomies of DICE as
background knowledge ontology (this is Figure 1 instantiated for our experiments.)

Matching Unstructured Vocabularies Using a Background Ontology 191

Evaluation against the Gold Standard The 582 OLVG terms for which lexical matches
were produced represent some 42% of all OLVG terms. Comparison against the Gold
Standard revealed that some 32% were correct. In section 3 we already reported on
the number of matches found by tools like FOAM and Falcon-AO. We also scored the
precision of these tools against the Gold Standard. These figures are summarised in the
table in Figure 6. Note that these figures cannot be used to judge the quality of FOAM
and Falcon-AO, as we use them here in a scenario for which they were not designed, i.e.
mapping unstructured vocabularies. We compare the result of our lexical mapping with
the performance of the other tools to show that the simplicity of our lexical mapping
technique in the first experiment is not the explanation for the improvement that we
hope to find in the second experiment.

total matches found correct matches found
on corpus on Gold Standard
(n=1399) (n=200)

lexical matching 582 65 (=32%)
FOAM 696 41 (=20%)
Falcon-AO 683 28 (=14%)

Fig. 6. Results of the lexical matching experiment

6 Results

6.1 Experiment 1: Lexical atching

We will first present the results of our “baseline experiment”: directly trying to find
lexical matches between the OLVG and AMC vocabularies without the mediating role
of the DICE background knowledge. When matching the OLVG list to the AMC list
directly, using the lexical technique only, 582 OLVG concepts were matched to concepts
in the AMC list. Of these, 274 were found to be lexically equivalent, and the remaining
308 concepts were partial matches.

A manual analysis revealed that around 260 concepts in the OLVG list (i.e. 19% of
the corpus) have a large lexical overlap with concepts in the AMC list. The figures in the
table show that both FOAM and our lexical matching method finds a comparable per-
centage of correct matches. A possible explanation for the fact that our method scores
a higher percentage of correctness (32%) than the estimated lexical overlap (19%) is
that the Gold Standard is slightly biased towards frequently occurring problems (see
the description of the creation of the Gold Standard in the previous section), for which
the lexical overlap can be higher.

The LMO module of Falcon-AO retrieves much fewer of correct matches. The most
likely explanation of this effect is that Falcon-AO limits itself to 1-1 matches, preventing

M

These figures are the numbers of correct matches on those matches for which the Gold Stan-
dard contained an answer.

6

6

192 Z. Aleksovski et al.

OLVG#Oesofagus_perforatie �→ AMC#Oesofagus ruptuur

OLVG#Oesophagus_resectie �→ AMC#Oesofagus perforatie

although both by themselves reasonable, together these matches prevent the obvious
match

OLVG#Oesofagus_perforatie �→ AMC#Oesofagus perforatie

because Falcon limits itself to 1-1 matches: both of these terms are already part of
another match. The obvious solution would be to allow terms to participate in multiple
matches, producing an n-m matching as done by our lexical method.

6.2 Experiment 2: Semantic atching

In the first step of semantic matching OLVG and AMC concepts are anchored into the
DICE background ontology.

Experiment 2: Semantic matching, anchoring step. When anchoring the OLVG vocab-
ularies to DICE, we used the lexical technique described earlier, and we found in total
549 of OLVG concepts anchored to DICE concepts, via 1298 anchors.

For anchoring the AMC vocabulary to DICE we used a combined expert- and au-
tomatic approach. An expert manually established 4568 DICE-anchors for the AMC
vocabulary. We enhanced these anchor matches using the lexical matching technique
and found a further 1248 new anchors, which increased the amount of anchors to a total
of 5816, anchoring a total of 1404 concepts.

Notice that the anchorings are many-to-many relations: a single term from source
or target vocabulary can have multiple anchor terms in DICE, either in a single or in
different aspect taxonomies. Table 7 shows how many terms were anchored, and how
often our lexical heuristics were able to establish anchorings to multiple DICE aspect
taxonomies. Such anchoring in multiple aspects is important, because it will enable the
inference step to use multiple DICE taxonomies to infer potential semantic matchings.

OLVG AMC
anchored on 5 DICE aspects 0 2
anchored on 4 DICE aspects 0 198
anchored on 3 DICE aspects 4 711
anchored on 2 DICE aspects 144 285
anchored on 1 DICE aspect 401 208
total nr. of anchored terms 549 (=39%) 1404 (=96%)
total nr. of anchoring relations 1298 5816

Fig. 7. Results of the anchoring step in our experiment

M

many plausible partial matches. This is illustrated by the following example matches
produced by Falcon-AO on our case-study data:

= 4568 manually + 1248 by lexical matching7

7

.

Matching Unstructured Vocabularies Using a Background Ontology 193

are able to establish anchorings, to be used in the second step of our approach. The
high percentage of anchoring for the AMC vocabulary is due to the contribution of the
manually constructed anchors.

Figure 8 details how the anchors are distributed over the five DICE aspects (sep-
arate taxonomies). It shows that the anchors are very unevenly distributed over the
various aspects (with only three anchors established from the OLVG vocabulary to as-
pect hierarchy on body-systems), and a similarly uneven relative contribution between
expert-created and lexically found anchors across the different aspects (with again the
body-systems aspect producing very few lexical anchors for the AMC vocabulary).

AMC list OLVG list
Aspect Expert-manual Additional lexical Total Lexical
Abnormality 1168 271 1439 354
Action taken 292 122 414 109
Body system 1217 2 1219 3
Location 1336 721 2057 255
Cause 555 132 687 60

4568 1248 5816 781

Fig. 8. Distribution of anchors over the different DICE aspect taxonomies

Experiment 2: Semantic matching, inference step. In the second step, relationships
between anchors in DICE are used to infer matches between source and target terms.
As a result of this matching, a matching AMC term was derived for 538 OLVG terms.
Of these, 413 matches were based on inference in a single DICE aspect, while 135
matches were supported by inference in two aspects (i.e. the inference in two DICE
taxonomies produced support for the same match).

Evaluation against the Gold Standard The evaluation of semantic matches against the
Gold Standard is made more complicated by the fact that the n-m anchors can also
produce n-m matches between source and target vocabularies. When a single OLVG
concept matches with multiple concepts in the AMC vocabulary, we ranked the match-
ings as follows:

1. If the match corresponds to a direct, lexical equivalence, it is ranked highest in the
result set.

2. The remaining matches, were ranked according to the number of DICE aspect tax-
onomies that supported the match

3. Matches based on the same number of DICE aspects, were ranked according to
the number of equivalence matches on DICE properties (ie preferring equivalences
over part-of, contained-in, type-of, etc).

We assess the performance of our method on the Gold Standard containing human
created matches for a random set of 200 OLVG concepts. For 69 concepts, our method

Table 7 shows that our simple lexical heuristics succeeded in constructing anchors
for 39% of the OLVG vocabulary. This indicates that indeed our weak lexical heuristics

194 Z. Aleksovski et al.

produced the same results as the expert, proposing the matched AMC concept as a
single best candidate. For 4 concepts, our method found the expert match in the first
five suggested matches. For 43 concepts, neither our method, nor the expert produced
any matching. For 50 concepts matched by the expert our method did not produce any,
or produced matches of low confidence. For the remaining 34 concepts, the matches
produced by our method were different from those by the expert. Manual inspection
revealed that our method produced either new matches for which the expert did not
produce any, but that did seem plausible, or other matches that seem a refinement of the
proposed expert matches.

These figures are summarised in the table in Figure 9, including the results for the
lexical approach reported already in Figure 6 above. This summary shows that on such
semantically impoverished vocabularies as in our case-study, the use of semantic back-
ground knowledge as part of the matching can substantially improve both the number of
matches found and the quality of these matches, as compared to either a purely lexical
technique, or as compared to existing tools that, in the absence of any structure in the
source and target vocabulary, default to lexical matching only.

7 Conclusion

We explored the use of a semantically rich background knowledge in semantic matching
of semantically poor concept lists. We provided empirical evidence that background
knowledge can improve the matching process considerably. The use of a background
knowledge source is the only way to discover matches, when there is no terminological,
instance or structural match between the matching ontologies.

Work by [5] has already shown the usefulness of simple background knowledge in
the form of the WordNet hierarchy. We extended the method of [5] by using a much

Semantic Own Lexical FOAM Falcon-AO
matching matching

agreement on single best match 69 (=35%) 65 35 22
agreement among top 5 matches 4 (= 2%)
agreement on no match possible 43 (=22%) 43 26 32
improvement over expert match 34 (=19%) 8 6 6
TOTAL POSITIVE: 150(=75%) 116 (=58%) 67 (=33%) 60 (=30%)
wrong match found 5 47 78
incorrectly found no match 50(=25%) 79 86 62
TOTAL NEGATIVE: 50(=25%) 84 (=42%) 133 (=67%) 140 (=70%)

Fig. 9. Summary of evaluation on Gold Standard (n=200)

richer source of background knowledge. This enabled us to reason across multiple hi-
erarchies in the background knowledge, and made it possible to discover relations be-
tween concepts which were not directly related in a subsumption relation.

Matching Unstructured Vocabularies Using a Background Ontology 195

8 Future ork

In future work we will focus upon testing with ontologies of larger size. Such tests can
provide for stronger evidence whether this method can be successfully applied to the
ontology integration problem. We are currently setting up experiments on mapping the
anatomical subhierarchies of CRISP and MeSH, while using FMA as the background
knowledge source, and using parts of the UMLS metathesaurus as the Gold Standard.
To test for applicability in other domains, we are setting up similar experiments in the
music domain. The goal in this case will be matching classes of music entities such as
genres, while using rich background knowledge ontology extracted from Wikipedia .

An interesting further question is how the number and quality of matches found
increases with a growth in background knowledge. We are currently performing exper-
iments on the same case-study from this paper (mapping the OLVG and AMC unstruc-
tured vocabularies), but while using increasingly more background knowledge. We are
currently redoing the experiments from this paper, but by adding such sources as ICD10
and MeSH as background knowledge besides DICE.

Acknowledgements

This research was partly supported by the Netherlands Organisation for Scientific Re-
search (NWO) under project number 634.000.020. We wish to thank to the expert for
providing the reference matches and the OLVG and AMC hospitals for providing us
with the lists.

http://wikipedia.org/

References

1. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB
Journal 10(4) (2001)

2. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to Map Between Ontologies on
the Semantic Web. In: WWW ’02: Proceedings of the Eleventh International Conference on
World Wide Web, ACM Press (2002) 662–673

3. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology Merg-
ing and Alignment. In: Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), Austin, TX, AAAI/MIT Press (2000)

4. McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: The Chimaera Ontology Environment. In:
Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on Innovative Applications of Artificial Intelligence, AAAI Press / The MIT
Press (2000) 1123–1124

5. Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: A new approach and an ap-
plication. Technical report, University of Trento (2003)

6. Euzenat, J., Bach, T.L., Barrasa, J., Bouquet, P., Bo, J.D., Dieng, R., Ehrig, M., Hauswirth,
M., Jarrar, M., Lara, R., Maynard, D., Napoli, A., Stamou, G., Stuckenschmidt, H., Shvaiko,
P., Tessaris, S., Acker, S.V., Zaihrayeu, I.: Survey of scalability techniques for reasoning
with ontologies. KnowledgeWeb Project deliverable D2.1.1 (2004)

W

8

8

196 Z. Aleksovski et al.

7. de Bruijn, J., Martin-Recuerda, F., Manov, D., Ehrig, M.: D4.2.1 state-of-the-art-survey on
ontology merging and aligning v1. SEKT Project deliverable D4.2.1 (2004)

8. Guarino, N., Masolo, C., Vetere, G.: Ontoseek: Content-based access to the web. IEEE
Intelligent Systems 1094-7167/99 (1999)

9. Ichise, R., Takeda, H., Honiden, S.: Integrating multiple internet directories by instance-
based learning. In: Proceedings of the eighteenth International Joint Conference on Artificial
Intelligence. (2003)

10. Schlobach, S.: Semantic clarification by pinpointing. In: Proceedings of the second European
Semantic Web conference, LNCS. Springer Verlag (2004)

11. Ehrig, M., Sure, Y.: Foam - framework for ontology alignment and mapping; results of the
ontology alignment initiative. In Ashpole, B., Ehrig, M., Euzenat, J., Stuckenschmidt, H.,
eds.: Proceedings of the Workshop on Integrating Ontologies. Volume 156., CEUR-WS.org
(2005) 72–76

12. Jian, N., Hu, W., Cheng, G., Qu, Y.: Falcon-ao: Aligning ontologies with falcon. In: K-Cap
2005 Workshop on Integrating Ontologies. (2005)

13. Euzenat, J., Stuckenschmidt, H., Yatskevich, M.: Introduction to the ontology alignment
evaluation 2005. Technical report (2005)

14. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-match: an algorithm and an implementation
of semantic matching. In: Proceedings of the European Semantic Web Symposium (ESWC).
(2004) 61–75

15. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press; 1st edition (1997)

Matching Unstructured Vocabularies Using a Background Ontology 197

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 198 – 213, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Distributed Multi-contextual
Ontology Evolution – A Step Towards Semantic

Autonomy

Maciej Zurawski

CISA, School of Informatics, The University of Edinburgh,
Room 4.12, Appleton Tower, 11 Crichton Street

EH8 9LE, Edinburgh, United Kingdom
m.zurawski@sms.ed.ac.uk

Abstract. In today’s world there is a need for knowledge infrastructures that
can support several autonomous knowledge bases all using different ontologies
and constantly adapting these to their changing local needs. Moreover, these
different knowledge bases are expressing their unique points of view and
constitute different local contexts. At the same time interoperability is needed in
order to connect these semantically dispersed knowledge bases, and we
formalized this as a type of consistency. Both these aspects are included in our
definition of semantic autonomy. We present a layered framework that shows
how to design a scalable system having this property. In our approach both
ontology and mapping evolution take place, at the same time as the whole
system is kept coherent using lightweight methods for maintaining global
consistency. However, in order to achieve this several restrictions are necessary
and the logical language used by the individual ontologies is kept simple.
Finally, we present some experimental results that demonstrate the scalability of
our approach.

1 Introduction and Motivation

Knowledge infrastructures represent codified knowledge of some domain, and if that
domain is decentralized and there is no central authority governing over it, then the
functionality of the knowledge infrastructure must work in a corresponding way. It
will consist of several autonomous knowledge-bases that can initiate changes in their
individual semantic models, i.e. ontologies.

This functionality is included in our definition of semantic autonomy (see Table 1
for a general specification – the technical solution itself is described in this paper).
Some researchers [1] have argued why semantic autonomy is important, but without
formalizing it to a bigger extent. We [2] have described how important this property is
for an organizational distributed knowledge management system (DKMS). It has also
been argued that one should model the social process of creating meaning in a
distributed scenario [3], and we fully agree. In general, the framework that is
presented here is useful in scenarios when there is a confined environment (e.g. an

 Distributed Multi-contextual Ontology Evolution 199

organizational knowledge infrastructure) and it consists of several autonomous units
(e.g. organizational divisions). It is currently not applicable to the whole web (nor
semantic web) as such, but only to confined parts of it, e.g. intranets or extranets
where the semantics are formally defined, and where the amount of autonomous parts
is limited to a small number.

Many approaches assume that several knowledge bases must use the same
ontology, or re-use certain ontological fragments. These approaches are therefore
more semantically centralized. However, the other extreme view - to gather several
knowledge bases and to simply allow full inconsistency or to leave the connections
between knowledge bases completely undefined, is neither satisfactory because the
semantics are too detached from each other and it becomes difficult to talk about one
infrastructure.

This paper gives a brief overview of a framework that balances these requirements
and makes semantic autonomy (as defined here) possible, and we also present initial
experimental results. The described framework can be seen as a specification of a
knowledge infrastructure.

1.1 Novel Contribution

We are describing an ontology-based framework that specifies a knowledge
infrastructure and formalizes semantic autonomy (as defined in Table 1) using these
four aspects:

1. Distributed multi-contextual state-based semantics (i.e. a particular logic).
2. Distributed ontology evolution (i.e. an explicit change process).
3. Distributed mapping evolution (i.e. an explicit change process).
4. The distributed explicit process of initiating change.

in one framework. The
reason for this is that we
believe that all these four
aspects are essential
when defining and
implementing semantic
autonomy (although
alternative approaches
might be developed in
the future for other
scenarios). There is for
example related work in
the field of multi-agent
systems that of course
focuses on aspect 4, but perhaps not on aspects 1-3 at the same time. There is work in
logic that is related to aspect 1 but doesn’t include aspects 2-4 (see the section about
related research). We have to stress at the same time that we have done

The basic definition of Semantic autonomy requires
these properties to hold:

1. The local contexts have the freedom to propose a change in

their local ontology (i.e. the ontology of the local context).

2. The system does “in some way” maintain global ontological
consistency.

3. The ontological language is dynamic and open-ended (i.e.
not confined by a pre-defined set) but there is a knowledge
source that can provide knowledge about this language.

Table 1. The basic definition of semantic autonomy

200 M. Zurawski

simplifications and adopted some restrictions in order to make this integration
possible, and we expect more elaborate integrated solutions to appear in the future.

2 Introduction to the Framework

Before we describe the framework and its layers in detail, we will clarify the basic
terminology and show a motivating example. The framework describes that a certain
local context can make a proposal to change its ontology or its ontology mappings to
the ontologies of other local contexts. This theoretical framework could for example
specify the distributed knowledge infrastructure of an organization, and every division
in the organization would then correspond to a local context. Every local context has
its own ontology. The ontologies that the current system supports are actually simple
and can be visualized as graphs where very every node corresponds to a logical
concept and every edge to an ontological relation (currently we define four different
ones)1. Every ontology mapping between two ontologies (currently we define five
different ones) can be visualized as an edge that connects the nodes of two different
graphs. Another interesting property is that adding a certain ontology mapping to the
whole system could introduce a logical contradiction, and in that case we could mark
a subgraph within the network of the whole system that localizes the contradicted
area.

everything thing

colour

green blue

plant

flower tree

orchid
sunflower conifer_tree

ccode
plant without
bark (PBA)

g8
b

y1 ”Aerides”

”Argophyllus”

plant with
bark (PBB)

pine tree

O1 O2

A
B Cor. (A, B)

Is (A, B)
A

L E G E N D

B

Fig. 1. The ontologies of two local contexts and some mappings between them

Figure 1 above shows an example of two local contexts and their ontologies. The
dark edges within the ontologies are subsumption relations, whereas the dotted lines
visualize the ontology mappings (two ontology mapping types are shown here:
correspondence and the IS-mapping). Let us now conceive that the first local context

1 This is just slightly more complex than taxonomies, that would just contain one relation type,

namely submsupmtion.

 Distributed Multi-contextual Ontology Evolution 201

EPISTEMOLOGICAL ASSUMPTIONS

LOGICAL FORMALIZATION

REASONING LAYER

THE FRAMEWORK MIDDLE LAYER

THE FRAMEWORK TOP LAYER

FRAMEWORK

Fig. 2. Our framework

initiates the proposal to add a new concept, e.g. yellow that actually is a type of
colour. The framework mechanism should then consider this proposal and formally
investigate its consequences. As the next step, the framework accepts these changes
and then the first local context initiates a proposal to add an ontology mapping
between yellow and e.g. ccode in the other ontology. Then both the framework
mechanism has to formally investigate the consequences and the opinions of both
local contexts have to be taken into account, before a potential change is made. Let us
now look at the framework in general.

3 The Framework and Its Layers

Our framework consists of five layers (see fig. 2). The two bottom layers represent
the assumptions whereas the three top layers constitute the executable system itself
(they are the main focus of this paper). We will now describe the whole framework
going from the top down (the reader that instead first would like to see the formal
logical assumptions at the bottom should first read section 3.4).We will use a notation
that allows these three types of statements:

• entity: Predicate (parameters) where

entity=ci F (ci is local context i and F the framework mechanism)
(1)

• Predicate (parameters)
 (this has one of the two following values: {true, false})

(2)

• statement1 statement2 (this is the definition of rule) where

statement1= entity: Predicate (parameters)

CNFj(entityj: Predicate (parametersj)) ∧ Predicate(parameters)

statement2= rule1 rule1 or rule2 rule1 or rule2 or rule3 statement1

(3)

We will call the three types of statement type 1, 2 and 3 respectively. The first type
of statement means that entity makes Predicate (parameters) true (we will specify if
this in response to something, or if it by its own
decision). The second statement type means that
Predicate(parameters) returns its global truth value.
The third type of statement is a rule where if
statement1 has been made true, then statement2 by
necessity automatically made true. If entity has made
statement1 false, then statement2 is not made true.
CNFj(expj) means conjunctive normal form that can
contain exp1, exp2, … etc. If statement2 is a
disjunction of several rules, then they are
investigated sequentially until one of them can be
activated.

Some elements of this formalism have been inspired
by [4], that however has much more expressive
semantics. One short-coming of our formalism is that
that message passing between entities is implicit.

202 M. Zurawski

3.1 The Framework Top Layer

The framework top layer describes the policy of how the system is to be used, and it
describes constraints on which sequences of middle layer operations that are possible
or obligatory. The whole system S consists of n different local contexts, their
ontologies and the mappings between them. Firstly, any local context can initiate the
synchronization processes of the whole framework by the following type 1 statement,
assuming that the framework mechanism is in “waiting mode”:

ci: PROPOSE (ont_op) , where {1,.., }i n∈

This statement means that ci proposes to perform operation ont_op. So this is the

formal sense in which the local contexts can exercise their semantic autonomy.
After this statement is invoked, the framework mechanism invokes the

corresponding the procedural rules of the Middle Layer and that layer (as will be
described later) in turn invokes the logical calculations of the Reasoning Layer.
During this execution the framework mechanism is in “busy mode”, and when it has
finished and applied all the invoked rules of the lower layers, it goes back to “waiting
mode”. Consequently, the system can process one proposal a time. The top layer has
these type 2 and type 1 statements:

NEWCONCEPT(dj) that is true iff dj was created in the previous state
F: REQUEST(ci : PROPOSE (ont_op))

And this vocabulary is utilized in this conditional rule:

F: DO (add_ontorel(m, cj, dj)) ∧ NEWCONCEPT(dj)
F: REQUEST(cj : PROPOSE(add_mapping(m, dj, ck))
 where {1,.., } k n k j∈ ∧ ≠

This means that if an ontology relation m has actually been created within the local

context j and it connects a new concept dj (to an existing concept cj) then that local
context is requested to “try” to generate proposals that would map this new concept to
the other local contexts. “Try” means that it has to ask the knowledge source to
generate knowledge that fits that pattern, and sometimes that will actually result in
this knowledge being generated.

Proposals that describe relationships between two local contexts come from this
kind of knowledge source (i.e. some kind of momentary shared understanding of
these two local contexts). In reality a human is often this source of knowledge. An
important question is if this knowledge source has to be a perfect oracle. The answer
is no. We only assume that this knowledge source most often is able to codify some
aspects of the domain, and that it sometimes commits errors. Because our framework
allows for both creating and deleting ontology mappings and relations, it is well-
suited for this situation, because the errors can be repaired. Also, proposals of change

 Distributed Multi-contextual Ontology Evolution 203

only within one local context, can be said to only require a local “knowledge source”
(i.e. no shared understanding).

3.2 The Framework Middle Layer

Let us now look at the formalization of the middle layer. There is a set of local
contexts ci (i=1…n), and the set of ontology operations is the same as defined within
the reasoning layer. This vocabulary will be used for defining this layer (and also
some of the functionality of the reasoning layer):

ci : CONFIRM (ont_op)
ci : REFUSE (ont_op)
F: DO (ont_op)
F: COMM(message, recipient)
F: MCHOICE({cj, ck, …}, ont_op1, ont_op2)

The CONFIRM() and REFUSE() commands are used together with some ontology
operations, only when the framework mechanism is asking the local contexts about
their opinions as regards certain changes and the local contexts respond (this is
formalized within the MCHOICE command below).

The second set of statements can only be initiated by the framework mechanism
itself. DO() is the statement executed by the framework mechanism when it actually
performs an ontology operation. It is actually the DO() statement that moves the
whole system S to the next state – simple because it changes S. COMM() is used
when the framework mechanism sends a message to a recipient that must be a local
context ci. MCHOICE() is a choice between two mutually exclusive statements (e.g.
do an ontology operation) that is done involving a set of local contexts (at least two)
and sent back to the framework mechanism. The formalization below says that if all
involved local contexts choose one of the ontology operations, then that becomes their
joint choice, and if there is some disagreement then the joint choice is “nothing” (i.e.
no change is done).

j k

n{ , ,...}

n n{ , ,...} { , ,...}

F: MCHOICE({c , c ,...), ,)

c : CONFIRM() {1,2}

{1,2} c : REFUSE() c : CONFIRM() ()

1 2

i in j k

i in j k n j k

stat stat

stat i stat or

i stat stat DO ε

=

= =

∧ ∈

∈ ∧ ∧

∧
∨ ∨

We will now investigate in detail the special case when a local context initiates a
proposal to add a mapping to another local context.

204 M. Zurawski

Case 1
This statement in the beginning of the rule means: a local context cj is proposing to
add a mapping from its ontology to another local context ck. The reasoning layer
decides which of the three rules that are actually activated.

j j k

j k

j k j

j k

c : PROPOSE(add_mapping(m, c , c))

F: C_CONTRA(S, add_mapping(m, c , c))

F: COMM("contradicted:"+F: CREASON(S, add_mapping(m, c , c)),c)

F: MCHOICE({c ,c ,...}, (),

 (RC(S,CREASON(S, add_map

DO

DO

ε
∧

j kping(m, c , c)))))

or

j k

j

j k j k

F: IS_INFERABLE(S, add_mapping(m, c , c))

F: COMM("already_known", c)

F: MCHOICE({c ,c ,...}, (), (add_mapping(m, c , c)))

or

DO DOε
∧

j k

j

j k j k

F: IS_NEW(S, add_mapping(m, c , c))

F: COMM("new", c)

F: MCHOICE({c ,c ,...}, (), (add_mapping(m, c , c)))DO DOε
∧

Intuitively, this formalization says that if the proposed change would introduce a
contradiction, then either nothing is done or one of the reasons for the contradiction is
removed (but without adding the proposed mapping within the same step). Notice that
all local contexts that have ontologies where one of the contradictions resides, have to
participate in making this decision (this situation is referred to as “All involved”
below). In the case that the mapping can already be inferred or is new, the change is
allowed but the two local contexts involved have to decide if they actually want to
have it performed (this situation is referred to as “Pair” below).

Table 2. A classification that summarizes how proposals to perform any of the four ontology
operations are dealt with, i.e. cj: PROPOSE(ont_op)

ont_op= C_CONTRA()
is true

IS_INFERABLE()
is true

IS_NEW()
is true

add_mapping(m, cj, ck) All involved Pair Pair

delete_mapping(m, cj, ck) N/A Pair N/A

add_ontorel(m, cj, cj) All involved Individual Individual

delete_ontorel(m, cj, cj) N/A Individual N/A

Now we have investigated the case when the proposal is to add a mapping between
two ontologies, and the formalization showed what happens in the three cases.

 Distributed Multi-contextual Ontology Evolution 205

Table 2 above summarizes how this formalization would look like to for the cases
when the proposal is to delete an ontology mapping, or add or delete an ontology
relation.

The term “individual” in the table means that the local context that created the
proposal, can decide itself if it wants the logically allowed change to actually be
performed. “N/A” in the table means that within our framework that situation cannot
happen. More precisely, if the proposal is to delete a mapping or delete a relation
within an ontology this always logically allowed, so the individual local context or the
pair of contexts decide about if to actually perform this act. Note however that this
policy is allowing for individual ontologies that are not always singly connected. The
Framework Middle layer is dependent on the functionality of the reasoning layer.

3.3 The Reasoning Layer

The reasoning layer performs logical calculations and it is used for analyzing what
hypothetical changes to ontologies or mappings would have resulted in. We will fully
describe its functionality, but only briefly mention the reasoning algorithms
themselves – they are not the focus of this paper (instead, see [6]). The operations at
this level are for example necessary in order to verify if certain ontological changes
will maintain the consistency of the system or break it. Other operations are used to
calculate if certain changes would add redundant knowledge to the system. This layer
should have good algorithmic complexity, i.e. be scalable. Experimental verification
(see section 4) shows that our implementation is scalable (given certain assumptions).

The reasoning layer contains the ability to calculate the truth value of certain
predicates, and all of them return some kind of answer. The framework mechanism is
responsible for making these three type 1 statements true or false and one statement
that is actually a function (and not defined in our current grammar):

F: C_CONTRA(S, ont_op) - One of these values is returned: {true, false}
F: IS_INFERABLE(S, ont_op) - One of these values is returned: {true, false}
F: IS_NEW(S, ont_op) - One of these values is returned: {true, false}
F: CREASON(S, ont_op) - A subset of S is returned

Their meaning is the following. C_CONTRA(S, ont_op) returns true if the ont_op
ontology operation (these are defined below) would have introduced a contradiction
(in the system S) if it would have been performed. Otherwise it returns false.
IS_INFERABLE(S, ont_op) returns true if the ont_op ontology operation would have
introduced an entity (mapping between ontologies or relation within an ontology) that
already can be inferred from the existing structure S. This means that a redundancy
would have been introduced. Otherwise it returns false.

In the case when C_CONTRA(S, ont_op) is true, CREASON(S, ont_op) returns
one of the contradiction reason, i.e. one of the minimal subsets in the whole system S
that show that S with the ont_op performed creates a contradiction. These subsets can
be seen as “minimal proofs” and there must be at least one of them for a contradiction
to be detected. The ont_op together with one of these minimal subsets is similar to

206 M. Zurawski

what [5] call “Minimal inconsistent subontology” in the case of a singular ontology.

The meaning of IS_NEW() is the following (using standard logical notation):

IS_NEW(S, ont_op) ↔ ¬ C_CONTRA(S, ont_op) ∧ ¬ IS_INFERABLE(S, ont_op)
The current list of operations that evolve ontologies or mappings between them is the
following (and the second mentions a special ontology operation):

ont_op = add_mapping(m, cj, ck) add_ontorel(m, cj, dj)

delete_mapping(m, cj, ck) delete_ontorel(m, cj, dj) ε

spec_ont_op= RC(S, P) [where P ⊆ S]

RC() is the whole system S that remains after one of the inconsistent subsets P
(that can include concepts from ontologies of several local contexts) has been
removed. Note, that if there are several alternative such inconsistent subsets,
several of them might have to be removed in order to make the whole system S
consistent.

Because of limited space we will not investigate the reasoning algorithms in detail
in this paper. Instead, we have chosen to do a balanced overview of the whole
framework. However, we have adopted the approach from [6] in order to do efficient
and complete reasoning using this inexpressive language. We will now only mention
a short summary. The logical meaning of every ontology mapping actually uses first-
order logic and that defines relationships between concepts in different local context
and how this relationship will persist in future states. However, that representation is
transformed to one only using propositions, and C_CONTRA () and
IS_INFERABLE() are implemented building refutation proof trees that use caching,
loop-prevention and metareasoning.

3.4 The Logical Formalization

We will now briefly say something about the formalization of the ontology mappings
and ontology relations. Because we model different cognitive perspectives that are
expressed by different ontologies, and define ontology mappings between them, we
have been informally inspired by the five ontology mappings proposed by [7] in the
context-sensitive version of OWL, namely C-OWL. However, the actual semantics
are different and are defined in this section ([6] gives more details about their
practical usage). One important thing to notice is that there are several domain models
(Di,m), and they have two indexes: one for describing the state and the other the local
context. Our earlier notion of concept in an ontology j is now actually formalised as a
predicate Pj(). The formalization below allows the use of instances, but for reasons of
simplification these are not yet modelled in the presented framework.

 Distributed Multi-contextual Ontology Evolution 207

Defining the formal semantics
A proposition (, ,...)i i iP a b is a formula in local context ci (in a state sm).

A model M for a set of languages Li,m (m=0, 1, … and this corresponds to the states s0,
s1, …, and i=0, 1, … and this corresponds to local contexts c0, c1, …) consists of a set
of domains Di,m (that are non-empty sets, and m=0, 1, … and i=0, 1, …) and a set of
interpretation functions Ii,m (m=0, 1, … and i=0, 1, …) which are defined on the set of
instances and predicate names in the vocabulary of Li,m and adhere to the following
rules:

If bi is an constant in Li,m then Ii,m(bi)∈Di,m
If Pi is an n-ary predicate name in Li,m, then Ii,m(Pi)∈Di,m

n.

The truth value of any possible formula is defined in this way (we implicitly assume
that the truth valuation function Vi,m uses the model M):

If (, ,...)i i iP a b is an atomic sentence in Li,m (i.e. the language of local context ci in

state sm), then , [(, ,...)] 1i m i i iV P a b = if and only if , , ,(), (),... ()i m i i m i i m iI a I b I P∈ and

, [(, ,...)] 0i m i i iV P a b = if and only if , , ,(), (),... ()i m i i m i i m iI a I b I P∉ .

Given a formula having the form i iR Q∧ in the state sm, its truth value

, [] 1i m i iV R Q∧ = iff , [] 1i m iV R = and , [] 1i m iV Q = , [] 0i m i iV R Q∧ = otherwise

Given a formula having the form i iR Q∨ in the state sm, its truth value

, [] 1i m i iV R Q∨ = iff , [] 1i m iV R = or , [] 1i m iV Q = , [] 0i m i iV R Q∨ = otherwise

The truth value of
1 2, [(, ,...)]j m i in inV P a a is undefined iff j i.

In order to simplify the formalism, we will use first-order logic when defining the

ontology mappings and those definitions will internally utilise the valuation-functions
above. This means that the mappings as such have a logical objective existence,
although they map between different local (subjective) models. It would have been
possible to investigate if the mappings as well should only have local existence, e.g.
only exist within the local contexts (see for example [9]), but this would have made
the formalism more complex. Instead, in this paper we want to focus on the dynamic
aspects of the system and it is therefore more important that a certain local context is
responsible for having proposed that a certain mapping is created (and this is not
visible in the formal semantics as such).

Therefore, we will now use first-order logic and assume (for reasons of simplicity)
that there is a domain D that contains all the local domains Di,m (i traverses all local
contexts, and m traverses all existing states). There is a set of states T, and a
relationship L(sx, sy) that means that a state sy succeeds a state sx (L() is transitive,
antisymmetric and irreflexive).

208 M. Zurawski

We then introduce the Rel() operator. Assuming we choose a fixed state s, then the
domains D1,s, D2,s, …, actually overlap sometimes, and this is therefore the definition
of Rel():

[in state s] Rel(bi, dj)=1 iff Ii,s(bi)=e1 and Ij,s(dj)=e2 and e1=e2

Also, because the domains D1,s, D2,s, …, actually overlap, we can view them as
subsets as of a domain Ds – i.e. what is true in a given state s independently of what
the local contexts can see is true. However, we never use the domain Ds to create a
centralised knowledge representation as such (these epistemological assumptions are
briefly discussed in section 3.5).

We now introduce some symbols and they are used as quantifiers over many states,
when expressing ontology mappings (i.e. they are a type of practical abbreviations).

()r expG iff ()((,))z=s's S L r s exp′ ′∀ ∈ →

()r expF iff ()((,))z=s's S L r s exp′ ′∃ ∈ ∧

()r expN iff z=rexp

We use the notation z=s'exp to mean that in the expression exp we have substituted

all occurrences of z with s’.

Let us now look at the ontology mappings. From a formal point of view, these
mappings have an objective existence (given the domain D) and they can be seen as
constraints on the model M.

These are the five potential ontology mappings between a concept A in ontology i
and a concept B in ontology j:

COR(Ai, Bj)
IS (Ai, Bj)
IS2 (Ai, Bj)
DISJOINT (Ai, Bj)
COMPATIBLE (Ai, Bj)

COR(Ai, Bj) that is created in the state r is defined as:

, ,(, (Rel(,) (()) (())))i j i j i z i i j z j jx y x y V A x V B y∀ → = ∧rN

, ,(, (Rel(,) (()) (())))i j i j i z i i j z j jx y x y V A x V B y∀ → =rG

IS (Ai, Bj) that is created in the state r is defined as:

, ,(, (Rel(,) ((()) 0 (()) 1)))i j i j i z i i j z j jx y x y V A x V B y∀ → = ∨ = ∧rN

, ,(, (Rel(,) ((()) 0 (()) 1)))i j i j i z i i j z j jx y x y V A x V B y∀ → = ∨ =rG

IS2 (Ai, Bj)= IS (Bj, Ai)

 Distributed Multi-contextual Ontology Evolution 209

COMPATIBLE (Ai, Bj) that is created in the state r is defined as:

, ,(, (Rel(,) (()) 1 (()) 1))i j i j i z i i j z j jx y x y V A x V B y∃ ∧ = ∧ =rF

DISJOINT (Ai, Bj) that is created in the state r is defined as:

, ,(, (Rel(,) ((()) 1 (()) 1)))i j i j i z i i j z j jx y x y V A x V B y∀ → ¬ = ∧ = ∧rN

, ,(, (Rel(,) ((()) 1 (()) 1)))i j i j i z i i j z j jx y x y V A x V B y∀ → ¬ = ∧ =rG

For example COR() describes that in all future states two concepts from two

different ontologies will have the same meaning, whereas IS() expresses subsumption
across ontologies (that will persist in future states). COMPATIBLE() is a logically
“weak” relation between two concepts.

Secondly, we will now mention the language for expressing the ontologies
themselves (without showing a too detailed formalization). Yes, it shows big
similarity with the language for ontology mappings (both types have semantics that
use states), but this time they describe relationships between concepts within one
ontology j.
OWL Axiom Our notation

1 2[] []Cn Cn COR(C1j, C2j)

1 2[] []Cn Cn⊆ IS (C1j, C2j)

1 2[] []Cn Cn⊇ IS2 (C1j, C2j)

1 2[] []Cn Cn⊆ ¬ DISJOINT (C1j, C2j)

The first of these relationships is equivalency between two concepts, the second
means “is subsumed by”, the next “subsumes” and the last one expresses disjointness.

If we assume that a certain relationship was created in a certain state n, then we can
translate axioms written in OWL to our own notation, using the table above. [Cn]
denotes a concept name in OWL.

3.5 The Epistemological Assumptions

The epistemological assumptions are that

• There is an objective notion of what is true (but it is not expressible directly).
• There are several points of view that only express fragments of the objective

notion, and using their own language.
• Both the notion of what is true (in a given state in the domain model that is

independent of the points of view but inexpressible directly) and what the points of
view can see can change.

The first assumption implies that the logical domains of all local contexts (in a
given state) are subsets of one bigger domain. However, the vocabulary is never
allowed to utilize that big domain directly. Instead the vocabulary is only connected
to the localized domains (this is the second assumption). The third assumption
explains why in the logical formalization there is a domain model that has two
indexes (for expressing both point of view and state).

210 M. Zurawski

4 Experiments Performed Using a Scenario

Until now we have used the generic notion of local contexts that express their
particular points of view. When now looking at an experimental scenario we will
imagine that these local contexts express the local views of divisions within an
organization. In this experimental scenario we conceive an organization that has two
divisions. Both of them invent concepts that are added to their own ontologies
(because they have their “local” reasons for doing so) and then propose mappings
between these new concepts and a concept in the other divisions’ ontology (because
they want to maintain organizational unity). Instead of doing a case-study and
evaluating if our system is usable in particular real-world scenario, we have instead
automatically generated several different cases randomly that have properties we
expect are similar to real scenarios, and we have measured the average scalability of
the system (i.e. performance when the problem size grows).

The concepts of an organization will be represented by two divisions (d1 and d2)
that have ontologies consisting of subsumption trees where every node has at most
three children. Both ontologies have the same size n – that is the number of
ontological relations (in this example subsumption relations). We begin with n=1.
Then we choose one division i (, {1,2} i k i k∈ ≠) that invokes the framework middle
layer by initiating the statements

ci : PROPOSE (Is (Cnew,j, Cold, j)) - a proposal to change the ontology j
ci : PROPOSE (add_mapping(m, ci, ck)) - a proposal to add a mapping from

ontology j to k

where the following random choice is made (by our scenario generation mechanism):

m= COR(C1i, C2k) IS (C1i, C2k) IS2 (C1j, C2k)

DISJOINT (C1i, C2k) COMPATIBLE (C1i, C2k)

and the mechanism of the framework is invoked (with some modifications
described below). We alternate this process by choosing i=1 and i=2 (i.e. one
local context is making the proposals – the second being a proposal to the other
local context - and then they change roles). Also, we measure the time it takes
for the reasoning mechanism to
respond to the invocation. We
observe that after each accepted
proposal an entity has been
added to a division or to their
mappings, so 1n n← + happens
then. We use the same frame-
work mechanism as described in
Case 1 (see page 6) in the section
about the The Framework Middle
Layer and its definitions of
IS_INFERABLE() and IS_NEW(), with
the only difference being this
definition:

Division 1 Division 2
cor

is

is2

disjoint

compatible

cor

Fig. 3. A graphical example visualization of two
ontologies in the experimental scenario, and
mappings that connect them

 Distributed Multi-contextual Ontology Evolution 211

F: C_CONTRA(S, add_mapping(m, cj, ck)) DO(ε)

where the CONFIRM()
that is used within
MCHOICE({cj, ck}
returns a random
answer depending on
the logical status of a
proposal. If a certain
proposal has been
verified as being
already known, then
the divisions are
individually 50% likely
to confirm the
proposal, whereas if
the proposal was
calculated to be
logically new they are
individually 70% likely to confirm it. To demonstrate scalability we have continued
the described process until the size of the total system is 5000 (see Fig. 4). The
execution time has already been divided by the problem size. In the experiments,
every data point in the diagram is the average of 10 different randomized runs and
100 consecutive y-values (according to x). This means that the algorithmic time-
complexity is linear (as a function of the total system size). In the figure, the y-axis
unit is [milliseconds/”system entity”] (i.e. mapping or ontology relationship). We
have measured the algorithmic complexity of the memory usage and that is linear as
well. Therefore, assuming a setting like this, maintaining consistency between two
local contexts that exercise their semantic autonomy is computationally feasible.

5 Related Research

An organizational motivation describing why semantic autonomy is needed is given
by [1] and it is described as the possibility of choosing the most appropriate
conceptualization of what is locally known. However, they don’t present any logical
formalization of this notion. Another organizational motivation of semantic autonomy
is given by [2] and we mention an initial definition that incorporates the evolution and
consistency of both ontologies and instances. A motivation of why formalizing the
social process of creating meaning is important is given by [3]. A pioneering proposal
of how to handle changing ontologies in an open environment is given by [8]. It has
some similarities to our work, but one difference is that we to a greater extent
formalise how change is initiated and managed and how conflicts are resolved. Also,
they don’t explicitly investigate the question of scalability of their approach. Different
approaches to the problem of how to deal with consistency in a singular evolving
ontology are summarized in [5]. These are: consistent ontology evolution, repairing
inconsistencies, reasoning with inconsistent ontologies and multi-version reasoning.
Our approach is most similar to the first approach, but we evolve several ontologies

Fig. 4. This diagram shows how the average time of calculating
a proof task, dived by the system size, varies when the total
system size is increasing

Scalability evaluation (time)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

20
0

50
0

80
0

11
00

14
00

17
00

20
00

23
00

26
00

29
00

32
00

35
00

38
00

41
00

44
00

47
00

Total system size (no. of ontology relationships and mappings)

T
h

e
ex

ec
u

ti
o

n
 t

im
e

o
f

a
p

ro
o

f
ta

sk

d
iv

id
ed

 b
y

th
e

to
ta

l
sy

st
em

 s
iz

e

212 M. Zurawski

and the mappings between them. The logical problem of reasoning with multiple
ontologies connected by semantic mappings is formally investigated by [9]. Some
similar work in logic is done by [10]. Their notions of compatibility and locality have
informally inspired us. However, none of these two papers explicitly model the
process of change nor evolution of ontologies or mappings. Nor do they model the
distributed process of initiating change (see discussion in section 1.1).

An application-oriented presentation directed towards knowledge management is
done by [11] and they present a system having a lot of functionality. However, their
presentation doesn’t provide enough formalism to make it transparent, and certain
issues, e.g. how to combine the updating of semantics in several ontologies at the
same time, are not problematized although that is an open research issue. Another
interesting application that is using an ontology-based layered approach is given by
[12]. However, their system is designed for the particular purpose of automating
system administration and not for the general purpose of maintaining distributed
semantics. The interaction process used when creating consensus about changes in a
knowledge-base is described by [13], without formalizing the knowledge-level. The
five types of ontology mappings in C-OWL are formalized by [7] but that is an
informal source of inspiration because we have instead adopted [6].

6 Conclusions and Discussion

Some knowledge infrastructures are proposed where their different knowledge bases
are governed by independent processes, but still have to use the same ontology. An
alternative proposal is to gather several knowledge bases and allow full inconsistency
or not care about how distributed meaning is inter-related. There are situations where
the first approach is semantically too centralized and the other creates a system
semantically too disconnected. In a knowledge infrastructure that has semantic
autonomy, the individual knowledge bases are allowed to evolve, at the same time as
consistency is preserved between them – that is a kind of glue that keeps the various
cognitive points of view together and makes communication between them possible.
We have presented a transparent and lightweight framework that shows that it is
possible to implement such a system in a scalable way. However, in order to achieve
this several restrictions are necessary, and both the logical language of the individual
ontologies and the complexity of the ontology evolution operations are kept simple.
We have mentioned that currently the framework doesn’t model the evolution of
instances – but we have defined their semantics. However, it has to be said that it still
remains to evaluate the part of the framework that deals with actually removing
discovered contradictions – so that is future research that has to be done. The question
of how the issues of autonomy and meaning interact is not yet fully understood.
Finally, we believe that automated reasoning should be utilized by ontology
evolution, but that ontology evolution is not an end in itself. Instead, it should be seen
as a component in a framework and as a step towards semantic autonomy – the ability
to support decentralized semantics that can evolve according to their own local needs
at the same time as a type of coherence keeps them together.

 Distributed Multi-contextual Ontology Evolution 213

Acknowledgements

This research was funded by the Marcus Wallenberg Foundation for Education in
International Industrial Enterprise and by The Foundation BLANCEFLOR
Boncompagni-Ludovisi, née Bildt. The author would like to thank Dave Robertson
and Alan Smaill at CISA for all their valuable comments and feedback.

References

1. Bonifacio, M., Cuel, R., Mameli, G., Nori, M., “A Peer-to-Peer Architecture for
Distributed Knowledge Management”, In: Proceedings of the 3rd International
Symposium on Multi-Agent Systems, Large Complex Systems, and E-Businesses
(MALCEB'2002), 2002.

2. Zurawski, M., “Towards a context-sensitive distributed knowledge management system
for the knowledge organization”, Workshop on Knowledge Management and the Semantic
Web, 14th International Conference on Knowledge Engineering and Knowledge
Management (EKAW 2004), UK, 2004.

3. Froehner, T., Nickles, M. & Weiß, G., “Towards modeling the social layer of emergent
knowledge using open ontologies”. In: ECAI Workshop on Agent-Mediated Knowledge
Management (AMKM, Workshop Notes pp. 10-19). 2004.

4. Robertson, D., “Multi-agent Coordination as Distributed Logic Programming”, In: Lecture
Notes in Computer Science, Volume 3132, Pages 416 – 430, 2004.

5. Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y., “A Framework for
Handling Inconsistency in Changing Ontologies”, In: Proceedings of the Fourth
International Semantic Web Conference (ISWC2005) (Eds. Y. Gil, E. Motta, V. R.
Benjamins, M. A. Musen), volume 3729 of LNCS, pp. 353-367. Springer, November
2005.

6. Zurawski, M. "Reasoning about multi-contextual ontology evolution", The First
International Workshop on Context and Ontologies: Theories, Practice and Applications,
The Twentieth National Conference on Artificial Intelligence (AAAI-05), July 9-13,
Pittsburgh, PA, USA, 2005.

7. Bouquet, P., Giunchiglia, F., van Harmelen, F.,Serafini, L., Stuckenschmidt, H. ”C-OWL:
Contextualizing Ontologies”, Proceedings of the Second International Semantic Web
Conference, K. Sekara and J. Mylopoulis (Ed.), pages 164-179, ", Lecture Notes in
Computer Science. Springer Verlag. 2003.

8. Heflin, J., Hendler, J., “Dynamic Ontologies on the Web”, In: Proceedings of the
Seventeenth National Conference on Artificial Intelligence (AAAI-2000). AAAI/MIT
Press, Menlo Park, CA, 2000.

9. Serafini, L., Tamilin, A., “DRAGO: Distributed Reasoning Architecture for the Semantic
Web”. In: Proc. of the Second European Semantic Web Conference (ESWC'05), 2005.

10. Ghidini, C., Giunchiglia F., “Local Model Semantics, or Contextual Reasoning = Locality
+ Compatibility”, In: Artificial Intelligence, 127(2), pages 221-259, 2001.

11. Maedche, A., Motik, B., Stojanovic, L., Studer, R., and Volz, R., “Ontologies for
Enterprise Knowledge Management”, In: IEEE Intelligent Systems, Volume 18, Number 2,
pages 26-33, March/April 2003.

12. Stojanovic, L. Schneider, J., Maedche, A., Libischer, S., Studer, R., Lumpp, Th., Abecker,
A., Breiter, G., Dinger, J., “The role of ontologies in autonomic computing systems”, In:
IBM Systems Journal, v.43 n.3, pages 598-616, July 2004.

13. Euzenat, J., “Corporate Memory through Cooperative Creation of Knowledge Base
Systems and Hyper-Documents”. In: Proc. of Knowledge Acquisition Workshop
(KAW'96), Banff, Canada, 1996.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 214 – 221, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Evaluation Method for Ontology Complexity Analysis
in Ontology Evolution*

Dalu Zhang1, Chuan Ye2, and Zhe Yang3

Department of Computer Science and Technology, Tongji University, Shanghai
200092, China

daluz@ieee.org, shtjjsjyjx@126.com, hatasen@163.com

Abstract. Ontology evolution becomes extremely important with the
tremendous application of ontology. Ontology’s size and complexity change a
lot during its evolution. Thus it’s important for ontology developers to analyze
and try to control ontology’s complexity to ensure the ontology is useable. In
this paper, an evaluation method for analyzing ontology complexity is
suggested. First, we sort all the concepts of an ontology according to their
importance degree (a definition we will give below), then by using a well-
defined metrics suite which mainly examines the concepts and their hierarchy
and the quantity, ratio of concepts and relationships, we analyze the evolution
and distribution of ontology complexity. In the study, we analyzed different
versions of GO ontology by using our evaluation method and found it works
well. The results indicate that the majority of GO’s complexity is distributed on
the minority of GO’s concepts, which we call “important concepts” and the
time when GO’s complexity changed greatly is also the time when its
“important concepts” changed greatly.

1 Introduction

Ontology construction and development are necessarily an iterative, dynamic and
parallel process [1]. The change of domain, the adaptation for different application
background, the re-realization of the domain and the change of the conceptual world,
all these would influence the ontology construction and evolution [2]. During
ontology evolution, the size and complexity of ontology change a lot, which bring
difficulties to the management and maintenance of ontology. Actually, it is for the
reason of complexity, formal ontologies which are focused on in the field of ontology
research have in pratice, yielded little value in real-world application [3].

Though ontology complexity analysis is important in ontology development and
evolution, we find few effective methods or metrics related with ontology complexity.
In this paper, we suggest an evaluation method for ontology complexity analysis.
First, we make a definition of “importance degree”, then we present a well-defined
complexity metrics suite, which mainly examine the quantity, ratio and correlativity
of concepts and relations. After that we sort all the concepts of GO[4] according to
their importance degree and by using the formerly defined metrics suite we analyze
the trend of GO’s complexity evolution and distribution. The reason we choose GO as

* Supported by National Natural Science Foundation of China under Grant No. 90204010.

 An Evaluation Method for Ontology Complexity Analysis in Ontology Evolution 215

our experimental object is: GO is an ontology that has tremendous application in the
domain of gene and it has a full collection of varied versions since 2002.

The rest of this paper is structured as follows: section 2 presents related works
about ontology evaluation metrics. In section 3 we suggest our evaluation method.
Section 4 presents the complexity analysis results of GO. Section 5 presents the
conclusion and outlook for future works.

2 Related Works

As far as now, most existing ontology evaluation metrics are used to analyze the
description ability of ontology, few of them are focused on complexity issue.

In literature [5], authors present a structure complexity measure for the UML class
diagram based on entropy distance. It considers complexity of both classes and
relations between classes and presents rules for transforming complexity value of
classes and different kinds of relations into a weighted class dependence graph. This
method can measure the structure complexity of class diagrams objectively. Idris
studied two conceptual integrity metrics based on graph theory in his PhD thesis [6],
which are conceptual coherence and conceptual complexity, but these metrics are all
characteristics of single concept. Chris Mungall researched the increased complexity
of Gene Ontology [7]. He measured the average number of paths-to-top of a term and
used the path-to-term ratio to measure the complexity in an ontology. This metric is
simple and only shows the evolution of ontology complexity. Though evaluation
methods in [5], [6] and [7] are for ontology complexity analysis, the correctness and
soundness of their methods are not well verified.

In our evaluation method we analyze both ontology’s complexity evolution trend
and distribution trend. Before analysis, we sort all the concepts in ontology
according to their importance degree, it is our consideration that different concepts
have different contribution to the complexity of the whole ontology, concepts which
have more relations with others may be more “important”, thus have a higher
contribution.

Literature [8] and [9] research methods of excavating important concepts in an
ontology. Idris, author of literature [8] suggests several metrics that measure the core
degree of concepts based on graph theory and according to the experimental result the
author suggests that “betweenness centrality” is comparatively reasonable. But his
experimental ontology is small, further more, according to the definition of
“betweenness centrality”, the core degree of all the leaf concepts is 0, this is not
reasonable. The method in [9] is mainly used in extracting ontology from text and not
appropriate for constructed ontology. Thus, we gave our definition of importance
degree, which is the basis of our evaluation method for ontology complexity analysis.

3 Proposed Evaluation Method

3.1 Measurement of Concept’s Importance Degree

The following are some definitions related to concept’s importance degree:

216 D. Zhang, C. Ye, and Z. Yang

C = {c1,c2,…,cm}: the set of m concepts defined explicitly in an ontology.
R = {r1,r2,…,rm}� the set of number of relations each concept has, equals to the

outdegree of a concept. Here we only consider those inherited relations that reflect the
hierarchy of concepts, such as “is a”, “part of”, etc.

In an ontology, concepts hierarchy is typically expressed in DAG(directed acyclic
graph) showed in Fig 1. Each node represents a concept and each directed arc
represents a subtype relation to present the hierarchical structure between concepts in
ontologies.

Fig. 1. Ontology in DAG

Path� A distinct trace in DAG from a specific particular concept to the most general
concept in the ontology, which is the concept without any parent or superclass(e.g.
c7�c5�c2�c1 in Fig 1). In Fig 1, there are 11 concepts(m=11), and c1,c8 are the two
most general concepts.

N � {n1,n2,…nm}: the set of number of Paths each concept in an ontology has.
Pi �{pi,1,pi,2,…pi,ni}: the set of Paths a particular concept ci has.
PLi �{pli,1,pli,2,…,pli,ni}: the set of path length of a particular concept ci, length of a
particular path is the number of edges that appear in the path.

AvgPli =
1

,

i

j

i j

n
pl

=
/ni: the average path length of a particular concept ci.

P � {{p1,1,p1,2,…p1,n1},…{pm,1,pm,2,…pm,nm}}:the set of the set of paths of each
concept in an ontology.

IsIn(ci,pj,k) � 0 � if ci doesn’t appear in pj,k� or 1� if ci appears in pj,k� .

IDCi� Importance Degree of Concept� =
,

,(),
j k

j k

P

p
iIsIn c p :a particular concept

ci’s importance degree IDCi is the number of times ci appears in all the paths of all
the concepts in an ontology.

After calculating all the concepts’ IDC, we can sort the concepts according to their
IDC by an descending order, concepts with the same IDC should be sorted according
to their AvgPl by an ascending order.

See Fig 2, by using the sorting method above we have the result as table 1.

 An Evaluation Method for Ontology Complexity Analysis in Ontology Evolution 217

Fig. 2. An Example

Table 1. Sorting Result

id 1 5 2 3 6 8 9 10 4 7 11�

IDC 35� 16 11 11 10 10 10 10 8 6 5�

From this example we can see: concept with id=1 is the most important, because it
is the most general concept and appears in all the paths of all the concepts; concept
with both higher outdegree and indegree may be more important because it has a
higher chance to appear in other concepts’ path set(see concept with id=5); concept
that locates at a higher hierarchy may be more important, because it has a higher
chance to appear in other concepts’ path set, but this is not absolutely right (see the
concept with id=4); leaf node concept that locates at the lowest hierarchy may be less
important, because it can’t appear in other concepts’ path set, but this is not absolutely
right (see the concept with id=10, its IDC is not the lowest because it has an outdegree
of 3).

Compared with the betweenness centrality metric introduced in literature [8],
which set all the leaf node concepts’ betweenness centrality as 0, this importance
degree measurement method is more reasonable.

3.2 Ontology Complexity Metrics

On the basis of 3.1, we present the definitions of our ontology complexity metrics.
TNOC(Total Number Of Concepts)�|C|�m: the number of concepts in the set C.

TNOR(Total Number Of Relations)= 1

m

i

ir
= : the sum of the number of relations of

each concept in an ontology.

TNOP(Total Number Of Paths)= 1

m

i

in
= : is the sum of paths of each concept.

As ontology consists of concepts and relations, TNOC and TNOR are the two basic
attributes of ontology, we can see the change of basic size of an ontology by
analyzing these two attributes. As path consists of relations and can reflect the inner
structure and hierarchy of ontology, TNOP represents an ontology’s hierarchical

218 D. Zhang, C. Ye, and Z. Yang

complexity and its value is proportionate to difficulties in navigating and visualizing
the ontology[7].

µ
�TNOR/TNOC: the average relations per concept in an ontology.

ρ
�TNOP/TNOC: the average paths per concept in an ontology.

µ
 indicates the average connectivity degree of a concept.

ρ
 must be equal to or

greater than 1(each concept must have a parent except for the most general concept).

If
ρ

=1, then the ontology is a tree, multi-relation concepts(higher
µ

 ratio) result in

higher
ρ

 ratio for an ontology.
The analysis object of the metrics defined above is the whole ontology, the

following are definitions of complexity metrics that are used for single concept in
ontology.

di: the degree of a particular concept ci(equals to the sum of ci’s indegree and
outdegree). It represents the connectivity degree of a particular concept ci.

ni: the number of paths of a particular concept ci. It represents a particular concept
ci’s hierarchical complexity and its value is proportionate to the difficulty in
visualizing the concept and its relations with other concepts in an ontology.

3.3 Our Evaluation Method

The main steps of our method are as follows:

1.Get all the evolution versions of an ontology, transform all of them into DAG (Each
node represents a concept and each directed arc represents a subtype relation to present the
hierarchical structure between concepts in an ontology.)
2. Sort the concepts of every single ontology by our sorting method. Calculate the di

and ni value of every concept ic .

3�For all the evolution versions of the ontology, calculate their
TNOC�TNOR�TNOP� µ and ρ value.

4. By using the result of step 2 we can analyze the complexity distribution of a single
ontology, by using the result of step 3 we can analyze the complexity evolution of
varied versions of ontology, and by analyzing both the results of step 2 and step 3
contrastively we can research deep into the internal cause of ontology complexity
evolution and find the relations between complexity evolution and distribution.

4 Experimental Results and Conclusions

We measured and analyzed the growing complexity of different versions of GO [7]
from Dec. 2002 to Sep. 2005, in which the obsolete terms are eliminated from our
statistics.

4.1 GO’s Complexity Evolution Statistics and Analysis

As GO evolves, its TNOC, TNOR and TNOP increases. Fig 3 is the quantity
evolution of TNOC, TNOR and TNOP. The left Y-axis shows the increase of

 An Evaluation Method for Ontology Complexity Analysis in Ontology Evolution 219

TNOP. The right Y-axis shows the increase of TNOC and TNOR. The lines of
TNOC and TNOR indicate they increase at a steady but slow rate. The line of
TNOP indicates that it has a steady but rapid growth. Some enormous ladderlike
increases take place at the time of Mar. 2003, Dec. 2004, Jan. 2005 and Apr. 2005,
which shows that at these times GO went through some larger changes and became
more complex.

 Fig. 3. Concept&Relation&Path Fig. 4. µ &ρ

Fig 4 shows the changes of GO’s µ and ρ from Dec. 2002 to Sep 2005. The left

Y-axis shows the change of µ and the right Y-axis shows the change of ρ . In Fig 4,

the line of µ indicates that µ has a relatively small change, basically between 1.35

and 1.50. The line of ρ indicates that ρ increases at a steady and rapid rate. Some

enormous ladderlike increases occur at the time of Mar. 2003, Dec. 2004, Jan.2005
and April 2005. If we compare the two lines of TNOP in Fig 3 and ρ in Fig 4, we

can find that they look almost the same and their enormous ladderlike increases occur
at the same time. This is mainly because that TNOP is the result of ρ×TNOC, while

TNOC increases at a steady and a slow rate.
From the above analysis we conclude that the size of GO grew at a slow and steady

rate, its complexity grew at a slow and fast rate with some sharp increasing points.

4.2 GO’s Complexity Distribution Statistics and Analysis

We sort all the concepts according to their importance degree in all the GO versions
from Dec. 2002 to Sep. 2005 and calculated their 70% number of paths distribution.
Fig 5 is the result.

220 D. Zhang, C. Ye, and Z. Yang

 Fig. 5. Path distribution statistics Fig. 6. Concepts&Paths Change�

In Fig 5, the left Y-axis shows the increase of TNOP, the right Y-axis shows the
change of “percent”. The meaning of “percent” is: 70% of the total number of paths
of a specific GO version is distributed on the first “percent” sorted concepts. It shows
that percent decreases from 37.44% in Dec. 2002 to 20.85% in Sep. 2005, the line of
“percent” indicates that it decreases steadily with some sharp decreasing points.
Examine the two lines of TNOP and “percent”, we see that they changed
synchronously and the sharp increasing time of TNOP is also the sharp decreasing
time of percent. The time points are: Mar. 2003, on which TNOP suddenly increased
from 43776 to 70582 while percent suddenly decreased from 37.46% to 30.17%, Apr.
2003, Dec. 2004 and Jan. 2005. In some relatively smaller changes of TNOP and
percent the time is also the same. The above analysis shows that every sharp increase
of GO’s TNOP leads to further concentration of GO’s paths on important concepts.

We conclude that the majority of GO’s complexity is distributed on the minority of
its concepts which we call “important concepts” and as GO evolves, this trend
becomes more and more evident.

In Fig 3, increasing forms of TNOC and TNOR can’t explain increasing form of
TNOP, so we have Fig 6. In Fig 6, the left Y-axis shows the change of St1000, the
right Y-axis shows the change of path_add. We examine the first 1000 concepts of all
the sorted GO versions, and St1000 represents the number of concepts that appear in a
specific version of GO but not appear in the GO version that is one month before,
path_add represents the change of TNOP of a specific GO version comparing with the
GO version that is one month before, path_add below 0 indicates that there is a
decrease of TNOP. From Fig 6 we can see that when the absolute value of path_add is
small, St1000 is small too, and the time when path_add changes greatly is also the
time when St1000 changes greatly. Some relatively sharp points of path_add occur at
Mar. 2003(path_add=26806), Apr. 2003(path_add=-24637), Jun. 2004(path_add=
10122), Dec.2004(path_add=30065),Jan. 2005(path_add=81441),Apr. 2005(path_add
=38317), and the corresponding values of St1000 are relatively large too, they are
132, 165, 107, 174, 276, 99(values of other times are much smaller, mostly no more

 An Evaluation Method for Ontology Complexity Analysis in Ontology Evolution 221

than 50). There is only one exception, in May 2005, path_add is small(616), but
St1000 is large(75).

From the analysis we have the conclusion that the time when GO’s complexity
changed greatly is also the time when its “important concepts” changed greatly. The
great change of GO’s complexity may be caused by the appearance of new important
concepts, another possibility is that because of the re-realization of domain, the whole
ontology structure changes, so the order of important concepts changes greatly. In the
process of ontology engineering, we shall consider more on those important concepts,
which is a major cause of the great change of ontology complexity.

5 Summary and Future Works

With the tremendous use of ontology, its size and complexity change a lot during its
evolution. So it becomes very necessary to set up a suite of metrics for developers to
understand the complexity evolution and distribution of ontologies in order to
improve the quality, estimate cost and reduce future maintenance. In this study, an
evaluation method for analyzing ontology’s complexity is presented. By using this
method, we had a detailed statistics and analysis of GO’s complexity evolution and
distribution. In the future, we will continue to work on the ontology complexity
metrics and other ontology metrics and the improvement of measuring concept’s
important degree (e.g. consider more on ontology’s hierarchy).

References

1. A.Das, W. Wu, D.McGuinness. Industrial Strength Ontology Management. The Emerging
Semantic Web, IOS Press�2002.

2. E Daniel,O Leary. Impediments in the use of explicit ontologies for KBS development.
International Journal of Human-Computer Studies,1997,46(2-3):327-337.

3. Amit Sheth and Cartic Ramakrishnan. Semantic (Web) Technology In Action:Ontology
Driven Information Systems for Search� Integration and Analysis. IEEE Data Engineering
Bulletin� � � Special issue on Making the Semantic Web Real December 2003 pp. 40-48.

4. The Gene Ontology Homepage, http://www.geneontology.org/
5. Dazhou Kang, Baowen Xu, Jianjiang Lu,William C.Chu. A Complexity Measure for

Ontology Based on UML. 10th IEEE International Workshop on Future Trends of
Distributed Computing Systems (FTDCS’04)pp.222-228

6. IdrisHis. Analyzing the Conceptual Coherence of Computing Applications Through
Ontological Excavation. PhD Thesis Proposal, May 13, 2004.

7. Chris Mungall� BDGP / GO Consortium� Increased complexity in GO. http://www.
fruitfly.org/~cjm/obol/doc/go- complexity.html

8. Idris His, Colin Potts, Melody Moore. Ontological Excavation: Unearthing the core
concepts of the application. Proceedings of WCRE2003, November 13-16,2003,pp.
345-352.

9. Mustapha Baziz,Mohand Boughanem,Nathalie Aussenac-Gilles,Claude Chrisment.
Semantic Cores for Representing Documents in IR. SAC'2005- 20th ACM Symposium on
Applied Computing, Santa Fe, New Mexico, 13-17 mars 2005. p. 1020-1026, ACM Press
ISBN: 1-58113-964-0, USA

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 222 – 237, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Semantic Search Components:
A Blueprint for Effective Query Language Interfaces

Victoria Uren and Enrico Motta

Knowledge Media Institute, The Open University, Milton Keynes, MK7 8QP, UK
{v.s.uren, e.motta}@open.ac.uk

Abstract. Formulating complex queries is hard, especially when users cannot
understand all the data structures of multiple complex knowledge bases. We see
a gap between simplistic but user friendly tools and formal query languages.
Building on an example comparison search, we propose an approach in which
reusable search components take an intermediary role between the user inter-
face and formal query languages.

1 Introduction

The purpose of the semantic web [1] is to make the meaning of content explicit
through semantic mark-up, thereby facilitating more intelligent services for users. In
the case of search, it should produce more precise results because searching knowl-
edge structured according to ontologies[2], which define the meaning in a domain,
should reduce the ambiguity of query terms. Semantic (web) searching is at an early
stage of development but different approaches are already emerging. We have identi-
fied two, which sit at opposite ends of a spectrum that balances usability against rea-
soning power. The first approach provides relatively simple search facilities, which
exploit RDF triple structures. These systems give users routes into exploring semantic
web data without having to be expert in specialist query languages or being required
to know the structure of particular ontologies. The systems of the second approach
use formal, structured query languages. These allow users to precisely define the
knowledge they wish to retrieve but require them to be fluent in a query syntax, and to
know the structure of the ontology, in order to formulate a search. While an expert
user might learn a syntax, it is unlikely, in a semantic web scenario, where a user may
need to interact with thousands of knowledge bases structured according to hundreds
of ontologies, that they should know the structure of all the sources.

An excellent example of a system which provides a simple user interface and
search services which are portable to a wide range of RDF based resources is Search
on TAP [3]. This has three search components: a lightweight query interface called
GetData that sends a SOAP message to a URL and returns the values of one or more
properties of that resource, a search interface that identifies resources based on a
query string, and a reflection component which explores the immediate vicinity of a
node. The robust simplicity of the basic search is supplemented by a process that

 Semantic Search Components: A Blueprint for Effective Query Language Interfaces 223

Guha & McCool call “semantic negotiation” which establishes semantic mappings
between equivalent objects with different URLs [4]. Semantic negotiation plays a
crucial role by allowing TAP to deal with the heterogeneity of the web by bootstrap-
ping from what it already knows about semantic entities.

Our own question answering system, AquaLog [5] reformulates natural language
queries into triples which can be searched against a knowledge base. The power of the
AquaLog approach lies in the automatic reformulation process, which first uses do-
main independent methods based on a subset of natural (English) language to, for
example, recognize the type of the question, as a “who” question which needs to be
answered with one or more people’s names, and produces an initial linguistic triple.
Then this linguistic triple is mapped onto the domain using the Relation and Class
Similarity Services (RSS and CSS), which try to match elements of the query against
the knowledge base. By taking on the formalization of the query, AquaLog allows
users to pose queries in natural language without having to remember a specific ter-
minology for the domain. Currently its key limitations are that it can only search one
knowledge base at once (we are addressing this in a new version called PowerAqua
[6]), and that it can only answer a question that can be reformulated as no more than
two triples that form a path.

At the opposite end of the spectrum, a number of query languages have been pro-
posed for searching semantic web resources. These may be divided into those based
on database query languages (e.g., RQL, SeRQL, SPARQL), and those which are
related more closely to rule languages or logics (e.g. DQL, or the KAON2 reasoner).
Query languages for the semantic web are reviewed in [7] and [8]. Haase et al. [7] set
out the requirements for an RDF query as a set of use cases such as graph matching,
relational models, aggregation, recursion etc. and benchmarks a number of query
languages against them. These requirements are a good indicator of the direction of
research in this area. The focus is on developing a language that has all the technical
features required to get correct answers for the widest possible range of searches and
support the needs of semantic web developers. It is not intended that these methods
should be placed in the hands of the average user any more than one would expect the
average user to access a database using SQL statements.

These two extremes by no means account for all the work on supporting search on
the semantic web. For example, there is important work on developing methods for
computing relevance metrics and ranking semantic results [9], [10], [11, 12]. There is
also highly pertinent work on building effective user front ends for semantic re-
sources, e.g. [13, 14]. However, these efforts were directed at single domains, allow-
ing tailor-made solutions. We are aiming at a more widely applicable solution.

Identifying the usability vs reasoning power trade off led us to conclude that, while
developers have access to powerful search systems, end users have much more lim-
ited means of finding semantic information. Specifically, they are not currently sup-
ported in formulating searches with multiple parameters, such as the example we will
explore in this paper. In this paper we explore a novel approach that will overcome
the current gap between the two major approaches to search. In particular, our hy-
pothesis is that complex query formulation could be eased by a system which would
rely on a set of components, each implementing a well-defined search task. By
defining some abstract search tasks that are domain independent, we ensure their

224 V. Uren and E. Motta

applicability over a wide range of ontologies. Therefore, a system built up by our
generic components would be usable in the challenging scenario anticipated for the
semantic web. The closest works we know of to the proposed approach are the On-
toIQ interface [15] and VQL [16] each of which use query patterns as a basis for
constructing more complex queries. The OntoIQ interface requires the user to read
RQL, though not to write it; we believe that the user should not be exposed to formal
syntax. VQL is a well developed language based on the principle “ask less, get more”,
to we we also subscribe. It does not currently include focusing operations which ex-
ploit ontology structures but does allow queries for a good range of query types and
considers the issue of mapping queries onto semantic resources.

As part of specifying requirements for a semantic search engine based on search
components we are exploring various search scenarios. In the example presented in
this paper, we chose to work on a comparison query because comparison is a rela-
tively common task with multiple parameters. The structure of the paper is as follows.
First, we consider some heuristics for comparison. Next we work through an example
comparing the fuel efficiency of a fictional 4-wheel drive vehicle, which we call “Be-
hemoth”, to other similar vehicles. We demonstrate that this comparison search is
sufficiently complex that users of the semantic search engines will require support to
formulate similar comparison queries. Finally, we sketch out a blue-print for a com-
ponent based approach to supporting complex semantic queries.

2 Comparison Queries: Heuristics and an Example

Comparison is a very common activity on the internet and in general. Some special
resources exist for making comparisons such as the Kelkoo eShopping site
(http://www.kelkoo.co.uk/) and the British Government school league tables
(http://www.dfes.gov.uk/performancetables/). The organization of these gives us
some commonsense guidance to the nature of comparison problems from which we
can derive some heuristics.

The first step of comparison defines a class of objects to compare. Both the Kelkoo
and the DfES site start by dividing their worlds into types of thing. Kelkoo groups
consumer goods under headings such as “Books”, “Cars and Accessories”, “Com-
puters” and so on. The school league tables site divides schools into categories like
“Primary School (Key Stage 2)” and “Secondary School (GCSE and equivalent)”.
From this we derive our first heuristic:

Only similar things should be compared (H1)

This forces us to ask what we mean by “similar”. This is a loaded question and one
which has received considerable attention from researchers. However, similarity is
not the main focus of our discussion in this paper. Therefore, since we are interested
in search in ontology based knowledge resources, we propose to use the following
two heuristics, which draw on fundamental ontological concepts, as our starting point
for thinking about similarity:

Similar things have a common parent. (H2)
Similar things share properties (slots). (H3)

 Semantic Search Components: A Blueprint for Effective Query Language Interfaces 225

Intuitively, this fits the examples from the comparison sites. For example, both the
“Laptops” and “Desktops” section of the Kelkoo site are sub-divisions of the parent
“Computers” and both share properties such as “brand” and “processor”.

Our second heuristic draws on the observation that both our typical comparison
sites focus on properties that are shared by all, or many, of the things in a given class.
In Kelkoo, for instance, all the items have a price and this can be used for ranking.
The school league tables, on the other hand, present the results of national academic
tests in core curriculum subjects, along with contextual information like the percent-
age of students in the school with special educational needs. This definition of proper-
ties is the second step of comparison and leads us to the heuristic:

Things should be compared against shared properties. (H4)

The third step of comparison is a compositional step in which objects and proper-
ties are brought together.

It is commonly said that you can’t compare apples and oranges. These heuristics do
not support that position, since apples and oranges share a common parent, fruit.
However, they do limit the comparison to shared properties e.g., vitamin C content.
Note that this puts an implicit limit on how distant a common parent can be, since it
must be close enough for the objects to share properties. However, further refinement
of these heuristics is needed before they could be used in, say, an autonomous agent.
As they stand the heuristics are sufficient to help people to formulate searches.

2.1 Example: Is Behemoth Less Fuel Efficient Than Similar Vehicles?

We start our exploration of search tasks by detailing the process of building a query to
answer the question stated above. Our goal is to give an insight into the kinds of ac-
tions performed during such searches and use them to ground our higher level de-
scription of search tasks that follows in the next section.

Our example uses an ontology built in Protégé about vehicles and their fuel effi-
ciency. The searches used the version of SPARQL in Protégé 3.2 beta. We chose to
use this partly for convenience (the ontology had been built in an older version of
Protégé) but also because SPARQL, being syntactically similar to SQL, can be under-
stood by most computer scientists. First, we present the ontology and then the search.

The question concerns a fictional 4-wheel drive vehicle which we call “Behe-
moth”. Behemoth is manufactured by a fictional company we call Monster Motors.
To provide a testbed we constructed a small OWL ontology in Protégé which de-
scribes describes individual vehicles, vehicle types (LargeCar, SmallCar, OffroadVe-
hicle etc.), their components (e.g. engines) as well as different types of tests and
measurements and the corresponding measurement units.

Sample fuel consumption measurements for the real vehicles in the ontology came
from three sources:

o the Green Vehicle Guide produced by the Australian government
(http://www.greenvehicleguide.gov.au/)

o The Fuel Consumption Guide 2005 produced by Natural Resources Canada
(http://www.tc.gc.ca/programs/environment/fuelpgm/guidsub.htm)

226 V. Uren and E. Motta

o and the Excel spreadsheet of fuel consumption data issued by the UK Vehi-
cle Certification Agency in May 2005 (http://www.vcacarfueldata.org.uk/)

These samples of data from different sources introduced some realism into the sce-
nario since, typically for this domain, different agencies use different standards for
testing and the values are reported in a variety of units. The UK data are collected
according to the specifications of EU Directive 98/69, whereas the Canadian data are
collected according to the Federal Test Procedure (FTP) used in Canada and the USA
for new vehicle testing, and the Australian data is collected according to an interna-
tional standard adopted by the United Nations and commonly called Euro2 (it is based
on the EU standards). The data are published in a variety of different Imperial and SI
units depending on the conventions of the countries concerned. The tough issue for
the semantic web arising out of this apparent trivia is that real data quickly gets com-
plicated. Things which look similar, for example two measurements in mpg (miles per
gallon) published in Canada and the UK, may not be comparable. Therefore, simple
queries are not sufficient to get sensible answers.

2.2 Constructing the Query in SPARQL

To answer our question “Is Behemoth less fuel efficient than similar vehicles?” we
constructed a query in the three steps outlined above. In step 1 we define a set of
vehicles similar to Behemoth. In step 2 we set the parameters that define “compara-
ble” fuel consumption measurements. In step 3 we compose a query out of the results
of the first two steps.

STEP 1 (define objects). To formulate a search for vehicles similar to Behemoth we
first examine Behemoth itself, using a search we will call “rel-ent” (short for “rela-
tions and entities”). This returns any entities directly linked to the search instance via
any relations. Its exploratory role is similar to the reflection interface used in Search
on TAP [3]. The search is presented below along with the result of the query. Items
highlighted in bold are discussed in the text. The queries and results come directly
from Protégé. However, for clarity and brevity we have edited the results to remove
Protégé specific Frame IDs.

SELECT ?rel ?ent WHERE { :Behemoth ?rel ?ent }
Slot(rdf:type) Cls(OffroadVehicle)
Slot(hasComponent) SimpleInstance(MonsterEngineB of [Cls(VehicleEngine)])
Slot(hasManufacturer) SimpleInstance(MonsterMotors of [Cls(Manufacturer)])
Slot(hasSpecification) SimpleInstance(HighwayFuelConsumptionMeasurement_38 of

 [Cls(HighwayFuelConsumptionMeasurement)])
Slot(hasSpecification) SimpleInstance(UrbanFuelConsumptionMeasurement_37 of

 [Cls(UrbanFuelConsumptionMeasurement)])

We can apply the heuristic that things with a common parent are similar (H2). Be-
hemoth is an instance of the class OffroadVehicle so this could be the default definition
of “similar”. However, the user may want a broader search. Again we apply a rel-ent
search this time to the OffroadVehicle class.

 Semantic Search Components: A Blueprint for Effective Query Language Interfaces 227

SELECT ?rel ?ent WHERE { :OffroadVehicle ?rel ?ent }
Slot(rdf:type) Cls(owl:Class)
Slot(owl:disjointWith) Cls(LightTruck)
Slot(owl:disjointWith) Cls(Van)
Slot(owl:disjointWith) Cls(LargeCar)
Slot(owl:disjointWith) Cls(MediumCar)
Slot(owl:disjointWith) Cls(SmallCar)
Slot(owl:disjointWith) Cls(TwoSeaterCar)
Slot(rdfs:subClassOf) Cls(VehicleType)

One option might be to take the next step up the hierarchy and construct a super-
class query for instances at the same level of the hierarchy as Behemoth with the
common ancestor VehicleType (VehicleType is the parent class for OffroadVehicles).
(Note, since SPARQL doesn’t implement inheritance, the extra layer of the class
hierarchy is represented by the variable ?x).

SELECT ?anyVehicle WHERE { ?anyVehicle rdf:type ?x . ?x rdfs:subClassOf :VehicleType }
SimpleInstance(MonsterVan of [Cls(Van)])
SimpleInstance(Behemoth of [Cls(OffroadVehicle)])
SimpleInstance(NewBeetleTDI of [Cls(SmallCar)])
SimpleInstance(Durango4x4 of [Cls(OffroadVehicle)])
SimpleInstance(Ecoskate of [Cls(TwoSeaterCar)])
SimpleInstance(X5 of [Cls(OffroadVehicle)])
SimpleInstance(SmartFortwoCDI of [Cls(TwoSeaterCar)])
SimpleInstance(X3 of [Cls(OffroadVehicle)])
SimpleInstance(MonsterLimo of [Cls(LargeCar)])

This responds with all the vehicles in the (small) knowledgebase. Some of these,
such as the Ecoskate and NewBeetleTDI are not really like Behemoth – we would not
expect it to have fuel efficiency similar to small cars. So here the user chooses a sub-
set of vehicle classes consisting of the Van and LargeCar classes.

SELECT ?likeBehemoth WHERE {{ ?likeBehemoth rdf:type :OffroadVehicle}
 UNION{ ?likeBehemoth rdf:type :LargeCar} UNION {?likeBehemoth rdf:type :Van }}

SimpleInstance(X3 of [Cls(OffroadVehicle)])
SimpleInstance(Behemoth of [Cls(OffroadVehicle)]
SimpleInstance(Durango4x4 of [Cls(OffroadVehicle)])
SimpleInstance(X5 of [Cls(OffroadVehicle)])
SimpleInstance(MonsterLimo of [Cls(LargeCar)])
SimpleInstance(MonsterVan of [Cls(Van)])

Until now we have broadened the search to include new classes of vehicles that
may be similar to Behemoth. This involved looking above it in the class hierarchy.
However, according to H3 which states that similar entities share properties, shared
properties (parameters) should be decided upon to focus the search. For these the
system should look down the hierarchy. To do this we look more closely at the Mon-
sterEngineB component of Behemoth using a further exploratory rel-ent search.

SELECT ?rel ?ent WHERE { :MonsterEngineB ?rel ?ent }
Slot(hasManufacturer) SimpleInstance(MonsterMotors of [Cls(Manufacturer)])
Slot(rdf:type) Cls(VehicleEngine)
Slot(hasNumberOfCylinders) 6
Slot(usesFuel) SimpleInstance(PetrolFuel of [Cls(Fuel)])
Slot(componentOfVehicle) SimpleInstance(Behemoth of [Cls(OffroadVehicle)])
Slot(hasEngineCapacity) 3.5

Looking at this we notice that MonsterEngineB has 6 cylinders. This will certainly
impact on its fuel consumption so the user narrows the search down to only include
vehicles with engines that have 6 or more cylinders. (Note, the UNION syntax of
SPARQL forces a verbose syntax at this point).

228 V. Uren and E. Motta

SELECT ?likeBehemoth
WHERE {{ ?likeBehemoth rdf:type :OffroadVehicle . ?likeBehemoth :hasComponent ?engine.
 ?engine rdf:type :VehicleEngine . ?engine :hasNumberOfCylinders ?NumCylinders .
 FILTER (?NumCylinders >= 6)}
UNION { ?likeBehemoth rdf:type :LargeCar . ?likeBehemoth :hasComponent ?engine.
 ?engine rdf:type :VehicleEngine . ?engine :hasNumberOfCylinders ?NumCylinders .
 FILTER (?NumCylinders >= 6)}
UNION {?likeBehemoth rdf:type :Van . ?likeBehemoth :hasComponent ?engine.
 ?engine rdf:type :VehicleEngine . ?engine :hasNumberOfCylinders ?NumCylinders .
 FILTER (?NumCylinders >= 6)}}
SimpleInstance(X3 of [Cls(OffroadVehicle)])
SimpleInstance(Behemoth of [Cls(OffroadVehicle)])
SimpleInstance(Durango4x4 of [Cls(OffroadVehicle)])
SimpleInstance(X5 of [Cls(OffroadVehicle)])

To summarize, using our heuristics H2 and H3 to define what is “similar” to Be-
hemoth, four Vehicles are retrieved from the knowledge base. They are: X5, X3, Du-
rango4x4 and Behemoth itself.

STEP 2 (define properties). To start formulating a search for the fuel consumption
aspect of the query we reuse the rel-ent results for Behemoth above. There were two
fuel consumption measurements: HighwayFuelConsumptionMeasurement_38 and Urban-
FuelConsumptionMeasurement_37. We can do a rel-ent search on one of these to under-
stand their related entities and explore ways to produce a search.

SELECT ?rel ?ent WHERE { :HighwayFuelConsumptionMeasurement_38 ?rel ?ent }
Slot(hasValue) 9.1
Slot(rdf:type) Cls(HighwayFuelConsumptionMeasurement)
Slot(usesTestMethod) SimpleInstance(FuelConsumptionTestMethod_Canadian) of

 [Cls(FuelConsumptionTestMethod)])
Slot(hasUnit) SimpleInstance(UnitSI_lPER100km of [Cls(UnitSI)])
Slot(dataForVehicle) SimpleInstance(Behemoth of [Cls(OffroadVehicle)])
Slot(reportedBy) SimpleInstance(TransportCanada of [Cls(TestingAgency)])

First we investigate broadening the search. The SimpleInstance HighwayFuelCon-
sumptionMeasurement_38 is a member of the class HighwayFuelConsumptionMeasure-
ment. We can perform a rel-ent on this to find out more about it. Here we rely on H2
just as in step 1

SELECT ?rel ?ent WHERE { :HighwayFuelConsumptionMeasurement ?rel ?ent }
Slot(owl:disjointWith) Cls(CombinedFuelConsumptionMeasurement)
Slot(owl:disjointWith) Cls(UrbanFuelConsumptionMeasurement)
Slot(rdfs:subClassOf) Cls(FuelConsumptionMeasurement)
Slot(rdf:type) Cls(owl:Class)

We can see that it is disjoint with two other classes and all three are children of the
class FuelConsumptionMeasurement. We can formulate a superclass query to encompass
all the SimpleInstances of these.

SELECT ?anyFuelCons WHERE { ?anyFuelCons rdf:type ?x .
 ?x rdfs:subClassOf :FuelConsumptionMeasurement }
SimpleInstance(HighwayFuelConsumptionMeasurement_22 of [Cls(HighwayFuelConsumptionMeasurement)])
SimpleInstance(UrbanFuelConsumptionMeasurement_61 of [Cls(UrbanFuelConsumptionMeasurement)])
SimpleInstance(UrbanFuelConsumptionMeasurement_16 of [Cls(UrbanFuelConsumptionMeasurement)])
SimpleInstance(HighwayFuelConsumptionMeasurement_38 of [Cls(HighwayFuelConsumptionMeasurement)])
SimpleInstance(CombinedFuelConsumptionMeasurement_27 of [Cls(CombinedFuelConsumptionMeasurement)])
SimpleInstance(CombinedFuelConsumptionMeasurement_30 of [Cls(CombinedFuelConsumptionMeasurement)])
…

In addition, we noted before that different agencies report fuel consumption meas-
urements made to different standards and in different units. We add TransportCanada

 Semantic Search Components: A Blueprint for Effective Query Language Interfaces 229

as an additional term to limit the data to measurements made under one set of condi-
tions and fix the units to the SI standard. We now have a quite complex search for
fuel consumption measures.

SELECT ?fuelCons ?x WHERE { ?fuelCons rdf:type ?x . ?x rdfs:subClassOf :FuelConsumptionMeasurement .
 ?fuelCons :reportedBy :TransportCanada . ?fuelCons :hasUnit :UnitSI_lPER100km}
SimpleInstance(UrbanFuelConsumptionMeasurement_61 of [Cls(UrbanFuelConsumptionMeasurement)])

Cls(UrbanFuelConsumptionMeasurement)
SimpleInstance(UrbanFuelConsumptionMeasurement_16 of [Cls(UrbanFuelConsumptionMeasurement)])

Cls(UrbanFuelConsumptionMeasurement)
SimpleInstance(HighwayFuelConsumptionMeasurement_24 of [Cls(HighwayFuelConsumptionMeasurement)])

Cls(HighwayFuelConsumptionMeasurement)
SimpleInstance(UrbanFuelConsumptionMeasurement_23 of [Cls(UrbanFuelConsumptionMeasurement)])

Cls(UrbanFuelConsumptionMeasurement)
SimpleInstance(HighwayFuelConsumptionMeasurement_17 of [Cls(HighwayFuelConsumptionMeasurement)])

Cls(HighwayFuelConsumptionMeasurement)
SimpleInstance(HighwayFuelConsumptionMeasurement_2 of [Cls(HighwayFuelConsumptionMeasurement)])

Cls(HighwayFuelConsumptionMeasurement)

STEP 3 (composition). The final step is to merge the two components of the query
for fuel consumption values of vehicles similar to that of Behemoth. This can be done
via another UNION query that attaches the constraint based search formulated in step
2 to each of the vehicles found in step 1. We added an ordering term at the end to
produce the results as a ranking.

Fig. 1. Screenshot of the final query (left panel) and the search results (right panel) in Protégé

The final result of the search is presented in Figure 1 as a screen shot from Protégé.
From this the user might conclude that while Behemoth is not the most fuel efficient
vehicle in its class it is the not worst either. The Durango4x4 has worse UrbanFuelCon-
sumption. Both the Durango4x4 and the X5 have worse HighwayFuelConsumption.

You may ask why we subjected you to such a long example. It was to show that
formulating a semantic search, with complex parameters, in a scenario where the user
does not have a god-like knowledge of the structure of the resources is hard. It can

230 V. Uren and E. Motta

require time spent exploring the resources, and a knowledge of syntax. This is not
beyond the capabilities of intelligent users, but we know that, for users, search is a
means to an end, not an end in itself. Therefore, they prefer it to be simple.

3 Components for Searching

The search example above got rather complex, but patterns emerged which point
towards the kinds of operations a search engine might need to support. We propose
that a component based approach could be developed. This does not require any new
search language but instead uses existing languages to formulate reusable blocks of
query statements. The user supplies simple keyword-like inputs, and can plug the
components together to make more complex statements. This might by done in a form
filling interface or by visualization. Our method does not subscribe to a particular
style of interface but only to the underlying “library” of reusable components. Table 1
summarizes the kinds of search components that we believe are needed.

The exploratory search we called rel-ent, which looks at all the entities that are the
immediate children of the search item and the relations to them, is an example of the
classes of components for reflection which can be used to find out more about an
object by exploring the graph immediately around it. This process of going to a rele-
vant place and “having a look around” to identify relations or classes which could be
useful in formulating a search is likely to be particularly useful to a user who is work-
ing with an ontology they don’t know well.

Formulating the comparison query involved a sequence of narrowing and broaden-
ing operations, in which we found the constraints which fitted the particular informa-
tion need by looking down and up the ontology hierarchy respectively. This kind of
query focus setting behaviour is well known from information retrieval where users
add and remove terms in keyword searches until they get the results they require.
Components to help set the focus of searches will be essential. A variety of these are
suggested in Table 1. For example, in the fuel efficiency comparison we explored
options of how to search for things similar to Behemoth in ways that could be re-
placed by components like Broaden by superclass and Broaden by peer classes.
The narrowing operations mainly used combinations of slots and fillers which could
be supplied by a Narrow by constraints component. An interesting case is where a
chain of constraints can be constructed such as X is an OffroadVehicle that has a
component of type VehicleEngine that hasNumberOfCylinders equal to 6 or more.
This is more challenging than building a component that just finds and applies multi-
ple constraints on one entity.

In formulating the search we talked about things which were similar to Behemoth
and fuel consumption measurements which were comparable. This translated into a
sequence of focus searches. Nonetheless, similarity is a distinct concept that we be-
lieve needs to be supported by components. For example, one approach is Class
Match, where similarity is defined as “instances of the same class as a known in-
stance”. This exploits the domain knowledge embedded in the ontology. Another
possibility might be to use a Case-based approach where results are ranked by their
similarity to a search instance. This is more flexible than the constraint setting

 Semantic Search Components: A Blueprint for Effective Query Language Interfaces 231

approach because matching items don’t necessarily have to match every slot in the
query instance. We can also anticipate similarity searches for different kinds of liter-
als. For example, a String match to find results like “Durango4X4” for a search for
“Durango”, or a Number match that find numbers that are close to an input given the
range of values stored in the knowledge base for instances of that type.

Table 1. Candidate Search Components

Component Type Example Components
Reflection – local search
that looks for things in
the vicinity of a node

Rel-ent – find everything with a link from
a known node
Ent-rel – Find everything with a link *to*
a known node
AquaLog – look for relations like those
specified by a natural language query

Similarity – looks for
things that are “like” a
certain search.

Exact match – finds Literals that exactly
match the search term
Class Match – find things of the same
class as an identified instance (siblings)
String match – find any string that is a
close match to a given string
Number match – finds numbers “close” to
a input based on the range of values in the
knowledge base
Case-based – a nearest neighbour search
based on a set of property values

Focus – refine a search
by narrowing or broad-
ening

Broaden by superclass – locate an ances-
tor class of the search term
Broaden by peer classes – locate classes
at the same level of the hierarchy to add to
the search
Broaden by synonyms – A search which
uses linguistic resources
Narrow by subclass – locate a subclass of
the current term
Narrow by constraints – add property
values which must be fulfilled by a search

Assembly – put together
search components in a
complex search

Semantic Conjunction – Semantic AND
Conjunction – Boolean AND
Disjunction – Boolean OR

Select – select what data
to view

Select by type – indicate properties of an
object to view
Select by certainty – set level of confi-
dence required in data to view
Select by provenance – set sources which
are trusted

232 V. Uren and E. Motta

Fig. 3. Conjunction – the results of two searches are combined by finding overlapping elements
(left). Semantic conjunction – the results of two searches are combined by finding cross-linking
semantic relations (right).

The last step of the comparison search involved putting two searches together as
subcomponents of a more complex search. Components will also be required for this
kind of assembly operation. Note that in cases such as the one we presented this is
more complex than the Boolean operators familiar in IR systems. Figure 2 illustrates
the difference. In a Boolean “AND” operation (left) the objects in the two sets are of
the same type (numbers here though in IR usually documents), the answer comprises
the overlap between the two sets. The analog for a semantic search (right) needs to
combine two initial searches which produce objects of different kinds. The answer is
a set of relations between objects from the two sets; in our example the
:dataForVehicle relation linked vehicles to fuel consumptions. In this mode, an object
can occur more than once in the answer set as part of different relations.

Two other search components that are worth noting at this point are those which
select the type of data required in the answer and those which sort it into an order.
In an SQL based syntax, such as SPARQL these appear at the beginning and end of
the search statement. However, we observe some areas of common ground that
makes them partial mirrors of each other. For example, we might want to Select by
provenance. Alternatively, we might want to rank the results according to its trust-
worthiness using Rank by provenance. For data which had been annotated auto-
matically, e.g. by information extraction, we might want to have Select by cer-
tainty and Rank by certainty components that exploit stored knowledge about the
accuracy of the automatic annotation process. For the user select and sort have
similar outcomes.

To summarize, we have identified the need for search components that can do re-
flection around a node, similarity search, broadening and narrowing of focus, the
combination of components, and selection and ranking of results. Although the proc-
ess by which we identified these component types came out of a comparison search
we believe they are at a level of abstraction that would suit a wide range of searches.
The next step is to consider the kind of architecture that would be needed.

 Semantic Search Components: A Blueprint for Effective Query Language Interfaces 233

4 Blueprint for a Component Based Architecture

We envisage search components having an intermediary role between the user inter-
face and the formal query language, taking as input user search terms and outputting
an appropriate formal query. This is a problem solving methods [17] approach which
is neutral as to whether the components are realised as, for example, agents, web
services, or an API.

The simplest variety of component is one that takes a single input (see Table 2).
For example, imagine the first action of our fuel efficiency search. We can imagine
that a user interface guides the user to select the reflection component rel-ent. The
user selects the :Behemoth object to add to the search (perhaps using a similarity
component for text searching in literals). The component inserts :Behemoth into the
standard syntactic pattern for rel-ent and sends on a well formed SPARQL query.

Table 2. Examples of input and output for search components with single inputs

Component Input Output
Reflection
Rel-ent

:Behemoth SELECT ?rel ?ent
WHERE { :Behemoth ?rel ?ent }

Similarity
Class Match

:Behemoth SELECT ?likeThis
WHERE {?likeThis rdf:type ?x .
:Behemoth rdf:type ?x}

A more complex variety of components take multiple inputs, such as those that
take a list of constraints. Here an interface needs to provide some guidance for the
user to specify the role of each term in the search, whether it is the thing searched for
or a constraint. This might be provided minimally by a simple form which supports
the user in selecting appropriate types and relations from the ontology. A straightfor-
ward case is a search of a single class constrained by a number of properties that ap-
ply directly to it, such as the constraints on fuel consumption measurements in the
first row of Table 3. More complex constraints arise when the property is not directly
related to the item being sought. In the fuel consumption example, the user selected as
constraints for :OffroadVehicles that they should have :VehicleEngine populated and
that the engine should have 6 or more cylinders. The number of cylinders is indirectly
linked to vehicles via :VehicleEngine.

One of the toughest challenges posed by the design of the component based archi-
tecture is how to compose complex searches from simpler components. That is to say,
if components like those in Tables 2 and 3 are the bricks how do we build a wall? We
have already discussed in general terms how semantic conjunction differs from Boo-
lean conjunction and came to the conclusion that it involves finding the relations
between the items output by two searches. In Table 4 below, we explore three ap-
proaches reusing elements of the fuel consumption example.

Semantic conjunction II (instance/instance) is the closest to Boolean conjunction.
The input is the outputs from STEP 1 and STEP 2 of the original comparison search,
i.e. a list of n vehicles and a list of m fuel consumption measurements. The conjunc-
tion method seeks links between the items in the two lists, i.e., it looks for fuel

234 V. Uren and E. Motta

Table 3. Examples of inputs and output for search components with multiple inputs. The nested
bracket syntax associates constraints to the type they apply to.

Component Input Output
Focus
Narrow by
constraints on
direct properties

(:FuelConsumptionMeasurement
(:reportedBy :TransportCanada)
(:hasUnit :UnitSI_lPER100km))

SELECT ?fuelCons ?x
WHERE { ?fuelCons rdf:type ?x .
?x rdfs:subClassOf
:FuelConsumptionMeasurement .
 ?fuelCons :reportedBy
:TransportCanada .
?fuelCons :hasUnit :UnitSI_lPER100km}

Focus
Narrow by
constraints on
indirect properties

(:OffroadVehicle
(:hasNumberOfCylinders >=6))

SELECT ?likeThis
WHERE
{{ ?likeThis rdf:type :OffroadVehicle .
?likeThis :hasComponent ?e .
?e rdf:type :VehicleEngine .
?e :hasNumberOfCylinders ?n .
FILTER (?n >= 6)}}

Table 4. Examples of input and output for assembly search components. The square bracket
syntax indicates a list of instances resulting from a search.

Component Input Output
Assembly
Semantic Conjunction II
Pairing of instances

[:Behemoth, :X3, etc.]
[:UrbanFuelConsumption
 Measurement_37,
:HighwayFuelConsumption
 Measurement_38, etc.]

SELECT ?rel
WHERE { :HighwayFuelConsumption
 Measurement_38
?rel :Behemoth . }etc.

Assembly
Semantic Conjunction IC
Union with instances and
constraints

[:Behemoth, :X3, etc.]
(:FuelConsumption
 Measurement
(:reportedBy :TransportCanada)
(:hasUnit :UnitSI_lPER100km))

SELECT ?value ?vehicle
 ?fuelConsType
WHERE {
{ ?fuelCons rdf:type ?fuelConsType .
?fuelConsType rdfs:subClassOf
 :FuelConsumptionMeasurement .
?fuelCons :reportedBy :TransportCanada .
?fuelCons :hasUnit :UnitSI_lPER100km .
?fuelCons :hasValue ?value .
?fuelCons :dataForVehicle :Behemoth
.?fuelCons :dataForVehicle ?vehicle}
UNION etc. }

Assembly
Semantic Conjunction CC
Merging two sets of
constraints

(:OffroadVehicle
(:hasComponent :VehicleEngine))
(:VehicleEngine
(:hasNumberOfCylinders >=6))

(:FuelConsumption
 Measurement
(:reportedBy :TransportCanada)
(:hasUnit :UnitSI_lPER100km))

SELECT ?value ?vehicle
 ?fuelConsType
WHERE {
?fuelCons rdf:type ?fuelConsType .
?fuelConsType rdfs:subClassOf
 :FuelConsumptionMeasurement .
?fuelCons :reportedBy :TransportCanada .
?fuelCons :hasUnit :UnitSI_lPER100km .
?fuelCons :hasValue ?value .
?fuelCons :dataForVehicle ?vehicle .
?vehicle rdf:type :OffroadVehicle .
?vehicle :hasComponent ?e .
?e rdf:type :VehicleEngine .
?e :hasNumberOfCylinders ?n .
FILTER (?n >= 6) }

 Semantic Search Components: A Blueprint for Effective Query Language Interfaces 235

consumptions for the individual vehicles. There are a number of problems with this
approach. First, it assumes that one to one links between the two lists can be found,
which may not always be the case. Second, it is a brute force method that requires the
generation of n times m sub-searches, which is likely to become costly for all but very
short lists. (Note, since multiple links are possible to and from any item in the lists,
and links can exist in both directions it is not possible to reduce this number.)

Semantic conjunction IC (instance/constraints) is the kind of search we used in
STEP 3 of the fuel consumption example. A list of n instances (vehicles) is merged
with a set of constraints (describing the kind of fuel consumption measurements that
are comparable) and the n sub-searches are linked using UNION. For this to be done
automatically the system would have to perform a set of searches to identify suitable
links between the type in the instance list and the types of instance being selected in
the constraint search. In the example, two variables were being selected at the end of
STEP 2: ?fuelCons, the fuel consumption value itself, and ?x the type of measurement
(highway, urban or combined). We made the UNION in STEP 3 using :dataForVehicle
to link ?fuelCons to a vehicle. However, there may conceivably be several possible
pairings between instances and multiple variables, and several links to choose from
for each pair. The system needs to select among them automatically or support the
user by offering a list of the available options. Therefore, while this semantic conjunc-
tion has the advantage of generating just n sub-searches, this is balanced against the
fact that it requires reasoning on the ontology to provide support to the user in eluci-
dating the connections and selecting appropriate links.

Semantic conjunction CC (constraints/constraints) is the approach that produces
the most succinct search, since it produces a single large search that merges all the
constraints from two searches. (Note, in Table 4, only this search statement is pre-
sented unabridged.) Obviously, the trade-off for this is that the complexity of the
reasoning to find suitable links in the ontology to bind together the two searches is
greater since there is now a many-to-many search for possible links to be performed.

5 Summary and Future Work

We have identified the need for query formulation systems for the semantic web
which allow users to go beyond simple keyword search without having to learn a
formal query language. The contribution of this work is to identify a set of abstract
search components at a higher level than the basic elements of query languages.
These could underpin a component based interface between storage and query sys-
tems that work with query languages, and high level GUI based search facilities.

The first benefit of a component based approach is that we can implement it step-
wise, starting with components that take a single input and combining them using
semantic conjunction II, before moving on to the more complex components and
assembly methods. We are working towards a practical implementation of the ap-
proach in a system we call SemSearch [18], which uses a Google like syntax for basic
queries and is currently being extended to incorporate search components in an “ad-
vanced” mode. A second benefit is that a system based on abstract search components
is (almost) domain independent. A third benefit is that the approach is naturally
extensible. The current analysis has been limited to one kind of search problem,

236 V. Uren and E. Motta

comparison. If we find, when investigating other complex queries, that new opera-
tions are needed we simply add more components. We anticipate that one such exten-
sion will tackle search in heterogeneous environments, with multiple ontologies and
knowledge bases, i.e. the real semantic web.

Acknowledgements

This work was funded by the X-Media project (www-x-media-project.org) sponsored
by the European Commission as part of the Information Society Technologies (IST)
programme under EC grant number IST-FP6-026978 and partly funded by the Ad-
vanced Knowledge Technologies (AKT) Interdisciplinary Research Collaboration
(IRC), sponsored by the UK Engineering and Physical Sciences Research Council
under grant number GR/N15764/01. The authors thank Yuangui Lei and Marta Sabou
for helpful discussions and comments on the text.

References

1. Berners-Lee T., H.J., Lassila O., The Semantic Web. Scientific American, 2001: p. 34-43.
2. Gruber, T.R., Towards principles for the design of ontologies used for knowledge sharing.,

in Formal ontology in conceptual analysis and knowledge Representation, R.P.N.
Guarino, Editor. 1993, Kluwer Academic publishers.

3. Guha, R., R. McCool, E. Miller. Semantic Search. in WWW2003, Proc. of the 12th Inter-
national Conference on World Wide Web. 2003: ACM Press.

4. Guha, R., R. McCool, TAP: a Semantic Web Platform. Computer Networks, 2003. 42(5):
p. 557-577.

5. Lopez, V., M. Pasin, E. Motta. AquaLog: An Ontology-portable Question Answering Sys-
tem for the Semantic Web. in ESWC 2005. 2005. Creete, Grece.

6. Lopez, V., E. Motta, V. Uren. PowerAqua: Fishing the Semantic Web. in ESWC 2006.
2006. Montenegro.

7. Haase, P., Broekstra, J., Eberhardt, A., Volz, R. A comparison of RDF query languages. in
ISWC 2004. 2004. Hiroshima, Japan: LNCS 3298.

8. Golfarelli, M., Mandeoreli F., Martoglia, R., Proli, A., Rizzi S., Tiberio, P., Critical analy-
sis of query languages and ontology-based query rewriting techniques. June 2005, Web
Intelligent Search based on DOMain ontologies (WISDOM) Deliverable D3.R1.

9. Zhang, L., Y. Yu, J. Zhou, C.X. Lin, Y.Yang. An enhanced model for searching in seman-
tic portals. in WWW 2005. 2005. Chiba Japan.

10. Stojanovic, N. An Approach for Defining Relevance in the Ontology-based Information
Retrieval. in Web Intelligence WI 2005. 2005.

11. Ding, L., Pan, R., Finin, T., Joshi, A., Peng Y., Kolari P. Finding and ranking knowledge
on the semantic web. in (Third International Semantic Web Conference) ISWC 2005.
2005: LNCS 3729.

12. Vallet-Weadon, D., Fernandez-Sanchez, M., Castells-Azpilicueta, P., The quest for seman-
tic retrieval on the semantic web. Upgrade, 2005. VI(6): p. 19-23.

13. Goble, C.A., R. Stevens, G. Ng, S. Bechhofer, N.W. Paton, P.G. Baker, M. Peim, A.
Brass, Transparent Access to Multiple Bioinformatics Information Sources. IBM Systems
Journal Special issue on deep computing for the life sciences, 2001. 40(2): p. 532 - 552.

 Semantic Search Components: A Blueprint for Effective Query Language Interfaces 237

14. Stuckenschmidt, H., F.van Harmelen, A. de Waard, T. Scerri, R. Bhogal, J. van Buel, I.
Crowlesmith, C. Fluit, A. Kampman, J. Broekstra, E. van Mulligen, Exploring large
document repositories with RDF technology: the DOPE project. IEEE Intelligent Systems,
2004. 19(34-40): p. 22-28.

15. Baker, C.J.O., Su X., Butler, G., Haarslev, V. Ontoligent interactive query tool. in Pro-
ceedings of Canadian Semantic Web Working Symposium 2006. 2006.

16. Hoang, H.H., Tjoa, A.M. The Virtual Query Language for Information Retrieval in the
SemanticLIFE framework. in International Workshop on Web Information Systems Model-
ing (WISM 2006). 2006. Luxembourg.

17. Motta, E., Reusable Components for Knowledge Modelling: Principles and Case Studies
in Parametric Design. 1999, Amsterdam: IOS Press.

18. Lei, Y., Uren, V.S., Motta, E.,. SemSearch: A Search Engine for the Semantic Web. in
EKAW 2006. 2006. Podebrady, Czech Republic.

SemSearch: A Search Engine for the Semantic

Web

Yuangui Lei, Victoria Uren, and Enrico Motta

Knowledge Media Institute (KMi), The Open University, Milton Keynes
{y.lei, v.s.uren, e.motta}@open.ac.uk

Abstract. Existing semantic search tools have been primarily designed
to enhance the performance of traditional search technologies but with
little support for ordinary end users who are not necessarily familiar with
domain specific semantic data, ontologies, or SQL-like query languages.
This paper presents SemSearch, a search engine, which pays special at-
tention to this issue by providing several means to hide the complexity
of semantic search from end users and thus make it easy to use and
effective.

1 Introduction

Semantic search promises to produce precise answers to user’s queries by taking
advantage of the availability of explicit semantics of information in the semantic
web. For example, when searching for news stories about phd students, with
traditional searching technologies, we often could only get news entries in which
the term “phd students” appears. Those entries which mention the names of
students but do not use the term “phd students” directly will be missed out.
Such news entries however are often the ones that the user is interested in. In the
context of the semantic web, where the meaning of web content is made explicit,
the meaning of the keyword (which is a general concept in the example of phd
students) can be figured out. Furthermore, the underlying semantic relations of
metadata can be exploited to support the retrieval of related information.

A number of tools have been recently developed [4,3,6,1,5], which enhance
the performance of traditional search technologies. While these tools do provide
comprehensive support for semantic search, they are however not suitable for
ordinary end users who are not necessarily familiar with domain specific semantic
data, ontologies, or SQL-like query languages. Some tools [4,1] suffer from the
problem of “knowledge overhead”, which is requiring end users to be equipped
with extensive knowledge on the back-end ontologies, data repositories or the
specified sophisticated query language before they use them. Some lack support
for complex queries, e.g., semantic-based keyword search engines [3,6]. Others
[5] heavily rely on the natural language processing techniques that they use.

The semantic search engine we present here, SemSearch, pays special atten-
tion to the issue of end user support. It provides several means to address the
problems suffered by state-of-art tools. A prototype of the search engine has

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 238–245, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

SemSearch: A Search Engine for the Semantic Web 239

been implemented and applied in the semantic web portal of our lab1. An initial
evaluation shows promising results.

The rest of the paper is organized as follows. We begin in Section 2 by present-
ing an overview of SemSearch. We then explain the Google-like query interface in
Section 3. Thereafter, we describe the major steps of the semantic search process
in sections 4 and 5. Finally, we conclude with a discussion of our contributions
and future work in Section 6.

2 An Overview of SemSearch

One major goal in this work is to hide the complexity of semantic search from
end users and to make it easy to use and effective for naive users. To achieve
this goal, we identified the following key requirements:

– Low barrier to access for ordinary end users. Our semantic search
engine should overcome the problem of knowledge overhead and ensure that
ordinary end users are able to use it without having to know about the
vocabulary or structure of the ontology or having to master a special query
language.

– Dealing with complex queries. In contrast with existing semantic-based
keyword search engines which only answer simple queries, our semantic
search engine should allow end users to ask relatively complex queries and
provide comprehensive means to handle them.

– Precise and self-explanatory results. Our semantic search engine should
be able to produce precise results that on the one hand satisfy user queries,
and on the other hand are self-explanatory. Thus, ordinary end users can
understand the results (e.g. what they are and why they are there) without
having to consult the back-end semantic data repositories or their underlying
ontologies.

– Quick response. Our semantic search engine should provide quick response
to user queries, thus encouraging ordinary end users to harvest the benefit
of the semantic web technology. This requires that we make the mechanism
of semantic search as simple as possible.

To meet these requirements, we chose the keyword-based searching route
rather than the natural language question answering route, and deliberately
avoided linguistic processing which is a relatively expensive process in terms of
search. We overcome the limitation of current keyword-based semantic search
engines by supporting a Google-like query interface which supports complex
queries in terms of multiple keywords. Figure 1 shows a layered architecture of
our semantic search engine. It separates end users from the back-end heteroge-
neous semantic data repositories by several layers.

– The Google-like User Interface Layer allows end users to specify queries
in terms of keywords. It extends traditional keyword search languages by

1 http://semanticweb.kmi.open.ac.uk:8080/pages/semantic searhing.jsp/

240 Y. Lei, V. Uren, and E. Motta

Fig. 1. An overview of the SemSearch architecture

allowing the explicit specification of i) the queried subject and ii) the com-
bination of multiple keywords.

– The Text Search Layer interprets user queries by finding out the explicit
semantic meanings of the user keywords. Central to this layer are two com-
ponents: i) a semantic entity index engine, which indexes documents and
their associated semantic entities including classes, properties, and individ-
uals; and ii) a semantic entity search engine, which supports the searching
of semantic entity matches for the user keywords.

– The Semantic Query Layer produces search results for user queries by
translating user queries into formal queries. This layer comprises three com-
ponents, including i) a formal query construction engine, which translates
user queries into formal queries, ii) a query engine, which queries the specified
meta-data repository using the generated formal queries, and iii) a ranking
engine, which ranks the search results according to the degree to which they
satisfy the user query.

– The Formal Query Language Layer provides a specific formal query
language that can be used to retrieve semantic relations from the underlying
semantic data layer.

– The Semantic Data Layer comprises semantic metadata that are gathered
from heterogeneous data sources and are represented in different ontologies.

The search process of SemSearch comprises four major steps:

– Step1. Making sense of the user query, which is to find out the semantic
meanings of the keywords specified in a user query.

– Step2. Translating the user query into formal queries.
– Step3. Querying the back-end semantic data repositories using the gener-

ated formal queries.
– Step4. Ranking the querying results.

Step1 is carried out within the Text Search Layer. The rest of the steps are
associated with the Semantic Query Layer.

SemSearch: A Search Engine for the Semantic Web 241

3 The Google-Like Query Interface

The SemSearch query interface extends traditional keyword search languages
by allowing the explicit specification of i) the queried subject which indicates
the type of the expected search results, and ii) the combination of keywords.
The query interface uses the operator “:” to capture the query subject and the
operators “and” and “or” to specify the combination of keywords (apart from
the subject keyword). A user query in SemSearch looks like “subject:keyword1
and/or keyword2 and/or keyword3 ...”.

With this query syntax, the example of “news about phd students” can be
easily specified as news:phd students, where the term news is the query subject
and the term phd students is a required keyword. More complex queries in which
multiple keywords (except the subject keyword) are involved also can be easily
specified. For example, when querying for projects in which both Enrico and
John participate, the query can be specified as project:Enrico and John.

The SemSearch query interface provides a flexible and powerful approach to
user query specification. First, it does not require end users to be familiar with
any particular ontology, semantic data, or any special query language. Second, it
does not confine users to any pre-defined query subjects and values. Further, in
contrast with current semantic-based keyword search engines which only accept
one keyword as input, this query interface supports the specification of relatively
complex queries that specify both multiple keywords and the expected type of
results. Finally, the query process is simpler than question answering tools as
the search engine does not need to spend time calculating which of the keywords
are in a user’s query.

4 Interpreting User Queries

As mentioned earlier in Section 2, interpreting user queries is the first step of the
search process in SemSearch. The task of this step is to find out the semantic
meanings of the keywords specified in user queries so that the search engine
knows what the user is looking for and how to satisfy the user query.

From the semantic point of view, one keyword may match i) general concepts
(e.g., the keyword “phd students” which matches the concept phd-student), ii)
semantic relations between concepts, (e.g. the keyword “author” matches the
relation has-author), or iii) instance entities (e.g., the keyword “Enrico” which
matches the instance Enrico-Motta, the keyword “chief scientist” which matches
the values of the instance Marc-Eisenstadt of the property has-job-title). The
ideal goal of this task is to find out the exact semantic meaning of each keyword.
This is however not easy to achieve, as there may be more than one semantic
entity which matches a keyword. Thus, we relaxed the goal to that of finding
out all the semantic entity matches for each keyword.

For the purpose of finding out semantic entity matches, we used the labels
of semantic entities as the main search source. The rational for this choice is
that, from the user point of view, labels often catch the meaning of semantic

242 Y. Lei, V. Uren, and E. Motta

entities in an understandable way. In the case of instances, we also used their
short literal values as the search source. So that when the user is searching for
“chief scientist”, the instance that has such a string as a value of its properties
can be reached.

In order to produce fast response, the search engine first indexes all the se-
mantic entities contained in the back-end semantic data repositories, including
classes, properties, and instances. It then searches the indexed repository to find
out matches for keywords. Thus, two components are developed in the search
engine, namely the semantic entity index engine and the semantic entity search
engine. As it narrows the search sources to labels and short literals of semantic
entities, the search engine is able to find out semantic entity matches for each
keyword. These matches are the possible semantic meanings of keywords.

Please note that for the sake of getting quick response, we only use text
search to find string matches for user keywords at the moment. We avoid using
techniques like WordNet [2] based comparison to find matches. This might cost
us some good matches, e.g., losing the match table if the user is searching for
desk. But one to one comparison is time consuming and expensive in real-time
scenarios. This is indeed a trade-off as well as a research challenge that we need
to address in future.

5 Translating User Queries into Formal Queries

In this step, the search engine takes as input the semantic matches of user
search terms and outputs appropriate formal queries. To better understand how
to construct formal queries from user queries, we classify user queries into two
types: i) simple queries which only comprise two keywords, and ii) complex
queries where more than two keywords are involved.
Simple user queries. As the types of semantic entity match combinations are
fixed in simple user queries, we developed a set of templates to describe how to
retrieve relations between two semantic entities. Among all the combinations,
there are three most possible types between two keywords. This is because we
can make the assumption that the subject keyword matches a class concept.
Figure 2 shows the templates for these combinations2.

Now let us investigate the first combination where both keywords in a query
match classes. The search results are expected to be the instances of the class Cs

(i.e. the match of the subject keyword) which have explicitly specified relations
with the instances of the class Ck (i.e. the match of the other keyword). For ex-
ample, when querying for news about “phd students”, the expected results are
the news entries in which phd students are involved. Further, the search results
are also expected to be self-explanatory, e.g., to motivate why certain news en-
tries appear and others do not. Thus, along with the retrieving of news instances,
the related phd students and the relations between students and news entries

2 We used the Sesame SeRQL language (http://www.openrdf.org/) as the formal
query language in the SemSearch prototype.

SemSearch: A Search Engine for the Semantic Web 243

Fig. 2. The SeRQL query templates for two semantic entities

also need to be retrieved. Therefore, the search results of the query news:phd
students are expected to be triples of (news, relation, phd-sudent).

Please note that there are situations where no class matches could be found
for the subject keyword. The focus of user query in such situations varies accord-
ing to the type of the semantic matches of keywords. We have also developed
templates for such queries. Due to the lack of space, please refer to [8] for details.

In the context of simple queries, the task of query formulation is to initiate the
template that corresponds to the combinations of the semantic matches of the
user keywords. As each keyword may match more than one semantic entity, often
more than one query needs to be constructed. More specifically, if the subject
keyword matches ns semantic entities and the other keyword has nk matches,
there are ns*nk queries that need to be constructed. This problem becomes more
acute when there are many keywords involved in the user query. We will discuss
how to reduce the number of formal queries in the following.

Complex user queries. For complex queries (which involve more than two
keywords), the search engine needs to combine the semantic matches of each
keyword together and construct queries for each of the combinations. A key
operational problem is that in real world situations there can be a large number
of matches and hence much more combinations.

For keywords k1, k2, ..., kn, suppose that the number of the semantic matches
of the keyword ki is ni. There will be n1*n2*...*nn (which can be represented
as

∏n
i=1 ni) different combinations when considering all the keywords as re-

quired ones. Each combination of the matches corresponds to a RDF-based for-
mal query. Apart from considering all the keywords as required ones, the search
engine also needs to investigate the combinations where one or more keywords
are left out, in order to produce complete result sets to end users. The total num-
ber can become huge when i) there are many keywords involved and ii) some
keywords are very generic and thus have many matches.

Rules are therefore needed to reduce the number of matches for each key-
word. We used several heuristic rules, including i) the subject keyword always

244 Y. Lei, V. Uren, and E. Motta

matches class entities when there are more than two keywords involved in the
user query, ii) choosing the closest entity matches to the keyword as possible,
and iii) choosing the most specific class match among the class matches. These
rules can significantly reduce the number of entity matches.

For each combination, a formal query is constructed. In SeRQL, a formal query
often comprises three building blocks: the head block, which describes what needs
to be retrieved, the body block, which describes how, and the condition block,
which expresses conditions. In addition, in order to cover relations of two entities
in both directions, the query also comprises a union block. Figure 3 shows the
construction algorithm. As shown in the figure, the construction of all these
blocks depends on the type (i.e. class, property, or instance) of the semantic
entity match of each keyword contained in a combination of keywords’ matches.
Please refer to [8] for details.

Fig. 3. The algorithm of formal query construction for complex user queries

6 Conclusions and Future Work

The core observation that underlies this paper is that, in the case of semantic
search that promises to produce precise answers to user queries, it is important
to ensure that it is easy to use and effective for ordinary end users who are
not necessarily familiar with domain specific semantic data, ontologies, or SQL-
like query languages. Our semantic search engine, SemSearch, provides several
means to address this issue. A prototype has been implemented based on the
Sesame RDF query engine and Lucene text search engine 3. The prototype has
been applied to the semantic web portal of our lab (KMi) and the 3rd European
Semantic Web Conference (ESWC06) 4. Figure 4 shows a screenshot of the search
results of the query example news:phd students in the KMi application.

Future work will focus on i) developing comprehensive means to perform se-
mantic matching between keywords and semantic entities and ii) extending the
3 http://lucene.apache.org/
4 http://search.eswc06.org/

SemSearch: A Search Engine for the Semantic Web 245

Fig. 4. A screenshot of the search results of the query example news:phd students

search engine to a tool that could guide end users to build up complex queries
step by step by using the component-based approach presented in [7].

Acknowledgements

We wish to thank Marta Sabou for her valuable comments on this paper. This
work was funded by the Advanced Knowledge Technologies Interdisciplinary
Research Collaboration (IRC) GR/N15764/01 and the X-Media project (www.x-
media-project.org) under EC grant number IST-FP6-026978.

References

1. O. Corby, R. Dieng-Kuntz, and C. Faron-Zucker. Querying the Semantic web with
Corese Search Engine. In Proceedings of 15th ECAI/PAIS, Valencia (ES), 2004.

2. C. Fellbaum. WORDNET: An Electronic Lexical Database. MIT Press, 1998.
3. R. Guha, R. McCool, and E. Miller. Semantic Search. In Proceedings of the 12th

international conference on World Wide Web, pages 700–709, 2003.
4. J. Heflin and J. Hendler. Searching the Web with SHOE. In Proceedings of the

AAAI Workshop on AI for Web Search, pages 35 – 40. AAAI Press, 2000.
5. V. Lopez, M. Pasin, and E. Motta. AquaLog: An Ontology-portable Question An-

swering System for the Semantic Web. In Proceedings of European Semantic Web
Conference (ESWC 2005), 2005.

6. C. Rocha, D. Schwabe, and M. de Aragao. A Hybrid Approach for Searching in the
Semantic Web. In Proceedings of the 13th International World Wide Web Confer-
ence, 2004.

7. V. Uren and E. Motta. Semantic search components: a blueprint for effective query
language interfaces. In The International Conference on Knowledge Engineering
and Knowledge Management (EKAW 2006), October 2006.

8. Y.Lei, V. Uren, and E.Motta. SemSearch: A Search Engine for the Semantic
Web. Technical Report kmi-06-11, Knowledge Media Institute, the Open University,
http://kmi.open.ac.uk/publications/pdf/semsearch paper.pdf, 2006.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 246 – 255, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Rich Personal Semantic Web Clients: Scenario and
a Prototype

G. Tummarello, C. Morbidoni, M. Nucci, F. Piazza, and P. Puliti

Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni
Università Politecnica delle Marche,

Via Brecce Bianche – 60131 Ancona, Italy
{g.tummarello, c.morbidoni, upf,

p.puliti}@deit.univpm.it, mik.nucci@gmail.com

Abstract. In this paper we introduce a novel kind scenario where users use
Rich Personal Semantic Web Clients to cooperatively create knowledge within
“Semantic Web Communities”. Such communities are formed around P2P
channels which work by exchanging patches of RDF information among
clients. Once sufficient information has been collected locally at each client,
rich and fast browsing of such "Semantic Web" becomes possible without
generating external traffic or computational load. A prototype of such client,
DBin, is presented and issues such as user interfaces and social aggregation
model are discussed. We will focus in particular on the "Brainlet" paradigm,
which enables community leaders to create and deliver domain specific user
interfaces. The Brainlet creation process does not require programming skills,
so that Semantic Web communities can be started up by domain experts rather
than programmers.

1 Introduction

In this paper we introduce a novel kind scenario where users use Rich Personal
Semantic Web Clients to cooperatively create knowledge within “Semantic Web
Communities”. The idea is to enable users to create and experience the Semantic Web
(SW) in their local repositories and have these exchange annotations using semantic
P2P "topic" channels which exchange patches of RDF information. Such an
application model can in a sense be though of as a file-sharing for metadata with on
top "community configurable" user interfaces (Brainlets, as we will discuss later).
Similar to a file-sharing, the client connects directly to other peers; instead of files,
however, it downloads and shares RDF metadata about resources which the group has
defined “of interest”. This creates a flow of RDF information which ultimately allows
the participants to build rich personal SW databases therefore supporting high speed
local browsing, searching, personalized filtering and processing of information. In
implementing this idea in our prototype DBin [1], a number of issues came out,
relating independent yet interconnected aspects. At a user interface level, once data
has been collected, the real issue becomes how to enable the user to interact with it in
a natural way, e.g. in a way much more attractive and meaningful than a list of

 Rich Personal Semantic Web Clients: Scenario and a Prototype 247

"properties" and "resources". While this "visualization problem" seems a separately
treatable problem, we claim that in this scenario it is not. We propose, to leverage the
existence of "groups" by providing a way for a "group leader" to suggest "interaction
profiles" with the data that is exchanged within that channel. Upon joining a group,
the user is then suggested to download what we call a Brainlet, that is a package of
configuration and a priori knowledge which provide editing and browsing facilities to
best interact with the information shared in the group. The main motivation behind
Brainlets is enabling domain experts, rather than programmers, to create rich SW
environments and communities.

A Novel Scenario
The scenario considered in this paper is new under many aspects. Many of the P2P
approaches based on SW technologies proposed so far (e.g. [2], [3], [4], [5]), use
metadata and ontologies to build a semantically structured definition of resources, the
main purpose being optimizing the retrieval of actual files. An example of user query
is “Retrieve all publications about SW by author X”, which needs a certain a priori
knowledge of the domain to be formulated.

Differently, a typical use case of DBin is that of a user, perhaps new to SW, who is
interested in learning (more) about the ongoing research on SW. By simply joining a
'SW topic group', the user can receive new and unexpected information (e.g. papers,
the conferences or author's names). In this case users are not exclusively interested in
“hits” locating remote resources, but rather into learning as much as possible about
the domain so that more uses of this information become possible (e.g. Personalized
browsing, joining with local information etc).

2 The RDFGrowth P2P Engine: Basic Concepts

In this section we give an high level overview of RDFGrowth, the P2P algorithm
which is the main metadata exchanging layer in DBin. The following discussion is
intended to highlight the basic concepts used in RDFGrowth (and relevant to
understand the overall philosophy of DBin), rather than explaining in detail how it
works. For a detailed discussion see [6].

Related Works and RDFGrowth Requirements
Previous P2P Semantic Web applications, such as [2] and [5], have explored
interactions among groups of trusted and committed peers. In such systems peers rely
on each other to forward query requests and collecting and returning results. In
contrast, we consider the real world scenario of peers where cooperation is relatively
frail. By this we mean that peers are certainly expected to provide some external
service, but commitment should be minimal and in a “best effort” fashion. The
RDFGrowth algorithm has been designed to address this requirement of scalability,
minimum commitment among peers and minimum external burden: peers are not
required to perform any complex or time consuming operation, as such as query
routing, replication, collecting and merging.

248 G. Tummarello et al.

RDFN: The Only Query Allowed
As a complex graph query might simply hog any machine, the only RDF query
allowed during metadata exchanges, is a simple and basic one, which not only is fast
to execute but also can be cached very effectively, we call it RDFN. Intuitively
requesting the RDFN of a URI a from a peer p, means asking p to give out all the
information directly associated to a that p owns. As shown in Figure 1, this
surrounding information of a resource can be break down into small pieces, named
MSGs, which, in absence of Bnodes, are simply all the statements having the resource
as subject or object.

MSGs
An MSG is a subgraph with a well defined structure and is actually the minimum
amount of information that can be exchanged in the system. As shown in Figure 1,
MSGs can be intuitively defined as sub-graph which partition the whole graph and
which intersect only on grounded nodes (URIs or literals). See [6] for a complete
discussion on the RDFN and MSG definitions and theory. Its theoretical properties
allows to exchange information in a fine granularity, incremental fashion, along with
its context. We will see later, in fact, how authorship information can be efficiently
attached at MSG level, allowing personalized trust policies and information
revocation.

GUED (Group URIs Exposing Definition)
Users connects to a RDFGrowth network by selecting a topic group and joining it.
The client then receive an operator (GUED), which, once applied on a RDF graph,
retrieves all the resources which are of interest within the group. A GUED can be
implemented as a set of queries. As an example, for a Michael Jackson group, a
possible GUED might be "select all the URIs identifying his songs, albums, concerts
and interviews". Once received the GUED operator, the peer executes it once on his
DB and the resulting set of URIs are "published" in the p2p network, as an

Fig. 1. The RDFN of the resource painted in black is delimited by the dotted circle. White
nodes represent blank nodes. The RDFN is composed by several slices, each one is an MSG,
basically a closure on blank nodes starting from a given triple, and represents the minimum
unit of knowledge that is exchanged.

 Rich Personal Semantic Web Clients: Scenario and a Prototype 249

advertisement that they are in fact of interest and will be willing to answer requests
from other peers about the "RDF Neighbours".

RDFN Hashes and Exchange Strategy
The algorithm cycles over the set of 'on topic' URIs (selected by the GUED) and for
each of them searches for peers who have different surrounding informations (RDFN)
than the local ones. This process is performed by looking into a Distributed Hash
Table in which hashes of RDFNs (say simple MD5) are exposed by each peer. Once
an hash is detected which is different from the one exposed by the local peer, an
exchange is initiated. During the exchange peers synchronize their knowledge about
the resource. In addition to simple hashes more advanced heuristics can be applied to
identify new information present in the network and choose the peer from which it is
more profitable to request information.

Discovering New Resources of Interest
RDFGrowth allows peers not only to learn more about the resources they already
know (i.e. they do have in their local graph), but also to discover new resources of
interest within a group. This is addressed by having each peer publishing an
additional node (GUED node), which RDFN is exchanged by default among group
participants. The RDFN of the GUED node, at each peer, is composed by all the
resources which are the result of the GUED operator applied on the local graph. This
is detailed and better explained in [6].

Considerations
A key point in this approach to metadata sharing is that the algorithm grows a local
triple store at every peer, this not only enables fast browsing and complex query
execution (performed using local computational power on the local DB, no external
commitment), but also makes it possible for metadata to naturally cross the borders
across communities. As an example, suppose that in a “movie community” someone
posts a picture of an actor and in a “rap music” community the same actor has been
mentioned as performer. Then a user participating at same time to both communities
would, by the logic of the RDFGrowth algorithm, make so that the picture is also
“posted” in the movie group.

A “growth only” scenario, as the one addressed here, matches the monotonic
nature of the RDF semantics. To obtain more information can’t “hurt” since, by
definition, previously inferred statements will still hold when new data becomes
available. It is of course possible, in the real world applications, to rely on “context”
information to apply non monotonic rules on the local database, without
consequences on the shared knowledge. Local filtering policies based on digital
signatures (section 4) are an example of such context information which support
several fundamental higher level non monotonic behaviours of the overall system.

3 Dealing with the Actual Data

Relaying on RDFGrowth, DBin users only exchanges pieces of RDF graphs
describing the resources of interest., which might be real world concepts (such as a
person) or digital content (e.g. mp3 files, pictures, documents) actually retrievable on

250 G. Tummarello et al.

the Internet. In many cases the user would like to be able to reach the actual data. In
DBin this facilities are provided by the URIBridge module ,which relay on a
publishing service allowing, at metadata creation time, to upload the files one is
annotating, and, at metadata fruition time, to download the files that the metadata
describe. During the upload phase a resolvable URL is given to the digital data and is
used to create metadata about the data itself. Then this URI will be used by other
peers, after having imported the annotations, to obtain the data itself (e.g. over
standard HTTP protocol).

4 Identities and Authorship of Annotations

Provenance of information in our system, as it is based on replication of metadata
among peers, does not means 'who gave me the information', but 'who was to first
insert a peace of metadata into the system', that is the author of the annotation. This
said, we need a methodology for 'marking' every peace of metadata added to the
system with verifiable statements about the authorship.

The MSG definition and properties highlighted in the previous section, when
combined with a canonicalized serialization as suggested in [7], enable signing MSGs
themselves in a efficient way. This methodology, described in detail in [8], also
assures that the context (in this case the authorship) will remain within the metadata
when they will be exchanged over the network, as well as enables multiple signature
to be attached to the same MSG, also at different times. Each user in DBin is provided
with a user identifier (a URI) and a couple of public and private keys (the public one
being made available to the other users by means of the URIBridge described in
section 3). Every time a user adds an annotation to the system, the annotation itself
will contain the user's identifier as well as the URL of the public key, and will be
signed using the user's private key. In this way clients are able to retrieve the public
key and to identify the author of an annotation, without caring about the which peer
actually gave them the metadata itself.

Once the authorship of a MSG can be verified, a variety of filtering rules can be
applied at will. These, in our system, are always non-destructive; information that
doesn't match certain trust criteria can be hidden away but does not get deleted. Is it
straightforward, for example, to implement a local 'black list' policy, allowing users to
add authors to that list and to filter the local knowledge in order to hide all the
information signed by the same user's identity.

5 User Interface: “Brainlets”

There has been a lot of work recently on Semantic Web visualization and a number of
user interface have been proposed [9], [10], [11], [12], [13]. While pro and cons can
be argued for each specific approach, it is clear that user interface issues are complex
ones with no clear single solution. In designing the architecture of a RPSWC, rather
than a single answer to this issue, we thought about a general set of “application
oriented” generic GUI tools by which 'power users' can build applications specifically
targeted to the domain of interest. We call these domain specific applications

 Rich Personal Semantic Web Clients: Scenario and a Prototype 251

“Brainlets”. They are implemented as plug-ins and can be though of as “configuration
packages” preparing the client to operate on a specific domain (e.g. Wine lovers,
Italian Opera fans etc..). Given that Brainlets include customized user interface, the
user might perceive Brainlets as full “domain applications” which are run by the
RPSWC.

The main components included in a Brainlet are:

� The ontologies to be used for annotations in the domain (e.g. The beer
ontology);

� A general GUI layout: which components to visualize and how they interact;
� Templates for domain specific “annotations”, e.g. a “Movie Brainlet” might

have a “review” template that users fill;
� Templates for readily available, “precooked” domain queries, which are

structurally complex domain queries with a few free parameters, e.g. “give
me the name of the cinema in city X where the best movie of genre Y is
being shown tonight”;

� A suggested trust model and information filtering rules for the domain. e.g.
public keys of well known “founding members” or authorities, preset
“browsing levels”;

� A set of script to guide the user in choosing URIs for domain concepts; g) A
basic RDF knowledge package, conforming to the information shared in a
specific group.

Most importantly, Brainlets can be created as much as possible with no
programming skills. In DBin implementation, basic Brainlets can be configured by
editing XML files and more advanced ones can however be made including custom
Eclipse plug-ins as needed. Most of the previously mentioned features have been
implemented as shown in Figure 2, a screen shot of “Beer2Beer”, an example of
XML based Brainlet.

5.1 Configuring a Brainlet

To create a Brainlet, one copies from a given empty template which configures an
eclipse plug-in to append a new "Brainlet" to the list of those known by DBin. This is
done by means of an Eclipse RCP [14] extension point, which enables to install a
plug-in with specified APIs and properties. Then, each Brainlet has its own XML
configuration file, which, in addition to purely layout configuration (e.g. the
positioning of the GUI blocks) allow to define the Brainlet's core properties and
facilities. The basic properties are the Brainlet name, version and URI, which usually
indicates the web site from which to download the package. An overview of the other
possible configurations follows.

Ontologies and Default RDF Knowledge
Probably the most important step in creating a new Brainlet is the choice of
appropriate ontologies to represent the domain of interest. Once they have been
identified, the corresponding OWL files are usually included and shipped in the
Brainlet itself although they could be placed on the Web. Each of them will be

252 G. Tummarello et al.

declared in the XML file, specifying the location of the OWL file, a unique name for
the ontology and it's base namespace. In the same way basic knowledge of the domain
can be included.

Navigation of Resources
The way concepts and instances are presented and browsed is crucial to the usability
of the interface and the effectiveness in finding relevant information. Graph based
visualizers are notably problematic when dealing with a relevant number of resources.
For this reason, the solution that the main DBin Navigator provides is based on
flexible and dynamic tree structures. Such approach can be seen to scale very well
with respect to the number of resources, e.g. in Brainlets such as the SW Research
one. The peculiarity of the approach is that every Brainlet creator can decide which is
the 'relation' between each tree item and its children by the use of semantic web
queries (in DBin these are expressed using the SeRQL syntax [15]). There can be
multiple topic branches configured in the Navigator, specifying different kinds of
relation between parent and child items. This enables the user to explore the resources
of the domain under different points of view. The right side of Figure 2 shows the
Navigator view configured to show two tree branches, one (beers by type) gives an
ontology driven hierarchical view on the domain, the other (beers by brewery) is a
custom classification of the objects of domain, taking in consideration, in this case,
the brewery which produces a beer.

Selection Flows
At user interface level, a Brainlet is composed by a set of 'view parts', as defined in
the Eclipse platform terminology, Figure 2. Usually, each part takes a resource as a
main "focus" and shows a particular aspect of the knowledge 'related' to the resource
(e.g. it's properties, images associated, etc...). Selection flows among these parts are
also scripted at this point; it is possible to establish the precise cause effect chain by
which selecting an icon on a view will cause other views to change. This is done

Fig. 2. (Left) a screen shot of the Beer2Beer Brainlet running. The principal “views” are: an
ontology (and instances) browsing Navigator, the Knowledge Agents view, showing statistics
about the currently running knowledge agents, and a set of “Annotation” views. Among these
a comment view, a picture gallery and an “annotation listing” view. (Right).

 Rich Personal Semantic Web Clients: Scenario and a Prototype 253

specifying, for each view part, which other one will be notified when a resource has
been selected.

“Precooked Queries”
Within a specific domain there are often some queries that are frequently used to
fulfill relevant use cases. Continuing our "Beer" example, such a query could be “find
beers [stronger|lighter] than X degrees”. The "Precooked queries" facility gives the
Brainlet creators the ability to provide such "fill in the blanks" queries to end users.

URI Wizards
It is very important to avoid that users choose different URIs to indicate the very
concept. This could be the case when inserting new concepts in an offline session or
when the user doesnt properly search in the existing DB for the existence of a
concept. For this purpose we introduce the concept of URI Wizard. URI Wizards
define procedures which guide the user in assigning an identifier to a newly created
instance. Different procedures can be associated to different type of resources present
in the domain. For example an intuitive procedure to choose an identifier for a
particular beer (e.g Peroni), might be that of visiting an authoritative web site (e.g.
RateBeer.com), searching it for 'Peroni', and using the URL of the resulting web page
to identify the concept. This is a very simple methodology for choosing URI but we
believe it to be very powerful and somehow sound, as it leverages the work of
existing and established web communities.

Custom Domain Dependent Annotation Templates
Brainlets use the ontologies to assist the users in creating simple annotations (e.g
suggesting which properties can be associated to a resource based on its type). A
Brainlet creator can however also chose to create "complex annotation types" using a
specially defined OWL ontology. An example of such complex annotations is the
"Beer Comparison" annotations, which directly compare beers stating which one is
better or worse and why. Upon selecting "Add advanced annotation" in DBin the
system determines which advanced annotations can be applied to the specified
resource and provides a wizard.

5.2 Ontology Issue and Social Model

Brainlets are therefore preloaded by power users with domain specific user interaction
facilities, as well as with domain ontologies suggested by the Brainlet creator. This
seems to induce an interesting social model, mostly based on consensus upon
Brainlets choice, which can help some of the well known issues in distributed
metadata environments, a central one being the ontology mismatch problem.
Brainlets, by providing an aggregation medium for ontologies, users, data
representation structures, are therefore good catalyst of the overall semantic
interoperability process. As users gather around popular Brainlets for their topic of
choice, the respective suggested ontologies and data representation practice will form
an increasingly important reality. If someone decided to create a new Brainlet or
Semantic Web application in general which could target the same user group as the
said popular Brainlet, there would be an evident incentive in using compatible data
structures and ontologies.

254 G. Tummarello et al.

6 Conclusions

In this short paper we introduced a novel SW scenario where information is created,
exchanged and browsed by Rich Personal Semantic Web Clients. In doing so we
illustrated DBin, our prototype meant to demonstrate the usefulness and scalability of
such model.

While such model does not allow the user to immediately perform queries or
browsing, we believe that this is a familiar paradigm for Internet users as it is not so
much different from popular P2P file sharing applications. In the same way as many
users have gotten used to wait to obtain data by running a classic P2P file sharing,
DBin users will “peacefully” discover new information about topics in which they
express interest in. Content and annotations produced by the user, on the other hand,
can reach precisely those who had expressed interest in them and naturally cross the
boundary of the P2P group they were posted originally to. Given RDFGrowth design,
in fact, relevant annotations are intrinsically and automatically bridged by the peers
that visit multiple groups or return at later times. We believe that the most important
aspect in our system is the holistic integration of different components under a single
"scenario philosophy", in other words, the ability for such application to enable real
Internet users, for the first time, to "take a look" from the top of the SW tower. To
enable this, we propose pragmatic solutions suggested by the scenario itself, which of
course can hardly be thought as satisfying in to all possible user needs, however we
believe that they might be "good enough" for a large number of use cases and user
interest groups.

The prototype we discussed here, DBin, is programmed in Java and based on the
Eclipse Rich Client platform. As such, DBin is naturally multi-platform, features an
OS native look and feel and is highly extensible trough the well known Eclipse plug-
ins and extension points technology. Both the framework and modules presented here
are open source under the GPL license.

References

[1] "The DBin project" http://www.dbin.org
[2] Wolfgang Nejdl, Boris Wolf , "EDUTELLA: A P2P Networking Infrastructure Based on

RDF" 2002 WWW2002, Honolulu
[3] Min Cai, Martin Frank , "RDFPeers: A Scalable Distributed RDF Repository based on A

Structured Peer-to-Peer Network" 2004 13th International World Wide Web Conference
WWW2004, New York

[4] Wolfgang Nejdl, Wolf Siberski, Martin Wolpers, Alexander L”ser, Ingo Bruckhorst ,
"SuperPeer Based Routing and Clustering Strategies for RDF Based Peer-To-Peer
Networks", 12th International World Wide Web Conference, 2003, Budapest

[5] Paul Alexandru Chirita, Stratos Idreos, Manolis Koubarakis, and Wolfgang Nejdl ,
"Publish/Subscribe for RDF-based P2P Networks" ESWS, 2004, Heraklian, Greece

[6] Giovanni Tummarello, Christian Morbidoni, Joackin Petersson, Paolo Puliti, Francesco
Piazza, "RDFGrowth, a P2P annotation exchange algorithm for scalable Semantic Web
applications", First P2PKM Workshop, 2004, Boston

 Rich Personal Semantic Web Clients: Scenario and a Prototype 255

[7] Jeremy Carroll, "Signing RDF Graphs" 2nd International Semantic Web Conference,
2003, Sanibel Island, Florida, USA

[8] G. Tummarello, C. Morbidoni, P. Puliti, F. Piazza, "Signing individual fragments of an
RDF graph", 14th International World Wide Web Conference, 2005, Chiba, Japan

[9] R. Albertoni, A. Bertone, M. De Martino, "Semantic Web and Information
Visualization", Proceedings of the First Italian Workshop on Semantic Web Applications
and Perspectives, 2004, Ancona , Italy

[10] "RDF Gravity - RDF Graph Visualization Tool" Technical Report: HPL-2004-57
[11] E Pietriga, "Isaviz: a visual environment for browsing and authoring rdf models ", 11th

International World Wide Web Conference, 2002, Honolulu, Hawaii, USA
[12] "RDFX" Technical Report: HPL-2004-57
[13] Welkin, a graph-based RDF visualizer, 2004, http://simile.mit.edu/welkin/
[14] "Eclipse Rich Client Platform", http://www.eclipse.org/rcp/
[15] Jeen Broekstra, Arjohn Kampman, "SeRQL: An RDF Query and Transformation

Language" 3rd International Semantic Web Conference, 2004, Hiroshima, Japan

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 256 – 271, 2006.
© Springer-Verlag Berlin Heidelberg 2006

I
2
DEE: An Integrated and Interactive Data Exploration

Environment Used for Ontology Design

Fabien Jalabert, Sylvie Ranwez, Vincent Derozier, and Michel Crampes

LGI2P Research Center, EMA/Site EERIE, Parc scientifique G. Besse,
F – 30 035 Nîmes cedex 1, France

firstname.lastname@ema.fr

Abstract. Many communities need to organize and structure data to improve
their utilization and sharing. Much research has been focused on this problem.
Many solutions are based on a Terminological and Ontological Resource (TOR)
which represents the domain knowledge for a given application. However
TORs are often designed without taking into account heterogeneous data from
specific resources. For example, in the biomedical domain, these sources may
be medical reports, bibliographical resources or biological data extracted from
GOA, Gene Ontology or KEGG. This paper presents an integrated visual envi-
ronment for knowledge engineering. It integrates heterogeneous data from do-
main databases. Relevant concepts and relations are thus extracted from data re-
sources, using several analysis and treatment processes. The resulting ontology
embryo is visualized through a user friendly adaptive interface displaying a
knowledge map. The experiments and evaluations dealt with in this paper con-
cern biological data.

1 Introduction

Exploring, using and sharing the data of a given community require precise organiza-
tion. Such a dataset can represent the knowledge of the domain under consideration:
human and social sciences, biology, economics or a virtual enterprise... However,
such data may be very extensive and heterogeneous. Terminological and Ontological
Resources (TORs) are common solutions for organizing and structuring information.
TORs are intended to describe and formalize domain knowledge using concepts and
relationships.

Major efforts on the part of the Knowledge Engineering community have provided
tools and methods for TOR design. Information extraction research tries to elect can-
didate concepts or extract semantic relations from textual corpora. Experts in the
domain then refine and organize concepts and relations to produce a reliable ontology.
Obviously, corpora setting choices are crucial and must be as appropriate as possible
to the application objective of the project. Choices are often limited to textual data.
However, the knowledge of a whole domain is often broader than the content of bib-
liographical resources. Heterogeneity is probably the main curb that has discouraged
efforts to integrate multiple domain databases. Life science analysis tools often use
ontologies for information retrieval, expression data analysis or epidemiology, for

 I
2
DEE: An Integrated and Interactive Data Exploration Environment 257

example. Oddly, ontology engineering is never based on domain databases that con-
tain useful information: biological items (genes, chemicals, etc.) are linked with con-
cepts (annotations, etc.) or between each others (implied by biological reality).

With this aim, we designed and implemented an integrated and interactive data ex-
ploration environment called I

2
DEE. It integrates heterogeneous data and produces a

map that is adjusted to application and context. A domain expert then browses this
map to carry out his task. Multiple applications can be based on the I2DEE knowledge
map. We implemented two experiments concerning gene expression analysis and
knowledge engineering. This paper describes the latter, in the life science domain,
which explains our subsequent choices. We designed a workflow that integrates mul-
tiple databases into a data warehouse. A small part of this warehouse is then extracted
on user demand, depending on contextual needs. During the whole process, textual
data are complemented by experimental and biological data. The user handles a
graphic user interface that displays the map.

The paper is organized as follows. The next section exposes the issues concerned
and the state of the art. It details several approaches and fixes our own. Section 0
presents our approach concerning data integration. Section 0 describes the workflow
that enables concepts and relations to be extracted from multiple databases. Section 0
presents the visual results and discusses the uses and utility of I2DEE. Limits and pros-
pects are then discussed before the Conclusion.

2 Research Problematic and State of the Art

TOR design requires the expert to have both domain expertise and a real understand-
ing of the intended use of the resulting TOR. Computer automation is mainly in-
volved in carrying out two steps: the first is term extraction and clustering in order to
elect candidate concepts. The second is the extraction of semantic relationships (“is
a”, “part of”, etc.) from corpora to organize the structure and formalize previous con-
cepts. A priori corpus composing and a posteriori evaluation, consistency checking
and deployment do not cause cognitive overload or interaction lock. These steps are
therefore not discussed in this paper and the current section presents the state of
the art of the tools and methods available to assist the expert in term selection and
organization.

2.1 Concept Extraction

The first related works concerned thesaurus design for information retrieval. The
methods mainly rely on distributional corpora analysis and measures [39].
[38] presents recent state of art concerning such methods applied to ontology learning.
The best known measures and weightings are frequency and TF.IDF (Term Fre-
quency x Inverse Document Frequency) [43].

Previous weightings enable terms to be ordered, but experts need deeper organ-
ization of those terms to select the relevant ones. Association measures and clustering
algorithms are therefore generally applied. A common hypothesis is that the recurring
association of two words is not the result of chance. Co-occurrence based methods (or

258 F. Jalabert et al.

mutual information) [23] provide a similarity measure that is helpful for term contex-
tualization and clustering. More specific methods search for contiguous sequential
patterns [28]. For two term methods, relations are called collocations [22][34],
whereas they are referred to as n-grams [44] in a predictive approach.

Such straightforward statistical approaches match corpora reality, but do not take
semantics into consideration. [36] describe the state of the art of a linguistic approach
for improving the semantics of knowledge extraction. Z.H. Harris suggests applying
distributional methods to syntactic items [32]. Several natural language processing
tools used in knowledge engineering are based on such an approach: LEXTER [20] (a
project replaced by Syntex+Upery), ZELLIG [31], NOMINO [37], ACABIT [27] and
FASTR [35].

Various works provide interactive software for visualizing lexical networks. Hy-
perLex [46] is based on using co-occurrences to disambiguate usage context. [42]
helps to find contexonyms (substitutable words in a machine translation approach).
[30] studies in-depth graph topology using another measure called proxemy.

[40],[24] make an inventory of many TOR editors and IDEs. The main features can
be grouped together in 4 main classes:

- following formalisms or methodologies;
- providing logical engines for inference or consistency checks, for example;
- providing distributed architecture to allow collaborative work;
- displaying data in a user friendly interactive interface

To conclude, ontology learning methods are based on two resources: existing on-
tologies are sometimes reused, merged, enriched or restructured, and computer aided
methods rely on information extraction from corpora. The corpus is composed con-
tinuously using domain literature. We have not found any TOR design environment
that allows integration of domain knowledge from heterogeneous resources (i.e. in-
cluding non textual resources and semantic or linguistic relations). Section 0 presents
a proposed solution for such data integration.

In this approach, visualization features are crucial. Vast quantities of heterogene-
ous data are imported, so the usual tree approach, developing graphical components
based only on “is-a” relations, may not be sufficient for user's needs.

2.2 Context

Our goal is clearly defined: assisting a domain expert (biologist) by providing a TOR
IDE with enhanced integration and interactive features. Interactions are associated to
a knowledge map. So, questions concerning the nature and visualization of data can-
not be bypassed.

The questions regarding nature include: Which data is relevant in ontology de-
sign? How to integrate such heterogeneous data? How to generalize this process?

Concerning the visualization problematic, the user is rapidly overloaded with in-
formation. So, how to filter data? How to let him/her add new resources which mini-
mum effort? Which features help him/her to manage vast quantities of information
with the lowest possible cognitive and learning load (zoom, pan, overview, optical
and semantic lenses, etc.)? How to lay out and efficiently browse a map?

 I
2
DEE: An Integrated and Interactive Data Exploration Environment 259

This paper provides proposals to these questions that have been implemented in a
biological context. We are involved in two projects that confirm the interest of the
knowledge map. The first is gene expression analysis and the second is ontology
design for information retrieval and scientific monitoring. The following results only
detail the latter application. The biological context concerns Plasmodium falciparum,
the parasite responsible for malaria.

3 Approach to Integration

3.1 Data Heterogeneity

Biology uses huge amounts of data that can be divided into four classes: biblio-
graphical resources, conceptual resources, biological databases and experimental
data. At present, many ontology design tools use only bibliographic and conceptual
resources. We believe that there is useful biological knowledge in domain databases
that are not included in ontologies and scientific articles. We also consider that ex-
perimental data are crucial for adjusting content to the user's needs.

Bibliographical resources: The most widespread is PubMed [15], which is used by
the whole biomedical community and provides XML descriptions of over 14 million
articles; abstracts are available for more than a half of them. OMIM [12] focuses on
biological knowledge about genes and human genetic disorders. BioMed Central [2]
and PubMed Central [16] provide full access to articles. Such bibliographical re-
sources contain a biological knowledge often hidden in huge amount of texts. This
property has motivated a good deal of research that has already produced various
results [45]. In our process we focus on PubMed.

Conceptual resources: The increasing amount of biological data gives rise to new
problems of data access. Biologists need tools providing unified access in a custom
research framework. There are numerous formal ontologies in life science. The best
known are: Gene Ontology (GO, [6]) used to annotate genes and proteins, and MeSH
[11] to index documents in PubMed. UMLS [17] is a conceptual warehouse contain-
ing more than a hundred ontologies (in multiple languages). Such a resource is crucial
to enabling semantic interoperability and ontology mapping and reuse. I

2
DEE inte-

grates UMLS (including Go and MeSH) and GoDataBase [1], which provides links
with chemicals and genes, an ultrametric distance (length of shortest path), biblio-
graphical links and synonymic relations.

Biological databases: represent the shared knowledge of life sciences. These re-
sources are responsible for the main heterogeneity problematic. There are fairly gen-
eral resources: UniProt [18] and GeneBank [5] concern proteins and genes, KEGG [9]
metabolic pathways and GOA [7] provides annotations. All these resources describe
multiple organisms. There exist more specific resources: PDB [13] provides structural
protein information (for example protein folding, helix, sheets, secondary structure,
etc.), EntrezGene [4] normalizes and centralizes gene names and accession numbers

260 F. Jalabert et al.

for cross-referencing, and PlasmoDB [14] concerns only Plasmodium falciparum. Our
environment integrates EntrezGene, KEGG and PlasmoDB. Annotations are links
between a gene or protein and a concept. Another relation may mean a protein is a
gene product. However other information is more difficult to represent: secondary or
3-dimensional structures, sequences and n-ary chemical reactions.

Experimental Data: such data are the prime input in the building of a relevant cor-
pus. But their heterogeneity is a difficult problem of interest to the whole life science
community. The research of the MAGE team [10] is an example of gene expression
data sharing effort.

In this experiment, the starting point was a list of the Plasmodium falciparum
genes on a DNA microarray.

3.2 Common Extensible Schema

Most research works integrate data using a consensual schema. The aim is to obtain a
mainspring domain model preserving the best expressivity of integrated resource
schemas. Adding resources requires considerable engineering. For example: GUS [8]
(used by PlasmoDB) contains over 300 tables.

We adopted a contrasting approach by using a simple schema, a graph. This causes
a lack of expressivity with respect to advanced requests. But extensibility is much
higher: most knowledge can be translated to graph model with little additional engi-
neering. A graph is also a well studied structure providing many algorithms for ana-
lyzing, drawing, etc. The graph is typed and valued.

4 Description of the Environment

I
2
DEE covers the whole data processing chain: from corpus extraction and database

integration to domain knowledge visualization. Fig. 1 presents an overview of the
architecture. I2DEE has a separate server side in charge of data integration and a client
side that provides a set of user-friendly specific applications. The integration process,
detailed in 0, builds a graph structured data warehouse. The user inputs keywords or
documents in a client application. APIs support the implementation of graphical cli-
ents, data access and submap extraction (Section 0).

Fig. 1. Overview of the architecture of I2DEE

 I
2
DEE: An Integrated and Interactive Data Exploration Environment 261

4.1 Integration Step: Building the Warehouse

The integration process (Fig. 2) is divided into two steps. Firstly, the integration proc-
ess integrates multiple databases in a graph modelled data warehouse. Optional filter-
ing reduces time consumption of huge resources like PubMed. Integrated textual data
are then parsed to produce and index of occurring concepts or biological elements
(chemicals, genes, etc.) with documents, definitions, etc. Finally, a distributional
analysis enriches the warehouse providing frequency, co-occurrences relations. The
second step consists in extraction from the warehouse of a user’s needs-adjusted sub-
map on client application demand. All these process are detailed below.

Fig. 2. Integration process

4.1.1 Integrated Databases
Data was integrated sequentially in an order determined by functional dependencies.
UMLS was integrated first because its concepts are referred to in most of the data-
bases. PubMed was next because it uses UMLS concepts but is also referred to by
many resources. Other resources were then integrated: GODatabase, Gene, GOA,
KEGG and PlasmoDB. Persistence in I2DEE is provided by a MySQL server. The rest
of this section describes each of the resource integration processes implemented.

UMLS - MetamorphoSys is a tool that helps to set up the installation of UMLS. It
builds files that are optimized for RDBMS (Relational Data Base Management Sys-
tem) upload (it currently supports MySQL & Oracle SQL specifications). UMLS
consists of four base layers. We only integrate extreme layers: the lowest contains
occurrences (or atoms) of words in ontologies, and the highest is at the level of con-
cept mediation. We also integrated the semantic relations.

At the end of this step, there were one million concepts and about four to five mil-
lions atoms. UMLS required about 20Go of hard-disk space.

PubMed is provided in compressed XML format. We used the BioText [3] library
to convert data into a relational schema. In order to save time and space, we filtered
PubMed, retaining only documents containing user-defined keywords (“microarray”,
“gene expression”, “plasmodium”, “malaria”, etc…).

This filter retains about one hundredth of the initial document set (50 Go). This
represents 120000 documents and associated information: authors, keywords, chemi-
cals, genes, and journals.

GoDatabase is available in a flat file directly loadable into an RDBMS. The ontol-
ogy is already available in UMLS, so only updating for new concepts was required. In
addition, this database contains a pre-computed utrametric distance (shortest path

262 F. Jalabert et al.

between concepts in Go’s DAG). Finally, it provides definitions, cross-references and
synonymic relations.

Entrez Gene is available in XML format. We used a specific organism subset con-
cerning Plasmodium falciparum. We extracted information from the database to man-
age aliasing (different names and accession numbers for the same gene), biblio-
graphical references (PubMed documents for a gene) and miscellaneous comments.

PlasmoDB provides the most recent and curated genomic information concerning
Plasmodium falciparum. We used mainly the annotations.

GOA is redundant with GO and PlasmoDB provides more updated lists of genes
and annotations. In a wider scope, it provides a way to request gene annotations based
on GO using a multi-species approach or when curated portals are not available for
the domain under study.

4.1.2 Lexical and Distributional Analysis
In this step, the graph warehouse is compiled with documents indexed by graph
nodes. More precisely, when all the data had been integrated, a lexical analysis was
used to produce an index of occurrences of concepts in the textual data (cf. 0: docu-
ments, surveys, definitions, etc.). The concepts we refer to are provided by UMLS,
frequent string tokens extracted from corpora and biological name entities (gene,
protein, chemicals etc.), The freeware programs we tried were not reliable enough due
to a specific feature of biomedical corpora: named entities (genes, chemicals, etc.)
contain parentheses, dashes, dots, commas, digits, etc. We implemented our own
parser, which breaks down the document by searching for the longest segments. This
tool uses a dictionary of lemmas and the list of concepts and string provided by
UMLS. Spelling and some other variations (inflexion, comma, etc.) are taken into
account. The algorithm is based on a lemma tree backtracking search. The analysis of
around 120,000 summaries takes only few minutes. We have not yet quantified the
tool's precision and recall, but the first tests gave satisfactory results.

At this stage we had an ordered list of knowledge elements for each textual re-
source. Finally we carried out a distributional analysis to give frequencies, co-
occurrences and collocations.

4.1.3 Sub-map Extraction
The resulting data was still too voluminous. UMLS produced more than one million
nodes and PubMed several hundred more. The more specific biological databases are
smaller resources. The user would not be able to visualize and analyze all this infor-
mation. An automatic process was used to extract a small contextualized map on user
demand. This step is mainly driven by the intended usage of the map and user input
data (documents, gene lists, keywords, etc).

The initial input in our experiment was a 500 microarray spotted gene list (called
core nodes). All nodes two genes at most from the core nodes were then added. We
did not take co-occurrence relations into account, nor the ultrametric distance, which
leads to excessive connectivity. The resulting subgraph consisted of 5,000,000 nodes
because UMLS contains semantic types that link concepts to several millions of
nodes.

 I
2
DEE: An Integrated and Interactive Data Exploration Environment 263

A weighting algorithm was used to reduce this subgraph by means of a link analy-
sis inspired approach [19],[41]: core nodes were given the value 1, directly linked
nodes 0.5 and other nodes 0. From the core outwards, each vertex propagates its
weight to its neighborhood. Let ni be a vertex and nj one of its neighbors.

() () ()
()i

i
jj nree

nrank
nranknrank

deg
+← . (1)

This method rapidly limits the extension of the graph using a threshold. We fixed
the number of nodes between 5,000 and 15,000. This value represents a multiplicative
factor of 10 with respect to the initial number of core genes. This choice is consistent
because genes are usually linked to about 6 concepts and documents.

When relevant nodes had been selected using the threshold, we navigated bottom-
up through the hierarchical relations (“is a”, “part of”, etc.) and added all ancestors to
the subgraph. Finally we added the previously ignored relations (co-occurrences,
ultrametric distance, etc.) The sub-map used in the following section consists of 6,000
nodes including around 2,000 concepts.

4.2 Interaction Step: Adaptable User-Friendly Interface

The first section introduced our goal of providing a knowledge map. This map is
specific to an expert domain, the application and the task involved. A user-friendly
interface is required to allow the user to explore this domain knowledge warehouse.
I
2
DEE adjusts the map according to context (c.f. 0). Customization is carried out on

two levels: content and visualization. The expert is not able to browse the huge
amount of data integrated by I2

DEE , so it is necessary to define which data are useful
for a given application. For example, the user may not be interested in visualizing
genes and clusters. The graphic client needs to adapt the view to the domain and task,
by selecting which data should be displayed, and which should be masked. But the
expert's task can be split into subtasks such as selecting terms, structuring “is-a” or
“part-of” relationships, etc. Each of these subtasks must have its own visualization
and must take into account the data heterogeneity. The warehouse merges several
graphs having different topologies. Therefore we need a generic algorithm that effi-
ciently lays out any topologies. It should enable the user to switch easily between
multiple domain views according to application contexts. So we chose a dynamic
method [29] based on a physical model: force directed layout. The principle is to
arrange the graph vertices over a horizontal plane and link them by forces (generally
called springs): The layout self-adjusts automatically. Forces are repulsive, attractive
or both. The semantics extracted from the domain databases were applied to such
forces. A short distance between two vertices reflects indirect relations between these
vertices. Moreover, by changing display properties (visibility of an element, mobility
of a node, activation of an edge), multiple views can be assigned to the semantics. As
an example, in the following we will reorganize the graph around the “part-of” and
the “is-a” relation.

264 F. Jalabert et al.

We implemented I2DEE using Prefuse [33], a Java visualization toolkit to which we
added new features. The GUI enables thousands of nodes to be displayed. The frame
rate only becomes poor with tens of thousands of edges (CeleronM 1.4 GHz). The
software architecture enables a filtering step to facilitate multiscale visualization. The
rendering is accelerated using double buffering. Many common features are imple-
mented: overview, zoom, pan, selection, high definition screenshots, etc.

We altered the model to add dynamic type management and display properties
(visibility, mobility, force activation, etc.), and removed the inertia in force integrator,
etc. The next section presents the results of multiple views.

5 Visual Results

5.1 Intended Usage

The following results illustrate the aims of I2DEE with regard to prospects for ontol-
ogy design. The current application does not yet include common features such as
forms to edit concept properties, import and export features, etc. Several existing tools
should be able to provide such functionalities rapidly, and we are considering several
alternatives: adding I2DEE as a Protégé plug-in or using APIs (Protégé or Jena for
example).

Increasing amounts of data and the use of such a data warehouse leads to new
difficulties. I2DEE was designed to help manipulate huge amounts of data. Ontol-
ogy reuse should increase design speed and resource interoperability. Increasing
quantities of data should improve design quality, include in-corpus domain knowl-
edge (not only bibliographical domain description) and contextualize resources. The
environment helps the domain expert and knowledge engineer: (1) to note that sev-
eral model choices are available and (2) to identify the solution chosen by the most
similar terminology or ontology. These steps may help the user to understand and
could warn him about possible ambiguity. Finally (3), if the user chooses the global
alternative of one resource, the environment allows global reuse with simple
interaction.

5.2 Commented Screenshots

NOTE – The screenshots presented take into consideration the fact that this paper will
be printed. The hard copy constraint does not enable the viewing of animations or
colors, or zooming to view details. We shall soon make available some video captures
of the environment.

The first screenshots in Fig. 3 display about 2,000 concepts. No gene or document
is drawn. There are about 6,000 edges divided into 3 classes: co-occurrences relations,
biological annotations and semantic relationships (“is-a”, “part-of”, etc.). The three
screenshots in Fig. 3 show the distribution of these classes of relations for the whole
graph.

 I
2
DEE: An Integrated and Interactive Data Exploration Environment 265

a – Co-occurrences b – Annotations c – Semantic relation.

Fig. 3. Three main relations in the global knowledge map

The co-occurrences shown in Fig. 3-a produce an entanglement situated in the centre
of the graph. This is characteristic of a social or lexical network: in spite of a low average
degree of connectivity, it is generally hard to visualize [21]. The annotations in Fig. 3-b
are also situated in a delimited part of plane in the centre of the graph. This reflects the
use of terms in the experimental domain. Finally, the semantic relations in Fig. 3-c ex-
tend to the outskirts of the graph, with a hub bottom right. The topology of the remaining
relations produces a lattice-like topology caused by multiple hierarchies (often hierarchi-
cal “is-a” or “part-of” relationships from differing ontologies and points of view).

b –“part of” relation

A – “Semantic type” relation c –“is-a” relation

Fig. 4. Full screen captures of the hub laid out using three combinations of relations. Relations
are drawn separately.

266 F. Jalabert et al.

The hub (detailed in Fig. 4) is structured by three relationships: the semantic type
provided by UMLS (Fig. 4-a) gives a star layout whose centre is the “cell component”
concept (the zoom feature gives good readability). The “part-of” relation (Fig. 4-b)
gives a similar topology: a flattened tree whose centre is “cytoplasm”. The depth of
this tree is higher than semantic star type. This may imply more detailed knowledge
modeling. Entanglement is caused by competitive forces from the “part of” and “is-a”
relations, which are transversal. This experiment testifies that simultaneous activation
of different forces associated to complementary semantic relations may disturb the
user's perception and understanding of the map.

“part of” “is a” “part of” “is a”

a –Layout based on “part of” relation b – Layout based on “is-a” relation

Fig. 5. Graphs of semantic relations using two different force-based layouts. The first uses “part
of”, the second “is-a”.

One solution is to enable the user to selecting alternately which relationship should
be used to organize the map, depending of the current task. In Fig. 5-a, the screenshots
are organized using the “part of” relation. This enables each relation type to be visual-
ized separately based on the same layout. Fig. 5-b gives similar views organized on the
basis of the “is a” relation.

“is a” “part of”

Fig. 6. Distribution of “is-a” and “part-of” relations in global map view

 I
2
DEE: An Integrated and Interactive Data Exploration Environment 267

The results of this experiment are unambiguous: alternate organization of the view us-
ing one relation is essential in producing an understandable map (planar in this example).

The screenshots in Fig. 6 show the global distribution of the “is-a” and “part of” rela-
tions in the map. The multi-hierarchies on the peripheries of the map are a result of the
“is a” relation, which is not surprising since it is the most frequent relation used in on-
tologies. Detailed analysis of the terms indicated that general terms are found in the cen-
ter of branches and specialty concepts towards the outside. The “part of” relation is lim-
ited to the hub region (as shown by the circle in the right-hand view of Fig. 6).

Fig. 7. Zoom of the end of an “is-a” DAG branch

Fig. 7 details the content of an “is a’ branch in the graph, whose topology is a di-
rected acyclic graph (DAG). Such a structure can result from two phenomena. The
most obvious one is that original resource that describes this region in UMLS is based
on a DAG structure like GO. The second one is that two hierarchies partially cover
the same concepts from different points of view. In Fig. 7, for example, adenosine
catabolism is more precise than purine ribonucleoside catabolism and adenosine,
which are more precise than purine ribonucleoside metabolism. Such a view can help
the user to decide which modeling solution is best suited to his/her application. The
expert can delete relations that do not respect tree structure or modify the model by
creating two new subtrees (c.f. Fig. 8) and model the adenosine metabolism as a com-
posite concept.

Metabolism
Catabolism
Anabolism

Ribonucleoside
purine ribonucleoside

guanine ribonucleoside
adenosine ribonucleoside

pyrimidine ribonucleoside
thymine ribonucleoside
cytosine ribonucleoside

Fig. 8. The concept adenosine ribonucleoside can be considered as a concept made up of two
primitive concepts each belonging to a different hierarchy

268 F. Jalabert et al.

5.3 Adaptability

The above results show the importance of integrating heterogeneous data in a common
view and allowing the user to customize this view depending of the current task. In an
ontological computer aided design application, such features cause two problems:

• The user must continuously choose the best view for a given task, so he or she
must have a good understanding of I

2
DEE's behavior, and each view switch

costs time and cognitive load.
• Even after several filtering steps, the quantity of information is still too great

for the user. Adapting methods that take into consideration user actions and
choices are crucial in order to filter data automatically and incrementally and
display only relevant concept and relations.

Such adaptability is provided in I2
DEE by special weighting criteria. These criteria

can be classified into several types. Structural criteria depend on the location and
neighborhood of a node or edge in the graph. Such criteria are based or centrality
measures, degree, ranking (Page Rank, Hits, etc.) [19]. Distribution criteria are based
on statistical calculations that represent the use of concepts and relations in domain
corpora. Measures could include frequency, co-occurrences, TF.IDF, the Harrissian
method, etc. Relevance criteria rank the similarity of elements with the expected
result representation (input corpora). For example, semantic vector approaches [43]
enable documents from the domain corpus to be compared with concepts. Finally,
reliability and confidence criteria estimate the helpfulness of a resource by counting
the proportion of its elements that are validated or eliminated. Such criteria include
whether an ontology appears more appropriate to a given domain and provides better
modeling, for example, or perhaps another ontology may have been generated using a
poorly supervised method.

Learning is based on interactions. It is easy to rank deleted items with low criteria
values, and to consider other items that have been edited and maintained to be useful.
But what about the many other items that user does not edit? The goal of adaptability
is not to constrain the user to treat every item. So we put forward the following hy-
pothesis: the more a user edits and deletes items, the more he or she has evaluated the
neighborhood and wishes to retain the elements in it. We suggest benefiting from the
network structure by using structural ranking propagation calculations.

5.4 Uses: Limits and Prospects

The system is currently being evaluated by biologists, revealing that they are not
literate in knowledge engineering. They continually focus on biological knowledge
and not on conceptual modeling. Although biologists are domain experts, they have
difficulty understanding and processing such ontology design tasks. They search for
the biological relations underlying the semantic relations.

They tend quickly to prioritize the closeness of concepts over the relations that link
them. Moreover, the user needs to find a meaning and semantics in direct co-
occurrence relations. Indirect relationships, neighboring small cliques, definitions, etc.
need to be analyzed. More information about context is required in order to explain
such edges.

 I
2
DEE: An Integrated and Interactive Data Exploration Environment 269

Generally, user feedback was positive. Co-occurrence relations reflect biological
reality. One user commented that the training data were not really suitable for evaluat-
ing our environment because of the state of scientific knowledge among the commu-
nity about such organisms. He explained that the display was closer to a bacterium
than a eukaryote. But this is a consistent result because Plasmodium falciparum is a
simple parasite.

At present content adaptability is based on preexisting methods and visualization
adaptability is controlled by hand by the user. Our system does not include machine
learning yet. Future works will consider user interactions as feedback so that the sys-
tem can dynamically filter data and select the associated visualization.

Our information visualization team is designing an experimental visualization en-
vironment called MolAge. This force-based tool converts multidimensional data into
complete graphs and allows multidimensional data to be gathered and visualized.
Until now the amount of data to be laid out has exceeded the capacity of our MolAge
environment [25]. However recent upgrades allow us to consider migration to this
environment and thus to benefit from its advanced features: semantic spectra, building
scenarios, etc. [26]. In particular, it is easy and fast to test new features and lens, dis-
tortions, and to parameterize them.

6 Conclusion

The integrated and interactive data exploration environment (I
2
DEE) presented in this

paper has been applied in the context of the design and definition of ontologies. Two
major contributions have been identified. The first one concerns the integration of
experimental data from domain databases, in our case biology. By this way the envi-
ronment improves the adaptation to a specific context and fits user needs in their
various tasks: bibliographical search, data analyses, etc. The second contribution
concerns the interactive manipulation of the heterogeneous data that have been inte-
grated. A dynamic knowledge map is presented to users, who can interact with it in
order to emphasize some parts of the map, to generate deeper requests to a database or
analyze some neighborhoods, for example.

The first evaluation process carried out with biologists confirmed the relevance of
our approach. Some limits have been identified and highlighted some prospects for
our work. Some of them concern computer performances. We are working on im-
provements that may overcome these limits. Others involve user interaction difficul-
ties: the user needs to understand I

2
DEE's behavior and features. A new version with

additional functionalities is under development that will better satisfy biologists''
needs and therefore become a software support for their current tasks.

References

Web References

[1] Amigo – Gene Ontology Software and Databases, http://www.godatabase.org
[2] BioMed Central, http://www.biomedcentral.com/
[3] BioText, http://biotext.berkeley.edu/

270 F. Jalabert et al.

[4] Entrez Gene, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene
[5] Genebank, http://www.ncbi.nlm.nih.gov/Genbank/
[6] GO – the Gene Ontology, http://www.geneontology.org/
[7] GOA – Gene Ontology Annotation, http://www.ebi.ac.uk/GOA/index.html
[8] GUS, The Genomics Unified Schema, http://www.gusdb.org/
[9] KEGG: Kyoto Encyclopedia of Genes and Genomes http://www.genome.jp/kegg/

[10] MAGE, MicroArray and Gene Expression,
http://www.mged.org/Workgroups/MAGE/mage.html

[11] MeSH, Medical Subject Headings, http://www.nlm.nih.gov/mesh/meshhome.html
[12] OMIM, Online Mendelian Inheritance in Man,

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM
[13] Pdb, the rcsb Protein DataBank, http://www.rcsb.org/pdb/
[14] PlasmoDB, The Plasmodium Genome Resource, http://plasmodb.org/
[15] PubMed – http://www.pubmed.gov
[16] PubMed Central, http://www.pubmedcentral.nih.gov/
[17] Umls, Unified Medical Language System, http://www.nlm.nih.gov/research/umls/
[18] Uniprot, The Universal Protein Resource, http://www.expasy.uniprot.org/

Bibliographical References

[19] Borodin, A., Roberts, G. O., Rosenthal, J. S., et Tsaparas, P. Link analysis ranking: algo-
rithms, theory, and experiments. ACM Tranactions. On Internet Technology (TOIT),
vol. 5:1, pp. 231-297, 2005.

[20] Bourigault, D., Lexter, a Natural Language tool for terminology extraction, 7th EU-
RALEX International Congress, pp. 771-779, Göteborg, 1996.

[21] Boutin, F., Hascoët, M., Multi-Level Exploration of Citation Graphs, ECDL’04 – Euro-
pean Conference of Digital Library, n. 3232, pp 366– 377, 2004.

[22] Choueka Y. Looking for needles in a haystack, Conference on User-Oriented Context
Based Text and Image Handling (RIAO 88). Cambridge, MA. 1988.

[23] Church K.W. et Hanks P. Word Association Norms, Mutual Information and Lexicogra-
phy. Proceedings of the 27th Annual Meeting of the Association for Computational Lin-
guistics, pp. 76-83, Vancouver, 1989.

[24] Corcho O., Fernández-López M. et Gómez-Pérez A.. Methodologies, tools and languages
for building ontologies: where is their meeting point ? Data Knowledge Engineering, vol.
46:1, pp. 41-64 : Elsevier Science Publishers B. V., 2003.

[25] Crampes M., Ranwez S., Velickovski F., Mooney C and Mille N. An Integrated Visual
Approach for Music Indexing and Dynamic Playlist Composition, MMCN2006, 13th An-
nual Multimedia Computing and Networking, San Jose, California, January 18-19, 2006.

[26] Crampes M., Ranwez S., Villerd J., Velickovski F., Mooney C, Emery A and Mille N.
Concept Maps for Designing Adaptive Knowledge Maps, Information Visualization
Journal, Palgrave, September 2006

[27] Daille, B., Conceptual structuring through term variations, in F. Bond, A. Korhonen, D.
MacCarthy and A. Villacicencio (eds.), proc. ACL 2003, Workshop on Multiword Ex-
pressions : Analysis, Acquisition and Treatments, pp.9-16, 2003.

[28] Dias G., Guilloré S. and Lopes J.G.P. Extracting Textual Associations in Part-of-Speech
Tagged Corpora. Fifth EAMT Workshop "Harvesting existing resources" Ljubljana, Slo-
venia, May 11 - 12, 2000.

[29] Eades, P. A heuristic for graph drawing. Congressus Numerantium 42, pp. 149-160, 1984.
[30] Gaume, B., Duvignau, K., Gasquet, O., and Gineste M.-D., Forms of meaning, meaning

of forms, Journal of Experimental and Theoritical Artificial Intelligence, 14(1), 61–74.
[31] Habert, B., Naulleau, E., Nazarenko, A., Symbolic word clustering for medium-size

corpora, proc. 16th COLING, Copenhagen, vol. 490(5), 1996.
[32] Harris Z. Mathematical Structures of Language, NY, John Wiley & Sons, 1968.

 I
2
DEE: An Integrated and Interactive Data Exploration Environment 271

[33] Heer J. Prefuse: a software framework for interactive information visualization Masters of
Sc., Computer Science Division, Univ. of California, Berkeley, 2004.

[34] Hindle D. et Rooth M. Structural ambiguity and lexical relations, Computational Linguis-
tics, Special issue on using large corpora, Vol. 19:1, pp. 103-120, 1993.

[35] Jacquemin C. FASTR : A unification grammar and a parser for terminology extraction
from large corpora. Journées IA'94, pp. 155-164, Paris, 1994.

[36] Jacquemin, C. and Bourigault, D., Term Extraction and Automatic Indexing, In R. Mit-
kiv, ed., Handbook of Computational Linguistics, pp. 599-615. Oxford University Press,
2003.

[37] Lauriston, A., Automatic recognition of complex terms : Problems and the TERMINO
solution, Terminology vol. 1(1), pp. 147, 1994.

[38] Malaisé V. Méthodologie linguistique et terminologique pour l'exploitation d'outils
d'extraction terminologique et la constitution d'ontologies différentielles à partir de corpus
textuels, Thèse de doctorat, Université Technologique de Compiègnes, October 2005.

[39] Manning, C. and Schütze, H. Foundations of Statistical Natural Language Processing,
MIT Press. Cambridge, MA: May 1999.

[40] Mizoguchi R. Ontology Engineering Environments, Handbook on Ontologies, pp. 175-
298, S. Staab et R. Studer, 2004.

[41] Page L., Brin S., Motwani R. et Winograd T. The PageRank Citation Ranking: Bringing
Order to the Web, Stanford Digital Library Technologies Project, 1998.

[42] Ploux, S., Ji, H., A model for matching semantic maps between languages
(French/English, English/French) Computational Linguistics, vol. 29:2, pp. 155-178,
2003.

[43] Salton G. et McGill M.J. Introduction to Modern Information Retrieval, McGraw Hill,
1983

[44] Suen C. Y. N-Gram Statistics for Natural Language Understanding and Text Processing,
IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. PAMI-1:2, pp.164-172,
1979.

[45] Swanson D.R. Fish oil, Raynaud's syndrome, and undiscovered public knowledge, Per-
spectives in Biology and Medicine, vol 30:1, pp. 7-18, 1986.

[46] Véronis, J. Hyperlex : lexical cartography for information retrieval. Computer, Speech
and Language, vol. 18 (3), pp. 223-252, 2004.

Evaluating a Thesaurus Browser for an

Audio-visual Archive

Véronique Malaisé1, Lora Aroyo2, Hennie Brugman3, Luit Gazendam4,
Annemieke de Jong5, Christian Negru2, and Guus Schreiber1

1 Vrije Universiteit Amsterdam, The Netherlands
schreiber@cs.vu.nl, vmalaise@few.vu.nl

2 Technische Universiteit Eindhoven, The Netherlands
l.m.aroyo@tue.nl, c.m.negru@student.tue.nl

3 Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
Hennie.Brugman@mpi.nl

4 Telematica Instituut, Enschedé, The Netherlands
Luit.Gazendam@telin.nl

5 Dutch Institute for Sound & Vision, Hilversum, The Netherlands
adjong@beeldengeluid.nl

Abstract. In this article we report on a user study aimed at evaluating
and improving a thesaurus browser. The browser is intended to be used
by documentalists of a large public audio-visual archive for finding ap-
propriate indexing terms for TV programs. The subjects involved in the
study were documentalists of the Dutch National Audiovisual Archives
and of broadcasting corporations. The study provides insight into the
value of various thesaurus browsing and searching techniques.

1 Introduction, Objectives and Approach

In this paper we report on a user study with a thesaurus developed for cata-
loguers of a audio-visual broadcast archive. This work is part of the CHOICE
project1 which aims to support annotation and search of the broadcast archive
of the Dutch Institute for Sound & Vision. As part of this project we built a
thesaurus browser for the GTAA2 thesaurus. The thesaurus browser is a gen-
eral SKOS/RDF browser [7]. We converted the original database representation
of the thesaurus to SKOS (for conversion principles and representation details
see [9]).

The purpose of the browser is to support cataloguers both of Sound & Vision
and of the broadcast corporations in finding the appropriate indexing terms.
Indexing is still mainly a manual process. Sound & Vision is in the process of
moving to a completely digital archiving process and as a consequence heavier
demands are put on the cataloguers. In fact, the browser is considered a simple
baseline tool. The project also works on semi-automatic techniques for extracting

1 http://www.nwo.nl/catch/choice/
2 Dutch abbreviation for “Common Thesaurus Audio-visual Archives”.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 272–286, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Evaluating a Thesaurus Browser for an Audio-visual Archive 273

indexing terms from context documents (TV guides, articles). Initial results of
the semi-automatic support can be found in another paper [3]. This paper only
discusses the browser.

The objective of the evaluation study was to improve the efficiency of the
thesaurus browser in finding terms. We were particularly interested in how the
browser aligns with cataloging practice. The subjects were people who are cata-
loguing audio-visual programs as part of their daily job. The study consisted of
two parts. First we had a number of evaluation sessions with an initial version of
the browser (Secs. 2-3). Based on the results of this first evaluation, the browser
was adapted and evaluated in a second study (Secs. 4-5). In Sec. 6 we reflect on
the outcomes and discuss related work.

From a general knowledge-engineering perspective, this paper focuses on ques-
tions related to user access to large knowledge structures, such as thesauri. Large
knowledge structures typically incorporate many different viewpoints that one
can take on the concepts involved [2]. As knowledge engineers we are used to
organize concepts into large subtype hierarchies, but this may not always be the
most appropriate way for accessing these concepts, given the user and his task
context. Finding concepts in large concept structures for semantic-annotation
purposes is becoming an increasingly important knowledge-access task [4]. This
paper gives a detailed insight into knowledge-access problems in the domain of
annotation of audio-visual archives.

The CHOICE project is part of the Dutch CATCH (Continuous Access To
Cultural Heritage) Programme, funded by NWO (Dutch Science Foundation).
A special characteristic of CATCH is that the teams of researchers are working
part-time in the heritage institution. At the moment 10 of such projects are
underway.

2 Thesaurus Browser

Cataloguers at Sound & Vision index TV programs by assigning to these a set of
controlled terms, selected from the GTAA thesaurus. Currently, they only have
access to these terms in the form of alphabetically sorted flat lists. Although
the GTAA has internal structure this is not exploited by the current generation
of software tools. Therefore, as a first step to improve the cataloging process, a
thesaurus browser was designed and implemented.

2.1 Requirements

We identified the following requirements:

– Because the GTAA Browser will be used by both incidental and regular
users and because these users are located both inside and outside of Sound
& Vision, a web application was preferred.

– The thesaurus content is regularly updated, for example person’ names and
locations are regularly added. There is one authoritative resource for the
GTAA, which is a relational database system maintained at Sound & Vision.
The browser should therefore directly interact with this database.

274 V. Malaisé et al.

– The browser should be able to display and exploit all structures that are
present in the thesaurus in appropriate and intuitive ways. The same is
true for structures and information that we add to the thesaurus. It should
provide at least the existing searching and browsing functionalities, i.e. direct
access to terms according to the facet to which they belong (this notion of
facet is detailed in the following section) and an alphabetical search facility.

– For interoperability with other CATCH projects the thesaurus should be
accessible through open web standards.

2.2 Browser – Version 1 Implementation

Fig. 1 shows the architecture of the GTAA Browser. The browser is implemented
as a web application which can retrieve thesaurus data from an extensible set
of data sources. One of those is Sound & Vision’s primary source of the GTAA,
a relational database. Using this source, radio and television professionals will
always have the latest modifications of the GTAA available. To accommodate
the needs of researchers in CHOICE and CATCH the browser can also use an
RDF/OWL representation of the thesaurus as its data source. This RDF/OWL
store can be updated on request using a separate web application.

Fig. 1. Architecture of the browser

A screen shot of version 1 of the GTAA browser is shown in Fig. 2. The
interface is divided into three main parts:

– the upper part, with 6 tabs (number 1 on the figure) representing the different
dimensions (“facets”) of the GTAA;

– the middle part, where different information about the Terms are displayed
(number 2 on the figure);

– the bottom part, consisting of an alphabetical search engine (number 3 on
the figure).

Each of these three parts is discussed in more detail in the following
paragraphs.

Evaluating a Thesaurus Browser for an Audio-visual Archive 275

Fig. 2. First interface of the browser

GTAA Facets. The six tabs represent the different facets of the thesaurus: six
disjoint groups of Terms, divided into top level categories. These facets are (be-
tween parentheses the Dutch term): Subjects (Onderwerpen), Genres (Genres), Peo-

ple (Personen), Names (Namen) , Makers (Makers) and Locations (Locaties). The
facets correspond to different fields in the indexing scheme of Sound & Vi-
sion for TV programs. They are given by the thesaurus structure and cannot
be personalised by the user. The browser gives direct access to terms belong-
ing to any of these facets by clicking on the corresponding tab. Fig. 2 shows
the Subjects facet. The Subjects and the Genres facets are organized according
to the ISO 2788 relationships: BroaderTerm/NarrowerTerm, RelatedTerm,
and Use/UseFor. The BroaderTerm/NarrowerTerm is a hierarchical relation-
ship that represents a description of subsets of documents (the NarrowerTerm
should be used to describe a subset of the documents that can be described by
the correponding BroaderTerm). BroaderTerm/NarrowerTerm can represent
a subclass relationship, as well as a part-of relationship, or some application
specific relationship. RelatedTerm links two Terms that are closely related in a
specific domain, like a Ship and a Sailor for example. Some Terms are also as-
sociated with ScopeNotes, textual comments about the use of the given Term.
Terms from the Subjects facet are also grouped into Categories. These are an
alternative way of grouping Terms, beside the BroaderTerm/NarrowerTerm
hierarchy, by generic domain: Philosophy, Economy, etc. Terms from the four
other facets are alphabetical flat lists, sometimes associated with ScopeNotes.
As the Subjects facet is the most structured one, we detail its display in the
middle part of the browser window (number 2 of Fig. 2) in the following
subsection.

276 V. Malaisé et al.

Fig. 3. Middle panel of the GTAA browser

Browsing Relationships Between Terms. A close-up of the middle panel of the
Web Browser is shown in Fig. 3, where we can see that it is divided into four
parts.

The left part (panel 2-1) displays the different Categories and Sub-Categories

(Rubrieken and Sub-Rubrieken in Dutch) into which the Subjects Terms are cat-
egorized3. Clicking on a Category or Sub-Category displays in panel 2-2 the list
of the Terms which belong to it4. The sample screen shot displays the terms
from the sub-category Urbanism and Organization of Public Space highlighted
in blue. Preferred terms are displayed in normal font and non-preferred in ital-
ics. Clicking on a term in this panel selects it, while the Category(ies) to which
it belongs to are highlighted in orange in panel 2-1. Panels 2-3 and 2-4 are
also instantiated or updated when a term is selected. They display the relevant
BroaderTerm/NarrowerTerm tree (2-3) and other available information about
the term such as Related Terms (2-4). Terms displayed in panels are clickable,
enabling the user to navigate through neighbors of the selected term.

Alphabetical Search. In version 1, the search functionality was only valid in
the facet that was active: if the user submits a query in the Subjects facet, the
alphabetical search is limited to this facet. When the user types the first letters
of a term, a refinement button (labeled Filter) gives the list of the preferred and
non-preferred terms of the facet that begin with the same characters.
3 A term can be categorized in up to three different (Sub-)Categories.
4 If the Category contains more than 14 Terms, the first 14 Terms are displayed in

alphabetical order, and other ones can be reached by clicking the different page
number at the bottom of this panel.

Evaluating a Thesaurus Browser for an Audio-visual Archive 277

3 User Study: Part I

3.1 Setup

Formative evaluation of the GTAA thesaurus browser in two parts was performed
to determine whether it supports the cataloguers internal and external to Sound
& Vision in their tasks of annotating audiovisual material, in particular in terms
of navigation, browsing and searching. With the analysis of the study results we
aim at answering questions about:

– the usefulness of browsing a hierarchical structure of terms versus alphabet-
ical lists for finding out relevant terms;

– the intuitiveness of the search and navigation facilities;
– the effectiveness of the presentation of the controlled vocabulary, of the cross-

links between the terms, of the categories and of the different dimensions of
the GTAA thesaurus (namely the facets).

Subjects. The first user study concerned in total nine cataloguers: five thesaurus
experts from Sound & Vision, two domain experts from NOS and two domain
experts from EO5. Most of them (7 out of 9) are using annotation software daily.

Procedure. The experimental session lasted around 60 minutes per subject su-
pervised by an examiner and video-recorded. To make sure the testing conditions
are similar to all users we started with a brief (about 5 minutes) introduction of
the experiment and the browser. Next, each of the subjects spent time for a “di-
rected play-around” to get acquainted with browser’s functionality, reading a list
of guidelines6 and reporting on problems. Subsequently, they watched an audio-
visual document with a duration of 2 minutes and we asked to provide indexing
terms for that document using the browser. They could use three strategies to
find these terms:

– Use the Categories hierarchy to display lists of terms (henceforth Browsing
search or Browsing functionality), in the Subject facet;

– Type in some letters in the alphabetical search box and check for a matching
term by clicking on the Filter button (henceforth Filter search);

– Type in a whole term in the alphabetical search box and check for a matching
term in the thesaurus (henceforth Alphabetical search).

From this first step on, the different relationships of the Subject facet could also
be used to navigate in the thesaurus’ content, as well as the alphabetical lists in
the other facets. No complex query composition functionality was provided to
search for a term.

At places, where problems occurred the examiner initiated a dialog with the
user in order to clarify the problem and to gather additional information on
5 NOS and EO are Dutch broadcasting organizations.
6 The guidelines can be found at http://www.cs.vu.nl/~guus/public/

choice-guidelines.pdf. These are the adapted guidelines user for the second
study.

278 V. Malaisé et al.

it. Finally, each of them filled one usability questionnaire with five clusters of
questions (overall interface, search facilities, term browsing, subject facets and
additional functionality) and one personalia questionnaire focusing on sex, age
and proficiency. All subjects were allowed to also use pre-selected on-line refer-
ence material on the topic of the audiovisual document during the annotation
session.

Metrics. We evaluated the efficiency, satisfaction, learnability and effectiveness
of the GTAA thesaurus browser by using the following metrics:

Number of problems during play-around: is used to calculate the overall
learnability of the browser by counting the problems occurred over the num-
ber of steps and the overall time spent during the play-around;

Total time spent during play-around (in minutes): idem for number of
problems;

Number of problems during annotation: is used to calculate the overall
effectiveness by counting the number of problems over the steps and the
overall time spent during annotation;

Number of times alphabetical search was used during annotation: gives
an estimate of the efficiency of the alphabetical search in the two user studies.

Number of times hierarchy search was used during annotation: idem
for alphabetical search;

Number of times filter search was used during annotation: idem for
alphabetical search;

Number of steps during annotation: is used in the calculation of the effi-
ciency of the browser for the annotation tasks;

Number of resulting indexing terms during annotation: is used to cal-
culate the success factor in terms of overlapping with the terms indicated in
the gold standard;

Number of steps per index term during annotation: is used as a mea-
sure of efficiency;

Total time spent on search tasks during annotation (in minutes): is used
in the calculation of search efficiency of the browser in both user studies;

Total time spent during annotation (in minutes): is used in the calcula-
tion of the efficiency and effectiveness of the browser in both user studies.

We mark something as a problem when the user indicates that there is an
obstacle to perform a task. For example, the user searches for “Afghanistan”,
types the term in the search field (in the “Genres” facet), and it brings no results
back, because the user didn’t select the facet “Locations”. Software bugs were
also identified during the user studies, but were not counted as problems for the
calculation of the effectiveness of the browser, nor in the total time spent with
the browser.

A step during annotation is defined as a set of meaningfully connected atomic
actions to perform an annotation task. For example, when the user is searching
for “Afghanistan” he may first try to use the hierarchy in the Subject facet by
error, then go to the Location tab, then type in some letters and get results from
the filter list. This would result in three steps.

Evaluating a Thesaurus Browser for an Audio-visual Archive 279

The gold standard was defined by thesaurus experts from Sound & Vision.
It contained twelve indexing terms from the GTAA thesaurus, which they con-
sidered as appropriate to annotate the audiovisual document used in both user
studies. We counted the total number of GTAA indexing terms that each subject
used for the annotation and the total number of the ones which match the gold
standard. We only considered exact matches in this evaluation, but an option
for future studies could be to use a similarity function, for example based on the
hierarchical structure of the thesaurus, to compare selected terms to the gold
standard.

Questionnaire. In order to assess the usability of the GTAA browser the partic-
ipants were asked to fill out a questionnaire7 (50 questions on a 7-point scale,
8 open questions). User satisfaction is expressed as a normalized value in the
range [1,7], where 1 is highly satisfied and 7 is highly not satisfied. In order to
identify trends in the user groups and discriminate different levels of expertise
the participants we asked to also fill in a questionnaire about their personal
characteristics with respect to gender, age, computer and annotation proficiency
(10 questions).

3.2 Results

Table 1 shows the results of the study for the defined metrics. We can observe
the following:

– Both during play-around and annotation a significant number of problems
were encountered (on average 3.69 + 2.89 = 6.56). On analysis these prob-
lems were mainly concerned with relatively trivial issues. For example, case-
sensitive search and lack of auto-completion proved problematic. Another
cause of problems was the lack of synchronization when updating parts of the
screen (categories, term lists, etc.). Before the second user test the browser
was accordingly adapted.

– A less trivial cause of problems was the confusion about combined use of the
“filter” and “select” buttons for alphabetical search. For example, consider
the following scenario:

SEARCH GOAL: "peace troops"

1. choose facet "Subjects"

2. enter query "peace" and click Filter button

3. select from drop-down list "peace troops" click

Select button to activate search on "peace troops"

From the videos we observed that such scenarios were quite common. Partic-
ipants would typically get stuck in step 3. It turned out that it was unclear
to them where the drop-down box was and also that an additional “select”
click was required. To remedy this, we improved the guidelines. Also, the
organization on the screen was not logical (jump from bottom to top). This
is improved in the adapted browser.

7 The questionnaire can be found at http://www.cs.vu.nl/~guus/public/

choice-quest.pdf (in Dutch).

280 V. Malaisé et al.

Table 1. Results for the first part of the user study. Time measurements are in min.

Stage/Metric Subjects
S1 S2 S3 S4 S5 S6 S7 S8 S9 Average

During play-around
#problems 3 4 5 4 3 2 3 4 5 3.67

total time spent 11 19 22 19 20 14 15 20 18 18

During annotation
#problems 3 4 4 2 3 2 3 2 3 2.89

#alphabetical search used 8 9 7 6 7 4 7 9 6 7.00

#hierarchy search used 1 2 0 1 0 5 1 1 1 1.33

#filter search used 2 2 2 2 1 1 1 1 1 1.44

#steps 47 30 22 29 31 28 35 37 40 33.22

#resulting index terms 9 10 8 4 9 6 8 5 7 7.33

#steps per index term 5.22 3.00 2.75 7.25 3.44 4.67 4.38 7.40 5.71 4.87

total time spent on search 29 24 18 21 20 12 18 10 13 18

total time spent 38 33 29 30 31 20 25 19 22 27

– From the results it is clear that most of the subjects were mainly using alpha-
betical search. The explanation they gave was that they already knew the
term they were looking and therefore hierarchical search is not appropriate.
From the hierarchy search they mainly used the use-for and related-term rela-
tionships. The filter-search was also used infrequently; this appeared mainly
to be caused by the problem reported before. The added value was in fact
unclear to them.

– Subjects were performing a large number of total steps (on average 33.22)
to find indexing terms. Analysis of the videos showed that the main reasons
for this were (i) inefficiency of the screen layout, (ii) insufficient feedback on
the action performed, and (iii) the filter-search problem mentioned earlier.

– On average the resulting number of indexing terms was 7.33, i.e. roughly
60% of the gold standard. We think this is adequate.

– On average 4.87 steps were needed to find an index term. The minimum
number of steps needed to find a term would be 3 (see scenario above). This
means there is definitely room for efficiency improvement.

Table 3 further on in this paper shows aggregated results of the questionnaire
on user satisfaction. We discuss the results in Sec. 5 in relation to those of the
second study.

4 Thesaurus Browser – Adapted Version

In accordance with the results of this first user study, we adapted the browser
(Fig. 4). The next paragraphs describe the most important modifications that
were made.

Alphabetical Search (Number 1 on Figure 4). Alphabetical search turned out to
be important for users, so we made some small technical improvements, such as

Evaluating a Thesaurus Browser for an Audio-visual Archive 281

Fig. 4. Adapted interface of the Web Browser

a default behavior of case-insensitive search and the possibility to search within
(i) the active facet, (ii) a given facet or (iii) any facet. As an additional facility in
cases where the characters typed in do not match a thesaurus Term, the browser
displays also:

– A list of spelling suggestions
– Terms that match the input through an intermediate list of synonym terms.

The spelling suggestion tool was adapted from a generic module and the syn-
onym list has been computed using the online versions of the Van Dale and the
Muiswerk dictionaries8.

Selection of Multiple Categories (Number 2 on Figure 4). One of the reasons why
the browsing search was not preferred as a first step to search for a term is that
the Categories are too broad: they contain too many terms to make the display
of the whole list interresting for finding out a term. But we took advantage of
the fact that most Subject terms are part of more than one Category to offer the
user an additionnal filtering functionality. Categories and sub-categories are now
displayed in association with the number of Terms belonging to them. When
the user selects a category, its Terms are still displayed in the middle part, but
panel 1 on Fig. 4 is also updated with the list of other categories these Terms can
belong to, and the number of overlapping terms. For example, if a user selects
the Category Military Issues, the terms related to Military Issues are displayed,

8 Respectively at the URL http://www.vandale.nl/opzoeken/woordenboek/ and
http://www.muiswerk.nl/WRDNBOEK/INHOUD.HTM.

282 V. Malaisé et al.

and all other categories in which the displayed terms also appear are proposed
for narrowing down the number of terms. If the user selects also Traffic and

Transportation, he will get the list of military vehicles in the thesaurus. He can
narrow down his query even further by selecting Vessels, in which case the list
is narrowed down to military vessels. The number of terms to be displayed can
thus be narrowed down to a dozen by two or three clicks. It is a kind of faceted
search, but on the term level9.

BroaderTerm/NarrowerTerm Display (Number 3 on Figure 4). We solved a
problem of ergonomy in changing the diplay of the BroaderTerm/
NarrowerTerm tree. In the previous version, displaying the tree could lead a
bad display of the other information about a given Term.

Cross-Facet Links. We extracted some information provided in the scope notes of
the People facet to generate cross-facet links: if a scope note states that a person
has a specific occupation, say King, and if this occupation is in the Subjects facet,
then we generate a browsable link between the person and the subject Kings.
This helps the user to browse directly (potentially) other relevant parts of the
GTAA than the current facet.

5 User Study Part II

5.1 Setup

The second user study targeted evaluation of the adapted version of the GTAA
browser according to the same measures and experimental goals as in the first
study. In total seven subjects, six from Sound & Vision and one from NOS,
followed the same experimental design and procedure (with an improved expla-
nation form). None of the subjects participated in the first study.

Results. Table 2 shows the results for the second user study. We observed the
following:

– There is a decrease in the number of problems (2.14 vs. 3.67). Thus, there
is a clear indication of a higher level of effectiveness.

– The time used for play-around is longer (25 min. vs. 18 min.). This is logical
because the guidelines were more elaborate and the complexity of the search
increased. So, a longer learning curve is needed.

– The total time spent during annotation decreased (16 min. vs. 27 min.)m
as well as the total number of steps per session (25.57 vs. 33.22) and the
number of steps per index term (3.74 vs. 4.87). This indicates an increase
in the efficiency of the search. As the minimum number of steps per index
term is 3 (see Sec. 3), the result in the second study is actually approaching
maximum efficiency.

9 As opposed to the document level, for which facets would be the broadcasting date,
the genre, etc. on top of the different controlled terms used as metadata.

Evaluating a Thesaurus Browser for an Audio-visual Archive 283

Table 2. Results for the second part of the user study. Time measurements are in min.

Stage/Metric Subjects
S10 S11 S12 S13 S14 S15 S16 Average

During play-around
#problems 1 3 3 4 3 0 1 2.14

total time spent 29 24 26 16 26 33 22 25

During annotation
#problems 1 2 2 1 3 2 3 2.00

#alphabetical search used 7 9 9 12 6 9 5 8.14

#hierarchy search used 4 1 0 2 1 1 2 1.57

#filter search used 2 2 0 0 5 0 0 1.29

#steps 26 25 28 28 37 18 10 24.57

#resulting index terms 6 7 6 7 5 9 6 6.57

#steps per index term 4.33 3.57 4.67 4.00 7.40 2.00 1.67 3.74

total time spent on search 12 9 19 14 10 10 15 13

total time spent 15 12 22 19 13 14 18 16

– The average time used for search was 13 min. This is close to 80% of the
total annotation time. In comparison: in the first study it was 67%.

– The use of alphabetical search increased slightly (8.14 vs. 7.00), while at the
same annotation time went down. This means we achieved at least partially
the goal of making alphabetical search more effective (see previous section).

– The hierarchy search increased marginally (1.57 vs. 1.33); the filter search
marginally decreased (1.29 vs. 1.44). The number of times these function-
alities were used prevents any generalization. Our hypothesis is that due to
the improved alphabetical search there was no real need for the other search
types. In this context it is worthwhile to point out that the subjects were
used to alphabetical search already, and had little to no experience with
other search types. The Categories were not displayed in their previous an-
notation tool, and thus these groups of terms were not yet used in a real-life
annotation task. They were not yet adapted to fit this task, contrary to the
thesaurus content, which is updated on a daily basis. The Categories proved
to be too broad to enhance a browsing type of search.

Table 3 shows the aggregated results of the user-satisfaction questionnaire. We
observe here a marginal increase in the satisfaction of the users with respect to
the general browser functionality, the subject-facet functionality and the search
functionality, as well as a marginal decrease in the satisfaction for the browser
functionality. The differences in the aggregated values of the first and second
studies are too small to be able to make any generalization. However, some of
the values on individual questions support the hypothesis that the satisfaction of
the users increased with the adapted browser, while the number of steps required
to perform the task decreased.

While the users in the first study were doubting the usefulness of the browsers
hierarchical structure (3.11), the participants in the second study show strong

284 V. Malaisé et al.

Table 3. Results of the questionnaire about user satisfaction in both studies. Results
were aggregated per question group (left column).

Question
group

Average score
1 = lowest, 7 = highest
User study 1 User study 2

General browser functionality 4.79 5.26

Subject-facet functionality 4.64 5.10

Search functionality 4.82 4.87

Browse functionality 5.02 4.57

consensus that the thesaurus structure in the adapted browser helped them
discover related terms (5.29) and the relationships between them (5.17). Most
of the users in the first study preferred to use the alphabetical search above
the hierarchical one in the “Subject”-facet (6.44), where in the second study we
can see a clear change in a positive direction (5.00) although still preferring the
alphabetical search to the hierarchical. The level of complexity in the hierarchical
search was appreciated more by the users of the adapted browser in the second
study (5.43 vs 4.48), as well as using hierarchical structure in combination with
the search (4.71 vs 4.13). Many of the users both in the first and in the second
test were not happy that it took too long to find the appropriate main category in
the hierarchy (2.82 vs 2.86). This comment is mainly concerning the broadness of
these groupings. Further, there were no significant improvements in the hierarchy
presentation in the browser, thus no major changes were expected, as shown from
the previous values.

6 Discussion and Related Work

This study shows some insights of the use of knowledge structures like thesauri
in application settings. The cataloguers were used to quite basic tools for finding
index terms and were dazzled by the complexity of the browser interface. They
are used to alphabetical search and therefore we gained most performance value
by optimizing this part of the search, as can be seen in he second user study. For
searching a hierarchical representation is apparently not of much value. How-
ever, for disambiguating terms, showing the respective places in the hierarchy
could be a quick means for selecting the right concept. We could also notice a
difference of strategies between the subjects from Sound and Vision (experts of
the thesaurus content) and from broadcasting corporations. The later were more
eager to strat searching a term by browsing. Thus, such a browsing facility could
be helpful to the general public for searching the public Website of Sound and
Vision.

Despite the learning curves (see the times needed for the play-around sessions),
the cataloguers were in general positive about the use of such a tool in their
daily work. This is apparent from the questionnaire, but also from the fact that,

Evaluating a Thesaurus Browser for an Audio-visual Archive 285

based on the results of this study, Sound & Vision is seriously considering of
incorporating the thesaurus browser in their archiving process.

Other studies evaluate thesaurus browsers by user studies, but they usually
focus on the task the thesaurus helps achieving, and not on the thesaurus us-
ability and functionalities themselves. Several authors [8,6,1] have considered
the selection of a term as a particular part of their evaluation, but they evaluate
it against the recall or precision of documents retrieved. Blocks [1] explicitly
stresses the fact that, as their interface enables query expansion on the basis
of the NarrowerTerm relationship in the thesaurus, the tendency of users to
search for the most specific query term is a waste of time: the set of terms that
they choose for formulating the query would be taken into account with a query
involving their common hypernym, by which the users started browsing the the-
saurus in the first place. Our purpose is the opposite: making sure that the
browser proposes relevant functionalities for different search strategies in order
to retrieve the most specific and relevant term for indexing a document. The
perspective of evaluating a tool dedicated to helping the selection of a keyword
for indexing has not been taken into account very often, and this indexing task
has specific requirements.

As mentioned in the introduction, the thesaurus browser in just a small piece
in the larger puzzle of supporting semantic annotation. We see it as a baseline
tool for cataloguers, who may always have the need to do some manual work on
annotation. The majority of the research is aimed at providing automatic tools
for generating candidate indexing terms [3]. In the digital archiving process of
the future we expect the emphasis to lie on semi-automatic annotation, with
the role of the cataloguer shifting to the person who performs quality control
on suggested indexing terms and/or selecting the most appropriate ones from
the terms suggested. Also this process would benefit from a usable thesaurus
browser. The fact that the tool is based on the RDF/OWL specification makes
it a good candidate for reuse with other RDF/OWL-based thesauri. This is in
fact a realistic extension. Many institutions still rely on their in-house thesaurus,
but would benefit from larger a wider scope of thesauri [5]. For example, geo-
graphical data in GTAA are likely to be incomplete and it might be a better
approach to use geo-spatial data from other sources, such as the Getty Thesaurus
of Geographical Names10.

Acknowledgments

The authors are grateful to the 16 participants in the experiments from Sound
& Vision, NOS and EO. Johan Oomen provided useful comments. This research
is supported by the CHOICE, which is part of the DUTCH CATCH Programme
funded by the Dutch National Research Foundation NWO. The evaluation of
the GTAA browser was performed as a usability case study at LaQuSo Lab,
Eindhoven University of Technology.

10 http://www.getty.edu/research/conducting research/vocabularies/tgn/

286 V. Malaisé et al.

References

1. Dorothee Blocks. A qualitative analysis of thesaurus integration for end-user search-
ing. PhD thesis, University of Glamorgan, Hypermedia Research Unit, School of
Computing, UK, 2004.

2. P. Borst, J. M. Akkermans, and J. Top. Engineering ontologies. Int. J. Human-
Computer Studies, 46:365–406, 1997.

3. L. Gazendam, V. Malaisé, G. Schreiber, and H. Brugman. Deriving semantic anno-
tations of an audiovisual program from contextual texts. In Semantic Web Anno-
tation of Multimedia (SWAMM’06) workshop, held in conjunction with WWW’06,
Edinburgh, UK, 2006.

4. S. Handschuh and S. Staab. Annotation of the shallow and the deep web. In
S. Handschuh and S. Staab, editors, Annotation for the Semantic Web, volume 96
of Frontiers in Artificial Intelligence and Applications, pages 25–45. IOS Press, Am-
sterdam, 2003.

5. L. Hollink, A. Th. Schreiber, J. Wielemaker, and B. J. Wielinga. Semantic annota-
tion of image collections. In S. Handschuh, M. Koivunen, R. Dieng, and S. Staab,
editors, Knowledge Capture 2003 – Proceedings Knowledge Markup and Semantic
Annotation Workshop, pages 41–48, 2003.

6. Eric H. Johnson and Pauline A. Cochrane. A hypertextual interface for a searcher’s
thesaurus. In Proc. Second Annual Conference on the Theory and Practice of Digital
Libraries (Digital Libraries 95), Austin, Texas, USA, June, pages 77–86, 1995.

7. A. Miles and D. Brickley. SKOS core guide. Technical report, W3C Working
Draft, 2 November 2005. http://www.w3.org/TR/2005/WD-swbp-skos-core-guide-
20051102.

8. Heiner Stuckenschmidt, Anita de Waard, Ravinder Bhogal, Christiaan Fluit, Ar-
john Kampman, Jan van Buel, Erik van Mulligen, Jeen Broekstra, Ian Crowlesmith,
Frank van Harmelen, and Tony Scerri. A topic-based browser for large online re-
sources. In E. Motta and N. Shadbolt, editors, Proc. 14th Int. Conference on Knowl-
edge Engineering and Knowledge Management (EKAW’04), Northamptonshire, UK,
5-8 October. Springer-Verlag, 2004.

9. M. van Assem, V. Malaisé, A. Miles, and G. Schreiber. A method to convert thesauri
to SKOS. In Proc. Third European Semantic Web Conference (ESWC’06), Bud-
var, Montenegro, June 2006. Accepted for publication. http://www.cs.vu.nl/˜mark/
papers/Assem06b.pdf.

Frequent Pattern Discovery from

OWL DLP Knowledge Bases

Joanna Józefowska, Agnieszka �Lawrynowicz, and Tomasz �Lukaszewski

Institute of Computing Science, Poznan University of Technology,
ul. Piotrowo 3a, 60-965 Poznan, Poland

{jjozefowska, alawrynowicz, tlukaszewski}@cs.put.poznan.pl

Abstract. The Semantic Web technology should enable publishing of
numerous resources of scientific and other, highly formalized data on the
Web. The application of mining these huge, networked Web repositories
seems interesting and challenging. In this paper we present and discuss
an inductive reasoning procedure for mining frequent patterns from the
knowledge bases represented in OWL DLP. OWL DLP, also known as
Description Logic Programs, lies at the intersection of the expressivity of
OWL DL and Logic Programming. Our method is based on a special trie
data structure inspired by similar, efficient structures used in classical
and relational data mining settings. Conjunctive queries to OWL DLP
knowledge bases are the language of frequent patterns.

1 Introduction

World Wide Web is a huge network of information resources. The Semantic
Web [2] is the World Wide Web enriched by machine-readable meta-data. With
Semantic Web technologies, semantically rich and formalized information net-
works can be created, queried and searched. Across these huge, interconnected
datasets, hypotheses can be generated and verified (for example from the life
science domain) thus leading to a derivation of new knowledge from the existing
data. It would be very beneficial for the Semantic Web users if new and inter-
esting knowledge could be discovered and further shared in a way similar to the
data exchange today. Discovery of new and potentially interesting knowledge
from huge data sets is the domain of interest of data mining. The task of data
mining is to search for patterns in data. Most of the methods of data mining
proposed so far operate on a single table with data. This representation requires
the preprocessing and aggregation of data into a single table and can cause the
loss of meaning or the loss of information. The alternative are the methods op-
erating on original, non-preprocessed data sets which exploit implicit semantics,
hidden in the structure of data. The semantic information can be also included
explicitly in the data mining process in the form of rules and relationships exist-
ing in a given domain (so called background knowledge). Relational data mining
[6] (RDM) approaches that mine patterns from relational data bases belong to
the later group of methods. These methods are a part of a larger group of ap-
proaches called inductive logic programming, ILP [15], where data is represented

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 287–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

288 J. Józefowska, A. �Lawrynowicz, and T. �Lukaszewski

in logic-based languages like Datalog. The Semantic Web knowledge bases are
also represented in languages built on logic-based formalisms such as description
logics, (DL). Our goal is to provide methods for mining data sets expressed in the
languages from the ontological layer of the Semantic Web, which can be referred
as to Semantic Web Mining. In this paper we investigate the task of frequent
pattern discovery in knowledge bases represented in OWL DLP, the subset of
Web Ontology Language that lies at the intersection of the expressivity of OWL
DL and Logic Programming. These patterns represent frequently occurring, in
some dataset, characteristics of some concept. The concept can be for example
the client of some bank and the characteristics can be his or her age, place of
living, credit cards owned, loans granted. Finding frequent characteristics may
help for example in targeting the bank services. Using expressive languages may
help, in turn, to represent various (possibly complex) relationships existing in a
given domain of which the concept of our interest is a part. The rest of the paper
is organized as follows. In Section 2 we present the related work, in Section 3 we
present the data mining setting, in Section 4 we present the inductive reasoning
procedure, in Section 5 the experimental results are presented and Section 6
concludes the paper.

2 Related Work

The work related to ours can be divided into two groups: relational data mining
and data mining from more expressive representations. The problem of discov-
ery of frequent relational patterns was introduced by [4]. An ILP method called
WARMR was proposed to solve this problem. WARMR adapts the levelwise
method, originally used in APRIORI algorithm operating on item sets. Instead
of item sets WARMR uses the notion of atom sets as first order logic, function-
free, conjunctive formulas. Atom sets are also referred to as queries that have
almost all of the variables existentially quantified (so-called undistinguished vari-
ables) and the free variables (distinguished ones) bound by a key predicate. The
role of the key predicate is to indicate what is counted during the calculation
of the support of a given query. The support of a query is defined in terms of
the number of distinguished variables bindings for which the key predicate can
be proved. The search space of possible patterns, quite simple for item sets, can
be very huge in case of relational patterns. Also the subset relation that is used
as a generality measure in case of item sets is no longer valid for atom sets.
Instead of the subset relation WARMR uses, widely used in ILP methods, an
approximation of logical implication called θ-subsumption. WARMR searches
the space of patterns one level at a time starting from the most general patterns
and iterating between the candidate generation and the candidate evaluation
phases. In the pattern generation phase WARMR performs a lot of tests for
equivalence under θ-subsumption in order to prune infrequent and redundant
queries.

Frequent Pattern Discovery from OWL DLP Knowledge Bases 289

Although proved to be useful, an early version of WARMR is inefficient, thus
WARMR has been further optimized in many different ways [3]. In [16] and
[17] another relational data mining method named FARMER was introduced.
FARMER uses the first order logic notation, but it does not depend on a time
consuming test for equivalence. The special data structure called trie, inspired
by some implementation of APRIORI, is used instead. FARMER is equivalent
to WARMR under some restrictions and achieves better performance.

Relational data mining methods have some drawbacks. Firstly, θ-subsumption
is not fully semantic measure as it is not equal to the logical implication. Us-
ing Horn rules as a representation language limits the methods for example in
modeling hierarchical structures. Description logic, in turn, was developed to
be able to represent rich structural knowledge. Unfortunately, it does not allow
any interaction of variables in arbitrary ways, which is the property of the Horn
clausal logic. Thus, the combination of the expressive power of DL and Horn
clausal logic as a representation language in data mining seems to be highly de-
sirable. To the best of our knowledge, there is only one approach, named SPADA
[11], that is developed to use such an expressive representation for frequent pat-
tern mining. SPADA uses hybrid AL-log [5] language for the association rule
discovery in multiple levels of description granularity. The current version of
SPADA admits, however, only very basic part of the language of the DL com-
ponent. Also, either the patterns that can be found contain concepts only from
the same level of taxonomy or some concepts are replicated in some, lower levels
of taxonomy.

Recently a new combination of DL and function-free Horn rules, so-called DL-
safe rules [13], has been presented. It allows using a very expressive DL, while
still preserving the decidability property of such combination. Recent tests [14]
show also that KAON21 reasoner implementing this approach outperforms other
reasoners in the case of a high number of instances in the knowledge base which
is exactly the case in our task. In [9] we have discussed the potential of using
this combination for frequent pattern discovery in knowledge bases represented
in DL and containing Horn rules. As a proof-of-concept, we have presented an
approach taking into account OWL DLP knowledge bases, that was inspired
by an early version of WARMR and not optimised. The pattern mining in this
approach took considerable amout of time, because the candidate pattern gen-
eration mechanism barely benefited from what was found in the previous levels.
In [10] we have presented the method based on a special trie structure, simi-
lar to that used in APRIORI and FARMER, where we obtained considerable
speedup as compared to our early, naive approach. In both cases OWL DLP
language was taken into consideration, but in the latter case the language was
further significantly restricted. In this paper we present a procedure for frequent
pattern discovery from OWL DLP knowledge bases, which at the same time
uses an efficient trie structure and does not restrict the language like in the
case of the method presented in [10]. It also applies fully semantic generality
measure.

1 http://kaon2.semanticweb.org

290 J. Józefowska, A. �Lawrynowicz, and T. �Lukaszewski

3 Frequent Patterns in OWL DLP Knowledge Bases

3.1 Pattern Discovery Task

The general formulation of the frequent pattern discovery problem was specified
by [12]. It was further extended to deal with more expressive language in the
case of RDM methods in [4]. With respect to these formulations of the frequent
pattern discovery problem we define our task as:

Definition 1. Given

– a knowledge base in OWL DLP KB,
– a set of patterns in the language L of queries Q that all contain a reference

concept Ĉ,
– a minimum support treshold minsup specified by the user

and assuming that queries with support s are frequent in KB given Ĉ if s≥minsup,
the task of frequent pattern discovery is to find the set F of frequent queries.

The Ĉ parameter determines what is counted. The atom of the query built
from the reference concept contains the only one distinguished variable that can
appear in the query (key variable).

Definition 2. A support of the query Q with respect to the knowledge base KB is
defined as the ratio between the number of instances of the Ĉ concept that satisfy
the query Q and the total number of instances of the Ĉ concept (the trivial query
for the total number of the instances is denoted Qref):

support(Ĉ, Q, KB) =
|answerset(Ĉ, Q, KB)|

|answerset(Ĉ, Qref , KB)| (1)

Example 1. As an illustrative example within this paper we consider the ontol-
ogy describing bank services and clients. Its TBox is presented below:

NoProblemAccount � Account
NoProblemAccount � ∀hasLoan.OKLoan
Man � Client
Woman � Client
F inishedLoan � Loan
OKLoan � Loan
ProblemLoan � Loan
OKFinishedLoan � FinishedLoan� OKLoan
� � ∀isOwnerOf−.Client
� � ∀isOwnerOf.(Account 	 CreditCard)
� � ∀hasLoan−.Account
� � ∀hasLoan.Loan
� �≤ 1hasLoan

Frequent Pattern Discovery from OWL DLP Knowledge Bases 291

Moreover Account, Client, CreditCard and Loan are disjoint with each other,
Man and Woman are disjoint, and OKLoan is disjoint with ProblemLoan.
In the ABox we have the following assertions:

Man(Marek). Account(a1). isOwnerOf(Marek, a1).
Man(Adam). Account(a2). isOwnerOf(Marek, c1).
Woman(Anna). Account(a3). isOwnerOf(Anna, a2).
Woman(Maria). CreditCard(c1). isOwnerOf(Anna, c2).

CreditCard(c2). isOwnerOf(Maria, a3).

Let’s assume that our reference concept is Client. Then the query Qref has the
form q(key):-Client(key) and has 4 items in its answerset. Let’s assume further
that we would like to calculate the support of the example query Q of the form
q(key):-Client(key), isOwnerOf(key, x), Account(x), isOwnerOf(key, y), Credit-
Card(y). The query Q has two items in its answerset that are the clients having
at least one account and at least one credit card. The support of the query Q is
then calculated as:

support(Ĉ, Q, KB) = 2
4 = 0.5

3.2 The Data Mining Setting

The data mining task is defined in terms of patterns that we look for, the data
in which we mine patterns (extensional background knowledge or instances) and
possibly intensional background knowledge in the form of general rules describing
the given domain. Additionally some declarative bias can be specified to restrict
the search space of patterns. We assume pattern mining in knowledge bases KB
represented in OWL DLP, which contain the terminological (TBox) and the as-
sertional (ABox) parts consistent with each other. The intensional background
knowledge in our approach is represented in a TBox. An ABox contains instances
(extensional background knowledge). Our goal is to find frequent patterns in the
form of conjunctive queries over KB.

In the RDM methods, the declarative bias is defined in the form of mode
declarations used to control the variable naming and modes (input/output) and
the order in which atoms are added to the trie. In our approach we can also
specify the list of atoms from which queries are to be built. However, without
the loss of generality we can assume that queries are built from all of the atoms
within the given ontology. It is not necessary to specify variable modes, which
can be determined on the basis of the information from the TBox.

We have chosen the OWL DLP language as a starting point for our investi-
gation on data mining from the Semantic Web, to start from simple while still
powerful enough language. OWL DLP is the Horn fragment of OWL DL i.e.
we can say that OWL DL statement is in DLP if it can be written, semanti-
cally equivalently, as a set of Horn clauses in the first-order logic. We direct the
reader to [7] for more details about the bidirectional translation of premises and
inferences from/to the OWL DLP to/from Logic Programs. As a point of refer-
ence we took the practical definition from [8] that an OWL DL statement is in

292 J. Józefowska, A. �Lawrynowicz, and T. �Lukaszewski

OWL DLP if and only if some given transformation algorithm can rewrite it as
a semantically equivalent Horn clause in the first-order logic. We conform to the
definition of the OWL DLP language presented in that paper. This definition
was used in the reference implementation of the query answering method based
on the DL-safe rules approach, KAON2 [13], that combines a DL (KB-DL) and
a Horn rules (P) component. In a DL-safe rule each variable occurs in a non-DL
atom in the rule body, what makes the rule applicable only to the explicitely
introduced individuals. This property is suitable for our purpose as we are in-
terested in finding frequent characteristics of some concepts on the basis of the
number of instances in the ABox. The semantics of the combined knowledge
base (KB-DL, P) in the DL-safe rules approach is given by the translation into
the first-order logic as π(KB-DL)∪P. The main inference in (KB-DL, P) is the
query answering, i.e. deciding whether π(KB-DL)∪P |= α for a ground atom α.
For the details of the transformation π we refer the reader to the paper [13].

More specifically the frequent patterns that we look for have the form of the
conjunctive DL-safe queries whose answer set contains individuals of the Ĉ con-
cept. In our work we adapt the definition of the conjunctive query from [13] to
our restricted subsets of the languages of the KB.

Definition 3. Let KB be an OWL DLP with DL-safe rules knowledge base, and
let x1,. . .,xn and y1, . . . ,ym be the sets of distinguished and non-distinguished
variables, denoted as x and y, respectively. A conjunctive query over KB, written
as Q(x, y), is a conjunction of DL-atoms of the form A(s) or R(s, t) for R an
atomic role, and s and t distinguished or non-distinguished variables. The basic
inferences are:
Query answering. An answer of a query Q(x, y) w.r.t. KB is an assignment
θ of individuals to distinguished variables, such that π(KB) |= ∃y : Q(xθ, y),
Query containment. A query Q2(x, y1) is contained in a query Q1(x, y2)
w.r.t. KB if π(KB) |= ∀x : [∃y2 : Q2(x, y2) → ∃y1 : Q1(x, y1)].

For the sake of clarity we use the following notation for the queries:

q(key) : −C(key), α1, ..., αn

where q(key) denotes that key is the only one distinguished query variable and
α1,...,αn represent DL-atoms of the query. With regard to our definition of the
frequent pattern discovery we look for the patterns containing the Ĉ concept.
We call them K-queries.

Definition 4. Given the reference concept Ĉ, the K-query is the conjunctive
query that contains, among other atoms, the atom of the form Ĉ(key) in the
body and where the variable key is the distinguished variable.

A trivial pattern is the query of the form: q(key):-Ĉ (key). We assume all the
queries to be DL-safe and to have the linked-ness property. For the Client be-
ing the Ĉ concept the following example K-query can be imagined: q(key):-
Client(key), isOwnerOf(key, x), Account(x), hasLoan(x,y), Loan(y).

The generality notion that we use in our approach is based on the query
containment.

Frequent Pattern Discovery from OWL DLP Knowledge Bases 293

Definition 5. Given two K-queries Q1 and Q2 to the knowledge base KB we
say that Q1 is at least as general as Q2 under query containment, Q1 � Q2, iff
Q2 is contained in the query Q1.

According to the definition of the query support we can say that the query
containment is monotonic w.r.t. support in the case of queries with the same
sets of distinguished variables. As the evaluation of a candidate pattern Q is
based on the computation of the pattern support w.r.t. the knowledge base KB,
it, in turn, boils down in our approach to the query answering where the queries
have the form of K-queries.

4 Algorithm

Our algorithm is based on the idea of the levelwise search known from the
APRIORI algorithm [1]. An important property of the APRIORI-like algorithms
is that for every pair of patterns p1 and p2 :

p1 � p2 ⇒ support(p1) ≥ support(p2)

It can be thus apriori determined that more specific patterns subsumed by an
infrequent pattern are also infrequent. The space of patterns is searched one level
at a time starting from the most general patterns. The pattern space forms a
lattice spanned by a specialization relation � between patterns, where p1 � p2
denotes that pattern p1 is more general than pattern p2. The lattice structure
based on the specialization relation guides the search for patterns and thanks to
that it is not necessary to search the whole, very huge space of patterns.

Also WARMR and FARMER approaches are based on this levelwise method
of the pattern discovery. FARMER is moreover based on a special trie data
structure that was introduced in a variation of APRIORI. In our approach we
propose to adapt the trie data structure to work for our language of patterns. In
the trie data structure, nodes correspond to the atoms of the query. Every path
from the root to a node corresponds to a query (see Figure 2). Evaluation of the
generated patterns is done during trie expansion. New nodes are added to the
trie, only if the resulting queries are frequent. Thus only leaves that correspond
to frequent queries are expanded. Following the classification introduced in [16]
we distinguish three ways in which atoms can be added as leaves to the trie, as
described in Definition 6.

Definition 6 (Refinement rules). Atoms are added to the trie as:

1. dependent atoms (which use at least one variable of the last atom in the
query). Atoms with the following predicates can be considered as dependent:
(a) for a node with concept predicate:

– top-level concepts
– top-level properties
– direct subconcepts of the given concept

(b) for a node with property predicate:

294 J. Józefowska, A. �Lawrynowicz, and T. �Lukaszewski

– top-level concepts
– top-level properties
– direct subproperties of the given property

2. right brothers of a given node;
3. a copy of a given node.

Top-level concepts are obtained by firstly classifying the concept taxonomy and
then retrieving the concepts that do not have any super concept in the classified
taxonomy. The top-level properties are the properties that do not have any su-
perproperty. New nodes are added to the trie with accordance to the presented
division into three classes. For each predicate, when it is added in some atom
to the trie for the first time, the list of admissible predicates is computed. Ad-
missible predicates are the predicates that can be used in the dependent atoms
of the atom built from the given predicate. Also, the way in which the predi-
cates can be used in the dependent atoms is determined (which variables can be
shared with the parent node). This information is then stored in a hash struc-
ture. When the atom with the given predicate is expanded for the next time, the
list of admissible predicates is retrieved from the hash structure. From all the
potential admissible predicates (listed in Definition 6) that can be used in the
dependent atoms only those are chosen that when added will not be inconsistent
with the TBox. Each dependent atom is supposed to have at least one variable
in common with its parent. Before adding any predicate to the list of admissible
predicates, it is checked if the intersections of descriptions (from two predicates)
that are going to describe these shared variables in a query are satisfiable. The
computed dependent atoms are added as children of a given node.

In the next step the right brothers of a given node are added also as its chil-
dren. Right brother copying mechanism takes care that all possible subsets are
generated. The trie data structure allows to keep the children in order. Every
subset is generated only once, that is only one permutation out of a set of depen-
dent atoms is considered. If necessary, the variable names of the right brothers
are changed when they are being copied. The variables that are being changed
are so called output variables (not existing in preceding atoms in the trie). To
maintain a proper variable naming we keep track of which of the given atom
variables are the output variables (and are going to be changed) and which are
going to stay the same when, for example, new binary node is being added as a
child to the binary parent.

Similar test, as in the case of computing the list of admissible predicates, is
performed while adding any new node to the trie. With every node in the trie
the information is associated about the descriptions of all variables occuring in
the path from the root to the given node. These descriptions are built as an
intersection of all descriptions from the path (concepts, domains and ranges of
properties) describing the given variable. While adding a new atom to the trie
the test is performed for each variable occuring in the given atom that occurs
already in the path from the root of the trie. The test consist in checking if the
intersection of the descriptions of this variable from the new atom and from the
path is satisfiable (checkDescsIntersectionSatisfiable function).

Frequent Pattern Discovery from OWL DLP Knowledge Bases 295

Also some other rules are introduced in order to avoid generation of redun-
dant literals. Top-level concepts and top-level properties are added in dependent
atoms only to the nodes representing concepts and properties at the highest pos-
sible level. It allows to avoid generating atoms that anyhow would be copied in
the next step as the right brothers. Also we do not add the atoms that duplicate
functional and inverse functional properties in the query. Because of the lack of
the unique names assumption it would result in generating semantically equiv-
alent and therefore redundant queries. When adding a new atom we check its
grandparent, parent and brothers with regard to the role functionality (check-
PropertyConstraints function). We do not create also the copy of the atom (by
the 3rd refinement rule) that represents the functional or the inverse functional
property.

The ideas presented above are summarized in the trie expansion algorithm
presented below. Atoms in the algorithm have the form P (x, y), where P de-
notes a predicate name and x and y distinguished and undistinguished variables.

Algorithm 1. Trie expansion

1. classify taxonomy;
2. computeAdmissiblePredicates(Cref);
3. leafList ← Cref(key);
4. while leafList not empty do
5. for all A(xa, ya) ∈ leafList do
6. if admissible predicates of A not computed then
7. computeAdmissiblePredicates(A);
8. endif
9. for all D ∈ admissible predicates of A do

10. build dependent atom D(xd, yd) of A(xa, ya)
11. if checkPropertyConstraints() and checkDescsIntersectionSatisfi-

able() then
12. if D(xd, yd) is frequent then
13. addChild(A(xa , ya), D(xd, yd));
14. /* add D(xd, yd) as child of A(xa, ya) */
15. endif
16. endif
17. endfor
18. for all B(xb, yb) ∈ right brothers of A(xa, ya) do
19. create B′(xb, yb′) which is a copy of node B(xb, yb);
20. if checkPropertyConstraints() and checkDescsIntersectionSatisfi-

able() then
21. if a copy B′(xb, yb′) of B(xb, yb) is frequent then
22. addChild(A(xa , ya), B′(xb, yb′));
23. endif
24. endif
25. endfor
26. create A′(xa, ya′) which is a copy of node A(xa, ya);
27. if checkPropertyConstraints() then

296 J. Józefowska, A. �Lawrynowicz, and T. �Lukaszewski

28. if a copy A′(xa, ya′) of A(xa, ya) is frequent then
29. addChild(A(xa , ya), A′(xa, ya′));
30. endif
31. endif
32. endfor
33. update leafList;
34. endwhile

4.1 Illustrative Example

As an illustration of our method let’s consider the example below:

Example 2. (Following Example 1). Let’s assume that we have the TBox from
Example 1 and the ABox which is bigger than in previous example, but for
the sake of clarity we will not discuss it within this example. Then our method
works as follows. First we classify a taxonomy and as an effect we obtain the
classification presented in Figure 1.

Fig. 1. Classified taxonomy (displayed with Protege OWL Viz)

The top-level concepts in the example are: CreditCard, Client, Account,
Loan. For the predicate Client admissible predicates are: isOwnerOf (an atom
built from this predicate can have only the first variable in common with the
atom with Client predicate), Man and Woman. The part of the trie gener-
ated when asking about Client as a reference concept is presented in Figure 2.
The numbers on edges refer to three ways in which the atoms can be added to
the trie. Also some of the lists of variable descriptions associated with nodes are
shown in this Figure. As it was explained earlier in this Section, every path from
the trie top to any of its leaves represents a pattern. The trie in Figure 2 is built

Frequent Pattern Discovery from OWL DLP Knowledge Bases 297

Fig. 2. A part of a trie generated when asking about Client as a reference concept

up to the level 3, that is up to the patterns that have the length of 3 atoms. The
example pattern at this level is: q(key) : −Client(key), isOwnerOf(key, x0),
CreditCard(x0). The discovered patterns represent the frequently occuring in
the data base characteristics of some concepts. The example pattern represents
the clients that have some credit card.

4.2 Completeness

Our algorithm generates every valid, frequent, closed pattern where closed pat-
terns are defined as follows.

Definition 7 (Closed query). A K-query is called closed if it is not possible
to add literals to this query without affecting the semantics.

Lemma 1. Given is a query Q which occurs in the trie T generated by our
Algorithm, and an atom A /∈ Q which is a valid refinement of Q. Then a query
Q′ = (Q1, A, Q2) exists in the trie T , for some subdivision of Q into Q1 and Q2,
such that Q = (Q1, Q2).

Proof. As A is a valid refinement of Q, there is a prefix (Qp, Ap) of Q such that
the atom A is either a dependent atom of Ap or a copy of Ap. The dependent
atom is added by the 1st refinement rule of the algorithm, the copy is generated
by the 3rd refinement rule of the algorithm. Let us now consider relations between
Ap and A:

298 J. Józefowska, A. �Lawrynowicz, and T. �Lukaszewski

(I) A is a dependent atom of Ap. There are the following ”dependency” relations:

1. A represents a top level concept or a top level property and can be added
as a dependent atom of Ap, if it is not causing infrequent or unsatisfiable
query;

2. A represents a direct subconcept of Ap;
3. A represents a direct subproperty of Ap;

Subconcepts/subproperties that are not direct descendants of a given concept/
property are not added as dependent atoms at this level to the trie. If they were
added the resulting query would not be closed, because one could always add
to such a query their parent(s) from the hierarchy. The order of adding subcon-
cepts/subproperties to the trie T ensures that they are added only if their direct
superconcepts/superproperties already occur in the query.

(II) If A is a copy of Ap, A represents a property. If this property is not func-
tional (or inverse functional) then the copy of Ap is created and the output
variable is given a new name by the 3rd refinement rule of the algorithm. Other-
wise the copy of Ap would not be created, because the query in which the atom
with functional (inverse functional) property occurs cannot be closed. To such a
query one can always add any number of copies of such atom without affecting
the semantics. Any number of the output variables in these atoms will denote
the same individual.

Let us now consider the place of injection of the atom A into the query Q in
order to obtain the query Q′ (2nd refinement rule of the algorithm).

If Ap is the last atom of Q, A is added at the end, after Ap and the query Q′

exist in the trie T . If Ap is not the last atom and has a different successor Ap+1

then order of A and Ap+1 in the list of children of Ap in the trie T is one of the
following:

1. A occurs before Ap+1 (Ap, A, Ap+1) when Ap+1 is a right-hand brother of A
in the trie T .

2. A occurs after Ap+1, (Ap, Ap+1, ..., A) when A is a child of Ap and a right
brother of Ap+1 in the trie T . In order to determine the exact injection place
of A, we recursively apply our arguments, taking into account Ap+1 and A.

Theorem 1 (Completeness). For every closed, frequent K-query Q1 in the
pattern space, there is at least one semantically equivalent closed K-query Q2 in
the trie T .

Proof (Sketch). We assume that queries are generated according to the refine-
ment rules from Definition 6 up to the user specified length. For the query Q1

of the length 1 it is obvious that there will be a corresponding query Q2 of the
form q(x) : −Cref(x) in the root of the trie. If the reference concept Cref is not
a top level concept we can always add its ancestors from the concept hierarchy
to the query Q2 to make this query closed. For the query Q1 of another length
this can be shown by induction on the length of the query: an equivalent query
for Q1/last(Q1) exists in the trie T . When atom last(Q1) is a valid refinement
of the equivalent query, one can apply Lemma 1.

Frequent Pattern Discovery from OWL DLP Knowledge Bases 299

5 Experimental Results

The experimental evaluation of the method can be performed in several ways.
Firstly it can be tested whether using domain knowledge in the form of the on-
tology can increase the efficiency of the frequent pattern mining with regards to
the setting where no knowledge is available and all the possible patterns have to
be generated. The efficiency can be measured objectively in terms of the number
of candidate patterns evaluated and the time needed for the pattern generation.
It can be tested also whether using the ontology can reduce the number of the
generated patterns that are semantically redundant. Secondly, it may be poten-
tially evaluated, although it is not easy to measure, how the ontology can help
with the interpretation of the discovered patterns.

The goal of the preliminary experiment presented in this paper was to esti-
mate whether using the ontology can increase the efficiency of the data mining. In
order to test our methods we have used the financial dataset from the PKDD’99
Discovery Challenge to create our ontologies on the basis of this data. The on-
tologies are published online to serve as a benchmark under the SEMINTEC
project page 2. The experiments were performed on the machine with 1500MHz
processor and 504MB of RAM. Below the results are presented of a simple ex-
periment performed on the ontology part containing only the gold credit card
holders, when asked for CreditCard as a reference concept (minsup=0.2) and up
to the 5th level (that is up to the queries of the length of 5 atoms). The numbers
in the Figure refer to the number of patterns generated at each level (that is
at each pattern length). There is the number of candidates that were generated
and then tested with the ABox with regards to their support. Then there is the
number of the patterns that had the support higher than 0.2. Also the ratio is
computed between the patterns discovered and the candidates generated. The
lower the number of the candidates with regards to the number of the patterns
the better is the perfomance of the method, because there is less queries needed
to be posed to the data base. Also, as our method generates every closed pat-
tern, the lower the number of patterns, the better is the efficiency of the method,
because it generates less patterns that are semantically redundant.

The results where computed in three settings: the original method, the method
where we do not check property functionality and thus we create copies of func-
tional properties and the method where there is no ontology available at all and
every possible pattern is created and tested. The third setting serves for the
estimation whether we can gain in the performance thanks to using the ontol-
ogy during the pattern mining. The second setting was performed to see how
big is the influence on the method performance of generating the copies of the
functional properties. In the first two settings the processing time at the first
level is higher than at the second level because it includes also the setup time.
On the Figure we can see that when the ontology is used, the frequent pat-
tern mining process is significantly faster than in the naive approach. There is
lower number of patterns generated at each level (although it cannot be directly

2 SEMINTEC project, http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm

300 J. Józefowska, A. �Lawrynowicz, and T. �Lukaszewski

Fig. 3. Experimental results on gold credit card holders dataset (CreditCard as a ref-
erence concept

compared, because the naive approach generates also the patterns that are not
closed). Shorter processing times of our method are not only achieved because
of the effect of not generating the copies of functional properties, which can be
deduced from the second setting where these copies were generated.

The patterns generated in this experiment are, however, not very long and
further investigation is needed on the algorithm performance (especially to esti-
mate when the pruning of infrequent atoms from the dependent atoms lists takes
bigger effect). Our method has the problem with the convergence. It is caused
by the application of the 3rd refinement rule (generating the copies of atoms).
It should be noted, however, that without the application of the 3rd refinement
rule we cannot obtain every possible, closed pattern. The method that applies
this third way of adding the nodes to the trie generates significantly more pat-
terns that one would obtain only considering single copies of properties. It is
caused by the fact that without the Unique Name Assumption, queries q(x):-
Client(x), isOwnerOf(x,y) and q(x):-Client(x),isOwnerOf(x,y1), isOwnerOf(x,y2)
can return the same result (as it can be deduced that y1 is equivalent y2). In the
future we are going to work on how to deal with this problem.

The experimental results presented here are the preliminary ones. We have
not yet optimized our implementation and the times presented here are mostly
for the illustration of the problem. In the next step of our research we will fo-
cus on further intensive experimental evaluation of the feasibility of this kind
of approach. Therefore in the future we are going to have more experimental
results, on different sizes and complexities of ontologies, concerning especially
the potential benefits of guiding the search of patterns by the ontology instead
of merely evaluating all combinations.

6 Conclusion and Future Work

In this paper we have presented a method for pattern discovery from the ontolog-
ical layer of the Semantic Web. Ontologies that represent the domain knowledge
can be used for driving the search process into more promising areas in the space

Frequent Pattern Discovery from OWL DLP Knowledge Bases 301

of patterns. Ontologies not only can be taken as input but they can also help in
the in-depth interpretation of the discovered patterns. Newly discovered knowl-
edge can be used, in turn, for the input ontologies evolution. Frequent patterns
can be further processed into association rules or used for conceptual clustering
where each query describes a cluster of the instances of the reference concept
and where the clusters can be formed into hierarchy on the basis of the query
containment relation. Further processing of the discovered patterns is the po-
tential subject of our future work.

Our method mines frequent patterns in OWL DLP knowledge bases. As it has
been mentioned there exists only one other approach, system SPADA, that aims
at frequent pattern discovery using hybrid language that combines description
logic and the Horn clausal logic. In SPADA, the Horn rule component is un-
restricted, but description logic component is quite restricted. In our approach
the Horn rule component is restricted, but we in turn focus on the description
logic component. In the future we are going to consider also more expressive
languages within the DL-safe rules approach.

We have shown that our method generates every valid closed pattern. The
main drawback of our current algorithm is that it generates semantically redun-
dant patterns, especially in the case where no restriction on adding the copies
of atoms is imposed. In [16] similar problem was described of receiving seman-
tically equivalent patterns as a result of adding the leaf nodes in the form of
copies of nodes. The next step can be the investigation of different settings
to deal with this problem (possibly under Unique Name Assumption). Our ap-
proach is currently under intensive experimental investigation, focused primarily
on the potential benefits of guiding the search for patterns by the ontology when
compared to the naive approach where every possible pattern is generated. In a
short time we plan to have investigated different sizes and complexities of the
terminological parts as well as of the assertional parts of the knowledge bases.

Acknowledgments. Work partially supported by Polish Ministry of Scien-
tific Research and Information Technology (under grant number
KBN 3T11F 025 28).

We would like also to thank Boris Motik for the support concerning KAON2.

References

1. Agrawal, R. Mannila, H., Srikant, R., Toivonen, H. and Verkamo, A. I. (1996) Fast
discovery of association rules. Advances in Knowledge Discovery and Data Mining.
AAAI Press, Menlo Park, CA, pp. 307 328

2. Berners-Lee T., Hendler J., and Lassila O. (2001) The Semantic Web. Scientific
American, 284(5):34- 43

3. H. Blockeel, L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Vandecasteele
(2002), Improving the efficiency of Inductive Logic Programming through the use
of query packs, Journal of Artificial Intelligence Research 16, 135-166.

4. Dehaspe, L., Toivonen, H. (1999) Discovery of frequent Datalog patterns. Data
Mining and Knowledge Discovery, 3(1): 7-36

302 J. Józefowska, A. �Lawrynowicz, and T. �Lukaszewski

5. Donini, F., Lenzerini, M., Nardi, D., Schaerf, A. (1998) AL-log: Integrating datalog
and description logics, Journal of Intelligent Information Systems, 10:3, 227-252

6. Dzeroski S., Lavrac N., (Eds.) (2001) Relational data mining. Springer
7. Grosof B. N., Horrocks I., Volz R., Decker S. (2003) Description Logic Programs:

Combining Logic Programs with Description Logic. In Proc. of the Twelfth Int’l
World Wide Web Conf. (WWW 2003), 4857. ACM

8. Hitzler P., Studer R., Sure Y. (2005) Description Logic Programs: A Practical
Choice For the Modelling of Ontologies. In Proc. of the 1st Workshop on Formal
Ontologies meet Meet Industry, FOMI’05, Verona, Italy

9. Józefowska J., �Lawrynowicz A., �Lukaszewski T. (2005) Towards discovery of fre-
quent patterns in description logics with rules, Proc. of the International Confer-
ence on Rules and Rule Markup Languages for the Semantic Web (RuleML-2005),
Galway, Ireland, LNCS, Springer-Verlag, 84-97

10. Józefowska J., �Lawrynowicz A., �Lukaszewski T. Faster frequent pattern min-
ing from the Semantic Web, Intelligent Information Processing and Web Mining
Conference, IIS:IIPWM’06, Advances in Soft Computing, Springer Verlag 2006,
121-130

11. Lisi F.A., Malerba D. (2004) Inducing Multi-Level Association Rules from Multiple
Relation, Machine Learning Journal, 55, 175-210

12. Mannila, H., Toivonen, H. (1997) Levelwise search and borders of theories in knowl-
edge discovery. Data Mining and Knowledge Discovery 1(3): 241 - 258

13. Motik B., Sattler U., Studer R. (2004) Query Answering for OWL-DL with Rules.
Proc. of the 3rd International Semantic Web Conference (ISWC 2004), Hiroshima,
Japan, pp. 549-563

14. Motik B., Sattler U. Practical DL Reasoning over Large ABoxes with KAON2.
Submitted for publication

15. Nienhuys-Cheng, S., de Wolf, R. (1997) Foundations of inductive logic program-
ming, vol. 1228 of LNAI. Springer

16. Nijssen, S., Kok, J.N. (2001) Faster Association Rules for Multiple Relations. Pro-
ceedings of the IJCAI’01, 891-897

17. Nijssen, S., Kok, J.N. (2003) Efficient frequent query discovery in FARMER. In
Proceedings of the PKDD 2003, volume 2431 of Lecture Notes in Artificial Intelli-
gence, Springer-Verlag, 350-362

Engineering and Learning of Adaptation

Knowledge in Case-Based Reasoning

Amélie Cordier, Béatrice Fuchs, and Alain Mille

LIRIS UMR 5205
CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/

Université Lumière Lyon 2/Ecole Centrale de Lyon
Bâtiment Nautibus (710),

43, Boulevard du 11 Novembre 1918 - 69622 VILLEURBANNE CEDEX
{acordier, bfuchs, amille}@liris.cnrs.fr

http://liris.cnrs.fr/

Abstract. Case-based reasoning (CBR) uses various knowledge con-
tainers for problem solving: cases, domain, similarity, and adaptation
knowledge. These various knowledge containers are characterised from
the engineering and learning points of view. We focus on adaptation and
similarity knowledge containers that are of first importance, difficult to
acquire and to model at the design stage. These difficulties motivate the
use of a learning process for refining these knowledge containers. We
argue that in an adaptation guided retrieval approach, similarity and
adaptation knowledge containers must be mixed. We rely on a formali-
sation of adaptation for highlighting several knowledge units to be learnt,
i.e. dependencies and influences between problem and solution descrip-
tors. Finally, we propose a learning scenario called “active approach”
where the user plays a central role for achieving the learning steps.

1 Introduction

Case-based reasoning (CBR) is a reasoning paradigm which consists in solving
new problems by adapting the solutions of previously solved problems. The CBR
cycle is constituted of five steps: elaborate, retrieve, reuse, revise and retain. Each
step is of particular importance in the resolution of the problem and involves
specific knowledge.

In CBR, problem-solving experiences constitute basic knowledge units: the
cases. During a reasoning cycle, cases are stored in a case-base which may pos-
sibly be reorganised. The storage of a solved case is considered as the most
traditional approach to CBR learning. Stored cases can be used in later reason-
ing cycles and gradually improve the system’s abilities.

Case-based reasoning is particularly well suited to situations in which domain
theory is weak or not easy to formalise. CBR systems have long been considered
as interesting alternatives to knowledge-based systems, since, in theory, they
require a smaller knowledge engineering effort to become usable in real world
domains. It has even been argued that CBR was a solution to the bottleneck of

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 303–317, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

304 A. Cordier, B. Fuchs, and A. Mille

knowledge acquisition since it is easier to collect a number of cases than to build
a knowledge base.

However, CBR does not avoid completely the need for a knowledge base and
one has to face the knowledge acquisition problem. In fact, CBR systems also rely
on other types of knowledge containers to reason on cases: domain ontologies,
similarity measures and adaptation knowledge.

Similarity knowledge is used to remember the relevant cases and adaptation
knowledge is used to adapt the solutions of stored cases. Experience shows,
however, that similarity and adaptation knowledge available are difficult to turn
into models, being vague or incomplete, and furthermore, they may evolve. It
is therefore advisable to propose tools enabling to acquire and/or learn this
knowledge. This would allow us to refine and improve knowledge as the system
is being used.

This raises the issue of the management of the knowledge base of a CBR
system from its design to its implementation and maintenance. In this paper
we propose to view CBR from a knowledge management perspective. First, we
consider the problem of knowledge management during the design and use of
CBR systems, then we analyse the reasoning cycle, highlighting the various types
of knowledge involved in each step. In particular, we will show that it is very
difficult to formalise similarity and adaptation knowledge as they evolve with
time. After discussing the close link between these two kinds of knowledge units,
we show how the different learning approaches can make use of such a link.
We present the model of adaptation by substitution on which we base ourselves
and we put forward several scenarios for learning adaptation knowledge. We will
emphasise the main role the user has to play in this process.

2 CBR Knowledge: A Typology

Case-based reasoning systems are knowledge-based systems (KBS) which, if we
follow Richter’s proposition [18], make use of four distinct knowledge sources:
domain description vocabulary, cases, similarity knowledge and knowledge of
solution transformation which we call adaptation knowledge.

2.1 Knowledge Management in CBR Systems

We can distinguish several phases in the life cycle of a CBR system: design,
production and maintenance.

During the system’s design and realisation phase, the designers define –in
agreement with domain experts– problem solving methods to be used. An im-
portant engineering effort must be made to build the system’s knowledge bases,
define an initial base of solved cases, describe domain knowledge and formalise
similarity and adaptation knowledge. The system can also be used with known
cases to instantiate the case-base with examples and provide a starting point for
reasoning. The issue of the knowledge representation formalism is also addressed
at that time. The main actors of that phase are of course the experts, who are

Engineering and Learning of Adaptation Knowledge 305

true vectors of domain knowledge, as well as the designers who facilitate the
passage from the knowledge level to the symbol level [17].

During the production phase, the system is used to solve –or help solving–
new problems. The reasoning cycle carrying out this task is examined in the
following section. Problems may be posed to the system by users or system
experts. Interactions between the users and system take place at the beginning
and the end of the cycle, but also during the production phase, as we shall see
later on. As soon as the system is used, a maintenance procedure must ensure the
evolution of the initial knowledge base. At the end of each problem solving step,
the newly solved case is stored in the case-base to be re-used later on. As a result,
there is a gradual increase in the size of the case-base and this highlights the need
to organise and maintain it throughout the life of the system. To deal with this
issue, several works propose indexing or classification techniques to facilitate the
retrieval of stored cases. Other approaches are based on strategies of retention
and forgetting [19] to retain only the more relevant cases and avoid overloading
the case-base. Among all these various approaches, some occur during the retain
phase whereas others are done outside the production phase. Finally, let us note
that maintenance operations can be done by the system itself or by the expert
user. The system can also ask the expert for assistance.

2.2 Reasoning Cycle

As we mentioned earlier, CBR solves new problems by remembering and adapt-
ing already solved problems. The CBR cycle is composed of five steps:

– Elaborate. This step is not included in the classic CBR cycle introduced
in [1]. Even if it was implicitly done in several systems, it was firstly ex-
plicitly mentioned in [8]. During this step, the information necessary to the
resolution of a problem are collected and structured to form a new case: the
target case. The system solicits the user or its outside environment (data-
bases, information systems) to obtain the information needed to continue its
reasoning.

– Retrieve. The retrieval step consists in searching the case-base for one or
several solved cases deemed to be similar to the target case. The selection
of a similar case is based on a similarity measure. Some systems use several
stored cases and combine them to solve a problem, but most of the time,
only one case is used to continue the process. It is called the source case.
The selection of the source case can be done either by the system or by the
user.

– Reuse. This step enables the system to solve the target case by adapting the
selected source case solution which is first copied, then possibly adapted to
satisfy the requirements of a given problem. The adaptation rests on adap-
tation knowledge which can be of different forms according to the various
systems.

– Revise. The solution proposed by the system may not suit the user, or, once
it has been applied, might be unable to solve the given problem. The user
has therefore the opportunity to modify, amend or even refuse the proposed

306 A. Cordier, B. Fuchs, and A. Mille

solution. The revise step allows one to identify the possible causes of fail-
ures and to propose further adaptations to obtain a satisfactory solution:
the revised case. This step is the basis of the learning process, leading to
the improvement of existing adaptation knowledge and giving rise to new
adaptation knowledge.

– Retain. Traditionally, the retain step is considered as the step during which
the case-base is enriched by the revised target case. This retention implies an
update of indexes used to retrieve the cases and sometimes a maintenance
process is needed to reorganise the case-base. But the retention step is also
a means to learn other types of knowledge. Indeed, it is during this step that
additional knowledge can be acquired in various ways.

A concise but complete overview of the work in each of theses steps can be
found in [16].

2.3 Knowledge Acquisition and Learning

The study of the reasoning cycle in CBR has highlighted the diversity of knowl-
edge involved in this process. Table 1 proposes a synthesis. For each knowledge
unit, the following are defined: the various forms of knowledge, the steps dur-
ing which this specific knowledge can be acquired and the methods used for its
acquisition and learning.

One notes that, except for domain knowledge, it is rare to find in the system
knowledge that can be formalised a priori. In fact, even if it is possible to repre-
sent similarity or adaptation knowledge in the initial knowledge base, this knowl-
edge remains vague or uncertain and must be improved during the system use.

2.4 About Similarity and Adaptation Knowledge

The relation between similarity and adaptation knowledge needs to be studied.
Adaptation is one of the most difficult step of CBR and therefore any effort to
facilitate it is useful.

In [20], Smyth introduces the concept of adaptation-guided retrieval. He ar-
gues that the sources cases most similar to the target case are not always the
easiest to adapt, in particular when the similarity rests on surface features. Re-
trieval must therefore search not only for similar cases, but especially easily
adaptable cases.

In the same light, Leake [13] suggests that a good retrieval of a case reduces the
adaptation effort. In fact, the traditional semantic similarity measures may lead
to bad results since they occasionally retrieve source cases which are certainly
very like the target case, but are difficult or even impossible to adapt. This
remark shows the limitations of similarity measures with regard to the whole
reasoning process. Leake therefore proposes to include in the similarity measure
a notion of adaptation cost to make it more pertinent. Hence, in this approach,
the evaluation of the similarity between the target case and the various source
cases takes place in two steps: first, a classic similarity measure is evaluated by

Engineering and Learning of Adaptation Knowledge 307

Table 1. CBR knowledge typology

Knowledge
type

Form of Knowledge Acquisition Step Acquisition/Learning
Approaches

Case

Problem part
and solu-
tion part
(descriptor
sets),
Reasoning
traces (steps
from problem
to solution)

Design: use of
known cases
to train the
system
Retain: stor-
age of cases
solved during
the reasoning
cycle

Classification
Indexing

Domain
knowledge

Concepts:
properties
and relations
with other
concepts,
Rules,
Dependencies

Initial ac-
quisition
relatively
easy if do-
main theory
is weak

Description
and modelling
by the expert

Similarity
knowledge

Predefined
numeric
measures,
Empirical
measures
based on
descriptors
comparison,
More complex
measures tak-
ing into ac-
count adapt-
ability,
Weights,
Similarity
paths,
Etc.

Initial ac-
quisition
not easy,
no design
methodology,
Retrieval:
acquisition of
new knowl-
edge and
improvement
of existing
knowledge

Modelisation
by the expert,
Introspective
learning,
Automatic
symbolic
learning
(data min-
ing, neural
networks . . .)
Etc.

Adaptation
knowledge

Adaptation
rules,
Adaptation
operators,
Adaptation
cases

comparing the cases, then, the most similar retrieved cases are ranked according
to their adaptability.

Lieber on the other hand, proposes an adaptation approach making use of sim-
ilarity paths. Behind this notion lies the idea of a decomposition of adaptation
into simpler adaptation sub-tasks. To expose similarities between two complex

308 A. Cordier, B. Fuchs, and A. Mille

problems, it is often necessary to use domain knowledge. The approach proposed
in [14] aims to decrease the difficulty of adaptation by increasing the similar-
ity between the problems, which involves decomposing a complex problem into
several simpler sub-problems. Intermediary problems are linked together by re-
lations. Each relation corresponds to a specific adaptation enabling the passage
from one problem to another. A similarity path is therefore composed of a linear
sequence of intermediary problems linked together by relations. The first step
of adaptation which involves the building of the similarity path can take place
during the retrieval step. All that remains to do during the second adaptation
phase is to calculate the elementary adaptations corresponding to each step of
the similarity path. In [15], the authors demonstrate how, in a concrete case (the
treatment of breast cancer), the notion of similarity paths may appear as a tool
to assist in the acquisition and creation of models of adaptation knowledge.

These three examples highlight clearly the dual relation existing between sim-
ilarity knowledge and adaptation knowledge. More generally, it is not advisable
to consider the different stages of CBR separately and independently from one
another, but rather as contributing to a common objective. The elaboration
stage, for example, aims to improve retrieval by establishing suitable descrip-
tors. In the same way, the retrieval step tends to facilitate adaptation by using
an adaptability criteria to select a source case. A case’s adaptability must there-
fore be taken into account in the retrieval step. This is why learning adaptation
knowledge if of particular importance. In the following part, we consider the
strategies for knowledge learning.

3 Learning Adaptation Knowledge

3.1 Learning Strategies

Adaptation is studied according to three main directions: unifying approaches
which propose general adaptation models; catalogues of adaptation strategies
applicable to several domains; and methods for acquiring adaptation knowledge
which, in a particular domain, try to highlight the general principles to ex-
plain the adaptation process. A distinction is made between different approaches
of acquisition of adaptation knowledge: knowledge light approaches (according
to [21]) consist in re-using knowledge available in the system to infer new knowl-
edge while other approaches try to acquire new knowledge by using the interface
between the system and its environment. The former approaches take place out-
side the problem solving phase, whereas the latter take place during the solving
process and therefore present numerous possibilities of interactions with the user.

The approach presented in [7] can be classified in the first category: it consists
in determining pairs of cases and using differences between their attributes to
improve adaptation rules. The adaptation rules thus created are then refined and
generalised. Each rule has associated measures of confidence calculated according
to its degree of generalisation.

On the same line of thought, [15] propose an approach of knowledge learning
based on a particular search technique called frequent pattern extraction. The

Engineering and Learning of Adaptation Knowledge 309

main idea is to use the differences between cases taken in pairs. Indeed, these
differences can be interpreted as the result of an adaptation effort. It is then
possible to deduce some adaptation knowledge.

Among the approaches of the second category, we may note that of [12].
According to Leake, knowledge learning takes on several forms. At first, Fox
and Leake proposed an approach using introspective reasoning to give systems
the possibility of learning new knowledge enabling them to improve their overall
efficiency. In [3], the authors apply introspective reasoning to improve indexing of
cases. They extend this approach to the other stages of CBR and in particular, to
the adaptation stage. In the DIAL system, the proposed reasoning focuses mainly
on case adaptation and the learning of various types of knowledge is more or
less linked to this stage. [11] considers case adaptation as a process combining
a group of abstract transformations with memory search strategies. A trace of
the actions taking place during an adaptation phase is stored and constitutes
an adaptation case. Thus, when a new case is encounter, it can be adapted
either from scratch or based on the use of adaptation cases and introspective
reasoning [10]. Adaptation knowledge is acquired via a CBR cycle within the
main CBR cycle. This approach of learning of adaptation knowledge enables an
ongoing refining of adaptation strategies by adapting adaptation cases [9]. Leake
also proposes to evolve similarity knowledge as adaptation knowledge is being
learnt. The idea is to use knowledge contained in adaptation cases to predict
adaptation costs. The proposed method is called RCR (Re-application Costs
and Relevance). It enables us to assess the difficulty of adapting a problem and
brings therefore further detail to the similarity measure [13].

One of the drawback of the approaches that aim to use knowledge already
available in the system to infer new adaptation knowledge is their limitation to
the vocabulary of the case-base. They do not allow one to infer knowledge that
is not explainable using the existing knowledge of the application. Furthermore,
they only give the user a minor role which consist in validating the inferred
knowledge. On the contrary, approaches which allow the learning of knowledge
during the reasoning process provide the possibility of adding new knowledge to
the system and the opportunity for the user to play an actual role in the process.
We stick to the second approach and our wish is to place the user at the centre
of the learning process so that he can simultaneously play an active role in the
solution of the problem and in the learning of adaptation knowledge.

3.2 Learning to Improve Adaptation

In this work, we base ourselves on a formalisation of adaptation by substitution.
The framework of our study was set out in [4]. Adaptation knowledge is modelled
as a set of dependencies. The dependencies we use are similar to those used in
analogical reasoning [5], [6].

After presenting the notions and notations used, we identify the sources as
well as the knowledge units targeted by the learning process (learning targets)
and we propose some learning strategies. We illustrate the various strategies
in the domain of the assessment of the price of a second-hand motor vehicle. In

310 A. Cordier, B. Fuchs, and A. Mille

this problem, cases are vehicles characterised by some features as well as by their
selling price on the used car marketplace. The aim is then to calculate, given
a certain number of dependencies, the estimated selling price of a new vehicle
according to the set of known descriptors.

In our approach, we make a difference between acquisition and learning. We
speak of learning in reference to machine learning, that is to say when the system
is able to learn on his own, using knowledge already available. We use acquisition
when knowledge comes from outside the systems. Thus acquisition approaches
often involve a user which interacts with the system.

An Adaptation Model. The adaptation model proposed in [4] is briefly de-
scribed below. Our hypothesis is that a case is composed of a problem part and
a solution part. It is possible to represent a case using a set of descriptors. A
descriptor consists in a name and a value. We note:

– d as descriptors of problem parts and D as descriptors of solution parts,
– {ds

i}i=1..n as descriptors of a source problem and {Ds
j}j=1..N as descriptors

of its solution,
– {dt

i}i=1..n as descriptors of a target problem and {Dt
j}j=1..N as descriptors

of its solution calculated by adaptation.

In two given cases, the retrieval step estimates the differences between the
pairs of problem descriptors (∆di). The adaptation is based on a group of
relationships between the problem and its solution called dependencies which
indicates that some problem descriptors have an influence upon some solution de-
scriptors. Thereby, adaptation knowledge is mainly constituted of dependencies.

A dependency is a triple (di, Dj, I(Dj/di)) indicating the variation of the
solution descriptor Dj in relation to the problem descriptor di. I(Dj/di) is called
influence function and indicates how to calculate the variation of Dj knowing
the variation of di. Adaptation combines these influence functions I(Dj/di) with
the differences ∆di between problem descriptors to estimate the variations ∆Dj .
These variations are applied to source solutions descriptors Ds

j in order to obtain
target solution descriptors Dt

j.
Dependencies are therefore essential as they contain, through influences, adap-

tation knowledge. Dependencies are domain knowledge which must be assessed
at the beginning of the system’s design to enable its reasoning. But this knowl-
edge remains empirical and uncertain, it must therefore be refined through the
use of the system. This remark is justified by the very existence of a revision
step in the CBR cycle. Indeed, if adaptation knowledge was complete, the system
would be able to guarantee that the adaptation result is correct.

In the adaptation model presented here, dependencies also explicit the close
relationships between similarity and adaptation knowledge. They link problem
and solution descriptors thus highlighting the role they play in the evaluation of
similarity.

Learning Targets. Using the formalisation of adaptation presented before,
we have identified three main adaptation knowledge learning targets: influence
functions, dependencies and classes of problems.

Engineering and Learning of Adaptation Knowledge 311

Influence Functions. Influence functions allow one to calculate the variation of a
solution descriptor according to the variation of a problem descriptor. They can
be of various types and of variable complexities but, most of the time, they can
be assimilated to numeric functions. These functions, even if they are assessed
during the system’s design, can be refined throughout the problem resolution
experiences. For example, it is possible to adjust function applicability thresholds
or to modify some parameters to make functions more and more precise.

Dependencies. During the resolution of a new problem, an adaptation failure
can points out an unknown dependency. Indeed, it is likely that an experience
shows that a problem descriptor ignored until now has an influence, under spe-
cific conditions, on a solution descriptor. In such a situation, a new dependency
must be elaborated and associated with a suitable set of dependencies. It is also
possible that several dependencies put in relation a unique problem descriptor
with a unique solution descriptor but using different influence functions. In this
case, another problem descriptor should be available. This descriptor will be
used to select the dependency and, as a result, the influence to use. It is the
responsibility of the elaboration step of identifying these descriptors.

Classes of Problems. A class of problems correspond to a group of problems
that can be solved using similar adaptation knowledge. Concretely, a class of
problems is composed of a set of dependencies necessary to solve a particular kind
of problem. Thus, discovering a new class of problems is equivalent to identify
a new category of problems unknown until now and consequently impossible to
adapt. Identifying a new class of problems is also a way to acquire adaptation
knowledge.

Knowledge Acquisition and Learning Methods. An adaptation failure
in a CBR system reflects a lack of adaptation knowledge. It’s during the revise
step that this failure is observed: the modifications made by the user on the
solution or the inability of the system to find a suitable solution to the problem
are good indicators of this situation. The revise step is thus, most of the time,
the starting point of the acquisition and learning process. In the following,
we describe some methods combining acquisition and learning techniques
applicable in the CBR field.

Exploiting the Revise Step. The adaptation process, using the influence func-
tions, estimates differences between solution descriptors. We note these differ-
ences: ∆adaptedDj . Applied to source solution descriptors, these differences allow
one to estimate the values of the target solution descriptors (Dt

j). These differ-
ences represent the modifications made by the system.

Other differences are produced by the user during case revision. They are
noted as ∆revisedDj . They allow one to quantify the difference between one
target solution descriptor Dt

j before and after the user’s revision. In consequence,
these differences represent the adjustment made by the user. We note Dtr

j as
target solution descriptor j after the revise step.

312 A. Cordier, B. Fuchs, and A. Mille

In this model ⊕ (resp. �) is an abstract operator which should be defined
according to the types of the descriptors. For simplicity sake, we will assimilate
this operator to the numeric operator + (resp. −) in our example. Thus, we have:

– Dt
j = Ds

j ⊕ ∆adaptedDj, and
– ∆revisedDj = Dtr

j � Dt
j

These notations are used in the figure 1 which presents relationships between
the various descriptors considering in particular the retrieve and the reuse steps.
Dtr

j are produced by the user: as soon as the system knows them, it is able to
evaluate ∆revisedDj.

The differences ∆revisedDj bring to light problems on the influence functions
used to infer the values of the descriptors. Observing such differences can lead
to the trigger of a learning process. Indeed, if a solution has been revised by
the user before its storage, it is possible to exploit the differences represented by
∆adaptedDj and ∆revisedDj during a learning process.

An influence function is characterised by its parameters as well as by
thresholds indicating domains on which the function can be applied. Studying
∆revisedDj and ∆adaptedDj can allow one to refine both of these elements.

Retrieve Process on the Solutions. Another possibility to acquire adaptation
knowledge, inspired by [9], consists in doing a retrieve step on the revised source
solutions stored in the case-base and to classify the retrieved cases according
to their similarity with the revise target solution. If the better case, from the
solution point of view, does not match with the source case used to solve the
target problem, then we can suppose that one or more dependencies used during
the retrieve step were incorrect or incomplete and have to be adjusted.

We believe that various methods can allow the acquisition and learning of
adaptation knowledge in this specific situation. Several ideas can be explored:
applying an introspective reasoning to do a comparison of descriptors in order
to deduce modifications to be made on influence functions; setting a cooperative
environment to allow the user to specify on his own how dependencies have to
be corrected; etc.

Replaying the Reasoning Cycle with the User. If the revise step does not allow
one to obtain a satisfactory solution to the current problem, it may then be
useful to implicate the user in the reasoning cycle. The system and the user
will then try to solve the problem together. In order to do this the system will
provide an assistance to the user. This assistance can consist of a presentation
of the knowledge used and of an explanation of the system’s reasoning process.
Allowing the user to specify or complete the knowledge used to solve the problem
will certainly lead to a more satisfactory solution.

We also believe that it is possible to acquire and/or learn adaptation knowl-
edge by exploiting a trace of the user’s actions. This knowledge can certainly
be represented as adaptation cases. Such interactive approaches enable one to
discover new classes of problems and even to guide the classification of a given
problem into a suitable class of problems.

Engineering and Learning of Adaptation Knowledge 313

Fig. 1. Relationships between solution descriptors. This figure presents relation-
ships and differences between solution descriptors during reuse and revise steps of the
CBR cycle.

Acquisition and Learning Processes: A Scenario. As a synthesis, figure 2 presents
various possible learning situations as well as applicable methods in each situ-
ation. We want to insist on the fact that is advisable to allow a cooperation be-
tween the system and the user at any time and not only after a reasoning failure.

Finally, it is possible to draw a link with data mining approaches that can
advantageously complete the approaches introduced before. For example, [15]
use data mining techniques to help the discovery of new possible dependencies.
In this work, the authors also use theses techniques to check the applicability of
an influence function to some known cases.

Illustration Through an Example. This example comes from a well known
domain: the used cars selling marketplace. The problem is to estimate the price
of a car knowing some of its characteristics and having experience in the form
of cases stored in a case-base. A case is a car description composed of vari-
ous descriptors. One of these descriptors is the price of the car: the price is known

314 A. Cordier, B. Fuchs, and A. Mille

Fig. 2. Knowledge acquisition and learning process

Fig. 3. Graphical representation of a part of an influence function. We can see
that the function is only defined for a particular range of ∆di values (mileage values).
This means that the case is not adaptable in this domain. This figure also represents
the difference ∆adaptedDj and ∆revisedDj to illustrate the possibility of an adaptation
knowledge learning.

if the case is solved. In this section we briefly illustrate the concepts introduced
before on this problem.

We assume that a car is described by several descriptors: mileage, age, power,
colour, type of car (private car or collector car), price, etc.

We first consider the influence functions. A linear influence function allows
one to compute a price variation of a car considering a variation of its mileage
in comparison with a reference car: this is a simple problem. A simple numeric
function indicates that a price variation of one mile induce a variation of .01
euro. Thus a difference of 30 000 miles between two cars will implies a difference
of 300 euros between their respective prices. It is possible to learn adaptation

Engineering and Learning of Adaptation Knowledge 315

knowledge by refining some of the function parameters: for example, the value
of the coefficient can be adjusted. The thresholds of the function can also be
modified: for example, we can learn that if the car is less than 300 miles, the
influence function is not applicable anymore.

The figure 3 presents an influence function in the domain of the simplified
example we use: evaluating the price of a used car. In this domain, adjusting a
dependency can be done by modifying an influence function or by discovering a
new dependency: for example, the fact that the power has implications in the
evaluation of a car price.

Let’s suppose that we have learnt a new dependency: the price of a car depends
not only on its mileage but also on its age. We now need to use two dependencies
to solve the problem. This is an extremely simple example of the dependencies
we can learn.

In this domain, we can consider that the methods used to estimate the price
of a private car and those used to estimate the price of a collector car are not
the same. These two problems correspond to two different classes of problems.

4 Conclusion

In this paper we have drawn up an overview of the different kind of knowledge in-
volved in CBR allowing to characterise its reasoning process from the knowledge
point of view. We have shown in what extent CBR in general and the learning
of adaptation knowledge more precisely could take benefit of a unification of the
similarity and adaptation knowledge. Then, based on an adaptation model us-
ing the dependency concept, we have identified knowledge units to be learnt and
suggested several learning scenarios which have been illustrated through an sim-
ple example. Currently, an implementation of these ideas is being achieved using
the JColibri tool [2], a framework for prototyping of CBR systems. There are
several perspectives to this work. At this time, research is ongoing for setting an
experimentation protocol. It aims at validating learnt knowledge and quantify-
ing the global enhancement of the system’s competence obtained by the learning
scenario. This experimentation can serve as a basis for a comparative study with
other approaches based on machine learning techniques applied to CBR. During
our first experiment, we have limited the study to simple dependencies, i.e. where
a single problem descriptor has an influence on a single solution descriptor. Next,
we will have to take into account the most general case where a single solution
descriptor is influenced by several problem descriptors. Furthermore, we have
also limited the study to the case where dependencies are numerical functions.
We have to study the generalisation of this approach to complex cases, i.e. when
some descriptors are symbolic.

Acknowledgements

The authors would like to thank the referees whose remarks and comments were
very helpful to improve this paper.

316 A. Cordier, B. Fuchs, and A. Mille

References

1. Aamodt, A. and Plaza, E.: Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. AICOM 7, pp. 39-59.

2. Bello-Tomas, J.J., Gonzalez Calero, P. and Diaz-Agudo, B.: JColibri: An Object-
Oriented Framework for Building CBR Systems. European Conference on Case-
Based Reasoning 2004, (2004).

3. Fox, S. and Leake, D.B.: Using Introspective Reasoning to Guide Index Refinement
in Case-Based Reasoning. Sixteenth Annual Conference of the Cognitive Science
Society, Atlanta, GA, (1994), pp. 324-329.

4. Fuchs, B., Lieber, J., Mille, A. and Napoli, A.: Towards a unified theory of adapta-
tion in Case-Based Reasoning. Proceedings of the third International Conference
on Case-based Reasoning, ICCBR-99, Lecture notes in Artificial Intelligence, Ger-
many: Springer Verlag, (1999).

5. Gentner, D. and Forbus, K.: MAC/FAC: A model of similarity-based retrieval.
Thirteenth Annual Conference of the Cognitive Science Society, Hillsdale, NJ:
Lawrence Erlbaum, (1991), pp. 504-509.

6. Gick, M. L. and Holyoak, K.J.: Analogical problem solving. Cognitive Psychology,
12, (1980), pp. 306-355.

7. Hanney, K. and Keane, M.T.: Learning Adaptation Rules from a Case-Base. Pro-
ceedings of the Third European Workshop on Advances in Case-Based Reasoning,
Lecture Notes In Computer Science, (1996).

8. Herbeaux, O. and Mille, A.: ACCELERE: a case-based design assistant for closed
cell rubber industry. Knowledge-Based Systems, 12, (1999), pp. 231-238.

9. Leake, D.B.: Learning Adapatation Strategies by Introspective Reasoning about
Memory Search. AAAI-93 Workshop on Case-Based Reasoning, AAAI Press,
Menlo Park, CA, (1993), pp. 57-63.

10. Leake, D.B.: Becoming an Expert Case-Based Reasoner : Learning to Adapt Prior
Cases. Eighth Annual Florida Artificial Intelligence Research Symposium, (1995),
pp. 112-116.

11. Leake, D.B., Kinley, A. and Wilson, D.: Acquiring Case Adaptation Knowledge : A
Hybrid Approach. Proceedings of the Thirteenth National Conference on Artificial
Intelligence, AAAI Press, Menlo Park, CA, (1996).

12. Leake, D.B., Kinley, A. and Wilson, D.: Multistrategy Learning to Apply Cases for
Case-Based Reasoning. Third International Workshop on Multistrategy Learning,
AAAI Press, Menlo Park, CA, (1996), pp. 155-164.

13. Leake, D.B., Kinley, A. and Wilson, D.: Case-Based Similarity Assessment: Esti-
mating Adaptability from Experience. Fourteenth National Conference on Artificial
Intelligence, AAAI Press, Menlo Park, CA, (1997), pp. 674-679.

14. Lieber, J.: Reformulations and Adaptation Decomposition. International Confer-
ence on Case-Based Reasoning - ICCBR’99, LSA, University of Kaiserslautern,
Munich, Germany, (1999).

15. Lieber, J., d’Aquin, M., Bey, P., Napoli, A., Rios, M. and Sauvagnac, C.: Acquisi-
tion of Adaptation Knowledge for Breast Cancer Treatment Decision Support.9th
Conference on Artificial Intelligence in Medicine in Europe2003 - AIME 2003, Pro-
taras, Chypre, (2003).

16. Lopez de Mantaras et al.: Retrieval, reuse, revision and retention in case-based
reasoning. The Knowledge Engineering Review, (2005).

17. Newell, A.: The Knowledge Level. AI, 19(2), (1982), pp. 87-127.

Engineering and Learning of Adaptation Knowledge 317

18. Richter, M.M.: Classification and Learning of Similarity Measures. Studies in Clas-
sification, Data Analysis and Knowledge Organisation, Springer, (1992).

19. Smyth, B. and Keane, M.T.: Remembering To Forget : A Competence-Preserving
Case Deletion Policy for Case-Based Reasoning Systems. IJCAI, (1995), pp.
377-383.

20. Smyth, B. and Keane, M.T.: Adaptation-Guided Retrieval: Questioning the Simi-
larity Assumption in Reasoning. Artificial Intelligence, 102(2), (1998), pp. 249-293.

21. Wilke, W., Vollrath, I., Althoff, K. D. and Bergmann, R.: A Framework for Learn-
ing Adaptation Knowledge Based on Knowledge Light Approaches. Adaptation
in Case-Based Reasoning: A Workshop at ECAI 1996, Budapest, (1996).

A Methodological View on
Knowledge-Intensive Subgroup Discovery

Martin Atzmueller and Frank Puppe

Department of Computer Science
University of Würzburg, 97074 Würzburg, Germany
Phone: +49 931 888-6739; Fax: +49 931 888-6732

{atzmueller, puppe}@informatik.uni-wuerzburg.de

Abstract. Background knowledge is a natural resource for knowledge-intensive
methods: Its exploitation can often improve the quality of their results signifi-
cantly. In this paper we present a methodological view on knowledge-intensive
subgroup discovery: We introduce different classes and specific types of useful
background knowledge, discuss their benefit and costs, and describe their appli-
cation in the subgroup discovery setting.

1 Introduction

Knowledge-intensive learning methods (e.g., [1]) use background knowledge for a sim-
ple reason: Utilizing background knowledge can often significantly improve both the
quality of their results and the efficiency of the search process. In this paper, we de-
scribe how to exploit background knowledge for subgroup discovery, a method that has
first been formalized by Klösgen [2] and Wrobel [3]: Subgroup discovery is a powerful
and broadly applicable technique aiming at discovering interesting subgroups concern-
ing a certain target property of interest, e.g., in the subgroup of smokers with a positive
family history the risk of coronary heart disease (target property) is significantly higher
than in the general population.

Background knowledge can help to improve subgroup discovery in several ways,
e.g., it can increase the representational expressiveness and also focus the subgroup
discovery algorithm on the relevant patterns. Then, similar to a constrained query to a
web search engine, the user is not flooded with too many (uninteresting) results. Fur-
thermore, for increasing the efficiency of the search method the search space can often
be constrained. However, knowledge acquisition is often challenging and costly, known
as the ’knowledge acquisition bottleneck’: Then, an important idea is to ease know-
ledge acquisition by reusing existing domain knowledge, i.e., knowledge that is already
known to the user, or that is contained in existing ontologies or knowledge bases. There-
fore, we propose to apply as much background knowledge as possible, with potentially
reduced costs by knowledge reuse.

The rest of the paper is organized as follows: We first briefly introduce subgroup
discovery in Section 2. After that, we propose several types of background knowledge
in Section 3, discuss their benefit and costs, and describe how they can be applied for
subgroup discovery in Section 4. Finally, we conclude the paper with a discussion and
summary in Section 5, and point out interesting directions for future work.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 318–325, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Methodological View on Knowledge-Intensive Subgroup Discovery 319

2 Subgroup Discovery

The main application areas of subgroup discovery [2,3] are exploration and descriptive
induction, to obtain an overview of the relations between a target variable and a set of
explaining variables. A subgroup discovery setting includes a target variable (concept
of interest), a subgroup description language, a specific quality function, and a search
strategy for which, e.g., a beam search technique [3] is often applied:

Let ΩA be the set of all attributes. For each attribute a ∈ ΩA a range dom(a) of
values is defined; we assume VA to be the (universal) set of attribute values of the form
(a = v), a ∈ ΩA, v ∈ dom(a). A single-relational propositional subgroup description
sd = {e1, e2, . . . , en} is defined by the conjunction of a set of selection expressions (se-
lectors) ei = (ai, Vi), i.e., selections on domains of attributes, ai ∈ ΩA, Vi ⊆ dom(ai).
We define Ωsd as the set of all possible subgroup descriptions. The interestingness of a
subgroup can be flexibly formalized by a (user-defined) quality function q : Ωsd → R
(e.g., [2]) that is used in order to evaluate a subgroup description sd ∈ Ωsd. Typical
quality criteria include the difference in the distribution of the target variable concern-
ing the subgroup and the general population, and the subgroup size. Usually the (post-
processed) k best subgroups and/or the subgroups with a quality above a minimum
threshold are presented to the user as the result of the subgroup discovery method.

3 Types and Classes of Background Knowledge

The proposed classes of background knowledge include constraints, ontological know-
ledge and abstraction knowledge which we describe below: Constraints specify con-
ditions that the mined patterns need to satisfy, e.g., quality and language constraints.
Ontological knowledge describes general properties of the objects contained in the do-
main ontology and can be used to infer additional constraints. Abstraction knowledge is
given by ’virtual’ rule-based attributes. Figure 1 shows the knowledge hierarchy, from
the three knowledge classes to the specific types, and the objects they apply to.

Constraint knowledge can be applied, e.g., for filtering patterns by their quality, and
for restricting the search space. We distinguish the following types:

– Language constraints can, e.g., restrict the maximal number of conjuncts of a
subgroup description. The description language itself can range from purely con-
junctive languages to languages allowing internal disjunctions and negation.

– Quality constraints relate, e.g., to a minimum quality value, a minimum support,
or a statistical significance threshold, that the subgroup patterns need to satisfy.

– Value exclusion constraints and attribute exclusion constraints are applied for
filtering the domains of attributes and the attribute space, respectively.

– Value aggregation constraints can be specified in order to form abstracted dis-
junctions of attribute values, e.g., intervals for ordinal values. For example, con-
sider the attribute age with the values ’< 40’, ’40 − 50’, ’50 − 70’, ’> 70’: Then,
we can derive the aggregated values ’≤ 50’ and ’> 50’. In general, aggregated
values are not restricted to intervals, but can cover any combination of values.

– Attribute combination constraints are applied for filtering/excluding certain
combinations of attributes, e.g., if these are already known to the domain specialist.

320 M. Atzmueller and F. Puppe

Knowledge

Abstraction
Knowledge

Derived
(Virtual)
Attributes

Attributes:

• Attribute
Exclusion

• Attribute
Combination

Constraint
Knowledge

Patterns:

• Priority
Groups

• Subgroup
Patterns

• Language,
Quality Constr.

Values:

• Value
Exclusion

• Value
Aggregation

Ontological
Knowledge

Values:

• Normality,
Abnormality
Information

• Similarity
Information

Attributes:

• Attribute
Weights

• Ordinality
Information

Patterns:

Partition
Class
Information

Fig. 1. Hierarchy of (abstract) knowledge classes and specific types

– Priority groups are partially disjunctive sets of attributes with an assigned priority.
The subgroup discovery method starts with the attribute set with the highest prior-
ity. If the currently considered subgroups cannot be improved any further, then it
iteratively takes the next (prioritized) set of attributes into account.

– Subgroup pattern constraints given by selected subgroup patterns can be used,
e.g., to avoid the rediscovery of already known subgroups, for comparison to a
(new) set of subgroups, and for deriving new attributes as discussed in Section 4.

Ontological knowledge is commonly used for the development of knowledge systems.
The knowledge can either be defined by the user, or can partially be learned semi-
automatically (e.g., [4]). It consists of the following types:

– Attribute weights denote the relative importance of attributes, and are a common
extension for knowledge-based systems, e.g., for case-based reasoning systems [4].

– Abnormality/Normality information is usually easy to obtain for diagnostic do-
mains, e.g., in the medical domain the set of ’normal’ attribute values contains the
expected values, and the set of ’abnormal’ values contains the unexpected/patho-
logical ones; often the unexpected values are more interesting for analysis. Each
attribute value is attached with a label specifying a normal or an abnormal state.
Normality information only requires a binary label. Abnormality information de-
fines several categories, e.g., consider the value range {normal, marginal, high, very
high} of the attribute temperature. The values normal and marginal denote normal
states of the attribute while the values high and very high describe abnormal states.

– Similarity information between attributes values is often applied in case-based
reasoning: It specifies the relative similarity between the individual attribute values.
For example, for a nominal attribute color with the value range white, gray, black
we can state that the value white is more similar to gray than it is to black.

– Ordinality information specifies if the value domain of a nominal attribute can be
ordered, e.g., the qualitative ones age and liver size are ordinal while color is not.

– Partition class information provides semantically distinct groups of attributes.
These partially disjoint subsets usually correspond to certain problem areas of the
application domain, e.g., in the medical domain of sonography such partitions are
representing different organ systems like liver, pancreas, stomach, and kidney.

A Methodological View on Knowledge-Intensive Subgroup Discovery 321

Normality
Information

Abnormality
Information

Similarity
Information

Ordinality
Information

Attribute
Weights

Partition
Class

Information

Value
Exclusion

Constraints

Value
Aggregation
Constraints

Attribute
Exclusion

Constraints

Attribute
Combination
Constraints

Fig. 2. Deriving constraints using ontological knowledge

Figure 2 shows how
ontological knowledge
can be used in order to
derive further ’basic’
constraints. Below, we
summarize how new
constraints can be in-
ferred using ontologi-
cal knowledge.

– We can construct attribute exclusion constraints using attribute weights to filter the
set of relevant attributes by a weight threshold or by subsets of the weight space.

– Using abnormality/normality knowledge we can specify global value exclusion
constraints for a set of abnormal values, or for the normal values.

– Using similarity or abnormality/normality information we can filter and model the
value ranges of attributes: If the similarity between two attribute values is very
high, then they can potentially be analyzed as an aggregated value. Similarly, global
abnormality groups can be defined by sets of abnormality degrees specifying which
values to combine. For example, in the medical domain attribute values such as
probable and possible (with different abnormality degrees) can often be aggregated.

– Ordinality information can be easily used to construct aggregated values, which
are often more meaningful for the domain specialist: We can consider all adjacent
combinations of attribute values, or all ascending/descending combinations starting
with the minimum or maximum value, respectively. Whenever abnormality infor-
mation is available, we can partition the value range by the given normal value and
only start with the most extreme value. An example is discussed in Section 4.1.

– Partition class information can be used to infer attribute combination constraints
in order to prevent the combination of individual attributes that are contained in
separate partition classes. Alternatively, inverse constraints can also be derived,
e.g., to specifically investigate inter-organ relations in the medical domain.

Abstraction knowledge is given by derived (rule-based) attributes. These abstractions
often correspond to certain known dependencies between attributes, e.g., in the medical
domain, we can infer the body mass index, given the attributes height and weight. For
deriving a value va of a nominal attribute a, a rule of the form rva = cond(rva) → va

is used, where the rule condition cond(rva) contains conjunctions and/or disjunctions
of (negated) attribute values vi ∈ VA. The derived attributes serve three main purposes:

– They focus the subgroup discovery method on the relevant analysis objects.
– They decrease multi-correlations between attributes that are not interesting.
– Derived attributes can reduce missing values for a given concept, since they can

be constructed such that a defined value is more often computed if the respective
concept would have a missing value otherwise.

Due to the limited space we refer to [5] for a detailed discussion. Abstraction knowledge
is probably the most costly class of background knowledge: If the abstractions are not
based on discovery results, then they have to be formalized manually by the expert.

322 M. Atzmueller and F. Puppe

4 Background Knowledge: Applicability, Benefit and Cost

In the table below we summarize the characteristics of the proposed classes and types
of background knowledge (CK = constraint knowledge, OK = ontological knowledge,
AK = abstraction knowledge) in terms of the ’derivable knowledge’ (if applicable), their
syntactical and cognitive costs, and their potential contribution to restricting the search
space and/or focusing the search process. Considering the costs and the impact of the
knowledge types on the search space, the label - indicates no cost/impact; the labels
+, ++, and +++ indicate increasing costs and impact. A +(+) signifies, that the respec-
tive element has low costs if it can be derived/learned, and moderate costs otherwise.
Similarly ++(+) indicates this for moderate and high costs.

Knowledge Derivable Costs Search
Class Type Knowledge Syn. Cog. Restr. Foc.
CK Language C. – – + ++ +
CK Quality Constr. – – ++ ++ ++
CK Value Exclusion Constr. – (+) + + +
CK Val. Aggregation Constr. – (+) +(+) ++ +
CK Attr. Exclusion Constr. – (+) +(+) ++ ++
CK Attr. Combination Constr. – (+) +(+) ++ ++
CK Priority Group Constr. – + ++ – +
CK Subgroup Pattern Constr. Deriv. Attr. +(+) +(+) – ++
OK Normality Information Val. Excl. + + ++ ++
OK Abnormality Information Val. Excl. ++ ++ ++ ++

Val. Aggr. + ++
OK Similarity Information Val. Aggr. +(+) +(+) ++ ++
OK Ordinality Information Val. Aggr. + + +++ ++
OK Attribute Weights Attr. Excl. (+) +(+) ++ ++
OK Partition Class Inform. Attr. Comb. + + ++ ++
AK Derived Attributes Deriv. Attr. +++ +++ – +++

In our experience, the most im-
portant types of knowledge with
an especially good cost/benefit ra-
tio are quality constraints, attribute
exclusion constraints, normality in-
formation, ordinality information,
and especially derived attributs (in-
dicated in bold type). In the next
section, we provide examples for
applying most of these knowledge
types. After that, we summarize
how we can exploit background
knowledge for subgroup discovery.

4.1 Background Knowledge – Examples

Let A be a nominal attribute with the range dom(A) = {a1, a2, a3, an, a5, a6, a7} of
attribute values, e.g., A could correspond to the (discretized) attribute body weight with
values like massive underweight, strong underweight, underweight, normal weight,
overweight, strong overweight, and massive overweight. Ordinality information can be
easily applied in order to derive a restricted set of aggregated values denoting different
weight groups. If we want to exclude all combinations not being neighbors (excluding
irrelevant combinations like (a1, a3)), we obtain only 77 combinations of all adjacent
attribute values, in contrast to considering all possible 127 attribute value combinations:

(a1, a2), (a1, a2, a3), . . . , (a1, . . . , a7), (a2, a3), (a2, . . . , a7), . . . (a6, a7) .

In the medical domain we often know that a certain attribute value denotes the nor-
mal value (in our example ’normal weight’ = a4). This value is often not interesting
for the analyst who might focus on the ’abnormal’ value combinations. Combining nor-
mality and ordinality information, we then only need to consider 10 combinations:

(a1), (a1, a2), (a1, a2, a3), (a2, a3), (a3), (a7), (a7, a6), (a7, a6, a5), (a6, a5), (a5) .

If we are interested only in combinations including the most extreme value (typical in
medicine), we can further reduce the number of ’meaningful’ combinations to 6:

(a1), (a1, a2), (a1, a2, a3), (a7), (a7, a6), (a7, a6, a5) .

A Methodological View on Knowledge-Intensive Subgroup Discovery 323

The savings of such a reduction of value combinations, which can be derived using
ordinality, normality information and interestingness assumptions, are huge: If there are
10 attributes like A with seven values each, then the size of the search space considering
all possible selector combinations is reduced from 12810 = 1021 to 710 = 3 · 108.

a1 a2 a3 a4 a5 a6 a7
b1 0 0 1 2 3 4 4
b2 0 0 1 2 3 4
b3 0 0 1 2 3
b4 0 0 1 2
b5 0 0 1
b6 0 0
b7 0

Concerning abstraction knowledge, let us consider an addi-
tional attribute B denoting the body height with the (ordinal)
value range dom(B) = {b1, b2, b3, bn, b5, b6, b7}.

In the following, we assume that both A and B are quan-
titative nominal attributes. Then, we can derive the attribute
body mass index (BMI) given the body weight (attribute A)
and the body height (attribute B). The matrix shows the com-
binations of the respective attribute values: The derived at-
tribute values corresponding to a high body mass index are given by the entries 1, 2, 3, 4
in ascending order, while a ’0’ denotes the ’normal’ case.

It is easy to see that in this example the ’meaningful’ combinations of the respective
attribute values are always on the diagonal, or form triangular matrices, e.g., considering
the entries ’3’ and ’4’ of the matrix. In our example, these combinations correspond to
relatively small people with a large body weight: In principle, the distribution of the in-
dividual values can be arbitrary. Then, the distributions of the combined attribute values
can also be of arbitrary shape. By constructing selection expressions containing inter-
nal disjunctions we can only select quadrangular sub-matrices and would thus include
larger groups that can ’confound’ the ’new values’, i.e., the original value combinations,
since the quadrangular sub-matrices might contain at least one potentially misleading
value combination. In contrast, using derived attributes we can carve out arbitrary parts
of the matrix, e.g., the triangular sub-matrices shown in the example. Then, a derived
attribute capturing the specific value combinations is more expressive and meaningful
for the user, and can focus the analysis significantly.

4.2 Applying Background Knowledge for Subgroup Discovery

In the following, we describe knowledge elements considering their effect(s) for the
subgroup discovery task, i.e., restricting the search space, focusing the search process,
post-processing the results, and increasing the representational expressiveness.

Restricting the Search Space and Focusing Search. Most of the knowledge classes
described in Section 3 can be directly integrated in the subgroup discovery step:

– Language constraints and quality constraints are applied as filters in order to re-
strict the search space and to focus the search process, e.g., by providing con-
cise/simple description languages and by pruning uninteresting hypotheses below
minimal quality and interestingness thresholds.

– Constraint knowledge (and ontological knowledge that is used to derive constraint
knowledge) such as value exclusion constraints, value aggregation constraints and
attribute exclusion constraints helps to focus the search process. While attribute
exclusion and value exclusion constraints restrict the search space just by construc-
tion, value aggregation constraints do not necessarily restrict the search process
since new values are introduced. However, value aggregation constraints can

324 M. Atzmueller and F. Puppe

provide significant quality improvements with low costs, if the aggregated values
are more meaningful for the user. Additionally, if only the generated new values
are taken into account, e.g., for ordinal value groups, then the search space remains
the same or is even restricted. Furthermore, attribute combination constraints that
inhibit the examination of specified sets of attributes can prune large (uninteresting)
areas of the search space. Priority groups are utilized to focus the search process by
construction: The attributes of the different priority groups are taken into the search
space subsequently according to the requirements of the user.

– Subgroup pattern constraints contained in the background knowledge can be in-
cluded into the process by considering them as starting points for the search process.
Furthermore, derived attributes can be incrementally defined using (discovered)
subgroup patterns during the discovery step. Additionally, by comparison to already
known subgroup patterns we can inhibit the rediscovery of subgroups.

– Abstraction knowledge can be applied for increasing the representational expres-
siveness as discussed below, and for focusing the search process on the relevant
objects. If only these are considered, then the search space can also be restricted.

Post-processing the Discovered Subgroups. The most important type of background
knowledge for post-processing is given by specific known subgroup patterns itself: For
example, in the medical domain often a lot of the existing relations are already known
and can be formalized as subgroup patterns. By comparison with the discovered know-
ledge, (unexpected) patterns that conform to, deviate, or contradict the given domain
knowledge can be identified. In addition to specific subgroup patterns we can also ap-
ply partition class information in order to mark subgroups that conform to the partition
classes, or to identify subgroups that contain attributes included in different partition
classes. This depends on the requirements of the user, e.g., in the medical domain dif-
ferent organ systems can be considered.

Increasing the Expressiveness of Subgroup Patterns. For increasing the representa-
tional expressiveness, (derived) attributes and subsets of the value range of an attribute
can be utilized to infer new attributes and values, respectively, that are more meaningful
for the user: The power of derived attributes lies in their ability of abstracting (known)
associations of attributes into new attributes. These correspond to new concepts that
are usually more meaningful, reasonable, and ultimately more important for the user.
Thus, the search process can be focused significantly. Furthermore, the power of the
statistical evaluations is increased significantly if missing values are minimized: Since
abstraction knowledge can be used to infer missing values in their respective context,
derived attributes can help to improve the missing value problem significantly.

Furthermore, aggregated values forming a disjunctive selection expression can be
more meaningful and reasonable for the user, e.g., considering different aggregated age
groups in the medical domain. We can apply abnormality or similarity information in
order to derive value aggregation constraints. Then, these new values can be directly
utilized in the search process. Additionally, the description language itself plays an im-
portant role, since it is used to define the subgroups. As a simple and concise description
language often conjunctive languages without internal disjunctions are applied.

A Methodological View on Knowledge-Intensive Subgroup Discovery 325

5 Conclusion

In this paper we presented a methodological view on exploiting background knowledge
for subgroup discovery. We described several classes of background knowledge, and
discussed the benefit, cost, and application of the particular types of knowledge.

In contrast to existing approaches utilizing background knowledge, including In-
ductive Logic Programming (ILP) (e.g., [6]), constraint-based data mining (e.g., [7]),
and association rule learning techniques (e.g., [8]), we propose to integrate several new
types of additional background knowledge: It can be used to easily infer new back-
ground knowledge on the fly, e.g., constraints, and can be refined incrementally accord-
ing to the requirements of the discovery task. Furthermore, we propose special abstrac-
tion knowledge that can be applied dynamically. Compared to common preprocessing
methods, the background knowledge concerning aggregations of attributes or attribute
values is applied dynamically on the data. The original data set is not changed by the
knowledge-intensive approach; instead, either the discovery method is ’configured’ ap-
plying the knowledge, or ’virtual’ attributes/attribute values are introduced.

We already successfully applied parts of the presented approach in different case
studies in the medical domain [5,9]: For these, the application of background knowledge
was essential, since a naive approach resulted in (too) many subgroups that were not
regarded as interesting or were already known to the domain specialists.

In the future, we want to examine methods that enable the automatic construction of
abstraction knowledge. An ’intelligent’ adaptation and fine-tuning of aggregations of
attribute values is another interesting issue to consider.

References

1. Richardson, M., Domingos, P.: Learning with Knowledge from Multiple Experts. In: Proc.
20th Intl. Conference on Machine Learning (ICML-2003), AAAI Press (2003) 624–631

2. Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Advances
in Knowledge Discovery and Data Mining. AAAI Press (1996) 249–271

3. Wrobel, S.: An Algorithm for Multi-Relational Discovery of Subgroups. In Komorowski, J.,
Zytkow, J., eds.: Proc. 1st European Symposium on Principles of Data Mining and Knowledge
Discovery (PKDD-97), Berlin, Springer (1997) 78–87

4. Baumeister, J., Atzmueller, M., Puppe, F.: Inductive Learning for Case-Based Diagnosis with
Multiple Faults. In: Advances in Case-Based Reasoning. Volume 2416 of LNAI., Berlin,
Springer (2002) 28–42 Proc. 6th European Conference on Case-Based Reasoning.

5. Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting Background Knowledge for Knowledge-
Intensive Subgroup Discovery. In: Proc. 19th Intl. Joint Conference on Artificial Intelligence
(IJCAI-05), Edinburgh, Scotland (2005) 647–652

6. Zelezny, F., Lavrac, N., Dzeroski, S.: Using Constraints in Relational Subgroup Discovery.
In: Intl. Conference on Methodology and Statistics, University of Ljubljana (2003) 78–81

7. Boulicaut, J.F., Jeudy, B.: Constraint-based data mining. In: The Data Mining and Knowledge
Discovery Handbook. Springer (2005)

8. Liu, B., Hsu, W.: Post-Analysis of Learned Rules. In: Proc. 13th National Conference on
Artificial Intelligence (AAAI-96), Menlo Park, CA, AAAI Press (1996) 828–834

9. Atzmueller, M., Baumeister, J., Hemsing, A., Richter, E.J., Puppe, F.: Subgroup Mining for
Interactive Knowledge Refinement. In: Proc. 10th Conference on Artificial Intelligence in
Medicine (AIME 05). LNAI 3581, Berlin, Springer (2005) 453–462

Iterative Bayesian Network Implementation by

Using Annotated Association Rules

Clément Fauré1,2, Sylvie Delprat1, Jean-François Boulicaut2, and Alain Mille3

1 EADS CCR, Learning Systems Department, Centreda 1, F-31700 Blagnac
{clement.faure, sylvie.delprat}@eads.net

2 LIRIS UMR 5205, INSA Lyon, Bâtiment Blaise Pascal, F-69621 Villeurbanne
3 LIRIS UMR 5205, Université Lyon 1, Nautibus, F-69622 Villeurbanne

{amille, jboulica}@liris.cnrs.fr

Abstract. This paper concerns the iterative implementation of a knowl-
edge model in a data mining context. Our approach relies on coupling
a Bayesian network design with an association rule discovery technique.
First, discovered association rule relevancy isenhanced by exploiting the
expert knowledge encoded within a Bayesian network, i.e., avoiding to
provide trivial rules w.r.t. known dependencies. Moreover, the Bayesian
network can be updated thanks to an expert-driven annotation process
on computed association rules. Our approach is experimentally validated
on the Asia benchmark dataset.

1 Introduction

One major goal of the knowledge discovery from databases (KDD) community
is to support the discovery of valuable patterns within the data. Considering 0/1
data analysis, the association rule mining technique is quite popular and we as-
sume the reader is familiar with it [1]. It has been studied extensively both from
the computational point of view and the objective interestingness perspective
(i.e., using measures like frequency and confidence). Indeed, many algorithms
have been designed for computing frequent and valid association rules. When
the computation is tractable, it gives a huge number of rules which include many
irrelevant ones: this is known to be a bottleneck for association rule based KDD
processes. Application-independent redundancy has been addressed seriously by
means of the closed sets and related approaches (see, e.g., [2]). Our approach
to this problem is to use a well-specified subset of frequent and valid associa-
tion rules called the frequent δ-strong rules, i.e., frequent rules with at most δ
exceptions and a minimal left-hand-side property thanks to its δ-freeness[3,4].
A second issue concerns application-dependant redundancy. Apart from rather
simple template-based strategies, few authors have been considering how to re-
move rules which do not provide valuable information given an explicitly encoded
model for available knowledge [5]. In this paper, we assume that novelty is in-
deed a key property to enhance subjective interestingness. In [6], the authors
use a Bayesian Network (BN) to filter truly interesting frequent sets, i.e., sets

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 326–333, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Iterative Bayesian Network Implementation 327

whose frequencies are somehow surprising given the expected distribution cap-
tured by the BN. In [7], we have extended this approach to support relevant
association rule mining when we assume that (a) a BN captures expert knowl-
edge about domain dependencies, and (b) we compute only our sub-collections
of non redundant frequent and valid association rules (i.e., the δ-strong rules).
The intuition is that encoded dependencies can help us to filter out the patterns
that reflect these dependencies. Doing so, we support the presentation of more
interesting rules. In this paper, we address the obvious dynamics of knowledge
discovery processes by considering that the knowledge model has to be itera-
tively updated. Our idea is that the initial model can be updated thanks to
an expert-driven annotation of the extracted rules. Doing so, our methodology
iteratively improves both the model for expert domain knowledge and the rele-
vancy of the extracted patterns. A preliminary experimental validation on the
well-known “Asia” dataset is given.

2 Modelling and Using Expert Knowledge

Our proposal relies on five steps and the paper concerns Steps 2 to 4:

1. Modelling an initial BN which specifies a priori expert domain knowledge.
2. Computing concise collections of frequent association rules with high con-

fidence (i.e., the maximal number of exception is small w.r.t. the used fre-
quency threshold).

3. Supporting rule post-processing (i.e., filtering) by using the knowledge
model.

4. Supporting expert-driven annotation of the most interesting rules.
5. Updating the BN structure and parameters given the collected annotations.

2.1 Association Rule Post Processing Using a Bayesian Network

Modelling and exploiting knowledge to support the discovery of relevant associa-
tion rules have been already studied. For instance, [8] considers the exploitation
of expert knowledge elicited by expert rules. This has been formalized later into a
belief system [9]. However, this kind of approach has a major limitation. Indeed,
a rule is said to be interesting if it differs from the rules according to what is cur-
rently defined in the belief system, but not by looking at what could be inferred
from these rules. Jaroszewicz et al. [6,10] have tackled this issue by modelling
Bayesian networks for which “inference” is nicely integrated within the model.
They describe the use of a BN to compute the added-value of frequent itemsets
[1]. For each frequent itemset, the difference between its frequency value within
the data and its expected frequency value inferred from the BN is computed.
The more interesting patterns are the ones with the higher absolute difference
value between these two measures. These itemsets can also be submitted to the
expert to suggest updates of the structure and the parameters of the BN.

We have a similar approach but we exploit further the complementarities
between Bayesian networks and association rules, namely dependency links be-
tween variables (directed edges of the graph, association relationship expressed

328 C. Fauré et al.

Database b) Extract
association rules

A priori
expert

knowlege

(K)

(K, I)

(NV)

Domain expert(s)

Augmented
knowledge

model

Réseau
network

BN i
Bayesian
bayésien

BN 1

Bayesian
network

BN n

Association
Rules

Bayesian
network

BN 0

Annotations
(K, NV, I)

d) Annotate
association rules

e) Update bayesian
network structure BN expert

c) Compute interest
and differences

c’) Filter non valid
patterns

a) Model domain
dependencies

Fig. 1. A detailed view on our data mining process

by a rule) and frequencies for specific events (conditional probabilities defined in
a BN, frequency of an association rule). We address “separately” these two rela-
tionships. First, we define an interestingness measure on association rule w.r.t.
a BN. Then we propose an algorithm for computing relations of independence
in the association rules w.r.t. the structure of the BN.

Due to the lack of space, we do not provide the needed definitions for the
classical concepts related to 0/1 datasets and association rules on one hand (see,
e.g., [1,4]) and Bayesian networks on the other hand (see, e.g., [11]).

Interestingness Measure of an Association Rule Given a Bayesian
Network. Let us assume that DB is a Boolean database (i.e. a database where
each record is a set of Boolean values), and H = {A1, . . . , An} is the set of n
Boolean attributes. An itemset I is just a subset from H . An association rule R is
a pattern X ⇒ Y , where X and Y are itemsets such that Y �= ∅ and X ∩Y = ∅.
The frequency of an itemset I in DB is the number of records from DB where
the conjunction of all attributes from I is true. Most of the objective interest-
ingness of association rules are based on the frequency of their set components.
For instance, the confidence of X ⇒ Y is the frequency of X ∪ Y divided by the
frequency of X , i.e., the conditional probability to observe a true value for the
attributes in Y when the attributes from X are true. A Bayesian network BN
is a directed acyclic graph (DAG) defined by a set of nodes corresponding to the
attributes in H and by E ⊂ H×H its set of edges. Each node is associated with a
conditional probability distribution PAi|ΠAi

, where ΠAi = {Aj|(VAj , VAi) ∈ E}
are the parents of node Ai. One of the most important properties of Bayesian
networks is that they uniquely define the joint probability distribution over H .
Thus, given a database DB and a Bayesian network BN , it is possible to com-
pute the expected confidence of an association rule R = X ⇒ Y By extending

Iterative Bayesian Network Implementation 329

[6], we have defined in [7] a metric Int to evaluate the interest of a given as-
sociation rule w.r.t. the encoded knowledge in a Bayesian network. Basically, it
measures the difference between the confidence of the rule estimated on the data
and the one inferred from the Bayesian network. Discussing this further is out
of the scope of this paper.

Computation of the Structural Differences Between an Association
Rule and a Bayesian Network. So far, we know how to compute collections
of association rules, we have a formalism to express some expert knowledge, and
finally a metric using such an encoded knowledge when ranking association rule
interestingness. What is missing is a way to exploit the information of conditional
independence implicitly captured by the network BN . Therefore, our goal is to
highlight which parts of an association rule really contribute —according to
BN— to the observation of the whole rule, and which parts are not.

Let us first introduce the D-separation property which has been formally
defined by J. Pearl [11]. D-separation is a property of two sets of nodes X and
Y w.r.t. another set of nodes Z. Informally, X and Y are said to be D-separated
by Z if no information can flow between them when Z is observed.

We want to apply this notion —which is a pure graphical property— on
association rules w.r.t. the BN structure. For any association rule R = X ⇒ Y ,
we will compute the D-separation test < Xi |X\Xi |Yj >, where Xi ∈ X and
Yj ∈ Y . We end up with a matrix that sums up the results of all the D-separations
tests. If an item of the rule (Xi or Yi) has a “true” value for all its D-separation
tests, then it will be highlighted as being in the D-separated part of the rule. It
means that thanks to the rule, an informative association has been found in the
data which is not modelled in the current BN structure.

2.2 Post-processing and Annotation of Association Rules

Let us assume that BN reflects most of the domain dependencies. This network
might have been defined either from scratch by an expert or through a mixed
approach involving expert but also machine learning. Notice however that the
initial BN does not have to be “complete”. For instance, it can capture only
obvious dependencies, including known taxonomies over the attributes. As we
go through the KDD processes, it can be updated to capture more and more
domain knowledge, thus supporting the presentation of more and more valuable
association rules. At each iteration, the expert might annotate the rules by la-
beling which parts represent what kind of information. This annotation can be
used to improve the knowledge model BN .

Once our δ-strong rules have been extracted (using the solver described in
[4]), we compute their interest (as defined in [7]) as well as their “topological”
differences w.r.t. the current instance for BN . These measures are used to filter
uninteresting rules (interest compared with a user-defined threshold ε). It divides
the rules in two classes. A first class contains the rules that do not provide further
information w.r.t. BN (interest below ε). The expert who is inspecting the rules
can decide to ignore them. The second class represents the rules that we call ε-
interesting. They express that some dependencies observed on the data are not

330 C. Fauré et al.

described properly by BN . The goal is to remove the rules that are ε-interesting
but either (a) already known by the domain expert or (b) containing non valid
patterns. The idea is to refine the knowledge model by integrating step by step
dependencies that were not identified at previous iterations. Understanding what
information is contained by a given association rule is however a difficult task.
This is why we want to highlight rule-like subpatterns of an association rule that
represent a notion of D-separation between items on the left-hand side (LHS) and
items on the right-hand side (RHS) given BN structure and the observation of
all the LHS items. We can further divide the association among the ε-interesting
rules in three different types:

K The rule contains a pattern already known by the expert but that is not
modelled in the current BN. It means that the structure and the parame-
ters of the network have to be updated to integrate the causality related to
this pattern. Doing so, such a pattern will not be presented as ε-interesting
in the next iteration.

NV The rule contains a pattern which appears to be not valid given the expert
knowledge. This might be due to statistical coincidences (false positive).

I The rule holds a pattern that is potentially interesting. It has been “sur-
prising” for the expert, and a deeper analysis has confirmed its relevancy.

In a real world data mining process, the number of association rules that fit
in the categories (K) and (NV) can be huge. Moreover, a relation of association
may contain mixed kinds of patterns, which might lead to tedious analysis tasks.
We propose to ask the domain expert for annotations on the most interesting
extracted association rules. He/she has to perform annotation following a precise
method1, that will enables her/him to:

– specify whether an association rule contains one or more known patterns
(K), non valid patterns (NV) or a potentially interesting one (I).

– define without ambiguity the “shape” of these patterns through the definition
of a list of patterns which can only have one item in the right-hand side of
the rule.

– be generic concerning the description of the detected patterns (providing
only the name of the attribute or an attribute-value pair).

– define, when needed, a conjunction of attributes or items in the left-hand
side of the pattern.

– associate a verbal-probability to patterns labeled as “already known” by
following the idea of probability-ladder presented in [12].

These annotations can then be exploited to update the structure and the para-
meters of BN .

3 Experimental Validation

Let us consider an initial BN that already captures nicely a particular do-
main knowledge for the Asia dataset (i.e., a well-known benchmark within the
1 This method is not detailed here due to space limitations.

Iterative Bayesian Network Implementation 331

VisitAsia

Tuberculosis

TbOrCa

Cancer

Smoker

Bronchitis

XRay Dyspnea

VisitAsia

Tuberculosis

TbOrCa

Cancer

Smoker

Bronchitis

XRay Dyspnea

Dummy

Fig. 2. Original Asia network (left) and modified one (right)

Bayesian network community). From this network, we produced a dataset of
10, 000 records. As we look for association rules, we focus on the presence of
events. The initial BN structure is then modified so that the “VisitAsia” node
is no longer directly connected to the “Tuberculosis” node. Our goal is to ap-
ply our methodology and see whether we can recover the right “Asia” network
structure. Both networks are given in Figure 2.

Let us now follow the method described in Figure 1 step by step.
(a) The modified “Asia” BN serves as a basis for our experiments.
(b) From the generated dataset, we extract a concise collection of associa-

tion rules (minimum absolute support value of 100, i.e., 0.01% of the database
and maximal number of exceptions δ = 10, i.e., a guarantee that the minimal
confidence is 0.9). A total of 16 association rules are extracted immediately.

Table 1. Association rules extracted from the Asia dataset. Underlined items do not
belong to the D-separated part of the rule.

Association rule Interest D-separated part

Tuberculosis ⇒ XRay Dyspnea TbOrCa 0,04
VisitAsia ⇒ XRay Dyspnea 0,46 VisitAsia ⇒ Xray Dyspnea
Smoking Dyspnea Bronchitis TbOrCa ⇒ XRay 0,03 Smoking Dyspnea Bronchitis ⇒
Dyspnea Bronchitis TbOrCa ⇒ XRay 0,02 Dyspnea Bronchitis ⇒
Smoking Bronchitis TbOrCa ⇒ XRay 0,02 Smoking Bronchitis ⇒
Bronchitis TbOrCa ⇒ XRay 0,02 Bronchitis ⇒
Smoking Dyspnea TbOrCa ⇒ XRay 0,02 Smoking Dyspnea ⇒
Smoking TbOrCa ⇒ XRay 0,02 Smoking ⇒
Dyspnea TbOrCa ⇒ XRay 0,02 Dyspnea ⇒
TbOrCa ⇒ XRay 0,02
Smoking Dyspnea Cancer ⇒ XRay TbOrCa 0,02
Dyspnea Cancer ⇒ XRay TbOrCa 0,02
Dyspnea Bronchitis Cancer ⇒ Smoking XRay TbOrCa 0,00
Smoking Cancer ⇒ XRay TbOrCa 0,02 Smoking ⇒
Cancer ⇒ XRay TbOrCa 0,02
Bronchitis Cancer ⇒ Smoking XRay TbOrCa 0,01

332 C. Fauré et al.

(c) Interest measure and D-separations are computed on these rules w.r.t.
the modified “Asia” BN . (c’) Filtering out non valid patterns is optional and
depends on the identification of such patterns. Obtained results are shown in
Table 1. By looking at these results, let us recall that association rule min-
ing captures only patterns over true values, i.e., presence of particular events.
For example, the third rule should be read as “when we observe that a person
is a smoker, a presence of dyspnea and bronchitis diagnosis and special node
TbOrCa is activated, then it is often associated with abnormal x-ray result”.
The underlined part of the rules denotes what we call the core dependencies of
the rule w.r.t. BN structure. The last column shows a pattern of the association
rule which contains missing information within the current network. Looking at
these results, only one association rule has a relatively high interest value. This
association rule states that “when we observe that a person has visited Asia
then it is associated with abnormal x-ray results and a presence of dyspnea”.
Clearly, this rule brings an information which is not modelled as a dependence
in our modified BN structure while it was represented in the original one. It
is thus possible to find rules that exhibit a difference between the available
knowledge model and the data. We can however wonder whether such discov-
ered associations are truly interesting. Furthermore, if this is the case, what are
the modifications to be made to the model to reflect these observations in the
data? This is of course where an expert judgment is crucially needed.

(d) An expert can now perform annotations. For our running example, assume
that he/she has to put down that the rule which contains the “VisitAsia” relation
belongs to the interesting category.

(e) Finally, this annotation is forwarded to the expert who is in charge of BN
revision. By looking at the interesting pattern, it leads to a structural modifi-
cation that provides the initial BN structure. We consider that the association
rule actually found is sufficient for an expert to suggest the “right” revision.
Notice that if we compute the rules on the same dataset but using the initial
Asia network, we observe that the “VisitAsia” association rule no longer holds
a D-separated pattern.

On the same datasets, we also applied the approach when the rules are ex-
tracted with Apriori [1] (i.e., computing all the frequent and valid rules instead
of the non redundant sub-collection of our δ-strong rules). Doing so, 115 asso-
ciation rules were generated. Among all these rules, we found three different
variants of the mentioned relation between “VisitAsia” and “abnormal x-ray”,
including “Dyspnea” as well. Clearly, working on such redundant collections is
harder: the expert will have to go through all the rules to find out patterns
describing an association that involves “VisitAsia”.

4 Conclusion

Looking for relevant patterns in 0/1 data, we have been considering application-
dependant redundancy. Our approach concerns association rule filtering when
expert knowledge about attribute dependencies is encoded within a Bayesian

Iterative Bayesian Network Implementation 333

network and when a rule appears to be expected given this model. This paper has
focused on the possible revision of such a knowledge model by using discoveries
derived from the inspection and the annotation of selected association rules.
The idea is that such a KDD process somehow converges towards actionable
patterns: discovering new and valid statements in the data suggest refinement
on the knowledge model which better captures important dependencies and thus
enables to iterate on a more focused pattern discovery phase.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. Advances in Knowledge Discovery and Data Mining, AAAI
Press (1996) 307–328.

2. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal
non-redundant association rules using frequent closed itemsets. In: Proceedings
CL 2000. Volume 1861 of LNCS., London, UK, Springer-Verlag (2000) 972–986.

3. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Approximation of frequency queries by
means of free-sets. In: Proceedings PKDD 2000. Volume 1910 of LNCS., Lyon, F,
Springer-Verlag (2000) 75–85.

4. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery 7(1) (2003) 5–22.

5. Liu, B., Hsu, W., Mun, L.F., Lee, H.: Finding interesting patterns using user
expectations. IEEE Transactions on Knowledge and Data Engineering 11(6) (1999)
817–832.

6. Jaroszewicz, S., Simovici, D.A.: Interestingness of frequent itemsets using bayesian
networks as background knowledge. Proceedings ACM SIGKDD 2004, New York,
USA, ACM Press (2004) 178–186.

7. Fauré, C., Delprat, S., Mille, A., Boulicaut, J.F.: Utilisation des réseaux bayésiens
dans le cadre de l‘extraction de rg̀les d‘association. Proceedings EGC 2006, Lille,
F, Cepadues (2006) 569–580 In French.

8. Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected
patterns. Proceedings KDD 1998, New York, USA, AAAI Press (1998) 94–100.

9. Padmanabhan, B., Tuzhilin, A.: Small is beautiful: discovering the minimal set of
unexpected patterns. Proceedings ACM SIGKDD 2000, Boston, USA, ACM Press
(2000) 54–63.

10. Jaroszewicz, S., Scheffer, T.: Fast discovery of unexpected patterns in data, relative
to a bayesian network. Proceedings ACM SIGKDD 2005, Chicago, USA, ACM
Press (2005) 118–127.

11. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann (1988).

12. Druzdzel, M.J., Diez, F.: Criteria for combining knowledge from different sources
in probabilistic networks (2000).

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 334 – 349, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Multilayered Semantic Social Network Modeling by
Ontology-Based User Profiles Clustering: Application to

Collaborative Filtering

Iván Cantador and Pablo Castells

Escuela Politécnica Superior, Universidad Autónoma de Madrid
Campus de Cantoblanco, 28049 Madrid, Spain

{ivan.cantador, pablo.castells}@uam.es

Abstract. We propose a multilayered semantic social network model that offers
different views of common interests underlying a community of people. The
applicability of the proposed model to a collaborative filtering system is empiri-
cally studied. Starting from a number of ontology-based user profiles and taking
into account their common preferences, we automatically cluster the domain
concept space. With the obtained semantic clusters, similarities among indi-
viduals are identified at multiple semantic preference layers, and emergent, lay-
ered social networks are defined, suitable to be used in collaborative environ-
ments and content recommenders.

1 Introduction

The swift development, spread, and convergence of information and communication
technologies and support infrastructures in the last decade, which is reaching all as-
pects of businesses and homes in our everyday lives, is giving rise to new and unfore-
seen ways of inter-personal connection, communication, and collaboration. Virtual
communities, computer-supported social networks [1,8,10,11], and collective interac-
tion applications are indeed starting to proliferate in increasingly sophisticated ways,
opening new research opportunities on social group analysis, modeling, and exploita-
tion. In this paper we propose a novel approach towards building emerging social
networks by analyzing the individual motivations and preferences of users, broken
into potentially different areas of personal interest.

The issue of finding hidden links between users based on the similarity of their
preferences or historic behavior is not a new idea. In fact, this is the essence of the
well-known collaborative recommender systems [2,9,13], where items are recom-
mended to a certain user concerning those of her interests shared with other users or
according to opinions, comparatives and ratings of items given by similar users. How-
ever, in typical approaches, the comparison between users and items is done globally,
in such a way that partial, but strong and useful similarities may be missed. For in-
stance, two people may have a highly coincident taste in cinema, but a very divergent
one in sports. The opinions of these people on movies could be highly valuable for
each other, but risk to be ignored by many collaborative recommender systems, be-
cause global similarity between the users might be low.

 Multilayered Semantic Social Network Modeling 335

Here we propose a multi-layered approach to social networking. Like in previous
approaches, our method builds and compares profiles of user interests for semantic
topics and specific concepts, in order to find similarities among users. But in contrast
to prior work, we divide the user profiles into clusters of cohesive interests, and based
on this, several layers of social networks are found. This provides a richer model of
interpersonal links, which better represents the way people find common interests in
real life.

Our approach is based on an ontological representation of the domain of discourse
where user interests are defined. The ontological space takes the shape of a semantic
network of interrelated domain concepts and the user profiles are initially described as
weighted lists measuring the user interests for those concepts. Taking advantage of the
relations between concepts, and the (weighted) preferences of users for the concepts,
our system clusters the semantic space based on the correlation of concepts appearing
in the preferences of individual users. After this, user profiles are partitioned by pro-
jecting the concept clusters into the set of preferences of each user. Then, users can be
compared on the basis of the resulting subsets of interests, in such a way that several,
rather than just one, (weighted) links can be found between two users.

Multilayered social networks are potentially useful for many purposes. For in-
stance, users may share preferences, items, knowledge, and benefit from each other’s
experience in focused or specialized conceptual areas, even if they have very different
profiles as a whole. Such semantic subareas need not be defined manually, as they
emerge automatically with our proposed method. Users may be recommended items
or direct contacts with other users for different aspects of day-to-day life.

In recommendation environments there is an underlying need to distinguish differ-
ent layers within the interests and preferences of the users. Depending on the current
context, only a specific subset of the segments (layers) of a user profile should be
considered in order to establish her similarities with other people when a recommen-
dation has to be performed. We believe models of social networks partitioned at dif-
ferent common semantic layers could be very useful in the recommender processes
offering more accurate and context-sensitive results. Thus, as an applicative develop-
ment of our automatic semantic clustering and social network building methods, we
present and empirically study in this paper several collaborative filtering models that
retrieve information items according to a number of real user profiles and within dif-
ferent contexts.

In addition to these possibilities, our two-way space clustering, which finds clus-
ters of users based on the clusters of concepts found in a first pass, offers a reinforced
partition of the user space that could be exploited to build group profiles for sets of
related users. These group profiles might enable an efficient strategy for collaborative
recommendation in real-time, by using the merged profiles as representatives of
classes of users.

The rest of the paper has the following structure. Section 2 describes the semantics
representation framework upon which our social network models are built. The pro-
posed clustering techniques to build the multi-level relations between users are pre-
sented in Section 3. The exploitation of the derived networks to enhance collaborative
filtering is described in Section 4. Section 5 describes a simple example where the
techniques are tested. An early experiment with real subjects and user profiles is pre-
sented in Section 6, and conclusions are given in Section 7.

336 I. Cantador and P. Castells

2 Ontology-Based User Profiles and Preference Spreading

In contrast to other approaches in personalized content retrieval, our approach makes
use of explicit user profiles (as opposed to e.g. sets of preferred documents). Working
within an ontology-based personalization framework [16], user preferences are repre-
sented as vectors ui = (ui,1, ui,2, ..., ui,N) where the weight ui,j ∈ [0,1] measures the
intensity of the interest of user i for concept cj (a class or an instance) in the domain
ontology, N being the total number of concepts in the ontology. Similarly, the objects
dk in the retrieval space are assumed to be described (annotated) by vectors (dk,1, dik2,
..., dk,N) of concept weights, in the same vector-space as user preferences. Based on
this common logical representation, measures of user interest for content items can be
computed by comparing preference and annotation vectors, and these measures can be
used to prioritize, filter and rank contents (a collection, a catalog, a search result) in a
personal way.

The ontology-based representation is richer and less ambiguous than a keyword-
based or item-based model. It provides an adequate grounding for the representation
of coarse to fine-grained user interests (e.g. interest for items such as a sports team, an
actor, a stock value), and can be a key enabler to deal with the subtleties of user pref-
erences. An ontology provides further formal, computer-processable meaning on the
concepts (who is coaching a team, an actor’s filmography, financial data on a stock),
and makes it available for the personalization system to take advantage of. Further-
more, ontology standards, such as RDF and OWL, support inference mechanisms that
can be used to enhance personalization, so that, for instance, a user interested in ani-
mals (superclass of cat) is also recommended items about cats. Inversely, a user inter-
ested in lizards and snakes can be inferred to be interested in reptiles. Also, a user
keen of Czech Republic can be assumed to like Prague, through the locatedIn transi-
tive relation. These characteristics will be exploited in our personalized retrieval
model.

In real scenarios, user profiles tend to be very scattered, especially in those applica-
tions where user profiles have to be manually defined. Users are usually not willing to
spend time describing their detailed preferences to the system, even less to assign weights
to them, especially if they do not have a clear understanding of the effects and results of
this input. On the other hand, applications where an automatic preference learning algo-
rithm is applied tend to recognize the main characteristics of user preferences, thus yield-
ing profiles that may entail a lack of expressivity. To overcome this problem, we propose
a semantic preference spreading mechanism, which expands the initial set of preferences
stored in user profiles through explicit semantic relations with other concepts in the on-
tology (see picture 1 in Figure 1). Our approach is based on the Constrained Spreading
Activation (CSA) strategy [4,5]. The expansion is self-controlled by applying a decay
factor to the intensity of preference each time a relation is traversed.

Thus, the system outputs ranked lists of content items taking into account not only
the preferences of the current user, but also a semantic spreading mechanism through
the user profile and the domain ontology. In fact, previous experiments were done
without the semantic spreading process and very poor results were obtained. The
profiles were very simple and the matching between the preferences of different users
was low. This observation shows a better performance when using ontology-based
profiles, instead of classical keyword-based preferences representations.

 Multilayered Semantic Social Network Modeling 337

We have conducted several experiments showing that the performance of the person-
alization system is considerably poorer when the spreading mechanism is not enabled.
Typically, the basic user profiles without expansion are too simple. They provide a good
representative sample of user preferences, but do not reflect the real extent of user inter-
ests, which results in low overlaps between the preferences of different users. Therefore,
the extension is not only important for the performance of individual personalization,
but is essential for the clustering strategy described in the following sections.

Fig. 1. Overall sequence of our proposed approach, comprising three steps: 1) semantic user
preferences are spread, extending the initial sets of individual interests, 2) semantic domain
concepts are clustered into concept groups, based on the vector space of user preferences, and
3) users are clustered in order to identify the closest class to each user

3 Multilayered Semantic Social Networks

In social communities, it is commonly accepted that people who are known to share a
specific interest are likely to have additional connected interests [8]. For instance,
people who share interests in traveling might be also keen on topics related in photog-
raphy, gastronomy or languages. In fact, this assumption is the basis of most recom-
mender system technologies [3,7,12,14]. We assume this hypothesis here as well, in
order to cluster the concept space in groups of preferences shared by several users.

We propose here to exploit the links between users and concepts to extract relations
among users and derive semantic social networks according to common interests. Ana-
lyzing the structure of the domain ontology and taking into account the semantic prefer-
ence weights of the user profiles we shall cluster the domain concept space generating
groups of interests shared by certain users. Thus, those users who share interests of a
specific concept cluster will be connected in the network, and their preference weights
will measure the degree of membership to each cluster. Specifically, a vector cj = (cj,1,
cj,2, ..., cj,M) is assigned to each concept vector cj present in the preferences of at least one
user, where cj,i = ui,j is the weight of concept cj, in the semantic profile of user i. Based
on these vectors a classic hierarchical clustering strategy [6,15] is applied. The clusters
obtained (picture 2 in Figure 1) represent the groups of preferences (topics of interests)
in the concept-user vector space shared by a significant number of users. Once the con-
cept clusters are created, each user is assigned to a specific cluster. The similarity be-
tween a user’s preferences ui = (ui,1, ui,2, ..., ui,N) and a cluster Cr is computed by:

()
,

, j r

i j
c C

i r
r

u

sim u C
C

∈= (1)

where cj represents the concept that corresponds to the ui,j component of the user
preference vector, and |Cr| is the number of concepts included in the cluster. The

338 I. Cantador and P. Castells

clusters with highest similarities are then assigned to the users, thus creating groups of
users with shared interests (picture 3 in Figure 1).

The concept and user clusters are then used to find emergent, focused semantic social
networks. The preference weights of user profiles, the degrees of membership of the
users to each cluster and the similarity measures between clusters are used to find rela-
tions between two distinct types of social items: individuals and groups of individuals.

On the other hand, using the concept clusters user profiles are partitioned into se-
mantic segments. Each of these segments corresponds to a concept cluster and repre-
sents a subset of the user interests that is shared by the users who contributed to the
clustering process. By thus introducing further structure in user profiles, it is now
possible to define relations among users at different levels, obtaining a multilayered
network of users. Figure 2 illustrates this idea. The top image represents a situation
where two user clusters are obtained. Based on them (images below), user profiles are
partitioned in two semantic layers. On each layer, weighted relations among users are
derived, building up different social networks.

Fig. 2. Multilayered semantic social network built from the clusters of concepts and users

The resulting networks have many potential applications. For one, they can be ex-
ploited to the benefit of collaborative filtering and recommendation, not only because
they establish similarities between users, but also because they provide powerful means
to focus on different semantic contexts for different information needs. The design of
two information retrieval models in this direction is explored in next section.

4 Multilayered Models for Collaborative Filtering

Collaborative filtering applications adapt to groups of people who interact with the
system, in a way that single users benefit from the experience of other users with which
they have certain traits or interests in common. User groups may be quite heterogene-
ous, and it might be very difficult to define the mechanisms for which the system adapts
itself to the groups of users, in such a way that each individual enjoys or even benefits
from the results. Furthermore, once the user association rules are defined, an efficient
search for neighbors among a large user population of potential neighbors has to be
addressed. This is the great bottleneck in conventional user-based collaborative filtering
algorithms [12]. Item-based algorithms [3,7,14] attempt to avoid these difficulties by

 Multilayered Semantic Social Network Modeling 339

exploring the relations among items, rather than the relations among users. However,
the item neighborhood is fairly static and do not allow to easily apply personalized
recommendations or inference mechanisms to discover potential hidden user interests.

We believe that exploiting the relations of the underlying social network which
emerges from the users’ interests, and combining them with semantic item preference
information can have an important benefit in collaborative filtering and recommenda-
tion. Using our semantic multilayered social network proposal explained in previous
sections, we present here two recommender models that generate ranked lists of items
in different scenarios taking into account the links between users in the generated so-
cial networks. The first model (that we shall label as UP) is based on the semantic
profile of the user to whom the ranked list is delivered. This model represents the situa-
tion where the interests of a user are compared to other interests in a social network.
The second model (labeled NUP) outputs ranked lists disregarding the user profile.
This can be applied in situations where a new user does not have a profile yet, or when
the general preferences in a user’s profile are too generic for a specific context, and do
not help to guide the user towards a very particular, context-specific need. Addition-
ally, we consider two versions for each model: a) one that generates a unique ranked
list based on the similarities between the items and all the existing semantic clusters,
and, b) one that provides a ranking for each semantic cluster. Thus, we consider four
retrieval strategies, UP (profile-based), UP-r (profile-based, considering a specific
cluster Cr), NUP (no profile), and NUP-r (no profile, considering a specific cluster Cr).

The four strategies are formalized next. In the following, for a user profile ui, an in-
formation object vector dk, and a cluster Cr, we denote by r

iu and r
kd the projection of

the corresponding concept vectors onto cluster Cr, i.e. the j-th component of r
iu and r

kd

is ui,j and dk,j respectively, if cj ∈ Cr, and 0 otherwise.

Model UP. The semantic profile of a user ui is used by the system to return a unique
ranked list. The preference score of an item dk is computed as a weighted sum of the
indirect preference values based on similarities with other users in each cluster, where
the sum is weighted by the similarities with the clusters, as follows:

() () () (), , , ,k i k r r i l r k l
r l

pref d u nsim d C nsim u u sim d u= ⋅ (2)

where:

()
,

, j r

k j
c C

k r

k r

d

sim d C
d C

∈= , () ()
()

,
,

,
k r

k r
k l

l

sim d C
nsim d C

sim d C
=

are the single and normalized similarities between the item dk and the cluster Cr,

() (), cos ,
|| || || ||

r r
r r i l

r i l i l r r
i l

u u
sim u u u u

u u

⋅
= =

⋅
, () ()

()
,

,
,

r i l
r i l

r i t
t

sim u u
nsim u u

sim u u
=

are the single and normalized similarities at layer r between user profiles ui and ul, and

() (), cos ,
r r

r r k i
r k i k i r r

k i

d u
sim d u d u

d u

⋅
= =

⋅

is the similarity at layer r between item dk and user ui.

340 I. Cantador and P. Castells

The idea behind this first model is to compare the current user interests with those
of the others users, and, taking into account the similarities among them, weight all
their complacencies about the different items. The comparisons are done for each
concept cluster measuring the similarities between the items and the clusters. We thus
attempt to recommend an item in a double way. First, according to the item character-
istics, and second, according to the connections among user interests, in both cases at
different semantic layers.

Model UP-r. The preferences of the user are used by the system to return one ranked
list per cluster, obtained from the similarities between users and items at each cluster
layer. The ranking that corresponds to the cluster for which the user has the highest
membership value is selected. The expression is analogous to equation (2), but does
not include the term that connects the item with each cluster Cr.

() () (), , ,r k i r i l r k l
l

pref d u nsim u u sim d u= ⋅ (3)

where r maximizes sim(ui,Cr).
Analogously to the previous model, this one makes use of the relations among the

user interests, and the user satisfactions with the items. The difference here is that
recommendations are done separately for each layer. If the current semantic cluster is
well identified for a certain item, we expect to achieve better precision/recall results
than those obtained with the overall model.

Model NUP. The semantic profile of the user is ignored. The ranking of an item dk is
determined by its similarity with the clusters, and the similarity of the item and the
profiles of the users within each cluster. Since the user does not have connections to
other users, the influence of each profile is averaged by the number of users M.

() () ()1
, , ,k i k r r k l

r l

pref d u nsim d C sim d u
M

= (4)

Designed for situations in which the current user profile has not yet been defined,
this model uniformly gathers all the user complacencies about the items at different
semantic layers. Although it would provide worse precision/recall results than the
models UP and UP-r, this one might be fairly suitable as a first approach to recom-
mendations previous to manual or automatic user profile constructions.

Model NUP-r. The preferences of the user are ignored, and one ranked list per cluster
is delivered. As in the UP-r model, the ranking that corresponds to the cluster the user
is most close to is selected. The expression is analogous to equation (4), but does not
include the term that connects the item with each cluster Cr.

() ()1
, ,r k i r k l

l

pref d u sim d u
M

= (5)

This last model is the most simple of all the proposals. It only measures the users’
complacencies with the items at the layers that best fit them, representing thus a kind
of item-based collaborative filtering system.

 Multilayered Semantic Social Network Modeling 341

5 An Example

For testing the proposed strategies and models a simple experiment has been set up. A
set of 20 user profiles are considered. Each profile is manually defined considering 6
possible topics: animals, beach, construction, family, motor and vegetation. The de-
gree of interest of the users for each topic is shown in Table 1, ranging over high,
medium, and low interest, corresponding to preference weights close to 1, 0.5, and 0.

Table 1. Degrees of interest of users for each topic, and expected user clusters to be obtained

 Motor Construction Family Animals Beach Vegetation Expected
Cluster

User1 High High Low Low Low Low 1
User2 High High Low Medium Low Low 1
User3 High Medium Low Low Medium Low 1
User4 High Medium Low Medium Low Low 1
User5 Medium High Medium Low Low Low 1
User6 Medium Medium Low Low Low Low 1
User7 Low Low High High Low Medium 2
User8 Low Medium High High Low Low 2
User9 Low Low High Medium Medium Low 2
User10 Low Low High Medium Low Medium 2
User11 Low Low Medium High Low Low 2
User12 Low Low Medium Medium Low Low 2
User13 Low Low Low Low High High 3
User14 Medium Low Low Low High High 3
User15 Low Low Medium Low High Medium 3
User16 Low Medium Low Low High Medium 3
User17 Low Low Low Medium Medium High 3
User18 Low Low Low Low Medium Medium 3
User19 Low High Low Low Medium Low 1
User20 Low Medium High Low Low Low 2

As it can be seen from the table, the six first users (1 to 6) have medium or high
degrees of interests in motor and construction. For them it is expected to obtain a
common cluster, named cluster 1 in the table. The next six users (7 to 12) share again
two topics in their preferences. They like concepts associated with family and ani-
mals. For them a new cluster is expected, named cluster 2. The same situation hap-
pens with the next six users (13 to 18); their common topics are beach and vegetation,
an expected cluster named cluster 3. Finally, the last two users have noisy profiles, in
the sense that they do not have preferences easily assigned to one of the previous
clusters. However, it is comprehensible that User19 should be assigned to cluster 1
because of her high interests in construction and User20 should be assigned to cluster
2 due to her high interests in family.

Table 2 shows the correspondence of concepts to topics. Note that user profiles do
not necessarily include all the concepts of a topic. As mentioned before, in real world
applications it is unrealistic to assume profiles are complete, since they typically in-
clude only a subset of all the actual user preferences.

342 I. Cantador and P. Castells

Table 2. Initial concepts for each of the six considered topics

Topic Concepts
Motor Vehicle, Motorcycle, Bicycle, Helicopter, Boat
Construction Construction, Fortress, Road, Street
Family Family, Wife, Husband, Daughter , Son, Mother, Father, Sister, Brother
Animals Animal, Dog, Cat, Bird, Dove, Eagle, Fish, Horse, Rabbit, Reptile, Snake, Turtle
Beach Water , Sand, Sky
Vegetation Vegetation, Tree (instance of Vegetation), Plant (instance of Vegetation), Flower (in-

stance of Vegetation)

We have tested our method with this set of 20 user profiles, as explained next.
First, new concepts are added to the profiles by the CSA strategy mentioned in Sec-
tion 2, enhancing the concept and user clustering that follows. The applied clustering
strategy is a hierarchical procedure based on the Euclidean distance to measure the
similarities between concepts, and the average linkage method to measure the simi-
larities between clusters. During the execution, N–1 (with N the total number of con-
cepts) clustering levels were obtained, and a stop criterion to choose an appropriate
number of clusters would be needed. In our case the number of expected clusters is
three so the stop criterion was not necessary. Table 3 summarizes the assignment of
users to clusters, showing their corresponding similarities values. It can be shown that
the obtained results completely coincide with the expected values presented in Table
1. All the users are assigned to their corresponding clusters. Furthermore, the users’
similarities values reflect their degrees of belonging to each cluster.

Table 3. User clusters and associated similarity values between users and clusters. The maxi-
mum and minimum similarity values are shown in bold and italics respectively.

Cluster Users
User1 User2 User3 User4 User5 User6 User19 1
0.522 0.562 0.402 0.468 0.356 0.218 0.194
User7 User8 User9 User10 User11 User12 User20 2
0.430 0.389 0.374 0.257 0.367 0.169 0.212

User13 User14 User15 User16 User17 User18 3
0.776 0.714 0.463 0.437 0.527 0.217

Once the concept clusters have been automatically identified and each user has
been assigned to a certain cluster, we apply the information retrieval models presented
in the previous section. A set of 24 pictures was considered as the retrieval space. Each
picture was annotated with (weighted) semantic metadata describing what the image
depicts using a domain ontology. Observing the weighted annotations, an expert rated
the relevance of the pictures for the 20 users of the example, assigning scores between
1 (totally irrelevant) and 5 (very relevant) to each picture, for each user. We show in
Table 4 the final concepts obtained and grouped in the semantic Constrained Spreading
Activation and concept clustering phases. Although most of the final concepts do not
appear in the initial user profiles, they are very important in further steps because they
help in the construction of the clusters. Our plans for future work include studying in
depth the influence of the CSA in realistic empirical experiments.

 Multilayered Semantic Social Network Modeling 343

Table 4. Concepts assigned to the obtained user clusters classified by semantic topic

Cluster Concepts

1

MOTOR: Vehicle, Racing-Car, Tractor, Ambulance, Motorcycle, Bicycle, Helicopter, Boat,
Sailing-Boat, Water-Motor, Canoe, Surf, Windsurf, Lift, Chair-Lift, Toboggan, Cable-Car,
Sleigh, Snow-Cat
CONSTRUCTION: Construction, Fortress, Garage, Road, Speedway, Racing-Circuit, Short-
Oval, Street, Wind-Tunnel, Pier, Lighthouse, Beach-Hut, Mountain-Hut, Mountain-Shelter,
Mountain-Villa

2

FAMILY: Family, Wife, Husband, Daughter , Son, Mother-In-Law, Father-In-Law, Nephew,
Parent, ‘Fred’ (instance of Parent), Grandmother, Grandfather, Mother, Father, Sister, ‘Chris-
tina’ (instance of Sister), Brother, ‘Peter’ (instance of Brother), Cousin , Widow
ANIMALS: Animal, Vertebrates, Invertebrates, Terrestrial, Mammals, Dog, ‘Tobby’ (instance
of Dog), Cat, Bird, Parrot, Pigeon, Dove, Parrot, Eagle, Butterfly, Fish, Horse, Rabbit, Reptile,
Snake, Turtle, Tortoise, Crab

3
BEACH: Water, Sand, Sky
VEGETATION: Vegetation, ‘Tree’ (instance of Vegetation), ‘Plant’ (instance of Vegetation),
‘Flower’ (instance of Vegetation)

The four different models are finally evaluated by computing their average preci-
sion/recall curves for the users of each of the three existing clusters. Figure 3 shows the
results. Two conclusions can be inferred from the results: a) the version of the models
that returns ranked lists according to specific clusters (UP-r and NUP-r) outperforms the
one that generates a unique list, and, b) the models that make use of the relations among
users in the social networks (UP and UP-r) result in significant improvements with
respect to those that do not take into account similarities between user profiles.

Fig. 3. Average precision vs. recall curves for users assigned to cluster 1 (left), cluster 2 (cen-
ter) and cluster 3 (right). The graphics on top show the performance of the UP and UP-r mod-
els. The ones below correspond to the NUP and NUP-r models.

344 I. Cantador and P. Castells

6 Early Experiments

We have performed an experiment with real subjects in order to evaluate the effec-
tiveness of our proposed recommendation models. Following the ideas exposed in the
simple example of the previous section, the experiment was setup as follows.

The set of 24 pictures used in the example was again considered as the retrieval
space. As mentioned before, each picture was annotated with semantic metadata de-
scribing what the image depicts, using a domain ontology including six certain topics:
animals, beach, construction, family, motor and vegetation. A weight in [0,1] was as-
signed to each annotation, reflecting the relative importance of the concept in the pic-
ture. 20 graduate students of our department participated in the experiment. They were
asked to independently define their weighted preferences about a list of concepts related
to the above topics and existing in the pictures semantic annotations. No restriction was
imposed on the number of topics and concepts to be selected by each of the students.
Indeed, the generated user profiles showed very different characteristics, observable not
only in their joint interests, but also in their complexity. Some students defined their
profiles very thoroughly, while others only annotated a few concepts of interest. This
fact was obviously very appropriate for the experiment done. In a real scenario where an
automatic preference learning algorithm will have to be used, the obtained user profiles
would include noisy and incomplete components that will hinder the clustering and
recommendation mechanisms.

Once the 20 user profiles were created, we run our method. After the execution of the
semantic preference spreading procedure, the domain concept space was clustered ac-
cording to similar user interests. In this phase, because our strategy is based on a hierar-
chical clustering method, various clustering levels (representable by the corresponding
dendrogram) were found, expressing different compromises between complexity, de-
scribed in terms of number of concept clusters, and compactness, defined by the number
of concepts per cluster or the minimum distance between clusters. In Figure 4 we graph
the minimum inter-cluster distance against the number of concept clusters.

Fig. 4. Minimum inter-cluster distance at different concept clustering levels

A stop criterion has then to be applied in order to determine what number of clus-
ters should be chosen. In this case, we shall use a rule based on the elbow criterion,
which says you should be choose a number of clusters so that adding another cluster
does not add sufficient information. We are interested in a clustering level with a
relative small number of clusters and which does not vary excessively the inter-cluster

 Multilayered Semantic Social Network Modeling 345

distance with respect to previous levels. Therefore, attending to the figure, we will
focus on clustering levels with R = 4, 5, 6 clusters, corresponding to the angle (elbow)
in the graph. Table 5 shows the users that most contributed to the definition of the
different concept cluster, and their corresponding similarities values.

Table 5. User clusters and associated similarity values between users and clusters obtained at
concept clustering levels R = 4, 5, 6

R Cluster Users
User01 User02 User05 User06 User19 1
0.388 0.370 0.457 0.689 0.393

 2

User03 User04 User07 User09 User12 User15 User16 User18 3
0.521 0.646 0.618 0.209 0.536 0.697 0.730 0.461

User08 User10 User11 User13 User14 User17 User20

4

4
0.900 0.089 0.810 0.591 0.833 0.630 0.777

User03 User07 1
0.818 0.635

 2

User04 User09 User12 User16 User18 3
0.646 0.209 0.536 0.730 0.461

User01 User02 User05 User06 User15 User19 4
0.395 0.554 0.554 0.720 0.712 0.399

User08 User10 User11 User13 User14 User17 User20

5

5
0.900 0.089 0.810 0.591 0.833 0.630 0.777
User6 1
0.818

 2

User18 3
0.481

User02 User05 User06 User19 4
0.554 0.554 0.720 0.399

User08 User13 User11 User17 User20 5
0.900 0.591 0.810 0.630 0.777

User01 User04 User07 User09 User10 User12 User14 User15 User16

6

6
0.786 0.800 0.771 0.600 0.214 0.671 0.857 0.829 0.814

It has to be noted that not all the concept clusters have assigned user profiles.
However, there are semantic relations between users within a certain concept cluster,
independently of being associated to other clusters or the number of users assigned to
the cluster. For instance, at clustering level R = 4, we obtained the weighted semantic
relations plotted in Figure 5. Representing the semantic social networks of the users,
the diagrams of the figure describe the similarity terms () { }, , , 1,20

r i l
sim u u i l ∈ (see

equations 2 and 3). The color of each cell depicts the similarity values between two
given users: the dark and light gray cells indicate respectively similarity values
greater and lower than 0.5, while the white ones mean no existent relation. Note that a
relation between two certain users with a high weight does not necessary implicate a
high interest of both for the concepts on the current cluster. What it means is that they
interests agree at this layer. They could really like it or they might hate its topics.

346 I. Cantador and P. Castells

Fig. 5. Symmetric user similarity matrices at layers 1, 2, 3 and 4 between user profiles ui and ul
(i, l ∈{1, 20}) obtained at clustering level R=4. Dark and light gray cells represent respectively
similarity values greater and lower than 0.5. White cells mean no relation between users.

Table 6 shows the concept clusters obtained at clustering level R = 4. We have un-
derlined those general concepts that initially did not appear in the profiles and were in
the upper levels of the domain ontology. Inferred from our preference spreading strat-
egy, these concepts do not necessary define the specific semantics of the clusters, but
help to build the latter during the clustering processes.

Table 6. Concept clusters obtained at clustering level R=4

Cluster Concepts

1

ANIMALS: Rabbit
CONSTRUCTION: Construction, Speedway, Racing-Circuit, Short-Oval, Garage, Light-
house, Pier, Beach-Hut, Mountain-Shelter, Mountain-Villa, Mountain-Hut,
MOTOR: Vehicle, Ambulance, Racing-Car, Tractor, Canoe, Surf, Windsurf, Water-Motor,
Sleigh, Snow-Cat, Lift, Chair-Lift, Toboggan, Cable-Car

2

ANIMALS: Organism, Agentive-Physical-Object, Reptile, Snake, Tortoise, Sheep, Dove,
Fish, Mountain-Goat, Reindeer
CONSTRUCTION: Non-Agentive-Physical-Object, Geological-Object, Ground, Artifact,
Fortress, Road, Street
FAMILY: Civil-Status, Wife, Husband
MOTOR: Conveyance, Bicycle, Motorcycle, Helicopter, Boat, Sailing-Boat

3

ANIMALS: Animal, Vertebrates, Invertebrates, Terrestrial, Mammals, Dog, ‘Tobby’ (instance
of Dog), Cat, Horse, Bird, Eagle, Parrot, Pigeon, Butterfly, Crab
BEACH: Water, Sand, Sky
VEGETATION: Vegetation, ‘Tree’ (instance of Vegetation), ‘Plant’ (instance of Vegetation),
‘Flower’ (instance of Vegetation)

4
FAMILY: Family, Grandmother, Grandfather, Parent, Mother, Father, Sister, Brother, Daugh-
ter, Son, Mother-In-Law, Father-In-Law, Cousin, Nephew, Widow, ‘Fred’ (instance of Parent),
‘Christina’ (instance of Sister), ‘Peter’ (instance of Brother)

 Multilayered Semantic Social Network Modeling 347

Some conclusions can be drawn from this experiment. Cluster 1 contains the ma-
jority of the most specific concepts related to construction and motor, showing a sig-
nificative correlation between these two topics of interest. Checking the profiles of the
users associated to the cluster, we observed they overall have medium-high weights
on the concepts of these topics. Cluster 2 is the one with more different topics and
general concepts. In fact, it is the cluster that does not have assigned users in Table 6
and does have the most weakness relations between users in Figure 5. It is also noto-
rious that the concepts ‘wife’ and ‘husband’ appear in this cluster. This is due to these
concepts were not be annotated in the profiles by the subjects, who were students, not
married at the moment. Cluster 3 is the one that gathers all the concepts about beach
and vegetation. The subjects who liked vegetation items also seemed to be interested
in beach items. It also has many of the concepts belonging to the topic of animals, but
in contrast to cluster 2, the annotations were for more common and domestic animals.
Finally, cluster 4 collects the majority of the family concepts. It can be observed from
the user profiles that a number of subjects only defined their preferences in this topic.

Finally, as we did in the example of section 5, we evaluate the proposed retrieval
models computing their average precision/recall curves for the users of each of the
existing clusters. In this case we calculate the curves at different clustering levels (R =
4, 5, 6), and we only consider the models UP and UP-r because they make use of the
relations among users in the social networks, and offer significant improvements with
respect to those that do not take into consideration similarities between user profiles.
Figure 6 exposes the results.

Fig. 6. Average precision vs. recall curves for users assigned to the user clusters obtained with
the UP (black lines) and UP-r (gray lines) models at levels R=6 (graphics on the top), R=5
(graphics in the middle), and R=4 (graphics on the bottom) concept clusters. For both models,
the dotted lines represent the results achieved without semantic preference spreading.

348 I. Cantador and P. Castells

Again, the version UP-r, which returns ranked lists according to specific clusters,
outperforms the version UP, which generates a unique list assembling the contributions
of the users in all the clusters. Obviously, the more clusters we have, the better perform-
ance is achieved. The clusters tend to have assigned fewer users and seem more similar
to the individual profiles. However, it can be seen that very good results are obtained
with only three clusters. Additionally, for both models, we have plotted with dotted lines
the curves achieved without spreading the user semantic preferences. Although more
statistically significative experiments have to be done in order to make founded conclu-
sions, it can be pointed out that our clustering strategy performs better when it is com-
bined with the CSA algorithm, especially in the UP-r model. This fact let give us pre-
liminary evidences of the importance of spreading the user profiles before the clustering
processes.

7 Conclusions and Further Work

In this work, we have presented an approach to the automatic identification of social
networks according to ontology-based user profiles. Taking into account the semantic
preferences of several users we cluster the ontology concept space, obtaining common
topics of interest. With these topics, preferences are partitioned into different layers.

The degree of membership of the obtained subprofiles to the clusters, and the simi-
larities among them, are used to define social links that can be exploited by collabora-
tive filtering systems. Early experiments with real subjects have been done applying the
emergent social networks to a variety of collaborative filtering models showing the
feasibility of our clustering strategy. However, more sophisticated and statistically sig-
nificative experiments need to be performed in order to properly evaluate the models.
We have planned to implement a web-based recommender agent that will allow users to
easily define their profiles, see their semantic relations with other people, and evaluate
the existing items and recommendations given by the system. Thus, we expect to
enlarge the repositories of items and user profiles, and improve our empirical studies.

Our implementation of the applied clustering strategy was a hierarchical procedure
based on the Euclidean distance to measure the similarities between concepts, and the
average linkage method to measure the similarities between clusters. Of course, several
aspects of the clustering algorithm have to be investigated in future work using noisy
user profiles: 1) the type of clustering (hierarchical or partitional), 2) the distance meas-
ure between two concepts (Manhattan, Euclidean or Squared Euclidean distances), 3)
the distance measure between two clusters (single, complete or average linkage), 4) the
stop criterion that determines what number of clusters should be chosen, and, 5) the
similarity measure between given clusters and user profiles; we have used a measure
considering the relative size of the clusters, but we have not taken into account what
proportion of the user preferences is being satisfied by the different concept clusters.

We are also aware of the need to test our approach in combination with automatic
user preference learning techniques in order to investigate its robustness to imprecise
user interests, and the impact of the accuracy of the ontology-based profiles on the
correct performance of the clustering processes. An adequate acquisition of the con-
cepts of interest and their further classification and annotation in the ontology-based
profiles will be crucial to the correct performance of the clustering processes.

 Multilayered Semantic Social Network Modeling 349

Acknowledgements

The research leading to this document has received funding from the European Com-
munity's Sixth Framework Programme (FP6-027685 – MESH), and the Spanish Min-
istry of Science and Education (TIN2005-06885). However, it reflects only the au-
thors' views, and the European Community is not liable for any use that may be made
of the information contained therein.

References

1. Alani, H., O'Hara, K., Shadbolt, N.: ONTOCOPI: Methods and Tools for Identifying Com-
munities of Practice. Intelligent Information Processing 2002, pp. 225-236, 2002.

2. Ardissono, L., Goy, A., Petrone, G., Segnan, M., Torasso, P.: INTRIGUE: personalized
recommendation of tourist attractions for desktop and handset devices. Applied Artificial
Intelligence, Special Issue on Artificial Intelligence for Cultural Heritage and Digital Li-
braries 17(8-9), pp. 687-714. Taylor and Francis, 2003.

3. Balabanovic, M., Shoham, Y.: Content-Based Collaborative Recommendation. Communi-
cations ACM, pp. 66-72, 1997.

4. Cohen, P. R. and Kjeldsen, R.: Information Retrieval by Constrained Spreading Activation
in Semantic Networks. Information Processing and Management 23(2), pp. 255-268, 1987.

5. Crestani, F., Lee, P. L.: Searching the web by constrained spreading activation. Informa-
tion Processing & Management 36(4), pp. 585-605, 2000.

6. Duda, R.O., Hart, P., Stork, D.G.: Pattern Classification. John Wiley. 2001.
7. Linden, G., Smith, B., York, J.: Amazon.com Recommendations: Item-to-Item Collabora-

tive Filtering. IEEE Internet Computing, 7(1):76-80, 2003.
8. Liu, H., Maes, P., Davenport, G.: Unraveling the Taste Fabric of Social Networks. Interna-

tional Journal on Semantic Web and Information Systems 2 (1), pp. 42-71, 2006.
9. McCarthy, J., Anagnost, T.: MusicFX: An arbiter of group preferences for computer sup-

ported collaborative workouts. ACM International Conference on Computer Supported
Cooperative Work (CSCW 1998). Seattle, Washington, pp. 363-372, 1998.

10. Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. Proceed-
ings of the 4th International Semantic Web Conference (ISWC 2005), pp. 522-536, 2005.

11. Mika, P.: Flink: Semantic Web technology for the extraction and analysis of social net-
works. Web Semantics: Science, Services and Agents on the WWW 3(2-3), pp. 211-223,
2005.

12. Montaner, M., López, B., Lluís de la Rosa, J.: Taxonomy of Recommender Agents on the
Internet. Artificial Intelligence Review 19, pp. 285-330, 2003.

13. O’Conner, M., Cosley, D., Konstan, J. A., Riedl, J.: PolyLens: A recommender system for
groups of users. 7th European Conference on Computer Supported Cooperative Work
(ECSCW 2001). Bonn, Germany, pp. 199-218, 2001.

14. Sarwar, B.M., et al.: Item-Based Collaborative Filtering Recommendation Algorithms. 10th
International World Wide Web Conference, ACM Press, pp. 285-295, 2001.

15. Ungar, L., Foster, D.: Clustering Methods for Collaborative Filtering. Proceedings of the
Workshop on Recommendation Systems at the 15th National Conference on Artificial In-
telligence, AAAI Press, 1998.

16. Vallet, D., Mylonas, P., Corella, M. A., Fuentes, J. M., Castells, P., Avrithis, Y.: A Seman-
tically-Enhanced Personalization Framework for Knowledge-Driven Media Services.
IADIS WWW/Internet Conference (ICWI 2005). Lisbon, Portugal, 2005.

Towards Knowledge Management Based on

Harnessing Collective Intelligence on the Web

Koji Zettsu1 and Yasushi Kiyoki1,2

1 National Institute of Information and Communications Technology,
4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 Japan

zettsu@nict.go.jp
2 Faculty of Information Environment, Keio University,

5322 Endo, Fujisawa, Kanagawa 252-8520, Japan
kiyoki@mdbl.sfc.keio.ac.jp

Abstract. The Web has acquired immense value as an active, evolving
repository of knowledge. It is now entering a new era, which has been
called “Web 2.0”. One of the essential elements of Web 2.0 is harness-
ing the collective intelligence of Web users. Large groups of people are
remarkably intelligent, and are often smarter than the smartest people
in them. Knowledge as collective intelligence is socially constructed from
the common understandings of people. It works as a filter for selecting
highly regarded information with collective annotation based on bottom-
up consensus and the unifying force of Web-supported social networks.
The rising interest in harnessing the collective intelligence of Web users
entails changes in managing the knowledge of individual users. In this
paper, we introduce a concept of knowledge management based on har-
nessing the collective intelligence of Web users, and explore the technical
issues involved in implementing it.

1 Introduction

The Web is entering a new era, which has been called “Web 2.0”. One of the
essential elements of Web 2.0 is harnessing collective intelligence[1]. In the Web
2.0 era, the Web is evolving from a collection of hyperlinked documents into
a conversational “mess” of overlapping communities, where discussion and chat
emerge and, as a result, friendships become more entrenched. From this perspec-
tive, retrieving Web pages relevant to a given query is no longer the ultimate
goal. Instead, this goal is being replaced by the desire to discover communities
of knowledge and acquire collective intelligence. Below are motivating examples:

– More and more people try to see “what’s getting a lot of attention now”
by monitoring blogs. The world of Web 2.0 is a world in which the former
audience decides what is important, not a few people in a back room. The
collective attention of the blogosphere selects for value.

– For most casual users, information requirements are not specific initially
and are usually subject to change during their search. When users conduct
searches by trial-and-error, they learn what information is available on the

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 350–357, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Knowledge Management 351

Web from the search results for ad hoc queries. Based on the knowledge
discovered from these search results, such as major topics or representative
Web communities, people may discover more specific information sources
and more specific queries that help them narrow down their searches.

– Web content authors, or bloggers, take a great interest in who is interested in
their content. They try to establish communication with those people, and
as a result, a community of interest is formed beyond organizational/cultural
boundaries.

Individual users have a constant need to capture, codify, locate, and distribute
everyday knowledge. Increasing interest in harnessing the collective intelligence
of Web users requires changes to the way the knowledge of individual users is
managed. In this paper, we introduce a concept of knowledge management based
on harnessing the collective intelligence of Web users, and explore the technical
issues involved in implementing it.

2 Basic Concepts

2.1 Knowledge as the Collective Intelligence of Web Users

The Web provides a platform for establishing networks made up of commu-
nities of people (or organizations or other social entities) connected by social
relationships, such as friendship, collaboration, or information exchange based
on common interests. These Web-supported social networks can be regarded as
virtual communities. From a sociological perspective, knowledge is considered
to be socially constructed. Social processes influence the processes of generating
and applying knowledge. As a consequence, knowledge cannot be described as
objective truth, but as what a social system considers to be true. In this sense,
the collective intelligence of Web users can be viewed as a common (or shared)
understanding between people, which is the type of knowledge that people tend
to take for granted. For example, a folksonomy, like del.icio.us and Flickr, is a
form of user-generated classification that emerges through bottom-up consensus.
Similarly, Wikipedia is based on collective authorship and understanding.

Users pursuing their own selfish interests build collective value as an automatic
byproduct. The collective intelligence of Web users can be viewed as “the wis-
dom of crowds”[2], which describes a deceptively simple idea that has profound
implications: large groups of people are remarkably intelligent, and are often
smarter than the smartest people in them. Even if most of the people within a
group are not especially well-informed or rational, the group can still reach a
collectively wise decision. Our basic idea is to exploit the collective intelligence
of Web users, or “the wisdom of crowds”, as the basis of knowledge.

2.2 Knowledge Management at the Personal Level

In today’s competitive knowledge-based society, knowledge work may be charac-
terized by stronger communication needs, weakly structured and less predictable

352 K. Zettsu and Y. Kiyoki

processes, the assignment of multiple roles to one person rather than a sin-
gle job position per person, and the increasing importance of teamwork in the
form of project teams, networks, and communities in addition to work groups
and departments. The boundaries of organizations are more blurred and knowl-
edge workers may engage in a large number of communication, coordination,
and cooperation processes and practices that cross these boundaries. In ad-
dition, the increased mobility of knowledge workers requires multiple, virtual
workspaces that can be personalized according to the needs and practices of
their users.

In response to these quite recent changes in the conditions of knowledge work,
knowledge management is shifting from the organizational to the personal level.
To practice knowledge management at the personal level, individual users con-
stantly need to: (1) quickly locate the right information, (2) receive only relevant
information and the context in a timely manner, (3) switch between learning and
practicing as the knowledge obtained from the Web becomes less structured and
predictable, and (4) maintain communications and build trust among peers to
understand the competencies, interests, and needs of peers (i.e., users must be
both collectors and sharers of knowledge).

Personal knowledge management is “a collection of processes that an indi-
vidual needs to carry out in order to gather, classify, store, search and re-
trieve knowledge in his/her daily activities”[3]. Activities are not confined to
business/work-related tasks but also include personal interests, hobbies, home,
family, and leisure activities. Personal knowledge management can be viewed
as “a conceptual framework to organize and integrate information that we, as
individuals, feel is important, so that it becomes part of our personal knowledge
base”[4]. Personal knowledge management thus provides a strategy for trans-
forming what might be random pieces of information into something that can
be systematically applied and that expands our personal knowledge.

3 Challenges to Implementation

Figure 1 illustrates a generic framework for developing the collective intelli-
gence of Web users. The Web is viewed as a field for individual propagation of
personal knowledge. Users pursue their own selfish interests on the Web. Knowl-
edge discovery and Web mining technologies are required to extract the per-
sonal knowledge distributed over the Web. This personal knowledge is collected
into knowledge bases. Various communities aggregate their personal knowledge
and organize their own collective intelligence. Collective intelligence varies from
community to community because it is valid for the people committing to the
development of the community’s policy or consensus.

Knowledge management can be viewed as a life cycle of knowledge tasks.
Below we present a typical life cycle and discuss the challenges in implementing
knowledge management based on harnessing the collective intelligence.

Knowledge Identification. In knowledge management at the personal level,
individuals are responsible for identifying knowledge sources according to

Towards Knowledge Management 353

Personal knowledge
• Opinion, reputation
• Skills, know-how

Collective intelligence
• Common

understandings

Web

Social networks /
virtual communities

Distributed
knowledge bases

Aggregation

Conceptualization

Knowledge discovery

Individual dissemination

Fig. 1. Generic framework for developing collective intelligence of Web users

their own interests and competencies. However, Web search engines require
an exact match of search terms to locate a piece of information, while a user’s
information needs may not be specific initially and usually change during a
search. This suggests the need for a type of Web search engine that allows
users to clarify their information needs progressively by examining what
kinds of information are available on the Web in their domain of interest.
Narrowing the domain of interest and the domain of the search could be
carried out simultaneously.

Knowledge Acquisition and Creation. In the Web 2.0 era, the Web is
evolving from a collection of hyperlinked documents into a conversational
mess. The unit of knowledge acquisition is shifting from Web pages to se-
mantically coherent units of Web content representing, for example, personal
opinions, explanations, or interpretations of a specific subject. For example, a
unit may consist of a sequence of blog entries (and the comments/trackbacks
to them). Knowledge creation identifies these opinions, explanations, or in-
terpretations as knowledge elements.

Knowledge Organization. Each person has his/her individual views on the
world and the things he/she has to deal with every day. However, there is a
common basis of understanding that we use to communicate with each other.
This common understanding relies on an idea of how the world is organized,
which is often called a “conceptualization” of the world. A conceptualization
provides a context in which knowledge elements can be uniformly organized
based on a specific common understanding. A conceptualization is never uni-
versally valid, but rather is valid for a limited number of persons committing
to that conceptualization.

354 K. Zettsu and Y. Kiyoki

Knowledge Application. The central idea of applications that harness col-
lective intelligence is “the architecture of participation”[1]. More specifically,
the characteristics of these applications are that: (1) common understandings
of resources emerge through bottom-up consensus, and (2) Web-supported
social networks or virtual communities are formed by involving users im-
plicitly or explicitly in adding value to the application. Below, examples of
application scenarios are discussed.
Searching by Referential Context. Common understandings of Web

content enable retrieval along natural axes generated by user activity.
Users can retrieve resources not only by their content, but also by the
context representing what people refer to (or consider) as the resources
(e.g., viewpoints, interpretations, or reputations). Zettsu et al.[5] pro-
posed “aspect mining”, which extracts the referential context of Web
content (e.g., Web pages) from the surrounding content (e.g., link source
pages), and generates keywords characterizing these referential contexts
as “aspects”. Intuitively, an aspect indicates how people refer to the
target Web content, or viewpoints on the Web content.

Community-oriented Search. Harnessing collective intelligence works as
a kind of filter in bringing “the wisdom of crowds” into play. The collec-
tive attention of Web-supported social networks or virtual communities
produces well-selected information. In a community-oriented search, a
user first finds communities related to his/her domain of interest, and
retrieves information that is highly regarded by those communities. This
is a natural extension of the way we might ask about people in our
daily lives. The collective intelligence of the social networks of people, or
communities, play a key role in searching for “trustworthy” information.

Knowledge Evolution. One of the key lessons of Web 2.0 is that “users se-
lect for value”. Thus, a mechanism of natural selection based on reuse rates
is a good candidate for continuous refinement of collective intelligence. The
mechanism would retain knowledge with a high reuse rate, but discard knowl-
edge with a low reuse rate. As a result, highly reused knowledge would
survive. Natural selection mechanisms have a high affinity with collective
intelligence. However, it is also important to retain knowledge that may be
reused rarely but is very important in a specific situation. Trouble shooting
is a good example. It may therefore be necessary to introduce a notion of
context-dependence in evaluating the importance of knowledge.

4 Technical Issues

4.1 Integration of Horizontal and Vertical Searches

The term “horizontal search” refers to broad searches that cover the entire Web.
For example, Web search engines like Google retrieve all the Web pages that
contain the search terms. The strength of horizontal searching is its broad cov-
erage of Web content (i.e., it is exhaustive). A “vertical search” is a narrower

Towards Knowledge Management 355

search focused on specific topics or categories. Examples are real estate, travel,
or shopping searches.

Knowledge-intensive activities at the personal level require capturing, filter-
ing, and combining knowledge from various sources in keeping with the labile
interests of users. A horizontal search of the entire accessible Web is a starting
point for finding almost everything relevant to a user’s interest. It facilitates the
discovery of general knowledge about the domain of interest, which helps iden-
tify more specific sources and more specific queries to narrow down the search.
Vertical searching is a great way of supplementing a horizontal search. It facil-
itates searching for actionable knowledge that is directly related to the user’s
activities or decision making (e.g., making a hotel reservation).

We propose a fundamental framework for integrating horizontal and vertical
searches. A user issues vague queries to existing Web search engines (1. horizon-
tal search). The system collects Web pages in the search results and classifies
or clusters the Web pages to discover major topics relevant to the user’s queries
(2. mining search results). For each topic, the system identifies specialized data-
base and routes the query after appropriate modification (3. vertical search).
Finally, the system aggregates the results of the vertical search, and presents
the search results (4. presentation of results) with explanations describing (a)
how the queries were interpreted by the system (e.g., topics) according to the
horizontal search results, and (b) what kinds of vertical searches were conducted
(i.e., query modification and routing). The proposed framework uses metadata
for specialized DBs for query modification and routing, which facilitates adding
specialized DBs as plug-ins.

4.2 Just-in-Time Knowledge Discovery

The Web is a shifting universe and Web content is always changing. In particular,
blogs are updated every minute, reflecting real-world events almost in real time.
In this sense, the Web is a “live” medium. Therefore, to exploit the collective
intelligence of Web users, it is important to capture knowledge every time that
knowledge is requested. Traditional knowledge discovery and data mining, which
are targeted at static databases, need to be able to handle the sheer volume of
information arriving from various sources, even though the arrival of a piece of
information is difficult to predict. The rising interest in stream data mining is
aimed at discovering knowledge from information streams. However, it is still
limited to discovering sequential patterns in information streams, which is far
from the concept of knowledge as collective intelligence. The ultimate solution
is to apply online and incremental algorithms to conventional knowledge discov-
ery and data mining techniques. From the perspective of collective intelligence,
online/incremental classification and clustering of information streams, similar
to RSS feeds, are the most important issues.

As the collective attention of the blogosphere selects for value, monitoring
what is currently receiving a lot of attention in the blogosphere is important
in acquiring the “groupthink” of Web users. Especially, extracting opinions or
reputations from blogs is an emerging issue. Opinion mining [6,7] processes a set

356 K. Zettsu and Y. Kiyoki

of search results for a given item, generating a list of product attributes (quality,
features, etc.) and aggregating opinions about each of them (poor, mixed, good).
While most of the current approaches focus on sentiment classification, i.e.,
classifying opinion texts or sentences as positive or negative, they need to be
enhanced to identify diverse opinions more specifically by classifying/clustering
opinions or generating summaries of opinions.

4.3 Global Infrastructure for Knowledge Sharing

Organizing the collective intelligence of Web users requires handling and analyz-
ing multi-site and multi-owner knowledge repositories. Our challenge is to create
a global infrastructure for sharing heterogeneous knowledge repositories across
community boundaries.

The “knowledge grid” has recently emerged as an integrated infrastructure for
coordinating knowledge sharing in distributed environments[8]. The knowledge
grid uses the basic functions of a grid and defines a set of additional layers to
implement the functions of distributed knowledge discovery. The knowledge grid
enables collaboration between knowledge providers who must mine data stored
in different information sources, and knowledge users who must use a knowledge
management system operating on several knowledge bases. Our intention is to
implement a mechanism for aggregating knowledge on top of the knowledge grid
in order to organize collective intelligence based on conceptualizations.

4.4 Aggregating Knowledge According to Conceptualizations

Conventional approach for organizing common understandings focuses on con-
structing shared ontologies based on bottom-up consensus[9]. Instead, we pro-
pose an approach which is aimed at aggregating knowledge dynamically for a
given domain of interest. In the context of multi-database systems, Kiyoki et
al.[10] proposed a model for achieving semantic interoperability between data
items in heterogeneous databases. Their “mathematical model of meaning” is
used to find different data items with equivalent or similar meaning, or to recog-
nize the different meanings of an item. The mathematical model of meaning
consists of: (1) defining a normed semantic space, (2) constructing a class of
projections which represents a phase of meaning, and (3) constructing a mech-
anism to select a subspace of the normed space according to the context. In-
tuitively, in this model, a semantic space consisting of orthogonal concepts is
constructed and all data items are mapped on to the semantic space. Then, a
subspace is selected according to the “context”, which is also represented by a
set of orthogonal concepts, and data items are projected on to the subspace.
Finally, the similarity between the data items in the subspace is evaluated. The
main feature of this model is that the specific meaning of a data item can be
recognized disambiguously and dynamically according to the context.

The idea of a mathematical model of meaning could be exploited to aggre-
gate knowledge according to a specific conceptualization. Here, every item of
knowledge is mapped to a semantic space, and conceptualizations are defined as

Towards Knowledge Management 357

subspaces of the semantic space. Because the subspace represents the “context”
of conceptualization, projecting knowledge on to the subspace would result in
aggregation of knowledge according to the context. The context-dependent rel-
evance between various items of knowledge would be evaluated in terms of the
similarity between all the items of knowledge in the subspace.

5 Conclusions

We introduced the concept of knowledge management based on harnessing col-
lective intelligence on the Web. The Web can be viewed as a field for individ-
ual propagation of personal intelligence with users pursuing their own selfish
interests. A community aggregates personal intelligence based on its own con-
ceptualization and forms common understandings as collective intelligence. We
discussed the resulting impacts on the knowledge life cycle and challenges that
must be overcome to create a new paradigm of knowledge management. In ad-
dition, we discussed technical issues in implementing knowledge management
based on harnessing collective intelligence. These range from Web information
searches, knowledge discovery and data mining, to a global infrastructure for
knowledge sharing, and aggregation of knowledge based on conceptualization in
exploiting collective intelligence.

References

1. O’Reilly, T.: What is web 2.0. In: http://www.oreillynet.com/pub/a/oreilly/tim/
news/2005/09/30/what-is-web-20.html. (2005)

2. Surowiecki, J.: The Wisdom Of Crowds. Anchor Books (2005)
3. Tsui, E.: Technologies for personal and peer-to-peer knowledge management. In:

http://www.csc.com/aboutus/lef/mds67 off/uploads/P2P KM.pdf. (2002)
4. Frand, J.L., Hixon, C.: Personal knowledge management: Who, what, why, when,

where, how. In: http://www.anderson.ucla.edu/faculty/jason.frand/researcher/
speeches/PKM.htm. (1999)

5. Zettsu, K., Tanaka, K.: Referential context mining: Discovering viewpoints from
the web. In: Proceedings of the The 2005 IEEE/WIC/ACM International Confer-
ence on Web Intelligence (WI’05), Compiegne, France (2005) 321–325

6. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on
the web. In: Proceedings of the 14th International World Wide Web Conference.
(2005) 342–351

7. Morinaga, S., Yamanishi, K., Tateishi, K., Fukushima, T.: Mining product rep-
utations on the web. In: Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. (2002) 341–349

8. Cannataro, M., Talia, D.: The knowlege grid: Designing, building, and implement-
ing an architecture for distributed knowledge discovery. Communications of the
ACM 46(1) (2003)

9. Stuckenschmidt, H., van Harmelen, F.: Information Sharing on the Semantic Web.
Springer-Verlag (2005)

10. Kiyoki, Y., Kitagawa, T., Hayama, T.: A metadatabase system for semantic image
search by a mathematical model of meaning. ACM SIGMOD Record 23(4) (1994)
34–41

A Formal Approach to Qualitative Reasoning on

Topological Properties of Networks

Andrea Rodŕıguez1,3 and Claudio Gutierrez2,3

1 Department of Computer Science, Universidad de Concepción
andrea@udec.cl

2 Department of Computer Science, Universidad de Chile
cgutierr@dcc.uchile.cl

3 Center for Web Research, Universidad de Chile

Abstract. Qualitative reasoning uses a limited set of relevant distinc-
tions of the domain to allow a flexible way of representing and reasoning
about it. This work presents a conceptual framework for qualitative rea-
soning about information networks from a spatial-topological point of
view. We consider the properties of connectivity and some topological
invariants to describe the structural characteristics of and the topologi-
cal relationships between networks. The paper presents a data model for
networks which generalizes the notion of graph, founded in algebraic and
topological considerations. Such conceptual tool can be useful in different
domains, from social to technological networks.

1 Introduction

Topological properties are related to the concept of connectivity, upon which
different relations may be defined; for example, overlapping, inside, disjoint and
meet. An important extension beyond the power of traditional query languages
for graph and networks is the incorporation of topological relationships into the
primitves of query languages. These facts have already been recognized in the
spatial domain, where topological relations have played an important role for
spatial reasoning [9,1] and query languages [13].

A formal approach to this subject is beneficial for several reasons. The for-
malism serves as a tool to identify and derive systematically relationships while
avoiding redundant and contradicting relations and notions, and helps proving
the completeness of the set of relationships. The formal method can be applied
to determine the relation between any two networks and to reason formally
about them. Algorithms to determine relationships can be specified exactly, and
mathematically sound models will help to define formally the relationships. The
formalism can extend definitions on networks to more general concepts on net-
works.

Topological and spatial reasoning is a well established subject dealing with
the development of formal models for defining and reasoning about topological
characteristics of spatial objects and topological relations [10]. When trying to
extend these techniques to sets of overlapping networks the following important
issues arise:

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 358–365, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Formal Approach to Qualitative Reasoning 359

– The standard notion of graph does not suffice to represent faitfully the in-
formation. Note that an edge could be part of a network which does not
have both of its end-nodes (e.g. the sub-network of Latin American routes
consisting of Chilean cities and LanChile’s routes: a flight going out of the
country is an edge which has only one node in the sub-network).

– Graphs do not behave like sets of point nor as “point-less objects.” Hence
from a topological point of view, the approach should be a mixture of point-
set topology and point-less topology

– The classic set of operations on graphs must be enriched to be able to express
in a flexible manner spatio-topological relations among networks.

– Standard spatial notions cannot be taken as on-the-shelf technology for
networks.

This work presents a formal framework for topological reasoning on relation-
ships among network properties, particularly focusing on connectivity aspects.
It discusses the level of abstraction needed, that is, what are the “good” objects
in this domain, and what are the “good” operations to act over these objects. It
presents several operations on them and studies their properties. In addition, it
introduces the main approaches used in spatial reasoning for defining topological
relations between networks. Such definitions can be applied to broad application
domains, such as social networks, technological networks, and conceptual or
metadata networks. In particular we:

Related Work. To the best of our knowledge the subject of this paper has not
been addressed formally. There is related work on spatial reasoning which is
useful in our context, and that we describe below.

In the spatial domain, qualitative reasoning of topological relations has ob-
tained particular attention from the research community, since it allows auto-
matic reasoning based on a cognitively plausible representation of spatial con-
cepts [10]. Most of the work on topological qualitative reasoning define ontolo-
gies of spatial entities, where some fundamental concepts are contact, parthood
and boundary [4,1,9]. Stell and Worboys [14] present a theory of parthood and
boundary that can be connected to different formalisms for topological relations.
This formalism represents set of regions as a bi-Heyting algebra [7] and expresses
certain important constructors on the regions purely in terms of the operations
presented in the algebra. One of the examples they give is the algebra of graphs.
We follow some of these ideas when looking for the right data structure for
networks and operations over it, but consider a more general notion of graph.

Two well known ontologies for topological spatial relations are the Region
Connected Calculus (RCC) [1] and the point-set topological model [9,8]. RCC is
a logic-based formalization of topological relations that uses a basic connectivity
relation between closed regions. The point-set topological model defines topolog-
ical relations based on the set intersection of the interior, boundary and exterior
of spatial objects. Such formalism uses relation algebra [6] to create an inference
mechanism given by the composition of topological relations [11]. Although both
models result in the same set of topological relations between spatial regions,
they differ in their reasoning capabilities. While reasoning with relation algebras

360 A. Rodŕıguez and C. Gutierrez

has computational advantages, axiomatic theories are richer in their expressive
power.

2 The (abstract) Model

In this section we introduce a general framework to model networks and present
the algebraic properties of different categories of objects and their operations.
We will use the basic graph terminology as in Diestel’s Book [12].

Definition 1 (Semigraph). Let U = (VU , EU) be a graph.

1. A semigraph over U is a pair (V, E), where V ⊆ VU and E ⊆ EU .
2. A net is a semigraph (V, E) such that for each uv ∈ E it holds that either

u ∈ V or v ∈ V .

Note that a graph (in the classical sense) is a semigraph such that E ⊆ V × V .
In what follows, there will be always a universe graph U = (VU , EU) which will
be the “space” on which the objects we deal with live in.

(a) (b) (c)

Fig. 1. Basic notions: (a) semigraph, (b) net, and (c) graph. Dark nodes and edges
belong to the semigraph, net or graph, respectively.

Notations. Let V ⊆ VU be a set of nodes, let E ⊆ EU be a set of edges, and let
G be an arbitrary semigraph. We will denote by VG its set of nodes and by EG

its set of edges.
Use uv to denote the undirected edge {u, v}. A node v and an edge e are

incident if e = vw for some w. inc(V) is the set of edges {uv ∈ EU : u ∈ V ∨ v ∈
V }. Similarly, inc(E), is the set of nodes {v ∈ VU : uv ∈ E} sg(V) will denote the
semigraph (V, inc(V)). Similarly, sg(E) will denote the semigraph (inc(E), E),
and sg(G) will denote the semigraph (VG ∪ inc(E), EG ∪ inc(V)).

Definition 2 (Basic operations on semigraphs). Let G1 = (V1, E1) and
G2 = (V2, E2) be semigraphs.

1. The union of G1 and G2 (denoted G1∪G2) is the semigraph (V1∪V2, E1∪E2).
2. The intersection of G1 and G2 (denoted G1 ∩ G2) is the semigraph (V1 ∩

V2, E1 ∩ E2).
3. The difference of G1 and G2 (denoted G1−G2) is the semigraph (V1−V2, E1−

E2). In particular, the complement of G2, denoted Gc
2, is the semigraph

U − G2.

A Formal Approach to Qualitative Reasoning 361

Using the fact that the product of two Boolean algebras with the operations
defined pairwise is again a Boolean algebra we get:

Proposition 1. The set of semigraphs with the operations of union, intersection
and complement, together with 0 defined as (∅, ∅) and 1 = (U, U×U) is a Boolean
algebra.

The Algebraic Structure of Networks. One can enrich the Boolean Algebra struc-
ture of semigraphs described above by defining closure operators over semi-
graphs, and hence, a structure of Topological space (Kuratowski space).

A closure operator (cl) must satisfy some properties for each element of the
domain. Two basic properties are cl(∅) = ∅ and G ⊆ cl(G). In addition, by
property cl(G∪H) = cl(G)∪cl(H), one needs to specify only cl over single nodes
and single edges. From the idempotence property (cl(cl(G)) = cl(G)) it follows
that cl(v) should add no nodes (or do trivial things like adding nodes independent
of v, e.g. the whole universe, all isolated nodes, etc.) Similarly for cl(e) for an edge
e. In fact, the only two natural choices for closure are: (1) clE(G) = sg(E(G)),
and (2) clV (G) = sg(V (G)). But the topologies they generate are not essentially
different:

Lemma 1. Let TE and TV the topologies induced by the closure operators clE
and clV respectively. Then G is open in TE if and only if G is closed in T2.

Heyting Algebras Via Closure Operators. Every topology provides a complete
Heyting algebra in the form of its open set lattice. The Heyting algebra is de-
fined as follows: objects are open sets; operations are set-theoretical union and
intersection; and the element A ⇒ B is the interior of the union of Ac∪B, where
Ac denotes the complement of the open set A.

For the operator clV the open sets are standard full subgraphs of U (com-
plements of the closed sets in the topology TV). Here the border (given by the
topology) of G is the set of edges in the complement of G which are incident to
G. The operator clE is the dual of the previous one.

The Heyting Algebra of Nets. Note that the objects defined in the Heyting
algebras induced by the open sets of the topological spaces defined above were
essentially graphs (or complements of graphs).

It is possible to extend the set of objects to be considered to semigraphs
without loose edges (what we have called nets) and still having a structure of
Heyting algebra by slightly modifying the operations of join and meet. Nets are
operationally generated as follows: (1) choose a set of nodes V and (2) choose
a set of edges incident to V . The induced operations (in order to be closed
in this new universe) are the standard union and the meet G1 ∧ G2 defined as
(G1∩G2)∩sg(V (G1∩G2)) (observe that the standard intersection of semigraphs
could leave isolated edges).

Proposition 2. Let R(U) be the set of nets over U . If we define 0 = ∅ (the
empty semigraph), G1∨G2 as the union, G1∧G2 as defined above, and G1 ⇒ G2

as sg(V c
1) ∪ G2, then (R(U),∨,∧,⇒, 0) is a Heyting algebra.

362 A. Rodŕıguez and C. Gutierrez

Note that this is not a bi-Heyting algebra because the existence of nets R such
that there are edges uv �∈ R with u, v ∈ R. Example: let R = U − {uv}. Then
there is no unique minimal solution for U ≤ R ∪ X , because, for example,
X1 = ({u}, uv) and X2 = ({v}, uv) are minimal solutions.

Interestingly, the problem described in the previous paragraph is the only
barrier to have a bi-Heyting algebra.

Proposition 3. Let R∗(U) the set of full nets over U (i.e. nets such that the
complement has no isolated edges, that is, it is again a net). If we define the same
operations as in Proposition 2 and 1 = U and G1 \ G2 as (sg(Ec

2) ∪ Gc
2) ∧ G1,

then ((U),∨,∧,⇒, \, 1, 0) is a bi-Heyting algebra.

3 Possible Approaches to Define Connectivity in
Networks

We examined the structure and operations over networks. In this section we
will study the notion of when two objects (semigraphs) in this universe are
“connected” or have “relationships”.

3.1 A Pure Topological Approach

Although pure topological notions are oriented to capture the concept of con-
tinuity, several notions from topology can be borrowed to speak of spatial no-
tions [8,9]. We start from these notions, but will be interested in the notions
of connectivity or relationship, and thus some concepts will naturally not be
applicable in our context.

Following the approach of Egenhofer [8] we will build the framework on the
notions of boundary and interior. Due to the particularities of our domain, we
will add a third notion, that of frontier.

Definition 3 (Interior, Frontier, Boundary, Closure). Let U be the uni-
versal graph, and H a semigraph in U .

1. The boundary of a semigraph H (in U), denoted ∂(H), is the set of edges
which are incident to H and its complement, i.e., the set of edges uv of U
such that u ∈ H and v /∈ H. (Note that edges uv /∈ H with u ∈ H and v ∈ H
are not in the boundary).
In particular, we define δ(H) = ∂(H) ∩ H as the real boundary.

2. The frontier of a semigraph H (in U), denoted fr(H), is the set of nodes
of H adjacent to nodes not in H. (Or equivalently: the set of nodes of H
incident to ∂(H).)
In particular, we define fr′(H), the real frontier, as the subset of the nodes
of fr(H) incident to edges not in H.

3. The interior of a semigraph H (in U), denoted int(H), is the semigraph
consisting of all nodes and edges of H not incident with elements not in H.

4. The closure of a semigraph H (in U), denoted cl(H), is the semigraph H ∪
∂(H).

A Formal Approach to Qualitative Reasoning 363

(a) (b) (c) (d)

Fig. 2. Basic topological notions. Dark nodes and edges constitute the semigraph. (a)
reference semigraph; (b) boundary (continuous dark line is the real boundary); (c)
frontier (filled dark nodes form the real frontier); and (d) interior.

Proposition 4 (The boundary ∂)

1. ∂(H) has no interior.
2. ∂(H) = cl(H) ∩ cl(G − H), i.e. the boundary of H is the intersection of the

closure of H and its complement.
3. ∂(H) = ∂(G − H), i.e. the boundary of H equals the boundary of its com-

plement.
4. ∂(H) = ∅ iff H = ∅ or H = G.

Based on these definitions, one can derive topological relations between networks
by considering the intersections between their topological invariants (i.e., inte-
rior, boundary and frontier), that is, the intersections between the components of
networks that do not change under topological transformations (e.g. translation,
scaling, and rotation).

Given any two connected nets H1 and H2 in U , let int(H1) and int(H2)
be their interiors, and D(H1) and D(H2) be the union of their respective real
frontiers with real boundary. Table 1 presents the eight matrices that derive the
10 possible 4-intersection matrices between nets.

3.2 The Region Connected Calculus RCC

RCC is a formalism for spatial reasoning that takes regions of space instead of
points of classical geometry as primitives. For this, a primitive notion of connec-
tivity is introduced by means of a binary predicate C(x, y), whose semantics is
that of “x is connected to y.’”

In the context of networks, the basic primitive is naturally defined as follows:

Definition 4. C(x, y) is true iff there is a path from x to y in x∪y (where path
is the standard notion in graph theory [12])

Note that if x ∩ y �= ∅ then C(x, y), but the notion defined allow C(x, y) to be
true even though x ∩ y = ∅.

The RCC definitions (we will use the RCC-8 framework) are axiomatized
in standard first-order logic using quantifiers over variables ranging over the
objects of the domain (regions in the spatial case) (see Table 2). The axioms
for semigraphs concides roughly with the naive intuition in the spatial domain.

364 A. Rodŕıguez and C. Gutierrez

Table 1. The basic 2x2 matrices upon which all possible 4-intersections matrices are
derivable. Dark nodes and edges belong to one or both nets.

Matrices Examples Matrices Examples
int(H2) D(H2)

int(H1) 0 0
D(H1) 0 0

int(H2) D(H2)

int(H1) 0 0
D(H2) 0 1

int(H2) D(H2)

int(H1) 1 0
D(H1) 0 0

int(H2) D(H2)

int(H1) 1 0
D(H1) 0 1

int(H2) D(H2)

int(H1) 1 0
D(H1) 1 0

int(H2) D(H2)

int(H1) 1 0
D(H1) 1 1

int(H2) D(H2)

int(H1) 1 1
D(H1) 1 0

int(H2) D(H2)

int(H1) 1 1
D(H1) 1 1

Table 2. RCC-8 definitions depending on the range of the quantification of the vari-
ables involved: over semigraphs and over nets. inc(x, y) means x is incident to y.

Relation Interpretation Quantif. over semigraphs

DC(x, y) x is disconnected from y No path between
x and y in x ∪ y

P (x, y) x is a part of y x ⊆ y
PP (x, y) x is a proper part of y x ⊂ y
EQ(x, y) x is equivalent with y x = y
O(x, y) x overlaps y x ∩ y �= ∅
DR(x, y) x is discrete from y x ∩ y = ∅
PO(x, y) x partially overlaps y x ∩ y �= ∅ ∧ x �⊆ y ∧ y �⊆ x
EC(x, y) x is externally connected to y x ∩ y = ∅ ∧ inc(x, y)
TPP (x, y) x is a tangential proper part of y x ⊂ y ∧ inc(x, yc)
NTTP (x, y) x is a nontangential proper part of y x ⊂ y ∧ ¬ inc(x, yc)

The problems are subleties centered on non-existent edges between two nodes
of the domain. In this framework it is more evident the insufficiency of graphs
as basic data structure for qualitative reasoning. In such case, C(x, y) must be
defined as intersection of nodes and the definitions would colapse into standard
set theoretical notions among nodes.

4 Conclusions

This work presents a formal framework for qualitative reasoning about topologi-
cal properties of networks. It studies the structure of sets of overlapping networks

A Formal Approach to Qualitative Reasoning 365

from a spatio-topological point of view, defines a data structure and operations
associated with networks, and states and proves main properties of them.

For future work, we plan to select a standard set of operations that serves as
basic for a query language design and that can relate the abstract model to the
approaches for defining the connectivity in networks.

Acknowledgements. This work has been funded by Nucleus Millenium Center
for Web Research, Grant P04-067-F, Mideplan, Chile.

References

1. D. A. Randell, Z. Cui, A. G. Cohn, A Spatial logic based on regions and connec-
tion, Proc. 3rd. Int. Conf. on Knowledge Representation and Reasoning, Morgan
Kaufmann, San Mateo, pp. 165-176.

2. A. G. Cohn, B. Bennett, J. Gooday, N. M. Gotts, Qualitative Spatial Representation
and Reasoning with the Region Connection Calculus, Geoinformatica, 1, 1-44 (1997)

3. J. de Kleer, J. Brown, A Qualitative Physics Based on Confluences. Artificial In-
telligence 24, 7-83, (1984)

4. B. Smith, Mereotopology - A Theory of parts and boundaries, Data and Knowledge
Engineering, 20, 287-303 (1996)

5. J. Sharma, D. Fleweling, M. Egenhofer, A Qualitative Spatial Reasoner, Interna-
tional Symposum on Spatial Data Handing, pp. 665-681, September 1994.

6. A. Tarski, On The Calculus of Relations, Journal of Symbolic Logic, 6(3), 73-89
(1941)

7. S. Vickers, Topology via Logic, Cambridge University Press, 1989.
8. M. J. Egenhofer, A Formal Definition of Binary Topological Relationships, Lecture

Notes in Computer Science, Vol. 367, pp. 457-472, June 1989.
9. M. J. Egenhofer, R. Franzosa Point-Set Topological Spatial Relations, International

Journal of Geographic Information Science, 5(2), 161-174 (1991)
10. Loiviero Stock Spatial and Temporal Reasoning, Kluwer Academic Publishers, 1997.
11. M. J. Egenhofer Deriving the Composition of Binary Topological Relations, Journal

of Visual Languages and Computing, 5, 133-149 (1994)
12. R. Diestel, Graph Theory, Springer, New York, 1997.
13. E. Clementini, J. Sharma, M. Egenhofer, Modeling Topological Spatial Relations:

Strategies for Query Processing, International Journal of Computer and Graphics,
18 (6),815-822 (1994)

14. J. G. Stell, M. F. Worboys, The Algebraic Structure of Sets of Regions, Lecture
Notes in Computer Science, Vol. 1329, pp. 163-174, Octuber 1997.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 366 – 380, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Towards a Knowledge Ecosystem

Piercarlo Slavazza, Roberto Fonti, Massimo Ferraro,
Christian Biasuzzi, and Luca Gilardoni

Quinary SpA - Via Pietrasanta 14 – 20141 Milan – Italy
{slp, for, fem, bic, gil}@quinary.com

Abstract. People who belong to an organization own common knowledge that,
with time, grows, evolves and is transferred from one person to another. As it
happens in an ecosystem, each individual has his own work environment and
personal goals, but also interacts with others, using common knowledge and
contributing to its improvement.

According to this vision, we have created a knowledge management
environment equipped with a set of tools to better support cooperation by
working along two main directions: the first one relies on establishing a
community driven central repository enhanced with Semantic Web
technologies, which allows information to be organized according to its
semantic structure by exploiting classification, information extraction, and
semantic filtering techniques. The second direction relies on enriching users'
everyday work environment – including emails, web browsers, RSS
aggregators, and desktops – by providing tools that exploit contextual
information, directing more relevant information where it is needed and adding
value to the information as it is generated and shared.

The system we describe in this paper on the one hand opens up corporate
knowledge even to individuals who are normally unwilling to use a traditional
KM system and, on the other hand, makes access much easier to those users
who are already willing to share, leading to a healthier knowledge ecosystem
which grows through seamless cross fertilization.

1 Introduction

An ecosystem is a set of living creatures considered together with their physical
environment. Creatures live and behave on their own and the limited space they share
forces the development of complex, mutual, interactions and ‘social’ behaviours: the
ecosystem is healthy when the inhabitants live and evolve with mutual benefit.

The ecosystem metaphor could be applied to an organization producing
knowledge. People working in such an environment, “knowledge workers” as they are
normally known [1], usually belong to different subgroups, are involved in different
projects, have different personal goals, interests and ambitions. Such a system
succeed when it evolves at a steady pace; that is to say when individuals collaborate
together in order to produce new knowledge, each benefiting from and building on the
things other people have built before. The system, in the opposite, fails when at a
given time the needed knowledge is not easily accessible – because is not shared as it

 Towards a Knowledge Ecosystem 367

is hidden in the local employees’ hard drives – it is lost because of rapid turnovers in
the staff or finally it is duplicated because of loose interaction between employees and
poor sharing support.

Traditional KM systems generally help organizations by maintaining common
repositories where information (often unstructured) is collected and shared. A major
problem however is that they offer very weak and often cumbersome means for
connecting together documents, metadata, users and the context around information,
making hard to add on one side and to reuse on the other. Moreover they often miss
what we could call an effective “desktop presence”, that is a tight integration with the
desktop tools the user is familiar with: the browser, the email client, the RSS
aggregator, etc. We believe that a successful KM system should be proactive in its
support to the user, pushing relevant information where it is needed and capturing
context around information directly from final user tools, on one side reducing the
burden of learning a new tool and of switching to it, and on the other exploiting
information that can be gathered through the interaction.

K@, the knowledge management system we present in this paper, addresses this
problems by firstly relying on Semantic Web technologies that act as a glue where
documents, metadata and users can be “reified” in unique resources, suitable to be
organized according to several means – such as ontologies, taxonomies and
community filters. Furthermore, it features tools that support the ecosystem by
working in the user environment. The tools feed users with knowledge from the
shared repository without the need to ask for it: they receive annotated emails in their
inbox that the system has processed and enriched with contextual knowledge (see
later on: Semantic Email); they can search both the Intranet and the Internet from the
standard Google page and are notified about related material already in the shared
repository while browsing the Internet (see section 4). The system collects as much
information as possible from the context when users decide to share some
information: they can forward an email with attachments to the shared repository;
they can use a bookmarklet to post URLs; they can drag and drop documents from the
desktop to a shared folder.

Each of these tools is targeted at a particular environment but, altogether, they are
part of the knowledge ecosystem and contribute to a simple and effective knowledge
flow between individuals, with the net result that the whole community is
continuously involved in the knowledge life cycle thus supporting the steady growth
of the ecosystem.

K@: An Evolutionary Knowledge Sharing Environment

K@ is a web based collaborative platform for knowledge management, developed by
Quinary since 2002, supporting users in managing a document base and the processes
around it. With K@ users can access and share a common repository of documents
while the system keeps track of people interaction. Documents, including both
physical documents residing inside the organisation, external URLs, notes and Wiki
pages, may be organized according to one or more taxonomies, supporting multiple
inheritance (DAGs): the environment provides a basic framework for sharing
information by matching the way an organization is structuring its processes. The core
system supports browsing and searching using free text queries and provides a

368 P. Slavazza et al.

number of tools to track user behaviour (who added a document or a node in a
taxonomy, who added classification links between nodes and taxonomies, who visited
nodes or read documents) to facilitate sharing and keeping track of workgroup
activities. K@ exist both as a generic environment for knowledge sharing and as a
part of a vertical solution tailored for the legal domain called LKMS/Mnemosyne
([5],[6]).

K@ has been designed since the beginning with the aim of supporting a better way
to maintain a richer knowledge structure. In 2004 we added a semantic layer, being
able to support the association between documents and semantic annotations with
respect to a formal ontology, according to Semantic Web standards, and we are
currently enhancing the system with the features described in this paper.

�������

����������� 	
����������

������

�����	

�������
���
�������
��

������

����
��
	����

�
��

������
����
�
��

���
�����

������
������	����
��
����
�������
��

��		������������

������
�

 �����
��

!����
��
�� ������
�
���	

"�����
������

�#
		�
������������	
��	

��������� �

$�!% $�!���%�&�
	

'
	������� %�(��%�	�������&�%�)

����
�����
���
!����������	���

$�

������
����!

$�
�����
����!�����
���
��������

$�
��!�����
���

������
�����
	

�������

�����������

������	��
� ��	����

	
����������

	���	�

�����	

�������
���
�������
��

������

����
��
	����

�
��

������
����
�
��

���
�����

������
������	����
��
����
�������
��

��		������������

������
�

 �����
��

!����
��
�� ������
�
���	

"�����
������

�#
		�
������������	
��	

��������� �

$�!% $�!���%�&�
	

'
	������� %�(��%�	�������&�%�)

�
	������	��
��
	������	��
�

���������!�
	��!��
����������
��

�*����
�������

����������
��

���������������
�������������
������

+�'�

(��

����������
��

���������������
�������������
������

����
�����
���
!����������	���

$� $�

������
����!

$�$�
�����
����!�����
���
��������

$� $�
��!�����
���

������
�����
	

���	�����

Fig. 1. The knowledge flow: acquisition, sharing and reuse

K@ covers all the aspects of the knowledge flow with the primary goal of
enhancing knowledge reuse.

The first step, acquisition, can be fulfilled both by users and by autonomous
agents: it concerns insertion of documents from different sources and their annotation,
possibly aided by information extraction systems (some of them are listed in
Fig. 1). We will talk about knowledge acquisition tools in section 2.

The second step, described in the lower part of the Figure, aims at digesting the
collected information, transforming it from unstructured data to an organized network
of shared resources. The composition of ontology, taxonomy and user tracking is the
formula used for reaching this goal. It will be the subject of section 3.

Finally, K@ features tools for exploiting knowledge, not only through browsing
and searching, but also in a proactive way, where meaningful information are pushed
to the users in their work environment. These tools best help in figuring out the
knowledge ecosystem and are the topic of section 4.

 Towards a Knowledge Ecosystem 369

2 Contextual Knowledge Acquisition

Traditional KM systems are focused on handling common repositories of documents
and on integrating with simple workshare tools aiming at managing processes from a
procedural point of view, such as workflows. Just providing means to copy documents
from a large number of sources to a shared repository is far from being a perfect
knowledge acquisition solution. Knowledge codified in documents text is only half of
the whole and definitely the easier to acquire. Most relevant information is given by the
context in which documents and other material have been collected. Moreover, when
dealing with enterprise knowledge management you have to focus on two aspects: the
first is “internal knowledge”, created by individuals who are part of the organization; the
second is “external knowledge”, that enters the organization in the form of emails, web
URLs, etc.. Retaining both is equally important: when users produce contents or deal
with external material, K@ tools are directly available in the usual working
environment to facilitate acquisition and sharing by exploiting contextual information.

The most general tool to add information to the system enables users to insert into
the shared repository documents along with a set of metadata. A wide number of
documents types are handled, not only texts but also semi-structured documents (such
as spreadsheets or html pages), and multimedia content as well1. This can be done
through a web based interface, where the inserting user has full control on metadata
that can be added, through a webDAV based one, or through custom interfaces built
upon K@ web services. When using the generic form based web interface all
contextual information must be either derived from document content through IE
techniques or has to be provided directly by the user.

This data entry sys-
tem allows for de-
fining a set of domain
dependent metadata
(annotations): the forms
are dynamically created
based upon the kind of
document (such as, for
example, a technical
report rather than a
conference paper or a

legal document), and
meta-data values are
“reified” and shared among other annotations (see next section for more
details).

A great attention has been paid to guarantee a smooth user experience. While the
annotation process is driven by ontologies to guarantee soundness and consistency,
ontology management complexity is hidden to the end user through conventional
form wizards. Ontology support is also exploited to guide user input, minimizing the
need to specify implicit information and driving possible text analysis functionalities,
as described in [5].

1 Automatic techniques for extracting knowledge from documents other than textual ones are

envisaged and will be studied within the X-Media project (http://www.x-media-project.org/).

Document
type selection

Ontology
driven editing

Annotated
metadata

370 P. Slavazza et al.

Built upon these core features, a number of specialised mechanisms have been
developed to exploit information that may be derived from the context given by usage
of normal working tools.

Acquisition While Browsing

A huge amount of information is currently available either on the web or intranets. The
best way to gather such information is obviously by collecting URLs during Internet
browsing and by exploiting contextual information to enrich collected data. The browser
itself can provide part of the information – the URL itself as well as page metadata,
while part can be extracted from the browsing process – e.g. where a URL is mentioned.
Simple tools working in the browser enable a smooth collection of this context.

The first technique is based on bookmarklet, a JavaScript technique portable on all
browsers that allows exploiting information on the URL being browsed. We used the
technique to read metadata information in the web page, if present in standard META
tag (language, description and keyword) and to use it, together with URL and title, to
pre-fill the web-based form mentioned above. The URL information is also used there
to show related material easing classification.

A second technique relies on a Firefox extension (Linky: http://linky.mozdev.org/)
that adds a contextual menu to handle links in a web page (href and src): it lets you
open or download a set of links selected in a web page. We have modified Linky to
post selected URLs to K@ via web services: K-Linky, as we named the extension, is
able to handle some basic HTML structures such as lists, in such a way that also titles
and descriptions are extracted. For example, the W3C RDF homepage contains the
list of the RDF specification documents2: by selecting the surrounding text, K-Linky
is able to send to K@ every document URL together with its title and description, e.g.
“http://www.w3.org/TR/rdf-primer/”, “RDF Primer”, “W3C Recommendation –
Frank Manola, Eric Miller, eds.”.

Acquisition from E-mail

The huge amount of knowledge which is contained in mail archives is currently
dispersed, duplicated, and seldom shared. Even when there is an organization strategy
aiming at preserving this material3, mails either end up in unmanageable archives or
require a huge amount of manual work to be extracted and saved appropriately.
Moreover information that can be collected by the specific context (senders, receivers,
threads, relation between mails and attachments) is usually lost or hardly recoverable.
Our approach here simply relies on enabling users to add K@ among the mail
recipients – or to forward relevant mail to K@.

Meta information is extracted from emails: sender and recipients information is
used in order to find out which people are involved in the email (using matching
techniques described in details in the following sections). Attachments are treated as
first class objects, they are inserted in K@ and the relation with the originating email

2 http://www.w3.org/RDF/#specs
3 This is becoming frequent but mostly to cope with regulatory constraints such as those

coming from Sarbannes-Oaxley or security constraints to filter illegal mails, hence targeting
very specific aspects and not coping at all with sharing issues.

 Towards a Knowledge Ecosystem 371

is kept through metadata. Moreover, it is tracked if the message is a reply to another
message previously acquired in K@. Mail content can be analysed by applying
Information Extraction, as for any other document.

Acquisition from Syndicated Content

K@ can work as a shared RSS aggregator: a number of feeds can be monitored and
news imported in the repository together with the associated metadata (source, author,
title, description and link) and classified in a given node.

Once in K@, the news will be shared among the whole community (or possibly the
one interested in the related topic), which will be able to further enrich their metadata
through a more domain-oriented perspective (via the tools described in the following
sections).

This way K@ allows a given community not only to be always up-to-date with
regard to some syndicated content, but also to relate the most relevant one to its
corporate context.

Even if RSS feeds have reached a very extensive use, there could still be a large
number of Web sources of interest which doesn’t yet provide them; in most cases, the
HTML tags convey semantic information (such as in table tags or very often in CSS
classes), hence the relevant information can be efficiently extracted from web pages
by means of web scraping techniques, possibly xpath based (as proven as well by the
Microformats [9] effort). Hence, K@ – by integrating the Curiosity xpath based web
scraper [3] – supports acquisition of knowledge both through generic web scraping,
and from Microformats scraping, possibly benefiting of their existing semantic
structure by means of the Knowledge Integration layer mentioned later.

3 Knowledge Digesting

The K@ system aims at supporting a knowledge ecosystem where users and an open
set of service-based autonomous agents interact in order to create a net of relations
between documents, their parts and metadata derived from content, and the context
inferred from user communities. We refer to this process as the “knowledge
digesting” process.

As stated in section 1, such task is envisaged as a process where there is a shared
repository, but it doesn’t exist the figure of a “knowledge administrator”, which would
drive and somehow coordinate the process of making sense. We think that such a role
cannot easily face both the speed the knowledge practices of the community change,
and the way each singular user can perceive the organization of the shared knowledge.

The fitness of this strongly collaborative perspective has been confirmed by the
current trends about social environments, as also proven by online collaborative
services such as del.cio.us or wikipedia.

Hence, in the K@ environment, the community has a total control over the knowledge
management process; as it happens in an ecosystem cycle, users (including automated
agents, like e.g. information extraction agents) feed the others with knowledge produced in
annotating documents, in categorizing information, in organizing it accordingly to their
needs and even in revising or correcting others’ annotations.

372 P. Slavazza et al.

Anatomy: The Knowledge Structure

K@ aims at being adaptable to every domain an organization is interested in; hence,
given such a domain, K@ can be deployed with a custom set of metadata that can
properly and deeply describe it, and used for annotating material. In the legal domain,
we could have metadata speaking of laws, judges, courts, etc.; in the computer science
domain, we could have metadata about technologies, publications, conferences,
authors, etc.

In K@, metadata are described by means of formal ontologies, and they are
managed using Semantic Web technologies, as described in more detail in [5]. By
using ontologies, metadata can be defined as string values (e.g. a document title) or as
resources uniquely identified and re-usable in other annotations (e.g. a document
author). Furthermore, this ontological methodology also allows for inter-linking
metadata resources – in order to eventually produce graphs of resources. A great
effort has been spent in putting in place functionalities aimed at preserving
uniqueness of metadata (through a knowledge integration layer) and at making search
of existing resources effective (through an ontology-driven search engine): this way,
each user can contribute at expanding this net of relations which involves documents
and ontological resources, by re-using annotations made by other users, and revising
or enriching them.

This knowledge framework allows users exactly to act as in an ecosystem where
each action (in the form of knowledge production and/or transformation) is taken on
the basis of other existing knowledge, during a process that eventually leads to an
effective community perspective.

Users can be greatly aided in the annotation task by autonomous agents. K@
provides a Service Oriented Architecture through which agents can offer their
services. Such agents can do for example Information Extraction (and Relation
Extraction) from documents. Moreover, we may also have agents able at finding out
new links between resources, by querying for instance external services starting from
possibly incomplete knowledge4.

In general, for each annotation added to K@, its provenance is tracked, that is, the
user or the agent who stated it, and its support, in terms of external references or
evidence from the original text as determined by IE agents5. So, it is always possible
to weight the knowledge present in K@ by looking at its “authoring/annotation
context”: the nature of the agent that stated the assertion (is it a human? an
autonomous software agent?), its trust (is she a domain expert?) and the trust of the
motivating source (is it a reliable or anyway popular source – in K@ or Internet?).

A different point of view in trying to derive semantics from data is provided by
statistical text analysis. K@ integrates a module responsible for extracting keywords
from documents by computing most relevant terms on the basis of the classical
information retrieval formula tfidf [14]. Similarly, for every node keywords are

4 As examples of such services, we can cite the integration of the Google-based ontology

population service Pankow [2], and the development of a service harvesting legal information
from the Italian NormeInRete public database (http://www.normeinrete.it).

5 Currently the system provides just basic support to provenance facilities (e.g. limited in
granularity), while research of full-fledged solutions is part of the objectives of the X-Media
project.

 Towards a Knowledge Ecosystem 373

calculated by aggregating terms of all documents contained. Such keywords could
provide a brief description of node contents, as in the following example:

Node: Machine Learning (144 documents), top terms : learning,
semantic, ontology, extraction, knowledge, uima, information, web,
text, machine, corpus, data, classification, mining, proceedings

Digesting: Imposing the Community Perspective

The information anatomy definition and extraction (as defined in the previous section)
constitute a fundamental tool for defining the knowledge structure because, starting
from documents, they identify resources (as metadata) and ontological links between
them. Anyway, the generated network could be too wide or sparse in order to satisfy
the knowledge needs for a particular user at a particular time, and further filters could
be useful. Digesting such knowledge and superimposing a community perspective is
an important process because it allows for defining context of interests, permitting on
one side to focus and on the other to bring to the user new unknown information –
even as a serendipity effect.

Defining, discovering and highlighting relations should be therefore intended as
the step that follows the definition of the knowledge anatomy in the process of
structuring raw knowledge. In K@, users are given a number of tools – described in
the next paragraphs – for grouping documents and possibly resources following a
variety of rationales, by taking into account the knowledge anatomy but also the
community links.

Taxonomies

In K@ taxonomy nodes are mainly used for (multi)classification purposes: users can
file documents under whatever nodes they want, and they can also revise
classification made by others or add more classification links.

Taxonomy nodes and classification links aren’t given a fixed semantics – such as
is-a or part-of relations: in the case of documents classified in a node, it is just
implied an unqualified correlation between the documents with respect to the “topic”
represented by the node. In case of nodes hierarchy it is implied an unqualified
relation of subordination/inclusion between their topics.

As time passes, market trends and techonology push will likely modify the topics
“topography” in the community feelings: hence, in order to promptly cope with such
a steady evolution, the hierarchy in the K@ taxonomy can be easily revised by each
user by means of proper tools – such as a “clipboard” for moving around documents
and nodes.

Virtual Nodes

In organizing the knowledge by means of taxonomies, users are guided by a number
of rationales which cannot often be easily formalized. That’s why, as explained in the
previous section, K@ allows for that great degree of freedom in taxonomy handling
and encourages collaboration very strongly. In fact, the digesting process usually
follows a path of abstractions which eventually produces mental structures whose
semantics can be only loosely captured by formal tools.

374 P. Slavazza et al.

K@ features a number of Knowledge Retrieval tools (see section 4 for more
details) embracing full text search and filters acting on taxonomy nodes, ontological
resources and knowledge agents.

These tools altogether allow the user to define a range of search criteria so wide
that they can be used in order to formally define even complex classes of documents
and resources (as, for example, the class of popular authors writing articles published
by O’Reilly that contain the word “Java” and that are classified in the node “SOA”);
so, K@ allows for saving searches as Virtual Nodes, that means associating a search
criteria with a taxonomy node in such a way that links are automatically computed
between that node and all the documents satisfying the criteria. Virtual Nodes add a
layer of knowledge abstraction because they may act over knowledge, which had been
already consumed by the community, by (partially) defining its anatomy and
taxonomy relations.

Collaborative Filtering

In K@ all kind of user activities are tracked: documents and metadata editing,
browsing between documents, taxonomy and ontological resources, taxonomy editing
and searches. This intensive user profiling allows for pursuing the identification of
communities, which may be exploited for both off line social analysis, driving to
better understanding of the organisation, and to enhance the proactivity of the system.
The interaction graph of K@ users may be exported for analysis with system such as
UCInet [17], in order to perform, for example, subgroup identification analysis.

Moreover, tracking data are used to augment the proactivity of the system and to
support focused browsing and searching in a number of ways, ranging from simple
hooks to similar queries when searching, to suggestions for further possible relevant
information when browsing. About this latter matter we are currently experimenting
Collaborative Filtering (by means of the CoFE engine [7]); however, unlike
traditional recommendation systems, we do not exploit explicit ratings, but rather we
infer them from the tracked user behaviour – by weighting, for example, how many
times the user has viewed a document or a taxonomy node. This would, once again,
minimize the burden imposed on the users by exploiting knowledge seamlessly
gathered by the community interactions

4 Knowledge Exploitation and Reuse

As discussed in previous section, knowledge within the system may be exploited to
explore content along four different dimensions:

• Taxonomies: representing the community
perspective;

• Ontology: exploiting relations defined in the
domain ontology;

• Users: exploring users interactions with the system
(e.g. the last documents inserted/viewed, etc.);

• Keywords: derived from statistical text analysis as
described in section 3.

A
B

C

A
B

C

ontology taxonomies

keywords usersA
B

C

A
B

C

ontology taxonomies

keywords users

 Towards a Knowledge Ecosystem 375

Exploitation may
take place in different
ways depending on the
tools used. Accessing
the sharing
environment through a
web browser (or
through mobile devices
via WML pages and
WAP) is the most
flexible and powerful
way to use K@ and
explore content. We

paid particular attention to usability issues – both in terms of the clicks needed to
perform the most common tasks, browsing, searching and editing in particular, and in
terms of tailoring presentations depending on user’s habits. Taxonomies and
ontologies, for example, may be explored using either folder and files metaphors or
advanced visual tools such as the one presented in Fig. 2.

K@ provides a full text search engine, based on Apache Lucene, extended to
support indexing of the most common document formats. Search results can be
progressively refined by filtering on keywords, nodes, semantic properties and users
interaction.

Fig. 2. Metadata resources visual browsing

376 P. Slavazza et al.

Besides accessing the system through its web based interface, the desktop presence
is a key feature in making the acquired knowledge accessible to users in a streamlined
way. In fact, desktop tools observing user behaviour can have a comprehension of her
working context at a particular time (inferred from her interactions with the tool); this
immediate awareness of user needs allows for proactively feeding them with relevant
knowledge, even to users not typically apt to use the whole K@ system.

The desktop presence implies of course a tight integration with desktop
applications; up to now, we have focused our attention on email clients, internet
browsers and RSS aggregators. Access from within office applications has not been
yet attempted but can be envisioned as well in a similar way – as shown in the
OntoOffice tool from Ontoprise [10].

Semantic Email

In section “Acquisition from e-mail” we showed how emails can be acquired in K@;
nonetheless, we think the user should be supported as well when she accesses the
corporate mailbox by using her own email client, by adding to the email semantics
coming from K@ knowledge base.

Emails are poorly semantically annotated, as only a few data are present therein in
a structured form: just the email addresses of the sender and the recipients, the email
subject, possibly references to past emails. So, the aim is trying to find out the
anatomy of this information and consequently discover the knowledge, which could
be relevant in the email context – with respect to the user profile as well.

The email addresses can be used for finding out which people are involved in the
email: for sure in terms of K@ users, but also in terms of ontological resources
(through the semantic Knowledge Integration Layer) – given of course that the
domain ontology envisages these roles. Moreover, email addresses may convey
information about organizations (in their domain parts, as for Quinary in
slp@quinary.com): this information can be exploited too in order to find out matches
among resources (again, given that the ontology speaks about organization).

The email subject can be used
in order to query the Knowledge
Retrieval module of K@ –
possibly giving higher rank to
the most recent knowledge
strictly related to people and
organizations detected as
described above.

References to past emails can
be used to find out if they have
been previously inserted in K@
(see section 0), or if some of
their attachments have been.

Besides, by looking at the
places in the K@ taxonomy
where the discovered related documents have been classified, it is possible to infer the
topics the email could be about, and consequently the K@ users who are expert of

IE based
annotations

K@ context:
people, topics...

 Towards a Knowledge Ecosystem 377

those topics and could therefore assist the user in handling the email and the process it
may belong to.

Finally, the Information Extraction agents can be (depending on the domain)
applied as well to the email content and possibly to the email subject, contributing to
further enriching the email K@ context.

All the gathered knowledge – made of documents, taxonomy nodes, resources and
K@ users, together with their relations – is related to the user profile, as it has been
inferred from her past interaction with the K@ environment, and is filtered on the
basis of the topics the user is interested in and of the people the user is likely to trust.

In K@, this process of email context deduction, is made at the mail server level by
means of a mail server proxy: the user emails are fetched from her corporate mailbox,
their context is derived as described above, and the most relevant knowledge (likely
just a few but significant cues) is prepended in the email body to its original content –
see figure above. Then, the user could access a more detailed perspective by means of
hyperlinks in the mail body; moreover, if some knowledge has been produced by
Information Extraction agents, hyperlinks could have been inserted in the original
mail content itself.

Browser Semantic Enhancement: Kzilla

In most cases, it’s a matter of fact that a user in search of knowledge opens her
Internet browser and tries some searches in Google; and actually that process often
works well, but it always misses the community perspective on the results produced.
Such perspective would help the user in improving her insight and understanding
about the relevance of the Google search results, in particular with respect to the
judgment and the needs of the corporate community she belongs to.

We developed an extension for the Firefox browser6, Kzilla, which observes the
user interaction with Google, and enrich the search results page in two ways: firstly
by highlighting results already in K@ with a flag put aside the result (informing the
user that the document has been judged important by the community and signalling
her that other related and relevant data has been already digested by some other
people) and secondly by attaching to the Google page the results obtained by querying
K@ with the same Google criteria (see Fig. 3); the K@ results could greatly augment
the value of the search outcome, because K@ – as explained in section 0 – could not
only contain Internet documents, but also corporate documents.

Kzilla assists users also while browsing the Internet in general. In fact, for every
loaded page, it checks its presence in K@ and again notify the user; in addition, it
features a sidebar where the results of a K@ search using as keywords the page title,
are shown together with a list of K@ documents belonging to the same Internet
domain of the current page.

With similar purpose, we have integrated Magpie [4], a browser add-on that uses
an ontology infrastructure to semantically mark-up web documents on-the-fly –
deriving automatically references for concepts from our ontology: the tool supports
the user in making sense of browsed pages on the web against internal knowledge,
highlighting references to annotated material.

6 We decided to focus our work on Firefox for a number of reasons: it is lightweight, open-

source, cross platform and easily extensible. Besides, it is rapidly gaining popularity among
users.

378 P. Slavazza et al.

K@ presence
flag

K@ presence
flag

Search
context
from K@

Page
context
from K@

K@ presence
flag

K@ presence
flag

Search
context
from K@

Page
context
from K@

Fig. 3. Kzilla enriched context in Google search and in page browsing

Syndication

K@ establish its notification system on a number of flexible and powerful RSS feeds,
allowing users to stay in touch with news about a specific domain of interest using
their favourite RSS aggregator. Feeds can be defined on a taxonomy node or a
combination of nodes.

Besides, an RSS feed is also provided for each virtual node. RSS feeds can also
provide information about extracted keywords. This feature is particularly useful for
being alerted of emerging trends on a particular subject with minimum involvement.

5 Related Work

Several KM tools aim at giving users a unified access to their own corpora of
knowledge, for organization, navigation, and search; in the Semantic Desktop area,
among the most prominent, we can cite Haystack [12] and Gnowsis [13]: both of
them allow for integrating emails, bookmarks, files (possibly with their metadata),
RDF repositories. These tools can provide access both through a web application and
through desktop clients. Both however features a custom rich client interface not
easily acceptable by end users.

Piggybank [8] is a Firefox extension which allows for accessing the structured
information possibly associated (through custom web scraping or RDF annotations) to
the web pages visited by the user; moreover, it allows for pushing this knowledge
both in a private repository and in a shared one, where data can be further edited and
tags assigned. While it pushes the collaborative and distributed aspect, it currently
focuses only on web material.

There are a number of wikis which have been enhanced with semantic annotation
capabilities: among the most prominent, Semantic Mediawiki [15] and Platypus [16].

 Towards a Knowledge Ecosystem 379

Ontoprise has delivered several tools based on Semantic Web technologies
targeting knowledge retrieval, recommender systems and knowledge integration:
SemanticMiner, SemanticGuide and SemanticIntegrator [11].

Our semantic email model shares some insights with Zoë [18], an email server
featuring email searching and browsing through a web application, where each email
is presented together with its overall context (attachments, contributors,
organizations…), which is in turn browsable through hyperlinks.

Altogether, the cited tools shares with K@ the aim of organizing knowledge by
leveraging enriched contexts in (possibly) collaborative environments, by providing
both desktop and web utilities, and by (possibly) relying on Semantic Web
technologies for knowledge representation and integration. However, we think that
none of them succeeds in fully satisfying all the knowledge needs of a user: in fact,
individually, they miss the desktop or, on the contrary, the community, and they lack
support for true multimodal interaction with the system.

6 Conclusions and Future Work

In this paper we presented a KM system provided with tools able to organize
knowledge in a rich and structured way and to be proactive in supporting the user
during her everyday work. We have shown how, using mainly Semantic Web
technologies, these tools can connect documents, metadata and users, creating a
community driven repository structured along several directions: taxonomies,
ontologies, communities, keywords. We have described tools able to act in the user
environment, providing her with appropriate and important data, helping her to share
knowledge, capturing the context around the information.

As in a knowledge ecosystem, users are able to pursue their own goals, while at the
same time exploiting and helping to produce the common knowledge. This
knowledge is analyzed, organized and shared to be used in an effective way, making
the ecosystem healthy.

Most of these tools are already in the industrial stage, and are included in a
commercial solution deployed. Some other tools, namely the ones related to semantic-
email browsing, collaborative filtering and virtual nodes machinery, are currently in
the research and development pipeline, with experimental installations only.

Future work will bring us to complete and evaluate the solutions developed so far
and to possibly experiment new Semantic Web and KM techniques, e.g. by
supporting the ontology lifecycle and moving to larger scale semantic annotations,
supporting different media.

Acknowledgements

Part of the R&D activities behind the work reported has been carried out within the
IST-Dot.Kom project (http://www.dot-kom.org), sponsored by the European
Commission as part of the framework V, (grant IST-2001-34038), and currently it is
partly funded by the X-Media project (http://www.x-media-project.org/) sponsored by
the European Commission as part of the Information Society Technologies (IST)

380 P. Slavazza et al.

programme under EC grant number IST-FP6-026978. Many of the improvements to
the user interface have been possible through experience gained with our customers,
and, notably, with Toffoletto and Soci (http://www.toffoletto.it/).

References

1. Drucker, P. (1988) The Coming of the New Organization. Harvard Business Review,
2. Cimiano, P., S. Staab. Learning by Googling. SIGKDD Explorations 6 (2): 24-34.

December 2004.
3. Curiosity: an xpath based web scraper and push platform. http://www.go-curiosity.com/
4. Dzbor M., J.B. Domingue, E. Motta. Magpie – towards a semantic web browser.

Proceeding of the 2nd Intl. Semantic Web Conf., October 2003, Florida US
5. Gilardoni L., C. Biasuzzi, M. Ferraro, R. Fonti, P. Slavazza. LKMS – A Legal Knowledge

Management System Exploiting Semantic Web Technologies. Proc. of the 4th
International Semantic Web Conference, Galway, Ireland, November 6-10, 2005 (ISWC
2005)

6. Mnemosyne : Legal Knowledge Management System. http://mnemosyne.quinary.com/
EN-en/index.html

7. Herlocker, J., J. Konstan, A. Borchers, J. Riedl. An Algorithmic Framework for
Performing Collaborative Filtering. Proceedings of the 1999 Conference on Research and
Development in Information Retrieval. Aug. 1999

8. Huynh D., S. Mazzocchi, D. Karger. Piggy Bank: Experience the Semantic Web Inside
Your Web Browser, LNCS, Volume 3729, Oct 2005, Pages 413 – 430

9. Microformats data formats: http://microformats.org/
10. Ontoprise GmbH. OntoOffice Tutorial.

http://www.ontoprise.de/documents/tutorial_ ontooffice.pdf, 2003.
11. Ontoprise products suite: http://www.ontoprise.de/content/e1171/index_eng.html
12. Quan D., D. Huynh, and D. R. Karger. Haystack: A Platform for Authoring End User

Semantic Web Applications, ISWC 2003
13. Sauermann L., S. Schwarz. Introducing the Gnowsis Semantic Desktop. In Poster track at

the International Semantic Web Conference ISWC 2004
14. Sebastiani F. Machine learning in automated text categorization, ACM Computing

Surveys, 34(1), 147, (2002).
15. Semantic Mediawiki. http://meta.wikimedia.org/wiki/Semantic_MediaWiki
16. Tazzoli, R., et al.: Towards a Semantic Wiki Wiki Web. ISWC 2004
17. UCINET, Social Network Analysis Software: http://www.analytictech.com/ucinet.htm
18. Zoë: Intertwingling Your Email. http://zoe.nu/

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 381 – 388, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Tool for Management and Reuse of Software Design
Knowledge

Paulo Gomes and André Leitão

AILab, Centro de Informática e Sistemas da Universidade de Coimbra
pgomes@dei.uc.pt, aleitao@student.dei.uc.pt

Abstract. As software systems become bigger and more complex, researchers
try to find ways to increase development productivity and efficiency. Knowl-
edge generated during the software development process can be a valuable asset
for a software company. But in order to take advantage of this knowledge, the
company must store it for reuse. This can be achieved through the use of
knowledge management tools integrated in CASE tools. This paper provides an
overview of a system integrated in a CASE tool that manages and reuses soft-
ware design knowledge. We describe how knowledge is stored and reused
based on a Case-Based Reasoning approach. This tool aids the software de-
signer in new ways: searching the design repository, suggesting designs, learn-
ing new knowledge from the user interaction, and other capabilities. We show
the innovative aspects of our system.

1 Introduction

Knowledge generated in the software development process is in general not stored
and consequently can not be reused later in other projects. The reuse of software de-
velopment knowledge can improve productivity and the quality of software systems
[1-5]. Another advantage of storing and reusing this kind of knowledge is that it
minimizes the loss of know-how when a member of the development team leaves the
company. Storage, management and reuse of software development knowledge en-
ables also the sharing of know-how among development teams and across different
projects.

Software development has several phases [6]: analysis, design, implementation,
testing and integration. From these phases, we focus in the design phase, during
which the structure and behavior of the system is specified. Design is a complex an
ill-defined task [7], making it hard to model and automate the process. Software engi-
neers reuse knowledge generated during the design phase in other projects that they
are working on. We are interested in studying the management of design knowledge
in a software development company, involving several software designers.

Most of the decisions concerning software design are made using the designers'
experience. The more experience a designer has, the better s/he can perform its job.
Reasoning based on experience is a basic mechanism for designers, enabling them to
reuse previous design solutions in well known problems or even in new projects. In

382 P. Gomes and A. Leitão

artificial intelligence there is a sub area called Case-Based Reasoning (CBR, see
[8, 9]) that uses experiences, in the form of cases, to perform reasoning. Case-Based
Reasoning (CBR) can be viewed as a methodology for developing knowledge-based
systems that uses experience for reasoning about problems [10]. The main idea of
CBR is to reuse past experiences to solve new situations or problems. A case is a
central concept in CBR, and it represents a chunk of experience in a format that can
be reused by a CBR system. Usually a case comprises three main parts: problem,
solution, and outcome [9]. Another important part of the CBR methodology is the
case library. It stores all the cases organized using indexing schemes. Due to the high
number of cases that the library can have, most of the CBR systems use indexing
structures that enable fast retrieval of relevant cases from memory. At an abstract
level CBR can be described by a reasoning cycle [8] that starts with the problem de-
scription, which is then transformed into a target case (or query case). Using the target
case, the first phase in the CBR cycle is to retrieve from the case library the cases that
are relevant for the target case. The reuse phase (also designated as adaptation phase)
adapts the retrieved case to the target case, yielding a solved case (or new case). The
next step for a CBR system is to revise the new case, returning a tested and repaired
case. Finally, the retain phase learns the solved case by storing it in the case library.
We think that CBR is a suited methodology for building a design system that can act
like an intelligent design assistant.

We developed a computational system – REBUILDER UML – that can perform
three tasks: store, manage and reuse of software design knowledge. To achieve these
goals, we propose a system based on CBR. This reasoning framework is flexible
enough to comply with different knowledge types and reasoning mechanisms, ena-
bling the software designer to use whatever design assistant s/he wants to use. We
also integrated an ontology, which enables several semantic operations like indexing
software objects and computing semantic distances between software objects.

The next section describes our approach and the architecture of our system.
Section 0 presents the knowledge base structure and content. Sections 0 and 0 de-
scribe how the knowledge is managed and reused. Finally section 0 concludes and
presents future directions.

2 REBUILDER UML

REBUILDER UML is a descendant from REBUILDER I [11-14], which was devel-
oped with two main goals: create a corporative memory of software designs, and
provide the software designer with a design environment capable of promoting soft-
ware design reuse. This is achieved in our approach with CBR as the main reasoning
process, and with cases as the main knowledge building blocks. REBUILDER I com-
prises four different modules: Knowledge Base (KB), UML Editor, Knowledge Base
Manager and CBR engine (see Fig. 1). REBUILDER UML addresses the limitations
of REBUILDER I, especially the ontology performance. REBUILDER I has two
main limitations due to the use of WordNet. Performance issues, for instance, finding
the semantic distance between two concepts can take several seconds, which is unac-
ceptable for the system usage. The second limitation is the shallowness of WordNet
that is not adequate for specific domains like computing and software engineering.

 A Tool for Management and Reuse of Software Design Knowledge 383

Specific concepts used in most of the software systems being modeled, do not exist in
WordNet. Another aspect of REBUILDER I that was modified in REBUILDER UML
is the application philosophy, instead of having a client server architecture,
REBUILDER UML is a plug in for a CASE tool, which can easily be used within a
development team, or by a single software engineer. This change has made the system
more flexible regarding situation usability.

Fig. 1. REBUILDER I architecture

REBUILDER UML is implemented as a plug in for Enterprise Architect (EA
www.sparxsystems.com.au), a commercial CASE tool for UML modeling, and it
comprises three main modules (see Fig. 2): the knowledge base (KB), the CBR en-
gine, and the KB manager. The KB is the repository of knowledge that is going to be
reused by the CBR engine. The main goal of the system is to reuse UML class dia-
grams, which are stored as cases in the case library and reused by the CBR engine.
The knowledge base manager enables all the knowledge stored in the system to be
maintained.

Fig. 2. The architecture of REBUILDER UML, based as a plug-in for Enterprise Architect

There are two types of users in REBUILDER UML, software engineers and the
system administrator. A software engineer uses the CASE tool to model a software
system in development, and s/he can use REBUILDER UML actions to reuse old
diagrams. These diagrams can origin from previous systems, or by the development
team in which the software engineer is integrated. The other user type is the system
administrator, which has the aim of keeping the KB fine tuned and updated. Since
each software engineer has a copy of the central KB, the system administrator is
responsible for making new releases of the KB and installing it in the systems of the

384 P. Gomes and A. Leitão

development team (or teams). Thus, the role of the administrator is very important for
REBUILDER UML to be used properly by several users, enabling the sharing of
knowledge among them. Despite this, the system can also be used in a stand alone
fashion, acting as an intelligent knowledge repository for a single user. In this setup,
the user is at the same time playing both roles, reusing knowledge and maintaining it.

The integration with EA is made by a plug in, enabling REBUILDER UML to
have access to the data model of EA, and also to its model repository. Visually the
user interacts with REBUILDER UML through the main menu of EA. The user has
access to the specific commands of REBUILDER UML, enabling search, browse,
retrieval, reuse and maintenance operations.

The next section describes in greater detail the knowledge base, showing what can
be reused and how the knowledge in the KB is stored and indexed.

3 Knowledge Base

The KB comprises four different parts: the domain ontology, which represents the
concepts, relations between concepts, attributes and axioms of the domain being mod-
eled; the case library that stores all the UML class diagrams, called cases; the case
indexes, which are associations between class diagram objects and ontology concepts;
and the data type taxonomy, which is a simple taxonomy of programming data types
used for semantic comparison.

A case in REBUILDER UML represents a specific UML class diagram (see Fig. 3
for an example of a class diagram). Conceptually a case comprises: a name used to
identify the case within the case library; the main package, which is an object that
comprises all the objects that describe the main class diagram; and the file name
where the case is stored. Cases are stored using XML/XMI since it is a widely used
format for data exchange.

UML class diagram objects considered are: packages, classes, interfaces and rela-
tions. A package is an UML object used to group other objects, and it is defined by: a
name, a concept in the ontology, and a list of other UML objects. A class describes an
entity and it corresponds to a concept described by attributes at a structural level, and
by methods at a behavioral level. A class is described by: a name, a concept in the
ontology, an attribute list, and a method list. The interface describes a protocol of
communication for a specific class. An interface can have one or more implementa-
tion, and is described by: a name, a concept in the ontology, and a list of methods. A
relation describes a relationship between two UML objects, and it is characterized by
several attributes, which are: a name, the source object, the destination object, the
relation type (association, generalization, dependency, or realization), cardinality, and
aggregation. An attribute refers to a class and is characterized by a name that identi-
fies the attribute within the class it belongs; the attribute’s scope in relation to the
external objects: public, private, or protected; the attribute’s data type; and the attrib-
ute’s default value. A method describes a request or message that can be submitted to
a class, and is described by: a name that identifies the method within the class to
which it belongs; the method’s scope in relation to the external objects: public, pri-
vate, or protected; the list of the input parameters; and the list of output parameters. A

 A Tool for Management and Reuse of Software Design Knowledge 385

parameter can be a reference or a value that is used or generated by a class method,
and is described by: a name identifying the parameter within the method to which it
belongs, and the parameter’s data type.

Fig. 3. An example of an UML class diagram

The domain ontology defines concepts, which are represented by a set of words.
Words that can be used to represent the same concept are called synonyms. A word
associated with more than one concept is called a polysemous word. For instance, the
word mouse has two meanings, it can denote a rat, or it can express a computer
mouse. Besides the list of words, a concept has a list of semantic relations with other
concepts in the ontology. These relations are categorized in four main types: is-a,
part-of, substance-of and member-of, but the administrator can specify other types of
relations. An example of part of an ontology is presented in Fig. 4.

The ontology is used for computing the semantic distance between two concepts.
Another purpose of the ontology is to index cases, and for this task, REBUILDER
UML associates a concept to each diagram object. This link is then used as an index
to the ontology structure, which can be used as a semantic network for case or object
retrieval. Considering the diagram of Fig. 3 as Case1, Fig. 4 represents part of the
case indexing, with objects Product, Customer and Employee indexed in the
ontology.

Person

Customer Employee

Class
Customer
[Case1]

Class
Product
[Case1]

is-a is-a

Product

is-a

Object

Class
Employee
[Case1]

buy

Fig. 4. An example of case indexing considering the diagram of Fig. 3 as Case1

As cases can be large, they are stored in files, which make case access slower then
if they were in main memory. To solve this problem we use the case indexes. These
provide a way to access the relevant case parts for retrieval without having to read all
the case files from disk. Each object in a case is used as an index. REBUILDER UML
uses the concept associated to each object to index the case in the ontology. This way,
the system can retrieve a complete case, using the case package, or it can retrieve only

386 P. Gomes and A. Leitão

a subset of case objects, using the objects' indexes. This allows the user with the pos-
sibility to retrieve not only packages, but also classes and interfaces.

4 Knowledge Management

REBUILDER UML stores and manages design knowledge gathered from the soft-
ware designer’s activity. This knowledge is stored in a central repository, which is
managed by the administrator. The basic responsibilities of the administrator are to
configure the system and to decide which cases should be in the case library. Another
task that s/he has to perform is to revise new diagrams submitted by the software
designers.

Deciding the contents of the case library is not an easy task, especially if the case
base has a large number of cases. In this situation the KB manager provides a tool
which enables the administrator to retrieve the most similar cases to the one being
evaluated. If the new case is different enough, then it is added to the case library,
otherwise the administrator stores the new case in a list of obsolete cases.

When a diagram is submitted by a software designer as a candidate to a new case
to be added to the case library, the administrator has to check some items in the dia-
gram. First the diagram must have concepts associated to the classes, interfaces and
packages. This is essential for the diagram to be transformed into a case, and to be
indexed and reused by the system. Diagram consistency and coherence must also be
checked.

The KB Manager module is used by the administrator to manage the KB, keeping
it consistent and updated. This module comprises all the functionalities of the UML
editor, and it adds case base management functions to REBUILDER UML. These are
used by the KB administrator to update and modify the KB. The available functions
are:

• KB Operations – create, open or close a KB;
• Case Library Manager – opens the case library manager, which com-

prises functions to manipulate the cases in the case library, like adding
new cases, removing cases, or changing the status of a case;

• Ontology Manager – provides the user with an editor to modify the on-
tology, enabling the creation and manipulation of concepts, which are
used by the system to reason;

• Settings – adds extra configuration settings which are not present in the
normal UML Editor version used by the software designers. It also en-
ables the KB administrator to configure the reasoning mechanisms.

5 Knowledge Reuse

Reuse of UML class diagrams can be done in two ways: retrieval of objects and re-
trieval of cases. The retrieval mechanism searches the ontology structure looking for
similar objects/cases and then ranks and presents them to the designer.

Retrieval comprises two phases: retrieval of a set of relevant objects/cases from the
case library, and assessment of the similarity between the target problem and the

 A Tool for Management and Reuse of Software Design Knowledge 387

retrieved objects/cases. The retrieval phase is based on the ontology structure, which
is used as an indexing structure. The retrieval algorithm uses the classifications of the
target problem object as the initial search probe in the ontology. This algorithm is
flexible enough to retrieve three different types of UML objects: packages, classes
and interfaces, depending on the type of object selected as target problem. The re-
trieval algorithm starts in the concepts associated with the query objects and then
starts to expand to neighbor concepts until it finds enough objects or cases.

The second step of retrieval is ranking the retrieved objects by similarity with the
target object. Since there are three types of target objects (packages, classes and inter-
faces) we have developed a specific similarity metric for each type of objects.

• Package Similarity Metric: this metric is based on four different aspects: the
similarity between packages' concepts, similarity between packages' dependencies
(Dependencies are a type of UML relations that can exist between packages, ex-
pressing a package's dependency on another package), similarity between pack-
ages' class diagrams, and similarity between the sub-packages (a recursive call to
this metric). Basically this metric assesses structure similarity and semantic simi-
larity of packages and it's objects.

• Class Similarity Metric: the class similarity metric is based on three items: con-
cept similarity of classes being compared, inter-class similarity comprising the as-
sessment of relation similarity between classes, and intra-class similarity which
evaluates the similarity between classes' attributes and methods.

• Interface Similarity Metric: the interface similarity metric is the same as the
class similarity, except in the intra-class similarity, which is based only in method
similarity, since interfaces do not have attributes.

The retrieved objects/cases can then be copied and reused in the current diagram.
Even that the software engineer does not use all of the retrieved objects/cases, s/he
can explore the design space using the retrieved knowledge. This enables a more
efficient way of designing systems and increases productivity, enabling novice engi-
neers to get a first solution, from which they can iteratively build a better solution.

6 Conclusions and Future Work

This paper presents a CASE tool capable of reusing and sharing knowledge about
software development. This tool has evolved from a previous one, based on lessons
learned. REBUILDER UML has some major differences with its predecessor,
namely: the ontology is now specific and domain oriented, making it easier to man-
age, maintain and with better performance; the application architecture is more flexi-
ble, allowing the system to be used in a wide range of scenarios (single system to a
company usage level); integration with a commercial UML editor, making it more
suitable for usage in software development companies. Other systems that reuse dia-
grams do not address the multi-user issue, and do not focus on knowledge manage-
ment aspect, which brings new problems and aspects into focus.

There are some limitations that are being addressed, like ontology development.
We are working in a tool for extracting ontologies semi automatically, so that it can
be used to help the system administrator to develop the ontology. Another issue, also
dealing with the ontology is the integration of tools to help the ontology management.

388 P. Gomes and A. Leitão

Future work includes the development of new reasoning modules, more specifically
modules that make the system-user interaction easier.

References

1. Coulange, B., Software Reuse. 1997, London: Springer-Verlag.
2. Gamma, E., et al., Design Patterns: Elements of Reusable Object-Oriented Software.

1995, Reading: Addison-Wesley. 395.
3. Jacobson, I., M. Griss, and P. Jonsson, Software Reuse: Architecture Process and Organi-

zation for Business Success. 1997, New York: ACM Press. 497.
4. Meyer, B., Reusability: The Case for Object-Oriented Design. IEEE Software, 1987. 4(2,

March 1987): p. 50-64.
5. Prieto-Diaz, R., Status Report: Software Reusability. IEEE Software, 1993(May).
6. Boehm, B., A Spiral Model of Software Development and Enhancement. 1988: IEEE

Press.
7. Tong, C. and D. Sriram, Artificial Intelligence in Engineering Design. Vol. I. 1992: Aca-

demic Press.
8. Aamodt, A. and E. Plaza, Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches. AI Communications, 1994. 7(1): p. 39-59.
9. Kolodner, J., Case-Based Reasoning. 1993: Morgan Kaufman.

10. Althoff, K.-D., Case-based reasoning, in Handbook on Software Engineering and Knowl-
edge Engineering, S.K. Chang, Editor. 2001, World Scientific. p. 549-588.

11. Gomes, P., A Case-Based Approach to Software Design, in Department of Informatics En-
gineering. 2004, University of Coimbra: Coimbra.

12. Gomes, P., et al. REBUILDER: A CBR Approach to Knowledge Management in Software
Design. in Sixth International Workshop on Learning Software Organizations (LSO'04).
2004. Banff, Alberta, Canada.

13. Gomes, P., et al. Case Retrieval of Software Designs using WordNet. in European Confer-
ence on Artificial Intelligence (ECAI'02). 2002. Lyon, France: IOS Press, Amsterdam.

14. Seco, N., P. Gomes, and F.C. Pereira. Using CBR for Semantic Analysis of Software Speci-
fications. in 7th European Conference on Case-Based Reasoning (ECCBR 2004). 2004.
Madrid, Spain.

15. Seco, N., P. Gomes, and F.C. Pereira. Modelling Software Specifications with Case Based
Reasoning. in The First International Workshop on Natural Language Understanding and
Cognitive Science (NLUCS'04). 2004. Porto, Portugal.

S. Staab and V. Svatek (Eds.): EKAW 2006, LNAI 4248, pp. 389 – 396, 2006.
© Springer-Verlag Berlin Heidelberg 2006

The ODESeW Platform as a Tool for Managing EU
Projects: The Knowledge Web Case Study

Asunción Gómez-Pérez1, Angel López-Cima1,
M. Carmen Suárez-Figueroa1, and Oscar Corcho2

1 OEG - Facultad de Informática. Universidad Politécnica de Madrid (UPM) Campus de
Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain

{asun, alopez, mcsuarez}@fi.upm.es
2 University of Manchester. School of Computer Science. Oxford Road, Manchester, United

Kingdom
Oscar.Corcho@manchester.ac.uk

Abstract. ODESeW allows developing ontology-based Web portals. It provides
functionalities to edit and browse information, taking into account access privi-
leges, and to update automatically changes carried out on the underlying on-
tologies. In this paper, we describe the ontologies used in a specific deployment
of the ODESeW platform, oriented to the management of EU R&D projects.
We also present the functions offered in this specific deployment, giving as an
example the EU Knowledge Web Network of Excellence portal.

1 Introduction

One important aspect of project management is the generation of reports on the cur-
rent state of the project, so that the project progress can be monitored by project
members or by outsiders. The quality of the project documentation thus generated has
an important influence on the level of detail of the monitoring that can be performed,
on decision-making, and on other project management activities.

Let us focus on the specific setting of the R&D projects funded by the European
Commission (EC). These projects are run by a consortium of several academic and
industrial partners from different EU countries. Progress reports are not only issued to
monitor the project evolution inside the consortium, but also to inform the EC project
officer of that evolution. Project reporting requires input from every partner in the
consortium. These inputs are submitted to the project coordinator, who is responsible
for the generation and submission of the consolidated information. Normally, the
project coordinator has to put in a huge effort to harvest these partial reports from
each partner, to generate the consolidated documents and to maintain consistency
among different versions of the partial reports, the project description and the original
plan. This task is even harder if we consider that there are no specialized tools to help
building reports, tracking changes and ensuring consistency.

In this paper we show how we have improved the EU R&D project management
by using an ontology-based project portal that provides, among other functionalities, a
set of project management functions. These functions are based on knowledge of

390 A. Gómez-Pérez et al.

project management and reporting that has been formalized by a set of ontologies, and
that has been used for the construction of several EU project portals. For our descrip-
tions we will focus on the FP6 Network of Excellence (NoE) Knowledge Web1,
which is the one posing more challenges and constraints given the amount of institu-
tions, workpackages and deliverables.

To build such a project portal we have used the Semantic Web application devel-
opment framework ODESeW [4]. This framework can be easily extended with new
knowledge (new ontologies about the project management); besides, it eases the de-
velopment of new advanced functionalities on top of the portal, since the semantics of
the portal content is exposed explicitly. Finally, such a framework facilitates the reus-
ability of knowledge and functionalities among applications, as explained in [4].

The paper is organized as follows: section 2 provides a brief description of the
ODESeW framework; section 3 describes how periodic progress reports are struc-
tured in EU projects so that we can get a better idea of the amount of work involved
in their generation; section 4 presents the ontologies used within the project portal.
Section 5 gives a brief description of the functionalities provided by the portal. Fi-
nally, section 6 provides a conclusion and outlines a vision of the work to be done in
the future.

2 The Development Framework ODESeW

ODESeW (Semantic Web Portal based on WebODE) was first described in [2] as a
tool that could be used for the automatic generation of Web portals in which all the
information was indexed by means of ontologies. This system was built on top of the
WebODE ontology engineering workbench [1], thus inheriting many of its features.

The portals generated with ODESeW could be used as the Intranets and Extranets
of the projects, taking into account that different users will have different read and
write permissions in the portal. Besides, ODESeW provided functions such as a
search engine, content implementation in different languages (RDF, RDFS and OWL)
and administrator functionalities for user management, read/write permission man-
agement, and a selection of ontologies to be used in the portal.

In this version of ODESeW, it switches from being a tool for building ontology-
based portals into a more complete framework for building Semantic Web applica-
tions. This new version offers developers a set of services and tools that can be used
in a Semantic Web application and gives, by default, navigation and visualization
models that allow visualizing, editing and navigating the content in the portal. Such
models can be modified and extended easily, permitting developers to create specific
visualization and navigation models. The technical details are provided in [4].

3 Project Management and Periodic Progress Reports

As commented in the introduction, collaborative projects usually require the creation
of periodic project progress reports that project coordinators can use to monitor the
project and that, in the case of the EU R&D projects, must be sent to the European

1 http://knowledgeweb.semanticweb.org/

 The ODESeW Platform as a Tool for Managing EU Projects 391

Commission (EC) at regular intervals during the project execution. EC reports can be
divided in the following sections:

1. Activity Report

1.1. Report on Workpackage (WP) activities
1.2. Published executive summary
1.3. Update plan for using and disseminating knowledge
1.4. Information about: publications, invited talks, workshop and

conference organized, etc
2. Management Report

2.1. Financial statement
2.2. Summary financial report consolidating the costs of contractors
2.3. Audits certificates
2.4. Brief description of the work performed by each contractor dur-

ing the period
2.5. Budgeted cost and actual costs
2.6. Budgeted person-month and actual person-month
2.7. Summary explanation of the impact of major deviations from cost

budget and from person-month budget.
3. Distribution of EC funding to partners.
4. Interim Reports

The task of preparing a progress report normally consists of the following steps
(which are executed by the project coordinator):

 Request progress reports from each of the partners involved in the consortium.
 Receive the partial progress reports and compile all that information in a single

document, removing duplicates, detecting inconsistencies, etc. This step is per-
formed iteratively until all the information is provided.

 Prepare a final summary, stressing the most important aspects of the results.

To help in these tasks, collaborative editing tools are used. However, much manual
work must still be done, mainly on the project coordinator side, to make a good qual-
ity document for the EC. That is, a document containing all the information that is
relevant inside the report period, with no duplicates, etc. It is important that the in-
formation there included be presented in a good homogeneous format.

4 A Set of Ontologies for EU R&D Project Management

In this section we describe the domain model used in the Semantic Web application
that we have created for EU R&D project management. This domain model consists
of a set of interlinked ontologies, namely, several project description ontologies, a
user role ontology and a management ontology. We will give some details about the
process followed to build such ontologies.

4.1 The Ontology Building Process

These ontologies have been developed following the METHONTOLOGY methodol-
ogy [3]. One of the first tasks proposed by this methodology is that of searching for
other ontologies in the same or in similar domains in order to reuse them (or part of
them), so that we can avoid developing them form scratch.

392 A. Gómez-Pérez et al.

For developing the project description ontologies, we used Oyster2 [5] which per-
mits searching for ontologies in similar domains. After analyzing the results provided
by Oyster, the most appropriate ontologies were: the ontology used in the OntoWeb
project3 (Semantic Web Research Community Ontology4) and the ontologies used in
the Esperonto project.

Once we identified which parts of the ontologies could be reused, we extended
them following the steps proposed by the conceptualization phase of
METHONTOLOGY. Thus, to extend the reused ontologies, we acquired the domain
knowledge from the Knowledge Web Technical Annex. Besides, comments from
project partners were considered in the refinement of these ontologies.

For the development of the user role and management ontologies, we did not reuse
any ontology, we built them from scratch following the same methodology.

4.2 Project Description Ontologies

To describe a collaborative project we have used five ontologies, which can be easily
reused for describing other similar projects. These ontologies are the following :

 The Documentation Ontology, which models knowledge of documentation used
in the project. The main concept of this ontology is Documentation, a concept or-
ganized according to the type of document within a taxonomy.

 The Event Ontology, which models knowledge of events that are related to the
project. The main concept of this ontology is Event.

 The Organization Ontology, which models knowledge of organizations involved
in the project. The main concept in this ontology is Organization, a concept split
into three subclasses. The most important information about organizations in-
volved in a project is related to the organization itself and its location.

 The Person Ontology, which models knowledge of persons who work in the pro-
ject. This ontology is focused on general-purpose personal information. The main
concept of this ontology is Person. We have divided this concept into four differ-
ent types: university staff, company staff, project officer, and student.

 The Project Ontology, which models the Technical Annex of a project, including
information about WPs, tasks, projects, areas, etc. This ontology is not organized in a
taxonomy; it only includes several concepts and the relationships between them.

4.3 The User Role Ontology

This ontology models the knowledge needed for managing different user profiles
within the project. In the case of Knowledge Web, the roles that each user plays in the
project are represented by each concept of the ontology.

ODESeW manages the user role ontology internally and independently of the ap-
plication domain; this, however, does not mean that it cannot be extended for specific
domains. Figure 1 shows the user roles that participate in the generation of progress
reports and the extension needed for managing a NoE like Knowledge Web.

2 http://oyster.ontoware.org/
3 http://www.ontoweb.org/
4 http://ontobroker.semanticweb.org/ontos/swrc.html

 The ODESeW Platform as a Tool for Managing EU Projects 393

Fig. 1. The taxonomy of the user role ontology

4.4 The Management Ontology

This ontology contains the knowledge needed to manage collaborative projects. It
identifies the most relevant concepts and properties used to collect information from
partners and to generate the consolidated report. We can identify three main concepts:

 Period, which specifies different types of periods such as a Reporting Period or a
Joint Process Activity (JPA) Period, that is, different periods identified in a project
where the description of the work can be reviewed and changed.

 Effort, which represents the effort expended or to be expended in a project period,
either in a task or a WP or by organization.

 Report, which represents a partial or complete report generated by a partner or by
several partners. Partial reports are used to compile a complete report, which is
then sent to the coordinator partner.

In the case of Knowledge Web, this ontology has been extended (as shown in Fig-
ure 2) with other partial reports, such as the Project Overview Report and different
Area Reports, all required to create the complete report.

Fig. 2. The taxonomies of the management ontology

394 A. Gómez-Pérez et al.

4.4.1 Periods
The Period concept modeled in the management ontology represents different kinds
of time frames during the project. The main periods are:

 The JPA Period, the period in which a project is divided. In each of these periods,
the consortium defines the milestones per workpackage, the deliverables to report
to the EC and the distribution of effort among the partners.

 The Reporting Period, which delimitates the time frame where the consortium
must report progress inside a JPA Period. Depending on the project, this period
could be every two or six months or every year.

4.4.2 Efforts
Two kinds of efforts can be found in the management ontology:

 JPA Period Effort, which represents the effort devoted by the consortium in each
JPA Period on each WP.

 Periodic Effort, which is the effort expended by each partner on a specific WP in
a Reporting Period.

4.4.3 Report
The management reports generated on each Periodic Report and supported by the
current version for the reporting period are:

 The Effort Report, which represents the total effort put in during a Reporting
Period by the whole consortium.

 The Progress Report, which represents the progress in a WP during a Reporting
Period. In most of the projects, the data required in a progress report are: an over-
view, a description of the work carried out and the current status of each deliver-
able, the delays according to the definition of the project on each JPA, and the
meetings held during the active period. Only the WP leader can include informa-
tion in this report.

 The Area reports, which present an overview of all the work carried out during a
Reporting Period in an Area. In Knowledge Web there are four areas (Industrial,
Research, Educational and Management) and each of them is supported by a set of
WPs. Each area has two area managers and only these persons can include infor-
mation in the overview of their managed areas.

5 Progress Reporting Functions

Progress reporting functions are classified according to the user types. In the case of
Knowledge Web there are 3 different user types: the reporting user, the area manager
and the managing director. For the reporting user, the functions provided are oriented
to guide the user through the different reports; for the area manager, the functions are
oriented to generate the area progress reports; and, for the managing director, the
functions are oriented to monitor the evolution of all the reports, to generate the com-
plete reports and to produce other management reports.

 The ODESeW Platform as a Tool for Managing EU Projects 395

5.1 Functions for Reporting Users

When a reporting user logs into the system and enters the reporting section, the portal
shows all the tasks to be done. These tasks are: WP progress reports, for each WP that
the user’s organization is leader of; and Effort report for the organization to which the
user belongs.

The decision on which WPs and which effort reports are to be included is made on
the basis of the user profile, which is obtained automatically by the portal. The portal
also shows a time line with the schedules of the period reporting: WP and effort report
stage, quality assessment, report updating, quality assurance and submission.

5.2 Functions for Area Managers

In a large project, WPs can be organized in different areas. Each area has a person that
is responsible for it, known as the area leader. In the activity report, area managers
can include an overview of the general progress.

5.3 Functions for the Managing Director

The managing director belongs to the project coordinator organization and is in
charge of monitoring the progress of all reports produced by individual partners.

When a user logs into the system and accesses the reporting system, the portal
shows the effort reports of all the project partners together with the progress reports of
all the WPs. Besides, there is a link to a view for monitoring the current status of all
reports, which shows a table that relates partners and WPs and also displays the cur-
rent status of each progress and effort reported by the partner, using color coding.

The activity report is one of the documents that must be delivered by the project
coordinator to the European Commission. This document compiles all the WP pro-
gress reports into one document. The document produced is presented in HTML and
MS Word formats and it includes the front page, the table of contents, the header and
footer of each page, and the font style selected by the project template. This document
is a draft version which the managing director can modify with specific information
that only the project coordinator is allowed to include.

6 Conclusion and Future Work

The current version of the EU R&D project management portal covers section 1.1,
some points of 1.4 and the section 2.6 of the management reports of an EC project
(see Section 3). Such sections are the most collaboration-intensive parts of the genera-
tion process and the information to be used there is public to the consortium.

The use of these project management functions have reduced drastically the effort
applied to producing management documentation for the EU R&D project. These
reports required collaboration from different partners in the project, which made the
process time and effort consuming. This system reduces the amount of e-mails sent by
the different project partners to the project coordinator, including the partial docu-
ments that have to be consolidated in a common version. It also reduces the number

396 A. Gómez-Pérez et al.

of errors that result from using intermediate versions of the documents and ensures
that the results reported are consistent with the project description.

This tool also helps the project coordinator, represented by the managing director,
to monitor the status of the current period report, detecting in this way any delay or
major deviation with respect to the original workplan.

But the most important issue is that the progress report can be easily personalized
for different projects just by changing or updating the existing ontologies, that is,
including more fields in the report and different types of users in the report. The proof
that this system works and can be reused is that we have used it (with the correspond-
ing adaptations) in the context of several EU R&D projects.

In the short term we plan to give full support for the generation of activity reports.
We also plan to include more management documents, such as financial reports. Be-
sides, we plan to support no only HTML and MS Word formats, as it has been done
till now, but also other commonly used formats like LaTeX or the XML format that is
being proposed by the EC as a common format for these reports.

Acknowledgements

This paper has been supported by the EU IST NoE Knowledge Web.

References

1. Arpírez, JC.; Corcho, O.; Fernández-López, M.; Gómez-Pérez, A. WebODE in a nutshell.
AI Magazine 24(3):37-48. Fall 2003

2. Corcho, O.; Gómez-Pérez, A.; López-Cima, A.; López-García, V.; Suárez-Figueroa, M.C.
2003. “ODESeW. Automatic Generation of Knowledge Portals for Intranets and Extranets”.
International Semantic Web Conference 2003 (ISWC03). Lecture Notes in Computer Sci-
ence (2870). PP: 802-817.

3. Fernández-López, M.; Gómez-Pérez, A.; Pazos-Sierra, A.; Pazos-Sierra, J. “Building a
Chemical Ontology Using METHONTOLOGY and the Ontology Design Environment”.
IEEE Intelligent Systems & their applications. January/February 1999. PP: 37-46.

4. López-Cima A.; Corcho O.; Gómez-Pérez A. 2006. A platform for the development of
Semantic Web portals. In: Proceedings of the 6th International Conference on Web Engi-
neering (ICWE2006). Stanford, July 2006.

5. Palma, R.; Haase, P. 2005. “Oyster - Sharing and Re-using Ontologies in a Peer-to-Peer
Community”. International Semantic Web Conference 2005: 1059-1062.

Author Index

Akkermans, Hans 112
Alani, Harith 166
Aleksovski, Zharko 182
Aroyo, Lora 272
Atzmueller, Martin 318
Aussenac-Gilles, Nathalie 158

Bartkowski, Wies�law 1
Baumeister, Joachim 82
Biasuzzi, Christian 366
Boulicaut, Jean-François 326
Brugman, Hennie 272
Brunzel, Marko 141

Cantador, Iván 334
Cao, Tri M. 35
Castells, Pablo 334
Chalmers, Stuart 27
Compton, Paul 35
Corcho, Oscar 389
Cordier, Amélie 303
Crampes, Michel 256

de Jong, Annemieke 272
de Vries, Holger 3
Delprat, Sylvie 326
Derozier, Vincent 256
Domingos, Pedro 2
Dupplaw, David 166

Fauré, Clément 326
Ferraro, Massimo 366
Fonti, Roberto 366
Fuchs, Béatrice 303

Garbe, Hilke 3
Gazendam, Luit 272
Gilardoni, Luca 366
Gomes, Paulo 381
Gómez-Pérez, Asunción 389
Gordijn, Jaap 112
Gray, Peter 59
Gray, Peter M.D. 19
Gutierrez, Claudio 358

Hu, Bo 166

Jacques, Marie-Paule 158
Jalabert, Fabien 256
Janssen, Claudia 3
Józefowska, Joanna 287

Kalfoglou, Yannis 166
Kemp, Graham J.L. 19
Kitamura, Yoshinobu 67
Kiyoki, Yasushi 350
Klein, Michel 182
Kozaki, Kouji 67

�Lawrynowicz, Agnieszka 287
Lei, Yuangui 238
Leitão, André 381
Lewis, Paul 166
Lopez, Vanessa 96
López-Cima, Angel 389
�Lukaszewski, Tomasz 287

Malaisé, Véronique 272
Mille, Alain 303, 326
Mizoguchi, Riichiro 67
Möbus, Claus 3
Morbidoni, C. 246
Motta, Enrico 96, 222, 238

Navigli, Roberto 126
Negru, Christian 272
Nowak, Andrzej 1
Nucci, M. 246

Piazza, F. 246
Puliti, P. 246
Puppe, Frank 318

Ranwez, Sylvie 256
Rodŕıguez, Andrea 358
Runcie, Trevor 59

Sabou, Marta 96
Schreiber, Guus 272
Seebold, Heiko 3
Seipel, Dietmar 82
Shadbolt, Nigel 166

400 Author Index

Slavazza, Piercarlo 366
Sleeman, Derek 27, 59
Spiliopoulou, Myra 141
Stegers, Ruud 51
Suárez-Figueroa, M. Carmen 389
Sunagawa, Eiichi 67

ten Kate, Warner 182
ten Teije, Annette 51
Tummarello, G. 246

Uren, Victoria 222, 238

Vallacher, Robin 1
van Harmelen, Frank 51, 182
Vazey, Megan 43
Velardi, Paola 126

Yang, Zhe 214
Ye, Chuan 214

Zettsu, Koji 350
Zhang, Dalu 214
Zurawski, Maciej 198

	Frontmatter
	Invited Talks
	Information and Influence in Social Networks
	Learning, Logic, and Probability: A Unified View

	Knowledge Acquisition
	KARaCAs: Knowledge Acquisition with Repertory Grids and Formal Concept Analysis for Dialog System Construction
	Capturing Quantified Constraints in FOL, Through Interaction with a Relationship Graph
	Assisting Domain Experts to Formulate and Solve Constraint Satisfaction Problems
	Knowledge Acquisition Evaluation Using Simulated Experts
	Stochastic Foundations for the Case-Driven Acquisition of Classification Rules
	From Natural Language to Formal Proof Goal
	Reuse: Revisiting Sisyphus-VT

	Ontology Engineering
	Role Organization Model in Hozo
	Verification and Refactoring of Ontologies with Rules
	Ontology Selection for the Real Semantic Web: How to Cover the Queen's Birthday Dinner?
	Ontology Engineering, Scientific Method and the Research Agenda

	Ontology Learning
	Ontology Enrichment Through Automatic Semantic Annotation of On-Line Glossaries
	Discovering Semantic Sibling Groups from Web Documents with XTREEM-SG
	Designing and Evaluating Patterns for Ontology Enrichment from Texts

	Ontology Mapping and Evolution
	Semantic Metrics
	Matching Unstructured Vocabularies Using a Background Ontology
	Distributed Multi-contextual Ontology Evolution -- A Step Towards Semantic Autonomy
	An Evaluation Method for Ontology Complexity Analysis in Ontology Evolution

	Semantic Search
	Semantic Search Components: A Blueprint for Effective Query Language Interfaces
	SemSearch: A Search Engine for the Semantic Web
	Rich Personal Semantic Web Clients: Scenario and a Prototype

	User Interfaces
	{\sc i}$^{\rm {\sc 2}}${\sc dee}: An Integrated and Interactive Data Exploration Environment Used for Ontology Design
	Evaluating a Thesaurus Browser for an Audio-visual Archive

	Knowledge Discovery
	Frequent Pattern Discovery from OWL DLP Knowledge Bases
	Engineering and Learning of Adaptation Knowledge in Case-Based Reasoning
	A Methodological View on Knowledge-Intensive Subgroup Discovery
	Iterative Bayesian Network Implementation by Using Annotated Association Rules

	Semantics from Networks and Crowds
	Multilayered Semantic Social Network Modeling by Ontology-Based User Profiles Clustering: Application to Collaborative Filtering
	Towards Knowledge Management Based on Harnessing Collective Intelligence on the Web
	A Formal Approach to Qualitative Reasoning on Topological Properties of Networks

	Applications
	Towards a Knowledge Ecosystem
	A Tool for Management and Reuse of Software Design Knowledge
	The ODESeW Platform as a Tool for Managing EU Projects: The Knowledge Web Case Study

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

