
Virtual Logbooks and Collaboration in Science

and Software Development

Dimitri Bourilkov�, Vaibhav Khandelwal, Archis Kulkarni, and Sanket Totala

University of Florida, Gainesville, FL 32611, USA
bourilkov@phys.ufl.edu

Abstract. A key feature of collaboration is having a log of what and
how is being done - for private use/reuse and for sharing selected parts
with collaborators in today’s complex, large scale scientific/software en-
vironments. Even better if this log is automatic, created on the fly while
a scientist or software developer is working in a habitual way, without
the need for extra efforts. The CAVES (Collaborative Analysis Versioning
Environment System) and CODESH (COllaborative DEvelopment SHell)
projects address this problem in a novel way, building on the concepts
of virtual state and virtual transition to provide an automatic persistent
logbook for sessions of data analysis or software development in a col-
laborating group. Repositories of sessions can be managed dynamically
to record and make available in a controlled way the knowledge accumu-
lated in the course of a scientific or software endeavor.

Heraclitus asked: How can you bathe in the same river twice?

Quine answers: It’s easy, though it is hard to bathe in the same water twice.

1 Introduction

The scientific and software development processes demand the precise tracking of
how a project is evolving over time, in order to be able to explore many different
alleys simultaneously, moving forward to well defined states when successful
- or rolling back otherwise. In this context a virtual session is the process of
moving from a well defined initial to a well defined final state. The concept
of “virtuality” with respect to existence means that we can define states that
may be produced in the future, as well as record the “history” of states that
exist now or have existed at some point in the past. By keeping an automatic
log of initial states and transformations (knowledge about how to transform to
desired final states) we have a general tool to track the evolution of a project.
Such a tool will be equally useful for software development or any scientific work
done on computers. A good logging system will enable a collaborating group
to create and/or recreate virtual states on demand. The ability to reproduce a
state can have many implications: it may be more practical (e.g. much less space
consuming) to keep the initial states and the knowledge than all final states.

� Corresponding Author.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 19–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

20 D. Bourilkov et al.

The decomposition in sessions can describe complex processes and procedures
as a sequence of many small steps at the desired level of “atomicity”.

The idea of virtual logbooks of sessions complements the idea of virtual
data [1,2], where data comes complete with a recipe how to (re)produce it, by
putting more emphasis on the interactive aspect of work done by users in their
habitual ways, creating the log for the session automatically, on the fly, while
the work is progressing. There is no need per se to provide any code in advance,
but the user can execute/modify preexisting programs if desired. When a piece
of work is worth recording, the user logs it in a persistent session repository with
a unique identifier for later use/reuse.

Tools like this are vital to facilitate efficient collaboration in today’s large, ge-
ographically distributed teams with their needs to be able to advance a project
anytime and anywhere without space or time restrictions. Consider e.g. the sce-
nario where thousands of researchers spread over different continents are working
together on projects like the Large Hadron Collider [3], the most powerful par-
ticle accelerator built so far, expected to start data taking in 2007. In such a
scenario, there is a need for efficient means of storing the data and methods used
to create this data, and sharing these stored sessions between the collaborators.
The CAVES and CODESH projects [4,5,6,7] build tools to address this problem.

2 Project Outline

The basic idea behind the two projects 1 is the same and they share the same
architecture. CAVES is designed specifically for users performing data analysis
with the widely popular analysis package ROOT [8]. CODESH is a generalization
of the same approach for any type of work done on the command line, like
scripting in typical shells, e.g. bash or tcsh.

The primary use case is a ’virtual session’. Each user works on a per session
basis in an open environment. The work of the user for a session is recorded in the
’virtual logbook’, while the environment is considered as available or provided
by the collaborating group. The splitting between logbook and environment
parts is to some extent arbitrary. We will call it a collaborating contract, in
the sense that it defines the responsibilities of the parties involved in a project.
The fundamental concept is to store information in enough detail to provide a
share/replay mechanism, optionally modifying the inputs, for user’s sessions at
any other place or time by other users.

This is achieved by maintaining a virtual logbook, which records the initial
state (pre-conditions of a session), all the commands typed by the user, all the
outputs generated and also all the programs executed to produce the results.
Also the changes made to the environment i.e. environment variables and aliases
are recorded.

When a user’s session ends, or when the user would like to checkpoint the work
done so far, he/she tags the complete log, which automatically collects the source
program files, and optionally the data used, with a uniquely generated tag and
1 For more details about the evolution of our design we refer the reader to [4,5].

Virtual Logbooks and Collaboration in Science and Software Development 21

logs it to a repository. Thus the repositories can contain hundreds and thousands
of such stored sessions. Reproduction of a session is possible by extracting the
log, data and source files and executing the commands listed in the log files and
running the scripts that have been downloaded. Also the environment changes
can be carried across sessions.

The repositories of such sessions can be on the local machine for personal
usage and also on shared servers for the use of collaborating groups. Generally
the user will store all his sessions locally and ’publish’ selected important sessions
to shared repositories. He/she may also extract and re-produce sessions stored
by other collaborators.

There is also a feature, aptly called ’Snapshot’, which allows logging entire
directory structures under the current working directory. These can later be
retrieved and thus provide a virtual working directory. Using this concept, a
virtual session can be copied to any place on the same machine or even across
machines and re-started or modified. Of course this is possible if the user works
relative to the root of the snapshot directory and avoids using absolute paths.

3 Architecture

We have identified three distinct Tiers in the architecture:

– A. The User Tier
– B. The Main CODESH or CAVES Tier
– C. The Backend

Each Tier is completely independent of the other Tiers and it makes use of
only the interfaces provided by the other Tiers. Thus we can change one Tier
without affecting the operation of the others. The CODESH architecture is shown in
Fig. 1. As most details when describing the architecture are common for the two
projects, we will concentrate on the CODESH description, mentioning CAVES only
where necessary to highlight the distinct nature of each project. Lets examine
each Tier in turn:

A. The User Tier: This mainly implements the User Interface. We provide an
interface similar to the Unix/Linux command line shell or to the ROOT command
line. The user can start his session either in the batch mode or in interactive
mode. In the interactive mode, the user types shell (or ROOT) commands just as
he/she would on a Unix/Linux shell. He/she also types CODESH (CAVES) com-
mands for the session logging and similar tasks. All the input from the user is
parsed and fed to the second Tier, which is the main CODESH (or CAVES) Tier.
Also the results produced are displayed on the screen for the user to view.

B. The Main CODESH (CAVES) Tier: This is the heart of our system. It is solely
responsible for getting the user input, logging the user sessions, maintaining
state information, delegating the shell (ROOT) commands to the under-lying shell
(analysis package) and all the communication with the backend Repositories.

Based on the logical separation of the tasks, we have identified 4 different
modules that comprise this Tier. They are:

22 D. Bourilkov et al.

Fig. 1. The scalable and distributed CODESH architecture

i. CODESH (or CAVES client class): It is the main controller module that interacts
with all the remaining 3 modules for the successful execution of tasks in this Tier.
It delegates shell commands directly to the shell or through the Extract module,
which is described later. It also reads and updates the state information stored in
the State Information module. It also interacts with the CODESH backend module
for the storing and retrieving of the sessions.

ii. CODESH (CAVES) Backend: This module interacts with the backend reposito-
ries to provide the storage and retrieval of the session information and also to get
some status information e.g. a listing of all the sessions that have been stored.
It provides a backend independent interface, which is used by the CODESH
module.

iii. State information: This module stores and maintains all the configura-
tion information during any active user sessions. We broadly classify this state
information in two categories:

1. System information: This includes the aliases and environment variables
that need to be kept track of during the session. We track the changes made to
these during the session and provide routines for propagating them and also for
logging them along with the session.

2. User Configuration information: This includes the various user-selected
configurations. Some options provided for customized behavior of CODESH are:
Loglevel: Specifies how much to log
Codeshloglevel: Specifies whether to log CODESH commands in addition to the
shell commands which are always logged

Virtual Logbooks and Collaboration in Science and Software Development 23

Debuglevel: Specifies how much debugging information to print on the screen
Batchmode: Option to enable/disable the batch mode operation
Username: Allows changing the user name used for tagging the sessions
ExtensionList: Maintains a list of all extensions treated as scripts.

iv. Extract module: This module is responsible for the extraction of the ses-
sions i.e. re-executing them and getting the desired outputs. It delegates the
shell (ROOT) commands and scripts to the under-lying shell (analysis package)
for execution. Currently we support the bash and tcsh shells. But support for
other shells can be easily added.

C. The Backend: The Backend stores the sessions, in such a way that they can
be re-created later by some other user who extracts a session. For each session,
we store the log files, the source files and optionally the data files. Each session
is identified by a unique identifier which consists of 3 parts: the user’s name,
the current date and time and a user supplied name for the session. We provide
support for three different types of backends:

i. CVS: We use CVS [9] as the main backend for storing the sessions. Using the
CVS checkin, checkout and other commands we implement our commands like
Log session and Extract session (for a comprehensive listing of CODESH commands
refer to the next Section). We also provide an option of using Remote CVS as a
backend i.e. using a pserver.

ii. Clarens: We provide support for using Clarens [10] as a backend. The
Clarens Grid-Enabled Web Services Framework is an open source, secure, high-
performance ”portal” for ubiquitous access to data and computational resources
provided by computing grids. This is a Service Oriented backend that provides
services for Authentication, File and Data Transfer etc.

iii. MySQL: We provide for a MySQL backend, which stores only the metadata
information regarding each session in the Database. These annotations help in
fast searches through stored sessions for some particular session types. After
such a session is found, a local or remote CVS repository can be contacted to
fetch the complete session.

Every user may have local CVS repositories where he/she stores all personal
sessions. Typically the user will want to commit some of the sessions to shared
remote repositories and also extract some sessions stored by other users at the
shared repositories. Thus we provide support for copying and moving sessions
between repositories and also deleting sessions stored at some particular reposi-
tory. We also plan to provide a way of cloning entire repositories.

Controller of the Repositories: This module takes care of the maintenance,
recovery and similar tasks related to the different repositories. Our design struc-
ture is distributed in nature and thus we can have numerous controllers instead
of just one centralized controller.

4 Typical Usage Scenario

Currently CODESH is implemented in the Python, and CAVES in the C++ pro-
gramming language. For CAVES the user compiles an executable using the CAVES

24 D. Bourilkov et al.

code and the ROOT libraries. Once started, this executable has all the functional-
ity and behavior of the normal ROOT executable, including in addition the CAVES
commands. Typically a user starts CODESH by running the Codesh.py file. He can
specify the different loglevels and other such customizations in a Codesh.conf file
or specify them after he runs CODESH. In the interactive mode, he then views a
command line interface on which he can start his session. Optionally he can use
the batch mode and specify a file, which contains all the commands that are to
be executed in a batch. To assist in logging his work and re-creating the results
of previously stored sessions, he can use the various CODESH commands provided.
Some of these are:

i. Browse: To list all the stored sessions and also optionally restrict the search
depending on date/time or user. Also used to browse metadata associated with
the sessions.

ii. Inspect: To view the contents of a particular session and optionally down-
load all the source files.

iii. Extract: To execute a stored session and re-create the results.
iv. Log: To log a session between user defined checkpoints along with (op-

tionally) all or some of the programs executed during the session. The level of
logging depends on user defined log levels for that particular session.

v. Tagcopy: To copy a stored session from the source repository to the desti-
nation repository.

vi. Tagdelete: To delete a stored session.
vii. Takesnapshot: To work in a separate sandbox and store the entire sandbox

in a repository. This complete sandbox i.e. all the files and directories under the
working directory, can then be retrieved later by the same user or some other
user and worked upon.

viii. Getsnapshot: To retrieve any previously stored sandbox. This is very
useful in cases where a previously stored sandbox can be re-created at various
places, by various people and all of them can start working from the place where
the original user had left.

ix. Browsesnapshots: This command lists all (or a selected subset of) the
sandboxes committed by all the users.

x. Setenv, Getenv: To access and modify environment variables independent
of the underlying shell.

xi. GetAlias: To get all the active aliases.

5 Test Results

Tools like CODESH or CAVES, designed to be used for collaborative development by
many users, have to deal with different styles or work preferences and customiza-
tions by many individual users. These differences can be e.g. in the underlying
shells used, level of logging/debugging desired, kind of work, user permissions
and so on. We have developed CODESH and CAVES as flexible tools, easy to cus-
tomize and extend with new user defined commands. We have tried to exhaus-
tively test them with many different customizations using as backend local or
remote CVS repositories.

Virtual Logbooks and Collaboration in Science and Software Development 25

-4
-2

0
2

4

-4

-2

0

2

4

-4

-2

0

2

4

CMS Event Display

Fig. 2. Event display from a Monte Carlo simulation for the CMS experiment. Charged
particle tracks are shown in green, muon tracks in red, reconstructed jets with different
algorithms as triangles and squares.

We have also done Stress testing for scenarios where the size and quantity of
the logged data was really overwhelming. We have tested CODESH till the size of
the repository was 10,000 sessions. Our code is resilient enough that even with
10,000 sessions in the repository the performance was only marginally slower
than with very few sessions in the repository. All the sessions stored were of
similar type and size. Specifically with 10 sessions stored in the repository, the
inspection of a session took around 1 second, and even with 10,000 sessions
stored, the inspection of a session took only 2 seconds on a 1 GHz Pentium III
machine for a local repository.

We have built a fully distributed data analysis system based on ROOT and
CAVES. The virtual sessions are stored in local or remote (pserver based) CVS
repositories. The input and output datasets are stored using xrootd [11] servers.
In this way users can browse, inspect and reproduce the sessions of their col-
leagues starting from a completely clean slate on a new desk- or laptop. All
the necessary knowledge, code and data are delivered from the remote servers.
An example of an event display from a Monte Carlo simulation for the CMS
experiment [12] at LHC produced in this way is shown in Fig. 2.

6 Related Work

Archives typically keep final states. Often it is unclear how they were created. In
computers the initial and final states are transient. Knowledge is not recorded

26 D. Bourilkov et al.

systematically. Paper logs are hard to produce, hard to search, hard to share.
They need transfer to a computer before making the knowledge widely available.

The history mechanism in typical shells like tcsh or bash logs a pre-defined
number of commands in a file. But it provides no persistency mechanism for stor-
ing sessions or for exchanging them between collaborators. The scripts executed
during a session, the pre- and post- conditions are not logged. The script [13]
utility goes one step further, logging the standard output from the commands
as well, all the rest is left to the user. Our automatic logbook/virtual sessions
approach does much more by managing private and shared repositories of com-
plete session logs, including the commands and the programs, and the ability to
reproduce the results or reuse them for future developments.

In [14], contrary to most existing provenance systems which use disclosed
provenance like annotations, transformations or workflows, an observed prove-
nance approach at the kernel and system call level is developed. The authors note
the desirabilty of combining the full semantic knowledge of disclosed provenance
and the automatic and transpartent collection of observed provenance systems,
noting also the substantial challenges like provenance granularity, versioning,
provenance pruning, overheads etc. Our approach taken with the CODESH project
offers flexibility and good balance between observed and disclosed provenance:
the users of our system can select the splitting between logbook and environ-
ment parts, which we call collaborating contract, depending on their needs. We
provide observed provenance at the shell level, which, due to its proximity to
the users, offers a rich semantic knowledge by seamlessly observing the work
done in a virtual session. The adoption of a versioning system like CVS as a
persistent backend helps in solving the versioning problem and provides an ele-
gant approach to pruning by only storing the differences between a potentially
large number of similar sessions. In summary, the CODESH project combines in a
natural way some of the key desired features of the two extremes outlined above.

7 Current and Future Work

We have used CODESH to record the production and analysis of data for large
scale simulations in high energy physics, and for various software development
and configuration tasks at several locations distributed across the United States.
CAVES was used to record analysis sessions of the produced data, including analy-
ses demonstrated at Supercomputing 2005 in Seattle.

Our ongoing and future work consists e.g. of implementing: all the robust
functionality available with the CVS backend in the more difficult case of the
web service based Clarens backend; the full set of administrative tasks for the
management, maintenance and control of private and shared repositories; Web
interfaces for users to browse through the repositories; and a utility by which the
user can clone entire repositories. Public releases of the first functional systems
for automatic logging in a typical working session will be available from [15], and
the projects are hosted as open source [16]. In addition we are working on auto-
matically converting session logs to workflows, and the ability to develop locally
and seamlessly schedule more CPU/data intensive tasks on grid infrastructure.

Virtual Logbooks and Collaboration in Science and Software Development 27

In summary, our projects take a pragmatic approach in assessing the needs
of a community of scientists or software developers by building series of working
prototypes with increasing sophistication. By extending with automatic logbook
capabilities the functionality of a typical UNIX shell (like tcsh or bash) - the
CODESH project, or a popular analysis package as ROOT - the CAVES project, these
prototypes provide an easy and habitual entry point for researchers to explore
new concepts in real life applications and to give valuable feedback for refining
the system design.

The study is supported in part by the United States National Science Founda-
tion under grants NSF ITR-0086044 (GriPhyN) and NSF 0427110 (UltraLight).

References

1. I. Foster et al., presented at the 14th International Conference on Scientific and Sta-
tistical Database Management (SSDBM 2002), Edinburgh, 2002; GriPhyN Tech-
nical Report 2002-7, 2002.

2. I. Foster et al., Proceedings of CIDR 2003 - Conference on Innovative Data Re-
search; GriPhyN Technical Report 2002-18, 2002.

3. The Large Hadron Collider close to Geneva, Switzerland, will collide proton-proton
beams at energies of 14 TeV starting in 2007;
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/.

4. D. Bourilkov, http://arxiv.org/abs/physics/0401007, arXiv:physics/0401007.
5. D. Bourilkov, http://arxiv.org/abs/physics/0410226, Int. J. Mod. Phys. A 20

(2005) 3889 [arXiv:physics/0410226].
6. D. Bourilkov, ICCS 2005 conference, Atlanta, USA, 2005; V.S.Sunderam et al.

(Eds.): ICCS 2005, LNCS 3516, pp. 342-345, 2005, Springer Verlag Berlin Heidel-
berg.

7. D. Bourilkov and V. Khandelwal, WMSCI 2005 conference, Orlando, USA, 2005;
published in the Proceedings, ed. N.Callaos, W.Lesso and K.Horimoto, ISBN 980-
6560-60-4, vol. VIII, p.175, IIIS 2005.

8. Brun, R. and Rademakers, F.: ROOT - An Object Oriented Data Analysis Frame-
work. Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81–86

9. CVS: The Concurrent Versions System CVS, http://www.cvshome.org/.
10. C. Steenberg et al., Computing in High-Energy and Nuclear Physics (CHEP 03),

La Jolla, California, 24-28 Mar 2003; Published in eConf C0303241:MONT008,
2003; e-Print Archive: cs.dc/0306002; http://clarens.sourceforge.net/.

11. xrootd home page, http://xrootd.slac.stanford.edu/ .
12. The CMS experiment at CERN, http://cms.cern.ch/iCMS/ .
13. The script utility appeared in Berkeley Unix 3.0BSD.
14. Uri Braun et al., “Issues in Automatic Provenance Collection”, this proceedings.
15. CODESH/CAVES home page, http://cern.ch/bourilkov/caves.html.
16. https://sourceforge.net/projects/codesh

	Introduction
	Project Outline
	Architecture
	Typical Usage Scenario
	Test Results
	Related Work
	Current and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

