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Abstract. Many curated databases are constructed by scientists inte-
grating various existing data sources “by hand”, that is, by manually en-
tering or copying data from other sources. Capturing provenance in such
an environment is a challenging problem, requiring a good model of the
process of curation. Existing models of provenance focus on queries/views
in databases or computations on the Grid, not updates of databases
or Web sites. In this paper we motivate and present a simple model
of provenance for manually curated databases and discuss ongoing and
future work.

1 Introduction

Many scientific databases1 are constructed by manual effort of scientists acting
as curators. Curators use a wide variety of sources to select, organize, classify and
annotate existing data into a database on some topic. Such databases are now
supplanting printed “reference manuals” as standard sources of raw scientific
data. Although they are most widespread in bioinformatics, scientific databases
in many disciplines involve a degree of manual curation.

Curation typically involves “manually” reading journal articles or browsing
remote databases to find relevant new information. Data gleaned from journal
abstracts or copied from other databases is entered directly by the curator us-
ing a Web form or custom interface (such as a MS Access application). This
manual process, in which the scientist’s brain is in the inner loop, is what distin-
guishes curation from related activities such as data integration. Curated data
is generally of higher quality, but is correspondingly more expensive to produce.

The perceived value of curated databases rests on their provenance: that is,
the fact that they have been constructed by well-informed individuals who have
exercised scientific judgment in assimilating data sources. However, the volatile
nature of electronic media makes it difficult to trust blanket assertions about
the provenance of such databases. Instead, it is widely believed that explicit
evidence about the provenance of such databases must be recorded in order to
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preserve the scientific record and assess the scientific value of such databases (and
any results derived from them). This provenance information should, at least,
indicate the origin, context, intermediate source(s) and modification history of
the data. Besides its intrinsic value as part of the scientific record, provenance
can be used to detect duplicate copies of information and to help automate “data
cleaning” tasks such as propagating corrections to source databases and tracking
down the sources of discrepancies.

While it is very easy to build up a database by searching for, copying and
pasting data, maintaining provenance information adequate for scientific appli-
cations requires additional effort, which adds to the already-high cost of curated
data. Curators usually attempt to add links to the original publications or source
databases, but in practice, provenance records are often absent, incomplete or
ad hoc, often despite curators’ best efforts. Also, manually-managed provenance
records are at higher risk of human error or falsification. Since a great deal of
information relevant to provenance is available to the systems involved, we be-
lieve that it is important to develop techniques for data curation which automate
provenance management as much as possible.

Previous approaches to provenance management [1,6,7,9,11,18] typically have
focused on situations in which all of the interactions with data take place in a
single controlled environment (e.g. an operating system, file system, or database),
or in which new data is only constructed from existing data using nondestructive
mechanisms such as database views or scientific workflows. Both assumptions are
violated in the case of manually curated databases. Tracking the provenance of
data that moves among databases or Grid resources is challenging because there
is no one system that can capture all of the actions involved; instead, many
systems must cooperate in order to maintain the chain of provenance. Also,
curated databases are updated in-place with local copies of source data rather
than constructed as views of source databases.

The purpose of this paper is to describe the challenges involved in manag-
ing provenance for manually curated databases, and to summarize our current
approach to them. Section 2 defines the problem and describes the constraints
which we believe must be met by a practical solution. In Section 3, we pro-
pose a copy-paste model for describing user actions in assimilating external data
sources into curated database records. We define provenance as a relation be-
tween versions of a database describing how each part of the output was derived
from data in earlier versions or external sources. Section 4 discusses ongoing and
future work on implementing and extending the copy-paste model, including a
proof-of-concept implementation, approaches to tracking user actions, extensions
to the copy-paste model, and data citation.

2 The Problem

Biological databases such as UniProt [16] and the Nuclear Protein Database [8]
are manually curated; that is, they are constructed (at least in part) by cu-
rators modifying individual records directly rather than by an automatic view
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or data extraction process. To the extent that extraction, cleaning and inte-
gration operations involve user interaction, data warehouses [7] could also be
considered to be manually curated. For the moment we focus on tracking prove-
nance for fine-grained, manual updates, rather than queries, views, or “bulk”
updates.

We define the provenance management problem for manually curated data-
bases as follows. Given a definition of the complete and correct history of a
database as it evolves over time, the goal is to store sufficient provenance infor-
mation to be able to answer queries about the history given only the provenance
information and the final database state(s). Note that we do not assume an
absolute definition of history; instead, the appropriate form of historical infor-
mation depends on the application.

This provenance management problem may seem already solved; for exam-
ple, file systems, database triggers, version control systems, and Wikis pro-
vide adequate provenance management (in the form of creation/modification
timestamps, user activity logs, change logs, etc.) for their application areas. How-
ever, all of these systems rely on strong assumptions: there is a single system that
monitors all access to the data, and the data is stored in a single format. When
information crosses boundaries between systems, such provenance information
usually becomes invalid, and there is no way to say that data in one system
comes from another system (possibly with a different data model). Similarly,
solutions using Grid technology [12] and customized e-notebook or workbench
software [15] require a substantial level of coordination among databases and
applications. While such tools are likely to be beneficial, it will take time for
them to become widely adopted among scientists. Recently, Muniswamy-Reddy
et al. [3,13] have developed a “provenance-aware storage system” (PASS), which
tracks provenance at the file system level. While certainly relevant (especially for
scientific data stored using files), PASS addresses provenance issues orthogonal
to those arising in other forms of databases.

In contrast to common data integration situations in business, there is no cen-
tral authority that controls all of the scientific databases relevant to a given area.
Thus, no single system can monitor all scientific databases or mandate changes
or standard practices. In addition, not all databases are being actively main-
tained, and others may be resistant to change. Even motivated database cura-
tors may lack the resources to modify their own databases. Conversely, databases
often change independently and have widely varying record-keeping practices,
use a wide variety of data models (ranging from RDBMS to flat files to XML
to filesystems), and their curators employ a wide variety of independent tools
(Web browsers, editors, database access applications, etc.)

Under these constraints, we believe that a practical solution must have the
following characteristics:

– decentralized: deployable one database at a time, without requiring coop-
eration among all databases at once

– data model-independent: should work for data stored in flat file, rela-
tional, XML, file system, Web site, etc. models
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Fig. 1. A two-step provenance record

– usable with minimum changes to existing curatorial practice: ide-
ally, provenance tracking is invisible to the user

– useful without significant changes to existing database systems:
since it is impractical to impose global standards across databases

– robust in the face of changes to the databases: since we cannot stop
other databases from changing anyway

– scales gracefully to situations in which many databases cooperate to main-
tain provenance chains.

3 The Copy-Paste Model

In this paper, we focus on the problem of managing provenance for a single
database as data is copied from external sources or modified within the target
database. This is a common situation, and we believe our approach meets most
of the criteria above; some issues, such as robustness in the face of changes to
other databases, are not yet handled.

As remarked by Groth et al. [10], it is important to think carefully about
what provenance information to retain, based on what information will be useful
evidence to later observers. In our setting, we aim only to track the internal
relationships among a sequence of versions of the target database and fixed
source databases. Thus, we define the “complete and correct history” in the
above problem statement as follows. We take an abstract view of databases as
maps from data locations (or citations) to data values. For the purposes of this
paper, we consider only a “flat” data model, in which a database is simply a set
of key-value pairs. Many other refinements are possible, for example using line
numbers to locate data in text files, XPath or XPointer expressions to address
data in XML, or using key information to locate data in relational databases.
A more realistic instance of our model that uses paths to address relational or
XML data can be found in [5].

We further assume that changes to the database can be modeled using trans-
actions comprising simple “copy-paste” updates. Updates (denoted by U) are
sequences of atomic editing operations: insertion ins l v which creates a new lo-
cation l that is mapped to data value v, deletion del l which deletes location l (and
its corresponding data value); and copy-paste l← l′ which updates the value at
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location l to the value mapped by l′. We write I
U−→ O to for a triple (I, U, O)

such that applying update U on input database I yields output database O.
The one-step provenance relation P(I U−→ O) is a subset of dom(I) × dom(O),
defined as follows:

P(I l←l′−→ O) = {(m, m) | m ∈ dom(I), m �= l} ∪ {(l′, l)}
P(I ins l v−→ O) = {(m, m) | m ∈ dom(I)} ∪ {(NULL, l)}
P(I del l−→ O) = {(m, m) | m ∈ dom(I) − l} ∪ {(l, NULL)}
P(I

U ;U ′
−→ O) =

⋃{r ⊗ s | r ∈ P(I U−→ J), s ∈ P(J U ′−→ O)}
where r ⊗ s is defined as follows:

(l, m)⊗ (m, n) = {(l, n)} (l, m, n �= NULL)
(l, m)⊗ (m, n) = {(NULL, l)} (l = NULL or m = NULL)
(l, m)⊗ (m, n) = {(l, NULL)} (m = NULL or n = NULL)

r ⊗ s = ∅ otherwise

Given a sequence of database instances and updates I0
U1−→ · · · Un−→ In, we

define the multi-step provenance relation Prov(T id, Loc, Loc) as

{1} × P(I0
U1−→ I1) ∪ · · · ∪ {n} × P(In−1

Un−→ In).

Intuitively, P(I U−→ O) (and consequently, Prov) describe how data is copied,
inserted, or deleted during a transaction (or sequence of transactions). Fig-
ure 1 depicts an example two-step provenance relation on a database with tree-
structured locations. Here, the “boxed” trees S1, S2 are external sources, whereas
the other trees denote the original database, the database after the first update,
and the database after the second update, respectively. The solid and dashed
lines describe the Prov relation; dashed lines indicate provenance links for un-
changed data. Such links can always be omitted from the Prov relation to save
space.

Using the Prov relation, we can define a number of interesting basic provenance
queries giving information about the creation time of a location, the deletion time,
where a location was copied from, and whether a location has been modified:

Inserted(t, l)← Prov(t, NULL, l). Deleted(t, l)← Prov(t, l, NULL).
Copied(t, l, m)← Prov(t, l, m), l �= m. Unchanged(t, l)← Prov(t, l, l).

The Inserted(t, l), Copied(t, l′, l), Unchanged(t, l) queries informally say that
the data at location l at the end of transaction t was inserted during t, copied
from the data at l at the beginning of t, or unchanged during t, respectively;
similarly, Deleted(t, l) says that the data at l was deleted during t.

Transaction identifiers can be used to index a table Trans(T id, Uid, T ime, . . .)
containing additional metadata about transactions. The following recursive
query Q(l, tid, uid, t) defines the relation “the data at l at the end of transaction
tid was originally inserted by user uid at time t”:
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Q(l, tid, uid, t)← Inserted(tid, l), T rans(tid, uid, t).
Q(l, tid, uid, t)← Copied(tid, l, m), Q(m, tid− 1, uid, t).
Q(l, tid, uid, t)← Unchanged(tid, l), Q(l, tid− 1, uid, t).

Many interesting provenance queries also refer to the raw data. A simple
example is to return the original source (that is, the external link, or NULL if none)
alongside each result. Another example is using provenance to filter out data from
known unreliable sources, or to group or aggregate the data by source. Querying
the data and its provenance “side-by-side” involves additional processing, since
the data and provenance may be stored in separate databases. However, existing
techniques for multidatabase querying and managing annotations can be used
for this purpose [1,17].

If only one database tracks provenance, then the chain of provenance can only
be followed to the point where data was copied from an external source; only
“local” provenance queries can be answered. We can only answer “global” queries
if all the databases involved record provenance. Maintaining consistent and valid
provenance when the distributed databases are being updated asynchronously
is an interesting area for further research.

4 Ongoing and Future Work

4.1 An implementation

We have implemented a “copy-paste database”, CPDB, that tracks the prove-
nance of data copied from external sources to the target database [5]. CPDB
permits the user to copy source data from external sites or databases into the
target database, and modify the data to fit the target database’s structure. The
user’s actions are intercepted and provenance information is recorded in a prove-
nance store. CPDB uses paths as locations to address data stored in either XML
or relational form. CPDB addresses a number of implementation issues that
were left implicit in the discussion in Section 3. We now discuss these issues
further.

How Can We Address and Update Heterogeneous Data? The approach
we take to the first issue is to require that the citable data in every source
database is published as a “fully-keyed” XML view, and the updatable data in
the target database is presented as an updatable XML view. Thus, paths can
be used to select data from sources and locate data in copy-paste updates to
the target database. We believe these are reasonable requirements since XML
publishing and view update for legacy RDBMSs are widely recognized as impor-
tant research problems and have already received attention [2]. Moreover, many
commercial relational databases already provide some capability for publishing
their data as XML. In addition, any Web page can be interpreted as an XML
document, addressed by its URL and an XPath or XPointer describing the cited
data.
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This approach does not require that any of the source or target databases
represent data internally as XML. Any underlying data model for which path
addresses make sense can be used. Also, the databases need not expose all of
their data. Instead, it is up to the databases’ administrators how much data to
expose for copying or updating. The data in many scientific databases consists
of a “catalog” relation that contains all the raw data, together with supporting
cross-reference tables. It is only this catalog that would typically need to be
made available by a source database.

Proxies or client-side scripting could also be used to add more useful citations
to non-cooperating database websites without changing the curator’s natural
behavior. However, a chain is only as strong as its weakest link, and the prove-
nance data derived from this method can only contain information about the
database’s website, not any of the underlying database values. This is related to
the problem of data citation discussed below.

How Can We Capture the User’s Actions in an Unobtrusive Way?
The current implementation of CPDB provides a Web interface that enables
the user to import data from a source database and paste it into the target.
However, this interface is relatively clumsy compared to what curators normally
do, namely browsing to databases’ Web sites, copying data from the relevant
pages, and pasting it into a target database entry form. For an approach to
automatic provenance tracking to be successful, it has to make life easier for the
curators, not harder.

Fortunately, it appears to be possible to instrument Web browsers so that the
user’s browsing, copying, pasting, and form submission actions are recorded as
provenance records. We are currently investigating whether existing techniques
for Web browser activity logging being developed in the human-computer in-
teraction community [14] can be adapted to record rich provenance information
unobtrusively.

How Can the Resulting Provenance Records be Stored and Queried
Efficiently? The Prov relation given in the previous section is potentially very
verbose since it stores links between unchanged data in subsequent versions.
(These are shown by the dotted lines in Figures 1). Thus, the number of links
between two versions of a database is proportional to the size of the data, not
the difference between the versions. While these links are needed to answer
provenance queries, they do not need to be stored explicitly. In CPDB, we store
only “essential” provenance links, that is, links having to do with copies, inserts,
or deletes. CPDB also exploits optimization opportunities offered by the tree
structure of path addresses. The full Prov relation can then be defined as a view
of the reduced form. The size of the reduced form of Prov is proportional only
to the size of the update operation, not the size of the database.

This reduces the amount of storage space needed for the provenance of man-
ual updates to an acceptable level. We also performed experiments that show
that the performance of queries to the core provenance relation is better than for
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more explicit forms of Prov. The reason for this is that it is often faster to
calculate provenance links “on the fly” than to fetch them from storage.

4.2 Future Work

Database Archiving and Citation. The ability to locate data precisely in
the source database is fundamental to the copy-paste model we developed in
Section 3. It is also important if the curator has not directly copied the data, but
has interpreted it and wants to provide a citation to that portion of the database.
However, in addition to location information, citations carry other useful data
such as authorship, title, etc. It is becoming increasingly important to make
curated databases citable and to describe how a database or a part of it should
be cited [4]. We are currently considering techniques for augmenting database
archiving and citation with support for provenance tracking and querying.

Extending Our Model of Provenance. The copy-paste language introduced
in Section 3 suffices to model the behavior of a human curator who inserts
individual items into the curated database. Ideally, however, we would also like to
track the provenance of data constructed by automatic processes (e.g., a database
query, a workflow, a scientific algorithm, . . . ). We are currently investigating
extensions of our approach to provenance to full query/update languages for
relational, complex object, and XML data, including aggregation and “fusion”
operations such as summation, joins or unions. Among the research challenges
here are finding space-efficient, compact representations for such provenance
information and providing appropriate high-level query language operations for
querying more complex provenance expressions.

In addition, we are generalizing the copy-paste model to study the prove-
nance behavior of arbitrary computations based on rewriting machines, a vari-
ant of Turing machines. In Turing machines, there is at best an implicit cor-
relation between input and output data. Without knowing the intent of the
designer of a machine, it is impossible to give a correct provenance semantics
for it. In rewriting machines, the basic machine operations are rewritings, which
generalize copy-paste operations and have a natural, unambiguous provenance
semantics.

5 Conclusions

Tracking the provenance of data in manually curated databases is challenging,
primarily because the most obvious approaches require unrealistic levels of ho-
mogeneity, cooperation and coordination among databases. While the long-term
solution may require changes to common scientific practice, there are steps that
can be taken in the short term and at the local level to improve record-keeping
in current practices. We have developed and implemented a model for recording
the provenance of data that flows into a single curated database and discussed
incremental extensions to this model that provide further improvements. Many
substantial challenges remain.
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