
L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 148 – 161, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying the Virtual Data Provenance Model

Yong Zhao1, Michael Wilde2, and Ian Foster2

1 University of Chicago
yongzh@cs.uchicago.edu

2 University of Chicago and Argonne National Laboratory

Abstract. In many domains of science, engineering, and commerce, data
analysis systems are employed to derive new data (and ultimately, one hopes,
knowledge) from datasets describing experimental results or simulated
phenomena. To support such analyses, we have developed a “virtual data
system” that allows users first to define, then to invoke, and finally explore the
provenance of procedures (and workflows comprising multiple procedure calls)
that perform such data derivations. The underlying execution model is
“functional” in the sense that procedures read (but do not modify) their input
and produce output via deterministic computations. This property makes it
straightforward for the virtual data system to record not only the recipe for
producing any given data object but also sufficient information about the
environment in which the recipe has been executed, all with sufficient fidelity
that the steps used to create a data object can be re-executed to reproduce the
data object at a later time or a different location. The virtual data system
maintains this information in an integrated schema alongside semantic
annotations, and thus enables a powerful query capability in which the rich
semantic information implied by knowledge of the structure of data derivation
procedures can be exploited to provide an information environment that fuses
recipe, history, and application-specific semantics. We provide here an
overview of this integration, the queries and transformations that it enables, and
examples of how these capabilities can serve scientific processes.

1 Introduction

We present a general model for representing and querying provenance information
within the context of a Virtual Data System (VDS) that captures, and enables
discovery of, the relationships among data, procedures and computations. We focus,
in particular, on the VDS query model, and examine how knowledge of the
provenance of virtual data objects and their relationships can be used to enhance
program development, data analysis, and other tasks.

In what we call the virtual data model, we associate with each data object the
functional procedure that was used, or can be used, to produce or reproduce it. Such
associations are defined with sufficient fidelity that the steps used to create a data
object can be re-executed to reproduce the data object (within obvious limitations) at
a later time or a different location. We refer to the information that we record to
achieve this reproducibility the provenance of a data object. (Throughout this article,

 Applying the Virtual Data Provenance Model 149

we use the term “procedure” to denote executable application programs, but the
paradigm applies equally well to a service-oriented model in which “procedures”
correspond to invocations of remote operations.)

We view provenance in this context as comprising two parts: all the aspects of the
procedure or workflow used to create a data object (prospective provenance, or
“recipe”) as well as information about the runtime environment in which a procedure
was executed and the resources used in its invocation (retrospective provenance).

While only the prospective information is needed to produce or reproduce a
data object, we argue that the complete provenance record—prospective and
retrospective—provides a more complete understanding of the data. For instance,
retrospective provenance can help investigate a data derivation process, as it keeps
information regarding the environment in which the process was performed. This
level of understanding is of great value in scientific data preparation and analysis,
allowing the user to (for example) reason about the validity of data and conclusions
drawn from it; determine and assess the methods that were used to process the data;
and transform or compose existing methods to handle new problems.

The Virtual Data System that we have developed to implement this model
[ZW+05] maintains a precise record of procedures, inputs (both data and parameter
settings) to procedures, the environment in which procedures were invoked, and
relevant data about how a procedure behaved (e.g., duration). Armed with this
information, we can track, for any data object created within the system, a derivation
history that extends back to raw input data, and thus obtain accurate and complete
information about how analysis conclusions (and all intermediate results) were
derived. We can understand data dependencies, and reason about the consequences
for an analytical finding of changing some processing step, parameter, or input
dataset. We can audit how results were derived, and create new recipes for conducting
new investigations that build on previous findings and approaches.

An important component of VDS is the Virtual Data Language (VDL) [FV+02], a
functional scripting language that we use to describe relations among data,
procedures, and computations that invoke procedures. A data analysis workflow
expressed in VDL makes the relationships among these different elements explicit.

VDS also incorporates sophisticated mechanisms for executing both individual
procedures and more complex workflows in distributed environments. These
mechanisms include tools for integrating data in diverse physical representations
[ZD+05], workflow transformation tools and planners, such as the Pegasus system
[DS+05, SKD06], the DAGman workflow execution system [FT+02], and Globus
mechanisms for secure and reliable remote execution and distributed data
management [F05]. This aspect of the system is less relevant to our goals here (except
in that the transformations performed, and specific execution sites chosen, may be an
important part of the provenance record), and so we do not discuss it further in this
article.

VDS is distinguished from other approaches to provenance recording by its focus
on a particular computational model, namely the functional model defined by VDL.
While this focus restricts the set of computations that can be represented, we do not
find this restriction to be onerous in practice, and the benefits in terms of the depth of
provenance information that can be captured efficiently and the variety of queries that
can be posed against that data are significant.

150 Y. Zhao, M. Wilde, and I. Foster

We focus in this article on illustrating the virtual data approach to integrating
prospective and retrospective provenance with semantic annotations; describing the
powerful queries that can be performed on such an integrated base; and introducing
the implementation techniques that can provide these benefits in a large-scale
scientific computing environment. The basic mechanisms for these techniques have
been implemented in our Virtual Data System for some time [FV+02]; this paper
describes schema extensions whose implementation is in progress.

2 Virtual Data Schema for Provenance Recording

We model as a logical virtual data schema the various relationships that exist among
datasets, procedures, calls to procedures (which operate on datasets), and the zero or
more physical invocations of a specific call. These relations are described by the
entity-relationship (ER) diagram of Figure 1. In this diagram, primary keys are
underlined; foreign keys are implied by graph edges.

A computational procedure represents an application or a service that can be
executed or invoked. A procedure definition describes the procedure’s signature: its
name and formal arguments. A procedure may be defined in a specific namespace
and may have different versions. Procedures are therefore identified by the

3-tuple (namespace, name,
version). A formal argument
(FormalArg) has a name, a
type, and a direction attribute
that indicates whether it is an
input or output argument.

A call specifies a proce-
dure call, supplying actual
arguments (ActualArgs) that
bind values and datasets to
formal arguments. Like proce-
dures, calls are identified by
(namespace, name, version)
tuples, but for calls these
unique tuples can be generated

automatically. A call statement is considered prospective as it only declares a way to
invoke a procedure, and specific data products can be generated by making the described
procedure call. But by itself, a call is not executed until it is included in a workflow and
scheduled to run. We use the term derivation (DV) interchangeably for a call.

We also model workflows, i.e., sets of calls that operate on the same datasets. A
workflow is represented by one or more entries in the Workflow table, each entry for
an edge of the workflow graph, which contains the source call (fromDV) that
produces a certain data product, and the target call (toDV) that consumes that data
product. A workflow itself, like a call, is prospective, and can be enacted multiple
times. Each enactment of both a call and a workflow is recorded by an invocation
record.

dvID
host
start

duration
exitcode

stats

Invocation

nmspace
name

version

Call

passes passes

executes
calls

binds references

describesuses

includes

describes

describes

describes

describes

nmspace
name

version

Procedure

argname
type

direction

FormalArg

argname
value

ActualArg

wfid
fromDV

toDV

Workflow

nmspace
name

Dataset

object
pred

type/val
user
date

Annotation

1

1

1

1

1

1

*

*

*

*

*

1

1
1

1

1

1

1

Fig. 1. Schema for provenance and annotation

 Applying the Virtual Data Provenance Model 151

This integration of workflows enables queries to consider the provenance history
of data objects, and the relationships among procedures based on the patterns in
which they are actually used in defined workflows.

Metadata associates annotations with datasets (via their names), procedures and
arguments, calls, and workflows. Annotations take the form of a named predicate and
a typed value (a string, integer, float, boolean, or date). This simple type model for
annotation values is readily extended to use, for example, the flexible data typing
model defined by XML Schema. Such metadata annotations are similar to RDF
triples: The subject is one of the 5 entities in the virtual data provenance model that
can be annotated (datasets, procedures, etc.); the predicate is the “name” of the
annotation (i.e., the assertion being made) and the value is the object. We plan to
extend annotations with user and date information, so that we can maintain the
provenance of metadata itself.

3 General Model for Provenance and Annotation Query

Having defined our virtual data model in relational terms, we can use standard SQL to
query entities in the data model. For example, we can ask questions such as “select
procedure calls whose argument modelType has value nonlinear,” “select invocations

that ran at location Argonne,” and the join query “select
procedure calls that ran at location Argonne and whose
argument modelType has value nonlinear.”

We find it useful to think of the virtual data query model
as having three major dimensions (see Figure 2): (1)
prospective and retrospective provenance data, as provided
by records of procedure definition, procedure arguments,
and runtime invocation recording; (2) metadata annotations
that enrich this application-independent schema with
application-specific information; and (3) lineage informa-

tion obtained by interrogating the patterns of procedure calls, argument values, and
metadata inherent in the workflow graphs that describe the indirect nature of the
production of a given data object. We describe below the general nature of these three
dimensions, and then discuss how queries can be defined that join across these
dimensions. We provide detailed query examples drawn from scientific applications in
Section 4 and Section 5.

Virtual Data Relationship Queries. The core queries in our model are based on the
fundamental entities of the virtual data schema: the prospective declarations of
procedure definitions and calls and the retrospective records of actual procedure
invocations. These queries focus on the primary tables of the virtual data schema. The
following examples illustrate the range of queries that are supported. The first two
forms of queries deal with prospective information, while the third deals with
retrospective information.

Fundamental Queries of Entity Attributes: Find procedures and calls by namespace,
name, and version; find all the calls that invoke a given procedure.

Virtual data
relationships

Metadata
annotations

Derivation
lineage

Fig. 2. Query dimensions

152 Y. Zhao, M. Wilde, and I. Foster

Query by Parameters: Find procedures that pass a specified parameter; find procedure
calls that pass a parameter of a specified type and/or value in a specified direction
(i.e., input or output); find invocations that executed with a specified parameter value
and direction; find procedure calls that process a specified file as input or output; find
all files consumed or returned by a specified procedure call.

Query of Invocation Records: find invocation records by procedure or procedure-call
namespace, name, version; find procedures or procedure calls executed at a specified
site; find procedures or calls executed at a specified host; find invocations run on
machines with a specified OS type; find jobs with a specified exit status; find jobs
with run time > a specified r; find jobs within a set of jobs that ran longer than twice
that the set’s average time; find invocations that produce files of a specified type and
size; find the invocation records that produce or consume a specified dataset.

Annotation Queries. The annotation capabilities provided by the virtual data model
on procedures, arguments, calls, datasets, and workflows form the basis for the
second query dimension. While various applications may use these annotations to
maintain application-specific provenance, we consider this a separate dimension from
the provenance information that is intrinsic to the virtual data model.

Annotation queries can, for example, select all annotations for any annotatable
virtual data object or set of objects, or select from an annotation result set based on
any of subject, predicate, object, object type, user, or annotation date.

Annotations can also be used to select virtual data objects: for example, find all
objects (of any type) annotated with predicate p of type t and value v; objects of a
specific type annotated with predicate p of type t and value v; or objects (one type or
any type) annotated by same set of attribute predicates.

Lineage Graph Queries. A powerful source of information in a virtual data system is
the lineage relationships [WS97] that we can derive for all data products. For
example, knowing that the inputs to a procedure Ak were processed by Ai can often
tell a scientist important characteristics about the results that Ak will derive. Knowing
further whether Aj processed the output of Ai somewhere between those two steps
may determine whether further analysis of that chain of data is required.

A simple class of lineage graph queries refers to information that has been
propagated along derivation relationships. For example, “find datasets derived from
dataset d” or “find ancestor datasets to dataset d that have type t.”

More complex queries may refer to patterns within the derivation graph. Much
work has been done in this field: for example, Giugno and Shasha [GS02] describe a
model for such patterns in a system called GraphGrep. We propose to adapt the
GraphGrep model here to the specific problem of matching workflow graphs. We
sketch here how we expect to apply this model to enable pattern-based searches of
derivation graphs.

The basic approach is to introduce special objects that can match specific patterns
of procedures, calls, and invocations, enabling the composition of “workpattern”
objects that can perform powerful searches and queries on the workflows in our
database. The semantics of such matches work as follows. Procedure patterns, call
patterns, and invocation patterns, chained into a DAG within a workpattern object,
can match either fixed or varying numbers of nodes of their corresponding object
types in any workflow defined in the database. The nodes of a workpattern graph can

 Applying the Virtual Data Provenance Model 153

match procedure definitions or calls that meet criteria such as argument name,
argument values, argument types, and/or annotations.

Performing a query on a workpattern can select a set of workflows, where in each
selected workflow one or more subgraphs are matched. The target search space of a
workpattern query can be either the entire database, or a specific workflow or set of
workflows selected through a prior search. Using the query model defined above, we
can perform queries such as: find datasets that were derived within N levels of
procedure p; find datasets that are the result of workpattern wp; and find the
procedure calls in workflow w whose inputs have been processed by any workflow
matching workpattern wp.

Provenance Queries in Multiple Dimensions. The capabilities of the queries defined
above are amplified by the ability to join them flexibly across multiple dimensions of
the virtual data schema. For example, we may ask for procedures with a specified
signature that have been called with specific argument values (or ranges) and that
match an annotation query; the metadata values for a specified set of predicates from
a list returned by another query; or the minimum, maximum, and average run times of
a set of procedure calls matching workpattern wp and annotation query q.

For example, a set of procedures selected by a workpattern query can be used to
select metadata values that are then used as a search key to select a set of procedure
calls. This level of nesting can be used to successively filter (or expand) a result set,
and such query chaining can take place to effectively arbitrary depths (limited only by
the capabilities of the underlying database system).

Modification and Composition Queries. Maintaining dataset, procedure, workflow,
annotation, and provenance information in an integrated schema facilitates not only
powerful queries, but also the ability to couple queries with database update
procedures to define new procedures, annotations, and work requests. We illustrate
such possibilities below.

Change Arguments: For every procedure call p1 to procedures in namespace n with
annotation m, create a new procedure p2 with argument a replaced by an expression e.

Change Procedures: In every workflow w matching workpattern wp, create a new
workflow with the same name but a new version number in which procedure p1 is
changed into procedure p2 (which must have the same signature).

Edit Subgraphs of a Workflow: In every workflow w matching workpattern wp, create
a new workflow with the same name but a new version number in which the matching
workpattern subgraph is changed to a specified new workflow subgraph. (The
supplied replacement workflow subgraph must have the same signature.)

Replicate a Workflow: Given a workflow w to replicate, for each procedure p2
returned by query Q, create a new workflow w2(p2) by replacing occurrences of p in
w with p2. Each p2 returned by Q must have the same signature as p.

Edit Metadata: In every workflow w matching workpattern wp, edit annotations on
datasets output by the subgraph matched by wp, changing the value of metadata
predicate p to a new value nv.

154 Y. Zhao, M. Wilde, and I. Foster

4 Query Examples Drawn from fMRI Science Use Cases

The capabilities that we have described are only interesting if they provide utility to
users addressing real data analysis problems. In this section we show such use cases,
drawing examples from the field of functional MRI research [HSM02], in which MRI
brain images of some subjects are firstly spatially aligned, and then averaged to
produce a single image. The procedures employ the AIR (automated image
registration) suite [WG+98a,WG+98b] to create an averaged brain from a collection
of high resolution anatomical data. The images are annotated with metadata tags such
as studyModality, center, and state. We use the categorization of queries introduced
earlier in Section 3.

Virtual Data Relationship Queries
• Find all the procedures in namespace /pub/bin/std that have inputs of type

SubjectImage and outputs of type ThumbNailImage.
• Find all alignlinear calls (including all arguments), in XML format, with

argument model=rigid, and that generated more than 10,000 page faults, on ia64
processors.

• Find all calls to procedure alignlinear, and their runtimes, with argument
model=rigid that ran in less than 30 minutes on non-ia64 processors.

• Find the average runtime of all alignlinear calls with argument model=rigid that
ran in less than 30 minutes.

• Find all procedure calls within workflow /prod/2005/0305/prep whose inputs
were linearly aligned with model=affine

Annotation Queries
• Find all the datasets that have metadata annotation studyModality with values

speech, visual or audio. Show all the annotation tags of this set of datasets.
• Show the values of all annotation predicates developerName of procedures that

accept or produce an argument of type Study with predicate studyModality
=audio.

Lineage Queries
• Given the workpattern:

alignlinear (model=affine) reslice (axis=x, intensify=3) softmean
find all output datasets produced by softmean calls that were linear-aligned with
model=affine. (I.e., “where softmean was preceded in the workflow, directly or
indirectly, by an alignlinear call with argument model=affine”)

• Find all output datasets of softmean that were resliced with intensify=3. (Here we
want a softmean that is directly preceded by the requested pattern.)

Combined Queries
• Find procedures that take an ImageAtlas dataset and a Date as arguments, have

been called with dataset atlas.std.2005.img, and have annotation QALevel with
value > 5.6.

• Find all metadata tags studyModality on result datasets that were linearly aligned
with parameter model=affine and with an input dataset annotated with center set
to UChicago.

 Applying the Virtual Data Provenance Model 155

• Find the output dataset names (and all their metadata tags) that were linearly
aligned with model=affine and with input file metadata center=UChicago.

• Find all the metadata tags center with values in the set (UIUC, UChicago, UIC)
of output datasets of softmean.

• Find all the metadata tags center with values in set (UIUC, UChicago, UIC) of
outputs of softmean that were aligned with model=affine.

• Find all the metadata tags studyModality on results of softmean that were linearly
aligned with model= affine, and whose output datasets have annotation state =
IL.

As these examples show, our provenance architecture allows for the expression of
a wide range of interesting queries. We need to conduct further experimentation with
additional applications, larger and more diverse user communities, and larger data
collections to verify that we can both pose and answer efficiently the questions that
users want to ask in practice.

5 Implementation and Experience

The VDS implementation of virtual data mechanisms allows for declarative
specification of data, procedures, computations and their relationships, using VDL.
VDL definitions and provenance data are stored in a “virtual data catalog” (VDC),
typically implemented as a relational database and accessed via SQL. We employ an
adapter layer to allow the use of different relational database implementations, and
support the use of XML databases for the VDC. The actual physical schema used in
our implementation is slightly more complex than the logical-level model shown in
Figure 1, but captures essentially the same information. The graph structure of
workflow objects is currently maintained in an external XML document. VDC queries
are parsed and translated into SQL or XQuery/XPath statements to apply against the
VDC database.

The physical schema uses a separate value table for each of the five metadata value
types supported (string, int, float, date, boolean). This approach enables us to utilize
native database searches that treat the data type of the object properly and efficiently
(e.g., proper comparison and collation for floating point numbers and dates).

VDS translates requests to derive virtual data products into workflows that may
execute at multiple distributed locations. Runtime provenance is obtained by
executing VDL procedures under a uniform parent-process wrapper that collects
information about the execution of the child application, and its derived files, using
OS services. This information is then routed back to the workflow enactment engine
via embedded steps in the workflow and saved in the virtual data catalog as
invocation records.

An example of the use of virtual data provenance recording is seen in the analysis
of provenance information captured by the ATLAS high energy physics experiment to
generate simulated events using VDS from 6/2004 through 12/2005. In this period, 20
different simulation procedures were defined in a central US-ATLAS VDC located at
Brookhaven National Lab. This virtual data catalog captured 1.2M run-time
(retrospective) provenance records, of which 574K described procedure invocations

156 Y. Zhao, M. Wilde, and I. Foster

detailed in the same number of prospective provenance records in the database. 447K
unique simulation datasets (logical files) were derived from these invocations.

We can probe the provenance in this catalog with queries that physicists can
usefully employ to search for and assess these simulation results. Questions like the
following (translated to SQL) can be easily answered (with actual results shown):

Q: List all the procedures that have argument name 'cleanLevel':

 => brureconx evgenx ... G4simulx g4simx g4simxM pileup testreconx

Q: How many jobs running procedures with argument name 'cleanLevel' were run on
Linux 2.4.28 kernels?

 => g4digitx 39
 g4simx 340

Q: List calls of procedure 'g4simx' with argument eta_min=-5.0 and eta_max=5.0
that were run on 2.4.28 kernels, in Dec 2004?

=> g4simx.CPE_4922_15
 g4simx.CPE_4922_202
 ... (total 285 calls)

Simple aggregrations and statistics can also be carried out over the records, for
reporting purposes, as in the following examples.

Q: List the total number of jobs run in each month of 2004:
 year month number_of_jobs
 2004 06 1433
 2004 07 13331
 2004 08 21076
 2004 09 20807
 2004 10 32364
 2004 11 39681
 2004 12 14734

Q: List the total run time (in unit of year) of jobs run in each month of 2004:
 year month run_time(years)
 2004 06 0.4
 2004 07 20
 2004 08 34
 2004 09 40
 2004 10 15
 2004 11 15
 2004 12 8.9

Another application of VDS to capture and leverage provenance information is in
the QuarkNet nationwide physics education project [BG+05]. In this project, data
from cosmic ray detectors located in about 200 high schools in the US uploaded raw
data into a data analysis portal driven by VDS. The raw data was annotated and then
processed with a set of analysis tools to plot cosmic ray activity under a variety of
experimental conditions and derive and document scientific conclusions, modeling
closely the processes used in experimental physics collaborations. In this application
trial 108 different procedures were used to process 6,330 files (total raw and derived)
and to annotate them with 134,834 metadata tuples. A sample query of the

 Applying the Virtual Data Provenance Model 157

annotations on a data file (a flux study result derived from data gathered by detector
180 channel 1 on 07/30/2004) yields:

 project: cosmic city: Batavia
 group: fermigroup state: IL
 study: flux creationdate: 2005-01-13 17:44:20.512
 detectorid: 180 rawdate: 2004-07-30 19:42:57.0

A query to select datasets based on annotations, such as “find all the blessed data
from Fermilab” is expressed in SQL as:

select name from anno_lfn f, anno_bool b where f.mkey='blessed' and
b.value=true and f.id=b.id intersect select name from anno_lfn f2,
anno_text t where f2.mkey='school' and t.value='Fermilab'
and f2.id=t.id

which returns:

180.2004.0730.35
...
999.2005.0604.0
(total 5 rows)

6 Related Work

Work on provenance in database systems has focused on determining the source data
(tuples) used to produce an item. Cui and Widom [CW00, CWW00] record the
relational queries used to construct materialized views in a data warehouse, and then
exploit this information to find the source data that contributed to the given data item.
Buneman et al. [BKT01] distinguish between why-provenance and where-
provenance. The former explains why a piece of data is in the database, i.e., what data
sets (tuples) contributed to a data item, while the latter keeps track of the location of a
data item in its source. The mutability of database tables and records poses significant
challenges. In contrast, we address provenance issues within the context of data
analyses performed using programs that are assumed not to modify their input
datasets. In this context, we can go beyond why and where to address issues of how a
data product was (or can be) derived, what are the procedure definitions and
annotations, and to which workflow the procedure belongs.

Various systems support provenance tracking in the scientific community. SAM
[MC+03] has a “laboratory notebook” model of provenance tracking in which
metadata can be added to data items stored in a repository. However, SAM does not
define the format or schema of the metadata or an underlying computational model.
The same is true of other notebook schemes [BK+06]. In myGrid, documentation
about workflow execution is recorded and stored in a user’s personal repository, along
with other metadata [ZG+03,ZGR06], to support personalized provenance tracking of
bioinformatics services and workflows.

Szomszor and Moreau [SM03] propose a service-based architecture for recording
provenance in a Grid environment. They rely on a workflow enactment engine to
submit service invocation information to a provenance service. Moreau et al.
[GM+05] describe an implementation-independent architecture for provenance
systems. They describe a logical architecture in which so-called p-assertions can be

158 Y. Zhao, M. Wilde, and I. Foster

submitted and retrieved from a p-store by various actors, and a process architecture
for system security and distribution. This system has been applied to physics [BM06],
engineering [KS06], and transplant management [AV+06], among others.

Our approach is distinguished from that of Moreau et al. by its integration of
provenance with a particular computational model, namely that captured by our
functional virtual data language. This model makes it feasible for us to capture high-
fidelity retrospective and prospective provenance information, and then to interpret
and query this information in powerful ways. In particular, our focus on a specific
computational models means that we can define a specific schema that maintains
information about such constructs as “procedures,” “calls,” and “workflows,” in
addition to general purpose assertions. The two schemas can in fact converge: the
Moreau schema can subsume the information we describe here, and we can integrate
the information of the Moreau schema (in addition to our custom-tailored virtual data
schema) by using a more general RDF model for our metadata annotations. With such
a schema, metadata annotations can be interpreted broadly, and any annotation can be
associated with our core data (file) and executable (procedure, workflow) objects.

PASS [MH+06, BG+06] is a storage system that automatically collects and
maintains provenance information. In comparison with VDS, PASS discovers the
components and environments required for the production of a specific data item by
tracking system calls, where in VDS, we rely on explicit declarations of such
dependencies. However, the two systems are complimentary in many ways: PASS can
help discover missing pieces in our “declared” provenance, for instance, a data item
that is necessary for a derivation process, or an extra data product produced during the
process that was not captured in the procedure definition. On the other hand, PASS
cannot track complete provenance beyond local file systems, such as in a Grid
environment, without provenance-aware applications and environments. Both systems
also share similar graph traversal mechanisms to build the ancestry tree for a data
product, and have the same set of requirements for provenance and workpattern
queries; they also face similar challenges determining the granularity at which the
systems should capture provenance information, and the lifetime management of the
captured information. PASS has the goal of generalizing the production of certain
individual items into a workflow-like pattern, for instance, running “sort a > b”
would involve the same set of operations for any file produced in such a process;
where in VDS we can discover such patterns in an interactive environment such as the
Chiron virtual data portal [ZW+05], as users tend to repeat the same derivation
process for a set of data items. Similar comments can be made about the automated
provenance recording techniques being developed by Barja and Digiampietri within
the context of Microsoft’s Windows Workflow Foundation [BD06].

The evolution or provenance of a workflow itself is also vital in scientific analysis.
VisTrails [CF+06, FS+06] captures the notion of an evolving dataflow, and
implements a history management mechanism to maintain versions of a dataflow,
thus allowing a scientist to return to previous steps, apply a dataflow instance to
different input data, explore the parameter space of the dataflow, and (while
performing these steps) compare the associated visualization results. In VDS,
workflows are also composed of individual steps (procedure calls), and chained
together by data dependencies. To provide similar functionality, we can either add a
versioning mechanism to our system, or maintain workflow contruction-specific

 Applying the Virtual Data Provenance Model 159

metadata annotations to track the history of a workflow. The modification and
composition query capabilities described in Section 3 support parameter exploration
and comparative analysis. Workpattern queries should allow flexible and powerful
workflow editing and transformation.

7 Conclusion and Future Directions

We have described the representation and query of both prospective and retrospective
provenance information in our virtual data provenance model, presented examples of
how provenance can be employed in representative science processes (in
neuroscience and physics), and shown how powerful queries can be used to derive
valuable knowledge in data analysis processes. These queries select on various
combinations of procedure information, data, metadata, and (what seems particularly
interesting) workflow patterns.

While the model described here is based on application programs rather than Web
services, we believe the same model of provenance applies equally well in a service
oriented architecture, with no loss of generality.

Future extensions to the virtual data provenance model include maintaining a
transactional provenance trail of changes to metadata annotations, studies of
scalability, management of provenance data retention, and the application of the
model to a distributed web of provenance catalogs employing a similar schema
(see, for example, AstroDAS [BMP06]). We are also eager to perform more
comprehensive usability experiments with a wide range of users.

Acknowledgments

This work was supported in part by the National Science Foundation GriPhyN project
under contract ITR-086044 and by the U.S. Department of Energy under contract W-
31-109-Eng-38. We acknowledge the contributions to this work of Jens Voeckler, Jed
Dobson, and members of the QuarkNet project.

References

[AV+06] Alvarez, S., Vazquez-Salceda, J., Kifor, T., Varga, L.Z. and Willmott, S. Applying
Provenance in Distributed Organ Transplant Management, International
Provenance and Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS,
38-47.

[BG+05] Bardeen, M., Gilbert, E., Jordan, T., Nepywoda, P., Quigg, E., Wilde, M. and
Zhao, Y. The QuarkNet/grid collaborative learning e-Lab. IEEE International
Symposium on Cluster Computing and the Grid, 2005. CCGrid 2005. Vol. 1 pp.
27-34. 9 May 2005. DOI 10.1109/CCGRID.2005.1558530.

[BD06] Barga, R.S. and Digiampietri, L.A. Automatic Generation of Workflow
Provenance, International Provenance and Annotation Workshop (I-PAW), 2006,
Springer-Verlag LNCS, 1-9.

[BG+06] Braun, U., Garfinkel, S., Holland, D., Muniswamy-Reddy, K. and Seltzer, M.
Issues in Automatic Provenance Collection, International Provenance and
Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS, 132-144.

160 Y. Zhao, M. Wilde, and I. Foster

[BK+06] Bourilkov, D., Khandelwal, V., Kulkarni, A. and Totala, S. Virtual Logbooks and
Collaboration in Science and Software Development, International Provenance and
Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS, 19-27.

[BKT01] Buneman, P., Khanna, S., and Tan. W.-C. Why and Where: A Characterization of
Data Provenance. In International Conference on Database Theory, 2001.

[BM06] Branco, M. and Moreau, L. Enabling provenance on large scale e-Science
applications, International Provenance and Annotation Workshop (I-PAW), 2006,
Springer-Verlag LNCS, 55-63.

[BMP06] Bose, R., Mann, R.G. and Prina-Ricotti, D. AstroDAS: Sharing Assertions across
Astronomy Catalogues through Distributed Annotation, International Provenance
and Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS, 154-163.

[CF+06] Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva C.T. and Vo, H.T.
Managing the Evolution of Dataflows with VisTrails. IEEE Workshop on
Workflow and Data Flow for Scientific Applications (SciFlow) 2006.

[CW00] Cui, Y. and Widom, J., Practical Lineage Tracing in Data Warehouses. In 16th
International Conference on Data Engineering, (2000), 367–378.

[CWW00] Cui, Y., Widom, J. and Wiener, J.L. Tracing the Lineage of View Data in a
Warehousing Environment. ACM Transactions on Database Systems, 25 (2). 179–
227. 2000.

[DS+05] Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C. and Katz, D.S. Pegasus:
A Framework for Mapping Complex Scientific Workflows onto Distributed
Systems. Scientific Programming, 13 (3). 219-237. 2005.

[F05] Foster, I., Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP
International Conference on Network and Parallel Computing, 2005, Springer-
Verlag LNCS 3779, 2-13.

[FS+06] Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E. and Vo, H.T.
Managing Rapidly-Evolving Scientific Workflows, International Provenance and
Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS, 10-19,

[FV+02] Foster, I., Voeckler, J., Wilde, M. and Zhao, Y. Chimera: A Virtual Data System
for Representing, Querying, and Automating Data Derivation. in 14th Conference
on Scientific and Statistical Database Management, (2002).

[FT+02] Frey, J., Tannenbaum, T., Foster, I., Livny, M. and Tuecke, S. Condor-G: A
Computation Management Agent for Multi-Institutional Grids. Cluster Computing,
5 (3). 237-246. 2002.

[GM+05] Groth, P., Miles, S., Tan, V. and Moreau L. Architecture for Provenance Systems.
Technical report, University of Southampton, October 2005.

[GS02] Giugno, R. and Shasha, D. Graphgrep: A fast and universal method for querying
graphs. In Proceeding of the IEEE International Conference in Pattern recognition
(ICPR), Quebec, Canada, August 2002.

[KS06] Kloss, G.K. and Schreiber, A. Provenance Implementation in a Scientific
Simulation Environment, International Provenance and Annotation Workshop (I-
PAW), 2006, Springer-Verlag LNCS, 28-37.

[HSM04] Huettel, S., Song, A. and McCarthy, G. Functional Magnetic Resonance Imaging.
Sinauer Associates, 2004.

[MC+03] Myers, J.D., Chappell, A.R., Elder, M., Geist, A. and Schwidder, J. Re-integrating
the research record. IEEE Computing in Science & Engineering, pages 44–50,
2003.

[MH+06] Muniswamy-Reddy, K., Holland, D., Braun, U. and Seltzer, M. Provenance-Aware
Storage Systems, 2006 USENIX Annual Technical Conference, Boston, MA, June
2006.

 Applying the Virtual Data Provenance Model 161

[SKD06] Singh, G., Kesselman, C. and Deelman, E. Optimizing Grid-Based Workflow
Execution. Journal of Grid Computing, 3 (3-4). 201-219. 2006.

[SM03] Szomszor, M. and Moreau, L. Recording and reasoning over data provenance in
web and grid services. In Intl. Conf. on Ontologies, Databases and Applications of
Semantics, LNCS 2888, 2003.

[WG+98a] Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R. and Mazziotta, J.C.
Automated image registration: I. General methods and intrasubject, intramodality
validation. Journal of Computer Assisted Tomography 1998;22:139-152.

[WG+98b] Woods, R.P., Grafton, S.T., Watson, J.D.G, Sicotte, N.L. and Mazziotta, J.C.
Automated image registration: II. Intersubject validation of linear and nonlinear
models. Journal of Computer Assisted Tomography 1998;22:153-165.

[WS97] Woodruff, A. and Stonebraker, M., Supporting Fine-Grained Data Lineage in a
Database Visualization Environment. 13th International Conference on Data
Engineering, 1997, 91-102.

[ZG+03] Zhao, J., Goble, C., Greenwood, M., Wroe, C. and Stevens, R. Annotating, linking
and browsing provenance logs for e-science. In Workshop on Semantic Web
Technologies for Searching and Retrieving Scientific Data, October 2003.

[ZGR06] Zhao, J. Goble, C. and Stevens, R. An Identity Crisis in the Life Sciences,
International Provenance and Annotation Workshop (I-PAW), 2006, Springer-
Verlag LNCS.

[ZD+05] Zhao, Y., Dobson, J., Foster, I., Moreau, L. and Wilde, M. A Notation and System
for Expressing and Executing Cleanly Typed Workflows on Messy Scientific Data.
SIGMOD Record, 34 (3). 37-43. 2005.

[ZW+05] Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Dobson, J., Gilbert, E., Jordan, T. and
Quigg, E. Virtual Data Grid Middleware Services for Data-Intensive Science.
Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.968,
2005.

	Introduction
	Virtual Data Schema for Provenance Recording
	General Model for Provenance and Annotation Query
	Query Examples Drawn from fMRI Science Use Cases
	Implementation and Experience
	Related Work
	Conclusion and Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

