

Lecture Notes in Computer Science 4145
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luc Moreau Ian Foster (Eds.)

Provenance
andAnnotation of Data

International Provenance and Annotation Workshop
IPAW 2006
Chicago, IL, USA, May 3-5, 2006
Revised Selected Papers

13

Volume Editors

Luc Moreau
University of Southampton
Southampton, UK
E-mail: l.moreau@ecs.soton.ac.uk

Ian Foster
Argonne National Lab
University of Chicago
Chicago, U.S.A.
E-mail: foster@mcs.anl.gov

Library of Congress Control Number: 2006933370

CR Subject Classification (1998): H.3, H.4, D.4, E.2, H.5, K.6, K.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-46302-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46302-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11890850 06/3142 5 4 3 2 1 0

Preface

Provenance is a well understood concept in the study of fine art, where it refers
to the documented history of an art object. Given that documented history, the
object attains an authority that allows scholars to understand and appreciate its
importance and context relative to other works. In the absence of such history,
art objects may be treated with some skepticism by those who study and view
them.

Over the last few years, a number of teams have been applying this concept
of provenance to data and information generated within computer systems. If
the provenance of data produced by computer systems can be determined as it
can for some works of art, then users will be able to understand (for example)
how documents were assembled, how simulation results were determined, and
how financial analyses were carried out.

A key driver for this research has been e-Science. Reproducibility of results
and documentation of method have always been important concerns in science,
and today scientists of many fields (such as bioinformatics, medical research,
chemistry, and physics) see provenance as a mechanism that can help repeat sci-
entific experiments, verify results, and reproduce data products. Likewise, prove-
nance offers opportunities for the business world, since it allows for the analysis
of processes that led to results, for instance to check they are well-behaved or
satisfy constraints; hence, provenance offers the means to check compliance of
processes, on the basis of their actual execution. Indeed, increasing regulation of
many industries (for example, financial services) means that provenance record-
ing is becoming a legal requirement.

Annotation is closely related to provenance. End users do more than produce
and consume data: they comment on data and refer to it and to the results of
queries upon it. Annotation is therefore an important aspect of communication.
One user may want to highlight a point in data space for another to investigate
further. They may wish to annotate the result of a query such that similar queries
show the annotation. Such annotations then become valuable because they may
also provide information about the origin of data. At the same time, we may
wish to understand the provenance of annotations, which may be produced by
people or programs. Hence, provenance and annotation offer complementary
information that can help end-users understand how and why data products
were derived.

The International Provenance and Annotation Workshop (IPAW 2006) was
a follow-up to workshops in Chicago in October 2002 and in Edinburgh in De-
cember 2003. It brought together computer scientists and domain scientists with
a common interest in issues of data provenance, process documentation, data
derivation, and data annotation. IPAW 2006 was held on May 3-5, 2006 at the

VI Preface

University of Chicago’s Gleacher Center in downtown Chicago and was attended
by roughly 45 participants.

We received 33 high quality submissions in response to the call for papers.
All submissions were reviewed by 3 reviewers. Overall, 26 papers were accepted
for oral presentation: 4 papers, which came with consistent high ranking by
reviewers, were awarded longer presentation time and space in the proceedings;
4 papers had shorter presentations, whereas the remain 18 papers were regular.
In addition, Juliana Freire (University of Utah) and Roger Barga (Microsoft
Research) were invited to make keynote addresses.

The workshop was organized as a single-track event, interleaving formal pre-
sentation and discussions. It also included an entertaining “Gong Show” of out-
landish, “outside-the-box” ideas. Slides and presentation materials can be found
at http://www.ipaw.info/ipaw06/programme.html.

In a discussion session, the participants debated whether the time was right
to propose standard models of provenance or standard interfaces for recording,
querying, and administering provenance stores. An outcome of this discussion
was that participants agreed on steps to set up a “Provenance Challenge,” to
include a provenance-tracking scenario and query-based evaluation; this chal-
lenge will enable different groups to test and compare their approaches for this
scenario (cf. http://twiki.ipaw.info/bin/view/Challenge).

Overall this was a very successful event, with much enthusiastic discussion,
many new ideas and insights generated, and a good community spirit. It was
agreed that we should hold another of these events in about 18 months’ time.

June 2006 Luc Moreau and Ian Foster

Organization

IPAW 2006 was organized by the University of Chicago, Argonne National Lab-
oratory, and the University of Southampton.

Program Committee

Dave Berry, National e-Science Centre, UK
Peter Buneman, University of Edinburgh, UK
Ian Foster (co-chair), Argonne National Lab/University of Chicago, USA
James Frew, University of California, USA
Jim Hendler, University of Maryland, USA
Carole Goble, University of Manchester, UK
Reagan Moore, San Diego Supercomputer Center, USA
Luc Moreau (co-chair), University of Southampton, UK
Jim Myers, National Center for Supercomputing Applications, USA
York Sure, University of Karlsruhe, Germany
Ziga Turk, University of Ljubljana, Slovenia
Mike Wilde, Argonne National Lab/University of Chicago, USA
Hai Zhuge, Institute of Computing Technology, Chinese Academy of Sciences,

China

Sponsors

IPAW 2006 was sponsored by Springer and Microsoft, and endorsed by the
Global Grid Forum.

Table of Contents

Session 1: Keynotes

Automatic Generation of Workflow Provenance . 1
Roger S. Barga, Luciano A. Digiampietri

Managing Rapidly-Evolving Scientific Workflows . 10
Juliana Freire, Cláudio T. Silva, Steven P. Callahan,
Emanuele Santos, Carlos E. Scheidegger, Huy T. Vo

Session 2: Applications

Virtual Logbooks and Collaboration in Science and Software
Development . 19

Dimitri Bourilkov, Vaibhav Khandelwal, Archis Kulkarni,
Sanket Totala

Applying Provenance in Distributed Organ Transplant Management 28
Sergio Álvarez, Javier Vázquez-Salceda, Tamás Kifor,
László Z. Varga, Steven Willmott

Provenance Implementation in a Scientific Simulation Environment 37
Guy K. Kloss, Andreas Schreiber

Towards Low Overhead Provenance Tracking in Near Real-Time
Stream Filtering . 46

Nithya N. Vijayakumar, Beth Plale

Enabling Provenance on Large Scale e-Science Applications 55
Miguel Branco, Luc Moreau

Session 3: Discussion

Session 4: Semantics 1

Harvesting RDF Triples . 64
Joe Futrelle

Mapping Physical Formats to Logical Models to Extract Data and
Metadata: The Defuddle Parsing Engine . 73

Tara D. Talbott, Karen L. Schuchardt, Eric G. Stephan,
James D. Myers

X Table of Contents

Annotation and Provenance Tracking in Semantic Web
Photo Libraries . 82

Christian Halaschek-Wiener, Jennifer Golbeck, Andrew Schain,
Michael Grove, Bijan Parsia, Jim Hendler

Metadata Catalogs with Semantic Representations . 90
Yolanda Gil, Varun Ratnakar, Ewa Deelman

Combining Provenance with Trust in Social Networks for Semantic
Web Content Filtering . 101

Jennifer Golbeck

Session 5: Workflow

Recording Actor State in Scientific Workflows . 109
Ian Wootten, Omer Rana, Shrija Rajbhandari

Provenance Collection Support in the Kepler Scientific
Workflow System . 118

Ilkay Altintas, Oscar Barney, Efrat Jaeger-Frank

A Model for User-Oriented Data Provenance in Pipelined Scientific
Workflows . 133

Shawn Bowers, Timothy McPhillips, Bertram Ludäscher,
Shirley Cohen, Susan B. Davidson

Applying the Virtual Data Provenance Model . 148
Yong Zhao, Michael Wilde, Ian Foster

Session 6: Models of Provenance, Annotations and
Processes

A Provenance Model for Manually Curated Data . 162
Peter Buneman, Adriane Chapman, James Cheney,
Stijn Vansummeren

Issues in Automatic Provenance Collection . 171
Uri Braun, Simson Garfinkel, David A. Holland,
Kiran-Kumar Muniswamy-Reddy, Margo I. Seltzer

Electronically Querying for the Provenance of Entities 184
Simon Miles

Table of Contents XI

AstroDAS: Sharing Assertions Across Astronomy Catalogues Through
Distributed Annotation . 193

Rajendra Bose, Robert G. Mann, Diego Prina-Ricotti

Session 7: Gong Show

Session 8: Systems

Security Issues in a SOA-Based Provenance System 203
Victor Tan, Paul Groth, Simon Miles, Sheng Jiang, Steve Munroe,
Sofia Tsasakou, Luc Moreau

Implementing a Secure Annotation Service . 212
Imran Khan, Ronald Schroeter, Jane Hunter

Performance Evaluation of the Karma Provenance Framework for
Scientific Workflows . 222

Yogesh L. Simmhan, Beth Plale, Dennis Gannon, Suresh Marru

Exploring Provenance in a Distributed Job Execution System 237
Christine F. Reilly, Jeffrey F. Naughton

gLite Job Provenance . 246
Frantǐsek Dvořák, Daniel Kouřil, Aleš Křenek, Luděk Matyska,
Miloš Mulač, Jan Posṕı̌sil, Miroslav Ruda, Zdeněk Salvet,
Jǐŕı Sitera, Michal Voců

Session 9: Semantics 2

An Identity Crisis in the Life Sciences . 254
Jun Zhao, Carole Goble, Robert Stevens

CombeChem: A Case Study in Provenance and Annotation
Using the Semantic Web . 270

Jeremy Frey, David De Roure, Kieron Taylor, Jonathan Essex,
Hugo Mills, Ed Zaluska

Principles of High Quality Documentation for Provenance:
A Philosophical Discussion . 278

Paul Groth, Simon Miles, Steve Munroe

Session 10: Final Discussion

Author Index . 287

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 1 – 9, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automatic Generation of Workflow Provenance

Roger S. Barga1 and Luciano A. Digiampietri2

1 Microsoft Research, One Microsoft Way
Redmond, WA 98052, USA

2 Institute of Computing, University of Campinas,
Sao Paolo, Brazil

barga@microsoft.com

Abstract. While workflow is playing an increasingly important role in e-
Science, current systems lack support for the collection of provenance data. We
argue that workflow provenance data should be automatically generated by the
enactment engine and managed over time by an underlying storage service. We
briefly describe our layered model for workflow execution provenance, which
allows navigation from the conceptual model of an experiment to instance data
collected during a specific experiment run, and back.

1 Introduction

Many scientific disciplines today are data and information driven, and new scientific
knowledge is often obtained by scientists scheduling data intensive computing tasks
across an ever-changing set of computing resources. Scientific workflows represent
the logical culmination of this trend. They provide the necessary abstractions that
enable effective usage of computational resources, and the development of robust
problem-solving environments that marshal both data and computing resources. Part
of the established scientific method is to create a record of the origin of a result, how
it was obtained, experimental methods used, the machines, calibrations and parameter
settings, quantities, etc. It is the same with scientific workflows, except here the
result provenance is a record of workflow activities invoked, services and databases
used, their versions and parameter settings, data sets used or generated and so forth.
Without this provenance data, the results of a scientific workflow are of limited value.

Though the value of result provenance is widely recognized, today most workflow
management systems generate only limited provenance data. Consequently, this
places the burden on the user to manually record provenance data in order to make an
experiment or result explainable. Once the experiment is finished, the specific steps
leading to the result are often stored away in a private file or notebook. However,
weeks or months may pass before the scientist realizes a result was significant, by
which time provenance has been forgotten or lost – it simply slips through the cracks.

We believe the collection of provenance data should be automatic, and the
resulting provenance data should be managed by the underlying system. Moreover, a
robust provenance trace should support multiple levels of representations. In some
cases, it is suitable to provide an abstract description of the scientific process that took
place, without describing specific codes executed, the data sets or remote services

2 R.S. Barga and L.A. Digiampietri

invoked. In other cases, a precise description of the execution of the workflow, with
all operational details such as parameters and machine configurations provided, is
exactly what is required to explain a result. Given no single representation can satisfy
all provenance queries, the system should generate multiple related representations
simultaneously. The ideal model will allow users to navigate from the abstract levels
into lower levels and map the latter backwards to higher level abstractions. This also
allows scientists to specify exactly what they wish to share from their experiment.

In this paper, we suggest the workflow enactment engine should be responsible for
generating workflow provenance automatically during runtime, and an underlying
storage service should be responsible for managing workflow provenance data.
Provenance collection and management should happen transparently. That is, users
should not have to take any special actions or execute special commands to have
provenance of their workflow execution collected and maintained. Indeed, unless
users take extraordinary action, such as purging an experiment result, an accurate
provenance record will be maintained for results residing on their system. By making
the enactment system responsible for the creation and collection of execution
provenance, we are able to generate provenance automatically, freeing users from
having to manually track provenance during execution. Equally important, when
properly collected and maintained, workflow provenance data can be indexed and
queried as a first class data product using conventional data management tools and
techniques. In this paper, we also outline a layered or factored model for representing
workflow execution provenance, from an abstract description of the workflow
(scientific process) to a precise description of execution level details for a single
experiment, which enables provenance data to be linked and defined in a way for
more effective discovery, integration and cooperation.

2 Workflow Execution Provenance Model

In this section we outline the machine-readable model we propose to represent
provenance data captured during workflow execution. The attractions of creating a
machine-readable model of an experiment, that is, a workflow, are not difficult to
envisage. Three key benefits that a multilayered model can bring are explanation,
validation, and insight. Having an abstract model of the science being undertaken,
and being able to use the model to interpret behavior (services and data sets used),
together make it possible to explain or reason about the science. For validation,
knowing which individual activities were executed, identifying branches taken during
execution, steps skipped or inserted, and specific parameters supplied at runtime is
essential when trying to establish trust in a result. The ability to compare a set of
related experiment executions against an abstract workflow model, to identify
common patterns or options not yet explored, can be used to gain insight in authoring
new experiment designs. A related benefit, not discussed in this short paper is
optimization – a layered or factored model can expose opportunities to efficiently
store provenances traces in the underlying storage manager.

The first level in our model, illustrated in Figure 1 below, represents an abstract
description of the scientific process. This layer captures abstract activities in the
workflow and links/relationships among the activities or ports of activities, where an

 Automatic Generation of Workflow Provenance 3

abstract activity is a class of activities. These classes can be described by the function
of the activity (e.g., InvokeWebService, or Sequential, Parallel Branch and While
activities, etc) or through semantic description – for example, a class of alignment
activities, where Blastx and FASTA are instances that belong to this class.

Fig. 1. Level L0, represents abstract service descriptions

The second level in our model, illustrated in Figure 2 below, represents an instance

of the abstract model. This layer captures bindings or instances of activities and
additional relationships, as classes of activities are instantiated. This level refines
abstract activities specified in the previous level with a specific instance (for example,
InvokeWebService is bound to a specific activity instance InvokeBlastWebService and
Alignment tool is bound to Blastx tool. The additional information captured at this
level is required to assign fields of the classes of the previous level. For example, the
InvokeWebService has fields ProxyClass and MethodName that should be filled, with
a proxy where the web service can be found and name of the method to be invoked.

Fig. 2. Level L1, represents service instantiation descriptions

In the next level of the model L2, illustrated in Figure 3, represents the execution

of the workflow instance specified in level L1. From level L1 to level L2 the model
captures information provided at runtime, such as parameters and properties that
complete the specification of activities, including input data, runtime parameter
supplied, activities inserted or skipped during execution, etc. Information captured at

Fig. 3. Level L2, represents data instantiation of the executable workflow

4 R.S. Barga and L.A. Digiampietri

this level is sufficient to trace the execution of the workflow, from input parameters to
individual activities executed and runtime parameters supplied to each activity.

The final level of our model L3, illustrated in Figure 4 below, represents runtime
specific information. Here we capture operational specific details, such as the start
and end time of the workflow execution, the start and end time of the individual
activity execution, status codes and intermediary results, information about the
internal state of each activity, along with information about the machines to which
each activity was assigned for execution.

Fig. 4. Level L3, run-time provenance for a workflow execution

At each level of our model, we extend the amount of detail and amount of

information of the previous level. The linkage between levels is facilitated by three
types of operations: extend (class extension); instance (class instantiation) and import
(reference to a specific model). Resuming, in level 0 the user designs a class from a
model that is extended in level 1. In the level 2, the class of level 1 is instantiated.
Level 3 imports the model of level 2 to make references to its entities.

3 Basic Workflow Execution Provenance Sample

In this section we illustrate the information that can be captured in our model using a
simple example. Our implementation is based on the Windows Workflow Foundation

Fig. 5. Workflow level L0

 Automatic Generation of Workflow Provenance 5

(WinFX) [1], an extensible framework for developing workflow solutions. WinFX
has a predefined set of activities (If-Else, While, Parallel, InvokeWebService, etc)
and allows for user-defined custom activities by object inheritance from base
classes.

In level L0 the user defines type of workflow (Sequential, StateMachine or Rule
Driven) she wants to construct and identifies classes of activities available for use.
Fig. 5 shows the graphical representation of the workflow and corresponding code.
The data stored in the provenance for this level supports general queries, such as:
what experiments in my collection use web services? (invokeWebServiceActivities) or
what experiments utilize alignment tools? This level, in general, describes the design
space for all workflows that are an instance of this abstract model.

In level L1 the user replaces abstract activities with concrete activities, and enters
fields pre-defined for the individual abstract activities. For example, the activity
invokeWebServiceActivity1 of Figure 5 was specialized to captureTemperatureWS in
Fig. 6 and the property ProxyClass was filled with the desired proxy. Another
property that was filled in was MethodName, with the name of the method from
the Web Service the user wants to invoke. The provenance model of L2 models
a specific instance of the abstract workflow model that is being prepared for
execution.

Fig. 6. Workflow level L1

From the provenance in Level L1 the user can pose queries about specific
activities: What experiments (workflows) used the web service TemperatureService?
Or, what experiments invoke the following method of a service, or what experiments
use the same alignment tool?

6 R.S. Barga and L.A. Digiampietri

In the level L2, which is the executable workflow, all data sets are identified and
data parameters are supplied so that the workflow is ready to be executed. One
example of parameter that was filled is zipcode from captureTemperatureWS that has
the value “98007” (see more details in Fig. 7). In this level of the model, we can

Fig. 7. Workflow level L2

 Automatic Generation of Workflow Provenance 7

pose a number of queries which do not involve runtime information. These queries
can involve parameters, activities and abstract activities/structures. What workflows
used the value “98007” in zipcode parameters? What was the precondition for the
workflow follow the path If in the IfThenElseActivity1?

The last level (runtime level) can contain a great diversity of information. The kind
of information to be stored will depend of the goals of the user. For example, in a
system that utilizes a high performance Grid, the user may wish to know what activity
(job) was executed in each processor of the Grid and when this execution occurred.
In other systems, the user may wish to store information about the internal status of
each activity. These two examples are allowed by our provenance model, but require
changes in the applications to work (in the Grid example, the scheduler must send
information about the process to the provenance system, and in the second example
each activity must send information to the provenance system).

Fig. 8 shows a simple runtime record from the Executable Workflow of Fig. 7. In
this example, only information about start and end time of the workflow and of the
activities were stored and information about produced data.

Fig. 8. Workflow level 3

Note that in workflows designed using the Windows Workflow Foundation
system there are no ports/channels to data exchange. This exchange is made via
workflow global variables. Our provenance model allows for this information (and
information about the code of each CodeActivity) be stored inside the workflow
model (in level L2). The rules of the workflow also can be stored in the
ExecutableWorkflow level. Fig. 9 shows the Code and Rules for the workflow
ExecutableWorkflow in Fig. 7. Together, these are sufficient to recreate the original
workflow specification.

8 R.S. Barga and L.A. Digiampietri

Fig. 9. Rules and Code of the workflow from Fig. 7

4 Discussion

All experimental scientists know that keeping a good lab notebook is vital. This is
also true for the computational scientist conducting experiments using scientific
workflow systems. We believe the collection of provenance data should be
automatic, and the resulting provenance data should be managed by the underlying
system. In addition, we argue that a robust provenance trace should support multiple
levels of representations. This model will allow users to navigate from the abstract
levels into lower detailed provenance levels, depending on the amount of detail

 Automatic Generation of Workflow Provenance 9

required to validate a result. A multilevel representation would permit scientists to
specify exactly what they wish to share, or retain, from their experiment record.

The work presented here is very much an initial investigation in an area of growing
important for e-Science. Our layered provenance model for workflow execution is a
prototype to be used as a tool to explore user requirements, and to consider system
requirements for managing provenance data. We envisage this provenance data to be
a first class data resource in its own right, allowing users to both query experiment
holdings to establish trust in a result and to drive the creation of future experiments.

5 Related Work

The challenge of workflow execution provenance is growing in both importance and
as a research topic. Most existing provenance systems available today can be
classified into one of two broad categories: i) Flow based provenance systems and ii)
Annotation based provenance systems.

Flow Based Provenance Systems: In many existing Grid/Service workflow based
systems, the provenance recorded is generally a variant of the following: when a
service is invoked, the workflow manager stores the input, output and the service
name in a provenance repository. Also, logically related service invocations are
grouped by using a common ID. One disadvantage with this schema is that it can
sub-optimal for running provenance based queries, and precludes the ability to
compress or reuse provenance data records. And, if not properly designed it can
double the depth of the provenance trace, as traversals first have to lookup the
process, then lookup inputs to the process to get to the parent file. Systems that have
a workflow based provenance include: PASOA [2], Chimera [3], and myGrid [4].

Annotation Based Provenance Systems: Systems such as the storage resource
broker (SRB) [5] and GeoDise [6] store provenance store provenance in name-value
attribute pairs. While this schema can be used to build provenance trace, the
construction again can be very inefficient for the same reasons as in workflow based
provenance systems, and it does not lend itself to a layered model.

References

[1] Windows Workflow Foundation (WinFX), http://msdn.microsoft.com/workflow/.
[2] PASOA, http://twiki.pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome.
[3] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. The Virtual Data Grid: A New Model and

Architecture for Data-Intensive Collaboration. In CIDR, January. 2003.
[4] J. Zhao, M. Goble, C.and Greenwood, C. Wroe, and R. Stevens. Annotating, linking and

browsing provenance logs for e-science.
[5] M. Wan, A. Rajasekar, and W. Schroeder. Overview of the SRB 3.0: the Federated

MCAT. http://www.npaci.edu/ DICE/SRB/FedMcat.html, September 2003.
[6] S. Cox, Z. Jiao, and J. Wason. Data management services for engineering. 2002.

Managing Rapidly-Evolving Scientific Workflows

Juliana Freire, Cláudio T. Silva, Steven P. Callahan,
Emanuele Santos, Carlos E. Scheidegger, and Huy T. Vo

University of Utah

Abstract. We give an overview of VisTrails, a system that provides
an infrastructure for systematically capturing detailed provenance and
streamlining the data exploration process. A key feature that sets Vis-
Trails apart from previous visualization and scientific workflow systems
is a novel action-based mechanism that uniformly captures provenance
for data products and workflows used to generate these products. This
mechanism not only ensures reproducibility of results, but it also sim-
plifies data exploration by allowing scientists to easily navigate through
the space of workflows and parameter settings for an exploration task.

1 Introduction

Workflow systems have been traditionally used to automate repetitive tasks and
to ensure reproducibility of results [1,6,9,10]. However, for applications that are
exploratory in nature, and in which large parameter spaces need to be investi-
gated, a large number of related workflows must be created. Data exploration
and visualization, for example, require scientists to assemble complex workflows
that consist of dataset selection, and specification of series of algorithms and
visualization techniques to transform, analyze and visualize the data. The work-
flow specification is then adjusted in an iterative process, as the scientist gen-
erates, explores and evaluate hypotheses about the data under study. Often,
insight comes from comparing multiple data products. For example, by applying
a given visualization process to multiple datasets; by varying the values of sim-
ulation parameters; or by applying different variations of a process (e.g., which
use different visualization algorithms) to a dataset. This places the burden on
the scientist to first generate a data product and then to remember the input
data sets, parameter values, and the exact workflow configuration that led to
that data product. As a result, much time is spent manually managing these
rapidly-evolving workflows, their relationships and associated data.

Consider the problem of radiation treatment planning. Whereas a scanner can
create a new dataset in minutes, using advanced dataflow-based visualization
tools such as SCIRun [10], it takes from several hours to days to create appro-
priate visualizations. Fig. 1 shows a series of visualizations generated from a CT
scan of a torso—each visualization is created by a different dataflow. During the
exploratory process, a visualization expert needs to manually record information
about how the dataflows evolve. Often, this is achieved through a combination
of written notes and file-naming conventions. For planning the treatment of a

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 10–18, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Managing Rapidly-Evolving Scientific Workflows 11

Fig. 1. Series of images generated from an CT scan for planning the radiation treatment
of a lung-cancer patient

single patient, it is not uncommon that a few hundred files are created to store
dataflow instances and their associated images [2]. To help the radiation oncolo-
gists understand the resulting images and ascertain their accuracy, a detailed log
of the exact process used to create the images is necessary—this often requires
many pages of notes detailing the process.

At the University of Utah, we have been developing VisTrails, a system whose
goal is to simplify and streamline the process of scientific data exploration. Vis-
Trails provides an infrastructure which can be combined with and enhance exist-
ing visualization and workflow systems. A novel feature of VisTrails is an action-
based mechanism which uniformly captures provenance information for both data
products and workflows used to generate these products. As shown in Fig. 2, the
action-based provenance is stored as a rooted tree, where each node corresponds
to a version of a workflow, and edges between nodes correspond to the action ap-
plied to create one from the other. This tree reflects the process followed by the
visualization expert to construct the necessary images, and concisely represents
all the workflow versions explored. Although the issue of provenance in the con-
text of scientific workflows has received substantial attention recently, most works
focus on data provenance, i.e., maintaining information of how a given data prod-
uct is generated [6,7,11]. To the best of our knowledge, VisTrails is the first system
to provide support for the systematic tracking of workflow evolution.

By maintaining detailed provenance of the exploration process, VisTrails not
only ensures reproducibility, but it also allows scientists to easily navigate thr-
ough the space of workflows and parameter settings used in a given exploration
task. In particular, this gives them the ability to return to previous versions

12 J. Freire et al.

Fig. 2. A snapshot of the VisTrails provenance management interface. Each node in
this vistrail version tree represents a workflow version. The nodes highlighted in the tree
correspond to the images shown in Fig. 1. This tree captures all the steps followed by a
visualization expert to derive the images needed for the radiation treatment planning
of a patient.

of a workflow and compare their results. Powerful operations are also possible
through direct manipulation of the version tree. These operations, combined with
an intuitive interface for comparing the results of different workflows, greatly sim-
plify the scientific discovery process. These include the ability to re-use workflows
and workflow fragments through a macro feature; to explore a multi-dimensional
slice of the parameter space of a workflow and generate a large number of data
products through bulk-updates; to analyze (and visualize) the differences be-
tween two workflows; and to support collaborative data exploration in a distrib-
uted and disconnected fashion.

Managing Rapidly-Evolving Scientific Workflows 13

Outline. In this paper, we give an overview of VisTrails. The architecture of
the system is described in Section 2. In Section 3, we present the action-based
provenance mechanism and discuss some of the data exploration operations it
enables. We review the related work and conclude in Section 4, where we also
outline directions for future work.

2 VisTrails: System Overview

With VisTrails, we aim to give scientists a dramatically improved and simplified
process to analyze and visualize large ensembles of simulations and observed
phenomena. Although the initial motivation for developing VisTrails was to pro-
vide support for data exploration through visualization, the system is extensible
and provides infrastructure for managing metadata and processes involved in
the creation of data products in general, not just visualizations. The high-level
architecture of the system is shown in Fig. 2. Below we briefly describe its key
components. For more details, the reader is referred to [3,5].

Users create and edit workflows using the

Visualization
API

Script
API

Visualization
Spreadsheet

Vistrail
Builder

Vistrail
Repository

Cache
Manager

Player

Vistrail
Server

Optimizer

Fig. 3. VisTrails Architecture

Vistrail Builder, which provides a visual
programming interface similar to those of
visualization and workflow systems [9,10].
The workflow specifications are saved in the
Vistrail Repository. Users may interact with
saved workflows by invoking them through
the Vistrail Server (e.g., through a Web-
based interface) or by importing them into
the Visualization Spreadsheet. Each cell in
the spreadsheet represents a view that cor-
responds to a workflow instance; users can
modify the parameters of a workflow as well
as synchronize parameters across different cells. The spreadsheet layout makes
efficient use of screen space, and the row/column groupings can conceptually
help the user explore the workflow parameter space.

Workflow execution is controlled by the Vistrail Cache Manager, which keeps
track of invoked operations and their respective parameters. Only new combina-
tions of operations and parameters are requested from the Vistrail Player, which
executes the operations by invoking the appropriate functions from the Visual-
ization and Script APIs. The Player also interacts with the Optimizer module,
which analyzes and optimizes the workflow specifications.

3 Action-Based Provenance and Data Exploration

Vistrail: An Evolving Workflow. To provide full provenance of the explo-
ration process, we introduce the notion of a vistrail. A vistrail captures the
evolution of a workflow—all the trial-and-error steps followed to construct a set
of data products. A vistrail consists of a collection of workflows—several versions

14 J. Freire et al.

Fig. 4. Results of a bulk update exploration voxel scaling in a single dimension shown
in the VisTrails Spreadsheet

of a workflow and its instances. It allows scientists to explore data products by
returning to and modifying previous versions of a workflow.

A vistrail is depicted in Fig. 2. Instead of storing a set of related workflows,
we store the operations (actions) that are applied to the workflows. A vistrail is
essentially a tree in which each node corresponds to a version of a workflow, and
the edge between nodes P and C, where P is the parent of C, corresponds to one
or more actions applied to P to obtain C. More formally, let WF be the domain
of all possible workflow instances, where ∅ ∈ WF is a special empty workflow.
Also, let x : WF → WF be a function that transforms a workflow instance into
another, and W be the set of all such functions. A vistrail node corresponds to
a workflow f constructed by a sequence of actions xi, where each xi ∈ W:

f = xn ◦ xn−1 ◦ . . . ◦ x1 ◦ ∅

Workflow Change Actions. In the current VisTrails prototype, we imple-
mented a set of operators that correspond to common actions applied to work-
flows in the exploratory process, including: adding or replacing a module, delet-
ing a module, adding a connection between modules, and setting parameter
values. We also have an import operator that adds a workflow to an empty
vistrail—this is useful for starting a new exploration process. Internally, the vis-
trail tree is represented in XML. This allows users to query the workflows and
the provenance information, as well as share information easily. For a description
of the vistrail schema, see [5].

The action-oriented provenance mechanism captures important information
about the exploration process through the very simple process of tracking (and
recording) the steps followed by a user. Although quite simple and intuitive, this
mechanism has important benefits. Notably, it uniformly captures both changes
to workflow instances (i.e., parameter value changes) and to workflow specifica-
tions (i.e., changes to modules and connections). In addition, it enables several
operations that greatly simplify the data exploration process. We outline some
of these operations below, for more details, see [5].

Managing Rapidly-Evolving Scientific Workflows 15

Fig. 5. Visual diff interface. This figure shows the differences between the nodes (work-
flows) labeled color and opacity and good transferfunc.

Scalable Derivation of Data Products. The action-oriented model leads
to a very natural means to script workflows. For example, to execute a given
workflow f over a set of n different parameter values, one just needs to apply a
sequence of set parameter actions to f :

(setParameter(idn, valuen) ◦ . . . (setParameter(id1, value1) ◦ f) . . .)

Or to compare the results of different data transformation algorithms represented
by modules R1 and R2, a bulk update can be applied that replaces all occurrences
of R1 with R2 modules. Fig. 3 shows the VisTrails bulk-change interface. For the
workflow corresponding to the node labeled baseImage1 in the tree of Fig. 2,
the user instructs the system to create visualizations varying the voxel size from
1.25 to 3.5 in four steps. VisTrails executes the workflow using the interpolated
values and automatically displays the four images in the spreadsheet, where the
specialist can easily select the most accurate one. Since some scanners use differ-
ent resolution in different axes, correcting non-uniform resolution is a common
task while dealing with CT scans. To perform this task using SCIRun [10], the
visualization expert must go through the lengthy process of manually setting
these parameters, one by one through a GUI and saving the resulting images
into files.

Re-Use of Stored Provenance. To construct complex scientific workflows,
users must have deep knowledge of underlying tools and libraries. Even for ex-
perts, creating these workflows can be time-consuming. Thus, mechanisms that
allow the re-use of workflows or workflow fragments are key to streamlining the
exploratory process. In VisTrails, users can create macros by selecting a sequence
of actions in the version tree, or by selecting a workflow fragment. Internally, a

16 J. Freire et al.

macro m is represented as a sequence of operations xj ◦ xj−1 ◦ . . . ◦xk. To apply
m to a workflow f in the version tree, VisTrails simply composes m with the
actions of f .

Interacting with Provenance Information. At any point in time, the sci-
entist can choose to view the entire history of changes, or only the workflows
important enough to be given a name, i.e., the tagged nodes in the version tree.
The version tree in Fig. 2 represents the history of the changes applied to a
workflow to generate the visualizations shown in Fig. 1. Note that in this figure,
only tagged nodes are displayed. Edges that hide untagged nodes are marked
with three short perpendicular lines. In addition, since the tree structure only
shows the dependencies among the workflow versions, different saturation levels
are used to indicate the chronological order in which the versions were created—
darker nodes are more recent.

To better understand the exploratory process, users often need to compare
different workflows. The difference between two nodes in the vistrail tree can be
derived by computing the difference between the sequences of actions associated
with the nodes. The visual diff interface of VisTrails is illustrated in Fig. 5.

Collaborative Data Exploration. Data exploration is a complex process that
requires close collaboration among domain scientists, computer scientists and
visualization experts. The ability to collaboratively explore data is key to the
scientific discovery process. A distinctive feature of the VisTrails provenance
mechanism is monotonicity: nodes in the vistrail version tree are never deleted
or modified—once pipeline versions are created, they never change. Having
monotonicity makes it possible to adopt a collaboration infrastructure similar to
modern version control systems (e.g., GNU Arch, BitKeeper, DARCS). A user’s
local copy can act as a repository for other users. This enables scientists to work
offline, and only commit changes they perceive as relevant. Scientists can also
exchange patches and synchronize their vistrails. The vistrail synchronization
algorithm is described in [5].

4 Related Work and Discussion

In this paper, we gave an overview of VisTrails, a system that provides a novel
infrastructure for tracking provenance of both data products and workflow evo-
lution. VisTrails is not intended to replace visualization and scientific workflow
systems, instead it can be combined with and enhance these systems.

Although provenance in the context of scientific workflows has received sub-
stantial attention recently, most works focus on data provenance. To the best
of our knowledge, VisTrails is the first system to provide support for tracking
workflow evolution. Provenance has also been investigated in other areas. In
their pioneering work on the GRASPARC system, Broadlie et al. [4] proposed
the use of a history mechanism that allowed scientists to steer an ongoing simula-
tion by backtracking a few steps, changing parameters, and resuming execution.

Managing Rapidly-Evolving Scientific Workflows 17

However, their focus was on steering time-dependent simulations, not on data
exploration. Kreuseleret al. [8] proposed a history mechanism for exploratory
data mining. They used a tree-structure, similar to a vistrail, to represent the
change history, and described how undo and redo operations could be calculated
in this tree structure. Whereas their theoretical framework attempted to capture
the complete state of a software system, VisTrails uses a simpler model and only
tracks the evolution of workflows. This allows for the much simpler action-based
provenance mechanism described above.

Maintaining detailed provenance has many benefits, but it also presents many
challenges. A potential problem is information overflow—too much data can ac-
tually confuse users. An important challenge we need to address is how to design
intuitive interfaces and provide adequate functionality to help the user interact
with and use the provenance information productively. We are currently inves-
tigating interfaces and languages that facilitate the querying and exploration of
the provenance data as well as efficient storage strategies.

A big barrier to a more wide-spread use of scientific workflow systems has been
complexity. Although most systems provide visual programming interfaces, as-
sembling workflows requires deep knowledge of the underlying tools and libraries.
This often makes it hard for domain scientists to create workflows and steer the
data exploration process. An important goal of our research is to eliminate, or
at least reduce this barrier. VisTrails already presents a significant step towards
this goal. The existing facilities for scalable parameter exploration and workflow
re-use give domain scientists a high degree of flexibility to steer their own investi-
gations. Since VisTrails records all user interactions, an interesting direction we
intend to pursue is to try to identify exploration patterns in the version tree
and use this knowledge to help users create new workflows and/or solve similar
problems.

Acknowledgments. We thank Dr. George Chen (MGH/Harvard University)
for providing us the lung datasets, and Erik Anderson for creating the lung
visualizations. This work is partially supported by the NSF (under grants IIS-
0513692, CCF-0401498, EIA-0323604, CNS-0514485, IIS-0534628, CNS-0528201,
OISE-0405402), the DOE, and an IBM Faculty Award. E. Santos is partially
supported by a CAPES/Fulbright fellowship.

References

1. G. Alonso and C. Mohan. Workflow management: The next generation of dis-
tributed processing tools. In S. Jajodia and L. Kerschberg, editors, Advanced
Transaction Models and Architectures, chapter 2. Kluwer, 1997.

2. E. Anderson, S. Callahan, G. Chen, J. Freire, E. Santos, C. Scheidegger, C. Silva,
and H. Vo. Visualization in radiation oncology: Towards replacing the laboratory
notebook. Technical Report UUSCI-2006-017, SCI Institute–Univ. of Utah, 2006.

3. L. Bavoil, S. Callahan, P. Crossno, J. Freire, C. Scheidegger, C. Silva, and H. Vo.
VisTrails: Enabling Interactive Multiple-View Visualizations. In IEEE Visualiza-
tion 2005, pages 135–142, 2005.

18 J. Freire et al.

4. K. Brodlie, A. Poon, H. Wright, L. Brankin, G. Banecki, and A. Gay. GRASPARC:
a problem solving environment integrating computation and visualization. In IEEE
Visualization ’93, pages 102–109, 1993.

5. S. Callahan, J. Freire, E. Santos, C. Scheidegger, C. Silva, and H. Vo. Using
provenance to streamline data exploration through visualization. Technical Report
UUSCI-2006-016, SCI Institute–Univ. of Utah, 2006.

6. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system for
representing, querying and automating data derivation. In Statistical and Scientific
Database Management (SSDBM), pages 37–46, 2002.

7. P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P. Zauner, and L. Moreau. Recording
and using provenance in a protein compressibility experiment. In Proceedings of the
14th IEEE International Symposium on High Performance Distributed Computing
(HPDC’05), July 2005.

8. M. Kreuseler, T. Nocke, and H. Schumann. A history mechanism for visual data
mining. In IEEE Symposium on Information Visualization, pages 49–56, 2004.

9. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee,
J. Tao, and Y. Zhao. Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice & Experience, 2005.

10. S. G. Parker and C. R. Johnson. SCIRun: a scientific programming environment
for computational steering. In Supercomputing, 1995.

11. Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Record, 34(3):31–36, 2005.

Virtual Logbooks and Collaboration in Science

and Software Development

Dimitri Bourilkov�, Vaibhav Khandelwal, Archis Kulkarni, and Sanket Totala

University of Florida, Gainesville, FL 32611, USA
bourilkov@phys.ufl.edu

Abstract. A key feature of collaboration is having a log of what and
how is being done - for private use/reuse and for sharing selected parts
with collaborators in today’s complex, large scale scientific/software en-
vironments. Even better if this log is automatic, created on the fly while
a scientist or software developer is working in a habitual way, without
the need for extra efforts. The CAVES (Collaborative Analysis Versioning
Environment System) and CODESH (COllaborative DEvelopment SHell)
projects address this problem in a novel way, building on the concepts
of virtual state and virtual transition to provide an automatic persistent
logbook for sessions of data analysis or software development in a col-
laborating group. Repositories of sessions can be managed dynamically
to record and make available in a controlled way the knowledge accumu-
lated in the course of a scientific or software endeavor.

Heraclitus asked: How can you bathe in the same river twice?

Quine answers: It’s easy, though it is hard to bathe in the same water twice.

1 Introduction

The scientific and software development processes demand the precise tracking of
how a project is evolving over time, in order to be able to explore many different
alleys simultaneously, moving forward to well defined states when successful
- or rolling back otherwise. In this context a virtual session is the process of
moving from a well defined initial to a well defined final state. The concept
of “virtuality” with respect to existence means that we can define states that
may be produced in the future, as well as record the “history” of states that
exist now or have existed at some point in the past. By keeping an automatic
log of initial states and transformations (knowledge about how to transform to
desired final states) we have a general tool to track the evolution of a project.
Such a tool will be equally useful for software development or any scientific work
done on computers. A good logging system will enable a collaborating group
to create and/or recreate virtual states on demand. The ability to reproduce a
state can have many implications: it may be more practical (e.g. much less space
consuming) to keep the initial states and the knowledge than all final states.

� Corresponding Author.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 19–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

20 D. Bourilkov et al.

The decomposition in sessions can describe complex processes and procedures
as a sequence of many small steps at the desired level of “atomicity”.

The idea of virtual logbooks of sessions complements the idea of virtual
data [1,2], where data comes complete with a recipe how to (re)produce it, by
putting more emphasis on the interactive aspect of work done by users in their
habitual ways, creating the log for the session automatically, on the fly, while
the work is progressing. There is no need per se to provide any code in advance,
but the user can execute/modify preexisting programs if desired. When a piece
of work is worth recording, the user logs it in a persistent session repository with
a unique identifier for later use/reuse.

Tools like this are vital to facilitate efficient collaboration in today’s large, ge-
ographically distributed teams with their needs to be able to advance a project
anytime and anywhere without space or time restrictions. Consider e.g. the sce-
nario where thousands of researchers spread over different continents are working
together on projects like the Large Hadron Collider [3], the most powerful par-
ticle accelerator built so far, expected to start data taking in 2007. In such a
scenario, there is a need for efficient means of storing the data and methods used
to create this data, and sharing these stored sessions between the collaborators.
The CAVES and CODESH projects [4,5,6,7] build tools to address this problem.

2 Project Outline

The basic idea behind the two projects 1 is the same and they share the same
architecture. CAVES is designed specifically for users performing data analysis
with the widely popular analysis package ROOT [8]. CODESH is a generalization
of the same approach for any type of work done on the command line, like
scripting in typical shells, e.g. bash or tcsh.

The primary use case is a ’virtual session’. Each user works on a per session
basis in an open environment. The work of the user for a session is recorded in the
’virtual logbook’, while the environment is considered as available or provided
by the collaborating group. The splitting between logbook and environment
parts is to some extent arbitrary. We will call it a collaborating contract, in
the sense that it defines the responsibilities of the parties involved in a project.
The fundamental concept is to store information in enough detail to provide a
share/replay mechanism, optionally modifying the inputs, for user’s sessions at
any other place or time by other users.

This is achieved by maintaining a virtual logbook, which records the initial
state (pre-conditions of a session), all the commands typed by the user, all the
outputs generated and also all the programs executed to produce the results.
Also the changes made to the environment i.e. environment variables and aliases
are recorded.

When a user’s session ends, or when the user would like to checkpoint the work
done so far, he/she tags the complete log, which automatically collects the source
program files, and optionally the data used, with a uniquely generated tag and
1 For more details about the evolution of our design we refer the reader to [4,5].

Virtual Logbooks and Collaboration in Science and Software Development 21

logs it to a repository. Thus the repositories can contain hundreds and thousands
of such stored sessions. Reproduction of a session is possible by extracting the
log, data and source files and executing the commands listed in the log files and
running the scripts that have been downloaded. Also the environment changes
can be carried across sessions.

The repositories of such sessions can be on the local machine for personal
usage and also on shared servers for the use of collaborating groups. Generally
the user will store all his sessions locally and ’publish’ selected important sessions
to shared repositories. He/she may also extract and re-produce sessions stored
by other collaborators.

There is also a feature, aptly called ’Snapshot’, which allows logging entire
directory structures under the current working directory. These can later be
retrieved and thus provide a virtual working directory. Using this concept, a
virtual session can be copied to any place on the same machine or even across
machines and re-started or modified. Of course this is possible if the user works
relative to the root of the snapshot directory and avoids using absolute paths.

3 Architecture

We have identified three distinct Tiers in the architecture:

– A. The User Tier
– B. The Main CODESH or CAVES Tier
– C. The Backend

Each Tier is completely independent of the other Tiers and it makes use of
only the interfaces provided by the other Tiers. Thus we can change one Tier
without affecting the operation of the others. The CODESH architecture is shown in
Fig. 1. As most details when describing the architecture are common for the two
projects, we will concentrate on the CODESH description, mentioning CAVES only
where necessary to highlight the distinct nature of each project. Lets examine
each Tier in turn:

A. The User Tier: This mainly implements the User Interface. We provide an
interface similar to the Unix/Linux command line shell or to the ROOT command
line. The user can start his session either in the batch mode or in interactive
mode. In the interactive mode, the user types shell (or ROOT) commands just as
he/she would on a Unix/Linux shell. He/she also types CODESH (CAVES) com-
mands for the session logging and similar tasks. All the input from the user is
parsed and fed to the second Tier, which is the main CODESH (or CAVES) Tier.
Also the results produced are displayed on the screen for the user to view.

B. The Main CODESH (CAVES) Tier: This is the heart of our system. It is solely
responsible for getting the user input, logging the user sessions, maintaining
state information, delegating the shell (ROOT) commands to the under-lying shell
(analysis package) and all the communication with the backend Repositories.

Based on the logical separation of the tasks, we have identified 4 different
modules that comprise this Tier. They are:

22 D. Bourilkov et al.

Fig. 1. The scalable and distributed CODESH architecture

i. CODESH (or CAVES client class): It is the main controller module that interacts
with all the remaining 3 modules for the successful execution of tasks in this Tier.
It delegates shell commands directly to the shell or through the Extract module,
which is described later. It also reads and updates the state information stored in
the State Information module. It also interacts with the CODESH backend module
for the storing and retrieving of the sessions.

ii. CODESH (CAVES) Backend: This module interacts with the backend reposito-
ries to provide the storage and retrieval of the session information and also to get
some status information e.g. a listing of all the sessions that have been stored.
It provides a backend independent interface, which is used by the CODESH
module.

iii. State information: This module stores and maintains all the configura-
tion information during any active user sessions. We broadly classify this state
information in two categories:

1. System information: This includes the aliases and environment variables
that need to be kept track of during the session. We track the changes made to
these during the session and provide routines for propagating them and also for
logging them along with the session.

2. User Configuration information: This includes the various user-selected
configurations. Some options provided for customized behavior of CODESH are:
Loglevel: Specifies how much to log
Codeshloglevel: Specifies whether to log CODESH commands in addition to the
shell commands which are always logged

Virtual Logbooks and Collaboration in Science and Software Development 23

Debuglevel: Specifies how much debugging information to print on the screen
Batchmode: Option to enable/disable the batch mode operation
Username: Allows changing the user name used for tagging the sessions
ExtensionList: Maintains a list of all extensions treated as scripts.

iv. Extract module: This module is responsible for the extraction of the ses-
sions i.e. re-executing them and getting the desired outputs. It delegates the
shell (ROOT) commands and scripts to the under-lying shell (analysis package)
for execution. Currently we support the bash and tcsh shells. But support for
other shells can be easily added.

C. The Backend: The Backend stores the sessions, in such a way that they can
be re-created later by some other user who extracts a session. For each session,
we store the log files, the source files and optionally the data files. Each session
is identified by a unique identifier which consists of 3 parts: the user’s name,
the current date and time and a user supplied name for the session. We provide
support for three different types of backends:

i. CVS: We use CVS [9] as the main backend for storing the sessions. Using the
CVS checkin, checkout and other commands we implement our commands like
Log session and Extract session (for a comprehensive listing of CODESH commands
refer to the next Section). We also provide an option of using Remote CVS as a
backend i.e. using a pserver.

ii. Clarens: We provide support for using Clarens [10] as a backend. The
Clarens Grid-Enabled Web Services Framework is an open source, secure, high-
performance ”portal” for ubiquitous access to data and computational resources
provided by computing grids. This is a Service Oriented backend that provides
services for Authentication, File and Data Transfer etc.

iii. MySQL: We provide for a MySQL backend, which stores only the metadata
information regarding each session in the Database. These annotations help in
fast searches through stored sessions for some particular session types. After
such a session is found, a local or remote CVS repository can be contacted to
fetch the complete session.

Every user may have local CVS repositories where he/she stores all personal
sessions. Typically the user will want to commit some of the sessions to shared
remote repositories and also extract some sessions stored by other users at the
shared repositories. Thus we provide support for copying and moving sessions
between repositories and also deleting sessions stored at some particular reposi-
tory. We also plan to provide a way of cloning entire repositories.

Controller of the Repositories: This module takes care of the maintenance,
recovery and similar tasks related to the different repositories. Our design struc-
ture is distributed in nature and thus we can have numerous controllers instead
of just one centralized controller.

4 Typical Usage Scenario

Currently CODESH is implemented in the Python, and CAVES in the C++ pro-
gramming language. For CAVES the user compiles an executable using the CAVES

24 D. Bourilkov et al.

code and the ROOT libraries. Once started, this executable has all the functional-
ity and behavior of the normal ROOT executable, including in addition the CAVES
commands. Typically a user starts CODESH by running the Codesh.py file. He can
specify the different loglevels and other such customizations in a Codesh.conf file
or specify them after he runs CODESH. In the interactive mode, he then views a
command line interface on which he can start his session. Optionally he can use
the batch mode and specify a file, which contains all the commands that are to
be executed in a batch. To assist in logging his work and re-creating the results
of previously stored sessions, he can use the various CODESH commands provided.
Some of these are:

i. Browse: To list all the stored sessions and also optionally restrict the search
depending on date/time or user. Also used to browse metadata associated with
the sessions.

ii. Inspect: To view the contents of a particular session and optionally down-
load all the source files.

iii. Extract: To execute a stored session and re-create the results.
iv. Log: To log a session between user defined checkpoints along with (op-

tionally) all or some of the programs executed during the session. The level of
logging depends on user defined log levels for that particular session.

v. Tagcopy: To copy a stored session from the source repository to the desti-
nation repository.

vi. Tagdelete: To delete a stored session.
vii. Takesnapshot: To work in a separate sandbox and store the entire sandbox

in a repository. This complete sandbox i.e. all the files and directories under the
working directory, can then be retrieved later by the same user or some other
user and worked upon.

viii. Getsnapshot: To retrieve any previously stored sandbox. This is very
useful in cases where a previously stored sandbox can be re-created at various
places, by various people and all of them can start working from the place where
the original user had left.

ix. Browsesnapshots: This command lists all (or a selected subset of) the
sandboxes committed by all the users.

x. Setenv, Getenv: To access and modify environment variables independent
of the underlying shell.

xi. GetAlias: To get all the active aliases.

5 Test Results

Tools like CODESH or CAVES, designed to be used for collaborative development by
many users, have to deal with different styles or work preferences and customiza-
tions by many individual users. These differences can be e.g. in the underlying
shells used, level of logging/debugging desired, kind of work, user permissions
and so on. We have developed CODESH and CAVES as flexible tools, easy to cus-
tomize and extend with new user defined commands. We have tried to exhaus-
tively test them with many different customizations using as backend local or
remote CVS repositories.

Virtual Logbooks and Collaboration in Science and Software Development 25

-4
-2

0
2

4

-4

-2

0

2

4

-4

-2

0

2

4

CMS Event Display

Fig. 2. Event display from a Monte Carlo simulation for the CMS experiment. Charged
particle tracks are shown in green, muon tracks in red, reconstructed jets with different
algorithms as triangles and squares.

We have also done Stress testing for scenarios where the size and quantity of
the logged data was really overwhelming. We have tested CODESH till the size of
the repository was 10,000 sessions. Our code is resilient enough that even with
10,000 sessions in the repository the performance was only marginally slower
than with very few sessions in the repository. All the sessions stored were of
similar type and size. Specifically with 10 sessions stored in the repository, the
inspection of a session took around 1 second, and even with 10,000 sessions
stored, the inspection of a session took only 2 seconds on a 1 GHz Pentium III
machine for a local repository.

We have built a fully distributed data analysis system based on ROOT and
CAVES. The virtual sessions are stored in local or remote (pserver based) CVS
repositories. The input and output datasets are stored using xrootd [11] servers.
In this way users can browse, inspect and reproduce the sessions of their col-
leagues starting from a completely clean slate on a new desk- or laptop. All
the necessary knowledge, code and data are delivered from the remote servers.
An example of an event display from a Monte Carlo simulation for the CMS
experiment [12] at LHC produced in this way is shown in Fig. 2.

6 Related Work

Archives typically keep final states. Often it is unclear how they were created. In
computers the initial and final states are transient. Knowledge is not recorded

26 D. Bourilkov et al.

systematically. Paper logs are hard to produce, hard to search, hard to share.
They need transfer to a computer before making the knowledge widely available.

The history mechanism in typical shells like tcsh or bash logs a pre-defined
number of commands in a file. But it provides no persistency mechanism for stor-
ing sessions or for exchanging them between collaborators. The scripts executed
during a session, the pre- and post- conditions are not logged. The script [13]
utility goes one step further, logging the standard output from the commands
as well, all the rest is left to the user. Our automatic logbook/virtual sessions
approach does much more by managing private and shared repositories of com-
plete session logs, including the commands and the programs, and the ability to
reproduce the results or reuse them for future developments.

In [14], contrary to most existing provenance systems which use disclosed
provenance like annotations, transformations or workflows, an observed prove-
nance approach at the kernel and system call level is developed. The authors note
the desirabilty of combining the full semantic knowledge of disclosed provenance
and the automatic and transpartent collection of observed provenance systems,
noting also the substantial challenges like provenance granularity, versioning,
provenance pruning, overheads etc. Our approach taken with the CODESH project
offers flexibility and good balance between observed and disclosed provenance:
the users of our system can select the splitting between logbook and environ-
ment parts, which we call collaborating contract, depending on their needs. We
provide observed provenance at the shell level, which, due to its proximity to
the users, offers a rich semantic knowledge by seamlessly observing the work
done in a virtual session. The adoption of a versioning system like CVS as a
persistent backend helps in solving the versioning problem and provides an ele-
gant approach to pruning by only storing the differences between a potentially
large number of similar sessions. In summary, the CODESH project combines in a
natural way some of the key desired features of the two extremes outlined above.

7 Current and Future Work

We have used CODESH to record the production and analysis of data for large
scale simulations in high energy physics, and for various software development
and configuration tasks at several locations distributed across the United States.
CAVES was used to record analysis sessions of the produced data, including analy-
ses demonstrated at Supercomputing 2005 in Seattle.

Our ongoing and future work consists e.g. of implementing: all the robust
functionality available with the CVS backend in the more difficult case of the
web service based Clarens backend; the full set of administrative tasks for the
management, maintenance and control of private and shared repositories; Web
interfaces for users to browse through the repositories; and a utility by which the
user can clone entire repositories. Public releases of the first functional systems
for automatic logging in a typical working session will be available from [15], and
the projects are hosted as open source [16]. In addition we are working on auto-
matically converting session logs to workflows, and the ability to develop locally
and seamlessly schedule more CPU/data intensive tasks on grid infrastructure.

Virtual Logbooks and Collaboration in Science and Software Development 27

In summary, our projects take a pragmatic approach in assessing the needs
of a community of scientists or software developers by building series of working
prototypes with increasing sophistication. By extending with automatic logbook
capabilities the functionality of a typical UNIX shell (like tcsh or bash) - the
CODESH project, or a popular analysis package as ROOT - the CAVES project, these
prototypes provide an easy and habitual entry point for researchers to explore
new concepts in real life applications and to give valuable feedback for refining
the system design.

The study is supported in part by the United States National Science Founda-
tion under grants NSF ITR-0086044 (GriPhyN) and NSF 0427110 (UltraLight).

References

1. I. Foster et al., presented at the 14th International Conference on Scientific and Sta-
tistical Database Management (SSDBM 2002), Edinburgh, 2002; GriPhyN Tech-
nical Report 2002-7, 2002.

2. I. Foster et al., Proceedings of CIDR 2003 - Conference on Innovative Data Re-
search; GriPhyN Technical Report 2002-18, 2002.

3. The Large Hadron Collider close to Geneva, Switzerland, will collide proton-proton
beams at energies of 14 TeV starting in 2007;
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/.

4. D. Bourilkov, http://arxiv.org/abs/physics/0401007, arXiv:physics/0401007.
5. D. Bourilkov, http://arxiv.org/abs/physics/0410226, Int. J. Mod. Phys. A 20

(2005) 3889 [arXiv:physics/0410226].
6. D. Bourilkov, ICCS 2005 conference, Atlanta, USA, 2005; V.S.Sunderam et al.

(Eds.): ICCS 2005, LNCS 3516, pp. 342-345, 2005, Springer Verlag Berlin Heidel-
berg.

7. D. Bourilkov and V. Khandelwal, WMSCI 2005 conference, Orlando, USA, 2005;
published in the Proceedings, ed. N.Callaos, W.Lesso and K.Horimoto, ISBN 980-
6560-60-4, vol. VIII, p.175, IIIS 2005.

8. Brun, R. and Rademakers, F.: ROOT - An Object Oriented Data Analysis Frame-
work. Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81–86

9. CVS: The Concurrent Versions System CVS, http://www.cvshome.org/.
10. C. Steenberg et al., Computing in High-Energy and Nuclear Physics (CHEP 03),

La Jolla, California, 24-28 Mar 2003; Published in eConf C0303241:MONT008,
2003; e-Print Archive: cs.dc/0306002; http://clarens.sourceforge.net/.

11. xrootd home page, http://xrootd.slac.stanford.edu/ .
12. The CMS experiment at CERN, http://cms.cern.ch/iCMS/ .
13. The script utility appeared in Berkeley Unix 3.0BSD.
14. Uri Braun et al., “Issues in Automatic Provenance Collection”, this proceedings.
15. CODESH/CAVES home page, http://cern.ch/bourilkov/caves.html.
16. https://sourceforge.net/projects/codesh

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 28 – 36, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying Provenance in Distributed Organ Transplant
Management

Sergio Álvarez1, Javier Vázquez-Salceda1,
Tamás Kifor2, László Z. Varga2, and Steven Willmott1

1 Knowledge Engineering and Machine Learning Group,
Universitat Politècnica de Catalunya. Jordi Girona 1-3, Barcelona, Spain

{salvarez, jvazquez, steve}@lsi.upc.edu
http://www.lsi.upc.edu/~webia/KEMLG

2 Computer and Automation Research Institute, Kende u. 13-17, 1111 Budapest, Hungary
{tamas.kifor, laszlo.varga}@sztaki.hu

http://www.sztaki.hu/

Abstract. The use of ICT solutions applied to Healthcare in distributed scenar-
ios should not only provide improvements in the distributed processes and
services they are targeted to assist but also provide ways to trace all the mean-
ingful events and decisions taken in such distributed scenario. Provenance is an
innovative way to trace such events and decisions in Distributed Health Care
Systems, by providing ways to recover the origin of the collected data from the
patients and/or the medical processes. Here we present a work in progress to
apply provenance in the domain of distributed organ transplant management.

1 Introduction

Cooperation among people using electronic information and techniques is more and
more common practice in every field including healthcare applications as well. In the
case of distributed medical applications the data (containing the healthcare history of
a single patient), the workflow (of the corresponding processes carried out to that
patient) and the logs (recording meaningful events) are distributed among several
heterogeneous and autonomous information systems. These information systems are
under the authorities of different healthcare actors like general practitioners, hospitals,
hospital departments, etc. which form disconnected islands of information. In order to
provide better healthcare services, the treatment of the patient typically requires view-
ing these pieces of workflow and data as a whole.

Also, having an integrated view of the workflow execution and the logs may be-
come important in order to analyse the performance of distributed healthcare services,
and to be able to carry out audits of the system to assess if needed, that for a given
patient the proper decisions were made and the proper procedures were followed. For
all that there is a need to be able to trace back the origins of these decisions and proc-
esses, the information that was available at each step, and where all these come from.
In order to support this in this paper we propose to make distributed medical applica-
tions provenance-aware. Our working definition for provenance is the following: “the
provenance of a piece of data is the process that led to the data” [1,2]. Provenance

 Applying Provenance in Distributed Organ Transplant Management 29

enables users to trace how a particular result has been achieved by identifying the
individual and aggregated services that produced a particular output by recording
assertions about a workflow execution in special assertion stores, the provenance
stores. These stores, unlike standard logging systems, organize assertions in a way
that complex queries can be executed to extract provenance information about indi-
vidual aspects of a process or a full execution trace.

The contents of this paper are as follows. In section 2 we present the organ alloca-
tion scenario that we use as example and the applications we are developing for it.
Then in section 3 we describe how provenance is handled in our applications. Section
4 presents related work and finally section 5 presents some conclusions.

Hospital D

Lab_1 Lab_2Lab_2 Lab_3Lab_3

Hospital A (donor side)Hospital A (donor side)
Hospital B (recipient side)Hospital B (recipient side)

Hospital CHospital C

Lab_A Lab_BLab_A Lab_B

OTA

Transplant UnitTransplant Unit Transplant UnitTransplant Unit

Transplant UnitTransplant Unit
WL

WL WL

WL

EHCREHCR

EHCR

Case

Donations

Fig. 1. The OTM application

2 Problem Domain

Patient treatment through the transplantation of organs or tissues is one of the most
complex medical processes currently carried out, as it is a distributed problem involv-
ing several locations (donating hospital, potential recipient hospitals, test laboratories
and organ transplant authorities, see Figure 1), a wide range of associated processes,
rules and decision making. It is recognized worldwide that IT solutions which in-
crease the speed and accuracy of decision making could have a very significant posi-
tive impact on patient care outcomes. Electronic systems that might be implemented
for transplant management can be divided into two main types: a) systems for distrib-
uted transplantation management and b) systems for medical record management.

30 S. Álvarez et al.

2.1 Distributed Transplant Management: The OTM Application

The Organ Transplant Management (OTM) Application aims to speed up the alloca-
tion process of solid organs to improve graft survival rates. Its policy implements the
Spanish guidelines for organ and tissue procurement and Spanish regulations for allo-
cation, as Spain is world leader in the area, followed as a model by other countries.
OTM uses standard web service technology and has been adapted to be provenance-
aware, by interacting with the provenance stores in order to keep track of the distrib-
uted execution of the allocation process for audit purposes.

Figure 1 summarizes the different administrative domains (solid boxes) and units
(dashed boxes) that are modelled in the OTM application. Each of these interact with
each other through Web Service interfaces (circles) that send or receive messages.
The Organ Transplant Authority (OTA) is an administrative domain with no internal
units. In a transplantation management scenario, one or more hospital units may be
involved: the hospital transplant unit, one or several units that provide laboratory tests
and the unit that is responsible for the patient records (which will use the EHCR ap-
plication services, see section 2.2). The diagram also shows some of the data stores
that are involved: apart of the patient records, these include stores for the transplant
units and the OTA recipient waiting lists (WL). Hospitals that are the origin of a do-
nation also keep records of the donations performed, while hospitals that are recipi-
ents of the donation may include such information in the recipient's patient record.
The OTA has its own records of each donation, stored case by case.

By transforming OTM into a provenance-aware application, we augment OTM
with a capability to produce at run-time an explicit representation of the process actu-
ally taking place (see example in Figure 2). Such representation can be then queried
and analysed in order to extract valuable information to validate, e.g., the decisions
taken in a given case, or to make an audit of the system over a period of time.

2.2 Medical Record Management: The EHCR System

The Electronic Health Care Record System (EHCR) provides a way to manage elec-
tronic health records distributed in different institutions. The architecture provides the
structures to build a part of or the entire patient’s healthcare record drawn from any
number of heterogeneous databases systems in order to exchange it with other health-
care information systems. The EHCR architecture has two external interfaces: a) a
Web Service that receives and sends messages (following ENV13606 pre-standard
format [3]) for remote medical applications; and b) a Java API for local medical ap-
plications that can be used to access the EHCR store directly. The application also
uses an authentication Web Service to authorize request messages from remote health
care parties.

Making the EHCR system provenance-aware provides a way to have a unified
view of a patient’s medical record with its provenance (i.e. to connect each part of the
medical record with the processes in the real world that originated it and/or the indi-
viduals, teams or units responsible for each piece of data).

 Applying Provenance in Distributed Organ Transplant Management 31

3 Provenance Handling in the OTM Application Domain

The Provenance architecture developed within the PROVENANCE project [1]
assumes that the distributed system can be modelled using a service-oriented ap-
proach. In this abstract view, interactions with services (seen as actors) take
place using messages that are constructed in accordance with service interface
specifications.

In the case of the OTM application, each organisational unit (the transplant unit,
the ER unit, the laboratories) is represented by a service. Staff members of each unit
can connect to the unit services by means of GUI interfaces. The provenance of a
data item is represented by a set of p-assertions, documenting steps of the process,
and they are stored and managed in provenance stores. The distributed execution
of the OTM services is modeled as the interaction between the actors representing
the services, and recorded as interaction p-assertions (assertions of the contents of a
message by the actor that sent or received it) and relationship p-assertions (asser-
tions that describe how the actor obtained an interactions’output data by applying
some function to input data from other interactions). As in the OTM scenario a
decision depends on a human making the decision, additional actor state
p-assertions (assertions made by actors about their internal state in the context of a
specific interaction) are recorded, containing further information on why the par-
ticular decision was made and, if available, the identities of the team members in-
volved in the decision.

The application of the provenance architecture to the OTM system had to over-
come two challenging issues: a) the provenance of most of the data is not a compu-
tational service, but decisions and actions carried out by real people in the real
world; b) past treatments of a given patient in other institutions may be relevant to
the current decisions in the current institution, so p-assertions about the processes
underwent in those previous treatments should be connected somehow to the cur-
rent p-assertions. An example on how we deal with both issues can be found in
section 3.2.

3.1 Provenance Questions

In both the OTM and the EHCR systems, the provenance architecture should be able
to answer the following kind of questions, related to a given patient (donor or recipi-
ent) or to the fate of a given organ:

• where did medical information used on each step of the process came from,
• which medical actor was the source of information.
• what kind of medical record was available to actors on each step of the process
• when a given medical process was carried out, and who was responsible for it.
• when a decision was taken, and what was the basis of the decision
• which medical actors were asked to provide medical data for a decision
• which medical actor refused to provide medical data for a decision

32 S. Álvarez et al.

Transplant

Unit

User

Interface

Test
Lab.
User

Interface

EHCR
Hospital A

OTM

Donor

Data

Collector

TU.1 Data
Collection

request

TU.2 Serology
Test request

TU.3 Brain Death
Notification

+ report

TU.4 Decision
request

TU.5 Decision
+ report

EHCR
Hospital B

OTM.1 Donor
Data request

OTM.2 Donor
Data

HC.1 Patient
Data request

HC.2 Patient
Data

OTM.3 Serology
test request

OTM.4 Serology test
result + report

Donation
Decision

Decision
Request

Decision
report

Author A

Donor
Data

Donor
Data

Request

Data
Collection
Request

User X

Brain
Death

Notification

User Y

Patient
Data

Hospital B

Patient
Data

Request

Brain
Death
report

Author B

Serology
Test

Result

Serology
Test

Request

Serology
Test

Request

User X
User W

User Z

Serology
report

Author C

is logged in

caused
by

caused
by

caused
by

caused
by

caused by

response
to

response
to

response
to

response
to

response
to

contains
parts of

is logged inbased
on

based
on

based
on

is logged in
is logged

in

authored by

authored by

authored by is logged in

TU.1

TU.2

TU.3 TU.3 TU.4 TU.5

TU.5

OTM.1 OTM.2

HC.1 HC.2

OTM.3 justified by

justified by

OTM.4

OTM.4

Fig. 2. Example scenario: (top) Interactions of the OTM components involved in a donation
decision; (bottom) DAG showing the provenance of the donation decision

3.2 An Example

To illustrate how provenance is handled in the OTM application, let us see how the
provenance of a medical decision is recorded and then queried. Figure 2 (top) shows a
simplified view over a subset of the donation process. We consider a patient who has
previously given consent to donate his organs. As the patient’s health declines and in
foresight of a potential organ donation, one of the doctors requests the full health
record for the patient and then orders a serology test1 through the OTM application.
After brain death is observed and logged into the system (along with the report certi-
fying the brain death), if all requested data and analysis results have been obtained, a

1 A serology test is performed over blood samples to detect viruses (HIV, Hepatitis B/C,

syphilis, herpes or Epstein-Barr virus) which, if present in the organ, can pass to the recipient.

 Applying Provenance in Distributed Organ Transplant Management 33

doctor is asked to make a decision about the patient being a potential donor. This
decision is explained in a report that is submitted as justification.

Figure 2 (top) shows the OTM components for this small scenario and their inter-
actions. The Transplant Unit User Interface passes requests (TU.1, TU.2) to the OTM
Donor Data Collector service, which gets the electronic record from the EHCR sys-
tem (OTM.1, OTM.2). Sometimes all or parts of the record are not in the same institu-
tion but located in another institution (HC.1, HC.2). The Donor Data Collector service
also sends the request for a serology test to the laboratory and gets back the result
(OTM.4), along with a detailed report of the test. Reports are also passed in the case
of the Brain Death notification (TU.3) and the final decision report (TU.5).

Figure 2 (bottom) graphically represents the subset of the p-assertions produced by
the provenance-aware OTM which are related to the donation decision. The part of
the process that happens within the electronic system is represented by interaction
p-assertions (regular boxes) for all interactions (TU.x, OTM.x, HC.x), and relation-
ship p-assertions (response_to, caused_by, based_on) capturing dependencies be-
tween data. Even though what happens in the system has a parallelism to what
happens in the real world, as we already said this is not enough to fully answer which
is the provenance of a given decision. To solve this, we connect the electronic process
to the real world by adding actor state p-assertions stating who logged the information
in the system (is_logged_in) and when (not shown in picture), which are the reports
that justify a given state in the system (justified_by), who are the authors of these
reports (authored_by) and when the action reported was performed or the decision
taken (not shown). Following back the p-assertions graph in Figure 2 we can trace the
provenance of the donation decision, how it was based in some data and test requests,
how a brain death notification is also involved, who requested the information, where
it came from (in some cases it might come from the EHCR from another hospital),
who authored the justifying reports in the main steps of the process.

In those cases (as in Figure 2) where the decision might be based on medical data
coming from tests and medical treatments carried out in other institutions, another
issue to solve is the following: how to find, retrieve and incorporate the provenance of
the data coming from the other institution? If the provenance stores of the different
institutions are connected, to solve the aforementioned problem is to solve the issue of
discovering the different p-assertions related to the same patient. If this discovery step
is done, then actors can make p-assertions that link together the separated sets of p-
assertions to create a larger provenance document providing an integrated view of the
healthcare history of the patient. The discovery can be done with the help of a patient
identifier known to all actors. For privacy reasons the patient identity has to be ano-
nymised. In the OTM application the EHCR system adds case identifiers (identifiers
created at run-time) inside the p-assertions to create connections between sets of p-
assertions related to the same patient. The result (not shown on Figure 2) would be
that the provenance of Patient Data Hospital B would be added to the DAG as part of
the provenance of the Donation Decision. Linking provenance stores in different
administrative domains raises some challenging issues on privacy and security,
though (see [4] for more details).

We had to find equilibrium between the amount of collected data and the level of
interference such data collection may cause in the real medical process. The use of the
reports and the information logged by the staff does not give full information about

34 S. Álvarez et al.

what happens in real world, but gives more than enough information to trace the indi-
vidual or team involved, while not introducing an excessive increase of workload on
the medical staff (we use the same reports medical staff already produces). It is im-
portant to note that the person who is logged in might not always be who authors the
justifying reports (both are recorded in OTM), and the time when things are reported
to the system might not be the time when things have happened (both also recorded in
OTM). This is common practice in medical teams: most of reporting is delegated to a
team member having the proper credentials and time to do it,2 although the report may
be later checked and even signed by a prominent member of the team.

4 Related Work

In those first investigations which started to record the origin and history of a piece of
data, the concept was called lineage. In the SDTS standard [5], lineage was a kind of
audit trail that traces each step in sourcing, moving, and processing data, mainly re-
lated to a single data item, a logical data record, a subset of a database, or to an entire
database [6, 7]. There was also relationship to versioning [8] and data warehouses [9].
The provenance concept was later further explored within the GriPhyN project [10].
These techniques were used in [11] in two respects: 1) data was not necessarily stored
in databases and the operations used to derive data items might have been arbitrary
computations; and 2) issues relating to the automated generation and scheduling of
the computations required to instantiate data products were also addressed. The
PROVENANCE project [1] builds on these concepts to conceive and implement in-
dustrial strength open provenance architecture for grid systems, including tools for
managing and querying provenance stores along with high-level reasoning capabili-
ties over provenance traces. The price to pay for this is that applications should be
adapted in order to provide high-quality p-assertions that not only record their inputs
and outputs but also the (causal, functional) relation between them. The alternative
would be the use of automatic data harvesting techniques such as RDF tuples harvest-
ing [12], where RDF tuples include attribution (who) and time (when) information
which is then processed by an external inference engine in order to construct RDF
graphs by some kind of extended temporal reasoning. Another alternatives reduce to a
minimum the adaptation step needed to make an application provenance-aware by
adding a middleware layer or an execution platform capable to automatically create
provenance assertions from the captured events and actions [13,14]. Problem is that,
in automatic provenance collectors, it is very hard to infer causal relationships by only
comparing sources and times [15], sometimes with the extra help of some derivation
rules [16] or rigid workflow definitions. In the case of the medical domain this is not
enough. Returning to the example on figure 2, let us suppose that at time t1 system
records a donor data request from user X for patient P, at time t2 it records a serology

2 Records of the process may be done asynchronously to avoid delays in critical steps: for

instance, a surgeon should not stop a surgery to record through the GUI interface his last de-
cisions and actions taken. If there is enough personnel in the surgery room, an assistant will
record the events and decisions in parallel; if not, recording is done after the surgery.

 Applying Provenance in Distributed Organ Transplant Management 35

test request from user X for patient P, at time t3 it records a donation decision from
user A for patient P, and t1<t3, t2<t3. Even if users A and X are the same, it would be
unwise to directly infer that the donation decision was based on the result of the donor
data request and the result of the serology test request just because i) all refer to the
same patient P and ii) both requests happened before the decision was made, as this
may not be true in all cases (e.g., anything terribly wrong in the serology test would
lead directly to a donation rejection without having to take into consideration the rest
of the collected donor data). Adding some generic rules to the temporal reasoner to
express on which sources a donation decision uses to be made would not solve the
problem either, as these rules can hardly handle all exceptional cases. The solution is
to include in the provenance representation an explicit way to express relationships
between recorded assertions (e.g. the doctor ticks on screen some boxes indicating
which parts of the donor data and which test results he based his decision on, and this
is automatically translated by the adapted provenance-aware OTM application into
several, very precise, based_on relationship p-assertions, valid for that specific case).

In organ allocation management, there are few IT solutions giving powerful sup-
port to the allocation of human organs. The EUROTRANSPLANT system [17] is a
centralised system where all information and decisions are made in a central server,
and all activity is recorded in standard logging systems. The Swisstransplant system
[18], is a distributed system which combines agent technology and constraint satisfac-
tion techniques for decision making support in organ transplant centers. In this case
all activity is also recorded in standard logging systems. Up to our knowledge, the
application of provenance techniques to distributed transplant management is novel.

5 Conclusions and Ongoing Work

In this paper we present an application of a service-oriented architecture for prove-
nance applied in distributed medical systems. We used as example the domain of
human organ allocation for transplantation purposes, where provenance is used to
trace the actors that were involved in the important steps of the process (e.g., a medi-
cal decision) and to provide an integrated view of the medical history of a patient
through the recollection of the medical treatment processes carried out in one or sev-
eral institutions. In the context of the PROVENANCE project we are building a first
demonstrator of this application. Evaluation is planned with some hospital and trans-
plant coordinators in Spain, who will give us feedback in the lasts steps of the devel-
opment and fine-tuning of the application.

Acknowledgements

This work has been funded mainly by the IST-2002-511085 PROVENANCE project.
Javier Vázquez-Salceda’s work has been also partially funded by the “Ramón y
Cajal” program of the Spanish Ministry of Education and Science. All the authors
would like to thank the PROVENANCE project partners for their inputs to this work.

36 S. Álvarez et al.

References

1. The EU Provenance Project Enabling and Supporting Provenance in Grids for Complex
Problems (IST 511085), http://www.gridprovenance.org/

2. P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou, L. Moreau, D3.1.1: An Ar-
chitecture for Provenance Systems. Technical report, University of Southampton, February
2006. http://eprints.ecs.soton.ac.uk/12023/

3. CEN/TC251 WG I.: Health Informatics-Electronic Healthcare Record Communication-
Part 1: Extended architecture and domain model, Final Draft prENV13606-1 (1999).

4. T. Kifor, L.Z. Varga, S. Álvarez, J. Vázquez-Salceda and S. Willmott. “Privacy Issues of
Provenance in Electronic Healthcare Record Systems”. Proceedings of the 1st Int. Work-
shop on Privacy and Security in Agent-based Collaborative Environments (PSACE 2006).

5. American National Standard for Information Systems. Spatial Data Transfer Standard
(SDTS) - Part 1, Logical Specifications, Secretariat, United States Geological Survey, Na-
tional Mapping Division, DRAFT for Review, November 20, 1997, http://mcmcweb.
er.usgs.gov/sdts/SDTS_standard_nov97/part1b12.html

6. Buneman, P., Khanna, S. and Tan, W.-C., “Why and Where: A Characterization of Data
Provenance” in International Conference on Database Theory, (2001).

7. A. Woodruff,and M. Stonebraker. “Supporting Fine-Grained Data Lineage in a Database
Visualization Environment”, Computer Science Division, U. of California Berkeley, 1997.

8. A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. “Change-Centric Management of
Versions in an XML Warehouse”, in 27th Int. Conf. of Very Large Data Bases, (2001).

9. Y. Cui, J. Widom and J.L. Wiener. “Tracing the Lineage of View Data in a Warehousing
Environment”, ACM Transactions on Database Systems, 25 (2). 179–227.

10. The GriPhyN Project. http://www.griphyn.org
11. I. Foster, J. Vockler, M. Wilde, Y. Zhao. “The virtual data grid: A new model and archi-

tecture for data-intensive collaboration. In: Proceedings of the First Biennial Conference
on Innovative Data Systems Research, CIDR 2003, Asilomar, CA, January 5-8, 2003

12. J. Futrelle. “Harvesting RDF triples”. International Provenance and Annotation Workshop,
Chicago, IL, May 2005.

13. R. Barga. “Automatic Generation of Workflow Execution Provenance”. International
Provenance and Annotation Workshop, Chicago, IL, May 2006.

14. K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer. Provenance aware
storage systems. In Proc. of the 2006 USENIX Annual Technical Conference, June 2006.

15. U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy, M. I. Seltzer. “Issues in
Automatic Provenance Collection”. In: Proceedings of the International Provenance and
Annotation Workshop, Chicago, IL, May 2005.

16. I. Foster, J. Voeckler, M. Wilde, Y. Zhao: Chimera: A Virtual Data System for Represent-
ing, Querying and Automating Data Derivation. In Proceedings of the 14th Conference on
Scientific and Statistical Database Management, 2002.

17. Eurotransplant International Foundation. http://www.eurotransplant.nl/
18. Swisstransplant. http://www.swisstransplant.org/

Provenance Implementation

in a Scientific Simulation Environment

Guy K. Kloss and Andreas Schreiber

Simulation and Software Technology
German Aerospace Center
51147 Cologne, Germany

{Guy.Kloss, Andreas.Schreiber}@dlr.de
http://www.dlr.de/sc/

Abstract. Many of today’s engineering applications for simulations are
lacking machanisms to trace the generation of results and the underly-
ing processes. Especially computations conducted in distribued comput-
ing environments as Grids are lacking suitable means to keep track of
used resources. Trust of engineers in results produced within distribued
simulation environments is very limited without this information.

This paper will demonstrate how trust and confidence in simulation
results could be achived for engineering applications. It will highlight the
backgrounds of the application, of provenance recording, the mapping to
the application, and finally the implementation of provenance awareness
for the application. Additionally it will present examples of analyzing
the information stored to be of further use to the engineer.

1 Introduction

Complex numerical simulation plays an important role in today’s industrial de-
velopment. During the design processes it reduces the amount of expensive vali-
dation using real world models for physical examination. This again reduces the
time for obtaining high quality designs, and thus gives the engineer the oppor-
tunity to evaluate more competing designs.

In this engineering process vast amounts of data are generated. Managing
this data in the first place is a problem by itself, but it is subject to different
solutions. The specific task to be discussed in this paper is to give the engineer
tools at hand to keep track of the history of it’s generation, which is important
to trust the generated data and to analyze data with respect to changes in the
simulation process.

1.1 Provenance

If an organization wants to prove compliance, they must establish the origin
and authenticity of the information produced by their processes. This type
of documentation needs to be recorded as the process takes place. To have

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 37–45, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

38 G.K. Kloss and A. Schreiber

proven integrity, it must be transparent and auditable. A documentation with
the mentioned properties reveals the full history of the creation some informa-
tion: it’s provenance. The goal is to conceive a computer based representation
of provenance, that allows us to perform useful analysis and reasoning. For
inter-operability with other applications and adaptability to new regulations,
the provenance implementation needs to be open and standardized, rather than
closed and monolithic.

The implementation of a provenance architecture demands a high flexibility
and robustness to different scenarios. In the Grid Provenance project [1] two sam-
ple applications with complementary requirements regarding performance and
scalability are to be implemented. The organ transplant management (OTM)
application relies on a wide geographical distribution of the system, extremely
high standards for security and privacy, multiple provenance stores, a high de-
gree of human interaction, and long periods of time until a management process
can be considered completed. On the other hand the aerospace engineering ap-
plication presents high requirements in computation performance within secured
networks. A complete set of requirements [2] for the reference implementation
has been identified.

1.2 Application

Our goal is to add Provenance awareness to an engineering application which
is composed of several individual numerical codes which are integrated in an
interactive simulation environment.

The application is used by engineers in the simulation of complex flight maneu-
vers. This simulation implies the unsteady aerodynamics of a free flying, fully
configured, elastic combat aircraft. In this application, two reasons for prove-
nance recording are essential:

– Seamless process documentation for compliance and liability reasons.
– Providing better insight into archived simulational data through analysis by

means of complex query methods.

In the following we will first give a very brief overview of the application. After
that, an introduction to computer based provenance concepts and the provenance
software infrastructure being used is given. Then in Sect. 4.1 we will describe
the deployment of provenance services to our application.

2 Engineering Application

Aerospace engineering design problems are often being treated by complex sim-
ulations using a workflow of a variety of numerical codes and supporting tools.
Usually, these simulation workflow does also contain loops, conditional con-
structs and parallelization of tasks.

For practically perform such complex simulations, all codes are being inte-
grated into an integration system which provides a graphical user interface, starts
all codes in the distribution environment and manages all involved data.

Provenance Implementation in a Scientific Simulation Environment 39

2.1 Simulation of a Maneuvering Combat Aircraft

Our example application for simulation of a maneuvering combat aircraft consist
of three major numerical codes (see [3] for details):

– The computational fluid dynamics solver TAU [4] for aero-dynamics,
– the structure mechanics solver NASTRAN for aero-elasticity, and
– the flight mechanics solver SIMULA [5].

Each of these codes have different and very specific constraints and requirements
on the underlaying hardware and software infrastructure, which requires to start
each code on a different machine (see Fig. 1).

2.2 Integration System

An integration system provide a comfortable execution environment for com-
plex simulations. Via a GUI on a desktop computer, the engineer graphically
constructs the workflow, sets input parameters for individual components, and
controls the workflow execution.

We are using the integration system TENT [6,7] which allows one to integrate
all necessary computational components and to construct workflows with these
components. It allows engineers to steer and monitor running simulations inter-
actively on the Grid and has an integrated data management systems based on
XML and WebDAV.

Fig. 1. Distribution of workflow components on the network

3 Implementing Provenance

Sect. 1.1 gives an idea for the requirements for the provenance implementa-
tion in engineering tasks. Data history needs to be documented as events take

40 G.K. Kloss and A. Schreiber

place. This needs to be dealt with while implementing the compound applica-
tion. Analysis of the provenance information is supported by a set of query tools.
Not essential, but finally important as well, are management tools to access in-
formation within the provenance store and setup/configure the store.

Processes are executed in a distributed environment. Result files, log files,
do not provide enough information to reflect the exact history of processes.
Interactions between different actors need to be tracked. The provenance system
needs to be capable of handling several origins for provenance record submissions,
and it should support multiple locations of provenance stores as well.

An effective organizational method to ensure consistency is to avoid redun-
dancy. Records on provenance thus should not contain all the information the
application provides in copy. Instead, references to the original data will be em-
bedded into the records. This is achieved by using a documentation style with
the content referenced. Access to the data itself is provided through a plug-in
architecture. By this many types of storage locations may be used by developing
appropriate plug-ins.

The integration system is turned into a “provenance enabled” system. In
many cases the overhead of provenance recording is neither needed nor desired
for its use, thus the fundamental architecture is not changed. Because of this,
all data and meta-data for the actual engineering task is stored on the Web-
DAV server. Additional information for provenance tracking is managed using
the provenance system. Through the mentioned plug-ins all information can
be aggregated through specific provenance tools in development for provenance
analysis. For the engineering task all information can still be retrieved by means
of the integration system.

Unfortunately this forked storage of content may cause inconsistencies due
to changes in referenced data. The most effective way to solve this problem
would be to store all information in one system only. This approach would be
counter productive, as the (remote) provenance store is not designed to cope
with high volume data commonly found in the engineering tasks in question.
Thus consistency measures have to be ensured on the organizational level.

3.1 Provenance Assertions

To capture the complete process history, three types of p-assertions (assertions
on provenance) have been identified [8]: interaction, actor state, and relationship
p-assertions.

Interaction p-assertions form the bonding links between components in a
process. They capture messages received from or sent by the components or
the actors.

As the name implies, the actor state p-assertions provide information on the
internal state in the context of a specific interaction. So they may be considered
as snapshots of distinguished states of the actor just before or just after it has
received a message.

Finally the relationship p-assertions allow relationships between messages and
data. They consist of a subject, one/many objects, and a designated relationship

Provenance Implementation in a Scientific Simulation Environment 41

between them. Some examples of possible relationships are as follows: interaction
A is before/after interaction B; data item C was zipped to produce data item D;
data item D is a combination of data item C and data item B; interaction A is
in reply to interaction B; interaction A causes interaction B. Since, we do not
limit what relationships can be expressed, this allows asserting actors to express
application specific relationships.

3.2 Provenance Store Access

Access to all interactions with the provenance store are abstracted through stan-
dardized WSDL interfaces (see Fig. 2). Enabling provenance awareness in ex-
isting applications should be as easy as possible, so recording of p-assertions is
handled through a client side library. More complex and interactive functionality
of querying the store and managing data inside is provided by external tools. The
library supports recording interactions and communication of the components,
the user interface, and the data server.

Fig. 2. Access of provenance store and data server by software components

4 Applying Provenance

To implement provenance awareness into the application, and to make use of the
recorded provenance information, first the application has to be analyzed me-
thodically. Given that information, the client side library has been implemented
in TENT, and p-assertion recording in the appropriate places have been added.

The methodical analysis will be described in the following for a simpler ap-
plication which implies the same workflow complexity and all required features
for provenance recording as the aerospace application.

42 G.K. Kloss and A. Schreiber

In the terminology of the application the different functional parts are called
workflow components. From the point of view of the provenance system, the are
called actors. Both terms are used as synonyms from different perspectives.

4.1 Implementation for Parameter Study

We are dealing with a workflow (see Fig. 3) that is set up and controlled through
the GUI acting as the central process control instance. The data to initialize the
simulation will go through some pre-processing to yield a numerical model for
a flow simulation (i1). A variation component iterates a single parameter. The
parameter is inserted into a configuration file that is passed to the simulation
(i2). During the individual simulation the code writes information on numerical
convergence to the standard output stream. This is intercepted and parsed for
information to be monitored in the GUI (m). At the end of a single simula-
tion step three things happen: The result set is transferred for storage to the
data server (d1); the result file is sent to the visualization component for direct
feedback on the results (i4); and finally the parameter variation component is
notified to signal the end of the computations (i3). When all simulations have
been computed, the process control component (GUI) stores unsaved results, the
configuration, and the monitoring data on the data server (d2). The completed
processing of the workflow spanning from i0 to d2 defines a complete simulation.

As described in Sect. 3, a process’s provenance needs to be tracked as events
occur. So the different actors need to be provenance aware, and record prove-
nance relevant information making p-assertions. For some problems this may be
achieved by simply intercepting the communication between the components.
Due to the internal complexity of the different actors, those p-assertions would
not document the process properly without further knowledge of the compo-
nents’ internal actions.

Interaction P-Assertions. All interactions between the actors form the linked
documentation. Whenever an interaction occurs, an interaction p-assertion is
submitted. This joins independent actions to a linked process representation. As
seen from Fig. 3 the workflow’s relevant interactions are i0 – i4, m1, d1, and d2.

As the content for p-assertions for example, i2 would state the parameter set
for the simulation, and m would contain the monitoring information.

Additionally tracers are introduced here. A tracer is an identifier to tag certain
groups of p-assertions within the provenance store (for a subset of a workflow
conducted). One tracer for example would identify a complete workflow. It would
be introduced with i0. Another tracer would be introduced (and changed) with
every i2, to identify all p-assertions for that specific inner loop.

Actor State P-Assertions. The interactions between actors define the linked
application. The state of an actor before or after such interactions may be of
importance for a complete provenance representation. To account for this, actor
state p-assertions have been identified to document an instance snap shot of
the actor. All (“boxed”) actors from the figure record their state at various

Provenance Implementation in a Scientific Simulation Environment 43

points of time. For the GUI, this p-assertion may record the workflow’s name
and configuration. For the simulation, it could be the computation’s completion
state (converged, crashed, interrupted, etc.).

Relationship P-Assertions. Various causalities within the workflow can be
found. They will be recorded through relationship p-assertions. Some of these
relationships would be as follows: A single interaction i1 causes i2 ; an interaction
i2 causes all of r2, r3, r5, and r6 ; and in a wide spanning relation the initial i0
causes the final d2.

Fig. 3. Mapping of a simple optimization application to provenance architecture

4.2 Aerospace Engineering Application

The implementation for the aerospace application consists of the functional com-
ponents as described in Sect. 2, with additional actors as the GUI, a coupling
manager, a data server, and possibly visualization as shown in Fig. 3. The map-
ping is performed in the same way as for the parameter study. So it will not be
discussed here in further detail.

The aerospace engineering scenario is used for research, and terminally the
construction of aircrafts. Specific regulations for reproducibility need to be con-
sidered. Thus documentation of conducted processes for legal reasons is impor-
tant. Additionally the engineer can take advantage of the provenance informa-
tion, as it will give a better overview and means for analyzing the previously
conducted simulations. This may lead to a better insight into similarities and
differences previously unnoticed.

This can be obtained by asking questions on the data within the provenance
store using the query tool.

– Given some data item, what was the simulation case?
– Given some parameter, in what simulation(s) has it been used?
– What data has been recorded in a simulation with a specific parameter?
– What simulations have been run using a given model (aircraft design)?
– Given two/more simulations with the same setup, what is the result and the

difference in provenance?

44 G.K. Kloss and A. Schreiber

5 Alternate Approaches

Various approaches for tracking provenance information are analyzed relative to
the application discussed.

Embedded within the operating system a provenance enabled file system PASS
[9] is developed. For the benefit of not provenance enabling actors within a
system, the “observed” information may be very low level and fine granular. The
amount of detail can obscure the view onto desired information. Additionally this
approach does not capture distributed processes very well, it is not aware of actor
states, and thus may not be able to capture the complete process provenance.
More interactively CAVE and CODESH [10] facilitate the user with a UNIX like
shell. Operations are conducted through it within a session to narrow down the
information more usably.

The problem solving environment WinFX has been provenance-enabled by
Microsoft [11]. It currently does not allow workflows in inhomogenious plat-
form environments. It provides a closed provenance system, it caches all prove-
nance data during the process, and persists it at process finalization. More
open approaches provide the extensible and flexible frameworks Kepler [12] and
Karma [13]. Both can be customized flexibly for scientific domains in inhomoge-
nious and distributed environments like TENT. Kepler provides its own prove-
nance tracking system, as does Karma. Additionally Karma has been shown to
be able to connect to more generic provenance systems as the ones developed
within the PASOA [14] and Grid Provenance projects [1].

6 Conclusion

The need for provenance recording arises in many processes. Reasons for un-
dertaking the necessary steps – that may be considered tedious – can be very
different: trust in results, regulations, liability, or just to get better tools for
process analysis.

Even though parts of the provenance system are still in development, prove-
nance recording from a smaller scale sample application has been demonstrated
already. As the libraries for recording will become usable more easily (due to the
ongoing implementation and tools support), it will become easier to implement
provenance awareness into the aerospace engineering target application, as well
as other possible applications. Furthermore, with availability of the supporting
tools and user interfaces for query functionality, inspection possibilities will be
provided. These are the necessary tools to start harvesting information available
in the provenance store for enhanced insight into engineering processes.

Acknowledgment

This work was a part of the Grid Provenance project, founded by EU IST 511085.

Provenance Implementation in a Scientific Simulation Environment 45

References

1. The Grid Provenance Website. [Online]. Available: http://www.gridprovenance.
org/

2. Publications of Grid Provenance Project. [Online]. Available: http://twiki.
gridprovenance.org/bin/view/Provenance/ProjectPublications

3. A. Schütte, G. Einarsson, B. Schöning, T. Alrutz, W. Mönnich, J. Neumann, and
J. Heinecke, “Numerical simulation of maneuvering combat aircraft,” in Proc. 14th
DGLR Symposium of STAB, STAB, Ed. Bremen, Germany: Springer-Verlag, nov
2004.

4. T. Gerhold, “The DLR TAU Code – an Overview,” in ODAS 99, ONERA–DLR
Aerospace Symposium, 1999.

5. W. Mönnich and J. J. Buchholz, “SIMULA – Ein Programmpaket für die Simula-
tion dynamischer Systeme,” DFVLR, Tech. Rep., 1991.

6. A. Schreiber, “The Integrated Simulation Environment TENT,” Concurrency and
Computation: Practice and Experience, 2002.

7. A. Schreiber, T. Metsch, and H.-P. Kersken, “A Problem Solving Environment for
Multidisciplinary Coupled Simulations in Computational Grids,” Future Genera-
tion Computer Systems, 2005.

8. P. Groth, S. Miles, V. Tan, and L. Moreau, “Architecture for Provenance
Systems,” ECS, University of Southampton, Tech. Rep., oct 2005. [Online].
Available: http://eprints.ecs.soton.ac.uk/11310/

9. U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy, and M. I. Seltzer,
“Issues in Automatic Provenance Collection,” in Proceedings (unpublished) of the
International Provenance and Annotation Workshop (IPAW), Chicago, Illinois,
USA, May 2006.

10. D. Bourilkov, V. Khandelwal, A. Kulkarni, and S. Totala, “Virtual Logbooks and
Collaboration in Science and Software Development,” in Proceedings (unpublished)
of the International Provenance and Annotation Workshop (IPAW), Chicago, Illi-
nois, USA, May 2006.

11. R. Barga, “Automatic Generation of Workflow Execution Provenance,” in Pre-
sentation at the International Provenance and Annotation Workshop (IPAW),
Chicago, Illinois, USA, May 2006.

12. I. Altintas, O. Barney, and E. Jaeger-Frank, “Provenance Collection Support in
the Kepler Scientific Workflow System,” in Proceedings (unpublished) of the Inter-
national Provenance and Annotation Workshop (IPAW), Chicago, Illinois, USA,
May 2006.

13. Y. L. Simmhan, B. Plale, D. Gannon, and S. Marru, “Performance Evaluation
of the Karma Provenance Framework for Scientific Workflows,” in Proceedings
(unpublished) of the International Provenance and Annotation Workshop (IPAW),
Chicago, Illinois, USA, May 2006.

14. The PASOA Website. [Online]. Available: http://www.pasoa.org/

Towards Low Overhead Provenance Tracking in

Near Real-Time Stream Filtering�

Nithya N. Vijayakumar and Beth Plale

Department of Computer Science, Indiana University
{nvijayak, plale}@cs.indiana.edu

Abstract. Data streams flowing from the physical environment are as
unpredictable as the environment itself. Radars go down, long haul net-
works drop packets, and readings are corrupted on the wire. Yet the data
driven scientific models and data mining algorithms do not necessarily
account for the inaccuracies when assimilating the data. Low overhead
provenance collection partially solves this problem. We propose a data
model and collection model for near real time provenance collection. We
define a system architecture for stream provenance tracking and motivate
with a real-world application in meteorology forecasting.

1 Introduction

Dynamic data-driven scientific applications utilize data streaming in real-time
from environmental sensors and instruments to effect simulation, modeling, and
analysis that is more responsive to the physical domain (such as the atmosphere)
and the computational environment. Responding in near real time to events in
the environment, however, requires minimizing the latency between the occur-
rence of an event in the environment and the detection and processing of that
event through a reduction and analysis pipeline. When decisions are being made
in near real time to process incoming data and trigger the appropriate model or
service, keeping records of the activities being applied is jettisoned in favor of
keeping service time low. Avoiding the recording of historical data is not a viable
solution because scientists need the ability to trace a result, such as a statistical
result, back to the one or more events in streams that caused them. We need a
low overhead model for provenance collection on streams.

The general approach to stream processing is to execute a set of tasks contin-
uously on the incoming events. These tasks can be defined as database queries
[1,2,3,11] or a pipeline of computational entities [4] that operate on the data
events. We use the term filters to refer to the tasks executed on data streams. In
this paper we focus on provenance tracking for stream filtering systems. Prove-
nance collection in stream filtering systems pose the following challenges:

1. Identifying provenance entities - Provenance systems generally collect
data about datasets [6]. In a stream filter system, events can be tiny, just a

� This work supported under NSF cooperative agreement ATM-0331480 and DOE
DE-FG02-04ER25600.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 46–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Low Overhead Provenance Tracking 47

few kilobytes in size and can be generated at high rates. Collecting prove-
nance on an event by event basis can overwhelm the system. The challenge is
in identifying the correct “atomic unit” that is traceable by the stream filter
system and strikes a reasonable balance between efficiency and meaningful
provenance.

2. Capturing stream filtering conditions with low overhead - Filters
executing on streams can be dynamically deployed and are subject to recon-
figuring on the fly [3]. Data streams drop data periodically, such as when a
feed from one of the 120 continental U.S. Doppler radars goes down briefly.
Network congestion may cause delays and bursts in transfer of stream events.
Transport over long haul networks can corrupt data as well. Filters accom-
modate these changes by changing modes (e.g., approximation mode under
imbalanced load [2]). The challenge lies in dynamically and efficiently track-
ing provenance of filter execution in a distributed environment.

3. Maintaining relevance with non-persistent data - Filters are typically
associated with a lifetime, i.e., they can be specified to run for a particular
duration of time [11]. Yet, the products they produce can long outlive the
filters that produced them. The challenge is to trace back the source of a
derived event and the conditions of stream filtering long after the filtering
task was completed.

4. Dynamic accuracy estimation - Provenance can be used to produce
quality of service guarantees. In stream filtering systems, aggregation of the
stream data enables the detection of global behavior that cannot be done on
single streams. Approximations and accuracy changes in input streams may
affect the accuracy of the derived streams [18]. It is challenging to collect
provenance across multiple streams and thus deduce the accuracy of derived
streams.

In this paper, we address these challenges by creating a data model and a col-
lection model for representing and capturing stream-related provenance that
targets the unique needs of stream-driven applications. We define an architec-
ture for stream provenance tracking and show how the provenance collection
system fits within the context of the Calder [17] grid-based stream processing
system. We demonstrate the feasibility of provenance collection through an ex-
ample of meteorology forecasting application [5]. We restrict our discussion to
provenance collection over data streams that monitor the physical environment,
such as the atmosphere, soil, ocean, etc. In future work we will examine the
computer-induced streams that support fault tolerance and reliability in a dy-
namic data driven application.

The remainder of the paper is organized as follows. Section 2 motivates a
new model for stream provenance tracking and discusses related work. Section 3
describes the data and collection models for stream provenance tracking.
Section 4 discusses an implementation of this provenance model in the Calder [17]
system and Section 5 demonstrates an application of this provenance service in
meteorology forecasting. Section 6 summarizes the conclusions and outlines the
future work.

48 N.N. Vijayakumar and B. Plale

2 Motivation and Related Work

Currently, provenance techniques do not target stream filtering systems and
hence only partially satisfy its needs. In this section, we discuss the challenges
identified in Section 1 and related work in this area. We have leveraged on the
provenance techniques proposed by the provenance solutions [6,14,9,18], in cre-
ating a new provenance tracking model for streams. A recent survey [12] provides
an overview of the existing provenance solutions for e-Science applications.

The first challenge is to identify the smallest unit for which provenance is col-
lected in stream filtering systems. A data stream is an indefinite sequence of time
ordered events, (e1, e2, . . . , en, en+1) where timestamp(en) < timestamp(en+1).
The virtual data schema used by the Virtual Data Grid project [6] represents
the datasets, their relationships and the computations. In streams, a dataset
corresponds to an event in a stream, so tracking provenance of datasets without
burdening the system is a challenge. Provenance information can be encoded
along with each dataset, but the events are not persistent and hence the prove-
nance information is not available to the stream filter system after the event is
processed. We would like to trace the source of events in derived streams to the
events of inputs streams without identifying every event individually.

The second challenge is in capturing the provenance history of streams and
filter states with low overhead on the system. Response time is crucial for stream
filtering systems. Thus, low overhead (in time, resources etc) for provenance col-
lection is of utmost importance. Log4j [8], which logs error and status messages
to a log file, for instance creates a non-trivial load on the service about which
it records data. Also aggregating the provenance traces into meaningful infor-
mation is difficult with systems like Log4j. Capturing the provenance of filter
execution is internal to the system and is expected to have a lower overhead
compared to provenance collection for data streams.

The third challenge is to trace the source of a stream long after the filtering
process has completed. We need to be able to clearly identify the environment
in which a particular set of events (subset of a stream identified by timestamp)
were generated. Also stream filtering systems adapt themselves to changes in
underlying resources [2,11]. This involves changes in query execution plans and
approximations when streams are not available. The provenance model needs to
accommodate these changes and preserve the details for future reference.

The PASOA [14] project focuses on collecting provenance information on in-
teraction between services in a workflow using a formalized protocol [7]. Karma
provenance service [13] is used in the LEAD [5] project for tracking provenance
of meteorological data and it’s usage in web-services. In stream filtering systems,
the provenance is collected for each stream and the filters that execute on the
streams. The communication between the internal components of the stream
filtering system is not as important as the entities as a whole. Security issues
in a SOA-based provenance system is discussed in [16]. Security of provenance
data is an important issue that is applicable to streams as well.

Finally, the provenance model needs to enable tracing the accuracy of a sub-
set of the stream to a specific time period. Deducing an accuracy value for an

Towards Low Overhead Provenance Tracking 49

derived event based on the accuracy of the input streams and stream filtering
environment is a challenge in itself. Trio [18], is a database system that aug-
ments conventional data model with accuracy and lineage and enables querying
using understandable extensions to SQL. This is made possible by associating
lineage and accuracy information with datasets in Trio. This is not applicable
to streams, because the events are not persistent. We need to be able to trace
accuracy of a subset of stream long after the stream was generated.

3 Provenance Tracking in Stream Systems

We propose the following data model and provenance collection model for stream
filtering systems to address the challenges discussed in previous sections.

Data Model
We identify three atomic units of provenance collection in streams: base streams,
adaptive filters and derived streams. Base streams are streams that are generated
outside the stream filtering system. The generation source may be a instrument,
experiment, or any process. Adaptive filters are declarative queries or application
code that are associated with a life time and continuously execute on the data
streams; Derived streams are streams that are produced by executing adaptive
filters on base streams or other derived streams.

We propose a timestamp based append only stack approach for collecting
provenance of streams and filters, and a bottom-up provenance tree to associate
the base streams and derived streams. By append only stack we mean a data
structure in which information can only be added not removed; and also that
the latest information identified by the timestamp represents the current status.
This provenance stack accommodates a set of information collected initially (base
provenance information like the input streams, filter used etc) and a list of
changes (dynamic provenance information like changes in stream rates, filter
mode changes etc). The provenance stack can to be stored as a file or as a
table in a database, in a persistent manner. Provenance information for a base
stream constitutes the data format of the stream, its sources, information on the
stream generation process, owner and permissions, user defined annotations and
metadata. When users specify the filter to be executed, it could be appended
with some annotation on its purpose. The execution plan and annotations serve
as base provenance information for the filters. For a derived stream, the base
provenance information is the list of input streams and the filters executed to
derive the stream. The derived streams refer to the provenance of their input
streams and that of their filters. Thus the lineage of a derived stream can be
traced using a provenance tree where the input streams are at the root level and
derived stream is at the leaf (bottom-up provenance tree).

System metadata (owner, permissions, etc) and user defined metadata, can be
stored as name value pairs or using predefined schemas. The model supports an-
notations by storing them as inline text or storing them independently as in [9],
and referring to them using URLs.

50 N.N. Vijayakumar and B. Plale

Low Overhead Provenance Collection Model
Our collection model is based on the assumption that each stream consists of a
sequence of time ordered events and each event is associated with a timestamp.
A subset of stream can be defined by a starting timestamp and an ending
timestamp. Data streams are subject to rate and accuracy changes. To store
the provenance of a stream, it is important to capture the changes in input
streams and associate them to the set of events in the derived stream that are
affected by the change. To facilitate this, the changes are logged with a starting
timestamp. It is sufficient to match a change with the starting timestamp as
it applies to the rest of the stream from that timestamp onwards. This model
helps to capture the provenance information of a stream dynamically and keep
the information up-to-date.

We need to be able to trace the source of a derived event and the stream
filtering environment under which it was produced, long after the filtering task
is completed. For this we only need to store the provenance history of all streams
and filters in a persistent storage and not the events themselves. After the base
provenance collection, information is logged only when something changes in
the environment and hence the overhead for provenance collection and need for
storage space are minimal. The provenance history is stored as one provenance
stack per stream or filter. By looking through the provenance information of
the derived stream, their input streams and the filters, one can trace the filter
states and conditions under which a particular set of events were derived. The
same methodology applies to deducing the accuracy of the derived stream events.
Given, that a well-defined formula exists in a particular domain to calculate the
accuracy of the derived stream from that of the input streams and the filter
being used, the provenance model can support it.

Example - A sample provenance document for a derived stream is given in
Figure 1. The stream under consideration is a derived stream (ID D0010) and
uses two input streams (base stream with ID B0011 and derived stream with ID
D0005). The stream was started at Feb-10-2006 at 13:00:00 hours and the steady
rate was 50 events/sec recorded 15 minutes after stream was registered. From the
change log, we can see that the stream B0011 was missing for about 10 minutes
during which the filters changed mode to approximate the missing stream. The
accuracy of the derived stream reduced to 85% during the approximation. From
the next change log timestamped at 13:45:00 it is known that the B0011 stream
came back up and hence the approximations were removed and the accuracy of
the derived stream increased to 100%.

4 Calder Provenance Service

Calder [17], is a distributed stream processing system that supports a ser-
vice interface for query processing. The Calder system, is an extension of the
dQUOB [11] project, and is composed of two subparts: a set of data manage-
ment services and a set of dynamically configurable query processing engines,

Towards Low Overhead Provenance Tracking 51

Fig. 1. Sample Provenance Document for a Derived Stream

as shown in Figure 2. Filters are specified as database queries expressed using
a subset of SQL. Calder uses an extended OGSA-DAI v 6 [10] grid data service
interface to support a data stream resource. The provenance service of Calder
implements the provenance models described in Section 3 and supports a service
oriented interface for querying the provenance information. It uses a native XML
database to store the provenance history of streams and filters. Users register the
base streams and filter queries by invoking the provenance service. Registration
of derived stream is made by the system when a new query is submitted. The
derived streams can then be retrieved in a timely manner as streams or asynchro-
nously as chunks from the rowset service (Figure 2). Once a stream/filter query
is registered, users can append it’s provenance stack with additional information
like annotations and metadata.

We appended the Calder system with a monitoring service to facilitate dy-
namic collection of provenance information during stream processing. The prove-
nance service interfaces with the monitoring service by an event-notification
interface. Figure 2 shows the architecture of Calder with provenance and mon-
itoring services. The provenance information propagates as shown in Figure 3.
The query planner is responsible for executing the filtering query. It updates the
monitoring service whenever the execution plan of a query changes. A query exe-
cution plan may change due to a set of streams going down or a processing node
failure. The monitoring service also gets updated by the query processing engines
when an event of interest occurs. Events of interest include rate changes, missing
streams, approximations and accuracy changes. The flexible service interface of
Calder enables a scalable framework. A single instantiation of the Calder system

52 N.N. Vijayakumar and B. Plale

Fig. 2. Calder Architecture Fig. 3. Provenance Updates in Calder

can spawn multiple internal services and query processor engines on-demand to
accommodate the load.

5 Application in LEAD

We discuss an application of Calder and it’s provenance service in the context
of the LEAD [5] meteorology forecasting project. Time bounded stream mining
is the dynamic deployment of data mining agents that run for a bounded period
of time, look for environmental events of interest, and report their results in the
form of a trigger that can be used to invoke subsequent behavior. Our approach
to on-demand data mining is to view the streams generated by heterogeneous
instruments as belonging to a single data domain over which processing can be
performed. The user interacts with the data domain through a declarative query.

The value to the user of time bounded stream mining can best be illustrated
by means of an example. An atmospheric scientist is studying spring severe
weather over the US Midwest. When a large storm front is moving in from across
the Plains, she wishes to kick off a small, regional forecast simulation wherever
storm cells emerge. She does this by sprinkling data mining agents in front of the
storm line, each configured to run for a specified time (say 3 hours). Each mining
agent executes a tight loop for the specified time looking at NEXRAD Level II
Doppler scans within a small geospatial region for severe storm precursors. If
the agent finds something of interest, it triggers a regional (small scale) forecast
prediction simulation. When complete, the simulation invokes statistical analysis
on the results. Figure 5 shows a sample continuous filtering query that can be
executed on the incoming Level II data for the given scenario. Calder dynamically
instantiates the query and query processing engine on a remote node, say on the
TeraGrid [15]. The provenance service collects information on each of the data
mining agents and streams used. It tracks changes in stream rates, temporary
outages if any, and the conditions under which the operation was conducted.
Such provenance information can be used to trace the result of a forecast model
back to one or more events in streams that caused them.

Towards Low Overhead Provenance Tracking 53

Fig. 4. Data Mining Agents in LEAD

RULE C:1

SELECT FROM level II as scan

WHERE

(classif (normalize(

MDA (scan in "bounding box")))

> "threshold"

START 2006-04-25 12:00:00

EXPIRE 2006-04-25 20:00:00

THEN

ACTION (threshold, scan)

Fig. 5. Query: Run the given data mining
algorithm on incoming data streams and
do the specified action

6 Conclusion

This paper discusses the unique challenges of low-overhead provenance collec-
tion in stream filtering applications. We introduce data and collection models
addressing these challenges and discuss a prototype implemented as part of the
Calder stream processing system. Our work is motivated through a real-world
application of meteorology forecasting. Our current effort is focused on eval-
uating the performance of the system in the context of the dynamic weather
forecasting. We are also working on extending the provenance collection service
into a larger context management service that provides usage patterns, history
of streams, user annotations and feedback on quality of streams.

References

1. Abadi, D. J. et. al.: The Design of the Borealis Stream Processing Engine. Confer-
ence on Innovative Data Systems Research (CIDR) (2005)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J.: Models and issues
in data stream systems, ACM Symposium on Principles of Database Systems,
(2002)

3. Chandrasekaran, S., et. al.: TelegraphCQ: continuous dataflow processing. Inter-
national conference on Management of Data (SIGMOD) (2003).

4. Chen, L., Reddy, K., and Agrawal, G.: GATES: A Grid-Based Middleware for
Processing Distributed Data Streams. IEEE International Symposium on High-
Performance Distributed Computing,(2004)

5. Droegemeier, K., et al.: Service-oriented environments in research and education
for dynamically interacting with mesoscale weather. IEEE Computing in Science
and Engineering, (2005), 7(6)

54 N.N. Vijayakumar and B. Plale

6. Foster, I., Vockler, J., Wilde, M., and Zhao, Y.: The Virtual Data Grid: A new
model and architecture for data-intensive collaboration. Conference on Innovative
Data Systems Research, (2003).

7. Groth, P., Luck, M., and Moreau, L.: A protocol for recording provenance in
service-oriented Grids. International Conference on Principles of Distributed Sys-
tems (2004).

8. Log4j. Apache Software Foundation. http://logging.apache.org/log4j/
9. Myers, J.D., Chappell, A., Elder M., Geist A., and Schwidder, J.: Re-Integrating

the Research Record. IEEE Computing in Science and Engineering (2003) 5(3):44-
50.

10. The OGSA-DAI Project. http://www.ogsadai.org.uk/
11. Plale, B., Schwan, K.: Dynamic querying of streaming data with the dQUOB

system. IEEE Transactions on Parallel and Distributed Systems, 14(4):422–432,
(2003).

12. Simmhan, Y. L., Plale, B., and Gannon, D.: A survey of data provenance in e-
science. ACM SIGMOD Record, (2005) 34(3):31-36.

13. Simmhan, L. Yogesh, Plale, B., Gannon, D., and Marru, S.: Performance Evalua-
tion of the Karma Provenance Framework for Scientific Workflows. Intl Provenance
and Annotation Workshop (2006).

14. Szomszor, M., and Moreau, L.: Recording and reasoning over data provenance in
web and grid services. Int. conference on ontologies, databases and applications of
semantics (2003).

15. TeraGrid. http://www.teragrid.org.
16. Tan, V., Groth, P., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., and Moreau, L:

Security Issues in a SOA-based Provenance System. Intl Provenance and Annota-
tion Workshop (2006).

17. Vijayakumar, N., Liu, Y., Plale, B.: Calder query grid service: Insights and exper-
imental evaluation. To appear in CCGrid (2006).

18. Widom, J.: Trio: A system for integrated management of data, accuracy, and lin-
eage. Conference on Innovative Data Systems Research (2005).

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 55 – 63, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Enabling Provenance on Large Scale
e-Science Applications

Miguel Branco1,2 and Luc Moreau2

1 CERN, European Organization for
Nuclear Research, CH-1201 Genève
Miguel.Branco@cern.ch

2 University of Southampton,
Southampton SO17 1BJ, United Kingdom

L.Moreau@ecs.soton.ac.uk

Abstract. Large-scale e-Science experiments present unprecedented data han-
dling requirements with their multi-petabyte data storages. Complex software
applications, such as the ATLAS High Energy Physics experiment at CERN,
run throughout Grid computing sites around the world in a distributed environ-
ment, with scientists performing concurrent analysis on data and producing new
data products shared among the collaboration. In this paper, we introduce a
multi-phase infrastructure to achieve data provenance for an e-Science experi-
ment. We propose an infrastructure to integrate provenance onto an existing
legacy application with strong emphasis on scalability and explore the relation-
ship between provenance and metadata introducing a model where data prove-
nance is made available as metadata through a separate reasoning phase.

1 Introduction

Large-scale e-Science experiments are underpinned by an iterative e-scientific process
by which data are produced, made available to the community, analyzed, reproduced,
verified, curated and shared. The success of e-Science experiments, or computation-
ally intensive sciences carried out in highly distributed network environments is often
defined by the ability to efficiently analyze data. An aspect to this efficiency is the
ability to understand the origin of data, which is usually referred to as provenance,
under analysis: whether it is raw data as received from the detector or the result of
possibly very complex computations. Consider the ATLAS detector for the Large
Hadron Collider [14] which will deliver hundreds of megabytes of raw data per sec-
ond when online. This data is expected to be available for studies for up to twenty
years. Scientists will be located in their institutes anywhere in the world, analyzing
data in isolation or as part of a small group or a larger community, possibly spanning
multiple institutions. Their analysis will be undertaken concurrently on data, produc-
ing derived data products that may or may not be relevant to others, shared or
validated.

In this paper, we present a novel provenance infrastructure suitable for large-scale
applications, particularly in how it copes with storage and handling of large data vol-
umes. We present a design with a novel reasoning phase enabling provenance to be

56 M. Branco and L. Moreau

made available as metadata. In addition, we introduce an approach for ease of integra-
tion of provenance onto existing legacy applications. The ATLAS High Energy Phys-
ics experiment was used as a scenario for this work.

We start by presenting the constraints for integrating provenance onto large-scale
e-Science experiments, then introduce our data provenance definition and present the
provenance infrastructure. Finally, we present related work and conclude.

2 Provenance for Large-Scale e-Science Experiments

Provenance is defined, in the Oxford English Dictionary, as the place of origin of
something, or the fact of something coming from a particular source. It is our goal to
provide e-scientists with the tools to the track origin of data, or data provenance, in
their experiments.

We start by defining broadly the environment and constraints on which we base
our work. Creating a model involves foremost understanding the restrictions of the
domain. As such, when modeling a provenance infrastructure, we took into account
the requirements and constraints typical of High Energy Physics.

We aimed to ease integration of a provenance infrastructure with the experiment’s
existing software infrastructure. Indeed, proposing an infrastructure that requires
dramatic changes to the software of existing e-Science experiments in order to sup-
port data provenance might certainly be a useful exercise but would prevent wide-
spread adoption, given the extensive legacy code base. Hence, grappling with the
legacy challenge – integration with existing systems – is a core concern from start
when defining, modeling and implementing the infrastructure.

Therefore, we have identified a small set of restrictions, which we believe are
common to many situations involving integration with a large-scale e-Science
experiment. These are: the inability to alter the majority of (deployed) software com-
ponents; difficulty of layering new middleware across the application; diversity of
design practices across existing software, as software components may not follow a
single architectural style; usage of complex workflows with interwingled interactions,
difficult to identify clearly; the presence of a highly distributed environment for pro-
ducing and analyzing data as well as for developing software.

Another restriction is the difficulty in understanding the very complex workflows
in production. As an example, a single ATLAS workflow involves several gigabytes
of software libraries, many remote accesses to databases (detector conditions, calibra-
tion, …) and the set of end-user configurable options only within the ATLAS analysis
framework are close to a thousand. The execution of the workflow is also a significant
computing effort, run on the Grid and partitioned onto multiple tasks executed in
parallel throughout computing sites around the world.

With the previous restrictions in mind we now define provenance. First we define a
documentation record as being the view of an intervenient actor (a client or a service)
on part of a process execution. We define data provenance properties as the relevant
set of descriptive properties of the data products for end users. We also define reason-
ing as the derivation of data provenance properties involved in the execution, by ap-
plying a reasoning algorithm to a set of documentation records. Finally, we define

 Enabling Provenance on Large Scale e-Science Applications 57

provenance as the end result of applying context-specific reasoning over a set of re-
cords that document the execution of a process, with the goal of deriving a set of
properties of the data products involved in the execution.

An important factor of our definition is that provenance is to be determined in rela-
tion to the data and not meant to determine e.g. the provenance of a workflow execu-
tion. Our goal is ultimately to allow users to understand the origin of a piece of data
by looking at the derived set of provenance properties for the data product under
analysis.

3 Creating Provenance-Aware Applications

Provenance-aware applications are defined as applications that implement our prove-
nance infrastructure. Legacy e-Science experiments are defined as complex, large-
scale experiments with an existing code base, not designed from start to provide
provenance for its end-users.

We start by introducing an important assumption regarding service-orientation ar-
chitectural style and then present our provenance infrastructure.

3.1 Why Service-Oriented Architectural Style is Useful

We take the view that complex software applications are typically designed using a
service-oriented approach [11] or can easily be modeled using service-orientation prin-
ciples. Integration with large-scale legacy applications is facilitated if coupling the
provenance infrastructure has minimal interference with the existing application. The
flexibility of the service-oriented model allows for relative ease of integration with
legacy systems (e.g. by identifying and wrapping the various legacy components as
services). This was seen in our analysis of the ATLAS Experiment where the various
components involved with the ATLAS Production System followed diverse architec-
tural styles but were easily modeled as coarse-grained services with simple interactions.

The service-oriented architectural (SOA) style can be defined as having actors
(services) which interact with one other by exchanging messages, following a service
description. Deciding which components, sub-set of components or composition of
components should be a service in SOA is a multi-dimensional problem exceeding the
scope of our work. For what concerns our infrastructure, the finer-grained the services
the greater is the potential understanding of the data flow, if we consider our infra-
structure relies on a protocol (presented below) that captures message exchanges
between services. Nonetheless having finer-grained services may lead to potentially
recording more information that may be redundant, unimportant and expensive to
record, store or analyze.

Alternate approaches to provenance often create new data and workflow modeling
languages that enable provenance of data to be fully determined, even mathematically
proving the models as complete. These approaches are especially common in the
context of relational databases [1,3,4]. While these works provide an important foun-
dation, the legacy challenge – integration into existing systems, particularly given by
the requirement to apply new modeling languages – prohibits its applicability in some

58 M. Branco and L. Moreau

contexts. It is precisely these scenarios that we intend to cover by providing a model
that impose little restrictions and changes to existing systems.

3.2 A Provenance Infrastructure

To create provenance-aware applications, we have defined a model consisting of four
phases: creating documentation, storing, reasoning and querying. The overall model is
shown on Figure 1.

Documenting a Process. Documenting the execution of a process translates into
creating documentation records, as shown on Figure 1. This is done in our infrastruc-
ture using PReP [9,10] which also defines a provenance store as the repository for the
documentation records. PReP defines a representation of process documentation suit-
able for service-oriented architectures, introducing a generic protocol for recording
provenance. An element of process documentation is called a p-assertion: an assertion
that is made by one of the intervening actors and pertains to a process. In PReP, actors
(clients and services) involved in a process may provide their view on an interaction.
The flow of the process is captured by relating several assertions, along with the cor-
responding clients and services.

The documentation records conform to a PReP schema. PReP does not limit the
scope of the assertions made by the intervenient actors – an actor may assert any in-
formation it wishes, as long as it pertains to the process - but in our usage of PReP we
assume actors assert a minimal set of assertions (typically the message exchanges and
the request-response relationship between messages) to facilitate integration with

Fig. 1. Logical model for a provenance infrastructure

 Enabling Provenance on Large Scale e-Science Applications 59

legacy applications – that is, not to alter significantly its existing and deployed ser-
vices, but by only wrapping the external interfaces to support PReP.

Storing Documentation Records for a Process. Once documentation records have
been created, they are stored and an index must be created to efficiently locate them.
The storing phase implements the storage of documentation records.

PReP has introduced the concept of a provenance store (p-store), as the repository
for documentation records. It is expected that documentation records may themselves
become a significant portion of the total data volume for large-scale experiments such
as ATLAS. Therefore in our infrastructure we have extended PReP’s p-store concept
and defined that documentation records may be replicated onto multiple physical
instances. Thus what PReP defines as a provenance store is for us a logically unique
provenance store, which may in our model have multiple physical instances. We have
defined the existence of a location service providing the single entry point to locate
documentation records (given a unique identifier) across multiple instances of the
same logical repository. The documentation records are write-once-read-many, mean-
ing that contents do not change after recording. This property allows for straightfor-
ward replication of data without concerns for concurrency. In addition our design
foresees (parts of) a physical instance of a p-store to be serialized on disk, and
shipped around computing sites for improved accessibility or archival. Also, we de-
fined the storage layer as providing secure access to documentation records by im-
plementing Grid-enabled authentication and authorization.

Reasoning over Documentation Records. Reasoning consists of analyzing docu-
mentation records and extracting a set of data provenance properties for the data ele-
ments involved in the workflow execution, as required by a reasoning algorithm. This
set of properties constitutes what we refer to in our model as the data provenance for
a data product. The definition implies that data provenance is overall dependant of
each particular reasoning algorithm. Often, reasoning algorithms depend on the con-
text (e.g. for ATLAS, ‘luminosity’ may be considered part of the data provenance for
certain categories of event data). Others are generic even across experiments from
different scientific domains (e.g. the software versions used during data processing).

Reasoning is typically done asynchronously in relation to the recording or storage of
documentation records: it begins after documentation records have been stored. To
reason over documentation records, the records must first be found and (parts of) its
contents retrieved. The generic location service, shown on Figure 1, allows physical
locations for documentation records to be resolved, typically by giving to the location
service a globally unique identifier. A reasoning algorithm may require more than a
single documentation record as input. Therefore it is usually necessary to find a set of
related documentation records, according to some strategy that is dependant of the rea-
soning being applied. A crawler is the component from our infrastructure that can navi-
gate throughout the contents of the provenance repositories (the p-store shown on Fig-
ure 1), finding physical copies of the required documentation records. The crawler takes
into account security policies for accessibility to the documentation records. Also, in
experiments with a large set of documentation records, typically only a sub-group of
those records can be analyzed at any given time. Restrictions range from time available
for reasoning to the accessibility of stored documentation records (e.g., for ATLAS
some documentation records may be archived onto tape which leads to a prohibitive

60 M. Branco and L. Moreau

access time for retrieval). When crawlers are actively navigating the documentation
records they may detect that certain records are not available, either permanently or
temporarily, and feed this information back to the reasoning algorithm.

Querying Newly Defined Data Provenance as Metadata. Ultimately, the goal is to
provide the output from the previously described reasoning phase to end users. This is
accomplished by defining new metadata attributes, which we referred to as properties,
associated with the original data products.

Reasoners operate on the documentation records to produce metadata that is kept
on a metadata catalog. User queries are then directed to the metadata catalog avoid-
ing the need for end-users to directly query the p-store. This two-phase model is de-
signed to cope with large volumes of data in a scalable manner. As a side effect, the
provenance infrastructure becomes a provider of metadata for the application. We call
tagging of data to the association of data with its data provenance. Tags also serve as
indexes to the data products allowing faster and user-friendlier understanding of the
data.

Motivation for a Reasoning Phase. One important feature of our infrastructure is
that end-users do not directly query over the documentation records contained within
the provenance store, but only the metadata catalog. In the next paragraphs, we pre-
sent a few motivations for this choice.

When analyzing a set of documentation records there is no guarantee that the in-
formation contained is consistent, as the documentation records may be incomplete
(e.g. the process may have not been fully documented or parts of the p-store may have
got lost due to a storage failure). This is particularly relevant for experiments with
long lasting workflows, such as the ATLAS experiment, where producing a single
dataset (single workflow) may last several months and be computed and stored
throughout tens of computing sites in parallel. In some scenarios, incomplete informa-
tion may still be sufficient to deduce data provenance for a piece of data, e.g. for
ATLAS, if the majority of the data products part of a dataset follow a certain software
version and the dataset was assigned to be processed at a single computing site, it is
safe to assume that all dataset partitions follow the same software version even though
the documentation records for each individual partition may not be known. This type
of statistical significance is very much dependent on the particular data provenance
property being derived (in the example: ‘software version’ for a ‘dataset’).

Another important motivation comes again from the large volumes of data we ex-
pect to handle. For ATLAS, not all documentation records may be accessible at all
times (e.g. parts of the provenance store may be archived onto tape) so it is up to the
implementers of the reasoner algorithm to take into account a set of context-specific
assumptions and decide how the reasoning infrastructure should react.

In addition, end-users should not be given the ability to directly query documenta-
tion records, as their queries may cause large sets of the p-store to be read. This is
particularly important considering the provenance store may spread many sites with
different performance for data access. Finally, in ATLAS, we have identified a large
set of provenance queries, which are repeatedly executed by many users (e.g. “what is
the set of algorithm versions used to produce dataset X?”), requiring large portions of

 Enabling Provenance on Large Scale e-Science Applications 61

the p-store to be read in order to derive the necessary provenance property. Formaliz-
ing the reasoning step so that the query to the p-store is performed only once by the
infrastructure and in the most optimal access conditions to the documentation records
saves many unnecessary queries, improving scalability and manageability of the store.

4 Related Work

Buneman et al [1] have presented models for determining data provenance (or line-
age, or pedigree) in the context of relational databases. A technique was also pre-
sented on [2] for optimizing archival of data based on recording semantic continuity
of elements, introducing two definitions: "where-provenance" - determining where a
piece of data came from and "why-provenance". Cui and Wisdom [3] further studied
“why-provenance” that can be defined as: “why is a certain piece of data in the data-
base” and “what tuples in a database D contributed to some piece of data d in query
Q(D)”. All the work described so far has been developed on the context of relational
databases, although authors claim is applicable elsewhere. [4] presents techniques to
understand provenance in the context of data warehouse systems. Silva et al [6] pre-
sent a model for "knowledge provenance" including proof-like information on how a
question-answering system arrived at the response. Woodruff and Stonebraker [7]
argue for fine-grained data lineage and present a method based on an inverse function
as the methodology to determine provenance. All these models were built using an
idealized, close world of databases. In this world many natural restrictions and simpli-
fications apply and query languages are often created to satisfy the underlying data
models (when new data models are not defined). The data warehouse concept cannot
apply directly since there are many concurrent, possibly inconsistent, repositories
available worldwide. Notions such as “distributed data”, “distributed applications”
have to be first- class “citizens” of our provenance model. Similarly ad-hoc ap-
proaches to provenance, such as electronic logs, can hardly cope with modern day e-
Science data demands. Electronic logs are typically updated by manual user input or
by simple scripts. In addition, e-logs do not necessarily have any associated reliability
in the information they contain since it is mostly updated by humans. Zhao et al. [13]
the provenance logs are extended by creating annotations based on concepts drawn
from an ontology. This allows records to be linked with each other by means of infer-
ence over the associated concepts. COHSE (Conceptual Open Hypermedia Services
Environment) integrates the ontology service with an annotation and linking service.

Chimera virtual data system [8] is based on the assumption that explicit representa-
tion of computational procedures used to derive data can be defined, enabling
on-demand data generation from analyzing the expressive representation of computa-
tional procedures.

Szomszor and Moreau [5] present a model for recording and retrieving provenance
on large-scale, dynamic and open environments such as those of Grids [12] and Web
services where a workflow enactment engine is responsible for interacting with the
VO services and is altered to submit information to a provenance repository.

This work is distinguishable from PReP [9,10] in that the former is a provenance re-
cording protocol. We build upon this protocol, detailing the storage handling, and defin-
ing an infrastructure to reason over PReP’s documentation records systematically

62 M. Branco and L. Moreau

exposing data provenance as metadata, allowing developers to asynchronously build
reasoning algorithms and providing end-users with a simplified query interface based on
a metadata representation.

Finally, large-scale legacy e-Science experiments require flexible methodologies to
handle the processing, publishing, analysis, verification and curation of data and none
of these alternate approaches was particularly designed to take into account the natu-
rally distributed environment on which these experiments work.

5 Conclusion

The proposed provenance infrastructure enables provenance-awareness for large-scale
e-Science experiments, particularly those handling large volumes of data. The infra-
structure allows for provenance recording, storage, reasoning and querying by identi-
fying the multiple stages for provenance integration in an application. It builds upon
PReP by specifying how the provenance recording protocol can be integrated with a
legacy application, handling large volumes of data in the provenance store and with a
separate reasoning phase. Asynchronous reasoning algorithms allow for a flexible and
scalable framework for data provenance whose representation relies on a metadata
catalog. In terms of future work we intend to continue prototyping the model identi-
fied in this paper and evaluate its applicability on a set of scenarios in the context of
the ATLAS Experiment.

References

1. P. Buneman, S. Khanna, and W.C. Tan. Data provenance: Some basic issues. In Founda-
tions of Software Technology and Theoretical Computer Science, 2000.

2. P. Buneman, S. Khanna, K.Tajima, and W.C. Tan. Archiving scientific data. In Proc. of
the 2002 ACM SIGMOD International Conference on Management of Data, pages 1–12.
ACM Press, 2002. ISBN 1-58113-497-5.

3. Y. Cui and J. Widom. Practical lineage tracing in data warehouses. In Proceedings of the
16th International Conference on Data Engineering (ICDE’00), San Diego, California,
February 2000.

4. J. Widom Y. Cui. Lineage tracing for general data warehouse transformations. In The
VLDB Journal, pages 471–480, 2001.

5. M. Szomszor and L. Moreau. Recording and reasoning over data provenance in web and
grid services. In International Conference on Ontologies, Databases and Applications of
SEmantics (ODBASE’03), volume 2888 of Lecture Notes in Computer Science, pages
603–620, 2003.

6. R. McCool P. Silva, D. McGuinness. Knowledge provenance infrastructure. IEEE Data
Eng. Bul l., 26(4):26–32, 2003.

7. Woodruff and M. Stonebraker. Supporting fine-grained data lineage in a database visuali-
zation environment. In ICDE ’97: Proceedings of the Thirteenth International Conference
on Data Engineering, pages 91–102, Washington, DC, USA, 1997. IEEE Computer Soci-
ety. ISBN 0-8186-7807-0.

8. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A virtual data system for repre-
senting, querying, and automating data derivation, 2002.

 Enabling Provenance on Large Scale e-Science Applications 63

9. P. Groth, M. Luck, and L. Moreau. Formalising a protocol for recording provenance in
grids. In Proc. of the UK OST e-Science second Al l Hands Meeting 2004 (AHM’04),
Nottingham, UK, September 2004.

10. P. Groth, M. Luck, and L. Moreau. A protocol for recording provenance in service-
oriented grids. In Proceedings of the 8th International Conference on Principles of Distrib-
uted Systems (OPODIS’04), Grenoble, France, December 2004.

11. Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Semantics, Proc-
esses, Agents. John Wiley & Sons, Ltd., 2005.

12. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. Lecture Notes in Computer Science, 2001.

13. Jun Zhao, Carole Goble, Robert Stevens and Sean Bechhofer. Semantically Linking and
Browsing Provenance Logs for e-Science. In International Conference on Semantics of a
Networked World Revised Selected papers, Springer LNCS 3226 pp 157-174, Paris,
France, June 17 -19, 2004.

14. ATLAS Computing Group, ATLAS Computing Technical Design Report, http://doc.
cern.ch/archive/electronic/cern/preprints/lhcc/public/lhcc-2005-022.pdf, June 20, 2005

Harvesting RDF Triples

Joe Futrelle

National Center for Supercomputing Applications
1205 W. Clark St., Urbana IL 61801, US

futrelle@uiuc.edu

Abstract. Managing scientific data requires tools that can track com-
plex provenance information about digital resources and workflows.
RDF triples are a convenient abstraction for combining independently-
generated factual statements, including statements about provenance[1].
Harvesting is a strategy for asynchronously acquiring distributed infor-
mation for the purposes of aggregation and analysis[2]. Harvesting typ-
ically requires that information be temporally scoped and attributed to
some creator or information source. An RDF triple asserts a fact with-
out attributing it to any actor or period of time, so the abstraction
must be extended to support typical harvesting scenarios. This paper
compares standard, conventional, and non-standard means of extending
RDF triples to associate them with attribution and timing information.
Then, it considers the implications of these techniques for harvesting and
presents some implementation sketches based on a journaling strategy.

1 Introduction

InNCSA’sCyberenvironmentsproject(http://www.ncsa.uiuc.edu/Projects/),
the need to capture provenance from multiple, distributed, heterogeneous portal
and workflow tools has led to the development of an RDF harvesting strategy. Be-
cause it is impractical to retool every aspect of the complex technical infrastructure
used in science to support RDF API’s, tools, and implementations, our approach
is to wrap these tools in middleware that makes minimal assumptions about its
environment, building consensus around simple abstractions such as log files and
journals.The combinationof abottom-up implementation strategywithRDF’sde-
scriptive power has given our social networking and data mining efforts diverse new
sources of provenance information with relatively little investment in new frame-
works, protocols, and API’s.

2 Conceptual Overview

Facts and Contradiction. Resolving contradictions across multiple, inde-
pendently-produced RDF graphs requires rules that sometimes depend on
second-order descriptions. For instance, imagine a reasoner that resolves con-
tradictions between pairs of statements by ordering them alphabetically and
rolling loaded dice. The dice-loading parameters are “global” in that they are

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 64–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Harvesting RDF Triples 65

independent of the statement pairs. Now imagine a reasoner that resolves contra-
dictions between pairs of statements by selecting the statement that was made
by the most trusted actor. In that case the trust parameters are “local” in that
they are derived in part from second-order information about which actor made
which statement[3].

Actors and Statements. Actors in a distributed environment produce and
consume information. Since it often matters which actor produced which infor-
mation, representing the information produced by actors as triples is insufficient
to enable reasoning about the information, since the triples alone do not contain
the context required to parameterize rules that depend on who said what. If ac-
tors can be uniquely identified, managing that contextual information amounts
to associating an actor’s identity with each triple or set of triples. Contradictions
can then be resolved in any number of ways, e.g., trust ranking.

Time and Negation. In general, models change over time[4]. RDF has no stan-
dard means to scope assertions temporally, which would enable contradictions to
be resolved based on sequencing and other temporal logic. Time is an especially
useful kind of contextual information, because it is “global” and therefore does
not require coordination between data producers beyond clock synchronization,
a solved problem[5].

3 Representation

RDF reification provides a standard way of associating arbitrary contextual in-
formation with any triple[6], including attribution and timing. However, repre-
senting attribution and temporal information about triples efficiently requires
constructs that aren’t available in RDF.

Reification. Second-order descriptions in RDF are achieved via reification,
in which an RDF triple p(S,O) is represented by, at minimum, four triples:
rdf:type(T,rdf:statement), rdf:subject(T,S), rdf:predicate(T,p) and rdf:object
(T,O) where T is a URI uniquely identifying the triple. Any other contextual
information can be represented by triples in the form p′(T,O′) for any p′ and O′.
This is inefficient to implement, because it multiplies the number of triples that
must be processed at least fivefold, and in some cases requires the generation
and management of a globally unique ID for each triple.

Journaling. In an application, an RDF graph must be built procedurally, one
triple at a time. In a distributed environment, a number of actors may modify
a graph over time by adding and deleting triples. By logging each modification
in a journal (e.g., log file), sufficient contextual information can be gathered to
enable attribution and time-based decisions. For instance, the actor responsible
for each modification, the type of modification (add/delete), and the time of the

66 J. Futrelle

modification can be recorded along with the triple being modified. Computing
time and actor-scoped subgraphs from the journal is simple, but its worst-case
performance is linear with the number of modifications. A journal is a convenient
source of time and actor-scoped triples, but not an efficient means of accessing
them by attribution and time.

n-Tuples. A simple way of adding information to a tuple is to add one or
more terms. Declarative systems such as Prolog allow arbitrarily many terms
per statement. RDF allows a fourth term for literal types, but is not generally
extensible to n-tuples. Attribution and time can be added to RDF tuples by
adding an actor term and a time interval term, or an actor term and two time
terms for the start and end of the time interval. Since these n-tuples cannot
be represented as RDF statements, a different representation is required which
can be processed to produce time and actor-scoped subgraphs. Given such a
representation, useful classes of problems concerning attribution and time can
be resolved directly against it using abstractions that do not support efficient
graph traversal, such as SQL.

4 Harvesting

Harvesting is a strategy for distributing data in which clients typically retrieve
data from servers asynchronously and store it for later processing. Harvesting
clients make decisions about which data to retrieve based on contextual infor-
mation about how likely it is to have changed since it was last retrieved (e.g.,
HTTP caching directives) or by partially exposing their decision criteria to a
server (e.g., OAI-PMH date range queries).

Harvesting Triples. It is not generally possible to harvest every triple from
a triple store without contextual information, for the same reason that it is not
generally possible to index every page on the web–both the web and RDF graphs
are not guaranteed to be completely connected. Minimally, a graph store must
expose information about which subgraphs may have changed over a given time
interval to enable a harvesting client to walk the graph and find all information
newer than the start of the time interval. Maximally, a graph store could expose
a complete change log, as in the journaling strategy.

Multi-tier Approach. To improve efficiency, several processing stages can be
interposed between actors modifying a triple store and reasoning engines carrying
out high-level operations such as rules-based inference. Figure 1 introduces a
three-tier approach.

In this example, an actor (“joe”) adds a triple p(S, O) to a triple store. The
triple is journaled along with the operation (“add”), actor (“joe”) and timing
(tk) information. An n-tuple store, consuming the journal entry, adds an en-
try recording an open time interval (tk to t∞). If the actor then deletes p(S, O),

Harvesting RDF Triples 67

Triple
store

Actor
"joe"

add p(S, O)

Journal

p(S, O, add, "joe", tk)

n-Tuple
store

p(S, O, "joe", tk, t)

Fig. 1. Harvesting n-tuples from a journaling triple store

a journal entry p(S, O, delete, “joe”, tk+1) will be written and the n-tuple store
will close the interval by modifying the relevant tuple as p(S, O, “joe”, tk, tk+1).

The n-tuple store can make decisions about what triples to harvest using
simple range and set membership queries. For instance it could trivially reject
modifications from untrusted actors or delete all tuples with closed time intervals
as a means of discarding non-current information.

Actors can write journal entries directly to a file or network stream instead
of modifying a triple store. Any number of simple text formats suffice for repre-
senting and transporting journal entries, and journals generated by independent
actors can be merged using simple, generic operations. The scenario is illustrated
in Figure 2.

In this example, the triple store is populated with a triple added by means
of an actor (“joe”) writing a journal entry. The advantage of this scenario is
that because the journal is rolled up into an n-tuple store containing attribution
and timing information about each triple, the triple store can be populated only
with the triples relevant to some reasoning task with respect to attribution and
timing.

5 A Practical Implementation

Harvesting triples can be accomplished through the multi-tier approach outlined
above. In this section, a practical proposal for implementing that approach is out-
lined. The strategy outlined in this section is currently being used in NCSA’s Cy-
berenvironments project (http://www.ncsa.uiuc.edu/Projects/index.html)
to link workflow provenance to social networking analysis codes.

68 J. Futrelle

Actor
"joe"

Journal

n-Tuple
store

p(S, O, "joe", tk, t)

p(S, O, add, "joe", tk)

Triple
store

add p(S, O)

Fig. 2. Harvesting triples from a journaling actor

Journaling. In this section we present an RDF representation of journal entries
and several format realizations, including standard RDF/XML and nonstandard
extensions to N-Triples.

The proposed RDF representation is based on reification, which is used in
conjunction with a proposed vocabulary representing attribution and timing. We
propose that attribution and timing information for each triple be represented
using Dublin Core creator and date properties, using an actor URI for the value
of the creator element and an ISO 8601 timestamp for the value of the date
element. To denote the operation the actor performed on the model (e.g., add
or delete) we introduce the wsww:operation property where wsww is a prefix for
the example “who said what when” namespace URI http://tupeloproject.
org/wsww. Possible values for the wsww:operation property are wsww:add and
wsww:delete.
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:wsww="http://tupeloproject.org/wsww">

<rdf:statement rdf:about="http://example.org/#genid927">

<rdf:subject rdf:resource="http://example.org/#someSubject"/>

<rdf:predicate rdf:resource="http://example.org/#somePredicate"/>

<rdf:object rdf:resource="http://example.org/#someObject"/>

<dc:creator rdf:resource="http://example.org/#joe"/>

<wsww:operation rdf:resource="http://tupeloproject.org/wsww#delete"/>

<dc:date rdf:dataType="http://www.w3.org/2001/XMLSchema#dateTime>

2005-12-01T15:09:00Z

</dc:date>

</rdf:statement>

</rdf:RDF>

Harvesting RDF Triples 69

This syntax is verbose and requires the generation of a unique ID per journal
entry. To mitigate these problems, we extend the N-Triples format so that each
line contains not just the subject, predicate, and object but also the actor URI,
operation, and an ISO 8601 timestamp. In this extended notation, the previous
example is written on a single line as follows (←↩ denotes the continuation of a
line):

<http://example.org/#someSubject> ←↩
<http://example.org/#somePredicate> ←↩
<http://example.org/#someObject> ←↩
<http://example.org/#joe> ←↩
<http://tupeloproject.org/wsww#delete> ←↩
2005-12-01T15:09:00Z .

The extended N-Triples representation does not require generating a unique
ID and can be compiled into standard representations should an application
require it.

n-Tuples in SQL. This section outlines an SQL implementation of an n-tuple
store which can be used to index a stream of journal entries. This example im-
plementation has been designed for conceptual correctness and is not optimized.

The n-tuples can be represented using the following table definition:

CREATE TABLE ntuples (
subject VARCHAR(255) NOT NULL,
predicate VARCHAR(255) NOT NULL,
object VARCHAR(255) NOT NULL, actor VARCHAR(255) NOT NULL,
start_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP NOT NULL,
end_time TIMESTAMP,
CHECK (end_time IS NULL OR start_time <= end_time),
CHECK (NOT EXISTS
(SELECT * FROM ntuples nt
WHERE nt.subject = subject
AND nt.predicate = predicate
AND nt.object = object
AND nt.actor = actor
AND (start_time, end_time) OVERLAPS

(nt.start_time, nt.end_time))));

The table corresponds closely to the abstract n-tuple model. In this represen-
tation, the start_time and end_time columns represent a half-open interval
(containing the start time but not the end time) over which the triple is asserted
to be a member of the set of all non-deleted assertions by the actor. A NULL
end_time indicates that the actor has not deleted the triple since start_time.
The CHECK constraints reject intervals whose end times precede start times, as
well as overlapping identical statements by the same actor.

70 J. Futrelle

Adding a triple consists of performing an INSERT:

INSERT INTO ntuples
(subject, predicate, object, actor, start_time)

VALUES (’http://example.org/#someSubject’,
’http://example.org/#somePredicate’,
’http://example.org/#someObject’,
’http://example.org/#joe’,
’2005-11-28T03:09:00Z’);

Deleting a triple consists of performing an UPDATE:

UPDATE ntuples
SET end_time = ’2005-12-01T15:09:00Z’
WHERE subject = ’http://example.org/#someSubject’
AND predicate =’http://example.org/#somePredicate’
AND object = ’http://example.org/#someObject’
AND actor = ’http://example.org/#joe’
AND end_time IS NULL;

Retrieving n-tuples based on trust is simple. Suppose the table trusted_actors
contains a column called actor containing the URI of each trusted actor. The
following query returns n-tuples created by trusted actors:

SELECT * FROM ntuples
WHERE actor IN (SELECT actor FROM trusted_actors);

Open Archives Implementation. The Open Archives Initiative Protocol for
Metadata Harvesting (OAI-PMH) is a popular harvesting framework. This sec-
tion outlines how the n-tuple abstraction can be adapted to OAI-PMH’s model
of a metadata collection.

OAI-PMH requires that a service expose one or more sets of records. A record
is a time-stamped, identified item that can be retrieved in one or more metadata
formats. It can also be deleted, and an OAI-PMH service is required to report
that fact in response to queries about the record rather than acting as if the
record never existed.

The OAI-PMH model matches the n-tuple model in several important ways.
First, the n-tuple model contains information about the time at which triples
were added and/or deleted. Second, sets of triples can be extracted from the n-
tuple store and represented in several metadata formats, including RDF/XML
and N3.

The most important mismatch between the n-tuple model and the OAI-PMH
model is the granularity of description. In the n-tuple model, each triple is asso-
ciated with attribution and timing information, but not otherwise identified. In
OAI-PMH, a record is generally a collection of statements (e.g., a set of Dublin
Core fields) associated with a single identifier and set of timing information.
A closer match in the n-tuple model to OAI-PMH’s concept of a record is the
subject. The set of all non-deleted triples on a subject can be considered an

Harvesting RDF Triples 71

OAI-PMH record, whose identifier is the subject URI and whose timestamp is
the most recent add or delete time from among the set of all triples, deleted or
not, on the subject.

In SQL, the following query will retrieve all the non-deleted triples on a given
subject (where the subject is ?s):

SELECT subject, predicate, object FROM ntuples
WHERE subject = ?s AND end_time IS NULL;

This is based on the simplifying assumption that the n-tuple store does not allow
an actor to delete a triple at some specific time in the future; that case could be
handled by adding the clause OR end_time > CURRENT_TIMESTAMP.

Determining OAI-PMH timestamp for a record in SQL from the n-tuple table
requires some temporal arithmetic, which can be accomplished with the following
view:

CREATE VIEW oai_ts
AS SELECT subject, MAX(upd_time) upd_time
FROM
(SELECT subject, MAX(start_time) upd_time FROM ntuples
GROUP BY subject UNION
SELECT subject,
MAX(COALESCE(end_time, CURRENT_TIMESTAMP)) upd_time

FROM ntuples GROUP BY subject)
GROUP BY subject;

Again, triples explicitly deleted in the future can be handled with a more complex
query.

Actors in the n-tuple model make reasonable OAI-PMH sets, although a prac-
tical issue is how to map actor URI’s to OAI-PMH set identifiers. A record’s
membership in a set corresponding to an actor can be determined by finding
any n-tuple with the record’s subject and the actor URI. The set of all sets cor-
responding to actors is also simple to compute in SQL from the n-tuple model
using SELECT DISTINCT(actor).

6 Conclusion

Harvesting heterogeneous information from multiple sources is critical to en-
abling collaborative e-science, and RDF provides a convenient abstraction for
integrating heterogeneous information. To harvest RDF triples, it is useful to
know “who said what when.” Implementing this second-order information us-
ing RDF reification scales poorly. Instead, extending the representation of RDF
triples to include information about attribution and timing can enable harvesting
decisions without the need for a fast triple store.

In this paper, I have outlined a three-tier approach to harvesting RDF triples
in which a journal is “rolled up” into an n-tuple store before being compiled into

72 J. Futrelle

an RDF graph. The three tiers in the approach correspond to example imple-
mentations based on files, relational databases, and triple stores. The practical
feasibility of the three-tier approach is demonstrated by harmonizing it with
OAI-PMH, a standard protocol for metadata harvesting. The resulting approach
supports reasoning in a dynamic, loosely-coupled, collaborative environment.

This strategy is currently in use as part of the CLEANER / CUAHSI Cyber-
Collaboratory project at NCSA, a collabration, data management, and work-
flow portal for environmental scientists and engineers. We use a logging API
to capture user actions from workflow execution as well as asynchronous and
synchronous collaboration and use the harvested triples to perform social net-
work analysis and provide customized recommendations to users to help guide
them through complex sets of resources and tools. For more information see
http://cleaner.ncsa.uiuc.edu/home/.

References

1. Wong, S. C., Miles, S., Fang, W., Groth, P., and Moreau, L. Provenance-based
validation of e-science experiments. In Proceedings of 4th International Semantic
Web Conference (ISWC’05), volume 3729 of Lecture Notes in Computer Science,
pages 801-815, Galway, Ireland, November 2005. Springer-Verlag.

2. Lagoze, C. and de Sompel, H. V. 2001. The Open Archives Initiative: Build-
ing a low-barrier interoperability framework. http://www.cs.cornell.edu/lagoze/
papers/oai-jcdl.pdf. http://citeseer.ist.psu.edu/lagoze01open.htm

3. Heymans, S., Nieuwenborgh, D.V., Vermeir, D. Preferential reasoning on a web of
trust. In Proceedings of 4th International Semantic Web Conference (ISWC’05),
volume 3729 of Lecture Notes in Computer Science, Galway, Ireland, November
2005. Springer-Verlag.

4. Huang, Z., and Stuckenschmidt, H. Reasoning with multi-version ontologies: a tem-
poral logic approach. In Proceedings of 4th International Semantic Web Conference
(ISWC’05), volume 3729 of Lecture Notes in Computer Science, Galway, Ireland,
November 2005. Springer-Verlag.

5. “Network Time Protocol,” IEFT RFC 958.
6. “RDF Semantics.” W3C Recommendation, 10 February 2004. http://www/w3.org/

TR/rdf-mt/#Reif

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 73 – 81, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Mapping Physical Formats to Logical Models to Extract
Data and Metadata: The Defuddle Parsing Engine

Tara D. Talbott1, Karen L. Schuchardt1, Eric G. Stephan1, and James D. Myers2

1 Pacific Northwest National Laboratory, P.O. Box 999 Richland, WA 99352, USA
{Tara.Talbott, Karen.Schuchardt, Eric.Stephan}@pnl.gov
2 National Center for Supercomputing Applications, 1205 W. Clark St. MC-257

Urbana, IL 61801
jimmyers@ncsa.uiuc.edu

Abstract. Scientists, motivated by the desire for systems-level understanding of
phenomena, increasingly need to share their results across multiple disciplines.
Accomplishing this requires data to be annotated, contextualized, and readily
searchable and translated into other formats. While these requirements can be
addressed by custom programming or obviated by community standardization,
neither approach has ‘solved’ the problem. In this paper, we describe a
complementary approach – a general capability for articulating the format of
arbitrary textual and binary data using a logical data model, expressed in XML-
Schema, which can be used to provide annotation and context, extract metadata,
and enable translation. This work is based on the draft specification for the
Data Format Description Language and our open source “Defuddle” parser. We
present an overview of the specification, detail the design of Defuddle, and
discuss the benefits and challenges of this general approach to enabling
discovery, sharing, and interpretation of diverse data sets.

1 Introduction

Scientists generate a wide range of data files in the course of their research. These
files are generated from instruments performing measurements on physical systems,
computer simulations predicting aspects of a physical system, and manually
assimilated knowledge (often in spreadsheet form.) Individual file formats can vary
greatly depending on the particular experimental requirements and often evolve
rapidly over time. Motivated by the desire for systems-level understanding of
complex phenomena, this data increasingly needs to be shared across disciplines and
transformed for different analysis contexts. Beyond standard file formats, which have
met with various levels of success [1-3], scientists employ strategies of custom
programming and prescriptive parsers to support sharing and collaboration of their
file data. Custom parsers can be effective and efficient but problems arise as the
number of formats increases. Prescriptive parsers such as NetCDF [4] and HDF [5],
where the data must adhere to a pre-specified, but self-describing format and structure
have been successful within certain communities, but not taken hold in others. Where
standards are successful, the standards tend to become legacy formats themselves
over time as new methodologies or instruments are developed. Additionally, there is a

74 T.D. Talbott et al.

push to retain raw digital data for preservation purposes [6]. In short, non-
standardized and legacy file formats will continue to play a crucial role in scientific
research necessitating technologies to enable sharing, discovery and transformation of
these formats.

The Extensible Markup Language (XML) allows us to represent the logical
structure of data elements in a file, making it available to various tools, such as
databases and query languages. XML tagged data can be easily manipulated using a
higher level language such as XML Stylesheet Language Translation (XSLT) and
formatted for viewing on multiple devices, or translated into different formats.
However, most scientific data is not currently in XML and there are often benefits to
maintaining custom formats. For example, XML tagged data tends to be quite verbose
and not all data types, arrays in particular, are handled well. However, extending
XML technology to handle arbitrary un-tagged, binary and textual files would make
the extensive XML tools applicable to scientific data and provide analogous benefits.

Descriptive parsers can be used to link raw physical formats into a logical model
expressed as XML. With this approach, the existing data structure, the format of the
data types and the mechanisms to translate it are defined in a descriptor file. A
generic parser engine ingests the descriptor and the data, applies the transformation,
and produces the desired result. Such a generic engine can be applied to metadata
extraction as well as data transformation to greatly reduce the effort required to
discover and interpret legacy data, automate transfer of data from one program to
another (e.g. acquisition to analysis to visualization), and support the reuse and fusion
of data across multiple domains allowing scientific communities to discover, manage,
and share diverse data sets while maintaining it in its original format.

2 Background

Recently, descriptive parser approaches have received increasing attention. One
effort, the Binary Format Description (BFD) language, was based on the Extensible
Scientific Interchange Language (XSIL) [7], a language designed for processing
scientific data, including multiple streams and arrays. The BFD parser, in
conjunction with XSLT, was used by scientific computing environments for the
extraction of metadata and data translation. While successful in some cases, there
were many cases where BFD capabilities were not rich enough. For example, BFD
was unable to map to an arbitrary XML schema, requiring an additional XSLT
translation. The research from the BFD effort contributed to the production of the
parser described in this paper.

The BinX descriptive parser supports the description of the content, structure and
physical layout (endian-ness, blocksize…) of binary files. BinX was designed to
enable transparent transfer of data between diverse platforms. However, BinX was
designed to support only binary files and, as with BFD, supports limited semantics
[8]. An independent, but similar effort is the Earth Science Markup Language
(ESML) which is built with the intent that users can write external files to describe the
structure of any earth science dataset. Applications can utilize the ESML library to
parse this description file and transparently decode the data format [9]. However, the
library contains several limitations; not all features, such as handling multiple

 Mapping Physical Formats to Logical Models to Extract Data and Metadata 75

wildcards, ‘if’ statements, or specific indexes of collections, are implemented, and,
similar to BFD, a predefined XML model limits extensibility [10]. Another effort,
designed primarily for understanding space data, the Enhanced Ada SubseT (EAST),
allows users to describe a given data format and use tools to access data in that format
[11]. Finally, the Universal Parsing Agent (UPA) was developed to ingest, transform,
and add descriptive content markup to text data. UPA provides an accessible user
interface and batch processing capabilities for handling large datasets [12]. All of
these efforts have achieved success in their targeted communities but have limitations
with respect to the type of data supported, extensibility, or expressiveness.

A recent development in descriptive parsers is the Data Format Description
Language (DFDL) [13] specification from the Global Grid Forum. DFDL proposes to
describe existing data formats, both binary and text, in a manner that makes the data
accessible through generic mechanisms. DFDL is motivated by the realization that
BFD, BinX, commercial tools, and domain specific efforts such as ESML, all shared a
common goal and can use a common syntax while combining concepts of these
languages. The specification is based on the XML Schema, which is used to define
the structure and semantics of XML documents and to annotate schemas for the
benefit of human readers and applications. In DFDL, XML’s extensible annotation
mechanism is used to describe the data and transformations needed to populate that
logical model from the input stream. The input is a sequence of bytes and the output
is an XML Information Model, i.e., a set of items from the XML Information Set
[14]. The transformations may require several stages (e.g., from bytes to string, then
from string to integer). The DFDL specification is still under development, but is
expressive enough to handle many non-trivial parsing requirements.

Fig. 1. Example of a DFDL schema with input data and results

For example, consider the UTF-encoded data, associated logical XML model, and
sample DFDL schema shown in Figure 1. The DFDL schema is composed of an XML

76 T.D. Talbott et al.

Schema describing the XML model and DFDL specific annotations describing the
format of the underlying data. As shown, a ‘sequence’ of element definitions
describes the logical XML model that will appear in the result. The ‘appinfo’
annotations, known as properties, describe the format of the underlying data stream.
The data type is defined as text by the ‘repType’ property. The ‘charset’ property
defines how the incoming data stream is to be mapped to text. Finally, the
‘separator’ property describes how variable length text should be read. It can be
defined as a regular expression or simple text string. This example shows a very
limited subset of the available annotations and properties in order to provide a
perspective on the DFDL approach. Table 1 lists important capabilities of DFDL. A
more detailed description of DFDL capabilities is beyond the scope of this paper.

Table 1. Key DFDL Capabilities

Support for multiple streams Conditional logic (if, choice, any)

Basic math operations (+,-,*,/) Looping

Pattern matching for text/binary delimiters External transforms

Reference values within schema (for sequence length, delimiters, etc.)

Layering (hidden elements that can be referenced, but do not display in output)

Extensibility of basic capabilities of the DFDL parser to allow custom types and conversions

In order to help define the components necessary in the language, several DFDL
parsers are currently in development. One such implementation is the open-source
Defuddle parser [15]. Defuddle supports translation and metadata extraction of
arbitrary text and binary data through the use of DFDL schema descriptor files. It
also optionally supports the application of style sheets to the output. The Defuddle
parser is both a proof of concept of the DFDL specification and a mechanism for
testing concepts which can feed back into the specification process. A specific aim of
Defuddle is to demonstrate that an efficient, generic parser can be built and that such
a parser can effectively address real-world examples.

3 Parser Design

Our design leverages existing tools for automatically parsing XML documents within
the context of a logical model. Providing a layer of automation that makes it easy to
manipulate XML encoded data in terms of a higher level logical model rather than
dealing with the low level node structure directly [16]. As a result, we chose to extend a
Java/XML binding compiler based on the Java Architecture for XML Binding (JAXB)
specification. JAXB provides a convenient way to use XML Schema to automatically
parse XML instance documents into Java classes corresponding to that schema From a
design standpoint, this solution provides an off-the-shelf ingestion engine for the logical
model (XML Schema), a dynamic logical model compiler (Java classes), and an XML
document generator for streaming data from the classes to XML.

 Mapping Physical Formats to Logical Models to Extract Data and Metadata 77

Figure 2 illustrates the conceptual design of the Defuddle parser. At run-time, the
schema is ingested and processed to generate Java classes representing components of
the logical model. These classes are then compiled using the standard Java compiler.
The translation of the input data source(s) is then initiated using the JAXB XML
marshaller. As the java objects are streamed by the parser, the logical model is formed
by loading the required values from the data file. The XML model is streamed to an
output that can then be processed by standard XML tools. The class generation
process is performed automatically before translations are performed, but the
compiled classes can be cached to improve performance on subsequent runs.

Fig. 2. Conceptual design of the Defuddle Parser

Defuddle is based on the Apache JaxMe project [17], an implementation of the
JAXB specification. Defuddle extends the JaxMe class generator to provide the
functionality needed to load data into the model and complete the transformation.
Leveraging JaxMe greatly simplified the development of Defuddle. Figure 3
illustrates the types of classes generated by JaxMe and the Defuddle extensions that
implement various features. Each complex type is represented by three classes: the
type implementation, type driver, and type handler. Within the type implementation,
values such as elements and attributes are accessed from the data stream using
get<Name> methods. Vanilla JaxMe generated type implementations store and return
the values, Defuddle adds content to these ‘get’ methods, which uses the annotation
handlers and data provider along with other built-in Defuddle classes, such as the type
readers, condition evaluators, and external transforms, to parse the required data.

While the complexType implementation classes provide information to parse
individual values, the parser needs additional information to understand the structure
of the data. This includes the order of the elements, the location of sequences, and the
type of data to be marshaled. This functionality is found in the complexType drivers.
The basic ordering and ‘get’ calls are generated by JaxMe. Defuddle extensions
check for layers, hidden elements, and control sequences of unknown lengths. They
also choose the correct element in conditional statements, and pass in the data
provider and annotation values. The third kind of generated class is the complexType
Handler; these classes are generated almost entirely by the JaxMe generator and
chiefly control the marshalling of the classes to XML, ensuring the correct state when
starting/closing elements and writing data.

78 T.D. Talbott et al.

Fig. 3. Defuddle Extensions to JaxMe

Along with the JaxMe extensions, Defuddle contains additional classes to aid in
parsing as shown in the right side of Figure 3. Various readers are used for
converting values from one type to another, for example from byte to string, from
string to multiple strings, and from string to int. Each of these readers use the
annotation properties specified in the schema. Defuddle also uses a data provider to
retrieve from the data stream, referencing other values in the schema, or for handling
multiple input sources. When evaluating conditions, the annotations are passed on to
a condition evaluator to determine the correct element to read. Defuddle also
supports the calling of external transformations and integrating the results into the
Defuddle transformation.

4 Discussion

Defuddle currently supports all of the features listed in Table 1. To validate the
accuracy of the parser, a collection of example schemas and files have been
composed. These cover a broad range of capabilities such as reading basic
binary/ascii numbers, basic math operations, the ability to reference other elements
within the schema, and the ability to read from multiple files or input streams. In
practice, it is necessary to use a combination of these features. We have demonstrated
the parser capabilities on several types of actual formats from the biological and
chemical sciences including: CHEMKIN binary solution files, NWChem Molecular
Dynamics property files and unstructured output files, and MicroArray and Protein-
Protein Interaction Spreadsheets.

One goal of Defuddle is to demonstrate that an efficient, generic parser can be built
to address real-world examples. Performance is of particular interest; can a generic
descriptive parser perform as efficiently as a custom parser? A generic, pre-compiled,
parser can be optimized based on the types of data and access pattern to make use of
lazy parsing, avoiding unnecessary reading and caching of data. Pre-compiled
schemas can also be cached to eliminate the code generation /compilation cycle. We
are researching ways to better enable rapid, random access to partial data sets from
tightly structured data, and to support the parsing of large data sets (through memory

 Mapping Physical Formats to Logical Models to Extract Data and Metadata 79

mapping and streaming). Additionally, with a code-generating approach, the binder
can make choices when creating the schema classes to handle much of the actual
parsing, such as choosing the type and length of data to be read, pre-computing the
size of each data element, and requesting individual elements in tightly structured data
can be served by seeking to the exact point in the data stream rather than parsing all
intermediate values. For example, for a list of 100 binary floating point numbers, the
location of the xth value can be computed based on the actual size of the numbers and
the index of the desired number. Unfortunately this enhancement is not possible
when reading varying length text, in which one must look for a separator between
each element, and the size of the elements can vary based on the data being processed.
Even with variable length data, intelligent parsing can still be achieved by estimating
the length of the next element to read before evaluating for a delimiter, based on the
size of previous elements in the sequence. If the delimiter is found before the end of
the text read, the parser is able to backtrack to the position in the stream immediately
after the delimiter, ensuring that no data is accidentally skipped. This estimation is
often very close and speeds up parsing considerably.

When retrieving data, a more complex transformation than mere extraction may be
required; this can be handled through the idea of layering. With layering, the user
can describe intermediate forms of the data which are not represented in the final
result. These layers are represented in the DFDL language through the use of XML
Schema annotations which specify how and where each layer should be read in a
stream; they also specify a name which can later be used to reference data within the
layer. A layer can be accessed using annotations similar to the method used to
reference other elements within the schema.

Put into practice, this type of generic parsing capability can provide a cornerstone
to data sharing and collaboration environments by providing metadata extraction,
translations, data slicing, and data fusion capabilities. For example, the Scientific
Annotation Middleware (SAM) project provides configurable, automated metadata
extraction of uploaded resources [18]. Combinations of XSLT stylesheets, Defuddle
schemas, and web services are registered with SAM and run dynamically to extract
metadata. For example, when a binary data file is uploaded to SAM, registered
DFDL and XSLT files are accessed to generate relevant properties and store them as
metadata, allowing users to automatically capture annotations. A similar mechanism
can be used to provide data views - for example dynamically generated HTML pages
or pages invoking Java applets for a browser-based view of the data [19]. Combined
with a user environment such as the Collaboratory for Multi-scale Chemical Sciences
(CMCS) [20], users can contribute data that is readily available for other users to
browse, search, and access in a format suitable for their use. The availability of
Defuddle is expected to reduce the number of custom translators, serve as a library of
translations within applications, and provide the querying of subsets from large files.
If the data description and subset queries were associated with persistent identifiers
such as Life Science Identifiers (LSIDs), it should be possible to create virtual
persistent identifiers for substructures and to resolve and retrieve substructures on
demand [21].

80 T.D. Talbott et al.

5 Conclusion

In the paper, we presented a general “descriptive parser” approach to mapping
physical formats to logical XML representations. This approach, based on the Data
Format Description Language specification, uses data descriptions based on XML
Schema extensions. Once in XML, off-the-shelf XML solutions can be applied to
readily transform data, extract data and metadata, or to query the data. We detailed
the design and implementation of an open-source parser engine known as Defuddle.
Using real-world file formats from the chemical and biological sciences, we
demonstrated that the current capabilities defined in DFDL and implemented in
Defuddle are already capable of parsing a diverse set of formats. While the DFDL
specification is still a work in progress, Defuddle has proved to be a useful tool in
guiding specification activities and is being used to explore how extensibility can be
integrated with the basic feature set.

In the future, our research will focus on extensions for internal and external
transforms, layering transformations, and optimally generating data subsets from XSL
translation and XPath queries. The latter feature will require smart parsing and the
predetermination of the position of elements within data streams. Such features,
together with the already existing capabilities, enable a range of light-weight, loosely-
coupled data integration and data virtualization systems needed to support multi-
disciplinary research on complex phenomena.

Acknowledgment

The research described in this paper was conducted under the Laboratory Directed
Research and Development Program at the Pacific Northwest National Laboratory, a
multiprogram national laboratory operated by Battelle for the U.S. Department of
Energy under Contract DE-AC05-76RL0 1830. The authors acknowledge Robert
McGrath and his work on a DFDL primer as well as helpful discussions and ongoing
collaborations with members of the DFDL working group.

References

1. Critchlow, T., and Lacroix, Z., eds., Bioinformatics:Managing Scientific Data. July 2003.
Morgan Kaufmann.

2. Lancashire. R, Davies, T, Spectroscopic Data: The Quest for a Universal Format,
Chemistry International, Vol. 28 No. 1, January-February 2006

3. Robins, K.D., “Formatting Standards”, http://www.ofcm.gov/sai/proceedings/pdf/02_
panel2-3.pdf

4. netCDF Unidata: “netCDF”: http://my.unidata.ucar.edu/content/software/netcdf/index.htm
5. HDF: http://hdf.ncsa.uiuc.edu/
6. Davies, T., “Cometh a Digital Dark Age?”, Chemistry International Vol 24, No. 6,

November 2002
7. Extensible Scientific Interchange Language: http://www.cacr.caltech.edu/SDA/xsil/
8. Binary XML Description Language: http://www.edikt.org/binx
9. Environmental Science Markup Language: http://esml.itsc.uah.edu/index.jsp

 Mapping Physical Formats to Logical Models to Extract Data and Metadata 81

10. Environmental Science Markup Language: http://esml.itsc.uah.edu/limitations.html
11. Enhanced Ada Subset (EAST): http://east.cnes.fr/english/index.html
12. Whiting MA, WE Cowley, NO Cramer, AG Gibson, RE Hohimer, RT Scott, and SC

Tratz. 2005. "Enabling Massive Scale Document Transformation for the Semantic Web:
the Universal Parsing Agent." Proceedings of the 2005 ACM symposium on Document
Engineering. pp 23-25. ACM Press, New York, NY

13. Data Format Description Language: http://forge.gridforum.org/projects/dfdl-wg
14. John Cowan and Richard Tobin (eds), “XML Information Set” W3C Working Draft 16

March 2001, http://www.w3.org/TR/xml-infoset .
15. Defuddle Sourceforge Project: http://sourceforge.net/projects/defuddle
16. Java Architecture for XML Binding : http://java.sun.com/webservices/jaxb
17. Apache JaxMe: http://ws.apache.org/jaxme/
18. Scientific Annotation Middleware: http://collaboratory.emsl.pnl.gov/sam/
19. Talbott TD, MR Peterson, J Schwidder, and JD Myers. 2005. "Adapting the Electronic

Laboratory Notebook for the Semantic Era." 2005 International Symposium on
Collaborative Technologies and Systems, pp. 136-143. IEEE Computer Soc., Los
Alamitos, CA.

20. Collaboratory for Multi-Scale Chemical Science: http://cmcs.org
21. Myers, J. “Fine-grained References into Binary Data and Data Virtualization Services”,

Presented at W3C Workshop on Semantic Web for Life Sciences 27-28 October 2004,
Cambridge, Massachusetts USA

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 82 – 89, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Annotation and Provenance Tracking in Semantic Web
Photo Libraries

Christian Halaschek-Wiener, Jennifer Golbeck, Andrew Schain, Michael Grove,
Bijan Parsia, and Jim Hendler

University of Maryland, MIND Lab, 8400 Baltimore Ave., College Park, MD 20742, USA
{halasche, golbeck, hendler}@cs.umd.edu, andrew.schain@nasa.gov

mhgrove@hotmail.com, bparsia@isr.umd.edu

Abstract. As the volume of digital images available on the Web continues to
increase, there is a clear need for more advanced techniques for their effective
retrieval and management. In this paper, we present a domain independent
framework for both annotating and managing images on the Semantic Web. We
introduce a tool that facilitates creating and publishing OWL annotations of im-
age content to the Semantic Web. This is loosely coupled with a Semantic Web
portal with provenance tracking. We illustrate the effectiveness of this system
with an implementation of the approach and describe a hypothetical use case
that resulted in a proof-of-concept designed in collaboration with NASA.

1 Introduction

As the scale and infrastructure of the Internet have dramatically increased over the
past years, we have seen the incorporation of various digital media types onto the
Web, including images, video, and audio. As production of digital media content
continues to grow in the commercial and home use markets, and as Internet access
and wider bandwidth become even more pervasive, we can anticipate a continued
increase of these complex (non-textual multimedia) data types being made available
on the Web. Due to the format of such media, standard indexing techniques com-
monly used on text-based Web content, such as keyword-based approaches [2], are of
little use. Given the volume of unstructured digital media, it is clear additional ap-
proaches and techniques must be developed to allow for their effective management
and accurate retrieval.

Over the past few years, various approaches have been proposed to effectively re-
trieve and manage digital image content on the Web. Traditionally, these have in-
cluded techniques such as building keyword indices based on image content [7, 9],
embedding keyword-based labels into images [7], analyzing text immediately sur-
rounding images on Web pages [4], etc. More recently, there has been a research
focus to develop techniques to annotate the content of images on the Semantic Web,
using languages such as RDFS and OWL [1,3,5,6,11].

Recent efforts have largely focused on mapping low-level features of images to on-
tological concepts [1,3,11] and have involved the development of tools that are
closely tied to domain specific ontologies for annotation purposes [6,8]. Additionally,

 Annotation and Provenance Tracking in Semantic Web Photo Libraries 83

past approaches have largely left unaddressed image metadata management and ad-
vanced interaction (browsing and search capabilities) that is enabled by employing
Semantic Web technologies. While substantial progress has been made, we see the
need for further work in defining a more generic approach for annotating and manag-
ing digital images on the Web.

In this work, we present an approach that provides generic, domain independent
flexibility for publishing annotations of digital image content to the Semantic Web, as
well as a mechanism for managing such annotations and tracking their provenance
through a highly customizable, ontology-backed Semantic Web portal. Through the
loose coupling of the annotation and management components of our approach, a
seamless environment is provided in which users can annotate, share, and manage
their digital images on the Semantic Web.

2 Motivation and Approach Overview

To understand the generic requirements that have driven the approach presented here,
a representative use case based on a collaboration with NASA. While this motivation
is presented in the context of NASA, we feel the model is sufficiently generic, thus
capturing the general issues associated with managing metadata of digital images.

As an enterprise, NASA has hundreds of thousands of images, stored in different
formats and locations, at different levels of availability and resolution, and with asso-
ciated descriptive information at various levels of detail and formality. NASA also
generates thousands of images on an ongoing basis that are collected and cataloged,
often in accordance with needs of the image creator’s specific disciplines and domain
(preliminary investigators, mission specialists, public affairs, etc.). It is clear that a
mechanism is needed to catalog all the different types of image content across differ-
ent domains. Information is required about both the image itself (creation date, dpi,
source, etc.) and also about the content of the picture (contains a satellite, astronaut,
etc). The associated metadata must be maintainable and extensible so associated rela-
tionships between images and data can evolve cumulatively within a discipline or
branching into other disciplines. The service must be available to a global consumer
population but should be flexible enough to enforce restriction based on content type,
ownership, authorization, or time.

A promising strategy for such image management requirements is an annotation
environment that enables both providers and users to annotate information about im-
ages or regions in images using concepts in ontologies (OWL and/or RDFS). Thus,
subject matter experts and consumers (regardless of their location) will be able to
assert metadata elements about images and publish their annotations to the Semantic
Web. There, such digital image annotations can be harvested and merged, resulting in
advanced browsing, searching, and management.

We generalize these (NASA specific) high level requirements into the following
application independent requirements: support for adhoc ontology-based annotation
of images on the Web, enabling support for annotation with respect to any domain;
the ability to make assertions about images and the contents of specific regions in
images; the ability to automatically publish annotations to the Semantic Web, where
they can be shared, indexed, and maintained; provide a metadata management facility

84 C. Halaschek-Wiener et al.

for interacting with and maintaining image metadata that is accessible to a global
community – the Semantic Web; the ability to accumulate metadata about a specific
image over a period of time from different sources.

Given these requirements, we present a loosely coupled approach that provides ge-
neric, domain independent flexibility for creating and publishing annotations of digi-
tal image content to the Semantic Web, as well as a mechanism for managing such
annotations through a highly customizable, ontology-backed Semantic Web portal.

3 Implementation Details

The first component of the approach presented in this work is a digital image annota-
tion environment. In this section we present PhotoStuff, a semantic annotation
environment.

3.1 Digital Image Annotation – PhotoStuff

PhotoStuff is a platform independent, open source, image annotation tool that allows
users to annotate an image and its regions with respect to concepts from any number
of ontologies specified in RDFS or OWL. PhotoStuff provides functionality to import
images, their embedded metadata, ontologies, and instance-bases. In the tool, users
can perform markup, and export the resulting annotations. The tool provides users the
ability to load multiple OWL and/or RDFS ontologies, allowing annotation of image
content with respect to any concept, defined in any number of ontologies. The ability
to annotate images with respect to any ontology is extremely important because the
content of images can span multiple domains; frequently, a single ontology cannot
capture the complexity of the content.

In PhotoStuff, an ontology-based approach has also been adopted in order to make
statements regarding the high level concepts depicted in images. An ontology is used
to provide the expressiveness required to assert what is depicted within an image, as
well information about the image itself. In this work, an image-region ontology1 has
been specified, using OWL, which defines a set of concepts and their relations for
images, videos, regions, and depictions.

To demonstrate the use of PhotoStuff, Figure 1 shows a screenshot of the tool in
which as user is marking up information about an astronaut taking a space walk. The
ontologies are visualized in both a class tree and list, depicted in the far left pane of
the tool. In this example, the FOAF (Friend of a Friend) ontology has been loaded, as
well as a Shuttle Crew ontology that is expanded in the window. This allows the user
to choose concepts from both ontologies to mark up the photograph and its sub-
regions.

In this approach, users can annotate the entire image, or selected regions. Users
highlight regions around portions of images loaded in PhotoStuff. Figure 1 illustrates
this with a region drawn around the astronaut. Classes can be dragged onto the image
or into any region creating a new instance of the selected class. When a class is used,
a form is dynamically generated from the properties of the selected class. With region

1 Image-Region Ontology: http://www.mindswap.org/2005/owl/digital-media

 Annotation and Provenance Tracking in Semantic Web Photo Libraries 85

Fig. 1. PhotoStuff Screenshot

support, metadata can be more closely tied to the depiction it describes. Instead of simply
stating that a photograph depicts several people, the metadata will contain coordinates for
the regions of the photo that contain the depictions. The region is also semantically linked
to the image, maintaining the connection between the image and the instance.

Additionally, the approach presented here leverages current efforts in multimedia
format standardizations that provide support to embed image metadata in actual image
files. For example, the JPEG file format provides support for embedding a standard
set of markers in the file header, defining metadata elements including file size,
width/height, pixel density, etc. The Exchangeable Image File Format (EXIF), also
provides metadata in the form of camera specific information (camera make, model,
orientation, etc.)2. Our approach takes advantage of this existing metadata by extract-
ing and encoding it into RDF/XML so it is accessible on the Semantic Web.

As mentioned earlier, PhotoStuff, and the approach in general, maintains a loose
coupling with a Semantic Web portal. As briefly discussed before, there are three
ways in which PhotoStuff interacts with the portal: retrieving all instances that have
been submitted to the portal, submitting generated RDF/XML, and uploading local
images so they can be referenced by a URI (thus allowing them to be referenced using
RDF/XML). The following section outlines the metadata management and browsing
functionality provided though the loose coupling of the annotation environment with
the Semantic Web portal.

3.2 Image Metadata Management

Upon the completion of image annotation, the approach provides the capability for
publishing resulting markup to the Semantic Web. This is accomplished through the

2 EXIF Homepage: http://www.exif.org/

86 C. Halaschek-Wiener et al.

Fig. 2. Instance Depictions and Co-Region Browsing

coupling of the annotation environment with an ontology-backed, Semantic Web
portal. Our existing work on a Web portal based on Semantic Web technologies
(OWL) has been extended to provided communication with PhotoStuff. It is noted
here that the Web portal’s functionality extends what is presented here and is an on-
going project within the MINDSWAP3 research group. Details are provided here
through one of its configurations in the context of a proof-of-concept, SemSpace4,
developed as an experiment with NASA. A variety of other domain configurations
have been developed at MINDSWAP; all configurations provide the same functional-
ity, only differing by the ontologies and instances maintained by the system.

The portal technology is flexible enough to be used in a variety of domains, as it is
not limited in the number of ontologies that it can manage; thus for the purpose of this
work, any ontology can be used to annotate an image. The portal is designed to use
information from the various ontologies to guide the display of and interaction with
metadata and the site in general. The main interface for browsing images is driven by
the underlying class of each instance, thus providing a high level view of all the
metadata of images that have been annotated using PhotoStuff.

The portal provides the ability to browse data associated with instances, images,
image regions, and to search metadata in the collection (in Figure 2). The portal
component also provides various management capabilities. Metadata submissions
can be audited, edited, or removed. Provenance information (submitter name,
email, etc.) from all submissions is maintained and editable. For each statement,
the provenance information is also provided when the user hovers their mouse over
any annotation.

3 MINDSWAP Research Group: http://www.mindswap.org/
4 SemSpace Homepage: http://semspace.mindswap.org/

 Annotation and Provenance Tracking in Semantic Web Photo Libraries 87

3.2 Provenance Management

As mentioned previously, PhotoStuff and the portal technology exploit and provide
support for management of provenance data. When users submit annotations to a
portal, their user name and a comment is required for input. When the portal receives
this data, a timestamp is additionally recorded. This provenance data is stored, along
with the annotations in a RDF triple store, RDFLib5.

Each time a new submission is received, a new submission resource is created and
stored in the triple store. Additionally, the submission object has various attributes
related to it, including the submitter, timestamp, etc.

Fig. 3. RDF Submission Management Interface with Provenance Data

Fig. 4. An excerpt of a page in the site showing Mouse Pop-ups of provenance data when site
browsing

5 RDFLib Project Homepage: http://rdflib.net/

88 C. Halaschek-Wiener et al.

The portal technology provides a submission metadata management page, in which
submission can be edited and/or removed. In order to assist system administrators in
finding submissions, the provenance data is presented in the interface (see Figure 3).

Provenance data maintained on the portal is also utilized to enhance the user ex-
perience when browsing data on the portal. When resources are browsed on the web-
site, pop-ups are provided if provenance data is known about the particular data be
viewed. This is shown in Figure 4.

4 Discussion and Future Directions

The approach discussed in this paper allows ad hoc, manual annotation of image con-
tent. This provides a cumulative technique where metadata can be incrementally
added or repurposed for future users on a per-need basis. While manual annotation is
essential for such ad hoc additions or edits, it can prove to be quite time consuming.
This may be slightly alleviated through use of various image processing and auto-
mated vision techniques. First, region segmentation techniques may be used to sug-
gest possible regions of interest. Additionally, image-processing techniques could
potentially be used to recognize similar regions among photos, allowing the tool to
suggest potential instances that may be depicted in the image. By exploiting similarity
in images that are part of the same "album", automated recognition techniques can be
used to take a first pass at labeling parts of the image. Once images are automatically
labeled, users can then simply verify the resulting annotations [10].

Additionally, in this work it has been observed that generating effective, yet ge-
neric forms based on class definitions can be quite difficult (in this context, instance
creation forms are generated when classes are dragged into image). We have adopted
an approach in which the form is directly built from the underlying properties of the
class. While this approach is a plausible first step, it can result in a very messy or
congested form. We would like to explore allowing the user to create custom forms
for classes. Additionally, we would like to investigate allowing ontology creators to
embed HTML forms or XForms6 into comments on class definitions.

5 Conclusions

In this work we have presented a generic, domain independent framework for annotat-
ing and managing digital image content using Semantic Web technologies. We
loosely couple an annotation component with a Semantic Web portal that supports
browsing, searching and managing digital image annotations and provenance infor-
mation. Additionally, we have provided details of an open source implementation of
this framework and an overview of a representative proof-of-concept. Potential future
work includes automating portions of the annotations process, possibly by using im-
age processing and computer vision techniques. We also plan to extend our work here
to support annotation of additional digital media types, including video and audio.

This work was supported in part by grants from Fujitsu, Lockheed Martin,
NTT Corp., Kevric Corp., SAIC, the National Science Foundation, the National

6 XForms 1.0: http://www.w3.org/TR/xforms/

 Annotation and Provenance Tracking in Semantic Web Photo Libraries 89

Geospatial-Intelligence Agency, DARPA, US Army Research Laboratory, and NIST.
We would like to thank NASA for their help in documenting requirements for this
effort. We would also like to thank Daniel Krech, Ron Alford, Amy Alford, Grecia C.
Lapizco-Encinas, and Aditya Kalyanpur for all of their contributions to this work.

References

1. Addis, M., Boniface, M., Goodall, S., Grimwood, P., Kim, S., Lewis, P., Martinez, K. and
Stevenson, A. SCULPTEUR: Towards a New Paradigm for Multimedia Museum Informa-
tion Handling. Second International Semantic Web Conference (2003) 582 -596

2. Brin, S., and Page, L. The Anatomy of a Large Scale Hypertextual Web Search Engine, In
the Proceedings of the 7th International World Wide Web Conference (1998)

3. Dupplaw, D., Dasmahapatra, S., Hu, B., Lewis, P., and Shadbolt, N. Multimedia Distrib-
uted Knowledge Management in MIAKT. ISWC 2004 Workshop on Knowledge Markup
and Semantic Annotation. Hiroshima, Japan, November 2004

4. Frankel, C., Swain, M., and Athitsos, V. Webseer: An Image Search Engine for the World
Wide Web, Tech. Report TR-96-14, Computer Science Dept., Univ. of Chicago, July
(1996)

5. Hollink, L., Schreiber, G., Wielemaker J., and Wielinga. B. Semantic Annotation of Image
Collections. Knowledge Capture - Knowledge Markup & Semantic Annotation Workshop
(2003)

6. Lafon, Y., and Bos, B. Describing and Retrieving Photos Using RDF and HTTP. W3C
Note available at: http://www.w3.org/TR/photo-rdf/ (2002)

7. Rui, Y., Huang, T. S., and Chang, S. F. Image Retrieval: Current Techniques, Promising
Directions, and Open Issues. Journal of Visual Communication and Image Representation,
Volume 10 (1999), pp. 39-62

8. Schreiber, G., Dubbeldam, B., Wielemaker, J., and Wielinga, B. Ontology-Based Photo
Annotation. IEEE Intelligent Systems, 16(3) (2001) 66-74.

9. Smith, J. R., and Chang, S. F. An Image and Video Search Engine for the World Wide
Web. Proc. SPIE 2670 Storage and Retrieval for Still Image and Video Databases IV,
SPIE, Bellingham, Wash., (1996) pp. 84-95.

10. Suh, B., and Bederson, B. Semi-Automatic Image Annotation. University of Maryland
Computer Science Department Technical Report, HCIL-2004-15, CS-TR-46 (2004)

11. Bloehdorn, S., Petridis, K., Saathoff, C., Simou, N., Tzouvaras, V., Avrithis, Y., Hand-
schuh, S., Kompatsiaris, I., Staab, S., and Strintzis, M. G.: "Semantic Annotation of Im-
ages and Videos for Multimedia Analysis", 2nd European Semantic Web Conference,
2005.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 90 – 100, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Metadata Catalogs with Semantic Representations

Yolanda Gil, Varun Ratnakar, and Ewa Deelman

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
gil@isi.edu, varunr@isi.edu, deelman@isi.edu

Abstract. Metadata catalogs store descriptive information about logical data
items. These catalogs can then be queried to retrieve the particular logical data
item that matches the criteria. However, the query has to be formulated in terms
of the metadata attributes defined for the catalog. Our work explores the
concept of virtual metadata, where catalogs can be queried using metadata
attributes not originally defined in the catalog. We use semantic web standards,
where new metadata attributes can be taken from shared ontologies and can
include expressive axioms to define the new terms. We have implemented a
virtual metadata catalog as an extension of the Metadata Catalog Service
(MCS), using the Web Ontology Language (OWL) and a reasoning engine to
map queries of temporal nature in several metadata catalogs.

1 Introduction

An integral part of today’s large-scale science is the identification and access of large
data sets. To support a scalable solution, many systems distinguish between data
cataloging and data storage. Data cataloging is designed for ease of publication of
data characteristics (metadata attributes including provenance information) and for
ease of querying for data products based on the desired metadata attributes. Having
uniquely identified the desired data products (by obtaining an identifier) then enables
data access from an appropriate storage location. Metadata attributes and unique
identifiers are stored in metadata catalogs, often accessible as services [3,8].

The process of data discovery by querying data sources may be quiet complex,
because there may be several heterogeneous metadata catalogs that are being
published by a community. For example, in the astronomy community and under the
umbrella of the National Virtual Observatory project (NVO, www.us-vo.org),
astronomers publish data collected by a variety of sky surveys taken from the both
ground and space-based telescopes. The surveys span a whole range of spectra from
gamma- and X-rays, optical, infrared, through to radio. Each catalog may contain tens
of millions of objects. Because the catalogs came online in different period of time,
were published by different organizations and deal with different surveys, the
metadata attributes are not common across the catalogs. Obviously these differences
make it very hard to easily discover desired data products. The problem is that the
metadata attributes are not defined or related to one another according to their
meaning. Clients must figure out manually the meaning of the attributes, identify

 Metadata Catalogs with Semantic Representations 91

what are the relevant ones to query, and formulate queries that include all possibly
relevant metadata attributes resulting in redundancies in the query expression. This
poses limitations in terms of the practical usability of these catalogs as well as the
potential of existing approaches to scale up to larger and heterogeneous collections of
data sources. These problems arise in similar projects in other disciplines, such as the
Grid Physics Network (the GriPhyN project, www.griphyn.org) and the Southern
California Earthquake Center’s Community Modeling Environment (the SCEC-CME
project, www.scec.org). There, a central goal is the distributed management of data
collections that evolve over time and the consumption of those collections by an
entire community with very diverse uses and possibly conceptualizations of the data.

This paper describes an approach that augments the existing metadata catalogs
with semantic representations to create virtual metadata catalogs. Virtual metadata
attributes are mapped to the original attributes that appear in the metadata catalog.
This is analogous to the concept of virtual data in GriPhyN [1] or a virtual
observatory in NVO [2], where a system can generate the data requested based on its
description whether it already exists or it has to be generated from data that already
exists. The definitions of the virtual attributes are represented declaratively, as well as
any constraints that represent how attributes are interrelated. A query formulated in
terms of the virtual metadata can be automatically expanded and translated into the
original metadata attributes using the virtual metadata definitions and mappings. This
can be done by using a logic reasoner that can handle expressive representations of
definitions and relations. With this approach, integrating metadata catalogs can be
done through shared ontologies and standard terminologies, decoupling the query
formulation from the virtual metadata handling and from the particular metadata
attributes that appear in the catalog.

In prior work we developed Artemis [3], a query mediator for metadata catalogs
that used semantic representations to integrate several metadata catalogs. Artemis
uses a centralized approach with a single reasoner that incorporates all the
representations and mappings to all the metadata catalogs. The approach we take in
this paper is decentralized in that a reasoner is associated with each metadata catalog.
We describe our implementation of a virtual metadata query handler that uses
semantic web technologies such as the Web Ontology Language (OWL) standard [4]
to support virtual metadata queries for the Metadata Catalog Service (MCS) [5]. MCS
is a metadata catalog we previously developed to support the publication and query
operations on a variety of scientific metadata. It provides an extensible schema and an
API that enables easy query and publication capabilities. In future work, we plan to
combine this virtual metadata query handler with the query mediator used in Artemis
to support the integration of distributed metadata catalogs in a decentralized manner.

The paper begins showing how semantic representations can express declaratively
the meaning of metadata attributes, so that automated reasoners can derive relations
and infer connections among attributes and data sets. Next it describes briefly
existing standards for semantic representations, including RDF schemas and OWL.
With this background in hand, the paper then introduces our approach to create virtual
metadata attributes and catalog services. The paper ends with a description of an
implemented virtual metadata catalog service and discusses important future work.

92 Y. Gil, V. Ratnakar, and E. Deelman

2 The Need for Semantic Representations of Metadata Attributes

Unless the meaning and interdependencies of metadata attributes are represented
declaratively with expressive languages, metadata catalogs have limitations in the
way they can be used to query data. An important limitation arises when the meaning
of the attributes is not represented explicitly and is instead implicit in the name of the
metadata attribute. For example, an attribute named execution-time could mean
elapsed time or CPU time. The right answer can only be determined manually by
looking up the documentation of the catalog or finding out from its developers the
consensus meaning of the attribute.

Another problem arises when the interdependencies among attributes are not
represented. For example, the duration of an event is related to the start time and the
end time of that event, and in this example execution-time, begin-execution-time
and end-execution-time are related. If some of the data is missing the execution-
time it could be derived from its start-execution-time and the end-execution-time.
Otherwise, queries would need to be formulated to include both cases explicitly. The
advantage of having these kinds of relationships expressed declaratively as part of the
metadata definitions is that queries only have to mention what is needed and disregard
what particular metadata attributes are present in each specific case.

All these problems are exacerbated when there is a need to query several metadata
catalogs, where the attribute names will be likely to be independent, and any
correlation that might exist among attributes in different catalogs is not declared
explicitly.

3 Standards for Semantic Representation and Reasoning

In this work we draw upon three semantic web technologies: semantic data
representations defined using relevant domain terms, ontologies that attribute
meaning to the terms and reasoners that can answer queries about the terms and their
relationships.

RDF [6] is a web standard for representing resources on the web. It restricts the
description of resources to statements composed of subject, predicate and object
triples. It uses XML [7] as the interchange syntax. An RDF Schema (RDFS) [8]
defines the terms that will be used in the RDF statements and gives specific meanings
to them. The Web Ontology Language (OWL) may also be used to define those terms
using more expressive representations. OWL builds on top of RDF. Because these
languages are built on web standards, they take advantage of namespaces and URIs to
define the scope of the definitions and to import definitions from distributed locations
respectively.

We use OWL-DL representations in this work because of its expressive power and
because there are efficient reasoners already available for it. We will briefly illustrate
here the expressivity of OWL with examples from temporal reasoning, using
definitions from the a variant of the OWL-Time ontology [9]. An interval can be
defined as:

 Metadata Catalogs with Semantic Representations 93

<owl:Class rdf:ID="IntervalThing">
<rdfs:subClassOf rdf:resource= "#TemporalThing"/>
<rdfs:subClassOf><owl:Restriction>
 <owl:onProperty rdf:resource="#from" />
 <owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
 </owl:Restriction></rdfs:subClassOf>
 <rdfs:subClassOf><owl:Restriction>
 <owl:onProperty rdf:resource="#to" />
 <owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">1</owl:maxCardinality>
 </owl:Restriction></rdfs:subClassOf>
</owl:Class>

Here we define an IntervalThing as a subClass of a generic TemporalThing that
has a beginning (“from”) and an end (“to”). It also defines restrictions on its
properties “from” and “to” (declared below) in that they can only have one value
(indicated by a cardinality of 1). Note that the prefixes owl, rdfs, and rdf refer to terms
from their respective namespaces.

<owl:ObjectProperty rdf:ID="from">
 <rdfs:domain rdf:resource= "#TemporalThing"/>
 <rdfs:range rdf:resource="#InstantThing"/>
 <rdf:type rdf:resource= "&owl;FunctionalProperty"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="to">
 <rdfs:domain rdf:resource="#TemporalThing" />
 <rdfs:range rdf:resource="#InstantThing"/>
 <rdf:type rdf:resource= "&owl;FunctionalProperty"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="duration">
 <rdfs:domain rdf:resource= "#TemporalThing"/>
<rdfs:range rdf:resource="&xsd;duration"/>
</owl:DatatypeProperty>

The above definitions declare the properties “from”, “to”, and “duration” of any

TemporalThing. Of note is the range of these properties. The range of a property
implies the types of values that the property might have. The range of duration is a
native XML Schema datatype called duration. The “&xsd” marker indicates the
namespace of the XML Schema. XML Schema provides several built-in datatypes
such as Integer, String, dateTime, etc. More details and a thorough introduction of
OWL, are available from. Many tools are available for OWL including ontology
editors, parsers, and reasoners, many surveyed in [4].

It is important to note that OWL does not have the full expressive power of first-
order logic, which is the representation of choice in many knowledge representation
and reasoning sytems. For example, the time ontology OWL-Time was originally
specified in first order logic, and the OWL versions of it lack many of the axioms and
constraints of the original. To address this issue, rule languages are being developed
to complement OWL and to support the representation of more expressive relations
and constraints. The following rule expresses how to derive the “to” property from the
“from” property and “duration” property:

[r1: (?x rdf:type tme:IntervalThing), (?x tme:from ?a),(?x tme:duration ?t2),
(?a tme:at ?t1), sum(?t1, ?t2, ?t3)

makeTemp(?v) -> (?v rdf:type tme:InstantThing) (?v tme:at ?t3) (?x tme:to ?v)]

There are no current semantic web standards for rule languages or query
languages, although some have been proposed (RuleML[10] and OWL-QL[11]). The

94 Y. Gil, V. Ratnakar, and E. Deelman

rule format shown in the example above is used by Jena [12], the reasoner used in our
system. Standard rule and query languages will inevitably emerge soon.

4 Approach

Figure 1 illustrates our approach. We propose to augment metadata catalogs with a
semantic layer that supports queries in terms of virtual metadata attributes, resulting
in virtual metadata catalog services. These attributes are virtual in that they are not
really used in the implementation of the catalog. However, virtual metadata attributes
can be used to query the catalog transparently as if they actually were associated with
the data. To support this functionality, the virtual metadata attributes need to be
mapped to the metadata attributes that are actually contained in the catalog (actual
attributes).

Fig. 1. Approach towards a distributed metadata catalog query

Mapping queries given in terms of virtual metadata attributes into queries in terms of
the actual metadata attributes can be very complex. As we motivated in the examples of
the previous section, expressive semantic representations and reasoners are needed to do
these mappings automatically. We use standards for semantic representation and
reasoning when they exist. Additional standards and tools are under development that
will support increasingly more expressive query languages and mappings.

The figure also illustrates that in different contexts users may have different
preferences or standards for querying the data in a catalog, resulting in alternative
virtual metadata catalog services that can be built on top of the same underlying
metadata catalog. For example, a catalog of historical weather data could be used by
a climatologist to test a weather prediction model, or by an oceanographer to correlate
underwater vegetation with weather conditions. Some of these virtual metadata

 Metadata Catalogs with Semantic Representations 95

attributes could be drawn from shared ontologies or standard vocabularies, which are
becoming commonplace in many scientific communities [13-17]. Many scientific
ontologies are already undergoing conversion to semantic web standards [4, 6-8] and
others will soon follow as the benefits of these expressive languages are shown.
Users may also define their own virtual metadata attributes by creating customized
ontologies, effectively creating personalized metadata catalogs.

The approach is modular and decentralized in that each virtual metadata catalog
service reasons about its own virtual metadata within its own reasoners. This is in
contrast with our work on Artemis, where a centralized reasoner resolved all the
mappings to all the metadata catalogs. The advantages of this decentralized approach
is that it will be more robust to failures. In addition, the reasoning tasks will be more
manageable and will scale better as more metadata catalogs are added.

5 Virtual Metadata Catalogs

Figure 2 illustrates the architecture of our implementation of a virtual metadata
catalog developed using MCS. We use OWL in combination with rules to express the
query, the shared domain ontologies, and the virtual metadata attributes and
mappings. The original query is provided as an OWL document that includes
references to the domain ontologies from where the virtual metadata attributes in the
query are drawn. The query may also reference terms from a generic catalog
ontology that we have created. The purpose of this ontology is to define terms such
as “files”, “views”, “collections”, that are used in typical queries to MCS.

The central component of the architecture is the Query Mapping module. It takes
the OWL query and turns it into an MCS query that uses the metadata attributes that
actually appear in the catalog. The MCS query is then submitted to the MCS, which
returns all the references to data stored in it that satisfy the query. We will use an
example to explain in detail how the Query Mapping module works.

Consider a query for data within a temporal interval starting on 10th October 2004
at 10am and a duration of 30 seconds. Suppose the user wishes to query using the
virtual metadata attributes “from” and “duration”, both taken from the OWL Time
ontology. Assume that the metadata attributes present in the MCS are “startDate” and
“endDate”. The core of the original OWL query is:

<tme:IntervalThing rdf:ID="Interval1">
<tme:from rdf:resource="#T1"/>
<tme:duration rdf:datatype = "&xsd;duration"> PT30S </tme:duration>

</tme:IntervalThing>
<tme:InstantThing rdf:ID="T1">
 <tme:at rdf:datatype="&xsd;dateTime">2004-01-01T10:00:00</tme:at>

</tme:InstantThing>

The Virtual Metadata Attributes and Mappings express that the MCS “startDate”
attribute is equivalent to the “from” virtual metadata attribute, and the MCS attribute
“endDate” is equivalent to the “to” virtual metadata attribute. Here is how these
mappings are specified:

<owl:ObjectProperty rdf:ID="startDate">
 <owl:equivalentProperty rdf:resource = "&tme;from"/>
 <terms:hasMCSAttribute> startDate </terms:hasMCSAttribute>
<terms:pathToData>->at</terms:pathToData>

96 Y. Gil, V. Ratnakar, and E. Deelman

</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="endDate">
 <owl:equivalentProperty rdf:resource = "&tme;to"/>
 <terms:hasMCSAttribute> endDate </terms:hasMCSAttribute>
<terms:pathToData>->at</terms:pathToData>
</owl:ObjectProperty>

The Query Mapping component accepts the OWL Query document and configures
the semantic reasoner by loading the OWL ontologies and rules referenced in it. The
query mapping process is depicted in Figure 3, and is composed of three major steps.
First, the basic query constituents are created by running the reasoner and generating
attribute/value pairs based on the rules defined. In our case, the rule that defines “to”
in terms of interval duration would be used to generate the following attribute/value
pairs:

{from=[2004-01-01T10:00:00 ^http://www.w3.org/2001/XMLSchema#dateTime],
to=[2004-01-01T10:00:30Z ^http://www.w3.org/2001/XMLSchema#dateTime]}

The suffix starting with ^^ in RDF signifies the datatype of the value that it is
appended to.

Fig. 2. Architecture of a Virtual Metadata

These virtual metadata attribute value pairs are then converted into MCS attribute
value pairs by selecting the relevant subset of the triples and applying the relevant
mappings. Therefore, “from” is replaced by “startDate”, and “to” is replaced by
“endDate”. Another mapping performed in this step is the conversion of the values
from the XML Schema Datatypes to the ones that are expected by the database. In our
case, the dateTime formats of the OWL Query need to be converted to the Date types
that are expected for the startDate and endDate. Finally, the MCS query is
constructed by adding the operators to construct the appropriate query formula.

In our implementation we used data from three different domains: climate
modeling, earthquake science, and workflow execution tracking. The climate
modeling catalog contains such information as longitude, latitude, temperature and
date and time. The earthquake science catalog collects data about simulation results
that show seismic wave propagation over time. This catalog has more than one

 Metadata Catalogs with Semantic Representations 97

hundred metadata attributes. Finally, the workflow tracking catalog includes data
about the names of the workflow tasks, their execution duration, the execution
location (resource used), success or failure and others. Although these various
domains deal with different types of data, they all make use of temporal concepts.

To add new virtual metadata attributes, a user would only have to define their
mappings into MCS attributes using similar definitions to the ones shown above to
map "from" and "to" to "startTime" and "endTime" respectively.

Fig. 3. A more detailed overview of the query mapping process

6 Discussion

Our work illustrates how semantic representations can be used to support virtual
metadata attributes and how reasoners can be used to resolve queries that use them,
opening the way for virtual metadata catalog services. As proof of concept, the system
implemented so far can answer queries but that is only part of the functionality of a
metadata catalog service. We plan to extend its functionality to the fullest in the future
and include useful functions such as returning lists of available metadata attributes,
publish data, group data into hierarchical collections, and set authorization
information on objects.

An important issue that needs to addressed more fully in the future is handling
alternative data formats. In our examples, time points and durations were represented
using the XML schema data types, but other metadata attributes may be defined using
non-standard formats. A point in time can be expressed in different syntactic formats
such as 2004/01/30-23:34:48 or as 30/1/04.11:34pm, and a query on time points for
November 30 of 2004 should retrieve both. Addressing this issue requires
representing mappings between alternative formats, which could be done using the
same approach we have used to define mappings among different terms in our system.

98 Y. Gil, V. Ratnakar, and E. Deelman

The same issue applies to transport formats, for example the year 2004 could be
rendered as a string or a number. At this point it is not clear how far reaching the
transformations need to be. One can imagine a whole spectrum from simple date and
time transformations to more complicate coordinate transformations as is sometimes
necessary in astronomy. Astronomers for example use a variety of different
coordinate formats to point to specific locations in the sky. Sometimes they also use a
stellar object name to denote a location. We also plan to investigate how to support
the integration of multiple catalog services using query mediators as was done in our
previous work on Artemis. When catalogs are mapped to identical shared ontologies,
their integration to a query mediator should be simplified.

Another important issue to investigate is how this architecture scales up to large
amounts of attributes and multiple metadata catalog services. Semantic web
technologies are being developed very quickly to reason efficiently as the amount of
data and definitions grow. Existing systems handle millions of RDF triples, a basic
unit to render RDF and OWL descriptions, however evaluating systems that rely on
these technologies in real deployments.

7 Related Work

This work bridges several research areas: metadata management, query mediation and
semantic web technologies. In this section we mention the most relevant work in
these areas. In terms of metadata management, besides the Metadata Catalog Service
mentioned in Section 1, the Storage Resource Broker (SRB) from the San Diego
Supercomputing Center [18] and its associated MCAT Metadata Catalog [19] provide
metadata and data management services. SRB supports a logical name space that is
independent of physical name space. The logical objects, logical files in the case of
SRB, can also be aggregated into collections. SRB provides various authentication
mechanisms to access metadata and data within SRB. Unlike the work presented
here, SRB is based on a centralized metadata catalog and does not provide semantic
information about the catalog content.

In [20], the authors describe a mediator-based system that utilizes the semantics of
the data exported by the data sources to integrate the data. A key assumption in the
[20] paper is that the data sources export the semantics of the data. This work is
complimentary as it provides a means for the semantics to be added to the data
sources and thus available to existing mediator systems. The myGrid project [21] is
developing and exploiting semantic web technology to describe and integrate a wide
range of services in a grid environment. Data sources are modeled as semantic web
services, and are integrated through web service composition languages. The result is
a workflow that may include not only steps to access to data sources, but also as
simulation or other data processing steps. A key difference between myGrid and the
work presented here is that myGrid relies on the use of standard ontologies from the
bioinformatics domain and thus the problem of semantic information representation is
greatly simplified. Unlike other domains, scientists in bioinformatics have made great
strides in design common semantic representations.

 Metadata Catalogs with Semantic Representations 99

8 Conclusions

We have designed and implemented a virtual metadata catalog that provides rich
semantic information about the catalog content in a variety of semantics views. The
views are customized to a particular global ontology. This system provides an easy
way for users to publish and discover data using metadata attributes that are
appropriate for them. In this work we drew upon data from three different disciplines:
atmospheric sciences, performance databases and earthquake science. We also put the
Virtual Metadata Catalog in a broader context of a distributed system, where multiple
such catalogs would exist and query mediation technologies such as those based on
our previous system (Artemis) would be used to query across the multiple catalogs.

In future work, we would like to extend the query mapping process to make it more
robust and better integrated with OWL reasoners as well as the MCS back end. We
would like to formalize the mappings of different query expressions in a
comprehensive framework. This will be facilitated as standard OWL query languages
emerge. We also plan to use the virtual metadata catalog in some of our ongoing
projects.

Acknowledgements

We gratefully acknowledge the support from the NSF’s Shared Cyberinfrastructure
program under grant SCI-0455361 and the NSF SCEC-CME project with grant
number EAR-0122464.

References

[1] E. Deelman, et al. Representing Virtual Data: A Catalog Architecture for Location and
Materialization Transparency," TR GriPhyN-2001-14, 2001.

[2] P. Messina and A. Szalay, "Building the Framework for the National Virtual
Observatory," http://www.us-vo.org/docs/nvo-proj.doc, 2002.

[3] R. Tuchinda, S. Thakkar, Y. Gil, and E. Deelman., "Artemis: Integrating Scientific Data
on the Grid," Proceedings of IAAI, San Jose, California, 2004 .

[4] "Web Ontology Language (OWL)," http://www.w3.org/2001/sw/WebOnt/
[5] E. Deelman, et al. "Grid-Based Metadata Services," Proceedings of Statistical and

Scientific Database Management (SSDBM), Santorini, Greece, 2004.
[6] "RDF," http://www.w3.org/TR/REC-rdf-syntax/,
[7] "XML Schema," http://www.w3.org/XML/Schema
[8] "RDF Schema," http://www.w3.org/TR/rdf-schema/
[9] J. R. Hobbs and F. Pan, "An Ontology of Time for the Semantic Web," ACM TALIP:

Special issue on Temporal Information Processing, (3,) pp. 66-85, 2004.
[10] "RuleML," http://www.ruleml.org/
[11] R. Fikes, P. Hayes, and I. Horrocks, "OWL-QL: A Language for Deductive Query

Answering on the Semantic Web," KSL Technical Report 03-14 2003.
[12] "Jena," http://jena.sourceforge.net
[13] C. J. Wroe et al., "A Methodology to Migrate the Gene Ontology to a Description Logic

Environment Using DAML+OIL," Proc. of Pacific Symposium on Biocomputing 2003.

100 Y. Gil, V. Ratnakar, and E. Deelman

[14] U. Hahn and S. Schulz, "Building a Very Large Ontology from Medical Thesauri," in
Handbook on Ontologies, R. S. S. Staab, Ed.: Springer, 2004.

[15] "GO," http://www.geneontology.org/
[16] "UMLS," http://www.nlm.nih.gov/research/umls/
[17] J. Golbeck, et al. "The National Cancer Institute’s Thesaurus and Ontology," Journal of

Web Semantics, vol. 1, 2003.
[18] C. Baru et al, "The SDSC Storage Resource Broker," Proceedings of CASCON'98, 1998.
[19] "MCAT (Version 1.1)," http://www.npaci.edu/DICE/SRB/mcat.html
[20] B. Ludäscher, et al, "A Model-Based Mediator System for Scientific Data Management,"

in Bioinformatics:Managing Scientific Data, Critchlow, Lacroix, Eds.: MK, 2003.
[21] C. Wroe, et al, "A Suite of DAML+OIL Ontologies to Describe Bioinformatics Web

Services and Data," Int. J. of Cooperative Information Systems, 2003.

Combining Provenance with Trust in Social

Networks for Semantic Web Content Filtering

Jennifer Golbeck

University of Maryland, College Park, College Park MD 20742, USA
golbeck@cs.umd.edu

http://mindswap.org

Abstract. Social networks are a popular movement on the web. On the
Semantic Web, it is simple to make trust annotations to social relation-
ships. In this paper, we present a two level approach to integrating trust,
provenance, and annotations in Semantic Web systems. We describe an
algorithm for inferring trust relationships using provenance information
and trust annotations in Semantic Web-based social networks. Then, we
present an application, FilmTrust, that combines the computed trust val-
ues with the provenance of other annotations to personalize the website.
The FilmTrust system uses trust to compute personalized recommended
movie ratings and to order reviews. We believe that the results obtained
with FilmTrust illustrate the success that can be achieved using this
method of combining trust and provenance on the Semantic Web.

1 Introduction

Social Networks have become a popular movement on the web as a whole, and
the Semantic Web is rich with social network information. Friend of a Friend
(FOAF) is an OWL-based vocabulary for representing personal and social net-
work information; data using FOAF makes up a significant percentage of all
data on the Semantic Web. Within these social networks, users can take advan-
tage of other ontologies for annotating additional information about their social
connections. This may include the type of relationship (e.g. ”sibling”, ”signifi-
cant other”, or ”long lost friend”), or how much they trust the person that they
know. Annotations about trust are particularly useful, as they can be applied in
two ways. First, using the annotations about trust and the provenance of those
statements, we can compute personalized recommendations for how much one
user (the source) should trust another unknown user (the sink) based on the
paths that connect them in the social network and the trust values along those
paths. Once those values can be computed, there can be a second application
of the trust values. In a system where users have made statements and we have
the provenance information, we can filter the statements based on how much
the individual user trusts the person who made the annotation. This allows for
a common knowledge base that is personalized for each user according to who
they trust.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 101–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

102 J. Golbeck

In this paper, we will present a description of social networks and an algorithm
for inferring trust relationships within them. Then, we will describe FilmTrust,
a movie recommender system, where trust is used to filter, aggregate, and sort
information.

2 Social Networks and Trust on the Semantic Web

Social networks on the Semantic Web are usually created using the FOAF vo-
cabulary [2]. There are over 10,000,000 people with FOAF files on the web,
describing their personal information and their social connections [4]. There are
several ontologies that extend FOAF, including the FOAF Relationship Module
[3] and the FOAF Trust Module [4]. These ontologies provide a vocabulary for
users to annotate their social relationships in the network. In this research, we
are particularly interested in trust annotations.

Using the FOAF Trust Module, users can assign trust ratings on a scale from
1 (low trust) to 10 (high trust).There are currently around 3,000 known users
with trust relationships included in their FOAF profiles. Once that information
is aggregated, we can make computations with trust values. We choose a spe-
cific user, and look at all of the trust ratings assigned to that person. With
that information, we can get an idea of the average opinion about the person’s
trustworthiness. Trust, however, is a subjective concept. Consider the simple ex-
ample of asking weather the President is trustworthy. Some people believe very
strongly that he is, and others believe very strongly that he is not. In this case,
the average trust rating is not helpful to either group.

In this work, we use the term ”provenance” to refer to who made a particular
statement. Since we have provenance information about the trust annotations
in FOAF networks, we can significantly improve on the average case. If someone
(the source) wants to know how much to trust another person (the sink), we can
look at the provenance information for the trust assertions, and combine that
with the source’s directly assigned trust ratings, producing a result that weights
ratings from trusted people more highly than those from untrusted people.

In this section, we present an algorithm for inferring trust relationships that
combines provenance information with the user’s direct trust ratings.

2.1 Background and Related Work

When two individuals are directly connected in the network, they can have trust
ratings for one another. Two people who are not directly connected to not have
that trust information available by default. However, the paths connecting them
in the network contain information that can be used to infer how much they
may trust one another.

For example, consider that Alice trusts Bob, and Bob trust Charlie. Although
Alice does not know Charlie, she knows and trusts Bob who, in turn, has infor-
mation about how trustworthy he believes Charlie is. Alice can use information
from Bob and her own knowledge about Bob’s trustworthiness to infer how much
she may trust Charlie. This is illustrated in Figure 1.

Combining Provenance with Trust in Social Networks 103

Fig. 1. An illustration of direct trust values between nodes A and B (tAB), and between
nodes B and C (tBC). Using a trust inference algorithm, it is possible to compute a
value to recommend how much A may trust C (tAC).

To accurately infer trust relationships within a social network, it is important
to understand the properties of trust networks. Certainly, trust inferences will
not be as accurate as a direct rating. There are two questions that arise which
will help refine the algorithm for inferring trust: how will the trust values for
intermediate people affect the accuracy of the inferred value, and how will the
length of the path affect it.

We present an algorithm for inferring trust relationships in social networks,
but this problem has been approached in several ways before. Here, we highlight
some of the major contributions from the literature and compare and contrast
them with our approach.

The EigenTrust algorithm [7] is used in peer-to-peer systems and calculates
trust with a variation on the PageRank algorithm[9], used by Google for rating
the relevance of web pages to a search. EigenTrust is designed for a peer-to-
peer system while ours is designed for use in humans’ social networks, and thus
there are differences in the approaches to analyzing trust. In the EigenTrust
formulation, trust is a measure of performance, and one would not expect a single
peer’s performance to differ much from one peer to another. Socially, though, two
individuals can have dramatically different opinions about the trustworthiness
of the same person. Our algorithms intentionally avoid using a global trust value
for each individual to preserve the personal aspects that are foundations of social
trust.

Raph Levin’s Advogato project [8] also calculates a global reputation for in-
dividuals in the network, but from the perspective of designated seeds (authori-
tative nodes). His metric composes certifications between members to determine
the trust level of a person, and thus their membership within a group. While
the perspective used for making trust calculations is still global in the Advogato
algorithm, it is much closer to the methods used in this research. Instead of using
a set of global seeds, we let any individual be the starting point for calculations,
so each calculated trust rating is given with respect to that person’s view of the
network.

Richardson et. al.[10] use social networks with trust to calculate the belief
a user may have in a statement. This is done by finding paths (either through
enumeration or probabilistic methods) from the source to any node which repre-
sents an opinion of the statement in question, concatenating trust values along
the paths to come up with the recommended belief in the statement for that

104 J. Golbeck

path, and aggregating those values to come up with a final trust value for the
statement. Current social network systems on the Web, however, primarily focus
on trust values between one user to another, and thus their aggregation function
is not applicable in these systems.

2.2 Issues for Inferring Trust

We expect that people who the user trusts highly will tend to agree with the
user more about the trustworthiness of others than people who are less trusted.
To make this comparison, we can select triangles in the network. Given nodes
ni, nj , and nk, where there is a triangle such that we have trust values tij , tik,
and tkj , we can get a measure of how trust of an intermediate person can affect
accuracy. Call Δ the difference between the known trust value from ni to nk (tik)
and the value from nj to nk (tik). Grouping the Δ values by the trust value for
the intermediate node (tij) indicates on average how trust for the intermediate
node affects the accuracy of the recommended value. Several studies [11],[4] have
shown a strong correlation between trust and user similarity in several real-world
networks.

It is also necessary to understand how the paths that connect the two indi-
viduals in the network affect the potential for accurately inferring trust relation-
ships. The length of a path is determined by the number of edges the source
must traverse before reaching the sink. For example, source-sink has length two.
Does the length of a path affect the agreement between individuals? Specifically,
should the source expect that neighbors who are connected more closely will give
more accurate information than people who are further away in the network?
Previous work[4],[6] has also addressed this issue and shown that, as expected,
shorter paths lead to more accurate information. As with trust values, it will
be important to consider the length of connecting paths when developing an
algorithm for inferring trust.

2.3 TidalTrust: An Algorithm for Inferring Trust

The effects of trust ratings and path length described in the previous section
guided the development of TidalTrust, an algorithm for inferring trust in net-
works with continuous rating systems. The following guidelines can be extracted
from the analysis of the previous sections:

1. For a fixed trust rating, shorter paths have a lower error (Δ). 2. For a fixed
path length, higher trust ratings have a lower Δ. This section describes how
these features are used in the TidalTrust algorithm.

Incorporating Path Length. The analysis in the previous section indicates
that a limit on the depth of the search should lead to more accurate results,
since the Δ increases as depth increases. If accuracy decreases as path length
increases, as the earlier analysis suggests, then shorter paths are more desirable.
However, the tradeoff is that fewer nodes will be reachable if a limit is imposed
on the path depth. To balance these factors, the path length can vary from

Combining Provenance with Trust in Social Networks 105

one computation to another. Instead of a fixed depth, the shortest path length
required to connect the source to the sink becomes the depth. This preserves the
benefits of a shorter path length without limiting the number of inferences that
can be made.

Incorporating Trust Values. The previous results also indicate that the most
accurate information will come from the highest trusted neighbors. To incorpo-
rate this into the algorithm, we establish a minimum trust threshold, and only
consider connections in the network with trust ratings at or above the thresh-
hold. This value cannot be fixed before the search because we cannot predict
what the highest trust value will be along the possible paths. If the value is set
too high, some nodes may not have assigned values and no path will be found.
If the threshold is too low, then paths with lower trust may be considered when
it is not necessary. We define a variable max that represents the largest trust
value that can be used as a minimum threshold such that a path can be found
from source to sink. max is computed while searching for paths to the sink by
tracking trust values that have been seen.

Full Algorithm for Inferring Trust. Incorporating the elements presented
in the previous sections, the final TidalTrust algorithm can be assembled. The
name was chosen because calculations sweep forward from source to sink in the
network, and then pull back from the sink to return the final value to the source.

tis =

∑

j ∈ adj(j) | tij ≥ max

tijtjs

∑

j ∈ adj(j) | tij ≥ max

tij
(1)

TidalTrust is a modified breadth-first search. The source’s inferred trust rating
for the sink (tsource,sink) is a weighted average if the source’s neighbors’ ratings
of the sink (see Forumula 1).

The source node begins a search for the sink. It will poll each of its neighbors
to obtain their rating of the sink. If the neighbor has a direct rating of the sink,
that value is returned. If the neighbor does not have a direct rating for the sink,
it queries all of its neighbors for their ratings, computes the weighted average as
shown in Formula 1, and returns the result .

To improve the accuracy of the algorithm, path length and path strength
considerations are included. At each node that is reached in the search, Each
node that is reached performs this process, keeping track of the current depth
from the source. Each node will also keep track of the strength of the path
to it. Nodes adjacent to the source will record the source’s rating assigned to
them. Each of those nodes will poll their neighbors. The strength of the path to
each neighbor is the minimum of the source’s rating of the node and the node’s
rating of its neighbor. The neighbor records the maximum strength path leading
to it. Once a path is found from the source to the sink, the depth is set at the
maximum depth allowable. Since the search is proceeding in a Breadth First

106 J. Golbeck

Search fashion, the first path found will be at the minimum depth. The search
will continue to find any other paths at the minimum depth. Once this search
is complete, the trust threshold (max) is established by taking the maximum of
the trust paths leading to the sink. With the max value established, each node
can complete the calculations of a weighted average by taking information from
nodes that they have rated at or above the max threshold.

The accuracy of this algorithm is addressed in depth in [4] and [6]. While the
error will very from network to network, our experiments in two real world social
networks show the results to be accurate to within about 10%.

2.4 Accuracy of TidalTrust

As presented above, TidalTrust strictly adheres to the observed characteristics
of trust: shorter paths and higher trust values lead to better accuracy. However,
there are some things that should be kept in mind. The most important is that
networks are different. Depending on the subject (or lack thereof) about which
trust is being expressed, the user community, and the design of the network,
the effect of these properties of trust can vary. While we should still expect the
general principles to be the same−shorter paths will be better than longer ones,
and higher trusted people will agree with us more than less trusted people−the
proportions of those relationships may differ from what was observed in the
sample networks used in this research. A more extensive comparison and analysis
of accuracy, including a comparison to a PKI algorithm[1], is available in [6]
and [4].

Table 1. Δ for TidalTrust and Simple Average recommendations in both the Trust
Project and FilmTrust networks. Numbers are absolute error on a 1-10 scale.

Algorithm

Network TidalTrust Simple Average

Trust Project 1.09 1.43

FilmTrust 1.35 1.93

3 Using Trust to Personalize Content

While the computation of trust values is in and of itself a user of provenance
and annotations together, the resulting trust values are widely applicable for
personalizing content. If we have provenance information for annotations found
on the semantic web, and a social network with trust values such that a user
can compute the trustworthiness of the person who asserted statement, then the
information presented to the user can be sorted, ranked, aggregated, and filtered
according to trust.

FilmTrust, at http://trust.mindswap.org, is a website with a social network.
Users can rate movies on a scale of 0.5 to 4 stars, and write reviews of films. While
the users interact with a simple web interface, the data is all stored as Semantic

Combining Provenance with Trust in Social Networks 107

Web annotations. In the social network, users also rate the trustworthiness of
their friends on a scale of 1-10 using the FOAF Trust Module.

The trust values are used in conjunction with the TidalTrust algorithm to
present personalized views of movie pages. When the user chooses a film, they
are presented with basic film data, the average rating of the movie, a person-
alized recommended rating, and the reviews written by users. The personalized
recommended rating is computed by first selecting a set of people who rated
the movie. The selection process considers trust and path length; details on how
this set of people are chosen are provided in [5]. Using the trust values (direct
or inferred) for each person in the set who rated the movie as a weight, and
computing the weighted average rating. For the set of selected nodes S, the rec-
ommended rating r from node s to movie m is the average of the movie ratings
from nodes in S weighted by the trust value t from s to each node:

rsm =
∑

i∈S tsirim∑
i∈S tsi

(2)

We tested the quality of these results in FilmTrust by comparing the trust-
based rating with the known rating that a user gave to a movie. While the exper-
imental details are beyond the scope of this paper, the results were encouraging.
We have shown in [4] and [6] that in the FilmTrust system, recommended rat-
ings produced with trust are significantly more accurate than the simple average
ratings as well as recommended ratings generated using a Pearson correlation-
based automated collaborative filtering algorithm when the user’s’ opinion of a
movie is at least 1 star different from the average.

Trust values for users in the system are also used to order movie reviews. When
there are multiple reviews for a movie, the reviews from the most trusted users
are displayed first. Thus, information from people the users trust is displayed
more prominently. A small user study[4] showed a strong user preference for this
ordering, because the most relevant information for the user was easiest to see.

4 Conclusions and Future Work

In this paper, we have presented a two level approach to integrating trust, prove-
nance, and annotations in Semantic Web systems. First, we presented an algo-
rithm for computing personalized trust recommendations using the provenance
of existing trust annotations in social networks. Then, we introduced two appli-
cations that combine the computed trust values with the provenance of other
annotations to personalize websites. In FilmTrust, the trust values were used to
compute personalized recommended movie ratings and to order reviews. We be-
lieve the FilmTrust system offers promise for using trust systems for additional
content filtering. We envision social networks with trust values being incorpo-
rated to more critical systems to judge statements. We are currently working to
combine a social network with Profiles In Terror1, an open source intelligence
1 http://profilesinterror.mindswap.org

108 J. Golbeck

project. Intelligence professionals can assign trust based on how much they trust
the information and analyses provided by other users. That, in turn, can be used
with provenance about the statements to rate the quality of information in the
system.

Acknowledgments

This work, conducted at the Maryland Information and Network Dynamics Lab-
oratory Semantic Web Agents Project, was funded by Fujitsu Laboratories of
America – College Park, Lockheed Martin Advanced Technology Laboratory,
NTT Corp., Kevric Corp., SAIC, the National Science Foundation, the National
Geospatial-Intelligence Agency, DARPA, US Army Research Laboratory, NIST,
and other DoD sources.

References

1. T. Beth, M. Borcherding, and B. Klein. Valuation of trust in open networks.
Proceedings of ESORICS 94., 1994.

2. D. Brickley and L. Miller. Foaf vocabulary specification. http://xmlns.com/
foaf/0.1/, 2005.

3. I. Davis and E. V. Jr. Relationship: A vocabulary for describing relationships
between people. 2004.

4. J. Golbeck. Computing and Applying Trust in Web-based Social Networks. Ph.D.
Dissertation, University of Maryland, College Park, 2005.

5. J. Golbeck. Filmtrust: Movie recommendations using trust in web-based social net-
works. Proceedings of the Consumer Communication and Networking Conference,
2006.

6. J. Golbeck. Generating Predictive Movie Recommendations from Trust in Social
Networks. Proceedings of The Fourth International Conference on Trust Manage-
ment, 2006.

7. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in p2p networks. Proceedings of the 12th International
World Wide Web Conference, May 20-24, 2004.

8. R. Levin and A. Aiken. Attack resistant trust metrics for public key certification.
7th USENIX Security Symposium, 1998.

9. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical Report 1998, Stanford University, 1998.

10. M. Richardson, R. Agrawal, and P. Domingos. Trust management for the semantic
web. Proceedings of the Second International Semantic Web Conference, 2003.

11. C.-N. Ziegler and J. Golbeck. Investigating Correlations of Trust and Interest
Similarity. Decision Support Services, 2006.

Recording Actor State in Scientific Workflows�

Ian Wootten, Omer Rana, and Shrija Rajbhandari

School of Computer Science, Cardiff University, UK

Abstract. The process which leads to a particular data item, or its
provenance, may be documented in a number of ways. The recording
of actor state assertions – essentially data that a client or service actor
may assert about itself regarding an interaction, is evaluated as a critical
provenance component within a service-oriented architecture. Actor state
data can be combined with assertions of interaction to enable better
reasoning within a provenance system. The types of data that may be
recorded as actor state are subjective, and dependent on the nature of
the application and the eventual use that is likely to be made of this
data. A registry system that allows monitoring tools to be related to
user needs is described with reference to an application scenario.

1 Introduction

The provenance of a piece of data is the process that led to that piece of data [1,2].
Typically, with service based projects, concern is primarily held with document-
ing the interaction between clients and services (actors) which were involved in
a particular process as a means of capturing data provenance. Groth et al. [1]
outline that for some data, its provenance is represented by some suitable doc-
umentation of process which led to it. This documentation includes in part the
internal states of actors within the context of a particular interaction. Here, we
make clear our definition of actor state data:

Actor State Data: That information regarding the state of an actor in the
context of a specific interaction. A single assertion of actor state may concern
the internal flow of data involved in interaction results within an actor, or the
hosting environment state at a particular point in time. Assertions of actor state
can only be recorded by the actor whom the data is about and not by a workflow
enactment engine. An actor must therefore explicitly decide to make available
such information to third parties. Our focus within this paper is primarily on
how such actor state information can enhance documentation of interaction.

To capture the documentation of interaction between actors involved in a par-
ticular process, interaction assertions may also be used. Such assertions specify
which actors are involved and the messages exchanged between them. Interac-
tion assertions may be recorded by a workflow enactment engine (by copying
all messages exchanged between actors in a workflow), or it may be explicitly
recorded by the actors themselves.
� This research is funded in part by EPSRC PASOA project GR/S67623/01.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 109–117, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

110 I. Wootten, O. Rana, and S. Rajbhandari

The provenance of data is concerned with how we arrive at a particular data
item, and assertions of actor state provide valuable information on how a partic-
ular actor state (for an involved actor) has been reached during the creation of
that data item. This is achieved through the documentation of transformations
made upon the input data within an actor, and the state the system (upon which
an actor is hosted) was in when those transformations were made. Through cap-
turing assertions regarding the transformations on input data we are able to
determine what functionality an actor was invoking, i.e. what an actor was do-
ing. Capturing the state of the system also records the context under which an
actor was operating. Exposing this context allows insight into what conditions
were set which could affect the overall data result.

Actor state assertion recording differs from interaction assertion recording –
which may be recorded by a third party. All assertions concerning actor state
become unverifiable if made by a third party, and as such the actor is the only
party able to assert its own state.

Using actor state data it is possible to evaluate the behavior of an actor
over the past and make predictions on its likely future behavior. Coupled with
interaction assertions, such data may be used to evaluate whether a particular
actor is the cause of an error or inaccurate result within a workflow instance. It
also allows a better understanding of the performance patterns observed upon
an actor, through using interaction assertions to determine what was being done
when a particular behaviour pattern occurred. Within the context of a SOA,
the description of internal flow of data within an actor would also constitute
actor state data. An actor may make public the internal functions which were
performed on the input data to obtain output data. From these functions, it
is possible to construct a directed acyclic graph (DAG) detailing the process
performed internally within an actor.

We attempt to develop a customisable architecture for the recording of ac-
tor state assertions. Familiarity with the concepts of Web Services and SOAs
is assumed. The rest of this paper is organized as follows: section 2 provides
requirements for an architecture which supports actor state assertion recording.
Section 3 contains the types of data which may be recorded by an actor, and
ways in which we may categorize such data. Section 4 presents an architecture
to satisfy the requirements identified previously and an evaluation of a proto-
type system based on the architecture is provided. A summary of related work
is given in section 5 and our concluding remarks are given in section 6.

2 Requirements

A provenance recording system must address a number of requirements, espe-
cially when used in the context of a SOA. The requirements for the storage of
provenance information within a SOA have been highlighted in [1,2,3]. Here we
identify requirements which influenced our prototype design:

Recording Actor State in Scientific Workflows 111

An actor state assertion system should record the internal data flow within an
actor in a verifiable, reproducible manner : It is possible to identify the activities
undertaken by an actor as a DAG – which describes a series of transformations
performed on some input data. Such graphs allow identification of how a par-
ticular data item was produced when followed in reverse. Hence, an actor that
receives input X could transform it through a series of functions fi(), eventually
leading to an output Y. This can be achieved through instrumentation of that
actor with relevant recording hooks describing such transformations and subse-
quent collection of this information by a provenance system.

An actor state assertion system should record in a non-repudiable manner any
data generated by an actor : It is necessary to assume that information collected
from any monitoring sources is accurate and provides a true reflection of the state
of the actor. As sources are co-located with an actor this assumption should usu-
ally be satisfied (although the recording accuracy may differ between sources).

An actor state assertion system should be scalable, general and customisable: As
previously stated in section 1, an actor needs to be viewed as a complete entity
for actor state assertion, i.e. an actor asserts its own state. There exist a variety
of mechanisms for capturing state information, and as such the available tools
across potential applications differ significantly. It is therefore necessary for an
actor state assertion system to able to be customised to cope with the variety of
information sources and the platforms upon which it will be hosted. A pertinent
question here relates to what data needs to be recorded and at what frequency.
Once again, both of questions can only be answered when we identify such a
systems’ application domain.

3 Actor State Assertion Categories

Actor state assertion categories describe the types of actor state data that may
be recorded. For each description, we use the term node to describe the system
on which an actor is hosted, and lifetime to refer to the length of time for which
the actor (client or service) is available. Persistent actors may be classified as
having an infinite lifetime.

Static: That data which does not change throughout the lifetime of an actor.
As a result, static data need only be recorded once during process execution.
Such data items have been previously investigated, and include: (i) Per-Node:
node identity, operating system, etc.; (ii) Per-Actor: actor identity, name, owner,
version, capability, etc. Such information is similar to that published by an actor
in a registry service in a SOA.

Dynamic: That data which may change during the lifetime of an actor. It is
therefore necessary to record this data at periodic intervals over the lifetime of an
actor. We assume that actors within our architecture do not maintain a persistent
state. Such data items may include: (i) Per-Node: memory usage, network traffic,

112 I. Wootten, O. Rana, and S. Rajbhandari

Fig. 1. Component Registry

etc. Such information needs to be recorded by the platform hosting the actor,
and may be made available on demand. The accuracy of such dynamic data is
dependent on the type of measurement tools being used; (ii) Per-Actor: service
execution time, uptime, availability, etc. Such dynamic data is usually derived
from other, less complex recorded metrics.

4 Conceptual Architecture

A registry based architecture for recording actor state is presented motivated by
the requirements outlined in section 2. An end user may indicate which data is
likely to be most significant to them – generally via the use of a configuration file.
The basic architecture for a registry is given in figure 1. A component registry is
co-located with an actor and holds details of the monitoring sources which are
available on the platform hosting the actor. We consider the simplest case of one
actor per platform in the first instance. The registry contains a description of
interfaces through which monitoring sources may be contacted, and a mechanism
to specify the time at which such requests may be scheduled.

A monitoring source may be a provider of a single piece of information or
a number of metrics, and therefore a way of distinguishing the relevant useful
information returned from the source becomes necessary. Within the registry, a
number of rules may be associated with a single monitoring source, and specify
the recorded actor state metrics desired during an actors’ lifetime. Two types
of rules exist within our architecture: RA(e) are runtime rules – and may be
triggered to be executed by an external or actor administrator generated event e,
e.g. a service invocation request. Such rules are immediately scheduled to execute
when an event of type e is detected by an actor. This provides functionality to
an end user who may only want to record actor state whilst a service is being
invoked. RB(t1, t2) are scheduled rules which execute between a time interval
(t2 − t1) – where ti is based on the actor clock. Using RB it is possible to
record the state of an actor outside the context of any particular interaction.
Rules of type RB must be defined and managed by an actor administrator,
and cannot be accessed via a third party. For an actor that is long running,
t1 may correspond to the time when the actor was started, and t2 set to a
large value. The result produced as a consequence of running rules of type RA

and RB may be: (i) raw data – in this case monitored data over the particular

Recording Actor State in Scientific Workflows 113

period in question is returned as an array of values. The data corresponds to
the raw data from the monitoring tool being used; (ii) interval data – in this
case the output from the monitoring tool is sampled at periodic intervals defined
by an actor administrator. An array of values is returned, corresponding to a
value at each sample point; (iii) aggregate data – in this case only a single value
for a particular metric is returned. Such a value may correspond to either the
min, max or average over the particular period. An end user must therefore
register their rules with the actor administrator if they require particular actor
state information to be monitored. The presence of a registry allows re-use of
rules between end users. Due to the tree-like hierarchy of rule-monitor-registry
associations, the configuration of a registry is achieved through an XML file.

Fig. 2. Actor State Recording within a SOA using PReP [3]

Figure 2 shows how it is possible to capture both interaction and actor asser-
tions within a SOA. The figure illustrates how actor assertions may be related
to interaction assertions by extending the data that is submitted via the Prove-
nance Recording Protocol (PReP) [3] to an external Provenance Store (a public
and possibly remote repository). Both the client and service within such an
architecture would have independent registries, containing references to locally
available monitoring sources. Every time an interaction occurs between a client
and service, each would submit their view of their interaction to a mutually
agreed upon store.

Using Actor State Assertions: in a Web Service based workflow, a scientist
does not have direct access to the system hosting the service actors. Using actor
state information, such a user can make inferences about how or why a workflow
has performed in a particular way. For example, consider a provenance-enabled
workflow comprising of two services a and b, the workflow is executed twice
to yield two sets of interaction assertions i1 and i2 in a Provenance Store. It
also asserts actor state records a1, a2 and b1, b2 for each service actor. Both
executions yield the same results, but the time of execution differ significantly.
On inspection of i1 and i2, the experimenter has no means of determining the
source of such a problem, due to only the data which has passed between a and
b being recorded – as both interact in the same manner. Inspection of the actor’s

114 I. Wootten, O. Rana, and S. Rajbhandari

state record a2 reveals performance metrics indicating high usage of a’s resources
whilst being invoked. While b’s performance shows no difference between b1 and
b2, it is possible for the scientist to conclude that a was the most likely source
of such a discrepancy. If the DAG used within an actor is also known, this can
be used in conjunction with the recorded data to locate the function within an
actor which may have been the source of a particular problem.

4.1 Implementation

A prototype of the architecture described in section 4 has been realised,
and actor state recorded using an SOA-based approach. The Ganglia system
(http://ganglia.sourceforge.net) has been used as a monitoring tool for obtaining
metrics relevant to node state and recorded during service execution. Rules are
described within our registry, along with information about how often they are
to be executed and which monitoring sources they are associated with through
configuration files expressed in XML. An actor state is recorded using rules as-
sociated with the registered monitoring source to a local provenance store. A
coordinator process is responsible for checking which rules are valid at any given
time.

In figure 3 we describe a rule written in XQuery which returns results from
a Ganglia XML document. Within the query, $ganglia:doc refers to the docu-
ment we are querying, which is bound to the XQuery at execution time. Using
this description, we return the integer value (indicated in figure 3 as VAL) of
the number of bytes in per second (bytes in) (KB/s), packets in per second
(pkts in) and maximum transmission rate of the network (mtu). These values
are then operated upon as indicated in figure 3 to determine the current (net-
work) throughput of this actor.

let $N := data($ganglia:doc//METRIC[NAME="bytes in"]/VAL)

let $X := data($ganglia:doc//METRIC[NAME="pkts in"]/VAL)

let $R := data($ganglia:doc//METRIC[NAME="mtu"]/VAL)

let $bpp := $N div $X (: Calculate number of Bytes Per Packet :)

let $tp := ($bpp*$N) div $R

return <metrics><throughput>{$tp}</throughput></metrics>
(: Return our result :)

Fig. 3. Example XQuery Rule Implementation

4.2 Evaluation

For evaluation, the registry prototype is used to record assertions regarding actor
state during invocation of a data modeling service [4]. The modeller has a number
of data processing techniques and neural network and statistical models which
take incoming data sets from a client and generate models based upon them.
There are a number of modeling algorithms exposed which vary the accuracy

Recording Actor State in Scientific Workflows 115

of the model produced, possibly at the expense of incurring a greater compu-
tation time. Our experiments use Quantitative Structure-Activity Relationship
(QSAR) to attempt to correlate biological activity to chemical compound struc-
ture described in the data set sent to it.

All experiments were conducted on a Ubuntu Linux System – AMD processor
running at 1.83GHz with 512Mb of RAM. Both service and client actors are lo-
cated on the same system, and for each experiment the service actor is invoked
100 times with input data sets of varying sizes, with the length of time of invo-
cation recorded. Experiments are conducted for rules scheduled to be recorded
simultaneously (at 1000ms intervals). A Ganglia monitoring daemon is installed
making system metrics available as XML documents. This daemon is described
as the monitoring source within the registry. The registry contains configuration
files to enable scheduling of rules for runtime invocation, with each rule reflect-
ing a single metric available through Ganglia. The results of rule execution are
recorded to a local file system.

For our preliminarily benchmark, we note that the time taken to invoke the
service when no assertions are made, upon a 34KB data set is approximately
1404ms. On recording rules scheduled with intervals of 1000ms, it is noted that
the trend for overall time for execution of the service increases on addition of
each rule, reaching a maximum of 38062ms for 5 rules. We can see by these re-
sults, that while our prototype is able to record actor state assertions, it incurs
a significant overhead against a non-asserting actor operating on the same data
set. Making the comparison against our initial requirements, whilst the proto-
type has been produced in a general and customisable manner, actors where
large amounts of state data may be produced will evidently suffer from a per-
formance degradation, especially where large rule sets are constructed. Further
work therefore is necessary to modify our system to enable it to be scalable to
such situations, such as the use of a cache for monitoring source data and its
asynchronous capture.

Table 1. Average Time to Complete Service Invocation

Size of Data Set (KB)
No Of Rules 34 68 102 136 170 204 238 272 306 340

0 1404 3338 5604 8795 10382 15223 14422 23309 18114 24613
1 1752 3863 6233 8574 11220 13383 17154 18142 21574 26046
5 2416 5680 7686 15134 15826 15979 23082 28531 29919 38062

5 Related Work

In SOAs there are a number of requirements necessary for the capture of the
provenance of interactions [1,2,3]. The PASOA project (http://www.pasoa.org/)
has highlighted a method of representing assertions made about processes by the
actors involved through use of a p-assertion [1], suggesting 3 different p-assertion
types (Interaction, Relationship and Actor State). The p-assertion presents a

116 I. Wootten, O. Rana, and S. Rajbhandari

possible manner in which to represent assertions in our local provenance store
and is already being used within other projects. At the German Aerospace Center
for instance, p-assertions are being used in order to capture actor state elements
such as computation completion states (crashed, interrupted etc) and workflow
configuration parameters in the simulation of complex flight manoeuvres [5].
Such capture achieves a confidence in simulation results which a non actor state
recording mechanism may not.

A number of common items that may be part of actor state across ap-
plication domains have also been investigated by the EU Provenance project
(http://www.gridprovenance.org), which were derived from the GLUE Informa-
tion Model [6], though due to their application dependance, representation of
them has not been specified. Our registry architecture attempts to provide a
method whereby actor state assertion capture is formalised, but its content is
left customisable.

Often, elements of actor state are captured through use of annotations. In
the MyGrid (http://www.mygrid.org.uk/) project for instance, provenance data
is generated from bioinformatics experiments and classed into: the derivation
path: by which the results were generated from the input data, and annotations :
associated with a particular object or collection of objects. Such annotations
may include elements of actor state such as version data for workflows and
resources [7]. Formal representation of actor state, as well as automation of its
collection independent of application constraints, is desirable and would be useful
in evaluating the state of actors across research disciplines.

The use of performance data to obtain insights into the relationship between
application and hardware and software has previously been explored [8], enabling
automatic model generation through performance analysis. Within job-based ex-
ecution environments, work has been performed to enable provenance recording
with a minimal level of system intrusion [9]. Automatic instrumentation of such
applications with performance monitoring code is possible due to direct avail-
ability of implementation. The trade-offs between the level of intrusion to both
the application system and user, necessary to capture adequate provenance in-
formation has previously been likened to a cube [9] where intrusion to the system
and user are modelled on the x and y axis and the amount of available infor-
mation on the z-axis. The most desirable system is described as one with no
intrusion to system or user, but providing all information about the two. In
service oriented systems instrumentation of actors may not be possible, due to
their loosely-coupled interaction with the querying actor. The level of intrusion
which is possible in such environments is therefore minimal, and as such so is the
level of information able to be captured. Our system differs through exploring
how service oriented systems (where direct knowledge of implementation may
be unknown) may record assertions of actor state using resources which are not
necessarily part of the application system, alongside interaction assertions. The
combined use of such assertions is possible in two ways, understanding how an
actor performed within the context of an interaction and secondly understanding
what an actor was doing when a particular performance pattern occurred.

Recording Actor State in Scientific Workflows 117

6 Conclusion

The use of assertions of client or service (actor) state are not often documented
within service oriented architectures, despite them being a critical component
in determining the process which led to a particular data item (its provenance).
This has been due to the application dependent nature of such data. Actor
state data can be combined with assertions of interaction between actors to
enable better reasoning within a provenance system. We have identified a number
of requirements for a system capable of actor state capture in an application
independent manner and attempted to provide a registry based architecture
which is able to satisfy them. As future work, we plan to optimise our prototype
to produce a more scalable solution and investigate other sources of monitoring
information which could be used within our architecture. Of particular interest
is the monitoring of per-actor metrics and patterns of access, especially when
multiple actors co-exist on the same platform.

References

1. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.:
An Architecture for Provenance Systems. Technical Report (v0.6), University of
Southampton (2006) [Online]. Available: http://eprints.ecs.soton.ac.uk/12023/.

2. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and us-
ing provenance in e-Science experiments. Technical report, University of Southamp-
ton (2005) [Online]. Available: http://eprints.ecs.soton.ac.uk/11189/.

3. Groth, P., Luck, M., Moreau, L.: A protocol for recording provenance in service-
oriented Grids. In: Proceedings of the 8th International Conference on Principles
of Distributed Systems (OPODIS’04), Grenoble, France (2004) [Online]. Available:
http://eprints.ecs.soton.ac.uk/11914/.

4. Ali, A.S., Rana, O.F., Parmee, I.C., Abraham, J., Shackelford, M.: Web-Services
Based Modelling/Optimisation for Engineering Design. In: OTM Workshops. (2005)
244–253

5. Kloss, G.K., Schreiber, A.: Provenance Implementation in a Scientific Simulation
Environment. In: Proceedings of the International Provenance and Annotation
Workshop (IPAW’06), Chicago, USA, Springer-Verlag (2006)

6. Andreozzi, S., Burke, S., Field, L., Fisher, S., Konya, B., Mambelli, M., Schopf,
J.M., Viljoen, M., Wilson, A.: Glue Schema Specification. Technical Report
(v1.2) (2005) [Online]. Available: http://infnforge.cnaf.infn.it/glueinfomodel/index.
php/Spec/V12.

7. Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., Moreau, L.,
Oinn, T.: Provenance of e-Science Experiments - experience from Bioinformatics. In:
Proceedings of the UK OST e-Science second All Hands Meeting 2003 (AHM’03),
Nottingham, UK (2003) 223–226

8. Taylor, V.E., Wu, X., Stevens, R.L.: Prophesy: an infrastructure for performance
analysis and modeling of parallel and grid applications. SIGMETRICS Performance
Evaluation Review 30(4) (2003) 13–18

9. Reilly, C.F., Naughton, J.F.: Exploring Provenance in a Distributed Job Execution
System. In: Proceedings of the International Provenance and Annotation Workshop
(IPAW’06), Chicago, USA, Springer-Verlag (2006)

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 118 – 132, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Provenance Collection Support in the Kepler Scientific
Workflow System

Ilkay Altintas1, Oscar Barney2, and Efrat Jaeger-Frank1

1 San Diego Supercomputer Center, University of California, San Diego,
9500 Gilman Drive, San Diego, CA 92092-0505

{altintas, efrat}@sdsc.edu
2 Scientific Computing and Imaging Institute, University of Utah

50 S. Central Campus Drive, Salt Lake City, UT 84112
oscar@sci.utah.edu

Abstract. In many data-driven applications, analysis needs to be performed on
scientific information obtained from several sources and generated by computa-
tions on distributed resources. Systematic analysis of this scientific information
unleashes a growing need for automated data-driven applications that also can
keep track of the provenance of the data and processes with little user interac-
tion and overhead. Such data analysis can be facilitated by the recent advance-
ments in scientific workflow systems. A major profit when using scientific
workflow systems is the ability to make provenance collection a part of the
workflow. Specifically, provenance should include not only the standard data
lineage information but also information about the context in which the work-
flow was used, execution that processed the data, and the evolution of the
workflow design. In this paper we describe a complete framework for data and
process provenance in the Kepler Scientific Workflow System. We outline the
requirements and issues related to data and workflow provenance in a multi-
disciplinary workflow system and introduce how generic provenance capture
can be facilitated in Kepler’s actor-oriented workflow environment. We also
describe the usage of the stored provenance information for efficient rerun of
scientific workflows.

1 Introduction

Current technology significantly accelerates the scientific problem solving process by
allowing scientists to access data remotely, distribute job execution across remote
parallel resources, and efficiently manage data. Although an increasing amount of
middleware to accomplish these tasks has emerged in the last couple of years, using
different middleware technologies and orchestrating them with minimal overhead still
remains difficult for scientists. Scientific workflow systems [1,2,3], aim to improve
this situation by creating interfaces to a variety of technologies and providing tools
with domain-independent customizable graphical user interfaces that combine differ-
ent Cyberinfrastructure [4] technologies along with efficient methods for using them.
Workflows enormously improve data analysis, especially when data is obtained from
multiple sources and generated by computations on distributed resources and/or
various analysis tools. These advances in systematic analysis of scientific information

 Provenance Collection Support in the Kepler Scientific Workflow System 119

made possible by workflows have unleashed a growing need for automated data-
driven applications that also collect and manage the provenance of the data and proc-
esses with little user interaction and overhead.

Requirements for Efficient Provenance Collection during Scientific Workflow De-
sign and Execution. Scientific problem solving is an evolving process. Scientists
start with a set of questions then observe phenomenon, gather data, develop hypothe-
ses, perform tests, negate or modify hypotheses, reiterate the process with various
data, and finally come up with a new set of questions, theories, or laws. Most of the
time before this process can end in results, scientists will fine-tune the experiments,
going through many iterations with different parameters [5]. This repeating process
can reveal a lot about the nature of a specific scientific problem and, thus, provides
information on the steps leading to the solution and end results. Making this informa-
tion available requires efficient usage and collection of data and process provenance
information. Another very important requirement for any scientific process is the
ability to reproduce results and to validate the process that was followed to generate
these results. Provenance tracking provides this functionality and also helps the user
and publication reviewer/reader understand how the run happened and what parame-
ters and inputs were associated with the workflow run.

A provenance collection system must have the ability to create and maintain asso-
ciations between workflow inputs, workflow outputs, workflow definitions, and in-
termediate data products. Collecting intermediate data products in addition to other
provenance data serves multiple purposes as the results of some processes in the
workflow can vary from run to run and some workflow tests require manually step-
ping through some of the steps to verify and debug results. The intermediate results
along with the other provenance data can be also used to perform “smart” reruns,
which will be described in section 5.

These requirements illustrate the strong need to retain origin and derivation infor-
mation for data and processes in a workflow, to associate results with customized and
executable workflow version, and to track workflow evolution as described in [16].
This paper discusses an implementation that aims to keep track of all these aspects of
provenance in scientific workflows.

In the rest of this paper, we review the related work and how our contribution dif-
fers from the rest of the previous work in this area, give a brief overview of the Ke-
pler scientific workflow system, and introduce a generic provenance collection
framework in Kepler. Finally, we explain the “smart” rerun feature that exhibits a
usage of extracted provenance information for performing efficient re-runs for a
slightly modified workflow in Kepler.

2 Related Work

The need for data provenance has been widely acknowledged and is evident in nu-
merous applications and systems. Here, we give an overview of several research ef-
forts in the field, some of which were also listed in a recent survey of data provenance
techniques by Simmhan et al. [6]. We plan to extend the data, execution and work-
flow provenance capabilities of our provenance framework based on the past work
explained below.

120 I. Altintas, O. Barney, and E. Jaeger-Frank

The Chimera [7] Virtual Data System uses a process model for tracking prove-
nance in the form of data derivations. Using a Virtual Data Catalog (VDC), defined
by a query-able Virtual Data Schema, Chimera represents executables as transforma-
tions, a particular execution as a derivation and inputs/outputs as data objects. Work-
flows in Chimera are defined as derivation graphs through a Virtual Data Language
(VDL). The VDL is also used for querying the VDC independent of the catalog
schema. Provenance in Chimera is used for tracking the derivation path that led to a
data product, reproducibility of a derived product, and validation/verification of an
experiment.

In the MyGrid project, provenance data is recorded for workflows in XScufl lan-
guage that are executed using the Taverna workflow engine [8]. A provenance log is
automatically recorded during the workflow execution in a framework differentiating
between four provenance levels: The process level gathers information about the
invoked processes, their inputs/outputs and processing times. The data level, inferred
from the process level describes intermediate and final products derivation paths. The
organization level stores the metadata for the experiment, and the knowledge level
links the experiment’s scientific findings/“knowledge” with the other provenance
levels as supporting evidence. The stored information is used to infer the provenance
of intermediate and final results and for quality verification of the data in terms of
tracing the processing steps.

The above “provenance recording systems” are tightly coupled with their workflow
execution environment. The Provenance Aware Service Oriented Architecture
(PASOA) project aims to provide interoperable means for recording and using prove-
nance data using an open provenance protocol [9]. In [18] PASOA identifies several
requirements for a generic, application independent, provenance architecture for
e-Science experiments. Among those requirements are recording of interaction prove-
nance, actor provenance and input provenance, where interaction provenance is re-
cording interactions between components and the data passed between them, actor
provenance is recording processes information and the time of the execution, and
input provenance is tracking the set of input data used to infer a data product. Other
requirements include reproducibility of an experiment, preservation and accountabil-
ity of provenance over time and customizability to support and integrate with diverse
architectures.

Other applications of data provenance are evident in database and geographic in-
formation systems. Data lineage in database systems where data provenance refers to
‘a description of the origins of a piece of data and the process by which it arrived in a
database’ has been addressed by Bunman et al. [10, 19]. Bunman et al. define the
data lineage problem as “why” and “where” provenance. Why-provenance refers to
the set of tuples that contributed to a data item, where as where-provenance defines
how a data item is being identified in the source data. In Geographic Information
Systems (GIS) data lineage is used for dataset validation. Metadata is recorded for
tracking the transformations applied to derive a data item [11].

The VisTrails system [15] was developed to facilitate interactive multiple-view
visualizations by providing a general infrastructure, which can be used in conjunction
with any existing visualization system, like Kitware's Visualization Toolkit [17], to
create and maintain visualization workflows as well as to optimize their execution.
Often, progress is made by comparing visualizations that are created by the same

 Provenance Collection Support in the Kepler Scientific Workflow System 121

basic workflow, but with slightly different parameters or components. Thus, the Vis-
trails system collects and maintains a detailed provenance record for each instance of
a workflow as well as across different versions of a workflow thus tracking the evolu-
tion of the workflow. The Vistrails system is the first system to track a workflow’s
evolution [16], something that can be useful for anyone who wants to execute a work-
flow multiple times, store the results, and then compare multiple versions of the work-
flow in an organized fashion in order to find just the right set of components and
parameters.

Provenance tracking is important for scientific computing. This paper discusses an
implementation for the Kepler scientific workflow system, which aims to keep track
of all aspects of provenance in scientific workflows: in workflow evolution, data and
process provenance, and efficient management and usage of collected data. While
there are similarities between aspects of the above-mentioned previous work and our
own, to the best of our knowledge, this approach to designing a provenance collection
framework that is highly configurable, comprehensive, model of computation inde-
pendent, and includes facility for smart reruns is a unique contribution to provenance
research in the scientific workflow community.

3 Kepler Scientific Workflow System

A scientific workflow is the automated process that combines data and processes in a
structured set of steps to implement computational solutions to a scientific problem.
Kepler [1] is a cross-project collaboration to develop a scientific workflow system for
multiple disciplines that provides a workflow environment in which scientists can
design and execute workflows.

Kepler builds on top of the mature Ptolemy II software [12], which is a Java-based
system and a set of APIs for heterogeneous hierarchical modeling. The focus of
Ptolemy II is to build models based on the composition of existing components,
which are called ‘Actors’, and observe the behavior of these simulation models when
executed using different computational semantics, which are implemented as compo-
nents called ‘Directors.’

Actors are the encapsulations of parameterized actions performed on input data to
produce output data. Actors communicate between themselves by sending Tokens,
which encapsulate data or messages, to other actors through ports. An actor can have
multiple ports and can only send Tokens to an actor that it is connected to one of its
output ports. The director specifies the model of computation under which the work-
flow will run. For example, in a workflow with a Process Network (PN) director,
actors can be thought of as separate threads that asynchronously consume inputs and
produce outputs. Under the Synchronous Dataflow (SDF) director, actors share a
common thread, and the order of execution is statically determined because the num-
ber of tokens each actor will produce and consume is known ahead of time. Also,
different domains control how the ports relay Tokens. For example, in PN each port
behaves like a FIFO queue of unlimited size where as a port controlled by the SDF
director acts like a FIFO queue with a size limited to the number of tokens an actor
can produce or consume.

122 I. Altintas, O. Barney, and E. Jaeger-Frank

Fig. 1. The Kepler System Architecture

Kepler actors perform operations including data access, process execution, visuali-

zation, and domain specific functions. Kepler uses Ptolemy II’s hierarchical actor
oriented modeling paradigm to create workflows, where each step is performing some
action on a piece of data. Workflows can be organized visually into sub-workflows.
Each sub-workflow encapsulates a set of executable steps that conceptually represents
a separate unit of work. The Kepler system can support different types of workflows
ranging from local analytical pipelines to distributed, high–performance and high-
throughput applications, which can be data- and compute-intensive. [13] Along with
the workflow design and execution features, Kepler has ongoing research on a num-
ber of built-in system functionalities, as illustrated in Figure 1, including support for
single sign-in GSI-based authentication and authorization; semantic annotation of
actors, types, and workflows; creating, publishing, and loading plug-ins as archives
using the Vergil user interface; and documenting entities of different granularities
on-the-fly.

Ptolemy II separates the description of important aspects of a design such as be-
havior and architecture, or computation and communication. [14] Kepler inherits this
concept of separation of concerns in design from the Ptolemy II. This provides sig-
nificant advantages such as lower design time and better re-usability of the design
because system designers can build a new component for the system and plug them in
for testing without changing any of the underlying architecture. Also, workflow de-
signers do not have to use ad hoc techniques to implement the workflow’s design and
execution of the workflow graph. The Ptolemy II system provides a general strategy
for separating the workflow composition from the overall orchestration of the model
by introducing the separate concerns for actors, their composition, and the implemen-
tation of computational domains that run the workflows. These ‘separate concerns’
are combined visually into a model on the screen, which provides an easy way for

 Provenance Collection Support in the Kepler Scientific Workflow System 123

system users to see what the exact behavior of the workflow will be without clicking
on menu to find out things like what the model of computation will be, for example.

4 Generic Provenance Framework in Kepler

Given the collaborative and domain-independent nature of the Kepler project, our
provenance framework needed to include plug-in interfaces for new data models,
metadata formats and cache destinations. To accomplish this goal we have created a
highly configurable provenance component that can be easily used with different
models of computation using the separation of concerns design principle. Just like a
director, provenance collection is modeled as a separate concern that is bound visually
to the associated workflow. This way a user can easily see if provenance is being
collected for a certain run of the workflow. Another advantage to this design is its
compliance with Kepler’s visual actor-oriented programming paradigm, and that it is
consistent with the behavior of the Kepler user interface.

4.1 Design Objectives

A major objective when designing the provenance recording functionality was ease of
use. We did not want the user to have to go through a complex configuration process
or the actor designers to have to implement a complex API. Since Kepler is built on
top of the Ptolemy II framework, we had to consider designs that would seamlessly
integrate with existing code and work with any director.

When designing the provenance collection system, another major consideration
was supporting the multi-disciplinary and multi-project nature of the Kepler project.
To be more flexible we made our collection facility parametric and customizable. For
example, a user may want to limit the granularity of the collected data, publish it in a
specific data source, or only save certain results to verify the behavior of a specific
workflow component during testing. To facilitate this, we allow the user to choose
between various levels of detail, and even save all of the provenance data needed to
recreate a workflow result when the workflow is used as a part of the scientific dis-
covery.

A workflow run consists of several pieces of information that need to be recorded
including the context, the input data and its associated metadata, the workflow out-
puts, intermediate data products, the workflow definition, and information about the
workflow evolution. Context is the who, what, where, when, and why that is associated
with the run. Workflow definition is a specification of what exists in the workflow
and can have a context of its own. It includes information about the workflow’s enti-
ties, their parameters and the connections between the actors. Workflow evolution,
also known as a workflow trail [16], is a description of how the workflow definition
has changed over time. This is an application of the ideas in [16]. By tracking the
evolution of a workflow design, its runs, and its parameters over time, the scientist
can efficiently manage the search of a parameter space and easily jump back to a
previous version of the workflow that produced interesting results.

124 I. Altintas, O. Barney, and E. Jaeger-Frank

One of our side goals when designing the provenance recorder was its ability to
help us debug a workflow during the implementation phase of workflow development.
By mining and analyzing ‘process provenance,’ data related to the execution of the
workflow, and intermediate data products that were processed at the time of an error, we
may be able to figure out exactly what was happening at the time of an error in our
prototype workflow.

Fig. 2. A screenshot of Vergil that shows the different concerns for model of computation
(green), provenance collection (blue), smart rerun (red) and actors

4.2 Implementation

To address ease of use, we designed the Provenance Recorder (PR) to be configured
and represented in the same way as a Director in Kepler. To enable provenance col-
lection in a workflow instance the user drags the PR from the toolbox and places it on
the workspace with the Director and other workflow entities. Unlike using Directors,
using the PR with a given workflow is optional, depending on the user’s requirements
for tracking provenance. Similar to the Director, it is configured with a standard
configuration menu and becomes part of the workflow definition. (See Fig. 2.)

We had to pursue the following steps to provide automatic collection of prove-
nance information in Kepler. We converted Kepler's internal XML workflow repre-
sentation, MOML, into our internal format for provenance data. This format leaves
out some of the unnecessary information MOML includes (i.e. actor coordinates and
the custom actor icons in the user interface) and includes extra information (i.e. Token

 Provenance Collection Support in the Kepler Scientific Workflow System 125

production rate of the actors, etc.) critical to complete data provenance collection.
Using the existing MOML generation capabilities in Kepler helped us to efficiently
collect the provenance associated with the workflow definition. Also, by keeping
track of all information associated with the workflow definition we are able to track
workflow evolution and jump back to interesting workflows saved in our provenance
store. We leave out the details of our internal format for provenance collection and
caching here as it is out of the scope of this paper.

In order to collect information that is generated during a workflow run, the PR im-
plements several event listener interfaces. Different ‘concerns’ in Ptolemy II and
Kepler, such as the ports through which actors communicate, maintain a list of event
listener objects that are registered with them. When something interesting happens,
the event listeners registered with the specific ‘concern’ in question are notified, and
take the appropriate action. For example, when the PR is notified that a data product
is created, it can then associate the appropriate data lineage information with this data
product and put it in the provenance store. Event listeners are also allowed to register
and un-register with individual concerns so that we can easily control the amount of
provenance data that is collected during any one run. This can be very important
because some workflows create a massive number of intermediate data products,
which are not always necessary to recreate the results of a certain workflow.

When the workflow is loaded, the PR will register with the appropriate ‘concerns’
in the workflow. When the workflow is executed, PR will process information re-
ceived as events, and save it in provenance store. As we have mentioned before, the
provenance recorder can save information that is useful for debugging the workflow.
To accomplish this, we have the PR register with the appropriate concerns that send
out notification of events related to the execution of the workflow and any errors that
occur. In this way we can find out exactly what actor was executing, with what inputs
when a certain error occurred.

Although we were able to automate much of the provenance collection, we had to
extend the design to handle several other cases. For example, if an actor creates an
external data product, it must register this product with the PR as well as reporting its
internal actions. We developed a simple API allowing actors to notify the PR in these
situations. Once the actors are extended using this API, the PR can collect and save
these data products and actions in addition to any local data products that were auto-
matically collected using the event listener interfaces.

5 Efficient Workflow Rerun Enabled by Provenance Data

In Kepler, we have added functionality to enable efficient reruns of a workflow by
mining stored provenance data. The idea behind a “smart” rerun [1] is as follows.
When a user changes a parameter of an actor then runs the workflow again,
re-executing all the preceding, unchanged steps (actors) in the workflow may be re-
dundant and time consuming. A “smart” rerun of the workflow will take data depend-
encies into account and only execute those parts of the workflow affected by the
parameter change. The ability to store and mine provenance data is required to enable
“smart” reruns since the intermediate data products generated in previous runs are
used as the inputs to the actors that are about to be rerun.

126 I. Altintas, O. Barney, and E. Jaeger-Frank

We have created the Smart Rerun Manager (SRM) to handle all the tasks associ-
ated with the efficient rerun of a workflow. This includes data dependency analysis
and provenance data management. The algorithm used by the SRM is derived from
the Vistrail execution and cache management algorithm used in the Vistrails system
[15]. The VisTrails cache management algorithm was developed to allow users of a
visualization system to efficiently explore a parameter space. The premise is that we
can extract intermediate results of the dataflow from a cache instead of recreating
them in order to save time when rerunning the dataflow.

5.1 Implementation and Algorithm Description

The SRM is an event-based entity in the workflow, which is a 'separate concern' in the
Kepler system just like the PR. They are both used and configured in a similar way.
Once a SRM is placed on the workspace by dragging it from the toolbox, all prove-
nance data needed to perform a smart rerun of the workflow will be collected. To
allow users to choose whether or not they want to perform a smart rerun of the work-
flow, the SRM is activated by pressing a special “Smart Rerun” button in the user
interface next to the standard “Run Workflow” button. In this section, we describe
how the SRM system uses provenance data for optimized rerun and our changes to
the underlying Vistrails algorithm, which the SRM builds upon.

The basic idea behind the Vistrails algorithm is to search a graph representation of
the dataflow for sub-graphs that can be eliminated. The precondition for elimination
of these sub-graphs is that the actors they contain have already been run with the
current parameters and input data. The next step is to retrieve the intermediate data
products produced by this eliminated sub-graph from the provenance store for use as
input to the actors that need to be rerun. This part of the provenance store we will call
the provenance cache. Each sub-graph is identified with a unique ID, which is an
important concept that we borrow from the Vistrails system. A unique ID, which is
used as a key when searching the provenance cache for information related to a par-
ticular sub-graph, represents a unique state of a component (a.k.a. actor), its parame-
ters, and all the actor and parameters that come before it in the workflow. Each unique
ID is associated with a specific actor and encapsulates the provenance information
needed to uniquely identify and retrieve the intermediate data products produced by
that actor.

When activated by pressing the special “Smart Rerun” button in Kepler’s toolbar, the
SRM builds a directed graph representing the data dependencies in the workflow. Each
node in the graph represents an actor in the workflow and the edges represent the flow
of data between actors. The SRM then analyzes this graph to detect sub-graphs that have
been successfully computed before and the sub-graphs that must be rerun.

The analysis begins at the graph’s sinks and recursively traverses all the input edges
of each node in the direction opposite to the flow of data. At each node, a unique ID is
generated and used as a key in the cache lookup. If this unique ID is associated with
some data in the provenance cache, this means that the workflow as it exists from this
node backward in the dependency graph has been executed successfully before. In this
case the actors represented by the nodes sub-graph corresponding to the unique ID can
be eliminated from the list of actors to be rerun. Conceptually, the intermediate data
product retrieved from the provenance store using the unique ID replaces this sub-graph.

 Provenance Collection Support in the Kepler Scientific Workflow System 127

How this is done in practice will be clarified soon. If this unique ID is not associated
with any data products in the provenance store, we keep traversing our graph until we
do find a unique ID with associated data in the provenance cache or we reach the source
nodes in the graph and they need to be rerun as well.

The last step of the “smart” rerun process is to replace the eliminated sub-graphs
with components that can stream the data from the provenance cache. In Kepler-
specific terms, we need to place the intermediate data products retrieved from the
provenance cache on the appropriate actors input ports while the workflow is running.
These intermediate data products are the tokens that flowed across this input edge
from the eliminated actors in the previous runs of the workflow. We developed a
special actor to replace the eliminated actors and replay the tokens that they would
have produced. This special actor is called the Stream Actor because it streams data
from the provenance store into the running workflow. This piece of the system is
called the vtkDataObjectPipe in Vistrails. Figure 3 visually illustrates a simple exam-
ple where the SRM retrieves the intermediate results of the previous execution and
replaces the previously executed parts of the workflow with a streaming actor.

Fig. 3. Smart Rerun Manager retrieving the intermediate results of the previous execution and
replacing the pre-executed parts of the workflow with a streaming actor. Bottom workflow
shows StreamActor replacing actors whose computations would be redundant in the rerun.

128 I. Altintas, O. Barney, and E. Jaeger-Frank

It is important to note that the data associated with a successful lookup in the
provenance cache can be associated with the preceding run of the workflow or any
previous runs with the same components, connections, and parameters thus utilizing
all past provenance information. Also, two sub-graphs of the same workflow could
potentially be replaced by data from two distinct runs of the workflow. This is a major
strength of the Vistrails algorithm, which ensures that no work is repeated.

For the most part, the SRM is able to use the Vistrails cache management algo-
rithm, however we have made some noteworthy changes and additions. The Vistrails
system was designed with a single model of computation in mind and actually exe-
cutes portions of the workflow as a part of its graph analysis stage. Since the SRM
must distinguish between different models of computation (Directors) in Kepler that
expect different behaviors during the workflow run, we had to do the graph analysis
step before handing off the execution of the workflow to the Director. This is an effi-
cient design in Kepler because each Director has a distinct behavior and trying to
encode these behaviors in the SRM would result in redundant code.

Also, our Stream Actor must take these separate models of computation into
account. For example, when a workflow is executed using a Director, such as the
Process Networks Director that requires each actor consume a stream of inputs and
produce a stream of outputs, the SRM actor makes sure that the stream of tokens is
replayed in the same order that it was collected when inserting data from the prove-
nance store into the workflow. In a domain, such as Synchronous Dataflow (SDF),
where each actor consumes a certain number of inputs and produces a certain number
of outputs, the Stream Actor gives the tokens to input ports at the rate they are ex-
pected. What we mean by rate is clarified by the following example. In a model
controlled by the SDF Director assume that actor A declares that it will consume x
tokens each time it is activated. The SDF Director schedules the actors so that they
will not run until they have the proper number of inputs. If the actor B creates x/2
inputs each time it executes and is connected to actor A, the SDF Director will sched-
ule B to execute twice so that the actor A will have enough inputs when it executes.
As it is illustrated in this example, the SRM must guarantee the production rate of the
StreamActor to ensure that the rerun is performed correctly.

Another difference between the Vistrails algorithm and the algorithm that the SRM
is using, is the way in which the SRM handles ‘non-cacheable’ actors in the work-
flow. Non-cacheable actors are the actors whose output depends on when the run
occurs as well as what the inputs and parameters are. For example, an actor that que-
ries a remote database is non-cacheable if the database modifiable because it may
receive different results depending when the query is executed. In contrast, the Vis-
trails system views every component as a function, for a specified input you can pre-
dict the output. A non-cacheable actor in the Vistrails system does not have its outputs
saved, and thus its unique ID will never be found in the provenance cache. Non-
cacheable components in the context of Visualization workflows are those whose
outputs cannot be saved or whose outputs are too large to be saved. Actors that de-
pend on the non-cacheable actor are not rerun unless there is a new input or parameter
change upstream. If it is not specified otherwise, the SRM will rerun all actors that
depend on a non-cacheable actor since their results depend on non-deterministic na-
ture of the non-cacheable actor.

 Provenance Collection Support in the Kepler Scientific Workflow System 129

The SRM’s user interface allows the user to specify if an actor is cacheable or if it
must be rerun every time. In some cases you may want to save the state of an actor
that behaves in a non-deterministic way. This enables the user choose between doing
a “smart” rerun of the workflow with saved provenance data to exactly recreate a past
run or to rerun the workflow to get the most up-to-date results but still avoid redun-
dant steps.

The SRM is an example to valuable usage of data from our provenance store. It has
the potential to save scientists hours while they explore the parameter space of their
workflows and is an important feature of the Kepler system.

6 Results and Conclusions

This paper discusses our generic provenance framework for use with scientific work-
flows. The framework is designed to support a wide range of workflow types and is
extensible because of the modularity of its design and the flexibility of the event lis-
tener interfaces that it implements. Most of the discussed functionality has been im-
plemented with the exception of a final data model design. This paper does not focus
on the internal structure of the collected information to support provenance and cach-
ing, but mentions these to explain the PR and SRM. We plan to continue working on
the data models and make it available in the near future. We have already had interest
in the PR from a wide variety of users, some of which have used our initial version
and given positive feedback.

Performance Evaluation. The PR has been designed to be as generic as possible and
has met most of the design goals that we set out to achieve. The event based nature of
the design has allowed us to collect the variety of information needed in order for the
system to be useful in a wide range of application areas while at the same time having
a minimal performance impact on the system. Specific performance measurements
for workflows using the PR vary greatly depending on the amount of provenance data
being saved and the ratio of data produced to time spent computing. For example, a
computationally intensive workflow may produce the same amount of provenance
data as a workflow that runs in a matter of seconds, but has less overhead as the PR
takes much smaller percentage of total run time. We can safely say that we have ac-
complished our design goal of efficiency because in the majority of our test cases the
increase in run time attributed to the PR is minimal and usually only a couple of sec-
onds. Also, in some cases where a specific actor generates excessive amounts of data,
our design allows us to specify that we are not interested in this actor’s information by
un-registering with its list of event listeners.

7 Future Work

We have developed several prototype relational and XML data models and plan to
implement them in the Kepler Provenance Framework once we have design a suitable
data model. The data model for storing provenance information in Kepler should
accommodate the needs of different scientific domains as well as allow for efficient
storage and retrieval of data. Another area of we are interested in researching is in

130 I. Altintas, O. Barney, and E. Jaeger-Frank

defining the policies for managing provenance data for different projects. This is an
important problem that utilizes other functionality and system components in Kepler
including the authentication and authorization framework, the data access API, and
semantic annotations. Another planned usage of actor annotations is to annotate the
actors so that the PR could automatically figure information related to what files they
create during the run, what algorithm and data structures they use, etc. We also plan
to implement querying and viewing system for collected provenance information.

There are multiple provenance activities within the Kepler collaboration including
provenance tracking in collection-oriented workflows and integrating with RDF based
provenance stores. In this paper, we have only mentioned the existing implementa-
tion, the algorithms it utilizes, and its functionality. We plan to bring the ongoing
research by other Kepler developers and researchers together under the Kepler prove-
nance framework once these research ideas are implemented and become available for
public use. In particular we would like to experiment with the provenance model
developed by Bowers et al. [20] to support a wide range of scientific use cases in
phylogeny and the data model for the XMLSchema-based arbitrary textual and binary
data format articulation capability by Talbott et al. [21].

This paper already described the usage of the Vistrails algorithm for smart re-runs
of the same workflow. We plan to further incorporate the Vistrails system capabilities
into our provenance framework for systematically capturing detailed provenance and
workflow evolution information. [22] This will require customizing or extending the
existing Vistrails action-based model by information on the Kepler workflow model-
ing language (MoML) and updating the core Kepler modeling components to record
this information during the modeling and experimentation phase for a scientific
workflow.

Acknowledgements

The authors would like to thank the rest of the Kepler team for their excellent collabo-
ration, especially to Timothy McPhillips for the discussion on requirements for a
provenance framework and future steps, Claudio Silva and Juliana Freire for their
help on VisTrails and insight on workflow provenance, and Steven Parker for his
support and guidance. This work was supported by DOE Sci-DAC DE-FC02-
01ER25486 (SDM) and NSF/ITR 0225673 (GEON).

References

1. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,
Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency
and Computation: Practice & Experience, Special Issue on Scientific Workflows, to ap-
pear, 2005. http://kepler-project.org/

2. Oinn, T., Greenwood, M., Addis, M., Alpdemir, M.N., Ferris, J., Glover, K., Goble, C.,
Goderis, A., Hull, D., Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M., Stevens, R.,
Wipat, A. Wroe, C.: Taverna: Lessons in creating a workflow environment for the life sci-
ences”. Accepted for publication in Concurrency and Computation: Practice and Experi-
ence Grid Workflow Special Issue

 Provenance Collection Support in the Kepler Scientific Workflow System 131

3. Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor,
I., Wang, I.: Programming Scientific and Distributed Workflow with Triana Services”. In
Grid Workflow 2004 Special Issue of Concurrency and Computation: Practice and Experi-
ence, to be published, 2005

4. Revolutionizing Science and Engineering Through Cyberinfrastructure: Report of the Na-
tional Science Foundation Blue Ribbon Advisory Panel on Cyberinfrastructure

5. Lipps, J. H.: The Decline of Reason?. http://www.ucmp.berkeley.edu/fosrec/Lipps.html,
6. Simmhan, Y. L., Plale, B., Gannon, D., A survey of data provenance in e-science. In

SIGMOD Rec. 34(3): 31-36, 2005
7. Foster, I., Voeckler, J., Wilde, M., Zhao, Y.: Chimera: A Virtual Data System for Repre-

senting, Querying, and Automating Data Derivation. In Proceedings of the 14th Confer-
ence on Scientific and Statistical Database Management, 2002

8. Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., Moreau, L.,
Oinn, T.: Provenance of e-Science Experiments - experience from Bioinformatics. In Pro-
ceedings of The UK OST e-Science second All Hands Meeting 2003 (AHM'03)

9. Groth, P., Luck, M., Moreau, L.: A protocol for recording provenance in service-oriented
grids. In Proceedings of the 8th International Conference on Principles of Distributed Sys-
tems (OPODIS'04), 2004

10. Buneman, P., Khanna, S., Tan, W.C.: Why and Where: a characterization of data prove-
nance. In Proc. ICDT 2001

11. Lanter, D.P., Design of a lineage-based meta-data base for GIS, In Cartography and Geo-
graphic Information Systems, 18(4):255-261, 1991

12. Ptolemy Project, See Website: http://ptolemy.eecs.berkeley.edu/ptolemyII/
13. Altintas, I., Birnbaum, A., Baldridge, K.K., Sudholt, W., Miller, M., Amoreira, C., Potier,

Y., Ludaescher, B.: A Framework for the Design and Reuse of Grid Workflows. Lecture
Notes in Computer Science, Scientific Applications of Grid Computing: First International
Workshop, SAG 2004, Beijing, China, September 20-24, 2004, Volume 3458 (3), pp 119-
132, ISBN3-540-25810-8.

14. Yang, G., Watanabe, Y., Balarin, F., Sangiovanni-Vincentelli, A.: Separation of Concerns:
Overhead in Modeling and Efficient Simulation Techniques. Fourth ACM International
Conference on Embedded Software (EMSOFT'04), September, 2004

15. Bavoil, L., Callahan, S., Crossno, P., Freire, J., Scheidegger, C., Silva, C., and Vo, H.: Vis-
trails: Enabling interactive multipleview visualizations. In IEEE Visualization 2005, pages
135–142, 2005

16. Callahan, S., Freire, J., Santos, E., Scheidegger, C., Silva, C., and Vo, H.: Managing the
Evolution of Dataflows with VisTrails. In Proceedings of the IEEE Workshop on Work-
flow and Data Flow for Scientific Applications (SciFlow 2006)

17. The Visualization Toolkit (VTK), See Website: http://public.kitware.com/VTK/
18. Miles, S., Groth, P., Branco, M., Moreau, L.: The requirements of recording and using

provenance in e-Science experiments. Technical Report, Electronics and Computer Sci-
ence, University of Southampton, 2005

19. Buneman, P., Khanna, S., Tan, W. C.: Data Provenance: Some Basic Issues. In Proceed-
ings of the 20th Conference on Foundations of Software Technology and theoretical Com-
puter Science, 2000

20. Bowers, S., McPhillips, T., Ludaescher, B., Cohen, S., Davidson, S.B.:A Model for User-
Oriented Data Provenance in Pipelined Scientific Workflows . In Proceedings of the
IPAW'06 International Provenance and Annotation Workshop, Chicago, Illinois, USA
May 3-5, 2006

132 I. Altintas, O. Barney, and E. Jaeger-Frank

21. Freire, J, Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E, Vo, H.T.: Managing
Rapidly-Evolving Scientific Workflows. In Proceedings of the IPAW'06 International
Provenance and Annotation Workshop, Chicago, Illinois, USA May 3-5, 2006

22. Talbott, T.D., Schuchardt, K.L., Stephan, E.G., Myers, J.D.: Mapping Physical Formats to
Logical Models to Extract Data and Metadata: The Defuddle Parsing Engine. In Proceed-
ings of the IPAW'06 International Provenance and Annotation Workshop, Chicago, Illi-
nois, USA May 3-5, 2006

A Model for User-Oriented Data Provenance in

Pipelined Scientific Workflows�

Shawn Bowers1, Timothy McPhillips1, Bertram Ludäscher1,2,
Shirley Cohen3, and Susan B. Davidson3

1 UC Davis Genome Center, University of California, Davis
2 Department of Computer Science, University of California, Davis
3 Computer and Information Science, University of Pennsylvania

{sbowers, ludaesch, tmcphillips}@ucdavis.edu
{shirleyc, susan}@cis.upenn.edu

Abstract. Integrated provenance support promises to be a chief advan-
tage of scientific workflow systems over script-based alternatives. While
it is often recognized that information gathered during scientific work-
flow execution can be used automatically to increase fault tolerance (via
checkpointing) and to optimize performance (by reusing intermediate
data products in future runs), it is perhaps more significant that prove-
nance information may also be used by scientists to reproduce results
from earlier runs, to explain unexpected results, and to prepare results
for publication. Current workflow systems offer little or no direct sup-
port for these “scientist-oriented” queries of provenance information. In-
deed the use of advanced execution models in scientific workflows (e.g.,
process networks, which exhibit pipeline parallelism over streaming data)
and failure to record certain fundamental events such as state resets of
processes, can render existing provenance schemas useless for scientific
applications of provenance. We develop a simple provenance model that
is capable of supporting a wide range of scientific use cases even for
complex models of computation such as process networks. Our approach
reduces these use cases to database queries over event logs, and is capa-
ble of reconstructing complete data and invocation dependency graphs
for a workflow run.

1 Introduction

The importance of provenance information in scientific data and workflow man-
agement is widely recognized, as witnessed, e.g., by specialized workshops [4,1],
research projects [17], and surveys [3,20] dedicated to this topic, and by in-
vestigations on foundations of data provenance for queries and transformations
[5,9,23]. However, current scientific workflow systems still offer little or no sup-
port for queries of interest to the end-users of these systems, e.g., researchers in

� Work supported in part by SciDAC/SDM (DE-FC02-01ER25486), NSF/SEEK
(DBI-0533368), and NSF/GEON (EAR-0225673).

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 133–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

134 S. Bowers et al.

Fig. 1. A workflow for computing phylogenetic trees from input DNA sequences

the life or physical sciences. In this paper, we argue that concrete use cases, ex-
pressed in terms that are meaningful to the scientist, should drive the design of
a provenance system. Moreover, such systems should be designed in terms of the
models of computation (MoC) that govern the execution of scientific workflows
to ensure that all pertinent events are recorded in the execution log.

Fig. 1 shows an example workflow for inferring phylogenetic trees approxi-
mating the evolutionary relationships between organisms. DNA sequences for
homologous genes from a number of taxa are provided as input to the workflow.
Actor A1 performs an initial alignment of the sequences (e.g., using the program
ClustalW [22]), and actor A2 refines this initial alignment (e.g., using Gblocks
[7]).1 Actor A3 infers a set of phylogenetic trees from the aligned sequences (e.g.,
using DNAPARS [19]), and actor A4 computes the consensus of these trees (e.g.,
using CONSENSE [19]).

For such scientific workflows we would like to: (a) enable scientists to ask “sci-
entific” questions about a workflow run by providing convenient queries against
the run’s execution log; and (b) have the system track the true data dependen-
cies within a run so that answers to such scientific questions may be as accurate
as possible. For example, the system should recognize independent “sub-runs” as
such: The workflow in Fig. 1 may process multiple sets s1, s2, . . . of independent
DNA sequences (e.g., corresponding to distinct genes in the taxa of interest)
within a single workflow run R. In such cases, the system should not infer that
the data products resulting from the different si are interdependent. Rather, the
system should answer accurately questions such as:

– Which phylogenetic trees were used to produce this consensus tree?
– Which DNA sequences does this consensus tree depend on?
– Which of the input DNA sequences were not used to derive any output con-

sensus tree?

1 Following Kepler terminology, we call workflow components actors.

A Model for User-Oriented Data Provenance 135

In this paper, we develop a provenance model designed to support such user-
oriented queries for pipelined models of computation where tracking data de-
pendencies can be complex. For another example, consider an actor A in an
environmental monitoring workflow that computes a running average of temper-
ature for each received measurement data token. Thus, upon each invocation or
firing of A, the actor consumes a temperature token and emits a new running
average token. To calculate the running average over multiple firings, A must
maintain state. For the provenance system this means that every produced data
token must be recorded as dependent not just on those input tokens received
since the last time the actor fired, but on all tokens received since A was ini-
tialized. Conversely, if A is to limit the running averages to readings taken on
a particular day, then A’s state is reset once per day. There are no dependen-
cies between tokens produced after a reset and tokens consumed prior to the
reset. This observation naturally partitions token streams, as well as actor fir-
ings, into semantically meaningful firing rounds.2 Clearly, a provenance system
should be able to observe and record new rounds of firing to avoid reporting
false dependencies.

The running average example described above illustrates a general prop-
erty of scientific workflows implemented as process networks [12,15,13]: actors
need not produce output tokens derived exclusively from tokens received since
the last output token was produced. That is, actors in process networks do
not generally compute functions on sets of consecutively received inputs.
Rather, they may carry out arbitrarily complex transactions on streams of
inputs, including running averages, filters, sliding windows, and iterative com-
putations.

Capturing these transaction boundaries is essential for accurately recording
scientific workflow provenance. In this paper, we show how this essential infor-
mation can be represented in a simple tabular event log. Our approach is easy
to implement, e.g., in the Kepler scientific workflow system, where token-read
and token-write events can be automatically captured by the workflow frame-
work. Announcing a new round of firing (e.g., by signaling a reset event), on
the other hand, is performed by actors themselves, which “know” when they
are beginning an independent task (such as a “sub-run” si above, or new daily
average temperatures).

The rest of this paper is organized as follows. Section 2 briefly overviews
scientific workflows within Kepler, focussing on pipelined execution models.
Section 3 presents our provenance model, which consists of read, write, and
state reset events. We also describe in Section 3 how to compute data and actor
dependency graphs (e.g., for computing data lineage) from corresponding event
logs. Section 4 describes a set of operations (or views) over the provenance model
for supporting “scientist-oriented” provenance queries. A number of examples are
given, which define parameterized queries for the workflow of Figure 1. Finally,
Section 5 summarizes our contributions and future work.

2 A round is somewhat analogous to a database transaction, specifically in that it
constitutes a logical unit of work.

136 S. Bowers et al.

2 Preliminaries

2.1 Workflow Graphs, Actors, and Tokens vs. Data Objects

We adopt notions and terminology from Kepler, a scientific workflow system
extending Ptolemy II. Workflows are composed by placing actors on a de-
sign canvas, and “wiring” them together to form the desired workflow graph
(Fig. 1). Actors communicate through their input and output ports. In a workflow
graph W , output ports can be connected to input ports, establishing unidirec-
tional dataflow channels. Actors communicate through these channels by passing
tokens.

By default tokens are immutable and “disposable”, i.e., every token t is writ-
ten only once [15] and thus lives only between its creation on an output port,
and its consumption at subsequent input ports. Thus, even if an actor passes
on a data object unchanged, a new token-id is created, facilitating tracking of
token dependencies. A separate object-id is used to track object dependencies.
By object(t) we denote the data object represented by the token t. To support
user-oriented queries, we associate with an object o one or more types types(o).

The ports of an actor A are denoted ports(A). We assume that port-ids are
globally unique, i.e., they include a unique actor-occurrence-id and a port-name
which is unique to the actor occurrence. A port is either an input or output,
so ports(A) = in(A) ∪̇ out(A). Some input ports pars(A) ⊆ in(A) may be dis-
tinguished as parameters for configuring A’s behavior. The signature ΣW :=
in(W) → out(W) of a workflow W is given by a set of distinguished inputs
in(W) and outputs out(W). As shown in Figure 1, the distinguished workflow
input and output ports are connected to a subset of the input and output ports
of the workflow’s actors.

2.2 Directors

The model of computation (MoC) of a workflow is not defined by actors, but
specified by a separate component called a director. Thus, Kepler allows work-
flow designers to choose among different MoCs by choosing appropriate directors.
A director specifies and (effectively) mediates all inter-actor communication,
separating workflow scheduling and runtime orchestration (a director’s concern)
from individual actor execution (an actor’s concern). This separation achieves a
form of behavioral polymorphism [14], resulting in more reusable actor compo-
nents. Kepler provides a variety of directors that implement process network
(PN and SDF), discrete event (DE), continuous time (CT), and finite state
transducer (FST) semantics.

2.3 Pipelined Execution

In the process network MoC, the PN director executes each actor as a sepa-
rate process (or thread). Channels are used to send and to buffer token streams

A Model for User-Oriented Data Provenance 137

between actors. Each actor can decide independently how many tokens to con-
sume before writing out a number of output tokens. In this way, workflows that
run using the PN director not only exhibit task parallelism, but also pipeline
parallelism. For example, during a single workflow run, each actor in Figure 1
can execute multiple times, and different actors can execute concurrently.

A number of other MoCs can be considered as special cases of the basic
process network model [12,15]. In the synchronous dataflow (SDF) model [13],
actors a priori define fixed token consumption and production rates. This model
allows the SDF director to statically schedule actors, while guaranteeing, e.g.,
that (unlike in the general PN case) deadlocks cannot occur and that buffers
have a fixed size. By DAG (directed acyclic graph) we denote a MoC that is
common in job-centric grid workflows [21,10]: nodes represent jobs, and directed
edges represent execution dependencies between jobs. Thus, a DAG director can
simply execute the jobs in the partial order implied by the job dependency graph.
This can be seen as a limited special case of SDF, with an acyclic workflow graph,
actors having at most one input and one output port, consuming and producing
a single token per workflow run, respectively, and in which each actor is invoked
exactly once (unlike in the more general SDF or PN cases).

3 A Provenance Model for Pipelined Workflows

In this section we describe a provenance model that can handle the process
network (PN) model of computation, and thus specialized versions such as SDF
and DAG as well. To execute a workflow (graph) W , we must “bind” (i.e.,
select) input data i on which W will operate. Often W is also parameterized
using initial parameter settings p. It is customary to record identifiers for W , p,
and i as part of the provenance information. Finally, a MoC M is needed (e.g.,
PN, SDF, DAG) to determine how the workflow is executed.3 Taken together,
the equation

o = M(Wp(i))

denotes a workflow execution in which the output o is obtained by applying a
suitable model of computation M to an appropriately instantiated workflow W .

3.1 Runs, Traces, and Observables

Each MoC M formally defines the notion of legal computations or runs, such
that one can determine whether a particular run R of a workflow W is a legal
representation (w.r.t. M) of an execution o = M(Wp(i)). A workflow trace T is
an approximation of a run R, according to a model of provenance. As recorded
by a provenance model, a trace approximates a run by recording functional
and non-functional observables. For example, an SDF director precomputes a
static workflow schedule (based on actor consumption and production rates),

3 Some MoCs might also be aware of resources such as cluster (or grid) nodes and
transport protocols, and schedule a distributed workflow accordingly.

138 S. Bowers et al.

and using this schedule signals each actor to fire in turn. Thus, actor firings are
directly observed in SDF. In contrast, the size of a token (or rather the object
it represents) and the timestamp when the token was created are non-functional
observables: according to the MoC, the outcome does not depend on these. Non-
functional observables can be useful to record, e.g., to benchmark actor execution
times or data transfer times between actors, but are not essential for determining
data dependencies.4

3.2 The Read, Write, State-Reset (RWS) Provenance Model

Here we consider a concrete model of provenance, called the RWS model, which
records read, write, and state-reset events for each actor in a workflow run. These
events are stored in a relational event log. This model focuses on only a minimal
set of observables that allow us to answer many science-oriented user questions
(see next section), while ignoring non-functional observables such as timestamps,
although such information can be easily added. Figure 2 is an example of an event
log for a run of the workflow given in Figure 1. During a workflow run, a read
event is added to the event log each time an actor reads a token from a port.
Similarly, a write event is added to the log each time an actor writes a token to
a port. A series of reads followed by writes denotes an actor firing. Note that in
a particular firing Fj , an actor may use data that it read in a previous firing Fi

to generate output (e.g., this is the typical behavior of a running-average actor,
as described in Section 1). In this case, we say the actor maintains state across
firings, and state-reset events denote when the state is “flushed” (reset). The
firings between reset events constitute a firing round.5

As shown in Figure 2, each row in an event log contains: the location Eloc

of the event, which is either a port (for read and write events) or an actor
(for state-reset events); the event type Etyp, which is either ‘r’ for read events,
‘w’ for write events, or ‘s’ for state-reset events; the token identifier Etok that
was read or written at the port (null for state-reset events); and a firing count
Efire.

Because actor port identifiers are unique across a workflow, and tokens are
written once, the port and token identifiers recorded for each read and write
event enable the reconstruction of the flow of data through the workflow run.
However, these events alone are not sufficient to reconstruct data dependencies.
We use the state-reset events (as described above) along with the firing count
for this purpose. In particular, the firing count is incremented independently
for each actor whenever (1) an actor switches from writing tokens to reading
tokens, denoting a new firing of the actor, and (2) whenever a state-reset event
occurs.

4 In existing systems, such timestamps are often the only information available and
thus are also used to second-guess other properties such as token and object depen-
dencies.

5 We use a single state-reset event as opposed to separate events for marking the start
and end of a transaction.

A Model for User-Oriented Data Provenance 139

Eloc Etyp Etok Efire

p0 w t1 1
...
p0 w t18 1
A1 s – 1
p1 r t1 1
...
p1 r t7 1
p2 w t19 1
A1 s – 2
p1 r t8 2
...
p1 r t16 2
p2 w t20 2

Eloc Etyp Etok Efire

A1 s – 3
p1 r t17 3
p1 r t18 3
p2 w t21 3
A1 s – 4
A2 s – 1
p3 r t19 1
p4 w t22 1
A2 s – 2
p3 r t20 2
p4 w t23 2
A2 s – 3
p3 r t21 3

Eloc Etyp Etok Efire

A2 s – 4
A3 s – 1
p5 r t22 1
p6 w t24 1
p6 w t25 1
p6 w t26 1
A3 s – 2
p5 r t23 2
p6 w t27 2
p6 w t28 2
A3 s – 3
A4 s – 1
p7 r t24 1

Eloc Etyp Etok Efire

p7 r t25 1
p7 r t26 1
p8 w t29 1
A4 s – 2
p7 r t27 2
p7 r t28 2
p8 w t30 2
A4 s – 3
p9 r t29 1
p9 r t30 1

Fig. 2. The event log for a run of the example workflow in Fig. 1

3.3 Complex Workflow Transactions

In the example event log of Figure 2, state-reset events denote “sub-runs”, i.e.,
independent actor firings operating on sets of associated data. Note that for the
particular event log shown, state reset events occur exactly at read/write tran-
sitions (i.e., after write events immediately followed by read events).6 However,
for more complex workflows and actors, read/write transitions alone will not
determine state-reset events, and more complex event patterns will be required
to accurately describe data dependencies. Figure 3 gives four cases in which
read/write transitions do not imply actor transaction boundaries, thus requiring
more complex uses of state-reset events.

Figure 3(a) shows an actor A1 that computes a sequence of running tempera-
ture averages (tan) from a series of input temperature readings (tm), along with
a corresponding event log for an example run. Each average reading is dependent
on all temperature readings received since the most recent state-reset of the ac-
tor (e.g., at midnight each night). In the example event log, token ta24 depends
on tokens t1–t24, while ta25 is dependent only on t25. Note that assuming that
an implicit state-reset follows each write event would be incorrect, because this
would imply that each temperature average depended only on the latest tem-
perature reading received, rather than all temperature readings received so far
during a particular round of firings.

Figure 3(b) illustrates the necessity of recording state-reset events for a filter-
ing actor. In this example, a series of protein structures are input to actor A2,
and only those structures meeting a minimum resolution requirement are output
(though carried by new tokens). All other input protein structures are discarded
by the actor. Thus, in the example event log, of the first six structures re-
ceived by A2, only three are output. Because the state-reset events are recorded,
6 Note that state-reset events are still necessary in this example to mark the beginning

and end of the actor firing/round.

140 S. Bowers et al.

Compute running daily
average temperature

p1 p2

Predict protein 2° structure
using sliding window

p11 p12

Filter PDB files
by resolution

p3 p4

Iteratively search for most
parsimonious phylogenetic trees

... t9 t8 t7 ta6 ta5 ta4 ...

... r12 r11 r10 ss5 ss4 ss3 ...

... s9 s8 s7 fs6 fs3 fs1 ...

... cm3 cm2 tr3 tr2

se2

p5

p6

p9
p10

p7 p8

(a)

(c)

(b)

(d)

A1

A5

A2

A3 A4

A1 s - 1

p1 r t1 1

p2 w ta1 1

p1 r t2 2

p2 w ta2 2

...

p1 r t24 24

p2 w ta24 24

A1 s - 25

p1 r t25 25

p2 w ta25 25

...

A2 s - 1

p3 r s1 1

p4 w fs1 1

A2 s - 2

p3 r s2 2

A2 s - 3

p3 r s3 3

p4 w fs3 3

A2 s - 4

p3 r s4 4

A2 s - 5

...

A3 s - 1

p5 r cm1 1

p6 r se1 1

p7 w tr1 1

p7 w tr2 1

p7 w tr3 1

A3 s - 2

p5 r cm1 2

p6 r se2 2

p7 w tr4 2

p7 w tr5 2

A3 s - 3

p7 r cm2 3

...

A5 s - 1

p11 r r1 1

p11 r r2 1

...

p11 r r5 1

p12 w ss1 1

A5 s - 2

p11 r r2 2

p11 r r3 2

...

p11 r r6 2

p12 w ss2 2

A12 s - 3

p11 r r3 3

p11 r r4 3

...

Fig. 3. Four distinct types of actors requiring complex state-reset event behavior

however, it is clear, e.g., that output token fs3 depends only on input token
s3, and not on s2, even though no write event separates the read events for s2
and s3.

Figure 3(c) illustrates the more general case where an actor reuses only some
of the data received during a previous firing. In this example, the tree inference
actor A3 requires a random number seed to initiate a search for maximally

A Model for User-Oriented Data Provenance 141

parsimonious phylogenetic trees. Since any particular firing of the actor is not
guaranteed to find all of the most parsimonious trees, the actor must be fired
iteratively for a particular matrix of phylogenetically informative characters,
using a distinct seed on each iteration. Actor A4 collects the trees inferred by A3

and provides the seeds needed by A3 until a sufficient number of trees have been
inferred. The RWS model allows each tree inferred in this way to be associated
not only with the character matrix from which it was derived, but also with the
particular random number seed used by A3 to discover the tree. The sample event
log illustrates how this works. Actor A3 raises an ‘s’ event prior to receiving each
seed, and on receiving that seed declares that it re-reads the character matrix
used previously along with the new seed. Thus, it is clear that while trees tr1–tr5
all depend on character matrix cm1, only tr4 and tr5 were derived using seed se2.

Finally, Figure 3(d) illustrates the requirements for recording the provenance
of an actor operating on a sliding window of data. Actor A5 predicts the sec-
ondary structure of a protein, residue by residue, based on the types of residues
(i.e., amino acids) within a contiguous segment of the protein chain. In this case
the RWS model allows the actor to raise an ‘s’ event after writing each output
token. The actor then re-reads all tokens except the first token in the current
window, along with the next token available on the input, before computing its
next output.7

3.4 Dependency Graphs

Using the RWS model, we are able to infer from the event log the token de-
pendency graph. That is, for each token t, we can know which parent tokens
{t1, . . . , tk} directly contributed to the production of t (as the result of an actor
firing). As an example, in the upper left of Fig. 4, {t1, . . . , t7} are parent tokens
of t19. Conversely, t22 is the parent of t24, t25, t26. The following Datalog program
illustrates how the token dependency graph can be computed from the event log.
The event relation corresponds to the event log and the actor relation contains
a mapping from ports to their corresponding actors.

depends-on(T1, T2) :- event(P1, w, T1, C1), event(P2, r, T2, C2),
actor(P1, A), actor(P2, A), reset(A, Cb, Ce),
Cb ≤ C2 ≤ C1 < Ce.

reset(A, Cb, Ce) :- event(A, s, , Cb), event(A, s, , Ce), Cb < Ce,
¬ reset-between(A, Cb, Ce).

reset-between(A, Cb, Ce) :- event(, , , Cb), event(, , , Ce),
event(A, s, X, C), Cb < C < Ce.

We say that T1 depends on T2 whenever depends-on(T1, T2) is true.
In addition to the token dependency graph, we are also able to infer the object

dependency graph using the RWS model. Object dependencies describe user data
lineage, and are crucial for our “user-oriented” queries. For example, the middle

7 The RWS model could be optimized for cases where actors forget only a small fraction
of previously read tokens during each firing by introducing an explicit ‘forget’ event.

142 S. Bowers et al.

column of Fig. 4 shows the object dependencies for the workflow run of Fig. 1.
Note that the object dependency graph differs slightly from the token depen-
dency graph. Object dependency graphs can be computed from corresponding
token dependency graphs and token-object mappings.

t1
t2
t3
t4
t5
t6
t7

t19

t22

t24

t26

t25
t29

t9
t10
t11
t12
t13
t14
t15

t20

t23

t27

t28

t30

t8

t16

t17

t18
t21

seq1
seq2
seq3
seq4
seq5
seq6
seq7

align1

align4

tree1

tree3

tree2
tree6

seq9
seq10
seq11
seq12
seq13
seq14
seq15

align2
tree4

tree5

tree7

seq8

seq16

seq17

seq18
align3

A1 A2 A3 A4

A1 A2 A3 A4

A1 A2

1 1 1 1

2 2 2 2

3 3

Token dependency graph Object dependency graph Invocation dependency graph

Fig. 4. Token, object, and actor invocation graphs for our example phylogenetics work-
flow. Dependencies are shown from left to right. Note that all but one of the token-
object mappings can be inferred from the graph structures; tokens t20 and t23 both
map to the object align2.

Finally, actor-invocation dependency graphs can also be inferred directly from
event logs in the RWS model. In particular, this graph can be built from state-
reset events in the event log such that an actor invocation Aj

2 depends on another
actor invocation Ai

1 whenever Aj
2 reads a token that is written by Ai

1. Note that
here, “invocation” refers to a firing round. It should be clear that all of the
information stored in the event table is required to reconstruct these token,
object, and invocation dependency graphs for a workflow trace. In particular,
if state-reset events are not taken into account, each token written by an actor
will (incorrectly) appear to depend on all previous tokens read during prior
firing rounds of the actor: e.g., in the absence of state-reset events, t21 would be
connected to tokens t1 to t18 in the token dependency graph of Fig. 4.

4 Querying Workflow Traces

A wide range of scientifically relevant questions can be answered using the prove-
nance model described above. To make access to event logs more convenient, we
introduce the following primitive operations, which can be implemented, e.g., as
relational selections over the event log. The writer(t) and reader(t) operations
return the ports that a token t was written to and read from, respectively (a
token is written to a port exactly once, but can be read multiple times). The

A Model for User-Oriented Data Provenance 143

token-parents(t) and token-children(t) operations return the set of direct token
dependencies for a token t, while token-ancestors(t) and token-descendents(t) are
their transitive closures. The siblings(t) operation returns the tokens with the
same direct dependencies as t; e.g., because actor A3 can infer multiple trees
from an alignment, given one of these trees, siblings returns the other trees com-
puted from the same alignment. The origin(o) and death(o) operations return
the first and last tokens in the trace that refer to the object o; e.g., the origin
and death operations can be used to determine that the alignment object align2

originated with token t20 (written by actor A1) and terminated with token t23
(written by actor A2).

The following examples illustrate how the provenance operations can be com-
bined to answer concrete questions of interest to a scientist using the workflow
in Figure 1. For each high-level question below, we define a corresponding para-
meterized query using set-comprehension syntax8, along with the actual results
for the event log given in Figure 2. Below, we use W to denote the workflow
graph (in Figure 1) and T for the corresponding trace.

• What DNA sequences were input to the workflow? This is one of
the first questions a scientist might ask about the workflow run. Given an object
type $c, the paramaterized query

q1($c) := {o | t ∈ tokens(T) ∧ writer(t) ∈ in(W) ∧ object(t) = o ∧ $c ∈ types(o)},

returns the set of objects of type $c that were input to the workflow run. For our
example trace, q1(Sequence) returns the objects seq1 to seq18. The expression
t ∈ tokens(T) selects a token from the trace, the expression writer(t) ∈ in(W)
checks that the token was written by an input port of the workflow W , the
expression object(t) = o obtains the object associated with t, and the expression
$c ∈ types(o) verifies that o has $c as a type.

• What phylogenetic trees were output by the workflow? This is
another basic question that a scientist might initially ask after a run. Given the
query

q2($c) := {o | t ∈ tokens(T) ∧ reader(t) ∈ out(W) ∧ object(t) = o ∧ $c ∈ types(o)},

the expression q2(Tree) returns the objects tree6 and tree7.

• What phylogenetic trees (intermediate or final) were created by
the workflow? This question requests both intermediate as well as final data
products of a run. Given the query

q3($c) := {o | t ∈ tokens(T) ∧ writer(t) �∈ in(W) ∧ object(t) = o ∧ $c ∈ types(o)},

the expression q3(Tree) returns all tree objects of Figure 4. Note that the ex-
pression writer(t)
∈ in(W) ensures that the returned trees were not given as
input to the workflow.
8 Queries could also be defined in Datalog or in query languages for graphs or semi-

structured data.

144 S. Bowers et al.

• What actor created this phylogenetic tree? The following query
returns the actors that first wrote the given object $o:

q4($o) := {a | t ∈ origin($o) ∧ actor(writer(t)) = a}.

The query returns A3 for tree1 to tree5, and A4 for tree6 and tree7. This question is
of particular interest for workflows that employ multiple approaches for inferring
phylogenetic trees.

• Which phylogenetic trees were directly used to compute this con-
sensus tree? This question (i.e., what is this tree the “consensus” of?) asks
for the intermediate data products supplied to the actor producing a particular
workflow output. Given the query

q5($c, $o) := {o′ | t ∈ origin($o) ∧ t′ ∈ token-parents(t) ∧ object(t) = o′∧
$c ∈ types(o′)},

the expression q5(Tree, tree6) returns tree1 to tree3; and q5(Tree, tree7) returns
tree4 to tree5.

• What sequences input to the workflow does this consensus tree
depend on? This question illustrates how a workflow output can be related to
the particular workflow inputs from which it was derived. Given the query

q6($c, $o) := {o′ | t ∈ origin($o) ∧ t′ ∈ token-ancestors(t) ∧ writer(t′) ∈ in(W)∧
object(t′) = o′ ∧ $c ∈ types(o′)},

the expression q6(Sequence, tree6) returns seq1 to seq7, and the expression
q6(Sequence, tree7) returns seq8 to seq16.

• Which input sequences were not used to derive any output con-
sensus trees? Here we are interested in whether there are any workflow inputs
without corresponding workflow outputs. Such inputs may be considered the
workflow equivalent of “phantom lineages” [23]. Given an input type $cin and
output type $cout, the query

q7($cin, $cout) := {o | t ∈ tokens(T) ∧ writer(t) ∈ in(W) ∧ object(t) = o∧
$cin ∈ types(o) ∧ {t′ | t′ ∈ token-descendents(t)∧
reader(t′) ∈ out(W) ∧ cout ∈ types(object(t′))} = ∅},

returns the objects input to the workflow that do not produce any workflow
outputs; e.g., the expression q7(Sequence,Tree) returns the sequences seq17

and seq18. The query first finds workflow input tokens t that refer to objects of
type $cin, and then checks (via a subquery) to make sure that t has no output
tokens with objects of the type $cout.

• What was the sequence alignment used in the process of inferring
this tree? This question requests the key intermediate data object used in
producing a workflow result. A researcher may wish to examine the alignment
to assess the reliability of the results, or reuse the alignment in another workflow.

A Model for User-Oriented Data Provenance 145

Given the query

q8($c, $o) := {o′ | t ∈ origin($o) ∧ t′ ∈ token-ancestors(t) ∧ object(t′) = o′∧
$c ∈ types(o′) ∧ {t′′ | t′′ ∈ token-descendents(t′)∧
$c ∈ types(object(t′))} = ∅},

the expression q8(Alignment, tree6) returns the sequence alignment align4, and
q8(Alignment, tree7) returns the sequence alignment align2. The subquery
above ensures that the object o′ is the alignment directly used to infer the tree.

• What actors were involved in creating this tree? This question may
be used, e.g., when writing the methods section of a publication to cite the
employed methods and implementations. Given the query

q9($o) := {a | t ∈ origin($o) ∧ actor(writer(t)) = a} ∪
{a | t ∈ origin($o) ∧ t′ ∈ token-ancestors(t) ∧ actor(writer(t′)) = a},

the expression q9(tree6) returns actors A1 to A4.

• Which actors did not produce any output for input derived from
this input sequence? This question provides an explanation for the phantom
lineages revealed by q7 above:the query

q10($o) := {a | t ∈ origin(o) ∧ t′ ∈ token-descendents(t) ∧ token-children(t′) = ∅
∧ actor(reader(t′)) = a},

The expressions q10(seq17) and q10(seq17) both return actor A2, indicating that
this actor did not forward a refined sequence alignment of these two sequences to
actor A3. This result is reasonable since no informative phylogenetic trees may
be inferred from only two taxa.

5 Conclusion

Tracking provenance is an important aspect of scientific workflow systems. In this
paper, we have focused primarily on the problem of tracking data lineage within
scientific workflow runs, for the purpose of providing an accurate provenance
record for answering “scientific” (i.e., user-oriented) provenance queries.

The problem of data lineage has been widely studied in the database com-
munity [5,8,2,23]. However, the primary focus has been on transformations of
data items expressed as database queries. As noted in [11], current provenance
approaches for workflow systems (e.g., [24,25,18]) record various kinds of meta-
data related to provenance. Despite these developments, however, little support
exists in current systems to allow end-users to query provenance information in
scientifically meaningful ways, in particular when advanced workflow execution
models go beyond simple DAGs (as in process networks).

We have shown that a simple provenance model, based on read, write, and
state-reset events, is expressive enough to capture many relevant science-oriented
provenance use cases. These use cases become queries against suitable views on

146 S. Bowers et al.

top of the event log. Our approach also marks the beginnings of a use-case
and computation-model driven approach to provenance schema design. Using
our framework, it is now meaningful to ask whether a provenance schema can
handle specific use cases, since the latter become queries over the former.

As future work we intend to extend our approach to support a wider array
of operations, e.g., so-called “smart re-runs” (a workflow system requirement
in [16])9 and crash recovery, and to extend our current Prolog-based prototype
to provide direct support (including query user interfaces) for our provenance
model within Kepler. We are also developing methods to optimize our ap-
proach to reduce the size of event logs for actors whose behaviors are similar
to sliding window operators (e.g., by introducing a “forget” event), and to sup-
port subworkflows within Kepler (i.e., composite actors), e.g., by inferring in
a bottom-up fashion the appropriate state-reset events for the composite actor
via the state-reset events of subsumed actors and the corresponding workflow
graph.

References

1. D. Berry, P. Buneman, M. Wilde, and Y. Ioannidis, editors. e-Science Workshop
on Data Provenance and Annotation, National e-Science Centre, Edinburgh, De-
cember 2003.

2. D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An annotation man-
agement system for relational databases. In Proc. of VLDB, 2004.

3. R. Bose and J. Frew. Lineage retrieval for scientific data processing: A survey.
ACM Computing Surveys, 37(1):1–28, 2005.

4. P. Buneman and I. Foster, editors. Workshop on Data Derivation and Provenance,
Chicago, October 2002.

5. P. Buneman, S. Khanna, and W. C. Tan. Why and where: A characterization of
data provenance. In Proc. of ICDT, volume 1973 of LNCS, 2001.

6. S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo. Managing the evolution of dataflows with vistrails. In IEEE Workshop on
Workflow and Data-Flow for Scientific Applications (SciFlow), 2006.

7. J. Castresana. Selection of conserved blocks from multiple alignments for their use
in phylogenetic analysis. Mol. Biol. Evol., 17:540–552, 2000.

8. Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.
In VLDB, 2001.

9. Y. Cui, J. Widom, and J. Wiender. Tracing the lineage of view data in a ware-
housing environment. ACM TODS, 25(2), 2000.

10. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi,
and M. Livny. Pegasus: Mapping scientific workflows onto the grid. In Proc. of the
European Across Grids Conference, 2004.

11. C. Goble. Position statement: Musings on provenance, workflow and (semantic
web) annotations for bioinformatics. In Buneman and Foster [4].

12. G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In
Proc. of the IFIP Congress, 1977.

9 Specialized provenance systems for smart re-runs exist already [6].

A Model for User-Oriented Data Provenance 147

13. E. A. Lee and D. Messerschmitt. Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Transactions on Computers, C-36, 1987.

14. E. A. Lee and S. Neuendorffer. Actor-oriented models for codesign: Balancing re-
use and performance. In Formal Methods and Models for System Design. Kluwer,
2004.

15. E. A. Lee and T. M. Parks. Dataflow process networks. Proc. of the IEEE, 83(5),
1995.

16. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the Kepler system.
Concurrency and Computation: Practice & Experience, 2005.

17. L. Moreau, O. Rana, and D. Walker. Provenance aware service-oriented architec-
ture (pasoa). pasoa.org, 2006.

18. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: A tool for the
composition and enactment of bioinformatics workflows. Bioinformatics, 20(17),
2004.

19. PHYLIP Phylogeny Inference Package. http://evolution.gs.washington.edu/

phylip.html.
20. Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.

SIGMOD Record, 34(3):31–36, September 2005.
21. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The

Condor experience. Concurrency – Practice and Experience, 17(2-4), 2005.
22. J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: Improving the

sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position specific gap penalties and weight matrix choice. Nucleic Acids Res.,
22:4673–80, 1994.

23. J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. In Conference on Innovative Data Systems Research (CIDR), 2005.

24. S. Wong, S. Miles, W. Fang, P. Groth, and L. Moreau. Provenance-based validation
of e-science experiments. In ISWC, 2005.

25. J. Zhao, C. Goble, R. Stephens, and S. Bechhofer. Linking and browsing provenance
logs for e-science. In ICSNW, 2004.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 148 – 161, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applying the Virtual Data Provenance Model

Yong Zhao1, Michael Wilde2, and Ian Foster2

1 University of Chicago
yongzh@cs.uchicago.edu

2 University of Chicago and Argonne National Laboratory

Abstract. In many domains of science, engineering, and commerce, data
analysis systems are employed to derive new data (and ultimately, one hopes,
knowledge) from datasets describing experimental results or simulated
phenomena. To support such analyses, we have developed a “virtual data
system” that allows users first to define, then to invoke, and finally explore the
provenance of procedures (and workflows comprising multiple procedure calls)
that perform such data derivations. The underlying execution model is
“functional” in the sense that procedures read (but do not modify) their input
and produce output via deterministic computations. This property makes it
straightforward for the virtual data system to record not only the recipe for
producing any given data object but also sufficient information about the
environment in which the recipe has been executed, all with sufficient fidelity
that the steps used to create a data object can be re-executed to reproduce the
data object at a later time or a different location. The virtual data system
maintains this information in an integrated schema alongside semantic
annotations, and thus enables a powerful query capability in which the rich
semantic information implied by knowledge of the structure of data derivation
procedures can be exploited to provide an information environment that fuses
recipe, history, and application-specific semantics. We provide here an
overview of this integration, the queries and transformations that it enables, and
examples of how these capabilities can serve scientific processes.

1 Introduction

We present a general model for representing and querying provenance information
within the context of a Virtual Data System (VDS) that captures, and enables
discovery of, the relationships among data, procedures and computations. We focus,
in particular, on the VDS query model, and examine how knowledge of the
provenance of virtual data objects and their relationships can be used to enhance
program development, data analysis, and other tasks.

In what we call the virtual data model, we associate with each data object the
functional procedure that was used, or can be used, to produce or reproduce it. Such
associations are defined with sufficient fidelity that the steps used to create a data
object can be re-executed to reproduce the data object (within obvious limitations) at
a later time or a different location. We refer to the information that we record to
achieve this reproducibility the provenance of a data object. (Throughout this article,

 Applying the Virtual Data Provenance Model 149

we use the term “procedure” to denote executable application programs, but the
paradigm applies equally well to a service-oriented model in which “procedures”
correspond to invocations of remote operations.)

We view provenance in this context as comprising two parts: all the aspects of the
procedure or workflow used to create a data object (prospective provenance, or
“recipe”) as well as information about the runtime environment in which a procedure
was executed and the resources used in its invocation (retrospective provenance).

While only the prospective information is needed to produce or reproduce a
data object, we argue that the complete provenance record—prospective and
retrospective—provides a more complete understanding of the data. For instance,
retrospective provenance can help investigate a data derivation process, as it keeps
information regarding the environment in which the process was performed. This
level of understanding is of great value in scientific data preparation and analysis,
allowing the user to (for example) reason about the validity of data and conclusions
drawn from it; determine and assess the methods that were used to process the data;
and transform or compose existing methods to handle new problems.

The Virtual Data System that we have developed to implement this model
[ZW+05] maintains a precise record of procedures, inputs (both data and parameter
settings) to procedures, the environment in which procedures were invoked, and
relevant data about how a procedure behaved (e.g., duration). Armed with this
information, we can track, for any data object created within the system, a derivation
history that extends back to raw input data, and thus obtain accurate and complete
information about how analysis conclusions (and all intermediate results) were
derived. We can understand data dependencies, and reason about the consequences
for an analytical finding of changing some processing step, parameter, or input
dataset. We can audit how results were derived, and create new recipes for conducting
new investigations that build on previous findings and approaches.

An important component of VDS is the Virtual Data Language (VDL) [FV+02], a
functional scripting language that we use to describe relations among data,
procedures, and computations that invoke procedures. A data analysis workflow
expressed in VDL makes the relationships among these different elements explicit.

VDS also incorporates sophisticated mechanisms for executing both individual
procedures and more complex workflows in distributed environments. These
mechanisms include tools for integrating data in diverse physical representations
[ZD+05], workflow transformation tools and planners, such as the Pegasus system
[DS+05, SKD06], the DAGman workflow execution system [FT+02], and Globus
mechanisms for secure and reliable remote execution and distributed data
management [F05]. This aspect of the system is less relevant to our goals here (except
in that the transformations performed, and specific execution sites chosen, may be an
important part of the provenance record), and so we do not discuss it further in this
article.

VDS is distinguished from other approaches to provenance recording by its focus
on a particular computational model, namely the functional model defined by VDL.
While this focus restricts the set of computations that can be represented, we do not
find this restriction to be onerous in practice, and the benefits in terms of the depth of
provenance information that can be captured efficiently and the variety of queries that
can be posed against that data are significant.

150 Y. Zhao, M. Wilde, and I. Foster

We focus in this article on illustrating the virtual data approach to integrating
prospective and retrospective provenance with semantic annotations; describing the
powerful queries that can be performed on such an integrated base; and introducing
the implementation techniques that can provide these benefits in a large-scale
scientific computing environment. The basic mechanisms for these techniques have
been implemented in our Virtual Data System for some time [FV+02]; this paper
describes schema extensions whose implementation is in progress.

2 Virtual Data Schema for Provenance Recording

We model as a logical virtual data schema the various relationships that exist among
datasets, procedures, calls to procedures (which operate on datasets), and the zero or
more physical invocations of a specific call. These relations are described by the
entity-relationship (ER) diagram of Figure 1. In this diagram, primary keys are
underlined; foreign keys are implied by graph edges.

A computational procedure represents an application or a service that can be
executed or invoked. A procedure definition describes the procedure’s signature: its
name and formal arguments. A procedure may be defined in a specific namespace
and may have different versions. Procedures are therefore identified by the

3-tuple (namespace, name,
version). A formal argument
(FormalArg) has a name, a
type, and a direction attribute
that indicates whether it is an
input or output argument.

A call specifies a proce-
dure call, supplying actual
arguments (ActualArgs) that
bind values and datasets to
formal arguments. Like proce-
dures, calls are identified by
(namespace, name, version)
tuples, but for calls these
unique tuples can be generated

automatically. A call statement is considered prospective as it only declares a way to
invoke a procedure, and specific data products can be generated by making the described
procedure call. But by itself, a call is not executed until it is included in a workflow and
scheduled to run. We use the term derivation (DV) interchangeably for a call.

We also model workflows, i.e., sets of calls that operate on the same datasets. A
workflow is represented by one or more entries in the Workflow table, each entry for
an edge of the workflow graph, which contains the source call (fromDV) that
produces a certain data product, and the target call (toDV) that consumes that data
product. A workflow itself, like a call, is prospective, and can be enacted multiple
times. Each enactment of both a call and a workflow is recorded by an invocation
record.

dvID
host
start

duration
exitcode

stats

Invocation

nmspace
name

version

Call

passes passes

executes
calls

binds references

describesuses

includes

describes

describes

describes

describes

nmspace
name

version

Procedure

argname
type

direction

FormalArg

argname
value

ActualArg

wfid
fromDV

toDV

Workflow

nmspace
name

Dataset

object
pred

type/val
user
date

Annotation

1

1

1

1

1

1

*

*

*

*

*

1

1
1

1

1

1

1

Fig. 1. Schema for provenance and annotation

 Applying the Virtual Data Provenance Model 151

This integration of workflows enables queries to consider the provenance history
of data objects, and the relationships among procedures based on the patterns in
which they are actually used in defined workflows.

Metadata associates annotations with datasets (via their names), procedures and
arguments, calls, and workflows. Annotations take the form of a named predicate and
a typed value (a string, integer, float, boolean, or date). This simple type model for
annotation values is readily extended to use, for example, the flexible data typing
model defined by XML Schema. Such metadata annotations are similar to RDF
triples: The subject is one of the 5 entities in the virtual data provenance model that
can be annotated (datasets, procedures, etc.); the predicate is the “name” of the
annotation (i.e., the assertion being made) and the value is the object. We plan to
extend annotations with user and date information, so that we can maintain the
provenance of metadata itself.

3 General Model for Provenance and Annotation Query

Having defined our virtual data model in relational terms, we can use standard SQL to
query entities in the data model. For example, we can ask questions such as “select
procedure calls whose argument modelType has value nonlinear,” “select invocations

that ran at location Argonne,” and the join query “select
procedure calls that ran at location Argonne and whose
argument modelType has value nonlinear.”

We find it useful to think of the virtual data query model
as having three major dimensions (see Figure 2): (1)
prospective and retrospective provenance data, as provided
by records of procedure definition, procedure arguments,
and runtime invocation recording; (2) metadata annotations
that enrich this application-independent schema with
application-specific information; and (3) lineage informa-

tion obtained by interrogating the patterns of procedure calls, argument values, and
metadata inherent in the workflow graphs that describe the indirect nature of the
production of a given data object. We describe below the general nature of these three
dimensions, and then discuss how queries can be defined that join across these
dimensions. We provide detailed query examples drawn from scientific applications in
Section 4 and Section 5.

Virtual Data Relationship Queries. The core queries in our model are based on the
fundamental entities of the virtual data schema: the prospective declarations of
procedure definitions and calls and the retrospective records of actual procedure
invocations. These queries focus on the primary tables of the virtual data schema. The
following examples illustrate the range of queries that are supported. The first two
forms of queries deal with prospective information, while the third deals with
retrospective information.

Fundamental Queries of Entity Attributes: Find procedures and calls by namespace,
name, and version; find all the calls that invoke a given procedure.

Virtual data
relationships

Metadata
annotations

Derivation
lineage

Fig. 2. Query dimensions

152 Y. Zhao, M. Wilde, and I. Foster

Query by Parameters: Find procedures that pass a specified parameter; find procedure
calls that pass a parameter of a specified type and/or value in a specified direction
(i.e., input or output); find invocations that executed with a specified parameter value
and direction; find procedure calls that process a specified file as input or output; find
all files consumed or returned by a specified procedure call.

Query of Invocation Records: find invocation records by procedure or procedure-call
namespace, name, version; find procedures or procedure calls executed at a specified
site; find procedures or calls executed at a specified host; find invocations run on
machines with a specified OS type; find jobs with a specified exit status; find jobs
with run time > a specified r; find jobs within a set of jobs that ran longer than twice
that the set’s average time; find invocations that produce files of a specified type and
size; find the invocation records that produce or consume a specified dataset.

Annotation Queries. The annotation capabilities provided by the virtual data model
on procedures, arguments, calls, datasets, and workflows form the basis for the
second query dimension. While various applications may use these annotations to
maintain application-specific provenance, we consider this a separate dimension from
the provenance information that is intrinsic to the virtual data model.

Annotation queries can, for example, select all annotations for any annotatable
virtual data object or set of objects, or select from an annotation result set based on
any of subject, predicate, object, object type, user, or annotation date.

Annotations can also be used to select virtual data objects: for example, find all
objects (of any type) annotated with predicate p of type t and value v; objects of a
specific type annotated with predicate p of type t and value v; or objects (one type or
any type) annotated by same set of attribute predicates.

Lineage Graph Queries. A powerful source of information in a virtual data system is
the lineage relationships [WS97] that we can derive for all data products. For
example, knowing that the inputs to a procedure Ak were processed by Ai can often
tell a scientist important characteristics about the results that Ak will derive. Knowing
further whether Aj processed the output of Ai somewhere between those two steps
may determine whether further analysis of that chain of data is required.

A simple class of lineage graph queries refers to information that has been
propagated along derivation relationships. For example, “find datasets derived from
dataset d” or “find ancestor datasets to dataset d that have type t.”

More complex queries may refer to patterns within the derivation graph. Much
work has been done in this field: for example, Giugno and Shasha [GS02] describe a
model for such patterns in a system called GraphGrep. We propose to adapt the
GraphGrep model here to the specific problem of matching workflow graphs. We
sketch here how we expect to apply this model to enable pattern-based searches of
derivation graphs.

The basic approach is to introduce special objects that can match specific patterns
of procedures, calls, and invocations, enabling the composition of “workpattern”
objects that can perform powerful searches and queries on the workflows in our
database. The semantics of such matches work as follows. Procedure patterns, call
patterns, and invocation patterns, chained into a DAG within a workpattern object,
can match either fixed or varying numbers of nodes of their corresponding object
types in any workflow defined in the database. The nodes of a workpattern graph can

 Applying the Virtual Data Provenance Model 153

match procedure definitions or calls that meet criteria such as argument name,
argument values, argument types, and/or annotations.

Performing a query on a workpattern can select a set of workflows, where in each
selected workflow one or more subgraphs are matched. The target search space of a
workpattern query can be either the entire database, or a specific workflow or set of
workflows selected through a prior search. Using the query model defined above, we
can perform queries such as: find datasets that were derived within N levels of
procedure p; find datasets that are the result of workpattern wp; and find the
procedure calls in workflow w whose inputs have been processed by any workflow
matching workpattern wp.

Provenance Queries in Multiple Dimensions. The capabilities of the queries defined
above are amplified by the ability to join them flexibly across multiple dimensions of
the virtual data schema. For example, we may ask for procedures with a specified
signature that have been called with specific argument values (or ranges) and that
match an annotation query; the metadata values for a specified set of predicates from
a list returned by another query; or the minimum, maximum, and average run times of
a set of procedure calls matching workpattern wp and annotation query q.

For example, a set of procedures selected by a workpattern query can be used to
select metadata values that are then used as a search key to select a set of procedure
calls. This level of nesting can be used to successively filter (or expand) a result set,
and such query chaining can take place to effectively arbitrary depths (limited only by
the capabilities of the underlying database system).

Modification and Composition Queries. Maintaining dataset, procedure, workflow,
annotation, and provenance information in an integrated schema facilitates not only
powerful queries, but also the ability to couple queries with database update
procedures to define new procedures, annotations, and work requests. We illustrate
such possibilities below.

Change Arguments: For every procedure call p1 to procedures in namespace n with
annotation m, create a new procedure p2 with argument a replaced by an expression e.

Change Procedures: In every workflow w matching workpattern wp, create a new
workflow with the same name but a new version number in which procedure p1 is
changed into procedure p2 (which must have the same signature).

Edit Subgraphs of a Workflow: In every workflow w matching workpattern wp, create
a new workflow with the same name but a new version number in which the matching
workpattern subgraph is changed to a specified new workflow subgraph. (The
supplied replacement workflow subgraph must have the same signature.)

Replicate a Workflow: Given a workflow w to replicate, for each procedure p2
returned by query Q, create a new workflow w2(p2) by replacing occurrences of p in
w with p2. Each p2 returned by Q must have the same signature as p.

Edit Metadata: In every workflow w matching workpattern wp, edit annotations on
datasets output by the subgraph matched by wp, changing the value of metadata
predicate p to a new value nv.

154 Y. Zhao, M. Wilde, and I. Foster

4 Query Examples Drawn from fMRI Science Use Cases

The capabilities that we have described are only interesting if they provide utility to
users addressing real data analysis problems. In this section we show such use cases,
drawing examples from the field of functional MRI research [HSM02], in which MRI
brain images of some subjects are firstly spatially aligned, and then averaged to
produce a single image. The procedures employ the AIR (automated image
registration) suite [WG+98a,WG+98b] to create an averaged brain from a collection
of high resolution anatomical data. The images are annotated with metadata tags such
as studyModality, center, and state. We use the categorization of queries introduced
earlier in Section 3.

Virtual Data Relationship Queries
• Find all the procedures in namespace /pub/bin/std that have inputs of type

SubjectImage and outputs of type ThumbNailImage.
• Find all alignlinear calls (including all arguments), in XML format, with

argument model=rigid, and that generated more than 10,000 page faults, on ia64
processors.

• Find all calls to procedure alignlinear, and their runtimes, with argument
model=rigid that ran in less than 30 minutes on non-ia64 processors.

• Find the average runtime of all alignlinear calls with argument model=rigid that
ran in less than 30 minutes.

• Find all procedure calls within workflow /prod/2005/0305/prep whose inputs
were linearly aligned with model=affine

Annotation Queries
• Find all the datasets that have metadata annotation studyModality with values

speech, visual or audio. Show all the annotation tags of this set of datasets.
• Show the values of all annotation predicates developerName of procedures that

accept or produce an argument of type Study with predicate studyModality
=audio.

Lineage Queries
• Given the workpattern:

alignlinear (model=affine) reslice (axis=x, intensify=3) softmean
find all output datasets produced by softmean calls that were linear-aligned with
model=affine. (I.e., “where softmean was preceded in the workflow, directly or
indirectly, by an alignlinear call with argument model=affine”)

• Find all output datasets of softmean that were resliced with intensify=3. (Here we
want a softmean that is directly preceded by the requested pattern.)

Combined Queries
• Find procedures that take an ImageAtlas dataset and a Date as arguments, have

been called with dataset atlas.std.2005.img, and have annotation QALevel with
value > 5.6.

• Find all metadata tags studyModality on result datasets that were linearly aligned
with parameter model=affine and with an input dataset annotated with center set
to UChicago.

 Applying the Virtual Data Provenance Model 155

• Find the output dataset names (and all their metadata tags) that were linearly
aligned with model=affine and with input file metadata center=UChicago.

• Find all the metadata tags center with values in the set (UIUC, UChicago, UIC)
of output datasets of softmean.

• Find all the metadata tags center with values in set (UIUC, UChicago, UIC) of
outputs of softmean that were aligned with model=affine.

• Find all the metadata tags studyModality on results of softmean that were linearly
aligned with model= affine, and whose output datasets have annotation state =
IL.

As these examples show, our provenance architecture allows for the expression of
a wide range of interesting queries. We need to conduct further experimentation with
additional applications, larger and more diverse user communities, and larger data
collections to verify that we can both pose and answer efficiently the questions that
users want to ask in practice.

5 Implementation and Experience

The VDS implementation of virtual data mechanisms allows for declarative
specification of data, procedures, computations and their relationships, using VDL.
VDL definitions and provenance data are stored in a “virtual data catalog” (VDC),
typically implemented as a relational database and accessed via SQL. We employ an
adapter layer to allow the use of different relational database implementations, and
support the use of XML databases for the VDC. The actual physical schema used in
our implementation is slightly more complex than the logical-level model shown in
Figure 1, but captures essentially the same information. The graph structure of
workflow objects is currently maintained in an external XML document. VDC queries
are parsed and translated into SQL or XQuery/XPath statements to apply against the
VDC database.

The physical schema uses a separate value table for each of the five metadata value
types supported (string, int, float, date, boolean). This approach enables us to utilize
native database searches that treat the data type of the object properly and efficiently
(e.g., proper comparison and collation for floating point numbers and dates).

VDS translates requests to derive virtual data products into workflows that may
execute at multiple distributed locations. Runtime provenance is obtained by
executing VDL procedures under a uniform parent-process wrapper that collects
information about the execution of the child application, and its derived files, using
OS services. This information is then routed back to the workflow enactment engine
via embedded steps in the workflow and saved in the virtual data catalog as
invocation records.

An example of the use of virtual data provenance recording is seen in the analysis
of provenance information captured by the ATLAS high energy physics experiment to
generate simulated events using VDS from 6/2004 through 12/2005. In this period, 20
different simulation procedures were defined in a central US-ATLAS VDC located at
Brookhaven National Lab. This virtual data catalog captured 1.2M run-time
(retrospective) provenance records, of which 574K described procedure invocations

156 Y. Zhao, M. Wilde, and I. Foster

detailed in the same number of prospective provenance records in the database. 447K
unique simulation datasets (logical files) were derived from these invocations.

We can probe the provenance in this catalog with queries that physicists can
usefully employ to search for and assess these simulation results. Questions like the
following (translated to SQL) can be easily answered (with actual results shown):

Q: List all the procedures that have argument name 'cleanLevel':

 => brureconx evgenx ... G4simulx g4simx g4simxM pileup testreconx

Q: How many jobs running procedures with argument name 'cleanLevel' were run on
Linux 2.4.28 kernels?

 => g4digitx 39
 g4simx 340

Q: List calls of procedure 'g4simx' with argument eta_min=-5.0 and eta_max=5.0
that were run on 2.4.28 kernels, in Dec 2004?

=> g4simx.CPE_4922_15
 g4simx.CPE_4922_202
 ... (total 285 calls)

Simple aggregrations and statistics can also be carried out over the records, for
reporting purposes, as in the following examples.

Q: List the total number of jobs run in each month of 2004:
 year month number_of_jobs
 2004 06 1433
 2004 07 13331
 2004 08 21076
 2004 09 20807
 2004 10 32364
 2004 11 39681
 2004 12 14734

Q: List the total run time (in unit of year) of jobs run in each month of 2004:
 year month run_time(years)
 2004 06 0.4
 2004 07 20
 2004 08 34
 2004 09 40
 2004 10 15
 2004 11 15
 2004 12 8.9

Another application of VDS to capture and leverage provenance information is in
the QuarkNet nationwide physics education project [BG+05]. In this project, data
from cosmic ray detectors located in about 200 high schools in the US uploaded raw
data into a data analysis portal driven by VDS. The raw data was annotated and then
processed with a set of analysis tools to plot cosmic ray activity under a variety of
experimental conditions and derive and document scientific conclusions, modeling
closely the processes used in experimental physics collaborations. In this application
trial 108 different procedures were used to process 6,330 files (total raw and derived)
and to annotate them with 134,834 metadata tuples. A sample query of the

 Applying the Virtual Data Provenance Model 157

annotations on a data file (a flux study result derived from data gathered by detector
180 channel 1 on 07/30/2004) yields:

 project: cosmic city: Batavia
 group: fermigroup state: IL
 study: flux creationdate: 2005-01-13 17:44:20.512
 detectorid: 180 rawdate: 2004-07-30 19:42:57.0

A query to select datasets based on annotations, such as “find all the blessed data
from Fermilab” is expressed in SQL as:

select name from anno_lfn f, anno_bool b where f.mkey='blessed' and
b.value=true and f.id=b.id intersect select name from anno_lfn f2,
anno_text t where f2.mkey='school' and t.value='Fermilab'
and f2.id=t.id

which returns:

180.2004.0730.35
...
999.2005.0604.0
(total 5 rows)

6 Related Work

Work on provenance in database systems has focused on determining the source data
(tuples) used to produce an item. Cui and Widom [CW00, CWW00] record the
relational queries used to construct materialized views in a data warehouse, and then
exploit this information to find the source data that contributed to the given data item.
Buneman et al. [BKT01] distinguish between why-provenance and where-
provenance. The former explains why a piece of data is in the database, i.e., what data
sets (tuples) contributed to a data item, while the latter keeps track of the location of a
data item in its source. The mutability of database tables and records poses significant
challenges. In contrast, we address provenance issues within the context of data
analyses performed using programs that are assumed not to modify their input
datasets. In this context, we can go beyond why and where to address issues of how a
data product was (or can be) derived, what are the procedure definitions and
annotations, and to which workflow the procedure belongs.

Various systems support provenance tracking in the scientific community. SAM
[MC+03] has a “laboratory notebook” model of provenance tracking in which
metadata can be added to data items stored in a repository. However, SAM does not
define the format or schema of the metadata or an underlying computational model.
The same is true of other notebook schemes [BK+06]. In myGrid, documentation
about workflow execution is recorded and stored in a user’s personal repository, along
with other metadata [ZG+03,ZGR06], to support personalized provenance tracking of
bioinformatics services and workflows.

Szomszor and Moreau [SM03] propose a service-based architecture for recording
provenance in a Grid environment. They rely on a workflow enactment engine to
submit service invocation information to a provenance service. Moreau et al.
[GM+05] describe an implementation-independent architecture for provenance
systems. They describe a logical architecture in which so-called p-assertions can be

158 Y. Zhao, M. Wilde, and I. Foster

submitted and retrieved from a p-store by various actors, and a process architecture
for system security and distribution. This system has been applied to physics [BM06],
engineering [KS06], and transplant management [AV+06], among others.

Our approach is distinguished from that of Moreau et al. by its integration of
provenance with a particular computational model, namely that captured by our
functional virtual data language. This model makes it feasible for us to capture high-
fidelity retrospective and prospective provenance information, and then to interpret
and query this information in powerful ways. In particular, our focus on a specific
computational models means that we can define a specific schema that maintains
information about such constructs as “procedures,” “calls,” and “workflows,” in
addition to general purpose assertions. The two schemas can in fact converge: the
Moreau schema can subsume the information we describe here, and we can integrate
the information of the Moreau schema (in addition to our custom-tailored virtual data
schema) by using a more general RDF model for our metadata annotations. With such
a schema, metadata annotations can be interpreted broadly, and any annotation can be
associated with our core data (file) and executable (procedure, workflow) objects.

PASS [MH+06, BG+06] is a storage system that automatically collects and
maintains provenance information. In comparison with VDS, PASS discovers the
components and environments required for the production of a specific data item by
tracking system calls, where in VDS, we rely on explicit declarations of such
dependencies. However, the two systems are complimentary in many ways: PASS can
help discover missing pieces in our “declared” provenance, for instance, a data item
that is necessary for a derivation process, or an extra data product produced during the
process that was not captured in the procedure definition. On the other hand, PASS
cannot track complete provenance beyond local file systems, such as in a Grid
environment, without provenance-aware applications and environments. Both systems
also share similar graph traversal mechanisms to build the ancestry tree for a data
product, and have the same set of requirements for provenance and workpattern
queries; they also face similar challenges determining the granularity at which the
systems should capture provenance information, and the lifetime management of the
captured information. PASS has the goal of generalizing the production of certain
individual items into a workflow-like pattern, for instance, running “sort a > b”
would involve the same set of operations for any file produced in such a process;
where in VDS we can discover such patterns in an interactive environment such as the
Chiron virtual data portal [ZW+05], as users tend to repeat the same derivation
process for a set of data items. Similar comments can be made about the automated
provenance recording techniques being developed by Barja and Digiampietri within
the context of Microsoft’s Windows Workflow Foundation [BD06].

The evolution or provenance of a workflow itself is also vital in scientific analysis.
VisTrails [CF+06, FS+06] captures the notion of an evolving dataflow, and
implements a history management mechanism to maintain versions of a dataflow,
thus allowing a scientist to return to previous steps, apply a dataflow instance to
different input data, explore the parameter space of the dataflow, and (while
performing these steps) compare the associated visualization results. In VDS,
workflows are also composed of individual steps (procedure calls), and chained
together by data dependencies. To provide similar functionality, we can either add a
versioning mechanism to our system, or maintain workflow contruction-specific

 Applying the Virtual Data Provenance Model 159

metadata annotations to track the history of a workflow. The modification and
composition query capabilities described in Section 3 support parameter exploration
and comparative analysis. Workpattern queries should allow flexible and powerful
workflow editing and transformation.

7 Conclusion and Future Directions

We have described the representation and query of both prospective and retrospective
provenance information in our virtual data provenance model, presented examples of
how provenance can be employed in representative science processes (in
neuroscience and physics), and shown how powerful queries can be used to derive
valuable knowledge in data analysis processes. These queries select on various
combinations of procedure information, data, metadata, and (what seems particularly
interesting) workflow patterns.

While the model described here is based on application programs rather than Web
services, we believe the same model of provenance applies equally well in a service
oriented architecture, with no loss of generality.

Future extensions to the virtual data provenance model include maintaining a
transactional provenance trail of changes to metadata annotations, studies of
scalability, management of provenance data retention, and the application of the
model to a distributed web of provenance catalogs employing a similar schema
(see, for example, AstroDAS [BMP06]). We are also eager to perform more
comprehensive usability experiments with a wide range of users.

Acknowledgments

This work was supported in part by the National Science Foundation GriPhyN project
under contract ITR-086044 and by the U.S. Department of Energy under contract W-
31-109-Eng-38. We acknowledge the contributions to this work of Jens Voeckler, Jed
Dobson, and members of the QuarkNet project.

References

[AV+06] Alvarez, S., Vazquez-Salceda, J., Kifor, T., Varga, L.Z. and Willmott, S. Applying
Provenance in Distributed Organ Transplant Management, International
Provenance and Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS,
38-47.

[BG+05] Bardeen, M., Gilbert, E., Jordan, T., Nepywoda, P., Quigg, E., Wilde, M. and
Zhao, Y. The QuarkNet/grid collaborative learning e-Lab. IEEE International
Symposium on Cluster Computing and the Grid, 2005. CCGrid 2005. Vol. 1 pp.
27-34. 9 May 2005. DOI 10.1109/CCGRID.2005.1558530.

[BD06] Barga, R.S. and Digiampietri, L.A. Automatic Generation of Workflow
Provenance, International Provenance and Annotation Workshop (I-PAW), 2006,
Springer-Verlag LNCS, 1-9.

[BG+06] Braun, U., Garfinkel, S., Holland, D., Muniswamy-Reddy, K. and Seltzer, M.
Issues in Automatic Provenance Collection, International Provenance and
Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS, 132-144.

160 Y. Zhao, M. Wilde, and I. Foster

[BK+06] Bourilkov, D., Khandelwal, V., Kulkarni, A. and Totala, S. Virtual Logbooks and
Collaboration in Science and Software Development, International Provenance and
Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS, 19-27.

[BKT01] Buneman, P., Khanna, S., and Tan. W.-C. Why and Where: A Characterization of
Data Provenance. In International Conference on Database Theory, 2001.

[BM06] Branco, M. and Moreau, L. Enabling provenance on large scale e-Science
applications, International Provenance and Annotation Workshop (I-PAW), 2006,
Springer-Verlag LNCS, 55-63.

[BMP06] Bose, R., Mann, R.G. and Prina-Ricotti, D. AstroDAS: Sharing Assertions across
Astronomy Catalogues through Distributed Annotation, International Provenance
and Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS, 154-163.

[CF+06] Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva C.T. and Vo, H.T.
Managing the Evolution of Dataflows with VisTrails. IEEE Workshop on
Workflow and Data Flow for Scientific Applications (SciFlow) 2006.

[CW00] Cui, Y. and Widom, J., Practical Lineage Tracing in Data Warehouses. In 16th
International Conference on Data Engineering, (2000), 367–378.

[CWW00] Cui, Y., Widom, J. and Wiener, J.L. Tracing the Lineage of View Data in a
Warehousing Environment. ACM Transactions on Database Systems, 25 (2). 179–
227. 2000.

[DS+05] Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C. and Katz, D.S. Pegasus:
A Framework for Mapping Complex Scientific Workflows onto Distributed
Systems. Scientific Programming, 13 (3). 219-237. 2005.

[F05] Foster, I., Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP
International Conference on Network and Parallel Computing, 2005, Springer-
Verlag LNCS 3779, 2-13.

[FS+06] Freire, J., Silva, C.T., Callahan, S.P., Santos, E., Scheidegger, C.E. and Vo, H.T.
Managing Rapidly-Evolving Scientific Workflows, International Provenance and
Annotation Workshop (I-PAW), 2006, Springer-Verlag LNCS, 10-19,

[FV+02] Foster, I., Voeckler, J., Wilde, M. and Zhao, Y. Chimera: A Virtual Data System
for Representing, Querying, and Automating Data Derivation. in 14th Conference
on Scientific and Statistical Database Management, (2002).

[FT+02] Frey, J., Tannenbaum, T., Foster, I., Livny, M. and Tuecke, S. Condor-G: A
Computation Management Agent for Multi-Institutional Grids. Cluster Computing,
5 (3). 237-246. 2002.

[GM+05] Groth, P., Miles, S., Tan, V. and Moreau L. Architecture for Provenance Systems.
Technical report, University of Southampton, October 2005.

[GS02] Giugno, R. and Shasha, D. Graphgrep: A fast and universal method for querying
graphs. In Proceeding of the IEEE International Conference in Pattern recognition
(ICPR), Quebec, Canada, August 2002.

[KS06] Kloss, G.K. and Schreiber, A. Provenance Implementation in a Scientific
Simulation Environment, International Provenance and Annotation Workshop (I-
PAW), 2006, Springer-Verlag LNCS, 28-37.

[HSM04] Huettel, S., Song, A. and McCarthy, G. Functional Magnetic Resonance Imaging.
Sinauer Associates, 2004.

[MC+03] Myers, J.D., Chappell, A.R., Elder, M., Geist, A. and Schwidder, J. Re-integrating
the research record. IEEE Computing in Science & Engineering, pages 44–50,
2003.

[MH+06] Muniswamy-Reddy, K., Holland, D., Braun, U. and Seltzer, M. Provenance-Aware
Storage Systems, 2006 USENIX Annual Technical Conference, Boston, MA, June
2006.

 Applying the Virtual Data Provenance Model 161

[SKD06] Singh, G., Kesselman, C. and Deelman, E. Optimizing Grid-Based Workflow
Execution. Journal of Grid Computing, 3 (3-4). 201-219. 2006.

[SM03] Szomszor, M. and Moreau, L. Recording and reasoning over data provenance in
web and grid services. In Intl. Conf. on Ontologies, Databases and Applications of
Semantics, LNCS 2888, 2003.

[WG+98a] Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R. and Mazziotta, J.C.
Automated image registration: I. General methods and intrasubject, intramodality
validation. Journal of Computer Assisted Tomography 1998;22:139-152.

[WG+98b] Woods, R.P., Grafton, S.T., Watson, J.D.G, Sicotte, N.L. and Mazziotta, J.C.
Automated image registration: II. Intersubject validation of linear and nonlinear
models. Journal of Computer Assisted Tomography 1998;22:153-165.

[WS97] Woodruff, A. and Stonebraker, M., Supporting Fine-Grained Data Lineage in a
Database Visualization Environment. 13th International Conference on Data
Engineering, 1997, 91-102.

[ZG+03] Zhao, J., Goble, C., Greenwood, M., Wroe, C. and Stevens, R. Annotating, linking
and browsing provenance logs for e-science. In Workshop on Semantic Web
Technologies for Searching and Retrieving Scientific Data, October 2003.

[ZGR06] Zhao, J. Goble, C. and Stevens, R. An Identity Crisis in the Life Sciences,
International Provenance and Annotation Workshop (I-PAW), 2006, Springer-
Verlag LNCS.

[ZD+05] Zhao, Y., Dobson, J., Foster, I., Moreau, L. and Wilde, M. A Notation and System
for Expressing and Executing Cleanly Typed Workflows on Messy Scientific Data.
SIGMOD Record, 34 (3). 37-43. 2005.

[ZW+05] Zhao, Y., Wilde, M., Foster, I., Voeckler, J., Dobson, J., Gilbert, E., Jordan, T. and
Quigg, E. Virtual Data Grid Middleware Services for Data-Intensive Science.
Concurrency and Computation: Practice and Experience, DOI: 10.1002/cpe.968,
2005.

A Provenance Model for Manually Curated Data

Peter Buneman1, Adriane Chapman2, James Cheney1,
and Stijn Vansummeren3,�

1 University of Edinburgh
2 University of Michigan, Ann Arbor

3 Hasselt University and Transnational University of Limburg, Belgium

Abstract. Many curated databases are constructed by scientists inte-
grating various existing data sources “by hand”, that is, by manually en-
tering or copying data from other sources. Capturing provenance in such
an environment is a challenging problem, requiring a good model of the
process of curation. Existing models of provenance focus on queries/views
in databases or computations on the Grid, not updates of databases
or Web sites. In this paper we motivate and present a simple model
of provenance for manually curated databases and discuss ongoing and
future work.

1 Introduction

Many scientific databases1 are constructed by manual effort of scientists acting
as curators. Curators use a wide variety of sources to select, organize, classify and
annotate existing data into a database on some topic. Such databases are now
supplanting printed “reference manuals” as standard sources of raw scientific
data. Although they are most widespread in bioinformatics, scientific databases
in many disciplines involve a degree of manual curation.

Curation typically involves “manually” reading journal articles or browsing
remote databases to find relevant new information. Data gleaned from journal
abstracts or copied from other databases is entered directly by the curator us-
ing a Web form or custom interface (such as a MS Access application). This
manual process, in which the scientist’s brain is in the inner loop, is what distin-
guishes curation from related activities such as data integration. Curated data
is generally of higher quality, but is correspondingly more expensive to produce.

The perceived value of curated databases rests on their provenance: that is,
the fact that they have been constructed by well-informed individuals who have
exercised scientific judgment in assimilating data sources. However, the volatile
nature of electronic media makes it difficult to trust blanket assertions about
the provenance of such databases. Instead, it is widely believed that explicit
evidence about the provenance of such databases must be recorded in order to

� Postdoctoral researcher of the Fund for Scientific Research - Flanders.
1 In this paper the term “database” should be interpreted broadly to include data

stored in flat files, XML documents, Web sites, etc., not just RDBMSs.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 162–170, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Provenance Model for Manually Curated Data 163

preserve the scientific record and assess the scientific value of such databases (and
any results derived from them). This provenance information should, at least,
indicate the origin, context, intermediate source(s) and modification history of
the data. Besides its intrinsic value as part of the scientific record, provenance
can be used to detect duplicate copies of information and to help automate “data
cleaning” tasks such as propagating corrections to source databases and tracking
down the sources of discrepancies.

While it is very easy to build up a database by searching for, copying and
pasting data, maintaining provenance information adequate for scientific appli-
cations requires additional effort, which adds to the already-high cost of curated
data. Curators usually attempt to add links to the original publications or source
databases, but in practice, provenance records are often absent, incomplete or
ad hoc, often despite curators’ best efforts. Also, manually-managed provenance
records are at higher risk of human error or falsification. Since a great deal of
information relevant to provenance is available to the systems involved, we be-
lieve that it is important to develop techniques for data curation which automate
provenance management as much as possible.

Previous approaches to provenance management [1,6,7,9,11,18] typically have
focused on situations in which all of the interactions with data take place in a
single controlled environment (e.g. an operating system, file system, or database),
or in which new data is only constructed from existing data using nondestructive
mechanisms such as database views or scientific workflows. Both assumptions are
violated in the case of manually curated databases. Tracking the provenance of
data that moves among databases or Grid resources is challenging because there
is no one system that can capture all of the actions involved; instead, many
systems must cooperate in order to maintain the chain of provenance. Also,
curated databases are updated in-place with local copies of source data rather
than constructed as views of source databases.

The purpose of this paper is to describe the challenges involved in manag-
ing provenance for manually curated databases, and to summarize our current
approach to them. Section 2 defines the problem and describes the constraints
which we believe must be met by a practical solution. In Section 3, we pro-
pose a copy-paste model for describing user actions in assimilating external data
sources into curated database records. We define provenance as a relation be-
tween versions of a database describing how each part of the output was derived
from data in earlier versions or external sources. Section 4 discusses ongoing and
future work on implementing and extending the copy-paste model, including a
proof-of-concept implementation, approaches to tracking user actions, extensions
to the copy-paste model, and data citation.

2 The Problem

Biological databases such as UniProt [16] and the Nuclear Protein Database [8]
are manually curated; that is, they are constructed (at least in part) by cu-
rators modifying individual records directly rather than by an automatic view

164 P. Buneman et al.

or data extraction process. To the extent that extraction, cleaning and inte-
gration operations involve user interaction, data warehouses [7] could also be
considered to be manually curated. For the moment we focus on tracking prove-
nance for fine-grained, manual updates, rather than queries, views, or “bulk”
updates.

We define the provenance management problem for manually curated data-
bases as follows. Given a definition of the complete and correct history of a
database as it evolves over time, the goal is to store sufficient provenance infor-
mation to be able to answer queries about the history given only the provenance
information and the final database state(s). Note that we do not assume an
absolute definition of history; instead, the appropriate form of historical infor-
mation depends on the application.

This provenance management problem may seem already solved; for exam-
ple, file systems, database triggers, version control systems, and Wikis pro-
vide adequate provenance management (in the form of creation/modification
timestamps, user activity logs, change logs, etc.) for their application areas. How-
ever, all of these systems rely on strong assumptions: there is a single system that
monitors all access to the data, and the data is stored in a single format. When
information crosses boundaries between systems, such provenance information
usually becomes invalid, and there is no way to say that data in one system
comes from another system (possibly with a different data model). Similarly,
solutions using Grid technology [12] and customized e-notebook or workbench
software [15] require a substantial level of coordination among databases and
applications. While such tools are likely to be beneficial, it will take time for
them to become widely adopted among scientists. Recently, Muniswamy-Reddy
et al. [3,13] have developed a “provenance-aware storage system” (PASS), which
tracks provenance at the file system level. While certainly relevant (especially for
scientific data stored using files), PASS addresses provenance issues orthogonal
to those arising in other forms of databases.

In contrast to common data integration situations in business, there is no cen-
tral authority that controls all of the scientific databases relevant to a given area.
Thus, no single system can monitor all scientific databases or mandate changes
or standard practices. In addition, not all databases are being actively main-
tained, and others may be resistant to change. Even motivated database cura-
tors may lack the resources to modify their own databases. Conversely, databases
often change independently and have widely varying record-keeping practices,
use a wide variety of data models (ranging from RDBMS to flat files to XML
to filesystems), and their curators employ a wide variety of independent tools
(Web browsers, editors, database access applications, etc.)

Under these constraints, we believe that a practical solution must have the
following characteristics:

– decentralized: deployable one database at a time, without requiring coop-
eration among all databases at once

– data model-independent: should work for data stored in flat file, rela-
tional, XML, file system, Web site, etc. models

A Provenance Model for Manually Curated Data 165

S2S1

Fig. 1. A two-step provenance record

– usable with minimum changes to existing curatorial practice: ide-
ally, provenance tracking is invisible to the user

– useful without significant changes to existing database systems:
since it is impractical to impose global standards across databases

– robust in the face of changes to the databases: since we cannot stop
other databases from changing anyway

– scales gracefully to situations in which many databases cooperate to main-
tain provenance chains.

3 The Copy-Paste Model

In this paper, we focus on the problem of managing provenance for a single
database as data is copied from external sources or modified within the target
database. This is a common situation, and we believe our approach meets most
of the criteria above; some issues, such as robustness in the face of changes to
other databases, are not yet handled.

As remarked by Groth et al. [10], it is important to think carefully about
what provenance information to retain, based on what information will be useful
evidence to later observers. In our setting, we aim only to track the internal
relationships among a sequence of versions of the target database and fixed
source databases. Thus, we define the “complete and correct history” in the
above problem statement as follows. We take an abstract view of databases as
maps from data locations (or citations) to data values. For the purposes of this
paper, we consider only a “flat” data model, in which a database is simply a set
of key-value pairs. Many other refinements are possible, for example using line
numbers to locate data in text files, XPath or XPointer expressions to address
data in XML, or using key information to locate data in relational databases.
A more realistic instance of our model that uses paths to address relational or
XML data can be found in [5].

We further assume that changes to the database can be modeled using trans-
actions comprising simple “copy-paste” updates. Updates (denoted by U) are
sequences of atomic editing operations: insertion ins l v which creates a new lo-
cation l that is mapped to data value v, deletion del l which deletes location l (and
its corresponding data value); and copy-paste l ← l′ which updates the value at

166 P. Buneman et al.

location l to the value mapped by l′. We write I
U−→ O to for a triple (I, U, O)

such that applying update U on input database I yields output database O.
The one-step provenance relation P(I U−→ O) is a subset of dom(I) × dom(O),
defined as follows:

P(I l←l′−→ O) = {(m, m) | m ∈ dom(I), m
= l} ∪ {(l′, l)}
P(I ins l v−→ O) = {(m, m) | m ∈ dom(I)} ∪ {(NULL, l)}
P(I del l−→ O) = {(m, m) | m ∈ dom(I) − l} ∪ {(l, NULL)}
P(I

U ;U ′
−→ O) =

⋃
{r ⊗ s | r ∈ P(I U−→ J), s ∈ P(J U ′

−→ O)}

where r ⊗ s is defined as follows:

(l, m) ⊗ (m, n) = {(l, n)} (l, m, n
= NULL)
(l, m) ⊗ (m, n) = {(NULL, l)} (l = NULL or m = NULL)
(l, m) ⊗ (m, n) = {(l, NULL)} (m = NULL or n = NULL)

r ⊗ s = ∅ otherwise

Given a sequence of database instances and updates I0
U1−→ · · · Un−→ In, we

define the multi-step provenance relation Prov(T id, Loc, Loc) as

{1} × P(I0
U1−→ I1) ∪ · · · ∪ {n} × P(In−1

Un−→ In).

Intuitively, P(I U−→ O) (and consequently, Prov) describe how data is copied,
inserted, or deleted during a transaction (or sequence of transactions). Fig-
ure 1 depicts an example two-step provenance relation on a database with tree-
structured locations. Here, the “boxed” trees S1, S2 are external sources, whereas
the other trees denote the original database, the database after the first update,
and the database after the second update, respectively. The solid and dashed
lines describe the Prov relation; dashed lines indicate provenance links for un-
changed data. Such links can always be omitted from the Prov relation to save
space.

Using the Prov relation, we can define a number of interesting basic provenance
queries giving information about the creation time of a location, the deletion time,
where a location was copied from, and whether a location has been modified:

Inserted(t, l) ← Prov(t, NULL, l). Deleted(t, l) ← Prov(t, l, NULL).
Copied(t, l, m) ← Prov(t, l, m), l
= m. Unchanged(t, l) ← Prov(t, l, l).

The Inserted(t, l), Copied(t, l′, l), Unchanged(t, l) queries informally say that
the data at location l at the end of transaction t was inserted during t, copied
from the data at l at the beginning of t, or unchanged during t, respectively;
similarly, Deleted(t, l) says that the data at l was deleted during t.

Transaction identifiers can be used to index a table Trans(T id, Uid, T ime, . . .)
containing additional metadata about transactions. The following recursive
query Q(l, tid, uid, t) defines the relation “the data at l at the end of transaction
tid was originally inserted by user uid at time t”:

A Provenance Model for Manually Curated Data 167

Q(l, tid, uid, t) ← Inserted(tid, l), T rans(tid, uid, t).
Q(l, tid, uid, t) ← Copied(tid, l, m), Q(m, tid− 1, uid, t).
Q(l, tid, uid, t) ← Unchanged(tid, l), Q(l, tid− 1, uid, t).

Many interesting provenance queries also refer to the raw data. A simple
example is to return the original source (that is, the external link, or NULL if none)
alongside each result. Another example is using provenance to filter out data from
known unreliable sources, or to group or aggregate the data by source. Querying
the data and its provenance “side-by-side” involves additional processing, since
the data and provenance may be stored in separate databases. However, existing
techniques for multidatabase querying and managing annotations can be used
for this purpose [1,17].

If only one database tracks provenance, then the chain of provenance can only
be followed to the point where data was copied from an external source; only
“local” provenance queries can be answered. We can only answer “global” queries
if all the databases involved record provenance. Maintaining consistent and valid
provenance when the distributed databases are being updated asynchronously
is an interesting area for further research.

4 Ongoing and Future Work

4.1 An implementation

We have implemented a “copy-paste database”, CPDB, that tracks the prove-
nance of data copied from external sources to the target database [5]. CPDB
permits the user to copy source data from external sites or databases into the
target database, and modify the data to fit the target database’s structure. The
user’s actions are intercepted and provenance information is recorded in a prove-
nance store. CPDB uses paths as locations to address data stored in either XML
or relational form. CPDB addresses a number of implementation issues that
were left implicit in the discussion in Section 3. We now discuss these issues
further.

How Can We Address and Update Heterogeneous Data? The approach
we take to the first issue is to require that the citable data in every source
database is published as a “fully-keyed” XML view, and the updatable data in
the target database is presented as an updatable XML view. Thus, paths can
be used to select data from sources and locate data in copy-paste updates to
the target database. We believe these are reasonable requirements since XML
publishing and view update for legacy RDBMSs are widely recognized as impor-
tant research problems and have already received attention [2]. Moreover, many
commercial relational databases already provide some capability for publishing
their data as XML. In addition, any Web page can be interpreted as an XML
document, addressed by its URL and an XPath or XPointer describing the cited
data.

168 P. Buneman et al.

This approach does not require that any of the source or target databases
represent data internally as XML. Any underlying data model for which path
addresses make sense can be used. Also, the databases need not expose all of
their data. Instead, it is up to the databases’ administrators how much data to
expose for copying or updating. The data in many scientific databases consists
of a “catalog” relation that contains all the raw data, together with supporting
cross-reference tables. It is only this catalog that would typically need to be
made available by a source database.

Proxies or client-side scripting could also be used to add more useful citations
to non-cooperating database websites without changing the curator’s natural
behavior. However, a chain is only as strong as its weakest link, and the prove-
nance data derived from this method can only contain information about the
database’s website, not any of the underlying database values. This is related to
the problem of data citation discussed below.

How Can We Capture the User’s Actions in an Unobtrusive Way?
The current implementation of CPDB provides a Web interface that enables
the user to import data from a source database and paste it into the target.
However, this interface is relatively clumsy compared to what curators normally
do, namely browsing to databases’ Web sites, copying data from the relevant
pages, and pasting it into a target database entry form. For an approach to
automatic provenance tracking to be successful, it has to make life easier for the
curators, not harder.

Fortunately, it appears to be possible to instrument Web browsers so that the
user’s browsing, copying, pasting, and form submission actions are recorded as
provenance records. We are currently investigating whether existing techniques
for Web browser activity logging being developed in the human-computer in-
teraction community [14] can be adapted to record rich provenance information
unobtrusively.

How Can the Resulting Provenance Records be Stored and Queried
Efficiently? The Prov relation given in the previous section is potentially very
verbose since it stores links between unchanged data in subsequent versions.
(These are shown by the dotted lines in Figures 1). Thus, the number of links
between two versions of a database is proportional to the size of the data, not
the difference between the versions. While these links are needed to answer
provenance queries, they do not need to be stored explicitly. In CPDB, we store
only “essential” provenance links, that is, links having to do with copies, inserts,
or deletes. CPDB also exploits optimization opportunities offered by the tree
structure of path addresses. The full Prov relation can then be defined as a view
of the reduced form. The size of the reduced form of Prov is proportional only
to the size of the update operation, not the size of the database.

This reduces the amount of storage space needed for the provenance of man-
ual updates to an acceptable level. We also performed experiments that show
that the performance of queries to the core provenance relation is better than for

A Provenance Model for Manually Curated Data 169

more explicit forms of Prov. The reason for this is that it is often faster to
calculate provenance links “on the fly” than to fetch them from storage.

4.2 Future Work

Database Archiving and Citation. The ability to locate data precisely in
the source database is fundamental to the copy-paste model we developed in
Section 3. It is also important if the curator has not directly copied the data, but
has interpreted it and wants to provide a citation to that portion of the database.
However, in addition to location information, citations carry other useful data
such as authorship, title, etc. It is becoming increasingly important to make
curated databases citable and to describe how a database or a part of it should
be cited [4]. We are currently considering techniques for augmenting database
archiving and citation with support for provenance tracking and querying.

Extending Our Model of Provenance. The copy-paste language introduced
in Section 3 suffices to model the behavior of a human curator who inserts
individual items into the curated database. Ideally, however, we would also like to
track the provenance of data constructed by automatic processes (e.g., a database
query, a workflow, a scientific algorithm, . . .). We are currently investigating
extensions of our approach to provenance to full query/update languages for
relational, complex object, and XML data, including aggregation and “fusion”
operations such as summation, joins or unions. Among the research challenges
here are finding space-efficient, compact representations for such provenance
information and providing appropriate high-level query language operations for
querying more complex provenance expressions.

In addition, we are generalizing the copy-paste model to study the prove-
nance behavior of arbitrary computations based on rewriting machines, a vari-
ant of Turing machines. In Turing machines, there is at best an implicit cor-
relation between input and output data. Without knowing the intent of the
designer of a machine, it is impossible to give a correct provenance semantics
for it. In rewriting machines, the basic machine operations are rewritings, which
generalize copy-paste operations and have a natural, unambiguous provenance
semantics.

5 Conclusions

Tracking the provenance of data in manually curated databases is challenging,
primarily because the most obvious approaches require unrealistic levels of ho-
mogeneity, cooperation and coordination among databases. While the long-term
solution may require changes to common scientific practice, there are steps that
can be taken in the short term and at the local level to improve record-keeping
in current practices. We have developed and implemented a model for recording
the provenance of data that flows into a single curated database and discussed
incremental extensions to this model that provide further improvements. Many
substantial challenges remain.

170 P. Buneman et al.

References

1. D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya. An annotation man-
agement system for relational databases. In Proc. of the Intl. Conf. on Very Large
Data Bases (VLDB), pages 900–911. Morgan Kaufmann, 2004.

2. V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML view updates
to relational view updates: old solutions to a new problem. In VLDB 2004, pages
276–287, 2004.

3. U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy, and M. I. Seltzer.
Issues in automatic provenance collection. In Proceedings of the 2006 International
Provenance and Annotation Workshop (IPAW 2006), 2006. This proceedings.

4. P. Buneman. How to cite curated databases and how to make them citable. In
SSDBM, 2006. To appear.

5. P. Buneman, A. P. Chapman, and J. Cheney. Provenance management in curated
databases. In SIGMOD, 2006. To appear.

6. P. Buneman, S. Khanna, and W.-C. Tan. Why and Where: A characterization of
data provenance. In ICDT, pages 316–330, 2001.

7. Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations.
In Proceedings of the 27th VLDB Conference, Roma, Italy, pages 41–58, 2001.

8. G. Dellaire, R. Farrall, and W. A. Bickmore. The nuclear protein database (NPD):
sub-nuclear localisation and functional annotation of the nuclear proteome. Nucleic
Acids Research, 31(1):328–330, 2003.

9. I. Foster, J. Vockler, M. Eilde, and Y. Zhao. Chimera: A virtual data system for
representing, querying, and automating data derivation. In International Confer-
ence on Scientific and Statistical Database Management, pages 1–10, July 2002.

10. P. Groth, S. Miles, , and S. Munroe. Principles of high quality documentation for
provenance: A philosophical discussion. In Proceedings of the 2006 International
Provenance and Annotation Workshop (IPAW 2006), 2006. This proceedings.

11. P. Groth, S. Miles, W. Fang, S. C. Wong, K.-P. Zauner, and L. Moreau. Recording
and using provenance in a protein compressibility experiment. In HPDC, 2005.

12. P. T. Groth, M. Luck, and L. Moreau. A protocol for recording provenance in
service-oriented grids. In T. Higashino, editor, OPODIS, volume 3544 of Lecture
Notes in Computer Science, pages 124–139. Springer, 2004.

13. K. Muniswamy-Reddy, D. Holland, U. Braun, and M. Seltzer. Provenance-aware
storage systems. In Proceedings of the 2006 USENIX Annual Technical Confer-
ence,, Boston, MA, June 2006. To appear.

14. N. Roussel, A. Tabard, and C. Letondal. All you need is log. WWW2006
Workshop on Logging Traces of Web Activity: The Mechanics of Data Collec-
tion, May 2006. Manuscript available at http://torch.cs.dal.ca/~www2006/

roussel-www2006-MechanicsDataCollection.pdf.
15. R. D. Stevens, A. J. Robinson, and C. A. Goble. myGrid: personalised bioinfor-

matics on the information grid. Bioinformatics, 2003.
16. UniProt. http://www.ebi.ac.uk/uniprot/.
17. Y. R. Wang and S. E. Madnick. A polygen model for heterogeneous database

systems: The source tagging perspective. In D. McLeod, R. Sacks-Davis, and H.-J.
Schek, editors, 16th International Conference on Very Large Data Bases, August
13-16, 1990, Brisbane, Queensland, Australia, Proceedings, pages 519–538. Morgan
Kaufmann, 1990.

18. J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. In CIDR, pages 262–276, 2005.

Issues in Automatic Provenance Collection

Uri Braun, Simson Garfinkel, David A. Holland,
Kiran-Kumar Muniswamy-Reddy, and Margo I. Seltzer

Harvard University, Cambridge, Massachusetts
pass@eecs.harvard.edu

Abstract. Automatic provenance collection describes systems that ob-
serve processes and data transformations inferring, collecting, and main-
taining provenance about them. Automatic collection is a powerful tool
for analysis of objects and processes, providing a level of transparency
and pervasiveness not found in more conventional provenance systems.
Unfortunately, automatic collection is also difficult. We discuss the chal-
lenges we encountered and the issues we exposed as we developed an
automatic provenance collector that runs at the operating system level.

1 Introduction

Today’s provenance management systems usually take one of two approaches to
provenance collection: Either users enter it manually or applications explicitly
collect provenance and enter it into a database. There is, however, a third model:
automatic provenance collection. In automatic collection, the system observes the
actions of users and programs and derives provenance, storing it without user or
application involvement.

Automatic collection is a powerful approach, because it eliminates user er-
ror, consistently collects provenance across all applications, and captures more
complete provenance than systems relying on a user’s or application developer’s
assumptions about provenance. For example, automatic provenance collection in
the operating system allows us to: identify system configuration changes (e.g.,
new tools or libraries), identify environment variable modifications that alter
program behavior, debug faulty builds that are missing dependencies, identify
the source and creation of unusual files, and create scripts that produce objects.

In earlier work we described a prototype Provenance-Aware Storage System
(PASS), built on Linux, that automatically collects provenance at the operating
system level [18]. PASS is similar to systems such as ClearCase [5], GenePat-
tern [9], and Vesta [10]. These systems observe users’ and applications’ activities,
recording the provenance captured in these activities. PASS takes this one step
farther, observing all processes that run on a PASS-enabled operating system,
generating provenance for objects that do not have provenance (i.e., are un-
provenanced), and attaching complete system-level provenance to objects that
are created on a provenance-aware file system. We capture low-level details like
the operating system, kernel modules loaded, installed libraries, and process
environment.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 171–183, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

172 U. Braun et al.

We found that automatic OS-level provenance collection is useful, comple-
menting existing approaches. However, we exposed a number of challenging
issues that arise from automatic collection. This paper introduces automatic
provenance collection and discusses the more interesting challenges that arise in
building these systems.

In Section 2 we define automatic provenance collection, placing it in the con-
text of existing provenance solutions. In Section 3 we discuss the problems that
arise when designing and building systems with automatic provenance collection.
In Section 4, we present use cases where disclosed and observed provenance sys-
tems together provide more powerful solutions than either independently. In Sec-
tion 5 we introduce provenance pruning, the deletion of provenance, and discuss
strategies for implementing it. In Section 6 we discuss the privacy implications of
automatic provenance collection. In Section 7 we discuss automatic provenance
systems and technologies from which we can borrow in constructing automatic
provenance systems, and in Section 8 we conclude.

2 What Is Automatic Collection?

An automatic collecting system transparently records provenance for all activi-
ties it performs by observing the sequence of operations executed and translating
relevant ones into provenance. For example, when a process begins running, the
operating system identifies several process provenance attributes 1, such as the
executable, operating system, loaded kernel modules, libraries, environment, and
command line.

The system continues to collect provenance about the running process, record-
ing (for example) input sources. Whenever the process creates or modifies an ob-
ject, the process’s provenance is assigned to the written object. We call this form
of provenance collection observed, because the system derives provenance from
the events that it observes. An observed provenance system does not necessarily
understand the semantics of its observations, so it must record everything that
is potentially part of an object’s provenance. This can lead to false provenance
if the observing system does not perform detailed information flow analysis.
Section 2.1 discusses existing systems that use observed provenance.

Most existing provenance systems use disclosed provenance. In disclosed
provenance systems, users or applications present provenance to the system,
using the provenance system merely as a storage and query engine. There are
several kinds of disclosed provenance. Manual provenance, sometimes called an-
notation, is entered by users. For example, the provenance of data entered man-
ually by a user must itself be manually entered. Specified provenance describes
an object’s intended provenance in a structured way, typically by directing the
system to produce the object via various transformations or workflows. For exam-
ples, workflow-based systems [23,32] and makefiles capture intended provenance
by describing how a target is created from its sources. The workflow systems
1 We think of processes as having provenance so that we can transfer a process’s

provenance to objects it creates.

Issues in Automatic Provenance Collection 173

frequently then generate true provenance from the execution of these workflows,
while make does not. Instead, the canonical software development environment
relies on a separate component, a source code control system, to store semantic
provenence. In these systems, the difference between successive versions precisely
identifies what changed, but the rationale is entered as manual provenance in the
form of commit messages.

2.1 Observed-Provenance Systems

There are several domain-specific observed provenance systems. GenePattern [9]
is a working environment for computational biology and biomedical research.
It tracks provenance for the objects created in the environment. Clearcase [5]
and Vesta [10] are environments designed for software development. Like our
provenance-aware storage system (PASS), both Clearcase and Vesta use a cus-
tomized file system to track provenance. Unlike PASS, both Clearcase and Vesta
center their design on disclosed provenance, assuming that users execute com-
mands specified in a control file. However, both allow some form of observation
in which the system observes a user’s actions creating a control file (script) to
re-derive objects. Running in this observed mode is not the norm and requires
explicit action by the user.

Observed provenance systems provide the benefit that provenance collection is
automatic, requiring no user intervention. Observed systems collect and maintain
provenance of objects by default, so all new data becomes provenanced. The
major disadvantage of observed provenance systems is that they can only capture
provenance to which they are exposed, and this frequently produces provenance
with less semantic meaning than disclosed provenance systems. The next section
illustrates how disclosed provenance systems complement observed provenance
systems.

2.2 Disclosed-Provenance Systems

The vast majority of today’s provenance systems use disclosed provenance. These
systems require that the user describe a workflow, and then they provide an en-
gine that executes the workflow. The combination of the workflow specification
and the result created by running the engine on the workflow creates prove-
nance. The line between observed and disclosed systems is not always crisp. In
workflow-specification systems, the actual workflow engine is an observed prove-
nance system; however, it is an observed system that relies on an underlying
specification in order to function. Without the specification, the workflow en-
gine cannot generate provenance. For expository purposes, we classify these sys-
tems as disclosed provenance systems, because they require the user to disclose
explicitly the intended provenance of a result.

The myGrid [32] workflow enactment engine records provenance for each step
in a workflow, including inputs and outputs, storing the provenance in a cen-
tral provenance repository. The PASOA [23] project provides APIs that clients
and services use to record provenance during workflow execution. Chimera [7]

174 U. Braun et al.

offers a virtual data system that provides a virtual data language (VDL) and a
virtual data catalog (VDC). The VDC implements a virtual data schema that
defines the objects and relations that can be used to capture descriptions of
program invocations and to record potential or actual invocations. The Earth
System Science Workbench (ESSW) [8] is a data management infrastructure
used for processing satellite imagery. The CMCS (Collaboratory for the Multi-
scale Chemical Sciences) [21] uses a portal and metadata-aware content store
as a base for building a system to support inter-domain knowledge exchange
in chemical science. All these systems rely on some sort of specification or ex-
plicit API for provenance disclosure. Disclosed provenance systems also make
use of user annotations. In fact, some systems [29] rely mostly on user-provided
annotations.

Disclosed provenance systems usually provide richer semantic knowledge than
observed systems. However, to obtain this benefit, users are restricted to using
provenance-aware tools and must conduct their work within the confines of ap-
plications that understand how to collect provenance. Thus, the responsibility
for provenance collection is dispersed throughout many different tools.

2.3 Observed Provenance Complements Disclosed Provenance

Observed and disclosed provenance provide complementary solutions. An ideal
solution provides the full semantic knowledge of disclosed provenance using the
automatic and transparent collection of observed provenance systems. While
there has been significant research on disclosed provenance systems, there has
been significantly less on observed provenance systems. To build systems with the
benefits of both approaches, we must understand and overcome the challenges
that automatic collection presents. We next discuss some of those challenges,
and then in Section 4, we return to examples of how observed and disclosed
systems complement one another.

3 Challenges

An observed provenance system faces the challenge of transforming observations
into disclosed provenance. This transformation requires solving several problems.
There may be several types of mismatches between the observed and desired
provenance. We use the term granularity to refer to the mismatch between the
operating system’s observation of a sequence of system calls and the scientific
user’s desire to record provenance on an experiment.

Reconciling these mismatches leads to challenges in creating and maintaining
provenance ancestry; automatic provenance collection can lead to cyclic ancestry,
which is conceptually unacceptable. Versioning is one way to cope with cyclic
ancestry, but it presents challenges similar to those found in automatically ver-
sioned file systems [25]. In the rest of this section, we explore each of these issues
in more detail.

Issues in Automatic Provenance Collection 175

3.1 Granularity

Granularity refers to the types of objects for which a system maintains prove-
nance. Coarse grain provenance might describe data and results produced by
an entire research initiative (e.g., the Human Genome Project). At the other
extreme, the programming languages and systems communities are sometimes
interested in extraordinarily fine-grained provenance, such as byte- or bit-level
provenance [17,26].

Users are most frequently interested in coarse-grained provenance, such as an
experiment or analysis. However, automatic collection systems most naturally
operate at a finer grain.

Our prototype PASS collects system call events, recording provenance on a
per-file basis. This is the most natural model for an operating-system-based
provenance collector, but we can increase the utility of our system by creating
coarse-grained views that are interesting to users. If the coarse-grain view is the
only interesting view, it is best to perform this conversion (from fine-grain to
coarse-grain) at collection time, reducing the provenance overhead.

Automatically identifying and constructing these coarser-grain views remains
an open research problem for both data and the events that produce data. Our
PASS prototype supports user annotations, which are a manual way to provide
coarser views. We are exploring other approaches such as describing classes of
files for which provenance is unnecessary (e.g., temporary files), in which case
the output files of interest will have the provenance of the entire transforma-
tion. Identifying meaningful events (i.e., event granularity) poses a much larger
problem, as it is tightly coupled to versioning.

3.2 Versioning

A system that both tracks provenance and allows data modification is inherently
versioned. Each modification to a provenanced object changes the provenance
of the object and creates a new version of that object, regardless of whether
the system actually retains those different versions. On a system that does
not explicitly track such versions, provenance provides the connections between
versions of objects and distinguishes those objects at different points in their
lifetimes.

Like an automatic versioning file system, a provenance-aware system must de-
cide what constitutes a “modification” and thus when to declare new versions.
The simplest approach, used by Wayback [4], creates a version on every write
call. This simple approach is impractical for automatic provenance collection,
because it yields too many meaningless versions. Another method, used in ver-
sioning file systems [15,25], is copy-on-write, where a new version is created on
the first write to a file between an open and close. A slightly different approach,
copy-on-change [12], creates new versions only if a write actually modifies the
object. A third alternative, used in a number of commercial and research sys-
tems [11,13,22,24], is to take snapshots, or checkpoints. In this model, a snapshot
contains the version of each file that existed when the snapshot was taken. These
systems typically take snapshots at regular intervals rather than being triggered

176 U. Braun et al.

by system activity. In PASS, we do copy-on-write: we consider a version com-
plete and “frozen” on the last close (or on fsync) and on the next write a new
version is created. A new version is also created if a file is truncated to zero
length.

Copy-on-write and copy-on-change both involve grouping related sets of modi-
fications into a single new version. This is a form of event granularity abstraction:
combining multiple observed write operations into a single conceptual write op-
eration. This merging process requires extreme caution in automatic provenance
collection, because it can lead to an even more vexing problem: cycles.

3.3 Cycles

Any modification grouping mechanism introduces the possibility of cycles in the
provenance. Cycles in provenance are nonsensical; an object cannot be descended
from itself. Cycles may even violate causality: an object may not be created by
another object it had somehow previously emitted. So automatic systems must
avoid creating provenance cycles. Unfortunately, avoidance is difficult.

Consider the common behavior of a program that first reads and then writes a
file. Either the write creates a new version of an object or it creates a provenance
cycle. This simple case is easy to resolve, but suppose this process repeats in a
loop. The provenance collector cannot observe the loop, only the read and write
actions; to avoid creating multiple versions it must infer the existence of the loop
and take appropriate steps.

Inferring loops in a single process is tractable, but systems of interacting
processes can also produce cycles. Local knowledge is not necessarily sufficient
to identify the situation, much less correct it. Consider two processes, P and Q:

P Q
read a

read b
write b

write a

If no new versions are created, these processes produce a cycle, yet nothing
about P or Q in isolation makes that evident. Simply creating additional ver-
sions does not adequately solve the problem; cyclic workloads produce too many
versions. (For example, consider a parallel, iterative algorithm.) The solution
is to abstract P and Q into a single higher-level conceptual entity, making the
cyclic data flow internal to this higher-level entity. Internal data flow need not
be provenanced.

Our prototype PASS maintains a global relationship graph and checks it for
cycles every time an edge is added. This allows it to create higher-level abstrac-
tions. Our current algorithm creates a new version of every process involved in
a cycle and then merges these versions together. The newly created merged ob-
ject becomes the parent of all the files involved, without creating new versions.
This handles many common cases with minimal overhead, but fails in some
circumstances.

Issues in Automatic Provenance Collection 177

The cycle problem is inherent in any attempt to reduce the number of versions
generated and thus inherent in event granularity abstraction. The same problem
can and will appear in any automatic collection system. These problems do
not appear in disclosed provenance systems, because statements of disclosed
provenance are initiated by a human developer, who understands the granularity
of the operations. In observed systems, we must deduce the granularity to identify
the semantically correct grouping.

Cycle detection and elimination has been a major preoccupation of our recent
research; nonetheless, we still do not have a satisfactory algorithm; it remains
an open problem [2].

4 Integrating Observed and Disclosed Provenance

Systems that support both observed and disclosed provenance offer powerful
features that cannot be obtained using either type alone.

Consider running the GenePattern [9] system on top of PASS. GenePattern
possesses the semantic knowledge to record the exact analysis used to transform
input data to output results. However, it does not know what version of the
math library or what floating point processor was used. This information may
be available to GenePattern, but not always, nor in a portable or reliable fashion.
In contrast, PASS is integrated with the operating system, handling such issues
natively. Together, GenePattern and PASS can answer the query, “Why did this
identical transformation produce different results last week and this week?”

Alternatively, suppose that outside of the GenePattern environment a re-
searcher “fixed” an input file. No provenance query in GenePattern can detect
that the input file changed, explaining how identical analyses on “the same”
input file yield different results.

As discussed previously, a significant challenge for observed provenance sys-
tems is identifying a semantically meaningful level of granularity. When a dis-
closed provenance system sits atop PASS, that disclosed provenance system
provides precisely the information PASS needs to construct these coarser views.

5 Pruning

Provenance adds storage overhead. Provenance Pruning is the act of selectively
removing provenance to save space. In general, pruning removes the provenance
for entire objects; however, at the end of this section we consider approaches
that erase only part of an object’s provenance.

Storage overhead can grow rapidly. Left unchecked there is nothing to prevent
the provenance from dwarfing the data it describes. Such large space overhead
can also harm query performance. For example, in recent work [18] we showed
that small changes to a source file in the Linux kernel generated approximately
two kilobytes of additional provenance when the kernel was rebuilt.

Some provenance can be pruned immediately at collection time. Users may
not be interested in recording configuration files, such as .bashrc and .profile,

178 U. Braun et al.

as ancestors of the bash shell. Similarly, users may not be interested in some
output files, such as temporary files or /dev/null. In other cases, it would be
useful to identify entire processes and the objects they modify as not requiring
provenance. For example, makewhatis, which indexes man pages, examines all
of them before writing out the index file; the provenance of that index file is
thus quite voluminous and also completely uninteresting. Such specification of
unprovenanced objects allows the system to prune provenance before it is ever
recorded to disk.

There are also opportunities for provenance pruning after collection. Deleted
files without descendants are good candidates for pruning at any time. It is
useful to think of provenance as forming a tree where parent nodes are those
nodes accessed as input during the creation of their children. In such a tree,
the deletion of a leaf node can be accompanied by the deletion of that node’s
provenance, since, by construction, that node’s provenance cannot be needed by
any other node. We call this bottom-up pruning. It is interesting to ask if top-
down pruning ever makes sense. On a long-running system, it might be useful to
prune provenance to present the illusion that provenance history began at some
time T, later than the actual beginning of that system’s provenance. Alternately,
it might be useful to declare some node as the new eldest ancestor and remove
all its parental provenance.

Intermediate files provide another opportunity for pruning. Files that can
be easily recreated by capturing the entire process that created them are good
candidates for provenance pruning. For example, in a build environment, the
object files can be recreated if necessary, so it may not be neccessary to keep
their provenance.

5.1 Policies

The pruning strategies described in the previous section implement policy deci-
sions. Such policy decisions should be site-specific. Storage policies might place
limits on the absolute amount of provenance retained or limit provenance as a
proportion of the data it describes. Retention policies dictate when provenance
can be erased, e.g., when no file in its ancestry remains.

5.2 Other Provenance Reduction Strategies

Supernodes Short of erasing provenance, it is sometimes possible to compact or
summarize existing provenance to save space. For example, it might be desirable
to compress the provenance for a subtree whose internal nodes have been deleted.
In this case, the system combines the provenance from internal nodes into a
supernode for the child.

Virtual Nodes. Some collections of attributes might recur frequently. These
attributes can be combined and included in a virtual node and referenced where
applicable. We already use an approach similar to this in our PASS prototype. We
store command lines and environments in their own database and refer to them
by a unique ID number [18]. An alternate and more general representation would

Issues in Automatic Provenance Collection 179

be to represent them as a provenanced object or virtual node. This approach
provides a lossless storage reduction method.

Removing Attributes. Rather than combining attributes, we might chose to
remove attributes if we can identify that they are irrelevant. As in pruning,
attributes could be removed during collection or later on. Irrelevant attributes
could be removed during collection or during later pruning. Identifying attributes
that do not need to be recorded in provenance is another site-specific policy
decision.

5.3 Pruning in PASS

In our PASS prototype, we do not yet provide a pruning policy specification
mechanism. Instead, we provide a utility, ptrunc, the enables a user to explicitly
truncate provenance, eliminating uninteresting ancestry [18].

6 Privacy and Security

Automatic provenance collection presents serious privacy challenges, because
such a system collects significant information about its users. Replying to an
email message by pasting a paragraph from a web page might cause the system
to capture the sender of the original email and the time it was received; the time
the message was read; the web addresses the user visited; and any intermediate
drafts that were composed but not sent.

Information leakage is the primary privacy risk introduced by automatic col-
lection. By its very nature, automatically collected provenance is invisible to
users, and this invisibility provides an easy channel through which sensitive
information can be released. For example, consider a manager composing an
employee review that includes input solicited from the employee’s colleagues.
Presenting the review and its provenance to the employee reveals the identify
of the colleagues who contributed to the review [14]. A manager who had to
explicitly disclose the review’s provenance to the system would be unlikely to
make such a mistake.

Deciding what provenance should be captured, where it should be stored,
how that store should be protected, and when (if ever) the stored provenance
should be purged are current research areas. For example, provenance is some-
times stored in the document itself as a header [19] or in an alternative data
stream [16], making it easy to keep document and provenance together. This
approach enables privacy-friendly systems and applications that automatically
detect and prevent violations of privacy or data sharing policies [30]. On the
other hand, provenance that travels invisibly with a document might also com-
promise privacy if users are unaware of its existence.

While no provenance-aware storage systems are in widespread use, both the
Microsoft Word and Adobe Acrobat file formats store hidden data that reveals
elements of a document’s history, a kind of provenance. Experience with these
formats illustrates that automatic collection introduces significant privacy risks:

180 U. Braun et al.

– In June 2000, The New York Times posted an Acrobat file on its website
containing names of Iranians who had assisted the CIA in the 1953 Iranian
coup. Although the paper had tried to remove the names from the Acrobat
file, the information was recovered and posted in an unredacted form on
another website [31].

– In June 2002, the US Justice Department released a “Workplace Diversity”
report that contained embarrassing information that the Department had
attempted to delete [6].

– In March 2004, the SCO Group distributed Microsoft Word files to journal-
ists containing hidden text that revealed the company’s legal strategy in its
anti-Linux lawsuits[27].

On the surface, automated provenance collection also violates many tradi-
tional principles of Fair Information Practice [20]. For example, the collection
limitation principle is violated, because no limits are placed on data collection.
The purpose specification is violated, because no purpose for the data is specified
at the time of collection. On the other hand, FIP principles such as individual
participation and security safeguards could be used as requirements guidelines
when designing systems for automatically collecting provenance. Embracing au-
tomatic provenance collection necessitates understanding and addressing the pri-
vacy implications.

We understood early that provenance security was both crucial and under-
researched. We do not provide any access controls in our current prototype, and
our early adopters are all users who freely share their data and analyses. In par-
allel, we undertook a small pilot project to identify the key features a provenance
security model requires. That study revealed that we need two independent se-
curity models: one that provides conventional access control over provenance
attributes and a second that provides access control over the branches of the
ancestry tree [3]. We are currently implementing these models and studying the
challenges in composing the two models.

7 Related Work

In Sections 2.1 and 2.2 we discussed alternate approaches to provenance. In
this section, we discuss a few other approaches and related technologies that
influence observed provenance systems or from which we can take advantage of
prior knowledge.

7.1 Versioning File Systems

As mentioned earlier, the versioning challenges of observed provenance systems
are similar to those in versioning file systems. The Elephant file system creates
a new version of a file on every write and does not immediately erase old ver-
sions [25]. As such, it highlights many of the issues we encounter with versions.
Like PASS, Elephant must cope with the overhead associated with creating a
new version on every write, and makes pruning essential. Elephant supports three

Issues in Automatic Provenance Collection 181

pruning policies: keep all, one, or landmarks. Unlike PASS, Elephant versions
file (and directory) data, and it does not gather provenance information.

7.2 Observed Provenance

PASS is not the only system to collect low level operations and attempt to infer
semantic meaning from them. Both the Lineage File System and Transparent
Result Caching take this approach.

Transparent result caching (TREC) captures system calls and tracks process
lineage including parent processes, child processes, input files and output files
[28]. Unlike PASS, all tracing occurs in user space. Read and write system calls
are not intercepted. TREC relies instead on the open mode to infer whether
files are inputs or outputs, a tradeoff between performance and accuracy. Both
systems support makefile generation and detection of changed dependencies, but
PASS provides additional query support unavailable in TREC.

Like PASS, the Lineage File System focuses on executables, command lines
and input files as the source of provenance [14]. Unlike PASS, it ignores the
hardware and software environment in which such processes run. A second, and
perhaps more important, difference is that provenance collection is delayed in
the Lineage File System and it is performed by a user-level thread that writes the
lineage data to an external database. As a result, the tight coupling we require
between data and provenance is lost, as is a significant part of the benefit. Since
the Lineage File System stores its lineage records in a relational database, the
query language is SQL. In our implementation, we use a simple key/value storage
schema so that a variety of schema layers can be provided.

7.3 Exposing Semantic Knowledge

The observed systems considered thus far all try to infer semantic knowledge
from a collection of events. Another is to isolate the semantic knowledge as a
user specified component. Magpie combines observed provenance recorded in
trace logs with a user specified event schema to construct a worflow model [1].
The user specified event schema specifies the rules for combining related events.
For example, specifying which filesystem read and write operations correspond
to a specific webserver request. Magpie differs from PASS in its use of a user
specified event schema and the recording of provenance in seperate trace files.

8 Conclusions

Automatic provenance collection is an important and powerful technique that
complements existing provenance solutions. However, it carries challenges that
do not appear in these other systems. Our group has developed a provenance-
aware storage system prototype that is now ready for limited experimental use.
We encourage the community to try our prototype, develop an appreciation for
the power of automatic collection, and tackle some of the fundamental research
challenges that remain. This area holds great promise, but only through the

182 U. Braun et al.

construction of a variety of systems that automatically collect provenance at
different levels, from the operating system to provenance aware applications,
will we identify the right solutions to the challenges outlined here.

References

1. P. T. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using magpie for request
extraction and workload modelling. In OSDI, pages 259–272, 2004.

2. K.-K. Muniswamy-Reddy, and M. Seltzer. Coping with cycles in provenance.
http://www.eecs.harvard.edu/∼syrah/pass/pubs/cycles.pdf.

3. U. Braun and A. Shinnar. A Security Model for Provenance. Technical Report
TR-04-06, Harvard University, Jan. 2006.

4. Brian Cornell and Peter Dinda and Fabi+n Bustamante. Wayback: A User-level
Versioning File System for Linux. In Proceedings of the USENIX 2004 Annual
Technical Conference, FREENIX Track, 2004.

5. ClearCase. http://www.ibm.org/software/awdtools/clearcase.
6. R. Edmonds. Justice department hid parts of report criticizing diversity effort.

Associated Press, Oct. 31 2003.
7. I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. The Virtual Data Grid: A New

Model and Architecture for Data-Intensive Collaboration. In CIDR, Asilomar,
CA, Jan. 2003.

8. J. Frew and R. Bose. Earth system science workbench: A data management in-
frastructure for earth science products. In Proceedings of the 13th International
Conference on Scientific and Statistical Database Management, pages 180–189.
IEEE Computer Society, 2001.

9. GenePattern. http://www.broad.mit.edu/cancer/software/genepattern.
10. A. Heydon, R. Levin, T. Mann, and Y. Yu. The Vesta Approach to Software

Configuration Management. Technical Report 168, Compaq Systems Research
Center, March 2001.

11. D. Hitz, J. Lau, and M. Malcolm. File System Design for an NFS File Server
Appliance. In Proceedings of the USENIX Winter Technical Conference, pages
235–245, January 1994.

12. K. Muniswamy-Reddy and C. P. Wright and A. Himmer and E. Zadok. A Versatile
and User-Oriented Versioning File System. In Proceedings of the Third USENIX
Conference on File and Storage Technologies (FAST 2004), San Francisco, CA,
March/April 2004.

13. E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of
the Seventh International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-7), pages 84–92, Cambridge, MA,
1996.

14. Lineage File System. http://crypto.stanford.edu/∼cao/lineage.html.
15. K. McCoy. VMS File System Internals. Digital Press, 1990.
16. Microsoft. How to use ntfs alternate data streams. July 13 2004.
17. S. Muchnick. Advanced Compiler Design and Implementation, chapter 8. Morgan

Kaufmann, 1997.
18. K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer. Provenance-

aware storage systems. In Proceedings of the 2006 USENIX Annual Technical
Conference, June 2006.

19. Nost. Definition of the flexible image transport system (FITS), 1999.

Issues in Automatic Provenance Collection 183

20. Organisation for Economic Co-operation and Development. Guidelines on the
protection of privacy and transborder flows of personal data, 1980.

21. C. Pancerella et al. Metadata in the Collaboratory for Multi-scale Chemical Sci-
ence. In Dublin Core Conference, Seattle, WA, 2003.

22. Z. N. J. Peterson and R. C. Burns. Ext3cow: The design, Implementation, and
Analysis of Metadat for a Time-Shifting File System. Technical Report HSSL-
2003-03, Computer Science Department, The Johns Hopkins University, 2003.
http://hssl.cs.jhu.edu/papers/peterson-ext3cow03.pdf.

23. Provenance aware service oriented architecture. http://twiki.pasoa.ecs.soton.
ac.uk/bin/view/PASOA/WebHome.

24. S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In Proceed-
ings of First USENIX conference on File and Storage Technologies, pages 89–101,
January 2002.

25. D. J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C. Veitch. Elephant: The
file system that never forgets. In Workshop on Hot Topics in Operating Systems,
pages 2–7, 1999.

26. J. Seward. Valgrind, an open-source memory debugger for GNU/Linux.
http://valgrind.org, 2005.

27. S. Shankland and S. Ard. Document shows SCO prepped lawsuit against BofA.
News.Com, Mar. 4 2004.

28. A. Vahdat and T. Anderson. Transparent result caching. Technical Report CSD-
97-974, 8, 1997.

29. M. Wan, A. Rajasekar, and W. Schroeder. An Overview of the SRB 3.0: the
Federated MCAT. http://www.npaci.edu/DICE/SRB/FedMcat.html, September
2003.

30. D. J. Weitzner, H. Abelson, T. Berners-Lee, C. Hanson, J. Hendler, L. Kagal,
D. L. McGuinness, G. J. Sussman, and K. K. Waterman. Transparent accountable
data mining: New strategies for privacy protection. Technical report, Massachusets
Institute of Technology Computer Science and Artificial Intelligence Laboratory,
2006.

31. E. Wong. Web site lists Iran coup names. The New York Times, June 24 2000.
32. J. Zhao, M. Goble, C.and Greenwood, C. Wroe, and R. Stevens. Annotating,

linking and browsing provenance logs for e-science.

Electronically Querying for the Provenance

of Entities

Simon Miles

School of Electronics and Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
sm@ecs.soton.ac.uk

Abstract. The provenance of entities, whether electronic data or phys-
ical artefacts, is crucial information in practically all domains, including
science, business and art. The increased use of software in automating
activities provides the opportunity to add greatly to the amount we can
know about an entity’s history and the process by which it came to be as
it is. However, it also presents difficulties: querying for the provenance of
an entity could potentially return detailed information stretching back to
the beginning of time, and most of it irrelevant to the querier. In this pa-
per, we define the concept of provenance query and describe techniques
that allow us to perform scoped provenance queries.

1 Introduction

In order to understand, apply, or judge the accuracy or authenticity of an entity,
whether electronic or physical, it is often crucial to know its provenance, i.e.
from where it originated, how it was produced and what has happened to it
since creation [9]. For example, in e-Science, to determine if an experiment’s
results are accurate, we look at the rigour of the experiment’s process.

However, the amount of information making up the provenance of an entity
may be vast [4]. The details of everything that ultimately caused an entity to be
as it is would, generally, be an unmanageable amount. For example, to give the
full provenance of an experiment’s results, we have to describe the process that
produced the materials used in the experiment, the provenance of materials used
in producing those materials, the devices and software used in the experiment
and their settings, the origin of the experiment design etc. Ultimately, if enough
information was available, we would include details of processes back to the
beginning of time. Similarly, given enough information, we could give finer and
finer grained information on the processes that led to an entity, e.g. not just
documenting that a sample was tested to see if a chemical was present, but the
procedure by which this is done, the molecular interactions that took place in
the testing procedure and so on. All the information about the provenance of
an entity is potentially useful for someone with a particular question about that
entity, but providing it all in all cases would be counter-productive.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 184–192, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Electronically Querying for the Provenance of Entities 185

Instead, anyone requiring the provenance of an entity should be able to get
it by expressing the request as a query and scoping that query so that only the
information relevant to them is returned. The contributions of this paper are
to specify what a provenance query consists of and how it can be expressed, an
algorithm for processing a provenance query to obtain the results and the form
taken by results of a provenance query.

In the next section, we look at earlier work on retrieving provenance. Section 3
examines the properties data must have in order to extract the provenance of an
entity from it, and the delineations used to scope a provenance query. Section 4
specifies a model of a provenance query and its results, illustrated by example in
Section 5. We compare our work with others in Section 6 and conclude in Section 7.

2 Provenance

From existing work on provenance, we can derive two general properties. First,
the provenance of an entity depends on its relationships to other entities. For in-
stance, the results of an experiment are produced from processing intermediate
data in an experiment, which are in turn produced from the inputs to the exper-
iment. In myGrid [12], an entity is marked as being derived from another entity
which, in turn, is derived from other entities. Using this approach, the prove-
nance of an entity is determined from relations of that entity to other entities it
is directly or indirectly derived from.

Second, the provenance of an entity can vary in scope and, at widest scope,
is everything that has had a causal effect on the entity. Buneman [5] describes
two differently scoped types of provenance, named where and why provenance,
applied to database query results. Applied within the closed world of a database
system, where provenance is the origin of the entity and its components, while
why provenance is all data having a causal effect on the entity.

We argue that the provenance of an entity can be seen as a process that leads
to the entity being in its current state. Full information on that process would
include the origin of and anything having an effect on the entity. To obtain
the provenance, we need documentation of how that process occurred, at some
level of abstraction, e.g. we may infer the process from the database query or
workflow whose execution resulted in the entity, or we may have details of each
action performed by actors in the process. Documentation of past processes is
called process documentation.

In our model, we separate two concepts: process documentation, documenta-
tion of executed processes, and provenance, a description of the process leading
to an entity which is determined from process documentation. The separation
allows us to tailor systems to best meet the requirements on each. For example,
the details of a process may not be recoverable after it has completed, so should
be documented as completely and accurately as possible during or immediately
after [7], while provenance can be determined as long as process documentation
is preserved unmodified, so should be scoped to include only that relevant to the
querier.

186 S. Miles

3 Process Documentation

A provenance query is executed over process documentation and, in order to
implement a scoped query, documentation must be structured so that it can be
determined whether any piece of information is part of the provenance of an
entity. Below, we introduce the properties and delineations of process documen-
tation that can be used to answer provenance queries.

3.1 Assertions and Temporality

An actor is anything that performs actions, and each piece of process documen-
tation is created by an actor: by recording data on processes it has taken part in
or inferring what happened from information from other actors. We can provide
no guarantee that documentation accurately reflects what occurred, so docu-
mentation is actually assertions by actors. A p-assertion is an assertion about
a process and process documentation is comprised of p-assertions.

A process includes multiple events and the provenance of an entity as it exists
as one event occurs is different from the provenance of the same entity later or
earlier. For example, the provenance of a hospital patient, the process which led
to that patient being in a particular state [1], would be different for the patient
up to an operation starting and up to the operation finishing, because after the
latter event the provenance includes data about the operation. An event that an
assertion provides documentation about need not be instantaneous, but entities
documented in the assertion must not change over the course of the event (else
the provenance would be ambiguous). In our approach, the provenance of an
entity is always the provenance of an entity as it exists when an event occurs,
called the entity’s provenance up to the event. In order to determine if a p-
assertion is part of an entity’s provenance up to a given event, it must be clear
which event it documents.

3.2 Relationships

As stated in Section 2, the provenance of an entity depends on its relationships to
other entities and so process documentation must include these relationships to
be used in determining provenance. Relationships are directional, so we identify
one entity in the relationship as the subject and the others as objects, e.g. the
subject “12” was the result of summing objects “5” and “7”. As one p-assertion
may document an event in which several entities were involved, a relationship
is between parts of p-assertions. A p-assertion data item is an entity within a
p-assertion and a relationship is between two or more p-assertion data items. A
p-assertion documenting the relationship of an entity in a p-assertion to entities
in other p-assertions is a relationship p-assertion.

Relationship Types. Relationships can be of different types, the most abstract
being a causal relationship, i.e. E was caused by C. While causal relationships
are all that is needed to determine which documentation is part of an entity’s
provenance, they are inadequate for scoping the query. We need more infor-
mation on how one entity is related to another to determine if some process

Electronically Querying for the Provenance of Entities 187

documentation is relevant. Therefore, functional relationships between entities
can be asserted, stating that an entity was produced by performing a function on
other entities, e.g. an actor may assert that a value produced in an experiment is
a product of measuring the weight of a sample (there is a functional relationship
between the value and the sample).

Parameter Names. A p-assertion often documents a relationship in the world
in which the entities being related play roles in that relationship, e.g. in asserting
that the results of a divide operation were derived from its inputs, we must
mark the entities involved with the roles they play: divisor and dividend for the
inputs, quotient and remainder for the outputs. The name of an entity’s role in
a relationship is a parameter name, which must be asserted with relationships
for the documentation to be interpretable.

4 Provenance Queries

Below, we specify a model for expressing provenance queries. To execute a query,
a provenance query request is sent to a provenance query engine by a querying
actor. A provenance query request includes a query data handle, identifying the
entity of which to find the provenance, and a relationship target filter, specifying
the query’s scope. These are shown in Table 1, and described in full below.

4.1 Query Data Handles

When a querying actor asks for an entity’s provenance, it identifies the entity
such that a query engine can find documentation of the entity. The identification
is called a query data handle. For the actor, a query data handle identifies an
entity at a given event. For the engine, a query data handle identifies a search
for p-assertion data items in process documentation. A handle comprises three
parts, discussed below.

A p-assertion documents an event in a manner dependent on the way the sys-
tem is modelled. Part of a handle is an event search, a search for documentation
of the event in which the entity occurred. Within documentation of that event,
an entity search finds p-assertion data items documenting the entity. The search
space of a data handle identifies the set of process documentation to be searched.

4.2 Relationship Target Filters

A relationship target filter is used to scope a query to the part of a process
of interest to the querying actor. More concretely, we can say that, given that
a p-assertion data item has been identified as part of a query’s results, and
that that data item is related to other data items (by relationship p-assertions),
the relationship target filter specifies which related data items should also be
included in the results.

A relationship target is a set of properties of a data item that is the object
of a relationship p-assertion. The properties, e.g. the event that the p-assertion

188 S. Miles

Table 1. Data comprising a provenance query request

Provenance Query Request

Query Data A search over process documentation to find the record of an
Handle entity at a given event for which the querying actor wishes to

find the provenance.
Relationship Criteria by which the querying actor specifies whether any given
Target Filter entity in the documentation, and its relations, should be

included in the query results.
Starting Search The process documentation set from which to start searching
Space for the provenance of the entity.

Query Data Handle

Event Search A search for the relevant event involving the entity.
Entity Search A search in p-assertions for data items documenting the entity.
Search Space The process documentation set that will be searched over.

Relationship Target

Event The event which the p-assertion is documenting.
Global P-Assertion Key The globally unique identifier for the p-assertion.
Parameter Name The role played by the object in the relationship.
Provenance Store Address The address where the p-assertion is stored.
Data Accessor The location of the data item within the p-assertion.
Relationship The relation (name) of which this target is an object.
Asserter The asserting actor’s identity, if known.
P-Assertion Content The content of the p-assertion (the actual documentation).

documents or the asserter’s identity, are those described in Section 3 and are
listed in Table 1. A relationship target filter is a function over a relationship
target returning a boolean value specifying whether the relationship target is
within scope. For example, a relationship target filter may return false for re-
lationship targets where the asserter is a particular, untrusted, source. In this
case, the provenance query results exclude all p-assertions by that asserter and
p-assertions iteratively related to those assertions.

4.3 Provenance Query Results

A provenance query request is processed as follows. First, perform the search
expressed by the query data handle to find a set of p-assertion data items. For
each relationship of which one of those items is a subject, execute the relationship
target filter on the information about each object of the relationship (i.e. each
relationship target). Where an object is accepted by the relationship target filter,
recursively apply the filter to objects of its own relationships. The final results of
the query are comprised of two parts: the p-assertion data items from the query
data handle search (the start data items); and, for every relationship object
accepted by the filter, the relationship between that object and the subject in
that relationship.

A query engine, with instantiations of the above model in XML, has been
implemented as part of an open source distribution. Due to space restrictions,

Electronically Querying for the Provenance of Entities 189

we do not describe it here, but refer readers to www.pasoa.org, from which it can
be downloaded, and a link to a functional specification of the engine’s interface
can be found.

5 Case Study

To demonstrate provenance queries completely but concisely, we use a simple,
contrived example. A workflow, shown in Figure 1, is run and process documen-
tation generated: a GUI actor calls an Averager service with two values (7, 5);
Averager sums them and calls Divider with 12 as divisor, 2 as dividend; Divider
sends the answer 6 to Averager, which sends it to the GUI; the GUI sends 6 to
Store, along with the file location, e.g. file1, at which to store it.

AveragerGUI Divider

Store

Average (7, 5)

Answer (6)Answer (6)

Divide (12, 2)

Store (6, file1)

Entity for which we want to
find the provenance

Fig. 1. An example workflow

Two types of p-assertion are recorded by actors in the scenario. An interaction
p-assertion is a copy of the message sent between two actors. A relationship
p-assertion asserts a relationship between data items exchanged in messages
(and so documented in interaction p-assertions). A querying actor can derive
a causal relationship from an interaction p-assertion: a message being received
is caused by the same message being sent. The events to which p-assertions
are declared to apply are the sending or receiving of messages. Each actor in
the workflow makes interaction p-assertions about every message it sends and
receives.

For this scenario, we show the results of a provenance query scoped in different
ways. The query data handle represents a search for the “data requested to be
stored at location file1 (entity search) at the event of the Store actor receiving a
message (event search).” The query returns results in which the start p-assertion
data item is the 6 in the message from GUI to Store, and, if unrestricted in scope,
includes all relationships recorded. The relationships form a directed acyclic
graph linking data items in exchanged messages, shown in Figure 2, with the
start data item shown at the bottom. Broken lines between data items depict
asserted relationships, labelled with their functional relationships. Parameter
names, “divisor” and “dividend” are shown for the objects of the “Division of”
relation.

One way to scope the provenance is to exclude a type of relationship, e.g. by
excluding “Average of”, that relationship is removed from the graph returned by

190 S. Miles

Division of

Sum of

“6” StoreGUI

“6” GUIAverager

“6” AveragerDivider

“12” DividerAverager “2” DividerAverager

“5” AveragerGUI“7” AveragerGUI

Copy of

Copy of

dividenddivisor

Average of

B A

Fig. 2. The provenance of the data stored in file1

the query. As a comparable practical example, in asking for the provenance of
a journal article, we may want to include the origins of its content and not the
origins of the paper on which it is printed: these are types of relation from the
journal paper to other entities. Another scope excludes the internal operations of
an actor, such as Averager. This removes the documentation shown in box A in
Figure 2 from the results. Comparably, we may want to know from which data-
base we downloaded data, but not the database query: we make the results more
coarse-grained by hiding part of the process. Finally, we can scope on the role that
data plays in the process by excluding all “divisors” from the results (as specified
in the parameter name), so removing the relationships shown in box B. Compa-
rably, in querying for the provenance of compressed data, we may wish to know
the data before compression but not the compression algorithm used: two roles in
the compression function. The true benefits of the scoping process require a more
detailed example than is possible to give in this paper, and will be in future work.

6 Related Work

In related work, provenance queries of a form are executed, but the approaches
differ considerably from ours. In most systems, the mechanism is assumed to be
an unspecified query of a database containing documentation [2,11], but a few
specify another mechanism. Some systems, e.g. lab information management
systems (LIMS) and work on deriving provenance data from database queries
[5], operate in closed systems, allowing extra positive assumptions to be made
on the quality of the query results, but preventing determination of an entity’s
provenance where the process that led to it spans multiple systems. Also, results
cannot be scoped to arbitrary levels. Similarly, approaches for which queries
are made with regards to workflows rather than their results [3], are limited to
answering questions of the provenance of data within a workflow.

Electronically Querying for the Provenance of Entities 191

myGrid [12] and CombeChem [8] have advocated storing process documenta-
tion as functional and derivation relations between entities, named by URIs, as
RDF triples. This has the advantage that query languages, e.g. SPARQL [10],
exist to query relationship-based data, but there is no distinction between events
in an entity’s lifetime, e.g. in asking for the provenance of an experiment result,
is an actor asking for how the result was produced, how it has been used as in-
put to other processes (such as publication) since, or both? This means that the
data on which a query can be scoped is limited. Some approaches visualise the
provenance of data or records of workflow execution, allowing users to iteratively
hide or retrieve data on the basis of what they have previously seen [6]. While
this is productive and simple, it is only practical where the user is the direct
consumer of the data, and does not address the problem where documentation
is to be further processed to answer complex questions.

7 Conclusions

The provenance of an entity is essential, in many domains, for understanding
and evaluating that entity, but the amount of information that makes up the
provenance of an entity could be huge, so the results need to be scoped to re-
trieve only what is relevant for the querier. To execute a scoped provenance
query, documentation over which the query is executed must have particu-
lar characteristics. In this paper, we have specified how a scoped provenance
query can be expressed and executed. We exposed the necessary characteristics
of the documentation over which the query is processed, criteria available for
scoping, a data model for query requests and the algorithm used to execute a
query.

This research is funded by the PASOA project (EPSRC GR/S67623/01).

References

1. Sergio Alvarez, Javier Vazquez-Salceda, Tamas Kifor, Laszlo Z. Varga, and Steven
Willmott. Applying provenance in distributed organ transplant management. In
this volume, 2006.

2. Rajendra Bose and James Frew. Lineage retrieval for scientific data processing: A
survey. ACM Computing Surveys, 37(1):1–28, March 2005.

3. Shawn Bowers, Timothy McPhillips, Bertram Ludascher, Shirley Cohen, and Su-
san B. Davidson. A model for user-oriented data provenance in pipelined scientific
workflows. In this volume, 2006.

4. Miguel Branco and Luc Moreau. Enabling provenance on large scale e-science
applications. In this volume, 2006.

5. P. Buneman, S. Khanna, and W.C. Tan. Why and where: A characterization of
data provenance. In Int. Conf. on Databases Theory (ICDT), 2001.

6. Juliana Freire, Claudio T. Silva, Steven P. Callahan, Emanuele Santos, Carlos E.
Scheidegger, and Huy T. Vo. Managing rapidly-evolving scientific workflows. In
this volume, 2006.

192 S. Miles

7. Paul Groth, Simon Miles, and Steve Munroe. Principles of high quality documen-
tation for provenance: A philosophical discussion. In this volume, 2006.

8. Gareth Hughes, Hugo Mills, David de Roure, Jeremy G. Frey, Luc Moreau, m.c.
schraefel, Graham Smith, and Ed Zaluska. The semantic smart laboratory: a sys-
tem for supporting the chemical escientist. Organic and Biomolecular Chemistry,
2(2):1–10, 2004.

9. Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The requirements
of recording and using provenance in e-science experiments. Technical report,
University of Southampton, 2005.

10. Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf.
http://www.w3.org/TR/rdf-sparql-query/, 2006.

11. Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.
SIGMOD Record, 34(3):31–36, 2005.

12. J. Zhao, C. Goble, M. Greenwood, C. Wroe, and R. Stevens. Annotating, linking
and browsing provenance logs for e-science. In Proc. of the Workshop on Semantic
Web Technologies for Searching and Retrieving Scientific Data, October 2003.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 193 – 202, 2006.
© Springer-Verlag Berlin Heidelberg 2006

AstroDAS: Sharing Assertions Across Astronomy
Catalogues Through Distributed Annotation

Rajendra Bose1, Robert G. Mann2, and Diego Prina-Ricotti3

1 U.K. Digital Curation Centre and School of Informatics, University of Edinburgh
rbose@inf.ed.ac.uk

2 Institute for Astronomy, University of Edinburgh
rgm@roe.ac.uk

3 Dipartimento di Informatica e Automazione, Università di Roma Tre
dpricott@inf.ed.ac.uk

Abstract. As diverse scientific data collections migrate online, researchers want
the ability to share their assertions regarding the entities that span these dispa-
rate databases. We focus on a case study provided by the astronomical com-
munity’s Virtual Observatory effort to investigate the use of annotation to
record and share the celestial object mappings asserted by different research
groups. The prototype for our Astronomy Distributed Annotation System (As-
troDAS) complements the existing OpenSkyQuery tools for federated database
queries, and provides web service methods to allow clients to create and store
mapping annotations as relational database tuples on annotation servers. We
expect the mechanisms for creating and querying annotations in AstroDAS can
be extended to assist with tasks other than entity mapping, in other domains
with relational data sources.

1 Introduction

Research activity in a number of scientific domains includes organizing and analyzing
content culled from diverse collections of online data. Usually, portions of different
databases are extracted and placed into personal or research computing environments
within a particular organization or group (which may include autonomous relational
or XML databases, spreadsheets, and so forth) where the analysis is conducted. We
focus on a case study from astronomy, where a group analyzes data from different
source databases, and then asserts mappings between entities in the data sources.
Others who access the source databases may benefit from receiving these assertions
as feedback.

Central to the astronomical community’s concept of a global “Virtual Observatory”
(VO) is the ability to identify records in databases of astronomical observations as re-
ferring to the same celestial object: for example, a typical VO use case might start by
matching entries from an optical, an X-ray and a radio database, so that an astronomer
could analyze the multi-wavelength properties of a particular class of galaxy. The
nascent VO already includes web services which implement the matching of cata-
logues by spatial proximity alone, but the general catalogue matching problem is

194 R. Bose, R.G. Mann, and D. Prina-Ricotti

more difficult—and more computationally expensive—than that. This problem moti-
vates our investigation of recording, through annotations, the assertions made regard-
ing the associations between entries in different databases, such that they can be re-
used by third parties.

In our work, we build on the ideas introduced by the Distributed sequence Annota-
tion System (DAS, later BioDAS) [1]. BioDAS is specifically designed to facilitate
genome sequence annotation, however, so while the concepts it introduces are valu-
able, the approach and means of implementation for this system are not suitable for
sharing assertions in other scientific domains. Thus we first introduce a general
framework to help clarify and compare other types of annotation systems. Following
this, we describe our design of a system for distributed annotation in the context of
OpenSkyQuery, a prototype implementation of the International Virtual Observatory
Alliance (IVOA) SkyNode specification for nodes in the federated VO. We discuss
the topic of matching celestial objects in astronomy catalogues, and describe how the
prototype for our Astronomy Distributed Annotation System (AstroDAS) comple-
ments existing OpenSkyQuery tools for federated database queries. We close with a
brief discussion of related work.

2 A Framework for Annotation

The BioDAS protocol for genome sequence annotations is not directly applicable to
the process of annotation in other areas of science. In order to contrast other types of
annotation systems we suggest an informal framework that consists of the following
basic components:

An annotation is some set of data elements that is added to an existing base or tar-
get that possesses structure; the base or target structure can be described by some ref-
erence system; and the point or location of attachment of an annotation can be
described using this same reference system.

These various components of BioDAS are summarized in column (2) of Table 1:
the annotation target is a (conceptualized or idealized) genome, the target structure
consists of a linear sequence of nucleotides (base pairs), and the reference system
for the target is a linear coordinate system of base pair numbers. Annotations are
usually the identification of particular genes or their products (such as proteins),
and the location of annotation attachment is designated by start and stop nucleotide
positions (base pair numbers). In this context, the purpose of annotations is to col-
lect and interpret the results of numerous biological experiments or computer
algorithms.

Consider the very different example for the annotation of medical images de-
scribed in [2] (Table 1, column (3)). Here the annotation target is a Human Brain
Project (HBP) image, the target structure is a 2D array of pixels, the reference sys-
tem for the target is a 2D coordinate system of X,Y pixel values, annotations are
concepts (for example, controlled medical vocabulary terms), and the location of at-
tachment is a 2D region of interest described by reference to the coordinate system.
Other systems with a similar purpose exist, including the Edinburgh Mouse
Atlas [3].

 AstroDAS: Sharing Assertions Across Astronomy Catalogues 195

Table 1. Annotation framework and system comparison

(1) Framework
components

(2) BioDAS
(3) HBP image
annotation

(4) AstroDAS

Annotation target:

what genome brain image
celestial object in
astronomy catalogue
(RDBMS tuple)

structure sequence of base pairs pixel array
catalogue (RDBMS)
schema

reference system
linear coordinate
system of base pair
numbers

2D coordinate system
of pixel X,Y values

catalogue+celestial
object id (tuple key)

Annotation:

what gene or gene product
domain-specific
concept

mapping to a celestial
object in a different

catalogue

location of attachment
start, stop base pair
numbers

2D shape
specific catalogue
+celestial object id

purpose
collect and interpret
research results on
genome

link Web-accessible
images to, and query
on, concepts

share assertions of
celestial object
matches across
different astronomy

catalogues

Column (4) of Table 1 summarizes the components of the AstroDAS annotation
system prototype described in the remainder of this paper; these components are
somewhat similar to the relational annotation work discussed in [4, 5]. In this case,
the annotation target is an entry (tuple) in an astronomy catalogue implemented
with a relational database management system (RDBMS), the target structure is
given by the catalogue RDBMS schema, and the reference system for the target is
provided by catalogue and database object ids (tuple keys), possibly combined with
the name or location of specific attributes. Annotations are other tuples that map
one catalogue object to another catalogue object, and the location of attachment is a
specific catalogue and object id combination. In our work we use relational data-
base framework components because we focus on providing annotation over the
federated relational databases in the OpenSkyQuery system, described in the fol-
lowing sections.

3 Matching Celestial Objects in Astronomy Catalogues

Over the past several decades, collections or catalogues of celestial object observa-
tions, recorded by disparate telescopes and other instruments over various time peri-
ods, have migrated online. Astronomy catalogues have different schemas but are
usually organized according to a star schema consisting of a primary relation of celes-
tial objects that serves as the basis for most joins. As expected, each tuple in the

196 R. Bose, R.G. Mann, and D. Prina-Ricotti

primary relation contains a key or celestial object identifier (id) that is unique within a
specific catalogue. Most astronomy catalogues are updated through large data re-
leases, for example every three to six months, but we assume here that all ids within
catalogues are persistent and stable.

Newer astronomy instruments are designed to provide sky surveys of large portions
of the celestial sphere. While older catalogues consist of hundreds or thousands of
objects, these new instruments generate on the order of hundreds of gigabytes of data
per day, contributing to catalogues (also known as survey archives) that record the
observations of hundreds of millions of celestial objects. The recorded location of a
celestial object may vary slightly from catalogue to catalogue due to unavoidable
measurement error at the instrument level [6].

The OpenSkyQuery system aims to federate astronomy catalogues and archives
through the use of web services and a wrapper-mediator architecture [7]. Federated
queries are executed by a portal application that communicates to registered sky nodes
(wrappers for astronomy catalogues) through a standard web service interface (See
lower right of Figure 1. The three sky nodes shown correspond to the catalogues for
the Sloan Digital Sky Survey (SDSS), the Two Micron All Sky Survey (TWOMASS),
and the U.S. Naval Observatory USNO-B1.0 catalogue (USNOB).)

The queries are expressed in ADQL (Astronomical Data Query Language) [8],
which is based on a subset of SQL92 with two extra keywords: Region and XMatch.
The Region keyword allows the user to specify the spatial extent of the search using
celestial coordinates. The XMatch keyword lets the user specify a measure of prob-
abilistic uncertainty sigma; for a given sigma, an X-match query result consists of two
or more columns of potentially coincident celestial object ids (and possibly other at-
tributes) [6]. The locations of the resulting celestial object matches essentially cross
catalogues (that is, exist across two or more catalogues) within a specified sigma, and
therefore match. In this case, however, any further assessment or analysis of X-match
results will probably occur in a personal or research computing environment separate
from the federated OpenSkyQuery system.

The simple spatial proximity match performed in X-match is inadequate in the
general case, where differences in the angular resolution of the data in the two cata-
logues may mean that a large number of objects from one catalogue (A) will lie
within the positional error ellipse of each source in the other (B). In that case, spatial
proximity alone cannot judge between the potential counterparts from A of each
source in B, and it is necessary to either introduce prior astrophysical knowledge to
help identify the most likely match, or use a machine learning algorithm [9, 10]. Ma-
chine learning algorithms deduce relationships between the properties of the sources
in the two catalogues and can aid the finding of associations between them.

Adding sophistication to the matching algorithm also adds computational cost, and
one of the main motivations behind investigating the AstroDAS system is the desir-
ability of having a means of recording, and making available for re-use, associations
made by algorithms more complex than the simple X-match function implemented in
OpenSkyQuery. This has been studied by Taylor [11], who has implemented as web
services a number of cross-matching algorithms which make use of non-spatial attrib-
utes as well as simple proximity matching. The design of AstroDAS was influenced
by the desire to store the results of these services.

 AstroDAS: Sharing Assertions Across Astronomy Catalogues 197

Fig. 1. OpenSkyQuery and AstroDAS architecture

Thus, to provide astronomers with the ability to share their assertions about match-
ing celestial objects directly with their colleagues, we investigate prototypes for As-
troDAS, a distributed annotation system that supports queries on annotation, and that
is compatible with the federated architecture of OpenSkyQuery.

4 AstroDAS: Asserting Celestial Object Matches Using
Distributed Annotation

AstroDAS considers the identification of entities across sky nodes to be a database
integration problem. Its solution, inspired in part by BioDAS, features an annotation
database with a web service interface to store and query annotations. The use of web
services provides interoperability with the rest of the Virtual Observatory. Our

URome
:AstroDAS

 Server

SDSS
:Sky node

UEdinburgh
:AstroDAS

 Server

TWOMASS
:Sky node

USNOB
:Sky node

:OpenSky
Query client

:AstroDAS
 client

AstroDAS Portal

OpenSkyQuery Portal

null3577751258778583

13317184null58777039

133172803577347858778470

USNOBTWOMASSSDSS

AstroDAS

OpenSkyQuery

mapping table created dynamically from annotations

SELECT
s.objid, s.ra, s.dec, s.type,
t.objid, t.ra, t.dec
u.objid, u.ra, u.dec
FROM
SDSS:photoprimary s,
TWOMASS:photoprimary t,
USNOB:photoprimary u
AS:UEdinburgh e, AS:URome r
WHERE
Region(’CircleJ2000 200 -1 0.02’) AND
s.type=3 AND
e.author=’algorithm1’ AND
r.author=’algorithm2’

DSQL query

1

2

3

4

198 R. Bose, R.G. Mann, and D. Prina-Ricotti

prototype system resolves queries on astronomy catalogues using mapping tables that
are dynamically constructed from annotations of celestial object matches.

4.1 Celestial Object Matching as Database Integration

Storing assertions of celestial object matches is essentially the problem of entity iden-
tification that occurs in traditional database integration scenarios. Entity identifica-
tion is the ability to find “object instances from different databases which correspond
to the same real-world entity” [12]. In database integration, mapping tables are com-
monly employed to store the keys of corresponding tuples that reside in different
 databases [13].

We make use of mapping tables to express celestial object matches across feder-
ated astronomy catalogues. Although the schemas of sky node catalogues differ, we
mention in Section 2 that each catalogue contains one primary relation with unique
celestial object ids. We thus consider a specific celestial object instance, which we
call a database object, as the ordered pair: <sky node name, celestial object id>. In
our case, mapping tables consist of tuples of database objects that map to one an-
other.

Given the collection of decentralized, read-only sky nodes, and the lack of a central
authority to resolve disputed mappings, we use the concept of distributed annotation
to provide autonomous research groups with the means to store their own celestial ob-
ject matches locally. In our approach, a group stores mapping annotations that refer
to two or more sky node entries (database objects) on their own annotation server. A
group’s assertions of celestial object matches can then be shared by the wider com-
munity if the group provides online access to their annotation server web service in-
terface. Once this is done, queries on specific sky nodes can include parameters for
annotation.

4.2 Storing and Querying Mapping Annotations in AstroDAS

Storing and querying mapping annotations in AstroDAS are achieved through the
mechanism of web services. Web services are compatible with the OpenSkyQuery
infrastructure adopted by the IVOA; they also facilitate client implementation and
promote system interoperability. Similar to OpenSkyQuery, AstroDAS follows the
wrapper/mediator architecture whereby a client connects to a portal (mediator) that
accesses data on both annotation servers and sky nodes through wrappers imple-
mented with a web service interface (Figure 1). The wrappers provide a common data
model and query language, and hide the potential heterogeneity of the different data
sources.

Note from Figure 1 that AstroDAS is separate from OpenSkyQuery. The loose
coupling of web services means that it has been possible to make AstroDAS interop-
erable with the OpenSkyQuery system without modifying OpenSkyQuery’s existing
code or requiring any action by its developers and maintainers. AstroDAS web ser-
vice methods exist to allow clients to create and store mapping annotations as rela-
tional database tuples on AstroDAS annotation servers (Figure 1, label number 2).

 AstroDAS: Sharing Assertions Across Astronomy Catalogues 199

AstroDAS includes the custom query language DSQL (Distributed SQL), similar
in purpose to MSQL [14] but more limited in scope. DSQL was designed to retain a
syntax as close as possible to ADQL, but from clauses in DSQL can specify a list of
annotation servers to access annotations from, and where clauses in DSQL can spec-
ify constraints on mapping annotations.

A DSQL query example is shown in the lower left of Figure 1. The structure is
identical to an ADQL query, with the addition of constraints unique to DSQL shown
in bold. The hypothetical query shown requests the value of attributes for celestial
objects that match according to either the results of “algorithm1” stored on the Uni-
versity of Edinburgh AstroDAS annotation server, or the results of “algorithm2”
stored on the University of Rome AstroDAS annotation server.

Methods to retrieve mapping annotations in the form of a mapping table are avail-
able. One aspect of the AstroDAS portal design concerns the use of an inference al-
gorithm to simplify mapping tables by inferring new mappings from existing ones.
Because mappings are transitive, the simplified mapping table to the right of Figure 2
can be inferred from the mapping table to the left, for example.

The execution of a DSQL query similar to the example shown in the lower left of
Figure 1 proceeds as follows: A client sends a web service request to the AstroDAS
portal mediator with a DSQL query as a parameter (Figure 1, label number 1). The
portal parses the DSQL query, generates a query for each annotation server and exe-
cutes them (Figure 1, label 2). The portal then receives the mapping table results of
the annotation queries, and dynamically combines the separate mapping tables into
one if necessary (Figure 1, label 3). The mapping table shown in Figure 1, label 3
could have resulted from, for example, the UEdinburgh server storing the annotations:

<SDSS, 58778470> maps to <TWOMASS, 35773478>
<SDSS, 58778470> maps to <USNOB, 13317280>
<SDSS, 58777039> maps to <USNOB, 13317184>

and the URome server storing the annotation:

<SDSS, 58778583> maps to <TWOMASS, 35777512>

The inference algorithm is executed on the resulting mapping table if a specific key-
word is included in the DSQL query. The mapping table is used to generate the que-
ries for the astronomy catalogues in order to retrieve the actual data. The portal per-
forms the queries by contacting the sky node web service wrappers (Figure 1, label 4).
With the query result relations retrieved from the astronomy catalogues, the portal
uses the mapping table to combine mapped entities; that is, the data corresponding to
the same celestial object is concatenated in the same row of the resulting table. Fi-
nally, the portal returns the result to the client (Figure 1, label 1).

Thus, through annotation retrieval, DSQL queries similar to the given example
provide a means to perform entity joins [15] across different sky nodes. Successive

x3nullx1

nullx2x1

USNOBTWOMASSSDSS

x3x2x1

USNOBTWOMASSSDSS

Fig. 2. Applying inference to a mapping table

200 R. Bose, R.G. Mann, and D. Prina-Ricotti

prototypes of AstroDAS have been implemented by the authors and tested by as-
tronomers from the University of Edinburgh associated with AstroGrid, the UK's VO
development project (www.astrogrid.org). The AstroDAS portal and annotation
server web service interfaces are implemented through Apache Axis2; the annotation
server uses a PostgreSQL or IBM DB2 database, accessed by the web service inter-
face through JDBC.

4.3 AstroDAS v2: Towards Peer-to-Peer Annotation

AstroDAS version 2 is still in development; this successor to AstroDAS is an evolu-
tion of the initial architecture to explore the replacement of annotation servers (see
Figure 1) with annotation peers—nodes in a peer-to-peer (P2P) network of databases.
Each peer shares its own set of annotations and cooperates with other nodes for re-
trieving query results. A distributed annotation system based on a P2P structure is
expected to be more scalable than other architectures because the computational load
is spread across the peers; the issue of scalability becomes important as the number of
research groups sharing their annotation increases.

We refer to the same example DSQL query shown in the lower left of Figure 1, but
describe its execution with a network of annotation peers rather than annotation serv-
ers. As before, the client sends a web service request to the AstroDAS portal media-
tor with a DSQL query as a parameter (Figure 1, label number 1). The portal parses
the DSQL query, and generates a single query for the P2P annotation network that
now takes the place of the two annotation servers shown by Figure 1, label 2. The
portal then sends a web service request to one annotation node of its choice with the
single query as a parameter. This annotation node is called the coordinator and is re-
sponsible for interacting with the other nodes in order to answer the query. The coor-
dinator returns the mapping table result to the portal, and the DSQL query execution
continues as previously described.

The AstroDAS portal logically views the P2P annotation network as a single global
mapping table, which integrates all the local mapping tables in the network. Thus the
portal only issues a single query on this global mapping table to the coordinator. A
typical query could ask for mapping annotations that include: celestial objects belong-
ing to a particular region of the sky; data held on an arbitrary number of skynodes;
one or more specific authors; and some minimal degree of reliability. The coordina-
tor determines the annotation peers that are involved with the query and sends an
asynchronous web service request to those nodes to start the computation of their lo-
cal mapping table. The coordinator then determines an execution plan in order to re-
duce network traffic and starts the execution that contacts the nodes in sequence to
integrate the global mapping table from the local ones.

Furthermore, AstroDAS v2 provides a distributed inference algorithm, related to
the one described in [13], that computes a global inferred mapping table. The com-
putational load of this algorithm is distributed across all the nodes involved with the
query, rather than executing only on the portal (as in the previous AstroDAS
version).

 AstroDAS: Sharing Assertions Across Astronomy Catalogues 201

5 Related Work

The annotation management system for relational databases presented in [4] and af-
filiated papers assume that source databases are already populated with annotations,
such as location tags for all attributes in every tuple. Although annotations are propa-
gated through the system, direct queries on annotation values are not possible. The
Mondrian prototype [5] introduces a system for creating annotations for subsets of tu-
ple attributes, as well as the associations between multiple values; this project in-
cludes the design of mechanisms to "query values and annotations alike (in isolation
or in unison)." Image annotation projects [2, 3] use relational databases and also offer
the ability to make these same types of queries. Annotations for the entity mapping in
our work are different from [2, 3, 5]: we create annotations that are both external to
their targets of relational tuples and distributed among different groups. Like these
projects, however, we share the goal of providing the ability to query on a mixture of
data and annotation values.

6 Conclusion

The ultimate aim of AstroDAS is similar to the goal of the earlier BioDAS: to record
and share scientific assertions with a wider community. Whereas biologists use anno-
tation to interpret the reference map of a genome, however, astronomers seek to share
the mapping of entities derived from their research across established scientific data-
bases. Specifically, astronomers want to be able to share their identification of match-
ing celestial objects within the existing federation of disparate catalogues.

The contribution of our work is to demonstrate how distributed annotation can be
used beyond the domain of bioinformatics to assert entity mappings across databases.
Successive AstroDAS prototypes suggest the use of annotation servers that comple-
ment the existing OpenSkyQuery data access system. They also demonstrate how
dynamic mapping tables constructed from stored annotations can serve as the means
to map entities across disparate databases. We expect that continuing work will show
that AstroDAS mechanisms for creating and querying annotations can be extended to
assist with tasks other than entity mapping, in other domains with relational data
sources.

Acknowledgements

We would like to thank: John Taylor, Emma Taylor, Martin Hill, and other members
of the Wide Field Astronomy Unit, University of Edinburgh; Anastasios Kementsiet-
sidis, Floris Geerts and other members of the Database Group in the School of Infor-
matics, University of Edinburgh; and Professor Paolo Atzeni at the Dipartimento di
Informatica e Automazione, Università di Roma Tre for their support and help in this
work. This project has been supported in part by the UK Digital Curation Centre,
which is funded by JISC and the eScience core programme.

202 R. Bose, R.G. Mann, and D. Prina-Ricotti

References

1. L. D. Stein, S. Eddy, and R. Dowell, "Distributed Sequence Annotation System (DAS)
Specification Version 1.53," 21 March 2002. <http://www.biodas.org/documents/
spec.html>

2. M. Gertz, K.-U. Sattler, F. Gorin, M. Hogarth, and J. Stone, "Annotating Scientific Im-
ages: A Concept-based Approach," in Proceedings of the 14th International Conference on
Scientific and Statistical Database Management (SSDBM 2002), Edinburgh, Scotland,
2002, pp. 59-68.

3. R. A. Baldock, C. Dubreuil, W. Hill, and D. Davidson, "The Edinburgh Mouse Atlas: Ba-
sic Structure and Informatics," in Bioinformatics: Databases and Systems, S. I. Letovsky,
Ed.: Kluwer Academic Publishers, 1999, pp. 129-140.

4. D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya, "An Annotation Management
System for Relational Databases," in Proceedings of the VLDB, Toronto, Canada, 2004,
pp. 900-911.

5. F. Geerts, A. Kementsietsidis, and D. Milano, "MONDRIAN: Annotating and querying da-
tabases through colors and blocks," in Proceedings of the ICDE, 2006.

6. T. Malik, A. S. Szalay, T. Budavari, and A. Thakar, "SkyQuery: A Web Service Approach
to Federate Databases," in Proceedings of the Conference on Innovative Data Systems Re-
search (CIDR), Asilomar, CA, 2003, pp. 17-26.

7. T. Budavari, A. S. Szalay, J. Gray, W. O'Mullane, R. Williams, A. Thakar, T. Malik, N.
Yasuda, and R. Mann, "Open SkyQuery -- VO Compliant Dynamic Federation of Astro-
nomical Archives," in Astronomical Data Analysis Software and Systems (ADASS) XIII
(ASP Conference Series), vol. 314, F. Ochsenbein, M. G. Allen, and D. Egret, Eds. San
Francisco: Astronomical Society of the Pacific, 2004, pp. 177-180.

8. IVOA VOQL Working Group, "IVOA Astronomical Data Query Language Version 0.91,"
IVOA Working Draft 2005-02-25, IVOA, 2004-08-19. <http://www.ivoa.net/internal/
IVOA/IvoaVOQL/ADQL-0.91.pdf>

9. D. J. Rohde, M. J. Drinkwater, M. R. Gallagher, T. Downs, and M. T. Doyle, "Applying
machine learning to catalogue matching in astrophysics," Monthly Notices of the Royal As-
tronomical Society, vol. 360, no. 1, 2005, pp. 69-75.

10. A. J. Storkey, C. K. I. Williams, E. L. Taylor, and R. G. Mann, "An Expectation Maximi-
sation Algorithm for One-to-Many Record Linkage, Illustrated on the Problem of Match-
ing Far Infra-Red Astronomical Sources to Optical Counterparts," University of Edinburgh
Informatics Research Report (EDI-INF-RR-0318). <http://www.inf.ed.ac.uk/publications/
report/0318.html>

11. E. L. Taylor, Ph.D. Thesis, University of Edinburgh, 2005.
12. E. P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson, "Entity identification in database

integration," in Proceedings of the ICDE, 1993, pp. 294–301.
13. A. Kementsietsidis, M. Arenas, and R. J. Miller, "Mapping Data in Peer to Peer Systems:

Semantics and Algorithmic Issues," in Proceedings of the ACM Special Interest Group on
Management of Data (SIGMOD) Conference, 2003, pp. 325-336.

14. W. Litwin, A. Abdellatif, A. Zeroual, and B. Nicolas, "MSQL: A Multidatabase Lan-
guage.," Information Sciences, vol. 49, no. 1-3, 1989, pp. 59-101.

15. W. Kent, "The Entity Join," in Proceedings of the Fifth International Conference on Very
Large Data Bases (VLDB), Rio de Janeiro, Brazil, 1979, pp. 232-238.

Security Issues in a SOA-Based

Provenance System

Victor Tan, Paul Groth, Simon Miles, Sheng Jiang, Steve Munroe,
Sofia Tsasakou, and Luc Moreau

School of Electronics and Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
vhkt@ecs.soton.ac.uk

Abstract. Recent work has begun exploring the characterization and
utilization of provenance in systems based on the Service Oriented Ar-
chitecture (such as Web Services and Grid based environments). One of
the salient issues related to provenance use within any given system is
its security. Provenance presents some unique security requirements of
its own, which are additionally dependent on the architectural and en-
vironmental context that a provenance system operates in. We discuss
the security considerations pertaining to a Service Oriented Architecture
based provenance system. Concurrently, we outline possible approaches
to address them.

1 Introduction

The concept and utilization of provenance has been recently explored in the
areas of Grid and Web Services-based systems and environments. The myGrid
project implemented a system for recording the documentation of process in
the context of in-silico experiments represented as workflows aggregating Web
Services [8]. The GriPhyn Virtual Data System project provides a set of tools for
expressing and executing workflows in a Grid environment, where the definitions
of the workflows are specified in a high-level workflow language and are stored
in a catalog to provide for tracking of provenance of all files derived by the
workflow [7]. A trial implementation of an architecture based around a workflow
enactment engine was used to demonstrate several mechanisms for handling
documentation about the invocation of various Web Services was presented in
[17]. Studies are now being conducted towards assessing the use of provenance
in large scale applications [3].

Most of the work described however does not explicitly consider security re-
quirements revolving around the utilization of provenance. Such an omission will
hinder eventual evolution of these systems to industrial strength level, where se-
curity is likely to be of primary consideration. This is particularly applicable
where provenance is concerned with information of a commercially or legally
sensitive nature. Our paper seeks to address this shortcoming by analyzing some

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 203–211, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

204 V. Tan et al.

of the security issues that arise within a generic provenance system based on a
Service Oriented Architecture (SOA). The primary contributions are:

– Discussing basic security issues within such a system;
– Discussing security issues that arise from scalability concerns.

In the next section, we provide a brief description of the provenance represen-
tation we employ; the motivation and justification for this type of representa-
tion has been covered extensively elsewhere ([9], [11]). The basic security issues
a provenance architecture employing this representation are expounded upon
in length in Section 3. Section 4 examines new issues that arise as a result of
attending to scalability concerns, and we conclude in Section 6.

2 Provenance Representation

We discuss provenance in the context of the Service Oriented Architecture view
[5], which provides the underlying architectural basis for the Web Services / Grid
environment. In this view, services are simply considered as components that
take inputs and produce outputs, which can be brought together to solve a given
problem typically via a workflow that specifies their composition. Interactions
with services take place using messages that are constructed in accordance with
service interface specifications. In a SOA, clients typically invoke services, which
may themselves act as clients for other services; we use the term actor to denote
either a client or a service in a SOA. We refer to the execution of a workflow
that is composed of these interacting actors as a process.

We adopt the following definition for provenance within an SOA: the prove-
nance of a piece of data is the process that led to that piece of data. Such a
provenance will be represented by some suitable documentation of the process
(i.e. workflow execution) that led to the data ([10,9]). It is possible to distinguish
between a specific piece of information documenting some step of a process from
the whole documentation of the process. We refer to the former as a p-assertion,
which is essentially an assertion made by an actor pertaining to any aspect of a
process. Equivalently, the documentation of a process would therefore consist of
a set of p-assertions made by all the actors involved in that process.

The various logical components of an architecture for a SOA-based prove-
nance system is detailed in [12]. For purposes of our discussion in the following
chapter, we note that the key feature of this architecture is a dedicated reposi-
tory for holding only process documentation, which we term a provenance store.
Actors creating p-assertions about a particular process store them into a prove-
nance store. Actors who wish to answer provenance queries (i.e. queries about
the provenance of various data items produced during that process) would sub-
mit these queries in an appropriate format to the provenance store, which in
turn would return the set of p-assertions holding the necessary data required
to answer the query. The answering of queries in the provenance store could be
augmented.

Security Issues in a SOA-Based Provenance System 205

3 Security Issues in a SOA Provenance System

We classify our discussion into several main areas of security concern:

3.1 Enforcing Access Control over Process Documentation

An obvious security requirement is the need to control access to process docu-
mentation. Access control to data in general is a well studied subject for which
many practical techniques already exist. A typical approach in many of these
techniques is to identify the sensitivity of information within a specific data item
(a database record, for example) and then restrict access to a user base in accor-
dance to their predefined roles or identities. Extending this idea directly to our
provenance system by restricting access on the basis of individual p-assertions
may not be useful, as p-assertions do not generally provide much useful infor-
mation if accessed as individual data items. Rather, information about a specific
aspect of a process (such as all the services that participated in the produc-
tion of the final result of a workflow) would be obtained by processing the data
contained within an appropriate aggregation of p-assertions from the entire set
of p-assertions that constitute the process documentation for the workflow in
question.

A useful way then to delineate access control boundaries in this example might
be to identify different types of provenance related information with differing
levels of sensitivity that can be obtained from processing different groups of p-
assertions, and then structure access control on the basis of these groups. Since
it is likely that a single p-assertion can belong within many groups, there is now
the problem that a user without access to a designated group of p-assertions
for a specific purpose may still be able to gather together all the constituent
p-assertions of this designated group via his or her access to other grouping of
p-assertions that inadvertently contains smaller parts of this designated group.

This is a more general problem related to the issue of inference control, i.e.
preventing the inferring of information from existing information [18]. Various
approaches to address this concern have been proposed within the context of sta-
tistical databases, such as perturbing the stored information and query restric-
tion [16]. Provenance complicates the situation because relationship information
between the p-assertions is explicitly stored as well, which significantly eases the
ability to infer new information from information in existing p-assertions. Hence,
existing approaches are likely require modification to tailor them to this envi-
ronment. A possible solution may involve supporting the specification of access
control authorizations at the granularity of these groups and their associated
provenance queries. In addition, suitable cryptographic protocols can be used
to ensure that users cannot access data within a set of p-assertions returnd as
a result of a provenance query, unless they have access rights to all the groups
that those p-assertions belong to.

We believe that this problem presents a unique angle on access control for
data from the perspective of the data being process documentation in a prove-
nance system. More in-depth investigation into this aspect is required if coherent

206 V. Tan et al.

access control on process documentation and the subsequent provenance related
information derivable from it is to be achieved in industrial strength provenance
systems.

3.2 Trust Framework for Actors and Provenance Stores

In a large scale distributed environment, actors that create and store p-assertions
regarding specific events of interest may not be directly under the control or
even known to actors that will eventually use these p-assertions in some manner
to answer a provenance query. Signatures provide a way to link actors with p-
assertions they create; a methodology is now needed to provide a trustworthiness
measure or rating to specific actors and their p-assertions. Ratings could be based
on independent third party ratification of the accuracy of the p-assertions or
subjective opinions of all potential consumers of p-assertions produced by specific
actors. The methodology could also include methods to provide an aggregated
measure of reliability of information obtained from processing a group of p-
assertions with different levels of associated trustworthiness.

Similar comments are equally applicable to provenance stores; querying ac-
tors could elect to establish trust in provenance stores instead and assume that
the stores will in turn assume the responsibility of filtering p-assertions from the
various actors that send p-assertions to it for storage. There is clearly some work
to be done in articulating the various trust models and relationships possible be-
tween actors producing and utilizing p-assertions as well as the provenance store
holding these p-assertions. Work of this nature could ideally draw on existing
extensive work in the area of trust and reputation in agent mediated interactions
[19].

3.3 Accountability and Liability for p-Assertions

An important consideration in any provenance system is the accuracy or objec-
tivity of the documentation recorded. In our representation, a p-assertion is a
statement about some aspect of a process by an actor. From a more abstract
viewpoint, this statement is however only a subjective view of that aspect by an
actor. It can be difficult sometimes, if not impossible, to determine how closely
this view tallies with actual reality. This is particularly true in our system,
where all information about past processes is only obtainable via actor-created
p-assertions. With respect to this, it becomes paramount to forge a clear link
between an actor and an assertion that it is responsible for. Such a link, which
can be provided through digital signatures, ensures that responsibility and cor-
responding liability is attributable to the correct actor.

Since p-assertions are created within the context of a process that they de-
scribe, actors may elect to include metadata within a p-assertion that links it
to another p-assertion created by another actor within that context. Incorpora-
tion of incorrect metadata in a p-assertion could potentially create a chain of
p-assertions that are incorrectly associated, making it difficult or impossible for
a querying actor to correctly answer a provenance query. Again, signatures on
this metadata ensures responsibility is attributable to the correct actor. We note

Security Issues in a SOA-Based Provenance System 207

that signatures on p-assertions also serve an additional purpose of guaranteeing
their integrity and ensuring that no other parties (for example, the provenance
store or other intermediary actors that access the p-assertions) change them
intentionally or accidentally.

3.4 Sensitivity of Information in p-Assertions

In a basic example, the p-assertion pertaining to a message exchange between two
actors would simply contain the contents of that message verbatim. Depending
on application domain requirements however, parts of the message may need to
be obscured or transformed in some way when they appear in a p-assertion. A
good example of this is found in the electronic health care records domain, where
privacy requirements mandate that patient identity on health care records be
anonymized ([14], [2]) if the information on the record is being utilized for non-
diagnostic reasons (for example, to answer provenance questions about a medical
process). If p-assertions are utilized in such a context, then certain data items
(such as patient identifiers) that are transmitted in cleartext in the original
message exchange between actors must be obfuscated in some manner when
stored as part of any created p-assertion.

Along similar lines, there may be situations where an actor may want to ensure
that certain parts of the p-assertion it creates is only accessible to certain parties.
In the simplest case, this can be achieved by ensuring the appropriate access
controls are instituted on the provenance store. However, once a p-assertion is
retrieved from the provenance store, it is very difficult to control which parties
it is subsequently propagated to. If the asserting actor shares a secret key with
certain parties, it can elect to encrypt parts of the p-assertion with this key so
that only those parties are able to view it.

3.5 Long Term Storage of p-Assertions

Another issue surrounding provenance storage is long term archival of p-
assertions. As p-assertions are signed (and possibly encrypted) prior to stor-
age, there will subsequently be a need to verify the signatures or decrypt them
when they are extracted for processing. The certificates for the corresponding
encryption / signing keys may expire if the storage duration is substantial, and
in extreme cases, the underpinning cryptographic algorithms may themselves
become outdated. Such issues must be catered for in some way, for example, by
having a key archival facility and re-signing / re-encrypting provenance infor-
mation periodically over the intended storage duration.

3.6 Creating Authorisations for New p-Assertions

It is likely that p-assertions contain or are derived in some fashion from an
existing piece of data in the system. For example, an actor with access to a
database may send a message containing an item from that database to another
actor. This item is likely to have certain access control restrictions enforced upon
it within the security domain of the database in question. When a p-assertion

208 V. Tan et al.

is created for the transmitted message and recorded to the provenance store,
appropriate authorisations must now be established for this new entry to ensure
that any future access to it is in accordance with the security policies of the
provenance store. Such authorisations may be articulated in the form of access
control at the level of groups of p-assertions, as discussed in Section 3.1.

In many cases, it is useful to relate the authorisation for the newly recorded p-
assertion in some way to the access control restrictions on the original database
item that the p-assertion is based upon. This effectively allows for a more flexible
specification of authorisations on p-assertions by taking into account information
other than that found in statically predefined security policies on the provenance
store. A possible approach towards this end is for an actor to submit additional
information along with the p-assertion to be stored. This additional information
would be provided by the actor and can then be utilised in an automated manner
by the provenance store to generate appropriate authorisations for the new p-
assertion.

On the issue of relating authorisations of p-assertions to the authorisations
of the data that the p-assertions are based on, we note that an interesting sit-
uation may sometimes arise where a more stringent level of access control is
mandated on the p-assertions themselves rather than the original data. As an
example, consider a bioinformatics domain, where a new drug might ostensibly
be designed through some dynamic, unplanned novel application of a standard
workflow involving publicly accessible data. In such an instance, the exact se-
quence and logic of the workflow itself (which can be reconstituted from its
provenance) becomes more valuable than the actual data used in the workflow,
hence necessitating tighter access controls on it.

3.7 Summary

The first security consideration (Section 3.1) we believe is unique to process doc-
umentation intended for provenance purposes; data intended for generic process-
ing is unlikely to have such a requirement. The remaining considerations however
are likely to be applicable as well when considering the securing of access to data
in the general case. The last two considerations (Section 3.5 - 3.6) are additional
enhancements to a provenance security architecture that already adequately ad-
dresses the core concerns of access control and non-repudiation. They are not
intended to further secure the system, but rather to extend flexibility in the
enforcement of security: always an important consideration towards increasing
the acceptance and adoptability of security measures.

4 Scalability Related Security Issues

So far our discussion has revolved around the notion of a centralized provenance
store, but in practice this will inevitably be distributed for the usual reasons of
scalability: the elimination of a central point of failure, the spreading of demand
across multiple stores and the ability for stores to exist in different network areas.

Security Issues in a SOA-Based Provenance System 209

In such a situation, related p-assertions (such as p-assertions from two actors
pertaining to a message exchange between them) could be recorded in different
provenance stores. Actors may then record pointers or links to other provenance
stores additionally with or as part of the p-assertions in order to provide a trail for
interested parties to retrieve related p-assertions. Such links must again be made
attributable to actors through signatures, with a similar motivation as well. Dis-
tributed provenance stores may exist in different security domains; hence parties
that are recognized and authorised for specific actions on a provenance store in one
domain may be unrecognized or be granted different access levels in a provenance
store of a different domain. In this instance, a federated identity management in-
frastructure must be operated and installed in order to permit the authorised par-
ties to follow the trail of links and retrieve all relevant distributed p-assertions.

On a similar theme, if p-assertions themselves are copied or moved between
stores that are located in different security domains (for example, in staging of
data or for load distribution purposes), the access control restrictions on them in
their new destinations needs to be defined. In the simplest case, the newly moved
or copied p-assertions retain the same access control restrictions that were associ-
ated with them in their original domain and the federated identity infrastructure
will function to ensure that any newly introduced identities are recognized appro-
priately in the correct domain.

5 Related Work

The issues of access control, authorization, integrity and privacy within the context
of generic databases is well known and numerous approaches have been proposed
and implemented [15].Within the area of datamining, the issue ofmaintaining user
privacy has become paramount and a large amount of work is ongoing in this area
to develop more efficient techniques towards this end [1,6]. Related work explicitly
investigating provenance-related security issues is however still relatively scarce.
In [4], an abstract security model was developed by identifying generic security
relevant attributes based on user requirements across a large range of application
domains. The myGrid project [20] also investigated security issues and solutions,
but in a manner that was highly application dependent. Specific implementation
details of a secure annotation service utilizing Grid and Web Services-centric se-
curity technologies is discussed at some length in [13].

Our work is pitched at an intermediate level between an abstract model and
a concerete implementation. In particular, the issues that we raise are couched
specifically within the context of a SOA-based provenance system. In discussing
these issues, we also note which ones are potentially more ‘provenance-centric’ and
which ones resemble existing database security issues.

6 Conclusion

In this paper, we provide a representation for provenance in a SOA. We then pro-
ceed to describe some of the basic security issues pertaining to provenance in such

210 V. Tan et al.

an environment and possible ways of addressing them. The issue of enforcing
accessing control over process documentation represents a unique challenge that
potentially distinguishes security considerations for accessing provenance infor-
mation from that of a more generic data store. Other issues such as developing
a trust framework for actors and provenance stores, establishing liability for cre-
ation of p-assertions, sensitivity of information in p-assertions as well as their long
term storage considerations are more representative of conventional data security
concerns.

The notion of scalability is introduced and the additional approaches required to
address the new security considerations that arise as a consequence are discussed.
We note that all of these security issues have not been explored in depth here; they
represent possible pointers to future research on security in provenance systems
which is necessary to create industrial strength systems.

Acknowledgements

This research is funded in part by the EU Provenance project as part of the Euro-
pean Community’s Sixth Framework Program (IST511085).

References

1. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of of the
ACM SIGMOD International Conference on Management of Data, Dallas, Texas,
2000.

2. Sergio Alvarez, Javier Vazquez-Salceda, Tamas Kifor, Laszlo Z. Varga, and Steven
Willmott. Applying provenance in distributed organ transplant management. In
this volume, 2006.

3. Miguel Branco and Luc Moreau. Enabling provenance on large scale e-science ap-
plications. In this volume, 2006.

4. Uri Braun and Avi Shinnar. A security model for provenance. Technical report,
Harvard University, 2002.

5. Steve Burbeck. The tao of e-business services. Technical report, IBM Software
Group, October 2000.

6. C. Clifton and D. Marks. Security and privacy implications of data mining. In
Proceedings of the ACM SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, 1996.

7. I. Foster, J. Voeckler, M. Wilde, and Y.Zhao. Chimera: A virtual data system for
representing, querying and automating data derivation. In Proc. of the 14th Conf.
on Scientific and Statistical Database Management, July 2002.

8. M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis, D. Marvin, L. Moreau, and
T. Oinn. Provenance of e-science experiments - experience from bioinformatics. In
Simon J Cox, editor, Proc. UK e-Science All Hands Meeting 2003, pages 223–226,
September 2003.

9. P. Groth, M. Luck, and L. Moreau. Formalising a protocol for recording provenance
in grids. In Proc. of the UKOST e-Science second All Hands Meeting 2004 (AHM’04),
Nottingham, UK, September 2004.

Security Issues in a SOA-Based Provenance System 211

10. Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording provenance
in service-oriented grids. In Teruo Higashino, editor, Proceedings of the 8th Interna-
tional Conference on Principles of Distributed Systems (OPODIS’04), volume Lec-
ture Notes in Computer Science, pages 124–139, Grenoble, France, December 2004.
Springer-Verlag.

11. Paul Groth, Simon Miles, and Steve Munroe. Principles of high quality documenta-
tion for provenance: A philosophical discussion. In this volume, 2006.

12. Paul Groth, Simon Miles, Victor Tan, Sheng Jiang, Steve Munroe, Sofia Tsasakou,
and Luc Moreau. Architecture for provenance systems. Technical report, University
of Southampton, February 2006.

13. Imran Khan, Ronald Schroeter, and Jane Hunter. Implementation of a secure an-
notation service. In this volume, 2006.

14. Tamas Kifor, Varga Laszlo, Sergio Alvarez, Javier Vazquez-Salceda, and StevenWill-
mott. Privacy issues of provenance in electronic healthcare record systems. In
Proc. 1st Workshop on Privacy and Security in Agent-based Collaborative Environ-
ments (PSACE 2006), 5th International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2006), Japan, May 2006.

15. T.F. Lunt and E.D. Fernandez. Database security. SIGMOD RECORD, 19(4):90–
97, 1990.

16. N.R.Adam and J.C.Wortmann. Security-control methods for statistical databases:
A comparative study. ACM Computing Surveys, 21(4):515–556, December 1989.

17. M. Szomszor and L. Moreau. Recording and reasoning over data provenance in web
and grid services. In Int. Conf. on Ontologies, Databases and Applications of Seman-
tics, volume 2888 of LNCS, 2003.

18. S. R. Wiseman. On the problem of security in database. In D.L.Spooner and
Landwehr, editors, Database Security III, pages 301–311, North Holland, 1990. El-
sevier Science Publishers.

19. H.C. Wong and K.Sycara. Adding security and trust to multi-agent systems. In
R.Falcone, C.Castelfranchi, Y.H. Tan, and B.Firozabadi, editors, Workshop on De-
ception, Fraud and Trust inAgent Societies: Proceedings of the 3rd International Con-
ference on Autonomous Agents, Seattle, Washington, 1999. ACM Press.

20. J. Zhao, C. Goble, M. Greenwood, C. Wroe, and R. Stevens. Annotating, linking
and browsing provenance logs for e-science. In Proc. of the Workshop on Semantic
Web Technologies for Searching and Retrieving Scientific Data, October 2003.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 212 – 221, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Implementing a Secure Annotation Service

Imran Khan, Ronald Schroeter, and Jane Hunter

The School of ITEE
The University of Queensland,
St Lucia, Queensland, Australia

{imrank, ronalds, jane}@itee.uq.edu.au

Abstract. Annotation systems enable “value-adding” to digital resources by the
attachment of additional data in the form of comments, explanations, references,
reviews and other types of external, subjective remarks. They facilitate group
discourse and capture collective intelligence by enabling communities to attach
and share their views on particular data and documents accessible over the Web.
Annotation systems vary greatly with regard to the types of content they can
annotate, the extent of collaboration and sharing they allow and the communities
which they serve. However many applications share the need to authenticate the
source of annotations and restrict access to them - in order to protect intellectual
property rights or personal privacy. This paper describes a secure, open source
annotation system that we have developed that uses Shibboleth [1] and XACML
[2] to identify and authenticate users and restrict access to annotations stored on
an Annotea [3] server.

1 Introduction

Annotations have long been used as a tool to facilitate collaborative scholarly discourse.
They enable users to attach additional material such as comments, notes, queries,
assessments, references to resources such as documents, images or datasets. When
applied to digital resources shared via the Web, they provide a very powerful
collaborative tool.

Currently available annotation systems vary widely with respect to the types of
content they annotate, the extent of collaboration and sharing they allow and the
communities which they serve [4]. Although they have been successfully applied to
domains including education, research, medicine [5] and neuroscience [6] in order to
capture and exchange metadata, ideas, opinions and interpretations, evaluation of these
applications indicates limitations in existing commercial and prototype systems.
Current systems are limited by: lack of responsiveness, use of non-standard proprietary
technologies; lack of authentication of the annotations’ creator; limited search cap-
abilities; lack of security mechanisms; inability to reply to/stagger annotations; asyn-
chronous sharing only; support for limited media types; coarse granularity and unstruc-
tured annotations (single field, free text only).

The main focus of the work described in this paper is to provide annotation tools for
collaborators within eResearch. A critical requirement for such a domain is the need to
be able to restrict access to annotations attached to a particular collection of digital
resources - to a particular group of trusted colleagues - for reasons of privacy,

 Implementing a Secure Annotation Service 213

confidentiality or protection of intellectual property. This is particularly important
within eScience, where the annotation or interpretation of the raw document or data, is
often more valuable than the target of the annotation. Also by providing researchers
with a robust, reliable security infrastructure, they may be more willing to engage in the
exchange of views and ideas – a key to successful inter-organizational collaboration.

The security requirements for annotations involve two levels of protection:

• protecting the annotation server through identity management and authentication;
• protecting individual annotations through the specification of access policies that

define permissable types of access (e.g, list, read, delete) by individual users or
user groups based on user attributes.

Within this paper we describe an open source implementation of a secure annotation
service that we have developed. Our implementation involves the combination and
extension of a number of existing open source technologies that are based on open
standards:

• Annotea – a Web-based annotation server developed by the W3C [7];
• Shibboleth – an Internet2 middleware initiative that enables identity management

and secure access to Web resources shared amongst multiple organizations [1];
• XACML (eXtensible Access Control Markup Language) – XML-based language

for defining and enforcing access control policies [8].

The remainder of this paper describes in detail the secure annotation system that we
have built. Section 2 describes previous related activities in the development of
annotation systems and security mechanisms. Section 3 describes the overall
architecture of our system and its main components. Section 4 illustrates the user
interface and system functionality. Section 5 provides an evaluation of the system and
describes future work. Section 6 provides a brief conclusion.

2 Background and Previous Work

Significant prior work has been carried out on both web-based annotation systems and
on identity management and role-based access control. Rather than re-invent the wheel,
we carried out an analysis of existing systems to determine if any currently available
solutions satisfied our needs and hence could be integrated, refined or extended.

2.1 Existing Annotation Systems and Annotea

A survey of current Web-
based annotation systems [4]
reveals that they vary in the
way in which annotations may
be attached, the way in which
they are presented and in
the access control mecha-
nisms. None of the sur-
veyed systems provide the kinds
of fine-grained access control

Fig. 1. Annotea's Annotation Scheama [5]

214 I. Khan, R. Schroeter, and J. Hunter

mechanisms that is required by collaborative teams of scien-tists engaging in
eResearch.

Through earlier work [9] we identified Annotea [7] as an ideal approach for
implementing an annotation server. Annotea is a Web-based annotation system that
uses Resource Description Framework (RDF) [10] to model annotations as a set of
statements or assertions. These annotations are stored in a HTTP enabled server,
which enables clients Annotea enabled clients [11] [12] to query, update, post, delete
and reply to annotations. Currently there are two publicly available implementations e
Annotea servers: Zope [9] and W3C Perllib[13]. Figure 1 illustrates the RDF
annotation schema used to describe various properties of an annotation including its
author, title, date of creation, body and context. Annotea’s use of open W3C standards
such as RDF, XPointer, XLink and HTTP makes it possible to easily adapt or extend
the scheme. Annotea can also be easily extended to allow for the annotation of media
types other than text. For example Vannotea [14] extends Annotea to enable the
annotation of videos. Vannotea and applications similar to it clearly identified the
need to further extend the Annotea to enable fine-grained access control to
annotations [15].

2.2 Identity Management and Shibboleth

Harris et. al. generated a comprehensive report describing access management (AM)
systems used in the UK Higher Education sector [16]. The most prominent systems
identified included: Microsoft’s Passport, Liberty Alliance, WS-Security, PAPI,
Athens and Shibboleth. Of the six systems, only three are targeted at the higher
education domain, while the other three (Passport, Liberty Alliance and WS-Security)
are primarily focused on business-centric solutions. Morgan et al [17] describe
Shibboleth as “an open-source system that extends Web-based applications and
identity management for secure access to resources among multiple organizations.”
Shibboleth is based upon a number of open standards including HTTP, XML, XML
Schema, XML Signature, SOAP (Simple Object Access Protocol). In particular it is
dependent on:

• SAML [18] Security Assertion Markup Language for the exchange of assertions
between the Identity Providers and Service Providers

• eduPerson [19] – an EDUCAUSE initiative to define a standard set of person
attributes in higher education environments

2.3 XACML

As Lorch et al [8] explains, Shibboleth lacks a dynamic and distributed approach to
access control. XACML enables us to address these issues. XACML (eXtensible
Access Control Markup language) is an XML-based language used to describe
general purpose access control policies and also an access control decision
request/response language [18]. XACML also specifies the structure and syntax of the
requests and responses. Requests are composed of attributes associated with the
requestor, resource being accessed and the action being performed.

 Implementing a Secure Annotation Service 215

3 System Architecture and Implementation

Figure 2 illustrates the overall architecture of the system. The diagram highlights the
two key components of the Shibboleth architecture: Identity Provider (IDP) and
Service Provider (SP).

Fig. 2. System Architecture

The annotation server within Figure 2 is part of the SP, and may be located on any
of the organizations/universities that are part of the federation. Figure 2 illustrates a
simplified view of a shibbolized annotea transaction. Firstly Shibboleth is responsible
for authenticating a user and retrieving the users’ attributes from the requestors IDP.
These attributes are then passed on to the XACML.

3.1 Server-Side

The Server side consists of four main architectural components: the Annotation and
Policy server, XACML module; Shibboleth attributes and the Jena database.

3.1.1 The Annotation and Policy Server

The Annotea server has been
extended to support the fine-grained
access policies in addi-tion to the
operations defined by Annotea.
Figure 3 illustrates the extensions
made to support policies (in red). The
first extension is the unique
creatorID. The creatorID pro-perty is
used when making decisions on
delete and update operations. The
other key extension is the policy
object. Uni-quely identified XACML
policies are stored within the RDF Fig. 3. Extended Annotea Model

216 I. Khan, R. Schroeter, and J. Hunter

repository. Objects are linked to particular policies through their policy property –
which is specified by a URL. This approach has the benefit of enabling multiple
annotations to use the same policy. If a policy is modified, the changes will effect all
those annotations associated with the policy.

3.1.2 XACML Module and Policies

This module is responsible for implementing the Role Based Access Control
functionality and is based upon Sun’s XACML implementation [2]. It makes
decisions on whether a particular request is permitted based upon the role/attributes of
the person making the request. There are three types of actions permissible on
annotations by users other than the creator:

• LIST – viewing of annotation metadata (e.g., author, creation date, etc.)
• READ – viewing of the annotation body.
• READ_POLICY – viewing of the annotation policy.

Figure 4 illustrates an example policy and request. Each Policy consists of a set of
Rules related to whether a specific operation is permitted by a particular Subject. The
Subject is described by a set of attributes which identify the credentials of a particular
user e.g. affiliation, role. In Figure 4a, members of the Staff “Group” have an attribute
eduPersonAffiliation equal to “staff”. In the example, staff are permitted to perform
all three operations on annotations whilst students are denied access to all three.
Given the example policy in Figure 4a, the example request (in Figure 4b) - that a
student to be permitted to read policy 123, will be denied. It is important to note that
although XACML policies provide much more expressiveness than we provide, we
have deliberately kept the user interface (Figure 6) simple so that end users can create
policies themselves.

Fig. 4. (a) Example Policy and (b) Example Request

The XACML module is implemented through three steps. The first step involves
gathering attributes about the requester from the requestor’s IDP through Shibboleth’s
SAML assertions. Using these attributes, an XACML request is created – it specifies
the action to be performed, the resource requested and the attributes of the requestor.
The second step involves locating the policy associated with the resource being
requested by querying the RDF repository for a policy with a given URL. Thirdly the

 Implementing a Secure Annotation Service 217

retrieved policy is compared with the request and Sun’s XACML implementation
generates an XACML response specifying whether the request is permitted or denied.

3.1.3 Shibboleth (SAML) Attribute Assertions

The annotation server depends on Shibboleth to provide the necessary eduPerson
attributes about a requestor. These attributes are used by the XACML module to make
an access control decision. Shibboleth itself is a complex architecture and details are
available from [20]. Each site within a Shibboleth federation consists of either/both an
origin (identity provider) and target (service provider). In terms of our annotation
system, a user’s attributes are provided by their origin, which stores them in an LDAP
server. The annotation server is hosted on the target site and is accessible to members
of organizations that are part of the federation and have sufficient access privileges to
the annotation server.

3.1.4 Jena Database

Jena [21] provides an API to an RDF repository and in the context of this system is
responsible for enabling the storage and interfacing of data – including annotations,
policies and annotation bodies. The Jena API also enables us to search the annotations
- via the creator, date, language and in_reply_to fields.

3.2 Client-Side

The user’s client side application is responsible for the user interface that enables: the
retrieval and display of annotated web resources; display, search and browsing of
annotations the creation, editing, deletion and attachment of annotations to Web
resources; the creation, editing and attachment of access policies to annotations.

Although a number of client-side annotation tools exist for annotating Web
resources (Amaya [12], Annozilla [11], and Vannotea [14]) none of these provide an
interface suitable for specifying XACML access policies. Consequently we developed
our own client-side application using .NET to allow the display and editing of
annotations and policies.

4 The User Interface

For testing and illustrative purposes, we used the ePrints archive at the University of
Queensland. Figure 5 shows the user interface after an authenticated user accesses the
annotation server and retrieves a particular annotated publication. The annotations are
displayed in the top left-hand frame, the details of a selected annotation are in the
bottom left-hand frame and the publication is displayed in the right hand frame.

Figure 5 also illustrates the user interface for creating and attaching an annotation.
We have extended Annotea to support structured annotations that contain a number of
fields including hyperlinks, files, free text or controlled vocabularies.

218 I. Khan, R. Schroeter, and J. Hunter

Fig. 5. User Interface showing Sidebar with threaded replies and dialog box for creating
annotations

Figure 7 shows the user interface developed for defining groups and policies.
Firstly it enables ‘Groups’ to be defined by sets of common attribute values. In Figure
8a, the group uq_members is defined as users with (eduPersonAffiliation = staff,
eduPersonOrgUnitDN = dke and eduPersonOrgDN = itee) where the attributes are
issued by uq.edu.au. The policy in Figure 9a has three groups - uq_members,
monash_members and jcu_members. The second part of policy definition involves
defining access rules for each of the groups. In Figure 10b, the Group jcu_members

Fig. 6. User Interface for defining Policy (a) Groups and (b) Rules

 Implementing a Secure Annotation Service 219

are permitted to List and Read annotations, but not Read Policy. This interface makes
it easy for users to define new groups, modify/remove existing groups and
define/modify policies.

5 System Evaluation and Future Work

5.1 System Evaluation

To date, system evaluation has comprised thorough unit and system testing. This
involved testing the creation, editing and deletion of policies and annotations. We also
tested policy enforcement by logging on as users with different attributes and
modifying attributes directly in the LDAP directory. In all cases the annotation server
behaved as expected. However the testing phase did reveal some problematic issues.
These included:

• Allowing the deletion and update of annotations can lead to ‘hanging references’
where replies refer to annotations which have been updated or deleted.

• The use of URLs to identify policies enables them to be re-used and applied to
multiple annotations. However this may cause problems when a policy referred to
by multiple annotations is updated/deleted.

5.2 Future Work

Aspects of this work that would benefit from further investigation include:

- Thorough user evaluation: detailed usability studies are required to acquire user
feedback and determine functional requirements of user groups as well as improve,
refine and extend the system.
- Reduce reliance on Shibboleth: approaches other than Shibboleth will enable the
annotation server to be used outside of the Higher Ed sector.
- Annotation of PDF files and spreadsheets: the popularity of publishing scholarly
information in PDF format and storing scientific data in spreadsheets indicates an
increasing demand to be able to annotate data in proprietary formats.
- Access policies based on document attributes: it would be interesting to investigate
policies that are based on attributes of the digital resources or their annotations.
- Complex querying: the integration of SPARQL to allow more complex queries over
the annotation server while enforcing access constraints.
- Post-processing of annotations: currently authors are notified via RSS when replies
to their annotations are made. Other examples include the Multivalent Browser [22]
which can review and incorporate suggested changes within documents.
 - Ontology-based annotations or the annotation metadata could be used to process
annotations and automatically classify/rank annotations and resources.
- Scalability: further investigation is required to determine how the system performs
as the number of annotations, access policies and users grows.

220 I. Khan, R. Schroeter, and J. Hunter

6 Conclusions

This paper describes a secure annotation service that we have developed by
combining and extending a number of existing open source technologies. Secure,
trusted annotation servers are required in many domains including telemedicine,
higher education and collaborative eResearch. By providing clinicians and researchers
with the necessary support for authenticating the source and protecting the
confidentiality and intellectual property of their annotations, they will be more willing
to share their views and engage in inter-organizational collaborations with trusted
colleagues. Moreover, the modular design and interoperable technologies that we
have adopted, makes it easy to quickly adapt the server to a variety of different media
types, different domains and different communities.

References

[1] Internet2, "Shibboleth Project," 2005, http://shibboleth.internet2.edu/.
[2] S. Proctor, Sun Microsystems, "XACML API," 2004, http://sunxacml.sourceforge.net/.
[3] M. Koivunen et al, "Annotea: an open RDF infrastructure for shared Web annotations," in

Proceedings of the 10th Intl conference on World Wide Web, Hong Kong, ACM Press,
2001

[4] R. Heck et al, Department of Mathematics and Computer Science, Grinnell College, "A
Survey of Web Annotation Systems," 1999, http://www.math.grin.edu/~rebelsky/
Annotations/Summer1999/Papers/survey_paper.html.

[5] M. Lewkowicz et al, "A Web-based Annotation System for Improving Cooperation in a
Care Network," in ICWE Workshops, pp. 227-239, 2004.

[6] M. Gertz et al, "Annotating Scientific Images: A Concept-Based Approach," in 14th Intl
Conference on Scientific and Statistical Database Management 2002.

[7] R. Swick et al, W3C, "Annotea Protocols," 2002, http://www.w3.org/2002/12/
AnnoteaProtocol-20021219.

[8] M. Lorch et al, "First experiences using XACML for access control in distributed
systems," Proc of the 2003 ACM workshop on XML security Fairfax, Virginia ACM
Press, 2003.

[9] Zope, "Zope Annotation Server," 2005, http://www.zope.org/Members/Crouton/ ZAnnot/.
[10] D. Brickley and R. V. Guha, W3C, "Resource Description Framework (RDF) Schema

Specification 1.0," 2005, http: //www.w3.org/TR/2000/CR-rdf-schema-20000327.
[11] M. Wilson, Mozdev.org, "Annozilla (Annotea on Mozilla)," 2000, http:// annozilla.

mozdev.org/.
[12] I. Vatton, W3C, "Amaya," 1994, http://www.w3.org/Amaya/.
[13] W3C, "Perllib Annotations Server HOWTO," http://www.w3.org/1999/02/26-modules/

User/Annotations-HOWTO.
[14] R. Schroeter et al, "Vannotea -A Collaborative Video Indexing , Annotation and

Discussion System For Broadband Networks," in Knowledge Markup and Semantic
Annotation Workshop, K-CAP 2003, Sanibel, Florida 2003.

[15] J. Hunter et al, "Using the Semantic Grid to Build Bridges between Museums and
Indigenous Communities," in Semantic Grid Applications Workshop, Honolulu 2004.

[16] N. Harris et al, "Access Management Report," London School of Economics 2002.

 Implementing a Secure Annotation Service 221

[17] R. L. Morgan, S. Cantor, W. Hoehn, and K. Klingenstein, "Federated Security: The
Shibboleth Approach," Educase Quarterly, vol. 27, pp. 12-17, 2004.

[18] R. Cover, Oasis, "Cover Pages: Security Assertion Markup Language (SAML)," 2005,
http://xml.coverpages.org/saml.html.

[19] Directory Working Group (MACE-Dir), Internet2 Middleware Architecture Committee
for Education, "EduPerson Object Class Specification (Draft)," 2006, http://www.nmi-
edit.org/eduPerson/draft-internet2-mace-dir-eduperson-latest.html.

[20] T. Scavo and S. Cantor, Internet2, "Shibboleth Architecture," 2005, http://
shibboleth.internet2.edu/docs/internet2-mace-shibboleth-arch-conformance-latest.pdf.

[21] B. McBride, "Jena: A Semantic Web Toolkit," IEEE Internet Computing, vol. 6, pp. 55-
59, 2002.

[22] A. P. Thomas et al, "The multivalent browser: a platform for new ideas," in Proceedings
of the 2001 ACM Symposium on Document engineering, Atlanta, Georgia, USA, ACM
Press, 2001.

Performance Evaluation of the Karma

Provenance Framework for Scientific Workflows

Yogesh L. Simmhan, Beth Plale, Dennis Gannon, and Suresh Marru

Indiana University, Bloomington IN 47405, USA
{ysimmhan, plale, gannon, smarru}@cs.indiana.edu

Abstract. Provenance about workflow executions and data derivations
in scientific applications help estimate data quality, track resources, and
validate in silico experiments. The Karma provenance framework pro-
vides a means to collect workflow, process, and data provenance from
data-driven scientific workflows and is used in the Linked Environments
for Atmospheric Discovery (LEAD) project. This article presents a per-
formance analysis of the Karma service as compared against the contem-
porary PReServ provenance service. Our study finds that Karma scales
exceedingly well for collecting and querying provenance records, show-
ing linear or sub-linear scaling with increasing number of provenance
records and clients when tested against workloads in the order of 10,000
application-service invocations and over 36 concurrent clients.

1 Introduction

Data-driven scientific investigations often follow a dataflow pattern where data
progresses through a number of processes as they are transformed, fused, and
used in complex models. Services provide an abstraction to access these processes
through well-defined interfaces and allow applications to be modeled as work-
flows that capture the invocation logic. Process provenance, collected about the
workflow, describes the service invocations during a workflow’s execution and
enables tracking of workflows and services in collaboratory environments [4,15].
In data-driven applications, provenance about the data involved in the workflow
is critical to understanding its results. Data provenance, the derivation history
of derived data, includes the service and its parameters that contributed to the
data creation, and is valuable to determine the origin and quality of a particular
derived data, and for its discovery and reuse in other workflows [15].

The Karma provenance framework [16] records uniform and usable provenance
metadata for scientific workflows that meets the domain needs of the Linked
Environments for Atmospheric Discovery (LEAD) project [14] while minimizing
the performance overhead on the workflow engine and the services. It collects
two forms of provenance: process provenance, also known as process-oriented
provenance or workflow trace, describes the workflow’s execution and associated
service invocations, and is used to monitor the workflow progress and mine it for
results validation; and data provenance, which provides complementary meta-
data about the derivation history of data products in the workflow, including

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 222–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Performance Evaluation of the Karma Provenance Framework 223

the services that create and use it, and the input data transformed to generate
it, and forms the basis for quality-oriented data product discovery [17].

Karma is used to collect provenance from meteorology workflows in LEAD,
where hundreds of simultaneous users are expected to run workflows and query
for provenance at any given time. This article describes our empirical evaluation
of the Karma provenance framework in meeting the needs of the LEAD project
to record and retrieve provenance documents for different workflow loads and
with concurrent clients. We present our experimental results alongside the per-
formance results for PReServ [8,9], a comparable service for recording provenance
assertions, for equivalent workloads.

Several provenance frameworks have emerged in the past several years
[19,18,12,9,7,3,6] that have defined the provenance needs for e-Science and have
applied the systems to different scientific domains. Surveys on provenance have
compared these systems based on a meta-model for provenance [4] and through
the use of a taxonomy [15]. While some of the provenance systems have pre-
sented a preliminary evaluation of the performance of their systems [8], none
have undertaken a detailed comparative performance study of their provenance
framework as we have in this article. Such a study, based on multiple workflow
and query loads, is necessary to determine the overhead of collecting provenance,
and the costs for querying and using provenance metadata under different appli-
cation scenarios. A comparative evaluation also provides additional context to
interpret the results. PReServ was selected as the provenance system compared
against due to several reasons. PReServ is similar to Karma in that it is a stand-
alone provenance service independent of the workflow or service environment,
and it is motivated by the provenance requirements for scientific experiments. It
also provides the ability to store metadata annotations as part of provenance,
that allows us to record provenance akin to that captured by Karma. Lastly, it
is a contemporary system that is being actively developed and used.

The rest of the article is organized as follows: in Section 2, we briefly describe
the architecture of Karma; in Section 3, we discuss the hardware and software
deployment used in the experiments; Section 4 describes the experiments for
collecting provenance and their results, and Section 5 does likewise for query-
ing provenance; Section 6 discusses the results of the experiments, and, finally,
Section 7 presents our conclusion and future work.

2 Architecture

Karma collects provenance for data-centric workflows in a service oriented archi-
tecture. Such workflows are composed of services connected as directed graphs,
with each service passing one or more data product as input to the service it is
connected to, thus forming a dataflow. The workflow is orchestrated by an exe-
cution engine, and execution takes place at three levels. At the workflow level,
the workflow engine invokes services with appropriate parameters, in the order
prescribed in the workflow graph. At the service level, the service that receives
the invocation from the workflow engine initiates action by executing a method

224 Y.L. Simmhan et al.

or launching an application. At the application level, the actual task correspond-
ing to the service invocation is performed. Each workflow, service, application,
and data product used in the workflow is identified using a globally unique ID.

Karma uses the notion of activities [16] that take place at different levels
of a workflow’s execution, in space and in time, to collect provenance (Fig. 1).
The key activities are Workflow-Started and -Finished, generated by the workflow
identified by its Workflow ID; Application-Started and -Finished, generated by the
invoked service (or application) identified by its Service ID; and Data-Produced
and -Consumed, submitted by the end-application to list the Data Product ID
of the data it transforms. Based on these activities, Karma builds three forms
of provenance documents that can be retrieved: workflow trace describes all
activities for a workflow’s execution, process provenance captures activities for
a single invocation of a service or application within the workflow, including its
input and output data, and data provenance returns the application that created
the data product and those that use it, all potentially from different workflows.

Workflow Instance
10 Data Products Consumed & Produced by each Service

Service
2 …Service

1
Service

10
Service

9
10P/10C

10C
10P 10C 10P/10C

10P

Workflow
Engine

Message Bus Notification Broker

Subscribe & Listen to
Activity Notifications

Publish Provenance
Activities as Notifications

Application–Started & –Finished,
Data–Produced & –Consumed
Activities

Workflow–Started &
–Finished Activities

Karma Provenance Service

Provenance
Listener

Provenance
Query API

Activity
DB

Provenance
Browser Client

Query for Workflow, Process,
& Data Provenance

Fig. 1. Architecture of Karma provenance framework. At the bottom, a linear work-
flow is orchestrated by a workflow engine and publishes provenance activities on the
workflow, services, and data products as notifications. A listener in the Karma service
subscribes to and receives these notification from the notification broker, and persists
them in a database. Upon query by a provenance client, the Karma service constructs
and returns the workflow, process, or data provenance graph from the activities.

Provenance is submitted by the workflow components, namely the workflow
engine, services, and applications, either synchronously through a web-service
call to the Karma service or asynchronously. In the latter case, provenance ac-
tivities are modeled as XML notifications that are published to a notification bro-
ker that the Karma service subscribes to, making it easier for messaging-aware
applications to submit provenance. For our experiments, we use the asynchro-
nous approach, with notifications published using the WS-Eventing standard [5]
through the WS-Messenger [10] notification broker implementation. The Karma
service persists the activities it receives to a relational database and provides

Performance Evaluation of the Karma Provenance Framework 225

a web-service API to query for the workflow trace, process provenance, and
data provenance. The provenance graphs are constructed on-the-fly from the
activities recorded in the database and represented as XML documents with a
defined schema. A graphical interface is available to visualize and navigate the
provenance graphs.

3 Experimental Setup

The components of both Karma and PReServ services run on identical nodes in
a Linux cluster, each node consisting of dual 2.0GHz 64 bit Opteron processors
with 16GB RAM. Karma service v0.3, WS-Messenger notification broker, and
a mySQL database used by Karma run on separate nodes. The PReServ service
v0.2.3 is deployed on a single node within a Tomcat 5.0 web-server container
and uses the default embedded Java database. Clients that generate and re-
trieve provenance run on a separate 128-node Linux compute-cluster formed of
dual 2.0GHz Opteron processors with 4GB RAM. Parallel executions of client
programs is managed by a SLURM job manager [2]. All nodes in both clusters
are connected by Gigabit Ethernet and use local IDE disks for persistent storage.
The services and test applications are written in Java and Jython, and use Sun
Java 1.5 JVM as the Java runtime.

4 Collecting Provenance

Workflows, services, and applications in LEAD are written in Java or as Jython
scripts which invoke FORTRAN binaries. They are instrumented using the No-
tifier Java library to publish Karma provenance activities as asynchronous noti-
fications. The services in the workflow are usually auto-generated web-services
wrappers for applications, to enable their use in a service-oriented architecture
[11]. The provenance instrumentation in the case of workflows and services is
automated. Applications written by the service providers are manually instru-
mented using the Notifier library to generate the provenance activities.

In the experiments for collecting provenance, the standard Notifier library
is used by all workflow components to generate the Karma activities asynchro-
nously. For evaluating PReServ, the default Notifier implementation is replaced
by a thin client that synchronously records provenance with the PReServ web-
service using its client library. The following experiments measure the provenance
generation overhead for different workflow loads shown in Fig. 2.

In both Karma and PReServ, a single invocation of a service in a workflow
generates a set of provenance records. For Karma, the provenance recorded is as
follows: one each of Application-Started and -Finished activities marking the start
and end of the invocation, and identifying the workflow, service, and application
scope in which the invocation took place; and one Data-Consumed or -Produced
activity for each data product used or created during the invocation, containing
the Data Product ID, its location, usage or creation time, and its size [16]. In the

226 Y.L. Simmhan et al.

S-2 S-3 … S-8S-1 S-10S-9

10P/10C
10C

10P 10C 10P/10C
10P

(b) Linear Workflow with 10 “building–block” Services
100 Data Products each Consumed & Produced by Workflow

S-0
10 Input

Data Products
10 Output
Data Products

10C 10P

(a) “Building–block” Service
10 Data Products each Consumed &
Produced by Service (10C & 10P)

ARPS2WRF

WRF

WRF

WRF

WRF

ADAM WRF2ARPS ARPS Plot Image xForm

Repeat 10 times (For real workflow,
repeat until prediction satisfactory)

16C

16C

17P

14P

14C 19C 6C
2P

(c) Weather Research & Forecasting (WRF) Workflow

Interpolated Terrain &
Weather data input

Converted Data &
configuration files for

WRF

Data Mining over
WRF predictions

22C

22C

14P

56C

14P

14P 14P 6P

Transform accepted prediction &
visualize results

1639 Data Products Consumed &
892 Produced by Workflow

Ensemble storm prediction
with different physics

Fig. 2. Types of workflows and services used to generate provenance for experiments.
The rectangles denote the service in the workflow and the arrows are the invocation
order or data flow. The arrows are labeled with the number of data products that flow
between services.

case of PReServ, a service invocation generates three types of provenance asser-
tions: one Interaction assertion that establishes the occurrence of the invocation
by providing the source and sink of the service invocation along with a unique
ID for that interaction; one Actor State assertion with the list of data products
produced and consumed during that interaction, identified by their Data Product
IDs; and two Relationship assertions that respectively associate the Interaction
assertion with the produced and consumed data present in the Actor State as-
sertion [8]. PReServ optionally allows for recording the SOAP message for the
service invocation in the assertions but this is not used in any of the experiments.

4.1 Single Service

The first experiment evaluates the performance of recording provenance for a
single service as the number of service invocations and the number of provenance
records already present in the provenance service increase. The simple “building-
block” service shown in Fig. 2(a) acts as a client that generates provenance about
its invocation. It is modeled as a Java application that takes 10 data products as
input and generates as many as output, doing no computation or I/O operations
other than record provenance. This building-block service is repeatedly invoked
from a test harness running in the same JVM, and, for each invocation, the
service records a set of provenance records describing its invocation.

As noted earlier, for this service invocation, Karma generates two activities
marking the start and end of the application and 20 activities on the data prod-
ucts used and created. These map to four notifications that are published. While
the Application-Started and -Finished activities are published as two individual
notifications, the set of 10 Data-Consumed and 10 Data-Produced activities are
batched as two notifications. PReServ generates one Interaction assertion, one

Performance Evaluation of the Karma Provenance Framework 227

Actor State assertion, and two Relationship assertions, for a total of 4 provenance
assertions. Karma and PReServ represent their provenance activities and asser-
tions as XML documents, and for this single service invocation, the total size of
all XML provenance documents recorded in both cases is about 10KB.

Fig. 3. Total time to record provenance (Y axis) for “building block” service as the
number of service invocations per trial (bottom X axis) and the number of provenance
records present with the provenance service (top X axis) increase. Each trial is averaged
over 50 iterations. Barring two points, the standard error for all averages are under
5%; it is under 10% for all points.

Figure 3 shows the total time taken to record the provenance for all service
invocations in a trial as the number of invocations in a trial increase from 25 to
250 along the bottom X axis. As the trials progress, the records accumulating
with the provenance services are shown in the top X axis. As the number of
invocations rise, Karma shows a linear behavior in provenance recording time,
averaging 74ms per invocation for 250 invocations when there are over 1.5 mil-
lion provenance activities (68,750 invocations × 22 activities per invocation) in
the Karma service. This also exhibits a sub-linear recording time against the
number of records present in the service. Publishing provenance activities asyn-
chronously as notifications insulates the clients from potential fluctuations in the
backend store, although for the workloads that are used, synchronous recording
of activities shows similar results too.

PReServ shows super-linear trend as the number of invocations increases from
25 to 175. While taking lesser time at 7.95 seconds for 175 invocations compared
to Karma’s 11.78 seconds, beyond that the recording time rises quadratically,
with 250 invocations taking 20.52 seconds. However, the time increases almost
linearly against the number of records present in the service. This indicates that
the performance limitation of PReServ is imposed by its backend store used

228 Y.L. Simmhan et al.

to persist provenance records. PReServ shreds and stores the XML provenance
records into an embedded Java database that allows for easy portability and
deployment, but this experiment shows the limitations of such an approach in
scaling beyond 140,000 records (after 175 invocations).

4.2 Simultaneous Linear Workflows

This experiment evaluates the scalability of collecting provenance as the num-
ber of concurrent clients generating provenance grows. A simple linear workflow
composed of 10 building-block services connected linearly is used as shown in
Fig. 2(b). This workflow provides a uniform load under which the provenance
systems can be compared, with each workflow run generating 220 Karma ac-
tivities (40 notifications) and 40 PReServ assertions from the 10 services. Each
workflow is started simultaneously on multiple hosts as parallel jobs and a work-
flow controller program invokes the 10 services in sequence within the same JVM
and iterates over 50 trials.

Fig. 4. Times to record provenance for linear workflows with the number of workflows
running simultaneously. The left Y axis bar graph shows the average time (over 50
iterations) taken by each workflow to complete as the number of parallel workflows
increase along X axis. The data points are labeled with the average time. The right Y
axis line graph has the total time for all 50 iterations of each trial to complete and is
scaled by 50 times the left Y axis. The standard error for the average workflow time is
between 5–15% for Karma and under 3% for PReServ.

Figure 4 shows the time for each workflow run (bar graph on left Y axis)
averaged over 50 iterations and the total time for the 50 iterations (line graph on
right Y axis) as the number of concurrent workflows increases from 4 to 36 along
the X axis. Karma and PReServ show similar performance until 8 concurrent
workflow clients, taking an average of less than two seconds per workflow with
8 workflows. As the parallelism increases from 12 to 20, PReServ outperforms

Performance Evaluation of the Karma Provenance Framework 229

Karma but begins to display super-linear behavior. Karma shows good scalability
by maintaining a linear trend throughout, averaging 18 seconds per workflow
with 36 parallel clients, compared to 56 seconds for PReServ, which is at best a
quadratic trend. This may partially be attributed to the increase in the number
of records stored in PReServ, as observed earlier. The standard error for the
average workflow time for Karma is between 5–15% while PReServ has more
uniform provenance recording time with standard error under 3%.

4.3 Simultaneous Complex Workflows

In order to measure provenance collection performance under realistic work-
loads, a mesoscale storm prediction workflow from the LEAD project is used in
this experiment. Figure 2(c) shows a synthetic workflow involving four parallel
Weather Research & Forecasting (WRF) applications that repeat 10 times. The
services perform no computation or I/O but generate the same provenance as a
real WRF workflow would – 2657 Karma activities (252 notifications) and 252
PReServ assertions from the nine services in the workflow. Such a simulated
workflow accelerates gathering of performance results; a real WRF workflow for
this experiment configuration requires the use of 320 compute nodes for 1 week.
Also, a sample run of the WRF workflow showed high error margins due to I/O
contention by the applications, precluding accurate determination of the prove-
nance overhead. In an ideal situation, the computation and I/O time for the real
applications should remain constant across concurrent runs, and the synthetic
workflow that is used in its stead duplicates such a scenario.

Figure 5 shows the time taken to run the WRF workflow as the number of
concurrent workflows increase from 1 to 20. Such a workload is typical in the
LEAD system where numerous users simultaneously run such complex workflows
[13]. The average time each workflow takes over 25 iterations is shown in the bar
graph on the left Y axis and the total time for all workflows to complete 25
iterations is the line graph on the right Y axis while the X axis shows increasing
parallelism. As in the previous experiment, Karma achieves linearity while PRe-
Serv shows super-linear behavior as concurrency increases. The unsynchronized
forks and joins of the four ensemble WRF applications from different workflow
instances causes the graph to be relatively flat up to 8 concurrent workflows. In
this experiment and the previous, there is a marked increase in the average work-
flow run time for both Karma and PReServ beyond about 8 parallel workflows.
This is likely due to the provenance services reaching a hardware or OS imposed
limit, such as network socket availability or bandwidth. The trial for 20 concur-
rent workflows could not be completed for PReServ since the local disk used by
it ran out of disk space. PReServ takes 8GB to store the provenance records
for 16 concurrent workflows while Karma’s mySQL database uses 700MB – an
order of magnitude difference in the storage overhead for the two systems.

4.4 Number of Data Products

Karma stores fine-grained information about the data provenance that requires
an activity for each data product consumed or produced by a service. Each data

230 Y.L. Simmhan et al.

Fig. 5. Average and total time to record provenance for synthetic WRF workflows
running in parallel. Left Y axis bar graph represents the average time for each WRF
run to complete when averaged over 25 iterations as the number of parallel WRF
workflows increases along X axis. The data points are marked with this average time.
The right Y axis line graph shows the total time for all 25 iterations to complete, and
hence is scaled by 25 times the left Y axis. The trial for 20 concurrent workflows using
PReServ could not be completed. The standard error for all averages is below 1%.

product activity contains information such as the Data Product ID, creation
time, and size, in addition to information about the workflow component that
generated it. These allow Karma to natively build the data provenance for any
data product involved in various workflows. PReServ does not prescribe any
particular metadata to be provided for data provenance and allows any metadata
to be submitted as part of its Actor State assertion. For the experiments, the
Actor State assertion for a service carries the essential information about all data
products involved in its invocation, namely their Data Product IDs.

This experiment estimates the provenance collection overhead as the number
of data products involved in a service invocation increases. The single linear
workflow shown in Fig. 2(b) is used to generate provenance, but suitably modified
so that the constituent services consume and produce progressively increasing
number of data products – from 25 to 250 each, for a total of 250 to 2500 data
products per workflow.

In Fig. 6, the Y axis shows the average time to record provenance for each
workflow as the total number of data products involved in a workflow increase
along the X axis. There is negligible difference between the performance of
Karma and PReServ for 250 data products used in the workflow. Beyond this,
the average time to record provenance using Karma increases linearly with the
number of data products, taking 10.77 seconds for the workflow involving 2000
data products. This rise correlates with the increase in the size and complexity of
the data product batch XML notifications that contain the Data-Produced and
-Consumed activities for each service invocation. PReServ shows a near-constant
time for recording provenance as the number of data products increase and this
can be attributed to the fact that the minimum information it stores about the

Performance Evaluation of the Karma Provenance Framework 231

Fig. 6. Average time to record provenance from linear workflow with increasing data
products involved in each workflow. The average time over 100 iterations is along the
Y axis and labeled at the data points. The lower X axis has the total number of data
products involved in the workflow. The upper X axis has the number of data products
produced and consumed by each service in the workflow, and is scaled to 10 times the
lower X axis since there are 10 services in a workflow.

data products in the Actor State assertion is represented using a simpler XML
document. In the LEAD project, 95% of workflows involve less than 250 data
products [13] and the performance of Karma for those workflows is comparable
to PReServ’s. The advantage of being able to record and query data provenance
natively offsets the increase in overhead for the other 5% of workflows.

5 Querying for Provenance

Karma builds three types of provenance documents from the activities, namely
workflow trace, process provenance, and data provenance. It provides a web-
service interface to retrieve these based on the Workflow ID, Service ID, and
Data Product ID respectively. The PReServ web-service allows provenance re-
trieval using XQueries, and two simple XPath queries that return all Interaction
assertions for a given Workflow ID and for a given Service ID form the equiva-
lent of workflow trace and process provenance queries in Karma. Building data
provenance using PReServ requires a more complex query over Interaction, Actor
State, and Relationship assertions and is hence omitted for these experiments.

For the following tests, the provenance services are loaded with provenance
records for workflow runs and queried for through their web-service APIs from
Java clients using the respective client libraries provided by the systems. In
the case of Karma, provenance for 1000 linear workflows like those in Fig. 2(b)
are loaded, with each service consuming and producing 10 data products. This
translates to 10,000 service invocations or 220,000 provenance activities present

232 Y.L. Simmhan et al.

in Karma. PReServ is loaded with only 100 linear workflows like those in Fig. 2(b)
and corresponds to provenance for 1000 service invocations or 4000 provenance
assertions. The factor of 10 difference in the number of workflows recorded with
Karma (1000 workflows) and PReServ (100 workflows) is because PReServ is
unable to complete queries over 1000 workflows, requiring memory in excess of
the 4GB assigned to it, thus imposing a bound on its query scalability.

5.1 Query Result Size

This experiment measures the query response time as the number of provenance
records retrieved increases. For the each of the three provenance types, a single
client queries by Workflow ID, by Service ID, and by Data Product ID respec-
tively, making one call to the provenance service per provenance document. For
Karma, the queries fetch between 0.01% and 10% of provenance documents,
distributed uniformly to prevent any locality advantage. This translates to re-
trieving between 1–100 workflow traces out of 1000 available, 10–1000 process
provenance out of 10,000 available, and 100–10,000 data provenance documents
out of 100,000 available. For PReServ, the queries return between 1–10 workflow
traces of 100 available, and 1–100 process provenance documents out of 1000 ser-
vice invocations available. Each query is averaged over 50 trials and the response
time plotted as a log–log graph shown in Fig. 7.

The X axis of the plot shows the resultset size from each type of query and the
Y axis shows the average response time of the query, both these axes being in the
logarithmic scale. All three query types for Karma and both types for PReServ
are parallel to the central diagonal on the log–log plot, implying that they all
have linear characteristics. But the slopes for the linear equations are markedly
different. Karma conservatively takes a factor of 50 lesser time than PReServ
for workflow trace queries (e.g. 0.49 seconds vs. 26.9 seconds for retrieving 10
workflow trace documents) and a factor of 200 lesser time for process provenance
queries (e.g. 0.97 seconds vs. 209.5 seconds for querying 100 process provenance
records). The query response time for data provenance is also low for Karma at
55.86 seconds for 10,000 data provenance records. The scalability of Karma in
responding to queries can be attributed to mapping the provenance activities
from an XML schema to a relational schema for storage, and the provenance
queries translate to SQL queries that leverage indices present on key fields.
PReServ provides an XQuery interface for querying over provenance records
and its database does not utilize any indices [1]. This causes all provenance
records to be accessed for resolving a query, which also leads to it running out
of memory when 1000s of records are queried over.

5.2 Simultaneous Query Clients

This experiment evaluates the scalability of the provenance service as the number
of parallel clients querying for provenance records increases from 1 to 48. This
is performed only for Karma since PReServ is less optimized for querying and

Performance Evaluation of the Karma Provenance Framework 233

Fig. 7. Query response time to retrieve provenance with increasing number of records
returned. The average time to respond to each type of query is along the Y axis and
the number of records that the query fetches increases along the X axis. Both axes are
in logarithmic scale. The averages times are over 50 iterations; the standard errors for
the response times for Karma is under 6% for all but 3 data points, and for PReServ
is under 3% for all data points.

Fig. 8. Query response time to retrieve 20 workflow trace, 200 process provenance, and
200 data provenance from increasing number of concurrent query clients. The average
query time over 50 iterations is shown on the left Y axis bar graph, the data points
being labeled with this value. The total time to complete the 50 iterations is the line
graph on the right Y axis, and is accordingly scaled by 50 times compared to the left
Y axis. The X axis shows the increasing number of parallel query clients. The standard
errors for all averages are under 4%.

hence results collected for it are less relevant. For the three types of provenance
queries, each Karma client retrieves 20 workflow traces, 200 process provenance,
and 200 data provenance documents respectively.

234 Y.L. Simmhan et al.

Figure 8 shows the average query response time for each query type along
the left Y axis as the number of concurrent clients increases along the X axis.
The times are averaged over 50 iterations with the total time for all clients
to complete the 50 iterations shown on the right Y axis. Karma shows a sub-
linear trend as the number of clients increases beyond 8, taking an average of
3.32 seconds and 25.13 seconds respectively to retrieve the workflow trace from
8 and 48 clients. The results for process and data provenance queries similarly
exhibit good scalability. As seen when submitting provenance from concurrent
clients, the slope increases when the number of clients goes beyond 8 and may
be attributed to an OS or machine threshold being reached.

6 Discussion

The above experiments establish the scalability of Karma for collecting and
querying provenance over hundreds of thousands of services and from numerous
clients. The workloads used in the experiments are typical in large collaboratory
scientific projects like LEAD [13]. Provenance collection for Karma shows a linear
trend with a low slope for both increasing number of service invocations and
for increasing levels of concurrent clients, and performs better than PReServ in
these experiments. PReServ shows better characteristics with increasing number
of data products, taking constant time unlike Karma which takes linearly time.
However, it remains comparably low for Karma in 95% of the use cases for
LEAD, that involve less than 250 data products per workflow. Querying Karma
for workflow trace, process provenance, and data provenance increases in at most
linear time as the number of results retrieved and the number of clients increase,
and it uniformly performs better than PReServ.

The difference in performance of Karma and PReServ is due both to design
choices and their implementations. Karma and PReServ share several features.
They are both stand-alone provenance frameworks and define different types of
messages to record provenance, synchronously or asynchronously, from a work-
flow’s execution – Karma using activities and PReServ using assertions. How-
ever, PReServ takes an open ended approach to defining provenance assertions,
requiring just a few fields to determine the workflow provenance and allowing ad-
ditional user-defined annotations to be submitted as part of the assertions. While
this flexibility may be required for certain applications, it tends to overlap with
the functionality provided by existing information services like metadata catalogs
and registries for data products and services. Such flexibility may also impose
limitations on its implementation, contributing to reduced performance and scal-
ability. Also lacking is inherent support for tracking data provenance, being left
to the user to define it as annotations. Karma’s activities are less expansive but
contain sufficient information to recreate provenance about a workflow run, a
service invocation, and the derivation and usage history of a data product. It
provides a light-weight and scalable implementation to meet the core needs of
recording and querying for these provenance graphs over hundreds of thousands
of service invocations and data products. In its current implementation, PRe-

Performance Evaluation of the Karma Provenance Framework 235

Serv is better suited to record provenance for a smaller number of workflows but
with rich XML annotation capabilities, while Karma is effective in meeting more
direct and scalable provenance needs in large collaboratories.

7 Conclusion and Future Work

This article evaluates the performance of the Karma provenance framework in
collecting and querying for provenance from workflow executions, and finds it to
scale well with the size of the workflows and the number of concurrent clients.
The workloads used for the experiments are motivated by the requirements of
the LEAD meteorology project [13] and is relevant to similar scientific projects.
The workloads in themselves form a benchmark to compare and evaluate other
provenance systems, and such a comparison is done with the PReServ service.

Karma is currently deployed and being used in the LEAD testbed. Our future
work includes evaluating the performance of Karma for real workflow runs and
getting usable results for them by suppressing the I/O variations we encountered
in the data intensive applications – possibly by the use of local storage instead of
network file systems. In addition to visually browsing provenance graphs, we are
investigating further ways to apply provenance. Notable among these is on using
data provenance as a factor in predicting the quality of data products to assist
in data selection and ranking in collaboratory environments [17]. Provenance
helps identify applications that produce good or poor quality data as a function
of their inputs. In the quality model we propose, this provenance function is one
of several metrics used to estimate a quality score for derived data products.

Acknowledgments. This work is supported in part by NSF cooperative agree-
ment ATM-0331480 and NSF grant EIA-0202048. The authors would like to
thank Paul Groth from the University of Southampton for helping us deploy the
PReServ server, the members of the LEAD team for their support and feedback
on our work, and Abhijit Mahabal and Ramyaa Ramyaa from Indiana University
for their help in analyzing the empirical data.

References

1. Personal communication with Paul Groth, University of Southampton, 2006.
2. Simple Linux Utility for Resource Management (SLURM) Reference Manual. Tech-

nical Report UCRL-WEB-201386, Lawrence Livermore National Laboratory, 2006.
3. Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance Collection Sup-

port in the Kepler Scientific Workflow System. In IPAW, 2006.
4. Rajendra Bose and James Frew. Lineage Retrieval for Scientific Data Processing:

A Survey. ACM Computing Surveys, 37(1):1–28, 2005.
5. Don Box, Luis Felipe Cabrera, Craig Critchley, Francisco Curbera, Donald Fer-

guson, Alan Geller, Steve Graham, David Hull, Gopal Kakivaya, Amelia Lewis,
Brad Lovering, Matt Mihic, Peter Niblett, David Orchard, Junaid Saiyed, Shivajee
Samdarshi, Jeffrey Schlimmer, Igor Sedukhin, John Shewchuk, Bill Smith, Sanjiva
Weerawarana, and David Wortendyke. Web Services Eventing (WS-Eventing),
August 2004.

236 Y.L. Simmhan et al.

6. Uri Braun, Simson Garfinkel, David A. Holland, Kiran-Kumar Muniswamy-Reddy,
and Margo I. Seltzer. Issues in Automatic Provenance Collection. In IPAW, 2006.

7. Juliana Freire, Claudio T. Silva, Steven P. Callahan, Emanuele Santos, Carlos E.
Scheidegger, and Huy T. Vo. Managing Rapidly-Evolving Scientific Workflows. In
IPAW, 2006.

8. Paul Groth, Michael Luck, and Luc Moreau. A Protocol for Recording Provenance
in Service-oriented Grids. In OPODIS, 2004.

9. Paul Groth, Simon Miles, Weijian Fang, Sylvia C. Wong, Klaus-Peter Zauner,
and Luc Moreau. Recording and Using Provenance in a Protein Compressibility
Experiment. In HPDC, 2005.

10. Yi Huang, Alek Slominski, Chatura Herath, and Dennis Gannon. WS-Messenger:
A Web Services based Messaging System for Service-Oriented Grid Computing. In
CCGrid, 2006.

11. Gopi Kandaswamy, Liang Fang, Yi Huang, Satoshi Shirasuna, Suresh Marru, and
Dennis Gannon. Building Web Services for Scientific Grid Applications. IBM
Journal of Research and Development, 50(2/3):249–260, 2006.

12. James D. Myers, Carmen Pancerella, Carina Lansing, Karen L. Schuchardt, and
Bret Didier. Multi-Scale Science: Supporting Emerging Practice with Semantically
Derived Provenance. In Semantic Web Technologies for Searching and Retrieving
Scientific Data Workshop, 2003.

13. Beth Plale. Resource Requirements Study for LEAD Storage Repository. Technical
Report 001, Linked Environments for Atmospheric Discovery, 2005.

14. Beth Plale, Dennis Gannon, Dan Reed, Sara Graves, Kelvin Droegemeier, Bob
Wilhelmson, and Mohan Ramamurthy. Towards Dynamically Adaptive Weather
Analysis and Forecasting in LEAD. LNCS, 3515:624–631, 2005.

15. Yogesh Simmhan, Beth Plale, and Dennis Gannon. A survey of data provenance
in e-science. SIGMOD Record, 34(3):31–36, 2005.

16. Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. A Framework for Collecting
Provenance in Data-Centric Scientific Workflows. In ICWS, 2006.

17. Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. Towards a Quality Model
for Effective Data Selection in Collaboratories. In IEEE Workshop on Scientific
Workflows and Dataflows (SciFlow), 2006.

18. Jun Zhao, Carole Goble, and Robert Stevens. An Identity Crisis in The Life
Sciences. In IPAW, 2006.

19. Yong Zhao, Michael Wilde, and Ian T. Foster. Applying the Virtual Data Prove-
nance Model. In IPAW, 2006.

Exploring Provenance in a Distributed Job

Execution System�

Christine F. Reilly and Jeffrey F. Naughton

University of Wisconsin–Madison
Department of Computer Sciences

1210 West Dayton Street, Madison, Wisconsin 53706, USA
{chrisr, naughton}@cs.wisc.edu

Abstract. We examine provenance in the context of a distributed job
execution system. It is crucial to capture provenance information during
the execution of a job in a distributed environment because often this
information is lost once the job has finished. In this paper we discuss the
type of information that is available within a distributed job execution
system, how to capture such information, and what the burdens on the
user and system are when such information is captured. We identify what
we think is the key data that must be captured and discuss the collection
of provenance in the Quill++ project of Condor. Our conclusion is that it
is possible to capture important provenance information in a distributed
job execution system with relatively little intrusion on the user or the
system.

1 Introduction

Scientific computing applications are continuously growing in computational
complexity and in the amount of data consumed and produced [1,2,3,4]. Many
scientists utilize distributed job execution systems to meet their computational
needs [5]. Within a distributed job execution environment much information is
generated and exchanged regarding the execution and data access activities of
the scientific application. This information can be used for tracking jobs through
the system, recalling the activities of completed jobs, and for system accounting
and debugging purposes. By archiving this information in a system that is visible
to the user it can also be used to provide provenance information.

Our goal is to capture the provenance information that is available within
a distributed job execution system. We specifically focus on the Condor sys-
tem [5]; however, our discussion of the requirements for providing provenance
in the context of a job execution system is applicable to the general category of
distributed job execution systems. Condor is a distributed job execution system
that runs on a dedicated cluster of machines, on idle desktop workstations, or
on a combination of both environments [5,6]. This paper presents preliminary
work on providing provenance information in Condor. In this work we explore
� To be published in: Proceedings of the International Provenance and Annotation

Workshop, May 3-5, 2006, Chicago, IL. In: Lecture Notes in Computer Science.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 237–245, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

238 C.F. Reilly and J.F. Naughton

categories of provenance in the context of a distributed job execution system,
examine what provenance data is available in Condor, and discuss how this data
can be captured.

The provenance gathered in Condor is an important part of the overall prove-
nance of data items used by the jobs run in the system. This provenance must be
gathered while a job is running because it is likely to be unavailable once the job
has completed. Condor users have expressed the desire for being able to obtain
provenance information about their jobs. Scientists are notorious for frequently
changing their data and executable programs and keeping the same file name
across multiple versions. As a result, it is often very difficult for a scientist to
determine exactly which version of their program was applied to which version
of their data to produce a given output. A second provenance need is the ability
to determine if a job is affected by a hardware problem. A number of years ago,
Intel reported a bug in the floating point unit of one of its processors. When this
happened users wanted to know if their jobs were run on machines with a faulty
processor. Our provenance system provides the information needed to meet both
of these provenance needs.

We identify two types of provenance in Condor: logical provenance and in-
frastructure provenance. In our context, logical provenance consists of the input
data items and executable program that create an output data item. Infrastruc-
ture provenance for an output data item consists of information about when
the item was created and what parts of the Condor system were involved in the
creation of the data item. These two types of provenance are described in detail
in Sect. 2.

The first issue we discuss in this paper is what type and amount of informa-
tion can be captured in Condor. It is widely agreed that provenance is useful
for scientific applications [2,4] and that, intuitively, a system should provide as
much information as possible. Two factors inhibit us from collecting all possible
information: some types of information are difficult to detect, and it is infeasible
to store all possible information. In Sect. 2 we examine the information available
in Condor and discuss the benefits and drawbacks of various levels of provenance
we are able to achieve with this information.

The second issue we address in this paper is how to gather provenance infor-
mation in Condor. There are two entities that have information: the system and
the user. Ideally we would like to design a provenance system that is transparent
to the user and has few alterations to and impacts on Condor. Because both the
user and the system hold provenance information, we require some amount of
intrusion into each entity in order to gather provenance information. In Sect. 3
we discuss the provenance information gained from various levels of intrusion on
both entities. We then discuss the provenance capabilities of the Condor Quill++
project in Sect. 4.

2 Categories of Provenance Information

This section examines the provenance information available in a distributed job
execution system. In order to understand the space of provenance information we

Exploring Provenance in a Distributed Job Execution System 239

divide it into various categories. The first division is on the type of information
stored in the system: logical or infrastructure. Within each of these two types
we present divisions of level of reproducibility and granularity.

Data provenance in a distributed job execution system involves three entities:
the job execution system, the user, and the provenance system. The job exe-
cution system runs user submitted jobs that perform the transformation from
input data to output data. The user submits jobs and manages data items and
transformation functions. The provenance system stores information about data
items, infrastructure items, and instances of data transformations.

2.1 Logical Provenance

Logical provenance describes the input data and transformation process that
create some specific output data. This is the type of provenance that is dis-
cussed in much of the related work [4,7,8,9,10,11,12,13,14,15,16]. We define the
logical provenance of an output data item as the input data items and trans-
formation function that produced the output data item. Because we are looking
at the portion of provenance that is related to a distributed job execution sys-
tem, we focus only on how data is manipulated within the system. We assume
the transformation function is deterministic and free of side-effects. Therefore,
given the same input data the transformation function will always produce the
same output data. The two variables we identify for logical provenance are its
granularity and level of reproducibility. Granularity describes the level of detail
represented by a data item. The level of reproducibility of logical provenance is
determined by the method the system uses for identifying data items.

The level of granularity for logical provenance describes the level of detail
represented by a data item. The desired granularity level depends on how the
provenance information will be used [4]. Additionally, the granularity level that
a system can provide depends on at what level that system can uniquely identify
and track single data items. Some examples of granularities are file, portion of
file, database tuple, and byte. We expect that in most distributed job execution
systems a granularity of file level can be easily achieved because that is the
granularity level at which these systems generally manage data.

The level of reproducibility provided by a logical provenance system is deter-
mined by what information is stored in the system for each provenance item.
In this discussion we assume that every provenance item has a unique identifier
that is provided by either the user or the job execution system. We define three
reproducibility levels: inform, verify, and redo.

A system with logical inform provenance can tell the user what provenance
item identifiers (e.g., file names) are associated with a specific use instance.
If the user can associate the identifiers with the corresponding items in her
possession then the user can reproduce the use instance. The system stores the
unique name of the provenance item and identifies how it was used (i.e., input,
executable, output). Logical verify provenance extends logical inform provenance
by determining whether a proposed job is identical to a previous job, meaning
that the two jobs have the same input and executable files. Verify provenance

240 C.F. Reilly and J.F. Naughton

is stronger than inform provenance because it detects, for example, if the same
identifier is used for files that have different content. We suggest using a checksum
to probabilistically verify that data items are identical because storing the entire
data item is likely to require a large amount of storage.

A system with logical redo provenance is able to rerun a previously submitted
job. This system stores the entire provenance item (e.g., entire data files and
executables) along with its use type. Although logical redo provenance is an
intuitively desirable feature [17], we do not view this level of reproducibility
to be practical in most cases. Because redo provenance requires the system to
store every data item, the storage requirements for such a system could quickly
become unreasonable. One case where logical redo provenance may be practical
is if the provenance system and user’s data storage system are integrated such
that the provenance system and user are using the same data storage system
[18,19].

2.2 Infrastructure Provenance

Infrastructure provenance information describes the environment involved in the
creation of a data item. There are two reasons why infrastructure provenance is
useful. First, if the creation of a data item is dependent on specific environment
variables then these variables are important portions of the provenance of the
data item. Second, if part of the infrastructure is found to be defective then data
items that were created using the defective infrastructure can be identified. In-
frastructure provenance consists of the two same variables as logical provenance:
granularity and level of reproducibility. However, these variables have slightly
different definitions for infrastructure provenance.

For infrastructure provenance the level of granularity describes what informa-
tion about the environment is stored by the provenance system. One category is
information about the environment that created the data, such as the creation
date, specific processor, operating system, and amount of memory. A second
category is the system state when the data was created, for example the gen-
eral system load, and the contents of the memory and disk on the machine that
created the data.

For most systems there is a set of infrastructure information that is relatively
easy to obtain and is fairly useful. Examples of such information are: creation
time, specific processor, operating system, amount of memory, and general sys-
tem load. If at a later date a processor, or the memory or disk associated with a
specific processor, is found to be defective then the data items created with that
processor can be identified. We can also picture infrastructure information that
is difficult to record or recreate, such as the computer registry or specific state
of the memory. Additionally some infrastructure information, such as the com-
piler used by the transformation function, is found at the user level. Depending
on how provenance information in communicated to the provenance system this
user level information may or may not be available.

Infrastructure provenance has two levels of reproducibility: inform and redo.
For both levels the provenance system records infrastructure information specific

Exploring Provenance in a Distributed Job Execution System 241

to a data transformation instance. A system with inform provenance can tell
the user what infrastructure items were used in the creation of a specific data
item. With redo provenance the system can recreate a specific data item using
the same infrastructure as originally created that data item. We expect that in
most cases infrastructure inform provenance is sufficient and redo provenance is
unnecessary.

3 Obtaining Provenance Information

In this section we address the question of how the provenance system obtains
provenance information. As in Sect. 2 we assume that three entities are involved
in data provenance: the provenance system, the job execution system, and the
user. The provenance system must obtain provenance information from a com-
bination of both the user and the job execution system. We assume that at a
minimum the job execution system provides the provenance system with system
infrastructure information related to a job.

We describe the trade-offs between the amount of provenance information
gathered and intrusions on the system and the user with a cube where the
amount of intrusion on the system is on the x-axis, the amount of intrusion on
the user is on the y-axis, and the amount of provenance information is on the
z-axis (Fig. 1). The range of each axis is 0 to 1. A job execution system that
has no provenance capabilities is located at the (0,0,0) point. A system located
anywhere on the back face of the cube, where the z-axis is equal to 1, collects
all possible provenance information. The ultimate, and perhaps unachievable,
goal is the (0,0,1) point, where all provenance information is provided with no
intrusion on either the system or user. Our goal is a system that provides a large
amount of provenance information while having small intrusions on both the user
and the job execution system. The point in Fig. 1 labeled “Goal” is intended
to loosely suggest a desirable location, where the cost of moving further back in
the cube would require dramatic increases in the intrusion on the user and/or
system.

We discuss three configurations of how information is provided to the prove-
nance system: job execution system based, user based, and shared. For each of
these configurations we discuss the feasibility of implementing the method and
the reliability of that method for gathering the provenance information. The fea-
sibility of a configuration refers to how likely we think it is that current systems
could and would be altered in order to implement the method. A high feasibility
means that it is very likely that the configuration could be implemented because
it requires few or no changes to current systems. A low feasibility means that
it is unlikely that the configuration could be implemented because it requires
many or difficult changes to current systems. The reliability of a configuration
describes how likely we think it is that the method will capture provenance in-
formation. We have greater trust in the system than in the user for providing
accurate provenance information. Therefore a high reliability means that prove-
nance information is fully provided by the system and a low reliability means
that provenance information is fully provided by the user.

242 C.F. Reilly and J.F. Naughton

Goal

Information(0,0,0)
System Intrusion

U
se

r
In

tr
u

si
o

n

Fig. 1. Provenance Trade-offs Cube

When the job execution system provides all provenance information to the
provenance system, the user can remain ignorant of the provenance system unless
she requests provenance information. This scenario exists when the user intrusion
equals zero on the provenance trade-off cube (Fig. 1). In such a scenario it is
hard to capture all provenance information without intrusion on the system. For
example, system intrusion is necessary for detecting access to files that are not
declared in the job submission file. For such reasons we view a purely system-
based approach to be of low feasibility.

If all provenance information is provided by the user then few to no alterations
to the job execution system are necessary. This scenario exists when the system
intrusion equals zero on the provenance trade-off cube (Fig. 1). We categorize
this configuration of information gathering as high feasibility since few if any
changes to the job execution system are necessary. However, this configuration
has low reliability because we are completely depending on the user to provide
accurate and complete information.

If both the user and the job execution system are aware of the provenance
system then both can be relied upon for the gathering of provenance information.
This is the scenario represented by the point labeled “Goal” in Fig. 1. In this
case we rely on the job execution system to send messages to the provenance
system. The user is required to be aware of the provenance system to enable
the job execution system to send reliable messages to the provenance system.
Exactly how the job execution system gathers provenance information and what
the user must do depend on the structure of the job execution system.

4 Provenance in Condor

Quill++[20], an addition to Condor, was originally developed by the CondorDB
team to provide better support for accounting and system monitoring, but we
quickly realized that it could also be used to provide support for provenance.
Quill++ writes information about machines, jobs, and workflows to logs then
sniffs these logs and inserts the information into a central database. This ap-

Exploring Provenance in a Distributed Job Execution System 243

proach allows Quill++ to make minimal changes to the Condor code and pre-
vents Quill++ from blocking Condor. Quill++ has logical verify provenance ca-
pabilities and infrastructure inform provenance capabilities. Logical provenance
information is stored at the granularity of files with the file identifier and check-
sum stored for each file. Infrastructure provenance includes information about
machine hardware, software, and activity. Machine hardware information in-
cludes: processor identification, processor architecture, and amount of memory.
Machine software information includes: operating system and Condor version.
Machine activity information includes: if the machine is claimed by a Condor
job, if the machine is idle, the time when Condor last heard from the machine,
and statistics regarding machine load and activity.

Provenance information gathering is shared between the system and user.
Information about jobs and machines is gathered from the Condor system by
Quill++. File information is gathered from the job submission file. In order for
Quill++ to obtain information about files the user must specify the file identifier
and use type in the job submission file. It is possible that a job may use files
that are not specified in the job submission file leaving Quill++ unaware of such
files.

5 Conclusions and Future Work

We have shown that a good amount of provenance functionality can be achieved
by storing information that is readily available within a distributed job execu-
tion system. For example, Quill++ stores information about the files used by a
job, when and where the job ran, and some system state information. Quill++
imposes a minimal burden on the execution system and user, and provides what
we hope is a useful amount of provenance information.

We have identified a number of items to explore in the future. Our first goal
is to extend Quill++ to perform more system based gathering of provenance
information by recording file information when Condor transfers files to the
machine running a job. A second problem is to analyze the storage requirements
of the provenance system in Quill++. Our preliminary analysis shows that in a
cluster of thousands of machines the provenance portion of Quill++ generates
a manageable amount of information over the period of one year. However, at
some point in time the provenance information will need to be archived. Our
third area of future work is to examine whether the provenance information
regarding workflows must be explicitly recorded or if workflow provenance is
recoverable from the provenance recorded for the component jobs.

Acknowledgments

This work was supported in part by National Science Foundation Award SCI-
0515491.

244 C.F. Reilly and J.F. Naughton

References

1. Bose, R., Frew, J.: Lineage retrieval for scientific data processing: A survey. ACM
Computing Surveys 37 (2005) 1–28

2. Jagadish, H., Olken, F.: Data management for the biosciences: Report of the
NSF/NLM workshop on data management for molecular and cell biology, national
library of medicine. Technical Report LBNL Report LBNL-52767, Lawrence Berke-
ley National Laboratory (2003)

3. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science.
SIGMOD Record 34 (2005) 31–36

4. Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance techniques.
Technical Report IUB-CS-TR618, Computer Science Department, Indiana Univer-
sity, Bloomington, Indiana (2005)

5. Condor: Project homepage, http://www.cs.wisc.edu/condor/ (2006)
6. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor – A distributed job

scheduler. In Sterling, T., ed.: Beowulf Cluster Computing with Linux. MIT Press
(2001)

7. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data
provenance. In: International Conference on Database Theory (ICDT). (2001)

8. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
In: Proceedings of the 27th VLDB Conference, Roma, Italy. (2001)

9. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
Technical report, Stanford University Database Group (2001)

10. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations.
VLDB Journal 12 (2003) 41–58

11. Fan, H., Poulovassilis, A.: Tracing data lineage using schema transformation path-
ways. In B.Omelayenko, Klein, M., eds.: Knowledge Transformation for the Se-
mantic Web. IOS Press (2003)

12. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: Chimera: A virtual data system for
representing, querying, and automating data derivation. In: 14th International
Conference on Scientific and Statistical Database Management. (2002)

13. Frew, J., Bose, R.: Earth system science workbench: A data management in-
frastructure for earth science products. In: Thirteenth International Conference on
Scientific and Statistical Database Management, Fairfax, Virginia. (2001) 180–189

14. Widom, J.: Trio: A system for integrated management of data, accuracy, and
lineage. In: CIDR. (2005)

15. Woodruff, A., Stonebraker, M.: Supporting fine-grained data lineage in a database
visualization environment. In: Proceedings of the 13th International Conference
on Data Engineering, Birmingham, England. (April 1997) 91–102

16. Cui, Y., Widom, J.: Storing auxiliary data for efficient maintenance and lineage
tracing of complex views. In: Proceedings of the International Workshop on Design
and Management of Data Warehouses (DMDW), Stockholm, Sweden. (2000)

17. Szomszor, M., Moreau, L.: Recording and reasoning over data provenance in web
and grid services. In Meersman, R., Tari, Z., Schmidt, D.C., eds.: On The Move to
Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE - OTM Confeder-
ated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily,
Italy, November 3-7, 2003. Volume 2888 of Lecture Notes in Computer Science.,
Springer (2003) 603–620

18. Barga, R.: Automatic generation of workflow execution provenance. In: Inter-
national Provenance and Annotation Workshop (IPAW’06), Chicago, May 2006.
(2006) http://www.ipaw.info/ipaw06.

Exploring Provenance in a Distributed Job Execution System 245

19. Braun, U., Garfinkel, S., Holland, D.A., Muniswamy-Reddy, K.K., Seltzer,
M.I.: Issues in automatic provenance collection. In: International Prove-
nance and Annotation Workshop (IPAW’06), Chicago, May 2006. (2006)
http://www.ipaw.info/ipaw06.

20. Huang, J., Kini, A., Reilly, C., Robinson, E., Shankar, S., Shrinivas, L., DeWitt,
D., Naughton, J.: An overview of Quill++: A passive operational data logging
system for Condor. https://www.cs.wisc.edu/condordb (2006)

gLite Job Provenance�

Frantǐsek Dvořák, Daniel Kouřil, Aleš Křenek, Luděk Matyska, Miloš Mulač,
Jan Posṕı̌sil, Miroslav Ruda, Zdeněk Salvet, Jǐŕı Sitera, and Michal Voc̊u

CESNET z.s.p.o., Zikova 4, 160 00 Praha 6, Czech Republic
First.Last@cesnet.cz

Abstract. The Job Provenance (JP) service is designed to automate
keeping track of computations on large scale Grids, giving thus users
a tool to correctly archive information about their jobs and to re-submit
any job in a reconstructed environment. JP provides a permanent min-
imal record of job (and its environment) related information, to which
free-form user annotations can be added. JP also offers the capability of
configuring any number of indexed logical views on the large collections
of raw data, allowing efficient processing of even complex user queries
selecting on both system data and the annotations. The scalable archi-
tecture, capable to handle millions of jobs in a single JP installation, and
integrated into the EGEE gLite middleware environment is presented.

1 Job Provenance

New methods, instruments, and sensors are producing extreme amount of raw
experimental data. The data must be further processed to provide a novel scien-
tific insight and new knowledge. This leads to increased importance of processed
(computed) scientific data whose amount growth at least exponentially. In this
context the computation gets into the position of a traditional scientific ex-
periment, including the principle that any results, should they be accepted by
the community, must be verifiable by re-doing the experiment, i. e. re-running
the computation. Consequently, an exact description of the computation —
the job that produced a piece of data —contributes to the data provenance.

Unfortunately, many users, despite being scientists who are used to keep thor-
ough track of their “real” experiments, tend to underestimate the importance of
their computational experiments rather frequently. A common practice is run-
ning a job, analyzing and keeping the output, modifying some input parameters
to run another iteration, but not archiving the original parameters. Then, after
the user forgets the original parameters, the results of the first job get orphaned
in the provenance sense, despite being archived otherwise.

In addition, the environment (e. g. versions of used software or internal para-
meters) of the job may affect the result of the computation, hence contributing
to its provenance too.

We propose the Job Provenance service to automate the important but tedious
task of keeping track of computations in the case of Grid jobs, as well as to allow
effective access to the gathered data.
� This work has been supported by the EU EGEE project INFSO-RI-508833.

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 246–253, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

gLite Job Provenance 247

1.1 Summarized Requirements

The designed service must keep a permanent (for several years) record of each
registered job. This record contains information that is necessary to re-run the
job, achieving the same results. The length of each record must be as minimal
as possible, data which are stored elsewhere should not be included. The service
should scale over the extent and throughput of current Grid middleware (e. g.
EGEE reports [11] 20k jobs per day, i. e. 7.5M per year). The user should be
allowed to add free-form annotations to each job record. A querying interface
must be provided, allowing to inspect and retrieve records according to criteria
specified on either the job data or the user annotations.

We have also more practically oriented goals, related to the fact that the
service will be part of the gLite Grid middleware (Sect. 2.1). The first release
should be deployed in at least moderate scale in 2006, so that feedback and
eventual design revision may happen within the EGEE II project, i. e. by the
end of 2007.

1.2 Related Work

A primary work on provenance is part of the EU Project Enabling and Sup-
porting Provenance in Grids for Complex Problems [2]. They proposed a broad
definition of provenance— the provenance of a piece of data is the process that
led to the data — and presented proof of concept work on provenance in a Ser-
vice Oriented Architecture [8]. Most current provenance architectures are con-
cerned with incorporation of provenance capabilities into a Web Service-based
Grid environments [4,5,10,12,13]. The usually considered scenario of execution
of a composite service by trusted workflow engine provides the ability to collect
and archive the provenance about the transformation of data during invocation
of web services. This architecture is not practically suitable for our work as we
need to support considerable number of “legacy”, non-WS-based services.

In EGEE related projects, number of HEP experiments have their own work-
flow systems that also provide some provenance and annotation (metadata) ca-
pabilities. The ATLAS experiment uses AMI database application framework [7]
for production physics bookkeeping. AMI also manages “tasks”— the transfor-
mations that can be applied to datasets and their configuration parameters—
and stores links between tasks and datasets. AliEn (ALICE Environment) [1]
is a Grid framework that takes care of job splitting and execution, manages
datasets, and keeps track of the basic provenance of each executed job or file
transfer. AliEn File Catalog also provides interface for attaching new annotation
(metadata) database tables to its standard directory tables. SAM [6] used in the
DZero Experiment is a data handling system designed to store and retrieve files
and associated metadata, including a complete record of the processing which has
used the files. The major drawback of those systems is that they do not typically
record activities of other middleware services and do not provide full provenance
data due to their position at the top of the job submission (service invocation)
chain. On the contrary, the Job Provenance is designed as an essential Grid
service, defining a unified but still flexible framework for keeping records of jobs.

248 F. Dvořák et al.

Fig. 1. Data flow into gLite Job Provenance

2 General Design

2.1 The Place of JP in gLite

The gLite Workload Management System (WMS) [3] consists of a set of Grid
middleware services that facilitate convenient and efficient distribution and man-
agement of tasks across Grid resources. It accepts and dispatches users’ requests
for job management (mainly submission and cancellation), the decision which
resource should be used is the result of a matchmaking process between requests
and available resources. The gLite job properties and requirements are described
in the job description language (JDL). The submission request can contain aux-
iliary input files (input sandbox) copied to an execution machine by WMS.

Currently, the information about jobs submitted to gLite Workload Manage-
ment System is collected by the Logging and Bookkeeping (L&B) service. L&B
tracks jobs in terms of events received from WMS components and CEs that are
instrumented with the L&B calls. The events are collected by the bookkeeping
server that processes them in a real time to give overall view on the actual job
state. The user may query the bookkeeping server to obtain either the raw events
or the computed job state, she may also register for receiving notifications on
particular job state changes.

The L&B takes care of job information only during the job lifetime, purging
the database when the job leaves the Grid. Also, L&B does not keep the input
and output sandboxes, they are handled separately by WMS. The purpose of
the gLite Job Provenance is to provide the permanent storage of the job related
information as stored within the L&B, to couple it with the input sandboxes
and other system oriented information necessary to reproduce the environment
where a particular job run. Fig. 1 depicts basic gLite middleware components
and their interaction with the Job Provenance.

gLite Job Provenance 249

2.2 Data Gathered from Middleware and User Annotations

The storage capacity requirement for a service to keep permanent track of
a very large number of Grid jobs may become enormous. Consequently the data
recorded for each job must be strictly limited. As a rule of thumb we store only
volatile data which are neither stored reliably elsewhere nor are reproducible by
the job. The data gathered from the gLite middleware fall into the following
categories:

– job inputs, directly required for job re-running
• complete job description (JDL) as submitted to WMS
• miscellaneous input files (gLite WMS input sandbox) provided by the

user (but job input files from remote storage are not copied to JP)
– job execution track, witnessing the environment of job execution

• complete L&B data, i. e. when and where the job was planned and exe-
cuted, how many times and for what reasons it was resubmitted etc.

• “measurements” on computing elements, e. g. versions of installed soft-
ware, environment settings etc.

In addition, the service allows the user to add arbitrary annotations to a job in
the form of “name = value” pairs. Annotations can be recorded either during the
job execution or at any time afterward. Besides providing information on the job
(e. g. it was a production-phase job of particular experiment) these annotations
may carry information on relationships between the job and other entities like
external datasets, forming the desired data provenance record.

2.3 Raw and Logical Data Representation

At the raw level, data enter JP and are stored in two ways: (i) small size tags,
i. e. “name = value” pairs, and (ii) uploaded bulk files. At the logical level, any
piece of information stored in JP is represented as a value of particular named
attribute. In this representation both the user annotations and the “system”
middleware data are unified in a single view.

Data stored as tags map to attributes in a straightforward way, name and
value of the tag becoming name and value of an attribute. An uploaded file
(L&B log, job sandbox, . . .) is usually a source of multiple attributes. JP defines
a file-type plugin interface API ; the task of the plugin is parsing a particular file
type and providing calls to retrieve attribute values.

For the purpose of extensibility an attribute name always falls into a
namespace. Currently we declare namespaces for JP system attributes (e. g. job
owner or registration time), attributes inherited from L&B, and unqualified user
tags.

2.4 Typical Usage

Propagation of data from other middleware components to JP is done trans-
parently. The user may specify both the destination JP and which data are
gathered via special parameters in the job description, however, these settings

250 F. Dvořák et al.

may be overridden by WMS or CE policy. The user also interacts with JP di-
rectly when recording annotations. Retrieval of information on a concrete job
is fairly straightforward— the job is the primary entity in JP and all data are
organized on a per-job basis, hence easily available.

But the principal purpose of JP is searching for jobs according to some criteria,
notably jobs that either produced or used a given piece of data, freeing the user
of the burden to keep complete records on her jobs. Such a search would result
in scanning through all data stored in JP which are expected to be huge, being
unacceptable for frequent user queries. Instead we define an architecture that
allows batch pre-processing of configurable queries. The result of such query,
a superset of certain user query type, is further indexed in order to provide fast
response to concrete user queries.

3 Architecture

JP is formed of two classes of services: permanent Primary Storage accepts and
stores job data while possibly volatile and configurable Index Servers provide an
optimized querying and data-mining interface to the end-users.

3.1 Primary Storage

The JP Primary Storage (JPPS) is a permanent service responsible for gath-
ering the job data and their long-term archival. The primary data are kept in
as compact form as possible, and only minimal metadata (job ID and owner,
registration time) are maintained and indexed.

A single instance of JPPS is formed by a front-end, exposing its operations
via a web-service interface1, and a back-end, responsible for actual data storage
and providing the bulk file transfer interface. In the current implementation
metadata are stored in a relational database. The back-end uses Globus grid-
ftp server enriched with authorization callbacks accessing the same database to
check whether a user is allowed to upload or retrieve the given file. Both the
front- and back-ends share a filesystem so that the file-type plugins linked into
the front-end access their files via POSIX I/O.

Job registration. Each job has to be explicitly registered with JP. The
registration is done transparently, the L&B server calls JPPS front-end
RegisterJob operation upon job submission (in parallel with the job regis-
tration in L&B).

Data upload. The RecordTag operation records the “name = value” tags.
Uploading a bulk file is a more complex, three-stage sequence:
– Call StartUpload front-end operation. If authorization check succeeds,

the service responds with upload URL with a limited time span.
– Upload the file to the specified URL. The authorization callback of the

grid-ftp server checks whether this particular URL was “opened” in the
previous step for the concrete user and is still valid.

1 Described in detail in [9], documented web service definitions can be found at
http://egee.cesnet.cz/en/WSDL/

gLite Job Provenance 251

– Confirm the finished upload with CommitUpload front-end operation.
This “closes” the URL for upload, makes the file available to the front-
end, and opens the URL for eventual download.

Index Server feed is the data-mining interface called by JP Index Servers
described in Sect. 3.2.

Data retrieval. The only direct data retrieval supported by JPPS is keyed by
ID of jobs. There are two operations, both taking job ID as their argument:
– GetJobAttributes retrieves attribute values, either stored as user tags

or extracted from uploaded files via the file-type specific plugins.
– GetJobFiles returns URL’s pointing to the job files stored at the Pri-

mary Storage back-end. The user may retrieve the raw files via the back-
end interface, and parse them on her own.

Only limited number of JPPS installations must be deployed even on a large
Grid to concentrate the provenance data. At most one JPPS per a virtual or-
ganization is envisaged for the EGEE environment. This mean each JPPS must
be able to deal with data on millions of jobs. The typical size of an L&B dump
is around 10 kB per compressed record, and gLite users are encouraged not to
use large job sandboxes, too. Consequently, the back-end storage requirements
are at the order of 10-100GB. JPPS metadata are formed by a single tuple for
each job and for each file, with unique indices on job ID and file name. The used
MySQL database engine is capable to handle millions of such records.

Primary Storage covers the first set of requirements specified in Sect. 1.1—
storing a compact job record, allowing the user to add annotations, and providing
elementary access to the data.

3.2 Index Server

Fig. 2. Index Server interactions

The role of Index Servers (JPIS) is
processing and re-arranging the data
from Primary Storage(s) into a form
suitable for frequent and complex user
queries. A typical interaction is shown
in Fig. 2.

1. The user queries one or more
JPIS, receiving a list of ID’s of
matching jobs.

2. JPPS is directly queried for addi-
tional job attributes or URL’s of
stored files.

3. The required files are retrieved.

The current format of the user query is a list of lists of conditions. A condition
is comparison (less, greater, equal) of an attribute w. r. t. a constant. Items of
an inner list must refer to the same attribute and they are logically or-ed. Finally
the inner lists are logically and-ed. According to our experience with the L&B

252 F. Dvořák et al.

service, this query language is powerful enough to satisfy user needs while simple
enough to allow efficient implementation.

Index Servers are created, configured, and populated semi-dynamically ac-
cording to particular user community needs. The configuration is formed by:

– one or more Primary Storages to contact,
– conditions on jobs that should be retrieved,
– list of attributes to be retrieved,
– list of attributes to be indexed — a user query must refer to at least one of

these for performance reasons.

The set of attributes and the conditions specify the set of data that is retrieved
from JPPS, and it reflects the assumed pattern of user queries. The amount of
data fed into a single JPIS instance is assumed to be only a fraction of data in
JPPS, both regarding the number of jobs, and the number of distinct attributes.

Communication between JPIS and JPPS involves two complementary web-
service operations: JPIS calls the FeedIndex operation of JPPS, specifying the
list of attributes and conditions. Unlike the user queries, the query on JPPS is
a single and-ed list, allowing less complex processing on JPPS where significantly
larger data set are involved. JPPS responds by calling the UpdateJobs operation
of JPIS (repeatedly to split up large dataset).

The following flags in the FeedIndex call specify the query mode:

– history — JPPS should process all its stored data, giving the user the guar-
anty that if her query is a logical restriction of the JPIS configuration, it
returns a complete result. This type of query is usually necessary to popu-
late JPIS but it imposes rather high load on JPPS.

– continuous — JPIS registers with JPPS for receiving future updates when
data matching the query arrive. This type of query allows JPIS to be kept
up to date while imposing minimal load on JPPS.

The current JPIS implementation keeps the data also in a MySQL database.
Its schema is flexible, reflecting the Server configuration (columns are created
to hold particular attribute value, as well as indices). There is no prescribed
relationship between Primary Storage and Index Server installations. An Index
Server may retrieve data from multiple Primary Storages and vice versa.

4 Conclusion

The gLite Job Provenance service is a specific provenance that helps to keep track
of millions of jobs, their environments and inputs in large Grids. Data collected
directly by the Grid middleware could be arbitrarily annotated at any time.
While designed as an independent service, the JP implementation is integrated
into the EGEE gLite middleware.

End users can query JP to obtain data about a specific job. In addition, user
communities are supposed to install JP Index Servers to process continuously
the JP data (even collecting data from several JP Primary Storages) and to

gLite Job Provenance 253

provide logical views optimized for specific users’ queries. In this way the users
obtain more complex information and knowledge from the JP data. Independent
Index Servers can be deployed in order to provide different logical views, giving
thus fast access to even the largest collections of job related data.

The gLite Job Provenance service is currently being deployed on the EGEE
Grid. A set of Index Servers is pre-configured to provide most common logical
views on the data. The large scale deployment will test the architecture and its
scalability and it will also provide a necessary feedback for further extensions: the
plug-ins, specific IS configurations, expressing power of the annotations, specific
tools for manipulation with the primary data (e.g. automatic and parametrized
job re-submission), etc. Also, the deployment will be used to test and extend the
current simple authorization model used in the first JP implementation.

References

1. AliEn (ALIce ENvironment). http://aliceinfo.cern.ch/AliEn .
2. EU FP6 Programme Enabling and Supporting Provenance in Grids for

Complex Problems. http://twiki.gridprovenance.org/bin/view/Provenance/

ProjectInformation.
3. gLite—Ligthweight Middleware for Grid Computing. http://glite.web.cern.ch/

glite/default.asp.
4. Mygrid Provenance Outline. http://phoebus.cs.man.ac.uk/twiki/bin/view/

Mygrid/ProvenanceOutline.
5. PASOA: Provenance Aware Service Oriented Architecture. http://twiki.pasoa.

ecs.soton.ac.uk/bin/view/PASOA/AboutPasoa .
6. SAM (Sequential data Access via Meta-data). http://d0db.fnal.gov/sam/.
7. The Atlas Metadata Interface. https://atlastagcollector.in2p3.fr:8443/AMI/.
8. Liming Chen, Victor Tan, Fenglian Xu, Alexis Biller, Paul Groth, Simon Miles,

John Ibbotson, Michael Luck, and Luc Moreau. A proof of concept: Provenance
in a Service Oriented Architecture. In Proceedings of the fourth UK e-Science All
Hands Meeting, Nottingham, UK, 2005.

9. EGEE JRA1. EGEE Middleware Design—Release 1. https://edms.cern.ch/

document/487871/.
10. Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording provenance

in service-oriented grids. In Proceedings of the 8th International Conference on
Principles of Distributed Systems (OPODIS04), 2004.

11. EGEE JRA2. Job Metrics. http://egee-jra2.web.cern.ch/EGEE-JRA2/QoS/

JobsMetrics/JobMetrics.htm.
12. Shrija Rajbhandari and David W. Walker. Support for Provenance in a Service-

based Computing Grid. In Proceedings of the third UK e-Science All Hands Meet-
ing, Nottingham, UK, 2004.

13. Paul Townend, Paul Groth, and Jie Xu. A provenance-aware weighted fault toler-
ance scheme for service-based applications. In Proceedings of the 8th IEEE Inter-
national Symposium on Object-oriented Real-time distributed Computing (ISORC
2005), 2005.

An Identity Crisis in the Life Sciences

Jun Zhao, Carole Goble, and Robert Stevens

School of Computer Science, University of Manchester, M13 9PL, U.K.
{zhaoj, carole, robert.stevens}@cs.man.ac.uk

Abstract. myGrid is an e-Science project assisting life scientists to build
workflows that gather data from distributed, autonomous, replicated and
heterogeneous resources. The provenance logs of workflow executions are
recorded as RDF graphs. The log of one workflow run is used to trace the
history of its execution process. However, by aggregating provenance logs
of many workflow runs, one may gather the provenance of a common data
product shared in multiple derivation paths. A successful aggregation
relies on accurate and universal identification of each data product. The
nature of bioinformatics data and services, however, makes this difficult.
We describe the identity problem in bioinformatics data, and present
a protocol for managing identity co-references and allocating identity
to gathered and computed data products. The ability to overcome this
problem means that the provenance of workflows in bioinformatics and
other domains can be exploited to enhance the practice of e-Science.

1 Introduction

myGrid 1 is an e-Science project providing middleware services to assist bioin-
formaticians to perform in silico experiments [1]. myGrid uses workflows to or-
chestrate, access and interoperate a large number of public databases and ap-
plications, and manage those experiments and their outcomes, including data
products, their provenance and experiment conclusions, using semantic-based
metadata and data technologies [2]. Taverna, the workflow environment and
workbench in myGrid, enables scientists to design and execute workflows, pro-
viding access to over 3,000 bio-resources. These services are mixtures of web
services, grid services, java applications, database queries and scripts. Taverna
has been used for gene alerting, gene and protein sequence annotation, pro-
teomics, functional genomics, chemoinformatics, systems biology and protein
structure prediction applications. Workflows have been used to identify a mu-
tation associated with the autoimmune disorder Graves’ Disease in the I kappa
B-epsilon gene [3] and build the first complete and accurate map of the region
of chromosome 7 involved in Williams-Beuren Syndrome (WBS) [4].

As part of the experiment design, scientists construct executable workflow def-
initions, written in Taverna’s Scufl language [4], binding specific data, parameter
settings and the end points of the services to be executed. Each execution of a
workflow definition becomes a workflow run. Collections of workflow definitions
1 http://www.mygrid.org.uk

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 254–269, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Identity Crisis in the Life Sciences 255

and workflow runs contribute to an overall experiment. myGrid collects both data
produced during workflow runs and the provenance of these data products [2].
The provenance log of one workflow run is used to trace: the history of execution
process, (e.g. services used); the origin of a data product, (e.g. the database or
intermediate data product); and the ownership and intellectual property of each
run (e.g. who and when). Ownership, purpose, etc are provenance annotations
over experimental collections of workflow definitions as well as an individual
workflow run. The provenance of each data product, gathered or computed, is
automatically captured by detecting events during workflow enactment to form a
dependency graph. Annotations of ownership and purpose are manual assertions
of fact or opinion by the scientist on the data, processes or sub-graphs.

The workflows developed in the life sciences have a number of properties that
impact on our provenance collection:

– The workflows are largely data pipelines, frequently generating data collec-
tions and then iterating in turn over each item in the collection.

– A workflow data product can be (a) a newly generated original data ob-
ject, or (b) a pre-existing data object gathered from an external resource.
Thus, when we refer to data products, these can be pre-existing objects that
have been retrieved from an external collection (gathered data) or freshly
computed data values (computed data).

– As public resources regularly change their content, the same workflow is
rerun repeatedly over the same resources, perhaps with different parame-
ter settings. The data products acquired by different runs are compared,
merged and aggregated. A workflow can thus be executed repeatedly by the
same user at a different time or location, or by different users from different
research groups or institutions.

– The same data product may be acquired by different workflow runs under
different experimental contexts, e.g. the user, the workflow definition, or the
time of a run etc.

The final two points are important. Bioinformatics is an exploratory scientific
discipline. Varying the settings of repeated executions might lead to completely
different outcomes. Results and their provenance from repeated executions need
to be accumulated to verify an ultimate conclusion. Thus, scientists need to
put the provenance records to use: to aggregate, integrate and compare the
provenance records for a common data product produced by multiple workflow
runs.

Definition 1. Consider a data product d acquired in a workflow run r,
– the provenance log of r forms a graph P(r);
– the provenance log of d in r is a subgraph of P(r): P(d, r).

Then, for d acquired in both r1 and r2:

– Provenance aggregation for d is to gather the provenance graphs P (d, r1)
and P (d, r2).

256 J. Zhao, C. Goble, and R. Stevens

– Provenance integration for d is the merging of the aggregated provenance
graphs: P (d, r1) ∪ P (d, r2) [5].

– Provenance pair-wise comparison for d from runs r1 and r2 is the computed
difference between the two provenance graphs: P (d, r1) − P (d, r2) [6].

To aggregate, integrate and compare P (d, ri) (i = 1, 2, ...n) for d requires two
things:

1. a mechanism to merge and differ provenance graphs: myGrid rep-
resents the workflow provenance metadata using technologies drawn from
the semantic web community, chiefly the Resource Description Framework
(RDF) 2. RDF is essentially a simple graph data model. The RDF data
store and query languages provide mechanisms for graph fusion and graph
manipulation as well as querying.

2. a mechanism to manage data object identity: When we merge and
differ provenance graphs, it is helpful if the same data object - a protein
sequence, a gene, a database entry - has the same identity regardless of its
origin. RDF provides an explicit identification system, Universal Resource
Identifiers (URIs), for identifying resources to allow metadata about a re-
source to be merged from several sources. We identify gathered data objects,
computed data products, workflows, parameters, etc by allocating LSIDs
(Life Science Identifiers) [7] to them.

Representing provenance using RDF and LSIDs enables us to potentially ag-
gregate multiple provenance graphs, P (d, ri) (i = 1, 2, ...n). Although the RDF-
based graph model and associated manipulation and query mechanisms lend
themselves to the support of cross-run or cross-workflow provenance aggrega-
tion and integration, the allocation and management of identity is problematic.
LSIDs are proposed as global unique identifiers (GUIDs) by the life science com-
munity [7,8]. This scheme has been applied to major life science databases, such
as NCBI 3, UniProt 4, and Affymetrix 5. In many e-Science domains, such as
chemistry, physics, astronomy, etc, GUIDs for data objects are taken for granted.
An example is the Digital Object Identifier (DOI) [9] for digital publications.

However, multiple identities are allocated for the same data object in life sci-
ences. The identity allocation scheme in Taverna does not guarantee a universal
identity to be allocated for equivalent data (defined in Section 2) produced in
multiple runs. These multiple identities for the same or equivalent data are called
polyonomous identities 6, which lead to an identity crisis in inter-run provenance
aggregation, integration and comparison.

The rest of this paper is organized as follows: Section 2 describes the motiva-
tion for managing data identities and presents a simple, real workflow. Section
3 highlights the life science identity landscape, showing how the difficulties in
2 http://www.w3.org/RDF/
3 http://www.ncbi.nlm.nih.gov/Genbank/
4 http://www.ebi.uniprot.org/
5 http://lsid.biopathways.org/authorities.shtml
6 http://dictionary.reference.com/search?q=Polyonomous

An Identity Crisis in the Life Sciences 257

allocating identities to data products in a coherent fashion have consequences on
the recording and aggregating of provenance records. In Section 4, we propose
a new identity protocol to construct identity co-references and the introduc-
tion of a new identity naming scheme. We show how identity co-references can
help when comparing provenance generated in repeated runs of the presented
real workflow. Related identity work and identity management in provenance
are described in Section 5. We conclude with a discussion and summary of the
characteristics of the identity problem.

2 Collecting Provenance from a Taverna Workflow

Figure 1 schematically presents a simple workflow (WF1) from the WBS study.
This workflow identifies a collection of DNA sequences from a database, simi-
lar to the query sequence. Step 1 invokes the BLAST (Basic Local Alignment
Search Tool) service [10] using the initial query sequence and a set of configu-
ration parameters. BLAST detects regions of similarity embedded in otherwise
unrelated proteins or nucleic acids. Step 2 simplifies the BLAST report data
product and extracts the DNA sequences contained from this report. Step 3
retrieves the GenBank report for each DNA sequence produced in step 2 and
produces a collection of GenBank reports.

Fig. 1. Workflow (WF1) which forms part of the WBS case study. The BLAST report
brpt1, the sequence list seqlist1, the GenBank report list gbrptlist1 and each GenBank
report gbrpti are computed data products. Each sequence (seqi) pre-exists, gathered
and processed by the workflow. During the execution of the workflow, each seqi has an
external identity (e.g. urn:gb:seq1). This identity is lost as it becomes a text string
by step 1, which is subsequently recovered by step 2 and associated with an additional
Taverna identity.

The bottom of the figure shows the data products consumed and produced in
one run of WF1.

– In step 1, the input to the BLAST service is a DNA sequence (seq0) to align
against, and a set of parameter settings p0 for invoking the service, which
includes: the database0 of sequences, the statistical significance threshold
evalue0 for reporting sequence matches, and the maximum number of re-
ported scores0 in the BLAST report. The output of step 1 is a BLAST

258 J. Zhao, C. Goble, and R. Stevens

report, brpt1, containing a collection of sequence data entries retrieved from
database0: Contains(brpt1) = {seqi, 1 ≤ i ≤ n}. The sequences and their
identifiers are embedded as text in the report, along with other materials.

– In step 2, the brpt1 produced in step 1 is parsed and simplified by the
BLAST Simplifier service. This service extracts the sequence entries in brpt1
to recover a collection of DNA sequence data objects: seqlist1 = {seqi, 1 ≤
i ≤ n}.

– In step 3, a GenBank report gbrpti is retrieved by the GenBank Retrieve
service for each sequence in seqlist1 produced in step 2. The output of step
3 is a collection of GenBank reports: gbrtplist1 = {gbrpti, 1 ≤ i ≤ n}.

2.1 Gathered and Computed Data

A data product can be either computed or gathered, which decides the identities
it might be associated with. A data product can be either atomic or a collection,
which decides the provenance metadata captured for it in myGrid.

– A computed data product is generated as a consequence of a workflow exe-
cution. The BLAST report brpt1, the GenBank report gbrpt1, the collection
of sequences seqlist1 and the collection of GenBank reports gbrptlist1 are
computed data products.

– A gathered data product is one that was pre-existing and has been retrieved
from external databases. Each protein sequence entry seqi from the sequence
database, contained in the brpt1 is a gathered data product.

A computed or gathered data product can be either an atomic data product or
a collection data product. Each collection data product contains a collection of
elements, which are either atomic or collection data products, following the usual
recursive composite pattern. Whether a data product is atomic or a collection
can be rather subtle, dependent on the domain view or the transportation view:

– A domain collection is classified by its data content, for example, brpt1 is col-
lection data product at the domain level, containing a collection of gathered
sequences {seqi}. Every seqi is an atomic data product.

– A transportation collection is decided by whether the data product is treated
as a single data product or as a list of data products in Taverna. For example,
brpt1 is an atomic data product at the transport level when it is transferred
between services in the workflow runs. The seqlist1 and the gbrptlist1 in
Figure 1 are collection data products, as they are transferred as lists between
services.

2.2 Using Provenance Graphs

In myGrid, data provenance gathered in each workflow run forms a graph, shown
in Figure 2, with data products as the nodes and their provenance relationships
as the edges. Consider a data product di produced in a run, either an atomic
or a collection, there are two types of provenance relationships recorded in the
myGrid provenance:

An Identity Crisis in the Life Sciences 259

– derivedFrom: di is derived from another data product dj , or di is derived
from a set of parameter settings pj . For example, the BLAST report brpt1
is derived from the input sequence seq0 and from the set of parameters
p0 = {database0, evalue0, score0}.

– elementOf : di could be an element of a collection data product dj (di
= dj).
For a seqi of seqlist1, atomic seqi is an element of the collection data prod-
uct seqlist1. The myGrid provenance model only captures the relationship
between a transportation collection and its elements.

Fig. 2. Data provenance graph formed in one run of of WF1

A bioinformatics workflow is often repeated over the same resources or varying
settings. For example, considering the WF1, one might use:

1. the same BLAST service and same parameter settings to obtain updated
data products. As the public databases are frequently updated, WF1 needs
to be frequently repeated in order to collect updated sequences.

2. the same BLAST service but different parameter settings to look for the best
parameter settings for this workflow.

3. different BLAST services, such as DDBJ BLAST7, WU-BLAST8, to look
for the best service for this workflow or to verify that consistent results can
be obtained with varying BLAST services.

The data products of these repeated runs of WF1 are compared to reach conclu-
sions, e.g. an updated sequence was produced in a rerun of WF1, or “score=100”
is the best parameter setting for running WF1. These conclusions need to be
justified using the provenance of experiment data products.

In repeated workflow runs, multiple data provenance graphs are produced,
which contain some similarities and differences. The same data object can be
gathered in different runs; e.g. the protein sequence seq1 appears as a result in
both r1 and r2 of WF1. Thus both provenance graphs P (seq1, r1) and P (seq1, r2)
have seq1 in common. Data objects that contain the same data values can be
7 www.xml.nig.ac.jp/wsdl/index.jsp
8 http://blast.wustl.edu/

260 J. Zhao, C. Goble, and R. Stevens

computed in different runs, e.g. brpt1 from r1 and brpt2 from r2 contain exactly
the same sequences, despite changes in time, parameters or the contents of the
external database. Thus brpt1 and brpt2 in the two graphs P (brpt1, r1) and
P (brpt2, r2) correspond. In this paper equivalent data products include both
gathered products in common and corresponding products that are computed.

In order to aggregate the provenance of a d computed or gathered in multiple
runs, we need to identify this d produced in each run. In order to integrate and
compare the multiple provenance graphs of d, i.e. P (d, ri) (i = 1, 2, ...n), we need
to identify all the equivalent data products and parameter settings recorded in
these graphs. The provenance graph in Figure 2 is represented by RDF in myGrid.
Each data product and control parameter in this graph is identified by a URI.
We need to manage the identities to make sure that equivalent data products
and parameters are identified uniquely and universally across workflow runs. In
the next section we explain the identity issues for WF1.

3 Identities

In Figure 1, all identities of all data products by a workflow are managed by
the LSID protocol. An LSID consists of five parts separated by colons: a pre-
fix (urn:lsid); the authority name (www.mygrid.org.uk); the authority-specific
data namespace (data); the namespace-specific object identifier (49841) and a
version number of the object (1) leading to a URI: urn:lsid:www.mygrid.org.
uk:data:49841:1. An LSID authority for a resource allocates an identity and
resolves it for the resources for which it is an authority (and no others), guar-
anteeing that the data is immutable. Each data provider has a responsibility for
managing its own LSID authority. Even when resources are replicated locally a
different, local LSID authority is in place.

A gathered data product may carry an external identity, but a computed data
product is assigned with a Taverna identity. This impacts on the protocol for
managing data identities as shown in Section 4. Using the workflow WF1 in Fig-
ure 1, we now explore external identity allocation by data resources and internal
identity allocation by Taverna.

3.1 External Identity: Resource Generated Identities

At least 700 different, heterogeneous resources are available in life sciences [11].
The autonomy of data providers enables rapid generation and deployment of
new resources, but they rarely conform to any community-wide standards, often
allocating different identities for a common data object. We find the following
situations:

– equivalent data objects in different databases. For example, “gi:15145617”
(GenBank) and “ac073846” (EMBL-Bank9) are the same DNA sequence.
The protein “Dual specificity DE phosphatase Cdc25C” is identified as
“aaa35666” in GenBank and “p30307” in UniProt.

9 http://www.ebi.ac.uk/embl/

An Identity Crisis in the Life Sciences 261

– equivalent data objects in different replicas, a variation of the previous point.
A resource is often replicated remotely or locally, and sometimes locally
extended or customised. For example, the same sequence is “urn:lsid:myg:
ac073846” for a local copy of EMBL-Bank in myGrid with its own LSID
authority.

– equivalent data objects from different workflows. The invocation of a Kyoto
Encyclopedia of Genes and Genomes (KEGG10) pathway service (instead
of a BLAST service) produces a pathway result containing a collection of
protein sequences. Some of the sequences in the brpt1 in Figure 1, also appear
in the pathway data product, but now with KEGG LSIDs.

These arrangements result in polyonomous external identities for equivalent data
products gathered from different databases, replicas or by different services.

3.2 Taverna Identity: Workflow Generated Identities

Figure 3 gives the myGrid LSID allocation architecture. In a workflow run, when
a data product is passed to the enactor, it is allocated a Taverna LSID by the
Taverna LSID authority. This identity is associated with the data product when
it is stored or passed to invoked other services by the enactor. The data products
acquired (gathered or computed) by a run are stored in a customized database
as part of the workflow or a local “catch all” store, the relational data store
BACLAVA. This identity is also used to store the RDF provenance metadata
of this data product in the metadata store, KAVE. Data and provenance are
immutable in myGrid. Once data products and provenance are preserved, they
should not be deleted or altered. Provenance of a data product can be augmented
with more provenance metadata. A client communicates the myGrid data and
provenance repositories over the network by the LSID protocol [8] to retrieve
data or metadata of a data product by its LSID.

Migration Polyonomy. Data products generated by Taverna and stored in a
database or the BACLAVA store can be archived or replicated among scientists
in their own file stores. A migration polyonomy is caused by the failure to migrate
data identities with the data when the data are curated. For instance, when a
data product is copied from the BACLAVA store to a personal file system, its
identity is deprecated and replaced with a new identity such as a path to access
the file system.

Execution Polyonomy. In each independent run, the Taverna LSID authority
is ignorant of the existence of common or corresponding data products produced
in different runs and the existence of the polyonomous identities allocated for
these data products. Therefore, polyonomous identities for common or corre-
sponding data products are produced by repeated executions:

1. corresponding computed data products. Two corresponding brpt1 and brpt2
generated in two runs of WF1 contain exactly the same protein sequence

10 http://www.genome.jp/kegg/

262 J. Zhao, C. Goble, and R. Stevens

Fig. 3. myGrid’s architecture for allocating LSIDs for data products during workflow
executions. The dashed part represents the extended architecture when introducing the
identity service to manage the identities for common or corresponding data products.

objects. brpt1 and brpt2 are identified by different Taverna identities as they
are from different runs and are, in fact, different reports.

2. common gathered data products. Let d1 be the same seq1 gathered in two
runs r1 and r2, two provenance graphs P (d1, r1) and P (d1, r2) share this
common d1 (see Figure 4(a)). This d1 should be given the same identifier in
order to assert that d1 in r1 and r2 are equivalent. However, the processing
of the workflows means that this is not the case.

– In Figure 1, when step 1 is finished, the computed data product brpt1
is stored and allocated a Taverna LSID urn:tav:b1. The gathered data
objects, i.e. the {seqi} contained within brpt1 are neither extracted nor
allocated with any LSIDs. This is because they have been turned into text
by BLAST and their external identities, e.g. urn:gb:seq1, are contained
in their data contents as strings.

– When step 2 is finished, each sequence, such as seq1, has been extracted
and stored. Because it is a new object, recovered by post-processing, it is
automatically allocated a Taverna LSID urn:tav:seq1, despite the fact
it already has an external LSID that it carried. In each workflow run of
WF1, if seq1 appears it is given a new, different Taverna LSID. Thus the
same data product has its external LSID and, for each run, a Taverna
LSID.

Two cases further compound the problem:

1. corresponding computed collection data products at the transportation level.
For instance, the data product from the GenBank retrieve service gbrptlist1
contains a collection of GenBank reports {gbrpti}. This collection data prod-

An Identity Crisis in the Life Sciences 263

uct and its elements are always allocated new, different Taverna identities
each time they are produced.

2. equivalent nested data objects in a data product. For instance, each sequence
seqi contains some nested data objects such as the species data object. These
nested data objects are allocated with new, different Taverna identities each
time they are extracted.

Polyonomies are not only due to inadequate attention to our identity allo-
cation mechanism, but are inevitable. Firstly, we need to differentiate the data
product and its data derivation path produced in one context with its equivalent
data product produced in another context. Figure 4(a) shows the two derivation
paths for the data product d1 that were gathered in different runs. If during
the provenance collection this d1 was identified by the same identity, as shown
in Figure 4(b), only the merged derivation path will be kept in KAVE. It be-
comes difficult to retrieve ”the data product which d1 was derived from that was
produced in run r1”. myGrid tries to solve this problem by incorporating more
context information with a data product using named graphs [12], as discussed
in Section 5.

Secondly there are potential computation costs of avoiding publishing poly-
onomous identities at run time for equivalent data products. The equivalence be-
tween computed data products is based on their values most of the time, which
is inefficient. For instance, the identity correspondence of our example BLAST
reports cannot be decided based on the identities of the sequence data objects
contained in these data products, as polyonomous identities are published by
different databases for the same sequence. Evaluating the equivalence of data
products at run time could slow down the workflow enactor, but is achievable
by a post workflow enactment process.

Fig. 4. (a) d1 identified as urn:tav:d01 was derived from d2 in the run r1 and its
equivalent data product d1 identified as urn:tav:d02 was derived from a different data
product d3 in the run r2. (b) If d1 is identified by one identity, the data derivation
paths for d1 that were generated in different runs will be converged.

4 Identity Solutions

In order to cope with the execution identity problem we propose an identity
protocol for building co-references of execution polyonomies. This protocol is

264 J. Zhao, C. Goble, and R. Stevens

asynchronous to workflow enactment and data and provenance collection. We
ignore external polyonomies in this protocol.

4.1 Co-reference Identity Protocol

Definition 2. Consider a data product d, the IDSet(d) = {id1, id2, ..., idn} stores
a set of polyonomous identities for d. Each IDSet(d),
– has its own identity: id(IDSet(d));
– is associated with the content of d.

For example we have IDSet(brpt1) = {urn:tav:b0} for brpt1. IDSet objects
are stored in the identity store by the identity service in Figure 3. The dashed
part in Figure 3 shows the architecture of how the identity protocol functions
when executing a workflow in Taverna and interacts with other components in
myGrid. Three actors participate in the identity protocol: the external service,
the workflow enactor and an identity service.

1. The workflow enactor passes data to external services, then invokes these
services based on the workflow definition.

2. The service returns the data results and the external identities for gathered
data products. When the service returns gathered data products in a re-
sponse message to the enactor, it should publish identities for these data
products in its response message. If the service failed to do this, it would be
regarded as a service with lower quality than those that do so.

3. When the data products are returned to the enactor by the service, the
enactor assigns Taverna LSIDs to these data products.

4. The enactor invokes the identity service, passing messages to the identity
service that include: the data products, their Taverna LSIDs and associated
external LSIDs (if any).

5. The identity service intercepts Taverna identities for gathered and computed
data products and retrieves or builds IDSet objects for these data. It updates
the IDSet objects in the identity store and inserts these IDSet identities as
metadata of the data products into the provenance store KAVE.The enactor
stores the data products in the data store BACLAVA and their provenance
in the provenance store KAVE.

The step of building IDSet objects can be taken offline, by analyzing the
provenance store and the data store after the workflow run. A relational identity
store is used for keeping the IDSet objects. The RDF KAVE store contains prove-
nance metadata as well as the IDSet metadata for the data products. We name
this upgraded KAVE as KAVE+. These IDSet metadata are generated by the
following scheme and can be used when integrating and comparing provenance
graphs, as shown in the Section 4.3.

4.2 Revised Identity Naming Scheme

This identity protocol constructs and updates IDSet objects by three means: (1)
identities of gathered data products, (2) data values of computed data products
and (3) data objects contained in collection data products at the transport level.

An Identity Crisis in the Life Sciences 265

Allocation 1. Allocation by Identities. The identity service receives a gath-
ered data product d, either atomic or collection:

1. Search for an existing IDSet object using the external identity of d. If an
IDSet is found, retrieve it; otherwise create one.

2. Update the identity store with d’s external and Taverna identities, and its
IDSet object identity, id(IDSet(d)).

3. Insert this IDSet object and its relationship with d as RDF statements into
the provenance metadata store KAVE+.

Allocation 2. Allocation by Values. The identity service receives a computed
data product d, either an atomic or a collection, e.g. a brpt, which collects a set
of external data objects:

1. Search for an existing IDSet object using d’s data value. If an IDSet is found,
retrieve it; otherwise create one.

2. Update the identity store with the Taverna identity of d and the IDSet object
identity, id(IDSet(d)).

3. Insert this IDSet object and its relationship with d as RDF statements into
the provenance.

Allocation 3. Allocation by Objects. The identity service receives a trans-
portation collection data product d, which contains a collection of atomic or col-
lection data products. This d and each of its elements is identified by a Taverna
LSID, e.g. the seqlist1 containing a collection of atomic gathered data products
seqi in Figure 1.

Definition 3. Consider two collection data products di and dj (di
= dj),
di and dj are equivalent, di ≡ dj, if and only if both di and dj have the same

size, and all elements in them are equal.

For a collection data product d, the identity service should:

1. Search for any existing IDSet objects for each element of d. Search by the
element’s identity if it is a gathered data product; and search by the element’s
value if it is a computed data product.

2. Search for d’s equivalent collection data product and an existing IDSet ob-
ject. If an IDSet is found, retrieve it; otherwise create one.

3. Update the identity store with d’s Taverna identity, and its IDSet object
identity, id(IDSet(d)).

4. Insert the relationship of d and its element data products into the identity
store.

5. Insert this IDSet object and its relationship with the data product d as RDF
statements into the provenance metadata store.

This protocol repairs the execution polyonomies in Taverna. Currently, poly-
onomous identities continue to be allocated in myGrid to avoid the costs of
allocating unique identities for equivalent data products during workflow runs.
This protocol and naming scheme, however, improves the maintenance of: (a)

266 J. Zhao, C. Goble, and R. Stevens

the external identities associated with gathered data products; (b) the relation-
ship between computed data product and its element data products, computed
or gathered; and (c) Taverna identity co-references.

4.3 Putting the Identity Service to Use

If equivalent data products are identified by the same identity, the provenance
aggregation, integration and comparison will be possible. The IDSet resolves
this problem by maintaining a collection of polyonomous identities for a d. The
identity of an IDSet object provides a universal identity for a d in myGrid. An
identity service prototype was implemented as a plug-in to Taverna, building
IDSet objects for equivalent data products during workflow runs:

– For a gathered data product, such as the protein sequence seq1, its IDSet
object is built by the data product’s external identity.

– For a computed data product, such as brpt1, the external identities of its el-
ements are parsed and extracted from the data content. brpt1’s IDSet object
is built by these external identities of its elements.

– For a collection data product at the transportation level, such as the
seqlist1, gbrptlist1 in Figure 1, its IDSet object is built by the IDSet iden-
tities of its element data products.

To show how the identity service can help us achieve the goal of integrating
provenance graphs from repeated runs of every pair-wise runs r1 and r2 of WF1,
we conduct the following:

1. Aggregate the data provenance graphs. This returns two provenance graphs
P (r1) and P (r2).

2. Normalize each provenance graph P (ri). For each data product in P (ri),
retrieve its IDSet identity. If an IDSet identity is found, replace the data
identity in P (ri) with the IDSet identity. This operation returns a normalized
graph, Pn(ri), with each equivalent data product produced in different runs
being identified by its IDSet identity.

3. Compare the normalized graph Pn(r1) and Pn(r2).

We succeeded in detecting the similarities and differences between P (r1) and
P (r2). This approach is much faster than identifying equivalent data products
at the time of comparison. The number of data objects contained in each prove-
nance graph P (ri) (i = 1, 2...n) decides the size of P (ri) and impacts the compu-
tational complexity of normalizing a P (ri). An optimization of this normalization
is needed if a large provenance graph is to be processed.

5 Related Work

Polyonomous identities are a common problem in data integration. RefSeq [13]
builds cross-references for sequence data across multiple major sequence data-
bases. The Handle system provides GUIDs for digital objects assured by a global

An Identity Crisis in the Life Sciences 267

naming authority [14]. This is hard to achieve in life sciences because of the au-
tonomy of data and tool providers. Our identity protocol focuses on constructing
co-references between Taverna polyonomies for equivalent data products. These
identity co-references can be published at different places and then merged by set
calculus. This identity protocol can be adopted in many service-oriented archi-
tectures such as the provenance collection architecture proposed by Groth [15].

The Virtual Data Language (VDL) [16] represents derivation relationships
between data that were processed by computational procedures. It is unclear
whether the aggregation or integration of provenance over repeated reruns of
the same workflow over the same data is an issue. The focus is on computed
data products and the identity issue becomes one of data mining for identical
data values rather than the maintenance of external data object identity and
taking care not to allocate polyonomous identities.

In scientific study it is important to harvest provenance logs across runs,
initialized by different users or groups [17]. But no naming scheme is defined in
up to date provenance work to avoid polyonomous identities for equivalent data
products. VisTrails traces the provenance of how workflows are revised from
one to another [18]. However, the identity problem for data products remain
un-clarified.

If unique identities are allocated for equivalent data products, a mechanism
is required to differentiate the different contexts in which each data product
are produced. The PASOA project includes a workflow run id as part of the
data product id that is produced in a particular workflow run [15]. However,
additional contextual information is needed by bioinformaticians, such as the
person who produced the data, and an intermediate data product from which a
collection of data products were derived from. myGrid adopts named graphs [12]
to incorporate more contextual information with data products.

6 Conclusion

In previous work we focused on building a provenance model and the technol-
ogy to represent this model [2]. The model was developed to assist not only in
keeping audit trails of a single workflow run, but also to support the analysis of
multiple provenance logs across multiple workflow runs. Although all the prove-
nance graphs are represented as RDF graphs, analyzing these graphs requires
a scheme to identify equivalent data products; both common gathered products
and corresponding computed products. Allocating and assigning data product
identity proved harder than anticipated in practice for provenance graphs that
are independently generated, yet need to be combined. Our previous identity
allocation scheme works well when we do not aggregate, integrate and compare
provenance, but raises issues when we do.

Bioinformatics workflows not only generate new data, but also discover new
information by combining and collating existing data. These pre-existing data,
external to the Taverna world, have their own identities allocated. In addition,
local identities are published for these data products, such as Taverna LSIDs and

268 J. Zhao, C. Goble, and R. Stevens

VDL’s Logical File Names. The autonomous nature of the current bioinformatics
domain makes it hard to adopt a global naming service unless a community-wide
agreement is achieved, such as the data transfer standard in earth science [19]
and in the caBIG project 11. Our problem is particularly acute in that we do
not prescribe a closed, strongly typed data environment such as that dictated
by caBIG. The multiple identity problems are present in a large extent such as
on the Web. Polyonomous identities point to the same entity hosted by different
web sites. In this paper we tried to enumerate the different identity duplica-
tion problems for equivalent data products. To resolve this problem we revise
our identity allocation scheme and construct co-references between polyonomous
identities.

In this paper we aggregate, integrate and compare provenance graphs from
repeated runs of the same workflow. We aim also to analyze provenance graphs
from runs of corresponding workflows. Workflows using different services in the
workflow definitions, but realizing the same experiment goal and function cor-
respond. Corresponding workflows evolved one from another. To analyze prove-
nance graphs from runs of corresponding workflows requires a full-fledged defi-
nition of the corresponding relationship among workflows and an infrastructure
to maintain this relationship, as presented in [18].

Two scalability issues remain to be solved: (1) the scalability of identifying
corresponding collection data products computed in iterations in different runs.
Iterations over iterations in a workflow run produce collections with multiple
hierarchies, i.e. collections containing collections iteratively. This makes it ex-
pensive to retrieve corresponding collections with multiple hierarchies; and (2)
the scalability of exploiting identities. As shown by the example of exploiting
identities in Section 4.3, the computation complexity of normalizing a prove-
nance graph is decided by the size of the provenance graph. This normalization
is required in provenance integration and comparison. An optimization is needed
if a large provenance graph is to be normalized.

Acknowledgements

The myGrid project, grant numbers GR/R67743, EP/D044324/1 and EP/C536444/
1, is funded under the UK e-Science programme by the EPSRC. The authors
would like to acknowledge the other members of the myGrid team for their con-
tributions, and in particular acknowledge Tom Oinn, Matthew Pocock, Daniele
Turi and Chris Wroe. We thank Stian Soiland and David Withers for their useful
comments.

References

1. Stevens, R., Tipney, H.J., Wroe, C., Oinn, T., Senger, M., Lord, P., Goble, C.,
Brass, A., Tassabehji, M.: Exploring Williams-Beuren Syndrome Using myGrid.
Bioinformatics 20 (2004) 303–310

11 https://cabig.nci.nih.gov/

An Identity Crisis in the Life Sciences 269

2. Zhao, J., Wroe, C., Goble, C., Stevens, R., Quan, D., Greenwood, M.: Using
semantic web technologies for representing e-science provenance. In: Proc. of the
Third International Semantic Web Conference. Volume 3298. (2004) 92–106

3. Li, P., Hayward, K., Jennings, C., Owen, K., Oinn, T., Stevens, R., Pearce, S.,
Wipat, A.: Association of variations on i kappa b-epsilon with graves’ disease
using classical and mygrid methodologies. In: Proc. of the UK e-Science AHM.
(2004)

4. Oinn, T., Greenwood, M., Addis, M., Ferris, J., Glover, K., Goble, C., Hull, D.,
Marvin, D., Li, P., Lord, P., Pocock, M.R., Senger, M., Wipat, A., Wroe, C.:
Taverna: Lessons in creating a workflow environment for the life sciences. Journal
of Concurrency and Computation: Practice and Experience (2005) in press.

5. Weisstein., E.W.: (Graph union) http://mathworld.wolfram.com/GraphUnion.
html.

6. Weisstein., E.W.: (Graph difference) http://mathworld.wolfram.com/

GraphDifference.html.
7. Clark, T., Martin, S., Liefeld, T.: Globally distributed object identification for

biological knowledgebases. Briefings in Bioinformatics 5 (2004) 59–70
8. Martin, S., Hohman, M.M., Liefeld, T.: The impact of life science identifier on

informatics data. Drug Discovovery Today. 10 (2005) 1566–72
9. Dalziel, J.: DOI in a DRM environment. White paper, Macquarie University (2004)

10. Altschul, S., Gish, W., Miller, M., Myers, E., Lipman, D.: Basic local alignment
search tool. Journal of Molecular Biology 215 (1990) 403–410

11. Galperin, M.Y.: The molecular biology database collection: 2006 update. Nucl.
Acids Res. 34 (2006) 3–5

12. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web
Semantics 3 (2005)

13. Pruitt, K.D., Maglott, D.R.: Refseq and locuslink: Ncbi gene-centered resources.
Nucleic Acids Research 29 (2001) 137–140

14. Kahn, R., Wilensky, R.: A framework for distributed digital object services. Tech-
nical Report tn95-01, Macquarie University (1995)

15. Groth, P.T., Luck, M., Moreau, L.: A protocol for recording provenance in service-
oriented grids. In: Proc. of the Eighth International Conference on Principles of
Distributed Systems, Grenoble, France (2004) 124–139

16. Foster, I., Vockler, J., Wilde, M., Zhao, Y.: The virtual data grid: A new model
and architecture for data-intensive collaboration. In: Proc. of the First Biennal
Conference on Innovative Data System Research. (2003)

17. Futrelle, J.: Harvesting rdf triples. In: Proc. of the Third International Provenance
and Annotation Workshops. (2006) in press.

18. Bavoil, L., Callahan, S.P., Crossno, P.J., Freire, J., Scheidegger, C.E., Silva, C.T.,
Vo, H.T.: Vistrails: Enabling interactive multiple-view visualizations. In: Proc. of
IEEE Visualization. (2005) 135– 142

19. Arctur, D.K., Hair, D., Timson, G., Martin, E.P., Fegeas, R.: Issues and prospects
for the next generation of the spatial data transfer standard (SDTS). International
Journal of Geographical Information Science 12 (1998) 403 – 425

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 270 – 277, 2006.
© Springer-Verlag Berlin Heidelberg 2006

CombeChem: A Case Study in Provenance and
Annotation Using the Semantic Web

Jeremy Frey1, David De Roure2, Kieron Taylor1, Jonathan Essex1,
Hugo Mills2, and Ed Zaluska2

1 School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
{j.g.frey, krt1, j.w.essex}@soton.ac.uk

2 School of Electronics and Computer Science,
University of Southampton, Southampton, SO17 1BJ, UK

{dder, hrm, ejz}@ecs.soton.ac.uk

Abstract. The CombeChem e-Science project has demonstrated the advantages
of using Semantic Web technology, in particular RDF and triplestores, to de-
scribe and link diverse and complex chemical information, covering the whole
process of the generation of chemical knowledge from inception in the synthetic
chemistry laboratory, through analysis of the materials made which generates
physical measurements, computations based on this data to develop interpreta-
tions, and the subsequent dissemination of the knowledge gained. The project
successfully adopted a strategy of capturing semantic annotations ‘at source’
and establishing schema and ontologies based closely on current operational
practice in order to facilitate implementation and adoption. The resulting ‘Se-
mantic Data Grid’ comprises around 45 million RDF triples across multiple
stores.

1 Introduction

This paper reports on our experiences in building a Semantic Web infrastructure for
chemical research as part of the CombeChem project funded by the U.K. e-Science
programme. We set out to use the available Grid and semantic technology to support
the entire chemical research sequence. This typically starts from an experiment pro-
ducing data, which is then searched for relevant patterns, which lead to results, con-
clusions and publications and which in turn leads to further experiments. All progress
depends on individual scientists building on the results already produced by others.

While in the past this process has served the science community well, it is now in
danger of paralysis from the sheer quantity of data being produced [1]. We considered
it essential that semantic support be introduced at every stage in the process to facili-
tate automated mechanisms for research support, providing an infrastructure where
complex applications and services can be deployed with minimal manual intervention
[2,3]. This level of automation is required to deal with the increasing rate at which
scientific data is being generated and needs to be processed if the integration of the
data and its transformation into information and knowledge is to keep pace with the
generation of the data. We describe our solution as a “Semantic Data Grid” as consid-
ered from a Grid perspective in [4].

 CombeChem: A Case Study in Provenance and Annotation Using the Semantic Web 271

Our architecture has been designed to enable effective capture of both data and
metadata at the earliest opportunity during the scientific investigation. [5] Once cap-
tured the material is maintained and organized as it traverses the virtual organisation
that represents the whole Chemistry community involved in converting a new piece of
data into accepted chemical facts and knowledge. Our methodology has been to draw
as far as possible on established chemistry practices and then augment them. Our
principle is that by constructing schema and ontologies based on current operational
practice we have a solution that is known to work, and we regard this as an essential
first step to facilitate deployment and adoption.

In section 2 we explain our use of Semantic Web, leading us to the Semantic Data
Grid. We then go on to explain our implementation and experiences in Section 3,
illustrate the system by focusing on two parts – the “Smart Lab” and the large store of
chemical descriptions. The conclusions and future work form Section 4.

2 Semantic Web Approach

To enter this semantically-described world we adopted a policy that we call “annota-
tion at source”, recognising that the digital world necessary to implement our vision
must start as soon as possible in the information chain. For example, the CombeChem
project set out to support the relatively small-scale needs of everyday scientists in
recording experiments. This resulted in an interest in the Electronic Laboratory Note-
book (ELN) research area as part of the overall concept to provide effective semantic
support for experimental and computational science. Here the “annotation” starts in
the safety plan before the experiment has even begun.

We set out to provide comprehensive semantic support for the whole spectrum of
chemistry research in as transparent a fashion as possible, adopting RDF to capture
the semantic content and describe the scientific data. A fundamental part of this strat-
egy was to study established practice in the field and to introduce as few changes to
normal everyday working practice as possible. This was part of the objective of cap-
turing as much metadata at source (i.e. as it is generated), completely automatically.
We adopted the additional premise that it would be impossible to predict in advance
the way that data would be accessed and used, hence flexibility of use was a funda-
mental objective. This led directly to the requirement that the information infrastruc-
ture to hold this data and metadata should be as general as possible. We adopted the
InChI (a character string that uniquely describes an organic molecule based on its
structure) as our shared identifier [6].

In summary our design approach adopted four principles:

1. Grounding in established operational practice – our starting point is to study
chemists at work;

2. Capturing a rich set of associations between all types of things, expressed perva-
sively in RDF and hence explicitly addressing the sharing of identifiers;

3. Metadata capture should be automated as far as possible – our goal is augmenta-
tion not disruption;

4. Information will be reused in both anticipated and unanticipated ways.

272 J. Frey et al.

Other approaches to the problem include the World Wide Molecular Matrix [7],
while the Collaboratory for Multi-Scale Chemical Science [8] is developing an infor-
matics-based approach to synthesising multi-scale information to create knowledge.

3 Implementation

3.1 Smart Lab

The back-end of the Smart Lab [9] system consists of a database which stores the
details of the experiments, and presents a query interface for interrogating the datas-
tore. The data for the experiment is stored in an RDF triple store based on Jena [10],
and is accessed by the front-end applications through a SOAP-based query interface.

Fig. 1. Fragments of the RDF graph, showing the distinction between Plan and Record

We have developed three primary applications: a planning tool, which is used to
set up the plan and ingredients for the experiment; a weigh-station/liquid-measure
application, used for recording the quantities of ingredients actually used, as an ex-
ample of a measurement device; and a "bench" application, used for making notes and
annotations on the plan while performing the experiment. The methodological ap-
proach is described in [11]. The latter two applications we have implemented on a
Tablet PC, to be carried around in the laboratory. The current prototype planner appli-
cation is implemented as a set of dynamic, form-based web pages. The "smart lab"
system is modular. For instance, other measurement devices, such as a digital camera
or a formatter for adding mass spectrograph recordings, can also be added to the sys-
tem in the same way as the weigh-station application.

 CombeChem: A Case Study in Provenance and Annotation Using the Semantic Web 273

The functional core of the SmartLab software is the libtea library. This library pro-
vides abstraction of the low-level RDF data structures kept in the triple store, and
queried and served by the ModelServer. The programming interface (API) for libtea
abstracts away some of the details of the underlying RDF structures from the pro-
grammer, and presents a simpler interface for the "standard" structures and properties
encoded in the base SmartLab ontology. It does not, however, explicitly hide the RDF
from the programmer, so if it is necessary to add new features or structures to the
schema, it is possible to do so in a flexible manner without having to add support
directly to libtea. The libtea API presents a set of objects to the programmer, each
object representing a different concept within the RDF structure, and encapsulating a
subgraph of one or more triples.

3.2 Triple Store

The digital record from the Smart Lab data then feeds into the scientific data process-
ing. The creation of original data is accompanied by information about the experimen-
tal conditions in which it is created. There then follows a chain of processing such as
aggregation of experimental data, selection of a particular data subset, statistical
analysis, or modelling and simulation. The handling of this information may include
explicit annotation of a diagram or editing of a digital image. All manipulation of the

Fig. 2. The schema for the CombeChem Semantic Data Grid

274 J. Frey et al.

data through the chain of processing is effectively an annotation upon it and the
provenance is explicit. The annotations are required to be machine processable, and
useful for both their anticipated purpose and interoperable to facilitate subsequent
unanticipated reuse. This is achieved by RDF being used through the system. At the
time of writing there are 45 million RDF triples in the Combechem triplestore. The
current target is about ten times this number, representing a very substantial Semantic
Web deployment.

Figure 2 shows the schema for the CombeChem data grid, based around chemical
properties. Objects are marked as ellipses, the arrows show how predicates link ob-
jects together, and rectangles are literal values.

We evaluated several triplestores and adopted 3store [12] because it has good scal-
ing properties. Additionally it is easily batch or perl scriptable, supports RDFS, and it
can use RDBMS tools for maintenance of data (e.g. backups and migration) as all
application state is held in the database. 3store supports the SPARQL query language.

We have succeeded in feeding approximately 80 million triples into the triplestore.
Queries remain responsive, but data import performance has begun to degrade, i.e.
stores is known to be a challenging issue and we can envisage how a single large
triplestore with frequent insertions would be unable to cope with potential demand. 80
million triples equates to a reasonably-sized chemical dataset, but could easily be

Fig. 3. The eCrystals interface

 CombeChem: A Case Study in Provenance and Annotation Using the Semantic Web 275

doubled or trebled when populating with computed properties. Hence we are now
contemplating alternative ways of partitioning and maintaining the triples across mul-
tiple stores. Progress is also now being made in linking the RDF structures for the
molecular properties and those describing the experiments from the ELN, tied to-
gether by the molecules URI.

Figure 3 illustrates one interface to this data, developed in the eBank project [13].
The information contained within an entry in this archive is all the underlying data
generated during the course of a structure determination from a single crystal x-ray
diffraction experiment. An individual entry consists of three parts: core bibliographic
data, such as authors, affiliation and a number of chemical identifiers; data collection
parameters that allow the reader to assess at a glance certain aspects of the crystallo-
graphic dataset; files available for download (visualisations of the raw data, the raw
data itself, experimental conditions, outputs from stages of the structure determina-
tion, the final structural result and the validation report of the derived structure).

4 Conclusions and Future Work

RDF has been shown to be an effective method for capturing highly detailed chemical
data, allowing it to be indexed in a persistent triplestore such that it can be searched
and data-mined in useful ways. The triplestore has now reached a viable state with
further addition of chemical properties as an ongoing process. We are now beginning
to develop automated calculations using the many available structures and to store the
results alongside all the details of the computations that produced them. Beyond that
we can achieve high-throughput data processing and begin to develop new models
based on those computations.

The ELN proves to be an excellent model system for the meeting of the semantic
chemical grid descriptions of materials and services with the pervasive environment
needed to capture the information within the source laboratory. We are currently con-
ducting more investigations in the use the smart lab systems in an active synthetic
organic chemistry laboratory looking at the use and re-use of information captured
using our systems. The studies will soon be extended to investigate the pervasive
aspects of the grid looking at the use of handheld systems (e.g. PDA, tablets) systems
vs. distributed computers in different positions within the laboratory.

More work is required to build up the chemical ontology to the level comparable
with the XML structure provided by CML. In the INCHI we have a computable URI
for organic molecules, but this leaves large areas of compounds (inorganic, mixtures,
materials etc.) without adequate URIs of this form. We have seen in the need to pro-
vide an RDF structure for units that the process of describing a piece of scientific
data, with all the necessary descriptions and provenance, propagates requirements out
in an extensive net, meeting though with other domains, where we can link up with
other semantic descriptions. An area which demands rapid attention because of the
importance of unhindered and accurate information flow between different knowledge
domains, is the need to integrate the chemical ontology with for example the LSI
identifiers is a part of the whole processes of linking Bio- and Chemical Informatics,
to aid for example drug modelling (sample and model selection in QSAR) and on to

276 J. Frey et al.

the larger spatial scale of the environment, all of which are major purposes of our
current investigations.

We have also commenced an exploration of capturing scientific discourse within
the Data Grid, fully linked in following the publication@source approach. This in-
cludes materials from meetings and videoconferences, and is achieved through the use
of meeting support tools which capture semantic annotation following a similar ap-
proach to the smart lab. [14]

The importance of provenance cannot be overstated – not just with respect to un-
derstanding where information has come from, but in understanding how to interpret
it. An item of information is rendered almost useless if the details of the provenance
are not known (in practice this leads to experiments being unnecessarily repeated).

Our principle of pragmatism has brought us a long way – this is a significant piece
of the Semantic Web. In a sense, we are now ready to begin! We have benefited
from flexible associations and from the sharing of identifiers, and from graph queries
and chaining in the triplestore. Much of the power of the Semantic Web that comes
from ontologies is yet to be explored. Also at this level we see opportunities for use of
rules as these solutions emerge within the Semantic Web stack.

Acknowledgements

The work in this paper was partially supported by the UK e-Science CombeChem pro-
ject (GR/R67729/01), the Advanced Knowledge Technologies IRC (GR/N15764/01),
CoAKTinG (GR/R85143/01) and and Semantic Media (EP/C010078/1). eBank is
funded by JISC.

References

1. Hey and Trefethen, Cyberinfrastructure for e-Science, Science 308 (2005) 817-821.
2. C. A. Goble, D. De Roure, N. R. Shadbolt, and A. A. A. Fernandes, "Enhancing Services

and Applications with Knowledge and Semantics," in The Grid 2: Blueprint for a New
Computing Infrastructure, I. Foster and C. Kesselman, Eds.: Morgan-Kaufmann, pp. 431-
458. (2004).

3. De Roure, D. Jennings, N.R. Shadbolt, N.R. The Semantic Grid: Past, Present, and Future,
Proceedings of the IEEE, 93, (2005) 669-681.

4. Taylor, K., Gledhill, R., Essex, J.W., Frey, J.G., Harris, S.W. and De Roure, D. “A Seman-
tic Datagrid for Combinatorial Chemistry”, Proceedings of IEEE Grid Computing Work-
shop at SC05, IEEE, Seattle, WA. November 2005.

5. Taylor, K., Essex, J.W., Frey, J. G., Mills, H. R., Hughes, G and Zaluska, E. J. The seman-
tic grid and chemistry: experiences with CombeChem. Journal of Web Semantics (In
Press).

6. Taylor, K. R., Gledhill, R., Essex, J. W., Harris, S.W., De Roure, D. C. and Frey, J. G.
Bringing chemical data onto the semantic web. Journal of Chemical Information and Mod-
eling, 46 (2006),939-952. (doi:10.1021/ci050378m)

7. Frey, J.G., Bradley, M. Essex, J., Hursthouse, M.B., Lewis, S.M.,Luck, M., Moreau, L.,
De Roure, D., Surridge M., and Welsh, A., ‘Combinatorial Chemistry and the Grid’, pub-
lished in ‘Grid Computing: Making the Global Infrastructure a Reality’, edited by
F.Berman, G.Fox and T.Hey, Wiley, 2004.

 CombeChem: A Case Study in Provenance and Annotation Using the Semantic Web 277

8. InChI International Chemical Identifier http://www.iupac.org/inchi/
9. Murray-Rust, P. "The World Wide Molecular Matrix - a peer-to-peer XML repository for

molecules and properties," presented at EuroWeb2002, Oxford, UK, 2002.
10. Collaboratory for Multi-Scale Chemical Science (CMCS) http://cmcs.org/
11. Frey, J. G. (2004) Dark lab or smart lab: the challenges for 21st century laboratory

software. Organic Process Research & Development, 8, (2005) 1024-1035.
(doi:10.1021/op049895g)

12. Hughes, G., Mills, H., De Roure, D., Frey, J.G., Moreau, L., schraefel, m.c., Smith G., and
Zaluska, E., ‘The semantic smart laboratory: A system for supporting the chemical e-
Scientist’, Org. Biomol. Chem. 2, (2004) 3284-3293, 2004.

13. Jena – A Semantic Web Framework for Java, http://jena.sourceforge.net/
14. schraefel, m.c., Hughes, G., Mills, H., Smith, G., Payne T., and Frey, J., ‘Breaking the

Book: Translating the Chemistry Lab Book to a Pervasive Computing Environment’, pub-
lished in Proceedings of the Conference on Human Factors (CHI), 2004.

15. Harris, S and Gibbins, N.3store: Efficient Bulk RDF Storage. In Proceedings of the First
International Workshop on Practical and Scalable Semantic Web Systems (PSSS2003),
Sanibel Island, Florida, USA.

16. Duke, M., Day, M., Heery, R., Carr L., and Coles, S.J. “Enhancing access to research
data: the challenge of crystallography”. Proceedings of the 5th ACM/IEEE-CS joint con-
ference on Digital libraries, Denver, CO, USA. (2005) 46 – 55.

17. Coles, S.J., Frey, J.G., Hursthouse, M.B., Light, M.E., Milsted, A.J., Carr, L.A., De Roure,
D., Gutteridge, C.J., Mills, H.R., Meacham, K.E., Surridge, M., Lyon, E., Heery, R., Duke,
M. and Day, M. An E-Science Environment for Service Crystallographysfrom Submission
to Dissemination. Journal of Chemical Information and Modeling 46 (2006) 1006-1016,
(doi:10.1021/ci050362w)

18. Coles, S., Frey, J. G., Hursthouse, M. B., Light, M. E., Meacham, K. E., Marvin, D. J. and
Surridge, M. ECSES - examining crystal structures using `e-science': a demonstrator em-
ploying web and grid services to enhance user participation in crystallographic experi-
ments. J. Appl Cryst, 38 (2005) 819-826. (doi: 10.1107/S0021889805025197)

19. Bachler, M. S., Buckingham Shum, S. J., De Roure, D. C., Michaelides, D. T. and Page, K.
R. Ontological Mediation of Meeting Structure: Argumentation, Annotation, and Naviga-
tion. In Proceedings of 1st International Workshop on Hypermedia and the Semantic Web
(HTSW2003), Nottingham, 2003.

Principles of High Quality Documentation for

Provenance: A Philosophical Discussion

Paul Groth, Simon Miles, and Steve Munroe

School of Electronics and Computer Science
University of Southampton

Highfield, Southampton SO17 1BJ, United Kingdom
{pg03r, sm, sjm}@ecs.soton.ac.uk

Abstract. Computer technology enables the creation of detailed docu-
mentation about the processes that create or affect entities (data, objects,
etc.). Such documentation of the past can be used to answer various kinds
of questions regarding the processes that led to the creation or modifica-
tion of a particular entity. The answer to such questions are known as an
entity’s provenance. In this paper, we derive a number of principles for
documenting the past, grounded in work from philosophy and history,
which allow for provenance questions to be answered within a computa-
tional context. These principles lead us to argue that an interaction-based
model is particularly suited for representing high quality documentation
of the past.

History is important: in order to make progress in the future, it is important
to learn the lessons of the past. History, therefore, becomes a vital resource for
progressive societies. History is based on evidence or documentation of events
that occurred in the past. Computer technology enables documentation to be
produced that is more accurate and comprehensive than previously possible.
Given the quantity of documentation that can be generated by computer systems
(for example those running e-Science applications), what kind of documentation
should be created that enables historians and users to most effectively answer
questions they have about the past. To answer these questions, we argue for two
principles for the creation of, what we term, high quality documentation of the
past. One principle guarantees that users of documentation of the past have a
precise semantics for it. The other principle guarantees that there exists a link
between documentation and its creators. Together these principles are the first
contribution of this paper.

A question that is often posed by historians and users regards the provenance
of an entity (object, data item, etc..): what was the process that led to the entity
in question? To enable the answering of provenance questions in a manner that
conforms with the aforementioned principles, we introduce a model of documen-
tation based on the exchange of messages between actors. The justification of
this model is the second contribution of this paper.

The rest of this paper is organised as follows. We begin with a more detailed
motivation of our work. After which, three assumptions about the world are

L. Moreau and I. Foster (Eds.): IPAW 2006, LNCS 4145, pp. 278–286, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Principles of High Quality Documentation for Provenance 279

presented. We then present two principles of high quality documentation. Each
principle is grounded in work from philosophy and history. Finally, we argue for
the adoption of a model, based on interactions between computational programs,
as a representation of past documentation that fits both provenance and the
principles outlined.

1 Motivation

Historical records are typically produced by historians weaving together scat-
tered pieces of documentation to tell a story of past events and their relation-
ships with one another [10]. A history of ancient Greece, for example, would be
pieced together from archaeological sites, preserved texts and artefacts. These
pieces of documentation are distributed across the globe at various locations
including museums, archaeological digs and libraries. Furthermore, the docu-
mentation is far from complete, and the many gaps and omissions must be filled
with suppositions and educated guesses. Today, human activity is becoming in-
creasingly automated with the aid of computational systems, which perform
part or, in some cases, all of processes previously undertaken solely by humans.
Interestingly, this means that activities in scientific [2], governmental [4] and
commercial [12] settings are increasingly represented in computational systems,
which presents an opportunity: it becomes possible to capture what happens in
these settings both accurately and comprehensively.

The large amount of documentation that can be generated by computer sys-
tems changes the role of the historian, from someone who deduces history from
paltry evidence to one who sifts through detailed documentation in order to
make sense of history for others. If historians are to play this role, how can
we ensure their task is simplified and facilitated? More specifically, how can
computer scientists provide the correct kinds of documentation to facilitate the
description and analysis of processes that have occurred and are captured within
computational systems?

In this paper, we answer these questions for documentation about the func-
tioning of computer systems. Furthermore, we take into account a specific type
of historical question: provenance. Answering provenance questions about enti-
ties places requirements on the documentation of the past. In order to refer to
the history of an entity as it existed at a point in time, or in the context of a
specific event, documentation of the processes the entity goes through must exist
up to and including that point in time. For instance, to track the provenance of
a Renaissance painting, the owner needs to know both its owner in 1990 as well
as its owner in 1800 and, preferably, all of the owners in between. The documen-
tation must also be able to include information from several sources. Referring
to our painting example, one source may give the ownership information for a
painting in 1800, while another may provide it for 1990. Considering these re-
quirements within computational systems, we derive a number of principles of
documentation of the past that make it possible to find the provenance of data
items. We term documentation of the past that conforms to these principles

280 P. Groth, S. Miles, and S. Munroe

high quality documentation, which is the kind of documentation that we believe
historians and users should be sifting through as they answer questions about
the provenance of data items.

We now argue for our principles of high quality documentation of the past.

2 Three Basic Assumptions

The set of principles we intend to outline are based on a number of assumptions
about the world. We believe these assumptions to be reasonable, but given that
they are philosophical in nature, they are open to debate. We abstain from
such debate here and instead encourage the reader to consult the philosophical
literature (such as [11]).

We postulate that historians as well as others take a realist view of the world
in everyday life. A general definition of realism is given in our first assumption:

Assumption 1 (Realism). “a, b, and c and so on exist, and the fact that they
exist and have properties such as F-ness, G-ness, and H-ness is independent of
anyone’s beliefs, linguistic practices, conceptual schemes, and so on.” [5]

That is to say, things like computers, paper and post-it notes as well as their
attributes of being rectangular, made of wood, yellow in colour are independent
of what anyone thinks of them. People tend to believe that cars, post-it notes,
and magazines exist without having to be there to see them. Extending this
concept, we introduce the assumption of verification.

Assumption 2 (Verification). Observers can check the existence of all enti-
ties and their properties independently from other observers.

The implication of this assumption is, for example, if an observer claims that
there is a large red dinosaur outside their office window, another observer who is
there at the same time can check whether this is the case or not. The ability to
verify is dependent on two things: the independence of the environment from the
observer (a consequence of realism) and the observers’ senses not malfunctioning.

Our final assumption is as follows:

Assumption 3 (Truthful representation). Users of documentation of the
past, such as historians, want documentation to be an accurate or truthful rep-
resentation of what occurred.

In essence, the more detailed, accurate, and truthful portrait of the past given,
the more users’ analyses can be supported and buttressed. With these assump-
tions in mind, we now describe principles for high quality documentation. We
begin with a discussion of truth.

3 Truth and Factuality

As stated in Assumption 3, we assume that users want documentation of the past
to be truthful. To establish that documentation does indeed truthfully represent

Principles of High Quality Documentation for Provenance 281

the past, we must find a definition of truth that works with respect to both
computational systems and the past. We begin by presenting a theory of truth
that fits our assumptions. We then show how the assumption of verification is
broken with respect to computer systems. The verification assumption is then
discarded and we develop a new principle, based on the theory of truth we
present, that provides documentation of the past for computational systems
with a precise semantics.

From Assumption 1, the correspondence theory of truth seems to be the stan-
dard defensible theory of truth that we should adopt [9]. It is defined as follows:

Definition 1 (Correspondence theory of truth). “A proposition is true
just in case (if and only if) it corresponds to fact or the world.” [9]

That is to say, if a statement is expressed and it corresponds (or can be mapped)
to the world, then it is true.1 The correspondence theory means that statements
can be verified by observing what they correspond to. Assumption 2 holds in the
real world. Humans can check if statements are true by observing the world. They
can observe whether or not a large red dinosaur is outside the office window.

In computer systems, however, the assumption of verification does not work.
Software programs or components, which we call actors, do not have independent
access to a common element (piece of hardware, software, component). There is
no equivalent to the independently accessible environment present in the physical
world. Instead, actors rely on information communicated between themselves.
For example, to access the hard drive, an application program communicates
with the operating system, which communicates with the driver program which
accesses the physical drive and provides the data back through the chain. The
application program’s access to the hard drive is mediated by other programs.
It does not have independent access to the hard drive. The only actor that can
know directly the contents of the hard drive is the driver program. If it receives
six different requests and provides the same data back for every request, no other
actor would be able to detect if that was an incorrect or correct response.

In distributed computational systems, actors’ dependence on communication
is further emphasised by their spatial isolation. For an actor executing in com-
puter A to know about the state of computer B, it must receive information
from an actor executing in computer B. There is no other way for an actor in
A to gain direct knowledge of computer B. Therefore, unlike a human, an actor
cannot readily verify the state of the world independently of the information it
receives from other actors. If an actor executing on computer A makes a propo-
sition about the state of computer A, even if that proposition corresponds to
the world, an actor on another computer cannot verify the truthfulness of the
proposition. Hence, the assumption of verification does not hold in a computer
system.

Given this problem, we make explicit what actors can verify to be truthful.
Actors come to know the world via communication. They observe the world
through the receipt of information. Therefore, an actor can determine whether
1 Throughout this paper, we will use “statement” and “proposition” interchangeably.

282 P. Groth, S. Miles, and S. Munroe

a proposition is true with respect to what it observes. The statement “actor
A received data item X” can be verified by actor A as being true or false.
However, no other actor can verify that statement. In a computational system,
the verification of a statement is dependent both on its correspondence to a fact
and the actor that observed the fact.

Therefore, the correspondence theory of truth still holds in computational
systems except that only an actor that has observed a particular event can know
whether a proposition about it is true. This implies that other actors as well
as users cannot know whether or not documentation about what happened in
computer systems is true. Hence, we are led to the notion that documentation
cannot be independently verified as truth. Instead, for every statement in doc-
umentation of the past, a user must make a judgement about its veracity. To
enable this sort of judgement we introduce the following principle.

Principle 1 (Factuality). As part of documentation of the past, actors must
only record propositions that they can verify to be true, where truth is defined by
the correspondence theory of truth.

Actors, then, should only make statements about what they observe, but not
about guesses or inferences about the world. If this principle is followed, users of
documentation can know that statements represent reality at that time for the
actors who made them. This is a powerful notion. Documentation created using
Principle 1 can be interpreted as representing the reality of the computer system
assuming that the users believe the actors that created the documentation. This
notion is currently not enforced by most provenance systems. Scientific Annota-
tion Middleware [7], for example, allows actors to record inferences about what
other actors have done.

4 He Said, She Said

In the previous section, we stated that users should interpret documentation
as statements by actors in computer systems about what they have observed.
Documentation about the past then acts as evidence that the past occurred in
some manner. Evidence plays a critical role in society. Historians, juries and
others rely on evidence to make judgements about the past and predict what
will happen in the future. In a legal setting, evidence is defined as follows:

Definition 2 (Evidence). “Evidence is information, whether in the form of
personal testimony, the language of documents, or the production of material
objects that is given in a legal investigation, to establish the fact or point in
question” (Oxford English Dictionary)

We now draw a parallel between the statements that make up the documentation
of the past for a computer system and a particular type of evidence in a legal
setting, testimony. Coady (p. 33) gives a six point list of how testimony in a
legal setting can be identified [1]. We enumerate the most pertinent here.

Principles of High Quality Documentation for Provenance 283

1. Testimony is a form of evidence.
2. Testimony is constituted by persons A offering their remarks as evidence so

that we are invited to accept p because A says that p.
3. The person offering the remarks is in a position to do so, i.e. he has the

relevant authority, competence, or credentials. Within English law and pro-
ceedings influenced by it, the testimony is normally required to be firsthand
(i.e. not hearsay).

The statements made by actors are similar to testimony. They are evidence
that something happened in a computer system. We are invited to accept a
statement by an actor because the actor states it. Furthermore, the actor, from
the principle of factuality, should have firsthand knowledge of what occurred.
Just like eyewitnesses to a crime scene testifying in court, actors provide state-
ments as to how things were at a particular time, hopefully without inference.
However, just like testimony from people, statements made by actors may be
incomplete, inaccurate or misconstrued.

Users of documentation of the past must then play a similar role to juries. Just
as juries make a judgement about whether to believe the set of claims provided
by an eyewitness, users must make the same judgement about documentation
of the past. Such judgements are usually based on the source of the evidence.
Users can interpret documentation based on a variety of factors: e.g. what other
actors state about the source, the actor’s past performance, the content of the
documentation.2 The key to making this judgement is to know the creator of
the statement. Therefore, it is fundamental that documentation about the past
in computer systems be attributable, which is our second principle.

Principle 2 (Attribution). Each statement making up documentation of the
past for a computer system must be attributable to a particular actor.

We have argued that documentation of the past for computer systems should be
both attributable and factual. We now endorse a particular model for represent-
ing documentation of the past.

5 Endorsing a Model

We have developed mechanisms to record documentation about the processes ex-
ecuting in computational systems [3]. These mechanisms adopt a specific model
centered on message exchanges, termed interactions. The choice of an interaction
based approach was influenced by Milner [6]. We now argue that an interaction
model that follows the aforementioned principles is best suited for representing
documentation. The interaction model is defined as follows.

Definition 3 (Interaction Model). In the interaction model, a system is
composed of actors that exchange information via interactions. An interaction
2 A user is determining whether to trust an actor. The concept of trust and related

research are outside the scope of this paper. We refer the reader to [8] for more
in-depth discussions of trust in computational systems.

284 P. Groth, S. Miles, and S. Munroe

consists of one actor sending a message and another receiving the same mes-
sage. Actors receive no data other than via interactions, i.e. there is no external
environment.

Following Milner [6], we argue that any computational system can be described
using the concepts of the interaction model. From this model, we can define a
form of documentation that describes a system according to that model.

Definition 4 (Interaction Model Documentation). Documentation of the
past that describes a system according to the interaction model is called interac-
tion model documentation.

From the principle of factuality, actors should only document what they observe.
This means that the documentation produced by one actor will be created inde-
pendently from that produced by any others. Given that determining the prove-
nance of a data item, which can include events spanning time and space, may
require examining documentation from multiple actors, we need to know when
multiple actors are providing documentation of the same event. This is also true
more generally, wherever a historian attempts to create an independent narra-
tive from multiple actors’ accounts [10]. According to Section 2, the observations
made by actors cannot, in themselves, be independently verified but this does
not prevent a historian from inferring that multiple actors’ observations are of
the same or connected events from the content of the documentation.

There are two ways that a connection between actors’ observations can be
inferred from interaction model documentation. First, in some cases, something
about where the content of an actor’s observations came from can be inferred
from that content. For example, the port which an actor received TCP/IP com-
munication on may be apparent from the documentation of that communication.
Moreover, in some cases the actual actor that the content came from can be in-
ferred, e.g. a message may be digitally signed so the author can be determined.
In this way, we can infer a connection between the data received by one actor
and the observations of another actor (the sender).

Second, we can infer explicit connections between actors’ communications. In
a system of actors with no shared world to observe, connections between actors’
observations can only be made if it is apparent when some data was sent by an
actor over the communication medium. Since observation is the receipt of data,
an actor will observe, and so can document, receiving a message from another
actor but will not directly observe the sending of a message. Fortunately, some
observations can be inferred as indirectly documenting information leaving an
actor. For example, the content of documentation can imply that data is about
to be sent by the actor over the wire, with the intention of reaching another
actor. Where an actor receives feedback that it is sending or has sent data, it can
document this feedback and a historian can infer that it sent the data. Given
this, it can be inferred that where actor A recorded receiving data, actor B
recorded (feedback on) sending data, the data has identical content and each
message communicated can be safely assumed to be unique, then we can infer
that the actors’ observations are of the same message.

Principles of High Quality Documentation for Provenance 285

The interaction model connects what would be, in an event-based model,
for example, isolated, disconnected and unrelated events into connected, related
and meaningful observations that, taken together, allow descriptions of coherent
processes.

6 Conclusion

In this paper, we have proposed two principles that documentation about the
past for computational systems should abide by to be considered high quality.
First, we argued for creating factual documentation so that users have a precise
semantics in which to interpret documentation. The argument was grounded in
a philosophical investigation into what would make for a truthful representation
of the past. Second, based on the observation that statements made by com-
putational actors are equivalent to testimony in a court of law, we derived the
necessity for attributable documentation. Finally, an interaction model was en-
dorsed as an effective computational model for representing the past, especially
in comparison with event based models.

If historians or any users are to effectively use documentation of the past for
provenance, they must understand the underlying principles that were used in
the generation of it. Therefore, it is critical that the community enumerate and
justify these principles. This paper is the first to state such principles explicitly.

Acknowledgements. This research is funded in part by EPSRC PASOA
project (GR/S67623/01) and the European Community’s Sixth Framework
Program’s EU Provenance project (IST511085).

References

1. C. Coady. Testimony: A Philosophical Study. Oxford University Press, 1992.
2. J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H. T. Vo.

Managing rapidly-evolving scientific workflows. In L. Moreau and I. Foster, editors,
International Provenance and Annotation Workshop (IPAW’06), May 2006.

3. P. Groth, M. Luck, and L. Moreau. A protocol for recording provenance in service-
oriented grids. In Proceedings of the 8th International Conference on Principles of
Distributed Systems (OPODIS’04), Grenoble, France, Dec. 2004.

4. S. lvarez, J. Vazquez-Salceda, T. Kifor, L. Z. Varga, and S. Willmott. Applying
provenance in distributed organ transplant management. In L. Moreau and I. Fos-
ter, editors, International Provenance and Annotation Workshop (IPAW’06), May
2006.

5. A. Miller. Realism. In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy.
Fall 2005.

6. R. Milner. Elements of interaction: Turing award lecture. Communications of the
ACM, 36(1):78–89, 1993.

7. J. Myers, A. Chappell, M. Elder, A. Geist, and J. Schwidder. Re-integrating the
research record. IEEE Computing in Science & Engineering, pages 44–50, 2003.

8. D. H. S. D. Ramchurn and N. R. Jennings. Trust in multiagent systems. The
Knowledge Engineering Review, 19(1):1–25, 2004.

286 P. Groth, S. Miles, and S. Munroe

9. F. F. Schmitt. Truth: A Primer. Westview Press, 1995.
10. M. Stanford. An Introduction to the Philosophy of History. Blackwell Publishers,

1998.
11. E. N. Zalta. The Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/,

Spring 2006. ISSN 1095-5054.
12. J. Zhao, C. Goble, and R. Stevens. An identity crisis in the life sciences. In

L. Moreau and I. Foster, editors, International Provenance and Annotation Work-
shop (IPAW’06), May 2006.

Author Index

Altintas, Ilkay 118
Álvarez, Sergio 28

Barga, Roger S. 1
Barney, Oscar 118
Bose, Rajendra 193
Bourilkov, Dimitri 19
Bowers, Shawn 133
Branco, Miguel 55
Braun, Uri 171
Buneman, Peter 162

Callahan, Steven P. 10
Chapman, Adriane 162
Cheney, James 162
Cohen, Shirley 133

Davidson, Susan B. 133
De Roure, David 270
Deelman, Ewa 90
Digiampietri, Luciano A. 1
Dvořák, Frantǐsek 246

Essex, Jonathan 270

Foster, Ian 148
Freire, Juliana 10
Frey, Jeremy 270
Futrelle, Joe 64

Gannon, Dennis 222
Garfinkel, Simson 171
Gil, Yolanda 90
Goble, Carole 254
Golbeck, Jennifer 82, 101
Groth, Paul 203, 278
Grove, Michael 82

Halaschek-Wiener, Christian 82
Hendler, Jim 82
Holland, David A. 171
Hunter, Jane 212

Jaeger-Frank, Efrat 118
Jiang, Sheng 203

Khan, Imran 212
Khandelwal, Vaibhav 19
Kifor, Tamás 28
Kloss, Guy K. 37
Kouřil, Daniel 246
Křenek, Aleš 246
Kulkarni, Archis 19

Ludäscher, Bertram 133

Mann, Robert G. 193
Marru, Suresh 222
Matyska, Luděk 246
McPhillips, Timothy 133
Miles, Simon 184, 203, 278
Mills, Hugo 270
Moreau, Luc 55, 203
Mulač, Miloš 246
Muniswamy-Reddy, Kiran-Kumar 171
Munroe, Steve 203, 278
Myers, James D. 73

Naughton, Jeffrey F. 237

Parsia, Bijan 82
Plale, Beth 46, 222
Posṕı̌sil, Jan 246
Prina-Ricotti, Diego 193

Rajbhandari, Shrija 109
Rana, Omer 109
Ratnakar, Varun 90
Reilly, Christine F. 237
Ruda, Miroslav 246

Salvet, Zdeněk 246
Santos, Emanuele 10
Schain, Andrew 82
Scheidegger, Carlos E. 10
Schreiber, Andreas 37
Schroeter, Ronald 212
Schuchardt, Karen L. 73
Seltzer, Margo I. 171
Silva, Cláudio T. 10
Simmhan, Yogesh L. 222

288 Author Index

Sitera, Jǐŕı 246
Stephan, Eric G. 73
Stevens, Robert 254

Talbott, Tara D. 73
Tan, Victor 203
Taylor, Kieron 270
Totala, Sanket 19
Tsasakou, Sofia 203

Vansummeren, Stijn 162
Varga, László Z. 28

Vázquez-Salceda, Javier 28
Vijayakumar, Nithya N. 46
Vo, Huy T. 10
Voc̊u, Michal 246

Wilde, Michael 148
Willmott, Steven 28
Wootten, Ian 109

Zaluska, Ed 270
Zhao, Jun 254
Zhao, Yong 148

	Frontmatter
	Session 1: Keynotes
	Automatic Generation of Workflow Provenance
	Managing Rapidly-Evolving Scientific Workflows

	Session 2: Applications
	Virtual Logbooks and Collaboration in Science and Software Development
	Applying Provenance in Distributed Organ Transplant Management
	Provenance Implementation in a Scientific Simulation Environment
	Towards Low Overhead Provenance Tracking in Near Real-Time Stream Filtering
	Enabling Provenance on Large Scale e-Science Applications

	Session 4: Semantics 1
	Harvesting RDF Triples
	Mapping Physical Formats to Logical Models to Extract Data and Metadata: The Defuddle Parsing Engine
	Annotation and Provenance Tracking in Semantic Web Photo Libraries
	Metadata Catalogs with Semantic Representations
	Combining Provenance with Trust in Social Networks for Semantic Web Content Filtering

	Session 5: Workflow
	Recording Actor State in Scientific Workflows
	Provenance Collection Support in the Kepler Scientific Workflow System
	A Model for User-Oriented Data Provenance in Pipelined Scientific Workflows
	Applying the Virtual Data Provenance Model

	Session 6: Models of Provenance, Annotations and Processes
	A Provenance Model for Manually Curated Data
	Issues in Automatic Provenance Collection
	Electronically Querying for the Provenance of Entities
	AstroDAS: Sharing Assertions Across Astronomy Catalogues Through Distributed Annotation

	Session 8: Systems
	Security Issues in a SOA-Based Provenance System
	Implementing a Secure Annotation Service
	Performance Evaluation of the Karma Provenance Framework for Scientific Workflows
	Exploring Provenance in a Distributed Job Execution System
	gLite Job Provenance

	Session 9: Semantics 2
	An Identity Crisis in the Life Sciences
	CombeChem: A Case Study in Provenance and Annotation Using the Semantic Web
	Principles of High Quality Documentation for Provenance: A Philosophical Discussion

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

