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2 LIFL, CNRS, Université de Lille I, 59655 Villeneuve d’Ascq
France

{jourdan, dhaenens, talbi}@lifl.fr

Abstract. Hybridizing metaheuristic approaches becomes a common
way to improve the efficiency of optimization methods. Many hybridiza-
tions deal with the combination of several optimization methods. In this
paper we are interested in another type of hybridization, where datamin-
ing approaches are combined within an optimization process. Hence, we
propose to study the interest of combining metaheuristics and datamin-
ing through a short survey that enumerates the different opportunities
of such combinations based on literature examples.

1 Introduction

Hybrid metaheuristics are more and more studied and a first taxonomy has been
proposed in [44]. Many works propose to combine two or more metaheuristics,
but other works present also hybridizations between exact optimization methods
and metaheuristics. Another promising approach to hybridization is to use data-
mining techniques to improve metaheuristics. Datamining (DM), also known
as Knowledge-Discovery in Databases (KDD), is the process of automatically
exploring large volumes of data e.g., instances described according to several
attributes, to discover patterns. In order to achieve this, datamining uses com-
putational techniques from statistics, machine learning, pattern recognition or
combinatorial optimization.

Datamining tasks can be organized into a taxonomy, based on the desired
outcome of the algorithm. Usually a distinction is made between supervised and
unsupervised learning. Classical tasks of supervised learning are:

– Classification: examining the attributes of a given instance to assign it to a
predefined category or class.

– Classification rule learners: discovering a set of rules in the database which
forms an accurate classifier.

The most common tasks of unsupervised learning are:

– Clustering: partitioning a data set into subsets (clusters), so that data in
each subset share some common aspects. Partitioning is often indicated by
a proximity evaluated using a distance measure.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 57–69, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



58 L. Jourdan, C. Dhaenens, and E.-G. Talbi

Kind of knowledge

}

}

Initialization Population management Operators

Quality improvementSpeeding−up

Local search

Apriori knowledge Dynamic knowledge

EncodingParametersEvaluation } Localization

Aim

Fig. 1. The proposed taxonomy

– Association rule learners: discovering elements that occur in common within
a given data set.

Using metaheuristics for knowledge extraction has become common while the
other way which consists in using knowledge discovery to improve metaheuristic
is less studied. This research way can be refereed as knowledge incorporation in
metaheuristics and may be performed by using informed operators, approxima-
tion of fitness, etc.

To illustrate the different ways to integrate knowledge into metaheuristics,
a small taxonomy that summarizes compositions found in several articles, is
proposed in Figure 1.

– Two kinds of knowledge can be distinguished: a previously acquired knowl-
edge which is called Apriori Knowledge and a dynamically acquired knowl-
edge which is extracted or discovered during the search.

– Another useful information to classify algorithms is to distinguish the aim of
the cooperation. Either the cooperation is used to reduce the computational
time i.e., speed up techniques, by simplification of the fitness i.e., fitness
approximation, or by significantly reducing the search space e.g., leading the
metaheuristic in promising area; or the cooperation is used to improve the
quality of the search by introducing knowledge in operators or in other parts
of the metaheuristic. In fact, the insertion of datamining techniques often
leads to both speeding up the metaheuristic and improving the quality.

– The last point used to distinguish the hybridizations is to determine which
part of the metaheuristic is concerned by the knowledge incorporation. Hy-
bridization can occur in each part of the metaheuristic: parameters, encod-
ing, evaluation, initialization, operators, etc.

This paper aims to provide a quick comprehensive picture of the interest of
combining datamining techniques and metaheuristics. We do not consider here
the vast topic of incorporating knowledge but the use of knowledge algorithms
also called datamining algorithms. In order to present this literature review,
we have chosen to classify references with respect to the localization of the
knowledge integration.

The remainder of this paper is set out as follows. Section 2 highlights the
potential of datamining to speed-up metaheuristics by using datamining during
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the evaluation. Section 3 discusses how datamining can help to set the parame-
ters of the metaheuristic. Section 4 presents the use of datamining techniques for
the initialization of metaheuristics. Section 5 is devoted to population manage-
ment. Section 6 details the benefit of datamining in crossover operators. Section
7 shows the local search datamining applications in evolutionary computation.
Section 8 exhibits that some metaheuristics are based on datamining incorpora-
tion. Finally, conclusions and perspectives are drawn in the last section.

2 Using Datamining During the Evaluation

In some real cases, the fitness function can be very expensive to compute. Thus
decreasing the number of complete evaluations would be beneficial. To achieve
this, some approximations of the fitness functions could be used, and datamining
techniques may be interesting to obtain good approximations. A very complete
and comprehensive survey on fitness approximation has been proposed in [15]. It
shows that fitness approximation can be used either for expensive fitness func-
tions or multi-modal fitness functions and may be realized by several approaches
exposed below.

2.1 Replace the Evaluation Function by a Datamining Algorithm

Datamining techniques can be used to build approximate models of the fitness
function. In this context, previously calculated fitnesses are learned by a data-
mining algorithm to approximate the fitness of new individuals. Many works
use neural networks (both multi-layer perceptrons and radial-basis-function net-
works) to realize an approximation of the function to optimize. For example in
[6], the authors use an artificial neural network (ANN) with a multiple objective
genetic algorithm. They evaluate a large part of the population with an ANN and
a small part is still simultaneously evaluated with the original function. Rasheed
et al. propose to cluster data and to construct separate approximation models
for the different clusters [30,32,29]. The approximation model can be used each
time or alternatively with the real objective function.

2.2 Using Datamining Techniques to Avoid Evaluations

When the fitness function can be approximated, some authors use the approx-
imation only within operators, such as initialization, mutation, crossover and
selection. This approach avoids the calculation of time consuming fitness for
individuals that may be of very bad quality and that will not be kept in the
population. For example, in [31], the authors use approximations to improve
operators. They generate several possible new individuals and then choose the
best according to a reduced model. To compute the model, they maintain a large
sample of points encountered during the course of the optimization and divide it
into dynamic clusters. To compute the approximate model of an individual, they
use the weighted k-nearest-neighbor approach which is a classification technique.
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Fig. 2. Using representatives for the evaluation process through clustering

2.3 Using a Datamining Algorithm to Estimate a Representative

Approximating the fitness could be not satisfying because of the quality of the
approximation for example. Another way to speed up the metaheuristic is to
reduce the number of calls to the fitness function. This may be realized using
fitness imitation. In this kind of approach, a set of individuals is considered
as similar to another one and their fitness is fixed as equal to the reference
individual which is called the representative. To determine the different sets,
clustering techniques are often used.

Hence, in [16,18,47], the author proposes to maintain a large population size
by using clustering algorithms. For example, in [47] Yoo et al. propose to use a
fuzzy clustering approach to divide the population and to elect a representative
of each cluster. Only the representatives are evaluated which allows the reduction
of the evaluation costs. The fitness value of an individual of a cluster is estimated
in respect with its associated representative (Figure 2).

3 How Datamining May Help to Set Parameters

A very difficult part in designing metaheuristics deals with the setting of the
parameters of such methods. How can we fix in advance parameters such as the
probability of application of a given operator, the size of the population or the
number of iterations, for example? Two approaches may be used in this context:

– A first approach which is empirical consists in both executing several times
the method with different parameter values and trying to select the best
values. If the number of executions or the number of parameters are high,
determining the best set of parameters may require statistical analyses. This
may be seen as a datamining help.

– To set the probability of application of an operator, another approach may
be used. It consists in analyzing the performance of the operators during the
algorithm execution. In particular, this approach may be used when several
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operators are available for the same operation (crossover or mutation, for
example). In [12], the author proposes to compute the rate of appliance of
a mutation operator by calculating the progress of the last applications of
this operator. Hence, it becomes possible to determine the probabilities of
appliance of a given operator in an adaptively way where the more efficient an
operator is, the more it will be used. Another approach could be to analyse
in details the new individuals generated by operators (in term of quality,
diversity) using clustering algorithms for example. This would give valuable
information that can help to set the new application probabilities.

These two approaches give examples on the way the datamining techniques may
help to set parameters.

4 Using Datamining for Initialization

Generally, metaheuristics generate their initial solution(s) randomly. In continu-
ous optimization, this generation may also be done using a grid initialization. It
could be also interesting to cleverly generate the initial population in order, for
example, to reduce the search space by leading the metaheuristic to promising
area.

For example, in [28], Ramsey et al. propose to initialize a genetic algorithm
with case-based reasoning in a tracker/target simulation with a periodically
changing environment. Case-based initialization allows the system to automati-
cally bias the search of the genetic algorithm toward relevant areas of the search
space.

5 Datamining and Population Management

Datamining techniques are often used to manage the population. Several works
deal with introducing new individuals in the population. Some common meth-
ods try to inject new individuals into the population. This could be realized to
diversify the population like in the random immigrant strategy. In order to lead
the search to promising search spaces it could be also interesting to regularly in-
troduce individuals that are built based on information of the past encountered
solutions.

In [20,21], Louis presents CIGAR (Case Injected Genetic AlgoRithm). The
aim of CIGAR is to provide periodically to the genetic algorithm solutions that
suit to similar problems. CIGAR has been successfully applied to several prob-
lems such as jobshop, circuit modelling, etc.

In [4,39], the authors propose to hybridize a genetic algorithm and the Apriori
algorithm (Apriori is a classical algorithm to generate association rules [1]) to
discover interesting subroutines for the oil collecting vehicle routing problem.
They insert the found subroutines into the new individuals.

In the work of Ribeiro et al. [37,38,40], the authors present a GRASP hy-
bridized with several frequent item set mining algorithms: the Direct Count and
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Fig. 3. Case Injected Genetic AlgoRithm (CIGAR)

the Intersect algorithms in [38] and the FPMax* in [40], which are Apriori-like
approaches. These algorithms are used to extract patterns that are promising
only on elite solutions. The hybridization is realized after a fixed number of
seconds or iterations and new starting solutions for the GRASP are computed
thanks to the found patterns. The authors apply their approach to the Set Pack-
ing Problem and the Maximum Diversity Problem. The method allows for the
speed up of the convergence of the algorithm and for the improvement of the
robustness of the GRASP.

Another example of the use of datamining techniques in the population man-
agement is the use of clustering algorithms in Multi-objective population meta-
heuristics where the result to produce is a set of solutions of best compromise
(Pareto solutions). An archive is often used to store these solutions and the clus-
tering is used to avoid a bias towards a certain region of the search space. Such
a bias would lead to an unbalanced distribution of the Pareto solutions. Authors
often use the average linkage method as this clustering algorithm performs well
for Pareto optimization [48].

6 Using Datamining Within Operators

Incorporating knowledge in operators could be useful if, for example, it allows
to cleverly exploit the search space. In the following section, some examples
using machine learning approaches in crossover to explore the search space are
presented.

Handa et al. propose a co-evolutionary genetic algorithm, which uses an hy-
bridization between a GA and C4.5 (a classification algorithm) in order to dis-
cover the schemata to use in the crossover [10,9]. In their early work [8], Handa
et al. have proposed a co-evolutionary algorithm in order to discover the good
schemata to use that have not been discovered by the GA. The method works
well but was just presented for bit representation.

LEM [22,23] integrates a symbolic learning component to evolutionary com-
putation; it seeks out rules explaining the differences between the better and
worse performers in the population, and generates new individuals based on the
templates specified in these rules. An example of behaviour of LEM in the search
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Fig. 4. LEM: Example of search region reductions defined by description of the 1st,
2nd and 3rd generations

space is shown on Figure 4 where the search regions associated to each gener-
ation are illustrated. This figure shows how the search space is reduced. The
LEM methodology has proved able to improve the efficiency of the evolution-
ary process. LEM uses AQ learning algorithm (a general decision rules learning
algorithm) in order to produce rules. Let us remark that, existing implementa-
tions, such as AQ11 [24], AQ15 [25] handle noise with pre and post-processing
techniques. The basic AQ algorithm however, heavily depends on specific train-
ing examples during the search (the algorithm actually employs a beam search).
This approach has been used with the C4.5 algorithm for mono-objective jobshop
problems in the work of Huyet [14,13].

In the work of Jourdan et al. [17,45], the authors propose to extend LEM
to LEMMO for the multi-objective case in order to seek for rules that explain
why some individuals dominate others in a multi-objective point of view and
why some individuals are dominated by other. They generate new individuals
thanks to the rules by creating solutions that match to positive rules and do
not match to negative rules. This approach has shown good results on a water
system application both in speeding up the multi-objective algorithm and in
improving the quality of the solutions.

We can remark that usually the authors use classification methods (C4.5,
AQ, etc) to identify the genes that induce the good quality of the individuals.
Some authors propose to also determine the genes that characterize bad quality
solutions and to use them to repair the constructed solutions [17,45].

7 Datamining in Local Search

Metaheuristics are often hybridized with local search methods to improve the
intensification part. Some datamining algorithms are themselves local searches
and could be used as part of the metaheuristics.
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In [6], the authors propose to use inverse Artificial Neural Networks (ANN)
as local search to exploit specific region for candidate solutions. They note that
ANNs can be adequate as they construct a smooth mapping. The ANN is trained
in a reverse way as the input layer presents the criteria and the output the pa-
rameters to be optimised.

Moreover, datamining problems can be often modelized as optimization prob-
lems and in this case, the hybridization of the metaheuristic with a machine
learning algorithm could be realized such that the machine learning algorithm
treats a subproblem. For example, when clustering or grouping problems are
solved using a metaheuristic, the metaheuristic searches for the optimal subset
of genes that act as initial cluster centers. At the lower level, a local learning
method performs local clustering from these initial centers. The objective is to
combine the strength of EAs and clustering methods to produce a global effi-
cient clustering algorithm. Kmeans is often used as a local search [5,11,46] for
initialization of the solutions or to realize a local search during the search. An-
other approach, presented in [7], uses fuzzy c-means and hard c-means as an
objective function. This article shows the importance of the initialization of the
solution(s). In [3], the authors also use Expectation Maximization (EM) as a
local search to analyze gene trajectory.

8 Datamining Based Metaheuristics

Somemetaheuristics are designed to directly care of dynamic knowledge.Wedecide
to create a specific part for them as they are now considered as new metaheuristic
and not as improvement of previous ones. A lot of these algorithms are classified as
Non-Darwinian evolutionary computation as they replace Darwinian operators by
other operators. As identified in the taxonomy (Figure 1), the cooperation can ap-
pear in different localizations but we observe that in the proposed metaheuristics,
the integration is often localised in the operator part. For example, the Population-
based Incremental Learning (PBIL) creates a real-valued probability vector char-
acterizing high fitness solutions [2] (Figure 5). This vector is then used to build
new solutions. Generally, PBIL does not use mutation and crossover. PBIL can be
considered as both encoding and initialisation localization hybridizations.

Specifically, Muhlenbein and Paass have estimated the probability density func-
tions of binary variables in their chromosomes by the product of the individual
probability density functions in the UMDA (Univariate Marginal Distribution Al-
gorithm) [26]. Hence, UMDA is a special class of the PBIL algorithm.

Pelikan and Goldberg developed an algorithm ”BOA” (Bayesian Optimization
Algorithm) that extends the above ideas by using Bayesian Networks to model the
chromosomes of superior fitness [27] (Figure 6). BOA can be classified as localiza-
tion operator algorithm with dynamic knowledge.

A similar approach has also been proposed by Larranaga and Lozano, who have
given the term ”EDA” (Estimation of Distribution Algorithms) to the statistical
estimation approach to EC [19].
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Fig. 5. The PBIL probability vector

begin

t=0;

Initialise randomly Population POP(0);

Evaluate(POP(0));

repeat

Select a set of promising strings S(t) from POP(t);

Construct the network B using a given metric and constraints;

Generate a set of new strings O(t) according to the joint distribution

encoded by B;

Create a new population POP(t+1) by replacing some strings from P(t)

with O(t);

Evaluate(POP(t));

t=t+1;

until (termination condition)

end

Fig. 6. Overview of the Bayesian Optimization Algorithm

Similarly, cultural algorithms use high performing individuals to develop beliefs
constraining the way in which individuals are modified by genetic operators [35,36]
(Figure 7). In cultural algorithm, beliefs are formed based on each entity’s individ-
ual experiences. The reasoning behind this, as outlined by [35], is that cultural evo-
lution allows populations to learn and adapt at a rate faster than pure biological
evolution alone. Importantly, the learning which takes place individually by each
entity is passed on to the remainder of the group, allowing learning to take place
at a much faster rate. Cultural algorithm can be classified as operator localization
algorithm in the taxonomy.

Ravise and Sebag [43,34,41,33,42] worked on civilized genetic algorithms that
differ from Darwinian’s ones as they keep information of the population in order to
avoid doing the same errors. The knowledge is dynamically updated during
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begin

t=0;

Initialise Population POP(0);

Initialise Belief Network BLF(0);

Initialise Communication Channel CHL(0);

Evaluate(POP(0));

t=1;

repeat

Communicate(POP(0), BLF(t));

Adjust(BLF(t));

Communicate(BLF(t), POP(t));

Modulate Fitness (BLF(t), POP(t));

t=t+1;

Select POP(t) from POP(t-1);

Evolve(POP(t));

Evaluate(POP(t));

until (termination condition)

end

Fig. 7. Overview of the cultural evolution algorithm (Reynolds 1994)

generations. The datamining hybridization accelerates and improves the conver-
gence of the algorithm. But it has been tested only on bit representation. The au-
thors have observed that theGAmust be runfirstwithDarwinian operator in order
to have diversity in its population. After a fixednumber of generations, the civilized
operator is used. They keep history of the past results in order to not reproduce the
same error (and produce bad individuals). Civilized genetic algorithms can be clas-
sified as operator based dynamic knowledge.

9 Discussion and Conclusion

We have seen that there are multiple reasons to integrate datamining methods
within metaheuristics. It could be to approximate the fitness function, to improve
the convergence of the metaheuristics or to create an operator that is adapted to
the problem.

In a research point of view, the actual major interest is to use datamining to
extract useful information from the history of the metaheuristic in order to move
the search in interesting space areas. Moreover, the hybridization between meta-
heuristics and datamining techniques have not been studied a lot inmulti-objective
optimization.

The major drawback of hybridization is the setting of parameters. When ap-
plying the datamining method, how many solutions have to be stored in dynamic
knowledge, etc ? Many articles realize experimentally the parameter settings and
many authors remark that clearly the performances are correlated with the para-
meters. A very promising search investigation is to automatically determine during
the search all these parameters for designing adaptive efficient metaheuristics.
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