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Carlos Cotta1, Iván Dotú2, Antonio J. Fernández1,
and Pascal Van Hentenryck3

1 Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
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Abstract. The social golfer problem (SGP) has attracted significant
attention in recent years because of its highly symmetrical, constrained,
and combinatorial nature. Nowadays, it constitutes one of the standard
benchmarks in the area of constraint programming. This paper presents
the first evolutionary approach to the SGP. We propose a memetic al-
gorithm (MA) that combines ideas from evolutionary programming and
tabu search. In order to lessen the influence of the high number of symme-
tries present in the problem, the MA does not make use of recombination
operators. The search is thus propelled by selection, mutation, and local
search. In connection with the latter, we analyze the effect of baldwinian
and lamarckian learning in the performance of the MA. An experimental
study shows that the MA is capable of improving results reported in the
literature, and supports the superiority of lamarckian strategies in this
problem.

1 Introduction

The social golfer problem has attracted significant interest since it was first
posted on sci.op-research in May 1998. It consists of scheduling n = g · s
golfers into g groups of s players every week for w weeks so that no two golfers
play in the same group more than once. The problem can be regarded as an
optimization problem if for two given values for g and s, we ask for the maximum
number of weeks w the golfers can play together.

It can be easily inferred from the informal definition of the SGP given be-
fore that it constitutes is a highly combinatorial, constrained, and symmetric
problem. Not surprisingly, a lot of attention has been devoted to the SGP in
the constraint programming community (e.g., see [1,2,3] among others). Indeed,
it raises fundamentally interesting issues in modelling and symmetry break-
ing, and has become one of the standard benchmarks in the area. Notice in
this sense that symmetry is manifold in this problem, e.g., players can be per-
muted within groups, groups can be ordered arbitrarily within every week, and
even the weeks themselves can be permuted. Recent developments (e.g., [4])
approach the scheduling of social golfers using innovative, elegant, but also com-
plex, symmetry-breaking schemes.
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To the best of our knowledge, no evolutionary approach has been reported
in the literature to handle this problem. Here, we present a memetic algorithm
(MA) that is based on the hybridization of evolutionary programming and tabu
search, and that constitutes the first attempt of tackling the SGP by evolution-
ary techniques. While deterministic techniques such as constraint programming
have addressed the SGP by detecting and breaking symmetries (e.g., [5,6,7,8]),
the flexibility of MAs eases the handling of these symmetries. To be precise, their
influence is mostly confined to sexual-reproduction operators such as recombi-
nation. However, as shown in this work, a MA based on selection, mutation
and local search still constitutes a powerful tool for optimization, capable of
performing at a state-of-the-art level for this problem.

2 The Social Golfer Problem

As mentioned in previous section, the Social Golfer Problem (SGP) consists of
scheduling n = g · s golfers into g groups of s players every week for w weeks,
so that no two golfers play in the same group more than once. An instance of
the social golfer is thus specified by a triplet 〈g, s, w〉. A (potentially infeasible)
solution for such an instance is given by a schedule σ : Ng × Nw −→ 2Nn , where
Ni = {1, 2, · · · , i}, and |σ(i, j)| = s for all i ∈ Ng, j ∈ Nw, that is, a function
that on input (i, j) returns the set of s players that constitute the i-th group of
the j-th week.

2.1 Modelling the SGP

There are many possible modelings for the social golfer problem, which is one
of the reasons why it is so interesting. In a generalized way, this problem can
be modelled as a constraint satisfaction problem (CSP) defined by the following
constraints:

– A golfer plays exactly once a week, i.e.,

∀p ∈ Nn : ∀j ∈ Nw : ∃!i ∈ Ng : p ∈ σ(i, j). (1)

We will use the notation γ(p, j) to denote the index of the group in which
golfer p plays during the j-th week. This constraint can be also formalized
by claiming that no two groups in the same week intersect, i.e.,

∀j ∈ Nw : ∀i, i′ ∈ Ng, i �= i′ : σ(i, j) ∩ σ(i′, j) = ∅. (2)

– No two golfers play together more than once, i.e.,

∀j, j′ ∈ Nw : ∀i, i′ ∈ Ng, i �= i′ : |σ(i, j) ∩ σ(i′, j′)| � 1. (3)

Let #σ(a, b) be the number of times golfers a and b play together in schedule
σ, i.e.,

#σ(a, b) =
∑

i∈Ng

∑

j∈Nw

[{a, b} ⊆ σ(i, j)] , (4)
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where [·] is the Iverson bracket, namely [true]= 1 and [false]= 0. We define
the degree of violation of a constraint a-and-b-play-together-at-most-once
υσ(a, b) = max(0, #σ(a, b) − 1).

In addition to the tightly constrained structure of feasible solutions, this prob-
lem is of the foremost interest due to its high degree of symmetry. Symmetries
can appear in this problem because:

– Golfers are interchangeable inside groups. This means (s!)g·w symmetries.
Notice that this symmetry arises in naive formulations of the problem in
which the schedule function is defined to return a list of golfers for each
group and week, rather than a set of golfers.

– Groups within a week can be exchanged. This amounts to the fact that
group indexes bear no absolute meaning within a week, and implies (g!)w

symmetries.
– Weeks can be arbitrarily reordered, that is, given a schedule σ, we can obtain

another one by simply permutating the weekly schedules. Therefore, this
means w! symmetries.

– Golfers can be renumbered. This means exactly n! –i.e., (g · s)!– symmetries.

As a consequence, a very naive formulation 〈g, s, w〉 has (s!)g·w(g!)ww!(gs)!
symmetries. Observe that the symmetries grow very rapidly as the size of the
problem grows, and this may be problematic for search algorithms that ignored
them (they might be mislead in the case of heuristic approaches, and/or waste
computational resources in the case of complete techniques).

The symmetry problem can be remedied in different ways. For instance the
first kind of symmetry is implicitly removed by using sets for modelling groups, as
mentioned before. As to the symmetry inside weeks, it can be removed by order-
ing groups using some pre-defined total order ≺ (e.g., the lower the smallest ele-
ment in a group is, lower the group in a week is, i.e., for any week j and i ∈ Ng−1,

σ(i, j) ≺ σ(i + 1, j) ⇔ min(σ(i, j)) < min(σ(i + 1, j)). (5)

Observe that with this symmetry breaking procedure, golfer 1 is always in the
first group in every week. The third symmetry can be handled in roughly the
same way, that is, ordering weeks with respect to the first group in each week,
using for this purpose the second lowest element in the first group, i.e., let wi

and wi+1 two weeks (i ∈ Nw−1); then

wi ≺ wi+1 ⇔ min(σ(1, i) \ {1}) < min(σ(1, i + 1) \ {1}). (6)

Finally, symmetries among golfers are harder to handle: they can be fully re-
moved only by using advanced techniques for dynamic symmetry breaking (see
[4] for more details).

2.2 Related Work

Due to the interest that the SGP has attracted in the constraint satisfaction
community, it has been extensively attacked using different techniques. Here, we
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mention just some of the most recent advances in solving the SGP. To begin
with, Harvey and Winterer [9] have proposed to construct solutions to the SGP
by using sets of mutually orthogonal latin squares. Also, Gent and Lynce [10]
have recently introduced a satisfiability (SAT) encoding for the SGP. Barnier
and Brisset [4] have presented a combination of techniques to efficiently find
solutions to a specific instance of SGP, the Kirkman’s schoolgirl problem. Global
constraints for lexicographic ordering have been proposed by Frisch et al. [11],
being used for breaking symmetries in the SGP. Also, a tabu-based local search
algorithm for the SGP is described by Dotú and Van Hentenryck [12].

The SGP problem also admits a number of possible variants; for instance
finding a w-week schedule with “maximum socialization” (i.e., as few repeated
pairs as possible), or finding a schedule of minimum length such that each golfer
plays with every other golfer at least once (“full socialization”) [13]. In either
case, and to the best of our knowledge, no evolutionary approach has been
reported in the literature to handle this problem in any of these variants. Next
section tackles this gap.

3 A Memetic Approach to the Social Golfer Problem

The application of standard population-based metaheuristics to the SGP is, if not
thwarted, at least challenged by the presence of the manifold symmetries detailed
in the previous section. To be precise, these symmetries are specifically relevant
with respect to the performance of recombination operators (and generalizations
thereof, that is, any reproductive operator constructing new solutions on the
basis of two or more parents). If these symmetries are not implicitly broken by
means of a wise representation of solutions, or the operators are not explicitly
designed to take them into account, recombination attempts are doomed to
fail: two similar solutions (even two identical solutions) can be considered as
completely different solutions due to misregarded symmetries. As a consequence,
it cannot be expected in general that the relevant features of these solutions (i.e.,
those information pieces ultimately responsible for the quality of the solutions)
be processed in an adequate way. In this scenario, recombination is likely to
behave as a highly disruptive, macromutation process. It turns out that this is
precisely the general interpretation that is made of recombination in the realm
of Evolutionary Programming (EP) [14]. For this reason, we have chosen an EP
model as the base of our memetic approach, as shown next.

3.1 General Algorithmic Model

Following the philosophy of EP, our MA only uses mutation as the primary
means to diversify the search. This relieves the need for performing symmetry
breakages, and subsequently allows a simpler representation of solutions. Let σ
be a w−week assignment for g groups of s players each, as described in Sect. 2.
This assignment is encoded as a string u = t11 :: t12 :: · · · :: t1g :: · · · :: twg, where
tij ∈ N

s
g·s is a permutation of the elements in the set σ(i, j), and the operator
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1: for i ∈ [1 : popsize] do
2: let pop[i] ← GenerateSolution(g, s, w)
3: let f [i] ← ViolatedConstraints(pop[i])
4: endfor
5 let iter ← 0
6: do
7: let u ← Select(pop,f)
8: let u′ ← Mutate(u)
9: let (u′′, f ′) ← Learning(u′)

10: let i ← max−1
i∈{1,popsize}(f [i])

11: let (pop[i], f [i]) ← (u′′, f ′)
12: let iter ← iter + 1
13: until TerminationCriterion(pop,f ,iter)

14: return pop
�
min−1

i∈{1,popsize}(f [i])
�

Fig. 1. Pseudocode of the memetic EP approach

:: indicates string concatenation. Conversely, a string u ∈ N
s·g·w
g·s is decoded into

an assignment σ by dividing it into s−element chunks, taking the elements in
each of them as the components of a set σ(i, j), i ∈ Ng, j ∈ Nw. Although
no symmetries are considered in this encoding, we do have considered a basic
constraint in it, namely the fact that a certain golfer cannot be scheduled into
two different groups in the same week. To do so, strings are initially generated
from P

w
g·s, that is, as the concatenation of w permutations of the elements in

{1, · · · , g · s}. This structure of solutions is respected by all operators involved
in the algorithm, whose overall pseudocode is shown in Fig. 1.

As it can be seen, our MA follows a steady-state evolution model, in which
a single solution is selected, mutated, and subjected to a learning process. Re-
garding mutation, it is done by selecting two players from different groups in the
same week, and switching their positions. The set of possible swaps is then

S(σ) = {(〈w, p1〉, 〈w, p2〉) | γ(p1, w) �= γ(p2, w)}. (7)

Each selected solution is subjected to a number of swaps that is Poisson-distribu-
ted with parameter (g ·s)−1, that is, w swaps are performed on average. This pro-
cedure is respectful with the permutational structure of solutions, as mentioned
before. As to the learning (i.e., improvement) process, it is done by means of an
embedded tabu-search procedure (described in next subsection). Two strategies
for conducting the learning have been considered: baldwinian and lamarckian.
Firstly explored by Hinton and Nolan [15], baldwinian learning consist of per-
forming a local improvement procedure, retaining the fitness value thus obtained,
but discarding the phenotypical changes discovered. In some sense, this amounts
to evaluating a solution on the basis of how good it could become, and bears
some resemblance to natural evolution in that traits acquired during one’s life-
time are not transmitted to the offspring. On the contrary, lamarckian learning
does keep the improved phenotype as well, and injects the changes back to the
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genotype. This kind of learning is akin to cultural (i.e., memetic) evolution, and
provides faster convergence rates (e.g., see [16]). Nevertheless, it may be also
prone to premature convergence to suboptimal solutions in some cases. Deter-
mining whether this is the case in the SGP has been one of the issues considered
in the experimentation.

3.2 The Tabu Search Strategy

The local improvement strategy is based on the tabu-search (TS) template, and
explores the neighborhood arising from swapping golfers from different groups in
the same week. This is the same neighborhood used in individual mutations, but
notice that the latter consists of the iterated application of a number of swaps;
hence, mutation represents a long jump in the search space, as regarded by the
TS algorithm. Furthermore, from the point of view of TS, it is more effective
to restrict attention just to swaps involving at least one golfer in conflict with
another golfer in the same group. This ensures that the algorithm focuses on
swaps which may decrease the number of violations. More formally, a pair 〈w, p〉
is said to be in conflict in schedule σ (denoted by υσ(〈w, p〉) =true), if

∃p′ ∈ σ(γ(p, w), w), p′ �= p : υσ(p, p′) > 1. (8)

With this restriction in mind, the set of swaps S−(σ) considered for a schedule
σ becomes

S−(σ) = {(〈w, p1〉, 〈w, p2〉) ∈ S(σ) | υσ(〈w, p1〉)}. (9)

The tabu component of the algorithm is based on three main ideas. First,
the tabu list is distributed across the various weeks, which is natural since the
swaps only consider golfers in the same week. The tabu component thus consists
of an array tabu, where tabu[w] represents the tabu list associated with week
w. Second, for a given week w, the tabu list maintains triplets 〈a, b, i〉, where a
and b are two golfers, and i represents the first iteration where golfers a and b
can be swapped again in week w. Third, the tabu tenure, i.e., the time a pair of
golfers (a, b) stays in the list, is dynamic: it is randomly generated in the interval
[4, 100]. In other words, each time a pair of golfers (a, b) is swapped, a random
value ρ is drawn uniformly from the interval [4, 100] and the pair (a, b) is tabu
for the next ρ iterations. As a consequence, for schedule σ and iteration k, the
neighborhood consists of the set of moves St(σ, k) defined as

St(σ, k) = {(〈w, p1〉, 〈w, p2〉) ∈ S−(σ) | �k′ > k : 〈p1, p2, k
′〉 ∈ tabu[w]}. (10)

In addition to the non-tabu moves, the neighborhood also considers moves
that improve the best solution found so far, i.e., the set S∗(σ, σ∗) defined as

S∗(σ, σ∗) = {(t1, t2) ∈ S−(σ) | f(σ[t1 ↔ t2]) < f(σ∗)}, (11)

where σ[(w, p1) ↔ (w, p2)] denotes the schedule σ where golfers p1 and p2 switch
their groups in week w, and σ∗ denotes the best solution found so far. Observe
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1: for i ∈ [1 : w] do let tabu[i] ← ∅ endfor
2: let σ∗ ← σ
3: let k ← 0
4: while (k � maxIter) ∧ [f(σ) > 0] do
5: let f∗ ← ∞
6: for (t1, t2) ∈ St(σ, k) ∪ S∗(σ, σ∗) do
7: let f ′ ← f(σ[t1 ↔ t2])
8: if f ′ < f∗ then
9: let (t∗

1, t
∗
2) ← (t1, t2); let f∗ ← f ′

10: endif
11: endfor
12: let τ ← Random([4,100])
13: let tabu[ω(t∗

1)] ← tabu[ω(t∗
1)] ∪ {〈π(t∗

1), π(t∗
2), k + τ 〉}

14: let σ ← σ[t∗
1 ↔ t∗

2]
15: if f∗ < f(σ∗) then
16: let σ∗ ← σ
17: endif
18: let k ← k + 1
19: endwhile
20: return (σ∗, f(σ∗))

Fig. 2. Pseudocode of the tabu-search component of the MA

that the expression f(σ[t1 ↔ t2]) represents the number of violations obtained
after performing the corresponding swap.

With the so-defined neighborhoods, the TS algorithm is described in Fig. 2.
The core of the algorithm is given in lines 4-19, where local moves are iterated
for a maximum number of iterations or until a solution is found. The local move
is selected in line 9. The key idea is to select the best swaps in the neighbor-
hood St(σ, k) ∪ S∗(σ, σ∗), i.e., the non-tabu swaps and those improving the
best schedule. The tabu list is updated in line 13, where ω(〈w, p〉) = w, and
π(〈w, p〉) = p. The algorithm returns the best solution found and its quality.

4 Experimental Results

The experiments have been done with the steady-state MA described in previous
section, using a population size of 25 individuals, binary tournament selection,
and a maximum number of 2,500 evaluations. Each invocation to the TS algo-
rithm uses maxIter = g ·w, so that there exists the possibility that the solution
resulting from learning had no group in common with the original one. For each
pair (g, s), we have performed series of 20 runs per increasing values of w, to
determine the maximum number of weeks for which a feasible schedule can be
found. The experiments have been done both with the lamarckian and the bald-
winian variants of the MA.

The results are shown in Fig. 3 and Fig. 4. For comparison purposes, we
include the results reported in [12] corresponding to the stand-alone application
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Fig. 3. Results for six groups per week (a), seven groups per week (b), eight groups per
week (c), and nine groups per week (d). Each group of three bars represent (from left
to right) the maximum number of weeks solved by stand-alone TS, by the lamarckian
MA, and by the baldwinian MA. The horizontal brackets indicate the lower and upper
bounds for the corresponding instances.

of an extended version of the TS strategy used within our MA, incorporating
reinitialization mechanisms. We also indicate the upper and lower bounds for
the corresponding problem instances, as reported in [17]. Notice that many of
these lower bounds (i.e., best known solutions) are actually superseded by the
plain application of TS. Moreover, the lamarckian MA is capable of further
improving these solutions, providing better solutions for 12 problem instances,
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Fig. 4. Results for ten groups per week. Each group of three bars represent (from left
to right) the maximum number of weeks solved by stand-alone TS, by the lamarckian
MA, and by the baldwinian MA. The horizontal brackets indicate the lower and upper
bounds for the corresponding instances.

and achieving the same results of TS in the remaining ones. Notice also that the
performance of the baldwinian MA is markedly inferior to that of its lamarckian
counterpart. Several factors may be responsible for this behavior. On one hand,
the search space can have a very complex topology, thus making the baldwinian
information harder to use (the improved solution found by the TS component
may involve a convoluted path in the search space, very difficult to trace by
means of mutation and selection). On the other hand, and related to the previous
point, longer run times may be necessary for the baldwinian MA to achieve the
performance level of the lamarckian MA (in these experiments, each run took
from a few seconds up to around twenty minutes –in a P4 3GHz 1GB winXP
computer– for the larger instances). Then again, this indicates the superiority
of the latter strategy in this problem.

Further details on the performance of the two MA variants are provided in
Table 1. The data correspond to the average results in the largest problem in-
stances they could solve, thus offering a glimpse of their behavior at the edge of
solvability. Obviously, these limits were shown to be farther for the lamarckian
MA in Fig. 3 and Fig. 4, and hence the tables must be studied with caution.
Although entries do not always correspond to homogeneous instance sizes (num-
ber of weeks in this case), we do know that the success rate for the next larger
instance size is 0%. If we couple this fact with the observation that the lower
part of Table 1 (i.e., the baldwinian MA) has a larger number of 100%-success
entries than the upper part, we can conclude that the lamarckian MA does not
simply perform better, but it also has a more gradual decline in performance
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Table 1. Detailed results of the lamarckian MA (top) and the baldwinian MA (bottom)
in the largest solved instance for each combination of s (size of groups) and g (groups
per week). Each triplet of numbers indicate from left to right the success rate in n = 20
runs, the mean number of violated constraints in the best solutions found in these runs,
and the standard error of the mean (σ/

√
n).

Lamarckian MA
groups per week (g)

size (s) 6 7 8 9 10
3 .25 .75 .10 1.00 .00 .00 1.00 .00 .00 .10 1.75 .14 1.00 .00 .00
4 .20 1.05 .15 .50 .65 .16 .50 .65 .16 .70 .50 .18 .75 .45 .18
5 .10 5.90 .48 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
6 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 .05 2.80 .19
7 – .05 1.95 .11 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
8 – – .05 2.50 .19 1.00 .00 .00 .10 2.15 .19
9 – – – 1.00 .00 .00 1.00 .00 .00
10 – – – – 1.00 .00 .00

Baldwinian MA
groups per week (g)

size (s) 6 7 8 9 10
3 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 .95 .05 .05
4 .05 1.70 .12 .05 2.00 .14 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
5 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
6 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 .10 1.05 .11
7 – 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
8 – – 1.00 .00 .00 1.00 .00 .00 .50 .50 .11
9 – – – 1.00 .00 .00 1.00 .00 .00
10 – – – – .15 2.40 .30

for increasing instance sizes. Therefore, it seems to be more scalable (or at least
less sensitive to the curse of dimensionality) than the baldwinian MA. The latter
exhibits an abrupt performance drop from full solvability capacity to null such
capacity.

5 Conclusions and Future Work

We have presented here the first evolutionary approach to the Social Golfer
Problem. Combining ideas from the realm of evolutionary programming and
tabu search, we have devised a memetic algorithm capable of improving results
reported in the literature. In this sense, we believe that the incorporation of
intensification mechanisms such as ad hoc local searchers is essential to tackle this
problem. Indeed, given the fact that a less-intensive strategy based in baldwinian
learning performs worse than a pure lamarckian version, we hypothesize that
lesser-intensive algorithms based on unbiased variation plus selection are not
adequate for this problem either.
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As mentioned in previous sections, symmetries play a major role in this prob-
lem. Although we have opted for not using recombination mechanisms, hence
diminishing the impact of these symmetries, their consideration is an important
line for future developments. We intend to approach the breakage of symme-
tries by smart representations and/or by problem-aware recombination opera-
tors, subsequently examining whether this symmetry-free approach results in a
significant performance change.

We also plan to introduce further problem knowledge in other components
of the algorithm. In this sense, Dotú and Van Hentenryck [12] have devised a
constructive approach that can be shown to provide feasible solutions for certain
values of w when g and s are equal and odd. In other cases, this constructive
heuristic can provide a good starting point for local search. The overall results
of TS endowed with this constructive heuristic are still similar to those of the
lamarckian MA (despite the latter starts from a purely random initial popu-
lation). Injecting the solutions provided by this constructive heuristic into the
initial population may boost the performance of the MA. This issue will be dealt
in the future as well.
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