

Lecture Notes in Computer Science 4030
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Francisco Almeida María J. Blesa Aguilera
Christian Blum José Marcos Moreno Vega
Melquíades Pérez Pérez
Andrea Roli Michael Sampels (Eds.)

Hybrid
Metaheuristics

Third International Workshop, HM 2006
Gran Canaria, Spain, October 13-14, 2006
Proceedings

13

Volume Editors

Francisco Almeida
José Marcos Moreno Vega
Melquíades Pérez Pérez

DEIOC Universidad de La Laguna
Escuela Técnica Superior en Ingeniería Informática
Avda. Astrofísico Francisco Sánchez, s/n, 38271 La Laguna, Tenerife, Spain
E-mail: {falmeida, jmmoreno, melperez}@ull.es

María J. Blesa Aguilera
Christian Blum

Universitat Politècnica de Catalunya, ALBCOM research group
Omega Campus Nord, Jordi Girona 1-3, 08034 Barcelona, Spain
E-mail: {mjblesa, cblum}@lsi.upc.edu

Andrea Roli
Università degli Studi “G. D’Annunzio”
Dipartimento di Scienze
Viale Pindaro 42, 65127 Pescara, Italy
E-mail: a.roli@unich.it

Michael Sampels
Université Libre de Bruxelles
IRIDIA CP 194/6
Avenue Franklin D. Roosevelt 50, 1050 Bruxelles, Belgium
E-mail: msampels@ulb.ac.be

Library of Congress Control Number: 2006933415

CR Subject Classification (1998): F.2, F.1, G.1.6, G.1.2, G.2.1, I.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-46384-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46384-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11890584 06/3142 5 4 3 2 1 0

Preface

The International Workshop on Hybrid Metaheuristics reached its third edition
with HM 2006. The active and successful participation in the past editions was
a clear indication that the research community on metaheuristics and related
areas felt the need for a forum to discuss specific aspects of hybridization of
metaheuristics.

The selection of papers for HM 2006 consolidated some of the mainstream
issues that have emerged from the past editions. Firstly, there are prominent
examples of effective hybrid techniques whose design and implementation were
motivated by challenging real-world applications. We believe this is particularly
important for two reasons: on the one hand, researchers are conscious that the
primary goal of developing algorithms is to solve relevant real-life problems; on
the other hand, the path toward efficient solving methods for practical problems
is a source of new outstanding ideas and theories.

A second important issue is that the research community on metaheuris-
tics has become increasingly interested in and open to techniques and methods
known from artificial intelligence (AI) and operations research (OR). So far, the
most representative examples of such integration have been the use of AI/OR
techniques as subordinates of metaheuristic methods. As a historical and et-
ymological note, this is in perfect accordance with the original meaning of a
metaheuristic as a “general strategy controlling a subordinate heuristic.”

The awareness of the need for a sound experimental methodology is a third
keypoint. This aspect has gained more relevance and currency, even though
there are still no widely agreed standard methodologies. As research on hybrid
metaheuristics is mostly based on experimental methods, similar standards to
those found in the evaluation of experiments in natural sciences can be expected.

Scientific testing, a fourth notable aspect, emerges as a fundamental method-
ology for understanding the behavior of algorithms. The goal of scientific testing
is to abstract from actual implementations and study, empirically and through
predictive models, the effect of algorithmic components. This research approach
can be particularly useful in the case of conjectures on metaheuristic algorithm
behavior that, while being widespread in the community, have not yet been the
subject of validation.

Finally, a tendency to reconsider hybrid metaheuristics from a higher and
more general perspective is emerging. Providing classifications, systematic analy-
ses and surveys on important branches underlines a certain maturity of the rel-
atively young field.

This progression can be observed by an increasing number of submissions to
the workshop: we received 42 paper submissions to HM 2006. Each submitted
paper was sent to at least three reviewers. We are very grateful to the members
of the Program Committee and the additional reviewers for the effort they made

VI Preface

in carefully examining the papers and for the many valuable comments and sug-
gestions they gave to the authors. Based on their comments, we finally accepted
13 submissions for publication and for presentation at HM 2006, resulting in
an acceptance rate of roughly 31 %. In addition, we got one invited paper. The
selection of papers was rather strict in order to guarantee the high quality of
the proceedings and the workshop itself. We would like to thank all authors for
their interest in our workshop.

The field of hybrid metaheuristics is the result of the composition of numerous
streams in the field of algorithmics. However, these streams have increasingly
come together and the main issues and characteristics of the field have evolved
more clearly. For the future, we envision a scenario in which some challenges
have to be faced:

– It should become common practice that experimental analysis meets high
quality standards. This empirical approach is absolutely necessary to pro-
duce objective and reproducible results and to anchor the successes of meta-
heuristics in real-world applications.

– Hybrid metaheuristic techniques have to be openly compared not just among
themselves but also with state-of-the-art methods, from whatever field they
are. By following this approach, researchers would be able to design tech-
niques that meet the goal of solving a real-world problem and to consider
the other approaches as rich sources of design components and ideas.

– Scientific testing and theoretical models of algorithms for studying their
behavior are still confined to a limited area of research. We believe that,
by being able to explain rigorously algorithm behavior by means of sound
empirical investigation and formal models, researchers would give the field a
firmer status and give support to the development of real-world applications.

The achievement of these goals will take some time in view of the difficult
theoretical and practical problems involved in these challenges. Nevertheless,
research is very active and has already produced some remarkable results and
studies in this direction.

August 2006 Francisco Almeida
Maŕıa J. Blesa

Christian Blum
J. Marcos Moreno
Melqúıades Pérez

Andrea Roli
Michael Sampels

Organization

Program Chairs

Maŕıa J. Blesa Universitat Politècnica de Catalunya, Barcelona,
Spain

Christian Blum Universitat Politècnica de Catalunya, Barcelona,
Spain

Andrea Roli Università degli Studi “G. D’Annunzio”,
Chieti-Pescara, Italy

Michael Sampels Université Libre de Bruxelles, Belgium

Workshop Chairs and Local Organization

Francisco Almeida Universidad de La Laguna, Tenerife, Spain
J. Marcos Moreno Universidad de La Laguna, Tenerife, Spain
Melqúıades Pérez Universidad de La Laguna, Tenerife, Spain

Program Committee

Thomas Bartz-Beielstein Universität Dortmund, Germany
Mauro Birattari Université Libre de Bruxelles, Belgium
Ralf Bruns Fachhochschule Hannover, Germany
Francisco Chicano Universidad de Málaga, Spain
Óscar Cordón Universidad de Granada, Spain
Carlos Cotta Universidad de Málaga, Spain
Luca Di Gaspero Università degli Studi di Udine, Italy
Marco Dorigo Université Libre de Bruxelles, Belgium
Joshua Knowles University of Manchester, UK
Andrea Lodi Università degli Studi di Bologna, Italy
Vittorio Maniezzo Università degli Studi di Bologna, Italy
Belén Melián Batista Universidad de La Laguna, Spain
Daniel Merkle Universität Leipzig, Germany
Bernd Meyer Monash University, Australia
Martin Middendorf Universität Leipzig, Germany
José A. Moreno Universidad de La Laguna, Spain
David Pelta Universidad de Granada, Spain
Steven Prestwich 4C, Cork, Ireland
Günther Raidl Technische Universität Wien, Austria
Andrea Schaerf Università degli Studi di Udine, Italy
Thomas Stützle Technische Universität Darmstadt, Germany

VIII Organization

El-Ghazali Talbi École Polytechnique Universitaire de Lille, France
Fatos Xhafa Universitat Politècnica de Catalunya, Spain
Pascal Van Hentenryck Brown University, Providence, USA
José Luis Verdegay Universidad de Granada, Spain

Additional Referees

Dan Ashlock,Emilie Danna, MartaKasprzak,Michele Monaci,Alena Shmygelska,
Peter J. Stuckey, Hande Yaman

Table of Contents

A Unified View on Hybrid Metaheuristics . 1
Günther R. Raidl

Packing Problems with Soft Rectangles . 13
Toshihide Ibaraki, Kouji Nakamura

A Multi-population Parallel Genetic Algorithm for Highly Constrained
Continuous Galvanizing Line Scheduling . 28

Muzaffer Kapanoglu, Ilker Ozan Koc

Improvement in the Performance of Island Based Genetic Algorithms
Through Path Relinking . 42

Luis delaOssa, José A. Gámez, José M. Puerta

Using Datamining Techniques to Help Metaheuristics: A Short Survey . . . 57
Laetitia Jourdan, Clarisse Dhaenens, El-Ghazali Talbi

An Iterated Local Search Heuristic for a Capacitated Hub Location
Problem . 70

Inmaculada Rodŕıguez-Mart́ın, Juan-José Salazar-González

Using Memory to Improve the VNS Metaheuristic for the Design
of SDH/WDM Networks . 82

Belén Melián

Multi-level Ant Colony Optimization for DNA Sequencing
by Hybridization . 94

Christian Blum, Mateu Yábar Vallès

Hybrid Approaches for Rostering: A Case Study in the Integration
of Constraint Programming and Local Search . 110

Raffaele Cipriano, Luca Di Gaspero, Agostino Dovier

A Reactive Greedy Randomized Variable Neighborhood Tabu Search
for the Vehicle Routing Problem with Time Windows 124

Panagiotis P. Repoussis, Dimitris C. Paraskevopoulos,
Christos D. Tarantilis, George Ioannou

Incorporating Inference into Evolutionary Algorithms for Max-CSP 139
Madalina Ionita, Cornelius Croitoru, Mihaela Breaban

X Table of Contents

Scheduling Social Golfers with Memetic Evolutionary Programming 150
Carlos Cotta, Iván Dotú, Antonio J. Fernández,
Pascal Van Hentenryck

Colour Reassignment in Tabu Search for the Graph Set T-Colouring
Problem . 162

Marco Chiarandini, Thomas Stützle, Kim S. Larsen

Investigation of One-Go Evolution Strategy/Quasi-Newton
Hybridizations . 178

Thomas Bartz–Beielstein, Mike Preuss, Günter Rudolph

Author Index . 193

A Unified View on Hybrid Metaheuristics�

Günther R. Raidl

Institute of Computer Graphics and Algorithms
Vienna University of Technology, Vienna, Austria

raidl@ads.tuwien.ac.at

Abstract. Manifold possibilities of hybridizing individual metaheuris-
tics with each other and/or with algorithms from other fields exist. A
large number of publications documents the benefits and great success
of such hybrids. This article overviews several popular hybridization ap-
proaches and classifies them based on various characteristics. In par-
ticular with respect to low-level hybrids of different metaheuristics, a
unified view based on a common pool template is described. It helps
in making similarities and different key components of existing meta-
heuristics explicit. We then consider these key components as a tool-
box for building new, effective hybrid metaheuristics. This approach of
thinking seems to be superior to sticking too strongly to the philosophies
and historical backgrounds behind the different metaheuristic paradigms.
Finally, particularly promising possibilities of combining metaheuristics
with constraint programming and integer programming techniques are
highlighted.

1 Introduction

Metaheuristics have proven to be highly useful for approximately solving difficult
optimization problems in practice. A general overview on this research area can
be found e.g. in [1], for more information see also [2,3]. The term metaheuristic
was first introduced by Glover [4]. Today, it refers to a broad class of algorithmic
concepts for optimization and problem solving, and the boundaries are somewhat
fuzzy. Voß [5] gives the following definition:

A metaheuristic is an iterative master process that guides and modi-
fies the operations of subordinate heuristics to efficiently produce high-
quality solutions. It may manipulate a complete (or incomplete) single
solution or a collection of solutions at each iteration. The subordinate
heuristics may be high (or low) level procedures, or a simple local search,
or just a construction method.

According to Glover [2],

. . . these methods have over time also come to include any procedure
for problem solving that employs a strategy for overcoming the trap of

� This work is supported by the European RTN ADONET under grant 504438.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 G.R. Raidl

local optimality in complex solution spaces, especially those procedures
that utilize one or more neighborhood structures as a means of defining
admissible moves to transition from one solution to another, or to build
or destroy solutions in constructive and destructive processes.

Simulated annealing, tabu search, evolutionary algorithms like genetic algo-
rithms and evolution strategies, ant colony optimization, estimation of distribu-
tion algorithms, scatter search, path relinking, the greedy randomized adaptive
search procedure (GRASP), multi-start and iterated local search, guided local
search, and variable neighborhood search are – among others – often listed as
examples of classical metaheuristics, and they have individual historical back-
grounds and follow different paradigms and philosophies; see e.g. [2].

Especially over the last years a large number of algorithms were reported
that do not purely follow the concepts of one single traditional metaheuristic,
but they combine various algorithmic ideas, sometimes also from outside of the
traditional metaheuristics field. These approaches are commonly referred to as
hybrid metaheuristics.

As for metaheuristics in general, there exist various perceptions of what a
hybrid metaheuristic actually is. Looking up the meaning of hybrid in the current
issue (May 2006) of the Merriam Webster dictionary yields

a) something heterogeneous in origin or composition,
b) something (as a power plant, vehicle, or electronic circuit) that has

two different types of components performing essentially the same
function,

while the current entry in Wiktionary defines this term as

a) offspring resulting from cross-breeding different entities, e.g. different
species,

b) something of mixed origin or composition.

The motivation behind such hybridizations of different algorithmic concepts
is usually to obtain better performing systems that exploit and unite advan-
tages of the individual pure strategies, i.e. such hybrids are believed to benefit
from synergy. The vastly increasing number of reported applications of hybrid
metaheuristics and dedicated scientific events such as the series of Workshops on
Hybrid Metaheuristics [6,7] document the popularity, success, and importance
of this specific line of research. In fact, today it seems that choosing an adequate
hybrid approach is determinant for achieving top performance in solving most
difficult problems.

Actually, the idea of hybridizing metaheuristics is not new but dates back to
the origins of metaheuristics themselves. At the beginning, however, such hy-
brids were not so popular since several relatively strongly separated and even
competing communities of researchers existed who considered “their” favorite
class of metaheuristics “generally best” and followed the specific philosophies
in very dogmatic ways. For example, the evolutionary computation community

A Unified View on Hybrid Metaheuristics 3

grew up in relative isolation and followed relatively strictly the biologically ori-
ented thinking. It is mostly due to the no free lunch theorems [8] that this
situation fortunately changed and people recognized that there cannot exist a
general optimization strategy which is globally better than any other. In fact, to
solve a problem at hand most effectively, it almost always requires a specialized
algorithm that needs to be compiled of adequate parts.

Several publications exist which give taxonomies for hybrid metaheuristics or
particular subcategories [9,10,11,12,13,14]. The following section tries to merge
the most important aspects of these classifications and at some points extends
these views. Also, several examples of common hybridization strategies are given.
In Section 3, we turn to a unified view on metaheuristics by discussing the pool
template. It helps to extract the specific characteristics of the individual classical
metaheuristics and to interpret them as a toolbox of key components that can
be combined in flexible ways to build an effective composite system. Section 4
refers to a selection of highly promising possibilities for combining metaheuris-
tics with algorithms from two other prominent research fields in combinatorial
optimization, namely constraint programming and integer linear programming.
Finally, conclusions are drawn in Section 5.

2 Classification of Hybrid Metaheuristics

Figure 1 illustrates the various classes and properties by which we want to cate-
gorize hybrids of metaheuristics. Hereby, we combine aspects from the taxonomy
introduced by Talbi [10] with the points-of-view from Cotta [9] and Blum et al.
[11]. Classifications with particular respect to parallel metaheuristics are partly
adopted from El-Abd and Kamel [14] and Cotta et al. [12] and with respect
to the hybridization of metaheuristics with exact optimization techniques from
Puchinger and Raidl [13].

We start by distinguishing what we hybridize, i.e. which kind of algorithms.
We might combine (a) different metaheuristic strategies, (b) metaheuristics with
certain algorithms specific for the problem we are considering, such as special
simulations, or (c) metaheuristics with other more general techniques coming
from fields like operations research (OR) and artificial intelligence (AI). Promi-
nent examples for optimization methods from other fields that have been suc-
cessfully combined with metaheuristics are exact approaches like branch-and-
bound, dynamic programming, and various specific integer linear programming
techniques on one side and soft computation techniques like neural networks and
fuzzy logic on the other side.

Beside this differentiation, previous taxonomies of hybrid metaheuristics [10,9]
primarily distinguish the level (or strength) at which the different algorithms are
combined: High-level combinations in principle retain the individual identities
of the original algorithms and cooperate over a relatively well defined interface;
there is no direct, strong relationship of the internal workings of the algorithms.

4 G.R. Raidl

Fig. 1. A summarized classification of hybrid metaheuristics (MHs)

A Unified View on Hybrid Metaheuristics 5

On the contrary, algorithms in low-level combinations strongly depend on each
other – individual components or functions of the algorithms are exchanged.

Another property by which we may distinguish hybrid systems is the order of
execution. In the batch model, one algorithm is strictly performed after the other,
and information is passed only in one direction. An intelligent preprocessing of
input data or a postprocessing of the results from another algorithm would fall
into this category. Another example are multi-level problems which are solved
by considering one level after the other by dedicated optimization algorithms.
On the contrary, we have the interleaved and parallel models, in which the al-
gorithms might interact in more sophisticated ways. Parallel metaheuristics are
nowadays a large and important research field for their own, see [15]. Detailed
classifications of hybrid parallel metaheuristics can be found in [14,12]. Following
general characterizations of parallel algorithms, we can distinguish the architec-
ture (SIMD: single instruction, multiple data streams versus MIMD: multiple
instruction, multiple data streams), the granularity of parallelism (fine- versus
coarse-grained), the hardware (homogeneous versus heterogeneous), the memory
strategy (shared versus distributed memory), the task and data allocation strat-
egy (static versus dynamic), and whether the different tasks are synchronized or
run in an asynchronous way.

We can further distinguish hybrid metaheuristics according to their control
strategy. Following [9,13], there exist integrative (coercive) and collaborative (co-
operative) combinations.

In integrative approaches, one algorithm is considered a subordinate, embed-
ded component of another algorithm. This approach is extremely popular.

– For example, in memetic algorithms [16], various kinds of local search are
embedded in an evolutionary algorithm for locally improving candidate so-
lutions obtained from variation operators.

– Very large scale neighborhood search (VLSN) approaches are another exam-
ple [17]. They utilize certain exact techniques such as dynamic programming
to efficiently find best solutions in specifically designed large neighborhoods
within a local search based metaheuristic.

– Also, any decoder-based metaheuristic, in which a master algorithm acts on
an implicit or incomplete representation of candidate solutions and a decoder
is used to obtain corresponding actual solutions, falls into this category. Such
a decoder can be virtually any kind of algorithm ranging from a simple prob-
lem specific heuristic to sophisticated exact optimization techniques or other
OR/AI methods. For example in the cutting and packing domain, a com-
mon approach is to represent a candidate solution as a permutation of the
items that need to be cut out or packed, and an actual solution is derived
by considering the items in more or less sophisticated assignment heuris-
tics in the given order, see e.g. [18]. Weight-coding [19] and problem space
search [20] are further examples of indirect, relatively generally applicable
representations based on decoders.

– Merging solutions: In population based methods such as evolutionary algo-
rithms or scatter search, a traditional variation operator is recombination.

6 G.R. Raidl

It derives a new solution by combining features of two (or more) parent so-
lutions. Especially in classical genetic algorithms, this operator is based on
pure random decisions and therefore works without exploiting any problem
specific knowledge. Occasionally, this procedure is replaced by more powerful
algorithms like path-relinking [21] or by exact techniques based on branch-
and-bound or integer linear programming that identify a best combination
of parental features, see e.g. [22,23].

In collaborative combinations, algorithms exchange information, but are not
part of each other. For example, the popular island model [24] for paralleliz-
ing evolutionary algorithms falls into this category. We can further classify the
traditional island model as a homogeneous approach since several instances of
the same metaheuristic are performed. In contrast, Talukdar et al. [25,26] sug-
gested a heterogeneous framework called asynchronous teams (A-Teams). An
A-Team is a problem solving architecture consisting of a collection of agents
and memories connected into a strongly cyclic directed network. Each of these
agents is an optimization algorithm and can work on the target problem, on a
relaxation of it, i.e. a superclass, or on a subclass. The basic idea of A-Teams is
having these agents work asynchronously and autonomously on a set of shared
memories. Denzinger and Offermann [27] presented a similar multi-agent based
approach for achieving cooperation between search-systems with different search
paradigms, such as evolutionary algorithms and branch-and-bound.

In particular in collaborative combinations, a further question is which search
spaces are actually explored by the individual algorithms. According to [14] we
can distinguish between an implicit decomposition resulting from different initial
solutions, different parameter values etc., and an explicit decomposition in which
each algorithm works on an explicitly defined subspace. Effectively decomposing
large problems is in practice often an issue of crucial importance. Occasionally,
problems can be decomposed in very natural ways, but in most cases finding
an ideal decomposition into relatively independent parts is difficult. Therefore,
(self-)adaptive schemes are sometimes also used.

3 A Unified View on Hybrid Metaheuristics

The success of all these hybrid metaheuristics tells us that it is usually a bad
idea to approach a given (combinatorial) optimization problem with a view that
is too restricted to a small (sub-)class of metaheuristics, at least when the pri-
mary goal is to solve the problem as well as possible. There is nothing to say
against the analogy to real-world phenomena, by which several metaheuristics
are explained with or even derived from, for example evolutionary algorithms,
ant colony optimization, or simulated annealing. However, one should avoid to
focus too strongly on such philosophies, hereby losing the view on particular
strengths and benefits of other algorithmic concepts.

Instead of perceiving the various well-known metaheuristics as relatively in-
dependent optimization frameworks and occasionally considering hybridization

A Unified View on Hybrid Metaheuristics 7

Algorithm Pool Template

Initialize pool P by an external procedure;
while termination=FALSE do

S ← OF (P);
if |S| > 1 then

S′ ← SCM (S)
else

S′ ← S;
S′′ ← IM (S′);
P ← IF(S′′);

Apply a post-optimizing procedure to P .

Fig. 2. The pool template from Voß [30,31]. P : Pool; IF/OF : Input/Output Function;
IM : Improvement Method; SCM : Solution Combination Method.

for achieving certain benefits, it might be advantageous to change the point-
of-view towards a unified design concept. All the existing metaheuristics share
some ideas and differ among each other by certain characteristic key components.
Making these key components explicit and collecting them yields a toolbox of
components from which we can choose in the design of an optimization algorithm
as it seems to be most appropriate for the target problem at hand.

In fact, this unified point-of-view is not new. Vaessens et al. [28] already
presented a template for representing various kinds of local search based ap-
proaches, in particular threshold algorithms, tabu search, variable depth search,
and even population based methods such as genetic algorithms. They also ad-
dressed multi-level approaches such as genetic local search, where a local search
algorithm is applied within a genetic algorithm.

Calégary et al. [29] provided a taxonomy and united view on evolutionary
algorithms and exemplarily discussed them with genetic algorithms, ant colony
optimization, scatter search, and an emergent colonization algorithm.

Greistorfer and Voß [30,31] introduced a pool template by which they intend
to cover even more different classes of metaheuristics, but especially also pop-
ulation based approaches. It is shown in Figure 2 and follows the definition of
metaheuristics as given by Voß in [5] and cited in Section 1. To interpret, for
example, simulated annealing in terms of this template, we set |S| = 1 and
|P | = 2. The latter choice seems to be unusual at first glace. However, it covers
the fact that we always have a current solution in the pool for which one or
more neighbors are evaluated and additionally store the overall so-far best solu-
tion. The output function OF always simply returns the current solution. The
improvement method IM includes the random choice of a neighboring solution
and its evaluation, while the input function IF finally applies the Metropolis
criterion (or some other condition) in order to either accept the new solution or
to retain the previous one. The temperature update can also be considered to be
part of the input function. Obviously, also other derivatives of local search like
tabu search, guided local search, iterated local search, variable neighborhood de-
scent/search, but also population-based approaches such as genetic algorithms,

8 G.R. Raidl

evolution strategies, scatter search, and particle swarm optimization can be in-
terpreted as instances of this template in straight-forward ways. Multi-level al-
gorithms like memetic algorithms, where some local search procedure is applied
to created candidate solutions are also supported via the improvement method
IM which might include complete other optimization procedures. The template
even matches estimation of distribution algorithms such as an ant colony opti-
mization: The pheromone matrix – or more generally the statistical model – is
considered as an additional memory structure, the output function covers the
derivation of new solution candidates in dependence of this additional memory,
and the input function also includes the memory’s update. Examples for so-
lution combination methods (SCM) are the classical recombination techniques
from genetic algorithms, path relinking, and the merging approaches addressed
in the previous section.

Interpreting metaheuristics as instances of such a common template yields a
decomposition of the algorithms. In case of the pool template, we obtain indivi-
dual input and output functions, improvement methods, and eventually solution
combination methods. Some of these parts may use auxiliary functions and data
structures. From the perspective of functionality, a subset of these parts obtained
from the decomposition of the different metaheuristics represents the algorithms’
the key components that have been pointed out before. They can be considered
to form a joined toolbox from where we can select the most promising parts and
combine them in order to build effective (hybrid) optimization approaches tai-
lored to the specific characteristics of the problems at hand. Table 1 summarizes
important key components provided by popular metaheuristics.

Some software libraries for metaheuristics, such as HotFrame [32] and EAlib
[33], partly support this way of thinking by their object oriented structure and
allow flexible combinations of key components when implementing problem-
specific optimization algorithms; see also [34].

4 Some Promising Hybridization Possibilities with Other
Prominent Combinatorial Optimization Techniques

The previous section mainly addressed low-level hybrids between different types
of metaheuristics. Most existing hybrid metaheuristics probably fall into this
category. To some degree, the described point-of-view can also be extended to-
wards hybrids of metaheuristics with other OR and AI techniques. In fact, it is
often a bad idea to prematurely restrict the possible choices in the design of an
optimization algorithm too early to metaheuristic techniques only.

In particular constraint programming (CP) and integer linear programming
(ILP) shall be mentioned here as two research fields with long histories and
also much success in solving difficult combinatorial optimization problems; see
[35] and [36] for introductory textbooks to the two fields, respectively. As meta-
heuristics, the methods from these fields also have their specific advantages and
limits. Especially in the last years, combinations between such techniques and
metaheuristics have shown to be often extremely successful and promising.

A Unified View on Hybrid Metaheuristics 9

Table 1. Some key components of popular metaheuristics

Ant colony optimization OF : derivation of new solution candidates by consid-
ering a pheromone matrix;
SCM : implicitly via pheromone matrix;
IF : includes update of pheromone matrix

Genetic algorithms OF , IF : selection techniques;
SCM : crossover operators;
IM : mutation operators, repair schemes, decoding
functions

Guided local search IM , IF : augmentation of evaluation function to es-
cape local optima

GRASP initialization, OF : creation of meaningful solutions
from scratch by a randomized greedy heuristic

Iterated local search IM : perturbation of a solution for diversification

Multi start approaches initialization, OF : creation of (random) solutions
from scratch for diversification

Path relinking SCM : more sophisticated method for combining so-
lutions

Pilot method IF : more sophisticated evaluation and acceptance
criterion

Scatter search IF : diversification generation methods, subset gen-
eration methods;
IM : improvement methods;
SCM : solution combination methods;
OF : reference set update methods

Simulated annealing IF : acceptance criterion, annealing schedule

Tabu search IM , IF : consideration and maintenance of tabu list,
aspiration criteria

Variable depth search IM : search of a more sophisticated neighborhood

Variable neighborhood descent IM : search of multiple neighborhoods

Variable neighborhood search IM : shaking in different neighborhoods for diversifi-
cation

Very large neighborhood search IM : efficient search of a large neighborhood

An overview on hybrids of local search based approaches and constraint pro-
gramming is given in [37]. Basic concepts include:

– CP can be used as preprocessing for reducing the search space.
– CP techniques can be used to more efficiently search neighborhoods, espe-

cially under the existence of difficult problem-specific constraints.
– Special large neighborhoods can sometimes be defined by introducing ap-

propriate artificial constraints, and CP is again used for efficiently searching
these neighborhoods.

– In constructive heuristics like GRASP or ant colony optimization, CP can
be utilized to make better choices in the selection of the next solution com-
ponent to be added.

10 G.R. Raidl

An overview on promising combinations of metaheuristics and integer linear
programming (ILP) techniques is given in [13]. Basic concepts include:

– Solving a linear programming or Lagrangian relaxation of the problem often
yields valuable information that can be effectively exploited in construction
heuristics or variation operators.

– As CP, also ILP has been used to search large neighborhoods.
– ILP can be used for merging solutions.
– Exact ILP techniques are often based on tree search, and good upper and

lower bounds are of crucial importance. While for a minimization problem
lower bounds are obtained via relaxations, heuristics are important for ob-
taining upper bounds. Metaheuristics can here be very beneficial.

– In cutting plane techniques such as branch-and-cut inequalities need to be
identified which are violated by the current solution to the linear program-
ming (LP) relaxation, but which are valid for the integer optimum. These
inequalities are then added to the system and the LP is resolved, yielding
an improved bound. The identification of such violated inequalities often is
a hard problem for its own, which can be approached by metaheuristics.

– Column generation techniques such as branch-and-price start with a small,
restricted set of variables. When having solved this reduced problem, vari-
ables being part of the model but currently not included are identified whose
insertion enable a further improvement of the current solution; the whole
process is repeated. The task of finding such variables is often difficult and
metaheuristics have been successfully used for solving it [38].

– Last but not least, some promising concepts such as local branching [39]
exist which bring the idea of local search based metaheuristics into linear
programming based branch-and-bound: Specific neighborhood-defining in-
equalities are added to subproblems and branching is controlled in order to
perform a “virtual” metaheuristic within tree search.

5 Conclusions

Manifold possibilities of hybridizing individual metaheuristics with each other
and/or with algorithms from other fields exist. A large number of publications
documents the great success and benefits of such hybrids. Based on several pre-
viously suggested taxonomies, a unified classification and characterization of
meaningful hybridization approaches has been presented. Especially with re-
spect to low-level hybrids of different metaheuristics, a unified view based on a
common pool template can be advantageous. It helps in making different key
components of existing metaheuristics explicit. We can then consider these key
components as a toolbox and build an effective (hybrid) metaheuristic for a
problem at hand by selecting and combining the most appropriate components.
This approach of thinking seems to be superior to sticking too strongly to the
philosophies and historical backgrounds behind the different metaheuristic par-
adigms. Finally, particularly promising possibilities of combining metaheuristics
with constraint programming and integer programming techniques were pointed
out.

A Unified View on Hybrid Metaheuristics 11

References

1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys 35(3) (2003) 268–308

2. Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Kluwer (2003)
3. Hoos, H.H., Stützle, T.: Stochastic Local Search. Morgan Kaufmann (2005)
4. Glover, F.: Future paths for integer programming and links to artificial intelligence.

Decision Sciences 8 (1977) 156–166
5. Voß S., Martello, S., Osman, I.H., Roucairo, C.: Meta-Heuristics: Andvances and

Trends in Local Search Paradigms for Optimization. Kluwer, Boston (1999)
6. Blum, C., Roli, A., Sampels, M., eds.: Proceedings of the First International Work-

shop on Hybrid Metaheuristics, Valencia, Spain (2004)
7. Blesa, M.J., Blum, C., Roli, A., Sampels, M., eds.: Hybrid Metaheuristics: Second

International Workshop. Volume 3636 of LNCS. (2005)
8. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-

actions on Evolutionary Computation 1(1) (1997) 67–82
9. Cotta, C.: A study of hybridisation techniques and their application to the design

of evolutionary algorithms. AI Communications 11(3–4) (1998) 223–224
10. Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5)

(2002) 541–565
11. Blum, C., Roli, A., Alba, E.: An introduction to metaheuristic techniques. In:

Parallel Metaheuristics, a New Class of Algorithms. John Wiley (2005) 3–42
12. Cotta, C., Talbi, E.G., Alba, E.: Parallel hybrid metaheuristics. In Alba, E., ed.:

Parallel Metaheuristics, a New Class of Algorithms. John Wiley (2005) 347–370
13. Puchinger, J., Raidl, G.R.: Combining metaheuristics and exact algorithms in

combinatorial optimization: A survey and classification. In: Proceedings of the First
International Work-Conference on the Interplay Between Natural and Artificial
Computation, Part II. Volume 3562 of LNCS., Springer (2005) 41–53

14. El-Abd, M., Kamel, M.: A taxonomy of cooperative search algorithms. In Blesa,
M.J., Blum, C., Roli, A., Sampels, M., eds.: Hybrid Metaheuristics: Second Inter-
national Workshop. Volume 3636 of LNCS., Springer (2005) 32–41

15. Alba, E., ed.: Parallel Metaheuristics, a New Class of Algorithms. John Wiley,
New Jersey (2005)

16. Moscato, P.: Memetic algorithms: A short introduction. In Corne, D., et al., eds.:
New Ideas in Optimization. McGraw Hill (1999) 219–234

17. Ahuja, R.K., Ergun, Ö., Orlin, J.B., Punnen, A.P.: A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics 123(1-3) (2002)
75–102

18. Puchinger, J., Raidl, G.R.: Models and algorithms for three-stage two-dimensional
bin packing. European Journal of Operational Research, Feature Issue on Cutting
and Packing (to appear 2006)

19. Julstrom, B.A.: Strings of weights as chromosomes in genetic algorithms for combi-
natorial problems. In Alander, J.T., ed.: Proceedings of the Third Nordic Workshop
on Genetic Algorithms and their Applications. (1997) 33–48

20. Storer, R.H., Wu, S.D., Vaccari, R.: New search spaces for sequencing problems
with application to job-shop scheduling. Management Science 38 (1992) 1495–1509

21. Glover, F., Laguna, M., Mart́ı, R.: Fundamentals of scatter search and path re-
linking. Control and Cybernetics 39(3) (2000) 653–684

22. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of the traveling
salesman problem. Documenta Mathematica Vol. ICM III (1998) 645–656

12 G.R. Raidl

23. Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algo-
rithms. Applied Intelligence 18 (2003) 137–153

24. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Learning.
Addison-Wesley, Reading, MA (1989)

25. Talukdar, S., Baeretzen, L., Gove, A., de Souza, P.: Asynchronous teams: Coop-
eration schemes for autonomous agents. Journal of Heuristics 4 (1998) 295–321

26. Talukdar, S., Murty, S., Akkiraju, R.: Asynchronous teams. In: Handbook of
Metaheuristics. Volume 57. Kluwer Academic Publishers (2003) 537–556

27. Denzinger, J., Offermann, T.: On cooperation between evolutionary algorithms
and other search paradigms. In: Proceedings of the Congress on Evolutionary
Computation 1999, IEEE Press (1999)

28. Vaessens, R., Aarts, E., Lenstra, J.: A local search template. In Manner, R.,
Manderick, B., eds.: Parallel Problem Solving from Nature, Elsevier (1992) 67–76

29. Calégari, P., Coray, G., Hertz, A., Kobler, D., Kuonen, P.: A taxonomy of evolu-
tionary algorithms in combinatorial optimization. Journal of Heuristics 5(2) (1999)
145–158

30. Greistorfer, P., Voß, S.: Controlled pool maintenance in combinatorial optimiza-
tion. In Rego, C., Alidaee, B., eds.: Metaheuristic Optimization via Memory
and Evolution – Tabu Search and Scatter Search. Volume 30 of Operations Re-
search/Computer Science Interfaces. Springer (2005) 382–424

31. Voß, S.: Hybridizing metaheuristics: The road to success in problem solving (2006)
Slides of an invited talk at the EvoCOP 2006, the 6th European Conference on
Evolutionary Computation in Combinatorial Optimization, Budapest, Hungary,
http://www.ads.tuwien.ac.at/evocop/Media:Invited-talk-EvoCOP2006-voss.pdf.

32. Fink, A., Voß, S.: HotFrame: A heuristic optimization framework. In Voß S.,
Woodruff, D.L., eds.: Optimization Software Class Libraries. OR/CS Interfaces
Series. Kluwer Academic Publishers (1999)

33. Wagner, D.: Eine generische Bibliothek für Metaheuristiken und ihre Anwendung
auf das Quadratic Assignment Problem. Master’s thesis, Vienna University of
Technology, Institute of Computer Graphics and Algorithms (2005)

34. Voß S., Woodruff, D.L., eds.: Optimization Software Class Libraries. OR/CS
Interfaces Series. Kluwer Academic Publishers (2002)

35. Marriott, K., Stuckey, P.: Programming with Constraints. The MIT Press (1998)
36. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley

(1988)
37. Focacci, F., Laburthe, F., Lodi, A.: Local search and constraint programming.

In: Handbook of Metaheuristics. Volume 57. Kluwer Academic Publishers (2003)
369–403

38. Puchinger, J., Raidl, G.R., Gruber, M.: Cooperating memetic and branch-and-cut
algorithms for solving the multidimensional knapsack problem. In: Proceedings of
MIC2005, the 6th Metaheuristics International Conference, Vienna, Austria (2005)
775–780

39. Fischetti, M., Lodi, A.: Local Branching. Mathematical Programming Series B 98
(2003) 23–47

Packing Problems with Soft Rectangles

Toshihide Ibaraki and Kouji Nakamura

Kwansei Gakuin University, Sanda, Japan 669-1337
ibaraki@ksc.kwansei.ac.jp

http://ist.ksc.kwansei.ac.jp/~ibaraki/

Abstract. We consider the problems of packing rectangles, whose shapes
are adjustable within given perimeter and area constraints. Using
“sequence pairs” to specify relative positions of rectangles, we solve the
resulting linear or convex programming problems to determine sizes and
locations of all rectangles. To find good sequence pairs, we then resort to
local search techniques.This is therefore ahybrid of local searchandmathe-
matical programming.The resultingalgorithmcan solveproblem instances
with up to 50 rectangles in reasonable amount of time.

1 Introduction

Packing a given set of rectangles into a small region without overlap is one of
the representative problems in combinatorial optimization. In particular, when
all rectangles have given sizes, there is a long list of literature, e.g., [6,7,9,10,13],
many of which are based on metaheuristic algorithms. As a result of these studies,
problem instances of fairly large sizes, containing several hundred rectangles,
can be solved, in the sense that very good solutions can be found in reasonable
amount of time.

In this paper, we generalize the problem by assuming that each rectangle is
soft. Namely, the width wi and the height hi of rectangle i can be adjusted
within given constraints. For example, the constraints may specify their lower
and upper bounds:

wL
i ≤ wi ≤ wU

i ,

hL
i ≤ hi ≤ hU

i , (1)

where wL
i and wU

i (resp., hL
i and hU

i) are given lower and upper bounds on
wi (resp., hi). We may also add the constraint that the aspect ratio hi/wi is
bounded between its lower bound rL

i and upper bound rU
i :

rL
i wi ≤ hi ≤ rU

i wi. (2)

Another type of constraint common in applications is that each rectangle i must
have either a given perimeter Li or a given area Ai (or both):

wi + hi ≥ Li, (3)
wihi ≥ Ai. (4)

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 13–27, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 T. Ibaraki and K. Nakamura

In addtion, we may consider that the locations of rectangles are pre-determined
in some intervals:

xL
i ≤ xi ≤ xU

i ,

yL
i ≤ yi ≤ yU

i , (5)

where xi (resp., yi) denotes the x-coordinate (resp., y-coordinate) of the lower
left corner of rectangle i.

To our knowledge, there is not much literature on this type of problems using
soft rectangles, except such papers as [2,5,11,15], even though it has various
applications.

Applications can be found, for example, in VLSI floorplan design [2,5,10,11,15]
and in resource constrained scheduling. In the VLSI design, each rectangle repre-
sents a block of logic circuits consisting of a certain number of transistors, which
occupy certain area, and must have at least some perimeter length to accommo-
date connection lines to other blocks. The shape of each rectangle is adjustable,
but required to satisfy the constraints as stated above. In a scheduling appli-
cation, each rectangle may represent a job, to be assigned to an appropriate
position on the time axis (horizontal), where its width gives the processing time
of the job and its height represents the amount of resouce (per unit time) in-
vested to process the job. In this case, the area of the rectangle represents the
total amount of resouce consumed by the job, which is again required to satisfy
the above constraints.

Our approach utilizes a standard tool known as “sequence pair” [10] to specify
relative position between each pair of rectangles (e.g., rectangle i is placed to the
left of rectangle j, i is above j and so forth) to obtain a packing without overlap.
Once a sequence pair is given, the remaining problem is to determine exact sizes
and locations of all rectangles (i.e., a packing). We show that this problem can be
formulated as a linear programming problem or nonlinear programming problem
(more exactly, convex programming problem) depending on the constraints and
objective functions. Thanks to recent progress of mathematical programming
techniques, such problems can be solved very efficiently in the practical sense.
To find good sequence pairs that yield packings of high quality, we then resort to
local search techniques. We test various types of neighborhoods, and recommend
some combination of neighborhoods. Although our computational experiment is
rather preliminary, we could show that problem instances with 30 ∼ 50 rectangles
are readily solvable. Of course, we would encounter problem instances of much
larger sizes in real applications, and further improvement will be necessary to
meet such demands. One comment here is that, in many applications, problems
can be decomposed into subproblems of manageable sizes, and our algorithms
may prove useful to solve such subproblems. Also, with further elaborations
such as using sophiscated metaheuristic ideas and enhancing the computation
of mathematical programming part, we believe it not difficult to improve the
performance of our algorithm to a great extent.

Packing Problems with Soft Rectangles 15

2 Sequence Pairs and Problem Statement

2.1 Sequence Pairs

We first explain the idea of a sequence pair, which was introduced by [10], and
then define our packing problems. A sequence pair is a pair of permutations
σ = (σ+, σ−) on I = {1, 2, . . . , n}, where σ+(l) = i (equivalently σ−1

+ (i) = l)
means that rectangle i is the lth rectangle in σ+. The σ− is similarly defined. In
a non-overlapping packing, every pair of rectangles i and j must satisfy at least
one of the four conditions: (1) i is to the left of j, (2) j is to the left of i, (3) i
is above j, and (4) j is above i. A sequence pair σ = (σ+, σ−) specifies which of
the four conditions holds, using the partial orders �x

σ and �y
σ defined by

σ−1
+ (i) ≤ σ−1

+ (j) and σ−1
− (i) ≤ σ−1

− (j) ⇐⇒ i �x
σ j,

σ−1
+ (i) ≥ σ−1

+ (j) and σ−1
− (i) ≤ σ−1

− (j) ⇐⇒ i �y
σ j,

for any pair i and j of rectangles. This says that, if i appears before j in both
σ+ and σ−, then i �x

σ j, i.e., i is located to the left of j in the packing, while if
i appears after j in σ+, but before j in σ−, then i �y

σ j, i.e., i is located under j
in the packing. Since exactly one of i �x

σ j, j �x
σ i, i �y

σ j, j �y
σ i always holds

for a given pair of i and j, we see that a sequence pair σ imposes exactly one
of the above four condtions on relative positions. These constraints on relative
positions can be described by the following inequalities.

xi + wi ≤ xj if i �x
σ j,

xj + wj ≤ xi if j �x
σ i,

yi + hi ≤ yj if i �y
σ j, (6)

yj + hj ≤ yi if j �y
σ i.

2.2 Various Problems with Soft Rectangles

As the objective function of our problem, we may choose to minimize the perime-
ter of the rectanglar region that contains all the given rectangles (we call this
the container), i.e.,

minimize W + H (7)

or to minimize its area,
minimize WH, (8)

where W and H are the variables that satisfy

xi + wi ≤ W for all i,

yi + hi ≤ H for all i. (9)

In a variation called the strip packing problem, the height of the container is
fixed to H = H∗, where H∗ is a given constant, and its width W is minimized:

16 T. Ibaraki and K. Nakamura

minimize W, (10)

under the constraint

xi + wi ≤ W for all i,

yi + hi ≤ H∗ for all i. (11)

Therefore, if a sequence pair σ is specified, we are required to solve the math-
ematical programming problem P (σ) to minimize objective function (7), (8) or
(10) under the constraints:

(1), (2), (3) (and/or (4)), (5), (9) (or (11)) for all i,

(6) for all i and j, (12)
xi, yi ≥ 0 for all i.

Here we assume that all bounds wL
i , wU

i , hL
i , hU

i , rL
i , rU

i , Li, Ai, x
L
i , xU

i , yL
i , yU

i , H∗

are nonnegative, and we restrict the locations of all rectangles to the first quad-
rant.

To reduce the data size of problem description, we can remove the redundant
constraints (i.e., those derivable by transitivity law) from (6); e.g., if there is a k
satisfying i �x

σ k �x
σ j, then the constraint i �x

σ j between i and j is redundant.
It is not difficult to carry out this task in O(n2) computation time, where n is
the number of rectangles.

It is important to note that the feasible region defined by constaints (12) is in
general nonlinear but is convex, where that of the constraints (1), (2), (3) and
(4) on wi and hi is illustrated in Figure 1. Therefore, if the objective function is
convex, we obtain a convex programming problem, and can solve it by existing
efficient algorithms (e.g., [1,14]). This is the case when we want to minimize (7)
or (10). The problem with objective function (8) is not a convex programming
problem, but is a so-called multiplicative programming problem for which some
efficient approaches are also known (e.g., [8]).

2.3 Two Test Problems

From the above varieties, we choose two simple problems for our experiment,
emphasizing perimeter and area constraints of rectangles, respectively.

The first type minimizes the perimeter of the container under the perimeter
constraints (3) of rectangles.

Pperi(σ) : minimize W + H

subject to (1), (3), (9) for all i

(6) for all i and j (13)
xi, yi ≥ 0 for all i.

This gives rise to a linear programming problem for each given sequence pair σ.
We call this the perimeter minimization problem.

Packing Problems with Soft Rectangles 17

Fig. 1. Feasible region for the wi and hi of rectangle i

The second type is the strip packing problem under the area constraints (4)
of rectangles, which is formulated as a convex programming problem.

Parea(σ) : minimize W + αv

subject to (1), (4) for all i

xi + wi ≤ W for all i

yi + hi ≤ H∗ + v for all i

(6) for all i and j (14)
v ≥ 0
xi, yi ≥ 0 for all i.

Here the variable v is introduced to keep the problem feasible, by adding penalty
term αv to the objective function (10) with a large positive constant α. We call
this the area minimization problem.

3 General Framework of the Algorithm

The framework of our algorithm is local search (see e.g., [3,4]), which tries to find
sequence pairs σ such that the associated mathematical programming problems
P (σ) offer good packing solutions. We denote the optimal solution of P (σ) as
X(σ) and its objective value as z(σ). A local search algorithm is in general
defined by the neighborhood N(σ) (a subset of the set of all sequence pairs) of
the current σ, and is described in the following manner.

18 T. Ibaraki and K. Nakamura

Algorithm. LOCAL SEARCH
Input: Data for the constraints (12), and objective function (7), (8) or (10).
Output: A packing that satisfies contstraints (12) and has a good objective value.

Step 1 (initialization): Construct an initial sequence pair σ (randomly
or by a simple heuristic algorithm). Solve P (σ) and let X := X(σ)
and z := z(σ), where X and z denote the incumbent solution and its
value, respectively.

Step 2 (local search): Repeat the following procedure until all sequence
pairs in N(σ) have been tested.

Select a new σ′ ∈ N(σ) and solve P (σ′). If z(σ′) < z holds,
then let X := X(σ′), z := z(σ′), σ := σ′ and return to Step 2.

If there is no new sequence pair left in N(σ), go to Step 3.
Step 3 (termination): Output X , and halt.

The output solution is locally optimal in terms of neighborhood N(σ). Its
performance critically depends on how to define the neighborhood N(σ). In the
subsequent sections, we investigate various neighborhoods and proposes a combi-
nation of some neighborhoods as a reasonable candidate for our implementation.

4 Constructing Effective Neighborhoods

4.1 Standard Neighborhoods

A neighborhood is a set of sequence pairs obtained from the current σ by applying
certain local operations. Typical operations used for packing problems are shift,
swap and swap* [6,10], defined as follows.

1. Shift: This operation moves element j in σ+ (or σ−) to the next position
of element i. The shift neighborhood is defined by applying this to all pairs of
i, j ∈ I. If only one of σ+ and σ− is considered, it is the single-shift neighborhood,
while if each shift operation of i and j is simultaneously applied to both σ+ and
σ−, then it is the double-shift neighborhood. The sizes of these neighborhoods
are O(n2) since we consider all pairs of i, j ∈ I.

2. Swap: This operation exchanges the positions of i and j in σ+ (or in σ−).
The single-swap neighborhood and double-swap neighborhood are then defined in
a similar manner to the case of shift neighborhood. The sizes of the resulting
neighborhoods are O(n2).

3. Swap*: Let i and j in σ+ have locations α and β, i.e., σ+(α) = i and
σ+(β) = j, such that α < β. Then for each γ with α ≤ γ ≤ β we move i and
j to the location γ in the manner σ′

+(γ) = j and σ′
+(γ + 1) = i, while keeping

the same relative positions of other elements. This swap* operation can also
be defined for σ− in a symmetric manner. We usually apply swap* operations
to only one of σ+ and σ−, yielding the swap* neighborhood. If we consider all
combinations of i, j, γ, its size becomes O(n3).

The effects of these operations may be intuitively explaned as follows, where
we assume for simplicity that i is constrained to the left of j by σ. A shift

Packing Problems with Soft Rectangles 19

operation brings j immediately to the right of i, causing side effects on relative
positions of j and other rectangles (which are different in cases of single-shift
and double shift). A single-swap operation on σ+ (resp., σ−) changes the relative
position of “ i is to the left of j” to “j is above i” (resp., “i is above j”). On the
other hand, a double-swap operation exchanges only the locations of i and j,
without changing the relative positions of other rectangles. A swap* operation
brings i and j together to their middle locations specified by γ.

As the sizes of these standard neighborhoods are large, it is not appropriate to
use them directly in our local search, since for each candidate solutuion we have
to solve a mathematical programming problem as discussed in Section 2.2, which
is computationally rahter expensive. Therefore, in the following, we consider how
to reduce the neighborhood sizes without sacrificing its power of improvement.
This direction has been studied in many papers on local search, but not in the
context of packing soft rectangles.

4.2 Critical Paths

Given a solution X(σ), we call a maximal sequence of rectangles i1, i2, . . . , ik a
(horizontal) critical path, if it satisfies the following condition: (i) ij is constrained
to the left of ij+1 by σ for all j, and (ii) xij +wij = xij+1 holds for all j. A vertical
critical path can be similarly defined. There may be more than one critical
path horizontally and vertically. It is known that critical paths can be efficiently
computed by using dynamic programming. To reduce the sizes of neighborhoods
as defined in Section 4.1, it is often attempted (e.g., [6]) to restrict i to be in
a critical path, while j can be any. We call the resulting neighborhoods like
single-swap critical neighborhood, swap* critical neighborhood and so forth.

In our packing problems with soft rectangles, a packing solution X(σ) tends
to have many critical paths, since each rectangle is adjusted so that it directly
touches horizontally adjacent rectangles (i.e., xij + wij = xij+1) or vertically
adjacent rectangles (i.e., yij + hij = yij+1). As a result, in a solution X(σ)
that represents a good packing, most of the rectangles turn out to belong to
some critical paths, implying that the restriction to critical paths is not very
effective in reducing the neighborhood size. To remedy this to some extent, we
define the single-swap lower-bounding critical neighborhood by restricting i to
be in a critical path and to satisfy wi = wL

i if the critical path is horizontal
(or hi = hL

i if vertical), since such a rectangle i cannot be shrunk any further.
Similar argument applies also to other types of neighborhoods, resulting in the
single-shift lower-bounding critical neighborhood and others.

4.3 Computational Comparison of Neighborhoods

To evaluate the power of the above various neighborhoods, we conducted pre-
liminary computational experiment for problem instances of small sizes. Two
instances are respectively constructed by taking the first 20 and 30 rectangles

20 T. Ibaraki and K. Nakamura

in the benchmark called ami331, which represents a problem instance of VLSI
floorplan.

Here we use the perimeter minimization problem in Section 2.3. Table 1 gives
the results of algorithm LOCAL SEARCH in Section 3 implemented with each
of the following neighborhoods, abbreviated as

Sg-shift: single-shift neighborhood,
Db-shift: double-shift neighborhood,
Sg-swap: singel-swap neighborhood,
Db-swap: double-swap neighborhood,
SgCr-shift: single-shift critical neighborhood (similarly for DbCr-shift,

SgCr-swap, DbCr-swap),
swap*: swap* neighborhood,
SgLb-shift: single-shift lower-bounding critical neighborhood (similarly

for SgLb-swap and Lb-swap*),
SgAd-swap: single-swap adjacent lower-bounding critical neighborhood.

The algorithms were run from randomly generated initial solutions to local op-
timal solutions, where the rows in the table have the following meanings:

Time: CPU time in seconds for executing LOCAL SEARCH,
Density: Total area of all rectangles over the area of the container (%),
W+H: Objective value (i.e., perimeter of the container).

All the data are the average values of five runs starting from independent random
initial solutions.

Table 1. Comparison of neighborhoods

n Sg-shift Db-shift Sg-swap Db-swap SgCr-shift DbCr-shift

Time (secs) 195.2 171.4 74.2 104.4 86.1 21.4
20 Density 95.9 95.1 94.7 94.5 93.7 77.0

W+H 1617.9 1621.2 1643.3 1647.7 1613.5 1906.7

Time (secs) 684.7 781.5 574.3 788.7 477.7 86.6
30 Density 94.6 94.7 95.7 93.2 95.2 78.1

W+H 1967.7 1980.2 1960.2 1986.7 1944.0 2288.5

SgCr-swap DvCr-swap swap* SgLb-shift SgLb-swap Lb-swap* SgAd-swap

48.5 45.0 71.0 55.8 38.8 14.7 3.6
91.0 85.9 86.3 94.8 92.7 91.5 77.6

1688.9 1762.6 1844.5 1660.5 1672.5 1713.8 1943.2

381.9 316.1 94.6 325.0 236.9 197.4 7.5
93.4 88.6 93.4 85.1 94.2 90.3 76.9

1967.2 2116.6 2069.8 2117.7 1995.7 2059.4 2400.5

In Table 1, the last neighborhood SgAd-swap was not explained yet, and
is based on the following observation. Among the first twelve neighborhoods,
1 Available from http://www.cbl.ncsu.edu/CBL Docs/lys90.html

Packing Problems with Soft Rectangles 21

SgLb-swap appears to be reasonably stable and gives good results in most cases.
However, this still requires rather large computation time. To shorten its time,
we further restrict rectangles i and j to be swapped to those which are lower
bounding (i.e., wi = wL

i or hi = hL
i holds depending on the direction of the

critical path) and are adjacent in some critical path. The resulting neighborhood
is denoted as SgAd-swap. The quality of the solutions obtained by SgAd-swap
is not good, but it consumes very little time compared with others.

4.4 Further Elaborations

To reduce the size of neighborhood further while maintaining high searching
power, we added three more modifications.

The first idea is to look at a rectangle which belongs to both horizontal and
vertical critical paths. We call such a rectangle as a junction rectangle. It is
expected that removing a junction rectangle will break both the horizontal and
vertical critical paths, and will have a large effect of changing the current pack-
ing. Thus we apply single-shift or double-swap operations to a junction rectangle
i with any other rectangles j which are not junctions (in the case of double-swap
we furhter restrict j to have a smaller area than i). We then apply these opera-
tions to all junction rectangles i. If an improvement is attained in this process,
we immediately move to local seach with SgLb-swap neighborhood for attain-
ing further improvement. This cycle of “junction removals” and “local search
with SbLb-swap” is repeated until no further improvement is attained. The re-
sulting algorithms are denoted Jc(Sg-shift)+SgLb-swap or Jc(Db-swap)+SgLb-
swap, respectively, depending on which operation is used to move the junction
rectangle.

To improve the efficiency further, we then tried to replace the SgLb-swap
neighborhood in the above iterations with SgAd-swap, which was defined at the
end of the previous subsection. Using this neighborhood in place of SgLb-swap,
we obtain algorithms Jc(Sg-shift)+SgAd-swap or Jc(Db-swap)+SgAd-swap.

Table 2 shows some computational results with three of these four algorithms,
where Jc(Sg-shift)+SgAd-swap is omitted as it gives less effective results. All
the numbers are the averages of five runs from independent random initial so-
lutions. We observe that these three attain similar quality, but the last one
Jc(Db-swap)+SgAd-swap consumes much less computation time than others.
We also emphasize that the last one has much higher performance than SgLb-
swap, which was considered to be the best in Table 1.

The last idea is to make use of vacant areas existing in a given packing. To
find some of such vacant areas by a simple computation, we use the following
property. Let the current sequence pair σ satisfy i �x

σ j and there is no rectangle
k such that i �x

σ k �k
σ j (i.e., i is immediately to the left of j). In this case, if

xi + wi < xj holds, there is some vacant area between i and j. We pick up the
largest one among such vacant areas, in the sense of maximizing xj − (xi + wi).
Let i∗ and j∗ be the resulting pair. Then we apply Sg-swap operations on σ+

between those i and j such that i ∈ σ+ is located in distance at most 5 from

22 T. Ibaraki and K. Nakamura

Table 2. Comparison of neighborhoods using junction rectangles

n Jc(Sg-shift) Jc(Db-swap) Jc(Db-swap)
+SgLb-swap +SgLb-swap +SgAd-swap

Time 86.4 66.8 22.5
20 Density 95.3 95.3 95.6

W+H 1625.6 1658.0 1645.6

Time 588.4 393.5 82.2
30 Density 94.8 97.5 96.7

W+H 1945.9 1935.1 1993.4

i∗ (forward or backward, i.e., |σ−1
+ (i) − σ−1

+ (i∗)| ≤ 5), and j ∈ σ+ is located in
distance at most 5 from j∗ (forward or backward).

This neighborhood is derived by horizontal argument. Analogous argument
can also be applied vertically, and we consider the local search based on the
resulting two types of neighborhoods, denoted SgVc-swap. Table 3 shows a result
of the local search with SgVc-swap, which starts from a local optimal solution of
instance ami33 obtained by local search with Jc(Db-swap)+SgAd-swap, where

Candidates: The number of P (σ) solved in LOCAL SEARCH,
Improvements: The number of improved solutions found in LOCAL SEARCH,

and Density, W+H and Time were already defined with Table 1. As this appears
to give further improvement without consuming much time, we decided to add
this modification in all the subsequent experiments.

Table 3. Improvement by SgVc-swap (ami33)

before SgVc-swap after SgVc-swap

Density 95.0 96.5
W+H 2079.3 2044.6

Candidates 529
Improvements 11

Time(secs) 5.6

As a conclusion of this section, we propose the following combined neighbor-
hood for solving packing problems with soft rectangles.

Neighborhood A: Neighborhood Jc(Db-swap)+SgAd-swap with the ad-
dition of neighborhood SgVc-swap.

In our experiment, the two neighborhoods in A are combined in the following
manner: First apply local search with Jc(Db-swap)+SgAd-swap until a local
optimal solution is obtained, and then improve it by local search with SgVc-
swap. The best solution obtained is then output.

Packing Problems with Soft Rectangles 23

5 Computational Results

5.1 Benchmarks and Experiment

We used three benchmarks2 known as ami33, ami49 and rp100, involving 33,
49 and 100 hard rectangles, whose widths and heights are denoted w0

i and h0
i ,

respectively. In the case of the perimeter minimization problem, we set the lower
and upper bounds on widths and heights as follows

wL
i = (1 − e)w0

i , wU
i = (1 + e)w0

i

hL
i = (1 − e)h0

i , hU
i = (1 + e)h0

i , (15)

where e is a constant like 0.1, 0.2, etc. The perimeter Li in (3) of each rectangle
i is set to Li = w0

i + h0
i .

On the other hand, for the area minimization problem, we first set the areas
Ai in constraint (4) by Ai = w0

i h0
i for all i, the bounds on hi as in (15), and

then the bounds on wi by

wL
i = Ai/hU

i and wU
i = Ai/hL

i . (16)

Our algorithm was coded in C language, and run on a PC using Pentium 4
CPU, whose clock is 2.60 GHz and memory size is 780 MB. The linear and
convex programming problems are solved by a proprietary software package
NUOPT of Mathematical Systems Inc., where the linear programming is based
on the simplex method and the convex programming is based on the line search
method.

5.2 Perimeter Minimization Problem

The first set of instances of the perimeter minimization problem (13) are gener-
ated from ami33 and ami49 by setting constants e in (15) to e = 0.0, 0.1, 0.2, 0.3,
respectively. For each e, five runs are conducted from independent random initial
solutions. The data in Table 4 are the averages of these five runs, where Candi-
dates, . . ., W+H were already defined with Tables 1 and 3. Note that Density
and W+H are given for both the average and best values in five runs.

From these results we see that our local search could obtain reasonably good
packings in practically acceptable computation time, except for the case of
e = 0.0 (i.e., all rectangles are hard). As we reduced the neighborhood size
to a great extent, in order to make the whole computation time acceptable, the
resulting size appears not sufficient for handling hard rectangles. Existing algo-
rithms such as [6,7,10,13] developed for the hard case are much more efficient,
partially because there is no need of mathematical programming problems to
determine locations of rectangles and hence much larger neighborhoods can be
used. However, if rectangles are soft, the solution quality improves quickly with
e, indicating the feasibility of our approach in practical applications.

2 See the footnote in Section 4.3.

24 T. Ibaraki and K. Nakamura

We then solved the perimeter minimization problem of minimizing W + αv
under the height constraint (11), for the comparison purpose with similar exper-
iment for the area minimization problem in the next subsection. Three different
H∗ are tested for ami33 and ami49, respectively, where e is always set to 0.2.
The results are shown in Table 5, where the data are the averages of five runs
from independent random initial solutions.

Table 4. Perimeter minimization problem with different e

Benchmarks e = 0.0 e = 0.1 e = 0.2 e = 0.3

Candidates 588.6 2639.6 2652.6 2189.0
Improvements 44.4 96.0 102.8 110.4
Time (secs) 24.6 127.2 135.2 118.1

ami33 Density(av.) 67.5 93.6 97.1 97.4
W+H(av.) 2633.4 2198.6 2116.0 2066.6

Density(best) 74.4 96.3 97.9 99.8
W+H(best) 2499.0 2159.9 2103.6 2041.6

Candidates 413.8 7877.6 12400.0 11472.2
Improvements 34.6 153.0 218.8 236.2
Time (secs) 28.0 641.8 1142.4 897.4

ami49 Density(av.) 61.3 92.6 97.1 97.6
W+H(av.) 15268.4 12346.3 11719.9 11401.9

Density(best) 66.3 97.7 98.5 98.7
W+H(best) 14644.0 11903.5 11686.8 11677.9

Table 5. Perimeter minimization problem with fixed heights H∗

Benchmarks H∗ = 800 H∗ = 1000 H∗ = 1200

Candidates 2063.0 2635.0 2762.6
Improvements 92.8 104.6 113.6
Time (secs) 100.1 134.0 146.2

ami33 Density(av.) 91.4 95.4 96.7
W(av.) 1530.6 1132.5 940.6

Density(best) 94.5 97.2 98.2
W(best) 1458.0 1090.7 926.0

H∗ = 4400 H∗ = 5500 H∗ = 6600

Candidates 10538.8 9871.2 7892.6
Improvements 258.8 209.4 191.0
Time (secs) 839.2 852.3 748.1

ami49 Density(av.) 97.7 96.9 95.4
W(av.) 7742.9 6354.3 5403.6

Density(best) 99.1 98.2 97.8
W(best) 7728.8 6192.9 5425.7

5.3 Area Minimization Problem

We solved the area minimization problem (14) with the same settings as Table 5,
where five runs from random initial solutions were again carried out. The results

Packing Problems with Soft Rectangles 25

Table 6. Area minimization problem with fixed heights H∗

Benchmarks H∗ = 800 H∗ = 1000 H∗ = 1200

Candidates 1670.6 1477.4 867.0
Improvements 114.6 111.2 92.8
Time (secs) 179.4 155.9 90.7

ami33 Density(av.) 99.0 97.4 96.6
W(av.) 1461.3 1188.3 1000.8

Density(best) 99.7 100.0 99.0
W(best) 1449.2 1156.7 973.6

H∗ = 4400 H∗ = 5500 H∗ = 6600

Candidates 4156.2 3200.6 2195.0
Improvements 241.2 184.2 140.4
Time (secs) 967.2 743.2 511.6

ami49 Density(av.) 98.8 95.9 91.9
W(av.) 8152.5 6744.5 5868.5

Density(best) 99.5 99.5 98.5
W(best) 8097.6 6479.5 5454.4

are shown in Table 6. Although, in this case, the convex programming problems
Parea(σ) are used instead of the linear programming problems, the computation
time does not increase much, and very dense packings are obtained in most of
the tested instances. Comparing with the results in Table 5, we see that the area
minimization problem attains higher packing density, reflecting the nature of
constraints. Figure 2 shows best results with ami49 for H∗ = 4400, 5500, 6600,
respectively.

5.4 Larger Problem Instances

To see how computation time and quality of solutions change with problem size,
we tested a larger benchmark rp100 with 100 rectangles. Table 7 gives the results
of problems (13) and (14) with e = 0.2 and H∗ = 450 (in the case of (14)). The
obtained result for the area minimization is shown in Figure 3. Considering that
2 ∼ 3 hours were consumed for each run, it appears difficult to handle larger
problems than these with our current approach.

Table 7. Results with 100 rectangles

Benchmarks Perimeter Area

Candidates 35012 15933
Improvements 536 500

rp100 Time (secs) 7268.5 10101.5
Density(%) 97.6 98.8

Obj. 888.8 461.4

26 T. Ibaraki and K. Nakamura

Fig. 2. Area minimization with ami49

Fig. 3. Area minimization with rp100 (H∗ = 450)

6 Conclusion

We studied variants of the rectangle packing problem, in which each rectangle is
adjustable within perimeter and/or area constraints. Our algorithm is a direct
application of local search, but comprehensive empirical study was made to find

Packing Problems with Soft Rectangles 27

an effective combination of neighborhoods. As was shown by our experiment, it
can provide packings of good quality for problem instances with up to 50 rectan-
gles in reasonable amount of time. Our experiment is just preliminary, however,
and we believe that the efficiency will be further improved by elaborating the
use of mathematical programming techniques such as sensitivity analysis, and by
adopting more sophisticated metaheuristic frameworks. Also, as observed in Ta-
ble 4, our algorithm performs poorly for problem instaces with hard rectangles,
suggesting that more versatile neighborhoods are needed. But these directions
remain as topics of future research.

References

1. D. P. Bertsekas, Nonlinear Programming (2nd Edition), Athena Scientific, 1999.
2. C.C.N. Chu and E.F.Y. Young, Nonrectangular shaping and sizing of soft mod-

ules for floorplan-design improvement, IEEE Trans. Computer Aided Design of
Integrated Circuits and Systems (2004) 23, 71-79.

3. J. Dréo, A. Pétrowski, P. Siarry, E. Taillard, Metaheuristics for Hard Op-
timization, Springer, 2006.

4. F.W. Glover, G.A. Kochenberger (eds.), Handbook of Metaheuristics,
Springer, 2003.

5. H. Itoga, C. Kodama and K. Fujiyoshi, A graph based soft module handling
in floorplan, IEICE Trans. Fundamentals (2005) E88-A, 3390-3397.

6. S. Imahori, M. Yagiura and T. Ibaraki, Local search algorithms for the rectan-
gle packing problem with general spatial costs, Mathematical Programming (2003)
B97, 543-569.

7. S. Imahori, M. Yagiura and T. Ibaraki, Improved local search algorithms
for the rectangle packing problem with general spatial costs, European Journal of
Operational Research (2005) 167-1-16 48–67.

8. H. Konno and T. Kuno, Multiplicative programming problems, In Handbook
of Global Optimization, edited by R.Horst and P.M.Pardalos, Kluwer Academic
Publishers (1995), 369 - 406.

9. A. Lodi, S. Martello and M. Monaci, Two-dimensional packing problems: A
survey, European Journal of Operational Research (2002) 141, 241-252.

10. H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani, VLSI module place-
ment based on rectangle-packing by the sequence-pair, IEEE Transactions on Com-
puter Aided Design (1996) 15-12, 1518-1524.

11. H. Murata and E.S. Kuh, Seqence-pair based placement method for
hard/soft/preplaced modules, Proc. Int. Symp. Physical Design, (1998) 167-172.

12. K. Nakamura, Packing problems with adjustable rectangles under perimeter
and/or area constraints, Graduation thesis, Department of Informatics, School of
Science and Technology, Kwansei Gakuin University, March 2006.

13. S. Nakatake, K. Fujiyoshi, H. Murata and Y. Kajitani, Module placement on
BSG-structure and IC layout applications, Proceedings of International Conference
on Computer Aided Design 15-12 (1996) 484-491. SIAM Pub., 1994.

14. Y. Nesterov and A. Nemirovskii, Interior Point Polynomial Algorithms in Con-
vex Programming, SIAM Pub., 1994.

15. F.Y. Young, C.C.N. Chu, W.L. Luk and Y.C. Wong, Handling soft modules
in general nonslicing floorplan using Lagrangean relaxation, IEEE Transactions on
Computer-Aided Design of Integrated Circuit and Systetems (2001) 20, 687-692.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 28 – 41, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Multi-population Parallel Genetic Algorithm for
Highly Constrained Continuous Galvanizing Line

Scheduling

Muzaffer Kapanoglu and Ilker Ozan Koc

Department of Industrial Engineering Eski ehir Osmangazi University
26030 Eskisehir, Turkey

{muzaffer, ikoc}@ogu.edu.tr

Abstract. The steelmaking process consists of two phases: primary steelmaking
and finishing lines. The scheduling of the continuous galvanizing lines (CGL)
is regarded as the most difficult process among the finishing lines due to its
multi-objective and highly-constrained nature. In this paper, we present a
multi-population parallel genetic algorithm (MPGA) with a new genetic
representation called kth nearest neighbor representation, and with a new
communication operator for performing better communication between
subpopulations in the scheduling of CGL. The developed MPGA consists of
two phases. Phase one generates schedules from a primary work in process
(WIP) inventory filtered according to the production campaign, campaign
tonnage, priorities of planning department, and the due date information of each
steel coil. If the final schedule includes the violations of some constraints, phase
two repairs these violations by using a secondary WIP inventory of steel coils.
The developed scheduling system is currently being used in a steel making
company with encouraging preliminary results.

Keywords: multi population genetic algorithm, real world application,
continuous galvanizing line, scheduling.

1 Introduction

The steelmaking process (for steel sheet products) consists of two phases: primary
steelmaking and finishing lines. In the primary steelmaking, slabs created by the
upstream processes are transformed to hot coils at a hot strip mill. Although some
papers have been published on production scheduling in primary steelmaking ([5],
[8], [9], [13]), there could be found only one research related to the finishing line
scheduling [10]. Okano, et al., [10] have worked on the problem of creating
production campaigns and sequencing of coils within each campaign so that
productivity and product quality are maximized and tardiness is minimized. They
have proposed a construction heuristic and an improvement heuristic to generate
schedules for finishing lines excluding CGL which is regarded as the most difficult
process in the finishing lines in terms of sequencing [10].

Multi-population GAs are the most popular parallelization method with numerous
publications. A detailed discussion of parallel GAs, including multi-population (or

 A MPGA for Highly Constrained Continuous Galvanizing Line Scheduling 29

multiple-deme) GAs, can be found in [1]. Basically, multi-population GA work with
more than one population called subpopulations, and facilitates some sort of
communication between the subpopulations with a communication operator based on
a topology of connections. In our previous study [7], a multi-population structure with
a new genetic representation, called kth nearest neighbor representation, was used to
generate a number of local optimum solutions quickly by using a greedy GA over
each subpopulation. However, in the MPGA approach we present here, GAs are
designed to maintain different levels of greediness over different subpopulations. The
level of greediness supports the robustness and efficiency of GAs. We also developed
(i) a new communication operator which works on a fully connected topology, and
controls the knowledge transfer and the communication frequency by incorporating
certain tabu search features, and (ii) a greedy mutation operator which preserves
feasibility after mutation.

2 Continuous Galvanizing Line Scheduling

The considered problem is the scheduling of a continuous galvanizing line (CGL) in a
flat steelmaking plant with the one-million-tone annual production capacity. CGL
scheduling is an extremely complex problem in steelmaking industries due to the
following challenges. (i) Coil changeover requirements: Succeeding steel coils must
comply with the changeover requirements of each equipment of CGL with respect to
the preceding coils, (ii) Planning requirements: Further constraints such as the order
due dates, and the priorities of the planning department, and (iii) Multi-objectivity:
Schedules are subject to the optimization of objectives related to the product quality
and the line productivity.

Production in the CGL is carried out in production campaigns constructed based on
a selected campaign type for a given campaign tonnage. A campaign type is a cluster
of coils of a particular type, with respect to quality and thickness. A production
campaign is a production run with specific start and end times in which coils are
processed continuously. A production campaign is constructed from the primary and
secondary WIP inventories. The primary WIP inventory is the first N coils that fill
the campaign tonnage when the coils of a campaign type are sorted according to the
due dates and the predefined priorities. The remaining coils from the selected
campaign type and the coils of different campaign types that can be used to improve
the quality of the schedule are called the secondary WIP inventory. First, the coils of
the primary WIP inventory are taken into the production campaign and scheduled. If
the schedule violates any constraint(s), then the coils of the secondary WIP inventory
are taken into the production campaign to fix the transition violations with a minimum
increase in campaign tonnage. The relationship between the production types, primary
WIP inventory, secondary WIP inventory, and the production campaign is shown in
Figure 1. In Figure 1, the white coils are the coils of selected campaign type that fills
the campaign tonnage. These white coils form the primary WIP inventory. All the
remaining coils in the selected campaign type are colored gray. Also the coils which
belong to different campaign types but can be produced with the selected campaign

30 M. Kapanoglu and I.O. Koc

Fig. 1. The relationship between the campaign type, primary WIP inventory, secondary WIP
inventory and the production campaign

type are colored gray. These gray coils form the secondary WIP inventory. Firstly, a
production campaign is constructed with primary WIP inventory, i.e., with white
coils. If there are constraint violations in production campaign, then these violations
are fixed by using the secondary WIP inventory.

To make a schedule compatible with the last coil of the previous schedule and the
first coil of the next schedule, it is needed to define two coils as an input: starting coil
and ending coil. The starting coil is the last coil of the previous schedule. Since the
next schedule is not known beforehand, the ending coil is an artificial (dummy) coil
that can be compatible with the schedule of the next campaign type. Now the
scheduling process can be summarized in the following steps:

Step 1. Determine primary and secondary WIP inventories.
Step 2. Construct a production campaign compatible with the starting and ending
coils by scheduling the primary WIP inventory.
Step 3. If the schedule obtained is feasible, go to Step-5.
Step 4. Repair the schedule by adding minimum number of coils from the
secondary WIP inventory
Step 5. Stop and report the final schedule of the current production campaign to the
decision maker.

The CGL scheduling, as stated above, is an interesting problem since it includes

many kinds of theoretical problems from the literature. In Step 2, if the starting
and the ending coils are same, the problem is the shortest Hamiltonian cycle problem
(i.e., well-known Traveling Salesman Problem). However, if the starting and the

 A MPGA for Highly Constrained Continuous Galvanizing Line Scheduling 31

ending coils are not same, then the problem corresponds to the shortest Hamiltonian
path problem. In Step 4, a repair algorithm runs for repairing the constraint violations.
A constraint violation can occur between two adjacent coils in the schedule.
Therefore, for the repair algorithm, the first coil of a violation is defined as the
starting coil and the second coil as the ending coil. In this case, the problem is to find
a feasible schedule between the starting and the ending coils by using minimum
number of coils from the secondary WIP inventory. If the starting and the ending coils
are same, problem turns out to be a special case of Prize-Collecting Traveling
Salesman Problem in which a traveler must visit minimum number of external nodes
to find a legal tour. In Step 4, if the starting and the ending coils are different, then the
problem can be defined as a "prize-collecting" Hamiltonian path problem in which a
traveler must visit minimum number of nodes to find a legal path from initial node to
the ending node.

The constraints of the CGL scheduling problem are presented below:

i. The thickness difference between the two consecutive coils can be Pthickness1% of
the thickness of thinner coil while getting thinner and Pthickness2% of the thinner
coil while getting thicker at maximum.

For example, assuming that Pthickness1 = 10 and Pthickness2 = 20, and two adjacent
coils in a schedule have thicknesses ti and tj. If ti > tj, then it means that the
thickness is getting thinner and (ti – tj 0.10×tj) must hold. If ti < tj, then it
means that the thickness is getting thicker and (tj – ti 0.20×ti) must hold. Note
that the case ti = tj is the ideal case and always holds for any value of Pthickness1 and
Pthickness2. Also it is important to notice that although a sequence of coils in the
schedule (ji, jj) is feasible, the sequence (jj, ji) may not be feasible.

ii. The width difference between the two consecutive coils can be Pwidth1 mm while
getting narrower and Pwidth2 mm while getting wider at maximum.

Assuming that Pwidth1 = 200 and Pwidth2 = 150 mm, and two adjacent coils in a
schedule have widths widthi and widthj. If widthi > widthj, then it means that the
thickness is getting narrower and (widthi–widthj 200) must hold. If widthi <
widthj, then it means that the width is getting wider and (widthj–widthi 150)
must hold. The case widthi= widthj is the ideal case and always holds for any
value of Pwidth1 and Pwidth2.

iii. Coating thickness difference between the two consecutive coils can be Pcoating gr
per square meter at maximum.

Assuming that two adjacent coils have coating thicknesses coatingi and
coatingj, (|coatingi–coatingj| Pcoating) must hold.

iv. The annealing cycle type of the two consecutive coils must correspond to a
permitted transition in the annealing cycle transition matrix.

The annealing cycle transition matrix shows the allowed and restricted
transitions among annealing cycle types. A smaller size typical annealing cycle
transition matrix is given in Table 1, where “X” represents a restricted transition
and “A” represents an allowed transition among two annealing cycles.

32 M. Kapanoglu and I.O. Koc

Table 1. An example annealing transition matrix

Cycles 10 20 30 40 41 50 51 60 61
10 A A A X X X X X X
20 A A A X X X X X X
30 A A A A A A A A A
40 X X A A A A A X X
41 X X A A A A A X X
50 X X A A A A A A A
51 X X A A A A A X X
60 X X A X X A X A A
61 X X A X X A X A A

v. The width enlargement in the schedule can only be made with the special coils,
those with lower quality specifications or those that are non-skin-passed.

CGL includes a process in which work rolls operate on coils to achieve some
customized skin-pass requirements. Since this process is accomplished by
applying a high pressure with work rolls to the surface of a coil, every coil causes
wear on the work rolls. Therefore, if the width is enlarged with some coils that
have to be skin-passed, the wear on a work roll yields traces on the surface of the
enlarged coils. Hence, the width enlargement can only be made with the coils that
are non skin-passed or the coils with lower quality specification.

vi. There must be at least one non-skin-passed coil between two coils requiring
different skin-pass mills to operate.

Since a setup is required to adjust CGL for different skin-pass mills, at least
one non-skin-passed coil should be placed between two coils requiring different
kinds of skin-pass mills.

vii. The exiting inner diameter of a coil that will be side trimmed must be the same
with the preceding and succeeding coils.

Since a side trimmed coil and a change in the exiting diameter require setups
that can not be performed simultaneously, a change in the exiting diameter is not
permitted with the coils that will be side trimmed.

The objectives of the CGL scheduling problem are stated as follows:

i. Minimize the total number of the width-increase chains where a width-increase
chain is defined as a sub-schedule in which the widths of the coils continuously
increase as illustrated in Figure 2.

ii. Minimize the total length of the width-increase chains where the length of a
width-increase chain is the number of coils in a chain.

iii. Minimize the total number of the exiting inner diameter changes.
iv. Minimize the total number of the passivation type change.
v. Minimize the total deviations of thickness.
vi. Minimize the total number of oil type changes.
vii. Minimize the total number of coils used from secondary WIP inventory.

All the constraints and the objectives are unified into a single objective function by
adding up the penalized constraint violations and the weighted objective values for

 A MPGA for Highly Constrained Continuous Galvanizing Line Scheduling 33

Fig. 2. Width increase chain

minimization. The objective function with user-supplied penalties and weights can be
represented as follows:

= =
+=

7

1

7

1

min
i j

jjii OwCpz (1)

where Ci and pi represent the violation amount of the constraint i, and its associated
penalty; and Oj and wj represent the value of the objective j and its assigned weight
respectively. This approach allows constraint violations proportional to their relative
penalties. In CGL scheduling problem, with guidance of scheduling experts, all the
constraint violations and the objectives are sorted according to their importance levels
in which a tradeoff is not permitted among any high important and low important
components, i.e., the preemptive case. If preemptive priorities are preferred for
constraint violations and objectives, then penalties and the weights must be chosen
accordingly to prevent any possible tradeoff among them. These penalties and the
weights are determined by applying a series of preferable – not preferable
comparisons to the scheduling experts of the plant. The developed software also
includes an interface allowing manual changes in weights and penalties to reflect any
possible changes in the system dynamics.

3 Developed MPGA

We have developed a multi-population parallel genetic algorithm using the kth nearest
neighbor representation [7], for preparing schedules for the CGL. This representation
has previously been presented in [7] for the Euclidean traveling salesman problem
with high performance. In this paper, we introduce a new approach with some
extensions and modifications for a highly constrained multi-objective real CGL
scheduling problem.

The multi-population GAs are the most popular parallel method among the parallel
GAs with numerous publications [1]. The two important characteristics of multi-
population parallel GAs are a number of subpopulations and a communication
operator with a topology that defines the connections between the subpopulations.
Probably the most important part of the multi-population parallel GAs is the
communication operator. If there is no communication among subpopulations, then
the multi-population GA exhibits an equivalent performance to running a number of

34 M. Kapanoglu and I.O. Koc

individual GAs in parallel, or running a GA in multiple times sequentially. In our
MPGA we have developed a new communication operator which:

• uses a fully connected topology for communication,
• exchanges some parts of two individuals selected from different subpopulations,
• utilizes a communication length parameter (comlength) which controls the amount

of knowledge transfer among individuals,
• utilizes a tabu list to control and restrict the communication among the

subpopulations which have recently communicated,
• preserves the transferred knowledge against the evolution process for a number of

generations.

The main framework of MPGA is given in Figure 3. A fully connected topology is
used for the communication operator and communication takes place among
randomly selected two subpopulations.

Fig. 3. The framework of MPGA

In [7], multi-population structure is used to generate a number of local optimum
solutions quickly by using a greedy GA over each subpopulation. In our MPGA
approach, we have used GAs that have different levels of greediness over different
subpopulations. Different levels of greediness for GAs are obtained by using a
different probability distribution for each subpopulation which is utilized by the kth
nearest neighbor representation. By this way, a GA with a lower level of greediness
becomes more robust than a GA with a higher level of greediness. As the level of
greediness decreases, the exploration capability of GA increases. While the level of
greediness increases, the exploitation capability of the GA increases. Therefore, the
communication among subpopulations enables GAs to operate on the imported
knowledge with different levels of greediness. We also developed a greedy mutation
operator which performs an improvement heuristic to preserve feasibility after
mutation. In the following subsections we have described the genetic representation
and the operators used in MPGA.

 A MPGA for Highly Constrained Continuous Galvanizing Line Scheduling 35

3.1 kth Nearest Neighbor Representation

The kth nearest neighbor representation extends the nearest neighbor heuristic to the
kth nearest neighbor for TSPs. A fully-connected Hamiltonian graph can be
constructed where the coils are nodes, and the distances are the transition costs for
scheduling CGL. The transition costs from one coil to another are computed based on
penalized violations of the constraints and the weighted objectives. Therefore, each
GA searches for a schedule of maximum fitness in which the next coil that will be
taken into the schedule can be selected from out of the unscheduled nearest k coils.
The parameter k can be considered as the maximum adjacency degree due to its
restrictiveness over the neighborhood of a coil. Since a gene represents the gth
unvisited nearest neighbor of the current coil to schedule next where 1 g k, the
maximum values of genes must be determined depending on the total number of coils,
the value of k, and the position of the gene as follows;

max gi =
<+−+
≥+−

kiNN-i

kiNk

1 if 1

1 if
 (2)

where gi represents the value of a gene in the ith position of a chromosome, and N
represents the total number of coils that will be scheduled. By using the kth nearest
neighbor representation for k = 3, a chromosome for a 5 coil problem, with the
maximum value limits for each gene, is illustrated as follows.

Maximum value limits: 3 3 3 2 1
Chromosome: 1 3 2 1 1

The starting coil is the last coil of the previous schedule. Since the last coil of the

previous schedule (i.e., our starting coil) that is currently in production line, and the
first coil of the current schedule that will be prepared must be compatible with each
other, we will decide which coil to take the schedule first according to our starting
coil. Since the allele of first gene is 1, we select the first nearest neighbor of the
starting coil. Suppose that the first nearest neighbor of the starting coil is coil 5, now
the current schedule is {5}. Since the allele of the second gene is 3, we select the third
unvisited nearest neighbor of coil 5. Suppose that this coil is coil 2, now the current
schedule is {5, 2}. Since the allele of the third gene is 2, we select the second
unvisited nearest neighbor of coil 2, namely coil 3. Therefore, the current schedule is
{5, 2, 3}. As the subsequent chromosome is decoded in the same manner, the
schedule {5, 2, 3, 1, 4} is obtained.

Since the frequency of visiting the nearest neighbor, and the kth nearest neighbor in
the optimal solution can not be the same, the kth nearest neighbor representation
utilizes a probability distribution for the degree of neighborhood. This probability
distribution is used in the initialization of the subpopulation phase, and in the
mutation operator to determine the new allele of a gene. Therefore, these probability
distributions, each one for a subpopulation, also describe the greediness of GAs. We
have defined these probability distributions according to the ratio of probabilities of

36 M. Kapanoglu and I.O. Koc

Table 2. The ratios used to generate probability distributions for kth nearest neighbor
representation

Subpopulations Ratio
1 1.5
2 1.4
3 1.3
4 1.2
5 1.1

adjacent closeness degrees. For example, a ratio of R indicates that the probability of
visiting the first nearest neighbor is R times more than the probability of visiting the
second nearest neighbor and R2 times more than visiting the third nearest neighbor
and so on. Therefore, the greediness of a subpopulation increases as the value of R
increases. These ratios are given in Table 2 for each subpopulation.

Since we have many constraints related to the adjacency of coils in CGL
scheduling, a feasible transition from one coil to another is often limited to a degree
of closeness. By restricting the available connections from a coil to at most its kth
nearest neighbors, we reduce the size of the search space, and eliminate most of the
infeasible transitions among coils.

3.2 The Communication Operator

Communication operator is probably the most important operator in parallel GAs
which has a significant effect on the performance of parallel GAs as mentioned in
[11]. In general, a migration policy is preferred as a communication operator ([2], [6],
[11], [3], [4]). Although the communication rate and the topology of connections
between subpopulations are important to address the communication level of an
algorithm, migration can be considered as a high level of communication since a
migration from quickly converged subpopulation can easily capture the slowly
converging subpopulations. As observed in [6], the performances of the parallel GAs
with such a high level of communication are similar to the performance of a GA with
a single large population and while designing a multi-population parallel GA, the
topology and the communication level can not be distinguished from each other
completely [2]. Therefore, the prevention feature of a premature convergence must be
embedded in either the topology or the communication operator, or both. We
preferred to use a fully connected topology with a new communication operator
which allows the control of the communication level by controlling the
communication probability and the communication amount (number of genes). The
developed communication operator also restricts the re-communication of recently
communicated subpopulations via a tabu list. Therefore, the topology used in this
paper can be considered as a fully connected topology with dynamically changing
communication restrictions that embeds the prevention of premature convergence in
both, the topology and the operator.

We have proposed a new communication operator which acts like a crossover
operator to perform knowledge exchange among individuals. The proposed operator
also utilizes a tabu list and a tabutenure parameter to store the recently communicated

 A MPGA for Highly Constrained Continuous Galvanizing Line Scheduling 37

subpopulations and to restrict them to not to re-communicate for a number of
generations, respectively. By this way, subpopulations are prevented against the
imported knowledge influx. Also the communicated individuals are preserved against
the evolution process if their subpopulations are still in the tabu list (i.e., for
tabutenure generations). The waiting times in the tabu list are updated by GAs. Each
GA checks the index of its subpopulation at the tabu list after every generation and
updates its waiting time if its subpopulation index exists in the list. If the index of its
subpopulation doesn’t exist in the tabu list, it sends a communication request to the
communication operator with a probability of communication (pcom). The
communication operator is activated when a request is received from a subpopulation.
The operator randomly selects another subpopulation that is not in the tabu list, then
performs communication among two individuals randomly selected from
corresponding subpopulations, and finally updates the tabu list.

The communication operation works on the phenotypes of the selected
chromosomes. To illustrate the communication operation, assume that the solutions
decoded from the selected chromosomes are as follows:

A = (1 2 3 4 5 6 7 8 9)
B = (2 5 4 6 9 1 3 7 8)

It randomly selects a communication site (comsite) from interval [0, N-
comamount] where, comamount represents the communication amount (i.e., the
length of substring that will be exchanged). Assume that comsite = 2 and
comamount=4. Then, the substrings that will be exchanged are s1 = (3, 4, 5, 6) and s2
= (4, 6, 9, 1). Now we will produce the second substring in parent A, and the first
substring in parent B. While completing this operation, our purpose is to protect the
relative positions of the sub-strings in the parents in which they will be produced. To
accomplish this goal, all the elements, except the first one, in the second substring are
deleted from parent A, and similarly all the elements, except the first one, in the first
substring are deleted from parent B. After this operation, current schedules are
reduced to (2 3 4 5 7 8) and (2 9 1 3 7 8) . Adding the remaining elements of
the substrings after their first element in the corresponding offspring yields the
following two new schedules:

 a = (2 3 4 6 9 1 5 7 8)
 b = (2 9 1 3 4 5 6 7 8)

The obtained offspring are re-encoded into corresponding chromosomes. Since the
offspring might not be representable with the kth nearest neighbor representation, if
needed, it is allowed to exceed “k” in re-encoding process. Preserving the relative
starting positions of the exchanged substrings is the main advantage of this
communication operator.

3.3 Genetic Operators and Parameters

The operators and the parameters of the designed GA are described below.

• The maximum nearest neighborhood degree allowed: k = 10.
• Number of populations: 5

38 M. Kapanoglu and I.O. Koc

• Subpopulation sizes: popsize = 20. Therefore, there are 100 chromosomes in total.
• Initial population: Initial subpopulations are generated randomly according to the

predefined probability distributions for each subpopulation, computed based on
Table 2.

• Selection operator: We used the tournament selection operator with tournament
size tsize = 3. The tournament selection operator simply selects tsize chromosomes
from the current population and places the fittest one to the new population until
the new population is filled.

• Crossover operator: We have used the single point crossover operator with
probability pcross = 0.1.

• Mutation operator: We have proposed a new mutation operator. The mutation
simply selects a gene with probability pmutate (pmutate=0.001), and mutates its
current value according to the probability distribution generated according to the
ratios given in Table 2. The mutation operation is performed on the genotype.
Since mutating a gene may result in a complete change in the phenotype
succeeding the mutated position, we only consider the jump effect of the mutation
on the phenotype. To illustrate this case, consider the following phenotype and
assume that the gene at the third position is to be mutated.

 1-2-3-4-5-6-7-8-9

Mutating the gene at the third position corresponds to a jump from the second

position in the phenotype.

1-2-3-4-5-6-7-8-9

In this case the coils 3, 4 and 5 will be excluded from the schedule. To restore
these coils to the schedule, we perform a cheapest insertion operation which inserts
these coils to the cheapest available location while preserving the newly produced
connection, i.e., the connection from coil 2 to 6. In cheapest insertion operation,
we do not care about the “k” restriction over the neighborhood. Therefore, if
needed, it is allowed to exceed “k”. The final schedule is then re-encoded into the
chromosome.

• Elitism: Elitist strategy is used to preserve the best solution obtained against the
selection, crossover and mutation operators. Elitism simply saves the best-so-far
chromosome throughout generations, and replaces the worst chromosome with the
elite after each generation within each subpopulation.

4 Repairing Algorithm

The MPGA described in Section 3 schedules the primary WIP inventory. If the found
best solution of MPGA has some constraint violations, then the repairing algorithm
(RA) is performed to repair or reduce the amount of violations in found best solution

 A MPGA for Highly Constrained Continuous Galvanizing Line Scheduling 39

of the MPGA one by one by using minimum number of coils from secondary WIP
inventory. The sequence of coils taken from secondary WIP inventory to repair a
violation is called a sub-schedule. An illustrative example is given in Figure 4 for two
constraint violations between the coils A-B and C-D. Figure 4 shows two sub-
schedules. The first sub-schedule consists of four coils taken from secondary WIP
inventory to repair the violation between A and B, whereas the second one consists of
four coils repairing the violation between C and D. The RA runs for each constraint
violation consecutively, starting from the violation which has the largest penalty
value.

Fig. 4. Repairing the constraint violations

The RA utilizes the cheapest insertion heuristic [12] for repairing the constraint
violations. In the considered problem, the number of coils used from secondary WIP
inventory to repair a violation depends on the violation type. On the average, a
violation can be repaired by using 1-5 coils from secondary WIP inventory. Therefore
cheapest insertion is a fast and effective tool for violation repairing. It starts with the
constraint violation that has the largest penalty, and sets the first coil of constraint
violation as the initial coil and the following as the ending coil. Letting that the initial
coil be A and the ending coil be B as given in Figure 4, RA tries to repair the
violation between coils A and B by iteratively inserting best available coil of the
secondary WIP inventory at the best available position in the sub-schedule until either
no further improvement in the objective value can be achieved or the violation is fully
repaired. Then, this procedure continues to repair the next constraint violation with
the largest penalty until all violations are considered.

5 Results

The developed MPGA has already been put to practice at a major steelmaking plant in
Turkey. Although no detailed comparison has been completed yet to prove the
contribution of the MPGA to the scheduling of CGL experimentally, the preliminary
results are encouraging. High quality schedules have already been generated by using
MPGA within very reasonable computational times (2-3 minutes for scheduling

40 M. Kapanoglu and I.O. Koc

150-200 coils in roughly 25-30 generations) when compared to those of the human
scheduling experts.

Our intention to perform a comparison of our approach faces two drawbacks: (i)
No prior research is found on CGL scheduling as highlighted in the first section.
Therefore, a literature-based comparison of the performances of our MPGA and any
other technique including standard GA is not available. (ii) The human scheduling
experts have psychological reactions against the early successful results of MPGA
which caused them to avoid many attempts in comparing their performances with
MPGA’s. Although this is an on-going evaluation process that can take more than a
year, a typical performance of MPGA versus human experts is presented in Table 3
for a smaller size sample case. For instance, MPGA was able to schedule all 66 coils
of the primary inventory while only Expert#2 could schedule the same number of
coils. Since the reason behind missing coils is to avoid some important violations,
number of missing coils can also be counted as violations. Table 3 does not include
all the constraints and the objectives as addressed in Section 2 due to the incapability
of the human experts to evaluate more than nine criteria concurrently. For this case,
the schedule obtained by using MPGA achieved 10 violations while the best expert
resulted in 16 violations.

Table 3. A sample case of 66 coils: MPGA vs. human scheduling experts

Evaluation Criteria MPGA SE* #1 SE* #2 SE* #3
Number of coils 66 63 66 65
No. of violations on width differences 0 1 0 0
No. of violations on thickness differences 0 1 1 0
No. of violations on widening 0 2 0 0
No. of violations on annealing cycle type 1 0 1 1
No. of violations on skin-pass mill 0 0 0 0
No. of violations on inner diameter changes 8 8 10 10
No. of violations on inner diameter changes
with side-trimmed coils 1 5 5 5
No. of violations on coating thickness 0 1 1 0
Total number of violations 10+0 18+3 18+0 16+1
*SE: Scheduling Expert

According to our preliminary results, 60% to 75% improvement in the number of
constraint violations, and 5-25% improvement in the objective values can be expected
in a realistic realm.

6 Conclusions

CGL scheduling in steelmaking is a challenging real-world problem incorporating
multiple objectives, and multiple constraints into various types of TSP and Hamiltonian
path problems. In this study, a multi-population parallel genetic algorithm with a new
genetic representation and new operators is developed for this challenging problem. The
developed approach produces a schedule in two phases: (i) schedule construction phase,
and (ii) schedule improvement phase. Phase one schedules the primary WIP inventory

 A MPGA for Highly Constrained Continuous Galvanizing Line Scheduling 41

which includes N coils selected according to the campaign type, campaign tonnage,
priorities of the planning department and the due dates. Phase two is designed to repair
violations by using a secondary WIP inventory for improving the quality of the
schedules. Secondary WIP inventory includes the remaining coils from the selected
campaign type, and some of the coils of other campaign types that are compatible with
the ones in primary WIP inventory. Although the performance evaluation of the designed
algorithm is an ongoing process, preliminary results indicates that the algorithm
outperforms the schedules of human scheduling experts and a 60% to 75% improvement
in the number of constraint violations, and 5-25% improvement in the objective values
can be expected.

References

1. Cantú-Paz, E.: A survey of parallel genetic algorithms. IlliGAL Report 97003, Illinois
Genetic Algorithms Lab., University of Illinois (1997).

2. Cantú-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: theory and practice.
Computer Methods in Applied Mechanics and Engineering, 186 (2000) 221–238.

3. Cohoon, J.P., Martin, W.N., Richards, D.S.: Genetic Algorithms and punctuated Equilibria
in VLSI. In: Schwefel H.-P., Männer, R. (eds.): Parallel Problem Solving from Nature,
Springer-Verlag (Berlin), (1991) 134–144.

4. Cohoon, J.P., Martin, W.N., Richards, D.S.: A multi-population genetic algorithm for
solving the K-partition problem on hyper-cubes. In: Belew, R.K., Booker, L.B. (eds.):
Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan
Kaufmann (San Mateo, CA), (1991) 244–248.

5. Fang, H.-L., Tsai, C.-H.: A Genetic Algorithm Approach to Hot Strip Mill Rolling
Scheduling Problems. In: Proceedings of the International Conference on Tools with
Artificial Intelligence, IEEE, Piscataway, NJ (1998) 264 –271.

6. Grosso, P.B.: Computer simulations of genetic adaptation: parallel subcomponent
interaction in a multilocus model, Ph.D. Thesis, The University of Michigan, (1985).

7. Kapanoglu, M., Koc, I.O., Kara, ., Aktürk, M.S.: Multi-population genetic algorithm
using a new genetic representation for the Euclidean traveling salesman problem. In:
Durmusoglu M.B., Kahraman, C. (eds.): Proceedings of the 35th International Conference
on Computers & Industrial Engineering. Turkey, Vol. 1 (2005) 1047-1052.

8. Lee, H.-S., Murthy, S.S., W. Haider, S., Morse, D. V.: Primary Production Scheduling at
Steelmaking Industries. IBM Journal of Research and Development, 40 (1996) 231–252.

9. Lopez, L., Carter, M.W., Gendreau, M.: The Hot Strip Mill Production Scheduling
Problem: A Tabu Search Approach, European Journal of Operational Research, 106
(1998) 317–335.

10. Okano, H., Davenport, A.J., Trumbo, M., Reddy, C., Yoda, K., Amano M.: Finishing line
scheduling in steel industy. IBM Journal of Research and Development, 48, 5/6 (2004)
811–830.

11. Petty,C.B., Leuze, M.R., Grefenstette, J.J.: A parallel genetic algorithm. In: Grefenstette,
J.J. (ed.), Proceedings of the Second International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates (Hillsdale, NJ), (1987) 155–161.

12. Reinelt, G.: The traveling salesman problem: Computational Solutions for TSP Applications.
Springer Lecture Notes in Computer Science 840, Springer-Verlag, Berlin (1994).

13. Yasuda, H., Tokuyama, H., Tarui, K., Tanimoto, Y., Nagano, M.: Two-Stage Algorithm
for Production Scheduling of Hot Strip Mill. Operations Research, 32 (1984) 695–707.

Improvement in the Performance of Island Based
Genetic Algorithms Through Path Relinking

Luis delaOssa, José A. Gámez, and José M. Puerta

Intelligent Systems and Data Mining Group
Computer Systems Department - University of Castilla-La Mancha

Campus Universitario s/n, 02071, Albacete Spain
{ldelaossa, jgamez, jpuerta}@info-ab.uclm.es

Abstract. In island based genetic algorithms, the population is splitted into sub-
populations which evolve independently and ocasionally communicate by send-
ing some individuals. This way, several zones of the landscape are explored in
parallel and solutions with different features can be discovered. The interchange
of information is a key point for the performance of these algorithms, since the
combination of those solutions usually produces better ones. In this work, it is
proposed a method based in path relinking which makes the combination process
more effective.

1 Introduction

Genetic algorithms (GAs) have been succesfully applied to solve complex problems in
areas such as engineering, science, etc [11]. Although they can reach good solutions
with not too much effort, the increasing complexity of those problems have lead the
community to research for improvements.

One of these research lines, due to the parallel nature of this kind of algorithms,
consisted of taking advantage of the power of parallel machines [13]. These attempts
gave rise to new kinds of approaches[4] that spread from those which make simple
parallelization of the evaluation function, to models that make a huge use of communi-
cation and behave in a different manner than their sequencial counterparts. These last
are called fine grained parallel GAs or cellular GAs [1].

Between these two tendences, there can be placed the coarse grained parallel GAs or
island models[4]. They basically consist of several subpopulations (also called demes
or islands) that evolve independently and, ocasionally, send copies of their individuals
to the other islands.

The difference in performance between island models and sequential GAs is due to
the fact that each subpopulation follows its own evolution process, and that makes it
possible the exploration of different regions of the search space. Moreover, the quality
of the solutions in each island improves when mixing them with the received ones.

Since this communication process has been shown as a key point in the functioning
of the algorithms[14] it becomes important doing it as effective as possible.

In [18] the authors proposed an island-based parallel evolutionary algorithm in which
a simple estimation of distribution algorithm (UMDA) evolves inside each island. In

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 42–56, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Improvement in the Performance of Island Based Genetic Algorithms 43

that paper, the novelty lies in the way in which the information is incorporated into
the resident island. Thus, each island migrates a (univariate) probabilistic model, and
the incoming model is combined with the resident one by using an informed search:
path relinking. The results obtained were very good, specially for deceptive problems.
Encouraged by these results, in this work we extend our analysis to the case in which
genetic algorithms evolve inside each island. Thus, we propose a method that only re-
quires each island to send an individual. Then, the receiving island generates a new
individual by doing a path relinking based search between it and the best one on its
population and incorporates it. This way, it is tried to take as much advantage as pos-
sible of the usefull information but, at the same time, trying to not alter the population
significatively.

We also compare the incorporation of information through path relinking in island
based genetic algorithms with the traditional migration of individuals. In order to do
that, we test the behaviour of both approaches on the solution of five different functions
under several configurations. Afterwards, we study the behaviour of our proposal by
analysing the effects of each one of the parameters.

This paper is divided into 5 sections. In Sect. 2 we make a brief overview of island
based genetic algorithms. Section 3 describes the motivations of our work as well as
the schemes we propose for our study. In Sect. 4 we carry out an empirical comparison
of the proposed methods and the traditional migration of individuals by testing their
behaviour when solving different problems. Finally, in Sect. 5 we summarize our work
and present some future lines of research.

2 Island Based Genetic Algorithms

As mentioned before, island models split the population into several subpopulations or
demes which evolve independently according to the original algorithm and, ocasionally,
interchange information in the shape of a set of individuals.

Despite their simplicity and the large amount of related bibliography [1,7,5], their
functioning is not still fully understood. This lack of knowledge is mainly due to the
fact that there are a lot of parameters which need to be set and have influence on the per-
formance of the algorithms. Besides those required to set up the evolutionary algorithm
which evolves in each island, such as population size, probability of crossover/mutation,
etc. , it becomes necessary to specify the interaction among them. These are the main
parameters used in order to do it:

– Number of islands: When real parallelism is used, this parameter is constrained by
the available hardware, but when parallelism is simulated, this is a tunable param-
eter. It adquires more importance when the total population is fixed and must be
divided into all islands.

– Percentage of migrating individuals: Determines the number of individuals that
each island sends to the others.

– Gap between migrations: Is the number of generations elapsed between migration
processes. The most common option consist of fixing it to a constant but some
works use asynchronous communication [2].

44 L. delaOssa, J.A. Gámez, and J.M. Puerta

– Topology: Defines how is the interconnection among islands (star, ring, grid, etc).
One important fact in topologies is the degree of conectivity, i.e., the number of
islands connected to a given one.

– Replacement policies: It is necessary to define how population inside an island
is formed after a migration is carried out. The most common option lies on using
elitism, that is, received individuals are added to current population and, afterwards,
individuals with worst fitness are discarded.

There are studies which show that, for some problems, island models perform better
than sequential genetic algorithms [21]. One of the causes for that is related with the
division of the search in several independent threads which explore different regions
of the space. However, this fact can not explain the performance of these algorithms
by itself. Cantú-Paz et. al. [3] show, both teoretical and empirically, that the results
obtained by a run of a genetic algorithm with a population P are better in average
than those obtained with n runs of this algorithm with population P/n. This result is
related with those showed in [12,15], where it is demostrated that the effectiveness of a
genetic algorithm is determined by the size of its population. The bigger it is, the better
chance of finding a better solution. However, the effort of the algorithm also increases
and sometimes it is necessary a tradeoff. In the same line, [14], shows that favorable
changes spread faster when size of the demes is small, however this rapid rise stops
sooner than the rise in the sequential algorithm.

Besides these conclusions there must be also considered that, if the interaction among
islands is too intense, the lost of diversity can lead algorithms to behave as single popu-
lation GAs. Relative to this point, there is a work by Skolicky and De Jong [20], which
studies the effects of varying the percentage of individuals migrated and the gap be-
tween migrations. Concerning with the percentage of individuas migrated, results sug-
gest that fixing it up to 10%, as it is done in standard settings, is unnecessary, but not
damaging. However, gap between migrations is a more determining parameter when
trying to keep the diversity. Thus, if migration gap is very small, diversity is lost faster,
and results become poor. In the other hand, using a big gap makes results improve in
almost every case.

From all these studies, there can be concluded that communication is a key point in
the performance of island based genetic algorithms and, although it has to exist, it also
has to be fixed in such way that diversity is preserved.

3 Path Relinking Based Incorporation of Information

Considering what has been pointed above, comunication among islands must satisfy
two criteria:

1. It is important to interchange of information among islands so that none of them
converge prematurely.

2. This interchange must not be too intense. Otherwise, the lost of diversity would
make the algorithm behave like a single population genetic algorithm.

The migration of individuals is the traditional way to make such communication. When
a subset of individuals arrives to an island, they replace some of the individuals present

Improvement in the Performance of Island Based Genetic Algorithms 45

on it according to the replacement policy. This way, and according with the princi-
ples of the GAs, features on this incoming individuals will soon spread among all the
population.

Since there is important to keep diversity, too frequent and numerous migrations
must be avoided. Otherwise, features of the incoming individuals would take over the
population making it very similar to the one from which they come. In the other hand,
given that features propagate acording to the evolutionary principles, and due to the
statistical nature of them, too sporadic and small migrations can made some of the
features lost.

The aim of this work is designing an schema that preserves diversity. In order to
do that, instead of mixing a subset of individuals with the subpopulation, and this way
trying to merge features from incoming and resident solutions, we generate only an
individual which takes as much advantage as possible of the incoming information.
This way, the improvement resulting of incorporating the information is done from the
first moment, whereas the population does not change significatively.

3.1 Path Relinking

Path Relinking [10] arised as a complement for other metaheuristics such as Tabu
Search [9], Scatter Search [8] or GRASP [17]. Its main basis is that good solutions
can be generated by merging features of two given solutions. In order to do that, it
iteratively makes changes to one solution starting solution until it is transformed into
another, called guiding solution. This sequence of changes is seen as a path across the
search space which goes from one solution to the other and, along this path, some better
solutions with features of both can be found. These techniques have been succesfully
applied in many problems as assignment [16], philogenetic inference [6], etc.

3.2 Application to Island Models of GAs

Path Relinking is grounded in creating a new solution from two previously given. This
solution should improve the quality of both parents and would be composed by parts of
them.

In this work, a path relinking based approach is used to create a new solution from the
best individual in each island and the individual received. Thus, instead of performing
a blind crossover, it is tried to get a new individual which gathers the features of both
parents in an optimal way. Afterwards, this individual replaces the worst one in the
island.

One of the advantages of this approach is that, since only one individual is introduced
to the island, the population inside is not affected the same way that it would be if mix-
ing all the individuals with the incoming set. Thus, this precise way of communication
helps to preserve diversity.

Moreover, the fact that a local search based algorithm is used to combine the indi-
viduals helps to improve the quality of solutions becouse it allows to a more efficient
exploration of the search space.

46 L. delaOssa, J.A. Gámez, and J.M. Puerta

resident 1 , 0 , 1 , 0 , 0 (2)

0 , 0 , 1 , 0 , 0 (1)
1

1 , 0 , 0 , 0 , 0 (1)
3

1 , 0 , 1 , 1 , 0 (3)
4

1 , 0 , 1 , 0 , 1 (3)
5

0 , 0 , 1 , 0 , 1 (2)
1

1 , 0 , 0 , 0 , 1 (2)
3

1 , 0 , 1 , 1 , 1 (4)
4

0 , 0 , 1 , 1 , 1 (3)
1

1 , 0 , 0 , 1 , 1 (3)
3

incoming 0 , 0 , 0 , 1 , 1 (2)
3

Fig. 1. Example of Path Relinking combination for OneMax problem (size=5)

function PathRelinkingCombination(Ii ,Ir){
best.fitness = −∞
Iaux = Ii.copy
changes = {j | Ii(Xj) �= Ir(Xj) }
stage = 0
while (changes �= ∅) do

{
fitness = new array[changes.length]
for i = 1 to changes.length do

Iaux(Xchanges[i]) = Ir(Xchanges[i])
fitness[i] = evaluate(Iaux)
Iaux(Xchanges[i]) = Ii(Xchanges[i])

i∗ = arg maxi fitness[i]
Iaux(Xchanges[i∗]) = Ir(Xchanges[i∗])
if fitness[i∗] > best.fitness then

best.fitness = fitness[i∗]
best.individual = Iaux.copy

changes = changes \ {i∗}
}

return best.individual

}

Fig. 2. Combination of models through path relinking

Figure 1, shows an example of path relinking generation of a new solution for the
OneMax problem with size n = 5. On it, we take the best resident individual as the
starting solution. As it can be seen, in the first steps there can be done 4 different
changes because there are 4 positions which value is different. Each change leads to a
new individual whose fitness is specified between parenthesis. In this case, the change
of positions 4 and 5 result in an individual with the same fitness (3), so we can decide

Improvement in the Performance of Island Based Genetic Algorithms 47

one of them randomly. In this case, position 5 is changed. In the next step, only 3
changes can be done. The change of position 4 leads to an indivdual with fitness 4, so
it is the choosen change. After that, there are only two possible changes and, although
none of them leads to an individual better than the original one, one must be choosen.
Finally, we do the only possible change. The path followed to go from the first solution
to the guiding solution is marked in bold, and so it is the best individual found. The
pseoudocode of this process is described in Fig. 2.

Concerning to this process, there are two remarks which are worth to be done:

– During the search we can accept moves that lead to worse configurations.
– The number of evaluations required by PR is (k+1)k

2 , i.e., O(k2), k being the num-
ber of coordinates with different value between Iresident and Iincoming . Thus, in
the worst case k = n, but in practice and when the evolution converges k << n. In
the example of Fig. 1, n = 5 and k = 4.

4 Experimental Study

In this section we perform an experimental study of our proposal. In order to do that,
we have choosen a set of test functions and have solved them with both traditional and
path relinking based island models under several parameter configurations. We show
the results of the comparison between both schemes as well as a study of the influence
of parameters in the proposed approach.

4.1 Test Problems

In order to get a broader vision over the behaviour of the models, we have tried to
cover a wide range of problems by choosen eight functions frequently used in literature
relative to combinatorial optimization:

• Massively Multimodal Deceptive Function

This problem can be defined matematically as:

fmmdp(x) =
∑m

j=1 f6
b (sj)

with sj = (x6j−5, x6j−4, x6j−3, x6j−2, x6j−1, x6j) , n = 6m and

f6
b (sj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.000000 if #ones(sj) = 0
0.000000 if #ones(sj) = 1
0.360684 if #ones(sj) = 2
0.640576 if #ones(sj) = 3
0.360684 if #ones(sj) = 4
0.000000 if #ones(sj) = 5
1.000000 if #ones(sj) = 6

In this work, we have used m = 15 so the size is n = 90 and the optimum is also 15.

48 L. delaOssa, J.A. Gámez, and J.M. Puerta

• CheckerBoard function

In this problem, a s × s grid is given. Each point of the grid can take a value 0 or
1. The goal of the problem is to create a checkerboard pattern of 0’s and 1’s on the
grid. The evaluation counts, for each position except the borders, how many of the bits
in the four basic directions has the opposite value to it. If we consider the grid as a
matrix x = [xij]i,j=1,...,s and interpret δ(a, b) as the Kronecker’s delta function, the
CheckerBoard function can be written as:

Fcb(x) = 4(s − 2)2 −
∑s−1

i=2

∑s−1
j=2

{δ(xij , xi−1j) + δ(xij , xi+1j) + δ(xij , xij−1) + δ(xij , xij+1)}

The maximum value is 4(s − 2)2. We use s = 10, so dimension (n) is 100 and the
optimum is 256.

• SixPeaks function

This problem can be defined mathematically as:

Fsp(x, p) = max{t(0, x), h(1, x), t(1, x), h(0, x)} +R(x, p)

with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t(b, x) = number of trailing b’s in x.
h(b, x) = number of leading b’s in x

R(x, p) =

⎧⎨
⎩

n if t(0, x) > p and h(1, x) > p or
t(1, x) > p and h(0, x) > p

0 otherwise

We have taken dimension (n) to be 100 and p to be 30. This problem is characterized
because it has 4 global and 2 local optima. In our setting the optimum value is 169.

• Colville function

Consists of the optimization of the following function:

Fc(x1, x2, x3, x4) = 100(x2 − x2
1)2 + (1 − x1)2 + 90(x4 − x2

3)2 + (1 − x3)2 +
10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

where −10 ≤ xi ≤ 10. In our setting, each xi is represented by 25 binary variables
(n = 100) using the method described in [19]. We have also tested the function using a
gray encoding. The minimum value for Fc is 0.

• EqualProducts function

Given a set of n random real numbers a1, a2, . . . , an from an interval [0, k], a subset
of them is selected. The aim of the problem is to minimize the difference between the
products of the selected and unselected numbers. It can be written as follows:

Fep(x) = abs (
∏n

i=1 h(xi, ai) −
∏n

i=1 h(1 − xi, ai))

with h(x, a) =
{

a if x = 1
1 if x = 0

Improvement in the Performance of Island Based Genetic Algorithms 49

We have taken dimension to be 100. The numbers have been generated randomly
from a uniform distribution in [0, 4], therefore, we don’t know the optimum for this
problem. However, values close to zero are better.

• Rastrigin function

Consists of the optimization of the following function:

Fr(x) = 10k +
∑k

i=1(x
2
i − 10cos(2πxi))

where −5.12 ≤ xi ≤ 5.11. In our setting, we have taken k = 10 and each xi is
represented by 10 binary variables (n = 100) also using the method described in [19].
As it happened with the Colville function, we have also tested the models with a gray
version of this problem. The minimum value for Fr is 0.

In order to use our software, we have converted the minimization problems in maxi-
mization ones by multiplying the results of the evaluation functions by −1.

4.2 Experiments

In order to compare, we have run the algorithms over the problems described. As it
was mentioned in Sect. 2 the amount of parameters to take into account is huge. In
all our experiments, the basis is a genetic algorithm that uses roulette wheel selection
with rank assignation of probabilities. The uniform crossover is used with probability
0.75, whereas the probability of mutation has been fixed to 0.05. Concerning with the
parameters relatives to the island model, they are part of the study, so we have tested
the algorithms over several configurations. In fact, we have made combinations with
populations 256 and 2048, with 8, 16 and 32 islands, and with 5 and 20 generations
between migrations. In the case of the individual migration, 10% of the population is
migrated and, in both cases, a unidirectional ring is used as topology.

Each configuration has been evaluated by running the algorithm 50 times. In order
to show the results obtained, we have splitted them into two tables, Tab. 1 and Tab. 2,
depending on the population size, since it is, a priori, the parameter which affects the
performance in a more notable way.

For both algorithms, each table shows the results, mean fitness±deviation and av-
erage number of evaluations ± deviation for 50 runs of each configuration number of
islands / generations between migrations. In order to determine if one of the schemes
outperforms the other we have marked with •, also for each configuration number of
islands / generations between migrations the algorithm with the best average fitness.
Then, we have performed a Mann-Whitney unpaired test with the results of the other
algorithm. If they do not present a significant difference (p-value> 0.05) we have also
marked it. We have proceeded the same way with the number of evaluations marking
the outstading algorithm (or both in case there is no difference) with ◦.

4.3 Analysis of the Results

Comparison between the two approaches
As it can be seen in both tables, if considering the fitness, in most cases path relink-
ing based island models either outperform or have no difference with the conventional

50 L. delaOssa, J.A. Gámez, and J.M. Puerta

Table 1. Comparison between migration of individuals and path relinking based communication
for population 256

Islands/Generations Migration of Individuals Path Relinking Based Migration

MMDP (90)

8/5 14.5830±0.2846 ◦ 348600.32±88047.82 • 14.7053±0.2483 ◦ 324955.56±115761.72
8/20 14.6981±0.2553 397998.08±80033.12 • 14.9137±0.1551 ◦ 234908.14±118693.00

16/5 14.5543±0.2469 370933.76±101981.47 • 14.7915±0.2418 ◦ 227134.50±147511.51
16/20 14.5646±0.2492 434017.28±62168.07 • 14.9137±0.1712 ◦ 136473.36±63394.86

32/5 12.9335±0.3379 380948.48±98495.66 • 14.9497±0.1625 ◦ 186613.26±47819.77
32/20 12.9207±0.3589 385418.24±110377.44 • 14.9856±0.0711 ◦ 196161.3±40480.75

EqualProducts (100)

8/5 • -2.7990±3.0027 ◦ 270202.88±158904.72 • -2.6304±2.2877 ◦ 222647.32±123096.80
8/20 -3.2392±2.7974 ◦ 234782.72±144861.33 • -2.1236±1.7621 ◦ 260450.72±162505.45

16/5 • -2.7768±2.7331 ◦ 231956.48±147734.82 • -2.6615±2.2461 ◦ 279685.16±130416.60
16/20 • -2.7604±2.5018 ◦ 263383.04±133865.55 • -2.6596±2.2927 ◦ 264771.76±149645.56

32/5 • -1.9804±2.1356 ◦ 259635.20±156869.79 -6.0034±5.5914 ◦ 317913.34±136652.68
32/20 • -1.9431±1.7147 ◦ 239943.68±143171.51 • -2.8625±3.1519 ◦ 240761.24±140890.08

Rastrigin Binary (100)

8/5 -1.1516±1.3371 288942.08±131166.18 • -0.3897±0.5408 ◦ 203520.06±116273.58
8/20 -0.8048±0.8871 328002.56±115835.23 • -0.3940±0.6102 ◦ 232652.12±83704.11

16/5 -0.9208±1.0198 285255.68±108747.01 • -0.2681±0.5034 ◦ 224010.52±55749.64
16/20 -0.6571±0.7925 338539.52±84873.48 • -0.1131±0.1762 ◦ 302775.06±70792.57

32/5 -2.5162±0.7731 489113.60±31475.57 • -0.1739±0.3048 ◦ 404879.44±60740.21
32/20 -2.1851±0.8295 488099.84±26986.43 • -0.1050±0.1174 ◦ 418450.18±64635.92

Rastrigin Gray (100)

8/5 • 0±0 156907.52±15333.14 • 0±0 ◦ 115808.00±25271.43
8/20 • 0±0 227578.88±27431.47 • 0±0 ◦ 152449.66±27670.64

16/5 • 0±0 190330.88±17441.02 • 0±0 ◦ 137076.46±21859.86
16/20 • 0±0 270694.40±26021.49 • 0±0 ◦ 180153.50±19944.87

32/5 -0.1943±0.2410 497285.12±14294.35 • 0±0 ◦ 211106.00±20351.73
32/20 -0.1373±0.1720 496056.32±18636.94 • 0±0 ◦ 251844.50±22303.36

Colville Binary (100)

8/5 • -1.4577±1.5350 ◦ 195614.72±131767.99 • -1.2042±1.1947 ◦ 235457.64±148028.89
8/20 • -0.9285±0.9011 ◦ 249620.48±150818.61 • -1.1774±0.9601 ◦ 223974.54±134692.02

16/5 • -1.3319±1.3460 ◦ 238192.64±136589.15 • -0.9929±0.8764 ◦ 249262.96±107367.58
16/20 • -0.7792±0.9868 ◦ 272844.80±173142.70 • -0.6362±0.7028 ◦ 272017.42±163028.87

32/5 • -0.2109±0.2181 ◦ 342579.20±194829.34 -0.6517±0.5603 ◦ 417338.88±93352.00
32/20 • -0.2387±0.2643 ◦ 339399.68±193159.83 -0.4946±0.5144 ◦ 408454.00±140235.69

Colville Gray (100)

8/5 -0.0857±0.0237 ◦ 107786.24±129853.74 • -0.0741±0.0300 ◦ 100765.96±141414.30
8/20 • -0.0701±0.0311 ◦ 88770.56±133544.40 • -0.0638±0.0355 93860.72±143183.60

16/5 • -0.0741±0.0284 ◦ 63795.20±107848.75 • -0.0721±0.0269 104084.12±89245.62
16/20 • -0.0627±0.0301 67696.64±118544.77 • -0.0601±0.0270 ◦ 61652.66±41015.53

32/5 • -0.0818±0.0174 ◦ 41093.12±26587.71 • -0.0695±0.0305 162622.58±98758.38
32/20 -0.0644±0.0239 ◦ 31569.92±17574.95 • -0.0545±0.0227 97996.28±49382.38

SixPeaks (100)

8/5 100.00±0.00 195322.88±26814.02 • 127.60±34.14 ◦ 156526.70±60088.21
8/20 100.00±0.00 290316.80±45491.10 • 160.72±22.64 ◦ 137461.20±58310.94

16/5 100.00±0.00 230727.68±30393.83 • 155.20±27.88 ◦ 218604.44±68474.03
16/20 100.00±0.00 336442.88±50446.71 • 167.62±9.75 ◦ 176442.66±45867.25

32/5 88.70±2.80 480051.20±24383.73 • 167.40±11.31 ◦ 380687.86±52336.71
32/20 90.64±2.56 483153.92±32143.16 • 169.00±0.00 ◦ 288755.66±30062.80

CheckerBoard (10)

8/5 252.60±6.58 114636.80±95164.73 • 255.36±3.16 ◦ 79326.22±52984.13
8/20 254.80±3.89 147153.92±90076.21 • 256.00±0.00 ◦ 90463.68±52554.50

16/5 253.26±5.98 125419.52±94032.60 • 256.00±0.00 ◦ 93462.96±35789.29
16/20 • 255.72±1.97 157153.28±62760.59 • 256.00±0.00 ◦ 105927.24±30647.58

32/5 • 256.00±0.00 288972.80±62746.02 • 256.00±0.00 ◦ 147299.50±35853.45
32/20 • 256.00±0.00 263275.52±59086.01 • 256.00±0.00 ◦ 155980.32±35559.56

Improvement in the Performance of Island Based Genetic Algorithms 51

Table 2. Comparison between migration of individuals and path relinking based communication
for population 2048

Islands/Generations Migration of Individuals Path Relinking Based Migration

MMDP (90)

8/5 13.2394±0.3127 483819.52±33233.74 • 14.5543±0.3671 ◦ 351040.90±113684.99
8/20 12.8072±0.3097 470179.84±48758.74 • 14.6365±0.3887 ◦ 353733.74±107999.50

16/5 13.2561±0.3371 473006.08±36705.67 • 14.8490±0.2306 ◦ 258519.72±123910.30
16/20 12.8182±0.3371 483082.24±38896.90 • 14.9353±0.1394 ◦ 384272.78±63986.01

32/5 13.2193±0.2764 473989.12±31676.61 • 14.9784±0.0862 ◦ 286278.52±46301.43
32/20 12.8782±0.3040 476200.96±45680.96 • 14.9784±0.0862 ◦ 431824.44±65290.12

EqualProducts (100)
8/5 • -2.6050±2.6289 ◦ 244695.04±133108.25 • -2.8395±3.0815 ◦ 261563.10±153509.57
8/20 • -2.1472±2.0913 ◦ 277504.00±155735.55 • -2.4363±2.4389 ◦ 270838.18±147109.92

16/5 • -2.5523±2.0771 ◦ 245432.32±142048.99 -3.6125±2.9426 ◦ 278107.60±157970.75
16/20 • -2.6721±2.2210 ◦ 284385.28±139188.38 • -2.7731±3.4226 ◦ 278578.44±169746.73

32/5 • -2.0967±2.1436 ◦ 263372.80±140346.48 -3.1402±3.1902 ◦ 287492.38±158421.99
32/20 • -2.0584±1.9206 ◦ 257720.32±151984.23 -2.5525±2.8202 ◦ 263272.56±128966.65

Rastrigin Binary (100)
8/5 -3.6454±1.2535 504463.36±14537.23 • -1.2101±0.9535 ◦ 454775.32±69957.68
8/20 -5.3319±1.1518 506306.56±20726.32 • -2.6805±1.4841 ◦ 513674.20±31202.25

16/5 -3.6326±1.3799 ◦ 504709.12±11256.66 • -0.9483±0.9502 ◦ 482099.92±49544.14
16/20 -5.1607±1.3001 ◦ 505446.40±19429.03 • -2.5594±1.1254 513418.92±32092.35

32/5 -3.4138±1.2269 ◦ 504217.60±13368.94 • -1.4274±0.8422 ◦ 495956.36±32053.61
32/20 -4.6350±1.2230 ◦ 502865.92±19056.30 • -2.5840±1.0567 537505.54±26168.70

Rastrigin Gray (100)
8/5 -1.5139±0.6285 ◦ 508395.52±9358.26 • -0.3761±0.5237 ◦ 473077.80±64477.56
8/20 -3.5943±1.0168 ◦ 508887.04±14117.83 • -1.1284±0.8773 532812.60±20764.47

16/5 -1.3489±0.6852 507412.48±9022.97 • -0.0590±0.2188 ◦ 431781.50±58804.97
16/20 -3.4713±0.9553 ◦ 504586.24±19984.53 • -1.1759±0.5910 513251.70±28243.97

32/5 -1.9471±0.6323 507412.48±9681.94 • -0.0839±0.2296 ◦ 464009.64±48043.48
32/20 -3.2424±0.7233 ◦ 503726.08±18554.47 • -1.2977±0.6209 529135.88±16129.17

Colville Binary (100)
8/5 • -0.6272±0.7975 ◦ 393871.36±191563.67 • -0.6499±0.6550 ◦ 375117.80±189723.37
8/20 • -0.5242±0.6440 ◦ 351477.76±202340.11 • -0.3663±0.4549 ◦ 324988.58±209438.71

16/5 • -0.4830±0.7335 ◦ 326287.36±209242.96 • -0.3623±0.4525 ◦ 309570.06±195951.66
16/20 • -0.2749±0.3503 ◦ 307609.60±203216.92 • -0.1846±0.2887 ◦ 295473.22±207314.68

32/5 • -0.3642±0.6001 ◦ 302694.49±217743.91 • -0.2470±0.3109 374955.70±167322.59
32/20 • -0.2009±0.2947 ◦ 290406.40±207445.31 • -0.1226±0.1258 ◦ 306726.14±199542.50

Colville Gray (100)
8/5 • -0.0561±0.0350 ◦ 79790.08±119152.35 • -0.0507±0.0385 ◦ 72542.64±99302.76
8/20 • -0.0448±0.0312 ◦ 52142.08±22674.60 • -0.0386±0.0312 74577.64±75386.88

16/5 • -0.0565±0.0295 ◦ 54968.32±67430.39 • -0.0557±0.0273 71360.30±62760.78
16/20 • -0.0357±0.0319 ◦ 65044.48±67951.64 • -0.0341±0.0269 ◦ 64487.80±31340.53

32/5 -0.0602±0.0261 ◦ 42926.08±16013.89 • -0.0452±0.0286 107757.52±51523.22
32/20 • -0.0388±0.0300 ◦ 63324.16±24941.91 • -0.0294±0.0255 86864.14±37876.30

SixPeaks (100)
8/5 77.62±3.31 494141.44±19509.72 • 144.18±32.67 ◦ 410826.72±100043.69
8/20 69.58±2.74 492544.00±30868.58 • 165.82±4.88 ◦ 391367.18±78143.93

16/5 76.86±3.09 491683.84±20095.08 • 157.70±26.01 ◦ 377348.98±79327.95
16/20 69.49±2.47 496844.80±30564.45 • 168.78±1.07 ◦ 439887.14±60998.31

32/5 75.36±2.87 ◦ 496107.52±21529.59 • 167.38±3.43 ◦ 479291.80±41000.15
32/20 68.42±2.30 ◦ 495984.64±27600.17 • 167.34±3.69 511246.88±45512.21

CheckerBoard (10)
8/5 • 254.76±3.99 418201.60±52310.59 • 255.22±3.16 ◦ 231343.44±114141.48
8/20 255.26±0.59 476200.96±42246.42 • 255.90±0.70 ◦ 322663.20±75464.78

16/5 • 255.98±0.14 411074.56±44816.06 • 255.98±0.14 ◦ 193736.98±72189.86
16/20 254.82±1.62 473620.48±39254.34 • 256.00±0.00 ◦ 320660.16±74119.55

32/5 255.60±1.56 434667.52±45991.55 • 255.98±0.14 ◦ 236553.98±72595.27
32/20 254.62±0.75 485662.72±36462.45 • 256.00±0.00 ◦ 337724.56±66154.77

52 L. delaOssa, J.A. Gámez, and J.M. Puerta

island model. In fact, for a population of 256 individuals and the problems MMDP,
Rastrigin (Binary) and SixPeaks, the improvement happens regardless of the configu-
ration, whereas there is only three cases (EqualProducts with 32 islands and a gap of
5 generations and binary Colville with 32 islands) where the situation is the opposite.
In the rest of cases, there is no difference. The tendence is the same when using 2048
individuals since the path relinking based approach outperforms the migration of in-
dividuals, regardless of the configuration, in 4 out of 8 problems. Here, the three only
cases when individuals outperform the path relinking approach take place when solving
the EqualProducts function.

Concerning with the number of evaluations, tendence is the same. Thus, for a popu-
lation of 256, the path relinking approach uses less evaluations in every case when
solving the MMDP, SixPeaks, CheckerBoard and both Rastrigin functions. In the case
of Colville (gray) the migration of individuals outperforms the path relinking based
communication 4 times. In the rest of cases, there are no significant difference. For
population 2048 things are slightly different. As it happened before, it depends on the
problem. For MMDP and Checkerboard, the path relinking algorithm uses less evalua-
tions in every case. In Colville (gray) it seems that individual migration performs better,
and in the rest of problems, things become similar for both algorithms.

In general, it can be said that path relinking approach outperforms the traditional
schema of migration since, for population 256 results are better (if not in fitness when
considering the evaluations as well) in 5 out of 8 problems where there are simi-
lar results for the other three. This tendence is also found when using a population
of 2048 individiduals. In this case, the algorithm outperforms the other in 5 out of
8 problems, although for the EqualProducts and the Colville function things seem
different.

Analysis of the parameters
In order to get more information about the behaviour of the proposed model, we have
studied the impact of each one of the three parameters considered on the fitness achieved
by the algorithm.

• Population size
To study the influence of the populations size on the results we have compared, for

each configuration (problem-number of islands-generations), the results obtained for
the populations 256 and 2048. Results can be seen in Table 3. Mann-Whitney has been
also used to compare the two results for each configuration. For each problem, either
the best result in each problem or both, if there is no difference (p − value > 0.05),
have been marked with a •.

As it can be seen, results are fairly dependent on the problem. Whereas for both
Rastrigin versions and SixPeaks the smaller population outperforms in every case, in
the Colville function a big population works better. In CheckerBoard and Equalpro-
ducts it seems not to be difference whereas for the problem MMDP, it seems that a big
population is better with more islands are used.

• Number of islands
In the case of the number of islands we have proceeded the same way. For each

configuration (problem-size of population-generations) we have compared the results

Improvement in the Performance of Island Based Genetic Algorithms 53

Table 3. Comparison among populations for each configuration (Number of islands-generations-
problem)

5 generations 20 generations
Population 8 Islands 16 Islands 32 Islands 8 Islands 16 Islands 32 Islands

MMDP (90)
256 • •
2048 • • • •

EqualProducts (100)
256 • • • • •
2048 • • • • • •

Rastrigin Binary (100)
256 • • • • • •
2048

Rastrigin Gray (100)
256 • • • • • •
2048

Colville Binary (100)
256
2048 • • • • • •

Colville Gray (100)
256
2048 • • • • • •

SixPeaks (100)
256 • • • • • •
2048 • • •

CheckerBoard (100)
256 • • • • • •
2048 • • • • • •

Table 4. Comparison among number of islands used for each configuration (problem-population-
generations)

Population 256 Population 2048
Generations 8 Islands 16 Islands 32 Islands 8 Islands 16 Islands 32 Islands

MMDP (90)
5 • •
20 • • •

EqualProducts (100)

5 • • • • •
20 • • • • • •

Rastrigin Binary (100)
5 • • • • •
20 • • • • •

Rastrigin Gray (100)
5 • • • • •
20 • • • • • •

Colville Binary (100)
5 • • • •
20 • • • •

Colville Gray (100)
5 • • • • • •
20 • • • • • •

SixPeaks (100)
5 • • •
20 • • •

CheckerBoard (100)
5 • • • •
20 • • • • • •

54 L. delaOssa, J.A. Gámez, and J.M. Puerta

when varying the number of islands. The comparison has been carried out the same
way as above. Results can be seen in the Table 4. The best result is marked with a • as
well as those which not present significative difference.

Results are clearer for this parameter since for almost all the configurations, using 32
islands is either the outstanding or among the outstanding configurations. Although the
difference with using 16 islands is minimum, it is more remarkable when comparing
with 8 islands.

• Gap between migrations
Results of the comparisons for the gap between migrations can be seen in Table 4.3.

We have compared the two intervals for each configuration (problem-size of population-
number of islands). In this case, the behaviour of the parameter slightly depends on the

Table 5. Comparison of the number of generations for each configuration (problem-population-
number of islands)

Population 256 Population 2048
Generations 8 Islands 16 Islands 32 Islands 8 Islands 16 Islands 32 Islands

MMDP (90)
5 • • •
20 • • • • • •

EqualProducts (100)

5 • • •
20 • • • • • •

Rastrigin Binary (100)
5 • • • • • •
20 • • •

Rastrigin Gray (100)
5 • • • • • •
20 • • •

Colville Binary (100)
5 • •
20 • • • • • •

Colville Gray (100)
5 • •
20 • • • • • •

SixPeaks (100)
5 • •
20 • • • • • •

CheckerBoard (100)
5 • • • • •
20 • • • • • •

population size. For 256 and each configuration, using 20 generations seems to be the
best option, since it is always either the best or similar to the best option. When working
with 2048 individuals, results are almost the same except for the Rastrigin function. In
this case, it seems better to use 5 generations.

In general, results confirm the benefits of preserving diversity becouse the best option
seems to be choose 32 islands in every case even preserving the gap of 20 generations
between migrations.

Improvement in the Performance of Island Based Genetic Algorithms 55

5 Conclusions and Future Work

In this work, we have presented a method to improve the perforance of island based
models based in path relinking. Results show that this method improves the results of
the traditional scheme of migration in almost all cases, and regardeless of the parameter
setting.

Although the communication is not so intense as it is when migrating individuals
in terms of producing changes in the population inside the islands, it keeps on being
necessary to preserve diversity by using a big number of islands. Moreover, if using
smaller populations, it can be beneficial using big gaps between migrations.

As future work, we plain to use a disperse initialization of the islands, as well as
trying other migration schemes but synchronous migrations, as for instance, doing the
migrations only when detecting the convergence.

References

1. E. Alba, C. Cotta, and J. M. Troya. Numerical and real time analysis of parallel distributed
gas with structured and panmictic populations. In Proceedings of the IEEE Conference on
Evolutionary Computing (CEC), volume 2, pages 1019–1026, 1999.

2. Enrique Alba and Jose M. Troya. An analysis of synchronous and asynchronous parallel dis-
tributed genetic algorithms with structured and panmictic islands. In IPPS/SPDP Workshops,
pages 248–256, 1999.

3. E. Cantú-Paz and D.E. Goldberg. Are multiple runs of genetic algorithms better than one?
In Proceedings of the Genetic and Evolutionary Computation Conference 2003, 2003.

4. E. Cantú-Paz. A survey of parallel genetic algorithms. Technical Report IlliGAL-97003,
Illinois Genetic Algorithms Laboratory. University of Illinois at Urbana-Champaign, 1997.

5. E. Cantú-Paz. Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Pub-
lishers, 2001.

6. C. Cotta. Scatter search with path relinking for phylogenetic inference. European Journal of
Operational Research, 169(2):520–532, 2006.

7. D.Whitley, S.Rana, and R.B. Heckendorm. The island model genetic algorithm: On separa-
bility, population size and convergence. Journal of Computing and Information Technology,
1(7):33–47, 1999.

8. M. Laguna F. Glover and R. Martı́. Fundamentals of scatter search and path relinking. Con-
trol and Cybernetics, 3(29):653–684, 2000.

9. F. Glover. Tabu search - part i. ORSA Journal of Computing, 1:190–206, 1989.
10. F. Glover. Scatter search and path relinking. In D. Corne, M. Dorigo, and F Glover, editors,

New Ideas in Optimization, pages 297–316. McGraw-Hill, 1999.
11. D.E. Goldberg. Genetic algorithms in search, optimiation and machine learning. Addison-

Wesley, New York, 1989.
12. D.E. Goldberg, K. Deb, and J.H. Clark. Genetic algorithms, noise, and the sizing of popula-

tions. Complex Systems, 6:333–362, 1992.
13. J.J. Grefenstette. Parallel adaptive algorithms for function optimization. Technical Report

CS-81-19, Computer Science Department, Vanderbilt University, Nashville, TN., 1981.
14. P.B. Grosso. Competent simulations of genetic adaptation: Parallel subcomponent interac-

tion in a multilocus model. PhD thesis, University of Michigan, 1985.
15. G. Harik, E. Cantú-Paz, D.E. Goldberg, and B. Miller. The gampler’s ruin problem, ge-

netic algorithms, and the sizing of populations. In Proceedings of the Fourth International
Conference on Evolutionary Computation, pages 7–12. IEEE Press, 1997.

56 L. delaOssa, J.A. Gámez, and J.M. Puerta

16. P. Tolla L. Alfandari, A. Plateau. Metaheuristics: Computer Decision-Making, chapter A
path-relinking algorithm for the generalized assignment problem, pages 1–18. Kluwer Aca-
demic Publishers, 2004.

17. M. Laguna and R. Martı́. Grasp and path relinking for 2-layer straight line crossing mini-
mization. INFORMS Journal on Computing, 11(1):44–52, 1999.

18. José A. Gámez Luis de la Ossa and José M. Puerta. Improving model combination through
local search in parallel univariate edas. In IEEE Congress on Evolutionary Computation ,
CEC2005, volume 2, pages 1426–1433, Edinburgh, Scotland, September 2005. IEEE Press.

19. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, 1996.

20. Z. Skolicki and K. De Jong. The influence of migration sizes and intervals on island models.
In Proceedings of Genetic and Evolutionary Computation Conference, GECCO 2005, pages
1295–1302. ACM Press.

21. D. Whitle, S.Rana, and R.B. Heckendorn. Island model genetic algorithms and linearly
separable problems. In Selected Papers from AISB Workshop on Evolutionary Computing,
volume 1305 of LNCS, pages 109–125. Springer Verlag, 1997.

Using Datamining Techniques to Help

Metaheuristics: A Short Survey

Laetitia Jourdan1, Clarisse Dhaenens2, and El-Ghazali Talbi1,2

1 INRIA Futurs, Bât M3, Cité Scientifique 59655 Villeneuve d’Ascq
France

2 LIFL, CNRS, Université de Lille I, 59655 Villeneuve d’Ascq
France

{jourdan, dhaenens, talbi}@lifl.fr

Abstract. Hybridizing metaheuristic approaches becomes a common
way to improve the efficiency of optimization methods. Many hybridiza-
tions deal with the combination of several optimization methods. In this
paper we are interested in another type of hybridization, where datamin-
ing approaches are combined within an optimization process. Hence, we
propose to study the interest of combining metaheuristics and datamin-
ing through a short survey that enumerates the different opportunities
of such combinations based on literature examples.

1 Introduction

Hybrid metaheuristics are more and more studied and a first taxonomy has been
proposed in [44]. Many works propose to combine two or more metaheuristics,
but other works present also hybridizations between exact optimization methods
and metaheuristics. Another promising approach to hybridization is to use data-
mining techniques to improve metaheuristics. Datamining (DM), also known
as Knowledge-Discovery in Databases (KDD), is the process of automatically
exploring large volumes of data e.g., instances described according to several
attributes, to discover patterns. In order to achieve this, datamining uses com-
putational techniques from statistics, machine learning, pattern recognition or
combinatorial optimization.

Datamining tasks can be organized into a taxonomy, based on the desired
outcome of the algorithm. Usually a distinction is made between supervised and
unsupervised learning. Classical tasks of supervised learning are:

– Classification: examining the attributes of a given instance to assign it to a
predefined category or class.

– Classification rule learners: discovering a set of rules in the database which
forms an accurate classifier.

The most common tasks of unsupervised learning are:

– Clustering: partitioning a data set into subsets (clusters), so that data in
each subset share some common aspects. Partitioning is often indicated by
a proximity evaluated using a distance measure.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 57–69, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

58 L. Jourdan, C. Dhaenens, and E.-G. Talbi

Kind of knowledge

}

}

Initialization Population management Operators

Quality improvementSpeeding−up

Local search

Apriori knowledge Dynamic knowledge

EncodingParametersEvaluation } Localization

Aim

Fig. 1. The proposed taxonomy

– Association rule learners: discovering elements that occur in common within
a given data set.

Using metaheuristics for knowledge extraction has become common while the
other way which consists in using knowledge discovery to improve metaheuristic
is less studied. This research way can be refereed as knowledge incorporation in
metaheuristics and may be performed by using informed operators, approxima-
tion of fitness, etc.

To illustrate the different ways to integrate knowledge into metaheuristics,
a small taxonomy that summarizes compositions found in several articles, is
proposed in Figure 1.

– Two kinds of knowledge can be distinguished: a previously acquired knowl-
edge which is called Apriori Knowledge and a dynamically acquired knowl-
edge which is extracted or discovered during the search.

– Another useful information to classify algorithms is to distinguish the aim of
the cooperation. Either the cooperation is used to reduce the computational
time i.e., speed up techniques, by simplification of the fitness i.e., fitness
approximation, or by significantly reducing the search space e.g., leading the
metaheuristic in promising area; or the cooperation is used to improve the
quality of the search by introducing knowledge in operators or in other parts
of the metaheuristic. In fact, the insertion of datamining techniques often
leads to both speeding up the metaheuristic and improving the quality.

– The last point used to distinguish the hybridizations is to determine which
part of the metaheuristic is concerned by the knowledge incorporation. Hy-
bridization can occur in each part of the metaheuristic: parameters, encod-
ing, evaluation, initialization, operators, etc.

This paper aims to provide a quick comprehensive picture of the interest of
combining datamining techniques and metaheuristics. We do not consider here
the vast topic of incorporating knowledge but the use of knowledge algorithms
also called datamining algorithms. In order to present this literature review,
we have chosen to classify references with respect to the localization of the
knowledge integration.

The remainder of this paper is set out as follows. Section 2 highlights the
potential of datamining to speed-up metaheuristics by using datamining during

Using Datamining Techniques to Help Metaheuristics: A Short Survey 59

the evaluation. Section 3 discusses how datamining can help to set the parame-
ters of the metaheuristic. Section 4 presents the use of datamining techniques for
the initialization of metaheuristics. Section 5 is devoted to population manage-
ment. Section 6 details the benefit of datamining in crossover operators. Section
7 shows the local search datamining applications in evolutionary computation.
Section 8 exhibits that some metaheuristics are based on datamining incorpora-
tion. Finally, conclusions and perspectives are drawn in the last section.

2 Using Datamining During the Evaluation

In some real cases, the fitness function can be very expensive to compute. Thus
decreasing the number of complete evaluations would be beneficial. To achieve
this, some approximations of the fitness functions could be used, and datamining
techniques may be interesting to obtain good approximations. A very complete
and comprehensive survey on fitness approximation has been proposed in [15]. It
shows that fitness approximation can be used either for expensive fitness func-
tions or multi-modal fitness functions and may be realized by several approaches
exposed below.

2.1 Replace the Evaluation Function by a Datamining Algorithm

Datamining techniques can be used to build approximate models of the fitness
function. In this context, previously calculated fitnesses are learned by a data-
mining algorithm to approximate the fitness of new individuals. Many works
use neural networks (both multi-layer perceptrons and radial-basis-function net-
works) to realize an approximation of the function to optimize. For example in
[6], the authors use an artificial neural network (ANN) with a multiple objective
genetic algorithm. They evaluate a large part of the population with an ANN and
a small part is still simultaneously evaluated with the original function. Rasheed
et al. propose to cluster data and to construct separate approximation models
for the different clusters [30,32,29]. The approximation model can be used each
time or alternatively with the real objective function.

2.2 Using Datamining Techniques to Avoid Evaluations

When the fitness function can be approximated, some authors use the approx-
imation only within operators, such as initialization, mutation, crossover and
selection. This approach avoids the calculation of time consuming fitness for
individuals that may be of very bad quality and that will not be kept in the
population. For example, in [31], the authors use approximations to improve
operators. They generate several possible new individuals and then choose the
best according to a reduced model. To compute the model, they maintain a large
sample of points encountered during the course of the optimization and divide it
into dynamic clusters. To compute the approximate model of an individual, they
use the weighted k-nearest-neighbor approach which is a classification technique.

60 L. Jourdan, C. Dhaenens, and E.-G. Talbi

Search space

Solution

Representative

Cluster Area

Fig. 2. Using representatives for the evaluation process through clustering

2.3 Using a Datamining Algorithm to Estimate a Representative

Approximating the fitness could be not satisfying because of the quality of the
approximation for example. Another way to speed up the metaheuristic is to
reduce the number of calls to the fitness function. This may be realized using
fitness imitation. In this kind of approach, a set of individuals is considered
as similar to another one and their fitness is fixed as equal to the reference
individual which is called the representative. To determine the different sets,
clustering techniques are often used.

Hence, in [16,18,47], the author proposes to maintain a large population size
by using clustering algorithms. For example, in [47] Yoo et al. propose to use a
fuzzy clustering approach to divide the population and to elect a representative
of each cluster. Only the representatives are evaluated which allows the reduction
of the evaluation costs. The fitness value of an individual of a cluster is estimated
in respect with its associated representative (Figure 2).

3 How Datamining May Help to Set Parameters

A very difficult part in designing metaheuristics deals with the setting of the
parameters of such methods. How can we fix in advance parameters such as the
probability of application of a given operator, the size of the population or the
number of iterations, for example? Two approaches may be used in this context:

– A first approach which is empirical consists in both executing several times
the method with different parameter values and trying to select the best
values. If the number of executions or the number of parameters are high,
determining the best set of parameters may require statistical analyses. This
may be seen as a datamining help.

– To set the probability of application of an operator, another approach may
be used. It consists in analyzing the performance of the operators during the
algorithm execution. In particular, this approach may be used when several

Using Datamining Techniques to Help Metaheuristics: A Short Survey 61

operators are available for the same operation (crossover or mutation, for
example). In [12], the author proposes to compute the rate of appliance of
a mutation operator by calculating the progress of the last applications of
this operator. Hence, it becomes possible to determine the probabilities of
appliance of a given operator in an adaptively way where the more efficient an
operator is, the more it will be used. Another approach could be to analyse
in details the new individuals generated by operators (in term of quality,
diversity) using clustering algorithms for example. This would give valuable
information that can help to set the new application probabilities.

These two approaches give examples on the way the datamining techniques may
help to set parameters.

4 Using Datamining for Initialization

Generally, metaheuristics generate their initial solution(s) randomly. In continu-
ous optimization, this generation may also be done using a grid initialization. It
could be also interesting to cleverly generate the initial population in order, for
example, to reduce the search space by leading the metaheuristic to promising
area.

For example, in [28], Ramsey et al. propose to initialize a genetic algorithm
with case-based reasoning in a tracker/target simulation with a periodically
changing environment. Case-based initialization allows the system to automati-
cally bias the search of the genetic algorithm toward relevant areas of the search
space.

5 Datamining and Population Management

Datamining techniques are often used to manage the population. Several works
deal with introducing new individuals in the population. Some common meth-
ods try to inject new individuals into the population. This could be realized to
diversify the population like in the random immigrant strategy. In order to lead
the search to promising search spaces it could be also interesting to regularly in-
troduce individuals that are built based on information of the past encountered
solutions.

In [20,21], Louis presents CIGAR (Case Injected Genetic AlgoRithm). The
aim of CIGAR is to provide periodically to the genetic algorithm solutions that
suit to similar problems. CIGAR has been successfully applied to several prob-
lems such as jobshop, circuit modelling, etc.

In [4,39], the authors propose to hybridize a genetic algorithm and the Apriori
algorithm (Apriori is a classical algorithm to generate association rules [1]) to
discover interesting subroutines for the oil collecting vehicle routing problem.
They insert the found subroutines into the new individuals.

In the work of Ribeiro et al. [37,38,40], the authors present a GRASP hy-
bridized with several frequent item set mining algorithms: the Direct Count and

62 L. Jourdan, C. Dhaenens, and E.-G. Talbi

CBR Module

Genetic

Case Base

Prepocessor
Solutions

Periodically

while running

Cases

algorithm

while running

GA Module

Fig. 3. Case Injected Genetic AlgoRithm (CIGAR)

the Intersect algorithms in [38] and the FPMax* in [40], which are Apriori-like
approaches. These algorithms are used to extract patterns that are promising
only on elite solutions. The hybridization is realized after a fixed number of
seconds or iterations and new starting solutions for the GRASP are computed
thanks to the found patterns. The authors apply their approach to the Set Pack-
ing Problem and the Maximum Diversity Problem. The method allows for the
speed up of the convergence of the algorithm and for the improvement of the
robustness of the GRASP.

Another example of the use of datamining techniques in the population man-
agement is the use of clustering algorithms in Multi-objective population meta-
heuristics where the result to produce is a set of solutions of best compromise
(Pareto solutions). An archive is often used to store these solutions and the clus-
tering is used to avoid a bias towards a certain region of the search space. Such
a bias would lead to an unbalanced distribution of the Pareto solutions. Authors
often use the average linkage method as this clustering algorithm performs well
for Pareto optimization [48].

6 Using Datamining Within Operators

Incorporating knowledge in operators could be useful if, for example, it allows
to cleverly exploit the search space. In the following section, some examples
using machine learning approaches in crossover to explore the search space are
presented.

Handa et al. propose a co-evolutionary genetic algorithm, which uses an hy-
bridization between a GA and C4.5 (a classification algorithm) in order to dis-
cover the schemata to use in the crossover [10,9]. In their early work [8], Handa
et al. have proposed a co-evolutionary algorithm in order to discover the good
schemata to use that have not been discovered by the GA. The method works
well but was just presented for bit representation.

LEM [22,23] integrates a symbolic learning component to evolutionary com-
putation; it seeks out rules explaining the differences between the better and
worse performers in the population, and generates new individuals based on the
templates specified in these rules. An example of behaviour of LEM in the search

Using Datamining Techniques to Help Metaheuristics: A Short Survey 63

1st generation 2nd generation 3rd generation

Fig. 4. LEM: Example of search region reductions defined by description of the 1st,
2nd and 3rd generations

space is shown on Figure 4 where the search regions associated to each gener-
ation are illustrated. This figure shows how the search space is reduced. The
LEM methodology has proved able to improve the efficiency of the evolution-
ary process. LEM uses AQ learning algorithm (a general decision rules learning
algorithm) in order to produce rules. Let us remark that, existing implementa-
tions, such as AQ11 [24], AQ15 [25] handle noise with pre and post-processing
techniques. The basic AQ algorithm however, heavily depends on specific train-
ing examples during the search (the algorithm actually employs a beam search).
This approach has been used with the C4.5 algorithm for mono-objective jobshop
problems in the work of Huyet [14,13].

In the work of Jourdan et al. [17,45], the authors propose to extend LEM
to LEMMO for the multi-objective case in order to seek for rules that explain
why some individuals dominate others in a multi-objective point of view and
why some individuals are dominated by other. They generate new individuals
thanks to the rules by creating solutions that match to positive rules and do
not match to negative rules. This approach has shown good results on a water
system application both in speeding up the multi-objective algorithm and in
improving the quality of the solutions.

We can remark that usually the authors use classification methods (C4.5,
AQ, etc) to identify the genes that induce the good quality of the individuals.
Some authors propose to also determine the genes that characterize bad quality
solutions and to use them to repair the constructed solutions [17,45].

7 Datamining in Local Search

Metaheuristics are often hybridized with local search methods to improve the
intensification part. Some datamining algorithms are themselves local searches
and could be used as part of the metaheuristics.

64 L. Jourdan, C. Dhaenens, and E.-G. Talbi

In [6], the authors propose to use inverse Artificial Neural Networks (ANN)
as local search to exploit specific region for candidate solutions. They note that
ANNs can be adequate as they construct a smooth mapping. The ANN is trained
in a reverse way as the input layer presents the criteria and the output the pa-
rameters to be optimised.

Moreover, datamining problems can be often modelized as optimization prob-
lems and in this case, the hybridization of the metaheuristic with a machine
learning algorithm could be realized such that the machine learning algorithm
treats a subproblem. For example, when clustering or grouping problems are
solved using a metaheuristic, the metaheuristic searches for the optimal subset
of genes that act as initial cluster centers. At the lower level, a local learning
method performs local clustering from these initial centers. The objective is to
combine the strength of EAs and clustering methods to produce a global effi-
cient clustering algorithm. Kmeans is often used as a local search [5,11,46] for
initialization of the solutions or to realize a local search during the search. An-
other approach, presented in [7], uses fuzzy c-means and hard c-means as an
objective function. This article shows the importance of the initialization of the
solution(s). In [3], the authors also use Expectation Maximization (EM) as a
local search to analyze gene trajectory.

8 Datamining Based Metaheuristics

Somemetaheuristics are designed to directly care of dynamic knowledge.Wedecide
to create a specific part for them as they are now considered as new metaheuristic
and not as improvement of previous ones. A lot of these algorithms are classified as
Non-Darwinian evolutionary computation as they replace Darwinian operators by
other operators. As identified in the taxonomy (Figure 1), the cooperation can ap-
pear in different localizations but we observe that in the proposed metaheuristics,
the integration is often localised in the operator part. For example, the Population-
based Incremental Learning (PBIL) creates a real-valued probability vector char-
acterizing high fitness solutions [2] (Figure 5). This vector is then used to build
new solutions. Generally, PBIL does not use mutation and crossover. PBIL can be
considered as both encoding and initialisation localization hybridizations.

Specifically, Muhlenbein and Paasshave estimated the probability density func-
tions of binary variables in their chromosomes by the product of the individual
probability density functions in the UMDA (Univariate Marginal Distribution Al-
gorithm) [26]. Hence, UMDA is a special class of the PBIL algorithm.

Pelikan and Goldberg developed an algorithm ”BOA” (Bayesian Optimization
Algorithm) that extends the above ideas by using Bayesian Networks to model the
chromosomes of superior fitness [27] (Figure 6). BOA can be classified as localiza-
tion operator algorithm with dynamic knowledge.

A similar approach has also been proposed by Larranaga and Lozano, who have
given the term ”EDA” (Estimation of Distribution Algorithms) to the statistical
estimation approach to EC [19].

Using Datamining Techniques to Help Metaheuristics: A Short Survey 65

Probability

A B A B A B A

B A B A A B B

C A A B A A C

C B B A C A A

C B A A A B A

GA representation

A = 0.2 0.2 0.6 0.4 0.8 0.4 0.6

B = 0.2 0.6 0.4 0.6 0.0 0.6 0.2

C = 0.6 0.0 0.0 0.0 0.2 0.0 0.2

PBIL representation

Distribution

Fig. 5. The PBIL probability vector

begin

t=0;

Initialise randomly Population POP(0);

Evaluate(POP(0));

repeat

Select a set of promising strings S(t) from POP(t);

Construct the network B using a given metric and constraints;

Generate a set of new strings O(t) according to the joint distribution

encoded by B;

Create a new population POP(t+1) by replacing some strings from P(t)

with O(t);

Evaluate(POP(t));

t=t+1;

until (termination condition)

end

Fig. 6. Overview of the Bayesian Optimization Algorithm

Similarly, cultural algorithms use high performing individuals to develop beliefs
constraining the way in which individuals are modified by genetic operators [35,36]
(Figure 7). In cultural algorithm, beliefs are formed based on each entity’s individ-
ual experiences. The reasoning behind this, as outlined by [35], is that cultural evo-
lution allows populations to learn and adapt at a rate faster than pure biological
evolution alone. Importantly, the learning which takes place individually by each
entity is passed on to the remainder of the group, allowing learning to take place
at a much faster rate. Cultural algorithm can be classified as operator localization
algorithm in the taxonomy.

Ravise and Sebag [43,34,41,33,42] worked on civilized genetic algorithms that
differ from Darwinian’s ones as they keep information of the population in order to
avoid doing the same errors. The knowledge is dynamically updated during

66 L. Jourdan, C. Dhaenens, and E.-G. Talbi

begin

t=0;

Initialise Population POP(0);

Initialise Belief Network BLF(0);

Initialise Communication Channel CHL(0);

Evaluate(POP(0));

t=1;

repeat

Communicate(POP(0), BLF(t));

Adjust(BLF(t));

Communicate(BLF(t), POP(t));

Modulate Fitness (BLF(t), POP(t));

t=t+1;

Select POP(t) from POP(t-1);

Evolve(POP(t));

Evaluate(POP(t));

until (termination condition)

end

Fig. 7. Overview of the cultural evolution algorithm (Reynolds 1994)

generations. The datamining hybridization accelerates and improves the conver-
gence of the algorithm. But it has been tested only on bit representation. The au-
thors have observed that theGAmust be runfirstwithDarwinian operator in order
to have diversity in its population. After a fixednumber of generations, the civilized
operator is used. They keep history of the past results in order to not reproduce the
same error (and produce bad individuals). Civilized genetic algorithms can be clas-
sified as operator based dynamic knowledge.

9 Discussion and Conclusion

We have seen that there are multiple reasons to integrate datamining methods
within metaheuristics. It could be to approximate the fitness function, to improve
the convergence of the metaheuristics or to create an operator that is adapted to
the problem.

In a research point of view, the actual major interest is to use datamining to
extract useful information from the history of the metaheuristic in order to move
the search in interesting space areas. Moreover, the hybridization between meta-
heuristics and datamining techniques have not been studied a lot inmulti-objective
optimization.

The major drawback of hybridization is the setting of parameters. When ap-
plying the datamining method, how many solutions have to be stored in dynamic
knowledge, etc ? Many articles realize experimentally the parameter settings and
many authors remark that clearly the performances are correlated with the para-
meters. A very promising search investigation is to automatically determine during
the search all these parameters for designing adaptive efficient metaheuristics.

Using Datamining Techniques to Help Metaheuristics: A Short Survey 67

References

1. Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, editors, Proceeding 20th
International Conference Very Large Data Bases, VLDB, pages 487–499. Morgan
Kaufmann, 12–15 1994.

2. S. Baluja. Population based incremental learning. Technical Report CMU-CS-
94-163, Carnegie Mellon University, 1994. http://www.cs.cmu.edu/afs/cs/user/
baluja/www/techreps.html.

3. Z.S.H. Chan and N. Kasabov. Gene trajectory clustering with a hybrid genetic al-
gorithm and expectation maximization method. In IEEE International Joint Con-
ference on Neural Networks, pages 1669–1674, 2004.

4. F.L. Dalboni, L.S. Ochi, and L.M.A. Drummond. On improving evolutionary algo-
rithms by using data mining for the oil collector vehicle routing problem. Interna-
tional Network Optimization Conference, 2003.

5. Emanuel Falkenauer. A new representation and operators for genetic algorithms
applied to grouping problems. Evolutionary Computation, 2(2):123–144, 1994.

6. A. Gaspar-Cunha and A.S. Vieira. A hybrid multi-objective evolutionary algorithm
using an inverse neural network. In Hybrid Metaheuristic, pages 25–30, 2004.

7. L. O. Hall, I. B. Özyurt, and J. C. Bezdek. Clustering with a genetically optimized
approach. IEEE Trans. on Evolutionary Computation, 3(2):103–112, 1999.

8. H. Handa, N. Baba, O. Katai, and T. Sawaragi. Coevolutionary genetic algorithm
with effective exploration and exploitation of useful schemata. In Proceedings of the
International Conference on Neural Information Systems, volume 1, pages 424–427,
1997.

9. H. Handa, T. Horiuchi, O. Katai, and M. Baba. A novel hybrid framework of coevo-
lutionary GA and machine learning. International Journal of Computational Intel-
ligence and Applications, 2002.

10. H. Handa, T. Horiuchi, O. Katai, T. Kaneko, T. Konishi, and M. Baba. Fusion of
coevolutionary ga and machine learning techniques through effective schema extrac-
tion. In Lee Spector, Erik D. Goodman, Annie Wu, W.B. Langdon, Hans-Michael
Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon,
and Edmund Burke, editors, Proceedings of the Genetic and Evolutionary Compu-
tation Conference (GECCO-2001), page 764, San Francisco, California, USA, 7-11
July 2001. Morgan Kaufmann.

11. J. Handl and J. Knowles. Improvements to the scalability of multiobjective cluster-
ing. In IEEE, editor, IEEE Congress on Evolutionary Computation, pages 438–445,
2005.

12. T.P. Hong, H. Wang, and W. Chen. Simultaneously applying multiple mutation
operators in genetic algorithms. Journal of heuristics, 6:439–455, 2000.

13. A.-L. Huyet. Extraction de connaissances pertinentes sur le comportement des sys-
temes de production : une approche conjointe par optimisation evolutionniste via sim-
ulation et apprentissage. PhD thesis, Université Blaise Pascal Clermont II, October
2004.

14. A.-L Huyet and J.-L. Paris. Configuration and analysis of a multiproduct kanban
system using evolutionary optimisation coupled to machine learning. In Proceedings
of CESA 2003, the IMACS Multiconference Computational Engineering in Systems
Applications, July 2003. ISBN 2-9512309-5-8, CDROM.

15. Y. Jin. A comprehensive survey of fitness approximation in evolutionary computa-
tion. Soft Computing Journal, 9(1):3–12, 2005.

68 L. Jourdan, C. Dhaenens, and E.-G. Talbi

16. Y. Jin and B. Sendhoff. Reducing fitness evaluations using clustering techniques and
neural networks ensembles. In Genetic and Evolutionary Computation Conference,
volume 3102 of LNCS, pages 688–699. Springer, 2004.

17. L. Jourdan, D. Corne, D.A. Savic, and G A. Walters. Preliminary investigation of the
learnable evolution model for faster/better multiobjective water systems design. In
LNCS 3410, editor, Third International Conference on Evolutionary Multi-Criterion
Optimization (EMO’05), pages 841–855, 2005.

18. H.-S. Kim and S.-B. Cho. An efficient genetic algorithms with less fitness evaluation
by clustering. In Proceedings of IEEE Congress on Evolutionary Computation, pages
887–894. IEEE, 2001.

19. P. Larranaga and J.A. Lozano. Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, 2002.

20. S. J. Louis. Genetic learning from experience. In IEEE, editor, Congress on Evolu-
tionary Computation (CEC’03), pages 2118 – 2125, Australia, Dec 2003. IEEE.

21. S. J. Louis. Learning for evolutionary design. In Proceedings of the 2003 Nasa/DoD
Conference on Evolutionary Hardware, pages 17–23, July 2003.

22. R.S. Michalski. Learnable evolution model: Evolutionary processes guided by ma-
chine learning. Machine Learning, 38(1–2):9–40, 2000.

23. R.S. Michalski, G. Cervon, and K.A. Kaufman. Speeding up evolution through learn-
ing: Lem. In Intelligent Information Systems 2000, pages 243–256, 2000.

24. R.S. Michalski and J.B. Larson. Selection of most representative training examples
and incremental generation of vl1 hypothesis: The underlying methodology and the
descriptions of programs esel and aq11. Technical Report Report No. 867, Urbana,
Illinois: Department of Computer Science, University of Illinois, 1978.

25. R.S. Michalski, I. Mozetic, J. Hong, and N. N. Lavrac. The multipurpose incremen-
tal learning system aq15 and its testing application to three medical domains. In
Proc. of the Fifth National Conference on Artificial Intelligence, pages 1041–1045.
PA: Morgan Kaufmann, 1986.

26. H. Muhlenbein and G. Paass. From recombination of genes to the estimation of dis-
tributions: I. binary parameters. Lecture Notes in Computer Science, 1141:178–187,
1996.

27. M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian optimization
algorithm. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H. Garzon,
Vasant Honavar, Mark Jakiela, and Robert E. Smith, editors, Proceedings of the Ge-
netic and Evolutionary Computation Conference GECCO-99, volume I, pages 525–
532, Orlando, FL, 13-17 1999. Morgan Kaufmann Publishers, San Fransisco, CA.

28. C. Ramsey and J. Grefenstette. Case-based initialization of genetic algorithms. In
Fifth International Conference on Genetic Algorithms, pages 84–91, 1993.

29. K. Rasheed. An incremental-approximate-clustering approach for developing dy-
namic reduced models for design optimization. In Proceedings of the 2000 Congress
on Evolutionary Computation (CEC’00), pages 986–993, California, USA, 6-9 2000.
IEEE Press.

30. K. Rasheed and H. Hirsh. Using case based learning to improve genetic algorithm
based design optimization. In Thomas Bäck, editor, Proceedings of the Seventh In-
ternational Conference on Genetic Algorithms (ICGA97), San Francisco, CA, 1997.
Morgan Kaufmann.

31. K. Rasheed and H. Hirsh. Informed operators: Speeding up genetic-algorithm-based
design optimization using reduced models. In L. Darrell Whitley, David E. Gold-
berg, Erick Cantú-Paz, Lee Spector, Ian C. Parmee, and Hans-Georg Beyer, editors,
GECCO, pages 628–635. Morgan Kaufmann, 2000.

Using Datamining Techniques to Help Metaheuristics: A Short Survey 69

32. K. Rasheed, S. Vattam, and X. Ni. Comparison of methods for developing dynamic
reduced models for design optimization. In Proceedings of the Congress on Evolu-
tionary Computation (CEC’2002), pages 390–395, 2002.

33. C. Ravise and M. Sebag. An advanced evolution should not repeat its past errors. In
International Conference on Machine Learning, pages 400–408, 1996.

34. C. Ravise, M. Sebag, and M. Schoenauer. A genetic algorithm led by induction. url:
citeseer.ist.psu.edu/126354.html.

35. R. G. Reynolds, Z. Michalewicz, and Michael J. Cavaretta. Using cultural algorithms
for constraint handling in genocop. In Evolutionary Programming, pages 289–305,
1995.

36. R. G. Reynolds and B. Peng. Cultural algorithms: computational modeling of how
cultures learn to solve problems: an engineering example. Cybernetics and Systems,
36(8):753–771, 2005.

37. M. Ribeiro, A. Plastino, and S. Martins. Hybridization of grasp metaheuristic with
datamining techniques. Special Issue onHybrid Metaheuristic of the Journal ofMath-
ematical Modelling and Algorithms, 5(1):23–41, April 2006.

38. M. Ribeiro, V. Trindade, A. Lastino, and S. Martins. Hybridization of GRASP meta-
heuristic with data mining techniques. In Workshop on Hybrid Metaheuristics 16th
European Conference on Artificial Intelligence (ECAI), pages 69–78, 2004.

39. H.G. Santos, L.S. Ochi, E.H. Marinho, and L.M.A. Drummond. Combining an evo-
lutionary algorithm with data mining to solve a vehicle routing problem. NEURO-
COMPUTING, 2006. (to appear).

40. L. Santos, M. Ribeiro, A. Plastino, and S. Martins. A hybrid GRASP with data min-
ing for the maximum diversity problem. In LNCS 3636, editor, Hybrid Metaheuristic,
pages 116–128, 2005.

41. M. Sebag, C. Ravise, and M. Schoenauer. Controlling evolution by means of machine
learning. In Evolutionary Programming, pages 57–66, 1996.

42. M. Sebag and M. Schoenauer. Controlling crossover through inductive learning. In
YuvalDavidor, Hans-Paul Schwefel, and Reinhard Männer, editors, Parallel Problem
Solving from Nature – PPSN III, pages 209–218, Berlin, 1994. Springer.

43. M. Sebag, M. Schoenauer, and C. Ravise. Toward civilized evolution: Developing
inhibitions. In Thomas Bäck, editor, Proceeding of the Seventh Int. Conf. on Genetic
Algorithms, pages 291–298, San Francisco, CA, 1997. Morgan Kaufmann.

44. E-G. Talbi. A taxonomy of hybrid metaheuristics. Journal of heuristics, 8(2):541–
564, Sept. 2002.

45. L. Vermeulen-Jourdan, D. Corne, D.A. Savic, and G.A. Walters. Hybridising rule
induction and multi-objective evolutionary search for optimising water distribution
systems. In Proceeding of Fourth International Conference on Hybrid Intelligent Sys-
tems (HIS’04), pages 434–439, 2004.

46. L.Vermeulen-Jourdan,C.Dhaenens, andE-G.Talbi. Clusteringnominal andnumer-
ical data: A new distance concept for a hybrid genetic algorithm. In Jens Gottlieb
and Günther R. Raidl, editors, Evolutionary Computation in Combinatorial Opti-
mization – EvoCOP 2004, volume 3004 of LNCS, pages 220–229, Coimbra, Portugal,
5-7 April 2004. Springer Verlag.

47. S-H.Yoo and S-B.Cho. Partially evaluated genetic algorithm based on fuzzy c-means
algorithm. In LNCS 3242, editor, Parallel Problem Solving From Nature (PPSN),
pages 440–449, 2004.

48. E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Comparative
Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

An Iterated Local Search Heuristic for a

Capacitated Hub Location Problem

Inmaculada Rodŕıguez-Mart́ın and Juan-José Salazar-González

DEIOC, Universidad de La Laguna,
38271 La Laguna, Tenerife, Spain

{irguez, jjsalaza}@ull.es

Abstract. This paper addresses a capacitated hub problem consisting
of choosing the routes and the hubs to use in order to send a set of
commodities from sources to destinations in a given capacitated network
with minimum cost. The capacities and costs of the arcs and hubs are
given, and the graph connecting the hubs is not assumed to be complete.
For solving this problem we propose a heuristic approach that makes use
of a linear programming relaxation in an Iterated Local Search scheme.
The heuristic turns out to be very effective and the results of the com-
putational experiments show that near-optimal solutions can be derived
rapidly for instances of large size.

1 Introduction

This paper presents a heuristic method for solving a Capacitated Hub Problem
(CHP) that arises in the design of telecommunications networks. The CHP is
defined as follows. Let us consider a set I of computers (source terminals) that
must send information to a set J of computers (destination terminals) through a
network. The network consists of cables, possibly going through some computers
(hubs) of another set H . The whole set of computers is called node set and it is
represented by V := I ∪ J ∪ H , and the set of cables is called arc set and it is
represented by A. Hence, we have a directed graph G = (V, A). A given computer
can be at the same time source terminal, destination terminal and hub. When
this happens, for notational convenience, the computer is represented by several
nodes in V , thus we will assume that subsets I, J and H are disjoint. When a
cable allows communication in both directions it is considered as two opposite
arcs in A. We will assume there are not arcs in A from a destination terminal
to a source one, i.e., there are no arcs from nodes in J to nodes in I.

Associated to each arc a ∈ A there is a capacity qa, representing the maximum
amount of information units that can go through it, and a value ca representing
the cost of sending a unit of information through a and called routing cost.
Equally, associated to each hub h ∈ H there is a capacity qh, and a value ch

representing the fix cost of using hub h and called maintenance cost. Finally, for
each pair (i, j) ∈ I×J of terminals we are given an amount dij of information to
be sent from i to j. Since most of these values can be zero, the dij information
units going from i to j will be called commodity if dij > 0, and for simplicity

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 70–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Iterated Local Search Heuristic for a Capacitated Hub Location Problem 71

they will be referred with one index k ∈ K := {(i, j) ∈ I × J : dij > 0}. Also for
brevity of notation, we will write dk instead of dij if k = (i, j).

The Capacitated Hub Problem consists of deciding the way the required flow
of information between terminals must traverse the capacitated network in order
to minimize the sum of the routing and maintenance costs.

A particular case of this problem, referred to as the Capacitated Multiple
Allocation Hub Location Problem, has been recently considered in Ebery et al.
[6], motivated by a postal delivery application. In this particular combinatorial
problem, where the name“terminal” is replaced by “client”, the capacity require-
ments only concern the hubs and apply only to mail letters coming directly from
a client and going directly to a client. Moreover, the maintenance cost of a hub
is paid when it receives or delivers letters to a client, and it is not paid if the
letter is moved from one hub to another hub. The subgraph connecting the hubs
is assumed to be complete (see, e.g., Carello et al. [5] for a heuristic approach
to solve a hub location problem in telecommunications where the hubs are sup-
posed to be fully connected). This assumption allows a reduction in the number
of candidate paths for the mail, as a letter will never go through more than two
hubs. Ebery et al. [6] present mathematical models exploiting these advantages
by using variables with three and four indices. Other papers on capacitated ver-
sions of hub location problems are Ernst and Krishnamoorthy [8], Campbell [4],
Aykin [1], and Boland et al. [3]. Some of these papers study the single-allocation
version of the problem and others are devoted to the multi-allocation version.
Another distinction can be made on whether the demand flow of a commod-
ity can be split or not on different paths. Uncapacitated versions of the CHP
have been extensively studied in the literature (see, e.g., Campbell [4], Ernst
and Krishnamoorthy [7], Mayer and Wagner [13], Skorin-Kapov, Skorin-Kapov
and O’Kelly [16]). In this context, the CHP is a capacitated multiple-allocation
hub location problem with splittable demands, without the assumption that the
network connecting the hubs is a complete graph.

The CHP is also related to network design (see, e.g., Barahona [2], O’Kelly,
Bryan, Skorin-Kapov and Skorin-Kapov [14]). In particular, a problem closely
related to CHP has been addressed in Holmberg and Yuan [10]. Indeed, it is
possible to convert a CHP instance into an instance of the problem in [10] by
duplicating each hub and adding a dummy arc connecting the new pair of nodes
with appropriately defined cost and capacity. Arcs in the CHP network have
routing costs and no fix costs, while dummy arcs only have fix costs. This special
structure of the resulting network design instances justifies the research on an
ad-hoc algorithm for the CHP.

Rodŕıguez-Mart́ın and Salazar-González [15] propose a mixed integer linear
programming formulation for CHP and describe three exact methods to solve it
based on decomposition techniques. These exact methods are able to deal only
with small CHP instances. In this paper we present a heuristic method that
provides good feasible solutions for large CHP instances in a reasonable time.
The heuristic is based on the linear programming relaxation of a mixed-integer
mathematical model.

72 I. Rodŕıguez-Mart́ın and J.-J. Salazar-González

The remainder of the paper is organized as follows. Section 2 presents a math-
ematical formulation based on 2-index variables. In Section 3 we outline the
heuristic algorithm. Section 4 shows the computational results, and finally Sec-
tion 5 is devoted to conclusions.

2 Problem Formulation

In order to simplify the notation it is convenient to extend the arc set of G with
the dummy arcs from destinations to origins, i.e.,

A := A ∪←−
K,

where
←−
K is the set of arcs from j ∈ J to i ∈ I if dij > 0. For each subset S ⊂ V ,

we will denote
δ+(S) := {(u, v) ∈ A : u ∈ S, v ∈ V \ S}

and
δ−(S) := {(u, v) ∈ A : u ∈ V \ S, v ∈ S}.

Let us consider a decision variable yh associated to each h ∈ H that takes
value 1 when the hub is used, and a continuous variable xa associated to each
a ∈ A representing the amount of communication traversing arc a.

To present a mathematical model we also make use of an additional set of
continuous variables, [fk

a : a ∈ A], for each commodity k ∈ K. If k = (i, j)
is the commodity going from i to j, then variable fk

a represents the amount
of communication from source i to destination j traversing arc a. Then the
mathematical model for CHP is:

min
∑
a∈A

caxa +
∑
h∈H

chyh (1)

subject to:

xa ≤ qa for all a ∈ A (2)∑
a∈δ+({h})

xa ≤ qhyh for all h ∈ H (3)

yh ∈ {0, 1} for all h ∈ H, (4)

and there exist fk
a such that

xa =
∑
k∈K

fk
a for all a ∈ A (5)

and for each commodity k = (i, j):∑
a∈δ+({v})

fk
a =

∑
a∈δ−({v})

fk
a for all v ∈ V (6)

fk
a ≥ 0 for all a ∈ A (7)

fk
(j,i) = dk (8)

fk
(u,v) = 0 for all (u, v) ∈ ←−

K \ {(j, i)}. (9)

An Iterated Local Search Heuristic for a Capacitated Hub Location Problem 73

Constraints (6)–(9) require the existence of a flow circulation in G moving
exactly dk units of commodity k. Equalities (5) gather the individual flows into
a common one that must satisfy the arc-capacity requirements in (2) and the
node-capacity requirements in (3). Finally, (4) impose that a 0-1 decision on the
hubs must be taken. Then, vector x represents the total communication units
circulating through the network, and is a vector of continuous variables, while
vector y is a 0-1 vector indicating the hubs to be installed. The main difference
with a multi-commodity flow formulation problem is that the xa variables are
not required to be integer variables. The problem remains difficult to solve due to
the integrability requirement on the yh variables. In fact, the CHP is NP-hard
since it generalizes the Uncapacitated Multiple Allocation Hub Location Problem,
which is known to be NP-hard (see Hamacher et al. [9]).

Magnanti and Wong [12] observed that it is computationally useful to add
the upper bound inequalities fk

a ≤ qhyh for all k ∈ K, for all h ∈ H and for all
a ∈ δ+({h})∪ δ−({h}), even if they are redundant when inequalities (3) are also
present in the model. This was also confirmed by our experiments. No theoretical
explanation is known (to our knowledge) for this behavior. A potential argument
could be based on the fact that the linear program is highly degenerated due
to the underlying multi-commodity structure, and the redundant inequalities
could help the LP-solver. In addition, we also got better computational results
by extending the model with the equations

∑
a∈δ+({v})

xa =
∑

a∈δ−({v})
xa for all v ∈ V. (10)

The following section describes a heuristic method that provides good feasible
solutions for the CHP.

3 A Heuristic Approach

At first glance, a simple way to tackle the CHP is to solve the mixed integer
programming model (1)–(10) with a general purpose MIP solver. However, the
model may have a large number of continuous variables and constraints, and
therefore commercial solvers are unable to solve even medium-size instances.
This drawback motivates our research on near-optimal approaches.

The heuristic we propose is based on the fact that, for a given subset of hubs
H ′ ⊂ H , the LP-relaxation of model (1)–(10) resulting from setting yh = 1 for all
h ∈ H ′ and yh = 0 for all h ∈ H \H ′, is relatively easy to solve using a LP-solver.
The LP-relaxation associated with a subset H ′ ⊂ H gives the optimal way of
routing the demands if only those hubs are open in the network, or shows that
no feasible routing exists with that yh setting. Therefore, if H ′ is the optimal
set of hubs for a CHP instance, by solving the associated LP-relaxation we will
get the optimal CHP values of the flow variables fk

a .
Overall, the heuristic consists of a construction phase and a combined local

search and shaking phase which is repeated until a stopping condition is met.

74 I. Rodŕıguez-Mart́ın and J.-J. Salazar-González

The best solution found during this iterative process is the final heuristic solu-
tion. In the construction phase a set of hubs is selected. A shaking procedure
is applied after each local search to randomly perturb the current solution. If
feasibility is lost, another procedure tries to recover it before starting the follow-
ing local search. See Algorithm 1. for the whole scheme. It follows the scheme
of an Iterative Local Search (ILS) (see e.g. [11]) where the aim is to create a
random walk in the space of local optima defined by the output of a local search
procedure. In our case, this procedure makes use of information given by a linear
programming relaxation.

Algorithm 1. LP-based algorithm for the CHP
GenerateInitialHubSet(H ′) { construction phase }
BestSolutionValue ← SolveLP(H ′)
while stopping criterium is not satisfied do

{ to obtain feasibility }
while H ′ is not feasible do

Select a hub h ∈ H \ H ′

H ′ ← H ′ ∪ {h}
end while
CurrentSolutionValue ← SolveLP(H ′)
{ local search }
repeat

Select a hub h ∈ H ′

NewSolutionValue ← SolveLP(H ′ \ {h})
if H ′ \ {h} is feasible and NewSolutionValue < CurrentSolutionValue then

H ′ ← H ′ \ {h}
CurrentSolutionValue ← NewSolutionValue

end if
until no better feasible solution is found
if CurrentSolutionValue < BestSolutionValue then

BestSolutionValue ← CurrentSolutionValue
end if
Shake(H ′)

end while

Next we describe with more detail each of the heuristic components.

3.1 Construction Phase: Generation of an Initial Set of Hub

To generate an initial set of hubs H ′, we proceed as follows. Initially, H ′ is
the empty set. For each commodity k = (i, j) we consider hubs h such that
arc a = (i, h) exists. These candidate hubs are sorted in increasing order of
caqa + ch. The amount caqa + ch intends to be a measure of the cost of shipping
demand to hub h through arc a. We add to H ′ as many hubs of this sorted list
as necessary to make it possible to supply the demand dk from source i, taking
into account the capacities of the arcs and hubs. In a similar way, hubs h such

An Iterated Local Search Heuristic for a Capacitated Hub Location Problem 75

that arc a = (h, j) exists, are sorted according to the same criterium, and the
ones necessary to make it possible that the demand dk reaches destination j are
added to H ′. During this process we keep a report of the spare capacity of each
hub and each arc. When a hub or an arc becomes saturated, it is not further
considered.

3.2 Getting a Feasible Solution

A given subset of hubs H ′ ⊆ H is said to be feasible if it is possible to send
all the demands dk from their sources to their destinations when restricting the
hub set to H ′. In other words, H ′ is feasible when the LP-model resulting from
setting yh = 1 for all h ∈ H ′ and yh = 0 for all h ∈ H \ H ′ in formulation
(1)–(10) has a feasible solution. If that is not the case, the feasibility is sought
by iteratively adding new hubs to H ′. In each iteration the hub in H \ H ′ with
minimum cost is chosen. The procedure stops when feasibility is reached.

Intuitively, the set H ′ represents the set of a priori open hubs, i.e. those
through which the demand flow can go, while all hubs in H \H ′ are closed. If in
fact no flow traverses a hub in H ′, this hub is removed from H ′. Hubs in H \H ′

are said to be closed.

3.3 Local Search

The local search procedure starts from a feasible solution H ′ and tries to improve
it by closing hubs, that is, by removing hubs from H ′. In each iteration the
open hub that maximizes the ratio ch/fh, being fh the total amount of demand
traversing h, is the candidate to be closed. Thus, the aim is to close a hub with
a high cost and a low utility. The movement is done only if it produces a better
solution. The local search procedure continues until no further improvement is
obtained or the feasibility is lost.

Notice that the evaluation of a solution H ′ (referred as SolveLP(H ′) in Al-
gorithm 1.) implies solving the corresponding LP-relaxation of model (1)–(10),
as explained before, using a commercial LP-solver. This is the most time con-
suming part of the heuristic. To prevent the same LP-relaxation to be solved
several times, we keep a report of already tested solutions H ′. That is, a closing
movement is performed only if it does not lead to an already tested solution H ′.

3.4 Shaking

The shake procedure allows to escape from a local minimum without completely
destroying its good properties. In order to do so, half of the hubs in the current
solution H ′ are closed (i.e., are removed from H ′), and 2|H ′| hubs in H \ H ′

are opened (i.e., are added to H ′). The hubs to be opened and to be closed are
selected randomly among all possible candidates. The new initial solution ob-
tained in this way shares at least half of its hubs with the former local minimum.
However, the new solution includes a large enough number of new hubs as to
make it likely that the following local search leads to a different local minimum.

76 I. Rodŕıguez-Mart́ın and J.-J. Salazar-González

3.5 Stopping Criterium

As Algorithm 1. shows, the feasibility obtaining, local search, and the shak-
ing procedures, are embedded in a loop. The stopping criterium determines the
number of times this loop is executed. We found a good compromise between
solution quality and computing time by letting the algorithm run until ten it-
erations have been performed without obtaining any improvement in the best
solution.

4 Computational Experiments

This section shows the results of experiments conducted for solving some in-
stances with the heuristic method. Standard hub location instances available in
the literature (e.g., CAB and AP in [6]) do not fit into the definition of CHP
since, for example, they are based on complete graphs. Hence we have generated
random instances. These experiments were carried out on a Pentium IV 1500
Mhz. using CPLEX 8.1 as LP and MIP solver.

The instance generator is next described. Given the sets I, J, H, the arc density
of the graph induced by H was fixed to a parameter taking values of 30%, 50% and
85% of the total amount of possible arcs, which gave instances with low, medium
and high density. The percentage of arcs from (I×H)∪(H×J) was fixed to 80% of
the total amount of possible arcs. The amount of information dij from i ∈ I to j ∈
J was generated in [1, 5] for all commodities. The capacities qh and qa were gener-
ated in [1, λ|I||J |], being λ = 2.5. The costs ch and ca were generated in [50, 150]
and [1, 50] respectively. All these settings were chosen in order to increase the prob-
ability of producing instances with feasible solutions. We considered (|I|, |J |, |H |)
in {(2, 2, 4), (3, 3, 5), (5, 5, 5), (5, 5, 10), (5, 5, 30), (5, 5, 40), (5, 5, 50), (10, 10, 50)},
and for each triplet we generated five random instances with the above features.

To evaluate the quality of the heuristic solutions, they are compared to the
solutions obtained by CPLEX running with a time limit of three hours of CPU.
CPLEX works on the mixed integer programming model (1)–(10) and gives the
optimal solution, if it stops before the time limit, or a feasible solution otherwise.
CPLEX also reports the lower bound for the optimal objective value obtained
at the end of the root node in the branch-and-cut tree, or the best lower bound
found if the time limit is reached before the root node is completed. This lower
bound from CPLEX is useful as an alternative measure of the heuristic quality
when the optimal solution is not available.

Tables 1 to 3 show average results of applying the heuristic algorithm on
feasible instances. Column headings display:

– (|I|, |J |, |H |): Number of source, destinations and hubs nodes.
– d : Density of the generated graphs: low (l), medium (m) or high (h).
– open-hubs : Number of hubs open in the optimal solution.
– heur/opt : Percentage deviation between the heuristic value and the optimal

(or best) CHP solution value.

An Iterated Local Search Heuristic for a Capacitated Hub Location Problem 77

– heur/lb: Percentage deviation between the heuristic value and the CPLEX
lower bound at the root node.

– time-heur : Heuristic CPU time (in seconds).
– time-opt : CPU time (in seconds) that CPLEX takes to find the optimal

solution.
– time-lb: CPU time (in seconds) that CPLEX takes to find the lower bound

at the root node.

Table 1 shows the results obtained for small instances, with a number of
commodities going from 4 to 25 and a number of hubs ranging from 4 and 10.
For these instances, the average deviation of the heuristic solution from the
optimal solution generated by CPLEX never exceeds 1.25%, and it is 0.0% in
50 of the 60 instances solved. Therefore, the heuristic produces solutions of high
quality. However, for these small instances the times of the heuristic and exact
methods are comparable.

Table 2 shows the results for medium size instances, with 25 commodities and
a number of hubs ranging from 30 to 50. We appreciate that the gap between the
heuristic and the optimal solution values increases with the size of the problems,

Table 1. Heuristic results for small instances

(|I |, |J |, |H |) d open-hubs heur/opt heur/lb time-heur time-opt time-lb

l 2.4 0.00 0.00 0.03 0.03 0.03
(2, 2, 4) m 2.4 0.00 1.16 0.02 0.02 0.02

h 2.4 1.24 1.30 0.02 0.02 0.02

l 3.2 0.57 0.57 0.03 0.06 0.06
(3, 3, 5) m 3.2 0.00 0.12 0.03 0.03 0.03

h 3.6 1.07 1.28 0.03 0.04 0.04

l 4.4 0.00 0.00 0.06 0.04 0.04
(5, 5, 5) m 4.6 0.00 0.00 0.07 0.05 0.05

h 4.4 0.19 0.27 0.12 0.08 0.08

l 5.0 0.55 0.55 0.21 0.17 0.17
(5, 5, 10) m 5.6 1.24 1.24 0.24 0.45 0.45

h 6.2 0.65 0.92 0.44 1.00 0.98

Table 2. Heuristic results for medium-size instances

(|I |, |J |, |H |) d open-hubs heur/opt heur/lb time-heur time-opt time-lb

l 6.4 1.52 2.34 2.47 48.59 43.87
(5, 5, 30) m 6.4 3.34 4.32 4.31 109.49 97.30

h 6.2 3.70 5.46 5.46 277.37 226.81

l 6.4 1.47 2.28 3.81 171.34 156.33
(5, 5, 40) m 6.6 5.14 5.91 5.25 356.63 329.16

h 6.0 2.78 4.40 10.33 1198.46 848.65

l 6.0 6.97 7.49 6.45 438.35 416.08
(5, 5, 50) m 6.8 9.23 9.83 8.89 845.33 765.87

h 5.8 6.43 8.05 12.86 2696.73 2103.81

78 I. Rodŕıguez-Mart́ın and J.-J. Salazar-González

Table 3. Heuristic results for large instances

(|I |, |J |, |H |) d heur/opt heur/lb time-heur time-opt time-lb

l 5.21 5.91 28.87 5225.56 3963.08
(10, 10, 50) m 3.43 5.55 51.73 t.l. t.l.

h -20.32 24.67 89.87 t.l. t.l.

Table 4. Comparison of the heuristic performance with different stoping criterium
settings

50 iter 100 iter 200 iter

(|I |, |J |, |H |) d time-opt heur/opt time-heur heur/opt time-heur heur/opt time-heur

l 48.59 0.58 11.22 0.58 18.30 0.08 50.56
(5, 5, 30) m 109.49 0.23 26.90 0.02 41.99 0.02 65.26

h 277.37 1.10 26.88 0.59 59.33 0.10 141.75

l 171.34 0.21 26.78 0.11 46.61 0.11 76.37
(5, 5, 40) m 356.63 1.98 36.18 1.59 63.89 0.41 146.68

h 1198.46 0.28 60.27 0.05 121.53 0.05 191.36

l 438.35 3.43 31.10 3.12 61.08 1.35 126.10
(5, 5, 50) m 845.33 6.81 67.51 4.94 131.67 2.67 303.02

h 2696.73 1.74 93.69 0.77 178.63 0.77 289.16

although it was always smaller than 10%. For CPLEX these instances are more
difficult to solve, as the column time-opt shows. The exact method takes almost
45 minutes on average to solve the largest instances, while the heuristic takes
approximately 13 seconds on average.

CPLEX is able to solve all instances in Tables 1 and 2 within the time limit of
three hours. However it can not cope with bigger instances in that time, as Table
3 shows. When the time limit is exceeded we report ’t.l.’ in the corresponding
columns, and compute the deviation gaps for the heuristic with respect to the
best feasible solution found so far and the best lower bound. The negative value in
column heur/opt indicates that the solution given by the heuristic in 90 seconds
for dense instances is 20% better than the best feasible solution found by CPLEX
in 3 hours of computation. In fact, for these instances CPLEX is unable to get
good lower bounds within the time limit, and this explains the high value 24.67
of heur/lb. The reason for the high computation time at the root node is not
only the size of the linear program but mainly the high degeneration of the
solutions. This inconvenient is reduced by using the dual simplex algorithm,
but still the convergency is slowly achieved even on medium-size instances. We
conducted experiments where the linear programs were solved by the interior-
point method available in CPLEX, but no advantage was observed using this
option.

We have also solved larger instances with the heuristic. However CPLEX was
not able to find a feasible solution within the time limit. For this reason we do
not report more results in Table 3.

An Iterated Local Search Heuristic for a Capacitated Hub Location Problem 79

1500

1600

1700

1800

1900

2000

2100

2200

2300

0 20 40 60 80 100 120 140 160 180 200

Objective
Value

Time (sec)

”gr5-5-5-50s”
♦

♦

♦♦♦ ♦

♦
♦ ♦ ♦ ♦

♦

Fig. 1. Evolution of the objective value versus computation time for an instance with
|I | = |J | = 5, |H | = 50 and low arc density

1200

1300

1400

1500

1600

1700

1800

1900

2000

0 50 100 150 200 250 300 350

Objective
value

Time (sec)

”gr5-5-5-50d”
♦

♦
♦

♦

♦

♦
♦ ♦

♦

Fig. 2. Evolution of the objective value versus computation time for an instance with
|I | = |J | = 5, |H | = 50 and high arc density

Table 4 shows the development of the solution quality when changing the stop-
ping criterium. We tried three different settings: stop after k iterations without
any improvement on the objective value for k ∈ {50, 100, 200}. The experiments
were conducted on medium-size instances. The results show that the quality of

80 I. Rodŕıguez-Mart́ın and J.-J. Salazar-González

the heuristic solution improves when k increases, though the computation time
increases too. For this reason we think that k = 10 is a good option for obtaining
high quality solution in reasonable time. The reported results are obtained com-
puting the average over five instances. Observing the whole set of 45 instances,
instead, the results show more clearly the consistency of the heuristic in finding
optimal solutions when enough time is given. More precisely, four instances were
solved to optimality with k = 10, 15 with k = 50, 20 with k = 100, and 26 with
k = 200.

Finally, Figures 1 and 2 illustrate the development of the objective value
respect to the computation time on two CHP instances. Instance gr5−5−5−50s
corresponds to an sparse network with 5 origins, 5 destinations and 50 potential
hub locations. Instance gr5−5−5−50d is a dense network with also 5 origins, 5
destinations and 50 potential hub locations. Both have been solved with k = 200
to display the evolution of the solution on a large time interval. The optimal
objective value for gr5−5−5−50s is 1527, and it was not achieved by the heuristic
in three minutes of computational time. The optimal value for gr5− 5− 5− 50d
is 1268, and it was found in 97 seconds.

5 Conclusions

We have studied the combinatorial optimization problem of deciding on the
hubs to be opened in a telecommunications network to send given demands of
information from source terminals to destination terminals at minimum cost.
We are not assuming that all the hubs are connected by an arc, as happens in
papers related to hub location found in the literature. Capacities on the arcs and
hubs are considered, and therefore the problem is referred to as the Capacitated
Hub Problem.

The complexity of our problem is due to the cost for opening hubs, thus man-
aging a zero-one variable for each node. The large number of continuous variables
and constraints creates difficulties when applying a general purpose solver. For
that reason we have presented a heuristic approach based on solving linear pro-
gramming relaxations. The approach follows the so-called Iterated Local Search
scheme.

The computational experiments on random instances show that the proposed
method is highly effective finding near-optimal solutions for this NP-hard prob-
lem. As for the computing times, the results are very good, specially considering
the difficulties of CPLEX not only to solve the model, but even to find a feasible
solution for medium-size and large instances.

Acknowledgements

This work has been partially supported by “Ministerio de Educación y Ciencia”,
Spain (research project TIC2003-05982-C05-02).

An Iterated Local Search Heuristic for a Capacitated Hub Location Problem 81

References

1. T. Aykin, “Lagrangian relaxation based approaches to capacitated hub-and-spoke
network design problems”, European Journal of Operational Research 79 (1994)
501–523.

2. F. Barahona, “Network design using cut inequalities”, SIAM Journal on Optimiza-
tion 6 (1996) 823–837.

3. N. Boland, M. Krishnamoorthy, A.T. Ernst, J. Ebery, “Preprocessing and cutting
for multiple allocation hub location problems”, European Journal of Operational
Research 155 (2004) 638–653.

4. J.F. Campbell, “Integer programming formulations of discrete hub location prob-
lems”, European Journal of Operational Research 72 (1994) 387–405.

5. G. Carello, F. Della Croce, M. Ghirardi, R. Tadei, “Solving the hub location prob-
lem in telecommunication network design: a local search approach”, Networks 44
(2004) 94–105.

6. J. Ebery, M. Krishnamoorthy, A. Ernst, N. Boland, “The capacitated multiple
allocation hub location problem: Formulations and algorithms”, European Journal
of Operational Research 120 (2000) 614–631.

7. E. Ernst, M. Krishnamoorthy, “Exact and heuristic algorithms for the uncapac-
itated multiple allocation p-hub problem”, European Journal of Operational Re-
search 104 (1998) 100–112.

8. E. Ernst, M. Krishnamoorthy, “Solution algorithms for the capacitated single allo-
cation hub location problem”, Annals of Operations Research 86 (1999) 141–159.

9. H.W. Hamacher, M. Labbé, S. Nickel, T. Sonneborn, “Adapting polyhedral prop-
erties from facility to hub location problems”, Discrete Applied Mathematics 145
(2004) 104–116.

10. K. Holmberg, D. Yuan, “A Langrangian heuristic based branch-and-bound ap-
proach for the capacitated network design problem”, Operations Research 48 (2000)
461–481.

11. H.R. Lourenço. O.C. Martin, T. Stützle, “Iterated local search”. In F. Glover and
G.A. Kochenberger, editors, Handbook of Metaheuristics, Kluwer’s International
Series in Operations Research & Management Science, Norwell, 2002.

12. T.L. Magnanti, R.T. Wong, “Network design and transportation planning: models
and algorithms”, Transportation Science 18 (1984) 1–55.

13. G. Mayer, B. Wagner, “HubLocator: an exact solution method for the multiple
allocation hub location problem”, Computer & Operations Research 29 (2002) 715–
739.

14. M. O’Kelly, D. Bryan, D. Skorin-Kapov, J. Skorin-Kapov, “Hub network design
with single and multiple allocation: A computational study”, Location Science 4
(1996) 125–138.

15. I. Rodŕıguez-Mart́ın, J.J. Salazar-González, “Decomposition approaches for a Ca-
pacitated Hub Problem”, Proceedings of the IBERAMIA 2004 conference, Lecture
Notes in Artificial Intelligence 3315 (2004) 154–164.

16. D. Skorin-Kapov, J. Skorin-Kapov, M. O’Kelly, “Tight linear programming relax-
ations of uncapacitated p-hub median problems”, European Journal of Operational
Research 94 (1996) 582–593.

Using Memory to Improve the VNS

Metaheuristic for the Design of SDH/WDM
Networks

Belén Melián�

Dpto. E.I.O. y Computación
Universidad de La Laguna, Spain

mbmelian@ull.es

Abstract. Variable neigborhood search is among the well studied lo-
cal search based metaheuristics. It has provided good results for many
combinatorial optimization problems throughout the last decade. Based
on previous successful applications of this metaheuristic on various net-
work design problems in telecommunications, we further enhance this
approach by incorporating adaptive memory mechanisms from the scat-
ter search and tabu search metaheuristics. The heuristics are compared
among each other as well as against objective function values obtained
from a mathematical programming formulation based on a commercial
solver. The problem instances cover a large variety of networks and de-
mand patterns. The analysis carried out in this paper corroborates that
there are significant differences between the variable neighborhood search
and the hybrid approach.

1 Introduction

The ever-rising data volume demanded by the market makes network planning
in order to minimize the necessary investment while meeting customer demands
an important task for the network providers. Synchronous Digital Hierarchy
(SDH) and Wavelength Division Multiplex (WDM) form the core of many cur-
rent backbone networks. Many of these networks, especially in Europe, have a
general mesh topology. Therefore, we consider an arbitrary mesh of fiber lines
(links) connecting the locations of the network providers (nodes) where the traf-
fic demands arise. WDM systems are only used point-to-point, as in most current
commercial networks. Common line-speeds for SDH/WDM networks range from
622Mbit/s up to 40Gbit/s per channel. Thus, with state-of-the-art multiplexers
that provide 80 or even 160 channels, WDM is currently the fastest commercially
available transmission technology for long-range networks. A good overview of
the SDH and WDM technology can be found in [7].

SDH requires a dedicated pair of fibers for each transmission, whereas WDM
multiplexes several optical signals on a single pair of fibers. The costs for several
� This research has been partially supported by the projects TIN2005-08404-C04-03

(70% of which are FEDER funds) and P.I. 042004/088.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 82–93, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using Memory to Improve the VNS Metaheuristic 83

discrete fibers for SDH compared to the multiplexer costs and only a single fiber
pair for WDM make WDM suitable for longer distances and high bandwidth
demands while discrete SDH lines are cost effective for short lines with limited
bandwidth demand. However, the overall optimization problem includes addi-
tional equipment like cross-connects, port-cards, amplifiers and regenerators and
is much more versatile. The resulting optimization problem is to find a minimum
cost combination of the equipment and the routing for a given static demands
matrix.

In this paper, we present a Hybrid Variable Neighborhood Search metaheuris-
tic that uses ideas of the scatter search and tabu search metaheuristics and
an integer programming formulation as a reference for the described network-
planning problem. Section 2 explains the general problem and the integer model.
Section 3 contains the detailed description of the hybrid variable neighborhood
search. Computational results for various problem instances are given in Sec-
tion 4. Section 5 provides an outlook on future research.

2 Problem Description and Integer Model

In order to make this paper self contained, this section describes the problem
and summarizes the basic model, which is derived from [8].

The optimization problem at hand deals with a set of demands to be routed
through an optical network. Associated with each demand is an origin node, a
destination node and a size expressed in 2.5Gbit/s units. Each demand can be
routed either entirely on one or more discrete fiber pairs or over one or more
channels of a WDM system. The demands can be switched from one system
to another at the intermediate locations through digital cross-connects (DXC).
Optical fibers joining pairs of nodes used to carry the demands through the
network are called links, edges or segments. The costs of an edge depend on its
length, the required bandwidth and the transmission technology. SDH requires
a pair of fibers and maybe additional amplifiers or regenerators for long ranges.
WDM links are basically composed of a pair of multiplexer terminals, the fiber
pair and possibly also amplifiers. Depending on the number of channels that
are actually used, transponder pairs are needed. The number of transponders
can be any number between one and the maximum capacity of the multiplexer.
The costs of the fiber and the amplification do not depend on the number of
channels that are actually used, but they are always per pair of terminals. An
SDH line and a single channel of a WDM system each alike occupy one port
in the DXC and thus each need one port-card at both ends. The goal of the
network planner is to minimize the total cost of the additional fibers and the
SDH/WDM equipment.

The network design problem at hand considers that the entire demand be-
tween a pair of nodes has to be routed on the same path. All cross-connects
have the same number of ports The given infrastructure is composed of a set
of nodes N that represents the switching locations of the provider. A a set of
undirected edges E connecting these nodes represents the fiber links. Finally, a

84 B. Melián

set of demands D is given which contains the number of units for each single
demand dst from the origin node s to the destination node t.

The cost input consists of the following data:
CFS

e costs of an SDH line on edge e (fiber, amplifiers, regenerators)
CFW

e costs of a WDM line on edge e (fiber, amplifiers)
CW costs of the WDM mux-terminals on edge e
CO cost of a basic DXC system
CC cost of a WDM channel (a pair of transponders)
CP cost of a DXC-port (port-card)

The capacity of the systems is defined as follows:
MW capacity of a WDM system (number of wavelengths)
MO capacity of a DXC (number of ports)

The spare capacity of previous designs is given by:
ge spare WDM channels on WDM systems on segment e
hn spare OXC ports on OXC systems at node n

Decision variables:
fe number of SDH-systems on edge e
we number of WDM-systems on edge e
ve number of channels used in the WDM-systems on edge e
yn number of DXCs used in node n
zst

ij 1 if demand (s, t) is routed along edge (i, j); 0 otherwise

Objective value:

Minimize
∑
e∈E

((CFS
e + 2CP)fe + (CFW

e + CW)we + (CC + 2CP)ve) +
∑
n∈N

COyn

s.t.:

∑
j∈N

zst
ji −

∑
j∈N

zst
ij =

⎧⎨
⎩

−1 i = s
0 ∀ i �= s, t

+1 i = t

⎫⎬
⎭ ∀ (s, t) ∈ D (1)

∑
(s,t)∈D

dst(zst
ij + zst

ji) ≤ ve + fe ∀ e ∈ E with i and j adjacent to e (2)

ve ≤ MW we + ge ∀ e ∈ E (3)

∑
e adjacent to n

(ve + fe) ≤ MOyn + hn ∀n ∈ N (4)

yn ≥ 0 and integer ∀n ∈ N (5)

Using Memory to Improve the VNS Metaheuristic 85

fe, we, ve ≥ 0 and integer ∀ e ∈ E (6)

zst
ij ∈ {0, 1} ∀ (i, j) ∈ E, (s, t) ∈ D (7)

Constraints (1) guarantee the flow-conservation. The origin and the destina-
tion nodes of each demand both have one adjacent edge that is used; all other
nodes have either none or two. Constraints (2) ensure that the demands that each
edge carries are less or equal than the total capacity of the installed SDH and
WDM systems. Constraints (3) match the number of available WDM-channels
with the maximum capacity of the installed WDM-multiplexers. Constraints (4)
adjust the capacity of the cross connects of each node to the capacity of its ad-
jacent edges. Constraints (5) and (6) ensure the integrality and non-negativity
of the decision variables.

3 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [4] is a metaheuristic for solving combina-
torial and global optimization problems based on a simple principle: systematic
changes of neighborhoods within the search. Many extensions have been made,
mainly to be able to solve large problem instances. However, since the main
idea behind variable neighborhood search is to keep the simplicity of the basic
scheme, one of the promising areas of research in VNS is the use of memory.

Let Nk, (k = 1, . . . , kmax) be a finite set of neighborhood structures, and
Nk(s) the set of solutions in the kth neighborhood of a solution s. Usually, a
series of nested neighborhoods is obtained from a single neighborhood by taking
N1(s) = N (s) and Nk+1(s) = N (Nk(s)), for every solution s. This means that
a move to the k-th neighborhood is performed by repeating k times a move into
the original neighborhood. A solution s′ ∈ S is a local minimum with respect
to Nk if there is no solution s ∈ Nk(s′) ⊆ S better than s′ (i.e., such that
f(s) < f(s′) where f is the objective function of the problem).

In order to solve the problem of designing WDM networks, we propose a
Basic Variable Neighborhood Search (BVNS) metaheuristic, whose pseudocode
is shown in Figure 1. As indicated in Figure 1, when the value k reaches kmax,
which is set to the number of demands of the instance, we reset k = 1 and a new
solution is generated to restart the search.

VNS in its present form relies only on the best solutions currently known to
center the search. Knowledge of previous good solutions is forgotten, but might
be useful to indicate promising regions not much explored yet. Also characteris-
tics common to many or most good solutions, such as the same path assigned to
the same demand in several good solutions reached during the search, could be
used to better focus the search procedure. In this paper, we introduce adaptive
memory mechanisms provided by both the scatter search [6] and tabu search [3]
metaheuristics.

86 B. Melián

Initialization.
Select the set of neighborhood structures Nk, for k = 1, . . . , kmax.
Find an initial solution s.
Choose a stopping condition.

Iterations.
Repeat the following sequence until the stopping condition is met:

(1) Set k ← 1. Find an initial solution s.
(2) Repeat the following steps until k = kmax:

(a) Shaking.

Generate a point s′ at random from the kth neighborhood of s (s′ ∈ Nk(s)).
(b) Local search.

Apply some local search method with s′ as initial solution; denote the so
obtained local optimum with s′′.

(c) Move or not.
If this local optimum is better than the incumbent, move there (s ← s′′),
and continue the search with N1 (k ← 1); otherwise, set k ← k + 1.

Fig. 1. Basic Variable Neighborhood Search

3.1 Application to the Design of WDM Networks

In order to solve the problem of designing WDM networks, in this paper we
propose the Hybrid Basic Variable Neighborhood Search (HBVNS) metaheuris-
tic summarized in Figure 2. The original basic variable neighborhood search is
hybridized by making use of two adaptive memory mechanisms. We use a refer-
ence set of solutions to record both good objective function value solutions and
disperse solutions. We keep a reference set consisting of five solutions, being the
first three of them the solutions with the least objective function values and the
last two solutions disperse ones. The action way in which both the scatter search
and tabu search adaptive memories are used are explained below.

A characteristic to take into account when designing a strategy to solve the
network design problem at hand is the fact that there is spare capacity installed
on the given network topology from previous designs. Then, the notion of base
network proposed in [8] is considered. A base, which initially consists of the given
network design, is an incomplete network design that does not satisfy the set of
demand requirements that a complete design should be capable of handling. As
the process iterates, the base network evolves by including additional equipment
on segments, which is tentatively added to the original base. With the aim of
minimizing the provisioning costs, the routes assigned to each demand to be
routed from its origin to its destination, should make a cost-effective use of the
spare capacity available on the base network.

The evolution of the base network is linked to an adaptive memory mechanism
that keeps track of where new equipment is added in the best solutions recorded
during the search. This adaptive memory mechanism makes use of a reference
set of solutions, whose notion is the same as the one used in the scatter search

Using Memory to Improve the VNS Metaheuristic 87

methodology, where it is used as a repository of solutions that are submitted to
a combination method. In some basic designs, the reference set contains the best
solutions (according to the objective function value) found during the search.
However, in more advanced designs, the reference set strategically mixes high
quality solutions and diverse solutions, as explained below.

Since the real-world problem at hand does not allow any number of intermedi-
ate nodes between the origin and destination of a demand, the described solution
approach builds a list of paths for each demand by making use of an efficient
implementation of the k-shortest path algorithm [2]. Then, the construction of a
solution starts with the selection of a path for each demand requirement. Once
each demand is assigned to a path, the cost of the resulting design is calculated.
The cost is associated with the equipment that is required to satisfy the demands
using the chosen paths.

The MIP formulation described in section 2 allows any path between an origin
and a destination of a demand and does not limit the number of intermediate
nodes. Based on this fact, the model can be used to find optimal solutions or
at least to provide lower bounds of the problem. On the other hand, the hybrid
variable neighborhood search developed in this work restricts the number of
paths available to route each demand through the network to a certain value
reaching an upper bound of the problem.

We know describe in detail all the procedures involved in the hybrid variable
neighborgood search summarized in Figure 2.

– Initialization. In order to perform the initialization step of the basic variable
neighborhood search metaheuristic, the procedure that generates the initial
solution and the neighborhood structures must be defined. In the hybrid ba-
sic variable neighborhood search proposed in this paper, instead of building
a single initial solution, we build a reference set consisting of five solutions.
The construction of both the single solution used to run the basic variable
neighborhood search and the reference set of solutions for the hybrid method
is performed by making used of the constructive procedure proposed in [8].
• Initial reference set. As said above, the initial reference set is constructed

by using the constructive procedure proposed in [8], which attempts to
assign demands to paths in order to efficiently utilize the spare capacity
in the original base network. The initial reference set consists of solutions
that are disperse between them.

• Neighborhood structures. The kth neighborhood of a solution s, Nk(s),
consists of all the solutions that can be reached from s by changing
the paths assigned to k different demands. In order to carry out the
computational experience, kmax is set to the number of demands each
instance consists of.

– Shaking. This procedure generates a solution s′ at random from the kth

neighborhood of s (s′ ∈ Nk(s)).
– Improvement method and Move Decision. The improvement method is the lo-

cal search procedure proposed in [8]. In order to run the improvement method
from a given solution, the demands are ordered according to their unit cost.

88 B. Melián

Initialization. Select the set of neighborhood structures Nk, for k = 1, . . . , kmax.
(Use of memory) Generete the reference set of solutions, and select the best solution
s.
We use as a stopping condition a maximum number of local searches.

Iterations.
Repeat the following sequence until the stopping condition is met:
(1) Set k ← 1.
(2) Repeat the following steps until k = kmax:

(a) Shaking. Generate a point s′ at random from the kth neighborhood of s
(s′ ∈ Nk(s)).

(b) Local search. Apply some local search method with s′ as initial solution;
denote the so obtained local optimum with s′′. Update the reference set
adding the solution s′′ if it is better than the worst solution in the set.

(c) Move or not. If this local optimum is better than the best solution in
the reference set, move there (s ← s′′), and continue the search with N1

(k ← 1); otherwise, set k ← k + 1.
(3) Use of memory. (k = kmax)

• Rebuild the reference set by using both the objective function value and
the diversity criteria.

• Update the base network by using a tabu list.
• Rebuild the set of paths for each demand making a cost-effective use of

the spare capacity installed on the network.
• Combine the solutions in the reference set to construct a new current

solution s.
• Set k ← 1.

Fig. 2. Hybrid Basic Variable Neighborhood Search

The demand ordering is important because the improvement method, which
is based on changing one demand from its current path to another, starts
with the demand that has the largest unit cost. The first candidate move
is then to reassign the demand that is at the top of the unit cost list. If
reassigning this demand leads to an improving move, the move is executed
to change the current solution. If an improving move that involves reassign-
ing the first demand in the list cannot be found, then the second demand
is considered. The process continues until a demand is found for which a
reassignment of path leads to an improving move. If all the demands are ex-
amined and no improving move is found, the local search is abandoned. Each
time an improvement is achieved while executing the local search procedure,
the solution is inserted in the reference set following the quality criterion.
Therefore, the improved solution is included in the reference set if it is more
cost effective than the worst solution in the set.

– Use of memory. If the value of k, which determines the neighborhood struc-
ture to be used, reaches the maximum value kmax set to the number of
demands, then in order to guide the search over promising areas, we make
use of two ways of adaptive memory. First of all, we rebuild the reference
set by keeping the best three solutions according to the design cost and

Using Memory to Improve the VNS Metaheuristic 89

replacing the other two solutions in the set by two disperse solutions. These
two disperse solutions are built by means of a constructive method that at-
tempts to best utilize the resources in the network while avoiding the use of
the paths used for the three best solutions in the reference set. Then, the
base network is evolved employing the information embedded in the refer-
ence set as proposed in [8]. The main criteria used to evolve the base network
relates to the number of times a segment has appeared in the paths assigned
to the demands in the reference set solutions. The evolution procedure uses
global (referred to the whole search process) and local (referred to the cur-
rent reference set) information in the form of counters that keep track of the
number of channels used in each segment in order to decide where to add
equipment to the current base. In this process, tabu search contributes with
a short term memory component since we keep a tabu list that records on
which segments additional capacity was installed in the last three evolution
processes. Since the amount of spare capacity on the current base network
has been updated, the paths for each demand are recalculated. The ratio-
nale behind rebuilding the reference set of solutions before updating the base
network is to keep both goodness and diversity at the time to decide where
additional capacity has to be installed.

After rebuilding the reference set, updating the base network and obtain-
ing the k-shortest paths for each demand, a new current solution is obtained
by combining the solutions in the reference set as the scatter search meta-
heuristic proposes. The new current solution is constructed by combining
the three solutions in the reference set with the best design costs. If the
paths assigned to a given demand are equal in these three solutions, the new
solution uses the same path for that demand. Otherwise, the path assigned
to the demand is chosen to best utilize the additional capacity installed on
the current base network.

4 Computational Results

We have used several problem instances to test the performance of the proposed
Hybrid Basic Variable Neighborhood Search metaheuristic that makes use of
adaptive memory mechanisms. The results given by this hybrid method are then
compared to the results given by the VNS without the use of any memory and to
the results provided by CPLEX. However, the aim of this paper is to emphasize
how the use of memory to guide the search in a variable neighborhood search
algorithm leads to significant improvements in the final design costs. The results
obtained by using CPLEX are reported as a reference to test the quality of the
solutions found during the search.

The instances used for testing consists of both real (shared by Dr. Leonard Lu
of AT&T Labs) and randomly generated instances, which are available under re-
quest. The random instances are based on the networks corresponding to the real
instances, with the demands randomly generated. The motivation for generating
random instances is to study the performance of our methods on instances with

90 B. Melián

Table 1. Test problem characteristics

Set Name |N | |E| |D|
MetroD 11 16 10, 20, 30, 54

27 10, 20, 30, 54
42 10, 20, 30, 48, 54

Extant0D 12 17 15, 19, 21, 44, 66
33 15, 21, 44, 66
46 15, 19, 21, 44, 66

Example2D 17 26 27, 36, 79, 81, 135
68 27, 36, 81, 135

NationalD 50 63 45, 65, 91, 112

various characteristics. In this case, differently sized networks are considered with
several densities according to the number of links. Then, several sets of uniform
and clustered demands are randomly created. Uniform demands are generated by
randomly selecting an origin and a destination, where each pair has the same prob-
ability of being selected. Clustered demands are generated selecting a subset of
nodes as “high traffic” locations and then generating a demand pattern that has a
higher density around those nodes. The costs for SDH and WDM systems depend
on the length of the edges in all these instances. Demands are in 2.5 Gbit/s units
for all the instances described in this section. The (mixed) integer flow formulation
mentioned above was solved by CPLEX in order to obtain optimal solutions as a
reference for the metaheuristics. For the larger problem instances, where CPLEX
is not able to find optimal solutions, it can at least provide good bounds. All the
experiments were carried out on a Pentium 4 with 2.4 Ghz and the CPLEX calcu-
lations were performed with CPLEX version 8.1. The size of the branch&bound
tree was limited to 400 MB, which was also the termination criterion for the com-
putation. The CPLEX results were given in [5].

The problem instances are summarized in Table 1. For each set, Table 1 shows
the name, the number of nodes N, links L, and the different numbers of demands
D. Table 2 reports the data regarding the equipment cost used in the solution
of the problem instances listed in Table 1.

Table 3 summarizes the comparison between the standard basic variable neigh-
borhood search (BVNS) and the hybrid basic variable neighborhood search (HB-
VNS), where both procedures were run 10 times for 5000 local searches using
up to 50 paths for each demand. Since in real-world applications, there must
be a limit in the number of nodes between the origin and destination nodes of
a demand, our method builds a list of paths for each demand as said before.
In order to carry out our experiments, we have built up to 50 paths for each
demand when possible. The design costs reported in this table are the best costs
out of the 10 obtained for each instance. The computational times show the time
at which the procedures found the best design cost reported. The so performed
experiments provide as with a fair way to compare both metaheuristics and to
corroborate the effectiveness of using memory in a basic variable neighborhood
search procedure, which is the goal of this paper.

Using Memory to Improve the VNS Metaheuristic 91

Table 2. Description of costs

Constant Cost Description

CF
e $1, 400 ∗ length(e) Cost of a fiber on a segment e

CW
e $95,000 cost of a WDM unit

CO $120,000 cost of an OXC unit

Cc $18,000 channel cost of a WDM unit

Cp $10,000 port cost of an OXC unit

The advantage of using memory as explained above to develop an HBVNS
is significant. For the smaller instances both metaheuristics reach the same so-
lution. However, as the network size increases, the HBVNS gets better results.
The objective function values have improved in 17 out of 38 instances as re-
ported in this table. Although the computational times have increased in the
HBVNS compared to the standard BVNS, cost reduction is the main goal in a
telecommunications network design problem. Moreover, HBVNS is able to reach
five optimal solutions that the former metaheuristic did not find. Note that the
results given by CPLEX are lower bounds to the real WDM network design prob-
lem, since a node-arc model has all paths implicitly available. In other words,
the solution to the model presented above provides a lower bound because the
number of intermediate nodes for paths between origin and destination pairs is
not bounded. Since the metaheuristics get an upper bound of the problem, for
the 15 instances in which HBVNS and CPLEX find the same solution, it is the
optimal solution to the problem.

In order to test if we may conclude from sample evidence that the use of
memory given by the reference set in the basic variable neighborhood search
makes a significant difference in the performance of the overall hybrid approach,
we use Wilcoxon Signed Ranks Test [1]. Wilcoxon suggested a T statistic, which
has the approximate quantiles given by the normal distribution, under the null
hypothesis that there are no significant differences between the two compared
procedures. The critical region of approximate size α = 0.05 corresponds to all
values of T less than −1.6449. Since in our case T = −2.8977, the null hypothesis
is rejected and we may conclude that there is a significant difference between the
BVNS and our hybrid approach that makes use of adaptive memory mechanisms.

Summarizing the results we may consider the following concerns. The first
refers to the use of memory for enhancing the quality of the results of the variable
neighborhood search metaheuristic. As an overall observation, we may deduce
that the concept of a simple use of memory derived from ideas of the scatter
search and tabu search metaheuristics is able to considerably enhance the quality
of variable neighborhood search. A final observation refers to the overall neces-
sity of the heuristic concepts. Though CPLEX is capable to produce optimal
or at least competitive results for all problem instances examined in this paper,
the run-times are almost prohibitively long for the larger instances, and CPLEX
is not able to solve considerably larger instances beyond the dimension of those

92 B. Melián

Table 3. Overview of the computational results

BVNS HBVNS CPLEX
|N| |E| |D| Cost Time[s] Cost Time [s] Cost Time [s] Bound

11 16 10 4.09 0.02 4.09 0.01 4.09 0.20 opt
20 4.38 0.03 4.38 0.02 4.38 0.75 opt
30 8.42 3.70 8.42 0.09 8.42 0.39 opt
54 14.12 3.51 14.11 0.54 14.03 6.53 opt

27 10 2.75 0.01 2.75 0.01 2.75 0.29 opt
20 4.26 0.01 4.26 0.03 4.03 1.09 opt
30 6.46 0.04 6.46 0.06 6.40 1.76 opt
54 11.22 1.48 11.22 1.32 10.84 17.34 opt

42 10 1.96 0.01 1.96 0.03 1.94 0.38 opt
20 3.08 0.03 3.08 0.03 3.06 1.21 opt
30 5.38 0.01 5.38 0.02 5.38 7.21 opt
48 7.11 0.05 7.11 0.06 6.99 10.89 opt
54 8.42 1.31 8.42 0.12 8.35 39.44 opt

12 17 15 3.69 0.01 3.69 0.01 3.69 0.75 opt
19 6.26 0.05 6.26 0.29 6.26 8.04 opt
21 6.21 0.55 6.21 0.53 6.21 3.45 opt
44 15.05 0.50 14.55 17.02 14.36 96.11 opt
66 12.59 0.06 12.59 0.61 11.83 81.81 opt

33 15 3.69 0.5 3.69 0.14 3.69 7 opt
21 6.50 9.31 6.03 23.42 6.03 67 opt
44 16.06 5.84 14.11 25.09 13.66 4228 opt
66 15.65 0.19 13.68 45.06 11.77 9024 opt

46 15 3.69 0.3 3.69 0.21 3.69 12 opt
21 6.62 2.10 6.03 2.26 6.03 165 opt
44 15.53 0.74 14.08 55.84 13.16 6148 opt
66 17.69 0.19 11.77 37.27 11.77 11194 opt

17 26 27 23.59 41.01 22.47 22.85 22.47 3 opt
36 82.23 126.90 81.84 187.89 81.84 31 opt
81 98.34 74.94 97.20 253.12 96.65 470 opt

135 173.95 140.89 172.62 546.29 170.15 29255 opt
68 27 20.63 67.52 19.69 116.26 19.27 110 opt

36 64.20 2.90 64.20 56.81 63.75 28841 opt
81 79.90 298.45 81.52 401.87 76.66 216806 75.21

135 145.67 807.56 144.73 661.21 138.40 81098 130.98

50 63 45 37.72 281.58 35.07 298.31 34.07 854 opt
65 50.38 32.73 49.86 820.22 48.65 77493 45.56
91 60.52 1112.69 56.95 463.77 55.64 95755 53.19

112 43.56 77.06 43.97 672.33 42.88 39544 38.67

considered in this paper. These networks clearly show the limits of the CPLEX
approach while the heuristics are able to scale much better with the network
size and thus are easily applicable to even larger problem instances occurring
in various real-world planning problems. Experience from the past shows that
CPLEX often cannot even provide a useful bound if networks with more than 100

Using Memory to Improve the VNS Metaheuristic 93

nodes are considered, implying that it is out of question whether the heuristics
are useful for solving the considered class of telecommunications network design
problems.

5 Conclusions and Future Research

We have presented a variable neighborhood search metaheuristic for the com-
bined SDH and WDM equipment planning and routing problem. The incorpo-
ration of adaptive memory mechanisms from the scatter search and tabu search
metaheuristics leads to a further improvement of the results, obtaining signifi-
cant differences in the design costs of the problem at hand. For smaller problem
instances, CPLEX remains the best choice but for large problem instances the
hybrid variable neighborhood search is very competitive with respect to the ob-
jective values while being much faster than CPLEX.

As future research, we can consider bigger instances with more than 50 nodes,
for which in some cases it is not even possible to get feasible solutions using
CPLEX. Other possible extension is to analyze which of the adaptive memory
mechanisms used in this paper is contributing the most to the effectiveness of
our hybrid basic variable neighborhood search.

References

1. W.J. Conover. Practical Nonparametric Statistics. John Wiley and Sons, 1999.
2. F. Glover and M. Laguna. Bandwidth packing: A tabu search approach. Manage-

ment Science, 39(4):492–500, 1993.
3. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
4. P. Hansen and N. Mladenovic. Variable neighborhood search. In F. Glover and

G. A. Kochenberger, editors, Handbook of Metaheuristics. 2003.
5. H. Höller, B. Melián, and S. Voß. Applying the pilot method to improve vns and

grasp metaheuristics for the design of sdh/wdm networks. apr 2006. Submmited for
publication.

6. M. Laguna and R. Mart́ı. Scatter Search: Methodology and Implementations in C.
Kluwer Academic Publishers, Boston, 2003.

7. B. Lee and W. Kim. Integrated Broadband Networks. Artech House, Boston, 2002.
8. B. Melian, M. Laguna, and J.A. Moreno-Perez. Minimizing the cost of placing and

sizing wavelength division multiplexing and optical cross-connect equipment in a
telecommunications network. Networks, 45(4):199–209, 2005.

Multi-level Ant Colony Optimization for

DNA Sequencing by Hybridization�

Christian Blum�� and Mateu Yábar Vallès

ALBCOM, Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain

cblum@lsi.upc.edu

Abstract. Deoxyribonucleic acid (DNA) sequencing is an important
task in computational biology. In recent years the specific problem of
DNA sequencing by hybridization has attracted quite a lot of interest
in the optimization community. This led to the development of several
metaheuristic approaches such as tabu search and evolutionary algo-
rithms. In this work we propose an ant colony algorithm to resolve this
problem. In addition, we apply our algorithm within a multi-level frame-
work which helps in significantly reducing the computation time. The
results show that our algorithm is currently among the state-of-the-art
methods for this problem.

1 Introduction

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic instructions
for the biological development of all cellular forms of life. Each DNA molecule
consists of two (complementary) sequences of four different nucleotide bases,
namely adenine (A), cytosine (C), guanine (G), and thymine (T). In mathe-
matical terms each of these sequences can be represented as a word from the
alphabet {A,C,G,T}. One of the most important problems in computational
biology consists in determining the exact structure of a DNA molecule, called
DNA sequencing. This is not an easy task, because the nucleotide base sequences
of a DNA molecule (henceforth called DNA strands or sequences) are usually
so large that they cannot be read in one piece. In 1977, 24 years after the dis-
covery of DNA, two separate methods for DNA sequencing were developed: the
chain termination method and the chemical degradation method. Later, in the
late 1980’s, an alternative and much faster method called DNA sequencing by
hybridization was developed (see [1,17,13]).

DNA sequencing by hybridization works roughly as follows. The first phase
of the method consists of a chemical experiment which requires a so-called DNA
array. A DNA array is a two-dimensional grid whose cells typically contain all

� This work was supported by the Spanish CICYT project OPLINK (grant TIN-2005-
08818-C04-01), and by the “Juan de la Cierva” program of the Spanish Ministry of
Science and Technology of which Christian Blum is a post-doctoral research fellow.

�� Corresponding author.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 94–109, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization 95

possible DNA strands—called probes—of equal length l. After the generation
of the DNA array, the chemical experiment is started. It consists of bringing
together the DNA array with many copies of the DNA sequence to be read,
also called the target sequence. Hereby, the target sequence might react with a
probe on the DNA array if and only if the probe is a subsequence of the target
sequence. Such a reaction is called hybridization. After the experiment the DNA
array allows the identification of the probes that reacted with target sequences.
This subset of probes is called the spectrum. Two types of errors may occur
during the hybridization experiment:

1. Negative errors: Some probes that should be in the spectrum (because
they appear in the target sequence) do not appear in the spectrum. A par-
ticular type of negative error is caused by the multiple existence of a probe
in the target sequence. This cannot be detected by the hybridization exper-
iment. Such a probe will appear at most once in the spectrum.

2. Positive errors: A probe of the spectrum that does not appear in the target
sequence is called a positive error.

In mathematical terms, the spectrum obtained from the hybridization experi-
ment is not a multiset, that is, each member of the spectrum appears only once
in the spectrum. The second phase of DNA sequencing by hybridization consists
in the reconstruction of the target sequence from the spectrum. Let us, for a
moment, assume that the obtained spectrum is perfect, that is, free of errors.
In this case, the original sequence can be reconstructed in polynomial time with
an algorithm proposed by Pevzner in [18]. However, as the generated spectra
generally contain negative as well as positive errors, the perfect reconstruction
of the target sequence is NP -hard.

1.1 DNA Sequencing by Hybridization

In order to solve the computational part of DNA sequencing by hybridization,
one usually solves an optimization problem of which the optimal solutions can
be shown to have a high probability to resemble the target sequence. In this
work we consider the optimization problem that was introduced as a model
for DNA sequencing by hybridization by B�lażewicz et al. in [3]. In fact, this
optimization problem—outlined in the following—is a version of the selective
traveling salesman problem.

Henceforth, let the target sequence be denoted by st. The number of nu-
cleotide bases of st shall be denoted by n (i.e., st ∈ {A,C,G,T}n). Further-
more, the spectrum—as obtained by the hybridization experiment—is denoted
by S = {1, . . . , m}. Remember that each i ∈ S is an oligonucleotide (i.e., a short
DNA strand) of length l (i.e., i ∈ {A,C,G,T}l). In general, the length of any
oligonucleotide i is denoted by l(i). Let us now define a completely connected
directed graph G = (V, A) over the spectrum, that is, V = S (see also [16]). To
each link aij ∈ A is assigned a weight oij , which is defined as the length of the
longest DNA strand that is a suffix of i and a prefix of j. Let p = (i1, . . . , ik)
be a directed path without loops in G. The length of such a path p, denoted by

96 C. Blum and M. Yábar Vallès

l(p), is defined as the number of vertices (i.e., oligonucleotides) on the path. In
the following we denote by p[r] the r-th vertex in a given path p (starting from
position 1). In contrast to the length, the cost of a path p is defined as follows:

c(p) ← l(p) · l −
l(p)−1∑
r=1

op[r] p[r+1] (1)

The first term sums up the length of the olionucleotides on the path, and the
second term (which is substracted from the first one) sums up the overlaps
between the neighboring oligonucleotides on p. In fact, c(p) is equivalent to the
length of the DNA sequence that is obtained by the sequence of oligonucleotides
in p. The problem of DNA sequencing by hybridization consists of finding a
directed Hamiltonian path p∗ in G with l(p∗) ≥ l(p) for all possible paths p
that fulfill c(p) ≤ n. In the following we refer to this optimization problem
as sequencing by hybridization (SBH). In the following we will denote an SBH
problem instance by (G, n).

ACT TGA

GAC CTC

TAA

Fig. 1. The completely connected
directed graph with spectrum
S = {ACT,TGA,GAC,CTC,TAA}
as the vertex set. The edge weights
(i.e., overlaps) are not indicated for
readability reasons. For example,
the weight on the edge from TGA
to GAC is 2, because GA is the
longest DNA strand that is a suffix
of TGA and a prefix of GAC.

As an example consider the target
sequence st = ACTGACTC. Assuming
l = 3, the ideal spectrum is {ACT,CTG,
TGA,GAC,ACT,CTC}. Let us assume that
the hybridization experiment provides us
with the following faulty spectrum S =
{ACT,TGA,GAC,CTC,TAA}. See Figure 1
for the corresponding graph G. This spec-
trum has two negative errors, because
ACT should appear twice, but can—due
to the characteristics of the hybridization
experiment—only appear once, and CTG
does not appear at all in S. Furthermore,
S has one positive error, because it in-
cludes oligonucleotide TAA, which does not
appear in the target sequence. An op-
timal Hamiltonian path in G is p∗ =
(ACT,TGA,GAC,CTC) with l(p∗) = 4 and
c(p∗) = 8. The DNA sequence that is re-
trieved from this path is ACTGACTC, which
is equal to the target sequence.

1.2 Existing Approaches

The first approach to solve the SBH problem was a branch & bound method
proposed in [3]. However, this approach becomes impractical with growing prob-
lem size. For example, the algorithm was only able to solve 1 out of 40 different
problem instances concerning target sequences with 200 nucleotide bases within
one hour. Another argument against this branch & bound algorithm is the fact
that an optimal solution to the SBH problem does not necessarily provide a

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization 97

DNA sequence that is equal to the target sequence. This means that the im-
portance of finding optimal solutions is not the same as for other optimization
problems. Therefore, the research community has focused on (meta-)heuristic
techniques for tackling the SBH problem. In addition to a few simple heuristics
(see [3,2]), tabu and scatter search approaches [4,5,6] as well as evolutionary
algorithms [7,6,14,11,10] were developed. Moreover, a GRASP method proposed
in [15] deals with an easier version of the problem in which the first oligonu-
cleotide of each target sequence is given.

1.3 Our Contribution

In this paper we propose an ant colony optimization (ACO) [12] algorithm for
DNA sequencing by hybridization. The choice of ACO is motivated by the fact
that neighborhood search based methods do not seem to work very well for
this problem. In addition, we propose the application of our ACO approach
within a multi-level framework, resulting in a so-called multi-level technique
(see, for example, [20,19]). The basic idea of a multilevel technique is a simple
one. Starting from some given problem instance, smaller and smaller problem
instances are obtained by successive coarsening until some stopping criteria are
satisfied. For example, in graph-based problems the coarsening of a problem
instance is usually obtained by edge contractions. This creates a hirarchy of
problem instances in which the problem instance of a given level is always smaller
(or equal) to the problem instance of the next higher level. Then, a solution is
computed to the smallest problem instance and successively transformed into a
solution of the next higher level until a solution for the original problem instance
is obtained. At each level, the obtained solution might be subject to a refinement
process. In our case, we will use the ACO algorithm as refinement process at
each level.

The organization of the paper is as follows. In Section 2 we describe our ACO
algorithm, and in Section 3 we present the multi-level framework. Section 4 is
devoted to the experimental evaluation of our approaches. A comparison to the
best techniques from the literature is conducted. Finally, in Section 5 we offer
conclusions and an outlook on future work.

2 ACO for DNA Sequencing by Hybridization

ACO algorithms are iterative stochastic search techniques which tackle an op-
timization problem as follows. At each iteration candidate solutions are con-
structed in a probabilistic way. The probabilistic solution construction is based
on a so-called pheromone model (denoted by T), which is a set of numerical val-
ues that encode the algorithms’ search experience. After the construction phase,
some of the generated solutions are used to update the pheromone values in a
way that aims at biasing the future solution construction towards good solutions
found during the search process.

98 C. Blum and M. Yábar Vallès

2.1 The Objective Function

Before we outline our particular ACO implementation for SBH, we first deal
with an issue concerning the objective function. Given a feasible solution p to
the problem instance (G, n),1 the objective function value l(p) is the number of
olionucleotides in p. This objective function has the following disadvantage when
used in a search algorithm. Let p and p′ be two solutions with l(p) = l(p′) and
c(p) < c(p′).2 Even that the objective function l(·) can not distinguish between
p and p′, the intuition is to prefer p, because the DNA sequence it induces is
shorter. This implies a higher chance for an extension of p while respecting the
constraint c(p) ≤ n. Therefore, we define a comparison operator f(·) for the
purpose of tie-breaking as follows:

f(p) > f(p′) ⇔ l(p) > l(p′) or (l(p) = l(p′) and c(p) < c(p′)) (2)

2.2 The Algorithm

Our ACO approach, which is a MAX -MIN ant system (MMAS) implemented
in the hyper-cube framework (HCF) [8], solves the SBH problem as shown in
Algorithm 1.. The data structures used by this algorithm, in addition to counters
and to the pheromone model T , are:

– the iteration-best solution pib: the best solution generated in the current
iteration by the ants;

– the best-so-far solution pbs: the best solution generated since the start of the
algorithm;

– the restart-best solution prb: the best solution generated since the last restart
of the algorithm;

– the convergence factor cf, 0 ≤ cf ≤ 1: a measure of how far the algorithm is
from convergence;

– the Boolean variable bs update: it becomes true when the algorithm reaches
convergence.

The algorithm works as follows. First, all the variables are initialized, and the
pheromone values are set to their initial value 0.5 in procedure InitializePheromone

Values(T). At each iteration, first nf ants construct a solution each in procedure
ConstructForwardSolution(T), and then nb ants construct a solution each in pro-
cedure ConstructBackwardSolution(T). A forward solution is constructed from left
to right, and a backward solution from right to left. Subsequently, the value of
the variables pib, prb and pbs is updated (note that, until the first restart of the
algorithm, it holds that prb ≡ pbs). Fourth, pheromone values are updated via
the ApplyPheromoneUpdate(cf , bs update, T , pib, prb, pbs) procedure. Fifth, a new
value for the convergence factor cf is computed. Depending on this value, as
well
1 Remeber that G is the completely connected, directed graph whose node set is the

spectrum S, and n is the length of the target sequence. A solution p is a path in G.
2 Remeber that c(p) denotes the length of the DNA sequence derived from p.

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization 99

Algorithm 1. ACO for the SBH problem
input: a problem instance (G, n)
pbs ← null
prb ← null
cf ← 0
bs update ← false
InitializePheromoneValues(T)
while termination conditions not satisfied do

for j ← 1 to nf do
pj ← ConstructForwardSolution(T)

end for
for j ← nf + 1 to nf + nb do

pj ← ConstructBackwardSolution(T)
end for
pib ← argmax(f(p1), ..., f(pnf +nb

))
if prb = null or f(pib) > f(prb) then prb ← pib

if pbs = null or f(pib) > f(pbs) then pbs ← pib

ApplyPheromoneUpdate(cf ,bs update,T ,pib,prb,pbs)
cf ← ComputeConvergenceFactor(T)
if cf > 0.9999 then

if bs update = true then
ResetPheromoneValues(T)
prb ← null
bs update ← false

else
bs update ← true

end if
end if

end while
output: pbs

as on the value of the Boolean variable bs update, a decision on whether to
restart the algorithm or not is taken. If the algorithm is restarted, the pro-
cedure ResetPheromoneValues(T) is applied and all the pheromones are reset to
their initial value (0.5). The algorithm is iterated until some opportunely defined
termination conditions are satisfied. Once terminated the algorithm returns the
best-so-far solution pbs. The main procedures of Algorithm 1. are now described
in detail.

ConstructForwardSolution(T): Starting from an empty path p = (), this function
constructs a path p = (i1, . . . , ik) in G from left to right by adding exactly one
oligonucleotide at each construction step. This is done probabilistically using
a pheromone model T , which consists of pheromone values τij and τji for each

100 C. Blum and M. Yábar Vallès

pair i, j ∈ S (i �= j), that is, to each directed link of G is associated a pheromone
value. Additionally, T comprises pheromone values τ0i and τi0 for all i ∈ S,
where 0 is a non-existing dummy oligonucleotide.

Given the current path p = (i1, . . . , it), Sav = S \ {i1, . . . , it} is the set of
available oligonucleotides, that is, the set of oligonucleotides that can be added
to p at the next construction step. Such a construction step is performed as
follows. First, we compute a desirability value μitj := τitj · [ηitj]β for all j ∈ Sav,
where ηitj := oitj/(l − 1). Hereby, β is a positive constant that we have set
to 5 in our experiments. The values ηitj are called heuristic information. They
are defined such that ηitj ∈ [0, 1] grows with growing overlap oitj between the
oligonucleotides it and j. Note that when the pheromone values are all equal, the
desirability value μitj is high exactly when oitj is high. Then, we generate a so-
called restricted candidate list Srcl ⊆ Sav with a pre-defined cardinality cls such
that μitj ≤ μitu for all j ∈ Sav and u ∈ Srcl. Then, with probability q ∈ [0, 1)
the next oligonucleotide it+1 is chosen from Srcl such that

it+1 := arg maxj∈Sav{μitj} . (3)

Otherwise, the next oligonucleotide it+1 is chosen from Srcl by roulette-wheel-
selection according to the following probabilities:

pitj :=
μitj∑

u∈Srcl μitu
(4)

Note that q (henceforth called the determinism rate) and cls are important
parameters of the algorithm.

The only construction step that is different is the first one, that is, when p = ().
In this case, the desirability values are computed as μ0j := τ0j · [η0j]5 ∈ [0, 1] for
all j ∈ Sav (note that Sav = S when p = ()). Hereby,

η0j :=
l − opre(j) j + oj suc(j)

2(l − 1)
, (5)

where

pre(j) ← argmax{oi j | i ∈ S, i �= j} , (6)
suc(j) ← argmax{oj i | i ∈ S, i �= j} , (7)

We henceforth call pre(j) the best predecessor of j, that is, the oligonucleotide
that has the highest overlap with j when placed before j. Accordingly, we call
suc(j) the best successor of j. In both cases, if there is more than one best
predecessor (respectively, successor), the first one found is taken. Note that this
way of defining the heuristic information favours oligonucleotides that have a
very good “best successor”, and at the same time a bad “best predecessor”. The
intuition is that the spectrum most probably does not contain an oligonucleotide
that is a good predecessor for the first oligonucleotide of the target sequence.

Having defined the desirability value for the first construction step, the further
procedure concerning the derivation of the restricted candidate list Srcl and the

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization 101

choice of one of the oligonucleotides from Srcl is the same as outlined above for
standard construction steps.

Finally, the construction process stops as soon as c(p) ≥ n, that is, when the
DNA sequence derived from the constructed path p is at least as long as st. In
case c(p) > n, we look for the longest (in terms of the number of oligonucleotdes)
subpath p′ of p such that c(p) ≤ n, and replace p by p′.

ConstructBackwardSolution(T): In contrast to ConstructForwardSolution(T), this
function constructs solutions from right to left. Hereby—given a partial solu-
tion p = (it, . . . , i1)—the desirability values are still computed as if the solution
construction were from left to right. For example, the desirability value of adding
an oligonucleotide j to the front of p is μjit (instead of μitj). This is done such
that for the construction of a solution p the same pheromone values are used,
no matter if the solution is constructed from left to right, or from right to left.

ApplyPheromoneUpdate(cf ,bs update,T ,pib,prb,pbs): As usual for MMAS imple-
mentations in the HCF, we use at each iteration a weighted combination of the
solutions pib, prb, and pbs for updating the pheromone values. The weight of each
solution depends on the value of the convergence factor cf and on the Boolean
variable bs update. In general, the pheromone update is performed as follows:

τij ← τij + ρ · (mij − τij) , ∀ τij ∈ T , (8)

where ρ ∈ (0, 1] is a constant called learning rate, and mij is composed as follows:

mij ← (κib · δij(pib)) + (κrb · δij(prb)) + (κbs · δ(pbs)) , (9)

where κib is the weight of solution pib, κrb is the weight of solution prb, κbs is the
weight of solution pbs, and κib + κrb + κbs = 1. Moreover, when i �= 0 and j �= 0,
δij(p) is a function that returns 1 in case j is the direct successor of i in p, and 0
otherwise. In case i = 0, δ0j(p) returns 1 in case j is the first oligonucleotide in p,
and 0 otherwise. In case j = 0, δi0(p) returns 1 in case i is the last oligonucleotide
in p, and 0 otherwise. After the pheromone update rule (Equation 8) is applied,
pheromone values that exceed an upper limit of τmax = 0.99 are set back to
τmax, and pheromone values that fall below a lower limit τmin = 0.01 are set
back to τmin. This prevents the algorithm from complete convergence.

Equation 9 allows to choose how to schedule the relative influence of the three
solutions used for updating pheromones. The exact schedule for the setting of
the three solution weights used by MMAS in the HCF is shown in Table 1.
In the early stages of the search (i.e., when cf < 0.7), only the iteration-best
solution is used. Then, when the value of the convergence factor increases (i.e.,
0.7 ≤ cf < 0.9) one third of the total influence is given to the restart-best so-
lution, which then increases to two thirds when 0.9 ≤ cf < 0.95. Eventually, all
the influence is given to the restart-best solution (i.e., when cf ≥ 0.95). Once the
value of the convergence factor raises above 0.9999, the Boolean control variable
bs update is set to true, and all the influence is given to the best-so-far solution.

102 C. Blum and M. Yábar Vallès

Table 1. Setting of κib, κrb and κbs depending on the convergence factor cf and the
Boolean control variable bs update

bs update = false bs update

cf < 0.7cf ∈ [0.7, 0.9)cf ∈ [0.9, 0.95)cf ≥ 0.95 = true

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

ComputeConvergenceFactor(T): The convergence factor cf , which is a function
of the current pheromone values, is computed as follows:

cf ← 2

⎛
⎜⎝

⎛
⎜⎝

∑
τij∈T

max{τmax − τij , τij − τmin}

|T | · (τmax − τmin)

⎞
⎟⎠ − 0.5

⎞
⎟⎠

This formula says that when the algorithm is initialized (or reset) so that all
pheromone values are set to 0.5, then cf = 0, while when the algorithm has
converged, then cf = 1. In all other cases, cf has a value in (0, 1).

3 The Multi-level Framework

In [9] we proposed a constructive heuristic called sub-sequence merger (SM)
for SBH. Instead of constructing a solution from left to right (or from right
to left), SM starts from a set of |S| paths, each of which contains exactly one
oligonucleotide i ∈ S. In subsequent steps the heuristic merges paths until a
path of sufficient size is obtained. We use the same idea for defining a multi-level
framework for the ACO algorithm outlined in the previous section.

3.1 Instance Contraction

The first step of a multi-level framework consists in contracting the original prob-
lem instance iteratively in order to generate a sequence of smaller and smaller
problem instances. In the case of the SBH problem we use the following contrac-
tion mechanism (see also Algorithm 2.): At each contraction step we have given
a set P of paths in G (in fact, the contraction starts from a set of |S| paths, each
of which contains exactly one oligonucleotide i ∈ S). A contraction step consists
of merging some of these paths. Hereby, we consider only those paths p and p′

where the last oligonucleotide of p and the first one of p′ have a fixed overlap,
which is different for each construction step; starting from the maximum l − 1
and getting reduced step by step. In addition it is required that p′ is the unique
best successor of p, and that p is the unique best predecessor of p′. The best
successor (respectively, predecessor) of a path p are hereby defined as follows:

suc(p) ← argmax{op p′ | p′ ∈ P, p′ �= p} , (10)
pre(p) ← argmax{op′ p | p′ ∈ P, p′ �= p} . (11)

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization 103

Algorithm 2. Instance contraction
1: input: a problem instance (G, n)
2: P ← {(i) | i ∈ S}
3: stop = false
4: level = 1
5: for overlap = l − 1, . . . , 1 do
6: changed = false
7: while ∃ p, p′ ∈ P s.t. op p′ = overlap & |Ssuc(p)| = 1 & |Spre(p′)| = 1 &

suc(p) = p′ & pre(p′) = p & stop = false do
8: changed = true
9: Add path p′ to the end of path p

10: P ← P \ {p′}
11: if c(p) ≥ n then
12: stop = true
13: end if
14: end while
15: if stop = false and changed = true then
16: (Glevel, n) = GenerateProblemInstance(P)
17: level = level + 1
18: end if
19: end for
20: output: A sequence of instances (G0, n) = (G, n), (G1, n), . . . , (Gd, n)

Hereby, op p′ is defined as the overlap between the last oligonucleotide of p and
the first one of p′. Futhermore, in Algorithm 2. Ssuc(p) is defined as the set of
best successors of p, that is, Ssuc(p) ← {p′ ∈ P | op p′ = op suc(p)}; and Spre(p)
is defined as the set of best predecessors of p, that is, Spre(p) ← {p′ ∈ P |
op′ p = opre(p) p}. The idea of this restriction is produce (if possible) error free
sub-sequences of the original target sequence.

Each contraction step leads to a new set of paths P from which a new (smaller)
problem instance is generated in function GenerateProblemInstance(P). This is
done by deriving from each path p ∈ P the corresponding DNA strand. This
mechanism generates a sequence (G0, n) = (G, n), (G1, n), . . . , (Gd, n) of smaller
and smaller problem instances. (Gd, n) denotes the smallest instances that can
be obtained (that is, a further construction step would produce a path p with
c(p) ≥ n). Note that all these problem instances have the same target sequence.
Moreover, a solution to any of these instances can directly be seen as a solution
to any of the other instances.

3.2 Application of ACO in the Multi-level Framework

The application of the ACO algorithm proposed in Section 2.2 in the multi-level
framework works as follows. Given the sequence (G0, n) = (G, n), (G1, n), . . . ,
(Gd, n) of problem instances, ACO is first applied to the smallest instance (Gd, n).
Subsequently, ACO is applied in the given order to all problem instances

104 C. Blum and M. Yábar Vallès

(Gd−1, n), . . . , (G0, n). Hereby we always use the best solution of the ACO algo-
rithm found for an instance (Gr−1, n) as first best-so-far solution for the applica-
tion of ACO to the instance (Gr, n). As stopping condition for the whole procedure
we use a CPU time limit. The given CPU time is distributed such that the appli-
cation of ACO to an instance (Gr, n) is always allocated the double of the CPU
time that is allocated for the application of ACO to instance (Gr−1, n). Due to
the fact that instance (Gr−1, n) is smaller than instance (Gr , n) it is reasonable to
allocate more time to (Gr, n). For the application of ACO to an instance (Gr , n)
we use two stopping conditions: (1) the allocated CPU time, and (2) a maximum
number of iterations without improving the best-so-far solution. Whenever one of
the two conditions is fulfilled the application of ACO at the corresponding level
is terminated, and the application to the next level starts. Note that the use of
the second stopping condition implies that the last application of ACO (that is,
the application to the original instance (G0, n)) may use all the remaining CPU
time, which is sometimes more than the allocated CPU time. Moreover, the second
stopping condition is not used for the last application of ACO. Finally, for all the
experiments outlined in the following section we have set the maximum number
of iterations without improvement to 100. In general, this may be an important
parameter of the algorithm whose tuning is part of future work. In our current
version we performed a tuning by hand.

4 Experimental Evaluation

We implemented our approach in ANSI C++ using GCC 3.2.2 for compiling the
software. Our experimental results were obtained on a PC with an AMD64X2
4400 processor and 4 Gb of memory, running Debian Linux.

A wide-spread set of benchmark instances for DNA sequencing by hybridiza-
tion was introduced by B�lażewicz and colleagues.3 It consists of 40 real DNA
sequences of length 109, 209, 309, 409, and 509 (alltogether 200 instances). Based
on real hybridization experiments, the spectra were generated with probe size
l = 10. All spectra contain 20% negative errors as well as 20% positive errors.
For example, the spectra concerning the target sequences of length 109 contain
100 oligonucleotides of which 20 oligonucleotides do not appear in the target se-
quences. Therefore, an optimal solution contains 80 (respectively, 160, 240, 320,
or 400) oligonucleotides.

4.1 Tuning of ACO

First we performed tuning experiments in order to fix the free parameters of the
ACO algorithm: the candidate list size cls ∈ {2, 3, 5, 10, all}, the determinism
rate q ∈ {0.0, 0.5, 0.75, 0.9, 0.95}, and the number of forward solutions, respec-
tivley backward solutions, (nf , nb) ∈ {(6, 0), (3, 3), (0, 6)}. Alltogether, this re-
sults in 75 different settings of the ACO algorithm. We applied ACO with all 75
settings 10 times to each of the 200 problem instances, allowing 2 seconds for
3 They can be obtained at http://bio.cs.put.poznan.pl.

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization 105

each application concerning the the instances with spectrum size 100 (respec-
tively, 10, 50, 100, or 200 seconds for the bigger instances). Then, for each of the
5 instance groups we produced a summary of the results obtained by averaging
over the best run (out of 10) for each of the 40 instances of the group. These
summarized tuning results are shown graphically for the biggest instances (spec-
trum size 500) in Figure 2. Three different measures are considered in this figure:
the average global similarity score (see below), the number of instances solved
to optimality (out of 40), and the average computation time needed to reach
the best solution found for each instance. Hereby, the global similarity score is a
measure obtained by comparing the computed DNA sequences with the target
sequences. We used the Needleman-Wunsch algorithm for global alignment with
the following parameter settings: +1 for a match of oligonucleotides, -1 for a
mismatch or a gap.4

The results in Figure 2 allow the following conclusions. When determinism
is high and the candidate list is small, the algorithm can produce very good
results in a short time. However, it pays off spending a little more time (by
increasing the candidate list size, for example, to 10). This improves the results
while maintaining short running times. Another important observation is that
the setting (nf , nb) = (3, 3) (that is, using forward as well as backward ants)
generally improves over only using ants of one direction. Therefore, we decided to
use the following settings for all the remaining experiments: cls = 10, det = 0.9,
and (nf , nb) = (3, 3).

4.2 Final Experiments

We applied ACO as well as ACO in the multi-level framework (henceforth dented
by ML-ACO) to each of the 200 problem instances 10 times. From the best run
for each instance we produced a summary of the results averaged over the 40 in-
stances for each of the 5 instance groups. The results of ACO are shown in Table 2
(a). The second table row contains the average solution quality (i.e., the average
number of oligonucleotides in the constructed paths). Remember that the opti-
mization objective of the SBH problem is to maximize this value. The third table
row provides the number (out of 40) of problem instances solved to optimality,
that is, the number of instances for which a path of maximal length could be
found. The fourth and fifth table row provide average similarity scores obtained
by comparing the computed DNA sequences with the target sequences. The av-
erage scores in the fourth table row are obtained by the Needleman-Wunsch
algorithm, which is an algorithm for global alignment. In contrast, the average
scores that are displayed in the fifth table row are obtained by the application
of the Smith-Waterman algorithm, which is an algorithm for local alignment.
The local alignment scores are given for completness. Both algorithms were
applied with the following parameters: +1 for a match of oligonucleotides, -1
for a mismatch or a gap. Finally, the sixth table row provides the average com-
putation times for solving one instance (in seconds).
4 Remember in this context that an optimal solution to the SBH problem does not

necesarilly correspond to a DNA sequence that is equal to the target sequence.

106 C. Blum and M. Yábar Vallès

0 7 27 35 30

0 35 36 35 33

3 33 33 34 31

10 30 30 29 28

26 27 27 27 27

(a) Tuning results for nf = 6 (that is, 6 forward solutions
per iteration), and nb = 0 (that is, no backward solutions per
iteration).

0 20 39 36 36

0 40 40 40 39

1 40 40 39 39

17 37 38 38 37

34 39 37 36 36

(b) Tuning results for nf = 3 and nb = 3.

0 9 24 26 26

0 29 32 32 31

2 29 30 29 28

8 29 30 28 26

26 31 28 28 27

(c) Tuning results for nf = 0 and nb = 6.

Fig. 2. Tuning results of ACO for the 40 instances with spectrum size 500. Each
square of the 9 5x5 matrices corresponds to one algorithm setting. The matrix rows
correspond to the 5 values of the candidate list size (that is (from top to bottom),
cls ∈ {2, 3, 5, 10, all}), and the columns corresond to the determinism rate (that is
(from left to right), q ∈ {0.0, 0.5, 0.75, 0.9, 0.95}). The first matrix of each subfigure
corresponds to the values of the global similarity score, the second matrix shows the
number of instances solved to optimality, and the third matrix visualizes the compu-
tation times. For the 3 matrices on the left holds: The lighter the color, the better
then algorithm setting. For the 3 matrices on the right holds: The darker the color, the
faster the algorithm setting.

The results show the following. ACO is the first algorithm that is able to
solve all 200 problem instances to optimality, which does not mean that all
produced DNA sequences are identical to the target sequences (see the similarity
scores). Figure 3 shows a comparison of the results of ACO with the results of
the best metaheuristics from the literature. Hereby, EA1, EA2, and EA3 are
evolutionary algorithms proposed in [7,6], respectively [14] and [11]. TS is a
tabu search approach and TS/SS a tabu search approach combined with scatter
search proposed in [5]. The results show that only EA2 produces DNA sequences
with similarly high global similarity scores. Concerning the number of instances

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization 107

Table 2. Results of (a) ACO and (b) ML-ACO for the instances by B�lażewicz et al.

Spectrum size 100 200 300 400 500
Average solution quality 80 160 240 320 400
Solved instances 40 40 40 40 40
Average similarity score (global) 108.40 208.13 297.78 401.93 503.60
Average similarity score (local) 108.70 208.60 304.98 403.63 503.93
Average computation time (sec) 0.14 1.86 5.09 15.72 38.33

(a) Results of ACO

Spectrum size 100 200 300 400 500
Average solution quality 80 160 240 320 400
Solved instances 40 40 40 40 40
Average similarity score (global) 108.40 208.35 301.05 403.45 503.60
Average similarity score (local) 108.70 208.68 306.05 403.85 503.93
Average computation time (sec) 0.005 0.41 0.41 4.97 7.85

(b) Results of ML-ACO

 0

 100

 200

 300

 400

 500

 100 200 300 400 500

A
ve

ra
ge

 s
im

ila
rit

y
sc

or
e

(g
lo

ba
l)

Spectrum size

 EA1
 EA2
 EA3

 TS
 TS/SS

 ACO

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 100 200 300 400 500

In
st

an
ce

s
so

lv
ed

 to
 o

pt
im

al
ity

Spectrum size

 EA1
 EA3

 TS
 TS/SS

 ACO

(b)

Fig. 3. Comparison of ACO with the best metaheuristics from the literature concerning
(a) the global average similarity score obtained, and (b) the number of instances solved
to optimality. The comparison concerns the instances of B�lażewicz et al. Note that for
EA2 the number of solved instances is not given in the literature.

solved to optimality, ACO is clearly superior to the other approaches. However,
note that this measure is not given for EA2 in the literature.

Finally, we also applied ML-ACO (in the same way as ACO) to all 200 prob-
lem instances. The results are shown in Table 2 (b). ML-ACO also solves all
problem instances to optimality. Morever, the obtained average similarity scores
are comparable to the ones produced by ACO. The difference is in the compu-
tation time. The application of ACO in the multi-level framework substantially
reduces the computation time. More in detail, the computation times are up to
28 times lower (concerning the smallest problem instances). In the worst case
(see problem instances with spectrum size 400), the computation times are about
3 times lower.

108 C. Blum and M. Yábar Vallès

5 Conclusions

We proposed an ant colony optimization algorithm for DNA sequencing by hy-
bridization. The results show that our algorithm is among the state-of-the-art
algorithms proposed in the literature. Moreover, we presented a framework for
the application of our ant colony optimization algorithm in multiple levels, a
so-called multi-level framework. The results show that the application of our ant
colony optimization approach in the multi-level framework results in a substan-
tial CPU time reduction.

Future work consists in a more detailed study of the multi-level framework,
and in the application of our approach to larg-scale instances. In particular
the latter is important, because biologists are often faced with spectra of sev-
eral 10000 oligonucleotides. We suppose that when applied to larger problem
instances, the multi-level framework may not only reduce the necessary CPU
time, but may also improve the quality of the obtained solutions.

References

1. W. Bains and G. C. Smith. A novel method for nucleid acid sequence determina-
tion. Journal of Theoretical Biology, 135:303–307, 1988.

2. J. B�lażewicz, P. Formanowicz, F. Guinand, and M. Kasprzak. A heuristic managing
errors for DNA sequencing. Bioinformatics, 18(5):652–660, 2002.

3. J. B�lażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and J. Weglarz.
DNA sequencing with positive and negative errors. Journal of Computational
Biology, 6:113–123, 1999.

4. J. B�lażewicz, P. Formanowicz, M. Kasprzak, W. T. Markiewicz, and J. Weglarz.
Tabu search for DNA sequencing with false negatives and false positives. European
Journal of Operational Research, 125:257–265, 2000.

5. J. B�lażewicz, F. Glover, and M. Kasprzak. DNA sequencing—Tabu and scatter
search combined. INFORMS Journal on Computing, 16(3):232–240, 2004.

6. J. B�lażewicz, F. Glover, and M. Kasprzak. Evolutionary approaches to DNA se-
quencing with errors. Annals of Operations Research, 138:67–78, 2005.

7. J. B�lażewicz, M. Kasprzak, and W. Kuroczycki. Hybrid genetic algorithm for DNA
sequencing with errors. Journal of Heuristics, 8:495–502, 2002.

8. C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization.
IEEE Transactions on Systems, Man, and Cybernetics – Part B, 34(2):1161–1172,
2004.

9. C. Blum and M. Yábar Vallès. New constructive heuristics for DNA sequencing
by hybridization. Technical Report LSI-06-23-R, LSI, Universitat Politècnica de
Catalunya, Barcelona, Spain, 2006.

10. C. A. Brizuela, L. C. González, and H. J. Romero. An improved genetic algo-
rithm for the sequencing by hybridization problem. In G. R. Raidl et al., editors,
Proceedings of the EvoWorkshops – Applications of Evolutionary Computing: Evo-
BIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and EvoSTOC, volume
3005 of Lecture Notes in Computer Science, pages 11–20. Springer Verlag, Berlin,
Germany, 2004.

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization 109

11. T. N. Bui and W. A. Youssef. An enhanced genetic algorithm for DNA sequenc-
ing by hybridization with positive and negative errors. In K. Deb et al., editors,
Proceedings of the GECCO 2004 – Genetic and Evolutionary Computation Confer-
ence, volume 3103 of Lecture Notes in Computer Science, pages 908–919. Springer
Verlag, Berlin, Germany, 2004.

12. M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Boston, MA,
2004.

13. R. Drmanac, I. Labat, R. Brukner, and R. Crkvenjakov. Sequencing of megabase
plus DNA by hybridization: Theory of the method. Genomics, 4:114–128, 1989.

14. T. A. Endo. Probabilistic nucleotide assembling method for sequencing by hy-
bridization. Bioinformatics, 20(14):2181–2188, 2004.

15. E. R. Fernandes and C. C. Ribeiro. Using an adaptive memory strategy to improve
a multistart heuristic for sequencing by hybridization. In S. E. Nikoletseas, editor,
Proceedings of WEA 2005 – 4th International Workshop on Experimental and Ef-
ficient Algorithms, volume 3503 of Lecture Notes in Computer Science, pages 4–15.
Springer Verlag, Berlin, Germany, 2005.

16. R. M. Idury and M. S. Waterman. A new algorithm for DNA sequence assembly.
Journal of Computational Biology, 2(2):291–306, 1995.

17. Y. P. Lysov IuP, V. L. Florentiev, A. A. Khorlin, K. R. Khrapko, and V. V.
Shik. Determination of the nucleotide sequence of DNA using hybridization with
oligonucleotides. a new method. Doklady Akademii nauk SSSR, 303:1508–1511,
1988.

18. P. A. Pevzner. l-tuple DNA sequencing: Computer analysis. Journal of Biomulec-
ular Structure and Dynamics, 7:63–73, 1989.

19. C. Walshaw. Multilevel refinement for combinatorial optimization problems. An-
nals of Operations Research, 131, 2004.

20. C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and refine-
ment algorithm. SIAM Journal on Scientific Computing, 22(1):63–80, 2000.

Hybrid Approaches for Rostering: A Case Study

in the Integration of Constraint Programming
and Local Search

Raffaele Cipriano1, Luca Di Gaspero2, and Agostino Dovier1

1 Dip. di Matematica e Informatica
raffaele.cipriano@gmail.com, dovier@dimi.uniud.it

2 Dip. di Ingegneria Elettrica, Gestionale e Meccanica
Università di Udine, via delle Scienze 208, I-33100, Udine, Italy

l.digaspero@uniud.it

Abstract. Different approaches in the hybridization of constraint pro-
gramming and local search techniques have been recently proposed in
the literature. In this paper we investigate two of them, namely the
employment of local search to improve a solution found by constraint
programming and the exploitation of a constraint model to perform the
exploration of the local neighborhood. We apply the two approaches to a
real-world personnel rostering problem arising at the department of neu-
rology of the Udine University hospital and we report on computational
studies on both real-world and randomly generated structured instances.
The results highlight the benefits of the hybridization approach w.r.t.
their component algorithms.

1 Introduction

Constraint Satisfaction Problems (CSPs) are a useful formalism for modeling
many real problems, either discrete or continuous. Remarkable examples are
planning, scheduling, timetabling, and so on. A CSP is generally defined as the
problem of associating values (taken from a set of domains) to variables subject
to a set of constraints. A solution of a CSP is an assignment of values to all
the variables so that the constraints are satisfied. In some cases not all solu-
tions are equally preferable, but we can associate a cost function to the variable
assignments. In these cases we talk about Constrained Optimization Problems
(COPs), and we are looking for a solution that (without loss of generality) min-
imizes the cost value. The solution methods for CSPs and COPs can be split
into two categories:

– Complete methods, which systematically explore the whole solution space in
search of a feasible (for CSPs) or an optimal (for COPs) solution.

– Incomplete methods, which rely on heuristics to focus on interesting areas of
the solution space with the aim of finding a feasible solution (for CSPs) or
a “good” one (COPs).

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 110–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hybrid Approaches for Rostering 111

Constraint programming (CP) languages [2] are usually based on complete
methods that analyze the search space alternating deterministic phases (constraint
propagation) and non-deterministic phases (variable assignment), exploring im-
plicitly or explicitly the whole search space. Local search (LS) methods [1], instead,
rely on the definition of “proximity” (or neighborhood) and they explore only spe-
cific areas of the search space. Local search method, concentrating on some parts
of the search space, can approximate optimal solutions in shorter time.

Two major types of approaches for combining the abilities of constraint pro-
gramming and local search are presented in the literature [6,7] (in [8] constraint
programming and local search are hybridized in a more liberal context):

1. a systematic-search algorithm based on constraint programming can be im-
proved by inserting a local search algorithm at some point of the search
procedure, e.g.:
(a) at a leaf (i.e., on complete assignments or on an internal node (i.e.,

on a partial assignment) of the search tree explored by the constraint
programming procedure, in order to improve the solution found;

(b) at a node of the search tree, to restrict the list of child-nodes to explore;
(c) to generate in a greedy way a path in the search tree;

2. a local search algorithm can benefit of the support of constraint program-
ming, e.g.:
(a) to analyze the neighborhood and discarding the neighboring solution

that do not satisfy the constraints;
(b) to explore a fragment of the neighborhood of the current solution;
(c) to define the search of the best neighboring solution as a problem of

constrained optimization (COP).

In this work we adopt the two hybrid techniques 1(a) and 2(b) and we ap-
ply them to a hospital personnel rostering problem. In the first approach we
employ constraint programming for searching an initial feasible solution and
subsequently we improve it by means of local search, using classical algorithms
like hill climbing, steepest descent and tabu search. In the second approach we
devise a local search algorithm (called hybrid steepest descent) that exploits a
constraint programming model for the exploration of neighborhood fragments.

The employment of constraint programming for finding an initial feasible so-
lution exhibits several advantages w.r.t. generating an initial random solution.
Indeed, constraint programming allows us to find in short times (about 5-10
seconds) a feasible solution, providing a good starting point for local search.

The local search methods that exploits the constraint programming neigh-
borhood model has evidenced how constraint programming can be used in the
exhaustive exploration of neighborhood fragments, obtaining competitive local
search procedures; furthermore, this approach is favorable only with huge search
spaces. since for small problems the high computational overhead of the con-
straint programming is not payed back by remarkable improvements of the cost
function.

The remainder of the paper is organized as follows: in Section 2 we present
the formalization of the rostering problem analyzed. In Section 3 we provide

112 R. Cipriano, L. Di Gaspero, and A. Dovier

some details about the implementation of the hybrid methods and in Section 4
we report the comparisons among the different solution techniques employed.
Possible future directions of research are discussed in Section 5.

2 Hospital Personnel Rostering

The personnel rostering problem consists in the assignment of personnel re-
quirements (usually expressed in terms of shift types) to qualified personnel
over a certain planning period. The goal is to find a feasible assignment which
minimizes a suitable objective function. Finding high-quality solutions to this
problem is of extreme importance in knowledge-intensive labors, where the very
specialized skills of personnel make impossible to exchange the duties among
persons thus hardening the problem. This situation especially arises in hospital
departments, which need an optimal schedule of the workforce that balances the
trade-off between internal and external requirements such as the fair distribution
of the workload among the different doctors and the assurance of a constant and
efficient medical service to citizens.

Although in the last 30 years several studies proposes different solutions to
this problem (e.g., by means of mathematical programming, multi-objective pro-
gramming, constraint programming, expert systems, heuristic and meta-heuristic
methods, see [3] for a comprehensive review), at present in Italian hospitals the
problem is usually solved with pencil-and-paper by a doctor (self-scheduling).
In this work we studied a particular family of rostering problems we called Neu-
Rostering (NR for short), which model the personnel assignment problem of the
department of Neurology of the University Hospital of Udine.

The problem is described in details in the following. Given m doctors, n days
(the temporal horizon) and k possible shifts, the NR problem consists in assign-
ing to each doctor the shifts to cover during the temporal horizon considered.
In particular, for each day some shifts must be covered, based on the type of
day (a workday or in the weekend) and of the weekday (some shifts are required
only on Mondays, other on Tuesdays, and so on). Each shift must be assigned to
one (and only one) doctor. Some shifts (e.g., the most general ones like urgent
calls shifts) can be covered by any doctor, while others can be covered only by a
restricted number of doctors on the basis of their competence. Every doctor can
specify a list of days of the temporal horizon in which he/she is not available (e.g.,
because of days off, conferences, courses, teaching, . . .). Moreover, there are a
set of “temporal” restrictions that regulate the coverage of the shifts: every shift
has fixed working times, every doctor can be assigned to consecutive shifts but,
in this case, there is an upper bound on the number of consecutive working hours
that cannot be exceeded, a doctor should have a rest between two assigned shifts.

2.1 Formulation of NR as CSP

Let E = {e1, . . . , ek} be the set of all possible shifts; we consider the variables
G1, ..., Gn, one for each of the n days, where Gi ⊆ E is defined as follows:

Hybrid Approaches for Rostering 113

Gi = {ek ∈ E | ek is a shift to be covered on the day i}

The skills of each doctor j ∈ 1..m are encoded in a set Mj ⊆ E, defined as
follows:

Mj = {ek ∈ E | ek is a shift that doctor j is allowed to cover}

Furthermore, let consider m sets Fj ⊆ {1, . . . , n} that represent the days of
the temporal horizon in which doctor j is not available.

Let C ⊆ E × E be the set of pairs (ei, ej) of shifts that can be covered in
the same day by the same doctor. Then, we define as T the set of shift sets
(singletons or doubletons) that can be covered by a doctor in the same day:

T = {{ei} | ei ∈ E} ∪ {{ei, ej} | (ei, ej) ∈ C}

Let S ⊆ E ×E be the set of pairs of shifts (ei, ej) that can be covered by the
same doctor in consecutive days.

The problem input is defined by the sets generated above. In order to coding
the problem constraints we consider for all i ∈ 1..n, j ∈ 1..m the variables Oi,j

whose domains are the sets T ∪ {∅}. Oi,j = set of shifts means that in day i
doctor j will cover the set of shifts indicated. An assignment to these variables
is an (admissible) solution if and only if:

1. ∀i ∈ 1..n∀j ∈ 1..m Oi,j ⊆ Mj (competence: each doctor can only cover
shifts he/she is qualified for);

2. ∀i ∈ 1..n∀j ∈ 1..m i ∈ Fj ⇒ Oi,j = ∅ (availability: each requirements for
days off is satisfied);

3. ∀i ∈ 1..n∀j ∈ 1..m Oi,j ∈ T (max hours : each assignment is coherent with
the maximum number of hours per day);

4. ∀i ∈ 1..n − 1∀j ∈ 1..m ∀t ∈ Oi,j∀t′ ∈ Oi+1,j (t, t′) ∈ S (legal rules: there
is the suitable distance between consecutive shifts for the same doctor);

5. ∀i ∈ 1..n ∪m
j=1 Oi,j = Gi (coverage: all required shifts are covered);

6. ∀i ∈ 1..n∀j1 ∈ 1..m∀j2 ∈ 1..m(j1 �= j2 → Oi,j1 ∩ Oi,j2 = ∅) (mutual exclu-
sion: each shift is covered by at most one doctor).

Let us observe that our encoding of the NR problem uses m ·n ·k Boolean vari-
ables with the following intuitive meaning: ∀i ∈ 1..m∀j ∈ 1..n∀z ∈ 1..k Xi,j,z = 1
if and only if doctor i covers shift z in the day j. Let us observe that establish
the existence of a solution to an instance of NR is NP-complete (by means of a
straightforward encoding of 3-GRAPHCOLORING).

2.2 COP Model for NR

Our NR implementation is endowed with an objective function used to model
some soft constraints associated to the problem and to choose one solution w.r.t.
others. This function has been obtained by eliciting information from the man-
ager of the Neurology Dept. and it is based on five parameters.

114 R. Cipriano, L. Di Gaspero, and A. Dovier

Weekend, Nights, and Guards. One of the objectives is to balance the work
of the doctors in the week-ends. In the week-ends there are only two types of
shifts, denoted by Urgent calls Morning and Afternoon (UMUP) and Urgent calls
Night (UN). We looked for an expression that assumes high values when shifts
are badly distributed among the doctors. Given a doctor i we propose to sum
all the values (actually Boolean values are seen as integer values here) related
to shifts UMUP and UN in the weekends and in the holidays:

Wk =
∑m

i=1(
∑

j∈GWE,z∈TWE Xi,j,z)2

In the above formula, i ranges over doctors, j over days to be selected in the
set GWE of days in weekends and holidays (e.g., if December 1st is on Monday,
then n = 31 and GWE = {6, 7, 13, 14, 20, 21, 25, 27, 28}), and z ranges over shifts
in the set TWE (in this case TWE = {UMUP, UN}). In order to balance the
amounts of night shifts UN and of Urgent calls morning UM (save those in the
weekends and holidays, already considered in Wk—shifts UMUP) we define the
two following formulas in analogous way:

Nt =
∑m

i=1(
∑

j∈1..n\GWE Xi,j,UN)2, Gu =
∑m

i=1(
∑

j∈1..n\GWE Xi,j,UM)2

Undesired Pairs. Here we take care of the number of days where a doctor works
either in a morning and in a afternoon shift. This is highly undesirable for doctors
that work both in the public hospital and as private professionals. We define the
following formula for the variable Dp:

Dp =
∑

i∈1..m,j∈1..n

(∑
z∈AM

Xi,j,z ·
∑

z∈PM

Xi,j,z

)

where AM (resp., PM) is the set of all morning (resp., afternoon) shifts. Let us
observe that the product of the two inner sums assume value 1 only when a
doctor is employed either in the morning or in the afternoon and 0 elsewhere
(values greater than 1 are forbidden by max hours constraints).

Consecutive Shifts. Here we consider situations where a doctor is employed in
the same type of shifts for three consecutive days. Some of these sequences are
penalize (we count as 1), other (e.g. RMu and RMg) are encouraged (we count
as -1). Therefore, we assign to Cn the following formula, where E is the set of
all possible shifts:

Cn =
∑

i ∈ 1..m, j ∈ 1..n − 2,
z ∈ E \ {RMu, RMg}

(Xi,j,zXi,j+1,zXi,j+2,z) −
∑

i ∈ 1..m, j ∈ 1..n − 2,
z ∈ {RMu, RMg}

(Xi,j,zXi,j+1,zXi,j+2,z)

Objective Functions. Finally, we assign a weight to each one of the just defined
five variables in order to balance solutions to NR. In the case studied, where
m = 20, k = 28, and n ∈ 28..31 (for a temporal horizon of one month there are
more or less 16000 variables) is the following:

FObj = 50Wk + 40Nt + 30Dp + 20Gu + 10Cn

Hybrid Approaches for Rostering 115

Weights have been chosen in the following way. Starting from the by hand
computed solutions for the year 2005, we deduced the holidays and the various
constraints required by the doctors. Then we generated some sequences of so-
lutions and showed them to the responsible of the Neurology. We modified the
weights using his feedback in such a way that minimal values of the function are
associated to more preferable solutions.

3 Implementation

In this work, for the solution of the NR problem we adopt two hybrid techniques,
which integrate constraint programming and local search. In the first approach
we employ constraint programming for searching an initial feasible solution and
subsequently we improve it by means of local search. In the second approach we
devise a local search algorithm that exploits a constraint programming model
for the exploration of the neighborhood.

3.1 Application Architecture

In order to solve the NR we design a software tool made up of two main modules:

1. the FirstSolution module, a program implemented by means of the clpfd
SICStus Prolog package [4] which models the NR problem. The module let
the user specify a problem instance and it starts processing it as soon as a
feasible solution is found. If a feasible solution does not exists this module
raises an error and stops the execution or, whenever possible, it relaxes some
parts of the model leading to an approximate solution.

2. the LocalSearch module, which implements a set of local search algorithms
for the NR problem. This module has been developed using the JEasyLo-
cal framework, a Java version of the C++ framework EasyLocal++ [5].
The module takes as input a feasible solution obtained by the FirstSolution
module and improves it by means of a local search algorithm that can be
chosen by the user. The final solution found by this module can be further
improved applying a different local search algorithm in an iterative process.
The local search techniques implemented in this module are hill climbing,
steepest descent and tabu search. Moreover, this module features a local
search solver that uses the steepest descent technique for driving a constraint
programming formulation of the exploration of the neighborhood.

Local Search. Among other entities (i.e., the definition of the search space and
the cost function that in this case are borrowed from the constraint programming
formulation), to specify a local search algorithm it is necessary to define the
move; that is, the local perturbation to be applied to a solution in order to obtain
a neighboring one. To this aim we define the following move, called exchange:

“Given a specific day and working time, exchange the shifts of two doctors”

116 R. Cipriano, L. Di Gaspero, and A. Dovier

Dr. 1 2 . . .

Jones . . . DH . . .

.

Freud UM . . .

.

=⇒

Dr. 1 2 . . .

Jones . . . UM . . .

.

Freud DH . . .

.

Fig. 1. An example of an exchange move

For example, if Dr. Freud covers the shift UM in the morning of day 2 and
Dr. Jones covers the shift DH (Day Hospital) in the morning of the same day, a
possible exchange move consists in swapping the shifts UM and DH between the
two doctors, so that in the morning of day 2 Dr. Jones will be assigned to the
shift UM and Dr. Freud will cover the shift DH as shown in Figure 1.

The shifts involved in the exchange move can be working shifts or rest periods.
When we exchange a working shift with a rest one, the doctor currently in rest
will get the working shift and the doctor currently working will get a rest shift.
Exchange moves that involve doctors that are both currently in a rest period do
not affect the solution and therefore are idle moves; conversely, all other types of
exchange moves are meaningful and modify the solution. An exchange move is
therefore identified by: the two doctors participating in the exchange, the day of
the time horizon and the working time (that can be “Morning” or “Afternoon”).

Notice that, given a solution, the size of the neighborhood (i.e., the number
of neighboring solutions of the current state) is equal to m(m−1)

2 2n = O(m2n).
It is possible to generalize the concept of exchange move by introducing the
compound exchange move defined as follows:

“A compound exchange move is a sequence of one or more exchange moves”

The compound moves are very useful to handle consecutive shifts that must
(or it is preferable to) be moved together. It is worth to notice that the definition
of the exchange moves always lead to states where the covering constraints are
satisfied: indeed, if solution A satisfy the covering constraints so will solution B
obtained by an exchange move since no shift is added or removed from a day col-
umn, but simply the assignment of two doctors are swapped. As a consequence,
making sure that the local search procedure will start from a feasible solution
(like the one obtained by the FirstSolution module) and applying only exchange
moves there is no need to make the covering constraint explicit. However, we ob-
serve that an exchange move could lead to a state where other types of constraints
are violated: for example a doctor could be assigned a shift for which he/she is not
qualified, or he/she could be not available on that day. These violations are taken
into account by an objective function FObj which penalizes such situations.

In the following sections we briefly outline the local search algorithms we have
developed.

Hill Climbing. The hill climbing (HC) strategy adopted in this work is the
so-called randomized hill climbing: an exchange move is randomly drawn and

Hybrid Approaches for Rostering 117

applied to the current solution. If the solution obtained improves or has an
equal value of the objective function, then it is accepted and it becomes the new
incumbent solution; conversely, if the new solution worsens the cost function it
is discarded and a new random move is drawn. This procedure is iterated and
the whole process stops when a user specified time-out has expired.

The crucial aspect in the implementation of this method concerns the random
generation of the moves, which could lead to the generation and testing of a lot of
idle moves. The random procedure has been therefore biased toward meaningful
moves by enforcing that the first doctor of the exchange move must not be on a
rest period, thus avoiding the generation of idle moves.

Steepest Descent. The steepest descent (SD) strategy consists in the full explo-
ration of the neighborhood of the current solution, looking at the solution that
gives the biggest improvement of the objective function. This move is then ap-
plied to the current state to obtain the new incumbent solution. The procedure
is iterated and it stops as soon as no improving move can be found.

Compared to HC, this procedure is more time-consuming but it generally
leads toward bigger improvements of the objective function. The key aspect of
this method is the procedure employed for the enumeration of the moves. Since
the evaluation of the objective function is a costly operation it is advisable to
avoid unnecessary computations, especially on moves that lead to states where
the constraints are violated. The enumeration procedure we have implemented
makes use of a basic knowledge about the constraints and it skips such moves,
allowing us to save computation time.

Tabu Search. This method (TS) explores a subset of the neighborhood of the
current solution and applies the move that gives the minimum value of the
objective function, regardless the fact that this value is better or worse than the
one of the previous solution. This allows the method to escape from local minima,
but at the risk of cycling among a set of solution. To avoid the latter phenomenon
the method employs the so-called “Tabu List”, a memory of recently applied
moves, and it forbids the application of moves that are inverses of the moves in
the list (which would lead to an already visited state).

Among different variants of the memory mechanism presented in the literature
we employ the so-called dynamic tabu list. The list contains a number of moves
comprised between two values kmin e kmax, which are parameters of the method.
Once a move enters the list it is assigned a random integer value in the range
kmin..kmax that corresponds to the number of iterations the move is kept in the
tabu list. For this problem we find out experimentally that the best setting of
these parameters is kmin = 5 and kmax = 10.

As for the aspiration criterion, which overrides the prohibition status of the
moves, we choose to accept also moves in the tabu list when they lead to a state
that is better than the current best solution.

Hybrid Steepest Descent. Finally, we implemented an hybrid local search algo-
rithm driven by the steepest descent strategy (HSD), which employs a neigh-
borhood model encoded in SICStus Prolog. The idea behind this algorithm is

118 R. Cipriano, L. Di Gaspero, and A. Dovier

to explore fragments of the neighborhood of the current solution by letting the
constraint programming solver to find a representative solution (the best neigh-
bor) of the current fragment. The neighborhood fragments have to be chosen so
that they form a partition of the whole neighborhood of the current solution.
The algorithm then accepts the best among the representative solutions that
improve the objective function, inspired by the steepest descent strategy. The
search of the best representative solution is performed by the labeling predicate
of SICStus Prolog.

The concept of “neighborhood fragment” we had taken into account is based
on a single day: given a solution S and a day of the temporal horizon x, the
neighborhood of S w.r.t. the day x consists in the set of all solutions S′ that
are identical to S for all days d �= x and they differ from S for the shifts of
day x. Hence, every solution will have n possible neighborhood fragments. The
exploration of a neighborhood fragment w.r.t. the day x means the evaluation
of all possible permutations of shifts on that day: the best permutation will be
the representative of that neighborhood fragment.

This approach shares some similarities with the work of Pesant and Gendreau
[9], however it differs in the type of move employed and in the granularity of the
neighborhood exploration. In our case, indeed, we explore a full set of exchange
moves (i.e., duty exchanges between doctors) whereas in [9] the authors use a
insertion move (i.e., a duty is assigned to a doctor and not removed elsewhere).
Furthermore, our neighborhood model involves a portion of shifts that insist on
a single day only, while [9] neighborhood is restricted to a single shift.

4 Experiments

To the aim of comparing the four hybrid algorithms described in the previous
section, we carried out an experimental evaluation of the solvers. Three types
of experiments have been performed: (i) on randomly built structured instances
of variable size; (ii) on real-world instances in long-runs; (iii) the best solver is
compared with self-scheduling solutions.

First Test — Methodology. The goal of the first test is to analyze the behavior
of the algorithms on sets of structured instances that are similar to real-world
ones. We randomly generate 4 series of 10 instances whose temporal horizon n
consists of 10, 20, 30 and 40 days, respectively.

All the instances have been solved by the four algorithms, accounting for a
total of 160 runs. Each algorithm was granted a running time proportional to the
instance size, namely of 80 · n seconds. During each run, we record the values of
the objective function that corresponds to improvements of the current solution
together with the running time spent. These data have been aggregated in order
to analyze the average behavior of the different algorithms on each group of 10
instances. To this aim we perform a discretization of the data on regular time
intervals; subsequently, for each discrete interval we compute the average value
of the objective function on the 10 instances.

Hybrid Approaches for Rostering 119

0 10 20 30 40 50 60

80
0

10
00

12
00

14
00

16
00

n = 10

Time (s)

F
O

bj

HC
SD
TS
HSD

0 100 200 300 400 500

20
00

25
00

30
00

35
00

40
00

n = 20

Time (s)

F
O

bj

HC
SD
TS
HSD

0 200 400 600 800 1000 1200

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

n = 30

Time (s)

F
O

bj

HC
SD
TS
HSD

0 500 1000 1500

60
00

70
00

80
00

90
00

10
00

0
11

00
0

n = 40

Time (s)

F
O

bj

HC
SD
TS
HSD

Fig. 2. Average evolution of the objective function on instances with temporal horizon
n equals to 10, 20, 30 and 40 days

First Test – Results. Figure 2 reports the evolution of the objective function for
the different methods on the instances with temporal horizon n equals to 10, 20,
30 and 40 days.

From the picture it is apparent that HC outperforms all the other methods
on all groups of instances. Indeed, thanks to the non-exhaustive sampling of the
neighborhood this method is able to find reasonably good improvements quickly,
leading to a fast decrease of the objective function from the very beginning of the
search process. Furthermore, HC does not get stuck in local minima (as other
methods do) but it keeps perturbing the current solution with sideways moves
that could possibly lead to explore new regions of the search space.

The classical SD strategy, instead, is the worst method among the ones tested.
Because of the full exploration of the neighborhood, the method is slower than
the hill climbing. Furthermore, the thoroughness of the exploration at each search
step is not rewarded by a substantial decrease of the objective function. Finally,
the method shows the intrinsic shortcoming of getting stuck in local minima and
the search stagnates as soon as the first local minimum is found.

The behavior of TS lies between the two previous methods: in early stages
of the search the method behaves exactly as the steepest descent (indeed, ini-
tially in the graph the two lines overlap), while the prohibition mechanisms start
playing its role in diversifying the solution as soon as the first local minimum is
found. Unfortunately, due to the high computational cost of the neighborhood

120 R. Cipriano, L. Di Gaspero, and A. Dovier

exploration (especially on mid- and big-sized instances) the method performs
worse than hill climbing.

HSD deserves a more thorough analysis since its behavior varies on the basis
of the size of the instances. On smaller instances (10 days) its behavior is the
worst in terms of decrease speed of the objective function. This can be explained
by the high computational overhead needed to setting up the exploration of
the neighborhood fragments. In fact, for each fragment a new constraint model
should be posted to the constraint store giving rise to a significant computation
effort. This overhead, on smaller instances, is not rewarded by a high decrease
of the objective function at each step of the search. Conversely, on the mid-sized
instances (20 and 30 days) the increased computational effort is repaid by a
greater decrease of the objective function and this method result more compet-
itive than tabu search just after the first tens of seconds. However, the method
does not scale well on big-sized instances (40 days): although the tendency of
having a better behavior than tabu search is confirmed, this behavior is apparent
only after some hundred of seconds.

Second Test — Methodology. The aim of this experiment is to analyze the behav-
ior of the four methods on two real-world instances in a deployment situation,
i.e., the methods are granted a running time of 12 hours in order to evaluate
more precisely their behavior on longer runs. Both the instances have a temporal
horizon of 30 days. The recorded data are the same of the previous experiment.
However, differently from the previous test we need not to process the data since
the results are relative to singular instances.

Second Test — Results. The behavior of the objective function on the two in-
stances is comparable to the outcomes of the previous test on the instances of
size 30, therefore we do not show it here for brevity. Here we report in Table 2a
the values of the objective function reached by the four methods after 12 hours.

In the last line we report also the best value reached after 12 hours by the
exhaustive search performed by the constraint solver employing the constraint
programming model alone. Those values are about two times higher than the
results of the hybrid methods and they fully justify the employment of the hybrid
approaches for this problem. For both instances the hill climbing method is able
to find the best result and it is not outperformed by any other method. However,
it is worth to notice that, when granted with sufficient time, tabu search shows
a good behavior and its result is not that far from the one of hill climbing.

Finally, in Table 2b we report the time needed to reach an approximation
within a given percentage of the best solution value found by the methods after
12 hours.

From the table it is possible to notice that, for hill climbing and tabu search
on instance 1, the convergence to good values (2% from the best value known) is
obtained in less than 25 minutes. However, only HC could reach values close to
the best known for instance 2. The reasons of this modest performance of tabu
search will be matter of further investigation.

Hybrid Approaches for Rostering 121

Table 1. Results in 12 hours of computation

Method FObj
Instance 1 Instance 2

HC 3500 3240
SD 4120 3760
TS 3520 3350
HSD 3630 3460

CLP(FD) 7590 5990

(a) Final results of the four
methods and of the constraint
solver

Instance 1 Instance 2
Method +5% +2% +1% +5% +2% +1%

HC 111 1381 4815 329 752 2758
SD – – – – – –
TS 983 1343 1471 1590 – –
HSD 664 – – – – –

(b) Time (in seconds) to reach an approxi-
mation within x% of the best value found

Table 2. Percentage of improvement of HC with respect to self-scheduling

Component Sep Oct Nov Dec

Wk 0% 0% 0% 29%
Nt -22% 6% 0% 12%
Dp 56% 5% 30% 29%
Gu 41% 6% 22% 22%
Cn -143% 31% 50% -17%

FObj 15% 6% 12% 20%

Fig. 3. Comparison of HC solver runs of 5 minutes with self-scheduling

Third Test — Methodology. From the previous tests, hill climbing results the
best method (especially when provided with a short time limit), so we decided
to compare the solutions obtained from this method with solutions manually ob-
tained by the doctor who is in charge of self-scheduling. The available data ranges
from the monthly requirements of September to December 2005. We compare
the values obtained for the various components of the objective functions.

122 R. Cipriano, L. Di Gaspero, and A. Dovier

Third Test — Results. For the four months considered in the experiment we
show in Figure 3 the outcomes of the self-schedule (the left-hand column of each
pair) and the result of a short hill climbing run (5 minute of CPU time). In
Table 2 we report the the percentage of improvement over the self-schedule. The
data is disaggregated for the various components of the objective function and
is 1 minus the ratio of the cost value found by hill climbing over the cost found
by the human (so that positive values indicate improvements).

You can notice that, even though the self-schedules are really high-quality
ones, the hill climbing method is able to achieve some further improvements,
especially on critical components like Guards and Undesired Pairs. For Consec-
utive Shifts (which is a negative component, since they are preferred), instead,
we can improve the values only in two cases out of the four instances.

5 Future Work and Conclusions

This work is still ongoing and the presented results are still preliminary. We wish
to extend the research pursued in this paper along the following two lines:

1. integrating the tool with new local search methods, and
2. improving the resolution technique implemented.

We have experimentally verified that HC outperforms other tested methods: it
employs less time than the others to find a good move. We plan to test other local
search methods, such as Tabu Search with First Improvement or Elite Strategy
that, visiting a small part of the neighbors, should be comparable with HC
w.r.t. the time for finding a good move. We also plan to implement a Simulated
Annealing method. However, we believe that a long stage for tuning parameters
is needed in order to effectively use this method.

Moreover, we would like to develop a constraint solver on finite domains ad
hoc for this problem in order to speed-up this stage, to ease the integration with
JEasylocal, and to be independent from commercial languages. From a method-
ological point of view, we would like to analyze more carefully the behavior of
our algorithms, using statistical methods and tuning more precisely the vari-
ous parameters. In particular, further insight is needed to explain the modest
behavior of tabu search.

Our system is currently in use in the Neurology Dept. of the Udine University
Hospital. Acceptable solutions (with 20 doctors and a temporal horizons of one
month) are obtained in a couple of minutes on a (average) PC. Future works
will also include the generalization of the system in order to be usable by other
hospital departments.

References

1. Emile Aarts and Jan Karel Lenstra. Local Search in Combinatorial Optimization.
John Wiley & Sons, Chichester (UK), 1997.

2. Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, Cambridge (UK), 2003.

Hybrid Approaches for Rostering 123

3. Edmund K. Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik
Van Landeghem. The state of the art of nurse rostering. Journal of Scheduling,
7(6):441–499, 2004.

4. Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain
constraint solver. In H. Glaser, Hartel P., and Kucken H., editors, Programming Lan-
guages: Implementations, Logics, and Programming, number 1292 in Lecture Notes
in Computer Science, pages 191–206. Springer-Verlag, Berlin (Germany), 1997.

5. Luca Di Gaspero and Andrea Schaerf. EasyLocal++: An object-oriented frame-
work for flexible design of local search algorithms. Software — Practice & Experi-
ence, 33(8):733–765, July 2003.

6. Filippo Focacci, François Laburthe, and Andrea Lodi. Local search and constraint
programming. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuris-
tics, chapter Local Search and Constraint Programming, pages 369–403. Kluwer
Academic Publishers, 2003.

7. Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristic. Artificial Intelligence, 139(1):21–45, 2002.

8. Eric Monfroy, Frédéric Saubion, and Tony Lambert. On hybridization of local search
and constraint propagation. In Bart Demoen and Vladimir Lifschitz, editors, Pro-
ceedings of the 20th International Conference on Logic Programming (ICLP 2004),
number 3132 in Lecture Notes in Computer Science, pages 299–313. Springer-Verlag,
Berlin (Germany), 2004.

9. Gilles Pesant and Michel Gendreau. A constraint programming framework for local
search methods. Journal of Heuristics, 5:255–279, 1999.

A Reactive Greedy Randomized Variable

Neighborhood Tabu Search for the Vehicle
Routing Problem with Time Windows

Panagiotis P. Repoussis�, Dimitris C. Paraskevopoulos,
Christos D. Tarantilis, and George Ioannou

Athens University of Economics & Business
Evelpidon 47A & Leukados 33, 11362, Athens, Greece

Tel.: +302108203921; Fax: +302108828078
prepousi@aueb.gr

Abstract. This paper presents a hybrid metaheuristic to address the ve-
hicle routing problem with time windows (VRPTW). The VRPTW can
be described as the problem of designing least cost routes from a depot
to geographically dispersed customers. The routes must be designed such
that each customer is visited only once by exactly one vehicle without
violating capacity and time window constraints. The proposed solution
method is a multi-start local search approach which combines reactively
the systematic diversification mechanisms of Greedy Randomized Adap-
tive Search Procedures with a novel Variable Neighborhood Tabu Search
hybrid metaheuristic for intensification search. Experimental results on
well known benchmark instances show that the suggested method is both
efficient and robust in terms of the quality of the solutions produced.

1 Introduction

The Vehicle Routing Problem (VRP) is a focal problem of distribution man-
agement within the area of service operations management and logistics [1].
This paper presents a hybrid metaheuristic methodology for solving the vehicle
routing problem with time windows (VRPTW). The latter is one of the repre-
sentative combinatorial optimization problems with a wide range of applications
and is known to be NP-hard [2]. In VRPTW, customers with known demands
are serviced by a homogeneous fleet of depot-returning vehicles with limited ca-
pacity. Each customer provides a time interval during which service must take
place. The VRPTW considers both the number of vehicles required and the total
distance traveled by the vehicles. Therefore, a hierarchical objective function is
typically followed, where the number of routes is first minimized and then, for
the same number of routes, the total traveled distance is minimized.

The VRPTW due to its wide applicability and high complexity has been the
subject of extensive research efforts. A variety of algorithms have been proposed,
including exact methods, heuristics and metaheuristics. The survey of Cordeau
� Corresponding author, supported by GSRT contract EP-1253-01.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 124–138, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Reactive Greedy Randomized Variable Neighborhood Tabu Search 125

et al. [2] provides all necessary pointers to the research efforts in the area of
solution methods developed for the VRPTW in the 1980s and 1990s. Since then,
the focus of most researchers has shifted to more complicated and sophisticated
metaheuristics, capable of producing high-quality solutions in reasonable com-
putational time. The recent surveys of Bräysy et al. [3], Bräysy and Gendreau
[4], Bräysy and Gendreau [5] reveal the latest algorithmic developments in the
fields of evolutionary, traditional local search improvement heuristics and meta-
heuristic approaches, respectively.

Although, the adaptation of metaheuristics addressed effectively a variety of
hard combinatorial optimization problems, it has become evident that the con-
centration on a sole metaheuristic is rather restrictive. Gendreau and Potvin [6]
state that many well-known metaheuristics converge towards a unified frame-
work. Within this unified view new opportunities emerge for combining the
strengths and alleviating the weaknesses of different metaheuristics, which may
lead to even more powerful and flexible search methods. The latter combi-
nation of different concepts or components of various metaheuristics, forms
the so called hybrid metaheuristics. Given that hybrids aim at exploiting the
strengths of different methods, interaction can take place either at low-level,
by designing new metaheuristics that combine various algorithmic principles
of the original methods, or at high-level, by developing multi-agent architec-
tures in which the individual agents run pure methods and communicate among
themselves [6].

Many recently proposed metaheuristic approaches for the VRPTW are based
on some forms of hybridization. Bräysy et al. [7] presented a two-phase multi-
start local search procedure. In the first phase, using a construction heuristic,
several solutions were produced followed by an Injection Tree route elimination
heuristic. In the second phase, solutions were improved in terms of distance
traveled by a threshold accepting post-processor. Bent and van Hentenryck [8]
proposed a two stage hybrid local search approach. An enhanced simulated
annealing was applied to minimize the number of vehicles along with a large
neighborhood search for distance traveled minimization. Le Bouthillier et al.
[9] proposed a guided parallel cooperative search along with an identification
pattern mechanism, which was based on a central memory structure that coor-
dinated various individual metaheuristics. Russell and Chiang [10] proposed a
scatter search solution framework combined with a reactive tabu search, an ad-
vance recovery and a set covering procedure. Finally, Ibaraki et al. [11] presented
multi-start (MLS), iterative (ILS) and adaptive multi-start (AMLS) local search
approaches, enhanced with acyclic and cyclic neighborhood structures.

The main contribution of this paper is the development of an efficient multi-
start hybrid metaheuristic for the VRPTW. The solution framework utilizes
the basic structure of Greedy Randomized Adaptive Search Procedures
(GRASP)[12]. The GRASP construction phase is equipped with a new greedy
function along with a route elimination heuristic. The GRASP local search
phase employs a Variable Neighborhood Tabu Search (VNTS). The latter scheme
exploits the systematic changes of neighborhood structures, and thus, the

126 P.P. Repoussis et al.

neighborhood topologies as proposed by Variable Neighborhood Search (VNS)
[14], to guide a Tabu Search (TS)[15] which performs a trajectory local search.
Finally, a long term memory is used that controls construction randomization,
provides better sampling of the solution space and allows less reliance on para-
meter tuning.

The remainder of the paper is organized as follows. In Section 2 the problem
definition is given. Subsequently, an overview of the solution methodology is pro-
vided, while each different component is described in Section 3. Computational
experiments along with a comparative performance analysis, are then depicted
in Section 5. Finally, in Section 6 conclusions are drawn.

2 Problem Definition

Following the model formulation provided in [2], let a complete graph G = (V, A),
where V = {0, 1, ..., n+1} is the node set, A = {(i, j) : 0 ≤ i, j ≤ n, i �= j} is the
arc set and depot is represented by nodes 0 and n+1. All feasible vehicle routes
correspond to paths in G that start from 0 and end at n+1. A set K represents
homogeneous vehicles with known capacity Ck, where k = 1,2,. . . ,|K|. Each
customer i is associated with a known demand di, and poses a time window [ai,
bi] that models the earliest and latest time that the service of i can take place.
The service of each customer must start within the associated time window,
while the vehicle must stop at the customer’s location for si time instants. In
case of early arrival at the location of i, the vehicle is allowed to wait until ai.

There is a nonnegative travel cost ck
ij , a travel time tkij and a distance hk

ij

associated with each arc (i, j) of set A, with respect to the vehicle k ∈ K.
Furthermore, a cost zk is relevant to the activation of a vehicle k ∈ K. The total
number of customers is n = |V |-2. Indices i, j and u refer to customers and take
values between 1 and n. A time window is also associated with nodes 0 and n+1,
i.e., [a0, b0]=[an+1, bn+1]=[E, L], where E and L represent the earliest possible
departure from the depot and the latest possible arrival. Feasible solutions exist
only if a0 = E ≤ mini∈V \{0} bi − t0i and bn+1 = L ≥ mini∈V \{0} ai + si + ti0.

Let flow binary variables xk
ij model the sequence in which vehicles visit cus-

tomers (xk
ij equals 1 if i precedes j in the route of vehicle k, 0 otherwise). Variable

wik specifies the arrival time at i when serviced by vehicle k. Furthermore, each
route must satisfy capacity and time window constraints. Time window state
that ai

∑
j∈Δ+(i) xk

ij ≤ wik ≤ bi

∑
j∈Δ+(i) xk

ij for all k ∈ K and i ∈ V \{0, n+1},
where Δ+(i) denote the set of nodes j such that arc (i, j) ∈ A. Finally, ca-
pacity constraints state that

∑
i∈V \{0,n+1} di

∑
j∈Δ+(i) xk

ij ≤ Ck for all vehicles
k ∈ K. The objective of VRPTW is a) to minimize the fleet size and b) total
distance traveled. This combined objective reflects the trade off between fixed
vehicle activation and variable transportation costs. However, it is assumed that
the cost of additional vehicles always outweigh any variable transportation costs
that could be saved by their use. Given the above-defined variables, the objective
function can be formulated as: min

∑
k∈K

∑
(i,j)∈A ck

ijx
k
ij +

∑
k∈K zk

∑
j∈N xk

0j .

A Reactive Greedy Randomized Variable Neighborhood Tabu Search 127

3 Solution Methodology

A hybrid multi-start metaheuristic approach is proposed for solving the
VRPTW. The main effort is focused on delivering a robust methodology with
a fairly simple algorithmic structure invoking the least possible number of pa-
rameters. More specifically, the suggested method utilizes the GRASP iterative
solution framework, which combines greedy heuristics, randomization and local
search [12]. The GRASP construction phase builds a solution, whose neighbor-
hood is investigated during an improvement phase, until a local minimum is
reached with respect to an evaluation function. The best found solution is re-
turned upon termination. Given that greedy randomized constructions inject a
degree of diversification to the search process, the GRASP improvement phase
may consists of an effective procedure fine-tuned for intensification local search.
Particularly, a novel hybrid metaheuristic approach which combines VNS with
TS is applied for distance traveled minimization. Finally, a long term mem-
ory structure which links each independent restart is introduced for the better
sampling of the solution space and the less reliance on parameter tuning. Re-
cent developments propose such GRASP hybrids where construction is followed
by sophisticated local search, post optimization procedures and memory struc-
tures [6].

3.1 GRASP Constructive Mechanism

The GRASP constructive mechanism is characterized by a dynamic construc-
tive heuristic and randomization. Initially, a solution is constructed iteratively
by adding a new element to the partial incomplete solution. All elements are
ordered in a list, called restricted candidate list (RCL) composed of the λ high
quality elements, with respect to an adaptive greedy function. The probabilistic
component is characterized by randomly choosing one of the best from the list,
but not necessary the top of the list. Thus, the length of the candidate list deter-
mines and controls the extent of randomization and greediness of construction.

The proposed GRASP construction mechanism utilizes a parallel insertion
solution construction scheme along with a penalty based greedy function which
combines in a weighted fashion a set of criteria. However, a determinant factor
which significantly affects the quality of the solutions produced, is the value
of the weight parameters associated with the greedy function, since different
settings dominate solution quality and fine tuning is prerequisite. In general
terms, although these parameters are interrelated and heavily depend on the
problem’s characteristics, several authors highlight that it is impossible either to
determine a robust value for each one of them or to find an evident correlation
among them, which would provide good results for all test problems [13].

In literature, most metaheuristics of multi-start nature work on a set of pre-
determined initial solutions. Obviously, the inherent complexity of local search
suggest that it may be preferable to construct a number of feasible solutions
and then apply local search only to the most promising. Therefore, the manner
usually followed suggests initially the identification of specific parameters value

128 P.P. Repoussis et al.

ranges and subsequently varying input values in small increment units within
these ranges, in order to determine the parameter values that produce the best
possible output [7]. In our implementation, instead of building a set of initial
solutions, a set of well performing parameter settings is first determined, while
only the best performing parameter settings are used at each GRASP iteration.

Finally, an attempt is made to reduce the number of routes. The idea of using
separate strategies for minimizing the number of routes in addition to distance
traveled is followed by most recent applications [8,7,13] for the VRPTW. Thus
within the proposed solution methodology, prior GRASP improvement phase
the route elimination procedure suggested in [13] is applied. The latter is based
on the Ejection Chains (EC) heuristic enhanced with an intelligent reordering
mechanism, called IR-insert. The basic idea is to combine series of moves into a
compound move with the goal to make room for relocation by first removing or
reordering other customers from the same route.

Greedy Function. The proposed greedy function adapts the penalty mea-
surements and the parallel construction framework introduced in [17], although,
enhanced with additional mechanisms and customer selection criteria. According
to the sequential insertion framework of Solomon [18], a feasible solution is con-
structed by inserting a non routed customer into a current partial constructed
route at each iteration. In the context of the parallel construction schemes,
Solomon’s sequential insertion is applied considering several routes simultane-
ously. Particularly, after initializing a set of r routes a customer is iteratively
assigned between two adjusted customers in a current partial route. If at some
iteration an unassigned customer cannot be inserted in any of the existing set of
routes, an unassigned “seed” customer is identified and a new route is initialized.
The overall procedure is repeated until all customers are assigned to vehicles.

A point of prime importance, is the selection and assignment of “seed” cus-
tomers to create both the initial set of vehicles and the additional ”surplus”
vehicles, if required. What complicates further matters is the strong relationship
between customers time availability for service, introduced by time windows that
dictate the sequence in which customers are serviced by vehicles. On the other
hand, the more distant are the customers from the depot, the more difficult is
their assignment. In order to capture both these trends a two phase “seed” cus-
tomer selection scheme is followed. For the initial set of routes, “seed” customers
are determined such that the most geographically dispersed or most time con-
strained are considered first, as proposed in [17]. In later phases of construction,
if initialization of additional vehicles is needed random selection is followed.

Let πij,u denote the insertion cost of an unassigned customer u when is in-
serted between i and j in a partial solution Ω. For every feasible insertion po-
sition of u into a route ρ, the minimum insertion cost πρ,u = mini,j∈ρ πij,u is
found. Similarly, the overall minimum insertion cost πρ∗,u corresponds to the
minρ∈Ω πρ,u and denotes the best feasible insertion position at route ρ∗ of u.
Subsequently, a penalty cost, Πu is calculated for every unassigned customer.
This penalty can be viewed as a measure of the cost that would have to be paid
later if the corresponding customer is not assigned to its current best position.

A Reactive Greedy Randomized Variable Neighborhood Tabu Search 129

Πu =
∑
ρ∈Ω

(πρ,u − πρ∗,u) (1)

Large Πu values indicate that u should be considered first to avoid paying later
a relatively high cost. Contrary, customers with small penalty values can wait
for insertion. Thus, customers that cannot be feasibly inserted into a route the
insertion cost must be set to a large value lv, in order to force Πu to large values
as well. In [17] lv was set to infinity. Alternatively, we propose an intuitively
intelligent approach that adaptively tunes values of lv. In particular, lv is set
equal to difference between the overall maximum and minimum insertion cost of
all unassigned customers u for the existing set of routes. Thereafter, whenever
a customer u cannot be feasibly insert into a route ρ the current penalty Πu

is incremented by maxu∈V {maxρ∈Ω{πρ,u}}−minu∈V {minρ∈Ω{πρ,u}}. Finally,
cost πij,u, is defined as a weighted combined result from several sub-metrics.

πij,u = ϑ1π
1
ij,u + ϑ2π

2
ij,u + ϑ3(π3s

ij,u + π3g
ij,k) (2)

where ϑ1,ϑ2 and ϑ3 are nonnegative weights such that ϑ1 + ϑ2 + ϑ3 = 1. Com-
ponent π1

ij,u measures the distance increase caused by insertion of u [18].

π1
ij,u = tiu + tuj − tij (3)

Component π2
ij,u measures vehicle utilization in terms of total waiting time prior

and after the insertion of u [13].

π2
ij,u =

∑
i∈ρ∪{u}

(ai − wik)+ −
∑

i∈ρ∩{u}
(ai − wik)+ (4)

Finally, the third component combines two metrics π3s
ij,u and π3g

ij,u. The first
metric refers to the closeness of the earliest time that service can take place au,
compare to vehicle’s k arrival time wuk at u [16].

π3s
ij,u = wuk − au (5)

The second metric express the compatibility of the time window of the selected
customer u with the specific insertion position in the current route [16].

π3g
ij,u = bu − (wik + si + tiu) (6)

3.2 GRASP Local Search

The GRASP improvement phase consists of a Variable Neighborhood Tabu
Search. VNS is based upon a basic principle: systematic change of neighbor-
hoods during the search. Given a set of pre-selected neighborhood structures, a
solution is randomly generated in the first neighborhood of the current solution,
from which a local descent is performed. If the local optimum obtained is not

130 P.P. Repoussis et al.

better than the incumbent, the procedure is repeated using the next neighbor-
hood. The search restarts from the first neighborhood whenever a solution is
better than the incumbent or every neighborhood has been explored.

Although, VNS framework treats a single solution at each iteration, the tra-
jectory followed during the search of the solution space is discontinuous. Indeed,
it explores increasingly distant neighborhoods of a current solution, and moves at
random from one solution to another (shaking). Thus, favorable characteristics
of a solution, are often kept and used to obtain promising neighboring solutions.
Although the basic VNS scheme is a descent improvement method with random-
ization, it could be transformed into a descent-ascent method. However, the basic
VNS some times meets difficulties to escape from the local optima. Contrary, TS
has no such difficulties, since the current solution is allowed to deteriorate, while
the recency-based memories prevent cycling allowing to overcome local optima.

In literature, two ways of making hybrids of VNS and TS appear; the use of
TS within VNS and the opposite. In the first case the local descent of VNS is
replaced by TS while in the second case, different neighborhoods are exploited
by TS. The implementation proposed herein uses TS internally within VNS per-
forming the local search for given neighborhood structures, while externally VNS
performs systematical neighborhood changes and controls the shaking mecha-
nism. Using this rationale, it is reasonable to expect a thorough and systematic
exploration of the solution space by utilizing trajectory local search and neigh-
borhood topologies. A recent compilation of such hybrids can be found in [14].

Variable Neighborhood Tabu Search. The VNS iteration framework con-
sists of three phases: shaking, local search and move. At the initialization step,
a set of neighborhoods is selected. In the shaking phase a solution ś in the yth
neighborhood of the current solution s is randomly selected. Local search is then
applied in order to find the best neighbor s̈ of ś. If f(s̈)<f(s) s is replaced by
s̈. The latter is the so called move phase. The overall scheme is repeated from a
new shaking. Otherwise, y is incremented and a new shaking phase starts using
a different neighborhood structure, until some termination conditions are met.

On the other hand, TS explores the solution space by moving at each itera-
tion from a solution s to the best solution of the neighborhood Ny(s). To avoid
cycling, solutions possessing some attributes of recently explored ones are tem-
porarily declared as tabu (short term memory). Tabu moves are represented by
attributes which are stored in an ordered queue called tabu list. The best admis-
sible move is chosen as the highest evaluation move in the neighborhood of the
current solution in terms of objective function and tabu restrictions. Obviously,
the tabu list is imposed to restrict the search from revisiting solutions that were
considered previously and to discourage the search from cycling between subsets
of solutions. At each iteration the best solution of the reduced Ny(s) is chosen
as the new current solution and subsequently added to the tabu list. The dura-
tion that an attribute remains tabu is called tabu tenure and tabu status can be
overridden if certain conditions are met. The latter is called aspiration criterion
and occurs when a tabu solution is better than any previously met solution. The
overall procedure iterates until a termination criterion is met.

A Reactive Greedy Randomized Variable Neighborhood Tabu Search 131

In this paper, the proposed VNTS can be illustrated as follows. At the ini-
tialization step, a set of neighborhood structures with increasing cardinality
(|N1|<|N2|. . .|Nymax |) is defined. Given an initial solution ś (from GRASP con-
structive mechanism), the neighborhood index y is initialized. Subsequently,
Tabu Search begins considering neighborhood y. Initially, tabu lists of y are re-
alized and iteratively the best admissible neighbor solution of Ny(ś) is depicted.
The latter procedure iterates for maxCount times without observing any further
improvement. At the end the new local optima solution s̈ obtained is returned.
If f(s̈)<f(s), s is replaced by s̈ and a new shaking phase is performed with
y=1. In the shaking phase, a solution ś in the yth neighborhood of the current
solution s is randomly selected. Otherwise, y is incremented and a new shaking
phase starts using a different neighborhood structure. The oscillations between
shaking and local search are repeated until all possible neighborhood structures
are examined, i.e. y=ymax, and no further improvement is observed f(s̈)>f(s).

Variable Neighborhood Tabu Search
Select a set of neighborhood structures Ny, y=1, 2, . . ., ymax

y ← 1, ś ← s, s̈ ← s
While (y≤ymax) do

InitializeTabulist(y) of tabuTenure size
AspirationConditions(ś), counter ← 0
While counter≤maxCount do

Find ṡ∈N(ś) | ś subject to tabu conditions & aspiration criteria
AllowedSet(ś) ← ṡ
ś ←ChooseBestOf(AllowedSet(ś))
UpdateTabulist(y)
If(f(ś)<f(s̈)) then

s̈ ← ś, AspirationConditions(s̈), counter ← 0
Else counter ← counter+1

Endwhile
If (f(s̈)<f(s)) then “Move phase”

s ← s̈, y ← 1, ś ← PickAtRandom(Ny(s)) “Shaking phase”
Else

y ← y+1, ś ← PickAtRandom(Ny(s)) “Shaking phase”
EndIf

EndWhile

The above framework introduces two user defined parameters, maxCount and
tabuTenure. In subsequent section, sensitivity analysis on both these parameters
is given. Finally, an important factor is the neighborhood change scheme. In
literature strategies are proposed including sequential and nested changes. In
this paper, a sequential selection is applied based on cardinality, which implies
moving from relatively poor to richer neighborhood structures. The latter scheme
significantly increases the possibilities of finding higher quality solutions. The
proposed sequence is the defined as follows GENI, Or-Opt, Cross, 2-Opt, 0-1
Relocate, 1-1 Interchange, on both single route and pair of routes.

132 P.P. Repoussis et al.

3.3 Long Term Memory Structure

One shortcoming of GRASP schemes comes from the fact that each restart is
independent of the previous ones, thus preventing the exploitation of previously
obtained solutions to guide the search. Furthermore, the use of a randomized
greedy heuristic to generate starting solutions is attractive only if the greedy
solutions are different enough to allow a good sampling of the solution space. For
this reason, a long term memory structure is introduced as an extension to the
basic memoryless GRASP scheme. A similar probabilistic learning mechanism
has been proposed also in [20], called Reactive GRASP, in which the size of RCL
varied according to the quality of solutions obtained at each iteration. In our
implementation we extend the aforementioned reactive tuning of the size of RCL
considering both quality and diversification measures among solutions produced
during construction phase. The latter approach provides efficient sampling of
solution space since diversified regions of good quality solutions are identified
and limited search in regions of the search space already explored is avoided.

As mentioned above, the repetitive sampling mechanism of GRASP is con-
trolled by RCL size, which in our implementation RCL is cardinality based.
Indeed, it is made up of λ elements with the largest penalty costs. Thus, cases
where λ equals to 1 corresponds to pure greedy construction, while λ � 1 is
equivalent to random construction. Let ṡ and s̈ denote two solutions produced
by sequent iterations of GRASP construction phase. In order to measure quan-
titatively their diversity the so-called similarity Ds̈

ṡ is used. The latter is defined
as the number of common arcs between ṡ and s̈,

Ds̈
ṡ =

∑
(i,j)∈A

ξij , (7)

where binary variable ξij is equal to 1 if (i, j) is an arc of both ṡ and s̈, 0
otherwise. The larger the λ the smaller is the distance Ds̈

ṡ, and thus the better
the sampling of the solution space obtained. On the other hand, while λ tends
to increase from 1, the worse is the quality of solutions produced, and thus, the
more is the computational effort needed by local search phase to improve the
incumbent solution’s quality. Thus, the appropriate choice of λ is crucial.

Let a non fixed size λ take values at each iteration from a discrete set such that
Λ = {λ1, λ2, . . . , λν}. The probabilities associated with the choice of each value
are initially set equal to Bτ = 1/|Λ| where τ = 1, 2, . . . , ν. Moreover, let ṡ and s̈
be two sequent solutions, Aτ denote the average objective function values and Dτ

the average similarity of all solutions found so far using λ = λτ . All probabilities
are reevaluated once by taking Bτ = βτ/

∑ν
υ=1 βυ, where βτ = Aτ/f(s̈)+Dτ/Ds̈

ṡ

for τ = 1, 2, . . . , ν. The first component, Aτ/s̈, express the ratio between the
overall average values found so far, Aτ , and the value of the current solution
found s̈ using λτ . Obviously, the Aτ/f(s̈) will increase when better on average
solution values are found. Similarly, the larger the distance between ṡ and s̈
against the average similarity Dτ , the smaller their ratio.

Therefore, the value of βτ will be larger for values of λτ leading to the best
valued and most diversified solutions on average. Larger values of βτ correspond

A Reactive Greedy Randomized Variable Neighborhood Tabu Search 133

to more suitable values of λ. Thus, the probabilities of these more appropriate
values will then increase when they are reevaluated. The above reactive approach
of reducing progressively the set Λ, improves significantly robustness and solution
quality, due to greater diversification and less reliance on tuning.

Below, the overall Reactive Greedy Randomized Variable Neighborhood Tabu
Search solution framework, is illustrated. The termination condition used
bounded the allowed computational time consumption to an upper limit ζ.

Reactive GRASP-VNTS
Λ←InitializeSet(|N |/2), index←1
For all elements λi∈Λ Do Initialize (Di,Ai,Bi)
While CPU time consumed ≤ ζ Do λ←λindex, s←∅

While solution not complete Do
RCLλindex

← Build Restricted Candidate List(s)
x ← Select Element At Random(RCLλindex

)
s ← s∪{x}
Update Greedy Function(s)

End while
Route Elimination Procedure(s)
VNTS(s)
UpdateBestSolution(s,elite), Reevaluate(Dindex,Aindex,Bindex)
If index = |Λ| AND |Λ| > 1 Do

Remove λi with the smallest Bi from set Λ, index←1
Else index←index+1

Endwhile

4 Computational Results

4.1 Data Sets and Parameter Sensitivity

For the evaluation of the proposed methodology, various computational experi-
ments were conducted. Computational results reported herein, are obtained us-
ing Solomon’s 100-node benchmark data sets R, C and RC containing randomly
dispersed, clustered, and semi-clustered customers respectively. Moreover, R1,
C1, RC1 have short scheduling horizon contrary to R2, C2, RC2 data sets [18].

Contrary to other metaheuristic approaches, the proposed solution method-
ology introduced relatively few parameters, while most of them are relatively
insensitive to the characteristics of the problem considered. Indeed, using only
simple adjustments one can determine very well performing parameter settings
with modest effort except for those concerning construction. As described previ-
ously, for the parameters associated with the greedy function, θ1, θ2 and θ3, all
values within ranges 0.2-1.0, 0.1-0.6 and 0.1-0.4 are applied in increments of 0.05
units respectively, and the best possible combination is used. On other hand, the
rest parameters remained fixed for all computational experiments reported.

134 P.P. Repoussis et al.

In terms of GRASP construction, despite the fact that λ is self-adjusted,
the range within it fluctuates must be defined. The computational experiments
conducted, indicated that a size between 5 and 30 is suitable for small-scale (100
customers) problems. Let a population of Q solutions produced with constant
λ. The average similarity among all possible pairs of solutions is denoted as H

equals to s′∈Q s′′∈Q−s′ Ds′′
s′

|Q|(|Q|−1) . Although, large values of λ generate solutions of

relatively poor quality, based on similarity Ds′′
s′ it is evident that relatively only

large values of λ can generate adequate distant solutions. Figure 1(a) indicates
the Ds′′

s′ achieved for constant values of λ considering a population of 50 solutions.
Figure 1(b) illustrates average similarity H obtained for different values of λ
and different problem instances. Obviously, as moving from R101 to R104 the
H obtained is smaller due to the fact that time windows are relaxed.

0
20
40
60
80

100
120
140
160
180

35 55 75 95 115Ds',s''

F
re

q
u

en
cy

=5
=10
=20
=40

|Q|=50

Mean Std. Dev Variance
74,50 12.40 153,91
68,20 9,40 88,49
64,07 8,48 71,91
58,83 6,25 39,10

Instance
R102

(a) Distribution of Ds′′
s′ among all possible pairs

35

40

45

50

55

60

65

70

75

0 10 20 30 40 50

H

R101

R102

R103

R104

(b) H versus λ for different problem instances

Fig. 1. Similarity versus size of RCL list

Other critical user defined parameters are tabuTenure and the maximum
number of iterations maxCount. Based on computational experiments, a rel-
atively small value of tabuTenure close to 10, best fits intensification search.
On the other hand, for tuning maxCount several experiments conducted.
Figures 2(a)-2(d) illustrate distance cost (y-axes) obtained during VNTS search

A Reactive Greedy Randomized Variable Neighborhood Tabu Search 135

versus computational time consumed in seconds (x-axes). Particularly, figures
demonstrate the search progress of VNTS for different values of maxCount with
and without invoking the shaking mechanism. This distinction is made due to
the fact that shaking mechanism sometimes deteriorate extensively solution’s
quality and thereafter, small values of maxCount are not sufficient to ensure
smooth performance of TS. Contrary, large values of maxCount result in exces-
sive computational time consumption without the analogous output. Generally,
the scheme of VNTS with shaking requires a value close to 20 while without
shaking an appropriate value is close to 15. In terms of shaking mechanism
efficiency, it is observed that on average higher quality solutions are produced.

1340

1390

1440

1490

1540

1590

0 20 40 60 80 100
Time

D
is

ta
n

ce

VNTS without
Shaking

VNTS with Shaking

(a) maxCount=10

1340

1390

1440

1490

1540

1590

0 20 40 60 80 100 120
Time

D
is

ta
nc

e

VNTS without
Shaking

VNTS with Shaking

(b) maxCount=15

1340

1390

1440

1490

1540

1590

0 20 40 60 80 100 120 140
Time

D
is

ta
n

ce

VNTS with Shaking
VNTS without

Shaking

(c) maxCount=20

1340

1390

1440

1490

1540

1590

0 40 80 120 160Time

D
is

ta
n

ce

VNTS with Shaking

VNTS without
Shaking

(d) maxCount=25

Fig. 2. Search progress on R103: VNTS for different maxCount

Finally, in order to demonstrate the performance of VNTS, comparisons are
made against the Variable Neighborhood Descent (VND) scheme and the Tabu
Search (TS) with random neighborhood selection, maxCount equal to 200 and
constant tabu list size equal to 20, for a given initial solutions. In particular,
R103 and R104 problem instances used as the test beds of experiments. Figures
3(a)-3(b) illustrate the search progress of VND, TS, VNTS with and without
shaking. In all cases observations are similar. Although the VND scheme is quite
effective in terms of computational time consumption, the quality of solutions
produced is relatively poor. Contrary, TS is the most time effective producing

136 P.P. Repoussis et al.

high quality solutions in short computational times, however, it prematurely
converges to local optimum solutions. Lastly, both variants of VNTS (with and
without shaking) performed best in terms of final output. The fact that the
computational time required is larger compared to the other methods is expected,
since they invest in a more thorough exploration of the solution space.

1300

1350

1400

1450

1500

1550

0 20 40 60 80 100 120 140Time

D
is

ta
n

ce

VNTS with Shaking

VNTS without
Shaking

TS

VND

(a) R103

1015

1065

1115

1165

1215

0 50 100 150 200 250Time

D
is

ta
n

ce

VNTS without
Shaking

VNTS with
ShakingVND

TS

(b) R104

Fig. 3. Comparative performance of VND, TS and VNTS

4.2 Comparative Analysis

Table 1 compares the results obtained by the proposed hybrid metaheuristic,
denoted as ReGRVNTS, with the best performing metaheuristics developed for
the VRPTW with limited computational resources. Considering as the primary
objective the minimization of the number of routes and secondarily the mini-
mization of the total traveled distance, Table 1 illustrates the mean number of
vehicles and the mean distance traveled for each benchmark data set of Solomon
[18]. The results indicate the effectiveness and efficiency of ReGRVNTS since
the worst aggregate average percentage deviation observed was 0.42% from the
best known solutions. In particular, for clustered C1 and C2 sets all optimal so-
lutions obtained while in random R1 and semi-clustered RC1 sets, competitive
quality solutions produced. In terms of computational time consumption, the
upper limit ζ was set equal to 2000 secs. The latter threshold is close to the
relative computational time consumption of all other approaches.

Due to the special structure of the benchmark data sets considered, none
method is able to produce the best known solutions for each respective data
set. Only approaches of Bräysy [13], Bräysy et al. [21], Ibaraki et al. [11] and
Le Bouthillier et al. [9] produce the optimum number of vehicles. In terms of
ReGRVNTS only data set R1 is above optimum by one vehicle. It is also worth
mentioning that the results reported are obtained with constant and fixed para-
meter settings compared to other methodologies.Finally, ReGRVNTS was coded
in C++ and run on a 1.5 GHz Pentium IV.

A Reactive Greedy Randomized Variable Neighborhood Tabu Search 137

Table 1. Comparison of results obtained by ReGRVNTS compare to the best perform-
ing metaheuristics proposed recently with limited computational effort. CNV stands
for Cumulative Number of Vehicles and CTD stands for Cumulative Total Distance.

Set B[13] BBB[21] IB[11] HG[22] BvH[8] BCK[9] BHD[7] ReGRVNTS

1222,12 1221,1 1217,36 1211,67 1203,84 1214,2 1214,69 1220,97
R1 11,92 11,92 11,92 12,08 12,17 11,92 12 12.00

975,12 975,43 959,11 950,72 980,31 954,32 960,44 974,44
R2 2,73 2,73 2,73 2,82 2,73 2,73 2,73 2,73

828,38 828,38 828,38 828,45 828,38 828,38 828,38 828,38
C1 10 10 10 10 10 10 10 10

589,86 589,86 589,86 589,96 589,86 589,86 589,86 589,86
C2 3 3 3 3 3 3 3 3

1389,58 1389,89 1391,03 1395,93 1379,03 1385,3 1389,2 1396,68
RC1 11,5 11,5 11,5 11,5 11,63 11,5 11,5 11,5

1128,38 1159,37 1122,79 1135,09 1158,91 1129,43 1124,14 1160,97
RC2 3,25 3,25 3,25 3,25 3,25 3,25 3,25 3,25

CTD 57710 57952 57192 57422 57707 57360 57422 58006
CNV 405 405 405 408 409 405 406 406

5 Conclusions

This paper presented an efficient and robust multi-start solution methodology to
tackle the VRPTW. The suggested method utilized the basic structure of Greedy
Randomized Adaptive Search Procedures equipped with a long term memory
structure for the better strategic sampling of the solution space. The GRASP
local search phase employed a Variable Neighborhood Tabu Search hybrid meta-
heuristic for intensification search. VNTS exploited the systematic changing of
neighborhood structures and the shaking mechanism offered by the basic VNS
scheme, to guide a TS which performed a trajectory local search. The resulting
method proved efficient in terms of solution space exploration. The latter justi-
fied on the all computational experiments conducted on well known Solomon’s
benchmark data sets. In terms of further research, memory structures that ex-
ploit information gathered during search, is a worth pursuing research direction.

References

1. Tarantilis, C.D.: Solving the vehicle routing problem with adaptive memory pro-
gramming methodology. Comput. Oper. Res. 32(2005) 2309–2327

2. Cordeau, J-F., Desaulniers, G., Desrosiers, J., Solomon, M., and Soumis, F.: The
Vehicle Routing Problem with Time Windows. In: Toth P. and Vigo D. (eds), The
Vehicle Routing Problem, SIAM Publishing: Philadelphia, (2002) 157–193

3. Bräysy, O., Dullaert, W., Gendreau, M.: Evolutionary algorithms for the Vehicle
Routing Problem with Time Windows. J. Heuristics 10(2004) 587–611

4. Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows Part I:
Route construction and local search algorithms. Trans. Sci. 39(2005) 104–118

138 P.P. Repoussis et al.

5. Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows Part II:
Metaheuristics. Trans. Sci. 39(2005) 119–139

6. Gendreau, M., Potvin, J-Y.: Metaheuristics in Combinatorial Optimization, Anns.
Opns. Res. 140(2005) 189–213

7. Bräysy, O., Hasle, G., Dullaert, W.: A multi start local search algorithm for the
vehicle routing problem with time windows. Eur. J. Opl. Res. 159(2005) 586–605

8. Bent, R., Van Hentenryck, P.: A two-stage hybrid local search for the vehicle rout-
ing problem with time windows. Trans. Sci. 38(2004) 515–530

9. Le Bouthillier, A., Crainic, T.G., Kropf, P.: A Guided Cooperative Search for the
Vehicle Routing Problem with Time Windows. IEEE Intelligent Sys. 20(2005) 36–
42

10. Russell, R.A., Chiang, W-C.: Scatter search for the vehicle routing problem with
time windows. Eur. J. Opl. Res. 169(2006) 606–622

11. Ibaraki, T., Imahori, S., Kudo, M., Masuda, T., Uno, T., Yagiura, M.: Effective
local search algorithms for routing and scheduling problems with general time
window constraints. Trans. Sci. 39(2005) 206–232

12. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. Glb. Opt.
6(1995) 109–154

13. Bräysy, O.: A Reactive Variable Neighborhood Search for the Vehicle Routing
Problem with Time Windows. INFORMS J. Comp. 15(2003) 347–368

14. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and applica-
tions, Eur. J. Opl. Res. 130(2002) 449–467

15. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13(1986) 533–549

16. Ioannou, G., Kritikos, M., Prastacos, G.: A greedy look-ahead heuristic for the
vehicle routing problem with time windows. J. Oper. Res. Soc. 52(2001) 523–537

17. Kontoravdis, G.,Bard, J.F.: A GRASP for the vehicle routing problem with time
windows. ORSA J. Comp. 7(1995) 10–23

18. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Opns. Res. 35(1987) 254–265

19. Bräysy, O.: Local search and variable neighborhood Search Algorithms for the
Vehicle Routing Problem with Time Windows, Technical Report, Acta Wasaensia
87, University Wasaenis, Vaasa, 2001

20. Prais, M., Rideiro, C.C.: Parameter variation in GRASP procedures. Investigación
Operativa 9(2000) 1–20

21. Berger, J., Barkaoui, M., Braysy, O.: A route directed hybrid genetic approach
for the vehicle routing problem with time windows. Inform. Systems Oper. Res.
41(2003) 179–194

22. Homberger, J. Gehring, H.: A two phase hybrid metaheuristic for the vehicle rout-
ing problem with time windows. Eur. J. Opl. Res. 162(2005) 449–467.

Incorporating Inference into Evolutionary

Algorithms for Max-CSP

Madalina Ionita, Cornelius Croitoru, and Mihaela Breaban

“Al.I.Cuza” University of Iasi, Romania
{mionita, croitoru, pmihaela} @info.uaic.ro

Abstract. This paper presents a simple way of combining inference with
stochastic search for solving constraint satisfaction problems. The ap-
proach makes use of an evolutionary algorithm for search assisted by
an inference algorithm, the variable elimination procedure. The hybrid
algorithm obtained is adapted in such way that a balance between ex-
ploitation and exploration is preserved. The results are presented for the
Max-CSP optimization task.

1 Introduction

There are two major ways to solve constraint satisfaction problems(CSPs) :
inference approaches and search algorithms [1]. Inference approaches derive and
record new information in order to make the problem easier to solve. Search
algorithms seek for a solution in the space of partial instantiations. Efficient
algorithms for CSPs combine search with inference for more accurate results.
Moreover, since most of the real world problems that can be expressed as CSPs
are intractable, approximation schemes are preferred to deterministic ones.

In the realm of evolutionary computing there have been numerous attempts
to use evolutionary algorithms for CSPs solving. Because the application of op-
erators cannot guarantee the feasibility of offspring, constraint handling is not
straightforward in an evolutionary algorithm. However, special methods for deal-
ing with constraints have been developed [2], [3], [4], [5]. In [6] a comparison of
the best evolutionary algorithms is given. Among the method types used in
this area, the direct and indirect constraint handling must be mentioned [2].
The direct constraint handling includes methods like repairing infeasible solu-
tion candidates, use of special representations and operators, and decoding. The
indirect approach refers to including penalties into the fitness function.

It was observed that the use of some heuristics inside an evolutionary algo-
rithm or a method for adapting the penalties can be useful for solving CSPs. For
example, Eiben in [7] proposes to incorporate some heuristics into the genetic
operators. The mutation operator selects a number of variables to be mutated
and assigns them new values. The selected variables are those appearing in con-
straints that are most often violated. The new values are the ones that maximize
the number of satisfied constraints. Another way of incorporating heuristic in-
formation in an evolutionary algorithm is described in [8]. The heuristics are not

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 139–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 M. Ionita, C. Croitoru, and M. Breaban

incorporated into operators, but as a standalone module. Individual solutions
are improved by calling a local optimization procedure for each of them and
then blind genetic operators are applied.

As previously mentioned, most of the real world problems are over-constrained
and do not have an exact solution. The goal became then to find a solution that
satisfies the most constraints. This paper proposes a way of using the information
returned by an inference algorithm inside an evolutionary algorithm to solve
the Max-CPS problem, the optimization version of constraint satisfaction. The
inference algorithm employed is Bucket-Elimination, an algorithm which stores
new information as a new constraint. This constraint summarizes the effect of
the variable that has been processed and will replace the variable. The main
drawback is that the new constraints may have large arities, so it takes an
exponential time and space to process and store. To limit this drawback we
have used an approximated version, the Mini-bucket Elimination algorithm. In
some cases the mini-bucket scheme cannot find the optimal solution, even when
it uses a higher level of accuracy. This scheme has been extended in [9] with
a way of automatically generating some heuristic functions that can be used
in solving optimization tasks. The heuristic function returns a lower bound on
the minimum number of constraints that are violated by the best extension
of a partial assignment. Our approach uses these functions inside the genetic
operators.

The next section gives a short introduction to the constraint satisfaction prob-
lems and the used inference algorithm. The new approach is presented in section
3. Section 4 presents the tests and results for randomly generated binary CSPs.
Section 5 concludes the paper with a discussion of our work and directions for
future research.

2 Constraint Satisfaction

2.1 Constraint Satisfaction Problems

Definition 1. A Constraint Satisfaction Problem (CSP) is defined by a set of
variables X = {X1, . . . , Xn}, associated with a set of discrete-valued domains,
D = {D1, . . . , Dn}, and a set of constraints C = {C1, . . . , Cm}. Each constraint
Ci is a pair (Si, Ri), where Ri is a relation Ri ⊆ DSi defined on a subset of
variables Si ⊆ X called the scope of Ci. The relation denotes all compatible
tuples of DSi allowed by the constraint.

A solution is an assignment of values to variables x = (x1, . . . , xn), xi ∈ Di, such
that each constraint is satisfied. If a solution is found, then the problem is named
satisfiable or consistent. The problem may ask for one solution, all solutions, or
- when a solution does not exists - a partial solution that optimizes some criteria
is desired. In the following, our discussion will focus on the last case, that is,
the Max-CSP problem. The task consists in finding an assignment that satisfies
a maximum number of constraints. For this problem the relation Ri is given as
a cost function Ci(Xi1 = xi1, . . . , Xik = xik) = 0 if (xi1, . . . , xik) ∈ Ri and 1
otherwise.

Incorporating Inference into Evolutionary Algorithms for Max-CSP 141

2.2 Bucket Elimination

In this section, a brief description of the variable elimination framework (also
known as bucket elimination [10]) with some extensions will be given.

The Bucket Elimination algorithm (BE) takes as input an ordering of variables
and the cost functions. The method partitions the functions into buckets. Each
function is placed in the bucket corresponding to the variable which appears
latest in the ordering. After this step, two phases take place then. In the first
phase the buckets are processed from last to first. The processing consists in a
variable elimination procedure that computes a new function which is placed in
a lower bucket. For the Max-CSP problem this procedure will compute the sum
of all constraint matrices and will minimize over the bucket’s variable. In the
second phase, the algorithm considers the variables in increasing order. It builds
a solution by assigning a value to each variable, consulting the functions created
during the first phase.

Mini-bucket Elimination (MBE) [11] is an approximation of the previous al-
gorithm which tries to reduce space and time complexity. The buckets are parti-
tioned into smaller subsets, called mini-buckets which are processed separately,
in the same way as in BE. The number of variables from each mini-bucket is up-
per bounded by a parameter, i. The time and space complexity of the algorithm
is O(exp(i)). Also this parameter controls the trade-off between the quality of
the approximation and the computational complexity.

The mini-bucket algorithm is expanded in [9] with a mechanism to generate
some heuristic functions. The essential idea is to use the functions recorded by the
mini-bucket in a more efficient way. Given a partial assignment xp = (x1, . . . , xp),
the number of constraints violated by the best extension of xp is:

f∗(xp) = minxp+1,...,xn

n∑
k=1

Ck

for the variable ordering d = (X1, ..., Xn).
The previous sum can be computed as:

f∗(xp) = (
∑

Ci∈buckets(1...p)

Ci)(xp) + h∗(xp)

where h∗(xp) can be estimated by a heuristic function h(xp), derived from the
functions recorded by the MBE algorithm. h(xp) is defined as the sum of all the
hk

j functions that satisfy the following properties:

– they are generated in buckets p + 1 through n, and
– they reside in buckets 1 through p.

h(xp) =
p∑

i=1

∑
hk

j ∈bucketsihk
j

hk
j , where k > p

hk
j represents the function created by processing the j-th mini-bucket in bucketk.

142 M. Ionita, C. Croitoru, and M. Breaban

These functions can be used as heuristic evaluation functions in search. In [9]
two deterministic search methods, Branch-and-Bound and Best First have been
proposed to take advantage of such functions. In the next section we will describe
a possible way of incorporating these functions into an evolutionary algorithm.

3 Hybridization

Genetic algorithms [12] are powerful search heuristics which work with a popula-
tion of chromosomes, potential solutions of the problem. The individuals evolve
according to rules of selection and genetic operators. To obtain good results
for a problem we have to incorporate knowledge about the problem into the
evolutionary algorithm. A possible way of achieving that is by hybridizing the
evolutionary algorithm with some standard procedures. Evolutionary algorithms
are flexible and can be easily extended by incorporating alternative approaches.
The heuristic information introduced in an evolutionary algorithm can enhance
the exploitation but will reduce the exploration. A good balance between ex-
ploitation and exploration is important.

Our new method includes the constraint processing information into the evo-
lutionary algorithm in order to improve the search results. The basic idea is to
use the functions returned by the mini-bucket algorithm as heuristic evaluation
functions. The selected genetic algorithm is a simple one, with a classical scheme.
The special particularity is that the algorithm uses the inferred information in a
genetic operator and an adaptive mechanism for escaping from the local minima.

A candidate solution is represented by a vector with the dimension the number
of variables. The value at position i represents the value of the corresponding
variable, xi. The algorithm works with complete solutions, i.e. all variables are
instantiated. Each individual in the population has associated a measure of its
fitness in the environment. The fitness function counts the number of violated
constraints by the candidate solution.

In an EA the search for better individuals is conducted by the crossover
operator, while the diversity in the population is maintained by the mutation
operator.

The recombination operator is a fitness based scanning crossover. The scan-
ning operator takes as input a number of chromosomes and returns one child.
It chooses one of the i-th genes of the n parents to be the i-th gene of the
child. For creating the new solution, the best genes are preserved. Our crossover
makes use of the pre-processing information gathered with the inference process.
It uses the functions returned by the mini-bucket algorithm, f∗(xp) to decide
the values of the child. The variables are instantiated in a given order, the same
as the one used in the mini-bucket algorithm. The order is determined with a
deterministic heuristic. A new value to the next variable is assigned by choosing
the best value from the parents according to the evaluation functions f∗. As
stated before, these heuristic functions provide an upper bound on the cost of
the best extension of a given partial assignment.

Incorporating Inference into Evolutionary Algorithms for Max-CSP 143

Algorithm 1. multiparent crossover(P (t), k)
for each set of k parents, p1, . . . , pk do

for each position i in the ordering do
childi ← best(p1i, . . . , pki)
/* use f∗(pi

1), . . . , f
∗(pi

k) in best */
parent ← get worst parent(p1, . . . , pk)
replace(parent, child)

end for
end for

This recombination operator intensifies the exploitation of the search space.
It will generate new solutions for evaluations if there is sufficient diversity in
the population. An operator to preserve variation is necessary. The mutation
operator has this function, i.e. it serves for exploration. The operator assigns a
new random value for a given variable.

After the application of the operators, the new individuals will replace the
parents. Selection will take place next to ensure the preservation of fittest indi-
viduals. A fitness-based selection was chosen for experiments.

Because the crossover and the selection direct the search to most fit individ-
uals, there is a chance of getting stuck in local minima. There is a need to leave
the local minima and to explore different parts of the search space. A way of
escaping from this minima must be included in the approach. From the avail-
able techniques, we have chosen the adaptive parameter control model which
takes feedback from the search [13]. A possible way is to increase the muta-
tion probability each time a local minima is reached. For a number of iterations
the mutation probability was increased with a parameter that satisfies a Gaus-
sian distribution. Mutating a gene means perturbing their value with a random
number drawn from a Gaussian distribution N(0, σ).

Another mode which was also tested in our approach is the earliest breakout
mechanism [14]. When the algorithm is trapped in a local minimum point, a
breakout is created for each nogood that appears in this current optimum. The
weight for each newly created breakout is equal with one. If the breakout al-
ready exists, its weight is incremented by one. A predefined percent of the total
weights (penalties) for an individual that violates these breakouts are added to
the fitness function. In this manner the search is forced to put more emphasis on
the constraints that are hard to satisfy. The evaluation function is an adaptive
function because it is changed during the execution of the algorithm.

4 Tests and Results

4.1 Experimental Settings

We have considered binary CSPs where each constraint can not have more than
two variables. The approach was tested on two well-known models for generating
CSPs.

144 M. Ionita, C. Croitoru, and M. Breaban

Algorithm 2. GA-MBE-Breakouts(i)
apply MBE(i)
t ← 0
initialize P (t)
evaluate P (t)
while termination condition not meet do

t ← t + 1
select P (t) from P (t − 1)
multiparent crossover (P (t), k)
mutation(P (t))
evaluate P (t)
if no diversity then

get the list of breakouts from the best individual
introduce the breakouts in the fitness

end if
end while

The four parameter model [15], called model B did not allow the repetition
of the constraints. A random CSP is given by four parameters (N , K, C, T)
where N represents the number of variables, K the domain size, C the number
of constraints and T the constraint tightness. The tightness represents the num-
ber of tuples not allowed. C constraints are selected uniformly at random from
the available N(N − 1)/2 ones and for each constraint T nogoods are selected
from the available K2 tuples. The problems were first solved using a complete
algorithm PFC-MRDAC [16]. This algorithm is an improved branch-and-bound
algorithm, specifically designed for the Max-CSP problem. Because the networks
generated are not necessarily solvable, the optimal solution needed for comput-
ing the accuracy was the solution found by the branch-and-bound algorithm. We
have tested the approach on some over-constrained classes of binary CSPs. The
selected classes are sparse 〈25, 10, 37, T〉, with medium density 〈15, 10, 50, T〉
and complete graphs 〈10, 10, 45, T〉. For each class of problem the algorithms
were tested on 50 instances.

In order to compare our results with the performance of other evolutionary
algorithms we investigate the approach against the set of CSP instances made
available by Craenen et al. on the Web 1. These instances are generated using the
model E [17]. We have experimented with 175 solvable problem instances: 25
instances for different values of p in model E(20, 20, p, 2). Parameter p takes the
following values: {0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30}. All instances considered
were solvable.

The variable ordering used in MBE was determined using the min-induced-
width heuristic. This method places the variable with the minimum degree last
in the ordering. It connects then all of the variable neighbors, removes the node
and all its adjacent edges and next repeats the procedure.

1 http://www.xs4all.nl/b̃craenen/resources/csps modelE v20 d20.tar.gz

Incorporating Inference into Evolutionary Algorithms for Max-CSP 145

To measure the performance of the approach we have used the accuracy ratio
opt = Falg/FMax CSP , where Falg represents the value of the solution found by
the test algorithm and FMax CSP is the optimal solution.

The number of parents for the crossover operator was established to five. The
genetic algorithm stops after a certain number of iterations or when a solution
is found.

4.2 Results

Model B. The results for model B are given in Table 1, 2, and 3 for the version of
the evolutionary algorithm which uses the breakouts mechanism. Similar results
are obtained using the adaptive mutation model. We included the computations
only for the first model of GA.

For each instance we perform five independent runs for GA and the best
solution was taken. The percent of the problems that were solved was recorded
in Table 1.

Table 1. Results for model B: the percent of solved problems, with the accuracy greater
than 0.95

Instance

MBE MBE MBE
GA-MBE GA-MBE GA-MBE

i=2 i=4 i=6
solved solved solved

N=10, K=10, C=45, T=84 4 10 36
96 92 98

N=10, K=10, C=45, T=85 4 16 56
92 96 100

N=15, K=10, C=50, T=84 4 8 48
76 92 100

N=10, K=10, C=45, T=85 2 10 36
76 80 88

N=25, K=10, C=37, T=84 16 90 100
94 98 100

N=10, K=10, C=45, T=85 18 84 100
86 100 100

Each block from Table 1 corresponds to a class of CSPs, with different con-
straint tightness. The results are given for different values of parameter i, the
level of inference. For example, for the class of problems N = 15, K = 10, C =
50, T = 84 the MBE with i = 4 solved only 8% of the generated problems. Our
approach solved 92% of the problems. The Mini-Bucket algorithm solves more
problems when the bound i increases. However, the time increases too.

It can be observed that the hybrid genetic algorithm increases the performance
of the Mini-bucket. The performance of the genetic algorithm is higher when
using a higher i-bound. This proves that the genetic algorithm uses efficiently

146 M. Ionita, C. Croitoru, and M. Breaban

Table 2. Average constraint checks for the GA-MBE algorithm

Instance T i=2 i=4 i=6

N=10, K=10, C=45 84 3.6 · 106 5.1 · 106 2.8 · 106

85 3.9 · 106 3.8 · 106 2.7 · 106

N=15, K=10, C=50 84 5.7 · 106 6.6 ∗ 106 4.2 ∗ 106

85 6.1 · 106 6.4 · 106 5.1 · 106

N=25, K=10, C=37 84 8.7 · 106 1.7 · 106 7.1 · 105

85 9.1 · 106 3.4 · 106 8.8 · 105

Table 3. Average time for MBE and GA-MBE algorithms

Instance Algorithm i=2 i=4 i=6

N=10, K=10, C=45, T=84 MBE 12 752 61440
GA-MBE 2300 2541 1393

N=15, K=10, C=50, T=84 MBE 15 1154 91597
GA-MBE 15782 14673 2550

N=25, K=10, C=37, T=84 MBE 51 1293 2628
GA-MBE 7205 2015 357

 18

 20

 22

 24

 26

 28

 30

 32

 1000 530 160 100 30 10 1

fit
ne

ss

iterations

i=2
i=4
i=6

Fig. 1. Best fitness for a run on class N = 15, K = 10, C = 50, T = 84

the information gained by pre-processing. But there must be a trade-off between
the preprocessing and the search realized by the evolutionary algorithm. This
remark also results from the next tables.

Incorporating Inference into Evolutionary Algorithms for Max-CSP 147

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.24 0.25 0.26 0.27 0.28 0.29 0.3

S
uc

ce
ss

 r
at

e

p (csp difficulty)

i=0
i=2
i=4

Fig. 2. Succcess rate for GA-MBE on instances of model E

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.24 0.25 0.26 0.27 0.28 0.29 0.3

M
ea

n
er

ro
r

p (csp difficulty)

i=0
i=2
i=4

Fig. 3. Mean fitness for GA-MBE on instances of model E

148 M. Ionita, C. Croitoru, and M. Breaban

For the evaluation we have also used an additional criterium. The standard
measure of the efficiency of an evolutionary algorithm, the number of fitness
evaluations is not very useful in this context. The use of heuristics implies more
computation that is invisible for this metric. Therefore we have calculated the
average number of conflict checks (Table 2).

In general, it is expected that the number of constraint checks increases with
the obtaining of better results. The use of more conflict checks means learning
more about the problem. The situation is a little different here. In Table 2 on the
last column (i = 6) the number of constraint checks is smaller than the one in
the column with i = 2. This happens because more information about the search
space is gained in the MBE heuristic. It seems that the number of constraint
checks decreases with the producing of more inference. In the case of a medium
level of inference (i = 4) for the complete and medium classes of problems, the
number of constraint checks reaches a maximum value.

The time needed for solving the binary CSPs is shown in Table 3 for some
instances. GA-MBE with small inference can be preferred to MBE with greater
inference, because the precision and the time are better for the first one.

Comparing with the results from [9], the gain from inference is bigger with
the evolutionary algorithm than with a deterministic one (a Branch-and-Bound
or a Best-First). Also, from Figure 1 it can be observed that with a stronger
inference less iterations are necessary.

Model E. The results for model E are given in Figure 2 and 3. As measures of
effectiveness, the success rate and the mean error at termination was used. The
success rate represents the percentage of runs that find a good solution. As in
the previous case, we consider only the solutions that have a ratio greater than
0.98. The error at termination for a run is equal with the number of constraints
that are violated by the best solution, at the end of the algorithm.

The performance of the algorithm decreases with the difficulty of the problem.
The results are not so clear as in the case of model B, regarding the level of
inference used. We can also observe that the mean error is small, meaning that
the algorithm is stable (Figure 3). This feature is very important for such kind
of problems.

Using the results from the comparative study of several genetic algorithms
made by Craenen et al. [6] we can conclude that the performance of our algorithm
is comparable with that of the best GAs in the CSP field: SAW and Glass-Box
GA. Low levels of inference slightly improve the performance of our algorithm
on difficult CSP instances; higher levels of inference are needed.

5 Conclusions

A new approach for solving binary CSPs was presented. The approach uses the
heuristics extracted from an approximation inference scheme inside an evolu-
tionary algorithm. The evolutionary algorithm is adapted to exploit the heuristic
information. This new approach is tested and compared with the Mini-Bucket

Incorporating Inference into Evolutionary Algorithms for Max-CSP 149

algorithm and with previous state of the art GAs for CSPs. Our results demon-
strate the effectiveness of this approach. Of course, future evaluation work on
real world CSPs is necessary. Moreover, some improvements can be obtained by
choosing an evolutionary technique for determining the order of the variables.

References

1. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
2. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary com-

putation methods. Proceedings of the 4th Anual Conference on Evolutionary Pro-
gramming (1995) 135-155

3. Dozier, G., Bowen, J., Bahler, D.: Solving small and large constraint satisfaction
problems using a heuristic-based microgenetic algorithm. Proceedings of the 1st
IEEE Conference on Evolutionary Computation (1994) 306-311

4. Paredis, J.: Coevolutionary constraint satisfaction. Proceedings of the 3rd Confer-
ence on Parallel Problem Solving from Nature, 866 (1994) 46-55

5. Eiben, A.E., Ruttkay, Zs.: Self-adaptivity for constraint satisfaction: Learning
penalty functions. In Proceedings of the 3rd IEEE Conference on Evolutionary
Computation (1996) 258-261

6. Craenen, B.G.W., Eiben, A.E., van Hemert, J.I.: Comparing Evolutionary Algo-
rithms on Binary Constraint Satisfaction Problems. IEEE Transactions on Evolu-
tionary Computation, 7(5) (2003) 424-444

7. Eiben, A.E., Raue, P.-E., Ruttkay, Zs.: Solving constraint satisfaction problems
using genetic algorithms. Proceedings of the 1st IEEE Conference on Evolutionary
Computation (1994) 542-547

8. Marchiori, E., Steenbeek, A.: A Genetic Local Search Algorithm for Random Bi-
nary Constraint Satisfaction Problems. Proceedings of the 14th Annual Symposium
on Applied Computing (2000) 458-462

9. Kask, K., Dechter, R.: New Search Heuristics for Max-CSP. Principles and Practice
of Constraint Programming (2000) 262-277

10. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113 (1999) 41-85

11. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Jour-
nal of the ACM, 50(2) (2003) 107-153

12. Michalewicz, Z.: Genetic Algorithms + Data structures = Evolution programs.
Springer Berlin 3rd edition (1996)

13. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary compu-
tation: a survey. Proceedings of the 4th IEEE Conference on Evolutionary Com-
putation (1997) 65-69

14. Morris, P.: The breakout method for escaping from local minima. Proceedings of
the 11th National Conference on Artificial In- telligence, AAAI (1993) 40-45

15. Smith, B.: Phase transition and the mushy region in constraint satisfaction. Pro-
ceedings of the 11th ECAI (1994) 100-104

16. Larossa, J., Meseguer, P.: Partial Lazy Forward Checking for MAX-CSP. Proceed-
ings of the 13th European Conference on Artificial Intelligence (1998) 229-233

17. Achlioptas, D., Kirousis, L.M, Kranakis, E., Krizanc, D., Molloy, M.S.O. and
Stamatiou, Y.C.: Random constraint satisfaction: A more accurate picture. Con-
straints, 4(6) (2001) 329-344

Scheduling Social Golfers with Memetic

Evolutionary Programming

Carlos Cotta1, Iván Dotú2, Antonio J. Fernández1,
and Pascal Van Hentenryck3

1 Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
2 Dpto. de Ingenieŕıa Informática, Universidad Autónoma de Madrid, Spain

3 Brown University, Box 1910, Providence, RI 02912, USA

Abstract. The social golfer problem (SGP) has attracted significant
attention in recent years because of its highly symmetrical, constrained,
and combinatorial nature. Nowadays, it constitutes one of the standard
benchmarks in the area of constraint programming. This paper presents
the first evolutionary approach to the SGP. We propose a memetic al-
gorithm (MA) that combines ideas from evolutionary programming and
tabu search. In order to lessen the influence of the high number of symme-
tries present in the problem, the MA does not make use of recombination
operators. The search is thus propelled by selection, mutation, and local
search. In connection with the latter, we analyze the effect of baldwinian
and lamarckian learning in the performance of the MA. An experimental
study shows that the MA is capable of improving results reported in the
literature, and supports the superiority of lamarckian strategies in this
problem.

1 Introduction

The social golfer problem has attracted significant interest since it was first
posted on sci.op-research in May 1998. It consists of scheduling n = g · s
golfers into g groups of s players every week for w weeks so that no two golfers
play in the same group more than once. The problem can be regarded as an
optimization problem if for two given values for g and s, we ask for the maximum
number of weeks w the golfers can play together.

It can be easily inferred from the informal definition of the SGP given be-
fore that it constitutes is a highly combinatorial, constrained, and symmetric
problem. Not surprisingly, a lot of attention has been devoted to the SGP in
the constraint programming community (e.g., see [1,2,3] among others). Indeed,
it raises fundamentally interesting issues in modelling and symmetry break-
ing, and has become one of the standard benchmarks in the area. Notice in
this sense that symmetry is manifold in this problem, e.g., players can be per-
muted within groups, groups can be ordered arbitrarily within every week, and
even the weeks themselves can be permuted. Recent developments (e.g., [4])
approach the scheduling of social golfers using innovative, elegant, but also com-
plex, symmetry-breaking schemes.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 150–161, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Scheduling Social Golfers with Memetic Evolutionary Programming 151

To the best of our knowledge, no evolutionary approach has been reported
in the literature to handle this problem. Here, we present a memetic algorithm
(MA) that is based on the hybridization of evolutionary programming and tabu
search, and that constitutes the first attempt of tackling the SGP by evolution-
ary techniques. While deterministic techniques such as constraint programming
have addressed the SGP by detecting and breaking symmetries (e.g., [5,6,7,8]),
the flexibility of MAs eases the handling of these symmetries. To be precise, their
influence is mostly confined to sexual-reproduction operators such as recombi-
nation. However, as shown in this work, a MA based on selection, mutation
and local search still constitutes a powerful tool for optimization, capable of
performing at a state-of-the-art level for this problem.

2 The Social Golfer Problem

As mentioned in previous section, the Social Golfer Problem (SGP) consists of
scheduling n = g · s golfers into g groups of s players every week for w weeks,
so that no two golfers play in the same group more than once. An instance of
the social golfer is thus specified by a triplet 〈g, s, w〉. A (potentially infeasible)
solution for such an instance is given by a schedule σ : Ng × Nw −→ 2Nn , where
Ni = {1, 2, · · · , i}, and |σ(i, j)| = s for all i ∈ Ng, j ∈ Nw, that is, a function
that on input (i, j) returns the set of s players that constitute the i-th group of
the j-th week.

2.1 Modelling the SGP

There are many possible modelings for the social golfer problem, which is one
of the reasons why it is so interesting. In a generalized way, this problem can
be modelled as a constraint satisfaction problem (CSP) defined by the following
constraints:

– A golfer plays exactly once a week, i.e.,

∀p ∈ Nn : ∀j ∈ Nw : ∃!i ∈ Ng : p ∈ σ(i, j). (1)

We will use the notation γ(p, j) to denote the index of the group in which
golfer p plays during the j-th week. This constraint can be also formalized
by claiming that no two groups in the same week intersect, i.e.,

∀j ∈ Nw : ∀i, i′ ∈ Ng, i �= i′ : σ(i, j) ∩ σ(i′, j) = ∅. (2)

– No two golfers play together more than once, i.e.,

∀j, j′ ∈ Nw : ∀i, i′ ∈ Ng, i �= i′ : |σ(i, j) ∩ σ(i′, j′)| � 1. (3)

Let #σ(a, b) be the number of times golfers a and b play together in schedule
σ, i.e.,

#σ(a, b) =
∑
i∈Ng

∑
j∈Nw

[{a, b} ⊆ σ(i, j)] , (4)

152 C. Cotta et al.

where [·] is the Iverson bracket, namely [true]= 1 and [false]= 0. We define
the degree of violation of a constraint a-and-b-play-together-at-most-once
υσ(a, b) = max(0, #σ(a, b) − 1).

In addition to the tightly constrained structure of feasible solutions, this prob-
lem is of the foremost interest due to its high degree of symmetry. Symmetries
can appear in this problem because:

– Golfers are interchangeable inside groups. This means (s!)g·w symmetries.
Notice that this symmetry arises in naive formulations of the problem in
which the schedule function is defined to return a list of golfers for each
group and week, rather than a set of golfers.

– Groups within a week can be exchanged. This amounts to the fact that
group indexes bear no absolute meaning within a week, and implies (g!)w

symmetries.
– Weeks can be arbitrarily reordered, that is, given a schedule σ, we can obtain

another one by simply permutating the weekly schedules. Therefore, this
means w! symmetries.

– Golfers can be renumbered. This means exactly n! –i.e., (g · s)!– symmetries.

As a consequence, a very naive formulation 〈g, s, w〉 has (s!)g·w(g!)ww!(gs)!
symmetries. Observe that the symmetries grow very rapidly as the size of the
problem grows, and this may be problematic for search algorithms that ignored
them (they might be mislead in the case of heuristic approaches, and/or waste
computational resources in the case of complete techniques).

The symmetry problem can be remedied in different ways. For instance the
first kind of symmetry is implicitly removed by using sets for modelling groups, as
mentioned before. As to the symmetry inside weeks, it can be removed by order-
ing groups using some pre-defined total order ≺ (e.g., the lower the smallest ele-
ment in a group is, lower the group in a week is, i.e., for any week j and i ∈ Ng−1,

σ(i, j) ≺ σ(i + 1, j) ⇔ min(σ(i, j)) < min(σ(i + 1, j)). (5)

Observe that with this symmetry breaking procedure, golfer 1 is always in the
first group in every week. The third symmetry can be handled in roughly the
same way, that is, ordering weeks with respect to the first group in each week,
using for this purpose the second lowest element in the first group, i.e., let wi

and wi+1 two weeks (i ∈ Nw−1); then

wi ≺ wi+1 ⇔ min(σ(1, i) \ {1}) < min(σ(1, i + 1) \ {1}). (6)

Finally, symmetries among golfers are harder to handle: they can be fully re-
moved only by using advanced techniques for dynamic symmetry breaking (see
[4] for more details).

2.2 Related Work

Due to the interest that the SGP has attracted in the constraint satisfaction
community, it has been extensively attacked using different techniques. Here, we

Scheduling Social Golfers with Memetic Evolutionary Programming 153

mention just some of the most recent advances in solving the SGP. To begin
with, Harvey and Winterer [9] have proposed to construct solutions to the SGP
by using sets of mutually orthogonal latin squares. Also, Gent and Lynce [10]
have recently introduced a satisfiability (SAT) encoding for the SGP. Barnier
and Brisset [4] have presented a combination of techniques to efficiently find
solutions to a specific instance of SGP, the Kirkman’s schoolgirl problem. Global
constraints for lexicographic ordering have been proposed by Frisch et al. [11],
being used for breaking symmetries in the SGP. Also, a tabu-based local search
algorithm for the SGP is described by Dotú and Van Hentenryck [12].

The SGP problem also admits a number of possible variants; for instance
finding a w-week schedule with “maximum socialization” (i.e., as few repeated
pairs as possible), or finding a schedule of minimum length such that each golfer
plays with every other golfer at least once (“full socialization”) [13]. In either
case, and to the best of our knowledge, no evolutionary approach has been
reported in the literature to handle this problem in any of these variants. Next
section tackles this gap.

3 A Memetic Approach to the Social Golfer Problem

The application of standard population-based metaheuristics to the SGP is, if not
thwarted, at least challenged by the presence of the manifold symmetries detailed
in the previous section. To be precise, these symmetries are specifically relevant
with respect to the performance of recombination operators (and generalizations
thereof, that is, any reproductive operator constructing new solutions on the
basis of two or more parents). If these symmetries are not implicitly broken by
means of a wise representation of solutions, or the operators are not explicitly
designed to take them into account, recombination attempts are doomed to
fail: two similar solutions (even two identical solutions) can be considered as
completely different solutions due to misregarded symmetries. As a consequence,
it cannot be expected in general that the relevant features of these solutions (i.e.,
those information pieces ultimately responsible for the quality of the solutions)
be processed in an adequate way. In this scenario, recombination is likely to
behave as a highly disruptive, macromutation process. It turns out that this is
precisely the general interpretation that is made of recombination in the realm
of Evolutionary Programming (EP) [14]. For this reason, we have chosen an EP
model as the base of our memetic approach, as shown next.

3.1 General Algorithmic Model

Following the philosophy of EP, our MA only uses mutation as the primary
means to diversify the search. This relieves the need for performing symmetry
breakages, and subsequently allows a simpler representation of solutions. Let σ
be a w−week assignment for g groups of s players each, as described in Sect. 2.
This assignment is encoded as a string u = t11 :: t12 :: · · · :: t1g :: · · · :: twg, where
tij ∈ Ns

g·s is a permutation of the elements in the set σ(i, j), and the operator

154 C. Cotta et al.

1: for i ∈ [1 : popsize] do
2: let pop[i] ← GenerateSolution(g, s, w)
3: let f [i] ← ViolatedConstraints(pop[i])
4: endfor
5 let iter ← 0
6: do
7: let u ← Select(pop,f)
8: let u′ ← Mutate(u)
9: let (u′′, f ′) ← Learning(u′)

10: let i ← max−1
i∈{1,popsize}(f [i])

11: let (pop[i], f [i]) ← (u′′, f ′)
12: let iter ← iter + 1
13: until TerminationCriterion(pop,f ,iter)

14: return pop min−1
i∈{1,popsize}(f [i])

Fig. 1. Pseudocode of the memetic EP approach

:: indicates string concatenation. Conversely, a string u ∈ Ns·g·w
g·s is decoded into

an assignment σ by dividing it into s−element chunks, taking the elements in
each of them as the components of a set σ(i, j), i ∈ Ng, j ∈ Nw. Although
no symmetries are considered in this encoding, we do have considered a basic
constraint in it, namely the fact that a certain golfer cannot be scheduled into
two different groups in the same week. To do so, strings are initially generated
from Pw

g·s, that is, as the concatenation of w permutations of the elements in
{1, · · · , g · s}. This structure of solutions is respected by all operators involved
in the algorithm, whose overall pseudocode is shown in Fig. 1.

As it can be seen, our MA follows a steady-state evolution model, in which
a single solution is selected, mutated, and subjected to a learning process. Re-
garding mutation, it is done by selecting two players from different groups in the
same week, and switching their positions. The set of possible swaps is then

S(σ) = {(〈w, p1〉, 〈w, p2〉) | γ(p1, w) �= γ(p2, w)}. (7)

Each selected solution is subjected to a number of swaps that is Poisson-distribu-
ted with parameter (g ·s)−1, that is, w swaps are performed on average. This pro-
cedure is respectful with the permutational structure of solutions, as mentioned
before. As to the learning (i.e., improvement) process, it is done by means of an
embedded tabu-search procedure (described in next subsection). Two strategies
for conducting the learning have been considered: baldwinian and lamarckian.
Firstly explored by Hinton and Nolan [15], baldwinian learning consist of per-
forming a local improvement procedure, retaining the fitness value thus obtained,
but discarding the phenotypical changes discovered. In some sense, this amounts
to evaluating a solution on the basis of how good it could become, and bears
some resemblance to natural evolution in that traits acquired during one’s life-
time are not transmitted to the offspring. On the contrary, lamarckian learning
does keep the improved phenotype as well, and injects the changes back to the

Scheduling Social Golfers with Memetic Evolutionary Programming 155

genotype. This kind of learning is akin to cultural (i.e., memetic) evolution, and
provides faster convergence rates (e.g., see [16]). Nevertheless, it may be also
prone to premature convergence to suboptimal solutions in some cases. Deter-
mining whether this is the case in the SGP has been one of the issues considered
in the experimentation.

3.2 The Tabu Search Strategy

The local improvement strategy is based on the tabu-search (TS) template, and
explores the neighborhood arising from swapping golfers from different groups in
the same week. This is the same neighborhood used in individual mutations, but
notice that the latter consists of the iterated application of a number of swaps;
hence, mutation represents a long jump in the search space, as regarded by the
TS algorithm. Furthermore, from the point of view of TS, it is more effective
to restrict attention just to swaps involving at least one golfer in conflict with
another golfer in the same group. This ensures that the algorithm focuses on
swaps which may decrease the number of violations. More formally, a pair 〈w, p〉
is said to be in conflict in schedule σ (denoted by υσ(〈w, p〉) =true), if

∃p′ ∈ σ(γ(p, w), w), p′ �= p : υσ(p, p′) > 1. (8)

With this restriction in mind, the set of swaps S−(σ) considered for a schedule
σ becomes

S−(σ) = {(〈w, p1〉, 〈w, p2〉) ∈ S(σ) | υσ(〈w, p1〉)}. (9)

The tabu component of the algorithm is based on three main ideas. First,
the tabu list is distributed across the various weeks, which is natural since the
swaps only consider golfers in the same week. The tabu component thus consists
of an array tabu, where tabu[w] represents the tabu list associated with week
w. Second, for a given week w, the tabu list maintains triplets 〈a, b, i〉, where a
and b are two golfers, and i represents the first iteration where golfers a and b
can be swapped again in week w. Third, the tabu tenure, i.e., the time a pair of
golfers (a, b) stays in the list, is dynamic: it is randomly generated in the interval
[4, 100]. In other words, each time a pair of golfers (a, b) is swapped, a random
value ρ is drawn uniformly from the interval [4, 100] and the pair (a, b) is tabu
for the next ρ iterations. As a consequence, for schedule σ and iteration k, the
neighborhood consists of the set of moves St(σ, k) defined as

St(σ, k) = {(〈w, p1〉, 〈w, p2〉) ∈ S−(σ) | �k′ > k : 〈p1, p2, k
′〉 ∈ tabu[w]}. (10)

In addition to the non-tabu moves, the neighborhood also considers moves
that improve the best solution found so far, i.e., the set S∗(σ, σ∗) defined as

S∗(σ, σ∗) = {(t1, t2) ∈ S−(σ) | f(σ[t1 ↔ t2]) < f(σ∗)}, (11)

where σ[(w, p1) ↔ (w, p2)] denotes the schedule σ where golfers p1 and p2 switch
their groups in week w, and σ∗ denotes the best solution found so far. Observe

156 C. Cotta et al.

1: for i ∈ [1 : w] do let tabu[i] ← ∅ endfor
2: let σ∗ ← σ
3: let k ← 0
4: while (k � maxIter)∧ [f(σ) > 0] do
5: let f∗ ← ∞
6: for (t1, t2) ∈ St(σ, k) ∪ S∗(σ, σ∗) do
7: let f ′ ← f(σ[t1 ↔ t2])
8: if f ′ < f∗ then
9: let (t∗1, t

∗
2) ← (t1, t2); let f∗ ← f ′

10: endif
11: endfor
12: let τ ← Random([4,100])
13: let tabu[ω(t∗1)] ← tabu[ω(t∗1)] ∪ {〈π(t∗1), π(t∗2), k + τ 〉}
14: let σ ← σ[t∗1 ↔ t∗2]
15: if f∗ < f(σ∗) then
16: let σ∗ ← σ
17: endif
18: let k ← k + 1
19: endwhile
20: return (σ∗, f(σ∗))

Fig. 2. Pseudocode of the tabu-search component of the MA

that the expression f(σ[t1 ↔ t2]) represents the number of violations obtained
after performing the corresponding swap.

With the so-defined neighborhoods, the TS algorithm is described in Fig. 2.
The core of the algorithm is given in lines 4-19, where local moves are iterated
for a maximum number of iterations or until a solution is found. The local move
is selected in line 9. The key idea is to select the best swaps in the neighbor-
hood St(σ, k) ∪ S∗(σ, σ∗), i.e., the non-tabu swaps and those improving the
best schedule. The tabu list is updated in line 13, where ω(〈w, p〉) = w, and
π(〈w, p〉) = p. The algorithm returns the best solution found and its quality.

4 Experimental Results

The experiments have been done with the steady-state MA described in previous
section, using a population size of 25 individuals, binary tournament selection,
and a maximum number of 2,500 evaluations. Each invocation to the TS algo-
rithm uses maxIter = g ·w, so that there exists the possibility that the solution
resulting from learning had no group in common with the original one. For each
pair (g, s), we have performed series of 20 runs per increasing values of w, to
determine the maximum number of weeks for which a feasible schedule can be
found. The experiments have been done both with the lamarckian and the bald-
winian variants of the MA.

The results are shown in Fig. 3 and Fig. 4. For comparison purposes, we
include the results reported in [12] corresponding to the stand-alone application

Scheduling Social Golfers with Memetic Evolutionary Programming 157

3 4 5 6
0

1

2

3

4

5

6

7

8

size of groups

6 groups per week

nu
m

be
r

of
 w

ee
ks

(a)

3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

size of groups

7 groups per week

nu
m

be
r

of
 w

ee
ks

(b)

3 4 5 6 7 8
0

2

4

6

8

10

size of groups

8 groups per week

nu
m

be
r

of
 w

ee
ks

(c)

3 4 5 6 7 8 9
0

2

4

6

8

10

12

size of groups

9 groups per week

nu
m

be
r

of
 w

ee
ks

(d)

Fig. 3. Results for six groups per week (a), seven groups per week (b), eight groups per
week (c), and nine groups per week (d). Each group of three bars represent (from left
to right) the maximum number of weeks solved by stand-alone TS, by the lamarckian
MA, and by the baldwinian MA. The horizontal brackets indicate the lower and upper
bounds for the corresponding instances.

of an extended version of the TS strategy used within our MA, incorporating
reinitialization mechanisms. We also indicate the upper and lower bounds for
the corresponding problem instances, as reported in [17]. Notice that many of
these lower bounds (i.e., best known solutions) are actually superseded by the
plain application of TS. Moreover, the lamarckian MA is capable of further
improving these solutions, providing better solutions for 12 problem instances,

158 C. Cotta et al.

3 4 5 6 7 8 9 10
0

5

10

15

size of groups

10 groups per week

nu
m

be
r

of
 w

ee
ks

Fig. 4. Results for ten groups per week. Each group of three bars represent (from left
to right) the maximum number of weeks solved by stand-alone TS, by the lamarckian
MA, and by the baldwinian MA. The horizontal brackets indicate the lower and upper
bounds for the corresponding instances.

and achieving the same results of TS in the remaining ones. Notice also that the
performance of the baldwinian MA is markedly inferior to that of its lamarckian
counterpart. Several factors may be responsible for this behavior. On one hand,
the search space can have a very complex topology, thus making the baldwinian
information harder to use (the improved solution found by the TS component
may involve a convoluted path in the search space, very difficult to trace by
means of mutation and selection). On the other hand, and related to the previous
point, longer run times may be necessary for the baldwinian MA to achieve the
performance level of the lamarckian MA (in these experiments, each run took
from a few seconds up to around twenty minutes –in a P4 3GHz 1GB winXP
computer– for the larger instances). Then again, this indicates the superiority
of the latter strategy in this problem.

Further details on the performance of the two MA variants are provided in
Table 1. The data correspond to the average results in the largest problem in-
stances they could solve, thus offering a glimpse of their behavior at the edge of
solvability. Obviously, these limits were shown to be farther for the lamarckian
MA in Fig. 3 and Fig. 4, and hence the tables must be studied with caution.
Although entries do not always correspond to homogeneous instance sizes (num-
ber of weeks in this case), we do know that the success rate for the next larger
instance size is 0%. If we couple this fact with the observation that the lower
part of Table 1 (i.e., the baldwinian MA) has a larger number of 100%-success
entries than the upper part, we can conclude that the lamarckian MA does not
simply perform better, but it also has a more gradual decline in performance

Scheduling Social Golfers with Memetic Evolutionary Programming 159

Table 1. Detailed results of the lamarckian MA (top) and the baldwinian MA (bottom)
in the largest solved instance for each combination of s (size of groups) and g (groups
per week). Each triplet of numbers indicate from left to right the success rate in n = 20
runs, the mean number of violated constraints in the best solutions found in these runs,
and the standard error of the mean (σ/

√
n).

Lamarckian MA

groups per week (g)
size (s) 6 7 8 9 10

3 .25 .75 .10 1.00 .00 .00 1.00 .00 .00 .10 1.75 .14 1.00 .00 .00
4 .20 1.05 .15 .50 .65 .16 .50 .65 .16 .70 .50 .18 .75 .45 .18
5 .10 5.90 .48 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
6 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 .05 2.80 .19
7 – .05 1.95 .11 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
8 – – .05 2.50 .19 1.00 .00 .00 .10 2.15 .19
9 – – – 1.00 .00 .00 1.00 .00 .00
10 – – – – 1.00 .00 .00

Baldwinian MA

groups per week (g)
size (s) 6 7 8 9 10

3 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 .95 .05 .05
4 .05 1.70 .12 .05 2.00 .14 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
5 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
6 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 .10 1.05 .11
7 – 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00 1.00 .00 .00
8 – – 1.00 .00 .00 1.00 .00 .00 .50 .50 .11
9 – – – 1.00 .00 .00 1.00 .00 .00
10 – – – – .15 2.40 .30

for increasing instance sizes. Therefore, it seems to be more scalable (or at least
less sensitive to the curse of dimensionality) than the baldwinian MA. The latter
exhibits an abrupt performance drop from full solvability capacity to null such
capacity.

5 Conclusions and Future Work

We have presented here the first evolutionary approach to the Social Golfer
Problem. Combining ideas from the realm of evolutionary programming and
tabu search, we have devised a memetic algorithm capable of improving results
reported in the literature. In this sense, we believe that the incorporation of
intensification mechanisms such as ad hoc local searchers is essential to tackle this
problem. Indeed, given the fact that a less-intensive strategy based in baldwinian
learning performs worse than a pure lamarckian version, we hypothesize that
lesser-intensive algorithms based on unbiased variation plus selection are not
adequate for this problem either.

160 C. Cotta et al.

As mentioned in previous sections, symmetries play a major role in this prob-
lem. Although we have opted for not using recombination mechanisms, hence
diminishing the impact of these symmetries, their consideration is an important
line for future developments. We intend to approach the breakage of symme-
tries by smart representations and/or by problem-aware recombination opera-
tors, subsequently examining whether this symmetry-free approach results in a
significant performance change.

We also plan to introduce further problem knowledge in other components
of the algorithm. In this sense, Dotú and Van Hentenryck [12] have devised a
constructive approach that can be shown to provide feasible solutions for certain
values of w when g and s are equal and odd. In other cases, this constructive
heuristic can provide a good starting point for local search. The overall results
of TS endowed with this constructive heuristic are still similar to those of the
lamarckian MA (despite the latter starts from a purely random initial popu-
lation). Injecting the solutions provided by this constructive heuristic into the
initial population may boost the performance of the MA. This issue will be dealt
in the future as well.

Acknowledgements

This work was partially supported by Spanish MCyT under contracts TIN2004-
7943-C04-01 and TIN2005-08818-C04-01.

References

1. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In Walsh, T.,
ed.: 7th International Conference on Principles and Practice of Constraint Pro-
gramming. Volume 2239 of Lecture Notes in Computer Science., Paphos, Cyprus,
Springer (2001) 93–107

2. Smith, B.M.: Reducing symmetry in a combinatorial design problem. In: Third
International Workshop on the Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems. (2001) 351–359

3. Sellmann, M., Harvey, W.: Heuristic constraint propagation. In Hentenryck, P.V.,
ed.: 8th International Conference on Principles and Practice of Constraint Pro-
gramming. Volume 2470 of Lecture Notes in Computer Science., Ithaca, NY, USA,
Springer (2002) 738–743

4. Barnier, N., Brisset, P.: Solving kirkman’s schoolgirl problem in a few seconds.
Constraints 10 (2005) 7–21

5. Ramani, A., Markov, I.: Automatically exploiting symmetries in constraint pro-
gramming. In Faltings, B., Petcu, A., Fages, F., Rossi, F., eds.: Recent Advances
in Constraints, Joint ERCIM/CoLogNet International Workshop on Constraint
Solving and Constraint Logic Programming, CSCLP 2004. Volume 3419 of Lec-
ture Notes in Computer Science., Lausanne, Switzerland, Springer (2005) 98–112
Revised Selected and Invited Papers.

Scheduling Social Golfers with Memetic Evolutionary Programming 161

6. Prestwich, S., Roli, A.: Symmetry breaking and local search spaces. In Barták,
R., Milano, M., eds.: Second International Conference on the Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems. Volume 3524 of Lecture Notes in Computer Science., Prague, Czech
Republic, Springer (2005) 273–287

7. Mancini, T., Cadoli, M.: Detecting and breaking symmetries by reasoning on
problem specifications. In Zucker, J.D., Saitta, L., eds.: International Symposium
on Abstraction, Reformulation and Approximation (SARA 2005). Volume 3607 of
Lecture Notes in Computer Science., Airth Castle, Scotland, UK, Springer (2005)
165–181

8. Sellmann, M., Hentenryck, P.V.: Structural symmetry breaking. In Kaelbling, L.P.,
Saffiotti, A., eds.: Nineteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-05), Edinburgh, Scotland, Professional Book Center (2005) 298–303

9. Harvey, W., Winterer, T.: Solving the MOLR and social golfers problems. In
van Beek, P., ed.: 11th International Conference on Principles and Practice of
Constraint Programming. Volume 3709 of Lecture Notes in Computer Science.,
Sitges, Spain, Springer (2005) 286–300

10. Gent, I., Lynce, I.: A SAT encoding for the social golfer problem. In: IJCAI’05
workshop on Modelling and Solving Problems with Constraints, Edinburgh, Scot-
land (2005)

11. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for
lexicographic orderings. In Hentenryck, P.V., ed.: 8th International Conference on
Principles and Practice of Constraint Programming. Volume 2470 of Lecture Notes
in Computer Science., Ithaca, NY, USA, Springer (2002) 93–108

12. Dotú, I., Hentenryck, P.V.: Scheduling social golfers locally. In Barták, R., Milano,
M., eds.: International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation Problems 2005. Volume
3524 of Lecture Notes in Computer Science., Prague, Czech Republic, Springer-
Verlag (2005) 155–167

13. Gent, I., Walsh, T.: CSPLIB: A benchmark library for constraints. In Jaffar, J., ed.:
5th International Conference on Principles and Practice of Constraint Program-
ming (CP’99). Volume 1713 of Lecture Notes in Computer Science., Alexandria,
Virginia, USA, Springer (1999) 480–481

14. Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence Through Simulated Evolu-
tion. Wiley, New York NY (1966)

15. Hinton, G., Nolan, S.: How learning can guide evolution. Complex Systems 1
(1987) 495–?502

16. Whitley, D., Gordon, S., Mathias, K.: Lamarckian evolution, the baldwin effect
and function optimization. In Davidor, Y., Schwefel, H.P., Männer, R., eds.: Par-
allel Problem Solving from Nature III. Volume 866 of Lecture Notes in Computer
Science., Springer-Verlag (1994) 6–?15

17. Sellmann, M.: The social golfer problem. (Web site available at
http://www.cs.brown.edu/people/sello/golf.html)

Colour Reassignment in Tabu Search for the

Graph Set T-Colouring Problem

Marco Chiarandini1, Thomas Stützle2, and Kim S. Larsen1

1 University of Southern Denmark, IMADA, Odense, Denmark
marco,kslarsen@imada.sdu.dk

2 Université Libre de Bruxelles, CoDe, IRIDIA, Brussels, Belgium
stuetzle@ulb.ac.be

Abstract. The graph set T -colouring problem (GSTCP) is a generalisa-
tion of the classical graph colouring problem and it is used to model, for
example, the assignment of frequencies in mobile networks. The GSTCP
asks for the assignment of sets of nonnegative integers to the vertices of a
graph so that constraints on the separation of any two numbers assigned
to a single vertex or to adjacent vertices are satisfied and some objective
function is optimised. Among the various objective functions of interest,
we focus on the minimisation of the span, that is, the difference between
the largest and the smallest integers used.

In practical applications large size instances of the GSTCP are to
be solved and heuristic algorithms become necessary. In this article, we
propose a new hybrid procedure for the solution of the GSTCP that com-
bines a known tabu search algorithm with an algorithm for the enumer-
ation of all feasible re-assignments of colours to a vertex. We compare
the new algorithm with the basic tabu search algorithm and for both
we study possible variants. The experimental comparison, supported by
statistical analysis, establishes that the new hybrid algorithm performs
better on a variety of instance classes.

1 Introduction

The Graph Set T -Colouring Problem (GSTCP) generalises the concept of graph
colouring which is used to model a variety of real-world combinatorial optimi-
sation scenarios [1]. A set T -colouring of a graph is an assignment of sets of
nonnegative integers (colours) to the vertices of the graph such that (i) every
vertex receives exactly the number of colours it requires, (ii) each pair of integers
assigned to a single vertex satisfies the vertex separation constraints, and (iii)
every pair of numbers assigned to two adjacent vertices satisfies the edge separa-
tion constraints. The edge and vertex separation constraints are expressed by sets
of integers that represent the forbidden differences between the integers assigned
to the vertices. In the special case of the sets being composed of only consecutive
integers starting from zero, we speak of separation distance constraints and the
largest integer in each set suffices to represent them.

There exist various objective functions for the optimisation version of the
GSTCP. Common objective functions to be minimised are the span, that is, the

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 162–177, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Colour Reassignment in Tabu Search for the GSTCP 163

difference between the largest and the smallest integers assigned to any vertex, or
the order, that is, the number of integers effectively used [2,3]. In the frequency
assignment application, more often, it is required to minimise the constraint
violations by keeping the number of colours fixed. However, in the literature on
this problem the focus has been mainly on the minimisation of the span because
most solution approaches are suitable also for the needs in frequency assignment.
Here we also address the minimal span objective.

The GSTCP is a generalisation of the vertex colouring problem and it arises
in the modelling of various real-life problems, the most important being the
assignment of frequencies to radio transmitters when designing mobile phone
networks. In this case, vertices represent transmitters and colours the frequen-
cies to be assigned to the transmitters subject to certain interference constraints,
the T -constraints [2]. Other applications arise in traffic phasing and fleet main-
tenance [4] or in the task assignment problem, where a large task is divided into
incompatible subtasks (for example, due to resource conflicts) and the problem
is to assign a set of time periods to each subtask so that incompatible subtasks
are in different time periods [3].

Due to its practical interest, the GSTCP has received significant attention both
in graph theory [3,4,5,6] as well as for its algorithmic solution. The development
of solution algorithms has mainly focused on approximate methods because exact
methods cannot efficiently solve large size instances, as those arising in frequency
assignment [7,8]. Among the approximate algorithms, the overwhelming part of
the literature focuses on stochastic local search (SLS) algorithms [9]. Among the
first of these approaches, Dorne and Hao apply the Tabu Search method [10]. Fur-
ther researchon the GSTCP has been inspired by the Computational Challenge on
Graph Colouring and its Generalisations organised by Johnson, Mehrotra and
Trick (see http://mat.gsia.cmu.edu/COLORING02/).1 Phan and Skiena devise
an SLS algorithm algorithm based on swap operations and the Simulated Anneal-
ing method within their general-purpose platform Discropt [11], while Prestwich
proposes a randomised backtracking algorithm [12]. In later research, Lim, Zhang
and Zhu designed a Squeaky Wheel algorithm for this problem [13].

In this article, we present a new tabu search algorithm for the GSTCP. This
algorithm is very similar to that of Dorne and Hao, but it uses a procedure
for the reassignment of all colours to a vertex; this procedure first enumerates
all feasible reassignments and then chooses one of these uniformly at random.
The randomised choice of the reassignment is done to avoid cycling behavior.
We also performed an extensive experimental comparison of the new and known
algorithms on GSTCP instances with separation distance constraints. This study
is corroborated by statistical analysis and it shows that our new Tabu Search
search algorithm performs better than previously known versions on specific
GSTCP instance classes.

The paper is organised as follows. Section 2 introduces some formalism, trans-
formations of the problem and the benchmark instances. Section 3 describes the

1 Note that in this challenge, the separation distance GSTCP is called bandwidth
multi-colouring problem.

164 M. Chiarandini, T. Stützle, and K.S. Larsen

SLS algorithms that are experimentally compared in Section 4. We end with
some concluding remarks in Section 5.

2 Definitions, Transformations and Benchmark Instances

A GSTCP instance is defined by (i) an undirected graph G = (V, E), with V
being the set of n = |V | vertices and E being the set of edges, (ii) a set of
nonnegative integer numbers (called colours) Γ , (iii) a number r(v) of required
colours at each vertex v ∈ V , and (iv) a collection T (called T-set) of nonnegative
integers including zero, such that there is an integer tuv for each edge uv ∈ E and
an integer tu for each vertex u ∈ V representing the allowed separation distances
of colours between and within vertices. The decision version of the GSTCP asks
for a mapping ϕ : V �→ P(Γ) such that the three groups of constraints

|ϕ(v)| = r(v) ∀ v ∈ V (1)
|x − y| ≥ tu ∀u ∈ V, ∀x, y ∈ ϕ(u), x �= y (2)
|x − y| ≥ tuv ∀uv ∈ E, ∀x ∈ ϕ(v), ∀y ∈ ϕ(u) (3)

are satisfied. We call such a multi-valued function ϕ a proper set T-colouring, if
all these constraints are satisfied and improper, otherwise. The three groups of
constraints to be satisfied are called requirement constraints, vertex constraints,
and edge constraints, respectively. Various objective functions can be defined for
the GSTCP. Here, we consider the span, that is, maxu,v∈V {|x−y| : x ∈ ϕ(u), y ∈
ϕ(v)}, the maximal difference between the colours used. With minu∈V {x : x ∈
ϕ(v)} fixed to 1, the span corresponds to k − 1 if Γ = {1, 2, . . . , k}. Hence, in
the optimisation version, we are searching for the minimal span, that is, for the
minimal value of k such that a proper set T-colouring exists.

The special case of the GSTCP with r(v) = 1, ∀v ∈ V is called graph T -col-
ouring problem. In the T -colouring problem there are no particular requirement
and vertex constraints. Both, graph set T -colouring and T -colouring problems,
are obviously in NP and, thus, NP–complete because they are generalisations
of the k-colouring problem.

An instance of the GSTCP problem, defined by a graph G, a T -set T and
vertex requirements r(v), ∀v ∈ V , is equivalent to an instance of the T -colour-
ing problem on a graph GS(V S , ES). The graph GS is obtained from G by
creating a vertex u for each requirement of a vertex v ∈ V (G) so that at the
end |V S | =

∑
v∈V r(v). The vertices u ∈ V S derived from a vertex v ∈ V form

a clique of order r(v) in which each edge uv receives the distance constraints
tv. Every such vertex is then connected with each vertex of the clique induced
by another vertex w ∈ V if vw ∈ E. The colour separation associated with
these edges is twv. The graph GS is called split graph and there is a bijective
correspondence between solutions for G and for GS .

The set of benchmark instances that we use to test algorithms for the GSTCP
is composed by three classes. The first class consists of the instances introduced
by Michael Trick for the “Computational Challenge on graph colouring and its

Colour Reassignment in Tabu Search for the GSTCP 165

Table 1. Statistics on the benchmark instances. tu and tuv, are used to indicate that
the range of values differs among vertex and edge constraints. ρ̄ and p are the average
edge density of the graph.

|V | ρ̄ r tu tuv # instances
20, 30, . . . , 120 0.1 3 10 4.5 –

10 10 4.5 11 (GEOMn)
0.2 3 10 4.5 11 (GEOMna)

10 10 4.5 11 (GEOMnb)

(a) Random Geometric instances

|V | p r t # instances
60 0.1 5 5 10

10 10
10 5 10

0.5 5 5 10
10 10

10 5 10
0.9 5 5 10

10 10
10 5 10

(b) New Random Uni-
form instances

Inst ρ̄ [rmin; rmax] tu [tmin
uv ; tmax

uv]
P1 0.73 [8;77] 5 [1; 2]
P2 0.49 [8; 77] 5 [1; 2]
P3 0.73 [5; 45] 5 [1; 2]
P4 0.49 [5; 45] 5 [1; 2]
P5 0.73 [20; 20] 5 [1; 2]
P6 0.49 [20; 20] 5 [1; 2]
P7 0.73 [16; 154] 5 [1; 2]
P8 0.73 [8; 77] 5 [1; 2]
P9 0.73 [32; 308] 5 [1; 2]

(c) FAP instances

generalisations;” the second class comprises random uniform graphs; the third
class is derived from well known instances from frequency assignment.

Random geometric instances (DIMACS). The graphs are formed by ver-
tices that bijectively correspond to points with coordinates in a [10, 000 ×
10, 000] square that are generated uniformly at random. Each vertex is con-
nected by an edge to another one, if the points are close enough. Sepa-
ration distances associated to edges are inversely proportional to the dis-
tances between points. Vertex requirements are chosen uniformly from the
set {1, . . . , r} and vertex separation distances are fixed to 10. The instance
size ranges from 20 to 120 vertices. We denote sparse instances as GEOMn and
denser instances as GEOMna and GEOMnb. The instances GEOMnb have higher
requirements per node than GEOMna. Statistics of this class of instances are
summarised in Table 1a.

Random uniform instances. Uniform graphs are typically identified as Gnp,
where n is the number of vertices and each of the

(
n
2

)
possible edges is present

with a probability p. These instances were generated by the algorithm of
[14], modified to produce set T -colouring instances. Vertex requirements are
chosen uniformly from the set {1, . . . , r} and vertex and edge separation
distances uniformly from the set {1, . . . , t}. The values assigned to the pa-
rameters and the number of instances are reported in Table 1b. We denote
these graphs as T-G.r.t-n.p. Note that the instances in [10] were generated
in the same manner but due to their size they result in very high compu-
tation times, making an extensive experimental study, as reported below,
impractical.

166 M. Chiarandini, T. Stützle, and K.S. Larsen

Philadelphia instances. These instances are characterised by 21 hexagons
representing the cells of a cellular phone network around Philadelphia [15].
For each cell, a demand r(v) is given. In case the mutual distance between
the centre of two cells is less than d (normalised by the radius of the cells),
it is not allowed to assign the same frequency to both cells. This case is
generalised by replacing the reuse distance d by a series of non-increasing
values d0, . . . , dk. For more on these instances we refer to the FAP web repos-
itory.2 As in the frequency assignment literature, we denote these instances
by P1-P9.

3 SLS Algorithms for the GSTCP

In this section, we describe the main components of the SLS algorithms that
we examine: the construction heuristic to generate the initial solution, the lo-
cal search schemes to improve the candidate solution, and the high-level meta-
heuristic to guide the search beyond local optima.

All SLS algorithms that we describe solve the optimisation version of the
GSTCP. This is done by starting with some large value of k and successively
trying to reduce the number of colours used, which directly minimises also the
span. The best solution returned is the minimum value of k for which a proper
set T-colouring is found.

As far as the meta-heuristic component is concerned, we restrict ourselves to
consider only Tabu Search which is the common choice on the GSTCP [10,13].

3.1 Construction Heuristic

We use a generalised DSATUR heuristic for constructing the initial solution. This
heuristic arose as the best one in a study reported in [16]. The heuristic works on
the split graph and for each colour assignment, first a next vertex is chosen and
then this vertex is assigned a colour. Generalised DSATUR chooses the vertex to
colour next based on the saturation degree, i.e., the number of colours forbidden
by the assignment of colours in the adjacent vertices. For every vertex u ∈ GS

receiving a colour c, the list of forbidden colours of the vertices v adjacent to u
is updated with the colours in the interval (c− tuv , c+ tuv). The order of vertices
is recomputed by assigning higher priority to vertices with higher saturation
degree. In case of ties, priority is given to vertices with the largest adjusted
vertex degree, which is defined as d(v) =

∑
u∈V S ,uv∈ES tuv. The application

of the generalised DSATUR heuristic generates a proper set T-colouring and,
hence, an upper bound k.

3.2 Local Search Schemes

In designing a local search for the GSTCP we may follow different approaches.
In a first approach the problem is solved as a sequence of decision problems,
2 A. Eisenblätter and A. Koster. “FAP web – A website devoted to frequency assign-

ment”. September 2005. http://fap.zib.de. (January 2006).

Colour Reassignment in Tabu Search for the GSTCP 167

where for each current value k of available colours a proper set T-colouring is
searched. In an alternative approach, the value of k is left free to increase and
decrease during the search. A further decision can be taken on the problem
representation, i.e., whether to transform or not the problem in a T -colouring
problem. The combination of these choices gives rise to different local search
schemes. In the following, we describe three promising schemes. They form the
basis of the Tabu Search algorithms that are explained later.

Scheme 1: Split Graph, k Fixed. In this case, solutions are represented as
complete assignments, i.e., one colour is assigned to each vertex. The advantage
of this solution representation is that the requirement constraints of the GSTCP
are always satisfied. The evaluation function f is defined as the number of ver-
tex and edge constraints broken and, hence, the goal becomes to minimise f to
zero. The neighbourhood in this scheme is defined through the well-known one-
exchange neighbourhood, where the solutions s and s′ are neighbours if they
differ in the colour assignment of one single vertex. Often, it is useful to re-
strict the neighbourhood examination of one-exchanges to only vertices that are
involved in constraint violations. We call this restricted neighbourhood NE .

Scheme 2: Original Graph, k Fixed. A variant to the first scheme uses
the original graph. The main implication of this choice is on the representation
of a solution, which is now given naturally by a set of r(v) colours for each
vertex v ∈ V . The effective search space may be reduced to only those candidate
assignments that satisfy the vertex constraints. Hence, requirement constraints
and vertex constraints are always satisfied and the evaluation function needs
only to count the number of unsatisfied edge constraints.

The one-exchange neighbourhood N ′
E is defined, similarly to NE, by the col-

lection of single colour changes at a vertex but with the further restriction of
maintaining the vertex constraints satisfied. This is reflected in a restriction of
the sets of possible new colours in the exchanges.

In addition, the vertex exact colour reassignment neighbourhood NR is de-
fined, which is composed by the collection of all possible reassignments of colours
at one single vertex. We restrict these reassignments to those that satisfy the
requirement, vertex and edge constraints acting on that vertex. As such, the
application of the operator defined by NR can be seen as an exact solution to a
subproblem, where the assignment of {1, . . . , k} colours to one vertex is searched
under the condition that no other vertex changes its colour assignment. Clearly,
it is possible that, given a current configuration, a reassignment of colours that
satisfies all edge constraints at a vertex does not exist. In this case, if only ver-
tices involved in at least one conflict are considered, the neighbourhood NR is
empty. Alternatively a change in the colours of a vertex not involved in any
conflict may propagate favourably.

Scheme 3: Split Graph, k Variable. In this scheme, a first solution and an
initial kI is provided by a construction heuristic but the number of colours is left
free to vary at run time. As in the first scheme, solutions can be represented as
complete colourings. The difference is that solutions can be proper and improper

168 M. Chiarandini, T. Stützle, and K.S. Larsen

set T-colourings and that the number of colours is bounded to kI . An evaluation
function to guide the search towards proper colourings and towards colourings
with smaller span was defined in [17] as

f(s) = kmax + kI ·
(∑

uv∈E

Ie(uv) +
∑
v∈V

Iv(v)
)

+ (kmax − kmin) +
kI∑

i=1

Ig(i) (4)

where kmax is the maximal colour, Ie(uv) and Iv(v) are indicator functions that
return one if the corresponding edge or vertex constraint is broken, kmax−kmin is
the span of the colouring, and Ig(i) is an indicator function to determine whether
any vertex has colour i; this last term computes the order. The edge conflicts
are weighted by the largest number of colours, thus a solution which reduces the
number of violations will always be preferred with respect to those that modify
the other terms of the sum. The inclusion of the order in the sum contributes to
break ties. The term kmax is the least important and contributes to use the first
colours, avoiding to move with the same span over and over through the interval
[1, kI]. As in Scheme 1, the same one-exchange neighbourhood may be used.

3.3 Vertex Exact Colour Reassignment Neighbourhood

We now describe the procedure for the exploration of the neighbourhood NR

used by the local search of Scheme 2. The effect of this neighbourhood operator
is to modify the colour assignment to one vertex such that the requirement,
vertex and edge constraints, in which the vertex under concern is involved, are
all satisfied. Once a vertex is chosen, a set F is determined comprising the
colours which are proper given the edge constraints and the colours assigned
to the adjacent vertices. The construction of this set can be done in O(|V |k)
if the usual speed-up techniques known from the graph colouring problem are
implemented [18]. If one simply looked for r(v) colours from F such that the
vertex constraints are satisfied, this would be easy: it suffices indeed to order the
values in F and scan the set once, skipping the values that are not sufficiently
distant from the previous ones. Yet, this procedure is deterministic and the
search would yield the same reassignment of colours if a vertex is visited twice
and nothing has changed in its adjacent vertices. In order to avoid this cycling
behaviour some randomisation in the reassignment should be introduced, such
that, visiting the vertex a second time, a different configuration is obtained
which can be profitably propagated. Implementing this strategy corresponds to
determining all subsets of F of size r(v) that satisfy the vertex constraints, and
pick one at random. More formally, one can formulate the problem via finding
a Subsequence of length L of H integers with mutual distance not smaller than
D: Given an arbitrary sequence of integers s = {s1, . . . , sH}, find a subsequence
l = {l1 . . . lL} of length L with li ∈ s, ∀ i = 1, . . . , L and mutual distance
not smaller than D, that is, satisfying: |li − lj | ≥ D, ∀i, j. The determination
of all desired subsets of F then corresponds to the problem of enumerating all
subsequences of length L of H integers with mutual distance not smaller than D.

Colour Reassignment in Tabu Search for the GSTCP 169

1 2 5 6 7 8 10

next(1)=3 next(3)=7

next(4)=7next(2)=4
0

12345670

000126110

3 1 0 0 0 0 0

2 3 4 5 6 7

1

2

3

10

h

i

Fig. 1. An example of vertex exact colour reassignment for a case in which F =
{1, 2, 5, 6, 7, 8, 10}, L = |F | = 7, D = tv = 4 and H = r(v) = 3. On the left is given the
vector s of 7 integers. For each integer in the sequence the pointer next() is computed;
where it is not indicated, it is set to 0. On the right, we have the table of Nh[i] values.
Its construction starts from the low right corner. Arrows indicate the stored values that
are used to compute the entries. The grey cells indicate the values without a proper
meaning and hence assigned by convention.

We solve the problem of determining all the proper subsets of F in a dynamic-
programming fashion by solving subproblems and saving their answers in a table.
Given the ordered sequence of integers in F , a proper colouring is an ordered
subsequence of integers composed by other subsequences, each allowing a number
of proper solutions, corresponding to the different ways the subsequence can be
extended to a sequence of length r(v) by adding elements from F . The total
number of such solutions can be defined recursively and computed in a bottom-
up fashion. Afterwards it is possible to choose one solution randomly by selecting
among all the existing solutions.

More specifically, let s be the ordered vector of integers in F , L = |F |, D = tv
and H = r(v). Then for each position i of the vector s we define next(i) =
minj{j|j > i, s[j]− s[i] ≥ D}. For each subsequence l of s, the number NH [i] of
proper subsequences of s of length h ∈ {1, . . . , H} containing l = {s[1], . . . , s[i]},
can be determined by the recursion

Nh[i] =

⎧⎨
⎩

L − i + 1 if h = 1
Nh−1[next(i)] + Nh[i + 1] if L − i − 1 > h ≥ 2
0 otherwise

(5)

if i ≥ 1 and Nh[0] = 0 by convention.
Hence, the total number of proper subsequences of length r(v) corresponds

to NH [1]. To select one solution at random among the Nh[i] solutions one has
then simply to scan the sequence s and select each element with probability
Nh−1[next(i)]/Nh[i], since this is the fraction of extensions that contain the
element in question. Whenever an element is chosen, the scanning moves to
next(i). Scanning the sequence of numbers takes linear time, but computing each
time the recursion 5 takes exponential time. However, this can be done much
more efficiently if all values Nh[i] are computed at the beginning and recorded
in a table. Referring to Figure 1, right, if the table is filled from bottom to
top and from right to left within each row, each new entry needs the values
of Nh−1[next(i)] and Nh[i + 1] which are already determined and stored. The

170 M. Chiarandini, T. Stützle, and K.S. Larsen

next function and the table can be computed in O(max(D, H, log L)L) while for
choosing a subsequence randomly a further scan of the sequence s is needed.

3.4 Tabu Search Algorithms

As said, all the SLS algorithms developed use the Tabu Search technique. We
give here the details of how Tabu Search is applied in the three local search
schemes. Under Scheme 2 we devise three different variants thus giving rise to a
total of 5 algorithms that we tested experimentally.

Scheme 1: Split Graph, k Fixed. We use a standard Tabu Search procedure
that chooses at each iteration a best non-tabu move or a tabu but “aspired”
neighbouring solution from the restricted one-exchange neighbourhood (NE).
The tabu list forbids to reverse a move and the tabu tenure is chosen as tt =
random(10) + 2δ|V c|, where V c is the set of vertices which are involved in at
least one conflict, δ is a parameter, and random(10) is an integer random number
uniformly distributed in [0, 10]; this choice follows that of a successful tabu search
algorithm for the graph colouring problem [19]. We denote this algorithm SF-TS.
SF-TS is very similar to the Tabu Search algorithms proposed in [20], [21], and
[17]. In those papers, Tabu Search was shown to perform better than Simulated
Annealing and Genetic Algorithms.

Scheme 2: Original Graph, k Fixed. An application of Tabu Search using
the one-exchange neighbourhood N ′

E on the original graph was designed by [10].
Other versions of this algorithm for frequency assignment [22] differ only in the
management of the tabu length or are more rudimentary [23]. Our version uses
the same tabu tenure definition as SF-TS; this results in an algorithm analogous
to that proposed in [10]. We denote this algorithm OF-TS.

We also include two enhanced versions of OF-TS that make use of the newly
introduced vertex reassignment neighbourhood NR. Since the exploration of the
union of N ′

E and NR would be computationally expensive, we adopt a heuristic
rule for choosing the next move to apply. For short, first the best non tabu move
in the neighbourhood N ′

E is determined. If it improves on the current solution,
it is accepted. If it leaves the evaluation function value unchanged or worsens it,
a move is searched in the neighbourhood NR, restricted to vertices involved in at
least one conflict. If a proper reassignment is found, it is applied; otherwise the
best non-tabu move in N ′

E is applied. We call the overall algorithm OF-TS+R.
A variant of OF-TS+R considers a random vertex from V if no move is found

in NR restricted to conflicting vertices. The motivation for this is that a random
reassignment of colours to vertices where no conflict is present may produce a
change that can propagate profitably. We denote this variant OF-TS+R∗.3

The Tabu Search mechanism applied to moves in N ′
E is the same used in

OF-TS and [10] (aspiration criterion included). No tabu search mechanism is

3 By chance a randomly chosen vertex can happen to be in conflict; in this case the
best non tabu move in NE is chosen as in OF-TS+R. Clearly, this case can be avoided
in another implementation.

Colour Reassignment in Tabu Search for the GSTCP 171

instead applied to moves in NR. In this case, repetitions in the search are avoided
by the randomisation of the reassignment. This is the reason why preliminary
experiments clearly indicated that the use of a randomised reassignment instead
of a deterministic one is preferable.

Scheme 3: Split Graph, k Variable. We test a tabu search algorithm based
on the same framework as in the neighbourhood NE , but using the evaluation
function of Equation 4. We denote this algorithm as SV-TS.

Parameter Settings. SLS algorithms require a number of parameters to be
adapted to the class of problem instances under consideration. To accomplish
this task we used the racing algorithm of Birattari [24], which is a fully automatic
procedure based on sequential testing. In the Tabu Search algorithms introduced
the only parameter to be decided is δ. For each of the algorithms we used as
candidates the set of numbers {0.5; 1; 10; 20; 30; 40; 50; 60; 70; 100} and the best
values found were 10 for the uniform, 20 for geometric, and 40 for Philadelphia
instances. In the following, for each algorithm we only consider the version with
the best set of parameters for the instance class.

4 Experimental Analysis

We evaluate experimentally the five versions of Tabu Search. We maintain the
classes of instances separated as we expect to see differences in performance.
On the 27 random geometric instances (disconnected graphs were removed) and
on the 90 random uniform instances, we collected three runs per algorithm per
instance; on each of the nine Philadelphia instances five runs per algorithm.

In a preliminary test we verified on the instances by Dorne and Hao [10]
that our re-implementation of OF-TS gives results comparable to the earlier
published ones [16]. To compare the five algorithms under roughly fair conditions,
we imposed a same computation time limit for all of them. This is necessary,
since the single iterations of OF-TS and OF-TS+R have different computation
time requirements. To determine a time limit, we run OF-TS for Imax = 105 ×∑

v∈V r(v) iterations. Note that the termination time is a stochastic variable and
moreover it varies among instances. We used, therefore, a multiple regression
model from the termination times collected in 5 runs per instance to define
the time limits. The details of this model are reported in [16]. Here we limit
ourselves to report in the tables that follow the time limits adopted which refer
to a machine 2GHz AMD Athlon MP 2400 Processor with 256 KB cache and 1
GB RAM, running Debian Linux.

4.1 Tabu Search Comparison

The analysis of results is carried out through simultaneous confidence intervals
for multiple comparisons. In particular the Friedman rank-based statistical pro-
cedure is used to infer the simultaneous confidence intervals of the average rank

172 M. Chiarandini, T. Stützle, and K.S. Larsen

4 6 8 10 12 14

OF−TS

OF−TS+R

OF−TS+R*

SF−TS

SV−TS

GEOM p=0.1 r=10 tu=10 tuv=4.5 (7 Instances)

4 6 8 10 12 14

GEOMa p=0.2 r=3 tu=10 tuv=4.5 (10 Instances)

4 6 8 10 12 14

GEOMb p=0.2 r=10 tu=10 tuv=4.5 (11 Instances)

Fig. 2. Multiple comparisons through simultaneous confidence intervals on the random
geometric instances. The x-axis indicates the average rank while the confidence intervals
are derived from the Friedman test.

OF−TS+R

OF−TS

OF−TS+R*

SF−TS

SV−TS

TG−5.5−60−0.1 (10 Instances) TG−5.10−60−0.1 (10 Instances) TG−10.5−60−0.1 (10 Instances)

OF−TS+R

OF−TS

OF−TS+R*

SF−TS

SV−TS

TG−5.5−60−0.5 (10 Instances) TG−5.10−60−0.5 (10 Instances) TG−10.5−60−0.5 (10 Instances)

5 10

OF−TS+R

OF−TS

OF−TS+R*

SF−TS

SV−TS

TG−5.5−60−0.9 (10 Instances)

5 10

TG−5.10−60−0.9 (10 Instances)

5 10

TG−10.5−60−0.9 (10 Instances)

Fig. 3. Confidence intervals for the all pairwise comparisons of SLS algorithms on
aggregated uniform random instances of the GSTCP. The x-axis indicates the average
rank while the confidence intervals are derived from the Friedman test.

performance of each algorithm [25,26]. In this procedure, each result in terms of
colour span is ranked with all other results for the same instance, thus remov-
ing the problem of different scale of results among the instances and allowing
an aggregate analysis (within a given instance class). We report the results in
Figure 2, 3 and 4, where two algorithms are significantly different if the confi-
dence intervals of the corresponding average rank do not overlap. The more the
interval is shifted towards the left the better is the algorithm performance.

The first observation is that, as expected, results vary among the instances.
On the geometric instances the exact colour reassignment does not introduce
any significant improvement and, in fact, it may even worsen the basic OF-TS
slightly. These instances are, however, representative of only a restricted portion

Colour Reassignment in Tabu Search for the GSTCP 173

5 10 15 20

OF−TS+R*

OF−TS+R

OF−TS

SF−TS

SV−TS

Philadelphia (9 Instances)

Fig. 4. Confidence intervals for the all pairwise comparisons of SLS algorithms on
Philadelphia instances of the GSTCP. The x-axis indicates the average rank while the
confidence intervals are derived from the Friedman test.

of the space of all possible instances: they represent only graphs with very small
edge density and fixed separation constraints.

More informative in this sense may be the analysis on the random uniform
graphs (Figure 3). Here the space of instances is better sampled as graphs with
different edge density and vertex requirement are present. This allows to con-
jecture on performance variations due to instance features. The most important
result is that exact colour reassignment becomes worthwhile when the edge den-
sity is at least 0.5. In these cases, indeed, the performance of OF-TS+R becomes
clearly better than that of OF-TS. The vertex requirements appear also to have
an influence as seen by the better performance of OF-TS+R∗ for high vertex
requirements. This latter tendency seems to be confirmed on the Philadelphia
instances, where OF-TS+R∗ outperforms all other versions of tabu search.

Finally a note on SV-TS and SF-TS. Given the much worse performance of
these two algorithms compared to the other three, we conclude that the use of
the split graph is not a good choice for local search algorithms on the GSTCP.
(This seems to be different for constructive heuristics [16].) Additionally, the
worse performance of SV-TS compared to SF-TS suggests that the usage of a
variable k is not advisable for the GSTCP.

4.2 Comparison to the State-of-the-Art Algorithms

In Tables 2 and 3 we report the numerical results for comparison with previously
published results. On the random geometric graphs previous results on the span
are due to [11,12,13]. On the Philadelphia instances results on lower bounds and
upper bounds are available at http://fap.zib.de/problems/Philadelphia/.
In all the instances the best upper bounds of approximate algorithms went over
time to coincide with the lower bound thus proving optimality for these instances.
Note however that no algorithm has solved all the instances alone and we refer to
the FAP web repository for a complete list of references for each result (the most
robust seems to be the genetic algorithm by [27]). The same reasoning holds for

174 M. Chiarandini, T. Stützle, and K.S. Larsen

Table 2. Numerical results on the random geometric instances. Given are the in-
stance identifier, a lower bound, the best solution known so far, the results of our
generalised DSATUR, our computation time limits, and the results of our five tabu
search algorithms.

Instance LWB Best
Heur.

DSATUR max
time

OF-TS OF-TS+R OF-TS+R∗ SF-TS SV-TS

GEOM60 230 258 258 258 710 258 258 258 258 258 258 258 258 258 258
GEOM70 260 273 283 287.5 1060 269 270 270 271 271 272 270 278 274 285
GEOM80 365 383 392 395 1490 384 385 386 386 388 390 389 389 393 394
GEOM90 313 332 335 338.5 1810 332 333 332 332 335 337 333 334 335 340
GEOM100 378 404 412 416 2170 411 414 412 414 411 411 411 414 414 415
GEOM110 348 383 400 410 2510 383 383 381 382 387 389 381 389 403 404
GEOM120 343 402 412 419 2730 402 404 404 405 404 405 409 417 416 419
GEOM30a 182 209 238 238 380 212 213 212 212 212 212 222 228 234 235
GEOM40a 160 213 229 229 500 214 215 215 216 217 217 220 220 225 226
GEOM50a 199 318 335 345 1080 318 318 319 321 321 322 329 337 337 340
GEOM60a 290 358 369 373 1420 361 361 361 362 362 364 363 363 373 373
GEOM70a 425 469 487 487 1470 484 484 484 484 481 484 483 486 487 487
GEOM80a 241 379 388 396 1510 371 372 371 371 368 369 378 383 391 394
GEOM90a 285 377 398 405 1910 398 401 398 401 389 389 398 402 398 405
GEOM100a 302 459 462 471 2500 444 448 445 446 443 447 454 459 462 465
GEOM110a 385 494 523 523 3120 506 506 504 505 498 500 507 509 516 518
GEOM120a 514 556 571 578 3690 550 556 553 556 558 560 556 558 578 578
GEOM20b 39 44 45 45 30 44 44 44 44 44 44 44 44 44 44
GEOM30b 38 77 78 78 80 77 77 77 77 77 77 77 77 77 77
GEOM40b 74 74 79 86 140 74 74 74 74 74 74 75 75 76 76
GEOM50b 67 87 92 94 200 84 85 85 85 84 85 86 87 87 88
GEOM60b 79 116 123 132 300 120 120 118 119 119 119 120 120 121 122
GEOM70b 94 121 133 135 380 121 121 120 122 122 122 122 123 125 125
GEOM80b 110 141 148 149 490 140 140 139 140 141 142 140 141 140 142
GEOM90b 112 157 160 161 590 150 150 149 149 149 150 152 153 153 155
GEOM100b 133 170 173 179 690 162 163 164 164 162 165 169 170 172 172
GEOM110b 182 206 221 225.5 790 208 209 206 209 213 213 212 213 214 215
GEOM120b 172 199 206 219.5 910 195 198 197 198 201 201 200 201 202 203

Table 3. Numerical results on the Philadelphia instances. Given are the instance
identifier, the known optimum, the best heuristic solution of the FASoft system, the
results of our generalised DSATUR, our computation time limits, and the results of
our five tabu search algorithms.

Instance OPT Known
Heur.

DSATUR max
time

OF-TS+R∗ OF-TS+R OF-TS SF-TS SV-TS

P1 427 448 480 485 490 427 427 427 427 427 427 479 480 480 480
P2 427 476 458 464 712 427 427 427 448 428 459 482 483 484 484
P3 258 285 268 268 333 258 258 258 258 258 258 266 266 262 263
P4 253 269 260 266 225 253 254 253 253 253 253 264 264 264 264
P5 240 251 250 255 327 240 240 240 240 240 240 240 240 240 240
P6 180 231 195 199 279 183 184 185 185 185 186 195 197 195 197
P7 856 895 969 973 2439 856 857 871 877 860 871 967 969 967 969
P8 525 593 539 539 610 525 525 525 525 527 528 548 548 549 549
P9 1714 1801 1938 1946 10381 1715 1717 1756 1758 1755 1759 1938 1938 1938 1938

the construction heuristics whose results we also report for comparison. On both
instance classes the results concern the best and median value for the generalised
DSATUR heuristic and the Tabu Search algorithms. The lower bounds given on
the geometric instances are obtained by the procedure described in [16]. Results
are in terms of maximal number of colours used, hence to derive the span one
has to subtract one.

On the random geometric graphs our results improve the best known colour-
ings on 11 instances, are worse on 9 instances and reach the same performance
on 8 instances. There seems to be therefore no significant difference. However,

Colour Reassignment in Tabu Search for the GSTCP 175

such kind of comparison is not reliable as our data are based on aggregated best
values from more than one algorithm and more than one run. Nevertheless, the
results prove the high quality of the results here discussed.

On the Philadelphia instances OF-TS+R∗ produces 7 times out of 9 the op-
timal solution. Only the algorithm by [27] can reach similar performance with
8 out of 9 optimal results. The results of the generalised DSATUR construction
heuristic are worse than those attained by a portfolio of heuristics implemented
in the system FASoft [17]. However a comparison with the results of [10] shows
that our generalised DSATUR gives much better results than those reported
for their implementation of DSATUR. No result for construction heuristics is
instead reported in the literature on the random geometric instances.

5 Summary

In this article, we studied a hybrid Tabu Search algorithm for the GSTCP prob-
lem. This algorithm uses a canonical tabu search algorithm based on a one-
exchange neighbourhood operator and enhances it by an exact reassignment of
colours to vertices when opportune. The exact reassignment would be trivial if
implemented in a deterministic manner but it would yield a cycling behaviour
in the search. Instead we proposed an algorithm which is capable of returning
a random exact colour reassignment. This feature favours the diversification of
the search, which is often a key mechanism for making SLS algorithms success-
ful. A major contribution of this article is, hence, the recursive formula with
polynomial time-complexity for the random reassignment.

Another contribution is the experimental analysis of various tabu search al-
gorithms on 3 classes of instances. The results of this comparisons are that (i)
Tabu Search algorithms working on a split-graph representation are less efficient
than the tabu search algorithms working on the “natural” problem representa-
tion, (ii) on instances characterised by a low edge density in the graph and low
vertex requirements, the occasional exact reassignment does not improve the un-
derlying tabu search algorithms, (iii) on the other instances and above all on the
Philadelphia instances, which stem from the literature on frequency assignment,
the hybrid algorithm performs, often by quite a large margin, better than the
basic tabu search algorithms.

Acknowledgements. Thomas Stützle acknowledges support of the Belgian
FNRS, of which he is a research associate. Kim S. Larsen was supported in part
by the Danish Natural Science Research Council (SNF).

References

1. Jensen, T.R., Toft, B.: Graph coloring problems. Wiley Interscience, New York,
USA (1995)

2. Hale, W.K.: Frequency assignment: Theory and applications. Proceedings of the
IEEE 68 (1980) 1497–1514

176 M. Chiarandini, T. Stützle, and K.S. Larsen

3. Tesman, B.A.: Set T -colorings. Congressus Numerantium 77 (1990) 229–242
4. Roberts, F.S.: T-colorings of graphs: Recent results and open problems. Discrete

Mathematics 93 (1991) 229–245
5. Tesman, B.A.: List T -colorings. Discrete Applied Mathematics 45 (1993) 277–289
6. Giaro, K., Janczewski, R., Malafiejski, M.: The complexity of the T -coloring

problem for graphs with small degree. Discrete Applied Mathematics 129 (2003)
361–369

7. Eisenblätter, A., Grötschel, M., Koster, A.M.C.A.: Frequency assignment and
ramifications of coloring. Discussiones Mathematicae Graph Theory 22 (2002)
51–88

8. Aardal, K.I., van Hoesel, C.P.M., Koster, A.M.C.A., Mannino, C., Sassano, A.:
Models and solution techniques for the frequency assignment problem. ZIB-report
01–40, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany (2001)

9. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA, USA (2004)

10. Dorne, R., Hao, J.: Tabu search for graph coloring, T-colorings and set T-colorings.
In: Meta-heuristics: Advances and Trends in Local Search Paradigms for Optimiza-
tion. Kluwer Academic Publishers (1998) 77–92

11. Phan, V., Skiena, S.: Coloring graphs with a general heuristic search engine. In
Johnson, D.S., Mehrotra, A., Trick, M., eds.: Proceedings of the Computational
Symposium on Graph Coloring and its Generalizations, Ithaca, New York, USA
(2002) 92–99

12. Prestwich, S.: Hybrid local search on two multicolouring models. In: International
Symposium on Mathematical Programming, Copenhagen, Denmark (2003)

13. Lim, A., Zhu, Y., Lou, Q., Rodrigues, B.: Heuristic methods for graph coloring
problems. In: SAC ’05: Proceedings of the 2005 ACM Symposium on Applied
Computing, New York, NY, USA, ACM Press (2005) 933–939

14. Culberson, J., Beacham, A., Papp, D.: Hiding our colors. In: Proceedings of the
CP’95 Workshop on Studying and Solving Really Hard Problems, Cassis, France
(1995) 31–42

15. Anderson, L.G.: A simulation study of some dynamic channel assignment algo-
rithms in a high capacity mobile telecommunications system. IEEE Transactions
on Communications 21 (1973) 1294–1301

16. Chiarandini, M.: Stochastic Local Search Methods for Highly Constrained Com-
binatorial Optimisation Problems. PhD thesis, Computer Science Department,
Darmstadt University of Technology, Darmstadt, Germany (2005)

17. Hurley, S., Smith, D.H., Thiel, S.U.: FASoft: A system for discrete channel fre-
quency assignment. Radio Science 32 (1997) 1921–1939

18. Fleurent, C., Ferland, J.: Genetic and hybrid algorithms for graph coloring. Annals
of Operations Research 63 (1996) 437–464

19. Galinier, P., Hao, J.: Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization 3 (1999) 379–397

20. Costa, D.: On the use of some known methods for T-colorings of graphs. Annals
of Operations Research 41 (1993) 343–358

21. Castelino, D., Hurley, S., Stephens, N.: A tabu search algorithm for frequency
assignment. Annals of Operations Research 63 (1996) 301–320

22. Hao, J.K., Dorne, R., Galinier, P.: Tabu search for frequency assignment in mobile
radio networks. Journal of Heuristics 4 (1998) 47–62

23. Hao, J.K., Perrier, L.: Tabu search for the frequency assignment problem in cellular
radio networks. Technical Report LGI2P, EMA-EERIE, Parc Scientifique Georges
Besse, Nimes, France (1999)

Colour Reassignment in Tabu Search for the GSTCP 177

24. Birattari, M.: The race package for R. Racing methods for the selection of the
best. Technical Report TR/IRIDIA/2003-37, IRIDIA, Université Libre de Brux-
elles, Brussels, Belgium (2003)

25. Conover, W.: Practical Nonparametric Statistics. third edn. John Wiley & Sons,
New York, NY, USA (1999)

26. Chiarandini, M., Basso, D., Stützle, T.: Statistical methods for the comparison of
stochastic optimizers. In Doerner, K.F., et al., eds.: MIC2005: The Sixth Meta-
heuristics International Conference, Vienna, Austria (2005) 189–196

27. Matsui, S., Tokoro, K.: Improving the performance of a genetic algorithm for
minimum span frequency assignment problem with an adaptive mutation rate and
a new initialization method. In: Proc. of GECCO-2001 (Genetic and Evolutionary
Computation Conference), Morgan Kaufmann Publishers (2001) 1359–1366

Investigation of One-Go Evolution

Strategy/Quasi-Newton Hybridizations

Thomas Bartz-Beielstein�, Mike Preuss, and Günter Rudolph

Dortmund University, 44221 Dortmund, Germany
Thomas.Bartz-Beielstein@udo.edu

http://ls11-www.cs.uni-dortmund.de/people/

Abstract. It is general knowledge that hybrid approaches can improve
the performance of search heurististics. The first phase, exploration,
should detect regions of good solutions, whereas the second phase, ex-
ploitation, shall tune these solutions locally. Therefore a combination
(hybridization) of global and local optimization techniques is recom-
mended. Although plausible at the first sight, it remains unclear how to
implement the hybridization, e.g., to distribute the resources, i.e., num-
ber of function evaluations or CPU time, to the global and local search
optimization algorithm. This budget allocation becomes important if the
available resources are very limited. We present an approach to analyze
hybridization in this case. An evolution strategy and a quasi-Newton
method are combined and tested on standard test functions.

1 Introduction

Hybridizing evolutionary algorithms (EA) with local search techniques (LS) is
not exactly a new idea. In fact, several such approaches exist (e.g. genetic local
search, hybrid genetic algorithms) and nowadays, they are subsumed under the
term memetic algorithms (MA) that was invented by [13]. A recent overview is
given by [10], together with a suggested taxonomy.

Hovewer, MA usually do not treat EA and LS as coequal techniques. In-
stead, the local search methods are integrated into the evolutionary algorithm
framework. This is straightforward as EAs are considered to have global search
capabilities whereas LSs are prone to get stuck in the first local optimum they
approach. Nevertheless, we follow a different path by simply applying an evo-
lution strategy (ES) and a quasi-Newton (QN) method consecutively, without
any other information exchange besides communicating the best solution found
by the former into the latter. This scheme resembles the simplest possible of
such combinations, thereby implying that the EA is able to detect a region near
the global optimizer in one go which is then approximated by the local search
method. The working hypothesis of commonly used MA differs insofar as the
evolutionary algorithm is only required to step into the vicinity of any (possi-
bly local) optimizer before the LS method takes over. In stark contrast to the
situation investigated here, MAs mostly apply both techniques several times.
� Corresponding author.

F. Almeida et al. (Eds.): HM 2006, LNCS 4030, pp. 178–191, 2006.
Springer-Verlag Berlin Heidelberg 2006

Investigation of One-Go Evolution Strategy/Quasi-Newton Hybridizations 179

The main motivation for hybridizing ES and QN by simply applying them
consecutively only once is drawn from two sources:

– Combining a global and a local search technique is expected to result in
better performance than either of them alone, especially if at least one of
the techniques can be tailored to deliver what the other needs to proceed.

– Real-world applications as e.g. design problems enforce short runs: The avail-
able time poses hard limits onto the allowed number of evaluations, often less
than 104 can be afforded. Consequently, frequent switching between global
and local search techniques may be inappropriate for such problems.

In recent research, we observe two contradictory trends: (i) to develop more
and more new algorithms or (ii) to analyze and understand existing heuristics
and to add new features only when necessary. With this work, we lean against
the second trend by taking two existing algorithms and combining them in a very
simple fashion. However, we do not add new features but rather try to adapt an
EA to work well in combination with a QN-algorithm by tuning its parameters
and adjusting the fraction of shared resources it is allowed to consume.

The paper is organized as follows: Section 2 introduces the algorithms that
will be hybridized: an evolution strategy and a QN-method, followed by a brief
description of the resulting hybrid algorithm. The experimental methodology
is introduced in Sect. 3. It relies on the sequential parameter optimization ap-
proach, which has been applied to several optimization tasks from industrial
optimization and theoretical computer science. Experiments are presented in
Sect. 4. Our focus lies on optimization problems with limited resources. Sec-
tion 5 analyzes the experimental results, and Sect. 6 summarizes the conclusions
drawn from this study.

2 Algorithms

2.1 Evolution Strategies

An ES-algorithm run may be characterized as follows: The parental population is
initialized at time (generation) g = 0. Then λ offspring individuals are generated
in the following manner: For each offspring individual, a parent family of size ρ is
selected randomly from the parent population. Recombination is applied to the
object variables and the strategy parameters. The mutation operator is applied
to the resulting offspring vector. After evaluation, the next parent population is
determined by means of a selection procedure. The populations created in the
iterations of the algorithm are called generations or reproduction cycles . Unless
a termination criterion is fulfilled, the generation counter (g) is incremented and
the process continues with the generation of the next offspring. We consider the
parameters or control variables from Table 1. This table shows typical para-
meter settings. Bäck does not recommend using “standard” without reflection.
Considering the no-free lunch debate and current results from experimental re-
search, it is obvious that problems exist where these “standards” fail. Thus it is
necessary to adjust the parameters to the specific optimization problem. SPO,

180 T. Bartz-Beielstein, M. Preuss, and G. Rudolph

Table 1. Default settings of exogenous parameters of a “standard” evolution strategy
[1]. The ES parameters can be described as follows: The symbols μ and λ denote par-
ent and offspring population sizes, respectively. The offspring-parent ratio is defined as
ν = λ/μ, σ(0) denotes the initial standard deviation, which is used for mutation. Let d
be the problem dimension. Then between nσ = 1 and d different standard deviations
can be used. c0 and c1 denote multipliers for the global and local learning rates, re-
spectively, as described in Equation (27) in [4]. Note, [4] use the same c, i.e., c1 = c2

for global and local learning rates. The parameter ρ describes the number of parent
individuals used in recombination and rd and ri denote discrete and intermediary re-
combination, respectively. Intermediate recombination has been used for both object
and strategy parameters in our experiments. The symbol κ is the maximum lifespan
of an individual, the so-called comma strategies use κ = 1, whereas plus strategies use
κ = ∞. Parameters, that are tuned, are printed in boldface.

Symbol Parameter Range Default

μ Number of parent individuals N 15
ν Offspring–parent ratio R+ 7

σ
(0)
i Initial standard deviations R+ 3

nσ Number of standard deviations {1, 2, . . . , d} 1
c0 Multiplier for the global learning rate R+ 1
c1 Multiplier for the local learning rate R+ 1
ρ Mixing number {1, 2, . . . , μ} 2
rx Recombination operator for object variables {ri, rd} rd

rσ Recombination operator for strategy variables {ri, rd} ri

κ Maximum age N 1

as described in Sect. 3.2, provides one possible technique to avoid poor results
caused by wrongly specified parameters. The reader is referred to [2] and [4] for
detailed descriptions of these parameters.

2.2 Quasi-Newton Methods

The variable metric method utilized for the experiments in this study is a QN-
method. Quasi-Newton methods build up curvature information. Let H denote
the Hessian, c a constant vector, and b a constant, then a quadratic model prob-
lem formulation of the form minx

1
2xT Hx+ cT x+ b is constructed. If the partial

derivatives of x go to zero, i.e., ∇f(x∗) = Hx∗ + c = 0, the optimal solution
for the quadratic problem occurs. Hence x∗ = −H−1c. Quasi-Newton methods
avoid the numerical computation of the inverse Hessian H−1 by using informa-
tion from function values and gradients. The MATLAB function fminunc uses
the formula of [5], [7], [8], and [18] to approximate H−1.

2.3 ES/QN-Hybrid

The ESQN algorithm combines the ES and QN by running them consecutively
and initializing the latter with the result of the former. The parameter ES2QN
distributes the available resources to the algorithms, i.e., it defines the percentage

Investigation of One-Go Evolution Strategy/Quasi-Newton Hybridizations 181

of function evaluations for the ES: ES2QN ∈ [0.0, 1.0]. The remainder is assigned
to the QN-strategy. For example, if ES2QN is 0, the ES receives no function
evaluation and the ESQN is a canonical QN-method. Allotting more time for
the ES cuts down resources available to the QN-algorithm and vice versa.

3 Experimental Methodology

3.1 Problem and Algorithm Designs

The concept of experimental designs is crucial for our approach. On the one hand,
search heuristics such as the Nelder-Mead simplex strategy, genetic algorithms,
or particle swarm optimization require the specification of exogenous parameters
before the algorithm is started. On the other hand, endogenous parameters can
evolve during the optimization process, e.g., in self-adaptive evolution strate-
gies. We will consider exogenous parameters in the following. By varying the
values of the exogenous parameters the experimenter can get some insight into
the behavior of an algorithm. This procedure can be described as active experi-
mentation in contrast to passive experimentation, where the experimenter only
observes some phenomena. Passive experimentation predominated experimental
research in evolutionary computation until recently. Nowadays, more and more
active experimental approaches are developed.

Exogenous parameters will be referred to as design variables in the context
of statistical design and analysis of experiments. The parameter values chosen
for the experiments constitute an algorithm design XA. Let DA denote the set
of all possible parameter settings for one algorithm. A design point xa ∈ DA

represents one specific parameter setting. Algorithm tuning can be understood
as the process of finding the optimal design point x∗

a ∈ DA for a given problem
design XP . Tuning leads to results that are tailored for one specific algorithm-
optimization problem combination. To discuss the behavior of an algorithm the
underlying problem has to be taken into account. A problem being GA easy may
be ES hard, and vice versa. Tuning enables a fair comparison of two or more
algorithms that should be performed prior to their comparison. This should
provide an equivalent budget—for example, a number of function evaluations or
an overall run time—for each algorithm.

It is crucial to formulate the goal of the tuning experiments precisely, because
in many real-world situations, it is not possible or not desired to find the opti-
mum. A good solution, i.e., a robust solution, is often preferred. This discussion
is also relevant for the specification of performance measures (PM) in evolu-
tionary computation. There are many different measures for the goodness of an
algorithm, i.e., the quality of the best solution, the percentage of runs terminated
successfully, or the number of iterations required to obtain the results.

3.2 Sequential Parameter Optimization

Sequential parameter optimization (SPO) is a methodology for the experimen-
tal analysis of optimization algorithms to determine improved algorithm de-

182 T. Bartz-Beielstein, M. Preuss, and G. Rudolph

Algorithm 1. Sequential parameter optimization
1: procedure SPO(DA, DP)
 Algorithm und problem design
2: Select p ∈ DP and set t = 0
 Select problem instance
3: XA(t) = {x(1), x(2), . . . , x(k)}
 Sample k initial points, e.g., LHS
4: repeat
5: y

(i)
j = Yj(x

(i), p)∀x(i) ∈ XA(t) and j = 1, . . . , r(t)
 Fitness evaluation

6: Y
(i)

(t) = r(t)
j=1 y

(i)
j (t)/r(t)
 Sample statistic for the ith design point

7: xb with b = arg mini(y
(i))
 Determine best point

8: Y (·) = F(β, ·) + Z(·)
 DACE model
9: XS = {x(k+1), . . . , x(k+s)}
 Generate s sample points, s � k

10: y(x(i)), i = 1, . . . , k + s
 Predict fitness from the DACE model
11: I(x(i)) for i = 1, . . . , s + k
 Determine expected improvement, cf. [17]
12: XA(t + 1) = XA(t) ∪ {x(k+i)}m

i=1
 Add m points with the highest I(·)
13: if xb(t) = xb(t + 1) then
14: r(t + 1) = 2r(t)
 Increase number of repeats
15: end if
16: t = t+1;k=k+m
 Increment counters
17: until Budget exhausted
18: end procedure

signs and to learn, how the algorithm works. It employs computational sta-
tistic methods to investigate the interactions among optimization problems,
algorithms, and environments. We consider each algorithm design with asso-
ciated output as a realization of a stochastic process and use interpolation
method to predict unknown values. Our presentation follows concepts intro-
duced in [16], [9], and [11].

Consider a set of m design points x = {x(1), . . . , x(k)} with x(i) ∈ Rd. In the
design and analysis of computer experiments (DACE) stochastic process model,
a deterministic function is evaluated at these design points. The vector of the
k responses is denoted as y = (y(1), . . . , y(k)) with y(i) ∈ R. The process model
proposed in [16] expresses the deterministic response y(x(i)) for a d-dimensional
input x(i) as a realization of a regression model F and a stochastic process Z.
Algorithm 1. describes the SPO in a formal manner. The selection of a suitable
problem instance is done in the pre-experimental planning phase to avoid floor
and ceiling effects (l.2). Latin hypercube sampling can be used to determine an
initial set of design points (l.3). After the algorithm has been run with these
k initial parameter settings (l.5), the DACE process model is used to discover
promising design points (l.10). Note that other sample statistics than the mean,
e.g., the median, can be used in l.6. The m points with the highest expected
improvement are added to the set of design points, where m should be small
compared to s. The update rule for the number of reevalutions r(t) (l.13-15)
guarantees that the new best design point xb(t + 1) has been evaluated at least
as many times as the previous best design point xb(t). Obviously, this is a very
simple update rule and more elaborate rules are possible. Other termination
criteria exist besides the budget based termination (l.17). Figure 1 illustrates

Investigation of One-Go Evolution Strategy/Quasi-Newton Hybridizations 183

Fig. 1. Typical results from the sequential parameter optimization of the ES. Left:
Interactions between population size and selective pressure Right: Plots of the single
effects.

a typical situation from SPO. Here, small population sizes and high selective
pressures are beneficial.

A toolbox that implements the sequential parameter optimization is avail-
able under the following link: http://www.springer.com/3-540-32026-1. Ad-
ditional material, e.g., the implementation of the evolution strategy used in the
following experiments can be downloaded, too. Furthermore, we will provide
interfaces to SPO for commonly used search heuristics such as particle swarm
optimization, genetic algorithms, or commercial optimization-software packages.

4 Experiments

4.1 Problem Design

We decided to use the deterministic initialization scheme DETEQ, see [3]. It
uses one single starting point, i.e., x0, so that the same initial conditions are
used by both algorithms and the hybrid approach.1 This is a disadvantage for
the population based ES because it is forced to spread search points of its initial
population (by applying the mutation operator) within a tight cloud around the
starting point, rather than distributing them throughout the whole search space.
However, our main focus does not lie on a direct comparison of the algorithms,
but on the effect of the hybridization.

To check for floor and ceiling effects, the number of function evaluations was
varied during the pre-experimental planning phase. This ensures that the prob-
lem design is not too easy or to hard for the algorithms under consideration.
Floor and ceiling effects are discussed in [6,3]. To enable a fair comparison, we
have chosen tmax, i.e., the maximum number of function evaluations, as 100 ×
problem dimension. This value appears to be very small ES, because ES need

1 Note, x0 should not be confused with x(0) defined in Algorithm 1. The former de-
scribes the starting point for one algorithm run, the latter is one parameter set of
the optimization algorithm.

184 T. Bartz-Beielstein, M. Preuss, and G. Rudolph

a certain amount of function values to adapt they step sizes. However, our ex-
periments reveal some interesting insight into the ES performance that might
correct some typical prejudices against ES.

4.2 Algorithm Designs

A suitable algorithm design has to be determined. Clearly, for this specific situa-
tion, “standard” parameter settings from the literature are not adequate. There-
fore, SPO was used to detect suitable algorithm designs for the ES. Due to the
small number of function evaluations, population sizes between 1 and 10 in-
dividuals have been used. The selective pressure was chosen from the interval
[0, 10]. The region of interest for the learning parameters c0 and c1 was defined as
the interval [0.1, 3]. The related ES algorithm designs for the selected functions
from [12] are summarized in Table 3. Note, that the parameters from the tuned
algorithms show no directly observable patterns, so that no general recommen-
dations can be given for an ES algorithm design that works equally well on every
function from the [12] test set.2

4.3 Experiments on Moré’s Test Problems

Due to the limited space, function definitions are omitted. The reader is referred
to [12] and [14] for a full description of these functions. We have included some
plots to illustrate some characteristics.

Rosenrock. The Rosenbrock function is the first function from the collection
described in [12] [15]. Minimum x∗ = (1, 1). Optimum f∗ = 0. Starting point
x0 = (−1.2, 1). This is the famous two-dimensional “banana valley” function.

Experiments with the canonical ES and QN for Rosenbrock’s function showed,
that QN and ES are able to solve this problem in principle. Now we will tackle the
central question from this paper: does it pay to hybridize ES and QN? Therefore,
we have generated a series of ES2QN plots, e.g., in Fig. 2 (right). These plots
enable a direct comparison of the canonical ES and QN algorithms: if ES2QN is
0 (0 % ES, but 100% QN), the average performance for n = 10 runs of the QN
algorithm is shown. If ES2QN is 1 (100% ES), the performance of the ES can be
seen. Intermediate ES2QN values, i.e., ESQN ∈]0, 1[, show the performance of
hybrid approaches. In addition to the mean value from ten runs, the minimum,
maximum, and the bestof function values are plotted, because they have a great
practical relevance. The bestof value is determined from n values as follows:
determine the minimum value from m random draws (with replacement) out
of n (m < n). This procedure is repeated very often, say 1,000,000 times, and
the average value is reported. The bestof value is larger than the minimum,
but smaller than the mean value. We have chosen m = 5, because 5 repeated
runs represent a realistic situation in many real world optimization scenarios.
We did not show plots with error bars (or confidence intervals), because for our

2 The QN-method was not tuned, because MATLAB does not provide any interfaces
to adjust exogenous parameters.

Investigation of One-Go Evolution Strategy/Quasi-Newton Hybridizations 185

Table 2. Problem designs for the experiments performed on the [12] test suite. The
DETEQ initialization method, the EXH termination criterion, and n = 10 repeats are
used for all experiments. The experiment’s name, the maximum number of function
evaluations tmax, the problem’s dimension d, the starting point x0 for the initialization
of the object variables are reported.

Problem design tmax d x0

x
(1)
rosen 200 2 (−1.2, 1)

x
(1)
froth 200 2 (0.5,−2)

x
(1)
bscp 200 2 (0, 1)

x
(1)
bscb 200 2 (1, 1)

x
(1)
jensam 200 2 (0.3, 0.4)

x
(1)
osborne2 200 11 see [12]

x
(1)
meyer 300 3 (0.02, 4000, 250)

Table 3. ES algorithm designs. Further ES parameters remained constant as described
in Sect. 2.1. Rosenbrock: x

(1)
ES , Freudenstein and Roth: x

(2)
ES , Powell badly scaled: x

(3)
ES ,

Brown badly scaled: x
(4)
ES , Jenrich and Sampson: x

(5)
ES , Meyer: x

(6)
ES , and Osborne 2: x

(7)
ES .

Algo. design μ ν c1 c2

x
(1)
ES 1 1.5646 0.315154 0.102151

x
(2)
ES 1 4.35957 0.215921 2.10074

x
(3)
ES 6 1.09798 2.93576 2.94653

x
(4)
ES 4 2.29763 1.66219 2.90905

x
(5)
ES 8 4.70181 1.87773 0.27439

x
(6)
ES 9 1.239 0.792342 1.93755

x
(7)
ES 2 6.94046 1.71284 0.537968

purpose, the mean, min, max, bestof (MMMB plots) provide more information.
A comparison of both representations is shown in Fig. 7.

Figure 2 clearly indicates that QN outperforms ES and that hybridization
worsens the performance for this setting. This result is in accordance with results
reported in [14], where the QN algorithm reached a function value of 1.15e− 10
with 150 function evaluations only.

Freudenstein and Roth. Minimum x∗ = (5, 4). Optimum f∗ = 0. Starting
point x0 = (0.5,−2). This is function 2 from the [12] test set. Figure 3 shows a
3 dimensional and contour plot. It indicates that hybridization is beneficial and
that ES performs slightly better than QN. The ES generates solution candidates
that “jump over the saddle (y ≡ 2)”, and QN can fine tune these solutions. Best
results are obtained if approximately 3/4 of the budget is assigned to the ES.

Powell Badly Scaled. Minimum x∗ = (1.098 . . .10−5, 9.106 . . .). Optimum
f∗ = 0. Starting point x0 = (0, 1). This is function 3 from the [12] test set.
Figure 4 shows a 3 dimensional and contour plot. This plot illustrates that

186 T. Bartz-Beielstein, M. Preuss, and G. Rudolph

Fig. 2. Rosenbrock. Left: The gray arrow depicts the starting point x0 = (−1.2, 1),
the black arrow the optimizer x∗ = (1, 1).Right: Results from the hybridization (n =
10 repeats, this value was used in the following plots, too) clearly demonstrate that
hybridization does not improve the algorithm, because QN outperforms ES.

comparing mean values alone tells not the whole story. Hybridization can im-
prove the performance, but this is not guaranteed. However, it might be a
good strategy, if the user can select the best result from several runs (as mod-
eled in the performance measure bestof). SPO proposed a 6+6-ES, see Ta-
ble 3. The following situation could be observed in some runs: The ES was
able to detect values close to the optimizer after 3 generations, which could
be improved by QN.

Brown Badly Scaled. Minimum x∗ = (106, 2 · 10−6). Optimum f∗ = 0. Start-
ing point x0 = (1, 1). This is function 4 from the [12] test set. Figure 5 shows a 3
dimensional and contour plot. A first look at the results leads to the conclusion
that QN performs better than the ES, cf. the right graph in the first row. How-
ever, this result depends heavily on the number of available function evaluations,
i.e., tmax. If tmaxis increased, ES performs better than QN. Hybridization has
no positive effect, it is better to use the canonical algorithms. The ES needs
some time adapting the step width, but was able to detect the minimizer. QN

Fig. 3. Freudenstein and Roth. Left: The gray arrow depicts the starting point x0 =
(0.5, 2), the black arrow the optimizer x∗ = (5, 4). Right: Experimental results indicate
that hybridization can improve the algorithm’s performance.

Investigation of One-Go Evolution Strategy/Quasi-Newton Hybridizations 187

Fig. 4. Powell Badly Scaled. Left: The white arrow depicts the starting point x0 =
(0, 1), the gray arrow the optimizer x∗ = (1.098 . . . 10−5, 9.106 . . .).Right: Results from
the hybridization.

Fig. 5. Brown Badly Scaled. First row, left: The white arrow depicts the starting point
x0 = (1, 1), the gray arrow the optimizer x∗ = (106, 2 · 10−6). Right: Results from the
hybridization, tmax= 200. Second row, left: tmax= 400, right: tmax= 800. Some curves
end abruptly, because the plotted values are zero, which is the known minimum.

finds suboptimal solutions with fewer function evaluations. QN could not detect
the optimizer, even if tmaxwas increased as can be seen from the graphs in the
second row of Fig. 5.

Jenrich and Sampson. Minimum x∗ = (0.2578 . . . , 0.2578 . . .). Optimum f∗ =
124.362 Starting point x0 = (0.3, 0.4). This is function 6 from the [12] test

188 T. Bartz-Beielstein, M. Preuss, and G. Rudolph

Fig. 6. Jenrich and Sampson. Left: The white arrow depicts the starting point x0 =
(0.3, 0.4), the gray arrow the optimizer x∗ = (0.2578 . . . , 0.2578 . . .). Right: Results from
the hybridization illustrate that hybridization worsens the algorithm’s performance.

Fig. 7. Osborne 2. Left: Results from the hybridization. Right: Results from the hy-
bridization illustrate that hybridization does not improve the algorithm’s performance.

set. Figure 6 shows a 3 dimensional plot and contour plot. Both algorithms
perform equally well, there is no benefit in hybridization. Hybridization worsens
the performance in some settings, see Fig. 6.

Osborne 2. Osborne 2 was included into the test function set, because it the
11-dimensional function. The test suite from [12] contains 6 two, three, and four
dimensional, 1 five, six, and nine dimensional, 9 ten dimensional, and 1 eleven
dimensional test function. [14] reports some results from optimization attempts
with the MATLAB optimization toolbox: This 11 dimensional problem could
not be solved by MATLAB’s BFGS without supplying gradient information.
And, even with gradient information, more than 10,000 function evaluations were
required for finding a point in the vicinity of the global optimizer.3 Osborne 2 is
function 19 from the [12] test set. Figure 7 nicely illustrates the trade off between
deterministic (QN) and stochastic (ES) search algorithms. If the user needs a

3 We have obtained slightly different, i.e., better, results, because we used a newer
MATLAB release (R14).

Investigation of One-Go Evolution Strategy/Quasi-Newton Hybridizations 189

good result with a high reliability, she should use the QN. If she can afford several
runs, then ES is the correct choice. There is no guarantee that ES detects a better
solution, but a hight probability. Hybridization is not recommended. The plot
on the right shows the same data as on the left, but uses error bars.

Fig. 8. Meyer. Left: Results from the hybridization with 400 function evaluations.
Right: Results from the hybridization with 1000 function evaluations.

Meyer. Meyer’s function was added to our test set, because it is a three di-
mensional function on which MATLAB’s BFGS method failed. [14] reports a
function value of 3.4675e+007 at solution found after 10,002 function evalua-
tions , whereas the best known minimum reads f∗ = 87.9458. This is function
10 from the [12] test set. Figure 8 suggests that QN performs better than ES.
But this is an artefact, because both algorithms failed. They did not find a value
in the vicinity of the optimizer. Hence, the problem is too hard for both algo-
rithms. Increasing the computational budget, i.e., tmax, does not lead to better
results. Therefore, the difference is statistical significant—but not scientifically
relevant.

5 Analysis

The main research goal of our study addresses the question “Are there situations
in which the hybridization of ES and QN methods improve their performance ?”
The analysis of the experiments produced no clear picture. QN is more robust
than the ES in the traditional definition of robustness, i.e., low standard devia-
tions. This robustness can be seen as an disadvantage, e.g., if the optimization
practitioner can afford several runs from which she chooses the best.

Looking at local run properties reveals that the performance improvement
is caused by the following effect: The ES explores the search space and de-
tects a suitable starting point that is passed to the QN, which performs a local
fine tuning. This is superior to the global search behavior of the ES alone and
the local strategy of the QN-methods. However, we could not derive general
guidelines, e.g., “choose an ES2QN value of 0.31415 to improve the algorithm’s

190 T. Bartz-Beielstein, M. Preuss, and G. Rudolph

performance”. The hybrid approach has also some advantages compared to an
approach that performs a sampling of the search space in the first phase and runs
a QN method in the second phase, because the region of interest is not known in
many situations. The ES jumps to a promising region in the first steps, so that
the additional refinement with the QN can be performed efficiently. A compar-
ison to multi-start techniques is of great interest and has not been done in our
study.

As expected and mentioned in the abstract, hybridization can improve algo-
rithm’s performance, even if the resources are very limited. Restricted resources
are standard situations in industrial optimization, because function evaluations
are very costly or results must be available immediately, i.e., in optimization
via simulation or in real-time optimization scenarios, respectively. We observed
the following results that might be transferable to other situations as well: Al-
gorithms that are specialized for certain (simple) optimization scenarios cannot
benefit from hybridization. This is understandable, because these algorithms
need a certain budget to adapt their internal model, e.g., step sizes in ES or the
gradient and Hessian approximation for QN-methods. Switching to another algo-
rithm is costly, it might be beneficial only if no progress can be obtained with the
current strategy. Results from Rosenbrock’s function support this assumption.

It is important to tune the ES, i.e., to determine suitable algorithm designs.
SPO, or related tools, can provide a quick overview of suitable parameter set-
tings. Evolution strategies with standard setting from the literature failed in our
scenarios. Not only the algorithms have to be tuned before the experiment is
started—it was crucial to find an experimental setup that is neither too hard
nor too easy for the algorithms as can be seen from Meyer’s function.

6 Summary

No general recommendations—especially for real-world optimization problems—
can be given here, because several factors influence the algorithm’s performance.
Consider the computational budget: Modifications lead to different results. SPO
or related techniques can be applied in this situation, because they can improve
the performance significantly. There is no need for hybridization if well tuned
algorithms on simple test functions are considered. Only if the problem structure
is complex, the combination of global, stochastic search and local, gradient-
based strategies is useful. The hybrid ESQN communicates only the best found
solutions between its two parts. It may however be beneficial to take over the
already learned internal model of the EA (mutation strengths) into the QN-
method. Investigating this remains as a task for future research.

Acknowledgment. The research leading to this paper was supported by the
DFG (Deutsche Forschungsgemeinschaft) as part of the collaborative research
center “Computational Intelligence” (531) and by project grant no. 252441,
“Mehrkriterielle Struktur- und Parameteroptimierung verfahrenstechnischer
Prozesse mit evolutionären Algorithmen am Beispiel gewinnorientierter unschar-
fer destillativer Trennprozesse”.

Investigation of One-Go Evolution Strategy/Quasi-Newton Hybridizations 191

References

1. T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York NY, 1996.

2. Thomas Bartz-Beielstein. Experimental analysis of evolution strategies—overview
and comprehensive introduction. Interner Bericht des Sonderforschungsbereichs
531 Computational Intelligence CI–157/03, Universität Dortmund, Germany, No-
vember 2003.

3. Thomas Bartz-Beielstein. Experimental Research in Evolutionary Computation—
The New Experimentalism. Springer, Berlin, Heidelberg, New York, 2006.

4. H.-G. Beyer and H.-P. Schwefel. Evolution strategies—A comprehensive introduc-
tion. Natural Computing, 1:3–52, 2002.

5. C. G. Broyden. The convergence of a class of double-rank minimization algorithms.
Journal of the Institute of Mathematics and Its Applications, 6:76–90, 1970.

6. Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cam-
bridge MA, 1995.

7. R. Fletcher. A new approach to variable metric algorithms. Computer Journal,
13:317–322, 1970.

8. D. Goldfarb. A family of variable metric updates derived by variational means.
Mathematics of Computing, 24:23–26, 1970.

9. D.R. Jones, M. Schonlau, and W.J. Welch. Efficient global optimization of expen-
sive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

10. Natalio Krasnogor and Jim E. Smith. A Tutorial for Competent Memetic Algo-
rithms: Model, Taxonomy and Design Issues. IEEE Transactions on Evolutionary
Computation, 5(9):474–488, 2005.

11. S.N. Lophaven, H.B. Nielsen, and J. Søndergaard. DACE—A Matlab Kriging Tool-
box. Technical Report IMM-REP-2002-12, Informatics and Mathematical Mod-
elling, Technical University of Denmark, Copenhagen, Denmark, 2002.

12. J. J. More, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software, 7(1):17–41, 1981.

13. Pablo Moscato. On Evolution, Search, Optimization, Genetic Algorithms and Mar-
tial Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent
Computation Program, Report. 826, California Institute of Technology, Pasadena,
California, USA, 1989.

14. Arnold Neumaier. “Results for moré/garbow/hillstrom test problems”, 2006.
http://www.mat.univie.ac.at/∼neum/glopt/results/more/moref.html. Cited
19 Mai 2006.

15. H.H. Rosenbrock. An automatic method for finding the greatest or least value of
a function. Computer Journal, 3:175–184, 1960.

16. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of
computer experiments. Statistical Science, 4(4):409–435, 1989.

17. T. J. Santner, B. J. Williams, and W. I. Notz. The Design and Analysis of Com-
puter Experiments. Springer, Berlin, Heidelberg, New York, 2003.

18. D. F. Shanno. Conditioning of quasi-Newton methods for function minimization.
Mathematics of Computing, 24:647–656, 1970.

Author Index

Bartz–Beielstein, Thomas 178
Blum, Christian 94
Breaban, Mihaela 139

Chiarandini, Marco 162
Cipriano, Raffaele 110
Cotta, Carlos 150
Croitoru, Cornelius 139

delaOssa, Luis 42
Dhaenens, Clarisse 57
Di Gaspero, Luca 110
Dotú, Iván 150
Dovier, Agostino 110

Fernández, Antonio J. 150

Gámez, José A. 42

Ibaraki, Toshihide 13
Ioannou, George 124
Ionita, Madalina 139

Jourdan, Laetitia 57

Kapanoglu, Muzaffer 28
Koc, Ilker Ozan 28

Larsen, Kim S. 162

Melián, Belén 82

Nakamura, Kouji 13

Paraskevopoulos, Dimitris C. 124
Preuss, Mike 178
Puerta, José M. 42

Raidl, Günther R. 1
Repoussis, Panagiotis P. 124
Rodŕıguez-Mart́ın, Inmaculada 70
Rudolph, Günter 178

Salazar-González, Juan-José 70
Stützle, Thomas 162

Talbi, El-Ghazali 57
Tarantilis, Christos D. 124

Van Hentenryck, Pascal 150

Yábar Vallès, Mateu 94

	Frontmatter
	A Unified View on Hybrid Metaheuristics
	Packing Problems with Soft Rectangles
	A Multi-population Parallel Genetic Algorithm for Highly Constrained Continuous Galvanizing Line Scheduling
	Improvement in the Performance of Island Based Genetic Algorithms Through Path Relinking
	Using Datamining Techniques to Help Metaheuristics: A Short Survey
	An Iterated Local Search Heuristic for a Capacitated Hub Location Problem
	Using Memory to Improve the VNS Metaheuristic for the Design of SDH/WDM Networks
	Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization
	Hybrid Approaches for Rostering: A Case Study in the Integration of Constraint Programming and Local Search
	A Reactive Greedy Randomized Variable Neighborhood Tabu Search for the Vehicle Routing Problem with Time Windows
	Incorporating Inference into Evolutionary Algorithms for Max-CSP
	Scheduling Social Golfers with Memetic Evolutionary Programming
	Colour Reassignment in Tabu Search for the Graph Set T-Colouring Problem
	Investigation of One-Go Evolution Strategy/Quasi-Newton Hybridizations
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

