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Abstract. Spatial information processing is an active research field in
database technology. Spatial databases store information about the po-
sition of individual objects in space [6]. Our current research is focused
on providing an efficient caching structure for a telemetric data ware-
house. We perform spatial objects clustering when creating levels of the
structure. For this purpose we employ a density-based clustering algo-
rithm. The algorithm requires an user-defined parameter Eps. As we
cannot get the Eps from user for every level of the structure we propose
a heuristic approach for calculating the Eps parameter. Automatic Eps
Calculation (AEC) algorithm analyzes pairs of points defining two quan-
tities: distance between the points and density of the stripe between the
points. In this paper we describe in detail the algorithm operation and
interpretation of the results. The AEC algorithm was implemented in one
centralized and two distributed versions. Included test results present the
algorithm correctness and efficiency against various datasets.

1 Introduction

Many computer research areas require spatial data processing. Computer sys-
tems are used for gathering and analyzing information about traffic in big cities
and highways. The systems utilize drivers’ cell phones signals to track vehicles.
Stored tracking data is then analyzed and used to support the process of making
decisions such as building new bypasses, highways and introducing other ratio-
nalizations. More and more people are interested in on-line services providing
very precise and high-quality maps created from satellite images (an example
can be found at [3]). There are more very interesting projects concerning spatial
data processing; for details please refer to [1,2].

Another very important branch of spatial systems is telemetry. We work on a
telemetric system of integrated meter readings. The system consist of utility me-
ters, collecting nodes and telemetric servers. The meters are located in blocks of
flats, housing developments etc. They measure water, natural gas and energy us-
age and send the readings to the collecting nodes via radio. The collecting nodes
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collect the readings and send them to the telemetric servers through the Ethernet
network. The data from the telemetric servers are extracted, transformed and
then loaded to the database of the data warehouse. Apart from meter readings,
the data warehouse database stores information about the meters’ geographical
location and their attributes.

The remaining part of the paper is organized as follows. In the next subsection
we present our motivation and describe the problem we are trying to solve. We
then provide all the details of the proposed solution. We also include test results
which present the algorithm efficiency and correctness against various datasets.
We conclude the paper presenting our future plans.

1.1 Problem Description

The most typical use for the presented telemetric data warehouse is to investi-
gate utilities consumption. Our current research is focused on providing fast and
accurate answers to spatial aggregating queries. We are in the process of design-
ing and implementing a hierarchical caching structure dedicated to telemetry-
specific data. We named the structure a Clustered Hybrid aR-Tree (CHR-Tree)
because we intend to use clustering to create the structure nodes, and, like in
the aR-Tree [6], the structure nodes store aggregates.

We already have a solution to a problem of storing and processing the ag-
gregates in the CHR-Tree nodes [5]. Currently we are trying to construct the
structure of the CHR-Tree. To create the intermediate level nodes we employ
density-based clustering algorithm. We decided to use the DBRS algorithm [7].
Although efficient and scalable, the algorithm requires an user-defined parameter
Eps. Eps is a parameter defining a half of the range query square side. The side
length is used by the clustering algorithm to evaluate range queries when search-
ing for neighboring points. To the best of our knowledge, there is no automatic
method for calculating the Eps parameter for the density-based clustering. Au-
thors of the DBScan algorithm proposed in [4] a simple heuristics to determine
the Eps parameter. However, the heuristics cannot be considered automatic as
it requires user interaction. As we cannot get the Eps parameter from the user
for every level of the structure, we propose an empirical Automatic Eps Calcu-
lation (AEC) algorithm. The algorithm is not limited to the telemetry-specific
data and can be applied to any set of points located in two-dimensional space.

2 Automatic Eps Calculation Algorithm

The AEC algorithm investigates a distribution of the points in a given dataset.
The analyzed datasets may be large, hence we have to limit the amount of
processed data. We decided to use a random sampling approach because it can
give good results in acceptable time. The AEC algorithm uses the following sets
of data:

– a set of all points P . The points in the set P are located in some abstract
region, in two-dimensional space,
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– a set N . The set contains points randomly chosen from the P set. There is a
function createSetN() that is used for creating the N set. The function takes
one optional parameter r, that defines the region from which the points are
being picked. When the r parameter is present during the N set generation,
we mark the set with an appropriate subscript: Nr,

– a set H . Like the N set, the H set contains points randomly picked from
the P set. In the case of the H set, the function creating the set is named
createSetH(). Next to the r optional parameter, whose meaning is identical
as for the N set, the createSetH function takes another parameter defining
the point that is skipped during random points drawing. The H sets are
created for points from the N set. The notation Hr,ni means that the H set
was created for the point ni ∈ N ; the point ni was skipped during random
points drawing and the points in H are located in a region r.

The cardinalities of N and H sets are the AEC algorithm parameters. Thanks to
the parametrization of those values we can easily control the precision and the
algorithm operation time. The cardinality of the N set is defined as the percent
of the whole P set. The cardinality of the H set is defined directly as the number
of points creating the set.

2.1 Algorithm Coefficients

The first step of the AEC algorithm operation is to pick randomly from the
P set points creating the set N . In the next step, for each point ni ∈ N the
algorithm creates set Hni . Utilizing the created sets, the algorithm evaluates
three coefficients.

The first calculated coefficient is the Euclidean distance between the point ni

and point from the related Hni set. The distances are calculated for all points
in the N set and all related H sets.

However, knowing only the distance between points pi and pj is not enough to
estimate the Eps parameter. Missing is the knowledge about the neighborhood
of the analyzed points; actually about the points in the region between the
investigated points pi and pj . We introduced a coefficient PIS (Points In Stripe).
The value of PIS(pi, pj) is the number of points located in a stripe connecting
the points pi and pj .

To evaluate the PIS coefficient value for a pair of points we use one spatial
query and four straight lines equations. Having the pi and pj points coordinates
we can easily calculate the parameters a and b of the straight line L equation
y = ax+b. The line L contains the points pi and pj. In the next step we calculate
equations of the lines perpendicular to L in points pi and pj, respectively Lpi and
Lpj (we do not include the equations because of the complicated notation and
straightforward calculations). The final step is to calculate two lines parallel to L,
the first above line L – La and the second below line L – Lb. The distance between
the parallel lines and the L line (the difference in the b line equation coefficient)
is defined as a fraction of the distance between points pi and pj . The fraction is
the AEC algorithm parameter named stripeWidth; stripeWidth ∈ (0, 1). The
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lines create a stripe between the points, and the stripe encompasses some number
of points.

Having the lines equations we can easily calculate, whether or not an arbi-
trary point from the set P is located inside the stripe between points pi and pj .
In order to reduce the number of points being analyzed we evaluate a rectangle
encompassing the whole stripe. The rectangle vertexes coordinates are set by
calculating the coordinates of the points where the stripe-constructing lines (La,
Lb, Lpi and Lpj) cross, and then choosing the extreme crossing points coordi-
nates. Using the stripe-encompassing rectangle we execute the range query to
choose the points which can possibly be located within the stripe between pi and
pj . In the next step, only the points chosen by the range query are examined if
they are located within the stripe.

After calculation of the PIS coefficient we are equipped with two values,
which provide interesting knowledge not only about distance between points pi

and pj but also about their neighborhood. Basing on the distance between points:
dist(pi, pj) and the number of points in a stripe between points PIS(pi, pj) we
can calculate another coefficient, which is a density of the stripe between pi and
pj : dens(pi, pj) = PIS(pi,pj)

dist(pi,pj)2·stripeWidth .
Figure 1 presents an example of a stripe between two points. The stripeWidth

parameter was set to 0.98. In this example we are checking two pairs of points:
p5, p8 and p3, p6. We used a dashed line to indicate the line linking two points.
Solid lines depict the parallel and perpendicular lines. Rectangles drawn with
spotted lines describe the regions encompassing the stripes. From the picture we
see, that there is one point between points p5, p8 and there are 3 points between
points p3, p6.

The distances (in millimeters) between the points p5, p8: dist(5, 8) = 302.1,
and p3, p6: dist(3, 6) = 79.2. The density of the stripe between p5 and p8 is
dens(p5, p8) = 1

302.12·0.98 = 0.11 · 10−4 and for p3, p6: dens(p3, p6) = 3
79.22·0.98 =

4.88 · 10−4. From the example we see that the density inside the cluster is much
greater than outside the cluster. The density coupled with the distance between
points brings much more knowledge than the distance itself. Now we are able
to deduce whether two points are relatively close to each other, and whether
they are located in a dense neighborhood or, on the other hand, whether the
points are relatively distant and there are almost no points in the stripe between
them. After analyzing the operation of the density-based algorithms, that is ex-
ecuting a series of range queries, we decided to search not for a distance between
points in clusters or for the thinnest cluster diameter, but rather for a minimal
distance between clusters. A value based on the minimal distance can be used as
the Eps parameter in the density-based clustering algorithm. Using a minimal
distance between clusters as the Eps parameter should result in grouping all
the points whose distances to their closest neighbors are shorter than the mini-
mal distance between clusters (they are in one cluster) and not grouping points
when the distance between them is greater than the minimal distance between
clusters.
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2.2 Algorithm Operation

The AEC algorithm operates in iterative mode. In every iteration the algorithm
tries to minimize the calculated minimal distance between clusters. Below we
present the pseudocode of the algorithm.

(1) CalculateEps(maxIter, maxRptd, distInit, densInit) : Float

(2) distCur := distInit; densCur := densInit; // initialize variables

(3) distPrev := distCur; // stores previously calculated distance

(4) iter := 0; rptd := 0; // # of iterations and # of repeated results

(5) WHILE iter < maxIter AND rptd < maxRptd DO

(6) N := createSetN(); // create set N

(7) FOR ni IN N DO // for every point ni in N do

(8) niDist := Float.MAX_VALUE; // initialize results for point ni

(9) niDens := Float.MAX_VALUE;

(10) rni := createRect(distCur, ni); // create rectangle for point ni

(11) rniDens := getAvgDens(rni); // calculate rectangle density

(12) Hni := createSetH(ni, rni); // create set H for point ni

(13) FOR hj IN Hni DO

(14) tDist := calcDist(ni, hj); // calculate distance

(15) tPIS := calcPIS(ni, hj); // calculate # of points in stripe

(16) tDens := calcDens(tDist, tPIS); // calculate stripe density

(17) IF tPIS > 0 AND tDist < niDist AND tDens <= rniDens THEN

(18) niDist := tDist; // set new results for point ni

(19) niDens := tDens;

(20) END IF;

(21) END FOR; // loop for points from Hni set

(22) IF niDist < distCur AND niDens <= densCur THEN

(23) distCur := niDist; // update iteration results

(24) densCur := niDens;

(25) ELSE

(26) IF niDist < distCur THEN // check suspected region

(27) sDist, sDens := checkSuspReg(ni, hj);

(28) IF sDist < distCur AND sDens <= densCur THEN

(29) distCur := sDist; // update iteration results

(30) densCur := sDens;

(31) END IF;

(32) END IF; // suspected region condition

(33) END IF; // updating results condition

(34) IF distCur = distPrev THEN

(35) rptd := rptd + 1; // increase number of repeated results

(36) ELSE

(37) rptd := 0;

(38) distPrev := distCur; // store previously calculated value

(39) END IF; // repeated result condition

(40) iter := iter + 1; // increase number of performed iterations

(41) END FOR; // loop for points from N set

(42) END WHILE; // main loop

(43) RETURN distCur;

(44) END; // CalculateEps
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The input parameters are: the maximal number of iterations, the maximal number
of repeated results and the initial distance and density. Two first values are used for
creating the breaking condition (line 5). The iterations are broken if the number of
performed iterations is greater than the maximal number of iterations or the result
returned by consecutive iterations was repeated a given number of times. Next two
parameters, the initial values, should be set in a way that they reduce the number of
iterations to minimum, but do not narrow down the set of possible solutions. We use an
average distance between random points, and average density related to the distance
as the initial values.

In the iterative section the AEC algorithm first creates the N set (line 6). Then, for
every point ni ∈ N performs the following:

– creates the rni rectangle and calculates its density (lines 10,11). The rni rectangle
has its center in the ni point and its sides are 2 × distCur length,

– creates Hrni
,ni set (line 12). Then for every point hj ∈ Hrni

,ni the algorithm
calculates the distance and the density of the stripe between the ni and hj points
(lines 14-16).

– from all the results the algorithm chooses the best distance and density pair (lines
17-20) for the ni point,

– condition in line 22 chooses the best distance and density pair for the whole N set,
– if the results for the ni point satisfies only the first part of the condition (line 26),

the algorithm checks a suspected region (see below),
– in line 34 the algorithm checks if the returned result is repeated,
– as the result the function returns the calculated distCur value.

Suspected Region. The case of a suspected region is considered for points pi, pj

when only the distance condition (dist(pi, pj) < distcur)) holds, the density condition
(dens(pi, pj) <= denscur)) does not. Our experiments show that there are two possible
scenarios resulting in examining a suspected region:

1. the points pi, pj are located close to each other inside a cluster. The distance then
is short, but the density of the stripe between the points is high (the scenario is
marked as rectangle (1) in fig. 2).

2. the points pi, pj are located in separate clusters but they are not border points
(according to the definition presented in [7]). The situation is presented in fig. 2
as rectangle (2). The density of the stripe between the points is increased by the
presence of the border points of both clusters.

Of considerable interest is the second case. The AEC algorithm does not analyze dis-
tances with the zero PIS coefficient. There are many cases when the clusters’ shapes
make it difficult to randomly pick two points so that one of them is a border point of
the first cluster and the second is located near the border of the second cluster. The
analysis of the suspected region is performed as follows:

1. define the suspected region. The rectangle rs for the suspected region has its center
directly between the points pi and pj (fig. 2). In the next step calculate the density
densrs of the rs.

2. create a set of points Nrs .
3. for each point ni ∈ Nrs create a set Hni,rs , then calculate distances and densities

of the stripe between points ni and the related points hj ∈ Hni,rs . As the result
choose the minimal distance with the minimal density.
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In the event the calculated result density is less than the average density of the
rs region, the suspected region analysis results are compared with the results of the
analysis in the iterative section of the AEC algorithm. For a pair of points located
inside a cluster the suspected region analysis does not influence the results because
the density condition is not satisfied (the density is high inside a cluster). But for the
points located in two different clusters the analysis often gives important results.

The amount of points checked during suspected regions analysis depends on the
number of points in the rs rectangle. If the number is less than the N set cardinality,
then all the points are checked. But if the number is greater, the cardinality of the Nrs

set equals the cardinality of the N set created in the iterative section of the algorithm.
The situation is identical for the H sets.
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Fig. 1. Hypothetical stripes between two
pairs of points
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Fig. 2. The suspected regions are being an-
alyzed with special attention

2.3 Implementation

In order to improve the efficiency of the AEC algorithm we used distributed processing.
The structure of the distributed system consist of a client and a few servers. Each server
stores the set of all points P and each server performs the same operations but for
different subsets of points. Each server is assigned a set of points from which it creates
the N sets. The sets are disjoint for all servers. Thus we minimize the possibility that
some servers examine the same pair of points. The H sets are created from the whole
P set, with no limitations.

We implemented two different distributed versions of the AEC algorithm. The first
version named at once (AO) assumes, that client and servers do not communicate dur-
ing the process of Eps evaluation. The servers calculate the minimal distance between
clusters with the lowest density and return the results to the client which selects the
best result (the shortest distance with the lowest related density). Disadvantage of
this approach is that the servers calculations are less precise because they use N sets
which cardinalities are only 1

K
of cardinalities of the sets used in the centralized version

(where K is the number of servers). The second version named iterative (IT) assumes
that the client requests the servers to perform the ith iteration of the whole process.
The servers return results of the ith iteration to the client. The client selects the best
result from all the answers. In the next step, the client transfers the chosen result to all
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the servers. The servers use the result as the initial distance and initial density for the
next i + 1 iteration. The number of performed iterations and the number of repeated
consecutive results are controlled by the client. Operation of the servers is synchronized
by setting the initial distance and initial density. In this approach client and servers
communicate more often, but the obtained results are more precise.

3 Test Results

After the theoretical description of the AEC algorithm we present results of the exper-
iments obtained by means of the described implementations. The main purpose of the
experiments was to verify the AEC algorithm correctness and efficiency against various
datasets. The AEC algorithm was run with a given set of parameters. The calculated
Eps parameter was passed to the DBRS algorithm, which was returning the number
of created clusters. If the number of clusters declared for a given dataset equaled the
number of clusters found by the DBRS, we marked the experiment as a success. If the
number of clusters was not equal, we marked the experiment as a failure.

All three implementations (one centralized and two distributed: AO and IT) of the
AEC algorithm are written in Java. The experiments were run on machines equipped
with Pentium IV 2.8 GHz and 512 MB RAM. The software environment was Windows
XP Professional, Java Sun 1.5 and Oracle 10g. The distributed environment consisted
of four machines connected with Ethernet 100Mbit network. The communication in
distributed implementations was based on Java RMI.

The algorithm was tested on eight various sets of points. The sets were marked from
A to H; they vary with cardinality, points distribution and clusters’ shapes (fig. 3).

Fig. 3. Sets of points used for testing

The A set contains about 650 points grouped in 10 dense clusters; density of all
clusters is very similar. The next set, B, contains about 200 points grouped in three
relatively sparse clusters; density of all clusters is similar. The C set contains only about
120 points grouped in eight small clusters. In the D set 400 points are grouped in three
dense clusters, one less dense, and one sparse cluster. The E and F sets contain over 400
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points. The G and H sets contain respectively 1000 and 1500 points. In all four sets,
clusters have similar density but significantly differ in shapes. Small clusters located
inside the big ones were intended to disrupt the AEC algorithm when calculating the
PIS coefficient. For each dataset we performed a set of experiments with the following
parameters:

– the cardinality of the N set was 5, 15, 25 and 35% of the input dataset cardinality,
– the cardinality of the H set was 5, 15, 25 and 35 points for each value of the N set

cardinality,
– the number of iterations was set to 10, 20 and 30 for each combination of N and

H sets cardinality.

A single test set contained 4×4×3 = 48 tests. In our tests the iterations were broken if
the result of the consecutive iterations was repeated more than 5 times. The iteration
breaking was always caused by the number of repeated consecutive results. Thus we
can treat the tests for identical cardinality of N and H sets as three repeated tests,
which is useful in the presence of the random factor.

The graph in figure 4 illustrates the relative number of investigated points for various
sets of points. The number of investigated points calculated as |N | · |P | · |H | was
related to the cardinality of the set P , hence we can compare the results for sets of
different cardinality in a single plot. In figure 5 we present a graph comparing AEC
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Fig. 5. AEC algorithm operation times as
function of investigated points number

algorithm operation times for the three implementation versions. The x axis shows the
number of investigated points. The y axis shows AEC algorithm operation times in
seconds. We considered only the cases when the algorithm gave the correct results.
As expected, the centralized version consumes much more time when compared to the
distributed versions. For small cardinalities of investigated points sets (less than 3000)
the differences in operation times are not significant. But for greater cardinalities the
distributed versions operate much more efficiently. For cardinalities exceeding 10000
points we observe nearly linear speed-up.

Summarizing the tests results we notice that for all tested sets of points the AEC
algorithm gives proper results. There are more and less difficult sets of points but the
algorithm can correctly analyze all of them. The most difficult to analyze are sets of
points with a big number of small clusters. The algorithm operation is not disturbed
by the differences in densities and/or shapes of the clusters. Also the presence of small
clusters inside big ones does not negatively affect the algorithm operation.
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The centralized version of the AEC algorithm gives the most accurate results. For all
tested sets of points the centralized version always required the smallest N and H sets.
This version also needed the smallest number of iterations for obtaining the correct
results. The AO distributed version operates most efficiently (is able to examine the
biggest number of pairs of points in the shortest time), but on the other hand, the AO
version always requires the biggest N and H sets, and the biggest number of iterations.
Therefore, the best choice is the iterative distributed version (IT). It is faster than the
centralized version and gives better results than the distributed AO version.

4 Conclusions and Future Work

In this paper we addressed the problem of automatic calculation of Eps parameter
used in density-based clustering algorithms such as DBRS and DBScan. We proposed
a solution called AEC algorithm. The algorithm operates iteratively. In every iteration
it chooses randomly a fixed number of sets of points and calculates three coefficients:
distance between the points, number of points located in a stripe between the points
and density of the stripe. Then the algorithm chooses the best possible result, which
is the minimal distance between clusters. The calculated result has an influence on the
sets of points created in the next iteration.

The AEC algorithm was implemented in one centralized and two distributed ver-
sions. We presented test results for a set of eight different sets of points. With appropri-
ately high number of examined points the algorithm was able to calculate the proper
Eps parameter for all tested sets of points. Our future work includes further improving
the AEC algorithm efficiency. We want to optimize the most time-intensive fragment
of the algorithm which is calculating the value of the PIS coefficient. We are currently
searching for conditions allowing us to skip the PIS coefficient calculation.
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