
Implementation of Telematics Services with
Context-Aware Agent Framework

Kenta Cho1, Yuzo Okamoto1, Tomohiro Yamasaki1, Masayuki Okamoto1,
Masanori Hattori1, and Akihiko Ohsuga1

TOSHIBA Corporation
1 Komukai-Toshiba-cho, Saiwai-ku, Kawasaki-shi, 212-8582, Japan

kenta.cho@toshiba.co.jp

Abstract. With the development of a car-mounted navigation system
and an in-car network, improved information services for creating drive
plans automatically have been realized. We propose a method of devel-
oping telematics services through combination of a context-aware agent
framework and a planner that provides the predicted feature situation
to the framework and creates drive plans composed of POIs (Points Of
Interest) proposed by the framework.

1 Introduction

Context-aware applications are attracting attention as an approach to distin-
guishing important data from a large amount of contents spread on a network. A
context-aware application recognizes the user’s situation and offers information
that may be useful for the user in that situation. Telematics, that is, advanced
information services based on in-car embedded devices and networks, has be-
come widely used. Services providing information in a mobile environment are
realized with a network enabled car navigation system [1] [2]. When using a car
navigation system to create drive plans from a starting point to a destination,
user have to select stop-off points from among many POIs (Points of Interest).
Since there are many POIs in the real world, it is difficult to select appropriate
stop-off points unaided. A POI recommendation function may help a user in
creating drive plans, but existing recommendation functions offer little variation
in plans, lack adaptation to the user’s preference and can’t consider if a whole
drive plan is appropriate for the user. Our approach is to apply context-aware
applications to telematics to address these issues. In this paper, we propose an
architecture to implement telematics services as a context-aware application. We
use a reactive context-aware framework that outputs recommendation contents
according to inputs such as a preference and a situation of a user. We also im-
plemented a drive planner that simulates travel corresponding to recommended
drive plans to predict a feature situation.

Section 2 of the paper explains problems in applying a context-aware appli-
cation to a telematics service. Section 3 describes the architecture of Ubiquitous
Personal Agent (UPA), our reactive context-aware framework. In Section 4, we

H.Y. Youn, M. Kim, and H. Morikawa (Eds.): UCS 2006, LNCS 4239, pp. 98–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Implementation of Telematics Services 99

provide a detailed explanation of Smart Ride Assist @ Navi (@Navi), which is a
telematics service implemented with UPA. In Section 5, we evaluate if the com-
bination of a drive planner and UPA is more effective in creating suitable plans
than in the case of using only a reactive context-aware framework. We present
related work in Section 6.

2 Applying Context-Aware Application to Telematics
Service

In creating a drive plan that contains stop-off POIs, existing telematics services
force a user to select a point from a catalog of a large number of POIs. To avoid
the burden of selecting points, a telematics service should satisfy the following
conditions.

– Creating drive plans that considers a user’s preference, a user’s situation on
the drive, a drive route and a time constraint.

– Use interaction with a user as feedback to the system and personalize be-
havior of the system.

We propose a method to realize a service that satisfies these conditions by
applying a context-aware application to a telematics service. We define ”context”
as follows.

– Context is information to characterize a situation, preference and objec-
tive of a user. That information must be abstracted for ease of use for an
application. A situation includes spatial information (e.g. location), tem-
poral information, physiological measurements (e.g. emptiness, fatigue) and
activity.

A context-aware application is defined as an application that provides infor-
mation or performs services according to inputs of context [6][11]. Most existing
context-aware applications [7][12][5] work reactively and provide information in
response to inputs from sensors.

Context-aware telematics service can recommend a POI at which a user should
stop in a certain situation at a certain moment. But such a reactive service has
the following problems.

– Such a reactive service recommends a POI only with an estimation at a
certain moment, even if there are more appropriate POIs in the feature,
a service can’t recommend them. For example, a service recommended a
restaurant at a certain point and a user had lunch at that restaurant. After
that, even if there is another restaurant that is more to the user’s taste, the
service can’t recommend it, and so the total satisfaction rating of the drive
plan becomes lower.

For solving this problem, there is an approach in which a static user’s prefer-
ence is used to select POIs. But this approach still has a problem.

100 K. Cho et al.

– Since each POI is recommended according only to a user’s preference, dy-
namic situations of the user, such as hunger and sleepy, are not reflected in
a drive plan.

We solve these problems with a prediction of a user’s feature context. In our
proposed architecture, a drive planner simulates an itinerary and provides a pre-
dicted car’s location to a reactive context-aware framework, and recommended
POIs are passed from the framework to the planner. The planner creates a drive
plan by combining recommended POIs. A drive planner predicts a feature con-
text and evaluates a comprehensive satisfaction rating of drive plans to cover
the shortcomings of a reactive context-aware framework.

3 Ubiquitous Personal Agent

We have implemented our reactive context-aware framework, Ubiquitous Per-
sonal Agent (UPA) [9]. UPA has the following features.

– UPA abstracts data acquired from a ubiquitous sensor network with using
context recognition rules.

– Service selection rules evaluate user’s context and output appropriate con-
tents and services for the user in that context.

3.1 Entity, Context and Module

UPA works as follows:

1. Data from various sensor devices are stored in UPA. UPA handle these data
with a structure called ”Entity”. Entity includes data such as a current date
and a user’s location.

2. ”Context” is derived from entity by context recognition rules. Context in-
cludes data such as a user’s preference and neighboring POIs. Examples of
context recognition rules are presented in Section 4.

3. ”Module” is derived from context by service selection rules. Module rep-
resents services that should be provided to the user in a certain context.
Examples of service selection rules and modules are presented in Section 4.

UPA handles entity, context and module with a structure called ’Node’. Node
is an architectural component in UPA and it contains a common data set for
handling entity, context and module. Rules in UPA fire when a specific combi-
nation of nodes is stored in UPA, and output other nodes. Each node and each
rule has a weight that represents its importance. A weight of the output node is
calculated with weights of rules and nodes that derive the output node.

3.2 Feedback

Each node has information from which rule it is derived. So if a context or a
module is considered to be inadequate by a user, UPA can reduce weights of
rules derived for that context or module. It works as a feedback to the system
to reduce a probability of providing inadequate information to the user.

Implementation of Telematics Services 101

Fig. 1. @Navi Architecture

4 Creating Drive Plans with UPA

In this section, we describe our telematics service @Navi that creates drive plans
for a leisure trip with UPA. @Navi recognizes a user’s preference and context
with rules in UPA, and recommends stop-off POIs. @Navi has a drive planner
that covers the shortcomings of reactive action of UPA, obtaining the measure
of recommended POIs through the viewpoint that the whole drive plan is ap-
propriate for the user.

4.1 Architecture of @Navi

Fig. 1 shows the outline of the architecture of @ Navi. A drive planner provides
time and location to UPA as entities. UPA derives contexts and modules from
entities. A drive planner receives modules that contain information about rec-
ommended POIs and creates several plans with combinations of these POIs. The
user can select and modify the proposed drive plans. Interactions with the user
in selecting plans and making changes to stop-off POIs are used as feedback to
rules in UPA.

4.2 Using @Navi

In this section, we show how @Navi is used to create a drive plan.

1. Inputting user’s preference with user cards
User cards are data that contains the user’s preference and an objective of a
drive. For example, user cards have a description like ’A taste for Japanese

102 K. Cho et al.

food”, ”Outdoors type”, ”Sightseeing” and ”Travel deluxe”. Each card is
related to the context node in UPA, and when the card is selected by the
user, related context nodes are set to UPA before a drive planner starts
creating drive plans.

2. Showing drive plans
After setting user cards, the starting point, the destination, the starting time
and the arrival time, @Navi create several plans in consideration of these
constraints. Created drive plans are shown on GUI. The user can select a
drive plan and see the detail of each POI that includes the outline of that
POI and the estimated context of when the user reaches that POI.

3. Making changes to plans
The user can select a plan and make changes to POIs in a drive plan. A
POI details screen has a button to insert or change the POI. When the user
inserts or modifies POIs, @Navi proposes alternative POIs in the drive plan
graph. The details of the drive plan graph are described below. Interaction
between user and @Navi to modify plans is used as feedback to the system.
If the user deletes or changes a POI, weights of rules deriving that POI
decrease. If the use selects a POI as an alternative, weights of rules deriving
that POI and POIs in the same category increase.

Designing UPA nodes and rules for @Navi. In this section, we describe
the details of nodes and rules for @Navi.

Designing nodes. Nodes are classified into entity, context and module. Table
1 shows types of nodes used in @Navi. A node is defined by a name and types
of attributes. These nodes have a same weight when they are entered into UPA.
All POIs are input as entities to UPA, and these contain genre information as
an attribute. By genre information, POIs are classified into 300 categories.

Designing rules. Rules are classified into context recognition rules and service
selection rules.

– Context recognition rule
A context recognition rule derives context such as neighboring POI, time
zone, season and hunger. A neighboring POI is derived from entities of a
current location, information of POI and threshold distance. Time zone,
season and hunger are derived from entities of a current time.

– Service selection rule
A service selection rule recommends POI according to the user’s context.
Genre information described in attributes of POI is used for POI recom-
mendation. Service selection rules are created from the mapping table from
the user’s context to the POI’s genre.

Example of a context recognition rule. Fig. 2 shows an example of a
context recognition rule. UPA provides a feature to define enumeration rules.
Since each enumerated rule can be assigned a different weight, enumeration rules

Implementation of Telematics Services 103

Table 1. Nodes Used in @Navi

Entity
Dynamic Current Location(Coordinate)

Current Time(Date)
Threshold for Neighboring POI
(NearbyThreshold)
Stop-off POI(VisitingPoint)

Static POI(POI)
Context
Situation Neighboring POI(NearbyPOI)
(Spatial)
Situation Time Zone(Time), Season(TimeOfYear)
(Temporal)
Situation Hunger(Hungry), Fatigue(Thirsty)
(Physiological) Sleepy(Sleepy), Urinary(Urinary)
Situation Searching POI(SearchedPOI)
(Activity) Visiting POI(VisitingPoint)
Preference Gender(UserGender)

Generation(UserGeneration)
Passenger(Passenger)
Estimated cost(Budget)
Food Preference(FoodPrefrence)
Outdoors or Indoors type(ActivityType)

Objective Objective(Purpose)
Module

Recommended POI(RecommendPOI)

can define time-varying weights by defining multiple rules corresponding to hours
of a current time entity and genre-varying weight with rules corresponding to
the genre of a POI entity.

– Defining enumeration rule
An enumeration rule is defined with an identifier and a set of values. Each
expanded rule can has a different weight. In Fig. 2, the enumeration rule has
an identifier ’Hour’ and a set of values from 0 to 23. The expanded rules that
have a value 7, 12, and 19 have a weight of 2.5, rules that have a value 6, 8,
11, 13, 15, 18 and 20 have a weight of 1.5, rules that have a value 9, 10, 14,
16, 17 have a weight of 0.5, and other rules have a weight of 0.1. These rules
emulated the hunger context of each hour.

– Defining fire condition
The fire condition is defined with output context name, input entity name
and condition description. In Fig. 2, huger context is derived from Date and
VisitingPoint entity.

Example of a service selection rule. Fig. 3 shows an example of a service
selection rule. By this rule, RecommendPOI module is derived from user’s food

104 K. Cho et al.

rule DeriveHungryState {
// Defining enumeration rule
Hour = [0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16
17 18 19 20 21 22 23];

// Defining weights
weights[Hour hour] {

[*] = 0.1;
[9,10,14,16,17] = 0.5 ;
[6,8,11,13,15,18,20] = 1.5 ;
[7,12,19] = 2.5; }

// Defining fire condition
Hungry hungry
(Date[maxCardinality=1] date,
VisitingPoint[maxCardinality=1]
visitingPoint*[large_class==
"eating"]) {
--- snip ---

Fig. 2. Example of a Context Recognition Rule

preference and neighboring POIs. RecommendPOI module contains information
about the name and the ID of the recommended POI.

4.3 Drive Planner

A drive planner simulates an itinerary of drive plans from the starting point to
the destination, and provides predicted situation such as a location and time to
UPA. UPA provides recommended POIs to a drive planner, and a drive planner
sorts out an appropriate POI and creates a drive plan within constraints of
an arrival time and a geographical route. To create variations in plans, a drive
planner uses a data structure called a drive plan graph.

Drive plan graph. A drive plan graph is a data structure to manage drive
plans from the starting point to the destination. A drive plan graph has nodes
that represent each stop-off POI. A path from the node of the starting point to
the node of the destination represents a drive plan. A drive plan graph is created
as follows (Fig. 4).

1. Creating an initial drive plan graph that contains only the starting point
and the destination, and searching the geographical route.

2. Simulating a drive along the route and providing a location and time to UPA
at intervals. UPA recommends POIs to a drive planner with a Recommend-
POI module.

3. Connecting n POIs next to the node of the starting point as stop-off POIs.
These POIs are selected from recommended POIs ranked with weights of
corresponding UPA modules.

4. Searching routes from each stop-off POI to the destination.

Implementation of Telematics Services 105

rule DeriveRecommendPOI {
--- snip ---

weights[FoodGenre foodGenre,
POIClass poiClass] {

[* *] = 0.1 ;
--- snip ---

["Japanese" "Curry", "Ramen"]
= 0.5; }

RecommendPOI recommendPoi
(NearbyPOI nearbyPoi,
FoodPreference foodPref) {
if(nearbyPoi.class == poiClass &&
foodPref.type == foodGenre) {
recommendPoi.id = nearbyPoi.id;
recommendPoi.name = nearbyPoi.name;

--- snip ---

Fig. 3. Example of a Service Selection Rule

Fig. 4. Creating a Drive Plan Graph

5. Repeating 2 - 4 as long as a user can reach the destination before the arrival
time with the recommended drive plan. We assume that the user stays for
an hour at each POI.

Drive plans are selected from the drive plan graph as follows.

1. Adding all weights of POIs for each path from the starting point to the des-
tination. Weights of POIs correspond to weights of modules recommending
that POI. Total of weights is used as the evaluated value for the drive plan.

2. Selecting the drive plan that has the highest value.
3. To minimize the inclusion of duplicate POIs between plans, if there are POIs

in a drive plan graph that are included in the selected plan, weights of these
POIs are reduced to half.

4. Repeating the above operations until a predetermined number of plans is
selected.

106 K. Cho et al.

5 Evaluation

In this section, we evaluate if a drive planner can create better plans for a user
than in case of only using a reactive context-aware framework. Also, we evaluate
if the feedback from the user’s operations can improve created plans.

5.1 Creating Better Plans by Using a Planner

To evaluate if the proposed architecture using a combination of a drive planner
and a reactive context-aware framework can create better plans than in case
of only using a reactive context-aware framework, we experimented with two
methods of creating a drive plan with UPA, and checked an evaluated value of
each method.

– Planning method: Creating drive plans with a drive planner and UPA. UPA
uses the user’s feature information predicted by a drive planner. (the method
proposed in this paper)

– Reactive method: Stopping at POIs recommended by UPA one after another.
UPA uses only the user’s current location.

In the reactive method, the system inputs a current location and a current
time as an entity to UPA, and stops at the POI that has the highest weight.

An evaluated value of the drive plan is calculated by adding the weight value
of each stop-off POI. The weight value of POI is the same as that of its cor-
responding module. Each method creates a plan that can reach the destination
before the arrival time. For each method, we created drive plans with the settings
in Table 2 with 4929 POIs.

Fig. 5 shows evaluated values of plans. In most plans, the planning method
got a higher value than the reactive method. In drive plans 2 and 8, the reactive
method got a higher value, but it was attributable to the larger number of POIs
contained in a plan. Fig. 6 shows an average calculated by dividing an evaluated
value by the number of POIs in a plan. This figure shows the planning method
got a higher value even in plans 2 and 8. We evaluated another 20 plans. Table
3 shows the average value of each method with 30 trials. Table 4 shows P values
in a Wilcoxon matched-pairs signed-rank test. P values show that there are
statistically significant differences between two methods with significant level
α = 0.01. So the result shows that the planning method can create the plan that
has a higher value and is suitable for the user.

5.2 Improvement Through Feedback

@Navi uses interactions with user as feedback to UPA. In this section, we evalu-
ate that @Navi can make an improvement with feedback and create more appro-
priate plans. We use the user model to simulate the user’s behavior that changes
according to preference and context. The user model has a mapping table from
user’s context and genre of POI to the satisfaction rating of user, and evaluates
plans recommended from @Navi. The user model interacts with UI of @Navi,

Implementation of Telematics Services 107

Table 2. Settings of Evaluated Drive Plans

Date Starting - Destination Time User Card
1 2004/8/4 Sontoku Memorial 12:00 Alone, Japanese food, Refresh, Deluxe

Ashinoko Lake 18:00
2 2004/10/10 Hakone Museum 9:00 Asian food, Sightseeing

Kanakawa Suisan 15:00
3 2004/11/18 Sontoku Memorial 12:00 Alone, Japanese food, Refresh, Deluxe

Ashinoko Lake 18:00
4 2004/11/18 Odawara Castle Park 9:00 Family vacations, Experience

Ashinoko Park 15:00
5 2004/12/20 Tohi Castle 13:00 Reflesh, With friends, Outdoors type

Hakuundo Teahouse 20:00
6 2005/1/1 Gotenba Sports Guarden 10:00 Shopping, Italian food, Chinese food

Kamakura Station 17:00
7 2005/4/5 Hakone Kougen Hotel 9:00 With lover, Youth, Indoors type

Dynacity West 14:00
8 2005/6/21 Kodomo Playground 12:00 Female, Sight scenery, With children

3D Dinosaur World 18:00
9 2005/7/7 Hakone Sekisho 10:00 Economy, Sightseeing, Youth

Katufukuzi Temple 16:00
10 2005/8/10 Ohkurayama Memorial 14:00 Adult, Chinese food

Odawarazyou Muse 20:00

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Drive Plan

E
v
a
lu
a
t
e
d
 V
a
lu
e

Planning

Reactive

Fig. 5. Evaluated Values of Plans

by selecting a plan and modifying POIs according to the evaluated value of each
POI. Table 5 shows a setting of the evaluation. In this evaluation, we set the
user card of ’A taste for Japanese food’, ’male’, and ’adult’. For the user model,
we set the preference of ’A taste for Japanese food’, ’dislike foreign food’ and

108 K. Cho et al.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Drive Plan

E
v
a
lu
a
t
e
d
 V
a
lu
e
 p
e
r
 P
O
I

Planning

Reactive

Fig. 6. Evaluated Values of POIs

Table 3. Average of the Evaluated Values

Value of Plans Value of POIs
Plannning 11.54 2.49
Reactive 10.27 2.25

Table 4. P values in a Wilcoxon matched-pairs signed-rank test

Value of Plans Value of POIs
P value 0.00028 0.00001

-5

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

number of executions

ev
al

ua
te

d
va

lu
e

of
 a

 p
la

n

-1

0

1

2

3

4

5

6

nu
m

be
r o

f P
O

Is
/n

um
be

r o
f P

O
I

m
od

ifi
ca

tio
ns

number of POIs in a plan
number of POI modifications
maximum evaluated value of recommended plans
evaluated value after modification

Fig. 7. Evaluated Value and Number of Modifications

Implementation of Telematics Services 109

Table 5. Settings of Evaluation of Feedback

User Card Japanese food, Male, Adult
Date 2004/2/1
Starting Odawarazyo Castle 11:00
Destination Hakone Prince Hotel 18:00
User Model A taste for Japanese food,

Dislike foreign food and hot spring

’dislike hot springs’. Since some preferences are more detailed descriptions than
the user card, we can check if the system can suit the user’s detailed preference
by using feedback. Fig. 7 shows a result of 15 trial runs of creating plans and
simulating a drive. The horizontal axis shows the number of executions and the
vertical axis shows the evaluated value of a plan and the number of POI modifi-
cations. This result shows the evaluated value is improved by feedback and the
number of modifications decreases. So by using feedback, @Navi can adapt to
the user model.

6 Related Works

For creating a context-aware application in the ubiquitous environment, perva-
sive middleware is proposed [4]. Context Toolkit [7] is one of these middleware
that provides the widget for hiding the complexity of sensors and providing a
common interface to the application and the interpreter for abstraction of con-
text. The developer should implement an algorithm in the interpreter to abstract
context. In contrast, UPA provides the framework of rule-based abstraction. SO-
CAM [12] is another middleware that provides a context model based on ontology
and the context interpreter that abstracts the context. The context interpreter
has a rule-based reasoning engine like UPA, but rules in SOCAM do not provide
a function to handle the importance of rules that is realized with a weight of
rule in UPA. SOCAM is used with the telematics service based on OSGi [5].
TRM [3] is another middleware for developing a context-aware telematics ser-
vice. TRM emphasizes finding and gathering information in a wireless network.
TRM provides a language called iQL [10] to abstract data. iQL also describes a
function that outputs a abstracted data for a specific input in the same manner
as the context recognition rules in UPA, but that function can’t handle the feed-
back from the user. The importance of precision of the user’s context has been
discussed regarding the context-aware application of wireless mobile devices [8].
The application to support travelers is considered for instance, to explain the
advantage of use of context precision to improve the response time. In this paper,
we also discussed about the context precision, but our main purpose is to create
a drive plan that can adapt to the user.

110 K. Cho et al.

7 Conclusions

We developed a drive plan recommendation system @Navi with the context-
aware application framework UPA. We evaluated that a combination of a reactive
context-aware application framework and a drive planner can create appropriate
drive plans by using the predicted user’s situation. We intend to implement
automatic generation of rules based on integration of many users’ activities.

References

1. G-book http://g-book.com/pc/.
2. internavi premium club http://premium-club.jp/pr/.
3. C. Bisdikian, I. Boamah, P. Castro, A. Misra, J. Rubas, N. Villoutreix, D. Yeh.

Intelligent pervasive middleware for context-based and localized telematics services.
Proceedings of the second international workshop on Mobile commerce, ACM Press,
pages 15–24, 2002.

4. D. Saha, A. Mukherjee. Pervasive computing: A paradigm for the 21st century.
IEEE Computer, IEEE Computer Society Press, pages 25–31, 2003.

5. Daqing Zhang, Xiaohang Wang, et al. Osgi based service infrastructure for context
aware automotive telematics. IEEE Vehicular Technology Conference (VTC Spring
2004), 2004.

6. Dey A.K., Abowd G.D. Toward a better understanding of context and context-
awareness. GVU Technical Report GIT-GVU-99-22, College of Computing, Georgia
Institute of Technology, 1999.

7. Dey A.K., Abowd G.D. The context toolkit: Aiding the development of context-
aware applications. Workshop on Software Engineering for Wearable and Pervasive
Computing , Limerick, Ireland, June 2000.

8. Brown P.J. Jones G.J.F. Exploiting contextual change in context-aware retrieval.
Proceedings of the 17th ACM Symposium on Applied Computing (SAC 2002),
Madrid, ACM Press, New York, pages 650–656, 2002.

9. Masanori Hattori, Kenta Cho, Akihiko Ohsuga, Masao Isshiki, Shinichi Honiden.
Context-aware agent platform in ubiquitous environments and its verification tests.
First IEEE International Conference on Pervasive Computing and Communica-
tions (PerCom’03), 2003.

10. Norman H. Cohen, Hui Lei, Paul Castro, John S. Davis II, Apratim Purakayastha.
Composing pervasive data using iql. Fourth IEEE Workshop on Mobile Computing
Systems and Applications, 2002.

11. Schilit B.N., Adams N.I. and Want R. Context-aware computing applications. Pro-
ceedings of the Workshop on Mobile Computing Systems and Applications. IEEE
Computer Society, Santa Cruz, CA, pages 85–90, 1994.

12. Tao Gu, H. K. Pung, et al. A middleware for context aware mobile services. IEEE
Vehicular Technology Conference (VTC Spring 2004), 2004.

	Introduction
	Applying Context-Aware Application to Telematics Service
	Ubiquitous Personal Agent
	Entity, Context and Module
	Feedback

	Creating Drive Plans with UPA
	Architecture of @Navi
	Using @Navi
	Drive Planner

	Evaluation
	Creating Better Plans by Using a Planner
	Improvement Through Feedback

	Related Works
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

