
H.Y. Youn, M. Kim, and H. Morikawa (Eds.): UCS 2006, LNCS 4239, pp. 286 – 299, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Scenario-Based Programming for Ubiquitous
Applications

Eun-Sun Cho1,*, Kang-Woo Lee2, Min-Young Kim2, and Hyun Kim2

1 Dept. of Computer Science & Engineering, Chungnam National University
220 Gung-dong Yusong-gu, Daejeon, Korea, 305-764

eschough@cnu.ac.kr
2 Electronic and Telecommunications Research Institute,
161 Kajong-dong Yusong-gu, Daejon, Korea, 305-350

{kwlee, hkim}@etri.re.kr, tristan88@hanmail.net

Abstract. Ubiquitous applications usually involve highly interactive context
data management. Traditional general-purpose programming languages are not
sufficient for use in this domain, as they do not have the capability to manage
such data effectively. We have developed a scenario-based programming lan-
guage that we call ‘PLUE (Programming Language for Ubiquitous Environ-
ment)’, which is a Java-based prototyping language for ubiquitous application
development. PLUE supports ECA (event-condition-action) rules and finite
state automata-based (FSA-based) interactive responses to dynamic situations.
In addition, PLUE programmers are able to manage heterogeneous data with a
uniform view of path expressions. We have implemented PLUE on top of
CAMUS (Context-Aware Middleware for Ubiquitous Robotic Companion Sys-
tem), a framework for context-aware applications that was originally developed
for network-based robots.

1 Introduction

Ubiquitous computing systems must handle context data from various sources, includ-
ing mobile devices and sensors. These systems usually have services that are widely
distributed over networks and devices. However, they must also be highly interactive
with their surrounding environments.

Since they run on top of such systems, ubiquitous applications usually consist of a
number of complicated commands that handle various kinds of context data. Well-
designed event handling is necessary to cope with changing situations [1, 2]. Trans-
forming scenarios that are conceived by designers into programs in C or Java takes far
too long using currently available tools.

This paper describes our new language, PLUE (A Programming Language for
Ubiquitous Environments), a prototyping language for ubiquitous applications. PLUE
was developed in accordance with the following preliminary attributes:

* This work was supported in part by MIC & IITA through IT Leading R&D Support Project.

 Scenario-Based Programming for Ubiquitous Applications 287

• Handy structures for describing situation flows: a designer must always visualize
the scenario of a ubiquitous service before he can proceed with the development of
applications. As an example of such a scenario, consider a speaker giving a presen-
tation at a conference. The room lights would automatically dim at the beginning
and a slide show would start once the speaker has begun his talk. This will happen
repeatedly for each speaker, but only until the last speaker has finished. Therefore,
the whole task forms a sequence of actions with patterns and can be represented as
a kind of finite state automaton. PLUE supports the description of the flow of such
scenarios through its state transition facilities.

• Transparent context management: since context data usually forms a tree in a ubiq-
uitous environment, PLUE provides path expressions for context access. The path
traversal is transparent using the usual dot notation of member access in object-
oriented languages. It may involve automatic context data matching provided by
any third-party services. To manage context data from diverse sources uniformly,
we have defined a minimal data model called the ‘UDM (Universal Data Model)’.
PLUE offers path expressions for UDM data access.

• Prompt responsiveness: prompt reaction to their surrounding environments is im-
portant for ubiquitous applications. PLUE allows programmers to generate ECA
rules (event-condition-action) in order to encode the necessary actions in a straight-
forward manner.

• User-friendly language facilities: we assume that most programmers do not want to
waste time learning a new language. To achieve user friendliness, PLUE is based
on Java, a popular language. A PLUE program has very little dependence on its
underlying system because the transparent distributed object invocation hides the
complex system architecture. With simple event-handling features, interactions be-
tween the dynamic situations can be described easily.

Our current version of PLUE is implemented on top of CAMUS (Context-Aware
Middleware for URC System) [3], a framework for context-awareness applications. It
was originally developed for a network-based robot infra-system called ‘URC (Ubiq-
uitous Robotic Companion)’ that requires software infrastructure to enhance the
intelligence and context-awareness of network-based robots. CAMUS has been suc-
cessfully deployed in ‘Ubiquitous Dream Hall’ [4] as a middleware to demonstrate
future ubiquitous cities.

Fig. 1. Ubiquitous Dream Hall: the living room of u-Home (left) with a home-care robot (mid-
dle), a girl kicking imaginary balls at u-Street (right)

288 E.-S. Cho et al.

Sensors

Sensor Framework
• Sensor data interpretation
• Sensor data aggregation

Service Framework
• Legacy service invocation
• Semantic service discovery

Actuators

Task Management

• Task description (PLUE)
• ECA rule execution

Real/Cyber World

Sobot
• User Interface
• User Profiling

Rule
Repository

Context
DB

Context Management
• Context modeling (UDM)
• Context provision

Sensors

Sensor Framework
• Sensor data interpretation
• Sensor data aggregation

Sensor Framework
• Sensor data interpretation
• Sensor data aggregation

Service Framework
• Legacy service invocation
• Semantic service discovery

Actuators

Task Management

• Task description (PLUE)
• ECA rule execution

Real/Cyber World

Sobot
• User Interface
• User Profiling

Sobot
• User Interface
• User Profiling

Rule
Repository

Context
DB

Context Management
• Context modeling (UDM)
• Context provision

Fig. 2. CAMUS Architecture

Fig. 2 shows an abstract architecture of CAMUS. CAMUS receives the informa-
tion from sensors installed in the real world. The information is delivered in the form
of events that are in turn fed into the ‘Sensor Framework’. The Sensor Framework
gathers the events and interprets/aggregates them to generate high-level context in-
formation that is then sent to the ‘Context Manager’ in UDM form. Any change of
context information triggers the Context Manager to transfer corresponding events to
the ‘Task Manager’. When an event is raised, the Task Manager searches for task
rules that are interested in the event and invokes the rule action if it satisfies the con-
dition. While performing an action, the task invokes services that make changes on
the real/cyber world.

In the next section, we present a brief survey of related work. Section 3 shows how
to manage context data in PLUE programs. Section 4 introduces the task description
mechanism in PLUE, with ECA rules and the state transition mechanism. Section 5
shows the underlying architecture of PLUE. Finally, section 6 includes a discussion of
our work and our conclusions.

2 Related Works

Compared to other topics in ubiquitous systems, the design of new tools and lan-
guages that can be used to help develop programs have not been actively pursued by
the research community. In this section, we will skip RMI (remote method invoca-
tion)[5], XPath [6], and ECA (event condition action) rules [7]. While they are defi-
nitely related to our research, they are adequately described elsewhere.

In RCSM [8], and Salsa [9], script languages based on ECA rules are used to
describe the behavior of agents. The behavior of an agent consists of a set of ECA
rules that permit prompt responses to context changes. Such languages are useful
for non-centralized agent systems, where task execution must necessarily consist of
both communication between agents and the execution of the agents. However, this

 Scenario-Based Programming for Ubiquitous Applications 289

approach is too platform dependent, since script languages are too weak to describe
sizable programs in other than an autonomous agent platform. This is especially true
in centralized controlled systems that require the description of entire tasks.

COP (Context Oriented Programming) [10] from the University of Queensland is
based on ambient calculus [11]. It is widely known for its theoretically appealing
context management mechanism using dynamic scoping variables for context data. A
COP program executes self-adjustable behaviors as the current context is changing,
while also focusing on context matching and dynamic function binding. Despite the
excellent manner in which it can manipulate context and context-dependent code
fragments, COP does not concentrate on the task description. It also lacks the capabil-
ity to handle scenarios and events.

One world [12], one of the famous pervasive computing systems developed at the
University of Washington, provides a programming model with nested ‘environ-
ments’ each of which contains ‘components’ and ‘tuples’. Applications are composed
from components that exchange events. The flow of control for the application con-
sists of several instances of event handling. Remote event passing, operation migra-
tion, object sharing, and querying are also supported, all of which can be designed
using Java API’s without transparency. This technique was founded on the premise
that since ubiquitous computing has so many context changes, it would be dangerous
for them to be hidden from programmers. Given this insight, programmers would then
be able to handle them correctly, with their own scenarios. However, this is not neces-
sarily true since it is likely that such detailed implementation and maintenance
information would distract programmers from the task at hand. This well-known
proposition has been proven true several times in the past in the field of software
engineering. In addition, the language provided by one world is not suitable for proto-
typing.

‘Olympus [13]’, a high-level programming model suggested by University of Illi-
nois at Urbana Champaign, allows a developer to specify entities and operations in
ubiquitous computing environments at abstract level. Despites its entity abstraction
facilities and excellent service discovery scheme, Olympus lacks support for task
description based on the flow of scenarios.

3 Context Data Access

3.1 Universal Data Model

Since context awareness is one of the key characteristics of ubiquitous computing,
several studies examined the management of context information in ubiquitous appli-
cations. To date, however, no satisfactory context data model for heterogeneous data
management has been found. Ontology represented in logic would be our choice, but
is hardly considered practical so far.

We have defined a new simple context data model for context information that we
have called UDM (Universal Data Model). It is similar to OEM [14], a semi-
structured database model, in that context information is denoted as an edge-labeled
graph. Although we developed UDM for PLUE, it can be used for other ubiquitous
programming environments. Its main concepts are described below.

290 E.-S. Cho et al.

Fig. 3. Context data for the SmartRoom Application

− Nodes: Each node in UDM represents an entity, such as a person, place, task, ser-
vice, and so on.

− Associations: An association is a labeled directed edge. It presents the relationship
between nodes. Some associations change with time. In Fig. 3, the location of a
person varies whenever he/she moves to a different place.

Fig.3 is an example of a simple UDM model that shows that “29-year-old Julie is
in a kitchen that has a light fixture”. As you can see, UDM provides a very easy way
to describe the context.

PLUE provides facilities to access context data represented in UDM. PLUE pro-
grams can handle any data from various sources in a uniform format. ‘UDM bindings’
provide a transparent view of the context data from heterogeneous data sources. When
a new data source is added, a corresponding UDM binding should also be supported
to map from the native data into a UDM view and vice versa.

Universal Data Model

UDM
Bindig1

Data
Source1

UDM
BindingN

PLUE
Program

Data
SourceN

Universal Data Model

UDM
Bindig1

Data
Source1

Data
Source1

UDM
BindingN

PLUE
Program

Data
SourceN

Data
SourceN

Fig. 4. Context data integration using UDM bindings

Fig. 4 shows the data flow among data sources, UDM bindings, and PLUE pro-
grams. Our current version of PLUE provides built-in bindings for XML documents,
Unix/Linux/Windows file systems, JavaBeans, and annotated plain Java objects.

3.2 Path Expressions

PLUE supports path expressions to retrieve and modify the context data modeled in
UDM. A path expression is a sequence of association names starting from a node. By
evaluating a path expression, we obtain a set of nodes that are reached through the

 Scenario-Based Programming for Ubiquitous Applications 291

sequence of associations beginning at the starting node. In PLUE, the starting node is
denoted by the ‘$’ symbol. It points to the root context node for a PLUE application.
For instance, in Fig. 3, the path expression “$.owner.location.name” points to the
valued node whose value is “Kitchen”. The meaning of the expression is “the name of
the place where the owner is currently located.”

Using path expressions, a PLUE application is able to reach all the necessary con-
text information, such as the name of the person who executes this application, the
address of the owner’s location, and other application-specific data.

PLUE supports a set of sophisticated path expressions to query the interesting data.
These expressions are highly expressive, but they are still simple and easy to describe.
We categorize them as shown in the following examples:

Basic path expressions
A UDM node may have more than one departing edge with the same tag. A path ex-
pression will return multiple values in that case.

• $.owner.location: is the single value for the location
• $.owner.location.residents: is a set of multiple values when multiple residents are

present in a location.
• $.owner.location.’temporal residents during a month’.id: is the id of the multiple

temporal residents that are present in a location. (a quoted string in an association
name is useful for a long sentence with spaces)

Selective association traversal
PLUE assigns orders sequentially for departure edges with the same tag that leave
from a single UDM node. Specifically, the ordinals or the ranges of ordinal numbers
can confine a multi-valued path expression. The following examples assume a multi-
valued association ‘children’ from the location of the owner.

• $.owner.location.children[2]: Of the multiple associations tagged with ‘children’,
the second one is selected.

• $.owner.location.children[2-4]: Of the multiple associations tagged with ‘chil-
dren’, the second, third, and fourth are selected.

• $.owner.location.children[4-]: Of the multiple associations tagged with ‘children’,
the ones whose ordinal numbers are larger than four are selected.

• $.owner.location.children[1,4-5,9]: Of the multiple associations tagged with ‘chil-
dren’, the ones whose ordinal numbers are 1, 4, 5, and 9 are selected.

Conditional path traversal
Selection on multiple associations with a shared name is done based on matching
values, as is done in database queries. When a comparison is made between multiple
values and a scalar or between two sets of multiple values, the condition will be true
for at least one case.

• $.owner.location.residents[.name==‘Tom’]: retrieves people who are at the same
place as the owner and whose names are ‘Tom’.

• $.owner.location.residents[.name==‘Tom’ && .age==‘10]: retrieves 10-year-old
Tom from among the residents who are at the same place as the owner.

292 E.-S. Cho et al.

Wildcards
Traversing an anonymous edge is denoted by a wildcard (‘*’) in a path expression.
‘**’ denotes any number of anonymous edges. This enables edge selection even when
the programmer does not know the exact path. ‘%’ is used for a wild card character in
an association name.

• $.owner.location.*.id: the nodes that are reachable from $.owner.some_anony-
mous_link.id.

• $.owner.**.id: the nodes of the set of ‘id’ links that are reachable from $.owner
• $.owner.location.pa%.id: the nodes of the set of ‘id’ links that are reachable from

$.owner.location and links whose names are prefixed with “pa”.

Built-in functions
Our current version of PLUE supports two built-in functions that transform multiple
values to a single value.

• exists($.owner.location.parent): true if the cardinality of $.owner.location.parent is
not 0.

• count($.owner.location.parent): the cardinality of $.owner.location.parent

4 Task Description

4.1 State Transitions

Ubiquitous computing applications, like other user-centric services, are usually
designed based on preconceived corresponding scenarios. For instance, a smart con-
ference room would be built for a scenario where conferences are managed automati-
cally. The flow of an example scenario is as shown in Fig. 5.

In PLUE programs, all of the work that must be done for a scenario is called a
‘task’. For programmers, a PLUE task is much like a Java class with methods, in-
stance variables, and inner classes. Since a task forms a sequence of actions with
patterns that are a kind of finite state automaton, a task definition is augmented with a
flow description using ‘states’ and ‘transitions’.

Started WaitForTalker

TalkingFinished
entry: ……
exit: ……
assert: ……
on-event:……

event-condition/
action

initial state

final state

Fig. 5. The flow of a smart conference room scenario

 Scenario-Based Programming for Ubiquitous Applications 293

A ‘state’ has a duration for which some property in the context must remain con-
stant. A PLUE state consists of four parts – the entry, the exit, asserts, and on-event-
rules. The entry part initializes the state. The variables used in the state are initialized
and resources are prepared. Assert phrases are conditions that are true for the duration
of the current state of the task.

On-event-rule phrases describe the actions to be taken when specific events occur.
The exit part describes the work that must be done before the task transits to other
states. The keywords ‘initial’ and ‘final’ are attached to the initial and final states,
respectively. Currently, we have implemented only one state for each. The entry and
exit phrases can be omitted if no action needs to be specified while entering/exiting
the state. A state can have multiple asserts and on-event rules.

Fig. 6 depicts a code fragment of a PLUE program, showing that the state ‘Talk-
ing’ describes a situation where a speaker is giving a talk in a conference. The entry
part of this state prepares the presentation foils for him on the screen in the conference
room. If any transition occurs, then the exit phrase sets the current speaker to the next
speaker. The assert phrase ensures that the platform light is turned off while the
speaker is talking.

Fig. 6. An example of a state definition: state ‘Talking’

If the speaker says “next”, then the next slide is shown. Note that a task writer can
assign event variables to their target event names. These variables can then be used in
on-event rules. In the example, the event variable “e” is bound to an event named
“VoiceReceived”. PLUE supports seven built-in event types: TagEntered, TagLeft,
UserEntered, UserLeft, SpeechReceived, PropertyChanged, and TimeExpired. How-
ever, task writers could add any new event types that would be necessary to develop
their tasks. The ‘condition’ clause expresses the condition for which a rule is invoked.
Path expressions, the event variable, and the usual Java comparators can appear as
well. The braced body denotes the action part of the on-event rule.

A ‘transition’ describes the actions taken during the transition from the current
state into the next state when the event satisfying the corresponding conditions occurs.
The transition consists of a from-state, a to-state, the ‘on-event/condition’, and the
action. The ‘on-event /condition’ includes the transition condition, as well as what
must be executed during the transition. This is similar to the on-event rules for a state.

state Talking{
 entry
 {$.platform.slideshow.slide_path=$.current.material;}
 exit { $.current=$.current.next; }
 assert $.platform.light==false;
 on event VoiceReceived(e)
 condition(e.speech =='next')
 { $.platform.slideshow.next();}
}

294 E.-S. Cho et al.

transition WaitForTalker -> Talking{
on event VoiceReceived(e)
 condition (e.speech=='Start presentation'){
 $.current = $.conference.first;
 $.room.tts.speak(“Start”);
}

}

Fig. 7. An example of a transition definition: from ‘WaitForTalker’ to ‘Talking’

Fig. 7 describes the transition from the WaitForTalker state to the Talking state. If
the chairman says “Start presentation”, then the data for the first speaker is prepared
and a TTS (Text-To-Speech) system says “Start” to those present while the transition
is made.

A PLUE task is modularized into states and their transitions. If an event occurs in
the current state and it satisfies the condition of any transition, then the current state is
changed to the next state in the transition. Since massive events and fluctuating situa-
tions in ubiquitous environments can be directly modeled in PLUE, it is easier for the
programmers to write and maintain application programs for ubiquitous computing.

Fig. 8 depicts a part of a task with two states and a transition. ‘Rule-based pro-
gramming’ for proactive services in context-aware applications is achieved by using
on-event rules and asserts in states and transitions in PLUE. On-event rules and tran-
sitions are only invoked when the required events are received. The actions of assert
phrases are invoked when the required conditions occur. Path expressions are used
extensively to express such ECA rules and asserts.

on event
conditionentry exit

statestate

on event
condition

assert

entry exit

statestate

on event
condition

asserttransitiontransition

Fig. 8. Transition of states while a task is running

4.2 Context Management

Context information gained from path expressions is manipulated extensively in the
entry/exit phrases and rule descriptions that are contained in a task definition. Such
information is usually calculated with other values and modified by assignment in a
C-like program. In addition, it is more difficult to handle a path expression that re-
turns a multi-value like a set, a list, and a bag. PLUE supports tools that make it easier
to process path expressions.

 Scenario-Based Programming for Ubiquitous Applications 295

• <path expression> <op> <scalar value>
• When <path expression> results in value nodes, PLUE allows basic operations to

be conducted on the path expression. Our current version of PLUE supports +,-,*,
and / with integer values, and + for string concatenation. If <path expression> has
multiple values, each value will undergo an operation <op> with a <scalar
value> that will then be merged into the resulting set. These expressions, simple
path expressions, and values are collectively called ‘complex path expressions’.

• <path expression> = <complex path expression>
• When <path expression> results in a value node, it will update the value. If

<path expression> has multiple values, the right side should have multi-values.
All of the departing edges of the resulting nodes of <path expression> will be re-
placed with the new ones.

• <path expression> <= <complex expression>
• The result of <complex expression> will be added as departing edges to the re-

sulting nodes of <path expression>.
• <path expression> = nil
• PLUE supports a special keyword nil to clear the departing edges of the resulting

nodes of <path expression>.
• foreach (<var> = <path expression> : [<condition on the var>]) <action on

the var>
• The foreach statement can be used as an iterator for multiple edges. <var> is the

usual variable name that is prefixed with a ‘$’ for discrimination with other Java
variables. In the above example, since the location ‘e.location’ has more than one
light, the variable $light points to each element of the set of lights. If the light that is
referenced by the variable $light is off, (‘light.power==false’), then action will be
taken on it.

• foreach <var> in (select <path expression> from <path expression> where <path
expression> <op> <complex path expression>)

• Like object database query languages [15], a ‘select-from-where’ clause is pro-
vided in this special foreach-statement. Since a select-from-where statement can
also be expressed with the usual path expressions, programmers can choose not to
use this version of a foreach-statement.

This language extension is preprocessed into a plain Java program before compilation.
Every new feature is similar to a plain Java expression and would therefore be familiar to
Java programmers. The following example shows an on-event rule in PLUE that ensures
that at least one light is on whenever a person enters the kitchen. A variable for a path
expression (‘$light’) and a Java variable (‘flag’) both appear in the foreach statement.

on event UserEntered(e)
condition (e.platform.name == ‘Kitchen’) {
 boolean flag = false;
 foreach ($light=e.platform.light:
 $light == false && flag == false) {
 $light = true;

flag = true;
}

}

296 E.-S. Cho et al.

5 Implementation

A PLUE task program developed with a context data model is basically put into a
PLUE Preprocessor and translated into Java code and an XML file. Rules are trans-
lated into a code fragment that generates rule objects and registers them with the Rule
Processor. The path expressions are converted into a composition of appropriate API
calls to the underlying Path Expression Processor. As a result, any Java compiler can
compile the generated Java code into Java byte code.

The loader module creates a task object from the Java byte code and the XML file and
then it delivers it to the State Transition Machine dedicated to the task. Fig. 9 depicts the
processing flow of a PLUE task.

Processing ..

Javac

Java
Byte
Code

XML
description

PLUE
Source Code

Compile Time

PLUE-processingProcessing ..

Javac

Java
Byte
Code

XML
description

PLUE
Source Code

Compile Time

PLUE-processing

CAMUS

task

Loader
Module

Run Time

task

State Transition
Machine

CAMUS

task

Loader
Module

Run Time

task

State Transition
Machine

Fig. 9. PLUE architecture

Fig. 10. Translated XML document for the state ‘Talking’ (in part)

<?xml version="1.0" encoding="EUC-KR"?>
<task name= "ConfAssistant" >
 …
<state name = "Talking" >
 <entry name= "stTalking$entry" />
 <exit name= "stTalking$exit" />
 <assert name = "stTalking$assertECA1" />
 <rule name = "rule0" >
 <event name = "VoiceReceived" />
 <condition >
 <![CDATA[e.speech=='next']]>
 </condition >
 <action name = "stTalking$rule0Action" />
 </rule>
</state>
<transition from = "Talking" to = "WaitForTalker" >
 <rule name = "rule3" >
 <event name = "VoiceReceived" />
 <condition >
 <![CDATA[e.speech=='end']]>
 …
<action name ="trTalkingWaitForTalker$rule3Action"/>
</rule>
</transition>

 Scenario-Based Programming for Ubiquitous Applications 297

The PLUE Preprocessor, based on JavaCC 4.0 beta 1 [16] for parsing, inputs a
PLUE program and outputs new Java byte code and an XML file. Each tag in the
XML file corresponds to a PLUE language feature, such as ‘<task>’, ‘<state>’,
‘<entry>’, ‘<exit>’, and ‘<assert>’. The ‘name’ attribute of ‘<task>’ or ‘<state>’
represents the name of the task (or the state). The name attribute of ‘<entry>’,
‘<exit>’, ‘<assert>’, or ‘<action>’ is for the method name in the Java byte code that
describes the corresponding behaviour. Fig. 10 is an example of the XML file that is
generated for the state ‘Talking’ that was introduced above.

At run time, the Loader Module registers the states and transitions of the task with
the State Transition Machine for the task. The State Transition Machine executes the
entry phrases of the initial state of the task and runs the state transition machine until
it encounters the exit phrase of the final state. When an outside event occurs, the Rule
Processor selects the related on-event rules or transitions in the task by checking the
on-clause and the condition-clause of the rules. While the action part of the matched
rule is being executed, it interacts with the Path Expression Processor and the remote
services, as shown in Fig. 11.

Rule
Processor

Event
Processor

Universal Data Model API

Path Expression Processor
Task
Engine

PLUE Program ActionsActionsActions Remote
Services

Rule
Processor

Event
Processor

Universal Data Model API

Path Expression Processor
Task
Engine

PLUE Program ActionsActionsActions
ActionsActionsActions Remote

Services
Remote
Services

Fig. 11. Interactions with CAMUS

This approach with XML file generation achieves a kind of separation of concerns
between PLUE Preprocessor and State Transition Machine, but imposes runtime
overhead. As an alternative, we are currently developing Java API for registering and
loading tasks directly from the translated PLUE program, which enables getting rid of
the intermediate XML description.

6 Discussion and Conclusions

Traditional programming languages are not sufficient for ubiquitous application pro-
gramming because they cannot manage the various types of data and dynamic
changes that occur in real-world scenarios. However, relatively less interest is given
to programming paradigms for ubiquitous environments.

This paper describes an object-oriented language named ‘PLUE (a Programming
Language for Ubiquitous Environments)’ that will help programmers write ubiquitous
applications. PLUE supports ECA (event-condition-action) rules and finite state auto-
mata-based (FSA-based) interactive responses to dynamic situations. It also allows the
manipulation of UDM (Universal Data Model) data in the form of conventional path

298 E.-S. Cho et al.

expressions. We expect that PLUE will facilitate the rapid prototyping of ubiquitous
applications and will help to accelerate the deployment of ubiquitous computing.

Some commonly used concepts for data processing are reflected in the context
management of PLUE. The idea for the powerful, but succinct, path expressions in
PLUE comes from the query languages for XML [6]. Select-from-where clauses in
PLUE are similar to query languages for OODBMS [13].

Although PLUE provides powerful expressions to develop context-aware applica-
tions, the preprocessing based extension to a common language may give rise to com-
plications in using an IDE (Integrated Development Environment) tool, such as
Eclipse or JBuilder. To overcome this limitation, we have also provided an annota-
tion-based rule description. Based on Java 1.5 program annotations and the APT tool
(annotation processing tool) [17], task rules are translated to work as normal Java
code.

PLUE is now deployed on top of CAMUS (a Context-Awareness Middleware for
URC Systems), the ubiquitous middleware system running in the Ubiquitous Dream
Hall [2]. However, any PLUE applications could be ported on other ubiquitous mid-
dleware systems in a straightforward manner.

We are currently extending the expressiveness of the path expressions to handle
ontology data derived from an external OWL resource and exploring methods of
extending the state transition mechanism for more complex ubiquitous applications.

References

1. Wang Z, Garlan D, Task-Driven Computing, Technical Report, CMU-CS-00-154, School
of Computer Science, Carnegie Mellon University, May 2000

2. Banavar G, Beck J, Gluzberg E, Munson J, Sussman JB, Zukowski D. Challenges: an ap-
plication model for pervasive computing. In Mobile Computing and Networking, pages
266-274, 2000

3. H. Kim*, Y.-J. Cho*, S.-R. Oh, CAMUS: A Middleware Supporting Context-aware Ser-
vices for Network-based Robots, In Proc. of IEEE Workshop on Advanced Robotics and
its Social Impacts (ARSO '05)

4. Ubiquitous Dream Hall, http://www.ubiquitousdream.or.kr/, 2005
5. Java Remote Method Invocation (Java RMI), http://java.sun.com/products/jdk/rmi/
6. W3C XML Query (XQuery), http://www.w3.org/XML/Query, 2005
7. Lopez de Ipina D, An ECA Rule-Matching Service for Simpler Development of Reactive

Applications, IEEE. Distributed Systems, Vol. 2, 2001
8. Yau SS, Karim F, Wang Y, Wang B, Gupta SKS. Reconfigurable Context-Sensitive Mid-

dleware for Pervasive Computing, IEEE Pervasive Computing, Vol. 1, Issue 3, July 2002
9. Rodríguez M, Favela J, Preciado A, Vizcaíno A. An Agent Middleware for Supporting

Ambient Intelligence for Healthcare, In Proc. of ECAI 2004 Second Workshop on Agents
Applied in Health Care, Aug 2004

10. Rakotonirainy A. Context-Oriented Programming for Pervasive Systems, Technical Re-
port, University of Queensland, Sep 2002

11. Cardelli L, Gordon AD. Mobile ambients. Theoretical Computer Science, 240(1):
177-- 213, 2000

 Scenario-Based Programming for Ubiquitous Applications 299

12. Grimm R, Davis J, Lemar E, MacBeth A, Swanson S, Anderson T, Bershad B, Borriello
G, Gribble S, Wetherall D. System support for pervasive applications. ACM Transactions
on Computer Systems, 22(4):421-486, Nov 2004

13. Ranganathan A, Chetan S, Al-Muhtadi J, Campbell RH, Mickunas MD. Olympus: A High-
Level Programming Model for Pervasive Computing Environments, In Proc. of Interna-
tional Conference on Pervasive Computing and Communications (PerCom 2005), Kauai
Island, Hawaii, March 8-12, 2005

14. Papakonstantinou Y, Garcia-Molina H, Widom J. Object exchange across heterogeneous
information sources. In Proceedings of IEEE International Conference on Data Engineer-
ing (ICDE), pages 251--260, Taipei, Taiwan, Mar 1995

15. Cattell RGG, Barry DK, Berler M, Eastman J, Jordan D, Russell C, Schadow O, Stanienda
T, Velez F, The Object Data Standard: ODMG 3.0, ISBN 1-55860-647-4, Academic Press,
2000

16. JavaCC Home, https://javacc.dev.java.net/, 2004
17. Annotation Processing Tool (apt), http://java.sun.com/j2se/1.5.0/docs/guide/apt/, 2004

	Introduction
	Related Works
	Context Data Access
	Universal Data Model
	Path Expressions

	Task Description
	State Transitions
	Context Management

	Implementation
	Discussion and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

