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Abstract. Ubiquitous applications usually involve highly interactive context 
data management. Traditional general-purpose programming languages are not 
sufficient for use in this domain, as they do not have the capability to manage 
such data effectively. We have developed a scenario-based programming lan-
guage that we call ‘PLUE (Programming Language for Ubiquitous Environ-
ment)’, which is a Java-based prototyping language for ubiquitous application 
development. PLUE supports ECA (event-condition-action) rules and finite 
state automata-based (FSA-based) interactive responses to dynamic situations. 
In addition, PLUE programmers are able to manage heterogeneous data with a 
uniform view of path expressions. We have implemented PLUE on top of 
CAMUS (Context-Aware Middleware for Ubiquitous Robotic Companion Sys-
tem), a framework for context-aware applications that was originally developed 
for network-based robots. 

1   Introduction 

Ubiquitous computing systems must handle context data from various sources, includ-
ing mobile devices and sensors. These systems usually have services that are widely 
distributed over networks and devices. However, they must also be highly interactive 
with their surrounding environments. 

Since they run on top of such systems, ubiquitous applications usually consist of a 
number of complicated commands that handle various kinds of context data. Well-
designed event handling is necessary to cope with changing situations [1, 2]. Trans-
forming scenarios that are conceived by designers into programs in C or Java takes far 
too long using currently available tools. 

This paper describes our new language, PLUE (A Programming Language for 
Ubiquitous Environments), a prototyping language for ubiquitous applications. PLUE 
was developed in accordance with the following preliminary attributes: 
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• Handy structures for describing situation flows: a designer must always visualize 
the scenario of a ubiquitous service before he can proceed with the development of 
applications. As an example of such a scenario, consider a speaker giving a presen-
tation at a conference. The room lights would automatically dim at the beginning 
and a slide show would start once the speaker has begun his talk. This will happen 
repeatedly for each speaker, but only until the last speaker has finished. Therefore, 
the whole task forms a sequence of actions with patterns and can be represented as 
a kind of finite state automaton. PLUE supports the description of the flow of such 
scenarios through its state transition facilities. 

• Transparent context management: since context data usually forms a tree in a ubiq-
uitous environment, PLUE provides path expressions for context access. The path 
traversal is transparent using the usual dot notation of member access in object-
oriented languages. It may involve automatic context data matching provided by 
any third-party services. To manage context data from diverse sources uniformly, 
we have defined a minimal data model called the ‘UDM (Universal Data Model)’. 
PLUE offers path expressions for UDM data access. 

• Prompt responsiveness: prompt reaction to their surrounding environments is im-
portant for ubiquitous applications. PLUE allows programmers to generate ECA 
rules (event-condition-action) in order to encode the necessary actions in a straight-
forward manner. 

• User-friendly language facilities: we assume that most programmers do not want to 
waste time learning a new language. To achieve user friendliness, PLUE is based 
on Java, a popular language. A PLUE program has very little dependence on its 
underlying system because the transparent distributed object invocation hides the 
complex system architecture. With simple event-handling features, interactions be-
tween the dynamic situations can be described easily. 

Our current version of PLUE is implemented on top of CAMUS (Context-Aware 
Middleware for URC System) [3], a framework for context-awareness applications. It 
was originally developed for a network-based robot infra-system called ‘URC (Ubiq-
uitous Robotic Companion)’ that requires software infrastructure to enhance the  
intelligence and context-awareness of network-based robots. CAMUS has been suc-
cessfully deployed in ‘Ubiquitous Dream Hall’ [4] as a middleware to demonstrate 
future ubiquitous cities.  

 

Fig. 1. Ubiquitous Dream Hall: the living room of u-Home (left) with a home-care robot (mid-
dle), a girl kicking imaginary balls at u-Street (right) 
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Fig. 2. CAMUS Architecture 

Fig. 2 shows an abstract architecture of CAMUS. CAMUS receives the informa-
tion from sensors installed in the real world. The information is delivered in the form 
of events that are in turn fed into the ‘Sensor Framework’. The Sensor Framework 
gathers the events and interprets/aggregates them to generate high-level context in-
formation that is then sent to the ‘Context Manager’ in UDM form. Any change of 
context information triggers the Context Manager to transfer corresponding events to 
the ‘Task Manager’. When an event is raised, the Task Manager searches for task 
rules that are interested in the event and invokes the rule action if it satisfies the con-
dition. While performing an action, the task invokes services that make changes on 
the real/cyber world. 

In the next section, we present a brief survey of related work. Section 3 shows how 
to manage context data in PLUE programs. Section 4 introduces the task description 
mechanism in PLUE, with ECA rules and the state transition mechanism. Section 5 
shows the underlying architecture of PLUE. Finally, section 6 includes a discussion of 
our work and our conclusions. 

2   Related Works 

Compared to other topics in ubiquitous systems, the design of new tools and lan-
guages that can be used to help develop programs have not been actively pursued by 
the research community. In this section, we will skip RMI (remote method invoca-
tion)[5], XPath [6], and ECA (event condition action) rules [7]. While they are defi-
nitely related to our research, they are adequately described elsewhere. 

In RCSM [8], and Salsa [9], script languages based on ECA rules are used to  
describe the behavior of agents. The behavior of an agent consists of a set of ECA 
rules that permit prompt responses to context changes. Such languages are useful  
for non-centralized agent systems, where task execution must necessarily consist of 
both communication between agents and the execution of the agents. However, this 
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approach is too platform dependent, since script languages are too weak to describe 
sizable programs in other than an autonomous agent platform. This is especially true 
in centralized controlled systems that require the description of entire tasks. 

COP (Context Oriented Programming) [10] from the University of Queensland is 
based on ambient calculus [11]. It is widely known for its theoretically appealing 
context management mechanism using dynamic scoping variables for context data. A 
COP program executes self-adjustable behaviors as the current context is changing, 
while also focusing on context matching and dynamic function binding. Despite the 
excellent manner in which it can manipulate context and context-dependent code 
fragments, COP does not concentrate on the task description. It also lacks the capabil-
ity to handle scenarios and events. 

One world [12], one of the famous pervasive computing systems developed at the 
University of Washington, provides a programming model with nested ‘environ-
ments’ each of which contains ‘components’ and ‘tuples’. Applications are composed 
from components that exchange events. The flow of control for the application con-
sists of several instances of event handling. Remote event passing, operation migra-
tion, object sharing, and querying are also supported, all of which can be designed 
using Java API’s without transparency. This technique was founded on the premise 
that since ubiquitous computing has so many context changes, it would be dangerous 
for them to be hidden from programmers. Given this insight, programmers would then 
be able to handle them correctly, with their own scenarios. However, this is not neces-
sarily true since it is likely that such detailed implementation and maintenance  
information would distract programmers from the task at hand. This well-known 
proposition has been proven true several times in the past in the field of software 
engineering. In addition, the language provided by one world is not suitable for proto-
typing. 

‘Olympus [13]’, a high-level programming model suggested by University of Illi-
nois at Urbana Champaign, allows a developer to specify entities and operations in 
ubiquitous computing environments at abstract level. Despites its entity abstraction 
facilities and excellent service discovery scheme, Olympus lacks support for task 
description based on the flow of scenarios. 

3   Context Data Access 

3.1   Universal Data Model 

Since context awareness is one of the key characteristics of ubiquitous computing, 
several studies examined the management of context information in ubiquitous appli-
cations. To date, however, no satisfactory context data model for heterogeneous data 
management has been found. Ontology represented in logic would be our choice, but 
is hardly considered practical so far.  

We have defined a new simple context data model for context information that we 
have called UDM (Universal Data Model). It is similar to OEM [14], a semi-
structured database model, in that context information is denoted as an edge-labeled 
graph. Although we developed UDM for PLUE, it can be used for other ubiquitous 
programming environments. Its main concepts are described below. 
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Fig. 3. Context data for the SmartRoom Application 

− Nodes: Each node in UDM represents an entity, such as a person, place, task, ser-
vice, and so on. 

− Associations: An association is a labeled directed edge. It presents the relationship 
between nodes. Some associations change with time. In Fig. 3, the location of a 
person varies whenever he/she moves to a different place. 

Fig.3 is an example of a simple UDM model that shows that “29-year-old Julie is 
in a kitchen that has a light fixture”. As you can see, UDM provides a very easy way 
to describe the context. 

PLUE provides facilities to access context data represented in UDM. PLUE pro-
grams can handle any data from various sources in a uniform format. ‘UDM bindings’ 
provide a transparent view of the context data from heterogeneous data sources. When 
a new data source is added, a corresponding UDM binding should also be supported 
to map from the native data into a UDM view and vice versa. 
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Fig. 4. Context data integration using UDM bindings 

Fig. 4 shows the data flow among data sources, UDM bindings, and PLUE pro-
grams. Our current version of PLUE provides built-in bindings for XML documents, 
Unix/Linux/Windows file systems, JavaBeans, and annotated plain Java objects. 

3.2   Path Expressions 

PLUE supports path expressions to retrieve and modify the context data modeled in 
UDM. A path expression is a sequence of association names starting from a node. By 
evaluating a path expression, we obtain a set of nodes that are reached through the 
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sequence of associations beginning at the starting node. In PLUE, the starting node is 
denoted by the ‘$’ symbol. It points to the root context node for a PLUE application. 
For instance, in Fig. 3, the path expression “$.owner.location.name” points to the 
valued node whose value is “Kitchen”. The meaning of the expression is “the name of 
the place where the owner is currently located.” 

Using path expressions, a PLUE application is able to reach all the necessary con-
text information, such as the name of the person who executes this application, the 
address of the owner’s location, and other application-specific data. 

PLUE supports a set of sophisticated path expressions to query the interesting data. 
These expressions are highly expressive, but they are still simple and easy to describe. 
We categorize them as shown in the following examples: 

Basic path expressions 
A UDM node may have more than one departing edge with the same tag. A path ex-
pression will return multiple values in that case. 

• $.owner.location: is the single value for the location 
• $.owner.location.residents: is a set of multiple values when multiple residents are 

present in a location. 
• $.owner.location.’temporal residents during a month’.id: is the id of the multiple 

temporal residents that are present in a location. (a quoted string in an association 
name is useful for a long sentence with spaces) 

Selective association traversal 
PLUE assigns orders sequentially for departure edges with the same tag that leave 
from a single UDM node. Specifically, the ordinals or the ranges of ordinal numbers 
can confine a multi-valued path expression. The following examples assume a multi-
valued association ‘children’ from the location of the owner. 

• $.owner.location.children[2]: Of the multiple associations tagged with ‘children’, 
the second one is selected. 

• $.owner.location.children[2-4]: Of the multiple associations tagged with ‘chil-
dren’, the second, third, and fourth are selected. 

• $.owner.location.children[4-]: Of the multiple associations tagged with ‘children’, 
the ones whose ordinal numbers are larger than four are selected. 

• $.owner.location.children[1,4-5,9]: Of the multiple associations tagged with ‘chil-
dren’, the ones whose ordinal numbers are 1, 4, 5, and 9 are selected. 

Conditional path traversal 
Selection on multiple associations with a shared name is done based on matching 
values, as is done in database queries. When a comparison is made between multiple 
values and a scalar or between two sets of multiple values, the condition will be true 
for at least one case. 

• $.owner.location.residents[.name==‘Tom’]: retrieves people who are at the same 
place as the owner and whose names are ‘Tom’. 

• $.owner.location.residents[.name==‘Tom’ && .age==‘10]: retrieves 10-year-old 
Tom from among the residents who are at the same place as the owner. 



292 E.-S. Cho et al. 

Wildcards 
Traversing an anonymous edge is denoted by a wildcard (‘*’) in a path expression. 
‘**’ denotes any number of anonymous edges. This enables edge selection even when 
the programmer does not know the exact path. ‘%’ is used for a wild card character in 
an association name. 

• $.owner.location.*.id: the nodes that are reachable from       $.owner.some_anony-
mous_link.id. 

• $.owner.**.id: the nodes of the set of ‘id’ links that are reachable from $.owner 
• $.owner.location.pa%.id: the nodes of the set of ‘id’ links that are reachable from 

$.owner.location and links whose names are prefixed with “pa”. 

Built-in functions 
Our current version of PLUE supports two built-in functions that transform multiple 
values to a single value. 

• exists($.owner.location.parent): true if the cardinality of $.owner.location.parent is 
not 0. 

• count($.owner.location.parent): the cardinality of $.owner.location.parent 

4   Task Description 

4.1   State Transitions 

Ubiquitous computing applications, like other user-centric services, are usually  
designed based on preconceived corresponding scenarios. For instance, a smart con-
ference room would be built for a scenario where conferences are managed automati-
cally. The flow of an example scenario is as shown in Fig. 5. 

In PLUE programs, all of the work that must be done for a scenario is called a 
‘task’. For programmers, a PLUE task is much like a Java class with methods, in-
stance variables, and inner classes. Since a task forms a sequence of actions with 
patterns that are a kind of finite state automaton, a task definition is augmented with a 
flow description using ‘states’ and ‘transitions’. 

Started WaitForTalker

TalkingFinished
entry: ……
exit: ……
assert: ……
on-event:……

event-condition/
action

initial state

final state

 

Fig. 5. The flow of a smart conference room scenario 
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A ‘state’ has a duration for which some property in the context must remain con-
stant. A PLUE state consists of four parts – the entry, the exit, asserts, and on-event-
rules. The entry part initializes the state. The variables used in the state are initialized 
and resources are prepared. Assert phrases are conditions that are true for the duration 
of the current state of the task. 

On-event-rule phrases describe the actions to be taken when specific events occur. 
The exit part describes the work that must be done before the task transits to other 
states. The keywords ‘initial’ and ‘final’ are attached to the initial and final states, 
respectively. Currently, we have implemented only one state for each. The entry and 
exit phrases can be omitted if no action needs to be specified while entering/exiting 
the state. A state can have multiple asserts and on-event rules. 

Fig. 6 depicts a code fragment of a PLUE program, showing that the state ‘Talk-
ing’ describes a situation where a speaker is giving a talk in a conference. The entry 
part of this state prepares the presentation foils for him on the screen in the conference 
room. If any transition occurs, then the exit phrase sets the current speaker to the next 
speaker. The assert phrase ensures that the platform light is turned off while the 
speaker is talking. 

 

Fig. 6. An example of a state definition: state ‘Talking’ 

If the speaker says “next”, then the next slide is shown. Note that a task writer can 
assign event variables to their target event names. These variables can then be used in 
on-event rules. In the example, the event variable “e” is bound to an event named 
“VoiceReceived”. PLUE supports seven built-in event types: TagEntered, TagLeft, 
UserEntered, UserLeft, SpeechReceived, PropertyChanged, and TimeExpired. How-
ever, task writers could add any new event types that would be necessary to develop 
their tasks. The ‘condition’ clause expresses the condition for which a rule is invoked. 
Path expressions, the event variable, and the usual Java comparators can appear as 
well. The braced body denotes the action part of the on-event rule. 

A ‘transition’ describes the actions taken during the transition from the current 
state into the next state when the event satisfying the corresponding conditions occurs. 
The transition consists of a from-state, a to-state, the ‘on-event/condition’, and the 
action. The ‘on-event /condition’ includes the transition condition, as well as what 
must be executed during the transition. This is similar to the on-event rules for a state. 

state Talking{ 
 entry 
 {$.platform.slideshow.slide_path=$.current.material;} 
 exit { $.current=$.current.next; } 
 assert $.platform.light==false; 
 on event VoiceReceived(e)  
    condition(e.speech =='next') 
      { $.platform.slideshow.next();} 
} 
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transition WaitForTalker -> Talking{ 
on event VoiceReceived(e) 
  condition (e.speech=='Start presentation'){ 
   $.current = $.conference.first; 
   $.room.tts.speak(“Start”); 
}

}

 

Fig. 7. An example of a transition definition: from ‘WaitForTalker’ to ‘Talking’ 

Fig. 7 describes the transition from the WaitForTalker state to the Talking state. If 
the chairman says “Start presentation”, then the data for the first speaker is prepared 
and a TTS (Text-To-Speech) system says “Start” to those present while the transition 
is made. 

A PLUE task is modularized into states and their transitions. If an event occurs in 
the current state and it satisfies the condition of any transition, then the current state is 
changed to the next state in the transition. Since massive events and fluctuating situa-
tions in ubiquitous environments can be directly modeled in PLUE, it is easier for the 
programmers to write and maintain application programs for ubiquitous computing. 

Fig. 8 depicts a part of a task with two states and a transition. ‘Rule-based pro-
gramming’ for proactive services in context-aware applications is achieved by using 
on-event rules and asserts in states and transitions in PLUE. On-event rules and tran-
sitions are only invoked when the required events are received. The actions of assert 
phrases are invoked when the required conditions occur. Path expressions are used 
extensively to express such ECA rules and asserts. 

on event 
conditionentry exit

statestate

on event 
condition

assert

entry exit

statestate

on event 
condition

asserttransitiontransition

 

Fig. 8. Transition of states while a task is running 

4.2   Context Management 

Context information gained from path expressions is manipulated extensively in the 
entry/exit phrases and rule descriptions that are contained in a task definition. Such 
information is usually calculated with other values and modified by assignment in a 
C-like program. In addition, it is more difficult to handle a path expression that re-
turns a multi-value like a set, a list, and a bag. PLUE supports tools that make it easier 
to process path expressions. 
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• <path expression> <op> <scalar value> 
• When <path expression> results in value nodes, PLUE allows basic operations to 

be conducted on the path expression. Our current version of PLUE supports +,-,*, 
and / with integer values, and + for string concatenation. If <path expression> has 
multiple values, each value will undergo an operation <op> with a <scalar 
value> that will then be merged into the resulting set. These expressions, simple 
path expressions, and values are collectively called ‘complex path expressions’. 

• <path expression>  = <complex path expression> 
• When <path expression> results in a value node, it will update the value. If 

<path expression> has multiple values, the right side should have multi-values. 
All of the departing edges of the resulting nodes of <path expression> will be re-
placed with the new ones. 

• <path expression>  <= <complex  expression> 
• The result of <complex expression> will be added as departing edges to the re-

sulting nodes of <path expression>. 
• <path expression>  = nil 
• PLUE supports a special keyword nil to clear the departing edges of the resulting 

nodes of <path expression>. 
• foreach ( <var> = <path expression> : [ <condition on the var> ] ) <action on 

the var> 
• The foreach statement can be used as an iterator for multiple edges. <var> is the 

usual variable name that is prefixed with a ‘$’ for discrimination with other Java 
variables. In the above example, since the location ‘e.location’ has more than one 
light, the variable $light points to each element of the set of lights. If the light that is 
referenced by the variable $light is off, (‘light.power==false’), then action will be 
taken on it. 

• foreach <var> in ( select <path expression> from <path expression> where <path 
expression> <op> <complex path expression>) 

• Like object database query languages [15], a ‘select-from-where’ clause is pro-
vided in this special foreach-statement. Since a select-from-where statement can 
also be expressed with the usual path expressions, programmers can choose not to 
use this version of a foreach-statement. 

This language extension is preprocessed into a plain Java program before compilation. 
Every new feature is similar to a plain Java expression and would therefore be familiar to 
Java programmers. The following example shows an on-event rule in PLUE that ensures 
that at least one light is on whenever a person enters the kitchen. A variable for a path 
expression (‘$light’) and a Java variable (‘flag’) both appear in the foreach statement. 

 

on event UserEntered(e)
condition ( e.platform.name == ‘Kitchen’) { 
   boolean flag = false; 
   foreach ($light=e.platform.light:        
               $light == false && flag == false) { 
   $light = true; 

flag = true; 
} 

} 
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5   Implementation 

A PLUE task program developed with a context data model is basically put into a 
PLUE Preprocessor and translated into Java code and an XML file. Rules are trans-
lated into a code fragment that generates rule objects and registers them with the Rule 
Processor. The path expressions are converted into a composition of appropriate API 
calls to the underlying Path Expression Processor. As a result, any Java compiler can 
compile the generated Java code into Java byte code. 

The loader module creates a task object from the Java byte code and the XML file and 
then it delivers it to the State Transition Machine dedicated to the task. Fig. 9 depicts the 
processing flow of a PLUE task. 
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Fig. 9. PLUE architecture 

 

Fig. 10. Translated XML document for the state ‘Talking’ (in part) 

<?xml version="1.0" encoding="EUC-KR"?> 
<task name= "ConfAssistant" > 
     … 
<state name = "Talking"  > 
   <entry name= "stTalking$entry" /> 
   <exit name= "stTalking$exit" /> 
   <assert name = "stTalking$assertECA1" /> 
   <rule name = "rule0" > 
     <event name = "VoiceReceived" /> 
     <condition > 
       <![CDATA[ e.speech=='next' ]]> 
     </condition > 
     <action name = "stTalking$rule0Action" /> 
   </rule> 
</state> 
<transition from = "Talking" to = "WaitForTalker" > 
   <rule name = "rule3" > 
     <event name = "VoiceReceived" /> 
     <condition > 
       <![CDATA[ e.speech=='end' ]]> 
      … 
<action name ="trTalkingWaitForTalker$rule3Action"/> 
</rule> 
</transition> 
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The PLUE Preprocessor, based on JavaCC 4.0 beta 1 [16] for parsing, inputs a 
PLUE program and outputs new Java byte code and an XML file. Each tag in the 
XML file corresponds to a PLUE language feature, such as ‘<task>’, ‘<state>’,  
‘<entry>’, ‘<exit>’, and ‘<assert>’. The ‘name’ attribute of ‘<task>’ or ‘<state>’ 
represents the name of the task (or the state). The name attribute of ‘<entry>’, 
‘<exit>’, ‘<assert>’, or ‘<action>’ is for the method name in the Java byte code that 
describes the corresponding behaviour.  Fig. 10 is an example of the XML file that is 
generated for the state ‘Talking’ that was introduced above. 

At run time, the Loader Module registers the states and transitions of the task with 
the State Transition Machine for the task. The State Transition Machine executes the 
entry phrases of the initial state of the task and runs the state transition machine until 
it encounters the exit phrase of the final state. When an outside event occurs, the Rule 
Processor selects the related on-event rules or transitions in the task by checking the 
on-clause and the condition-clause of the rules. While the action part of the matched 
rule is being executed, it interacts with the Path Expression Processor and the remote 
services, as shown in Fig. 11. 

Rule
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Processor
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Task
Engine

PLUE Program                  ActionsActionsActions Remote
Services

Rule
Processor

Event
Processor

Universal Data Model API

Path Expression Processor
Task
Engine
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ActionsActionsActions Remote

Services
Remote
Services

 

Fig. 11. Interactions with CAMUS  

This approach with XML file generation achieves a kind of separation of concerns 
between PLUE Preprocessor and State Transition Machine, but imposes runtime 
overhead. As an alternative, we are currently developing Java API for registering and 
loading tasks directly from the translated PLUE program, which enables getting rid of 
the intermediate XML description. 

6   Discussion and Conclusions 

Traditional programming languages are not sufficient for ubiquitous application pro-
gramming because they cannot manage the various types of data and dynamic 
changes that occur in real-world scenarios. However, relatively less interest is given 
to programming paradigms for ubiquitous environments. 

This paper describes an object-oriented language named ‘PLUE (a Programming  
Language for Ubiquitous Environments)’ that will help programmers write ubiquitous 
applications. PLUE supports ECA (event-condition-action) rules and finite state auto-
mata-based (FSA-based) interactive responses to dynamic situations. It also allows the  
manipulation of UDM (Universal Data Model) data in the form of conventional path 
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expressions. We expect that PLUE will facilitate the rapid prototyping of ubiquitous 
applications and will help to accelerate the deployment of ubiquitous computing. 

Some commonly used concepts for data processing are reflected in the context 
management of PLUE. The idea for the powerful, but succinct, path expressions in 
PLUE comes from the query languages for XML [6]. Select-from-where clauses in 
PLUE are similar to query languages for OODBMS [13]. 

Although PLUE provides powerful expressions to develop context-aware applica-
tions, the preprocessing based extension to a common language may give rise to com-
plications in using an IDE (Integrated Development Environment) tool, such as 
Eclipse or JBuilder. To overcome this limitation, we have also provided an annota-
tion-based rule description. Based on Java 1.5 program annotations and the APT tool 
(annotation processing tool) [17], task rules are translated to work as normal Java 
code. 

PLUE is now deployed on top of CAMUS (a Context-Awareness Middleware for 
URC Systems), the ubiquitous middleware system running in the Ubiquitous Dream 
Hall [2]. However, any PLUE applications could be ported on other ubiquitous mid-
dleware systems in a straightforward manner.  

We are currently extending the expressiveness of the path expressions to handle 
ontology data derived from an external OWL resource and exploring methods of 
extending the state transition mechanism for more complex ubiquitous applications. 
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