
H.Y. Youn, M. Kim, and H. Morikawa (Eds.): UCS 2006, LNCS 4239, pp. 171 – 182, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Context-Based Cooperation Architecture for Ubiquitous
Environment

Minsoo Kim, Youna Jung, Jungtae Lee, and Minkoo Kim

Graduate School of Infromation and Communication, Ajou University,
Suwon, Korea (South)

{visual, serazade, jungtae, minkoo}@ajou.ac.kr

Abstract. Context-awareness which provides relevant information and services
to situation using context is an important issue to solve problems in ubiquitous
environment. In addition, many problems in ubiquitous environment are solved
by interaction between computational elements rather than by performing
individual actions. Therefore, it needs to approach context-awareness from in a
cooperative point of view. In this paper, we discuss about context model for
cooperation system in ubiquitous environment and describe context ontology
focused on interaction process with general context. Moreover, we propose
cooperation architecture based on context ontology supporting ontological
processes. This architecture introduces community as an organization of
elements solving common problem and provides context-aware mechanism
within community.

1 Introduction

A dynamic and changeable ubiquitous environment gives rise to unpredictable and
complex problems. Most of them are solved by interacting between elements rather
than performing individual actions. Considering this issue, cooperation is an
important issue to satisfy user’s requirements and to provide intelligent service in
ubiquitous environment. Cooperation system provides primitives for interaction with
one another: interaction environments, common goals, interaction protocols, and so
on. Elements in cooperation system are strongly dependent on environments and other
elements to provide own and/or common services, so essentially, they must recognize
the relevant information surrounding them - called context. However, because of the
complex and dynamic features of ubiquitous environment, it is difficult to recognize
or aware context. So to avoid increasing complexity and to ensure context-aware
service, system and elements need to be capable to maintain well-defined context
model and to provide efficient mechanism for context-awareness.

Context, generally, is referred to ‘any information that can be used to characterize
the situation of an entity (i.e. whether a person, place or object) that are considered
relevant to the interaction between a user and an application, including the user an
applications themselves’.[1] Many approaches attempt to do context modeling and
context-awareness service in ubiquitous environment, and most of them have focused
on the physical entities of the environment(e.g. the person or users, the devices) and
little work has been done to develop models to support cognitive entities[2][3].

172 M. Kim et al.

Information of physical environments, naturally, is important to determine element’s
activity and service, but cognitive context such as element status, activities and
services is also important to build ubiquitous computing system efficiently.

Many cooperation systems are developed for ubiquitous computing environment
with supporting context-awareness, and most of them are based on multi-agent system
(MAS). Features of MAS such as adaptability, pro-activeness and reactivity, help to
build cooperation system. Especially, in many approaches [4][5][6][7][8][9],
interactions between agents can be defined using role, introducing the concept of
‘role’ as a set of rights in MAS. This can derive some advantages: separation of issues
related to agent algorithmic and interaction with other agents, solution reusability
(since roles apply to specific context, so they can be successfully adopted similar
areas), and so on. In recent works for role-based system [10][11][12], researchers
emphasize the social (organizational) structure and social role to build ubiquitous
computing system efficiently. In fact, a role reflects social activities of users or
devices, so roles should be comprehensible when they are embedded in social context.
Since ubiquitous environment and elements are highly dynamic and changeable,
cooperation system for ubiquitous computing environment must support dynamism to
operate seamlessly. In other words, system gives proper roles to elements
dynamically, and elements can also take the role and can perform a required action.

We think that the following Requirements must be met to build cooperation system
for ubiquitous computing environment:

• Context-awareness: providing intelligent service and interaction between
elements in system. Context is modeled focusing on cooperative environments
with general context (i.e. information of physical environments)

• Role-based interaction: separation of concerns between element’s algorithmic
logic and interaction logic

• Organizational structure: considering role as required social activity. Organizational
structures may provide interaction environment and context-aware mechanism.

• Dynamism: providing methods to solve unpredictable problems in ubiquitous
environment, dynamically.

To satisfy upper requirements, we discuss context model for cooperation system in
ubiquitous environment and describe context ontology focused on interaction process
with general context. We also propose cooperation architecture based on context
ontology supporting ontological processes. This architecture introduces community as
an organization of elements solving common problem and provides context-aware
mechanism within community. This architecture provides mechanism to solve
unpredictable problems in a dynamic way which we will discuss later.

The remainders of the paper are structured as follows. Section 2 describes existing
role-based system and analyzes role required to ubiquitous computing system. Section
3 introduces some ontological approaches for context modeling, and section 4
specifies our context ontology. Section 5 proposes cooperation architecture and
cooperation mechanism supporting system dynamism based on context ontology
introduced in section 4. In Section 6, we introduce a new approach ‘Community
Computing’ for developing ubiquitous computing system, and apply context ontology

 Context-Based Cooperation Architecture for Ubiquitous Environment 173

and cooperation mechanism to community computing. At last the conclusions and
future works are made in section 7.

2 Cooperation Systems for Ubiquitous Computing

There are many approaches to cooperate between computational elements or agents.
The purpose of them is to achieve common goal or to solve common problem shared
elements in cooperation system. Most of approaches are based on the concept of
‘role’. Even if role is defined as various ways in different systems or approaches,
generally, role is defined as a set of rights. Comparison between some role-based
approaches is shown in [7]. It is important to compare ‘roles at runtime’ and
‘openness’ phase for the ubiquitous computing. But we also consider organizational
structure supporting role-based cooperation, because supporting ‘roles at runtime’ and
‘openness’ is a social or systematic capability rather than role’s own. In this section,
we analyze some role-based approaches and social-concept centered approaches.

2.1 Role-Based Approaches

AALADIN [4] is a meta-model for multi-agent system and focuses on the
organization rather than agent in himself. It assumes that the idea of collective
structure permits two levels of analysis – concrete level and abstract, methodological
level. Concrete level describes the actual agent organization through core concept of
model: agent, group and role. Agent is member of one or more group, and group
contains roles performing by agent. AALAADIN introduces methodological concept
to serve analysis and design MAS. Organization is composed of overlapping groups,
and group structure is introduced to partition organization and to specify the group
information. Actually, group structure defines roles and interaction protocol between
agents performing roles in the group. The organizational structure defines the group
structure in the organization and the correspondences between them. In extended
work for AALAADIN [5], dynamic aspect of an organization is added: it describes
creation of group, entering and leaving of a group by an agent, and role acquisition.

BRAIN [6] is a frame work for Flexible Role-based Interactions in MAS. Role in
BRAIN is defined set of the capabilities and an expected behavior corresponding to
the main feature of agent: pro-activeness and reactivity. BRAIN introduces XML-
based XRole notation to describe roles. XRole consists of three main parts to define a
role: basic information, allowed action and recognized action. XRole can be translated
into appropriate representations, so the different phases of the development of
applications relies on the same information, granting continuity during the entire
development. At last, RoleSystem in BRAIN is an interaction infrastructure that
implements the interaction model of BRAIN. RoleSystem is composed of tow layer:
subject layer is platform-independent part of system and wrapper layer is the
platform-dependent (e.g. JADE) implementation entity in charge of supporting the
subject layer.

Gaia [8][9] introduced a methodology for agent-oriented analysis and design to
capture an agent’s flexible, autonomous problem solving behavior, the richness of an
agent’s interactions, and the complexity of an agent system’s organizational

174 M. Kim et al.

structures. In Gaia, role is defined a well-defined position in the organization with an
associated set of expected behaviors. MAS is regarded as a collection of
computational organizations consisting of various interacting roles in Gaia.

2.2 Social Concept Centered Approaches

Cooperation system including MAS makes the design of system less complex reducing
the conceptual distance between system and real-world application. In internal view of
each agent, agent (or role) solves problem or achieves goal interacting with other
agents. In external view, agents are organized to achieve common goal, and
organization provides interaction environment to agents and can play a coordinator or
negotiator for agents. Organizational or social view of cooperation system can make
private agent’s behavior to social one, not isolated behavior. And some methodology
related to organize agents such as dynamic organization and role binding are efficient
way to solve dynamic and changeable problem. In that point, to solve unpredictable
problem in ubiquitous computing system, organization or agent society plays an
important role.

A number of approaches for building MAS take social concept into consideration.
Organizational model for agent society by using contracts [10] takes a collectivist
view on agent societies and defines organizational framework consists of three
models: organizational model, social model and agent (interaction) model. This
approach aims to build MAS and to specify interaction between agents defining
contract as a statement of intent that regulates behavior among organizations and
individuals. Another approach is based on social role-aware [12]. This approach
emphasizes social role-aware as a key feature for ubiquitous computing and proposes
multi-agent architecture being aware of social role. The roles are assigned
dynamically based on both sensor-data from the environments and role ontology
described human designer.

As mentioned above, role means not only agent capability for interacting with
others, but also social activity to achieve common goal in the society or organization.
In order to take a role as a social activity, cooperation system must support a
organizational architecture which can bind a role to proper agent and provide
interaction environment for assuring agent activities.

3 Context and Context Modeling

Context is general term adopted in different areas of the computer science and
definition of context is also general – any information related a problem implicitly or
explicitly. But generality of definition makes difficult to build context model, so
smart method must be required to model and use context efficiently. In this section we
capture the context in ubiquitous environment and describe method to build context
model.

3.1 Scenario in Ubiquitous Environment

The Following famous scenario is staring part of Berners-Lee’s article that has
introduced the semantic web.[14] It is very short and simple, but we imagine internal

 Context-Based Cooperation Architecture for Ubiquitous Environment 175

process and also capture context required by that process. The scenario has the
electronic devices, the agents, the person, and also some actions (i.e. send message,
sound down).

The entertainment system was belting out the Beatles’ “We Can Work It Out”

when the phone rang. When Pete answered, his phone turned the sound down by
sending a message to all the other local devices that had a volume control. His
sister, Lucy, was on the line from the doctor’s office: “Mom needs to see a
specialist and then has to have a series of physical therapy sessions. Bi-weekly
or something. I’m going to have my agent set up the appointments.” Pete
immediately agreed to share the chauffeuring.

3.2 Context

To capture and aware context, system requires information to be exchanged and used
between different elements, and obviously that information is related element or
problem. In scenario, some physical information can be captured: telephone calls,
devices location. This information is recognized related elements, and then system
can provide intelligent service. Most of the context modeling or context-awareness
approaches capture this kind of information as context, including device location,
time, temperature and all physical or sensing information. This information is
important and very useful for context-aware application in various domains.

But, to complete upper scenario, other information is needed. For Pete’s calling
with Lucy, sound of silence is required, and device ‘phone’ must send message to all
devices to turn the sound down. In classic approaches, this situation is resolved
through interactions or communication between related elements rather than by using
context model. In other words, messages from others or interactions in themselves is
not information in context model. But, we think that these are also considered as
information modeled context. The action ‘send message’ is enable aware context
‘telephone calls’ and similar the action ‘sound down’ is performed by recognizing
context ‘message from phone’. Moreover, an action in itself is also context: to send
message, ‘phone’ must know whether receiver is capable ‘sound down’ or not.
Finally, Social information as interaction environment is also important: which
elements are in the group or community, who is performing a specific role, or what is
a common goal that elements achieve by interacting with others.

Thus we regard both information from physical environments and cooperative or
social information of system as context. By maintaining context model with them, it is
possible to provide an efficient context-awareness and intelligent services.

3.3 Ontological Approach for Context Modeling

To model and aware context in the system, many methodologies is used – key value,
mark-up scheme, graphical, object oriented, logic based and ontology based.[13] We
choose ontology based approach to context model with following reasons: (i)
ontology provides uniform way for specifying the model’s core concepts, (ii)
ontology enables to have a common set of concepts about context while interacting
with one another, (iii) system can exploit reasoning mechanism with explicit semantic

176 M. Kim et al.

based on ontology, (iv) By reusing ontology, system can compose large-scale context
ontology.

Some context-aware system for ubiquitous or pervasive computing are proposed
with context-model based on ontology. SOUPA [15] ontology has proposed for
pervasive computing, and SOUPA vocabularies adopted from a number of different
consensus ontologies(time, person, places etc,.). CONON [16][17] ontology provides
a vocabulary for representing knowledge about a domain and for describing specific
situations in a domain. In a CONON’s view, context has two categories: direct
context that is acquired from a context provider directly such as sensed context and
defined context, indirect context that is acquired by interpreting direct context through
aggregation and reasoning process. By introducing classification and dependency,
CONON allows the properties of entities to be associated with quality constraints that
indicated the quality of context. GAS[18][19] ontology that provides common
language for the communication and collaboration among eGadgets defines an
architectural vocabulary and configuration rules including eGadget’s roles and
relations between them.

Our context ontology, will discuss next section, is based on similar idea of these
approaches – context model that aims to ubiquitous or pervasive computing - , but we
focused on context for cooperation between elements in the ubiquitous computing
systems. Classic ontological approaches well-define for information of physical
environments, but they have weakness to represents cooperative and social
information. GAS ontology aims to communicate and collaborate between elements,
but it strongly depends on centered their plug and synapse methodology, that is, it is
limited to a little domain and difficult to use general cooperation system.

4 Context Ontology for Ubiquitous System

In this Section, we describe context ontology for cooperation system for ubiquitous
computing. We assume that user or system can define domain specific ontology using
well-defined ontologies, and system can perform a reasoning or inference process
using them together with our context ontology.

Fig. 1 shows context ontology with major concepts and properties. We will write
context ontology using OWL (Web ontology Language) recommended for describing
web ontology by W3C (World Wide Web Consortium). OWL provides rich
expressive power compared other ontology language such as RDF(S), DAML+OIL,
and has capability of supporting semantic interoperability to exchange and share
context or domain knowledge. Our context ontology is composed of three sub-
ontologies. First, Physical Ontology is similar to SOUPA core ontology or CONON
upper ontology. In fact, we do not explicit define concepts in physical ontologies,
because we think that physical ontologies such as place, time are already well-defined
by many researchers. For example, DAML-time ontology is good to conceptualize
time and related many services. Moreover, in reusable point of view that is major
advantage of ontology, reusing ontologies for information of physical environments is
an efficient way to build context ontology.

 Context-Based Cooperation Architecture for Ubiquitous Environment 177

Fig. 1. Context ontology is composed of three sub-ontologies: Physical ontology, Cooperative
ontology and Organizational ontology

Second, however, we define explicit the Cooperative Ontology related cooperative
part of system. By using this ontology, developers describe interaction process and
organizational structure. Cooperative ontology includes the following concepts: the
role, the protocol, the action and the other concepts to explain the first three concepts.
Role represents interaction between computational elements and social activity to
support dynamism of system (see next section to get detail description). Therefore,
description of role has protocols describing interaction process, and must include
required capabilities (actions and attributes) to perform the role. Protocol that
describes sequence of actions is an interaction process between roles. Action
represents element’s activities with pre-condition, inner-action, activate-time and
other properties. Action has special two sub-actions ‘Send’ and ‘Receive’ for
communication between elements: these actions have properties to enable working on
network – ‘target’, ‘sender’, ‘messageType’ (It follows message type proposed by
FIPA - Foundation for Intelligent Physical Agent), contents, and so on. ‘target’
property can have multiple elements. Moreover, actions can have special properties
such as ‘parallel’ in programmatic point of view.

Finally, we define social ontology represented core elements in our cooperation
architecture: Society, Community, and Member. Society manages all communities
and members, but it is not necessary maintain all information they have. Basically,
society represents ‘hasCommunity’, ‘registeredMember’ property. Community has
‘goal’ and ‘role’ properties and member has ‘action’, ‘attribute’ and properties related
physical ontology. Member status in cooperation system is necessary context to
interact with one another. In cooperation system based on MAS, agent status is
represented by using general terms such as ‘activate’, ‘busy’, ‘idle’, but it is not
enough to explain an agent to system or other agents. We need more concrete
description: for example, agent ‘A’ can perform ‘move’ and ‘run’ actions and is

178 M. Kim et al.

located in a garden, and he is communicating with radio. We emphasize concrete
description of member status, because by grasping a member status, other elements in
the system can decide and perform a proper action without additional interaction to
get his status. In order words, describing status of member and community or other
cooperative information can improve the performance of cooperation system. Thus,
organizational ontology is designed to satisfy for describing elements of system in
concrete way with cooperative ontology.

5 Cooperation System Using Context Ontology

We define organizational structure for cooperation system introducing three core
concepts: society, community and member. Each elements works based on context
ontologies with some components supporting ontological process and system
functionality. Organizational structure and processes to enable cooperation with three
core concepts is shown in Fig. 2.

Fig. 2. Organizational structure and cooperation process

Society is an administrative concept of system and an abstraction of ubiquitous
environment. Society must belong all elements and manages them using context
ontologies – member ontologies and community ontologies. It is not a space occurring
interaction between members to solve problem, but an environment that occurs
unpredictable problems, exists members independently, is created community to solve
problem.

Community is a cooperative group composed of related members to solve a
problem. Problems occurred in ubiquitous environment are not static, but unpre-
dictable and dynamic. Therefore, community does not always exist, but dynamically
created by society when problem occurs. Society recognizes the occurrence of a

 Context-Based Cooperation Architecture for Ubiquitous Environment 179

problem using context ontology, then creates community which can solve that
problem according to community ontology. Community is created with following
information: (i) goal that will be achieved, and (ii) roles implying participants in
community, and (iii) interaction process to achieve community goal. With this
information, community can dynamically cast members and also dynamically transfer
interaction processes to each cast members. Transferred interaction process is an
instance of ‘Protocol’ class in context ontology described previous section. When
goal is achieved, community is finalized dynamically, and members belonged to
community leave the community and perform their own actions.

Member is a basic element in the system, representing person, device, hardware or
software, similar to agent in MAS. Member provides services (actually member
actions and described using ‘Action’ class) when satisfying ‘precondition’ property in
‘Action’ class. In Fig. 2, transferred interaction process is added as member action.
We consider both alone-action and interaction between members as same kind of
thing, since all actions are performed when satisfying precondition of themselves by
recognizing context. Fig. 3 shows an internal architecture of member that enable this
process based on context-awareness.

Fig. 3. Internal architecture for member

Context Manager (CM) contains a number of components including context
ontology. CM gets information from other members (message), physical sensors,
users and results for own actions, and then context updater updates context ontology
with reasoning engine. Note that messages from other members are also information
for context, not just message in traditional cooperation system. The reasoning engine
provides reasoning process to other components in CM: checking pre-condition of an
action, interpreting ontology, and other useful reasoning. Context provider informs
own context to other elements including society and community in system. Note that
‘send’ action for interactions between members is performed by context provider
(‘receive’ action is performed by CM). In other words, ‘Send’ and ‘Receive’ are not
special action; they just decide target/send and type of message, and so on. Actuator

180 M. Kim et al.

activates actions that satisfy precondition by reasoning context ontology with
reasoning engine.

Developers describe cooperative and organizational ontology as a program or set of
rules, then system interprets this ontology and performs proper actions. For example,
member ‘m1’ performs action ‘a1’ when receiving message ‘msg1’ from member
‘m2’, and after performing ‘a1’, send message ‘msg2’ to ‘m3’, ‘m4’, and ‘m5’. When
receiving message ‘msg1’, first, context updater updates context ontology with
‘msg1’, then CM checks preconditions of actions through reasoning engine. If ‘msg1’
come from ‘m2’, that is, satisfying precondition of ‘a1’, actuator activates ‘a1’. When
‘a1’ performed, ‘a1’ reports result to CM, and CM updates context ontology again.
Finally, context provider sends context ‘msg2’ to ‘m3’, ‘m4’ and ‘m5’.

Society and community have similar to member architecture shown in Fig. 3. In
order words, all elements in system work based on context management and context
awareness, including to interaction with one another through CM, not individual
action. Implementation of actions is portion of developer in difference platform, so
we do not consider specific platform or implementation method in real-world
applications.

6 Related Work - Community Computing

Community Computing [20] is the community-based service development
methodology, proposed to develop ubiquitous spaces. Community computing focuses
on how ubiquitous spaces satisfy their requirements with cooperation between
predefined entities while the existing distributed object approaches focus on what
entities are needed to satisfy the requirements. A community computing system
means that a service providing system developed using the community computing
model. A ubiquitous space can be developed as a community computing system, and
the requirements of a ubiquitous space are fulfilled by communities.

To development a community computing system, community computing takes the
development process with the MDA (Model Driven Architecture) approach. The
MDA is an approach to system development, which increases the power of models in
that work. It proposes to start the process by building high-level abstraction models
obtained by requirement analysis, and then refine them until obtain models that
directly represents the final system. For applying MDA approach to the development
process of the community computing systems, three different abstraction model is
proposed: Community Computing Model (CCM) as the most high-level abstraction
model, Platform Independent Community Computing Implementation Model (CIM-
PI) as implementation model without platform specific features, and Platform Specific
Community Computing Implementation Model (CIM-PS) as complete implemen-
tation model as real-world application.

Social concept of Community computing is similar to describing in this paper. But,
not yet, context modeling and context-awareness do not provided in community
computing model. Since context-awareness is essential element to realize ubiquitous
computing system, community computing must meet the context. We believe that
community computing can more powerful model to develop ubiquitous computing
system with context-awareness using context ontology proposed in this paper.

 Context-Based Cooperation Architecture for Ubiquitous Environment 181

7 Conclusion

In this paper, we describe context ontology for cooperation system in ubiquitous
computing environment, and propose organizational structure and cooperation
processes based on context ontology. Context ontology represents not only
information of physical environments, but also cooperative or organizational
information required when cooperating between members. By using this ontology,
cooperation system can provide context model and context-awareness improving the
performance of system. Based on our context ontology, we also present
Organizational architecture composed of society, community and members. This
architecture supports a dynamic way to solve unpredictable problem in ubiquitous
environment. However, there are several issues that need to be considered in future
works.

• Completion of context ontology and writing in OWL: current context ontology has
some weakness for organizing physical ontologies with cooperative and social
ontologies. And to develop real-world application with context ontology for
sharing and reusing context, it is good to publish context ontology using
recommended ontology language OWL.

• Explicit description of ontology reasoning: main component of proposed
architecture is the reasoning engine supporting various ontological processes. As
yet, we describe reasoning process implicitly, but for completion of context
management and cooperation system, we need to explicit reasoning mechanism
with well-performed reasoning engine.

• Practical uses with Community Computing: community computing introduced in
previous section is good to be exploited context ontology. With context ontology,
community computing will have ability to manage context, and then will solve
context-related problems such as resolving conflict.

Acknowledgments. This research is supported by the ubiquitous Computing and
Network (UCN) Project, the Ministry of Information and Communication (MIC) 21st
Century Frontier R&D Program in Korea.

References

1. Anind K. Dey, “Understanding and Using Context”, Personal and Ubiquitous Computing,
Special Issue on Situated Interaction and Ubiquitous Computing, vol. 5(1), 2001

2. Paul Prekop and Mark Burnett, “Activities, Context and Ubiquitous Computing”,
Computer Communications, vol. 26, p.p.1168-1176, 2003

3. A. Schmidt, M. Beigl, and H.W. Gellersen, “There is more to Context than Location”,
Computers and Graphics, vol. 23, p.p.893-901, 1999

4. J. Ferber and O. Gutknecht, “A meta-model for the analysis and design of organization in
multi-agent systems”, In Proceedings of 3rd International Conference on Multi-agent
Systems (ICMAS’98), 1998

5. J. Ferber, O. Gutknecht, F. Michel, “From Agents to Organizations : An Organizational
View of Multi-agent Systems”, In Proceedings of AOSE 2003, Australia, 2003

182 M. Kim et al.

6. G. Cabri, L. Leonardi, F. Zambonelli, “A Framework for Flexible Role-based Interactions
in Multi-agent System”, In Proceedings of the 2003 Conference on Cooperative
Information Systems (CoopIS), Italy, 2003

7. G. Cabri, L. Ferrari, L. Leonardi. “Agent Role-based Collaboration and Coordination: a
Survey About Existing Approaches”, In Proceedings of the 2004 IEEE systems, Man and
Cybernetics Conference, Netherlands, 2004

8. M. Wooldridge, Nicholas R. J. “The Gaia Methodology for Agent-oriented Analysis and
Design”, Autonomous Agents and Multi-Agent Systems, 3, p.p. 285-312, 2000

9. R. Jennings, et. al. “Developing Multiagent Systems: The Gaia Methodology”, ACM
Transactions on Software Engineering and Methodology, 12, 3, p.p. 317-370, 2003

10. Xinjun Mao and Eric Yu, “Organizational and Social Concepts in Agent Oriented
Software Engineering”, 5th International Workshop, AOSE 2004, New York, USA, July
19, 2004.

11. V. Dignum, J-J. Meyer, H. Weigand, and F. Dignum, “An organizational-oriented model
for agent societies” In Proceedings of International Workshop on Regulated Agent-Based
Social Systems: Theories and Applications (RASTA'02) at AAMAS'02, 2002.

12. Akio Sashima, Noriaki Izumi, Koichi Kurumatani, Yoshiyuki Kotani, “Towards Social
Role-Aware Agents in Ubiquitous Computing”, Proceedings of ubicomp2005, Japan, 2005

13. T. Strang and C. Linnhoff-popien, “A Context Modeling Survey”, In Proceedings of 1st
International workshop on Advanced Context modeling, Reasoning and Management
UbiComp2004, 2004

14. T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web”, Scientific American,
p.p.35-43, 2001

15. Harry Chen, Tim Finin, and Anupam Joshi, "The SOUPA Ontology for Pervasive
Computing", Ontologies for Agents: Theory and Experiences, Springer, July 2005

16. Xiao Hang Wang, Tao Gu, Da Qing Zhang, Hung Keng Pung, "Ontology Based Context
Modeling and Reasoning using OWL", In Proceedings of Workshop on Context Modeling
and Reasoning(CoMoRea 2004), In conjunction with the Second IEEE International
Conference on Pervasive Computing and Communications (PerCom 2004), Orlando,
Florida USA, March 2004

17. T. Gu, X. H. Wang, H. K. Pung, D. Q. Zhang. “An Ontology-based Context Model in
Intelligent Environments”, In Proceedings of Communication Networks and Distributed
Systems Modeling and Simulation Conference (CNDS 2004), pp. 270-275. San Diego,
California, USA, January 2004.

18. Christopoulou E., Kameas A., "GAS Ontology: an ontology for collaboration among
ubiquitous computing devices", Protégé special issue of the International Journal of
Human – Computer Studies, 2004

19. Eleni Christopoulou, Christos Goumopoulos, Achilles Kameas, "Context-aware systems:
An ontology-based context management and reasoning process for UbiComp
applications", In Proceedings of the 2005 joint conference on Smart objects and ambient
intelligence: innovative context-aware services: usages and technologies sOc-EUSAI '05,
2005

20. Youna Jung, Jungtae Lee, Minkoo Kim. “Multi-agent based Community Computing
System Development with the Model Driven Architecture”, In Proceedings of 5th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Japan, 2006.

	Introduction
	Cooperation Systems for Ubiquitous Computing
	Role-Based Approaches
	Social Concept Centered Approaches

	Context and Context Modeling
	Scenario in Ubiquitous Environment
	Context
	Ontological Approach for Context Modeling

	Context Ontology for Ubiquitous System
	Cooperation System Using Context Ontology
	Related Work - Community Computing
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

