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Abstract. In this article, a formal approach for modeling central con-
cepts of context-awareness in ubiquitous and mobile computing is intro-
duced. The focus is on an appropriate handling of issues of vagueness
and granularity in ubiquitous computing environments. A formalization
of perceptual and sensory uncertainty and a characterization of granular-
ity are applied for modeling three central aspects of context-awareness:
context as retrieved from sensors, context for representing relevance, and
context as unfocussed background information. The notions are devel-
oped and demonstrated with respect to the special case of spatial con-
texts, but are sufficiently general to also cover other types of context. Use
of the characterized concepts is motivated with an example of ongoing
work on ontology design for ubiquitous computing environments.

1 Introduction

Vagueness and uncertainty arising from limited sensory accuracy and the dy-
namic of an environment flexibly adapting during user interaction pose cen-
tral challenges to context modeling and ontology design for ubiquitous comput-
ing environments. Several definitions for context and context-awareness exist
[5, 10, 25, 26] resulting in different perspectives and approaches to establish-
ing context-awareness in computing environments. Nevertheless, central aspects
and challenges have been identified. Three aspects of context constitute the
conceptual basis for this article: context as retrieved from sensors, context for
representing relevance, and context as unfocussed background information.

Context retrieved from sensors provides information about the context of the
user in the physical world [26]. A central challenge in modeling information
from sensors in an application is how to model the uncertainty resulting from
the inevitable limitations of accuracy.

Context for representing relevance makes advanced human-computer inter-
face techniques, such as proximate selection [25], possible. A representation of
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relevance in a context can help anticipate which objects are more likely to be
desired next by a user, so that the user needs less effort for retrieving informa-
tion that is closely related to the currently displayed information. Additionally,
a representation of relevance can be used to improve efficiency of an application.

Context as unfocussed background information is information of which a user
is aware, but which is currently not in the focus. Similarly to irrelevant informa-
tion, background information can be disregarded in processing. This is used in
AI systems to reduce complexity [14]. However, a change in background infor-
mation entails a change of context, whereas a change in irrelevant information
is inconsequential.

The aims of this article are to present a formal modeling for granularity and
vagueness as core concepts underlying these three central aspects, and to use
this modeling to reveal formal links that can be used in future context-aware
applications. The formal concepts described in the article can be applied to
different types of context [26]. However, spatial context was chosen as an example
domain of special relevance, since it is not only a parameter for interaction
with a user but also influences effectivity and efficiency of ubiquitous computing
environments conceived as systems for (spatially) distributed computing [30].
Consequentially, spatial context has been a focus of interest with respect to
technical [15] as well as application-oriented questions [8], and the representation
of spatial context has emerged to be a problem of sufficient complexity to justify
a more detailed theoretical analysis.

Structure of the Article. In Sect. 2, formal properties common to uncertainty
resulting from limited sensory accuracy and perceptual vagueness are studied.
Uncertainty is represented as an interval on a scale, which can be computed from
a sensor reading and a range of accuracy, given a desired precision. Section 3
gives an outline of a theoretical framework for modeling spatial contexts, which
is based on a mereotopological notion of regions. The formal notions of context
for representing relevance and of context as unfocussed background are then il-
lustrated for the example of spatial contexts in Sect. 4. In Sect. 5, a method for
developing and modifying a granular spatial context representation for ubiqui-
tous computing environments is sketched. A summary and an outlook on ongoing
research are given in Sect. 6.

2 Sensory Input and Perceptual Vagueness

Vagueness resulting from the limited accuracy of sensors is not only a problem for
ubiquitous computing and robotics, the human perceptual system has to handle
similar restrictions. In this section, formal links between sensory uncertainty and
perceptual vagueness are traced back to results from basic measurement theory.
Applicability of the formal notions is demonstrated with composition tables for
qualitative reasoning1 about uncertain perceptions and measurements.

1 For an introduction to qualitative reasoning cf. Cohn and Hazarika [9], Galton [13];
for a discussion on the role of composition tables for ontologies cf. Eschenbach [12].
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2.1 Perceptual Vagueness

Vagueness in the human perceptual systems has been studied in psychophysi-
cal experiments on distinguishability, e.g., of colors or lengths (for an overview
cf. [22], p. 671): subjects were shown two lines successively or in horizontal align-
ment, so that direct comparison of lengths was not possible, and were then asked
to judge, whether the lines had been of the same lengths or of different lengths.
The experiments showed that lengths of less than a certain difference could not
be distinguished. In comparison with a line of 10 cm, e.g., a line of 10.5 cm was
judged to have the same length, and subjects could not indicate which of the
two lines was shorter, whereas a line of 11 cm was noticeably longer. Accordingly,
this difference is called the just noticeable difference (JND).

The mathematical properties of the relations perceivably smaller and of indis-
tinguishable length as given by the experiments can be formally characterized by
a semiorder (≺) and an indistinguishability relation (≈), respectively. Axioms
A1–A4 give the characterization proposed in [31]. Semiorders are irreflexive (A1).
Given two ordered pairs of values, either the smaller of the first is smaller than
the larger of the second pair, or the smaller of the second pair is smaller than the
larger of the first pair (A2). If three values are ordered according to ≺, then every
further value is smaller than the largest of the triple or larger than the smallest
(A3). Two values are indistinguishable, iff they cannot be ordered (A4).2

∀x : ¬x ≺ x (A1)
∀x1, x

′
1, x2, x

′
2 : x1 ≺ x′

1 ∧ x2 ≺ x′
2 → x1 ≺ x′

2 ∨ x2 ≺ x′
1 (A2)

∀x1, x2, x3, x : x1 ≺ x2 ∧ x2 ≺ x3 → x1 ≺ x ∨ x ≺ x3 (A3)
∀x, x′ : x ≈ x′ ↔ ¬(x ≺ x′ ∨ x′ ≺ x) (A4)

The relations ≈, ≺ and its inverse relation 	 are mutually exclusive and ex-
haustive relations on the domain of possible lengths. For reasoning about these
relations, the composition table 1(a) can be used, e.g.: if x is unnoticeably smaller
than y (row: x ≺ y) and y is indistinguishable from z (column: y ≈ z), then we
can infer that x must be perceivably smaller than, or indistinguishable from z
(entry: ≺, ≈; to be read as: x ≺ z ∨ x ≈ z).

A particularly interesting property of semiorders is that we can obtain more
certain information from uncertain information by subsequent observations: if x1
in reality is smaller than x2, then, given all possible lengths, there is an x that
is large enough to be distinguishably larger than x1, but still not perceivably
different from x2; cf. van Deemter [32] for a discussion of this property and
its usage with respect to linguistic notions of context. Using this property, the
relation ≈ can be split up into three relations =, � (unnoticeably smaller) and
its inverse relation �, so that also inferable relations between lengths can be

2 In order to abbreviate formulae and to reduce the number of brackets, the scope
of quantifiers is to be read as maximal, i.e. until the end of a formula, or until
the closing bracket of a pair of brackets containing the quantifier. Additionally, the
following precedence applies: ¬, ∧, ∨, →, ↔,

def⇔.
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Table 1. Composition table with three relations: smaller (≺), indistinguishable (≈),
larger (	) (a) and composition table with more specific inferred information (b) derived
from Tab. 2. The asterisk (∗) represents a situation in which no information can be
inferred, i.e., any of the relations is possible.

≺ ≈ 	
≺ ≺ ≺, ≈ ∗
≈ ≺, ≈ ∗ ≈, 	
	 ∗ ≈, 	 	

(a)

≺ ≈ 	
≺ ≺ ≺,� ∗
≈ ≺, � ∗ �, 	
	 ∗ �,	 	

(b)

represented. The relation � holds between two values x1 and x2, iff the two are
indistinguishable, and there is a third value that is noticeably larger than x1
but still indistinguishable from x2; in this case, x1 is smaller, but not noticeably
smaller, than x2 (D1):

x1 � x2
def⇔ x1 ≈ x2 ∧ ∃x : x1 ≺ x ∧ x2 ≈ x (D1)

Accordingly, we obtain a composition table of five exhaustive and mutually ex-
clusive relations between lengths (Tab. 2). Comparison of (a) and (b) in Tab. 1
shows how the use of � contributes to the elimination of vagueness in continued
observation and inference: in four cases in which (a) contains indistinguishability,
inference of more specific information is possible in (b).

Table 2. Composition table with five exhaustive and mutually exclusive relations:
smaller (≺), unnoticeably smaller (�), equal (=), unnoticeably larger (�), larger (	).
The asterisk (∗) represents a situation in which no information can be inferred.

≺ � = � 	
≺ ≺ ≺ ≺ ≺, � ∗
� ≺ �, ≺ � �, =, � �, 	
= ≺ � = � 	
� �, ≺ �, =, � � 	, � 	
	 ∗ �, 	 	 	 	

2.2 Uncertainty from Sensors

We can now compare uncertainty from perception with uncertainty from sensors
by showing that accuracy intervals are a model of the axiomatic characterization
presented above.

The vagueness associated with sensory input can be specified by an interval
of accuracy and a precision expressed as a percentage [15], e.g.: a temperature
sensor giving 10 ◦C with an accuracy of ±1 ◦C at a precision of 95 % means that
the true temperature is in the interval [9 ◦C, 11 ◦C] with a probability of 95 %.
Conversely, we could state that a value of 10 ◦C in the world will in 95 % of
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all cases result in a sensory reading in the interval [9 ◦C, 11 ◦C]. For simplifying
the following discussion, the two perspectives are called sensor perspective and
world perspective, respectively. In the specification of the accuracy of a sensor
reading, a sensor perspective is assumed; the notion of indistinguishability in
Sect. 2.1, in contrast, indicates a world perspective, as it refers to objects in the
world. Furthermore, the discussion focusses on accuracy, with precision being
regarded as a fixed value specifying overall reliability of a system. A more detailed
treatment is beyond the scope of this article.

For sensors such as the thermometer described above, the domain of possible
sensor readings can be given as the set IT of closed, convex intervals of unit
length within a range [tmin, tmax] on R:

IT = {[t − 1, t + 1] | t ∈ [tmin, tmax]}

Chalmers et al. [7], assuming a sensor perspective, present a similar approach
for reasoning about context in the presence of uncertainty, which is based on ar-
bitrary intervals. However, the full set of 13 interval relations [1] is not necessary
for the domain of IT , since no interval of IT can contain another interval of IT .
In fact, the five relations, which correspond to the relations ≺, �, =, �, 	 are
sufficient, as IT can be shown to be a model of the axiomatic characterization
presented above with the following interpretations for ≺ and �:3 ≺IT holds be-
tween two unit intervals iff the first ends before the second begins, �IT holds iff
the second interval starts after, but within the duration of the first interval.

≺IT

def= {([t1 − 1, t1 + 1], [t2 − 1, t2 + 1]) | t1 + 1 < t2 − 1}
�IT

def= {([t1 − 1, t1 + 1], [t2 − 1, t2 + 1]) | t1 − 1 < t2 − 1 ≤ t1 + 1}

The differences between the two perspectives show, if we look at the relations
between values in the world which can be inferred from sensory readings. The
statement [t1 − 1, t1 + 1] � [t2 − 1, t2 + 1] under a world perspective means for
the actual values t1 and t2 in the world: t1 < t2. Under a sensor perspective the
statement [t′1 − 1, t′1 + 1] � [t′2 − 1, t′2 + 1] for sensor readings t′1 and t′2 entails
only vague information about the actual values in the world: t′1 < t′2 and thus
[t′1 − 1, t′1 + 1] � [t′2 − 1, t′2 + 1] in the domain of sensory values entails only
[t1 −1, t1 +1] ≈ [t2 −1, t2 +1] for the measured actual values. Using composition
table (b) of Tab. 1, knowledge regarding � in the world domain can be obtained
with multiple measurements. For actual applications, however, imprecision limits
the maximally usable number of measurements.

Uncertainty resulting from limited sensory accuracy is not only a critical chal-
lenge for the representation and processing of information about the physical con-
text of a user in ubiquitous and mobile computing. Likewise, knowledge about
contextual parameters that are assumed by a user is accessible only indirectly
to an application. Accordingly, the relations of semiorder and indistinguishabil-
ity were employed to model granularity as a dynamically changing parameter

3 The proof follows along the lines of the one given in [31]. Cf. also [29].
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of context in human-computer interaction [29]. In [29], the example of temporal
granularity was examined. An extension to the more complex case of spatial
granularity is described in Sect. 4.

3 Spatial Context

Two models of location are employed in ubiquitous and mobile computing [8]:
geometric and symbolic location models. This distinction has both technical and
semantic aspects. Hightower and Borriello [15] accordingly differentiate between
two types of spatial information a location system may provide: the coordinate-
based information provided, e.g., by GPS is called physical position; symbolic
location information, in contrast, is used in location systems that employ sensors
that only determine whether or not objects are in a certain stationary or mobile
area. Concerning information processing, the retrieved information is numerical
in the first case and boolean or textual – e.g. the ID of an object detected by
the sensor – in the second case.

This technical distinction is mirrored on the semantic level: coordinate-based
information can directly be interpreted spatially, if the used reference system
and resolution are known; in contrast, the spatial information in symbolic loca-
tion systems – i.e. how different sensor areas are spatially related – has to be
provided externally, either during installation of the system or via inference from
coordinate-based information. Concerning resolution, coordinate-based informa-
tion, e.g. obtained from GPS, has a certain limited accuracy, whereas symbolic
location systems, such as the system described by Schilit and Theimer [24], can
be organized in a hierarchical manner based on the relation of spatial contain-
ment, so as to provide arbitrarily fine spatial distinctions. However, the spa-
tial notion of resolution or size is usually not represented in symbolic location
systems.

Location-aware systems for heterogeneous environments need to incorporate
both sources of location information. Hybrid location models have been specified
to address this need [18, 21]. The formal framework proposed in the following
sections is related to these approaches, and provides a theoretical foundation
for improving hybrid location models. The characterization of regions given in
Sect. 3.1 provides the basic relations of containment and overlap used in the sym-
bolic location model; in Sect. 3.2, rudimentary notions of resolution or grain-size
are added to this framework, in order to make it compatible with coordinate-
based location models and to allow stratification according to grain-size. The
resulting framework for hybrid location models, similar to the one of Leonhardt
[21], is based on the relations of containment and overlap, but additionally con-
tains representations for resolution and size. A location model equipped with
methods to handle granularity (Sect. 4) can be key to improving scalability and
interoperability of location-aware systems. Section 5 illustrates this claim with
the sketch of a non-partitioning stratification methodology.
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3.1 Regions

A mereotopological framework is chosen as a foundation for characterizing re-
gions [2, 6, 23]: the basic relation C of mereotopology, stating that two regions
are connected, can be characterized as a reflexive (A5) and symmetric relation
(A6); the relation � holding between a region and its parts can then be defined
in terms of C (D2): x is part of y, iff every region that is connected to x is also
connected to y.

∀x : C(x, x) (A5)
∀x, y : C(x, y) → C(y, x) (A6)

x � y
def⇔ ∀z : C(x, z) → C(y, z) (D2)

This rudimentary foundation suffices for present purposes, as � gives the basic
ordering constraints on the sizes of regions that are used in the following: it can
be shown that � is a reflexive, antisymmetric relation. For a thorough treatment
of mereotopological ontological questions, however, a more elaborate framework
would be needed [2, 6, 23].

3.2 Extended Locations: Regions with a Unique Size

In order to develop a notion of grain-size, an ordering relation ≤ (smaller or of
equal size) describing basic size constraints between two regions is used. Follow-
ing Dugat et al. [11], a suitable relation ≤ can be axiomatized as a reflexive (A7)
and transitive relation (A8) holding, inter alia, between a region and its parts
(A9). The relation can be used to define a notion of congruence of a special class
of regions – here called: extended locations –, upon which Dugat et al. following
Borgo et al. [4] then build a geometry of spheres. Extended locations are char-
acterized with a predicate L as a special class of regions on which ≤ yields a
linear order (A10):

∀x : x ≤ x (A7)
∀x, y, z : x ≤ y ∧ y ≤ z → x ≤ z (A8)

∀x, y : x � y → x ≤ y (A9)
∀x, y : L(x) ∧ L(y) → x ≤ y ∨ y ≤ x (A10)

Additional relations ≡ (same size) and < (smaller) can be defined:

x ≡ y
def⇔ x ≤ y ∧ y ≤ x (D3)

x < y
def⇔ x ≤ y ∧ ¬y ≤ x (D4)

Spheres are one example of a class of regions that adhere to the requirements
for extended locations L, since two spheres can always be ordered according
to their diameter. In contrast to the spheres of Dugat et al. [11] however, the
extended locations are not restricted further in shape or topology. Additionally,
the notion of size is used here for illustrating the partial order ≤ on regions, but
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a formal characterization of size as related to distance in a metric sense would
require further restrictions and is beyond the scope of this paper; for geometric
characterizations cf. [4, 11, 27, 28]. The main advantage of the less restrictive
formalization chosen here is that it encompasses a broad range of models and
therewith modeling alternatives for developers of location aware systems, as
illustrated in Sect. 5 below.

4 Spatial Relevance and Spatial Background

Notions of context for representing relevance and of context as unfocussed back-
ground information can be formally specified based on a characterization of
granularity [29]. Mechanisms for representing, and reasoning about, granular-
ity are a means to filter and simplify complex domains, so as to focus on the
currently relevant objects and attributes [16]. Spatial granularity is largely de-
termined by the concept of grain-size. It can be used to restrict the set of objects
under consideration to the subset of objects having at least a certain minimal
size. A further component of spatial relevance is proximity. Objects which are
within a certain range of currently relevant objects are more likely to be relevant
than remote objects. This concept is fundamental for the interface technique of
proximate selection [25]. Linking the concept of ranges of proximity to the notion
of grain-size, we can ensure that the number of objects currently under consid-
eration can be kept small: as we focus on a smaller area, i.e. zoom into a scene,
objects further away become irrelevant, and smaller details become relevant.4

Based on the notion of extended locations, a stratification of space into an
ordering of levels of granularity can now be characterized. The characterization
is based upon the primitive relation |� between extended locations, with x |� y
denoting that x is a grain location of the context location y. The grains thus
represent the smallest possibly relevant locations, whereas the context location
provides the maximal range of proximity and determines the background: an
object that is contained in a location smaller than a grain can be classified
as irrelevant; an object containing the context location can be classified as a
background object, since all objects relevant in the context lie within its region.

Axiom A11 states that grains are ubiquitous within a context location: every
region connected to a context location that has a grain is also connected to a
grain. It is worth noting that this axiom is the only ontological axiom in a narrow
sense, as it actually guarantees existence of regions under certain conditions.
From an application point of view, the axiom demands minimum requirements
on availability of fine-grained location services. The second axiom (A12) states
that grains and context locations are extended locations, and that the grains of
a context location are contained in the location. Axiom A13 gives the central
restriction on the ordering of levels of granularity: grains are ordered in the same
way as their respective context locations and vice versa. As a consequence, all
grains of a context location have equal extension (1).
4 For a discussion on the photo metaphor see §1.6 in [13]; for empirical evidence

regarding phenomena of granularity in spatial imagery see Kosslyn [20].



152 H.R. Schmidtke and W. Woo

∀c, g, x : C(x, c) ∧ g |� c → ∃g′ : g′ |� c ∧ C(x, g′) (A11)
∀c, g : g |� c → L(g) ∧ L(c) ∧ g � c ∧ g �= c (A12)

∀c1, c2, x1, x2 : x1 |� c1 ∧ x2 |� c2 → [c1 < c2 ↔ x1 < x2] (A13)
∀c, x, y : x |� c ∧ y |� c → x ≡ y (1)

The ordering on levels of granularity can be characterized with relations ≺
and ≈: c1 is of finer granularity than c2, iff there is a grain of c2 that is larger
than c1 (D5); c1 is of compatible granularity with c2, iff c1 is not smaller than
any grain of c2 and c2 is not smaller than any grain of c1 (D6). The predicate
CL (proper context location) selects those extended locations which have grain
locations (D7).

c1 ≺ c2
def⇔ ∃g : g |� c2 ∧ c1 < g (D5)

c1 ≈ c2
def⇔ ∀g1, g2 : g1 |� c1 ∧ g2 |� c2 → g1 ≤ c2 ∧ g2 ≤ c1 (D6)

CL(x) def⇔ ∃g : g |� x (D7)

It can be shown (Sect. A) that, if restricted to the class of CL-locations (D7),
≺ actually is a semiorder with ≈ as a relation of indistinguishability, as the
use of the symbols suggests. The axiomatization thus supports representation
of the vagueness associated with the notion of granularity as a parameter of
interaction with a user: the actual granularity conceptualized by the user, like
the actual values measured by a sensor, can be modeled as an indirectly accessible
parameter.

The above axioms are neutral with respect to the question whether space
is partitioned by grain locations. Axiom A11 demands that context locations
having a grain location are completely covered by grains, but allows for grains
to overlap. Axiom A13 does not restrict this either. For a partitioning approach
to modeling spatial granularity cf. Bittner and Smith [3].

5 Application: Stratification of a Ubiquitous Computing
Environment

With the ordering on levels of granularity being anchored in the containment
hierarchy, a context management system that keeps containment information can
be modified to handle information about levels of granularity: first, constraints
on the sizes of regions have to be extracted; second, sizes which are particularly
important throughout the whole domain of application have to be identified;
these sizes are then used in the third step to stratify the domain. If the third
step has been performed in a consistent way, further regions and strata can be
flexibly incorporated into the system, when new location sensing components
are to be added to an environment.

Step 1: Size Constraints. A consistent hierarchy of sizes on which to base the
stratification of a domain can be obtained from a given containment hierarchy.
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(a)

A0

A10 A11 A12

A20 A21

y0

x1x0

y1

(b) (c)

x

A12y

(d)

Fig. 1. A containment hierarchy (relation �) describing a set of symbolic locations
(a) can be enriched with extended locations representing possible coordinate-based
locations based on knowledge about the extension of regions (b). After unification of
equally extended locations (≡), we obtain a corresponding hierarchy of sizes (relation
≤, c). The region A12 is an example of a region that is contained in an extended location
x, but neither contains nor is contained in any location of the same extension as y (d).

(a) (b) (c)

Fig. 2. Schematic of the graph of a containment hierarchy (horizontal lines indicate
extended locations of the same equivalence class with respect to ≡, vertical lines il-
lustrate the extent of strata): alternative (gray) for stratifying the upper part of the
hierarchy (a), partitioning stratification (b), and non-partitioning stratification (c).

All necessary information on size constraints, as specified by the above axioms,
can then be derived by replacing every occurrence of � with ≤ as justified by
(A9). Figure 1(a) shows a simple example for a containment hierarchy.

Step 2: Extended Locations. The procedure of the first step is sufficient for mod-
eling arbitrary fixed containment structures. The need to introduce extended
locations arises when mobile devices and location sensors providing coordinate-
based locations are used. The region representing a specific GPS-signal, for in-
stance, can be specified as a circle corresponding to the accuracy of the signal
around the currently measured GPS-coordinate (Sect. 2). If this accuracy and
with it the size of the region does not change with the place where it is mea-
sured – or if the accuracy changes, but is known – the mobile device provides an
absolute measure for comparing disjoint spatial regions. If the extensions of the
regions collected in step 1 are known, we can compute the regions corresponding
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to possible measurements of a coordinate-based location sensor as the extended
locations and enter these into the hierarchy of sizes (for a discussion of methods
cf. Leonhardt [21] on semi-symbolic location hierarchies). Since the extended lo-
cations have to be linearly ordered with respect to ≤, the classes of regions that
are extended locations of the same equivalence class with respect to ≡ have to be
selected carefully, so as to avoid inconsistencies. Figure 2(a) shows a schematic
of a ≤-hierarchy with two possible alternatives (crossing lines) for separating the
upper part of the hierarchy, between which a developer would have to chose.

Step 3: Stratification. With the extended locations entered in the ≤-graph, a
stratification of the domain of sizes can be derived. Figure 2 illustrates two pos-
sible options for stratifying a containment hierarchy with three size levels: in
(b), four non-overlapping levels of granularity were generated, whereas, in (c),
three overlapping levels of granularity were chosen. A non-overlapping stratifica-
tion has the advantage of providing smaller strata; an overlapping stratification
allows for modeling smooth transitions between levels of granularity [29].

Step 4: Modification. A difficult problem in software development is how to
ascertain a sufficient flexibility of used representations, so that later refactoring
can be avoided or kept to a minimum. The proposed formal structure supports
this effort in so far as results from previous steps are not affected when the
structure is changed: a change in the stratification (step 3) does not entail re-
developments at earlier steps. In fact, new strata of granularity can simply be
added to an existing granularity structure, because the strata are not required
to partition the domain of sizes. Likewise, adding new fixed regions (step 1) or
mobile sensors (step 2) requires only local updating in the ≤-graph.

6 Outlook and Conclusions

This article presented a formal comparison of perceptual and sensory vagueness
and a characterization of granularity applied to the domain of spatial contexts.
The characterizations were used to model central aspects of context-awareness:
uncertainty of contextual information was modeled using the notion of indis-
tinguishability; context-dependent relevance was represented with the concept
of granularity. Granularity provides the notion of grain-size – determining the
smallest represented details – as well as the notion of context location – speci-
fying a maximal range of proximity and the unfocussed background of current
interactions with a user.

The proposed spatial framework can be used for reasoning as well as for spec-
ification purposes: as a characterization of space as obtained from sensors in a
heterogeneous ubiquitous computing environment, it can be employed in spec-
ifying, checking, and proving availability and reliability of spatially distributed
services, e.g., for safety critical applications; as a logical language for describ-
ing spatial layouts, it can be used for reasoning, e.g., in tools for diagnosis and
automatic configuration of ubiquitous computing environments.
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With respect to semantic web applications and related developments, the pro-
posed language can be employed for describing the local spatial ontology of a
ubiquitous computing environment, so that the configuration of an environment
can be communicated to a user’s devices. Both availability of services in the envi-
ronment and necessary devices on the user’s side contribute to the actual spatial
configuration of which the user’s mobile devices and services in the environment
can make use.

Future work includes the application of the specified concepts and methodol-
ogy for defining a flexible and extensible ontology for Ubiquitous Smart Spaces.
This ontology has to incorporate a broad variety of different location sensing
technologies, such as: a stationary IR-based sensor system for location and ori-
entation tracking [19], and a computer vision based system for gesture recogni-
tion [17].

Nevertheless, application of the proposed framework is not restricted to mod-
eling spatial context. The mereotopological basis is neutral with respect to di-
mensionality, so that spaces of arbitrary dimensionality can be represented. The
formalization can be applied for any context modeling domain that uses both
coordinate-based information with fixed resolutions and symbolic information in
a containment hierarchy.
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A Proof: Definition D5 Defines a Semiorder on
CL-Locations

∀c : CL(c) → ¬c ≺ c (2)

∀c1, c
′
1, c2, c

′
2 : CL(c1) ∧ CL(c′1) ∧ CL(c2) ∧ CL(c′2) ∧ c1 ≺ c′1 ∧ c2 ≺ c′2

→ c1 ≺ c′2 ∨ c2 ≺ c′1
(3)

∀c1, c2, c3, c : CL(c) ∧ CL(c1) ∧ CL(c2) ∧ CL(c3) ∧ c1 ≺ c2 ∧ c2 ≺ c3

→ c1 ≺ c ∨ c ≺ c3
(4)

∀c, c′ : CL(c) ∧ CL(c′) → (c ≈ c′ ↔ ¬(c ≺ c′ ∨ c′ ≺ c)) (5)

Irreflexivity (2) follows by transitivity (A8) from the irreflexivity of <.

Proof (3). Assume four CL-locations c1, c
′
1, c2, c

′
2 with c1 ≺ c′1, c2 ≺ c′2, and

¬c1 ≺ c′2 given. Then by (D5), there are grain locations g′1 of c′1 and g′2 of c′2
with c1 < g′1 and c2 < g′2. With the third condition ¬c1 ≺ c′2, we know that no
grain of c′2 is larger than c1, and thus particularly ¬c1 < g′2. By linearity of ≤
(A10) on extended locations and (D4) follows g′2 ≤ c1. Using transitivity (A8)
the following order can be inferred: c2 < g′2 < g′1. And thus (D5): c2 ≺ c′1.

Proof (4). Assume four CL-locations c1, c2, c3, c with c1 ≺ c2, c2 ≺ c3. Then
there exist grain locations g2 of c2 and g3 of c3 with c1 < g2 and c2 < g3 (D5).
Using linearity (A10), we know that c ≤ c2 or c2 ≤ c holds.

For the case c ≤ c2, we infer from c2 < g3 by transitivity (A8) that c < g3
and thus c ≺ c3.

For the case c2 ≤ c, we infer by (A13) and the requirement that c be a CL-
location (D7), that c has a grain location g, so that g2 ≤ g. By transitivity (A8)
and c1 < g2 this entails that c1 < g and thus c1 ≺ c.

Proof (5). Assume c and c′ are CL-locations. We then know that they have grain
locations g and g′, respectively, and that for all such grain locations follows: g < c
and g′ < c′ (A12) and (A9), since by (A13) all grains of a context location have
the same size, i.e. behave in the same way with respect to ≤. The theorem then
follows directly from (D6) and (D5), since g ≤ c′ and g′ ≤ c holds iff ¬c′ < g
and ¬c < g′ (D4).
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