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Abstract. We show that timely induction of random failures can potentially be
used to mount very cost effective attacks against smartcards deploying crypto-
graphic schemes based on (right-to-left) modular exponentiation. We introduce a
model where an external perturbation, or glitch, may cause a single modular mul-
tiplication to produce a truly random result. Based on this assumption, we present
a probabilistic attack against the implemented cryptosystem. Under reasonable
assumptions, we prove that using a single faulty signature the attack recovers a
target bit of the secret exponent with an error probability bounded by 3

7 . We show
the attack is effective even in the presence of message blinding.
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1 Introduction

In the past decade, a variety of potential attacks against supposedly tamper-proof de-
vices have been put forward. Many of these attacks exploit side-channel information,
such as that provided by timing analysis [11], differential power analysis [12], or com-
putation faults [3,2,9,8,13].

In this paper, we focus on attacks against implementations of public-key cryptosys-
tems based on modular exponentiation, such as RSA, El-Gamal and Diffie-Hellman. The
Bellcore attack [9] revealed that induction of random faults in a device implementing
RSA decryption with the Chinese Remainder Theorem (CRT) optimization could lead to
disclosure of the key material.

Subsequent works have extended fault-analysis beyond CRT-based exponentiation.
While revealing many potential weaknesses, these extensions have often been regarded
as too idealized [1]. The original Bellcore attack just made use of one random computa-
tion fault. Subsequent models typically assumed the ability of the attacker to selectively
alter the content of data registers, like flipping a few individual bits of the exponent [5],
or modifying a segment of a register during the execution of a modular multiplication
(e.g. the safe errors of [17]).

In the present paper we consider a model where truly random, hence "practical",
computation faults are combined with a simple form of timing control. As pointed out
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by several works [4,6,15], it is relatively simple to induce random computational er-
rors in smartcards using glitch-based techniques. A glitch is an external perturbation,
like a rapid variation in the clock frequency or power supply voltage, which causes a
malfunction of the device. The effect of a glitch could be having a few instructions
skipped or misinterpreted by the processor. The induced error is transient in the sense
that the device will generally resume its correct functioning some µ-seconds after the
glitch, with possibly the only observable effect of data corruption in some register. To
quote Bar-El et al. [6], who have experimented using this technique: for a certain set
of experiments, "the outcome was that the value of the data could be corrupted, while
the interpretation of instruction was left unchanged.". According to [6], this method
is widely researched and practiced behind closed doors by the smartcard industry. An
alternative to this technique is optical fault induction, presented by Skorobogatov and
Anderson in [15].

Given these premises, we can formulate our basic assumption as follows: a glitch
applied during the execution of a modular multiplication A ← B ·C mod n will result
in a random value to be written into register A. This assumption seems reasonable, as
execution of a modular multiplication provides a time window wide enough to allow a
processor to resume its correct functioning after the glitch and before the next operation.
Another relevant assumption we make is that the attacker has a control on the timing of
the device that is fine enough to allow the choice of an appropriate instant in time for
applying the glitch. This assumption (already present in other works on fault analysis)
is justified by the circumstance that the clock signal is supplied to the device by an
external card reader, which is presumably controlled by the attacker. In any case, we
will show that precision in timing control can be traded off with success probability of
the attack.

The basic idea is of the attack is easily explained. We focus on the right-to-left binary
exponentiation algorithm (see e.g. [10]). For the purpose of illustration, suppose that
the device implements the RSA signature scheme with secret exponent d and modulus
n, and suppose for simplicity that the message to be signed is a quadratic residue mod
n. Assuming the attacker has already determined the i− 1 least significant bits of d, he
can determine the initial instant in time of the ith iteration (the one dealing with the ith

bit of d), and apply a glitch during the squaring operation that immediately precedes
this iteration. As a result, a random r will be written in a certain register in place of the
squaring correct result. Then, if bit di is set, the attacker will observe a faulty signature
of the form r ·C2, otherwise the observed faulty signature will be of the form C2, for
some C. With high probability, the attacker can tell these two cases apart by computing
the Jacobi symbol of the faulty signature, thus determining the ith bit of the exponent.

The rest of the paper is organized as follows. In Section 2 some preliminary notions
are recalled. Section 3 introduce the basic model, where the attacker has a complete
control on timing (the multiplication time is constant and known to the attacker, time
due to control flow instructions is ignored). Section 4 presents the attack based on this
model as a probabilistic algorithm. The attack is presented in detail for the case of a
RSA modulus; the obvious modifications for a prime modulus are outlined. The results
of some software simulations are also discussed. Section 5 extends the model and the
attack to the case where time is randomized, possibly meaning partial control of the
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attacker on timing. A few software countermeasures are discussed in Section 6; the
technique of message blinding is shown to be not effective against the attack. Some
concluding remarks and lines for further research are discussed in Section 7. Details of
proofs have been confined to Appendix A.

2 Preliminary Notions

Recall (see [16]) that for a given prime p, x is a quadratic residue mod p if gcd(x, p) = 1
and x = y2 mod p for some y. If gcd(x, p) = 1 and x is not a quadratic residue mod p,
then x is called quadratic non-residue mod p.

The Jacobi symbol
(m

n

)
, for m and n integers, n ≥ 3 odd, is defined as follows. If

n = p is prime (in this case one also speaks of Legendre symbol), then

(
m
p

)
def=

⎧
⎨
⎩

1 if m is a quadratic residue mod p
−1 if m is a quadratic non-residue mod p

0 otherwise.

If k = p1 · · · pl , with p j’s primes not necessarily distinct, then
(m

n

)
is the product(

m
p1

)
· · ·

(
m
pl

)
. It can be shown that

If m = m1 · · ·mh mod n then
(m

n

)
=

(m1

n

)
· · ·

(mh

n

)
. (1)

It is well-known that
(m

n

)
can be efficiently computed without knowing the factoriza-

tions of m or n.
Suppose that n = p · q, with p,q distinct primes. Since in Zp there are exactly (p −

1)/2 quadratic residues mod p and an equal number of quadratic non-residues mod p
(similarly for q), using the Chinese Remainder Theorem and (1) above, it is immediate
to check that

|{r ∈ Zn |
( r

n

)
= −1}| = (p − 1) · (q − 1)/2 = φ(n)/2 .

where φ(·) is Euler’s totient function.

3 The Model

Throughout the rest of the paper, unless otherwise stated, we assume a fixed modu-
lus n = p · q (with p,q distinct secret primes) and a fixed document M ∈ Zn. The se-
cret exponent d ≤ n has been chosen according to some possibly unknown probability
distribution; in particular, we need not assume that d is an RSA exponent. The sig-
nature of M is S = Md mod n. Both n and d are representable in l bits, in particular
d = (dl−1 · · ·d1d0)2, where l need not to be known to the attacker.

In our scenario the attacker has got to know the device’s PIN, or the device is not
PIN operated. We also assume that the attacker controls the clock of the device, and can
apply a glitch (e.g. through a rapid variation of clock frequency) during the computation
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at an instant of his choice, and read the resulting value S′. The device can be queried
in this way repeatedly. The rest of the section is devoted to a detailed description of
algorithmic, timing and failure assumptions, and of faulty computations that can be
induced by exploiting these assumptions.

Assumptions. We assume the device implements the right-to-left exponentiation al-
gorithm (Figure 1). The algorithm uses two variables w and z, viewed as (physical or
logical) s-bit registers with s ≥ l. The value returned by the algorithm is the final content
of register w, that is the (correct) signature, S = Md mod n (see below).

Input: M
Output: S = Md mod n

w ← 11

z ← M2

for j = 0 . . . l −1 do3

if d j = 1 then w ← w · z mod n4

z ← z · z mod n5

end6

return w7

Fig. 1. The right-to-left exponentiation algorithm

Concerning timing and failures, we make the following assumptions:

1. each modular multiplication/squaring operation takes a constant time, say δ clock
cycles, and δ is a constant known to the attacker;

2. time taken by control-flow instructions is ignored, in other words, we view the
algorithm as a sequence of modular multiplications, grouped for ease of reference
into the l iterations or phases depicted in Figure 2. Each phase i takes either δ or 2δ
cycles, depending on the value of di, 0 ≤ i ≤ l − 1;

phase 0

[
if d0 = 1 then w ← w · z mod n
z ← z · z mod n

phase 1

[
if d1 = 1 then w ← w · z mod n
z ← z · z mod n

...

phase l −1

[
if dl−1 = 1 then w ← w · z mod n
z ← z · z mod n

Fig. 2. The right-to-left exponentiation algorithm as a sequence of l phases

3. a glitch applied onto the device during the execution of a modular multiplication
will result in a random value r ∈ Z2s to be written in the involved register (w or z),
in place of the multiplication’s correct result.
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(We will discard conditions 1 and 2 in Section 5.) If we denote by Ti the first cycle of
phase i in a correct computation (counting from T0 = 1), then

Ti = δ
(
i− 1 +

i−1

∑
j=0

d j
)
+ 1 0 ≤ i ≤ l − 1 . (2)

Faulty computations. Let us first analyze the use of variables w and z in a correct
execution of the algorithm. Variable z is used to store successive squaring of M; more
precisely, when entering phase i, z contains ci, where:

ci
def= M2i

mod n 0 ≤ i ≤ l − 1 .

Variable w is used to store intermediate products of the ci’s; more precisely, when leav-
ing phase i, w contains Si, where:

Si = (c0)d0 · (c1)d1 · . . . · (ci−1)di−1 · (ci)di mod n (3)

in particular at, the end of phase l − 1, S will be obtained as the product:

S = (c0)d0 · (c1)d1 · . . . · (cl−2)dl−2 · (cl−1)dl−1 = Md mod n.

Suppose the bits of the exponent from d0 to di−1 have been determined, and that
bit di must be determined, for some 0 < i ≤ l − 1; note that d0 can easily be
guessed/determined by other means (and in case d is a RSA exponent, one already
knows that d0 = 1). The attacker computes the first instant Ti of phase i using (2),
and applies a glitch at time T , for some Ti > T > Ti − δ. This glitch will affect a single
operation, i.e. the squaring z ← z · z of phase i − 1. As a consequence, a random value
r ∈ Z2s will be written in register z at the end of phase i−1. Let us see how this fault af-
fects the final result of the computation, the faulty signature S′. It is easy to see, relying
on (3) or on Figure 2, that S′ will be computed as:

S′ = (c0)d0(c1)d1 · · ·(ci−1)di−1 · rdi · (r2)di+1 · · · (r2l−i−1
)dl−1 mod n . (4)

It is convenient to sum up the above considerations in the definition below. We code
up the faulty behavior of a device where the ith bit is targeted as a random variable,
assuming d0, ...,di−1 have been determined and are fixed binary constants.

Definition 1. Let di, ...,dl−1 be binary random variables and r be a random vari-
able uniformly distributed in Z2s and independent from di, ...,dl−1. We denote by
S′(r,di, ...,dl−1) the random variable whose value is given by the RHS of (4).

4 The Basic Attack

For the rest of the section, we fix i with 0 < i ≤ l −1. The target of the attack will be bit
di, assuming that bits from d0 to di−1 have been determined. We assume without loss of
generality that: (

M
n

)
= 1 .
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We shall indicate below how to modify the attack if

(
M
n

)
�= 1 (see Remark 1 below).

Equation (4) allows an attacker to extract information about the di by computing the
Jacobi symbol of S′, i.e., by taking the result of the random variable J:

J
def=

(
S′

n

)
.

All factors of S′ different from rdi have Jacobi symbol �= −1. Hence, if one gets J = −1,
one can immediately conclude that di = 1 (by (1)). On the other hand, if one gets J �= −1

then one concludes that di is probably 0 (in case

(
M
n

)
= −1, we should just reverse the

role of ’1’ and ’−1’). For ease of reference, we code the test just outlined as a random
variable.

Definition 2 (a test for di). The random variable A is defined as:

A def=
{

1 if J = −1
0 if J �= −1.

Remark 1. Suppose that

(
M
n

)
= −1. A moment’s thought shows that the test A still

works if d0 = 0. If d0 = 1, then we can make A work by modifying it as follows:

A def=
{

1 if J = 1
0 if J �= 1.

That is, if d0 = 1 and one gets J �= −1 then from (4) one can immediately conclude that
di = 1.

Of course, if

(
M
n

)
= 0 one can immediately factor n by computing gcd(M,n). From

now onward, we shall assume without loss of generality that

(
M
n

)
= 1.

The analysis of the test A is straightforward. In the sequel, let α def= Pr[di = 1], and let

the success probability of A be ρ def= Pr[A = 1 |di = 1], where we stipulate that ρ def= 1 if

α = 0. Finally let the error probability of A be ε def= Pr[di = 1|A = 0].

Lemma 1. It holds that:

(a) Pr[di = 1|J = −1] = 1;
(b) ρ = Pr[J = −1|di = 1] ≥ φ(n)/2s+1.

PROOF: See Appendix. �
The following theorem says that A may be viewed as a Monte-Carlo type probabilistic
algorithm.

Theorem 1. The random variable A is a 1-biased probabilistic test for di, more pre-
cisely:
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(a) Pr[di = 1|A = 1] = 1;

(b) ε = (1−ρ)α
(1−ρ)α+1−α ≤

(1− φ(n)
2s+1 )α

(1− φ(n)
2s+1 )α+(1−α)

.

PROOF: Part (a) follows from Lemma 1(a). For part (b), we may assume α �= 0,1,
otherwise the wanted equality and inequality hold trivially. First observe that Pr[A =
0|di = 0] = 1−Pr[A = 1|di = 0] = 1, by part (a). Then, observe that, by definition of A,
Pr[A = 1|di = 1] = Pr[J = −1|di = 1] = ρ. Apply Bayes theorem to get:

ε = Pr[di = 1|A = 0] = Pr[A=0|di=1]·Pr[di=1]
Pr[A=0|di=1]·Pr[di=1]+Pr[A=0|di=0]·Pr[di=0]

= (1−ρ)α
(1−ρ)α+(1−α) .

The last expression is decreasing with respect to ρ in [0,1]. By Lemma 1(b) we know
that ρ ≥ φ(n)/2s+1, whence the thesis. �

As usual, one can make the error probability arbitrarily small by repeating the test m
times independently in succession, for a suitable m, for fixed values of d0, ...,dl−1. In
this case, the error probability is bounded above by:

(1 − ρ)mα
(1 − ρ)mα+ 1 − α

.

A more precise estimation of ε is obtained by making some further assumptions. In par-
ticular, it seems reasonable to assume α = 1/2 (this is not exact if d is a RSA exponent,
but seems a good approximation in practice). Let us say that n = p · q is balanced if
p and q have the same size (an integer m has size t if 2t−1 ≤ m < 2t). Finally, let us
assume that size of n fits the size s of the registers.

Corollary 1. If n is balanced and has size s and α = 1
2 then ε ≤ 3

7 .

PROOF: Since p and q have the same size, it must be p,q > 2
s−1

2 . Easy calculations then
yields φ(n)/2s+1 ≥ 1/4. When we substitute this value for φ(n)/2s+1 and 1/2 for α in
the upper bound for ε given in the previous theorem, we get the value 3/7. �

Here is a small example to illustrate.

i 7 6 5 4 3 2 1 0
S′, J 44, 1 58, -1 11, 1 86, 1 120, 0 43, -1 34, 1 -

44, 1 106, 1 113, 1 77, 1 100, 1 -
44, 1 35, 1 79, 1 5, 1 29, 1 -
44, 1 43, -1 59, -1 92, 1 53, -1 -

di 0 1 1 1 0 1 1 1

Fig. 3. An attack on the exponent d = 119 = (01110111)2 with n = 141
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Example 1. Suppose that n = 141 = 3 · 47 and M = 23. The bits of the exponent d
are determined in l = 8 successive stages, as in illustrated in Figure 3 (the value of l
is not known in advance), starting from the least significant bit d0 which is guessed
to be 1. For each stage, the test is repeated at most m = 4 times independently. At
each stage, the glitch time is given by T = Ti − ε for some 0 < ε < δ. In conclusion,
d = (01110111)2 = 119. Of course, on J = 0 we could have factored the modulus
right away. Also note that, in the last column, 44 is the correct value of Md mod n: the
squaring in the last but one iteration has no effect on the final result, as dl−1 = 0.

Remark 2 (software simulations). In the hypotheses of the corollary above, to obtain an
error probability less say, than 2−10, one may have to run the test up to m = 25 times
independently. In practice, software simulations have shown that a bit less than 5000
queries (=faulty signatures) are sufficient to recover a RSA-768 key in about 70% of
the cases. Considering a realistic time of 300 ms per query, and ignoring the time taken
by a common PC to perform the test, this means that about 25 minutes are enough to
recover such a key with a success probability of 0.7.

Remark 3 (Discrete log cryptosystems). The attack presented in this section can be
repeated essentially unchanged when the modulus is a prime p. In this case, the
success probability ρ = Pr[J = −1 |di = 1] can be lower-bounded by |φ(p)|/2s+1 =
(p − 1)/2s+1. If the size of p is l = s, then again ρ ≥ 1/4 and ε ≤ 3/7. Thus, in prin-
ciple, in both El-Gamal decryption and Diffie-Hellman key-exchange an attacker might
target and recover the secret exponent.

5 Randomized Time

We discard the assumption that all modular multiplications in the algorithm take the
same known constant time δ. We represent multiplication times as random variables,
possibly absorbing the time taken by control flow instructions. Times might change
from an execution to the next, depending e.g. on instructions schedule, random delays
or blinding of the argument. Or simply the randomness might represent the attacker’s
incomplete knowledge about the timing of the device (i.e. initial instant of each phase).

The first instant of phase i is given by the random variable

Ti =
i−1

∑
j=0

(d j ·µ j + ν j)+ 1 0 ≤ i ≤ l − 1

where for 0 ≤ j ≤ i−1: d j’s are known values and µ j’s and ν j’s are continuous random
variables, which, following [11], we assume to be normally distributed, with known
variance and mean. We also assume that all these random variables (µ j, ν j’s) are pair-
wise independent, and independent from di as a random variable. The model of the
device (Definition 1) is modified as expected: S′ yields the RHS of (4) whenever the
glitch time T is such that Ti > T > Ti − νi−1, for 0 < i ≤ i − 1. Now, the midpoint in

time of the squaring operation at phase i− 1 is given by τ def= Ti−1 + di−1µi−1 + νi−1/2.
We take the glitch time T to be the expectation:

T
def= E[τ] .



32 M. Boreale

The definition of J and A remain unchanged. As we show below, with these definitions
A yields a 2-sided probabilistic algorithm. Let γ > 0 be half the minimal duration of
the squaring at phase i − 1, i.e. take the supremum of all γ s.t. Pr[νi−1 < 2γ] = 0, and

let Γ def= Pr[|T − τ| < γ]: this value can be computed exactly as τ is normally distributed

with mean T and standard deviation σ def= ∑i−2
j=0(d jvar(µ j)+ var(ν j))+ di−1var(µi−1)+

1
4 var(νi−1). Recall that α = Pr[di = 1]. The following result is proven by noting that if
τ falls within γ of the glitch time T , then the glitch will be ’correct’, i.e. it will affect the
squaring in phase i− 1.

Theorem 2. The random variable A is a 2-sided probabilistic algorithm for bit di. In
particular:

a) the success probability for 1 is: ρ def= Pr[A = 1|di = 1] ≥ φ(n)
2s+1 ·Γ, with ρ def= 1 if α = 0;

b) the error probability for 1 is: ε1
def= Pr[d = 1|A = 0] ≤ (1−Γ)(1−α)

(1−Γ)(1−α)+ρα;

c) the error probability for 0 is: ε0
def= Pr[d = 0|A = 1] ≤ (1−ρ)α

(1−ρ)α+Γ(1−α) .

The expressions for ε0, ε1 are monotonically decreasing w.r.t. ρ ∈ [0,1].

PROOF: See Appendix �

Given that A is a two-sided probabilistic test, one has to run the test m times independently
with fixed values of the exponent bits and take the majority of the outcomes to have
a reliable result. Note that for m independent iterations of A, with fixed values of the
exponent bits, the error probabilities for 1 and 0 can be lower-bounded respectively as:

(1 − Γ)m(1 − α)
(1 − Γ)m(1 − α)+ ρmα

and
(1 − ρ)mα

(1 − ρ)mα+ Γm(1 − α)
.

For the test to be useful, one has to make sure that the above values vanish as m grows.
This is the case precisely when ρ + Γ > 1; by virtue of (a) above, this holds if Γ >

1
1+φ(n)/2s+1 .

As a general remark, the attack performs well in situations with a moderate variance
of multiplication times, that is, when timing attacks are more difficult to mount. The
following example provides some numerical evidence that for typical values of Γ the
randomized version of the attack is feasible.

Example 2. For ease of reference, we use numerical data drawn from Kocher’s orig-
inal paper [11]. The following figures refer to time measurements (in µ-seconds) of
actual modular multiplications executed during modular exponentiations. The random
variables µ j and ν j’s are all normally distributed with standard deviation σm = 12.01
and mean t = 1167.8. The minimal duration of a modular multiplication can be taken
1130, hence we set γ = 565. Suppose we target the 512th bit of a secret exponent
of size l = 1024 bit. Assuming, on average, that half of the bits from d0 to d511

are set, we can compute the mean of τ as T = t(511 + 1
2 + 256) = 896286.5 and

its variance as σ2 = σ2
m(511 + 1

4 + 256) = 110668.2167. These values gives (here
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Φ(·) denotes the cumulative distribution function of standard normal distribution):
Γ = Φ(γ/σ)− Φ(−γ/σ) ≈ 0.9105. Under the hypotheses of Corollary 1, we get

ρ ≥ 1
4

·Γ ≈ 0.2275 ε0 ≤ 0.4590 and ε1 ≤ 0.2825 .

If we want both error probabilities to decrease under, say, 2−10, we may have to run the
test up to 43 times independently.

6 Countermeasures

We discuss a few software countermeasures.
Blinding Exponentiation with blinding (Figure 4) is a common and effective technique
to thwart attacks based on timing [11].

choose at random v ∈ Z
∗
n1

X ← Mve mod n2

Y ← Xd mod n3

S ← Y v−1 mod n4

Fig. 4. RSA with message blinding

It is easy to see that message blinding has no effect on our attack. Suppose the at-
tacker’s target is bit di. Given that the values ve, v−1 mod n are usually precomputed,
the attacker can easily target the ith bit during the exponentiation at step 3 and induce a
faulty computation yielding Y ′ as a result (i.e. a faulty signature of Y , without blinding),
hence getting from the device a faulty signature

S′′ = Y ′v−1 mod n .
Let S′ be the faulty signature one would obtain by targeting the ith bit in the case

with no blinding – but with the same choice of the random r ∈ Z2s . Let ci
def= (ve)2i

, for
i = 0, ..., l − 1. It is easy to see, relying on equation (4), that:

S′′ = S′ ·C · v−1 mod n
where C = (c0)d0 · · · (ci−1)di−1 . Noting that that e is odd we have:(

ve

n

)
=

( v
n

)
=

(
v−1

n

)

and since d0 = 1, hence c0 = ve, we get(
S′′

n

)
=

(
S′

n

)
.

Effective countermeasures Checking before output, i.e. checking that Se = M mod n,
with e a RSA public exponent (see [9]), before transmitting the signature has been pro-
posed to contrast fault attacks. This is feasible in case the public exponent e is small.
In the case of a prime modulus p, a strategy suggested by Shamir [14] involves doing
exponentiation twice, once mod p and once mod p · r, for r a 32-bit prime, and then
comparing the results. Random delays (see [11]) have been proposed as a countermea-
sure against timing analysis. An alternative form of blinding, also proposed in [11], is
blinding of the exponent, which consists in summing a quantity kφ(n), with k random,
to the exponent d before performing modular exponentiation. Adoption of one of above
listed methods appears to thwart our attacks.
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7 Conclusions

We have demonstrated that fault analysis can be combined with timing control to po-
tentially get effective cryptanalysis of cryptographic schemes implemented using the
(right-to-left) modular exponentiation algorithm. Our model is based on random, tran-
sient computation faults, that appear to be easier to induce than faults based on modify-
ing individual bits of data registers.

At the moment it is not clear how to extend the attack presented here to the left-to-
right version of the exponentiation algorithm. Indeed, one can easily show that, in the
case of a prime modulus p, a straightforward extension of this attacks based on detecting
2i-th power mod p permits to recover the k least significant bits of the exponent, where k
is the exponent of 2 in the factorization of p−1: however, these bits are already known
to be "easy" to recover.

Also, one wonders whether an analog of the present attack might work against ECC

schemes that rely on "double and add" algorithms, perhaps along the lines of the attacks
presented in [7]. These extensions will be the subject of further study.
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A Proofs

PROOF OF LEMMA 1: Part (a) follows from the discussion immediately preceding the
statement of the lemma. For part (b), suppose that di = 1. Then, by definition of S′ and

J and by the property of the Jacobi symbol (1), J =
( r

n

)
with r chosen at random in

Z2s . Thus

ρ = |{r ∈ Z2s :
( r

n

)
= −1}|/2s ≥ |{r ∈ Z2n :

( r
n

)
= −1}|/2s

since n ≤ 2s. But, as noted in Section 2, the set that appears at the numerator in the last
expression has cardinality φ(n)/2. �

PROOF OF THEOREM 2: Concerning (a), one can lower bound the success probability
ρ = Pr[J = −1|di = 1] by noting that if τ falls within γ of the glitch time T , then the
glitch will be ’correct’, i.e. it will affect the squaring in phase i− 1. Therefore

Pr[J = −1|di = 1, |T − τ| < γ] ≥ φ(n)
2s+1 .

By the independence of di and τ, we have:

ρ = Pr[J = −1 |di = 1, |T − τ| < γ] ·Γ+ Pr[J = −1|di = 1, |T − τ| ≥ γ] · (1 − Γ)
≥ Pr[J = −1 |di = 1, |T − τ| < γ] ·Γ
≥ φ(n)

2s+1 ·Γ .

The upper bounds for ε0 and ε1 follow using Bayes theorem. In particular, for ε1 we use
the lower-bound:

Pr[A = 0 |di = 0] = Pr[J �= −1 |di = 0, |T − τ| < γ] ·Γ +
Pr[J �= −1|di = 0, |T − τ| ≥ γ] · (1 − Γ)

= 1 ·Γ+(· · ·)
≥ Γ .

It is immediate to check that the given bounds are monotonic decreasing in ρ. �
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