

Lecture Notes in Computer Science 4236
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Luca Breveglieri Israel Koren
David Naccache Jean-Pierre Seifert (Eds.)

Fault Diagnosis
and Tolerance
in Cryptography

Third International Workshop, FDTC 2006
Yokohama, Japan, October 10, 2006
Proceedings

13

Volume Editors

Luca Breveglieri
Politecnico di Milano, Dipartimento di Elettronica e Informazione
Piazza Leonardo Da Vinci n. 32, 20133 Milano, Italy
E-mail: luca.breveglieri@polimi.it

Israel Koren
University of Massachusetts, Department of Electrical and Computer Engineering
Amherst, MA 01003, USA
E-mail: koren@ecs.umass.edu

David Naccache
École normale supérieure, Département d’Informatique
45 rue d’Ulm, 75230 Paris Cedex 05, France
E-mail: david.naccache@ens.fr

Jean-Pierre Seifert
University of Haifa, Faculty of Science and Science Education
The Center for Computational Mathematics and Scientific Computation
31905 Haifa, Israel
E-mail: jeanpierreseifert@yahoo.com

Library of Congress Control Number: 2006933937

CR Subject Classification (1998): C.2.0, D.4.6, E.3, H.2.0, K.4.4, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-46250-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46250-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11889700 06/3142 5 4 3 2 1 0

Preface

In recent years applied cryptography has developed considerably to satisfy the in-
creasing security requirements of various information technology disciplines, such as
telecommunications, networking, database systems, mobile applications and others.
Cryptosystems are inherently computationally complex and in order to satisfy the high
throughput requirements of many applications, they are often implemented by means
of either VLSI devices (cryptographic accelerators) or highly optimized software
routines (cryptographic libraries) and are used via suitable (network) protocols.

The sophistication of the underlying cryptographic algorithms, the high complexity
of the implementations, and the easy access and low cost of cryptographic devices
resulted in increased concerns regarding the reliability and security of crypto-devices.
The effectiveness of side channel attacks on cryptographic devices, like timing and
power-based attacks, has been known for some time. Several recent investigations
have demonstrated the need to develop methodologies and techniques for designing
robust cryptographic systems (both hardware and software) to protect them against
both accidental faults and maliciously injected faults with the purpose of extracting the
secret key. This trend has been particularly motivated by the fact that the equipment
needed to carry out a successful side channel attack based on fault injection is easily
accessible at a relatively low cost (for example, laser beam technology), and that the
skills needed to use it are quite common. The identification of side channel attacks
based on fault injections and the development of appropriate counter-measures have
therefore become an active field of scientific and industrial research.

Following this trend, the first workshop devoted to Fault Diagnosis and Tolerance
in Cryptography (FDTC) was organized in June 2004, in Florence, Italy, to promote
the exchange of ideas within the community of researchers who have been active in
this field. The workshop has since then become an annual event with the second one
held in Edinburgh, Scotland, in September 2005, and the third one in Yokohama,
Japan, in October 2006. FDTC 2006 included 12 regular presentations plus two in-
vited talks that provided an overview of the state of the art in this field.

The FDTC workshops aim at covering all aspects of fault injection-based side
channel attacks on cryptographic devices and the corresponding counter-measures.
This includes topics such as: modelling the reliability of cryptographic systems and
protocols; inherently reliable cryptographic systems and algorithms; fault models for
cryptographic devices (hardware and software); fault-injection-based attacks on cryp-
tographic systems and protocols; adapting classical fault diagnosis and tolerance tech-
niques to cryptographic systems; novel fault diagnosis and tolerance techniques for
cryptographic systems; case studies of attacks, reliability and fault diagnosis and tol-
erance techniques in cryptographic systems.

FDTC 2006 has for the first time official proceedings as a Springer LNCS volume.
The present volume contains all the papers presented at FDTC 2006, plus selected
FDTC 2004 and 2005 papers that have undergone a second review process, which
have been co-chaired for this Springer volume by David Naccache and Jean-Pierre

 Preface VI

Seifert. The main goal of this volume is to provide the reader with a comprehensive
introduction to the issues faced by designers of robust cryptographic devices and to
the currently available methodologies and techniques for protecting these devices
against fault injection attacks.

The papers contained in this volume are organized as follows. Section 1 includes
new fault-injection-based attacks on public key systems, namely, RSA and ECC. Sec-
tion 2 contains several proposed counter-measures, mainly at the algorithmic level,
that are based on the use of fault diagnosis methods. Section 3 is dedicated to fault
injection-based attacks on symmetric key systems and the related fault-diagnosis coun-
ter-measures. Section 4 focuses on models for evaluating the reliability and security of
cryptographic systems that are subject to fault injection-based attacks. Section 5 is
dedicated to counter-measures at the arithmetic level, which complement those at the
algorithmic level mentioned above. Section 6 contains a miscellanea of topics demon-
strating the connection between fault injection-based attacks and other security side
channel threats, e.g., power attacks.

The interested reader may also wish to read the papers that have appeared in the
“Special Section on Fault Diagnosis and Tolerance in Cryptography” of the Septem-
ber 2006 issue of the IEEE Transactions on Computers. This special section includes
the extended version of several FDTC 2004 presentations (and consequently do not
appear in this volume). Also worth mentioning is the February 2006 Special Issue of
the Proceedings of the IEEE which is devoted to cryptography and contains a tutorial
paper focusing on fault injection-based side channel attacks that was originally pre-
sented at FDTC 2004.

This workshop would not be possible without the involvement of many people, in
particular the members of the Program Committee who reviewed all the submitted
manuscripts. Their names are listed below. Thanks are also due to Alfred Hofman,
who accepted our proposal to publish an LNCS volume dedicated to FDTC. We also
wish to thank Akashi Satoh, Natsume Matsuzaki and Tsutomu Matsumoto for their
tremendous help with the local arrangements in Yokohama. Last but not least, we
would like to thank all the authors who have submitted their papers and greatly con-
tributed to the success of the FDTC workshops.

August 2006 Luca Breveglieri
 Israel Koren

 David Naccache
 Jean Pierre Seifert

Organization

Organizing Committee

Luca Breveglieri (volume contact editor)
Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza Leonardo Da Vinci n. 32
Milan 20133
Italy
luca.breveglieri@polimi.it

Israel Koren
University of Massachusetts at Amherst
Department of Electrical and Computer Engineering
Amherst, MA 01003
USA
koren@ecs.umass.edu

David Naccache
École Normale Supérieure de Paris
Département d'Informatique
45 rue d'Ulm
75230 Paris Cedex 05
France
david.naccache@ens.fr

Jean-Pierre Seifert
Applied Security Research Group
The Center for Computational Mathematics and Scientific Computation
Faculty of Science and Science Education
University of Haifa
Haifa 31905, Israel

and

Institute for Computer Science
University of Innsbruck
6020 Innsbruck, Austria
jeanpierreseifert@yahoo.com

 Organization VIII

Program Committee of FDTC 2006

Bao Feng I2R Corporation, France
Luca Breveglieri Politecnico di Milano, Italy
Ernie Brickell Intel Corporation, USA
Hervé Chabannes Sagem Défense Sécurité, France
Christophe Clavier Gemplus Corporation, France
Wieland Fischer Infineon Corporation, Germany
Christophe Giraud Oberthur Card Systems, France
Shay Gueron University of Haifa and Intel Corporation, Israel
Louis Goubin University of Versailles, France
Mohamed Kafi Axalto Corporation, France
Ramesh Karri Polytechnic University of Brooklyn, USA
Jong Rok Kim Samsung Corporation, Korea
Vanessa Gratzer University of Paris 2, France
Çetin Kaya Koç Oregon State University, USA
Israel Koren University of Massachusetts at Amherst, USA
Pierre-Yvan Liardet STMicroelectronics Corporation, France
Wenbo Mao HP Corporation, USA
Sandra Marcello Thalès Corporation, France
David Naccache École Normale Supérieure de Paris, France

 (PC Co-chair)
Elisabeth Oswald Graz University of Technology, Austria
Jean-Pierre Seifert University of Innsbruck, Austria and University of

 Haifa, Israel (PC Co-chair)
Elena Trichina Spansion Corporation, USA
Michael Tunstall Royal Holloway University of London, UK
Wen-Guey Tzeng National Chiao Tung University, Taiwan
Claire Whelan Dublin City University, Ireland
Kaiji Wu University of Illinois at Chicago, USA
Moti Yung Columbia University, USA

 Organization IX

Program Committee of FDTC 2005

Luca Breveglieri Politecnico di Milano, Italy
Joan Daemen STMicroelectronics Corporation, Belgium
Christophe Giraud Oberthur Card Systems, France
Shay Gueron Intel Corporation, Israel
Marc Joye Gemplus & CIM-PACA, France
Mark Karpovsky University of Boston, USA
Çetin Kaya Koç Oregon State University, USA
Israel Koren University of Massachusetts at Amherst, USA
Régis Leveugle TIMA Laboratory Grenoble, France
Ramesh Karri Polytechnic University of Brooklyn, USA
David Naccache Gemplus Card International, France, and Royal Holloway,

UK
Christof Paar University of Ruhr at Bochum, Germany
Jean-Pierre Seifert Intel Corporation, USA

Program Committee of FDTC 2004

Luca Breveglieri Politecnico di Milano, Italy
Joan Daemen STMicroelectronics Corporation, Belgium
Çetin Kaya Koç Oregon State University, USA
Israel Koren University of Massachusetts at Amherst, USA
Régis Leveugle TIMA Laboratory Grenoble, France
David Naccache Gemplus Card International, France
Ramesh Karri Polytechnic University of Brooklyn, USA
Christof Paar University of Ruhr at Bochum, Germany

Table of Contents

Attacks on Public Key Systems

Is It Wise to Publish Your Public RSA Keys? (2006) 1
Shay Gueron, Jean-Pierre Seifert

Wagner’s Attack on a Secure CRT-RSA Algorithm Reconsidered
(2006) . 13

Johannes Blömer, Martin Otto

Attacking Right-to-Left Modular Exponentiation with Timely
Random Faults (2006) . 24

Michele Boreale

Sign Change Fault Attacks on Elliptic Curve Cryptosystems
(2004-05) . 36

Johannes Blömer, Martin Otto, Jean-Pierre Seifert

Cryptanalysis of Two Protocols for RSA with CRT Based on Fault
Infection (2004-05) . 53

Sung-Ming Yen, Dongryeol Kim, SangJae Moon

Protection of Public Key Systems

Blinded Fault Resistant Exponentiation (2006) . 62
Guillaume Fumaroli, David Vigilant

Incorporating Error Detection in an RSA Architecture (2004-05) 71
Luca Breveglieri, Israel Koren, Paolo Maistri, Moris Ravasio

Data and Computational Fault Detection Mechanism for Devices
That Perform Modular Exponentiation (2004-05) . 80

Shay Gueron

Attacks on and Protection of Symmetric
Key Systems

Case Study of a Fault Attack on Asynchronous DES
Crypto-Processors (2006) . 88

Yannick Monnet, Marc Renaudin, Régis Leveugle,
Christophe Clavier, Pascal Moitrel

XII Table of Contents

A Fault Attack Against the FOX Cipher Family (2006) 98
Luca Breveglieri, Israel Koren, Paolo Maistri

Fault Based Collision Attacks on AES (2006) . 106
Johannes Blömer, Volker Krummel

An Easily Testable and Reconfigurable Pipeline for Symmetric
Block Ciphers (2006) . 121

Myeong-Hyeon Lee, Yoon-Hwa Choi

Models for Fault Attacks on Cryptographic Devices

An Adversarial Model for Fault Analysis Against Low-Cost
Cryptographic Devices (2004-05) . 131

Kerstin Lemke-Rust, Christof Paar

Cryptographic Key Reliable Lifetimes: Bounding the Risk of Key
Exposure in the Presence of Faults (2004-05) . 144

Alfonso De Gregorio

A Comparative Cost/Security Analysis of Fault Attack
Countermeasures (2004-05) . 159

Tal G. Malkin, François-Xavier Standaert, Moti Yung

Fault-Resistant Arithmetic for Cryptography

Non-linear Residue Codes for Robust Public-Key Arithmetic (2006) 173
Gunnar Gaubatz, Berk Sunar, Mark G. Karpovsky

Fault Attack Resistant Cryptographic Hardware with Uniform Error
Detection (2004-05) . 185

Konrad J. Kulikowski, Mark G. Karpovsky, Alexander Taubin

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key
Cryptography (2004-05) . 196

Gunnar Gaubatz, Berk Sunar

Fault Attacks and Other Security Threats

DPA on Faulty Cryptographic Hardware and Countermeasures (2006) . . . 211
Konrad J. Kulikowski, Mark G. Karpovsky, Alexander Taubin

Fault Analysis of DPA-Resistant Algorithms (2006) 223
Frederic Amiel, Christophe Clavier, Michael Tunstall

Table of Contents XIII

Java Type Confusion and Fault Attacks (2006) . 237
Olli Vertanen

Author Index . 253

Is It Wise to Publish Your Public RSA Keys?

Shay Gueron1,3 and Jean-Pierre Seifert1,2

1 Applied Security Research Group
The Center for Computational Mathematics and Scientific Computation,

University of Haifa, Haifa 31905, Israel
2 Institute for Computer Science, University of Innsbruck

6020 Innsbruck, Austria
3 Intel Corporation, IDC, Israel

shay@math.haifa.ac.il
jeanpierreseifert@yahoo.com

Abstract. Only very recently, the study of introducing faults into the
public-key elements of the RSA signature scheme was initiated. Following
the seminal work of Seifert on fault inductions during the RSA signa-
ture verification, Brier, Chevallier-Mames, Ciet, and Clavier considered
in a recent paper the signature counterpart and showed how to recover
the private exponent — even with absolutely no knowledge of the faults
behavior. Consequently, this paper reconsiders the RSA signature veri-
fication and proposes two embassaring simple new fault attacks against
the RSA verification process. Despite their trivial nature, both of our
methods bear heavy practical consequences. While the first new attack
of our methods simply eliminates the “somehow cumbersome” and sub-
tle mathematical two-phase attack analysis of Seifert’s attack, the second
methodology removes the so called “one-shot success” of Seifert’s attack
and paves the way for a permanent and universal “mass-market” RSA
signature forgery. Motivated by the obvious security threats through
tampering attacks during the RSA verification process we will also con-
sider some heuristic but practical countermeasures.

Keywords: Authenticated computing, Fault attacks, Hardware attacks,
RSA, Secure/Trusted boot.

1 Introduction

In the context of tamper-resistant devices that implement the RSA algorithm,
most of the concern and the efforts for countermeasures against “physical at-
tacks” are directed towards protecting the signature procedures. These are per-
ceived sensitive because they involve operations that use the device’s secret
exponent. The general perception here is that the RSA verification process is
inherently secure because it only deals with public information.

But, continuing the recently introduced fault attacks against the public keys
of an RSA system, cf. [Sei, Mui, BCCC], this paper casts new doubts on the
above perception. We show that if the threat model includes tampering with the

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 S. Gueron and J.-P. Seifert

device, fault attacks become a real practical threat to the trustworthiness of the
authentication procedure.

To put a real practical perspective on the former attack scenario, consider a
device which is a locked system that is supposed to execute some input code, but
only this code is signed and the signature is validated. This is a standard situation
with various DRM applications. Since the user is part of the threat model in such
cases, hardware attacks that include tampering with the device are a plausible
concern. The big threat to the device is a so called BORE (Break Once Run
Everywhere) attack, similar to those that exist in the smartcard business, where
a successful attack can be reproduced and then applied to many devices. In
such real-world scenarios, it is conceivable that the attacker would invest even
significant initial effort in hacking the device, would manage to build a cheap
hardware device that circumvents this authentication, and then publicly sell (or
distribute) this circumvention device. One known example for a BORE attack is
the “unlooper” business, where fraudulent pay-TV users install a cheap device
in order to circumvent the pay-TV protection mechanism. The unlooper device
induces the right spikes, glitches, etc. in order to “unlock” an invalid smartcard,
cf. [And, BCNT+, Unl]. Another prominent example is the X-box, where despite
the cryptographically strong RSA authentication procedure that it implemented,
a trivial change in the public key value lead to a total security break, cf. [Hua],
or [Har] for details about the commercial authentication-circumvention business.

Indeed, this paper discusses two very simple but practical types of fault based
attacks against a device that performs RSA authentication, facilitating the sig-
nature forgery dramatically. Following the seminal work of Seifert [Sei] on fault
inductions during the RSA signature verification, Brier, Chevallier-Mames, Ciet,
and Clavier [BCCC] considered in a recent paper the signature counterpart and
showed how to recover the private exponent — even with absolutely no knowl-
edge of the faults behavior. Consequently, this paper reconsiders the RSA signa-
ture verification and proposes two embassaring simple new fault attacks aginst
the RSA verification process. Despite their trivial nature, both of our methods
bear heavy practical consequences. While the first new attack of our methods
only eliminates the “somehow cumbersome” and subtle mathematical two-phase
attack analysis of Seifert’s attack, the second methodology removes the so called
“one-shot success” of Seifert’s attack and paves the way for a permanent and
universal “mass-market” RSA signature forgery.

Our new attacks undermine again the underlying assumption upon which
the authentication is based, namely that the device uses an authentic copy of
the public data. Thus, the conclusion is that if a device cannot remotely verify
the authenticity of the public data, and can be physically manipulated by an
attacker, new types of countermeasures against faults induction, must be taken.
In the context of Elliptic Curve Cryptography this fact was already known, cf.
[BMM, CJ].

The present paper is organized as follows. The next section recalls some basic
definitions, presents the used fault models, and as well the simple attack idea
due to Seifert, cf. [Sei]. Herafter, we will show our two new very simple attack

Is It Wise to Publish Your Public RSA Keys? 3

methodologies, called bypass attack and permanent fault attack. Then, we will
investigate some simple but practical countermeasures to thwart the known fault
attacks against the RSA signature verification process. The paper concludes with
recommendations for further research directions.

2 Definitions and Preliminaries

An RSA system for bit-length k is defined as follows, see for e.g. [MvOV]. Uni-
formly pick from the set of all k/2-bit primes two secret primes p and q and let
N = p · q be their respective product. Then, uniformly pick from the set Z∗

N

a number e. Here, Z∗
N denotes the multiplicative group of all natural numbers

which are smaller than N and are relatively prime to N . Using p and q compute
now the e’s multiplicative inverse d such that e · d ≡ 1 mod ϕ(N). Finally, one
announces the public key e and N and keeps the key d secretly.

In order to actually sign with RSA in the standard way, one uses a hash
function hash(·) (for e.g. SHA-1) and a redundancy function F(·) in the following
way, cf. [MvOV]. First, one hashes the messages m ∈ ZN to a fixed length hash
value hm := hash(m), hereafter one uses the redundacy function F to re-expand
the hash value hm into an k-bit value fm := F(hm), and finally one computes
the RSA-signature of the message m as S := (fm)d mod N using the private
exponent d and the modulus N . For clarity, we will give a detailed standard
RSA signature authentication flow below in Figure 1.

input: m, S, N
ROM (or fuse) storage: hN

1. /* validate N
a. t := hash(N);
b. if t �= hN then output “fail” and stop;

2. /* validate m
a. hm := hash(m);
b. a := Se mod N ;
c. extract the expected hash value em from a;
d. if hm �= em then output “fail” and stop;

“accept” message m if and only if N and m were valid

Fig. 1. Standard RSA signature authentication flow

A standard RSA authentication flow. The inputs includes the message m to
be authenticated, the RSA public modulus N , the public exponent e, and the
signature S on the hash value (denoted by hash(m)) of the authentic message
m. This signature S is computed by the signer, using his private RSA exponent.

4 S. Gueron and J.-P. Seifert

To avoid alleviate expensive ROM or fuse storage for the complete value of N ,
the device stores a trusted copy of its hash value hash(N). The input public
modulus N is validated first, by computing its hash value and comparing it to
hash(N). The validation of the message follows, and is carried out by performing
the required modular exponentiation, and comparing the extracted hash to the
hash value of m.

2.1 The Physical Fault Model or Recalling Seifert’s Attack

Without an exhaustive elaboration on the concrete realization of fault attacks
or on the various existing (mathematical) models we will briefly describe our
simple model of transient fault attacks when applied to a computing device
under attack. For a thorough treatment of their physical realization we refer to
[ABFHS, BCNT+] and for a proper mathematical treatment we refer to [BOS,
LP]. As in [BDL] or many other related publications, we assume that the attacker
is able to enforce random register faults, resulting in a uniformly chosen register
content. The only preciseness on the induced fault is the precise timing on the
register fault. Note that this is a weak assumption as the timing can be fully
controlled or observed by the attacker at least in open computing devices with
some equipment — which is our overall assumption. Given the strong practically
demonstrated results on faults attacks, cf. [ABFHS, BCNT+], our simple model
seems fairly valid.

Seifert’s attack, cf. [Sei] is based on a simple idea. Induced data faults can
be used in order to change the value of the public modulus. If the attacker can
change N to a new fake modulus, N ′, that he can factor, then he can easily derive
a fake private exponent d′, and use it to compute a signature S′ of a message
m. The question that arises is, therefore, how easy is it to transform N to a pre-
computed value N ′ by means of random faults on N . This question was recently
discussed in [Sei] and enhanced in [Mui], where it was shown that this is indeed
easy. Given some 1024-bit RSA modulus, there is a probability of more than 50%
that it could be transformed to an easy factorable fake modulus, by affecting
only 4 bits, and for a 2048 bits modulus, this can be achieved by changing only
6 bits. Consequently, the attacker’s strategy is the following. Using the public
value of N , he goes (off-line) over all the new values that differ from N by only
b least significant bits, for some small b, and finds (if possible) a derived value
which is a prime number (or has otherwise an easy factorization). If manipulating
only b bits does not yield a desirable fake modulus, the attacker simply increases
the search space by using a larger value of b. To illustrate the above strategy,
consider the following very simple example. For realistically large parameters,
and small practical bound on the search space, we chose a random string T of
1012 bits, multiplied it by 2006 (standing for the current year), and constructed
N = pq where p and q were defined as the two next primes exceeding 2006 · T .
To account for tampering with at most the 10 least significant bits of N , we
screened (offline) the numbers N̂ = i + N − (N mod 512), for i = 1, 2, . . . , 511.
Starting from the value

Is It Wise to Publish Your Public RSA Keys? 5

N = 1B10FAB24763BD3C20A4DA2464B68ADB36A2A39FFEECF6A5453DA269CCE5

870F3A309C1211131977AA9D523263222BAAA19E1B2318BD37B3967FDEF5

B4D76F54543267162BFF9C9907A175271435D38EE7068D1CF020E2DC0D28

087941F59B382D9EBAFACA46FD9433D9D6E2AC97BDC2C793FB744C1EB01D

840B2F230E713431E93B4385354589DEA67C559FE6AF6550863446FA941B

62EC6313ECC4B09A65A201FD61113DE425602DACCE8E32A2A75E2A6CD8A8

0A5F42FCA7699AEA53D64BB43898C5E12509A72AE6AF60A9A9CC77AC7C53

9EE8BEC9A4FD587CE7ED0148FFE25AA1F2A1ABF073CE84A0E11F2EEBDE48

AFCEF1EAACED6F2ACE110DEEDD5

a prime N ′ was found for i = 35, namely,

N ′ = 1B10FAB24763BD3C20A4DA2464B68ADB36A2A39FFEECF6A5453DA269CCE5

870F3A309C1211131977AA9D523263222BAAA19E1B2318BD37B3967FDEF5

B4D76F54543267162BFF9C9907A175271435D38EE7068D1CF020E2DC0D28

087941F59B382D9EBAFACA46FD9433D9D6E2AC97BDC2C793FB744C1EB01D

840B2F230E713431E93B4385354589DEA67C559FE6AF6550863446FA941B

62EC6313ECC4B09A65A201FD61113DE425602DACCE8E32A2A75E2A6CD8A8

0A5F42FCA7699AEA53D64BB43898C5E12509A72AE6AF60A9A9CC77AC7C53

9EE8BEC9A4FD587CE7ED0148FFE25AA1F2A1ABF073CE84A0E11F2EEBDE48

AFCEF1EAACED6F2ACE110DEEC23.

At this point the attacker can sign any message with modulus N ′, public
exponent e and fake private exponent d′ satisfying e ·d′ = 1 mod (N ′−1), which
is trivial to compute, assuming (with high probability) gcd(e, (N ′ − 1)) = 1). To
make the device accept the message as authentic, the attacker simply induces
random faults on the least significant chunk of N. He repeats this fault induction
until N is converted to N ′. These faults must be induced after the off-line phase
and before the authentication flow, so as to pass the public key validation. Since
theory indicates that a favorable fake modulus N ′ can be obtained by tampering
with a small number of bits, the search space for the results that are obtained by
the random faults is small enough to make the attack practical with a number
of several such attempts.

Observe now, that verifying or creating an RSA signature on a standard CPU
is due to the underlying long modular multiplication a quite complicated task.
Especially, even modern high end CPUs cannot handle a full RSA modulus, say
2048 bits, in one single register (operation). Therefore a chain of successive op-
erations is needed just when loading or preparing an RSA modulus from some
memory into a set of CPU registers. Once the modulus is prepared across several
CPU registers it will be used from there until the end of the full RSA opera-
tion. The long sequence of underlying squares and multiplies must frequently use
the RSA modulus which is therefore permanently stored in some CPU registers.

6 S. Gueron and J.-P. Seifert

Thus, during loading or preparing the long RSA modulus we are able — accord-
ing to our above model — to draw an arbitrary but given small number of least
significant bits of a RSA modulus from a uniform distribution. Simply enforce
several fault attacks during several successive loads of multiple CPU registers
which together represent the correct number of required bits beyond the smaller
register length.

3 Novel Fault Attacks Against RSA Authentication

While the formerly described Seifert attack scenario looks like indeed feasible —
given its liberal transient fault induction method — we will now describe two
new attack scenarios, being much more practical. Compared to the Seifert attack
scenario they offer the following attacker’s advantages.

– Instead of transient data errors it assumes that the attacker can change
by inducing faults the control flow, which is investigated for the prominent
public exponent e = 5. This attack has the advantage that it eliminates the
“somehow cumbersome” and subtle mathematical two-phase attack analysis
of Seifert’s attack.

– The second new attack assumes that the attacker is able to invest even a
significant initial effort in inspecting the underlying piece of silicon upfront.
I.e., we assume that he can do even a full reverse engineering of the chip un-
der attack. This reverse engineering knowledge is then used to modify “cus-
tomer devices” by simple permanent fault attacks through FIB (Focused Ion
Beam), Eddy Currents or other methods, etc., cf. [FIB, QS, BCNT+]. This
then enables to avoid the so called “one-shot success” of Seifert’s attack and
paves the way for a permanent and universal “mass-market” RSA signature
forgery, without building a dedicated hardware device that circumvents the
RSA authentication.

3.1 Bypass Fault Attacks

While the formerly described Seifert attack against RSA verification is targeted
towards the general case for a randomly chosen e ∈ Z∗

N , in practice most often a
fixed low exponent e is used. So let us consider the more practical case, as shown
in the following Figure 2.

Now, consider potential so called bypass attacks, as described for e.g. in
[BCNT+]. Bypass attacks are based on purposely inducing some errors by the
attacker, in a way that the authentication flow is changed. There are several
potential vulnerabilities arising.

– Bypass the exponentiation loop. This implies that instead of computing
S5 mod N , the flow computes only S mod N . Therefore, the attacker can
force the device to accept any signature.

– Bypass the “N validation step”. In that case, the attacker can forge N . This
would allow the attacker to eventually sign any message.

Is It Wise to Publish Your Public RSA Keys? 7

input: m, S, N
ROM (or fuse) storage: hN

t := hash(N);
if t �= hN then output “fail” and stop;

hm := hash(m);
a := S;
repeat 2 times

a := a2 mod N ;
a := a · S mod N ;
extract the expected hash value em from a;
if hm �= em then output “fail” and stop;

“accept” message m if and only if N and m were valid

Fig. 2. RSA signature authentication flow for e = 5

– Bypass the final “hash value check”.

To accomplish one of these attacks, the attacker needs only to find one sucess-
ful error to be induced in one device. Since errors are typically repeatable, finding
one “bypass” error could enable the construction of a dedicated hacker device
that circumvents the RSA authentication procedure in all devices of the same
type. See [BCNT+] for practical implementations of such bypass attacks showing
that they are relatively easy in practice.

3.2 Permanent Fault Attacks

In this strong fault model, we assume that the attacker is all powerful and even
able to fully reverse-engineer the whole piece of silicon under attack. Knowing
completely every single transistor of the chip the following is a possible fault
attack threat scenario leading to a so called permanent fault attack. The Perma-
nent Fault Attack (PFA) is a way to circumvent the authentication mechanism
by completely undermining the anchor of trust — by faking N permanently. To
do this, the steps for realizing a commercial PFA are as follows.

– The attacker computes from the public N some public key at will, say N ′,
whose factorization is known to him.

– The attacker computes hash(N ′).
– The attacker compares the strings hash(N) and hash(N ′). Both values are h

bits strings (e.g., h = 160 for SHA-1).
– The attacker marks the locations of the bits where hash(N) and hash(N ′)

do not agree.
– Using the methods described in [FIB, QS, BCNT+], the attacker induces per-

manent faults on sample devices (the authentication device) until he manages
to transform hash(N) into hash(N ′).

8 S. Gueron and J.-P. Seifert

– Once this is successfully done for one device, the attacker can start to sell
his ”unlocking-service” to the market which consists of:

• Taking a customer device, changing its hash(N) to hash(N ′).
• Giving the customer either the new private RSA exponent d′ or giving

him directly a new code enabling the device’s new services.
• Sending the customer’s device back to the customer including the private

exponent d′ including new code.
– The attacker sells now his comprehensive web-service to customers who can

load messages that are signed by the attacker (or the customer itself) (a
degenerate case would be that N ′ is trivial, which allows anyone to forge
any message).

To demonstrate that permanent fault attacks are no “fiction” at all and are
very simple to achieve (say with a FIB machinery), we would like to show the
following picture from [FIB]. It shows the precise disconnect of a certain metal
connection and its corresponding reconnect at a different place.

Fig. 3. Permanent fault attack via Focused Ion Beam

We would like to make the following comments on the above attack.

– For how to realize permanent fault attacks without opening the package, we
refer especially to [QS, BCNT+] and the above Figure 3 which shows why
and how (simple it is) to mount such attacks in a cheap way.

– After one device is successfully modified, “mass market productization” of
PFA’s can be deployed.

– Reverse-engineering and “re-wiring” a complete piece of silicon is indeed a
very powerful technique, especially given the recent result that there is no
hope of any mathematical “obfuscation technique”, i.e., to hide mathemat-
ically a secret inside a circuit, cf. [BGIR+], assuming that the adversary
is very powerful. Indeed, this cost-intensive method might be an interest-
ing business for a “mass-market productization” of turning a cheap piece of
silicon into a premium piece of silicon.

Is It Wise to Publish Your Public RSA Keys? 9

Finally, we would like to note that this permanent fault attack avoids the
so called “one-shot success” of Seifert’s attack and paves the way for a perma-
nent and universal “mass-market” RSA signature forgery, without building a
dedicated hardware device that circumvents the RSA authentication. Also, the
“price” of this attack is directly linked with the number of bits to be changed to
obtain a useful hash(N ′), which was recently improved by Muir [Mui].

4 Mitigating Fault Attacks Against RSA Authentication

Motivated by the different threats through the formerly described various fault
attack models, we will now gradually and seperately develop for each of the
individual different attack scenarios a heuristic countermeasure. In addition to
our disclaimer about their perfect security we also expect them in practice to
be somehow combined with each other and other best known countermeasures
against fault attacks.

4.1 Mitigating Seifert-Like Attacks

To mitigate an RSA authentication process against Seifert-like attacks, we pro-
pose in Figure 4 the following so called Interleaved Validation Scheme, where
an unpredictable multiple of N is computed before the modulus validation step
(i.e., before N can be modified by the attacker to N ′). This value is embedded
into the modular exponentiation flow, and “blinds” the exponentiation base.
The attacker cannot select N ′ in a way that the exponentiation result is still
unchanged modulo N ′. The additional computational cost of these countermea-
sures is relatively small.

Here, u is an unpredictable value that depends on the modulus N , and com-
puted before N is validated (i.e., before it can be modified to the “attacker’s
selected” N ′). This value is embedded into the modular exponentiation flow,
which takes place during the signature validation phase. Since u is randomly
chosen, the attacker cannot select N ′ in a way such that u (mod N ′) = 0.

4.2 Mitigating Bypass Fault Attacks

To provide a more robust RSA authentication process against bypass attacks,
we propose in Figure 5 the following scheme.

Let us make some comments on the above RSA signature authentication flow
combating bypass attacks on e = 5.

– The function sa := stamp(·) generates one word out of some (randomly)
selected bits from a. The test sa �= s′a checks that a has been changed during
some previous modular multiplications steps, which implies that no loop
bypass attack was launched.

– Protected branching ensures that an attacker introducing random faults
needs to handle and manipulate multiple hard to fault-controllable com-
putations simultaneously to be successful.

10 S. Gueron and J.-P. Seifert

input: m, S, N
ROM (or fuse) storage: hN , X, Y

1. /* validate N
a. choose random number r;
b. u := r · N ;
c. t := hash(N);
d. if t �= hN then output “fail” and stop;

2. /* validate m with authentic N interleaved
a. hm := hash(m);
b. a := (S + u) (mod N);
c. b := ae mod N ;
d. extract the expected hash value em from b;
e. if hm �= em then output “fail” and stop;

“accept” message m if and only if N and m were valid

Fig. 4. RSA signature authentication flow combating Seifert-like attacks

input: m,S, N
ROM (or fuse) storage: hN

generate secret 32-bit rnd number 0 < secinit < 232 − 4;
t := hash(N);
hm := hash(m);
a := S;
sa := stamp(a); /* generate one word from some selected bits of a

repeat 2 times
a := a2 mod N ;

a := a · S mod N ;
s′

a := stamp(a);
extract the expected hash value em from a;
sec := secinit

/* validate all steps with protected branch
if hN = t && sec++ ∧ em = hm && sec++ ∧ sa �= s′

a && sec++ then
“accept” the signture iff (sec--)-- = secinit++

else
output “fail” and stop;

Fig. 5. RSA signature authentication flow combating bypass attacks on e = 5

– The delay of decision whether or not to accept the signature, to the end
of the procedure, increases the random space of the program counter. This
makes it more difficult to find an error that would generate the right bypass.

Is It Wise to Publish Your Public RSA Keys? 11

4.3 Mitigating Permanent Fault — A Mission Impossible?

According to our above very strong attack through permanent fault attacks it
is indeed very difficult to design some mitigation strategy against permanent
faults. In order to do so, we have to make the following very strong assumption.
It is physically possible to safely embed a symmetric key k into the device which
cannot be read out (even by reverse-engineering methods) “too” easily. This key
k can then be used to hide the exact N validation step from the attacker. Note
that the attack is enabled because the attacker knows that the device compares
hash(N) to its expected value. To counter this attack, we propose to have the
device use the key in order to check for a different expected value, namely hkN :=
hash(k||N), which depends on both k and N . Note that hkN can be different from
device to device (to resist the potential for BORE attacks). Figure 6 illustrates
an authentication flow combating permanent fault attacks.

reverse-engineering protected embedded secret key k

ROM (or fuse) storage: hkN /* hkN := hash(k||N)
input: m, S, N

1. /* validate N
a. t := hash(k||N);
b. if t �= hkN then output “fail” and stop;

2. /* validate m
a. hm := hash(m);
b. a := Se mod N ;
c. extract the expected hash value em from a;
d. if hm �= em then output “fail” and stop;

“accept” message m if and only if N and m were valid

Fig. 6. RSA signature authentication flow combating permanent fault attacks on N

Acknowledgments

The authors would like to thank Eric Brier, Benoit Chevallier-Mames, Mathieu
Ciet, and Christophe Clavier for sharing an early version of their paper [BCCC].

References

[And] R. Anderson, Security Engineering, John Wiley & Sons, Ltd., 2001.
[ABFHS] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, J.-P. Seifert, “Fault attacks

on RSA: Concrete results and practical countermeasures”, Proc. of CHES
’02, Springer LNCS, pp. 261-276, 2002.

12 S. Gueron and J.-P. Seifert

[BGIR+] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahay, S. Vadhan,
and K. Yang, “On the (Im)possibility of Obfuscating Programs”, Crypto
’01, pp. 1-18, 2001, LNCS vol. 2139, 2001.

[BCNT+] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, “The Sor-
cerer’s Apprentice Guide to Fault Attacks”, Proc. of IEEE 94(2):370-382,
2006.

[BCCC] E. Brier, B. Chevallier-Mames, M. Ciet, and C. Clavier, “Why One Should
Also Secure RSA Public Key Elements”, Cryptographic Hardware and Em-
bedded Systems CHES 2006, Lecture Notes in Computer Science, Springer-
Verlag, 2006.

[BMM] I. Biehl, B. Meyer, and V. Müller, “Differential fault analysis on elliptic
curve cryptosystems”, Advances in Cryptology CRYPTO 2000, vol. 1880
of LNCS, pp. 131146, Springer, 2000.

[BOS] J. Blömer, M. Otto, J.-P. Seifert, “A new CRT-RSA algorithm secure
against Bellcore attacks”, Proc. of 10th ACM Conference on Computer and
Communications Security, ACM Press, pp. 311-320, 2003.

[BDL] D. Boneh, R. A. DeMillo, R. Lipton, “On the Importance of Eliminating
Errors in Cryptographic Computations” Journal of Cryptology 14(2):101-
120, 2001.

[CJ] M. Ciet, M. Joye, “Elliptic curve cryptosystem in presence of permanent
and transient faults”, Designs Codes and Cryptography 36(1), 2005.

[FIB] FIB (Focused Ion Beam), http://www.ith.co.il/specs/fib.html.
[Har] J.S. Harbour, The Black Art of Xbox Mods, Sams, 2004.
[Hua] A. “Bunnie” Huang, Hacking the Xbox, No Starch Press, Inc., San Francisco,

2003.
[LP] K. Lemke, C. Paar, “An Adversarial Model for Fault Analysis against

Low-Cost Cryptographic Devices”, Workshop on Fault Diagnosis and Tol-
erance in Cryptography - FDTC 2006, Lecture Notes in Computer Science,
Springer-Verlag, 2006.

[MvOV] A. J. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptog-
raphy, CRC Press, New York, 1997.

[Mui] J.A. Muir, “Seiferts RSA fault attack: Simplified analysis and generaliza-
tions”, IACR Eprint archive 2005.

[QS] J.-J. Quisquater, D. Samyde, “Eddy current for Magnetic Analysis with
Active Sensor”, Esmart 2002, Nice, France, September 2002.

[Sei] J.-P. Seifert, “On authenticated computing and RSA-based authentication”,
Proc. of ACM Conference on Computer and Communications Security 2005,
pp. 122127, 2005.

[Unl] HU-Cards, Unlooper devices, http://www.hu-cards.org/products.html.

Wagner’s Attack on a Secure CRT-RSA
Algorithm Reconsidered

Johannes Blömer1,� and Martin Otto2,��

1 Paderborn University, Institute for Computer Science, 33095 Paderborn, Germany
bloemer@uni-paderborn.de

2 Siemens AG, Corporate Technology CT IC3, Otto-Hahn-Ring 6, 81730 Munich,
Germany

m.otto@siemens.com

Abstract. At CCS 2003, a new CRT-RSA algorithm was presented in
[BOS03], which was claimed to be secure against fault attacks for various
fault models. At CCS 2004, David Wagner presented an attack on the
proposed scheme, claiming that the so-called BOS scheme was insecure
for all presented fault models [Wag04]. However, the attack itself con-
tains a flaw which shows that although the BOS scheme is broken in
some fault models, it is not broken in the most realistic ”random fault
model”. This paper points out the flaw in the attack on the BOS scheme,
aiming to clarify this issue.

Keywords: CRT-RSA, fault attacks, smartcards, BOS-Scheme, Wag-
ner’s attack.

1 Introduction

At CCS 2003, Blömer, Otto, and Seifert presented a new CRT-RSA algorithm,
which was claimed to be secure against fault attacks [BOS03]. One year later, at
CCS 2004, Wagner published an acclaimed attack on the so-called BOS scheme
that he claimed to break the scheme [Wag04]. Wagner’s results are correct for
most of the fault models defined in [BOS03], namely models, where an adversary
is assumed to be able to target individual bits and bytes in a selected variable.

However, the attack on the most often used fault model presented in [BOS03]
contains a flaw, which renders the attack invalid against the BOS scheme. This
flaw seems to be overlooked easily. Consequently, the attack is widely cited in
various publications, e.g., [CJ05], [Gir05], without realizing the implications of
the flaw.

In this paper, we point out the flaw in Wagner’s attack in detail, aiming to
clarify this issue. Moreover, we present the correct attacks and suggest possible
countermeasures.

This paper is organized as follows. In Section 2, we briefly recall the fault
models used in both papers, [BOS03] and [Wag04]. In Section 3, we recall the
� Research partially supported by a research grant of Intel Cop., Portland, USA.

�� This work was done during Ph.D. studies at the University of Paderborn, supported
by the DFG graduate school No. 693 and the PaSCo Institute, Paderborn.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 13–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

14 J. Blömer and M. Otto

original BOS scheme as proposed in [BOS03]. Section 4 is devoted to Wagner’s
attack and its analysis. Here, Section 4.1 describes the correct attacks and points
out possible countermeasures. Section 4.2 analyzes the flawed attack on the BOS
scheme in the ”random fault model” and points of the erroneous part. Section
5 concludes the paper.

2 Fault Models

In [BOS03], the following five fault models have been defined and used as a ba-
sis for the security claims. Note that we denote by l(X) the binary length of a
variable X .

Fault Model #1: Precise Bit Errors
Parameter setting. For this strong fault model, we assume that the adversary
has precise control on both timing and location. This means that the adversary
knows the attacked bit as well as the attacked operation. Note that an attack
usually happens before the variable is used in a line of an algorithm. We assume
that only a single bit is affected. This resembles the ”bit set or reset” (bsr)
fault type that is achieved by attacks described in [SA02] or [QS02] on RAM or
EEPROM of an unprotected smartcard.

Mathematical model. This attack can be modeled as an addition or subtraction
of a single bit, i.e., a variable X is changed to X ′ = X ±2k for 0 ≤ k ≤ l(X)−1.

Motivation from the real world. Although high-end smartcards implement
sophisticated hardware countermeasures, many smartcards currently used are
either too old or too cheap to do so. Hence, this fault model is a realistic one. It
assumes the strongest adversary and the weakest card. Since algorithms secure
in this fault model are secure in the weaker models as well, it is a particularly
interesting model.

Fault Model #2: Precise Byte Errors
Parameter setting. In this scenario, we assume that the timing is precise. Hence,
a specific operation can be targeted. However, control on location is loose, i.e.
the number of bits affected can only be bounded by a block of few bits (we
assume a byte). We allow any fault type in this model, e.g., stuck-at faults, bit
flip faults, or random faults (cf. [Ott05]).

Mathematical model. The attack can be modeled as an addition or subtraction
of an unknown error byte at a known position, i.e., a variable X is changed to
X ′ = X ± b · 2k for a known 0 ≤ k ≤ l(X) − 8 and an unknown b ∈ Z28 .

Motivation from the real world. This model is motivated by the fact that the
strong adversary’s power defined in Fault Model #1 is reduced on smartcards if
encryption of the data is used. Usually, all data stored in EEPROM and RAM
is encrypted [RE00]. Hence, if an error is induced into memory, the CPU will
see a random block of data. The same model is derived if the bus lines are
attacked.

Wagner’s Attack on a Secure CRT-RSA Algorithm Reconsidered 15

Fault Model #3: Unknown Byte Errors
Parameter setting. In this scenario, we assume loose control on both timing and
location. The loose control on location means that a certain variable can be
targeted but the number of bits affected can only be bounded by a block of
few bits (usually a byte). In addition, loose control on timing means that the
attacker can only affect the variable within a specific time frame that usually
contains several instructions. The exact instruction affected by the attack is
unknown. Hence, the attacker does not know for sure which byte of the variable
is currently used by the algorithm. Again, we allow any fault type in this model.

Mathematical model. This attack can be modeled as an addition or subtraction
of an error byte, i.e., a variable X is changed to X ′ = X ± b · 2k for an unknown
0 ≤ k ≤ l(X) − 8 and an unknown b ∈ Z28 .

Motivation from the real world. This model is motivated by the fact that attacks
on EEPROM and RAM with address scrambling (cf. [RE00]) will not allow to
specify when the attacked block is requested by the CPU. Encryption of the
memory ensures that a faulty bit affects a whole block of data.

Fault Model #3’: Unknown Byte Errors in Unknown Variables
Parameter setting. This model assumes loose control on location, once again
a whole byte is affected, and no control on timing. Due to the latter it is un-
known at which exact time within the program the attack is mounted. It is even
unknown, which variable is faulty.

Mathematical model. We model this type of fault as a variable dependent error,
i.e., a variable X is changed to X ′ = X ± b · 2k for an unknown 0 ≤ k ≤ l(X)− 8
and an unknown b ∈ Z28 . Note that due to the unprecise timing, the attacked
variable X is also unknown (to some degree).

Motivation from the real world. The strong adversary’s power defined in Fault
Model #1 is effectively reduced to this model if the smardcard uses memory en-
cryption in RAM and EEPROM. This causes any bit fault to affect a whole block
of data. In addition, some smartcards use a randomized clock (cf. [CCD00]). In
this case, the attacker knows that a successful attack will change a block of data.
But he does not know the exact time of the change within the algorithm. There-
fore the attacker does not know the position of the block as it is used in the CPU.

Fault Model #4: Random Errors
Parameter setting. In this fault model, we assume that the adversary has no con-
trol on the location of a fault and only a loose timing, i.e., he can target an inter-
val of some operations. This interval may have been derived from other sources
of information, for example from the power profile of the card (see [ABF+02]).
The number of affected bits is unknown.

Mathematical model. We model this uncertainty on the number of affected bits by
a random fault. We assume that for a given variable X , the uniformly distributed

16 J. Blömer and M. Otto

random value f(X) ∈ [0, 2l(X) − 1] is used by the algorithm. In this model, any
fault may result in any faulty value.

Motivation from the real world. This scenario is motivated by strong high-end
smartcards completely armed with countermeasures.Memory encryption, address
scrambling and a randomized clock imply that any error induced into memory or
the CPU at a vague point will leave the attacker at most with the information that
a certain variable is faulty. It therefore enforces a very weak adversary.

3 The BOS Scheme

The BOS scheme as presented in [BOS03] extends an idea proposed by Shamir
(see [Sha99]) and the idea of ”infective computations” as introduced by Yen,
Kim, Lim, and Moon in [YKLM01] and [YKLM03].

Infective computation means that any error introduced by a fault attack on the
CRT-RSA algorithm propagates through the whole computation. In particular, if
it can be ensured that in CRT-RSA a faulty signature will always be faulty modulo
both prime factors, a Bellcore attack as presented in [BDL01] will be prevented.

The BOS scheme proposed in [BOS03] extends Shamir’s idea to protect every
single computation step of the signature algorithm, including the CRT combi-
nation. This is achieved by using two small integers t1 and t2 to compute Sp =
md mod pt1 and Sq = md mod qt2. These values are combined to S mod Nt1t2
via the CRT. This combination with a larger modulus allows to use infective
computation steps afterwards. These infective steps ensure that an error will
cause the final signature to be false modulo both primes p and q. Infective com-
putations not only avoid single points of failures. They also allow a device to
continue its computation, even if a fault is detected.

Algorithm 1: Infective CRT-RSA
Input: A message m ∈ ZN

Output: Sig := md mod N or a random number in ZN

In Memory: p · t1, q · t2, N, N · t1 · t2, dp, dq, t1, t2, et1 , and et2
1 Let Sp := mdp mod p · t1
2 Let Sq := mdq mod q · t2
3 Let S := CRT(Sp, Sq) mod N · t1 · t2
4 Let c1 := (m − Set1 + 1) mod t1
5 Let c2 := (m − Set2 + 1) mod t2
6 Let Sig := Sc1·c2 mod N
7 Output Sig

Selecting the Parameters. As a precomputation step that can be performed
for any smartcard at production time, generate a valid RSA key with (N, e),
N = p · q, as the public key and d as the corresponding private key satisfying
e · d ≡ 1 mod ϕ(N).

Wagner’s Attack on a Secure CRT-RSA Algorithm Reconsidered 17

Additionally, select two integers t1 and t2 of sufficiently large bitlength to
withstand exhaustive search (recommended to comprise of at least 60 – 80 bits)
which must satisfy several conditions in order to allow a secure scheme:

1. t1 and t2 must be coprime
2. gcd(d, ϕ(t1)) = 1 and gcd(d, ϕ(t2)) = 1
3. t1 and t2 are squarefree
4. ti ≡ 3 mod 4 for i ∈ {1, 2}
5. t2 � | X = pt1 · ((pt1)−1 mod qt2)

Let dp := d mod ϕ(p · t1), dq := d mod ϕ(q · t2). Afterwards, compute two corre-
sponding public keys et1 and et2 such that d ·eti = 1 mod ϕ(ti). Store p · t1, q · t2,
N , N · t1 · t2, dp, dq, t1, t2, et1 and et2 on the smartcard. It is easy to see that
the algorithm computes the correct signature if no error occurs. In this case, the
two infective variables c1 and c2 computed in Lines 4 and 5 are both equal to 1,
hence, Sig ≡ S ≡ md mod N .

For details on the choice of the two primes, we refer to [BOS03] or [Ott05].
There, it is recommended to choose both ti as strong primes.

3.1 Obvious Security Considerations

Disclosure of most intermediate variables can be used to break the system. At-
tacks on most intermediate variables, e.g., dp or m, have a negligible success prob-
ability for almost all messages. However, there are messages, where an adversary
can mount a successful Bellcore-like attack (as presented in [BDL01]) with ex-
tremely high probability. These messages depend on t1 or t2, e.g., m ≡ ±1 mod t1
for an attack targeting dp, or m ≡ 0 mod t1 for an attack targeting m or the
intermediate values of the exponentiation. Therefore, it is crucial to the security
of Algorithm 1 that no intermediate variables are disclosed. This does not only
hold for the secret randomization parameters t1 and t2. As an example, assume
that our countermeasure prevents a Bellcore attack on a faulty Sp using c1 �= 1
and c2 = 1. If c1 is revealed, we have

gcd (mc1 − Sige, N) = p.

4 Wagner’s Attacks Against the BOS Scheme

In [BOS03], it is claimed that the proposed countermeasure secures the CRT-
RSA algorithm against faults based on the Random Fault Model #4. Unfortu-
nately, it does not provide sufficient security against faults based on the stronger
fault models, namely the Single Bit Fault Model #1 or the Byte Fault Models
#2 and #3. This has been described in detail by Wagner in [Wag04]. Moreover,
another attack has been described in [Wag04]. However, the latter contains a
flaw that seems to be overlooked easily. Consequently, the attack is widely cited
without honoring the implications of the flaw. We describe the correct attacks
and the flawed attack in detail.

18 J. Blömer and M. Otto

In the following, we denote by X̃ a faulty variable X and by e(X) the absolute
error induced into X as an additive term, i.e., X̃ = X + e(X). The possible
values and distribution of the random variable e(X) depend on the chosen fault
model.

4.1 Bit and Byte Faults

For the BOS scheme, it has been described in Section 3.1 that if c1 �= 1 or
c2 �= 1 and the infective value ci is disclosed, an attacker can mount a Bellcore-
like attack by computing gcd(mci − Sige, N). This yields a factor of N . For bit
faults and byte faults, the number of possible errors is rather small, hence, an
adversary can guess a possible error value e(X), resulting from a fault induced
into some variable X and try to verify his assumption.

As a concrete example, consider a transient fault induced into m according to
the Single Bit Fault Model #1 in Line 1 of Algorithm 1. In this case, Sp is faulty
and Sq is correct, hence, the variable S is faulty. As usual, we denote a faulty S

by S̃. Since S̃ ≡ S mod qt2, we have c2 = 1. However, a faulty m̃ = m + e(m)
yields the value S̃p = m̃dp mod pt1, hence, we have c1 = (m − m̃ + 1) mod t1 =
1 − e(m) mod t1. This is not equal to 1 mod t1, since t1 � | e(m) = ±2k for any
choice of k > 0.

Let −t1+1 < e(m) < 0. In this case, the modular reduction in the computation
of c1 = 1 − e(m) mod t1 does not take place. For bit faults, all values of e(m) =
−2k for 0 ≤ k ≤ l(t1) − 1 satisfy this condition, and for byte faults, all values
of e(m) = b · 2k for −28 + 1 ≤ b ≤ −1 and 0 ≤ k ≤ l(t1) − 8. In these cases, c1
can be recovered by testing all possible values for e(m) according to the chosen
fault model. The probability of inducing such a usable fault is approximately 1/2·
l(t1)/l(N) according to [Wag04], assuming a variant of the Byte Fault Models #2
and #3. The crucial fact exploited by this attack is that the set of usable errors
is efficiently sampleable and highly probable, since they form a large fraction of
all possible error values. Hence, an adversary can perform computations for all
possible guesses in polynomial time and he can hope to induce a usable error
after polynomial many tries. This is fundamentally different from random faults,
where the number of possible faults is too large to be sampled in polynomial time.

Infective computations aim at randomizing the output, but they do not use
an own source of randomness. Instead, they use the random source provided
by the error. Consequently, their effectiveness depends on the quality of the
random error source. If the error is truly random, i.e., uniformly distributed in
a large set, a randomization of the final output is possible. Hence, an adversary
using the Random Fault Model #4 faces a randomized faulty output, where the
infective randomization strategy provides a good randomization. For all other
attacks, which assume errors, that do not represent a good source of randomness,
infective computations will always be insecure. This is what happens for the Bit
Fault Model #1 and the Byte Fault Models #2 and #3, where most of the
values e(m) ∈ Zpt1 occur with probability 0 and only a small fraction occurs
with non-zero probability. Any distribution of the error, which is strongly biased
or asymmetric, can be susceptible to the attack described above.

Wagner’s Attack on a Secure CRT-RSA Algorithm Reconsidered 19

Simple Solution for Attacks with Efficiently Sampleable Errors. A simple solution
to this problem is straightforward. If the adversary can always recover S̃ if a
strong fault model is used, the algorithm must not output a result. Hence, we
present with Algorithm 2 a simple countermeasure suitable for bit and byte
faults.

Algorithm 2: Secure CRT-RSA Algorithm with Explicit Checking Procedures
Input: A message m ∈ ZN

Output: Sig := md mod N or a random number in ZN

In Memory: p · t1, q · t2, N, N · t1 · t2, dp, dq, t1, t2, et1 , and et2
1 Let Sp := mdp mod p · t1
2 Let Sq := mdq mod q · t2
3 Let S := CRT(Sp, Sq) mod N · t1 · t2
4 Let c1 := (m − Set1 + 1) mod t1
5 Let c2 := (m − Set2 + 1) mod t2
6 If (c1 �= 1) or (c2 �= 1) then output FAILURE
7 Output S mod N

Infective computations have the advantage to replace explicit checking pro-
cedures, which always pose a single point of failure. However, a weak source of
randomness suggests to dispose of infective computations and return to the ex-
plicit checks. Explicit checking procedures are dangerous only if an adversary can
induce two faults during one run of the algorithm. Moreover, modern high-end
smartcards are equipped with a variety of countermeasures, which allow users
to be confident that the strong power of an adversary is reduced to the Random
Fault Model #4. Algorithm 1 is secure in this model.

More Sophisticated Solutions for Attacks with Efficiently Sampleable Errors.
However, with a little additional work, it might also be possible to protect Algo-
rithm 1 against bit or byte faults while still using infective computations. This
is a new direction of research, hence, we will only briefly sketch the ideas here.
Since the error does not provide enough randomness to sufficiently randomize
the two infective values c1 and c2, the algorithm needs to acquire another source
of randomness. To show how this can add security, assume that we have two
random values R1 and R2.

The attack described above, using the Single Bit Fault Model #1 or the Byte
Fault Models #2 and #2 to break Algorithm 1, exploits the fact that it can
enumerate all possible values of the term Set1 mod t1 efficiently, if m has been
attacked in Line 1. If c1 is smaller than t1, a reduction does not take place.
The latter allows the adversary to recover c1 by testing all possible error values
as described above, since the chance to induce such errors is very high. The
same considerations apply for a fault induced into m in Line 2, however, due to
symmetry, we will only describe attacks targeting the first line.

If the resulting value c1 > 1 is randomized by a sufficiently large random inte-
ger R1, the value c1 will be a random value as well. In this case, the advantage of

20 J. Blömer and M. Otto

the strong fault models #1, #2, and #3, which provide an efficiently sampleable
set of error values, can no longer be used. We present the modified algorithm as
Algorithm 3.

It is obvious from Algorithm 3, that c1 = c2 = 1 if no error occurs. In this
case, we have m − Seti ≡ 0 mod ti for i ∈ {1, 2}. If both R1 and R2 are random
integers with l(t1) = l(t2) bits, then there are 2(l(t1)−1) many possible values for
R1 and R2. Consequently, there are 2(l(t1)−1) many values for c1 and c2 unless
m − Seti ≡ 0 mod t. Hence, the values c1 and c2 are random integers in Zti

as well. Therefore, they cannot be recovered using only information about the
induced error. In this case, c1 and c2 will not be disclosed unless an adversary has
some knowledge about R1 and R2. Therefore, the attack described in [Wag04]
cannot be applied any longer.

Algorithm 3: Secure CRT-RSA Algorithm with Additional Randomization
Input: A message m ∈ ZN

Output: Sig := md mod N or a random number in ZN

In Memory: p · t1, q · t2, N, N · t1 · t2, dp, dq, t1, t2, et1 , et2
1 Let R1 and R2 be new random values
2 Let Sp := mdp mod p · t1
3 Let Sq := mdq mod q · t2
4 Let S := CRT(Sp, Sq) mod N · t1 · t2
5 Let c1 := (m − Set1) · R1 + 1 mod t1
6 Let c2 := (m − Set2) · R2 + 1 mod t2
7 Let Sig := Sc1·c2 mod N
8 Output S

However, randomness is expensive on smartcards. Hence, it is preferable to
protect the CRT-RSA algorithm without requiring random values R1 and R2,
generated freshly for each run of the algorithm. Consequently, a new idea is to
replace the notion of randomness by the notion of unpredictability. The attack
described above requires than an adversary is able to enumerate all possible
values for c1. However, if the two factors R1 and R2 are large unknown values,
the adversary loses the information about the set of possible values for faulty
c1 and c2. This might already be enough to defend against the attack described
above. In this case, there are several possible choices for R1 and R2, e.g.,

– two different fixed random values computed and stored on the card at pro-
duction time,

– R1 = R2 = d,
– R1 = R2 = S,
– R1 = p, R2 = q (or any combination of p and q),
– R1 = Sp, R2 = Sq (or any combination of Sp and Sq), or
– R1 = H(r1), R2 = H(r2), where H is a cryptographically strong hash func-

tion and r1 and r2 are any of the values d, S, Sp, or Sq.

Since the adversary has no better choice to recover c1 and c2 than to check
all possible values from Zt1 or Zt2 (depending on which line has been attacked),

Wagner’s Attack on a Secure CRT-RSA Algorithm Reconsidered 21

it should be sufficient to choose R1 = R2. Of the above suggested choices for R1
and R2, it is preferable to have R1 and R2 depend on S, Sp, and/or Sq rather
than on other values, because these ensure that the random factors depend on
the chosen message and on the induced fault, for a lot of possible fault locations.
However, the security of Algorithm 3 has not yet been proven, it is still an open
problem.

4.2 Wagner’s Attack

Another attack has been described in [Wag04] using a fault model close to Fault
Model #4. If this attack was successful, it would render the use of Algorithm
1 useless as a countermeasure. The fault model proposed in [Wag04] uses an
extremely asymmetric error distribution, where all faults only affect the lower
l(x) − 160 bits of an affected variable x, whereas the highest 160 bits are un-
changed. Therefore, it is somewhere between the Byte Fault Models #2 and #3
and the Random Fault Model #4. We will refer to this fault model as Wagner’s
Fault Model.

We consider Wagner’s Fault Model to be leaving the defined models of BOS.
It has never been considered before, and though it can be realized in practice, its
practicability has not been demonstrated yet. Moreover, it cannot be achieved
using the Random Fault Model #4, since an adversary can only hope to induce
a random fault with an effect of the required kind with probability 1/2160, which
is negligible. For bit faults and byte faults, however, this is possible with high
probability. Moreover, if a smartcard only uses block-wise encryption of the data
in memory, an attack can easily target the l(x) − 160 least significant bits of a
variable x. Modern smartcards, however, implement a variety of countermea-
sures, which allows to put great confidence in the assumption that Wagner’s
Fault Model is unrealistic. Moreover, Wagner’s attack requires several faulty
results.

In the attack described in [Wag04], the modulus N in Line 6 of Algorithm
1 is targeted with Wagner’s Fault Model. This attack aims at disclosing t1 and
t2. Such a disclosure allows to break the system as explained in Section 3.1.
A correct “large” signature S as computed in Line 3 can be written as S =
(S mod N)+k ·N , for some 0 ≤ k < 2161 (since l(t1 ·t2) ≤ 2160). A fault induced
into N according to this new fault model yields the faulty value Ñ . Given the
correct result Sig = S mod N and a faulty final result S̃ig = S mod Ñ , we have

S̃ig − Sig ≡ S − Sig ≡ S − S + k · N ≡ k · (N − Ñ) mod Ñ.

Since we know that |Ñ − N | ≤ 2l(N)−161, we have |k · (Ñ − N)| < 2l(N). With
probability at least 1/2, we have l(N) = l(Ñ), hence, when computing S̃ig −
Sig mod Ñ , there will be no overflow or modular reduction with sufficiently high
probability. In this case, an integer multiple of k is known to the adversary
and several attacks on N will allow him to compute k. This can be done by
computing many pair-wise gcd’s and taking the majority vote. Once an adversary
has k, he can compute S = Sig + k · N . Wagner erroneously assumes that
t1 · t2 = (S − Sig)/N .

22 J. Blömer and M. Otto

A closer analysis shows the flaw. Let t = t1 · t2, St = S mod t, and SN =
S mod N . This means that we have S = SN +k ·N , and Sig = SN . Consequently,
the term (S −Sig)/N = k yields k ≡ (St −SN)N−1 mod t (Garner’s formula). If
t ist fixed, then N−1 mod t is also fixed. However, due to the term St, the value
of k = (St −SN)N−1 mod t can take on any value in Zt. Moreover, since t and d
are unknown, given a message m it should be hard for an attacker to predict the
value St. Therefore, what the attacker will most probably see if he determines
the value k for messages m are random looking elements in Zt. To determine t
from this kind of information is not feasible. Hence, we consider this attack not
to be a threat to our proposed algorithm.

5 Conclusion

We have shown that Wagner’s attack on the BOS scheme does not completely
break the security of the BOS scheme due to a flaw in the proof. Therefore,
the BOS scheme should still be considered secure against fault attacks in the
Random Fault Model.

References

[ABF+02] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, Fault
attacks on RSA with CRT: Concrete results and practical countermea-
sures, Workshop on Cryptographic Hardware and Embedded Systems 2002
(CHES 2002) (Hotel Sofitel, San Francisco Bay (Redwood City), USA),
August 13–15 2002.

[BDL01] D. Boneh, R.A. DeMillo, and R. J. Lipton, On the importance of eliminat-
ing errors in cryptographic computations, J. Cryptology 14 (2001), no. 2,
101–119.

[BOS03] J. Blömer, M. Otto, and J.-P. Seifert, A new CRT-RSA algorithm secure
against Bellcore attacks, Conference on Computer and Communications
Security — CCS 2003 (V. Atluri and P. Liu, eds.), ACM SIGSAC, ACM
Press, 2003, pp. 311–320.

[CCD00] C. Clavier, J.-S. Coron, and N. Dabbous, Differential power analysis in the
presence of hardware countermeasures, Cryptographic Hardware and Em-
bedded Systems – Proceedings of CHES 2000, Worcester, MA, USA, Lec-
ture Notes in Computer Science, vol. 1965, Springer-Verlag, 2000, pp. 252–
263.

[CJ05] M. Ciet and M. Joye, Practical fault countermeasures for chinese remain-
dering based RSA, 2nd Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC 05) (Edinburgh, Scotland), September 2, 2005.

[Gir05] C. Giraud, Fault resistant RSA implementation, Fault Diagnosis and Tol-
erance in Cryptography — FDTC 2005 (Edinburgh, Scotland) (L. Breveg-
lieri and I. Koren, eds.), September 2, 2005.

[Ott05] M. Otto, Fault attacks and countermeasures, Ph.D. thesis, University
of Paderborn, 2005, http://wwwcs.uni-paderborn.de/cs/ag-bloemer/
forschung/publikationen/DissertationMartinOtto.pdf .

Wagner’s Attack on a Secure CRT-RSA Algorithm Reconsidered 23

[QS02] J.-J. Quisquater and D. Samyde, Eddy current for magnetic analysis with
active sensor, Proceedings of Esmart 2002, 2002.

[RE00] W. Rankl and W. Effing, Smart card handbook, 2 ed., John Wiley & Sons,
2000.

[SA02] S. Skorobogatov and R. Anderson, Optical fault induction attacks, Work-
shop on Cryptographic Hardware and Embedded Systems 2002 (CHES
2002) (Hotel Sofitel, San Francisco Bay (Redwood City), USA, August 13
- 15, 2002), 2002.

[Sha99] A. Shamir, Method and apparatus for protecting public key schemes from
timing and fault attacks, 1999, US Patent No. 5,991,415, Nov. 23, 1999.

[Wag04] D. Wagner, Cryptanalysis of a provably secure CRT-RSA algorithm,
Conference on Computer and Communications Security — CCS 2004
(V. Atluri, B. Pfitzmann, and P.D. McDaniel, eds.), ACM SIGSAC, ACM
Press, 2004, pp. 92–97.

[YKLM01] S.-M. Yen, S. Kim, S. Lim, and S. Moon, RSA speedup with residue num-
ber system immune against hardware fault cryptanalysis, Information Se-
curity and Cryptology - ICISC 2001 (4th International Conference Seoul,
Korea, December 6-7, 2001. Proceedings) (K. Kim, ed.), LNCS, vol. 2288,
Springer-Verlag, 2001, p. 397 ff.

[YKLM03] S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon, RSA Speedup with Chinese Re-
mainder Theorem Immune against Hardware Fault Cryptanalysis, IEEE
Transactions on Computers 52 (2003), no. 4, 461–472.

Attacking Right-to-Left Modular Exponentiation
with Timely Random Faults�

Michele Boreale

Dipartimento di Sistemi e Informatica
Università di Firenze

Abstract. We show that timely induction of random failures can potentially be
used to mount very cost effective attacks against smartcards deploying crypto-
graphic schemes based on (right-to-left) modular exponentiation. We introduce a
model where an external perturbation, or glitch, may cause a single modular mul-
tiplication to produce a truly random result. Based on this assumption, we present
a probabilistic attack against the implemented cryptosystem. Under reasonable
assumptions, we prove that using a single faulty signature the attack recovers a
target bit of the secret exponent with an error probability bounded by 3

7 . We show
the attack is effective even in the presence of message blinding.

Keywords: fault-based cryptanalysis, smartcards, public-key cryptosystems.

1 Introduction

In the past decade, a variety of potential attacks against supposedly tamper-proof de-
vices have been put forward. Many of these attacks exploit side-channel information,
such as that provided by timing analysis [11], differential power analysis [12], or com-
putation faults [3,2,9,8,13].

In this paper, we focus on attacks against implementations of public-key cryptosys-
tems based on modular exponentiation, such as RSA, El-Gamal and Diffie-Hellman. The
Bellcore attack [9] revealed that induction of random faults in a device implementing
RSA decryption with the Chinese Remainder Theorem (CRT) optimization could lead to
disclosure of the key material.

Subsequent works have extended fault-analysis beyond CRT-based exponentiation.
While revealing many potential weaknesses, these extensions have often been regarded
as too idealized [1]. The original Bellcore attack just made use of one random computa-
tion fault. Subsequent models typically assumed the ability of the attacker to selectively
alter the content of data registers, like flipping a few individual bits of the exponent [5],
or modifying a segment of a register during the execution of a modular multiplication
(e.g. the safe errors of [17]).

In the present paper we consider a model where truly random, hence "practical",
computation faults are combined with a simple form of timing control. As pointed out

� Author’s address: Dipartimento di Sistemi e Informatica, Viale Morgagni 65, I–50134 Firenze,
Italy. Email: boreale@dsi.unifi.it. Work partially supported by the EU within the FET-GC2
initiative, project SENSORIA, and by University of Firenze, projects "ex-60%".

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 24–35, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Attacking Right-to-Left Modular Exponentiation with Timely Random Faults 25

by several works [4,6,15], it is relatively simple to induce random computational er-
rors in smartcards using glitch-based techniques. A glitch is an external perturbation,
like a rapid variation in the clock frequency or power supply voltage, which causes a
malfunction of the device. The effect of a glitch could be having a few instructions
skipped or misinterpreted by the processor. The induced error is transient in the sense
that the device will generally resume its correct functioning some µ-seconds after the
glitch, with possibly the only observable effect of data corruption in some register. To
quote Bar-El et al. [6], who have experimented using this technique: for a certain set
of experiments, "the outcome was that the value of the data could be corrupted, while
the interpretation of instruction was left unchanged.". According to [6], this method
is widely researched and practiced behind closed doors by the smartcard industry. An
alternative to this technique is optical fault induction, presented by Skorobogatov and
Anderson in [15].

Given these premises, we can formulate our basic assumption as follows: a glitch
applied during the execution of a modular multiplication A ← B ·C mod n will result
in a random value to be written into register A. This assumption seems reasonable, as
execution of a modular multiplication provides a time window wide enough to allow a
processor to resume its correct functioning after the glitch and before the next operation.
Another relevant assumption we make is that the attacker has a control on the timing of
the device that is fine enough to allow the choice of an appropriate instant in time for
applying the glitch. This assumption (already present in other works on fault analysis)
is justified by the circumstance that the clock signal is supplied to the device by an
external card reader, which is presumably controlled by the attacker. In any case, we
will show that precision in timing control can be traded off with success probability of
the attack.

The basic idea is of the attack is easily explained. We focus on the right-to-left binary
exponentiation algorithm (see e.g. [10]). For the purpose of illustration, suppose that
the device implements the RSA signature scheme with secret exponent d and modulus
n, and suppose for simplicity that the message to be signed is a quadratic residue mod
n. Assuming the attacker has already determined the i− 1 least significant bits of d, he
can determine the initial instant in time of the ith iteration (the one dealing with the ith

bit of d), and apply a glitch during the squaring operation that immediately precedes
this iteration. As a result, a random r will be written in a certain register in place of the
squaring correct result. Then, if bit di is set, the attacker will observe a faulty signature
of the form r ·C2, otherwise the observed faulty signature will be of the form C2, for
some C. With high probability, the attacker can tell these two cases apart by computing
the Jacobi symbol of the faulty signature, thus determining the ith bit of the exponent.

The rest of the paper is organized as follows. In Section 2 some preliminary notions
are recalled. Section 3 introduce the basic model, where the attacker has a complete
control on timing (the multiplication time is constant and known to the attacker, time
due to control flow instructions is ignored). Section 4 presents the attack based on this
model as a probabilistic algorithm. The attack is presented in detail for the case of a
RSA modulus; the obvious modifications for a prime modulus are outlined. The results
of some software simulations are also discussed. Section 5 extends the model and the
attack to the case where time is randomized, possibly meaning partial control of the

26 M. Boreale

attacker on timing. A few software countermeasures are discussed in Section 6; the
technique of message blinding is shown to be not effective against the attack. Some
concluding remarks and lines for further research are discussed in Section 7. Details of
proofs have been confined to Appendix A.

2 Preliminary Notions

Recall (see [16]) that for a given prime p, x is a quadratic residue mod p if gcd(x, p) = 1
and x = y2 mod p for some y. If gcd(x, p) = 1 and x is not a quadratic residue mod p,
then x is called quadratic non-residue mod p.

The Jacobi symbol
(m

n

)
, for m and n integers, n ≥ 3 odd, is defined as follows. If

n = p is prime (in this case one also speaks of Legendre symbol), then

(
m
p

)
def=

⎧⎨⎩
1 if m is a quadratic residue mod p

−1 if m is a quadratic non-residue mod p
0 otherwise.

If k = p1 · · · pl , with p j’s primes not necessarily distinct, then
(m

n

)
is the product(

m
p1

)
· · ·
(

m
pl

)
. It can be shown that

If m = m1 · · ·mh mod n then
(m

n

)
=
(m1

n

)
· · ·
(mh

n

)
. (1)

It is well-known that
(m

n

)
can be efficiently computed without knowing the factoriza-

tions of m or n.
Suppose that n = p · q, with p,q distinct primes. Since in Zp there are exactly (p −

1)/2 quadratic residues mod p and an equal number of quadratic non-residues mod p
(similarly for q), using the Chinese Remainder Theorem and (1) above, it is immediate
to check that

|{r ∈ Zn |
(r

n

)
= −1}| = (p − 1) · (q − 1)/2 = φ(n)/2 .

where φ(·) is Euler’s totient function.

3 The Model

Throughout the rest of the paper, unless otherwise stated, we assume a fixed modu-
lus n = p · q (with p,q distinct secret primes) and a fixed document M ∈ Zn. The se-
cret exponent d ≤ n has been chosen according to some possibly unknown probability
distribution; in particular, we need not assume that d is an RSA exponent. The sig-
nature of M is S = Md mod n. Both n and d are representable in l bits, in particular
d = (dl−1 · · ·d1d0)2, where l need not to be known to the attacker.

In our scenario the attacker has got to know the device’s PIN, or the device is not
PIN operated. We also assume that the attacker controls the clock of the device, and can
apply a glitch (e.g. through a rapid variation of clock frequency) during the computation

Attacking Right-to-Left Modular Exponentiation with Timely Random Faults 27

at an instant of his choice, and read the resulting value S′. The device can be queried
in this way repeatedly. The rest of the section is devoted to a detailed description of
algorithmic, timing and failure assumptions, and of faulty computations that can be
induced by exploiting these assumptions.

Assumptions. We assume the device implements the right-to-left exponentiation al-
gorithm (Figure 1). The algorithm uses two variables w and z, viewed as (physical or
logical) s-bit registers with s ≥ l. The value returned by the algorithm is the final content
of register w, that is the (correct) signature, S = Md mod n (see below).

Input: M
Output: S = Md mod n

w ← 11

z ← M2

for j = 0 . . . l −1 do3

if d j = 1 then w ← w · z mod n4

z ← z · z mod n5

end6

return w7

Fig. 1. The right-to-left exponentiation algorithm

Concerning timing and failures, we make the following assumptions:

1. each modular multiplication/squaring operation takes a constant time, say δ clock
cycles, and δ is a constant known to the attacker;

2. time taken by control-flow instructions is ignored, in other words, we view the
algorithm as a sequence of modular multiplications, grouped for ease of reference
into the l iterations or phases depicted in Figure 2. Each phase i takes either δ or 2δ
cycles, depending on the value of di, 0 ≤ i ≤ l − 1;

phase 0

[
if d0 = 1 then w ← w · z mod n
z ← z · z mod n

phase 1

[
if d1 = 1 then w ← w · z mod n
z ← z · z mod n

...

phase l −1

[
if dl−1 = 1 then w ← w · z mod n
z ← z · z mod n

Fig. 2. The right-to-left exponentiation algorithm as a sequence of l phases

3. a glitch applied onto the device during the execution of a modular multiplication
will result in a random value r ∈ Z2s to be written in the involved register (w or z),
in place of the multiplication’s correct result.

28 M. Boreale

(We will discard conditions 1 and 2 in Section 5.) If we denote by Ti the first cycle of
phase i in a correct computation (counting from T0 = 1), then

Ti = δ
(
i− 1 +

i−1

∑
j=0

d j
)
+ 1 0 ≤ i ≤ l − 1 . (2)

Faulty computations. Let us first analyze the use of variables w and z in a correct
execution of the algorithm. Variable z is used to store successive squaring of M; more
precisely, when entering phase i, z contains ci, where:

ci
def= M2i

mod n 0 ≤ i ≤ l − 1 .

Variable w is used to store intermediate products of the ci’s; more precisely, when leav-
ing phase i, w contains Si, where:

Si = (c0)d0 · (c1)d1 · . . . · (ci−1)di−1 · (ci)di mod n (3)

in particular at, the end of phase l − 1, S will be obtained as the product:

S = (c0)d0 · (c1)d1 · . . . · (cl−2)dl−2 · (cl−1)dl−1 = Md mod n.

Suppose the bits of the exponent from d0 to di−1 have been determined, and that
bit di must be determined, for some 0 < i ≤ l − 1; note that d0 can easily be
guessed/determined by other means (and in case d is a RSA exponent, one already
knows that d0 = 1). The attacker computes the first instant Ti of phase i using (2),
and applies a glitch at time T , for some Ti > T > Ti − δ. This glitch will affect a single
operation, i.e. the squaring z ← z · z of phase i − 1. As a consequence, a random value
r ∈ Z2s will be written in register z at the end of phase i−1. Let us see how this fault af-
fects the final result of the computation, the faulty signature S′. It is easy to see, relying
on (3) or on Figure 2, that S′ will be computed as:

S′ = (c0)d0(c1)d1 · · ·(ci−1)di−1 · rdi · (r2)di+1 · · · (r2l−i−1
)dl−1 mod n . (4)

It is convenient to sum up the above considerations in the definition below. We code
up the faulty behavior of a device where the ith bit is targeted as a random variable,
assuming d0, ...,di−1 have been determined and are fixed binary constants.

Definition 1. Let di, ...,dl−1 be binary random variables and r be a random vari-
able uniformly distributed in Z2s and independent from di, ...,dl−1. We denote by
S′(r,di, ...,dl−1) the random variable whose value is given by the RHS of (4).

4 The Basic Attack

For the rest of the section, we fix i with 0 < i ≤ l −1. The target of the attack will be bit
di, assuming that bits from d0 to di−1 have been determined. We assume without loss of
generality that: (

M
n

)
= 1 .

Attacking Right-to-Left Modular Exponentiation with Timely Random Faults 29

We shall indicate below how to modify the attack if

(
M
n

)
�= 1 (see Remark 1 below).

Equation (4) allows an attacker to extract information about the di by computing the
Jacobi symbol of S′, i.e., by taking the result of the random variable J:

J
def=
(

S′

n

)
.

All factors of S′ different from rdi have Jacobi symbol �= −1. Hence, if one gets J = −1,
one can immediately conclude that di = 1 (by (1)). On the other hand, if one gets J �= −1

then one concludes that di is probably 0 (in case

(
M
n

)
= −1, we should just reverse the

role of ’1’ and ’−1’). For ease of reference, we code the test just outlined as a random
variable.

Definition 2 (a test for di). The random variable A is defined as:

A def=
{

1 if J = −1
0 if J �= −1.

Remark 1. Suppose that

(
M
n

)
= −1. A moment’s thought shows that the test A still

works if d0 = 0. If d0 = 1, then we can make A work by modifying it as follows:

A def=
{

1 if J = 1
0 if J �= 1.

That is, if d0 = 1 and one gets J �= −1 then from (4) one can immediately conclude that
di = 1.

Of course, if

(
M
n

)
= 0 one can immediately factor n by computing gcd(M,n). From

now onward, we shall assume without loss of generality that

(
M
n

)
= 1.

The analysis of the test A is straightforward. In the sequel, let α def= Pr[di = 1], and let

the success probability of A be ρ def= Pr[A = 1 |di = 1], where we stipulate that ρ def= 1 if

α = 0. Finally let the error probability of A be ε def= Pr[di = 1|A = 0].

Lemma 1. It holds that:

(a) Pr[di = 1|J = −1] = 1;
(b) ρ = Pr[J = −1|di = 1] ≥ φ(n)/2s+1.

PROOF: See Appendix. �
The following theorem says that A may be viewed as a Monte-Carlo type probabilistic
algorithm.

Theorem 1. The random variable A is a 1-biased probabilistic test for di, more pre-
cisely:

30 M. Boreale

(a) Pr[di = 1|A = 1] = 1;

(b) ε = (1−ρ)α
(1−ρ)α+1−α ≤ (1− φ(n)

2s+1)α

(1− φ(n)
2s+1)α+(1−α)

.

PROOF: Part (a) follows from Lemma 1(a). For part (b), we may assume α �= 0,1,
otherwise the wanted equality and inequality hold trivially. First observe that Pr[A =
0|di = 0] = 1−Pr[A = 1|di = 0] = 1, by part (a). Then, observe that, by definition of A,
Pr[A = 1|di = 1] = Pr[J = −1|di = 1] = ρ. Apply Bayes theorem to get:

ε = Pr[di = 1|A = 0] = Pr[A=0|di=1]·Pr[di=1]
Pr[A=0|di=1]·Pr[di=1]+Pr[A=0|di=0]·Pr[di=0]

= (1−ρ)α
(1−ρ)α+(1−α) .

The last expression is decreasing with respect to ρ in [0,1]. By Lemma 1(b) we know
that ρ ≥ φ(n)/2s+1, whence the thesis. �

As usual, one can make the error probability arbitrarily small by repeating the test m
times independently in succession, for a suitable m, for fixed values of d0, ...,dl−1. In
this case, the error probability is bounded above by:

(1 − ρ)mα
(1 − ρ)mα+ 1 − α

.

A more precise estimation of ε is obtained by making some further assumptions. In par-
ticular, it seems reasonable to assume α = 1/2 (this is not exact if d is a RSA exponent,
but seems a good approximation in practice). Let us say that n = p · q is balanced if
p and q have the same size (an integer m has size t if 2t−1 ≤ m < 2t). Finally, let us
assume that size of n fits the size s of the registers.

Corollary 1. If n is balanced and has size s and α = 1
2 then ε ≤ 3

7 .

PROOF: Since p and q have the same size, it must be p,q > 2
s−1

2 . Easy calculations then
yields φ(n)/2s+1 ≥ 1/4. When we substitute this value for φ(n)/2s+1 and 1/2 for α in
the upper bound for ε given in the previous theorem, we get the value 3/7. �

Here is a small example to illustrate.

i 7 6 5 4 3 2 1 0
S′, J 44, 1 58, -1 11, 1 86, 1 120, 0 43, -1 34, 1 -

44, 1 106, 1 113, 1 77, 1 100, 1 -
44, 1 35, 1 79, 1 5, 1 29, 1 -
44, 1 43, -1 59, -1 92, 1 53, -1 -

di 0 1 1 1 0 1 1 1

Fig. 3. An attack on the exponent d = 119 = (01110111)2 with n = 141

Attacking Right-to-Left Modular Exponentiation with Timely Random Faults 31

Example 1. Suppose that n = 141 = 3 · 47 and M = 23. The bits of the exponent d
are determined in l = 8 successive stages, as in illustrated in Figure 3 (the value of l
is not known in advance), starting from the least significant bit d0 which is guessed
to be 1. For each stage, the test is repeated at most m = 4 times independently. At
each stage, the glitch time is given by T = Ti − ε for some 0 < ε < δ. In conclusion,
d = (01110111)2 = 119. Of course, on J = 0 we could have factored the modulus
right away. Also note that, in the last column, 44 is the correct value of Md mod n: the
squaring in the last but one iteration has no effect on the final result, as dl−1 = 0.

Remark 2 (software simulations). In the hypotheses of the corollary above, to obtain an
error probability less say, than 2−10, one may have to run the test up to m = 25 times
independently. In practice, software simulations have shown that a bit less than 5000
queries (=faulty signatures) are sufficient to recover a RSA-768 key in about 70% of
the cases. Considering a realistic time of 300 ms per query, and ignoring the time taken
by a common PC to perform the test, this means that about 25 minutes are enough to
recover such a key with a success probability of 0.7.

Remark 3 (Discrete log cryptosystems). The attack presented in this section can be
repeated essentially unchanged when the modulus is a prime p. In this case, the
success probability ρ = Pr[J = −1 |di = 1] can be lower-bounded by |φ(p)|/2s+1 =
(p − 1)/2s+1. If the size of p is l = s, then again ρ ≥ 1/4 and ε ≤ 3/7. Thus, in prin-
ciple, in both El-Gamal decryption and Diffie-Hellman key-exchange an attacker might
target and recover the secret exponent.

5 Randomized Time

We discard the assumption that all modular multiplications in the algorithm take the
same known constant time δ. We represent multiplication times as random variables,
possibly absorbing the time taken by control flow instructions. Times might change
from an execution to the next, depending e.g. on instructions schedule, random delays
or blinding of the argument. Or simply the randomness might represent the attacker’s
incomplete knowledge about the timing of the device (i.e. initial instant of each phase).

The first instant of phase i is given by the random variable

Ti =
i−1

∑
j=0

(d j ·µ j + ν j)+ 1 0 ≤ i ≤ l − 1

where for 0 ≤ j ≤ i−1: d j’s are known values and µ j’s and ν j’s are continuous random
variables, which, following [11], we assume to be normally distributed, with known
variance and mean. We also assume that all these random variables (µ j, ν j’s) are pair-
wise independent, and independent from di as a random variable. The model of the
device (Definition 1) is modified as expected: S′ yields the RHS of (4) whenever the
glitch time T is such that Ti > T > Ti − νi−1, for 0 < i ≤ i − 1. Now, the midpoint in

time of the squaring operation at phase i− 1 is given by τ def= Ti−1 + di−1µi−1 + νi−1/2.
We take the glitch time T to be the expectation:

T
def= E[τ] .

32 M. Boreale

The definition of J and A remain unchanged. As we show below, with these definitions
A yields a 2-sided probabilistic algorithm. Let γ > 0 be half the minimal duration of
the squaring at phase i − 1, i.e. take the supremum of all γ s.t. Pr[νi−1 < 2γ] = 0, and

let Γ def= Pr[|T − τ| < γ]: this value can be computed exactly as τ is normally distributed

with mean T and standard deviation σ def= ∑i−2
j=0(d jvar(µ j)+ var(ν j))+ di−1var(µi−1)+

1
4 var(νi−1). Recall that α = Pr[di = 1]. The following result is proven by noting that if
τ falls within γ of the glitch time T , then the glitch will be ’correct’, i.e. it will affect the
squaring in phase i− 1.

Theorem 2. The random variable A is a 2-sided probabilistic algorithm for bit di. In
particular:

a) the success probability for 1 is: ρ def= Pr[A = 1|di = 1] ≥ φ(n)
2s+1 ·Γ, with ρ def= 1 if α = 0;

b) the error probability for 1 is: ε1
def= Pr[d = 1|A = 0] ≤ (1−Γ)(1−α)

(1−Γ)(1−α)+ρα;

c) the error probability for 0 is: ε0
def= Pr[d = 0|A = 1] ≤ (1−ρ)α

(1−ρ)α+Γ(1−α) .

The expressions for ε0, ε1 are monotonically decreasing w.r.t. ρ ∈ [0,1].

PROOF: See Appendix �

Given that A is a two-sided probabilistic test, one has to run the test m times independently
with fixed values of the exponent bits and take the majority of the outcomes to have
a reliable result. Note that for m independent iterations of A, with fixed values of the
exponent bits, the error probabilities for 1 and 0 can be lower-bounded respectively as:

(1 − Γ)m(1 − α)
(1 − Γ)m(1 − α)+ ρmα

and
(1 − ρ)mα

(1 − ρ)mα+ Γm(1 − α)
.

For the test to be useful, one has to make sure that the above values vanish as m grows.
This is the case precisely when ρ + Γ > 1; by virtue of (a) above, this holds if Γ >

1
1+φ(n)/2s+1 .

As a general remark, the attack performs well in situations with a moderate variance
of multiplication times, that is, when timing attacks are more difficult to mount. The
following example provides some numerical evidence that for typical values of Γ the
randomized version of the attack is feasible.

Example 2. For ease of reference, we use numerical data drawn from Kocher’s orig-
inal paper [11]. The following figures refer to time measurements (in µ-seconds) of
actual modular multiplications executed during modular exponentiations. The random
variables µ j and ν j’s are all normally distributed with standard deviation σm = 12.01
and mean t = 1167.8. The minimal duration of a modular multiplication can be taken
1130, hence we set γ = 565. Suppose we target the 512th bit of a secret exponent
of size l = 1024 bit. Assuming, on average, that half of the bits from d0 to d511

are set, we can compute the mean of τ as T = t(511 + 1
2 + 256) = 896286.5 and

its variance as σ2 = σ2
m(511 + 1

4 + 256) = 110668.2167. These values gives (here

Attacking Right-to-Left Modular Exponentiation with Timely Random Faults 33

Φ(·) denotes the cumulative distribution function of standard normal distribution):
Γ = Φ(γ/σ)− Φ(−γ/σ) ≈ 0.9105. Under the hypotheses of Corollary 1, we get

ρ ≥ 1
4

·Γ ≈ 0.2275 ε0 ≤ 0.4590 and ε1 ≤ 0.2825 .

If we want both error probabilities to decrease under, say, 2−10, we may have to run the
test up to 43 times independently.

6 Countermeasures

We discuss a few software countermeasures.
Blinding Exponentiation with blinding (Figure 4) is a common and effective technique
to thwart attacks based on timing [11].

choose at random v ∈ Z∗
n1

X ← Mve mod n2

Y ← Xd mod n3

S ← Y v−1 mod n4

Fig. 4. RSA with message blinding

It is easy to see that message blinding has no effect on our attack. Suppose the at-
tacker’s target is bit di. Given that the values ve, v−1 mod n are usually precomputed,
the attacker can easily target the ith bit during the exponentiation at step 3 and induce a
faulty computation yielding Y ′ as a result (i.e. a faulty signature of Y , without blinding),
hence getting from the device a faulty signature

S′′ = Y ′v−1 mod n .
Let S′ be the faulty signature one would obtain by targeting the ith bit in the case

with no blinding – but with the same choice of the random r ∈ Z2s . Let ci
def= (ve)2i

, for
i = 0, ..., l − 1. It is easy to see, relying on equation (4), that:

S′′ = S′ ·C · v−1 mod n
where C = (c0)d0 · · · (ci−1)di−1 . Noting that that e is odd we have:(

ve

n

)
=
(v

n

)
=
(

v−1

n

)
and since d0 = 1, hence c0 = ve, we get(

S′′

n

)
=
(

S′

n

)
.

Effective countermeasures Checking before output, i.e. checking that Se = M mod n,
with e a RSA public exponent (see [9]), before transmitting the signature has been pro-
posed to contrast fault attacks. This is feasible in case the public exponent e is small.
In the case of a prime modulus p, a strategy suggested by Shamir [14] involves doing
exponentiation twice, once mod p and once mod p · r, for r a 32-bit prime, and then
comparing the results. Random delays (see [11]) have been proposed as a countermea-
sure against timing analysis. An alternative form of blinding, also proposed in [11], is
blinding of the exponent, which consists in summing a quantity kφ(n), with k random,
to the exponent d before performing modular exponentiation. Adoption of one of above
listed methods appears to thwart our attacks.

34 M. Boreale

7 Conclusions

We have demonstrated that fault analysis can be combined with timing control to po-
tentially get effective cryptanalysis of cryptographic schemes implemented using the
(right-to-left) modular exponentiation algorithm. Our model is based on random, tran-
sient computation faults, that appear to be easier to induce than faults based on modify-
ing individual bits of data registers.

At the moment it is not clear how to extend the attack presented here to the left-to-
right version of the exponentiation algorithm. Indeed, one can easily show that, in the
case of a prime modulus p, a straightforward extension of this attacks based on detecting
2i-th power mod p permits to recover the k least significant bits of the exponent, where k
is the exponent of 2 in the factorization of p−1: however, these bits are already known
to be "easy" to recover.

Also, one wonders whether an analog of the present attack might work against ECC

schemes that rely on "double and add" algorithms, perhaps along the lines of the attacks
presented in [7]. These extensions will be the subject of further study.

References

1. R.J. Anderson, M. Bond, J. Clulow, S. Skorobogatov. Cryptographic processors – a survey,
Technical Report UCAM-CL-TR-641, University of Cambridge, Computer Laboratory, Au-
gust 2005.

2. R.J. Anderson, M.J.Kuhn, Tamper resistance − a cautionary note. The second USENIX Work-
shop on Electronic Commerce proceedings, Nov. 1996.

3. R.J. Anderson, M.J. Kuhn, Low cost attacks on tamper-resistant devices, Security protocols,
5th International Workshop, Paris, 1997.

4. C. Aumüller, P. Bier, P. Hofreiter, W. Fischer and J.- P. Seifert. Fault attacks on RSA with
CRT: Concrete Results and Practical Countermeasures, Cryptology ePrint Archive: Report
2002/073.

5. F.Bao, R.H.Deng, Y.Han, A.Jeng, A.D.Nirasimhalu, T.Ngair. Breaking Public Key Cryp-
tosystems on Tamper Resistant Devices in the Presence of Transient Faults. In Proc. of the
5th Workshop on Secure Protocols, LNCS 1361, Springer, 1997.

6. H.Bar-El, H.Choukri, D.Naccache, M.Tunstall, C.Whelan. The Sorcerer’s Apprentice Guide
to Fault Attacks, In Workshop on Fault Detection and Tolerance in Cryptography, Florence,
2004. Also in Cryptology ePrint Archive: Report 2004/100, 2004.

7. I. Biehl, B. Meyer, V. Müller. Differential Fault Attacks on Elliptic Curve Cryptosystems, In
Advances in Cryptology - Crypto 2000, LNCS 1880, Ed. Mihir Bellare, Springer, 2000.

8. E.Biham, A.Shamir. Differential fault analysis of secret key cryptosystem, In Advances in
Cryptology, CRYPTO ’97, LNCS 1294, Springer, 1997.

9. D.Boneh, R.A.DeMillo, R.J.Lipton. On the importance of checking cryptographic protocols
for faults, Journal of Cryptology, 14(2), Springer, 2001.

10. D.E.Knuth. The art of computer programming vol.2, Seminumerical algorithms. Addison
Wesley, third edition, 1997.

11. P.Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other sys-
tems, Advances in Cryptology-CRYPTO’96, LNCS 1109, Springer, 1996.

12. P.Kocher, J.Jaffe, B.Jun. Differential Power Analysis, In Advances in Cryptology,
CRYPTO’99, LNCS 1294, Springer, 1999.

Attacking Right-to-Left Modular Exponentiation with Timely Random Faults 35

13. J.J.Quisquater, G.Piret. A Differential Fault Attack Technique Against SPN Structures, with
Application to the AES and KHAZAD, In Fifth International Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2003), LNCS 2779, Springer, 2003.

14. A. Shamir. How to check modular exponentiation. Presented at EUROCRYPT’97 rump ses-
sion, Konstanz, May 1997.

15. S. Skorobogatov, R. Aderson. Optical Fault Induction Attacks. In Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES 2002), LNCS 2523, Springer, 2002.

16. D.R.Stinson. Cryptography: Theory and Practice. CRC Press, second edition, 2002.
17. S-M. Yen, M.Joye. Checking before output may not be enough against fault-based crypt-

analysis. In IEEE Transactions on Computers, 49(9), 2000.

A Proofs

PROOF OF LEMMA 1: Part (a) follows from the discussion immediately preceding the
statement of the lemma. For part (b), suppose that di = 1. Then, by definition of S′ and

J and by the property of the Jacobi symbol (1), J =
(r

n

)
with r chosen at random in

Z2s . Thus

ρ = |{r ∈ Z2s :
(r

n

)
= −1}|/2s ≥ |{r ∈ Z2n :

(r
n

)
= −1}|/2s

since n ≤ 2s. But, as noted in Section 2, the set that appears at the numerator in the last
expression has cardinality φ(n)/2. �

PROOF OF THEOREM 2: Concerning (a), one can lower bound the success probability
ρ = Pr[J = −1|di = 1] by noting that if τ falls within γ of the glitch time T , then the
glitch will be ’correct’, i.e. it will affect the squaring in phase i− 1. Therefore

Pr[J = −1|di = 1, |T − τ| < γ] ≥ φ(n)
2s+1 .

By the independence of di and τ, we have:

ρ = Pr[J = −1 |di = 1, |T − τ| < γ] ·Γ+ Pr[J = −1|di = 1, |T − τ| ≥ γ] · (1 − Γ)
≥ Pr[J = −1 |di = 1, |T − τ| < γ] ·Γ
≥ φ(n)

2s+1 ·Γ .

The upper bounds for ε0 and ε1 follow using Bayes theorem. In particular, for ε1 we use
the lower-bound:

Pr[A = 0 |di = 0] = Pr[J �= −1 |di = 0, |T − τ| < γ] ·Γ +
Pr[J �= −1|di = 0, |T − τ| ≥ γ] · (1 − Γ)

= 1 ·Γ+(· · ·)
≥ Γ .

It is immediate to check that the given bounds are monotonic decreasing in ρ. �

Sign Change Fault Attacks on Elliptic Curve
Cryptosystems

Johannes Blömer1, Martin Otto1,�, and Jean-Pierre Seifert2

1 Paderborn University, Institute for Computer Science, 33095 Paderborn, Germany
bloemer@upb.de, martin@martin-otto.de

2 Intel Corporation, Virtualization & Trust Lab — CTG, 2111 NE 25th Avenue,
M/S JF2-55, Hillsboro, OR 97124-5961, USA

jeanpierreseifert@yahoo.com

Abstract. We present a new type of fault attacks on elliptic curve scalar
multiplications: Sign Change Attacks. These attacks exploit different
number representations as they are often employed in modern crypto-
graphic applications. Previously, fault attacks on elliptic curves aimed
to force a device to output points which are on a cryptographically weak
curve. Such attacks can easily be defended against. Our attack produces
points which do not leave the curve and are not easily detected. The pa-
per also presents a revised scalar multiplication algorithm that protects
against Sign Change Attacks.

Keywords: elliptic curve cryptosystem, fault attacks, smartcards.

1 Introduction

Secure cryptographic applications require a secure platform, which is not of-
fered by today’s desktop computers. Consequently, sensitive applications, espe-
cially for digital signatures, are deployed on smartcards. Smartcards are tamper-
resistant and not threatened by viruses and other malicious code. However,
smartcards must adhere to the laws of physics, a fact that can be exploited
by an adversary to collect additional information about their computations us-
ing side-channel information. The most prominent side-channels are given by
timing measurements, power consumption measurements, and faulty outputs.

In 1997, Boneh, DeMillo and Lipton ([BDL01]) introduced fault attacks, which
exploit faulty outputs. They showed how to use errors in the computation of an
RSA signature to recover the secret key. Today, several different methods to
purposely induce faults into devices and memory structures have been reported
(e.g., [AK96], [SA02]). As it is a quite natural idea to extend the results to other
group based cryptosystems, [BMM00] show how to exploit errors in elliptic curve
scalar multiplications. This result has been refined in [CJ03].

All fault attacks on elliptic curve cryptosystems presented so far ([BMM00],
[CJ03]) tried to induce faults into the computation of a scalar multiplication
� Supported by the DFG graduate school No. 693 and the PaSCo Institute, Paderborn.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 36–52, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Sign Change Fault Attacks on Elliptic Curve Cryptosystems 37

kP on the elliptic curve E such that the computation no longer takes place on
the original curve E. By changing the base point P or an intermediate point
randomly, by changing the curve parameters of E, or by changing the defining
field, the operations leave the group defined by the elliptic curve E. Instead the
scalar multiplication is done on a different curve Ẽ and/or with a different base
point P̃ . Then the so-called pseudo-addition can be used to recover the secret
key if the point k · P̃ on the new curve Ẽ allows to solve the discrete logarithm
problem at least partially. The disadvantage (or advantage) of the proposed
attacks is that there is an obvious and efficient countermeasure: simply check
whether the result is a point on the original curve E or not.

In this paper, we present a new type of fault attacks on elliptic curve scalar
multiplication, Sign Change Attacks. Our attack does not change the original
curve E and works with points on the curve E. We show how sign changes of
intermediate points can be used to recover the secret scalar factor. Our attack
leads to a faulty output that is a valid point on the original elliptic curve. Then
we can use an algorithm similar to the one presented for RSA in [BDL01] to
recover the secret scalar factor in expected polynomial time. We present our at-
tack for the NAF-based left-to-right repeated doubling algorithm, because here
Sign Change Faults seem to be easier to realize than for other repeated dou-
bling variants (see Section 5). However, we stress the fact that the attack can
also be used against other scalar multiplication algorithms, e.g., the right-to-left
version, binary expansion based repeated doubling, and the Montgomery ladder
([Mon87]) if the y-coordinate is used.

Our attacks show that the basic ideas of [BDL01] carry over to elliptic curve
cryptosystems as well. Clearly, the standard countermeasures described above,
namely checking whether the result lies on the original curve, fail to detect Sign
Change Attacks. In fact, they even support Sign Change Attacks by holding
back a great variety of faulty results if they have been caused by errors other
than Sign Change Faults. This allows an adversary to use a less precise attack
setting.

We also present a revised version of the basic scalar multiplication algorithm
for elliptic curves that is secure against Sign Change Attacks in Section 4. Our
countermeasure is motivated by a similar countermeasure by Shamir against at-
tacks on CRT-RSA exponentiations ([Sha99]). We use the original elliptic curve
together with a second small curve, which allows to define a larger ”combined
curve”, where the desired scalar multiplication is performed. Using this combined
curve, one can check the final result efficiently. We show that this technique se-
cures all standard repeated doubling algorithms against Sign Change Attacks
and previously reported attacks. Our analysis proves ad hoc security against
these attacks only, it does not provide a general security proof or security reduc-
tion. Research on fault attacks has not yet established a mathematical framework
to allow general security claims.

One can also use randomization schemes to counteract a differential fault at-
tack with Sign Change Faults. However, smartcard certification authorities often

38 J. Blömer, M. Otto, and J.-P. Seifert

require that algorithms are secure against fault attacks even without random-
ization. Moreover, randomization schemes that only randomize the base point
are not guaranteed to counteract an SCA, e.g., Coron’s third countermeasure
in [Cor99, §5.3] or the proposed elliptic curve isomorphism in [JT01, §4.1]. Al-
ternatively, some scalar multiplication algorithms like the Montgomery ladder
([Mon87]) can be used without the y-coordinate. Therefore, these methods can-
not be attacked by a Sign Change Attack. However, patent issues prevent the
usage of the Montgomery ladder and endorse the widespread use of variants of
the standard repeated doubling algorithm, mostly based on the NAF.

The paper is organized as follows: After briefly recalling the basics of elliptic
curve arithmetic, we present the Sign Change Attack on Elliptic Curve Scalar
Multiplication in Section 3. Section 4 is devoted to presentation and analysis
of the proposed countermeasure. In Section 5, we discuss methods to carry out
Sign Change Faults in practice. Section 6 concludes the paper. Since the main
contribution of this paper is the presentation of the new Sign Change Faults
and the countermeasure presented in Section 4, we concentrate in this extended
abstract on Sections 4 and 5.

2 Elliptic Curve Cryptography

An elliptic curve over a field Fp with p > 3 is defined as the set of points
(x : y : z) ∈ F3

p that satisfy the projective Weierstraß equation

y2z ≡ x3 + Axz2 + Bz3 mod p. (1)

Moreover, O denotes the point at infinity (0 : 1 : 0). The points of E form an
additive group. The elliptic curve E as well as points on E can be expressed in a
variety of coordinate representations, e.g., affine coordinates, projective coordi-
nates, Jacobian coordinates, or Hessian coordinates. This paper concentrates on
projective representations as defined above. As we do not need to consider the
projective addition formula in detail, we refer the reader to standard literature
for a description of the actual computation of the sum of two projective points.
A nice overview of several addition formulas can be found in [CMO98].

In cryptosystems based on elliptic curves, e.g., the ElGamal cryptosystem
and its variants, a crucial computation is the scalar multiplication of a public
base point P with a secret scalar factor k. Attacks aim to recover the value
k. Several implementations of fast scalar multiplication algorithms have been
presented in the literature. In Algorithm 1, we present a left-to-right version of
the well known repeated doubling algorithm to present our attack. Algorithm
1 already implements a standard countermeasure against random fault attacks
in Line 5. It protects against previously proposed fault attacks on elliptic curve
cryptosystems ([BMM00], [CJ03]). For all subsequent considerations, we will
always assume that this standard countermeasure is applied.

Sign Change Fault Attacks on Elliptic Curve Cryptosystems 39

Algorithm 1: NAF-based Repeated Doubling on Elliptic Curve E

Input: A point P on E, and a secret key 1 < k < ord(P) in non-adjacent form,
where n denotes the binary length of k, i.e. the number of bits of k

Output: kP on E
1 Set Qn := O
2 For i from n − 1 downto 0 do
3 Set Q′

i := 2Qi+1

4 If ki = 1 then set Qi := Q′
i + P

If ki = 1 else if ki = −1 then set Qi := Q′
i − P

If ki = 1 else if ki = −1 else set Qi := Q′
i

5 If Q0 is not on E then set Q0 := O
6 Output Q0

In Algorithm 1, we use the non-adjacent form (NAF) representation of the
secret scalar k. The performance of most variants of the the classical repeated
doubling algorithm will improve if the scalar k is recoded into non-adjacent form
(NAF). The 2-NAF uses digits from {−1, 0, 1} and ensures that no two adjacent
digits are non-zero. It achieves a higher ratio of zeros to non-zeros. For details on
the NAF, see [Boo51], or [JY00]. Using the NAF, subtractions are introduced.
Since negating a point on an elliptic curve simply means to change the sign of the
y-coordinate, subtractions are cheap operations on elliptic curves. The savings
using repeated doubling based on the NAF are 11.11% on average (see [MO90]).

3 The Sign Change Attack on Elliptic Curve Repeated
Doubling

Previous fault attacks on elliptic curve scalar multiplication used the fact that
a pertubated point is not a valid point on the given curve with high probability.
However, such a situation can be easily detected and defended against. In the
following, we present a new type of faults, Sign Change Faults. They allow to
recover the secret scalar factor of a scalar multiplication operation. Section 5 will
investigate how such faults can be induced. It will be shown that these attacks
are practical.

Our Fault Model. We assume that an adversary is able to induce a Sign
Change Fault (SCF) on a specific elliptic curve point used in Algorithm 1. A Sign
Change Fault changes the sign of the y-coordinate of an attacked point, e.g., Q′

i

on E, such that Q′
i �→ −Q′

i. The adversary does not know in which iteration of
the loop the error occurs. However, we assume that the loop iteration determined
by i is chosen i.i.d. according to the uniform distribution. Throughout this paper,
we denote the correct final result by Q and a faulty final result by Q̃.

Elliptic curves defined over prime fields, which are recommended by current
standards such as ANSI, SEC, and IEEE, have prime order or use a subgroup

40 J. Blömer, M. Otto, and J.-P. Seifert

of prime order. Therefore, we will assume this property for our curves as well.
It implies that any point P �= O on E must have the same (large) prime order.
We will use this assumption frequently.

We state our attack using an algorithm similar to the attack presented by
Boneh, DeMillo and Lipton in [BDL01] on RSA. Similar to [BDL01], we need a
polynomial number of faulty outputs for the same inputs to achieve a sufficiently
high success probability. We use the following result from [BDL01] to bound the
number of necessary faulty outputs needed by our attack.

Fact 2 (Number of Necessary Attacks). Let x = (x1, x2, . . . , xn) ∈ {0, 1}n

and let M be the set of all contiguous intervals of length m < n in x. If c =
(n/m) · log(2n) bits of x are chosen uniformly independently at random, then
the probability that each interval in M contains at least one chosen bit is at
least 1/2.

3.1 Sign Change Attack on Q′
i in Line 4

All of the variables in Lines 3 and 4 can be successfully attacked with a Sign
Change Attack (SCA). In the following, we present the attack on the variable
Q′

i in Line 4 during some loop iteration 0 ≤ i ≤ n − 1.
The basic idea of our attack algorithm is to recover the bits of k in pieces of

1 ≤ r ≤ m bits. Here, m is chosen to reflect a trade-off between the number of
necessary faulty results derived from Fact 2 and the approximate amount 2m of
offline work. Throughout this paper, we assume that 2m
 #E. To motivate
the algorithm, assume that a faulty value Q̃ is given that resulted from an SCF
in Q′

i. We have

Q̃ = −2iQ′
i +

i∑
j=0

kj · 2j · P = −Q + 2Li(k) with Li(k) :=
i∑

j=0

kj2jP (2)

On the right hand side of Equation (2), the only unknown part is Li(k), which de-
fines a multiple of P . If only a small number of the signed bits k0, k1, . . . , ki used
in that sum is unknown, these bits can be guessed and verified using Equation
(2). This allows to recover the signed bits of k starting from the LSBs. Moreover,
due to the fact that Q = Li(k) + Hi+1(k), where Hi+1(k) :=

∑n−1
j=i+1 kj2jP , it

is also possible to recover the signed bits of k starting from the MSBs. As we
assume that errors are induced uniformly at random, an adversary may choose
freely between these two recovery strategies. In the following, we will use the
LSB version based on Equation (2). We assume that both Q and Q̃ are known.
The complete attack is stated as the following algorithm.

Comment. Algorithm 3 has been abbreviated for clarity in two minor details.
On the one hand, the highest iteration that suffered a SCF in Line 2 of Algorithm
3 does not need to be the last iteration n−1. However, since we assume the ”lucky
case” of Fact 2, this special case can be handled efficiently by an exhaustive
search for at most m bits.

Sign Change Fault Attacks on Elliptic Curve Cryptosystems 41

Algorithm 3: The Sign Change Attack on Q′
i

Input: Access to Algorithm 1, n the length of the secret key k > 0 in non-
adjacent form, Q = kP the correct result, m a parameter for acceptable
amount of offline work.

Output: k with probability at least 1/2.
Phase 1: Collect Faulty Outputs
1 Set c := (n/m) · log(2n)
2 Create c faulty outputs of Alg. 1 by inducing a SCF in Q′

i for random values i.
3 Collect the set S = {Q̃ | Q̃ �= Q is a faulty output of Algorithm 1 on input P}.

Phase 2: Inductive Retrieval of Secret Key Bits
4 Set s := −1 indicating the number s + 1 of known bits of k.
5 While (s < n − 1) do

Compute the known LSB part.
6 Set L := 2

∑s
j=0 kj2jP

Try all possible bit patterns with length r ≤ m.
7 For all lengths r = 1, 2, . . .m do
8 For all valid NAF-patterns x = (xs+1, xs+2, . . . , xs+r) with xs+r �= 0 do

Compute and verify the test candidate Tx

9 Set Tx := L + 2
∑s+r

j=s+1 xj2jP
10 for all Q̃ ∈ S do

11 if
(
Tx − Q̃

)
= Q then

12 conclude that ks+1 = xs+1, ks+2 = xs+2, . . . , ks+r = xs+r,
13 set s := s + r, and continue at Line 5
Handle a Zero Block Failure
14 If no test candidate satisfies the verification step, then
15 assume that ks+1 = 0 and set s := s + 1.
16 Verify Q = kP. If this fails then output ”failure”.
17 Output k

Furthermore, it is clear that given n as the length of the NAF of k, Algorithm
3 does not need to test patterns whenever s + r ≥ n. Note that s indicates that
the s + 1 least significant bits k0, k1, . . . , ks are known. In fact, we may assume
that the most significant bit of k is kn−1 = 1, otherwise n cannot be uniquely
defined. Therefore, we may assume w.l.o.g. that s + r < n − 1. Note that we
assume k > 0. We also assume that (k0, k1, . . . , ks, xs+1, . . . , xs+r) is always in
valid NAF.

We will prove the success of Algorithm 3 in two lemmas. First, we will show
that only a correct guess for the pattern of k can satisfy the verification step in
Line 11. Then, we will show that Algorithm 3 will always correctly recover at least
the next unknown bit of k. The analysis of these two cases is very similar to the
analysis of a similar attack on RSA, presented in [BDL01]. Therefore, we omit
the proofs of the two lemmas and the summarizing theorem. They can be found
in the appendix. Before stating the results, we introduce Zero Block Failures.

42 J. Blömer, M. Otto, and J.-P. Seifert

Definition 4 (Zero Block Failure). Assume that Algorithm 3 already recov-
ered the s+1 least significant signed bits k0, k1, . . . , ks of k. If the signed bits ks+1,
ks+2, . . . , ks+r are all zero and all Sign Change Faults that happened in itera-
tions s+1, . . . , s+m really occurred in the first r iterations s+1, s+2, . . . , s+r,
the situation is called a Zero Block Failure.

A Zero Block Failure is named after the fact that errors in a block of zeros will not
be detected as errors within that block. Equation (2) shows that for any s, Ls(k)
= Ls+1(k) = . . . = Ls+r(k) for all sequences ks+1 = 0, ks+2 = 0, . . . , ks+r = 0.
In this case, the values Q̃1 = −Q + 2Ls(k) and Q̃2 = −Q + 2Ls+r(k) are equal.
Therefore, given Q̃ = −Q + 2Ls(k), Algorithm 3 cannot determine how many
zero bits — if any — follow ks. Hence, tailing zeros must be neglected, because
their number cannot be determined correctly. This is the reason why Algorithm
3 only tests patterns x which end in ±1 in Line 8.

In Algorithm 3, we may have one of two cases in each iteration of the loop of
Lines 5–15. First, we may encounter a test pattern, which satisfies the verifica-
tion step in Line 11. Second, no test pattern may satisfy the verification step.
The following two lemmas show that Algorithm 3 recovers at least one bit of k
correctly in either case.

Lemma 5 (No False Positives). We assume that the bits k0, k1, . . . , ks of k
have already been computed by Algorithm 3. If Algorithm 3 computes a test bit
pattern x = (xs+1, xs+2, . . . , xs+r), r ≤ m, such that Tx satisfies the verification
step in Line 11 for some Q̃ ∈ S, then x is the correct bit pattern, i.e., xj = kj

for all s + 1 ≤ j ≤ s + r.

Lemma 6 (Correct Recovery). We assume that the bits k0, k1, . . . , ks of k
have already been computed by Algorithm 3. Furthermore, we assume that a Sign
Change Fault was induced into the intermediate value Q′

i in Line 4 of Algorithm
1 for some i ∈ {s + 1, s + 2, . . . , s + m}.

Then, in order to recover the next signed bit ks+1, Algorithm 3 will be in one of
two cases: In the first case, it finds a test bit pattern x = (xs+1, xs+2, . . . , xs+r),
r ≤ m, that satisfies the verification step in Line 11 and concludes that kj = xj

for all s + 1 ≤ j ≤ s + r in Line 12. In the second case, it detects a Zero Block
Failure and concludes that ks+1 = 0 in Line 15. In both cases, the conclusion is
correct and between 1 and r bits of k are recovered correctly.

The results of the previous lemmas are summarized in the following theorem.
It is a straightforward result from the two previous lemmas, combined with a
simple count of operations performed by Algorithm 3.

Theorem 7 (Success of the Proposed Sign Change Attack). Algorithm
3 succeeds to recover the secret scalar multiple k of bit length n in time O(n ·
3m · c · M) with probability at least 1/2. Here, c = (n/m) · log(2n) and M is the
maximal cost of a full scalar multiplication or a scalar multiplication including
the induction of a Sign Change Fault.

Sign Change Fault Attacks on Elliptic Curve Cryptosystems 43

The results of Theorem 7 carry over similarly to Sign Change Attacks on all
other variables used inside the loop in Algorithm 1. The ideas presented in the
attack also apply to the NAF-based right-to-left repeated squaring version and
to the binary expansion based versions (cf. [Ott05]). Sign Change Attacks can
also be used against the Montgomery ladder [Mon87] if the y-coordinate is used.

4 Countermeasures

As explained in the introduction, previously proposed countermeasures cannot
be used to defend against Sign Change Faults. Therefore, we propose a modi-
fied scalar multiplication algorithm presented as Algorithm 8 as an alternative
countermeasure against Sign Change Attacks (SCA). It adds little overhead at
the benefit of checking the correctness of the final result. Moreover, it can be
based on any scalar multiplication algorithm which does not need field divisions.
We will present our countermeasure in the remainder of this section and analyze
it using the NAF-based version presented as Algorithm 1. The countermeasure
has been motivated by Shamir’s countermeasure against attacks on CRT-RSA
exponentiations [Sha99].

We first explain the basic idea of the countermeasure. For the modified algo-
rithm, we assume that the curve E = Ep is defined over a prime field Fp, i.e.,
we have Ep := E(Fp). Furthermore, we choose a small prime t of about 60 – 80
bits to form the ”small” curve Et := E(Ft). Et does not depend on Ep. Given
both curves, we define a ”combined” elliptic curve Ept over the ring Zpt. This
curve Ept is defined with parameters Apt and Bpt such that Apt ≡ Ap mod p,
Apt ≡ At mod t and Bpt ≡ Bp mod p, Bpt ≡ Bt mod t. Here, Ap and At denote
the A-parameters and Bp and Bt denote the B-parameters in Equation (1) of
Ep and Et respectively. Both Apt and Bpt can be easily computed using the
Chinese Remainder Theorem (CRT). We also choose a base point Pt on Et and
use the combined point Ppt as the base point for the scalar multiplication in Ept.
Here, Ppt is computed using the CRT in the same manner as Apt and Bpt above.
Computing Q = kPpt on Ept allows to verify the result on the small curve Et.

Algorithm 8: Sign Change Attack Secure Scalar Multiplication
Input: A point P on Ep, and a secret key 1 < k < ord(P), where n denotes

the binary length of k, i.e., the number of bits of k
Output: kP on Ep

offline initialization (i.e., at production time)
1 Choose a prime t and an elliptic curve Et

2 Determine the combined curve Ept

main part
3 Set Q := kPpt on Ept (e.g., using Algorithm 1)
4 Set R := kPt on Et (e.g., using Algorithm 1)
5 If R �= Q mod t then output ”failure”.
6 Else output Q on Ep

44 J. Blömer, M. Otto, and J.-P. Seifert

Scalar Multiplication is used twice, once in Line 3 and once in Line 4. For the
algorithm used, we assume that it features a check of the final result that returns
O if the result is not a valid point on the curve (e.g., Line 5 of Algorithm 1). In
the case where Ept is used, we assume for simplicity that this check is performed
both modulo p and modulo t, i.e., both on Ep and on Et.

On the Choice of Ep and Et. For the security of our countermeasure against
Sign Change Attacks, we assume that both Ep and Et have prime order. Both
curves are chosen independently, which allows to use recommended curves (e.g.,
by [SEC00]) for Ep. The security analysis will show that the security depends
on the order of Pt on Et. This does not require Et to be secret. Moreover, it
also does not require #Et to be prime. It is sufficient to choose a curve Et and
a point Pt such that the order of Pt on Et is large. We will specify a minimal
size for the order of Pt on Et later. Finding such a curve Et is feasible as shown
in [BSS99, §VI.5].

4.1 Analysis of the Countermeasure

It is easily shown that Algorithm 8 computes the correct result if no error occurs.
This is evident from modular arithmetic.

It remains to show that the proposed algorithm is secure against Fault At-
tacks. We only consider ad-hoc security for our proofs, i.e., we only prove security
against known Fault Attacks. Research on fault attacks has not yet established
a mathematical framework to allow general security claims. For our analysis, we
assume that Algorithm 1 has been chosen as the scalar multiplication algorithm,
although the result holds for other scalar multiplication algorithms as well. To
defend against previously proposed fault attacks, the standard countermeasure
introduced in Section 2 has been included as an integral part of Algorithm 1.
Therefore, we concentrate on security against Sign Change Attacks on Line 3 of
Algorithm 8 only.

We use the same fault model as in Section 3, i.e., a Sign Change Fault can be
induced in any intermediate variable used by the scalar multiplication Q = kP
on Ept. Sign Change Faults can only be induced in points of elliptic curves, the
scalar k cannot be attacked. Furthermore, we assume that only a single SCF
can be induced during each computation of kP . We do not consider multiple
correlated attacks, since such attacks are not a realistic scenario. The adversary
can target a specific variable, e.g., Q′

i, but he cannot target a specific iteration
i. As we are interested to show that a faulty value is returned with negligible
probability, we only need to investigate Sign Change Attacks on the computation
in Line 3 of Algorithm 8. Attacks in Line 4 cannot yield a faulty output as Q is
not changed by Line 4. We first investigate the basic requirement for an error to
be undetected by the countermeasure in Line 5.

Lemma 9 (Undetectable Sign Change Faults). Let Q = kPpt be the correct
result of the scalar multiplication in Line 3 of Algorithm 8 and let Q̃ = Q+κi·P �=
Q be a faulty result from an attack on Line 3. Let rt := #Et be the group order of

Sign Change Fault Attacks on Elliptic Curve Cryptosystems 45

Et, assumed to be prime. The faulty result Q̃ passes by the detection mechanism
in Line 5, iff rt | κi.

Proof. Let R and Q denote the variables used in Algorithm 8. If rt | κi, we have
κiP = O on Et. Therefore, the test ”R �= Q” in Line 5 of Algorithm 8 yields
kPt = Q + O on Et. As the correct result Q satisfies Q = kPt on Et, this would
not trigger a ”failure” output and the faulty value Q̃ would be returned. As
Q̃ �= Q on Ept is assumed, we also have Q̃ �= Q on Ep. This case results in a
faulty output.

If rt � | κi, we must show that kPt �= Q̃ on Et. We know that for the correct
value Q, it holds that R = Q on Et. If rt � | κi, we have κiP �= O on Et because
rt is the prime group order. Therefore, the order of P is rt as well. Consequently,
we have R �= Q = Q̃ on Et and the security alert in Line 5 is triggered.

Lemma 10 (Number of Undetectable Sign Change Faults). Let rt be the
group order of Et, assumed to be prime. Let m be the blocksize used in Algorithm
3. Then a Sign Change Attack on Algorithm 8 needs a blocksize m ≥ �log(rt)�
to be successful. Moreover, at most (n − 1)/ �log(rt)� many undetectable faulty
outputs exist.

Proof. Assume that a Sign Change Fault was induced into Q′
i for some i, result-

ing in a faulty output Q̃1. By Equation (2), we have

Q̃1 = −Q + 2Li(k) = Q + κiP where κi := −2i+2
n−1∑

j=i+1

kj2j−i−1.

We further assume that rt | κi, i.e., Q̃1 has not been detected as a faulty value
according to Lemma 9. We now consider another faulty output Q̃2 �= Q̃1 collected
by Algorithm 3. Let u �= i denote the fault position, i.e., Q̃2 = Q + κuP .

We claim that for all u with |u− i| ≤ �log(rt)�, u− i �= 0, it holds that rt � | κu.
We consider the two cases u < i and u > i. For u < i, we have

κu = −2u+2
n−1∑

j=u+1

kj2j−u−1 = κi − 2u+2 · σu, where σu :=
i∑

j=u+1

kj2j−u−1,

(3)

and for u > i, we have

κu = −2u+2
n−1∑

j=u+1

kj2j−u−1 = κi + 2i+2 · ρu, where ρu :=
u∑

j=i+1

kj2j−i−1. (4)

The value Q̃2 is only output if it is an undetectable fault that bypassed Line 5
of Algorithm 8. According to Lemma 9, this requires that rt | κu. As we assume
that rt | κi, we need to analyze the case that rt |σu and rt | ρu respectively.
We first investigate σu. Here, we have two cases: Either σu = 0 or σu > 0 over

46 J. Blömer, M. Otto, and J.-P. Seifert

the integers. If σu = 0 over the integers, we have κu = κi and Q̃1 = Q̃2. As
this contradicts our assumption that Q̃1 �= Q̃2, we may assume that σu is not
equal to 0 over the integers. If the sum in Equation (3) is not equal to 0 over
the integers, its absolute value must be at least as large as rt in order to be a
multiple of rt. The same considerations hold for u > i.

Algorithm 3 recovers bits in blocks of at most m bits. If it has found a valid
test pattern, it starts at the position immediately following that test pattern
and tries to recover the next block of length m starting at this position. If
m < �log(rt)�, the arguments above shows that in this block there cannot be a
faulty output Q̃ in the list of collected faulty outputs that satisfies the verification
step. Therefore, Algorithm 3 needs a minimal blocksize of m = �log(rt)� in order
to be able to reconstruct another faulty output Q̃.

As the fault positions of two undetected faulty outputs Q̃1 and Q̃2 are at least
�log(rt)� bits away from each other, we have a maximum of (n − 1)/ �log(rt)�
many different faulty outputs in the set collected by Algorithm 3.

Lemma 10 shows that the proposed algorithm secures the scalar multiplication
algorithm against the new Sign Change Faults if the group order of #Et is large
enough. A group order of #Et > 280 guarantees that the required block size of
m > 80 exceeds the acceptable amount of offline work significantly. For many
practical applications, #Et > 260 should already be enough.

The computational overhead is acceptable. Line 3 requires computations with
30 – 40 % larger moduli (for l(p) = 192 and l(t) = 60 – 80), Line 4 requires
a scalar multiplication on a considerably smaller curve with the scalar factor
k mod #Et, which is considerably smaller than k.

As the computations in Line 3 prohibit the use of inversions, projective coordi-
nates must be used. We have stated our results for the basic version of projective
coordinates but other weighted projective representations such as Jacobian or
Hessian representations will do just as well.

5 Realization of Sign Change Attacks

At first sight, a Sign Change Attack does not seem to be easily performed in a
general setting. A random change of the y-coordinate cannot hope to yield −y
with non-negligible probability. However, there exist several special yet common
settings, where Sign Change Faults can be realized. We will give examples for
attacks on NAF-based variants of the scalar multiplication algorithm as well as
examples for attacks on certain properties of the crypto co-processor. The latter
attacks can be applied to any variant of repeated doubling.

One special way to attack the NAF is offered by the fact that any NAF-
based algorithm has to incorporate a conditional branch, where for secret key
bit ki = 1 an addition is performed and for secret key bit ki = −1, a subtraction
is performed. Currently, a whole zoo of physical attacks is available that tar-
gets such conditional decisions, e.g., power spikes or clock glitches ([BCN+04],
[ABF+02]). These attacks aim at forcing the conditional statement to choose

Sign Change Fault Attacks on Elliptic Curve Cryptosystems 47

the wrong branch. In our case, choosing the wrong branch means to add −P
instead of P or vice versa. Although this attack cannot be applied to mount a
Sign Change Attack on other intermediate variables, such as Q′

i as analyzed in
Section 3, it is an instructive example. Moreover, a Sign Change Attack on P can
also be used to recover the secret key, similar to the attack described in Section
3. This attack is also valid for more sophisticated NAF-based repeated doubling
variants, which aim to secure the basic scheme against power and timing attacks,
e.g., by using dummy operations.

To achieve sign changes of any intermediate variable, consider the following
scenario. Many real-world embedded crypto co-processors supporting modular
arithmetic most often also rely on the non-adjacent form to speed up the time-
critical modular multiplication operation, cf. [HP98], [Kor93]. Here, the factors
used during the computation of P1 + P2 for two elliptic curve points P1 and
P2 are attacked. Any efficient implementation of the NAF must provide special
hardware to handle negative numbers, i.e., being able to compute the two’s
complement of any register used as a multiplicand without time delay, cf. [Sed87],
[WQ90], or [Mon85]. This task is trivial to solve by simply inverting every bit
sent to the long integer arithmetic unit (ALU) and additionally adding +1. Given
this functionality, it can be used for an attack.

As a concrete example, we consider such a crypto co-processor, cf. [Sed87],
adding simultaneously at least three different operands with a possible sign
change in one single instruction. Changing the value of an operand to its nega-
tive, i.e., to its two’s complement, one usually needs to change only one single bit
among the control signals of the corresponding ALU. This is due to the fact that
the ALU of most crypto co-processors is, as already explained above, designed to
handle automatically the two’s complement of any operand. Here, a fault attack
can be mounted that results in an SCF.

For concreteness, let us consider the following projective addition formula, cf.
[IEE98], for points P0 = (X0 : Y0 : Z0), P1 = (X1 : Y1 : Z1):

U0 := X0Z
2
1 , S0 := Y0Z

3
1 , U1 := X1Z

2
0 , S1 := Y1Z

3
0 ,

W := U0 − U1, R := S0 − S1, T := U0 + U1, M := S0 + S1,

Z2 := WZ0Z1, X2 := R2 − TW 2, V := TW 2 − 2X2, 2Y2 := V R − MW 3.

Here it becomes clear, that lots of load/store or exchange instructions are needed
to realize this formulas involving the original points P0 and P1. For example, an
implementation could use Y0 or Y1 via previous load/store or exchange instruc-
tions as a multiplicand in the modular multiplications to compute S0, or S1.
The attack on Q′

i described in Section 3 can be realized by attacking Y0 during
the computation of S0. During this preparing load/store or exchange instruc-
tion, the corresponding value must go through the ALU. While executing this
operation, the handled value is susceptible to an SCF as only a single bit among
the control signals must be changed to load/store or exchange the value in its
target multiplicand register to −Y0 or −Y1. This yields an SCF by changing one
single control signal. Note that [BCN+04] actually describes how to implement

48 J. Blömer, M. Otto, and J.-P. Seifert

such attacks in practice. A similar consideration also applies to the projective
doubling formula.

6 Conclusions and Open Problems

Fault attacks are a significant threat to secure communication based on mo-
bile devices. We have introduced a new type of fault attacks on elliptic curve
cryptosystems, Sign Change Attacks, which allow attacks with a high success
probability, especially for NAF-based repeated doubling algorithms. Current and
future cryptosystems based on elliptic curves must be guarded against this type
of attacks carefully. As a first step in this direction, a new secure algorithm is
presented that withstands Sign Change Attacks with acceptable computational
overhead. Attack and countermeasure have been presented in the context of pro-
jective coordinates and elliptic curves defined over prime fields. However, both
attack and countermeasure also apply to other commonly used representations
and defining fields.

Interestingly, the Sign Change Attack presented in this paper does not apply
to elliptic curves of characteristic 2. It is an open problem to extend our attack
to elliptic curves of characteristic 2.

The results from Section 5 show that the most efficient solutions often pay
their performance advantage with security, just like in the case of CRT-RSA
[BDL01]. Since Montgomery’s version is secure, our attack strengthens the claim
from [JY03], that the ”Montgomery ladder may be a first-class substitute of the
celebrated square-and-multiply algorithm”. It is an open problem whether it is
possible to successfully attack the Montgomery method where the y-coordinate
is not used in a way such that faulty results are created which are valid points
on the curve.

References

[ABF+02] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, Fault
attacks on RSA with CRT: Concrete results and practical countermeasures,
CHES 2002, LNCS, vol. 2523, Springer-Verlag, 2002, pp. 260–275.

[AK96] R. J. Anderson and M.G. Kuhn, Tamper resistance — a cautionary note,
Proceedings of the Second USENIX Workshop on Electronic Commerce,
USENIX Association, 1996, pp. 1 – 11.

[BCN+04] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, The
sorcerer’s apprentice guide to fault attacks, Cryptology ePrint Archive,
2004/100, 2004, http://eprint.iacr.org/2004/100.pdf

[BDL01] D. Boneh, R.A. DeMillo, and R. J. Lipton, On the importance of eliminat-
ing errors in cryptographic computations, J. Cryptology 14 (2001), no. 2,
101–119.

[BMM00] I. Biehl, B. Meyer, and V. Müller, Differential fault attacks on elliptic
curve cryptosystems, CRYPTO 2000, LNCS, vol. 1880, Springer-Verlag,
2000, pp. 131–146.

Sign Change Fault Attacks on Elliptic Curve Cryptosystems 49

[Boo51] A.D. Booth, A signed binary multiplication technique, Quart. Journ. Mech.
and Applied Math. IV (1951), no. 2, 236–240.

[BSS99] I. Blake, G. Seroussi, and N. Smart, Elliptic curves in cryptography, London
Mathematical Society Lecture Note Series, vol. 265, Cambridge University
Press, 1999.

[CJ03] M. Ciet and M. Joye, Elliptic curve cryptosystems in the presence of per-
manent and transient faults, Cryptology ePrint Archive, 2003/028, 2003,
http://eprint.iacr.org/2003/028.pdf

[CMO98] H. Cohen, A. Miyaji, and T. Ono, Efficient elliptic curve exponentiation us-
ing mixed coordinates, ASIACRYPT’98, LNCS, vol. 1514, Springer-Verlag,
1998, pp. 51–65.

[Cor99] J.-S. Coron, Resistance against differential power analysis for elliptic curve
cryptosystems, CHES’99, LNCS, vol. 1717, Springer-Verlag, 1999, pp. 292–
302.

[EK90] Ö. Eg̃eciog̃lu and Ç. K. Koç, Fast modular exponentiation, Communication,
Control, and Signal Processing (1990), pp. 188–194.

[HP98] H. Handschuh and P. Pailler, Smart card crypto-coprocessors for public-
key cryptography, Proc. of CARDIS ’98, LNCS, vol. 1820, Springer-Verlag,
1998, pp. 372–379.

[IEE98] IEEE P1363/D3 (Draft Version 3), Standard specifications for public key
cryptography, May 1998.

[JT01] M. Joye and C. Tymen, Protections against differential analysis for elliptic
curve cryptography — an algebraic approach, CRYPTO 2001, LNCS, vol.
2162, Springer-Verlag, 2001, pp. 377–390.

[JY00] M. Joye and S.M. Yen, Optimal left-to-right binary signed-digit recoding,
IEEE Trans. on Computers 49 (2000), no. 7, 740–748.

[JY03] M. Joye and S.-M. Yen, The montgomery powering ladder, CHES 2002,
LNCS, vol. 2523, Springer-Verlag, 2003, pp. 291–302.

[Kor93] I. Koren, Computer arithmetic algorithms, Prentice-Hall, 1993.
[MO90] F. Morain and J. Olivos, Speeding up the computations on an elliptic curve

using addition-subtractions chains, Theoretical Informatics and Applica-
tions (1990), no. 24, 531–543.

[Mon85] P. L. Montgomery, Modular multiplication without trial division, Math.
Comp. (1985), no. 44, 519–521.

[Mon87] P. L. Montgomery, Speeding the Pollard and elliptic curve methods of fac-
torization, Mathematics of Computation 48 (1987), no. 177, 243–264.

[Ott05] M. Otto, Fault attacks and countermeasures, Ph.D. thesis, University
of Paderborn, 2005, http://wwwcs.uni-paderborn.de/cs/ag-bloemer/
forschung/publikationen/Dis sertationMartinOtto.pdf.

[SA02] S. Skorobogatov and R. Anderson, Optical fault induction attacks, CHES
2002, LNCS, vol. 2523, Springer-Verlag, 2002, pp. 2–12.

[SEC00] Standards for Efficient Cryptography Group (SECG), SEC 2: Recom-
mended elliptic curve domain parameters, 2000, http://www.secg.org/
collateral/sec2 final.pdf

[Sed87] H. Sedlak, The RSA cryptography processor, EUROCRYPT’87, LNCS, vol.
304, Springer-Verlag, 1987, pp. 95–108.

[Sha99] A. Shamir, Method and apparatus for protecting public key schemes from
timing and fault attacks, 1999, US Patent No. 5,991,415, Nov. 23, 1999.

[WQ90] D. de Waleffe and J.-J. Quisquater, CORSAIR, a smart card for public-
key cryptosystems, CRYPTO ’90, LNCS, vol. 537, Springer-Verlag, 1990,
pp. 503–513.

50 J. Blömer, M. Otto, and J.-P. Seifert

A Proofs of Lemma 5, Lemma 6, and Theorem 7

Lemma 5 (No False Positives). We assume that the bits k0, k1, . . . , ks of k
have already been computed by Algorithm 3. If Algorithm 3 computes a test bit
pattern x = (xs+1, xs+2, . . . , xs+r), r ≤ m, such that Tx satisfies the verification
step in Line 11 for some Q̃ ∈ S, then x is the correct bit pattern, i.e., xj = kj

for all s + 1 ≤ j ≤ s + r.

Proof. Assume that the verification step is satisfied for a given test bit pattern
x = (xs+1, . . . , xs+r) with 1 ≤ r ≤ m and xs+r �= 0, x in non-adjacent form.
We assume that we have a false positive, i.e., the pattern x is different from the
corresponding pattern of k, namely ks+1, ks+2, . . . , ks+r. Hence, there must be
a faulty result Q̃ ∈ S that satisfies the verification step in Line 11 together with
this x. The verification step in Line 11 yields O = Tx − Q̃ − Q. We use Line 9 of
Algorithm 3 to express Tx and Equation (2) to express Q̃ in detail.

We know that Q̃ = −Q + 2Ls(k) for some value s. The considerations about
Zero Block Failures have shown that tailing zeros in Li(k) do not change the
value of Q̃. Hence, we may write Q̃ = −Q+2Li(k) with ki �= 0 for some unknown
i if Q̃ �= −Q. Moreover, if it is known that Q̃ = −Q + 2Ls(k), we may specify
i in greater detail. In fact, we have Q̃ = −Q + 2Li(k) with i := max{j | kj �=
0 ∧ j ≤ s}. The case where Q̃ = −Q, i.e., when the maximum does not exist,
can be represented by choosing i = −1.

We have

O =

⎛⎝2 ·
s∑

j=0

kj2jP + 2 ·
s+r∑

j=s+1

xj2jP

⎞⎠−
⎛⎝−Q + 2 ·

i∑
j=0

kj2jP

⎞⎠− Q

= 2 ·
(

s∑
j=0

kj2j +
s+r∑

j=s+1

xj2j

︸ ︷︷ ︸
R+

−
i∑

j=0

kj2j

︸ ︷︷ ︸
R−

)
· P = Rx · P (5)

where Rx = 2 ·
max(i,s+r)∑

j=0

yj2j and yj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if j ≤ min(i, s)
kj if i < j ≤ s
(xj − kj) if s < j ≤ min(i, s + r)
xj if max(i, s) < j ≤ s + r
−kj if s + r < j ≤ i.

Equation (5) implies that either Rx = 0 or Rx is a multiple of the order of P .

Case 1. Assume that Rx = 0. This is easily shown to be impossible. It im-
plies that R+ = R−, i.e., both sums are valid NAF representations of the same
number. As the NAF is unique, this implies that both representations are equal.
Hence, all digits are equal in contradiction to the assumption that there is as
least one xj �= kj with s + 1 ≤ j ≤ s + r.
Case 2. Assume that Rx �= 0 is a multiple of the order of P on E. We know that
ord(P) = #E � 2m as #E is prime. Therefore, #E divides Rx. If i = −1, i.e.,
Q̃ = −Q, we have Rx ·P = Tx. As we may assume that s+r < n−1 as explained

Sign Change Fault Attacks on Elliptic Curve Cryptosystems 51

above, we have Rx < #E. This contradicts our assumption that #E divides Rx.
If 0 ≤ i ≤ s, we have Rx = 2i+2 · R′

x with |R′
x| < 2s+r−i < 2n−1−i ≤ k < #E.

Therefore, #E cannot divide Rx. If s + 1 ≤ i ≤ s + r, we have Rx = 2s+2 · R′
x

with |R′
x| < 2m+1. Again, #E cannot divide Rx. For s + r < i < n − 1, we have

Rx = 2s+2 · R′
x with |R′

x| < 2i−s+1 ≤ 2n−2−s+1 ≤ 2n−1 ≤ k < #E. Therefore,
#E cannot divide Rx. The last case, i = n − 1, is impossible. It would imply
that Q′

i = O has been attacked, where no Sign Change Fault can be induced,
i.e., Q̃ = Q. However, we explicitely prevent values Q̃ = Q from being members
of the set S in Line 3 of Algorithm 3. Therefore, Case 2 is impossible.

Lemma 6 (Correct Recovery). We assume that the bits k0, k1, . . . , ks of k
have already been computed by Algorithm 3. Furthermore, we assume that a Sign
Change Fault was induced into the intermediate value Q′

i in Line 4 of Algorithm
1 for some i ∈ {s + 1, s + 2, . . . , s + m}.

Then, in order to recover the next signed bit ks+1, Algorithm 3 will be in one of
two cases: In the first case, it finds a test bit pattern x = (xs+1, xs+2, . . . , xs+r),
r ≤ m, that satisfies the verification step in Line 11 and concludes that kj = xj

for all s + 1 ≤ j ≤ s + r in Line 12. In the second case, it detects a Zero Block
Failure and concludes that ks+1 = 0 in Line 15. In both cases, the conclusion is
correct and between 1 and r bits of k are recovered correctly.

Proof. We will investigate the two cases of the lemma separately.
Case 1. Assume that Algorithm 3 finds a test bit pattern x = (xs+1, xs+2,
. . . , xs+r) that satisfies the verification step in Line 11. According to Lemma 5,
there cannot be a false positive and x correctly represents the bit pattern of k.
Therefore, the conclusion kj = xj for all s + 1 ≤ j ≤ s + r is correct.
Case 2. Assume that Algorithm 3 does not find a test bit pattern x that sat-
isfies the verification step. In this case, a Zero Block Failure is conjectured by
Algorithm 3 and it sets ks+1 = 0.

We assume that this conjecture is wrong. We know by the assumption in the
lemma that at least one of the iterations s + 1, s + 2, . . . , s + m was targeted
by a Sign Change Fault. Let Q̃ ∈ S be the faulty output of such an attack, i.e.,
Q̃ = −Q + 2Li(k) with s + 1 ≤ i ≤ s + m according to Equation (2). If the
conjecture that we have a Zero Block Failure is wrong, we know by Definition
4 that we may choose Q̃ such that at least one of the bits ks+1, ks+2, . . . , ki

is not zero. This implies that we may write Q̃ = −Q + 2Lw(k) with w :=
max{j | kj �= 0 ∧ s + 1 ≤ j ≤ i} as explained above. Now it is easy to see that
the test bit pattern 0 �= x = (ks+1, ks+2, . . . , kw−1, kw) of length 1 ≤ r ≤ m
satisfies the verification step. This means that the value Tx defined in Line 9 of
Algorithm 3 correctly represents 2Lw(k). Therefore, a valid test pattern x exists
and Algorithm 3 will find a value for ks+1 in Line 12. Therefore, the assumption
that a Zero Block Failure is detected incorrectly must be wrong.

Theorem 7 (Success of the Proposed Sign Change Attack). Algorithm
3 succeeds to recover the secret scalar multiple k of bit length n in time O(n ·
3m · c · M) with probability at least 1/2. Here, c = (n/m) · log(2n) and M is the

52 J. Blömer, M. Otto, and J.-P. Seifert

maximal cost of a full scalar multiplication or a scalar multiplication including
the induction of a Sign Change Fault.

Proof. The result of Lemma 6 relies on the assumption that every contiguous
interval of length m was targeted by at least one Sign Change Fault in Line
2 of Algorithm 3. According to Fact 2, this assumption holds with probability
1/2 if c = (n/m) · log(2n) faulty results are collected. This requires c scalar
multiplications with the ability to induce a SCF.

According to Lemma 6, every iteration of the while loop of Algorithm 3 recov-
ers either a zero bit or a test bit pattern x. It shows that this recovery is always
correct if the ”lucky case” of Fact 2 is assumed. Therefore, Algorithm 3 recovers
between 1 and m bits in each while iteration. Therefore, at most n iterations are
needed. The worst case occurs when k = 2n−1 and no SCF was induced into Qn

while Algorithm 3 created the set of faulty outputs in Line 2. As all bits but
the most significant are zero, only Zero Block Failures would occur, allowing to
recover only a single bit in each iteration of Algorithm 3.

In a single iteration, Algorithm 3 tests at most 3m test bit patterns (a more
careful analysis due to [EK90] even yields at most 2m non-adjacent test bit pat-
ters). Every test bit pattern x yields a test candidate Tx using one scalar multi-
plication in Line 9. Obviously, some speedups could be applied, e.g., storing Tx

allows to compute a new Tx using a single addition. Note that the precomputa-
tion of L in Line 6 already represents a speed up. For each test candidate Tx, at
most c point additions and comparisons need to be done in Line 11. To present
a short result, we simply treat the addition and comparison cost of Line 11 as
a full scalar multiplication. If all possible bits of k have been recovered, a last
full scalar multiplication must be applied to differentiate between Zero Block
Failures and a real failure.

Altogether, the worst case running time of Algorithm 3 is O((c + n3mc +
1) · M) where c = (n/m) · log(2n) and M is the maximal cost of a full scalar
multiplication or a scalar multiplication including the induction of a Sign Change
Fault.

Cryptanalysis of Two Protocols for RSA with
CRT Based on Fault Infection�

Sung-Ming Yen1, Dongryeol Kim2, and SangJae Moon3

1 Laboratory of Cryptography and Information Security (LCIS)
Department of Computer Science and Information Engineering

National Central University
Chung-Li, Taiwan 320, R.O.C.

yensm@csie.ncu.edu.tw
http://www.csie.ncu.edu.tw/~yensm/

2 Strategy Development Team
Information Security Policy Division
Korea Information Security Agency

Seoul, Korea 138-803
drkim@kisa.or.kr

3 School of Electronic and Electrical Engineering
Kyungpook National University

Taegu, Korea 702-701
sjmoon@knu.ac.kr

Abstract. The technique of RSA private computation speedup by us-
ing Chinese Remainder Theorem (CRT) is well known and has already
been widely employed in almost all RSA implementations. A recent CRT-
based factorization attack exploiting hardware fault has received growing
attention because of its potential vulnerability on most existing imple-
mentations. In this attack any single erroneous computation will make
the RSA system be vulnerable to factorizing the public modulus. Re-
cently, two hardware fault immune protocols for CRT speedup on RSA
private computation were reported based on the concept of fault infec-
tive computation. A special property of these two protocols is that they
do not assume the existence of totally fault free and tamper free com-
parison operation within the machine in order to enhance the reliability.
However, it will be shown in this paper that these two protocols are
still vulnerable to a potential computational fault attack on an auxiliary
process that was not considered in the usual CRT-based factorization
attack.

Keywords: Chinese remainder theorem (CRT), Cryptography, Factor-
ization attack, Fault infective CRT, Hardware fault cryptanalysis, Residue
number system.

� The research of S.M. Yen was supported by University IT Research Center Project.
The research of D. Kim was supported by KISA, Korea. S. Moon was supported by
University IT Research Center Project.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 53–61, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

54 S.-M. Yen, D. Kim, and S. Moon

1 Introduction

Many implementations of public key cryptosystems based on tamper-proof de-
vices (e.g., smart IC cards) were proposed. Much attention has been paid recently
to consider the security issues of cryptosystem implementation on tamper-proof
devices [1,2,3,4,5,6,7,8,9,10] from the view point of presence of hardware faults.
This category of cryptanalysis is called the fault-based cryptanalysis in which it
is assumed that when an adversary has physical access to a tamper-proof device
she may purposely induce a certain type of fault into the device. Based on a set
of incorrect responses or outputs from the device, due to the presence of faults,
the adversary can extract the secrets embedded within the tamper-proof device.

In this paper, we focus our attention on public key cryptosystems in which
their private computation can be sped up using the Chinese remainder theorem
(CRT) [11,12], e.g., the RSA signature or decryption computation [13]. These
cryptosystems may be vulnerable to the hardware fault cryptanalysis to reveal
the secret key if the following three conditions are met: (1) the message m to
sign (or the cipher to decrypt) is known or the correct signature on message m is
available; (2) a random fault occurs during the computation of a residue number
system (RNS); (3) the device outputs the faulty signature on message m. This
kind of fault-based attacks was called the CRT-based factorization cryptanalysis
[1,6,7]. Our main objective is to emphasize the importance of a careful implemen-
tation of cryptosystems with CRT-based speedup. Suppose you are in a context
involving trusted third parties (e.g., bank or certificate authority) where hun-
dreds of thousands of signatures being produced each day. If, for some reasons,
a single signature is faulty and is available to an attacker, then the security of
the whole system may be compromised.

Shamir developed a countermeasure [8,9] trying to disable the CRT-based
factorization attack and this countermeasure becomes well known. However, one
important thing to notice is that a countermeasure will become less reliable and
less secure if more checking procedures will be employed like what existed in
Shamir’s countermeasure. It is likely that the countermeasure may fail if two
spikes attacks can be conducted such that the first spikes attack will be used
to introduce a computational fault for the CRT speedup computation (in order
to perform a CRT-based factorization attack) and the second spikes attack will
be used to tamper (or just to skip) the checking procedure (which is controver-
sially assumed to be always fault free and tamper free in Shamir’s countermea-
sure). Notice that in any processor a checking procedure (often as a conditional
JUMP machine instruction) always relies on a single flag bit and it is usually the
ZERO flag. Therefore, tampering on this checking procedure can fail the coun-
termeasure easily. So, it will be necessary to develop a countermeasure without
depending its security on any checking procedure within it.

Some related work can be found in [14] on attacking countermeasures assum-
ing error free checking procedures, e.g., Shamir’s method. These attacks also
employ hardware fault to mount a CRT-based factorization attack, but on dif-
ferent scenarios. In [14], it was pointed out that both Shamir’s countermeasure
and an enhanced countermeasure [15] (trying to improve Shamir’s method) are

Cryptanalysis of Two Protocols 55

vulnerable to some fault induced (by a computational fault or a memory access
fault) into some important modulo reduction operation within their countermea-
sures. One special property of the above two countermeasures is that they were
designed highly depended on one or more checking operations, but provides only
with heuristic reason to their design.

Recently, two hardware fault immune protocols for CRT speedup on RSA
private computation were proposed in [16] which were developed based on a novel
concept of fault infective computation in order to overcome the above mentioned
disadvantage of relying on checking procedure. In these two protocols, in case of
computational fault, the CRT-based factorization attack can be avoided without
any unreasonable assumption. Notice that all prior solutions assumed that all
the comparison operations should be totally fault free and tamper free.

The main contribution of this paper is that a potential computational fault
on an auxiliary process which accomplishes the fault infection property in the
protocols of [16] in order to protect the RSA private computation against the
CRT-based factorization attack will be pointed out. This computational fault
(or memory access fault) will enable the CRT-based factorization attack. Our
research result shows that the fault infective process itself can still be vulnera-
ble to the hardware fault attack if it is not carefully developed. Since the CRT
speedup technique has already been widely employed in almost all popular im-
plementations, any potential physical cryptanalysis on the original RSA with
CRT or any countermeasure trying to enhance it becomes nontrivial.

2 Preliminary Background of CRT-Based Cryptanalysis

2.1 Chinese Remainder Theorem

Chinese remainder theorem [12] (CRT) for speeding up RSA [13] private com-
putation is briefly reviewed in the following. Let p and q be two distinct primes
and n = p · q. In the RSA cryptosystem, a message m is signed with a secret
key d as s = md mod n. Using the CRT-based approach, the value of s can
be evaluated more efficiently by computing both sp = md mod (p−1) mod p and
sq = md mod (q−1) mod q, then by using the following two well known CRT re-
combination algorithms to reconstruct s. Given sp and sq, the Gauss’s CRT
recombination algorithm [12, p.68] computes s = (sp · q · (q−1 mod p) + sq ·
p · (p−1 mod q)) mod n. There is a well known improved CRT recombination,
called Garner’s algorithm [12, pp.612–613], which computes s = sp + ((sq −
sp) · (p−1 mod q) mod q) · p. In this paper, CRT (sp, sq) denotes the above CRT
recombination computation.

2.2 The CRT-Based Cryptanalysis

Suppose that an error (any random error) occurs during the computation of sp (s′p
denotes the erroneous result), but the computation of sq is error free. Applying
the CRT on both s′p and sq will produce a faulty signature s′. The CRT-based
factorization cryptanalysis [1,6,7] enables the factorization of n by computing

56 S.-M. Yen, D. Kim, and S. Moon

q = gcd((s′ − s) mod n, n) = gcd(s′ − s, n) (1)

or
q = gcd((s′e − m) mod n, n) = gcd(s′e − m, n). (2)

2.3 Shamir’s Countermeasure

In Shamir’s countermeasure [8,9], for each RSA private computation a random
prime r is chosen, then p̂ = p · r and d̂p = d mod (p − 1) · (r − 1) are computed.
The intermediate value ŝp = (m mod p̂)�dp mod p̂ is computed, then sp = ŝp mod
p is computed. A value of sq = ŝq mod q is also computed in a similar approach
where ŝq = (m mod q̂)�dq mod q̂. The IC card checks whether ŝp ≡ ŝq (mod r).
If the above checking is correct, then both sp and sq are assumed to be error
free.

3 Review of Two Protocols for RSA with CRT Based on
Fault Infection

In order to develop a highly reliable CRT-based speedup, no error free checking pro-
cedure (e.g., if statement in high level language or conditional JUMP in assembly
instruction) could be assumed. Because in that situation and design, the check-
ing procedure itself will become extremely vulnerable to the CRT-based hardware
fault cryptanalysis and all other parts of the countermeasure will be in vain.

A key point of developing a secure CRT-based computation protocol without
using a checking procedure is to influence the computation of sq or the overall
computation of s when an error occurred in the computation of sp or vice versa.
In [16], the above concept is called the fault infective CRT computation. This
design makes the Eq. 1 and Eq. 2 be invalid and the CRT-based factorization
cryptanalysis no longer applicable. Two fault infective CRT protocols in [16] will
be reviewed in the following with small modification (simplification) indicated
in the following.

3.1 The First Protocol – CRT-1 Protocol

Let n = p · q as usual RSA system. The smart card also prepares another set of
key pair such that dr = d − r where r is a small integer (with the property of
gcd(r, φ(n)) = 1 to guarantee security, refer to [16] for the details) selected in
order to let er ≡ d−1

r (mod φ(n)) be a small integer.

Step-1 Compute both kp = �m/p� and kq = �m/q�.
Step-2 Compute mdr mod n via a conventional CRT speedup as{

sp = mdr mod (p−1) mod p
sq = m̂dr mod (q−1) mod q

(3)

where
m̂ = ((ser

p mod p) + kp · p) mod q. (4)

Cryptanalysis of Two Protocols 57

Step-3 A CRT recombination operation and some additional manipulation are
employed to compute the required signature as

s = CRT (sp, sq) · (m̃r) mod n

where
m̃ = (ser

q mod q) + kq · q. (5)

Notice that in the original work [16], a parameter δ = p − q is selected and
the Eq. 4 in the above brief review is slightly different from its original one. But,
the simplified version (without δ) is sufficient to achieve the same functionality.

3.2 The Second Protocol – CRT-2 Protocol

All the parameters are the same as in the CRT-1 protocol.

Step-1 Compute both kp = �m/p� and kq = �m/q�.
Step-2 Compute mdr mod n via a conventional CRT speedup as{

sp = mdr mod (p−1) mod p

sq = mdr mod (q−1) mod q.
(6)

Step-3 A CRT recombination operation and some additional manipulation are
employed to compute the required signature as

s = CRT (sp, sq) · (m̂r) mod n

where

m̂ = � ((ser
p mod p)+kp·p)+((ser

q mod q)+kq·q)
2 �. (7)

Notice that in the above CRT-2 protocol when given any faulty s′p or s′q (or
both) with random faults, a random faulty m̂′ in Eq. 7 will be generated.

4 Hardware Fault Cryptanalysis on Fault Infective RSA
with CRT

Security of the CRT-1 and CRT-2 protocols in [16] has been proven such that
a random fault occurred in one of the two CRT speedup computation modules1

(in order to obtain sp and sq) will not reveal the factorization of n. However,
other possible computational fault or memory access fault on some temporary
parameters of the above CRT-1 and CRT-2 protocols has been overlooked pre-
viously. In this section, hardware fault cryptanalysis on CRT-1 and CRT-2 will
be given.

1 This is the usual approach to mount a CRT-based factorization attack.

58 S.-M. Yen, D. Kim, and S. Moon

4.1 Hardware Fault Cryptanalysis on CRT-1 Protocol

Suppose the computation of kq = �m/q� is not error free or memory access fault
has occurred when retrieving a correct value of kq, then the erroneous k′

q can be
represented as k′

q = kq + t where t is a random integer.
It is supposed that both sp and sq are error free. So, in the Step-3, the erro-

neous m̃′ becomes

m̃′ = (ser
q mod q) + (kq + t) · q

= m̃ + t · q = m + t · q. (8)

Notice that m̃ = m if the computation of m̃ is error free.
Therefore, the recombined erroneous signature s′ is

s′ = CRT (sp, sq) · m̃′r mod n

= CRT (sp, sq) · (m + t · q)r mod n

= CRT (sp, sq) · (mr + R1 · q) mod n

= CRT (sp, sq) · mr + CRT (sp, sq) · R1 · q mod n

= md + R2 · q mod n (9)

where both R1 and R2 are random integers.
Based on the above observation, it can be derived that

gcd(s′e − m, n) = gcd((md + R2 · q)e − m, n)
= gcd((m + R3 · q) − m, n)
= q

where R3 is also a random integer. Similarly, it also leads to gcd(s′ − s, n) = q.
In the above hardware fault cryptanalysis on CRT-1 protocol, suppose that

both sp and sq are correct, given the faulty k′
q (notice that kp is error free) with

random computational fault or random access fault (accordingly producing an
erroneous m̃′ and an erroneous final signature s′), gcd(s′e − m, n) gives q.

On the other hand, given the faulty k′
p = kp + t and the correct kq, it can

be shown that the CRT-based factorization attack is not applicable because of
the intrinsic fault infection property of the CRT-1 protocol. The erroneous m̂′

in Eq. 4 becomes m̂′ = ((ser
p mod p) + (kp + t) · p) mod q = m̂ + R1 and the

erroneous s′q in Eq. 3 becomes s′q = m̂′dr mod q = (m̂dr + R2) mod q = sq + R3
where all Ri are random integers. Accordingly, the erroneous m̃′ in Eq. 5 becomes
m̃′ = ((sq + R3)er mod q) + kq · q = m̃ + R4 and the final erroneous signature
becomes s′ = CRT (sp, s

′
q) · (m̃ + R4)r mod n = CRT (sp, s

′
q) · (m̃r) + R5 mod n

where both R4 and R5 are random integers. It is obvious that the incorrect
signature s′ is not useful for the CRT-based factorization attack because of the
random integer R5.

Cryptanalysis of Two Protocols 59

4.2 Hardware Fault Cryptanalysis on CRT-2 Protocol

Suppose the computation of kq = �m/q� is not error free or memory access fault
has occurred when retrieving a correct value of kq, then the erroneous k′

q can be
represented as k′

q = kq + t where t is a random integer.
It is supposed that both sp and sq are error free. So, in the Step-3, the erro-

neous m̂′ becomes

m̂′ = � ((ser
p mod p)+kp·p)+((ser

q mod q)+(kq+t)·q)
2 �

= �m+(m+t·q)
2 �

= m + � t·q
2 �

= m + T · q (10)

if 2 | t and T is therefore an integer.
Therefore, the recombined erroneous signature s′ is

s′ = CRT (sp, sq) · m̂′r mod n

= CRT (sp, sq) · (m + T · q)r mod n

= CRT (sp, sq) · (mr + R1 · q) mod n

= CRT (sp, sq) · mr + CRT (sp, sq) · R1 · q mod n

= md + R2 · q mod n (11)

where both R1 and R2 are random integers.
Based on the above observation, it can be derived that

gcd(s′e − m, n) = gcd((md + R2 · q)e − m, n)
= gcd((m + R3 · q) − m, n)
= q

where R3 is also a random integer. Similarly, it also leads to gcd(s′ − s, n) = q.
In the above hardware fault cryptanalysis on CRT-2 protocol, suppose that

both sp and sq are correct, given the faulty k′
q or k′

p with random computational
fault or random access fault (accordingly producing an erroneous m̂′ and an
erroneous final signature s′), gcd(s′e − m, n) gives q or p, respectively.

5 Concluding Remarks

In this paper, we consider attacks on countermeasures by employing fault infec-
tive CRT computation. Note that the two fault infective CRT computation pro-
tocols were previously developed in order to be more reliable as countermeasures
against the CRT-based factorization attack without assuming the existence of
any fault free or tamper free checking (or comparison) procedure. After further
careful re-examination, a potential attack is pointed out which was not con-
sidered in the usual CRT-based factorization attack scenario. These two fault

60 S.-M. Yen, D. Kim, and S. Moon

infective CRT computation protocols can be modified and enhanced to be im-
mune from the proposed attack pointed out in this paper. However, this may
require the usage of reliable checking (or comparison) procedures.

We notice that two recent papers [17,18] presented at FDTC 2005 also con-
sider RSA with CRT against factorization attack. However, the countermeasure
proposed in [17] still assumes the usage of fault free checking computation. On
the other hand, the countermeasure proposed in [18] has not yet been carefully
analyzed since a factorization attack might still be possible due to the linearity
of the CRC checking employed in their countermeasure. Take the usual 32-bit
CRC as an example, the complexity to mount a successful attack will be only
232. If we consider a one-byte error on dp, the complexity to factorize the RSA
modulus will be only about 2500. So, to conclude this paper, an open problem
is pointed out in the following. According to the above observation, it is still
unknown whether it is possible to develop highly reliable algorithmic counter-
measures against CRT-based factorization attack without employing any fault
free or tamper free checking procedure.

References

1. D. Boneh, R.A. DeMillo, and R.J. Lipton, “On the importance of checking
cryptographic protocols for faults,” Advances in Cryptology – EUROCRYPT ’97,
LNCS 1233, pp. 37–51, Springer-Verlag, 1997.

2. F. Bao, R.H. Deng, Y. Han, A. Jeng, A.D. Narasimbalu, and T. Ngair, “Breaking
public key cryptosystems on tamper resistant devices in the presence of transient
faults,” Pre-proceedings of the 1997 Security Protocols Workshop, Paris, France,
1997.

3. M. Joye, J.-J. Quisquater, F. Bao, and R.H. Deng, “RSA-type signatures in the
presence of transient faults,” Proceedings of Cryptography and Coding, LNCS 1355,
pp. 155–160, Springer-Verlag, 1997.

4. D.P. Maher, “Fault induction attacks, tamper resistance, and hostile reverse en-
gineering in perspective,” Proceedings of Financial Cryptography, LNCS 1318,
pp. 109–121, Springer-Verlag, 1997.

5. E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,”
Advances in Cryptology – CRYPTO ’97, LNCS 1294, pp. 513–525, Springer-Verlag,
1997.

6. A.K. Lenstra, “Memo on RSA signature generation in the presence of faults,”
September 1996.

7. M. Joye, A.K. Lenstra, and J.-J. Quisquater, “Chinese remaindering based cryp-
tosystems in the presence of faults,” Journal of Cryptology, Vol. 12, No. 4, pp. 241-
245, 1999.

8. A. Shamir, “How to check modular exponentiation,” presented at the rump session
of EUROCRYPT ’97, Konstanz, Germany, 11–15th May 1997.

9. A. Shamir, “Method and apparatus for protecting public key schemes from timing
and fault attacks,” United States Patent 5991415, November 23, 1999.

10. S.M. Yen and M. Joye, “Checking before output may not be enough against fault-
based cryptanalysis,” IEEE Trans. on Computers, Vol. 49, No. 9, pp. 967–970,
Sept. 2000.

Cryptanalysis of Two Protocols 61

11. J.-J. Quisquater and C. Couvreur, “Fast decipherment algorithm for RSA public-
key cryptosystem,” Electronics Letters, Vol. 18, No. 21, pp. 905–907, 1982.

12. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of applied cryp-
tography. CRC Press, 1997.

13. R.L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signa-
tures and public-key cryptosystem,” Commun. of ACM, Vol. 21, No. 2, pp. 120–126,
1978.

14. S.M. Yen, S.J. Moon, and J.C. Ha, “Hardware fault attack on RSA with CRT
revisited,” Proceedings of Information Security and Cryptology – ICISC 2002,
LNCS 2587, pp. 374–388, Springer-Verlag, 2003.

15. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, “Fault attacks
on RSA with CRT: Concrete results and practical countermeasures,” Proceed-
ings of Cryptographic Hardware and Embedded Systems – CHES2002, LNCS 2523,
pp. 260–275, Springer-Verlag, 2003.

16. S.M. Yen, S.J. Kim, S.G. Lim, and S.J. Moon, “RSA speedup with Chinese re-
mainder theorem immune against hardware fault cryptanalysis,” IEEE Trans. on
Computers – Special issue on CHES, Vol. 52, No. 4, pp. 461–472, April 2003.

17. C. Giraud, ”Fault-resistant RSA implementation,” Proc. of the 2nd Workshop on
Fault Diagnosis and Tolerance in Cryptography–FDTC 2005, Sept. 2, 2005.

18. M. Ciet and M. Joye, ”Practical fault countermeasures for Chinese remaindering
based RSA,” Proc. of the 2nd Workshop on Fault Diagnosis and Tolerance in
Cryptography–FDTC 2005, Sept. 2, 2005.

Blinded Fault Resistant Exponentiation�

Guillaume Fumaroli1 and David Vigilant2

1 Thales Communications
160 bd. de Valmy, F-92704 Colombes, France
guillaume.fumaroli@fr.thalesgroup.com

2 Gemalto
6 rue de la Verrerie, F-92190 Meudon, France

david.vigilant@gemalto.com

Abstract. As the core operation of many public key cryptosystems,
group exponentiation is central to cryptography. Attacks on its imple-
mentation in embedded device setting is hence of great concern. Re-
cently, implementations resisting both simple side-channel analysis and
fault attacks were proposed. In this paper, we go further and present an
algorithm that also inherently thwarts differential side-channel attacks
in finite abelian groups with only limited time and storage overhead.

1 Introduction

In traditional cryptanalysis, only inputs and outputs of cryptographic algorithms
are available to the attacker. Unfortunately, this assumption is inaccurate when
the hardware implementation is in the hands of the attacker. A new range of
attacks known as implementation attacks is then applicable. Embedded devices
such as smartcards are especially targeted by these implementation attacks, that
may be either passive or active.

Passive attacks are based on side-channel analysis introduced in [1], whose
principle consists in monitoring the device to find correlations between some
physical information leakage and the secret key manipulated by the device. While
simple side-channel analysis refers to a correlation involving a single acquisition,
differential side-channel analysis recovers the secret in several attempts by using
the correlation between different acquisitions and a part of the secret.

Active attacks or fault attacks consist in carefully forcing the cryptographic
device to perform erroneous operations such that the result leaks information
about the secret data involved in the computation.

Group exponentiation is at the basis of many public key cryptosystems such
as RSA, ECC or the Diffie-Hellman key exchange in some group. Cryptosystems
based on exponentiation are particularly sensitive to implementation attacks
both active [2] and passive [3].

In this paper, we present an exponentiation algorithm that resists all fore-
mentionned implementation attacks in finite abelian groups.

� This work was performed when the first author was with Gemalto.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 62–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Blinded Fault Resistant Exponentiation 63

Our countermeasure features a novel base point blinding technique, based on
the so-called Montgomery ladder introduced in [4], that requires fewer group
operations than other techniques achieving the same level of protection.

In any finite abelian group whose order is unknown, our technique becomes
the most efficient one requiring no pre-computations. In particular, this is the
case for RSA as the factorization of the modulus and the public exponent are
rarely available to the device. Note that our countermeasure also fully applies to
the ECC setting since the randomization of projective coordinates, introduced
by Coron in [5], was later proven insufficiant by Goubin in [6]. As pointed out
recently by Dupuy and Kuntz-Jacques [7], when the attacker can tamper with
the base element, scalar point multiplications also require randomization of the
computation flow to provide DPA resistance.

In section 2, the history of exponentiation algorithms targetting constrained
embedded devices is reviewed. Section 3 presents our algorithm and analyses its
security and efficiency. Section 4 concludes.

2 A Review of Previous Work

In the sequel, G denotes a multiplicatively-written finite abelian group.
Though more refined algorithms for computing group exponentiations exist

in the litterature, only those based on binary ladders are relevant in constrained
environments such as smartcards.

Square-and-multiply algorithms (Fig. 1) have first been considered for imple-
mentation, but they are easily broken by simple side-channel attacks.

Input: x ∈ G, k =
∑t−1

i=0 ki2i ∈ N
Output: xk ∈ G

R0 ← 1; R1 ← x
for j = t − 1 down to 0 do

R0 ← R0
2

if kj = 1 then R0 ← R0R1

end for
return R0

Fig. 1. Square-and-multiply

Further, square-and-multiply-always algorithms (Fig. 2) introduced by Coron
[5] were designed to prevent simple side-channel attacks by performing dummy
operations. However, such algorithms bring specific weaknesses with respect to
so-called safe-error attacks [8].

Montgomery ladder [4] was initially developped for elliptic curve scalar mul-
tiplication. Later, Joye et al. [8] extended it to exponentiation in any abelian
group and pointed out its intrinsic resistance to simple side-channel attacks and

64 G. Fumaroli and D. Vigilant

Input: x ∈ G, k =
∑t−1

i=0 ki2i ∈ N
Output: xk ∈ G

R0 ← 1; R2 ← x
for j = t − 1 down to 0 do

R0 ← R0
2

Rk̄j
← Rk̄j

R2

end for
return R0

Fig. 2. Square-and-multiply-always

safe-error attacks leveraging a slight modification. Let Lj =
∑t−1

i=j ki2i−j and
Hj = Lj + 1. As pointed out in [8], the principle of Montgomery ladder is based
on the following observation:

(xLj , xHj) =

⎧⎨⎩
((

xLj+1
)2

, xLj+1xHj+1

)
if kj = 0(

xLj+1xHj+1 ,
(
xHj+1
)2) if kj = 1 .

This formula leads to Fig. 3 algorithm. The registers R0 and R1 contain the
values of xLj and xHj respectively. (R0, R1) is initialized with (xLt , xHt) = (1, x).
After t iterations, (R0, R1) contains (xL0 , xH0) = (xk, xk+1).

Input: x ∈ G, k =
∑t−1

i=0 ki2i ∈ N
Output: xk ∈ G

R0 ← 1; R1 ← x
for j = t − 1 down to 0 do

Rk̄j
← Rk̄j

Rkj

Rkj
← R2

kj

end for
return R0

Fig. 3. Joye et al. Montgomery ladder

However, Montgomery ladder remains sensitive to differential side-channel
analysis. As for group exponentiations, differential side-channel analysis may be
prevented by randomizing either the group, the exponent or the base element.
Randomization of the group structure was not explored in this paper. Known
techniques targetting the exponent and the base element are presented in more
details in [5,9]. Blinding the exponent is not well suited for exponentiations in
finite abelian groups. Indeed, the group order is generally unknown and its com-
putation may be difficult. So blinding the base seems to be the most appropriate

Blinded Fault Resistant Exponentiation 65

countermeasure. Usually, blinding the base element consists in multiplying the
input x ∈ G with a random element r picked at random from G; the value
of xd ∈ G is then obtained as (xr)d × (r−1)d. This countermeasure introduced
in [5] requires two balanced group exponentiations, or a subtle but unpractical
pre-computation trick that may be difficult to handle by the personalization
process.

3 Our Algorithm

As in the previous section, Lj =
∑t−1

i=j ki2i−j and Hj = Lj + 1. Let us consider
Fig. 3 algorithm and suppose (R0, R1) contains ρ(xLj+1 , xHj+1) at the beginning
of some iteration for some ρ ∈ G. Then, (R0, R1) will contain ρ2(xLj , xHj) at
the beginning of the next iteration. This remark leads to Fig. 4 algorithm.

Input: x ∈ G, k =
∑t−1

i=0 ki2i ∈ N
Output: xk ∈ G

Pick a random r ∈ G
R0 ← r; R1 ← rx; R2 ← r−1

for j = t − 1 down to 0 do
Rk̄j

← Rk̄j
Rkj

Rkj
← R2

kj

R2 ← R2
2

end for
return R2R0

Fig. 4. Side-channel analysis resistant Montgomery ladder

As will be shown in the sequel, the more refined Fig. 5 algorithm will have to
be considered as Fig. 4 algorithm fails to detect some fault attacks.

At initialization, the couple of registers (R0, R1) is multiplicatively blinded by
a secret random element r ∈ G. Throughout the computation, (R0, R1) is then
instrinsically multiplicatively masked by the element r2t−j ∈ G. The register R2
is initialized with r−1 ∈ G and holds the compensative factor r−2t−j ∈ G such
that R2(R0, R1) equals (xLj , xHj) ∈ G2. At the end of the computation, the
actual multiplication R2R0 hence evaluates to xk ∈ G.

3.1 Security Analysis

Some masking elements r ∈ G exhibit the undesirable property that r2j

= 1
for some j ∈ N. For such elements, (R0, R1) is permanently unmasked after j
iterations.

66 G. Fumaroli and D. Vigilant

Input: x ∈ G, k =
∑t−1

i=0 ki2i ∈ N,
CKSref the checksum of k.

Output: xk ∈ G

Pick a random r ∈ G
R0 ← r; R1 ← rx; R2 ← r−1

init(CKS)
for j = t − 1 down to 0 do

Rk̄j
← Rk̄j

Rkj

Rkj
← R2

kj

R2 ← R2
2

update(CKS, kj)
end for
R2 ← R2 ⊕ CKS ⊕ CKSref

return R2R0

Fig. 5. Side-channel analysis and fault attacks resistant Montgomery ladder

Definition 1 (Weak mask). Let WG =
⋃

i∈N

{
x ∈ G

∣∣ x2i

= 1
}
. Any element

x ∈ WG is called a weak mask.

Theorem 1 (Weak mask probability in finite abelian groups). Let G
be a finite abelian group with |G| = α2β for some odd α. Let Prr←G {r ∈ WG}
denote the probability that r be a weak mask when r is picked randomly uniformly
from G. We have

Pr
r←G

{r ∈ WG} =
1
α

.

Proof. See Appendix A.

In our context, the fraction 1/α where α denotes the greatest odd factor of
|G| is necessarily negligible. Otherwise, |G| would be smooth and the discrete
logarithm in G would be efficiently solved by the Pohlig–Hellman algorithm [10].

Suppose β = 100 and |G| � 21024. Then, the probability of picking a weak
mask is about 1/2924 < 10−278. This shows that weak masks never happen in
practice.

Simple Side-Channel Analysis and Safe-Error Attacks. The square-and-
multiply algorithm (Fig. 1) is sensitive to simple side-channel analysis. Indeed,
it contains a conditional branching on the multiplication that directly depends
on the secret exponent. Then, since the physical leakage of a square can be
distinguished from that of a multiplication, the secret data can be easily retrieved
from just one acquisition.

Blinded Fault Resistant Exponentiation 67

The square-and-multiply-always algorithm (Fig. 2) perfectly balances the for-
mer conditional branching by adding dummy multiplications. However, it in-
troduces a specific weakness toward safe-error attacks that consist in carefully
injecting a fault during the execution and checking whether it impacts on the
result. In particular, the so-called M-safe-error attack consist in disturbing the
multiplication. The value of the secret exponent can then be retrieved by dis-
tinguishing between required and dummy multiplications, corresponding to an
exponent bit equal to 1 and 0, respectively.

Because of its high regularity, the Montgomery ladder algorithm (Fig. 3) is
intrinsically resistant to simple side-channel attacks. It is also insensitive to safe-
error attacks [8]. If a fault is injected at any time during the computation, the
result is necessarily faulty. As it keeps the same structure, our algorithm (Fig. 4)
clearly remains equivalent to Montgomery ladder in terms of simple side-channel
analysis and fault attack resistance.

Differential Side-Channel Analysis. The intermediate variables are masked
by r2i

at each step i of the computation, and are hence statistically independant
from the input and the output throughout the computation, so they cannot be
exploited by the attacker.

Only those acquisitions for which r is a weak mask may be relevant to an at-
tacker. In this case, the intermediate variables are unmasked after some steps of
our algorithm. Clearly, the expected number of acquisitions to mount a differen-
tial side-channel attack against our algorithm grows inversely proportional with
the probability that r be a weak mask. Since the probability of picking a weak
mask is negligible, differential side-channel attacks are infeasible in practice.

Fault Attacks. The resistance of our algorithm against fault attacks is based
on the relationship R2(R0, R1) = (xκ, xκ+1) for some κ ∈ N. If an error occurs
on a temporary result or during one of the group operations at any time during
the computation, the mutual coherence of R0, R1, and R2 is definitively lost. As a
consequence, the result of the last multiplication R2R0 is just some perfect random
number to an attacker that cannot be exploited as such, at least if we assume the
input was not blinded with a weak mask. Again, as weak masks are extremely
unlikely in practice, any such error will be caught by our countermeasure.

However, as in [11], Fig. 4 algorithm fails to thwart exponent or loop counter
disturbance as it does preserve the former relationship. Such faults hence have
to be handled by other techniques. As pointed out in [12], avoiding conditional
branching is safer since modifying the result of a comparison or the value of a
loop counter by tampering with the associated register is easy. On the contrary,
in order to by-pass an instruction, the attacker would have to increment the
program counter. Such a precise modification is hardly feasible in practice. For
that reason, we propose combining the on-the-fly checksum computation of [11]
with the infective computation technique of [12] (Fig. 5). Let γ = CKS⊕CKSref
be the difference between the re-computed checksum CKS and the reference
checksum value CKSref . The most significant bits of R2 are xored with γ before
the last multiplication. Hence, the final result will be spoiled whenever γ �= 0
i.e. whenever the exponent or the loop counter has been tampered with.

68 G. Fumaroli and D. Vigilant

3.2 Efficiency Analysis

Time. Montgomery ladder (Fig. 3) requires t multiplications and t squarings.
Our algorithm (Fig. 4) requires t more squarings for computing the compen-
sative factor. The inversion and the two multiplications involved in the masking
and unmasking process can be neglected with respect to the cost of the overall
computation. Let M denote the cost of a multiplication. The cost of a squaring
can be approximated to 0.8M . Each step of our algorithm costs 2.6M compared
to 1.8M for Montgomery ladder, that is a 44.44% time complexity increase.

Storage. Compared to Montgomery ladder, our algorithm requires one more
register R2 for the compensative factor, that is a 50% storage increase.

Note however that many cryptographic co-processors cannot store the result
of some operations – as the modular multiplication or squaring – at the address
of the operands. With such architectures, three registers for the standard Mont-
gomery ladder and four registers for our algorithm are needed, corresponding to
a 33% storage increase.

4 Conclusion

This paper presents an algorithm for computing exponentiations in finite abelian
groups, especially relevant in the RSA and ECC setting, that is intrinsically
resistant to all known simple and differential side-channel analysis and fault
attacks, while requiring roughly at most 50% more time and storage compared
to traditional balanced implementations.

Our countermeasure is especially suited when only the parameters needed
for the computation itself are known, which is extremely valuable as additional
parameters are rarely available to the cryptographic device. In particular, neither
the group order nor the public exponent are required.

Acknowledgment

The authors would like to thank Jean Creignou and Hervé Chabanne for many
helpful remarks on the preliminary version of this paper.

References

1. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: CRYPTO. Volume 1109 of Lecture Notes in Computer
Science. (1996) 104–113

2. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults. Lecture Notes in Computer Science 1233 (1997)
37–51

3. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. Lecture Notes in Com-
puter Science 1666 (1999) 388–397

Blinded Fault Resistant Exponentiation 69

4. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation 48(177) (January 1987) 243264

5. Coron, J.S.: Resistance Against Differential Power Analysis for Elliptic Curve
Cryptosystems. In Ç.K. Koç, Paar, C., eds.: Cryptographic Hardware and Embed-
ded Systems — CHES 2002. Volume 1717 of Lecture Notes in Computer Science.
(1999) 292–302

6. Goubin, L.: A refined power analysis attack on elliptic curve cryptosystems. In
Springer-Verlag, ed.: Public Key Cryptography PKC 2003. Volume 2567 of Lecture
Notes in Computer Science. (2003) 199211

7. Dupuy, W., Kunz-Jacques, S.: Resistance of Randomized Projective Coordinates
Against Power Analysis. In B.S. Kaliski Jr., c.K., Paar, C., eds.: Cryptographic
Hardware and Embedded Systems — CHES 2005. Volume 3659 of Lecture Notes
in Computer Science. (2005) 1–12

8. Joye, M., Yen, S.M.: The Montgomery Powering Ladder. In B.S. Kaliski Jr., c.K.,
Paar, C., eds.: Cryptographic Hardware and Embedded Systems — CHES 2002.
Volume 2523 of Lecture Notes in Computer Science. (2002) 291–302

9. Trichina, E., Bellezza, A.: Implementation of elliptic curve cryptography with
built-in counter measures against side channel attacks. In B.S. Kaliski Jr., c.K.,
Paar, C., eds.: Cryptographic Hardware and Embedded Systems — CHES 2002.
Volume 2523 of Lecture Notes in Computer Science. (2002) 98–113

10. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance. IEEE Transactions on Information
Theory 24 (1978) 106–110

11. Giraud, C.: Fault Resistant RSA Implementation. In Breveglieri, L., Koren, I.,
eds.: 2nd Workshop on Fault Diagnosis and Tolerance in Cryptography — FDTC
2005. (2005) 142–151

12. Ciet, M., Joye, M.: Practical Fault Countermeasures for Chinese Remaindering
Based RSA. In Breveglieri, L., Koren, I., eds.: 2nd Workshop on Fault Diagnosis
and Tolerance in Cryptography — FDTC 2005. (2005) 124–131

A Proof of Theorem 1

Lemma 1 (Cauchy’s Lemma). Any finite group whose order is divisible by a
prime number p contains an element of order p.

Definition 2. Let G be a finite abelian group and p be a prime number. Let
Gp denote the subgroup of all elements of G whose order is a power of p. Any
element x ∈ Gp is called a p-torsion element of G.

Lemma 2. Let G be a finite abelian group. We have

G ∼=
∏

p | |G|
Gp .

Proof. Let |G| =
∏n

i=1 pβi

i where pi,i∈{1,...,n} are prime numbers.

70 G. Fumaroli and D. Vigilant

Let us show that the homomorphism ψ defined as
n∏

i=1

Gpi

ψ−→ G

(x1, . . . , xn) �−→
n∏

i=1

xi

is an isomorphism. First, we show that ψ is a monomorphism.
Let x and y be in the abelian group G. Let |〈x〉| = a be the order of x and

|〈y〉| = b the order of y in G. First, observe that if a and b are coprime, then
xy = 1 ⇒ x = y = 1. This is a consequence of Bézout’s identity. Since a and b
are coprime, there exists integers u and v such that au + bv = 1. We have

xy = 1 ⇒ (xy)au = 1 (1)

and as xa = 1, we have (xy)au = xauyau = yau. Then, since yb = 1, we get

(xy)au = yau = yauybv = yau+bv = y . (2)

From (1) and (2), we have y = 1. In the same way, we show xy = 1 ⇒ x = 1.
Now let us suppose that ψ(x1, . . . , xn) =

∏n
i=1 xi = 1. Clearly the order of x1

and the order of
∏n

i=2 xi are coprime, and as we have shown above, x1×
∏n

i=2 xi =
1 ⇒ x1 = 1 and

∏n
i=2 xi = 1. In particular x1 = 1. Then, by induction on the

relation
∏n

i=2 xi = 1, we get the expected result

ψ(x1, . . . , xn) =
n∏

i=1

xi = 1 ⇒ x1 = . . . = xn = 1 .

Now let us show that ψ is an epimorphism.
For all y ∈ G, |〈y〉| divides |G|. Hence, |〈y〉| =

∏n
i=1 pγi

i where γi ≤ βi for
all i ∈ {1, . . . , n}. Let ui =

∏
j �=i p

γj

j for i ∈ {1, . . . , n}. Then, yui ∈ Gpi since
|〈yui〉| = pγi

i . Moreover, the ui,i∈{1,...,n} are coprime as there exists no integer
dividing all ui. According to Bézout’s identity, there exists a1, . . . , an such that∑n

i=1 aiui = 1. Hence, for all y ∈ G, y =
∏n

i=1 xi with xi = yuiai ∈ Gpi . ��
Lemma 3. Let G be a group with |G| =

∏n
i=1 pβi

i where pi,i=1...n are prime
numbers. Then, |Gpi | = pβi

i .

Proof. Necessarily, |Gpi | is a power of pi, say pγi

i . Indeed, from Cauchy’s Lemma,
if |Gpi | were divisible by some prime number p �= pi, it would contain an element
of order p, which is contradictory with the definition of Gpi . Then, since G ∼=∏

p | |G| Gp, we have
∏

i pβi

i =
∏

i pγi

i , so γi = βi for all i. ��
We have WG = G2 and, from lemma 3, |G2| = 2β. Finally,

Pr
r←G

{r ∈ WG} =
|WG|
|G| =

1
α

.

Incorporating Error Detection in an RSA
Architecture

L. Breveglieri1, I. Koren2, P. Maistri1, and M. Ravasio3

1 Department of Electronics and Information Technology, Politecnico di Milano,
Milano, Italy

{brevegli, maistri}@elet.polimi.it
2 Department of Electrical and Computer Engineering, University of Massachusetts,

Amherst, MA, USA
koren@ecs.umass.edu

3 STMicroelectronics, Agrate Brianza, Milano, Italy
moris.ravasio@st.com

Abstract. Most successful attacks against hardware implementations
of cryptographic systems make use of side-channel information leakage.
Recently, some attacks have been proposed against various cryptosys-
tems, which exploit deliberate error injection during the computation
process. Several error detection schemes have been proposed in order to
counteract these attacks. In this paper, we add a residue-based error de-
tection scheme to an RSA architecture and evaluate the area and latency
overheads with respect to the basic architecture.

1 Introduction

Hardware implementations of cryptographic systems have become very popular,
in order to satisfy the latest demands in terms of performance and tamper re-
sistance. The most widely adopted public-key algorithm is currently the RSA
cryptosystem (proposed by Rivest, Shamir and Adleman) that relies on the dif-
ficulty in factorizing large integers.

In the past, most attacks were aimed at solving the factorization problem.
However, RSA uses currently 1024-bit operands and factorization of such large
integers is unaffordable with current computational power. An alternative way
to attack a cipher is through attempts to break a specific implementation by
finding a correlation between physical information leakage and the secret keys
(e.g., simple and differential power analysis, timing attacks). Recently, new side
channel attacks have been proposed. In [4], the authors showed how deliberate
hardware faults can be exploited to break a cryptographic algorithm and retrieve
the key. They have addressed public-key schemes in general and provided exam-
ples, including a description of an attack against RSA. Attacks against RSA
were later refined in [1] where the authors showed how a single faulty ciphertext
can be used to easily factor the RSA modulus, thus breaking the cryptosystem.
It should be pointed out that RSA implementations based on the Chinese Re-
mainder Theorem (CRT) can be broken more easily than a basic implementation
[2,4]. Other attacks against CRT-RSA appear in [13] and [14].

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 71–79, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 L. Breveglieri et al.

Fault-based attacks are highly effective, since few carefully localized errors
can break the cipher. While attacking regular RSA requires the ability to inject
single-bit errors, it must be noted that the only requirement to successfully break
CRT-RSA is that only one of the two sub-signatures is corrupted. Hence, if the
attacker can inject any error into one sub-exponentiation and have a result back,
he can break the cryptosystem. This implies that the error model could be as
general as possible.

Although they may have been considered to be of only theoretical value,
some initial experiments have shown that such attacks are possible in practice.
Therefore, several countermeasures were proposed to foil the attacks. In 1999,
Shamir registered a patent [10] where a multiplicative masking is used against
timing and fault attacks. In 2000, Walter [12] has suggested to use residue codes
to protect modular arithmetic operations. The residue code can help detect
both transient and permanent faults. The error coverage depends on the value
of the base modulus that is chosen: higher values of the base modulus allow
higher detection rates. The overhead of the residue code is approximately the
cost of an extra digit in the operands. In general, this overhead can be in terms
of area if an extra element is included in each functional unit or in terms of
time when the same functional unit is reused. In 2004, Gueron [5] described an
extended version of the modular exponentiation and Montgomery multiplication
algorithms by using a residue code in multi-digit algorithms. If the base modulus
is chosen to be the maximum value of a digit (i.e., 2d − 1, where d is the digit
size in bits), generation is very simple [8,12].

In this paper, we present a reasonably simple architecture for computing the
RSA with protection against injected faults using residue codes. Residue codes
were chosen since they can protect arithmetic operations quite efficiently. More-
over, if a specific fault pattern is likely to occur, a sufficiently large base modulus
can be chosen in order to provide good coverage. We adapt the suggestion made
by Walter [12] to a specific architecture and evaluate the benefits and overheads.
We also show how to further improve this specific solution.

In Section 2 we briefly describe the RSA cryptosystem and our reference ar-
chitecture. In Section 3 we present the detection mechanism by means of residue
codes. Section 4 provides the details of our implementation of a circuit with error
detection capabilities, detailing the implementation choices. Finally, Section 5
concludes the paper.

2 The RSA Cryptosystem

The RSA cryptosystem [9] is based on few essential parameters, namely, the
public moduli N = p · q, where p and q are two large primes, each n/2 bits
long; d, the private exponent key; and e, the public exponent key, selected such
that e · d = 1 mod (p − 1)(q − 1). Encryption of a message m is done by com-
puting me mod N . Decryption is computed by another exponentiation, namely
(me)d mod N . The most critical operation is therefore the modular exponentia-
tion. A large number of multiplications is needed to perform exponentiation and

Incorporating Error Detection in an RSA Architecture 73

quite often, a simple Square-and-Multiply algorithm is used. Various exponen-
tiation algorithms are described in [7]. Most implementations of exponentiation
use the modified Montgomery multiplication algorithm (depicted in Figure 1),
since it avoids the use of expensive trial divisions and avoids conditional branches
which might benefit side channel attacks at the cost of few additional iterations,
while maintaining the correctness of the algorithm [11]. Many different architec-

Input: X = (0 0 Xn · · · X1X0)
Y = (Yn · · · Y1Y0)
M = (Mn−1 · · · M1M0)

Output: X · Y · 2−(n+2) mod M

1. U ← 0
2. for i from 0 to (n + 2) do
a if (U0 = 1) then U = U + M
b U = (U/2) + XiY

3. return U

Fig. 1. The modified Montgomery Multiplication, radix-2 [6]

tures have been proposed, differing mostly in some minor modifications to the
Montgomery algorithm and in the digit size. The designer can thus obtain the
desired trade-off between area and latency.

Our selected architecture was inspired by the design presented in [6]. Our
solution differs from the original design mainly in the absence of the Z-processor,
i.e., the squaring functional unit; this modification has also been suggested by
the authors of [6]. The basic implementation includes a core (consisting of a
control unit and a Processing Element (PE)), an internal memory and a bridge.
The architecture is highly parameterized and it can therefore support future
operand sizes. A small area is achieved by using a serial-digit approach. The
exponentiation is computed by using the Square-and-Multiply algorithm; each
multiplication scans the multiplier one bit at a time, and computes the result
by using the Double-and-Add algorithm. Finally, each addition is performed by
computing the result one digit at a time.

The PE is able to perform the basic required operations (addition, subtraction
and addition with extra shifting) on the n-bit operands by repeated steps. The
word size of the computational core is only 25% of the memory word size, which
is in turn considerably smaller than the size of the modulus N . This allows
to reduce the PE critical path and achieve higher frequencies. Accessing the
memory implies a certain latency, due to the signal setup time and the register
layers required to obtain stable values at the PE inputs. However, since the PE
word size is 25% of the memory word size, producing a single result requires 4
clock cycles to fetch the next memory read. This is done at each iteration except
the last one, when the PE is processing the last word.

74 L. Breveglieri et al.

3 Online Detection

In this section, we describe our detection scheme for errors injected during an
RSA operation. The underlying principle is associating check bits to the data
we are processing. If we are able to maintain the relationship between the data
and the corresponding check bits throughout the entire process, the final result
and the associated check bits should still satisfy the same relationship. This can
be accomplished by propagating the check bits according to a specified set of
prediction rules. When the data is processed by a specific functional unit, the
corresponding check bits are processed in parallel using the associated prediction
rule in order to preserve the relationship. As an example, consider a parity bit
associated with a data word. When computing the exclusive OR of two different
words, we can predict the parity bit of the result by XOR’ing the parity bits of
the operands.

The code chosen for error detection must be simple. First of all, its generation
and propagation overheads should be negligible relative to the computation of
the main algorithm. Moreover, the need for prediction does not allow the use of
complex codes, which may be very efficient in detecting faults but will be very
expensive when implementing the various prediction circuits. The overhead of
the error detection code should always be compared to brute force duplication
which is the simplest way to detect errors. If detecting errors using codes is
cheaper than duplication, then it is a viable solution.

To make the prediction rules as simple as possible, the code must be compat-
ible with the operations performed on the data. Since RSA is based on modular
integer arithmetic, residue codes are a natural choice. From the theory on mod-
ular arithmetic we know that the residue of the sum is the sum of the residues,
possibly reduced once more:

(X + Y) mod R = ((X mod R) + (Y mod R)) mod R (1)

where X and Y are two operands and R is the base modulus. For instance, take
X = 8, Y = 13 and R = 3: 8 mod 3 = 2, 13 mod 3 = 1, 8 + 13 = 21 and
21 mod 3 = 0, and finally (2) + 1 mod 3 = 3 mod 3 = 0. A similar rule holds
for subtraction and multiplication. However, since all the high-level operations
are implemented in terms of simple additions, this is the only prediction rule
employed in our system.

The main issue is that we have to deal with two different moduli at the same
time: the modulus of the residue code, usually smaller than the word size, and
the modulus used by the RSA, which in contrast, is very large. When perform-
ing a reduction of the result, the check bits have to also be modified accord-
ingly. Extending the algorithm with residue codes is straightforward, thanks to
the properties of modular arithmetic, but there are several issues that must be
considered: the residue code may require an additional reduction as shown in
Equation (1), and the required division by 2. The former issue is addressed by
correcting the residue if it overflows the boundaries of its domain. No informa-
tion is lost, since the residue is stored in a larger data register. Regarding the

Incorporating Error Detection in an RSA Architecture 75

latter issue, the right shift is computed in the Montgomery multiplication only
after we are sure that the operand is even, by adding the modulus only to odd
inputs (see algorithm in Figure 1, instruction 2.a). However, nothing can be said
about the value of the residue. The residue of an even (odd) value can be either
odd or even; therefore, when an odd residue must be right shifted, the (odd)
residue base must be added to provide a congruent even residue value before
dividing by 2.

4 Implementation

In this section we present our implementation of an RSA architecture with error
detection capabilities, discuss the differences from the basic architecture and
estimate the resulting overheads in terms of area and latency.

When incorporating an error detection code in the architecture, there are
three new components to be considered:

1. A code generator: the check bits must be first generated from the initial raw
data, possibly using a dedicated unit;

2. A set of prediction rules, needed to propagate the check bits through any
operation performed in the encryption process;

3. A code validator: at the end of the encryption, the check bits must be verified
against the computed data.

The code generation is obtained by using a dedicated functional unit, which
is situated between the input interface and the memory. While operands are
loaded into memory one word at a time, the residue generator computes and
accumulates the residue into an internal register. When an additional word is
loaded into memory, the partial residue value is updated. Upon deactivation of
the memory write signal, the final residue value is written into the next memory
word.

The check bits generated from a single word depend on the base modulus:
choosing a modulus of the form 2h − 1 allows to compute the check bits by
splitting each word into h-bit-long nibbles and adding them together. In our
implementation, the size of the residue base modulus is chosen as 1/8 of the
memory word size, i.e., half the PE word size. A tree of Carry-Save Adders
(CSAs) is used to reduce the 9 input nibbles (8 coming from the data word, and
the current value stored in the internal register) down to a single pair (Carry,
Sum). However, any other size can be chosen: smaller values will give deeper
trees, while larger values will require fewer steps. The size of the processing
element should be considered as the upper bound, since the residue base must
fit within the adder. Our choice was the largest divisor that fits the PE size,
allowing a simpler design.

Although the carry output of each CSA is shifted with respect to the sum
output by one bit position, the values are implicitly reduced by routing the
most significant bit into the least significant position. For instance, if the size of
the residue code is r, the sum output is (sr−1 . . . s0), while the carry output is

76 L. Breveglieri et al.

CSA

Input
Word

CSA

CSA

CSA

CSA

CSA
CSA

RCA

RCA

0

1Forced Carry-In

1

0

Carry-Out

R
es

id
u

e

Carry-Select Adder

Fig. 2. Residue generation unit, with residue size being 1/8 of memory word size

(crcr−1 . . . c10). The residue of the carry output can be computed in the same
way (one more time) by splitting the carry into a least significant word and a
single most significant bit and adding them together. Since the least significant
bit of the carry vector is null, adding the most significant bit is just a simple
rerouting.

The final residue generation, i.e., the summation of the carry and sum vectors
is computed by using a Carry-Select Adder. In principle, the final addition might
result in an r +1-bit-long vector. Hence, two additions are computed in parallel,
forcing the carry-in to 0 or 1, respectively. Finally, the carry out of the adder
with null carry-in is used to select the proper result to be stored in the internal
register. Figure 2 illustrates the overall architecture of the residue generation
unit. The CSA layer allows to shrink the sum of 9 operands down to only 2
addends with a delay of only a few gates. On the other hand, the twin ripple-
carry adders allow to obtain a value in the residue domain within the PE delay.

The code prediction is performed within each single operation, since the rule
often matches the operation itself: the residue of an addition, for instance, is the
sum of the input residues. Therefore, the PE can also be used for residue calcula-
tion after the main operation is completed. This is a straightforward application
of Equation (1). This simple rule is integrated into the existing architecture
exploiting the pipelining in order to minimize the latency overhead. When all
the words are fetched into the PE, prefetching continues to load both residue
codes. Control signals are set up so that the residue prediction is an atomic
operation, with no impact on or from other operations (carries, overflows, etc.).
Input residues are ready as soon as the PE finishes processing the last word. In
addition, the residue fits the PE size since it is smaller (in our implementation,
it is half the PE word size), therefore the operation can be completed in a single
clock cycle. Using only few additional controls, the residue prediction can be
achieved with almost no increase in the circuit area and with a single added
clock cycle to the overall latency of each operation. If we consider that each
operation requires 4 clock cycles per word and any operand is made of several
words, the overhead for residue prediction becomes negligible. For example, in

Incorporating Error Detection in an RSA Architecture 77

our reference implementation we have a 128-bit-word memory module, a 32-bit
PE and an operand size that starts from 768 bits. In this case, the overhead is
only 3.7%. With longer operands, the overheads become significantly smaller.

Finally, the resulting residue must be validated against the computed data.
This validation does not have to be scheduled immediately. It is possible to
delay the validation to a later time, for instance before reading the result from
the memory. This is possible since any occurring error in the data does not
affect the check bits during computation; on the other hand, local generation of
the check bits (i.e., just before any operation) would force to schedule a code
validation checkpoint after each operation, in order to avoid residue generation
from corrupted data. Our solution follows the former approach. In particular, an
error would not be detected at an immediate checkpoint only if the corrupted
value had the same check bits as the correct data. This implies that the detection
coverage is inversely proportional to the size of the check modulus which can be
chosen accordingly. It should be clear that such a fault will not be detected even
afterward.

In our implementation, the memory read policy is changed. In the basic archi-
tecture, each memory word had to be individually read, by setting up the read
address properly and issuing the read command. In the error detecting version,
only the initial address must be submitted. Subsequent memory reads are auto-
matically fetched, while an additional buffer intercepts the data coming from the
memory and computes the final residue on-the-fly. Finally, the actual check bits
are compared with the predicted check bits, which are stored in the last position.
If the two match and no errors are detected, then the read process is repeated
and the output is enabled, allowing for external reads. Reissuing the read com-
mand may seem a waste of time, but the architecture was developed with area
constrained implementation as a goal. Using a buffer to store the data when it

Table 1. Synthesis results – Area does
not include any memory module

Version
Area Latency
(GE) (ns)

Basic 11, 400 4.7
Error Detecting 13, 400 4.7

Table 2. Area and latency overheads

Key Length Global Overheads
(bits) Area Memory Latency

768 +17.8% +14.3% +3.7%
1024 +17.8% +11.1% +2.9%
1536 +17.8% +7.7% +2.0%
2048 +17.8% +5.9% +1.5%

is read from memory would have resulted in a large area overhead, while the few
additional clock cycles are negligible with respect to the complete process.

The check bits validation unit makes reuse of the residue generation unit
described above. In principle, a new residue generator could be implemented.
However, the area overhead (an additional increase of 10.3%) would not be
compensated by a significant reduction in the delay. Both architectures, in fact,
were able to run at the target frequency of 200 MHz. The latency overheads
were obtained by running several simulations in ModelSim with realistic data,

78 L. Breveglieri et al.

while the area figures were obtained by synthesizing both designs with Design
Compiler by Synopsys with STM 0.18µm High-Speed libraries.

5 Conclusions

One of the most effective techniques for attacking a cryptosystem is through
deliberate error injection during computation. The faulty results can be used
by attackers to retrieve the secret keys after a few attempts. In this paper, we
extend an RSA architecture to include error detection capabilities based on the
residue code. Our design incurs a 17.8% overhead in circuit area and only small
latency and memory overheads, which become even smaller with longer keys.

The expected fault coverage, based on our previous experience with error
detecting codes and on some simulations, depends on the level of redundancy,
i.e., the size of the residue base modulus. After injecting an error, the data and
the corresponding check bits become uncorrelated: the error is not detected if
and only if the check bits match the data by chance. The probability of this
event occurring, when 2h − 1 is the residue base modulus, is (2h − 1)−1 ≈ 2−h.

References

1. R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,”
Proc. of the International Workshop on Security Protocols, Lecture Notes in Com-
puter Science, Springer-Verlag, 1997.

2. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, J.-P. Seifert, “Fault Attacks on
RSA with CRT: Concrete Results and Practical Countermeasures,” Cryptographic
Hardware and Embedded Systems - CHES 2002, Lecture Notes in Computer Sci-
ence, Vol. 2523, pp. 260-275, Springer-Verlag, 2003.

3. E. Biham, A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
Technical Report, Technion - Computer Science Department, 1997.

4. D. Boneh, R. DeMillo, R. Lipton, “On the Importance of Eliminating Errors in
Cryptographic Computations,” Journal of Cryptology, vol. 14, pp. 101-119, 2001.

5. S. Gueron, “Fault Detection Mechanism for Smartcards Performing Modular Ex-
ponentiation,” Workshop on Fault Diagnosis and Tolerance in Cryptography 2004,
Supplemental Volume of the 2004 Intern. Conf. on Dependable Systems and Net-
works, pp. 368-372, 2004.

6. A. Mazzeo, L. Romano, G.P. Saggese, N. Mazzocca, “FPGA-based implementation
of a serial RSA processor,” Design, Automation and Test in Europe Conference and
Exhibition ’03, pp. 582 - 587, 2003.

7. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996.

8. B. Parhami and A. Avizienis, “Design of Fault-Tolerant Associative Processors,”
ISCA, pp. 141-145, 1973.

9. R. L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, Vol. 21, Issue 2, pp.
120–126, ACM Press, 1978.

10. A. Shamir, “Method and Apparatus for Protecting Public Key Schemes from Tim-
ing and Fault Attacks,” US Patent 5991415, 1999.

Incorporating Error Detection in an RSA Architecture 79

11. C. Walter, “Montgomery’s Multiplication Technique: How to Make It Smaller
and Faster”, Cryptographic Hardware and Embedded Systems, First International
Workshop, CHES’99, Proceedings. Lecture Notes in Computer Science, Vol. 1717,
pp. 80-93, 1999.

12. C. Walter, “Data Integrity in Hardware for Modular Arithmetic,” Workshop on
Cryptographic Hardware and Embedded Systems (CHES), Lecture Notes in Com-
puter Science, Vol. 1965, pp. 204-215, 2000.

13. S.-M. Yen, S. Moon, J.-C. Ha, “Hardware Fault Attack on RSA with CRT Revis-
ited,” Information Security and Cryptology - ICISC ’02, Lecture Notes in Com-
puter Science, Vol. 2587, pp. 374-388, 2002.

14. S.-M. Yen, S. Moon, J.-C. Ha, “Permanent Fault Attack on the Parameters of RSA
with CRT,” Lecture Notes in Computer Science, Vol. 2727, pp. 285-296, 2003.

Data and Computational Fault Detection
Mechanism for Devices That Perform Modular

Exponentiation

Shay Gueron1,2

1 Applied Security Research Group
The Center for Computational Mathematics and Scientific Computation,

University of Haifa, Haifa 31905, Israel
2 Intel Corporation, IDC, Israel

shay@math.haifa.ac.il

Abstract. Fault attacks have become an efficient methodology for ex-
tracting secrets stored in embedded devices, and proper countermeasures
against such attacks are nowadays considered necessary. This paper de-
scribes a simple method for foiling transient fault attacks on devices that
perform modular exponentiation with a secret exponent. In the consid-
ered scenario, acknowledging an error only at the end of the computations
leaks out secret information, and should be avoided. To tackle this dif-
ficulty, we propose a scheme that checks, independently, each step (i.e.,
multiplication/squaring) of the exponentiation algorithm, and aborts the
procedure as soon as an error is detected, without completing the com-
putation.

Keywords: Fault attacks, safe errors, countermeasures, RSA, embedded
devices, smartcards.

1 Introduction

Intentional faults induction on embedded devices (e.g., smartcards) in order to
extract their secrets is an effective type of active attack that has already be-
come a serious threat on such devices. In this paper, we concentrate on fault
attacks on devices that implement RSA signature schemes and perform modular
exponentiation with a secret exponent. Modular exponentiation algorithms are
known to be vulnerable to fault attacks and various countermeasures have been
considered in this context (see e.g., [1, 3, 4, 8, 9] and the references therein).
Protection against permanent damage can be achieved by running test vectors
before the actually computations commence, but this is obviously insufficient if
the attacker can induce transient faults on the device at selected time points
during the exponentiation process. A common method for countering transient
faults is to perform the verification step internally, and release the signature
only if it is successfully verified. This solution is adequate in many situations,
carries relatively low performance penalty, but there are some scenarios where
it is insufficient Safe-error attacks are a recent fault attack strategy [10] that

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 80–87, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Data and Computational Fault Detection Mechanism for Devices 81

exploits the fact that some algorithms use differently (or do not use) interme-
diate results according to the bits of the secret key that is under attack. For
modular exponentiation, this leads to the following attack strategy: inject faults
to induce an error during some modular multiplication step, and check if the
resulting signature is validated. This test can reveal the value of the particular
bit of the secret exponent. An attacker who can induce faults during separate
modular multiplication steps (which is conceivable because these are lengthy
operations), can repeat the experiment and extract a sufficient number of bits
from the secret exponent that allows factorization of the modulus. An example
for an algorithm where such strategy works is the square-and-always-multiply
exponentiation, where dummy modular multiplications are added to the inner
loop of the exponentiation algorithm, in order to resist timing attacks. Here, for
each bit of the secret exponent D, the device computes one modular square and
one modular multiplication, but the result is used only if that bit equals 1. The
attacker tracks the time points where separate modular multiplications/squares
steps begin (without necessarily being able to distinguish between them), and
induces errors. Faults that do not lead to a false/rejected signature must have
occurred during a dummy operation (i.e., when the exponent bit was 0). An-
other safe-error attack scenario occurs when the attacker induces some glitch
that forces a particular bit of the secret exponent to be 0. In this case, a valid
signature implies that the results remains correct even with the forced-to-0 bit,
and indicates that the original value of affected bit was 0. An erroneous signa-
ture implies that the bit was 1. The conclusion is that checking the signature
before releasing it is insufficient against some fault attacks scenarios because the
unavoidable acknowledgement of an error leaks information that the attacker
can use. We describe here a simple method to detect computational errors as
they occur, which can be used to mitigate safe-error and other types of fault
attacks.

2 Data-and-Compute Error Detection Method

In general, we assume here that the attacker can induce faults that cause either
a) ”data errors” - modifying the value(s) of some operand(s) stored in memory,
or b) ”computational error” - damaging the computed result of some operation.
If the operands are ”stationary” for sufficiently long time, and the operations
are sufficient long, it is reasonable to assume that the attacker can damage them
without extremely precise timing. Further, inducing random faults is sufficient,
as long as they produce some errors. Safe-error attacks are possible whenever
the correctness of the signature (i.e., the final result) can be related to a partic-
ular bit of the secret exponent. To avoid such situations, we propose a ”Data-
and-Compute” error detection approach: a simple mechanism that allows for
independent checks of each step of the exponentiation algorithm, and for abort-
ing the procedure as soon as an error is detected. The Data-and-Compute error

82 S. Gueron

detection relies on enhancing the data structure that is used for all operands
in the system: each operand K includes some additional structure, denoted K’
= Stamp (K), and this enhanced data structure is denoted K || K’. Stamp (K)
should have the following properties: a) Stamp (K) is short, compared with
the bit-length of K b) Stamp (K) can be easily computed c) There is a small
probability that a random change in K results in a value that has the same
Stamp, d) If C = (A op B) for any operation (op) that is used in the procedure, it
is possible (and easy) to predict the value of Stamp (C) from the values of Stamp
(A) and Stamp (B). The enhanced data structure K||K’ is used for validating the
integrity of the operands and the correctness of the operation, therefore providing
a Data-and-Compute error detection mechanism that handles both data errors
and computational errors. An schematic illustration is given in Fig. 1.

Data-and-Compute Error Detection Method
input: A || A’, B || B’
output: C || C’ (where C = A op B and op is the operation that is carried out

1. Detect data errors
b. T = Stamp (A) If T �= A’ error is detected;
b. T = Stamp (B) If T �= B’ error is detected;

2. Detect computational operation errors
a. Compute T = Predicted Stamp (C);
b. Compute C = A op B;
c. Compute C’ = Stamp (C);
d. if If T �= R error is detected;

If errors were detected - abort; Return C || C’;

Fig. 1. Checking the operation (A op B), using the enhanced data structure. The
integrity of the inputs is verified by computing Stamp (A) and comparing it to A’ (the
same is performed for B). The correctness of the computation is verified by predicting
Stamp (C) and comparing it to the computed C’ after C = (A op B) is computed. If
the process is successful, the output is C ‖ C’, which completes the Data-and-Compute
loop.

Example 1. Consider a system that performs a circular shift operation, and de-
fine the Stamp to be the parity bit of the operands. The enhanced data structure
includes one additional parity bit, which detects any single bit data error. Fur-
ther, single bit computational errors can be detected because Stamp prediction
is possible: the parity bit of the circular shift of A equals to the parity bit of
A. Consequently, this structure supports a Data-and-Compute single bit error
detection.

Data and Computational Fault Detection Mechanism for Devices 83

3 The Arithmetic Stamp

The practical question in our context is how to find a suitable Stamp that can be
used in a system that performs modular exponentiation. To this end we define
the Arithmetic Stamp as follows:

Definition 1. The Arithmetic Stamp of a positive integer X is X’ = Stamp (X)
= ((X-1) mod F) + 1, where F is some chosen positive integer. Hereafter, we
use F = 2t - 1 for some integer value t.

For example, t=32 is the natural choice for a system that use 32 bits words.
The probability that a random fault induced on the operand A would leave
Stamp (A) unchanged, is small enough to make fault attacks that rely on such
occurrence impractical. The following property shows why the arithmetic stamp
is practical.

Remark 1. Computing X’ = Stamp (X): Let X = [X(L-1), .., X1, X0] be a
positive integer written in base F. X consists of L (L < F) ”digits” which are
words having of t bits (altogether X has L. t bits). These digits are denoted by
Xi, i = 0 to L-1 where X0 is the least significant word of X. Stamp (X) can be
computed by adding Xi into a two-words long accumulator, and applying two
final reduction steps in the end. The algorithm is illustrated in Figure 2.

input: X = [X(L-1), .., X1, X0]
output: X’ = Stamp (X) = ((X-1) mod F) + 1

Computation:
1. S=X0;
2. for i from 1 to L-1 do
3. S = S+Xi;
4. end;
5. S = lsw(S)+ msw(S);
6. S = lsw(S)+ msw(S);
7. Return S;

Fig. 2. An algorithm for computing the Arithmetic Stamp of an L words positive
integer X. A two words accumulator (S) is initialized to S=X0. The subsequent L-1
words (Xi) are added to S, successively. Assuming L ¡ F (reasonable in any practical
context), the cumulative sum is bounded by F2 and can therefore be stored in the
two words accumulator. At the end of the L steps, the result stored in S needs to be
reduced to in order to produce X’. This is done by adding, twice, the most significant
word to the least significant word of S (steps 3 and 4). In general, one reduction step
is insufficient: lsw(S)+ msw(S) can exceed F in Step 3. The final (reduced) output S
satisfies S ? F. The computations are accomplished within L+2 steps.

84 S. Gueron

Example 2. Computing X’ for X = 79228159673465750010344767471, where F =
232−1. In binary representation X has L=3 words of length t=32 bits (separated
by a ”//” notation) X= [X2 X1 X0]= 11111111111111111111111101100101 //
11111111111111111111111111001001 //
11111111111111111111111111101111.
Computing X’=Stamp (X) within L+2 = 4 cycles is carried out as follows:
S= X0=11111111111111111111111111101111 (S has 32 bits)
S = X1+X0 = 111111111111111111111111110111000 (S has 33 bits)
S = X2+S = 1011111111111111111111111100011101 (S has 34 bits)
S = lsw(S) + msw(S) = 11111111111111111111111100011111 (S has 32 bits)
S = lsw(S) + msw(S) = 11111111111111111111111100011111 (S has 32 bits)
Stamp (X) = X’ = S.
S = 4294967071 (decimal representation);
it can be verified that S = ((X-1)) mod F + 1 (=X’).

Remark 2. Computing the Arithmetic Stamp of an L words value requires L+2
successive additions of t bits words. These can be performed by L+2 instructions
using a processor that operates on t-bit words, which is a relatively low cost
compared with that of (modular) multiplication.

Remark 3. Dedicated circuitry computing the Arithmetic Stamp can perform
the reduction steps (3 & 4 above) after each addition, use a one-word accumu-
lator, and obtain reduced results at the end of the loop.

Remark 4. In general, Stamp (A) �= A mod F. These quantities differ for values
of A which are divisible by F, where Stamp (A) = F and A mod F = 0.

4 Computing the Arithmetic Step of a Non-reduced
Montgomery Multiplications

Here we show how to predict the Arithmetic Stamp of a Non-reduced Mont-
gomery multiplication (NRMM) as a function of the Arithmetic Stamps of its
inputs. NRMM is defined for two s-bits positive integers A and B, n-bits odd
modulus N, where s ≥ n, and equals

NRMM (A, B, N, s) = (AB + Y N) / 2s, where Y = -ABN−1 mod 2s.

The NRMM operation is very helpful for modular exponentiation. We refer
the reader to the Appendix where, it is shown that NRMM is the only operation
required for computing the modular exponents AX mod N where A is an n-bits
positive integer, N is an n-bits odd modulus, X is a positive integer, and s =
n+2.

The Arithmetic Stamp of NRMM (A, B, N, s) can be computed by the fol-
lowing identity:

((A B + Y N) / 2s)’ = ((A’ B’ + Y’ N’)’ (2−s)’)’ (*)

Data and Computational Fault Detection Mechanism for Devices 85

Example 3. N = 8000082D80216E1B, A = 80002407, B = 8000082D8020EE1B
(in hexadecimal representation) n = 64 (the bit length of N), s= n+2 = 66.
The enhanced data structure includes N’ = 217649, Z = (2−s)’ = 40000000, A’
= 80002407, B’ = 20F649. The task: Check the correctness of the result T =
NRMM (A, B, N, s) = 1D8921075EC05D7A, and Y = EC48F921E8425BF9.
Computations: T’ = 7C497E81, Y’ = D48B551B, Q1 = (A’ B’)’ = 23997B28,
Q2 = (Y’ N’)’ = CD8C7EDD, Q3 = (Q1 + Q2)’ = F125FA05, Q4 = (Q3 Z)’
= 7C497E81. Compare Q4 to T’. (as Q4=T’= 7C497E81, the result is verified.)

5 Protecting the Full Modular Exponentiation Procedure

This section extends the method that is already described in [5]. Algorithm 1
provided in the Appendix illustrates a modular exponentiation procedure that
uses only NRMM operations. This procedure can be protected against fault at-
tacks by using the Data-and-Compute error detection principle with an enhanced
data structure that includes the Arithmetic Stamp, and by using identity (*) for
verifying each one of the intermediate NRMM results. Since Algorithm 1 uses
a fixed multiplicand (B) in all multiplication steps, B’ is computed only once
at the beginning of the exponentiation. Note also that in a typical application,
N, F and s are fixed. Therefore, N’, F’ and Z = (2−s)’ = 2−s mod F can be
pre-computed.

6 Conclusion

We have described a simple method that provides protection against different
types of fault attacks, including attacks based on safe-errors, where merely ac-
knowledging a detected error at the end of the computations leaks out secret
information. Of course, this method is only one of several available countermea-
sures that can provide such protection, and the appropriate choice should be
made according to the actual implementation that is at hand. The underlying
idea is a variation of a classical method for checking arithmetic computations
(probabilistically): repeat the computations modulo some U, and compare with
the result modulo U to the predicted value. As a method for correcting computa-
tional error in computer systems it is described, for example, in [2]. This method
is also described in [7] (for +,-,* in base 10, using the modulus 9), and reported
to be a much earlier common practice; I personally learned this method (in base
10) in my childhood, from my late father, to whom I dedicate this paper).

In this paper, we considered the inputs as if they are written in base 2t and
take the modulus F= 2t-1, where a practical choice for a real implementation
would be t=32. Note that the Arithmetic Stamp is not identical to the residue
modulo F. Different exponentiation algorithms can be protected in a similar
way. One example is the case where the classical Montgomery multiplication
algorithm is used .Here, s=n and a final reduction step (if S > N then S = S
-N) is required. In such case, the Arithmetic Stamp prediction (*) can be easily
changed to account for the conditional subtraction.

86 S. Gueron

References

1. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.P. Seifert, ”Fault attacks on
RSA with CRT: Concrete Results and Practical Countermeasures”, CHES 2002,
Lecture Notes in Computer Science, 2523, Springer-Verlag, 260-275 (2002).

2. A. Avizienis, ”Arithmetic Algorithms for Error-Coded Operands,” IEEE Trans.
Comp. Vol. C-22, 567-572 (1973).

3. D. Boneh, R. A. De Millo, and R. J. Lipton, ”On the Importance of Eliminating
Errors in Cryptographic Computations,” Journal of Cryptology, vol. 14, 101-119
(2001).

4. C. Giraud and H. Thiebeauld, ”A Survey on Fault Attacks,” Smart Card Research
and Advanced Applications VI -CARDIS 2004, in J.-J.Quisquater, P. Paradinas,
Y. Deswarte, and A. E. Kalam, Eds. Kluwer Academic Publishers, 159-176 (2004).

5. S. Gueron, Fault Detection Mechanism for Smartcards Performing Modular Ex-
ponentiation, Workshop on Fault Diagnosis and Tolerance in Cryptography 2004,
Supplemental Volume of the 2004 Intern. Conf. on Dependable Systems and Net-
works, 368-372 (2004).

6. S. Gueron, ”Enhanced Montgomery Multiplication”, CHES 2002 Lecture Notes in
Computer Science 2523, Springer-Verlag, 46-56 (2002).

7. Jhunjhunwala, ”Indian Mathematics - an Introduction”, Wiley Eastern Ltd., New
Delhi, 1993.

8. M. Joye, A. Lenstra, and J. J. Quisquater, ”Chinese Remaindering Based Cryp-
tosystems in the Presence of Faults,” Journal of Cryptology, 12: 241-246 (1999).

9. S. M. Yen, S. Moon, and J. C. Ha, ”Hardware Fault Attack on RSA with CRT
Revisited,” ICISC 2002, Lecture Notes in Computer Science, 2587, Springer-Verlag,
374-388 (2002).

10. S. M. Yen and M. Joye, ”Checking Before Output May Not Be Enough Against
Fault-Based Cryptanalysis”, IEEE Trans. on Comp., 49:967-970 (2000).

Data and Computational Fault Detection Mechanism for Devices 87

Appendix: Modular Exponentiation Algorithm Using
NRMM

The following algorithm shows how modular exponentiation can be computed
by using only the NRMM operation (details, and can be found in [6]).

input: X (x bits long integer) A (n bits long integer), A (< N)
N (n bits long odd integer), s = n+2
output: AX mod N
pre-computation: H = 22n mod N

Computation:
1. B = NRMM (A, H, N, s); /* convert to the Montgomery domain
2. For i from x-2 to 0 do
3. T = NRMM (T, T, N, s); /* squaring
4. if Xi=1 then T = NRMM (T, B, N, s); /* multiplication
5. end;
6. T = NRMM (T, 1, N, s); /* convert back to the integer domain
7. Return T;

Fig. 3. A modular exponentiation algorithm that uses only one type of operation,
namely NRMM. With the choice s =n+2, no final reduction is required at the end of
each NRMM. Step 1 transforms the input into the Montgomery domain, and Step 4
converts the result (T) back to the integer domain, and (due to the choice s =n+2)
provides a reduced result. Note that all multiplications are performed with a fixed
multiplicand (B).

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 88 – 97, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Case Study of a Fault Attack on Asynchronous DES
Crypto-Processors

Yannick Monnet1, Marc Renaudin1, Régis Leveugle1,
Christophe Clavier2, and Pascal Moitrel2

1 TIMA Laboratory
46, Avenue Felix Viallet

38031 Grenoble cedex-France
{yannick.monnet, marc.renaudin, regis.leveugle}@imag.fr

2 Gemalto
La Vigie, Avenue du Jujubier, ZI athelia IV

13705 La Ciotat Cedex, France
{christophe.clavier, pascal.moitrel}@gemalto.com

Abstract. This paper proposes a practical fault attack on two asynchronous
DES crypto-processors, a reference version and a hardened version, using round
reduction. Because of their specific architecture, asynchronous circuits have a
very specific behavior in the presence of faults. Previous works show that they
are an interesting alternative to design robust systems. However, this paper
demonstrates that there are weaknesses left, and that we are able both to iden-
tify and exploit them. The effect of the fault is to reduce the number of rounds
by corrupting the multi-rail round counter protected by alarm cells. The fault in-
jection mean is a laser. A description of the fault injection process is presented,
followed by how the results can be used to retrieve the key. Weaknesses are
theoretically identified and analyzed. Finally, possible counter-measures are de-
scribed.

1 Introduction

Fault attacks are considered as a serious threat by designers of secure embedded sys-
tems. The security level of secret cryptographic algorithms such as DES and AES
relies on the number of iterations (rounds) that are computed. One of the most effi-
cient ways to break such algorithms is to implement a fault attack that reduces the
number of rounds [1]. A practical fault attack using round reduction was presented in
[2] and applied to attack a synchronous AES implementation, showing the potential of
this class of attack.

Asynchronous circuits represent a class of circuits which are not controlled by a
global clock but by the data themselves. Because of their specific architecture, asyn-
chronous circuits have a very different behavior than synchronous circuits in the pres-
ence of faults. Quasi Delay Insensitive (QDI) circuits are asynchronous circuits that
operate correctly regardless of gate delays. This class of circuits has well recognized
potentials in terms of power, speed, noise and robustness against process, voltage and
temperature variations [5]. Their delay-insensitive property makes them inherently

 Case Study of a Fault Attack on Asynchronous DES Crypto-Processors 89

robust against some categories of faults such as delay faults [6]. Moreover, this class
of circuit uses multi-rail encoding, which is often considered as a native counter-
measure against faults. Thus, QDI circuits are attractive to design fault toler-
ant/resistant systems. However, only theoretical studies have been done, and to our
knowledge no practical results were reported yet.

In [3], we presented two asynchronous DES implementations, a reference one and
a hardened one. Counter-measures were implemented to protect S-Boxes against
differential cryptanalysis. These counter-measures were validated in [4]. In practice,
the reference version didn’t leak valuable information to retrieve the secret key, and
the hardened version didn’t leak any information at all.

In this paper, we propose a practical fault attack on the asynchronous DES using
round reduction, thus revealing weaknesses in the circuits. Faults are injected by
means of a laser beam. Weaknesses are analyzed and counter-measures are proposed
to inhibit this attack.

The counter of the reference version is an asynchronous state machine that uses a
1-out-of-17 code: each round number is coded using 1 wire. Sixteen wires are used to
encode the 16 rounds. The hardened version implements the same counter but pro-
tected with alarm cells. These cells are able to detect any wrong code generated in the
counter module, i.e. any state using 2 wires or more is detected. Alarms inform the
environment when a wrong code is detected.

Our work presents a practical fault attack on both the reference and the hardened
version of the circuits. In Section 2, we briefly present the quasi delay insensitive
logic. Section 3 presents the DES crypto-processors that were designed and fabri-
cated, and details the counter module architecture. Section 4 describes the laser setup
that was used to perform the fault injection. Section 5 presents how the results are
interpreted to retrieve the secret key. We present the results of the attacks both on the
reference and hardened DES, showing a successful attack that is not detected by
alarm cells in the hardened version. In Section 6, we analyze the weaknesses that
were exploited. Section 7 proposes counter-measures and Section 8 concludes the
paper.

2 Quasi Delay Insensitive Logic

An asynchronous circuit is composed of individual modules which communicate to
each other by means of point-to-point communication channels [5]. Therefore, a given
module becomes active when it senses the presence of incoming data. It then com-
putes and sends the result to the output channels. Communications through channels
are governed by a protocol which requires a bi-directional signalling between senders
and receivers (request and acknowledgment). They are called handshaking protocols.
In Section 6, we present a theoretical fault injection that exploits the properties of a
handshaking protocol. A 1-out-of-n data encoding scheme is commonly used to en-
sure delay insensitive handshake protocol implementations. The dual-rail code [5] is
the most often used because it is a good compromise between speed and area cost.
This scheme can be extended to 1-out-of-n codes, where one bit is coded with n wires.
The DES crypto-processor described in the next section uses a dual-rail encoding
scheme for the data path, and a 1-out-of-17 encoding scheme for the counter module.

90 Y. Monnet et al.

3 The Asynchronous DES Architecture

The asynchronous DES crypto-processor is basically an iterative structure, based on
three self-timed loops synchronized through communicating channels (Figure 1a).
Channel Sub-Key synchronizes the ciphering data-path. More details about the de-
signed architecture can be found in [4].

IP

IP -1

Ciphering
Data-path

PC1

PC2

Sub-Key
Data-path

Controller

DATA
CRYPT/

DECRYPT
KEY

OUTPUT

Sub-Key

CTRL

64 64

64

1

IP

IP -1

Ciphering
Data-path

PC1

PC2

Sub-Key
Data-path

Controller

DATA
CRYPT/

DECRYPT
KEY

OUTPUT

Sub-Key

CTRL

64 64

64

1

Ctrl_1

Round(i) Round(i+1)

17 17

Ctrl_n

2 3…

Controller

(a) (b)

IP

IP -1

Ciphering
Data-path

PC1

PC2

Sub-Key
Data-path

Controller

DATA
CRYPT/

DECRYPT
KEY

OUTPUT

Sub-Key

CTRL

64 64

64

1

IP

IP -1

Ciphering
Data-path

PC1

PC2

Sub-Key
Data-path

Controller

DATA
CRYPT/

DECRYPT
KEY

OUTPUT

Sub-Key

CTRL

64 64

64

1

Ctrl_1

Round(i) Round(i+1)

17 17

Ctrl_n

2 3…

Controller

(a) (b)

Fig. 1. (a) The DES architecture. (b) The controller state machine

CTRL is a set of channels generated by the Controller block (a finite state machine
shown in Figure 1b) that controls the data-path along sixteen iterations as specified by
the DES algorithm. This module takes as an input the 1-out-of-17 code of the current
round, computes the control channels according to this round, and computes the 1-
out-of-17 code of the next round. Sixteen wires are used to encode the sixteen rounds,
and the last wire outputs the final result.

Figure 2 shows how such control signals are used in the data-path. The dual-rail
channel ctrl_1 controls the demultiplexer structure as shown in the table. When ctrl_1
is “01” the output O1 is selected, when ctrl_1 is “10” then O2 is selected. In practice,
O1 is used along the sixteen iterations of the algorithm, and O2 is finally used to out-
put the final result. The state”11” is unused in the normal execution process. How-
ever, in the case of a fault injection that generates “11” on the ctrl_1 signal, both O1
and O2 are activated. This is how a standard implantation of a DMUX structure be-
haves in the presence of faults (Figure 2).

Several counter-measures were implemented in the hardened DES to prevent fault
attacks. As stated in [3], S-Boxes were protected using the rail synchronization tech-
nique that provides a good protection with a very low area overhead and low per-
formance penalty. This countermeasure was validated in [4]. However, it was not
possible to apply this technique on the counter block because this module has no
concurrent block to synchronize with.

The counter was protected using alarm cells [7]. These alarms are implemented to
detect any wrong code generated on the 1-out-of-17 counter, and any wrong code
generated on the control channels, such as ctrl_1. The alarm output signal is stored in
a register, thus enabling the environment to read the alarm status and to know which
module of the circuit triggered the alarm. In a real product, the environment should
apply a security strategy such as resetting the circuit or providing random outputs to

 Case Study of a Fault Attack on Asynchronous DES Crypto-Processors 91

prevent the attack. In our case study, we collect the alarm signal as status information.
Both circuits were fabricated using the 130 nm STmicroelectronics CMOS process,
with constrained floor plan to ease fault injection in particular blocks of the design.
More details are presented in [3].

DMUX

O1 O2

I

Ctrl_1

O1 and O2“11 “(faulty)
O2“10”
O1“01”

Activated outputCtrl_1

DMUX

O1 O2

I

Ctrl_1

O1 and O2“11 “(faulty)
O2“10”
O1“01”

Activated outputCtrl_1

Fig. 2. Demultiplexer behavior

4 Fault Injection Process

To perform fault injection, we had the choices of various types of injection means [8].
Since we want to be efficient both in the fault exploitation and in the fault injection,
we have discarded VCC glitches, Clock glitches and white light, since all of them just
allow to make rough variations on time location and on the perturbation duration,
with no possibility to specify accurate locations of the fault on some dedicated parts
of the circuit. Glitches are applied to all the circuit logic, and white light illuminate
the whole surface of the circuit since the minimum spot we can obtain is 1mm². On
the contrary, a laser can reproduce a wide variety of faults. The effect produced is
similar to white light but the advantage of a laser is its directionality that allows the
precise targeting of a small circuit area (for example 5 m²).

The Laser platform is composed of a computer to organize both the fault injection
and the driving of the device under tests, an XY table to perform fine localization of
the targeted area of the device, and an optional oscilloscope to control that the device
under test receives commands and sends results. The laser itself is a pulsed Yag laser
with a green output at 532 nm, an energy tunable from 0 to 100%, with a possibility to
control the spot size.

Time scan, spatial scan and energy set-up
The first step of a fault injection campaign consists in determining the right time to
force a faulty behavior of the device. The objective is to inject a fault while the proc-
ess is running. In our case, we know that the DES module is running its 16 rounds in
about 200 ns for its hardened version. Knowing that our sampling clock is 100 MHz,
the only possible delays between two shots is 10 ns. We have then 20 times positions
during the DES computation. Moreover, if we want to measure the reproducibility of
the fault, when a fault or an alarm is detected then we can decide to replay the test
with same location in space and time N times. We have to notice that with such a
granularity we have at least one chance to have a fault induced during each round of
the DES.

92 Y. Monnet et al.

The second step consists in choosing the right scan area. In the context of our case
study, we chose to target the counter in a “white box” approach, knowing the coordi-
nates of this block. Since the floor plan was constrained, the block is spatially identi-
fied. After trying several configurations, we choose a spot size of 220 m² to scan the
counter block.

In a real product context, a complete scan of the device under test should be per-
formed in order to identify the most interesting areas. Therefore, this methods leads to
a very huge amount of fault injections and log files interpretations, and long test cam-
paign durations.

The adequate laser parameters are completely dependant of the targeted device. In
this work, the DES modules were illuminated in front side, knowing that they were
designed in a 0,13 m STMicroelectronics technology, with 6 metal layers. An energy
density of 0.8 pJ/ m² was adequate to reveal errors.

5 Results Interpretation

The fault injection campaign consisted in both a spatial and a time scan of the counter
block, which represent over 5000 shoots for each circuit during a simple encryption
computation. About 40% of the shoots revealed errors. Among the revealed errors,
some of them were identified as a modification of the sequence of rounds. The next
sub-section presents this analysis and sub-section 5.2 shows how the results can be
interpreted to retrieve the key. Then the results obtained for the reference DES and the
hardened DES are presented in sub-sections 5.3 and 5.4.

5.1 Rounds Sequences Modification

Several faulty results correspond to the computation of a faulty sequence of rounds.
The correct execution process is noted as follows:

Tc = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)

Tc represent the computation of the sixteen rounds plus the output of the final re-
sult, noted “17”. In the state machine previously described, the output operation
(which includes the final permutation IP_1) is actually coded 17.

The expression [i j] represents a fault that was injected in the round i and cor-
rupted the counter to the value j. As a consequence, round i is not computed and the
execution jumps to the round j. For example, [7 10] represent the following se-
quence:

T1 = (1,2,3,4,5,6,10,11,12,13,14,15,16,17)

Round 7 is not computed. The execution jumps to round 10 and follows the normal
sequence to the end. Both forward (i < j) and backward (i > j) jumps were observed
for both circuits.

As specified by the DES algorithm, a sub-key is computed for each round. Since
the counter controls both the data-path and the sub-key path, [i j] corrupts the shift
key sequence as well:

 Case Study of a Fault Attack on Asynchronous DES Crypto-Processors 93

Sc = (1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1)
S1 = (1,1,2,2,2,2,2,2,2,2,2,2,1)

Sc represents the correct shift key sequence, and S1 is the sequence that is com-
puted in the faulty case described above. We note that different sequences of rounds
may map to the same sequence of shifts.

From a sequence Si of shifts, we derive a sequence σi of accumulated shifts com-
puted since the beginning of the encryption:

σC =(1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,29,31,32)
σ1 =(1,2,4,6,8,10,12,14,16,18,20,22,23)

The next sub-section shows how to exploit these sequences, which are crypto-
graphically meaningful as they correspond to sequences of sub-keys actually used in
the encryption process.

5.2 Exploitation

In the following analysis we suppose that the attacker knows both the plain text and
the correct cipher text. We suppose also that the plain text remains constant during the
attack campaign. For this fixed plain text, we obtain a set {σ1 … σI} corresponding to
I different faulty sequences obtained from the laser shoots. We define as the set of
sub-key sequences that the attacker can exploit. For each of these sequences, the at-
tacker knows the corresponding cipher text.

 = {σ1,…,σI}�{σC}�{σP}

σc stands for the sub-key sequence of the correct result, while σP is the empty set that
represents the sub-key sequence of the plain text.

In order to exploit , we propose to analyze pairs σ, σ’ ∈ of sub-key sequences.
We are particularly interested in pairs where the common prefix represents the major
part of the sequences. For such a pair, we define the shared prefix, {α1, …, αt} the
suffix of σ, and {α’1, …, α’t’} the suffix of σ’. Without loss of generality, we assume
that t’≤ t.

We give the following example for the sequences σ2 and σ3 corresponding to the
sequences of rounds [9 12] and [9 13] respectively.

σ2 =(1,2,4,6,8,10,12,14,16,18,20,22,23) = π | α1 | α2
σ3 =(1,2,4,6,8,10,12,14,16,18,20,21) = π | α’1

with:

π = (1,2,4,6,8,10,12,14,16,18,20)
α1 = 22, α2 = 23 (t = 2)
α’1 = 21 (t’=1)

As will be shown in the following example, short suffixes (both t and t’ being small)
provide easy cryptanalysis, leading to successful key recovery.

94 Y. Monnet et al.

We denote Li (resp. L’i) and Ri (resp. R’i) the left and right 32-bit parts of the in-
termediate value at the beginning of round i for sequence σ (resp. σ’). We note k the
number of the round immediately following the common prefix for sub-key sequence.
With these notations, we have:

• Lk = L’k and Rk = R’k
• Lk+t , Rk+t , L’k+t’ and R’k+t’ known

Case t=2 and t’=1

In this case:

• Lk+1 ⊕ Rk+2 is known. This is because Rk+2 is known as t=2, and Lk+1 is
also known as Lk+1 = Rk, and Rk = R’k, and R’k = L’k+1 which is known as
t’=1.

• Rk+1 is known because Rk+1 = Lk+2 which is known as t=2.

We so know both input and output of the round function for the round number k+2
of the sequence σ. Knowing inputs and outputs of the 8 s-boxes, it is possible to
derive 32 bits of information about the sub-key Kk+2 involved in this round. The
key K may then be easily recovered by exhausting a remaining key space of size
224.

Other Cases

For small values of (t,t’), we found that the key may be easily recovered in the fol-
lowing cases: (1,0), (2,0), (1,1), (2,1) and (2,2).

This corresponds to an important number of faulty pairs obtained in our experi-
ments.

In the other cases (t>2), the cryptanalysis difficulty increases with t.
Note that the case where t’=0 corresponds to an attacker knowing the input and

output of a DES with only t rounds. For a fixed small t (typically t=3 or t=4), and if
the attacker makes the input varying, it is possible to apply classical linear cryptanaly-
sis techniques. Note that differential cryptanalysis is not possible in this case as the
input is known but not chosen.

5.3 Reference DES Results

Half of revealed errors lead the circuit to deadlock. In this case, the attack is detected
and no exploitable information is given to the attacker to retrieve the key. Among the
remaining errors, 50 results have been identified as faulty sequences, which give us a
large to perform a cryptanalysis. 8 of them offer a situation where t=1 and t’=0.

Moreover, some of the sequences correspond to a round reduced DES computa-
tion, such as 2-round DES (a DES reduced to 2 rounds), up to 10-round DES. These
samples are reproducible and could be used to perform a classical Differential-Linear
cryptanalysis [9].

In most of the cases, the fault injection probably generated a wrong code on the
counter. Then it generates faulty control channels. As shown in Section 3, a wrong

 Case Study of a Fault Attack on Asynchronous DES Crypto-Processors 95

control code generated in a structure that is similar to a DMUX is able to output a
result very early. Since no alarms are implemented, it is not detected.

5.4 Hardened DES Results

The hardened DES counter provides the same behavior as the reference version but
the wrong codes trigger alarms. As expected, most errors induced in the circuit lead to
a wrong code. However, a few errors are not detected. The fault injection has cor-
rupted the counter but generated a valid code. We discriminate two types of errors:

- The errors that we can reproduce: Figure 3 shows a [16 17] fault injection. The
End_DES signal indicates that the DES ended the computation. As shown on the
figure, the faulty computation is shortened with respect to the correct one of about 12
ns, which corresponds to 1 round execution time. In this example, a 15-round DES
was computed and no alarm signal was triggered. This error is reproducible: 10 shoots
with the same time/location parameters produced 10 times the same failure.

- The errors that seem not or hardly reproducible: several faulty sequences that cor-
respond to a round-reduction were obtained. For example, a sample showed a 9-round
DES that could help finding the key if combined with another close (in terms of short
specific suffixes) sequence. However, this result appeared difficult to reproduce.

15-round DES

16-round DES
End_DES

15-round DES power cons.

16-round DES power cons.

15-round DES

16-round DES
End_DES

15-round DES power cons.

16-round DES power cons.

Fig. 3. Undetected faulty sequence on the hardened DES

6 Theoretical Analysis of the Weaknesses

We propose two behavior models to understand the undetected results on the hard-
ened DES. The first hypothesis is a multiple bit-flip: 2 bit-flips are injected. The first
bit-flip disables the active wire in the 1-out-of-17 counter, while the second bit flip
enables another wire. These two bit-flips have to occur nearly at the same time so that
a transient faulty code has not enough time to propagate to the alarm cell. Moreover,
since the attack is localized, the gates have to be close to each other in the floor plan.

The second hypothesis is a single bit-flip that occurs at the right time in the com-
munication protocol. Figure 4 describes the four-phase protocol, which requires a

96 Y. Monnet et al.

return to zero phase for both data requests and acknowledgments. In phase 1, a valid
data is detected. This data is acknowledged in phase 2. Then the data is re-initialized
in phase 3 (return to zero phase) and the acknowledgment signal is reset in phase 4. If
a fault occurs during phase 3 or phase 4 (when all the wires are reset), then a single bit
flip is able to generate a valid 1-out-of-n code. With respect to some timing conditions
between the events that sequence the handshake, the fault is able to be inserted with-
out being detected.

These two hypotheses have been verified and characterized in a simulation envi-
ronment with the help of the floor plan database.

Fig. 4. Four-phase handshaking protocol

7 Counter-Measures

To prevent the single bit-flip hypothesis, a control circuit synchronization would be
efficient [10]. This technique consists in implementing a redundant control circuit to
handshake with the counter. The control circuit duplicates the handshake function, but
not the logical function of the counter (small overhead). The fault is forced to syn-
chronize with the real data. As a consequence, it is either filtered or detected.

However, a complete redundant scheme is needed to prevent from the multiple
fault injection. This counter-measure is costly in terms of area, but since the counter is
a small module, the overall overhead is reasonable.

8 Conclusion

We presented a practical fault attack on two asynchronous DES crypto-processors.
The hardened version of the DES showed a higher security level than the reference
version, since most of the attacks were detected. However, we proved that the pro-
posed protection do not provide a full security level. Weaknesses were reported and
clearly identified. Further hardening techniques can be implemented in specific parts
of the circuit to guaranty a very high security level for a low cost (area, speed, power),
in addition to those already implemented and characterized.

This work showed that even complex systems using redundant coding scheme and
detection systems are sensitive to fault attacks. However, this attack was realized in
study conditions with a constrained floor plan and a good knowledge of the design

 Case Study of a Fault Attack on Asynchronous DES Crypto-Processors 97

under test. Although a real-case attack would be much more difficult to implement,
this work showed the feasibility.

Acknowledgments

This work is partially supported by the French Ministry of Research through the
RNRT Duracell project. The authors wish to thank Félie M'Buwa N'Zenguet, Jean-
Baptiste Rigaud and Assia Tria from the Gardanne Laboratory of Ecole Nationale
Supérieur des Mines de Saint-Etienne for the development of the communication tool
between the Device Under Test and the Setup. The authors are grateful to Christophe
Mourtel and Nathalie Feyt from Gemalto Security SmartCard Laboratory for discus-
sion and support.

References

[1] R. Anderson and M. Khun, Low cost attacks on tamper resistant devices. Security Proto-
cols, pp. 125-136, 1998. Lectures Notes in Computer Science No. 1361.

[2] H. Choukri, M. Tunstall, Round Reduction Using Faults. 2nd Workshop on Fault Diag-
nosis and Tolerance in Cryptography (FDTC 05), pp. 13-24, Edinburgh, Scotland, Sep-
tember 2, 2005.

[3] Y. Monnet, M. Renaudin, R. Leveugle, S. Dumont, F. Bouesse, An Asynchronous DES
Crypto-Processor Secured against Fault Attacks, International Conference on Very Large
Scale Integration (VLSI-SOC), 2005, pp. 21-26.

[4] Y. Monnet, M. Renaudin, R. Leveugle, N. Feyt, P. Moitrel, Practical Evaluation of Fault
Countermeasures on an Asynchronous DES Crypto Processor, 12th IEEE International
On-Line Testing Symposium (IOLTS), Lake of Como, Italy, July 10th-12th, 2006.

[5] M. Renaudin, Asynchronous Circuits and Systems: a promising design alternative, Mi-
croelectronics-Engineering Journal, Elsevier Science, Guest Editors: P.Senn, M.
Renaudin, J. Boussey, Vol54, N°1-2, December 2000, pp.133-149.

[6] C. LaFrieda, R.Manohar, Fault Detection and Isolation Techniques for Quasi Delay-
Insensitive Circuits, International Conference on Dependable Systems and Networks
(DSN'04), Florence Italy, June 28 - July 01, 2004, pp.41-50.

[7] S. Moore, R. Anderson, R. Mullins, G. Taylor, J. J. A. Fournier, Balanced self-checking
asynchronous logic for smart card applications, Microprocessors and Microsystems, El-
sevier Science Publishers, vol. 27, 2003, pp. 421-430.

[8] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The sorcerers apprentice
guide to fault attacks, Proceedings of the IEEE, Vol. 94, N°2, February 2006, pp. 370-
382.

[9] M. Hellman and S. Langford, Differential-Linear Cryptanalysis, Advances in Cryptology
- CRYPTO ’94 (Lecture Notes in Computer Science no. 839), Springer-Verlag, pp. 26-
39, 1994.

[10] Y. Monnet, M. Renaudin, R. Leveugle, Hardening Techniques against Transient Faults
for Asynchronous Circuits, 11th IEEE International On-Line Testing Symposium
(IOLTS), Saint Raphael, French Riviera, France, July 6th-8th, 2005, pp. 129-134.

A Fault Attack Against the FOX Cipher Family

L. Breveglieri1, I. Koren2, and P. Maistri1

1 Department of Electronics and Information Technology, Politecnico di Milano,
Milano, Italy

{brevegli, maistri}@elet.polimi.it
2 Department of Electrical and Computer Engineering, University of Massachusetts,

Amherst, MA, USA
koren@ecs.umass.edu

Abstract. Since its first introduction, differential fault analysis has
proved to be one of the most effective techniques to break a cipher im-
plementation. In this paper, we apply a fault attack to a generic im-
plementation of the recently introduced FOX family of symmetric block
ciphers (also known as Idea Nxt). We show the steps needed to mount
an effective attack against FOX-64. Although the basic characteristics of
this cipher are similar to those of AES, FOX uses a non-invertible key
schedule which makes it necessary to use a different attack plan. We also
estimate the number of faulty ciphertexts required to reveal the secret
key. Our results can be easily extended to other variations of the cipher
that use longer inputs and keys.

1 Introduction

Most recent cryptosystems are now designed to be secure against common attack
techniques, such as linear or differential cryptanalysis. To this end, encryption
algorithms are often made public, allowing the research community to analyze
them and find possible weaknesses. As a result, the attackers’ attention has been
shifted to the actual implementations of cryptosystems, which can leak useful
information about the secret key (e.g., simple and differential power analysis).

Recently, a technique exploiting errors injected during the encryption (or de-
cryption) process proved to be a very effective attack. In [4], the authors showed
how a single faulty encryption is enough to break a CRT-RSA cryptosystem;
in [2], faults injected into a DES architecture were successfully used to recover
the secret key. Since then, fault-based attacks have been applied to a variety of
cryptosystems: public-key based ones (ECC, XTR), stream ciphers (RC4) and
block ciphers.

Initially, there was skepticism about the feasibility of these fault-based at-
tacks, until in [10] the authors showed that even with very cheap equipment (a
microscope and a camera flash) they were able to change the stored values in
static RAM cells. Nowadays, smart cards are tested by manufacturers to study
their vulnerabilities to fault attacks using specialized laser equipment. Obvi-
ously, laser beams increase the chance of a successful fault attack compared to

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 98–105, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Fault Attack Against the FOX Cipher Family 99

a simple camera flash, since the attacker can control more precisely parameters
like wavelength, energy, duration and location.

Most research efforts in the area of fault-based attacks have focused on AES,
due to its adoption as an NIST standard. In the first proposed attacks, the at-
tacker was assumed to be able to flip single bits within the chip with very precise
timing [3]. Such an assumption is getting harder to justify due to technological
restrictions. As die size shrinks, the precision required to affect a single flip-flop
requires expensive equipment (e.g., laser). Moreover, designers are beginning to
consider fault attacks as a serious security risk and are introducing countermea-
sures that can overcome single bit errors.

Later, new types of attacks were proposed, were the fault model was relaxed
and random byte errors were considered. In this scenario, the attacker is able
to alter the value of a whole byte, possibly being able to either decide or know
its location, but without having knowledge of its previous value. On the other
hand, timing is still important, since imprecise injections are useless. One of the
most impressive results is the attack published in [9], where only two precisely
injected faults can break the AES-128 cipher.

Several countermeasures have already been proposed, mostly based on some
form of redundancy. In [7], it is suggested to compute the inverse operation at
the encryption, round or operation level. In [1,6,8] an error detecting code is
used to protect the internal data path. In [11], a pipeline architecture is used to
detect any transient fault. In addition to these techniques, the chip may also be
protected by means of sensors or shielding.

So far, to the best of our knowledge, there is no published fault attack against
the Idea Nxt cipher which has some unique characteristics. In this paper, we
describe how to mount a successful fault-based attack against this cipher. In
particular, we show the number of required faults that have to be injected, on
average, to mount a successful attack and recover the key.

The paper is organized as follows. Section 2 describes the Fox family of ciphers,
focusing on the details needed to understand the basics of the attack, which is
described, step-by-step, in Section 3. Section 4 concludes the paper, summarizing
the results and suggesting possible countermeasures.

2 The FOX Cipher Family

FOX is a family of symmetric block ciphers recently presented as Idea Nxt [5]
and aimed at multimedia streaming and secure data storage. The cipher can be
customized in terms of the block length (see Table 1), key size and number of
iterations.

The algorithm contains repetition of the round function lmor, followed by
a single instance of the function lmid. The latter differs in the absence of an
additional automorphism applied to the leftmost part of the input block, which
constitutes a single Feistel iteration (see Figure 1). Moreover, these two functions
have a fixed high-level structure, but are customized in width and in the internal
parameters to suit both Nxt64 and Nxt128.

100 L. Breveglieri, I. Koren, and P. Maistri

Table 1. The FOX cipher family

Name Input size Key size Iterations
NXT64 64 bits 128 bits 16
NXT128 128 bits 256 bits 16

xl(32) xr(32)

yl(32) yr(32)

rk(64)
f32

Fig. 1. lmid function

mu4

y0(8) y1(8) y2(8) y3(8)

sbox sbox sbox sbox

sbox sbox sbox sbox

x0(8) x1(8) x2(8) x3(8)

rk0(32)

rk1(32)

rk0(32)

Fig. 2. The f32 function used in Idea Nxt
64

The core part of every round iteration is the f32 (f64 in Idea Nxt128) function,
which includes linear and non-linear operations (see Figure 2). In this function,
the key is split into two parts: the left one is added at the beginning and at the
end, while the right one is added in the central body, right after the diffusion
step. There are two non-linear steps implemented by means of substitution boxes
(Sboxes): the Sbox can be implemented either as a byte lookup table, or as a
combination of three different smaller tables operating on 4-bit nibbles. This
is similar to the AES Sboxes, which can be defined by using composite fields.
However, unlike AES, an algebraic definition does not seem to exist here. The
diffusion step is defined as a linear transformation over the Galois Field GF(28).
The irreducible polynomial is x8 + x7 + x6 + x5 + x4 + x3 + 1 which is different
from the one used by AES.

The key schedule routine uses the same operations employed in the encryption
datapath. The master secret key is updated in every iteration by using some
precomputed constant. Each updated key is then used to generate a single round
key for the encryption datapath, through a sequence of non-linear and linear
operations. In addition, a compression stage exists, where bit pairs are exclusive
ORed. This process is shown in Figure 3: the sigma block shown in the figure is
the non-linear stage made of substitution boxes.

A Fault Attack Against the FOX Cipher Family 101

condflip

mu4 mu4 mu4 mu4

lmor64

lmid64

sigma4 sigma4 sigma4 sigma4

sigma4 sigma4 sigma4 sigma4

RKEY

DKEY

Fig. 3. Round key generation from secret key

3 The Attack

A Differential Fault Analysis (DFA) attack allows to apply differential and lin-
ear analysis to only a few rounds of the cipher, possibly only one. This allows
to mount a very effective attack at an almost negligible cost. A conventional
differential attack would consider the whole cipher (in terms of the number of
iterations and size of the data block), which often leads to the ability to only
attack reduced versions of the cryptosystems.

By collecting a few differential pairs relative to the last non-linear step, the
attacker can reduce and finally guess the values computed in the last rounds,
thus being able to infer the last round key. Once the key has been recovered,
the key schedule can be inverted to obtain the initial secret key; if this is not
possible, then the attack can be reiterated on each round, starting from the last,
until the whole key material is exposed.

The key schedule for the FOX ciphers is non-invertible: hence, once the last
round key is revealed, the attack will be repeated either on the preceding round
or on the key schedule directly to recover the master secret key. In this extended

102 L. Breveglieri, I. Koren, and P. Maistri

abstract we describe the initial steps required to mount the attack and recover
the last round key. All the steps to recover the whole key material and the related
results will be described in the full paper.

In the following, we will consider a fault as a random byte addition in GF(28),
i.e., a XOR with a random byte value, such as in [9]. A single bit fault, in fact,
would lead to a simpler problem, but is less realistic. A byte fault, on the other
hand, can be injected more easily. Exact knowledge of the location of the af-
fected byte is not crucial, although it simplifies the analysis. If this information
is not available, then a guess can be made and verified later with additional
experiments (i.e., faults) until a unique guess is possible. Timing, on the other
hand, is very important: the fault injection must be carefully synchronized with
the encryption process, in order to affect the desired operations. This can be
achieved, for instance, by analyzing the power trace of the device while comput-
ing and identifying the desired round. The exact location within the round can
be determined after few (random) attempts.

The attack on the last round must be planned in two phases, since the round
key is actually used in two separate instances. The first phase allows to retrieve
the leftmost part of the key, which is used at the beginning and at the end of the
round. The fault must be injected before the last non-linear operation, which
means between the first and the last Sbox stages of the final round. Any time
instance in this interval is fine, but the effectiveness of the attack is increased
if the injection occurs before the linear diffusion step, i.e., the mu4 operation.
In this case, the linear transformation spreads the fault through the whole word
and more information is provided.

For instance, suppose that an error ε is injected into the leftmost byte of
the word, right before the mu4 operation, resulting in the error word (ε, 0, 0, 0).
Then, the error is spread by the diffusion step and the error word becomes
(ε, ε, cε, αε), where c and α are coefficients of mu4. This is the differential input
to the last substitution operation, and although unknown, we can still identify
some regularity, and prune for instance all those values which are not admissible
for each byte of the word (i.e., error values that would give an empty set of
candidates for the Sbox inputs). The output differential, on the other hand, is
known and this information can be used to narrow the search.

The first fault injection is used to build the set of all possible candidates,
considering any admissible fault value. For each additional fault, a new candidate
set is built and intersected with the current solution set, thus narrowing the
number of possible candidates. The process continues until a unique candidate
is identified for each possible byte. The value found in this way is the input to
the last Sbox step. Thus, it is easy to recover the key value used in the last key
addition, i.e., the left part of the last round key.

In this phase, knowing where the fault has been injected simplifies the analysis,
because we know how the error spreads after the mu4 operation. If this is not the
case, however, the actual location may be guessed and the analysis performed
as described above; for each additional fault, a new guess is made. If the guesses
are all correct, then the procedure will give the unique desired solution. If an

A Fault Attack Against the FOX Cipher Family 103

empty candidate set is found, then at least one of the guesses was incorrect and
we have to backtrack and try another possible solution. Although this procedure
increases the complexity of the search tree, we found that the correct key value
could be often identified after only 2 or 3 attempts when the location was known.
The whole search tree, with a new branch for each location guess and for each
injected fault, gives 4f leaves where f is the number of faults. This number is
an upper bound, since many branches can be pruned after each fault injection,
thus reducing the complexity of the attack.

The second phase aims at recovering the rightmost part of the round key.
The approach is the same and is based on injecting a fault before the first
non-linear step of the last round. In this case, however, the structure of the
last round (see Figure 1) gives us both the input and the output differentials,
making the analysis much easier. On the other hand, the diffusion step does
not provide any additional information, which means that each byte must be
targeted individually.

Based on our simulations, the last round key was completely revealed after
11.45 injected faults on average. Further analysis of the distribution of the faults
required to recover the key reveals that the first phase requires from 2 to 8 faults,
while the second phase uses from 8 to 28 faults: the worst case is however rare,
and the average values are about 2.94 and 8.51 for the first and second phase,
respectively. The complete attack requires from 8 to 31 faults. The distribution
curves are shown in Figure 4 where the worst cases (when more than 20 faults are
required) are not shown for clarity, but they constitute a negligible percentage
of the overall test space (less than 0.02%).

If the fault location is unknown, we are confident that a few fault injections
may be still enough to identify the leftmost part of the key. This issue does not
arise when performing the second phase of the attack on the round, since the
injected error can be inferred from the output result (see Figure 1). This phase,
however, requires more faults since we cannot exploit the diffusion properties of
the linear stage. In fact, each byte of the key must be attacked separately. In the
full paper, we will provide the number of faults required to reveal the whole key
material in the two main scenarios.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

faults

F
re

q
u

en
cy

Phase 1 Phase 2 Totals

Fig. 4. Number of fault injections required to mount the attack and recover the key:
left half (phase 1), right half (phase 2) and whole key (totals)

104 L. Breveglieri, I. Koren, and P. Maistri

4 Conclusions

In this paper, we present a fault injection attack against the newly introduced
FOX family of ciphers. The attack resembles currently known attacks against
AES, but unlike AES the key schedule of Idea Nxt is not invertible. This forces
the attacker to iterate the fault injection on every round of the encryption algo-
rithm to recover the whole key material, or to attack the key schedule directly,
as will be shown in the full paper.

The last round key can be found, on average, after 11.45 faulty encryptions. If
we assume that attacking any single round or the key schedule has the same com-
plexity, then the whole cipher can be broken after 183 or 23 faults, respectively.
These results will be confirmed in the full paper.

Differential fault analysis proves to be one of the most effective attack tech-
niques and can be used when the attacker has the ciphering device even for a
short time. Generic countermeasures such as those presented in [7,11] or shield-
ing and sensors are possible. Moreover, the cipher is based on GF arithmetic and
can therefore be protected by means of a parity code, such as in [1]. We plan to
implement the cipher in hardware and evaluate the effectiveness and overhead
of these countermeasures.

References

1. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri. “Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard,” IEEE Trans. Computers, 52(4):492–505, 2003.

2. E. Biham, A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,”
Technical Report, Technion - Computer Science Department, 1997.

3. J. Blömer, J.-P. Seifert, “Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES),” Financial Cryptography, Lecture Notes in Computer Science,
vol. 2742, pp. 162-181, 2003.

4. D. Boneh, R. DeMillo, R. Lipton, “On the Importance of Eliminating Errors in
Cryptographic Computations,” Journal of Cryptology, vol. 14, pp. 101-119, 2001.

5. P Junod and S. Vaudenay. “FOX : A New Family of Block Ciphers,” Selected
Areas in Cryptography, 11th International Workshop, SAC 2004, Lecture Notes in
Computer Science, vol. 3357, pp. 114-129, Springer, 2004.

6. M. G. Karpovsky, K. J. Kulikowski, and A. Taubin, “Robust protection against
fault-injection attacks on smart cards implementing the advanced encryption stan-
dard,” 2004 International Conference on Dependable Systems and Networks (DSN
2004), Proceedings, pages 93–101. IEEE Computer Society, 2004.

7. R. Karri, K. Wu, P. Mishraand and Y. Kim. “Concurrent error detection
schemes for fault-based side-channel cryptanalysis of symmetric block ciphers,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 21(12):1509–1517, Dec 2002.

8. R. Karri, G. Kuznetsov, and M. Gössel. “Parity-based concurrent error detection
in symmetric block ciphers,” Proceedings 2003 International Test Conference (ITC
2003), pages 919–926. IEEE Computer Society, 2003.

A Fault Attack Against the FOX Cipher Family 105

9. G. Piret, J.-J. Quisquater, “A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and Khazad,” Cryptographic Hardware
and Embedded Systems - CHES 2003, Lecture Notes in Computer Science, vol.
2779, Springer-Verlag, pp. 77-88, 2003.

10. S. P. Skorobogatov and R. J. Anderson, “Optical Fault Induction Attacks,” Cryp-
tographic Hardware and Embedded Systems - CHES 2002, Lecture Notes in Com-
puter Science, vol. 2523, pp. 2-12, Springer, 2003.

11. K. Wu and R. Karri. “Idle cycles based concurrent error detection of RC6 encryp-
tion,” 16th IEEE International Symposium on Defect and Fault-Tolerance in VLSI
Systems (DFT 2001), Proceedings, pages 200–205. IEEE Computer Society, 2001.

Fault Based Collision Attacks on AES

Johannes Blömer and Volker Krummel�

Faculty of Computer Science, Electrical Engineering and Mathematics
University of Paderborn, Germany

{bloemer, krummel}@uni-paderborn.de

Abstract. In this paper we present a new class of collision attacks that
are based on inducing faults into the encryption process. We combine the
classical fault attack of Biham and Shamir with the concept of collision at-
tacks of Schramm et al. Unlike previous fault attacks byBlömer and Seifert
our new attacks only need bit flips not bit resets. Furthermore, the new at-
tacks do not need the faulty ciphertext to derive the secret key. We only
need the weaker information whether a collision has occurred or not. This
is an improvement over previous attacks presented for example by Dusart,
Letourneux and Vivolo, Giraud, Chen and Yen or Piret and Quisquater.
As it turns out the new attacks are very powerful even against sophisti-
cated countermeasures like error detection and memory encryption.

1 Introduction

A smartcard is a general purpose computer embedded in a plastic cover of a credit
card’s size. The main building blocks of a smartcard are a CPU, a ROM that
contains for example the operating system, an EEPROM containing among other
things the secret key, and a RAM to store intermediate results of computations.
To communicate with the outside world the smartcard has to be inserted into
a so called smartcard reader that also provides the energy the smartcard needs
for operating.

Smartcards are perfectly suited for storing private information such as crypto-
graphic keys because the corresponding cryptographic operations such as encryp-
tion or digital signature are computed directly on the smartcard. Therefore the
key never has to leave the smartcard and hence seems to be protected very well
even in hostile environments. However, it is well known that physical instances
of algorithms (in hardware or software) may leak information about the com-
putation through so called side channels. Researchers identified several of those
side channels and managed to use information obtained through side channels
to determine secret keys of cryptographic applications. Kocher [13] was the first
who presented an attack based on timing measurements that successfully com-
puted the secret key of RSA in 1996. This result was improved by Dhem et al.
[8]. Koeune and Quisquater [15] adapted timing attacks to the symmetric cipher
AES. In 1999 Kocher, Jaffe and Jun [14] presented a successful side channel
attack based on the power consumption of a smartcard.
� This work was partially supported by a grant from Intel Corporation, Portland.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 106–120, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fault Based Collision Attacks on AES 107

In this paper we focus on so called fault attacks on the advanced encryption
standard AES [7]. Boneh, DeMillo and Lipton [4] showed that faults induced into
the encryption process of asymmetric ciphers can reveal the secret key. Biham and
Shamir [1] combined fault attacks with the concept of differentials and mounted a
differential fault attack (DFA) on DES. Skorobogatovand Anderson showed in [20]
that fault attacks are realizable with sufficient precision in practice. See Blömer
and Seifert [3] for an overview of the physics of inducing faults.

There are several fault attacks on AES reported in the literature. The first
attacks were due to Blömer and Seifert [3] followed by improved attacks of
Dusart, Letourneux and Vivolo [9], Giraud [10], Chen and Yen [6] and Piret
and Quisquater [17]. All these publications demonstrate the power of fault at-
tacks. However, these attacks either use the fault model of bit resets [3] in which
case they do not need the faulty ciphertexts. Or the attacks only require the fault
model of bit flips, in which case, however, the attacks need the faulty ciphertexts
[9],[10],[6],[17]. The attacks presented in this paper use bit flips and, instead of
faulty ciphertexts, the attacks only use so called collision information. This turns
out to be a much weaker requirement than the requirement that an attacker gets
complete faulty ciphertexts. To obtain our new attacks, we show how to combine
fault attacks with so called collision attacks. In a collision attack the adversary
tries to detect identical intermediate results during the encryption of different
plaintexts, e.g., by using side channel information, and use this information to
derive the secret key. Basically this idea was due to Dobbertin. Schramm et al.
developed collision attacks against DES [19] and AES [18] and showed how to
detect collisions using power traces.

We combine the concepts of fault and collision attacks by inducing faults
to generate collisions. This approach allows to relax the requirement of getting
faulty ciphertexts to the requirement of detecting collisions in the encryption
process. First we explain the basic idea underlying our attacks by presenting
an attack based on some rather strong assumptions. Then we present an attack
utilizing the same basic ideas that successfully attacks a smartcard that is pro-
tected by a memory encryption mechanism. To the best of our knowledge, this
is the first fault attack on smartcards protected by memory encryption.

To defend against side channel attacks the manufacturer invented several
countermeasures. One type of countermeasure is intended to protect the card,
e.g., shields, sensors or error detection. Another type is designed to render side
channel attacks useless using techniques to obfuscate the side channel informa-
tion, e.g. by random masking [16],[11],[2]. Yet another more efficient approach is
to use a so called memory encryption mechanism (MEMO). Memory encryption
mechanisms encrypt an intermediate result directly after it leaves the processor
and decrypts data right before it enters the processor (see Figure 1). This guaran-
tees that all data stored in the RAM is encrypted. The intention is that memory
encryption makes it harder for an adversary to derive information about inter-
mediate states of the encryption process by using side channels of the smartcard.
In general, it is assumed that unlike the RAM the highly integrated processor
is much to complicated to induce faults with some reasonable precision. Hence,

108 J. Blömer and V. Krummel

memory encryption is widely believed to be a useful countermeasure against side
channel attacks.

Due to the limited computational power of smartcards the MEM has to be
very fast. So the manufacturers of smartcards use some light encryption algo-
rithms that are very fast but may not be secure against serious cryptanalysis. To
increase the impact of the MEM the manufacturer like to keep their algorithms
secret. However, many manufacturers do not analyze the impact of MEMs on
security but simply present it as an improvement of security. The strategy is to
implement as many good looking countermeasures as possible by not exceeding
a certain cost threshold. Even a weak countermeasure should increase security.

Our attack that works even in the presence of a MEM shows that the security
improvement of the MEM as generally used is rather limited. In particular, we
present an attack on an AES implementation protected by MEM that determines
the full AES-Key by inducing only 285 faults and detecting collisions.

The paper is organized as follows. In Section 2 we present our model for analyz-
ing fault based collision attacks. In Section 3 we describe some fault based collision
attacks and analyze their complexity. Unlike the classical fault attacks using bit
flips in [9],[10],[6] and [17] obtaining faulty ciphertexts is not essential for our at-
tacks.Therefore our attacks are applicable in scenarioswhere classical fault attacks
do notwork.On the other hand, our new attacks need more faults than the classical
fault attacks. We explain the basic idea in our first attack. This attack is our basic
attack and is based on rather strong assumptions. However, in the sequel we show
how to strengthen it and how to adapt it to several other scenarios. The second
attack we present is is our strongest attack. This attack shows how to successfully
attack a smartcard that is protected by a MEM. To the best of our knowledge this
is the first successful attack against a smartcard protected by a MEM.

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

ROM

EEPROM

RAM

M
E

MProcessor

protected against faults

encrypted

key

Fig. 1. Model of an enhanced smartcard with memory encryption mechanism (MEM)

2 Model

In our scenario we have a smartcard with an implementation of AES and a secret
AES keyK stored on it. We simplify the real world by assuming that only the RAM
may leak some information and all other parts are well protected. An adversary

Fault Based Collision Attacks on AES 109

A is able to input chosen plaintexts and induce faults in terms of bit flips into the
RAM in order to derive some information about the secret key K. To be more
precise, A can flip a single bit of some specified byte in the memory and derive so
called collision information about an internal state of the encryption process.

We regard the AES encryption as a bijective function AESK that maps a
plaintext p on a ciphertext depending on the secret key K = (k0, . . . , k15) 1. To
model faults mathematically we extend that function with a second variable b
that specifies a bit position during the computation of AESK .

The set of all realizable functions via AES is extended by flipping bit b during
the computation of AESK . However, the extended function FAESK(p, b) is not
bijective. So there exist collisions such that two intermediate states of computa-
tions of FAESK(p, b) and FAESK(p′, b′) with different inputs (p, b) �= (p′, b′) are
equal. An attacker wants to detect those collisions and then use them to derive
the secret key K.

We state three assumptions. First, A is able to feed chosen2 plaintexts into the
encryption algorithm. Second, A is able to induce faults in terms of bit flips into
a specific bit of the RAM. Our third assumption is that A is able to derive some
information about an intermediate state of the encryption process. However, we
do not assume that this information lets A determine (parts of) the secret key
directly. Nevertheless it enables A to detect if a collision occurred or not. We
call any kind of information that lets A detect collisions collision information
of some intermediate state of FAESK(p, b). Later we will show examples how to
derive collision information.

We model collision information as the evaluation of an injective function fK

that depends on the concrete implementation of AESK and the secret key K.
It gets as input a plaintext p, the time t when a bit flip occurs, the byte posi-
tion x and the bit position b inside that byte. The output is some information
fK(p, t, x, b) about an intermediate state of the encryption. Certainly it is also
possible to derive the collision information without inducing a fault.

Depending on the purpose of the smartcard fK can have different realizations.
Given the ciphertexts the detection of collisions is easy because the equality of
ciphertexts implies equality of intermediate states. However, in many cases the
output of an encryption is not available to the attacker. For example, if the
smartcard computes a CBC-MAC or a hash value using AES as a building block
fK(p, b) can simply be the MAC / hash value. Remember that the MAC is the
final result of a number of interlinked AES encryptions and not the result of a
single AES encryption. The final ciphertext could also be used as collision infor-
mation if the smartcard computes multiple encryption with different encryption
algorithms. Finally, if the smartcard computes a single encryption but does not
output faulty ciphertexts, fK could be the measurement of some side channel
information, e.g., power consumption profile, that allows to detect collisions.

1 For simplicity we only consider AES-128. However, all the attacks in this paper can
easily be adapted to AES with larger key sizes.

2 The attacks presented in this paper can also be transformed to known plaintext
attacks.

110 J. Blömer and V. Krummel

To analyze the cost of an attack we simply count the number of faults we
have to induce. The evaluation of fK without inducing a fault is for free. We
also neglect the complexity of additional computations that can be performed
offline since in our cases they are obviously easy.

3 New Fault Attacks

3.1 Notation

For simplicity and clarity we define p
(r),(o)
i to be the ith byte of the encryption

state of plaintext p after the operation o of round r. The operation o is one of
the following:

B SubBytes
R ShiftRows
C MixColumns
K AddRoundkey

For example, p
(3),(R)
5 is the 5th byte of the encryption state of plaintext p after

the ShiftRows operation of round 3. The ith byte of the round key of round r is
called k

(r)
i . We denote the transformation of SubBytes applied on a single byte

x of the state simply as the application of the sbox on x and write it as S[x].
To simplify notation we define ∆(pi, qi) = pi + qi to be the difference of two
plaintext bytes pi and qi. Then ∆in(pi, qi) = (pi + k

(0)
i) + (qi + k

(0)
i) = pi + qi

is the input difference of (pi, qi) before the first application of the sbox and
∆out(pi, qi) = (S[pi + k

(0)
i] + S[pi + k

(0)
i]) is the output difference of (pi, qi)

after the first application of the sbox. To simplify notation further we denote
the collision information of encrypting plaintext p and inducing a bit flip into
bit e of byte 0 of the state after the application of SubBytes in round 1 by
fK(p(1),(B)

0 , e). We denote the evaluation of fK without inducing a fault in the
encryption process by fK(p(1),(B)

0 , −). From the context it will always be clear
which plaintext is meant.

3.2 Scenarios

Below we describe some attacks that are based on the detection of collisions.
For simplicity, we only show how to compute byte 0 of the secret key. Similar
approaches can be used to compute the other key bytes.

We describe how to mount and analyze each attack in different scenarios. Each
scenario is characterized by abilities of the adversary and/or the environment.
The first characteristic defines the precision of the fault induction. We look at
the two cases that the adversary is able to flip a specific bit of an intermediate
state and that each possible bit flip occurs with probability 1/8.

The second characteristic specifies whether the smart card is protected by a
MEM (memory encryption mechanism) or not. The MEM encrypts every in-
termediate result that leaves the processor and decrypts a value right before
it enters the processor (see Figure 1). Since a smart card has only restricted

Fault Based Collision Attacks on AES 111

computational power and memory most manufacturers choose a byte oriented
encryption function with a fixed key that is used for encryption and decryption.
In our approach we simply model the memory encryption as an unknown but
fixed function h : {0, 1}8 → {0, 1}8. That means that we do not rely on a weak-
ness in the memory encryption itself. In particular, we do not assume to have
any information of how bit flips effect further processing of that byte.

The last characteristic defines whether collision information remains valid for
a long period of time or not. If collision information does not remain valid there
is no reason for A to store collision information since he cannot use it later in
the attack. A is only able to compare collision information of two recently taken
measurements and store the result. This effect could be caused by environments
that are frequently changed such that collision information taken at different
times is hardly comparable, e.g., due to some countermeasure that induces noise
into the collision information. If, however, collision information remains valid
over the time segment used for the attack it maybe useful for A to store this
information in a preprocessing step to have it available once and for all. As we
will see later stored information is useful as it helps to reduce the number of
faults.

3.3 First Attack

First, we describe the scenario in which the attack takes place. We assume that
A can flip a specific bit e of the intermediate state p(1),(B). We also assume that
collision information remains valid over the time span of the attack. Finally, we
assume that the smartcard is not protected by a MEM.

In a preprocessing step the adversary computes an array Te of length 256. In
position Te[y], y ∈ {0, . . . , 255} the array stores the following information:

Te[y] :=
{{s, t} s + t = y,S[s] + S[t] = 2e

}
,

i.e., Te[y] stores all (unordered) pairs of bytes with ∆in(s, t) = y and ∆out(s, t) =
S[s] + S[t] = 2e. Furthermore, by Ce[y] denote the union of sets in Te[y]. The
sets Ce[y] are pairwise disjoint. As it turns out, for every e ∈ {0, 1, . . . , 7} we
have that 129 sets Ce[y] are empty, 126 sets Ce[y] contain exactly two elements,
and one set Ce[y] contains exactly four elements.

Next, A collects a set T of collision information fK(p(1)(B)
0 , −) for all 256

different values of p0 and arbitrary but fixed p1, . . . , p15. Then A chooses an
arbitrary value q0 and encrypts the corresponding plaintext flipping an arbitrary
bit e of q

(1),(B)
0 . If fK has the property that fK(p(1),(B)

0 , −) = fK(q(1),(B)
0 , e) A is

able to find the corresponding plaintext p0 satisfying S[p0 +k0] = S[q0 +k0]+2e

by comparing the collision information with the elements of T . Given the pair
p0, q0 the adversary knows the difference p0 +k0 + q0 +k0 = p0 + q0. Using array
Te the adversary A now concludes {p0 + k0, q0 + k0} ∈ Te[p0 + q0]. Hence, A
knows that the correct key byte k0 satisfies

k0 ∈ {p0 + s s ∈ Ce[p0 + q0]
}
. (1)

112 J. Blömer and V. Krummel

As mentioned above,
∣∣Ce[y]
∣∣ ≤ 4 for all y, and

∣∣Ce[y]
∣∣ = 2 for all but one y.

Hence, at this point A has reduced the number of possible values for key byte
k0 to at most 4.

Next, the adversary repeats the experiment described above with some value
q′0, such that q′0 + s �∈ Ce[p0 + q0] for all s ∈ {p0 + s̄ s̄ ∈ Ce[p0 + q0]}. Using the
collision information in set T , the adversary determines p′0 such that S[p′0+k0] =
S[q′0 + k0] + 2e. As before A concludes that the key byte k0 satisfies

k0 ∈ {p′0 + s s ∈ Ce[p′0 + q′0]
}
. (2)

By choice of q′0, the adversary A is guaranteed that p0 + q0 �= p′0 + q′0. By
elementary arithmetic it follows that if

∣∣Ce[p′0 + q′0]
∣∣ = ∣∣Ce[p0 + q0]

∣∣ = 2, then
(1) and (2) uniquely determine the key byte k0. As it turns out, the same is
true if one of the sets has size four. However, to verify this, one has to perform
a tedious case analysis based on the exact structure of the arrays Te. We omit
this in this extended abstract.

Cost Analysis To determine a single AES key byte A has to induce two faults.
Thus 32 faults are enough to determine the full 128-bit AES key.

3.4 Second Attack

The scenario for this attack is as follows. We assume that A can flip a specific bit
e of the intermediate state p(0),(K). We also assume that collision information
remains valid over the time span of the attack. Finally, we assume that the
smartcard is protected by a MEM modelled as a function h : {0, 1}8 → {0, 1}8.
This implies that after a flip of bit e the encryption continues using the value
h−1(h(pi + ki) + 2e) instead of pi + ki. Therefore, we assume that we have no
information about the impact of bit flips on the encryption process.

The attack is divided into two steps. In the first step A collects the necessary
information to compute a function g0 that is equal to h up to some constant
coefficient. To do so A selects a set S of 256 plaintexts p that take on all different
values in byte p0 and that are equal in each other byte. A uses the smartcard
to derive the collision information for each of these plaintexts by evaluating
fK(h(p(0)(K)

0), −) and stores it in the table T . Then A encrypts plaintexts p of
the set S and induces a bit fault into bit 0 ≤ e ≤ 7 of h(p(0),(K)

0) and compares
the collision information fK(h(p(0),(K)

0), e) with the entries of table T to find the
corresponding plaintext p′0. So A knows the difference

h(p0 + k0) + h(p′0 + k0) = 2e

and stores the triple (p0, p
′
0, e) in a difference table DT . This step is repeated

for different plaintexts p and for different faulty bit positions until A has enough
information to compute the differences

h(p0 + k0) + h(p′0 + k0)

of one byte p0 with all other bytes p′0. The details are given in the following
lemma.

Fault Based Collision Attacks on AES 113

Lemma 1. Let m : {0, 1}q → {0, 1}q be an unknown function defined over
F2q . There exists a set D of 2q − 1 pairs (u, v) ∈ F2q × F2q with the following
property: If for all (u, v) ∈ D we have that m(u) + m(v) = 2e for some known
e ∈ {0, . . . , q − 1}, then one can determine a function g such that g + c = m for
some constant c ∈ F2q .

Proof. Given some set D ⊆ F2q × F2q we construct a graph G whose set of
vertices is F2q as follows. We connect two vertices u, v with an edge of weight e
if (u, v) ∈ D.

If in G there exists a path between two vertices x, y then the difference m(x)+
m(y) is determined by the differences of pairs in D. Furthermore, if the graph G
is connected we can compute the difference m(x)+m(y) for all (x, y) ∈ F2q ×F2q .
In particular, we can determine all differences of the form m(u) + m(u0) for an
arbitrary but fixed input u0. Then using Lagrange interpolation we can now
compute the function g(u) = m(u) + m(u0). Setting c := m(u0) proves the
lemma.

Next we describe a set D of pairs (u, v) with known differences m(u)+m(v) =
2e, such that the graph G as defined above is in fact connected. First we fix an
arbitrary e1 ∈ {0, . . . , q − 1}. Then there exists a set D1 of 2q−1 distinct pairs
(u, v) ∈ F2q × F2q such that m(u)+ m(v) = 2e1 . All pairs in D1 will be elements
of D. If we consider the graph whose edges are defined by pairs in D1 we get a
graph G1 on the vertex set F2q that consists of 2q−1 connected components each
consisting of exactly 2 vertices.

Next we choose e2 �= e1. Then there exists a set D2 of 2q−2 pairs of vertices
(u, v) with m(u) + m(v) = 2e2 such that each pair in D2 connects different
connected components of G1. We call the resulting graph G2. The set D will
also contain all elements from D2.

Continuing in this way with all possible ei ∈ {0, . . . , q − 1} we get sets of
pairs D1, D2 . . . , Dq and graphs G1, G2, . . . , Gq such that Gi has 2q−i connected
components. In particular, Gq is connected. Moreover, the edges of Gq are given
by the pairs in D :=

⋃q
i=1 Di. The size of D is 2q − 1. This proves the lemma.

We want to apply Lemma 1 to the function h(x + k0). It is easy to see that A
can compute exactly the set of differences D described in the proof of Lemma
1 since he is able to flip a specific bit. Hence, knowing D the adversary A can
compute a function g0 : {0, 1}8 → {0, 1}8 such that for all x ∈ F256 the difference
g0(x)+h(x+k0) is some constant c0 ∈ F256. Since A does not know the constant
c0 he does not get any information about the key byte k0 at this point.

A continues by computing for all other byte positions i a function g1, . . . , g15
such that for all x ∈ F256 the function gi : {0, 1}8 → {0, 1}8 has the property
that gi(x) + h(x + ki) = ci for some unknown constant ci ∈ F256 . Each of the
gi’s does not reveal any information about the involved key byte ki because the
constant ci can take on all possible values and is unknown to A.

To derive information about the key A proceeds as follows. He guesses two
candidates k̂0, k̂i for the keybytes k0, ki, respectively. To test this hypothesis on
the key A selects several bytes x uniformly at random and computes

114 J. Blömer and V. Krummel

g0(x + k̂0) = h(x + k̂0 + k0) + c0

and
gi(x + k̂i) = h(x + k̂i + ki) + ci.

Depending on the hypothesis (k̂0, k̂i) the difference t0,i := g0(x+ k̂0)+ gi(x+ k̂i)
computes to

h(x) + c0 + h(x) + ci = c0 + ci ,if k̂0 + k0 = k̂i + ki (3)

h(x + k̂0 + k0) + c0 + h(x + k̂i + ki) + ci ,if k̂0 �= k0 and k̂i �= ki (4)

h(x) + c0 + h(x + k̂i + ki) + ci ,if k̂0 = k0 and k̂i �= ki (5)

h(x + k̂0 + k0) + c0 + h(x) + ci ,if k̂0 �= k0 and k̂i = ki (6)

Now we assume that the function h has the following property. There do not
exist constants a, c ∈ F256 such that h(x)+ a = h(x+ c) for all x. Note that this
assumption does not restrict the choice of h for two reasons. First, a function
used for memory encryption that does not have this property contains too much
structure and is probably easier to attack. Secondly, most functions have this
property. In fact, a random function has the property with probability at least
1 − 2−127.

This assumption implies that unlike in case (3) in cases (4),(5),(6) the differ-
ence t0,i is not constant. Moreover, if the guess k̂0, k̂i was correct that is k̂0 = k0

and k̂i = ki then A will always be in case (3). Now A can easily test the hypothe-
sis (k̂0, k̂1) by computing t0,i for several bytes x. If t0,i varies for several different
x then A knows that he is not in case (3). It follows that the pair (k̂0, k̂1) cannot
be correct. On the other hand if t0,i remains constant A concludes to be in case
(3) and keeps the pair (k̂0, k̂1) as a potentially correct candidate.

This implies that for every possible key byte k̂0 the adversary A obtains a
single candidate k̂i for 1 ≤ i ≤ 15 that fulfills condition (3). Guessing k̂0 the
adversary A can compute a vector (k̂1, . . . , k̂15) composed of unique candidates
k̂i that only depend on k̂0. To uniquely determine the correct key A simply
mounts an exhaustive search attack on the 256 possible values of k̂0.

Cost Analysis. A has to induce 255 faults to compute a function gi according
to Lemma 1. To test a hypothesis of the key A does not need to induce faults.
So the overall number of faults is 16 · 255 = 4080.

Improvement. The previous attack can be improved with respect to the number
of induced faults as shown below. In the first step A computes the function g0
such that g0(x) = h(x + k0) + c0, where c0 ∈ F256 is unknown, as above. To
determine the other functions g1, . . . , g15 A uses the fact that each gi is related
to g0 by the following equation

gi(x) = h(x + ki) + ci = g0(x + ki + k0︸ ︷︷ ︸
si

) + ci + c0.

Fault Based Collision Attacks on AES 115

So knowing g0 (determined as above) A computes a list of all 256 functions
g0,s := g0(x + s), s ∈ F256. To determine which of these functions equals gi

the adversary A chooses arbitrary pi, qi and evaluates fK(h(p(0),(K)
i), −) and

fK(h(q(0),(K)
i), e) at byte position i. Using this information A computes some

differences gi(pi) + gi(qi) as described in the computation of g0 above.
To determine the correct function gi = g0,si A simply checks which of the

function g0,s fulfills these differences simultaneously until only one function re-
mains. See below for the required number of experiments. Then A knows the
sum si = k0 + ki of two AES key bytes. A repeats this procedure for all other
byte positions 0 ≤ i ≤ 15. As before guessing k̂0 the adversary A can determine
a unique candidate k̂i. That means that A has a vector (k̂1, . . . , k̂15) with fixed
candidates k̂i for each of the 256 candidates k̂0. Like in the original version of
this attack this reduces the set of possible AES keys to only 256 candidates. An
exhaustive search reveals the full AES key.

Cost Analysis. To compute g0 the adversary A has to induce 255 faults like in
the original version. To determine further gi’s A has to collect a set of differences
gi(p)+gi(q) that is fullfilled by only one of the 256 functions g0,s simultaneously.
Notice that if the function g0,s fulfills a difference, i.e., g0(p + s) + g0(q + s) =
gi(p)+ gi(q) then because of symmetry the function g0,s′ given by s′ := p+ q + s
also fulfills this difference since

g0(p + (p + q + s)) + g0(q + (p + q + s) = g0(q + s) + g0(p + s) = gi(q) + gi(p).

Assuming that the 256 functions g0,s behave like random permutations (except
for the symmetry) we expect that A needs 2 differences to uniquely identify
the correct one with high probability. We tested this assumption by various
experiments and in our experiments it proved to be correct. Hence, we expect
that A needs 255 + 15 · 2 = 285 faults to determine the full AES key.

As mentioned before we do not consider the complexity of the offline calculations
like Lagrange interpolation etc. since all these calculations are easy to perform.

3.5 Third Attack

First, we describe the scenario in which the attack takes place. We assume that A
can flip a specific bit e of the intermediate state p(1),(B). We do not assume that
collision information remains valid over the time span of the attack. Hence, A is
only able to compare collision information of two recently obtained measurements.
Finally, we assume that the smartcard is not protected by a MEM. Because it is
always clear from the context we simplify notation by identifying elements of F256
with their canonical representation as elements of the set {0, . . . , 255}.

As a basis for his attack A fixes some input difference ∆in and output dif-
ference ∆out of the application of the sbox in round 1. To be able to detect
collisions with a single bit flip we restrict ∆out to be a power of 2.

The analysis of the sbox shows that there are a lot of suitable values for ∆in

and ∆out (see technical analysis in the full version of the paper). E.g. A chooses
∆in = 10 and ∆out = 4. Only the two pairs

116 J. Blömer and V. Krummel

Z1 := (p0 + k0 = 0, q0 + k0 = 10)

and
Z2 := (p0 + k0 = 244, q0 + k0 = 254)

together with their commuted counterparts fulfill the chosen requirements. A
fault that is induced into bit 2 of q

(1),(B)
0 after the application of the sbox results

in a collision for one of these pairs. In order to detect such a collision the collision
information fK should have the property that

fK(p(1),(B)
0 , −) = fK(q(1),(B)

0 , 2).

If A finds such a collision he can conclude that the key byte k0 is an element
of the set

K = {p0 + 0, p0 + 10, p0 + 244, p0 + 254}
More precisely, the attack using fK with the property defined above works as

follows. First, the adversary A generates all 128 pairs of plaintexts (p, q) (without
symmetry) that have difference 10 in byte 0 (p0 = q0 + 10) and are equal in the
other bytes, i.e.,

∆(pi, qi) =
{

10, if i=0
0, otherwise

A knows that exactly two of these pairs have output difference 4 in byte 0.
The input difference of the sbox is the same as the difference of p0 and q0 since
AddRoundKey does not change it. A checks all 128 pairs (p, q) until

fK(p(1),(B)
0 , −) = fK(q(1),(B)

0 , 2).

Taking the symmetry into account it follows that either p0+k0 = 0, p0+k0 = 10,
p0 + k0 = 244 or p0 + k0 = 254. So there are only 4 candidates for k0 left. A
can repeat this attack for all byte positions of the state. This leaves 22·16 =
232 possible keys. To determine the complete 128-bit AES key A mounts an
exhaustive search attack.

Cost Analysis In the first step A examines 128 pairs of plaintexts with difference
10. Two of these pairs result in a collision so the expected number of faults A
has to induce is (2/128)−1 = 64. To compute a 128 bit AES key A expects to
induce 16 ∗ 64 = 1024 faults and a brute force attack of size 232.

Alternative To determine the correct candidate of the key byte A could also
repeat the same procedure as above with another difference. We assume that fK

lets A detect collisions when flipping bit 3, i.e.

fK(p′(1),(B)
0 , −) = fK(q′(1),(B)

0 , 3).

If we look at all pairs at all pairs (p′, q′) such that

∆(p′i, q
′
i) =
{

5, if i=0
0, otherwise

Fault Based Collision Attacks on AES 117

an analysis of the sbox shows that Z3 := (p′0 + k0 = 0, q′0 + k0 = 5) and Z4 :=
(p′0 + k0 = 122, q′0 + k0 = 127) are the only pairs with ∆in = 5 and ∆out = 8.
Detecting one of these pairs using fK yields again a set of 4 candidates for k0.

Next, A computes the difference of plaintexts p0 and p′0. The difference must
be one of the differences listed in Table 1. Since all possible differences are distinct
A can determine p0 + k0 and hence k0.

Table 1. All possible differences of p0,p′
0

p0 + k0

p′
0 + k0 0 10 244 254

0 0 10 244 254
5 5 15 241 251

122 122 112 142 132
127 127 117 139 129

Cost Analysis. Following the cost analysis as above this method determines the
correct candidate of each key byte with 1024 faults as in the previous method
plus additional 1024 faults.

3.6 Fourth Attack

First, we describe the scenario in which the attack takes place. We assume that
A can flip a bit of a specific byte of the intermediate state p(1),(B). However, he
has no control over the bit position. Instead, we assume that all of the 8 possible
bit flips occur with the same probability 1/8. We also assume that collision
information remains valid over the time span of the attack. Finally, we assume
that the smartcard is not protected by a MEM.

The attack works as follows. In a first step A selects a set S of 256 plaintexts
p that take on all different values in byte p0 and are equal in each other byte.
A collects the collision information fK(p(1),(B)

0 , −) for all elements of S. Then
he chooses an arbitrary q0 and encrypts the corresponding plaintext inducing a
fault into bit e of q

(1),(B)
0 . By comparing the collision information fK(q(1),(B)

0 , e)
with the collision information collected in the first step A can determine the
corresponding plaintext p0 such that S[p0 + k0] = S[q0 + k0] + 2e. Note that e is
unknown to A since he does not have any influence on the bit position. A can
test all candidates k̂0 of k0 by simply checking if S[p0 + k̂0]+S[q0 + k̂0] is a power
of 2. If this condition is true A stores k̂0 as a possible key value and discard it
otherwise. Analysis of the AES sbox shows that after checking all candidates a
set of at most 16 candidates will remain. A repeats this procedure with different
q0 until only one candidate is left. Using a refined method similar to the attack
in Section 3.3 using several different q0 we can determine the correct key.

3.7 Fifth Attack

First, we describe the scenario in which the attack takes place. We assume that
A can flip a bit of a specific byte of the intermediate state p(1),(B). However, he

118 J. Blömer and V. Krummel

has no control over the bit position. Instead, we assume that all of the 8 possible
bit flips occur with the same probability 1/8. We do not assume that collision
information remains valid over the time span of the attack. Hence, A is only
able to compare collision information of two recently obtained measurements.
Finally, we assume that the smartcard is not protected by a MEM.

A chooses ∆in of the sbox in round 1 in such a way that the number of
pairs that have difference ∆in and output difference with Hamming weight 1 is
maximal. This choice reduces the number of faults A has to induce as we will
see later. Analysis of the sbox shows that ∆in = 216 is the best choice since 8 is
the maximum number of pairs that fulfill the requirements.

A single bit flip induced into q
(1)(B)
0 may produce a collision if and only if

p0 + k0 is one of the following values:

0, 2, 8, 28, 29, 41, 111, 117, 173, 183, 196, 197, 208, 216, 218, 241.

To detect the collision fK should have the property that

fK(p(1)(B)
0 , −) = fK(q(1)(B)

0 , b) (7)

A collision implies that k0 is an element of the set of 16 candidates

K = { p0, p0 + 2, p0 + 8, p0 + 28, p0 + 29, p0 + 41, p0 + 111, p0 + 117, p0 + 173,

p0 + 183, p0 + 196, p0 + 197, p0 + 208, p0 + 216, p0 + 218, p0 + 241}.

To determine p0 the adversary A first builds a list of all 128 pairs (p0, q0) of
plaintexts with difference 216 in byte 0 and difference 0 in all other bytes. Then A
selects an arbitrary q0, derives fK(q(1)(B)

0 , b) of the corresponding plaintext and
compares it with the collision information fK(p(1)(B)

0 , −) of the corresponding
plaintext of p0. A repeats this procedure until he detects a collision. At his point
A knows that k0 is an element of the set K.

To identify the correct candidate A could start an exhaustive search or repeat
the procedure with a different combination of input and output differences. For
example A chooses input difference 4 and output difference 32. Since (88, 92) is
the only such pair A can use fK as a special case of (7) having the property

fK(p(1)(B)
0 , −) = fK(q(1)(B)

0 , 5)

to test each candidate k̂0 ∈ K of k0.
To check whether a candidate k̂0 ∈ K is equal to k0, A derives the collision

information fK(p(1)(B)
0 , −) and fK(q(1)(B)

0 , b) for p0 = k̂0 + 92 and q0 = k̂0 + 88.
Since (92, 88) is the only pair with input difference 4 and Hamming weight of the
output difference 1 A can check his hypothesis k̂0. More precisely if k̂0 �= k0 the
Hamming weight of the output difference will always be greater than 1 except for
the case that p

(0)(K)
0 = 88 and q

(0)(K)
0 = 92. But this case implies that k̂0+4 = k0

which is impossible since every difference of two of the sixteen candidates is
different from 4. So a wrong hypothesis cannot create a collision. On the other
hand if k̂0 = k0 then p + k0 = 92 + k̂0 + k0 = 92 and q + k0 = 88 + k̂0 + k0 = 88
is the demanded pair and A will detect a collision using fK .

Fault Based Collision Attacks on AES 119

Cost Analysis. The success probability of finding one of the 8 pairs in part one
of the attack choosing p0 uniformly at random is 8

128 · 1
8 = 1

128 . Hence 128 is the
expected number of faults A has to induce.

The success probability in the second step is (1/8) · (1/16) = 1/128. So we
expect that A needs additional 128 faults. Hence the total number of faults to
determine a key byte is 2 · 128 = 256.

To compute a complete 128 bit AES key we expect that A needs 16·256 = 4096
faults.

4 Concluding Remarks

In this paper we introduced the concept of fault based collision attacks that is a
combination of collision attacks with fault attacks. We also showed how to mount
fault based collision attacks on AES. Thereby we considered so called memory
encryption mechanisms (MEM), a widely used countermeasure to protect against
side channel attacks. We showed that using MEM in a straightforward manner
does not increase security as much as one would expect. E.g., we presented a
fault based collision attack that breaks an implementation protected by a MEM
by inducing only about 285 faults.

To thwart our attack one has to be more careful. For example using different
MEM functions for different bytes of a state obviously renders our attack useless.
An alternative and more general approach is to use a general randomization
strategy such as [2] based on [5].

References

1. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer, 1997.

2. Johannes Blömer, Jorge Guajardo, and Volker Krummel. Provably secure masking
of AES. In H. Handschuh and M. Anwar Hasan, editors, Proceedings Selected Areas
in Cryptography (SAC), Lecture Notes in Computer Science Volume 3357, pages
69–83. Springer-Verlag, 2004.

3. Johannes Blömer and Jean-Pierre Seifert. Fault based cryptanalysis of the ad-
vanced encryption standard (AES). In Financial Cryptography’03, Lecture Notes
in Computer Science Volume 2742, pages 162–181. Springer-Verlag, 2003.

4. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract). In EUROCRYPT,
pages 37–51, 1997.

5. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Wiener [21], pages 398–
412.

6. Chien-Ning Chen and Sung-Ming Yen. Differential fault analysis on AES key
schedule and some countermeasures. In Reihaneh Safavi-Naini and Jennifer Se-
berry, editors, ACISP, volume 2727 of Lecture Notes in Computer Science, pages
118–129. Springer, 2003.

120 J. Blömer and V. Krummel

7. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Information Security
and Cryptography. Springer Verlag, 2002.

8. Jean-François Dhem, François Koeune, Philippe-Alexandre Leroux, Patrick
Mestré, Jean-Jacques Quisquater, and Jean-Louis Willems. A practical imple-
mentation of the timing attack. In Jean-Jacques Quisquater and Bruce Schneier,
editors, CARDIS, volume 1820 of Lecture Notes in Computer Science, pages 167–
182. Springer, 1998.

9. Pierre Dusart, Gilles Letourneux, and Olivier Vivolo. Differential fault analysis on
A.E.S. In Jianying Zhou, Moti Yung, and Yongfei Han, editors, ACNS, volume
2846 of Lecture Notes in Computer Science, pages 293–306. Springer, 2003.

10. Christophe Giraud. DFA on AES. In Hans Dobbertin, Vincent Rijmen, and Alek-
sandra Sowa, editors, AES Conference, volume 3373 of Lecture Notes in Computer
Science, pages 27–41. Springer, 2004.

11. Jovan Dj. Golic and Christophe Tymen. Multiplicative masking and power analysis
of AES. In Kaliski Jr. et al. [12], pages 198–212.

12. Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors. Cryptographic
Hardware and Embedded Systems - CHES 2002, 4th International Workshop, Red-
wood Shores, CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of Lec-
ture Notes in Computer Science. Springer, 2003.

13. Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture
Notes in Computer Science, pages 104–113. Springer, 1996.

14. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Wiener [21], pages 388–397.

15. François Koeune and Jean-Jacques Quisquater and. A timing attack against Rijn-
dael. Technical Report CG-1999/1, Université Catholique de Louvain, 1999.

16. Thomas S. Messerges. Securing the AES finalists against power analysis attacks.
In Bruce Schneier, editor, FSE, volume 1978 of Lecture Notes in Computer Science,
pages 150–164. Springer, 2000.

17. Gilles Piret and Jean-Jacques Quisquater. A differential fault attack technique
against SPN structures, with application to the AES and KHAZAD. In Colin D.
Walter, Çetin Kaya Koç, and Christof Paar, editors, CHES, volume 2779 of Lecture
Notes in Computer Science, pages 77–88. Springer, 2003.

18. Kai Schramm, Gregor Leander, Patrick Felke, and Christof Paar. A collision-attack
on AES: Combining side channel- and differential-attack. In Marc Joye and Jean-
Jacques Quisquater, editors, CHES, volume 3156 of Lecture Notes in Computer
Science, pages 163–175. Springer, 2004.

19. Kai Schramm, Thomas J. Wollinger, and Christof Paar. A new class of collision
attacks and its application to DES. In Thomas Johansson, editor, FSE, volume
2887 of Lecture Notes in Computer Science, pages 206–222. Springer, 2003.

20. Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks. In
Kaliski Jr. et al. [12], pages 2–12.

21. Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science. Springer,
1999.

An Easily Testable and Reconfigurable Pipeline
for Symmetric Block Ciphers

Myeong-Hyeon Lee and Yoon-Hwa Choi

Computer Engineering Department
Hongik University, Seoul, Korea

yhchoi@cs.hongik.ac.kr

Abstract. In this paper, we present an easily-testable and reconfig-
urable pipeline for symmetric block ciphers. Bypass links with some extra
pipeline stages are employed to detect errors, locate the corresponding
faults, and reconfigure during normal operation. Duplicate computation,
realized by using bypass links, is used to check the functionality of the
modules for encryption. Test cycle insertion is controlled by activating
bypass links either periodically or selectively, depending on the needs.
Hardware overhead can be minimized by utilizing existing pipeline with
one extra stage. Recovery from errors is achieved with negligible time
overhead using the same bypass links employed for error detection.

1 Introduction

Securing data in wired/wireless transmission is the most common real-life crypto-
graphic problem. It requires encryption of data to be transmitted and decryption
to obtain the original data. Implementing encryption algorithms in hardware is
desirable for various applications to meet the speed requirements under the power
constraints. Secret-key block ciphers, such as DES, IDEA, and Rijndael [5][6],
have similar internal structure, although their encryption functions may differ.
Encryption is done with rounds of function, realizable with repeated use of a sin-
gle functional module. Due to this feature the encryption algorithms can easily be
implemented in hardware. Faults in the systems, however, may render the entire
systems useless unless some effective fault tolerance techniques are provided.

Fault tolerance is generally achieved through redundancy in space or in time.
It requires error detection, fault location, and subsequent reconfiguration to re-
sume normal operation. In fault tolerance of symmetric block ciphers, most re-
search has focused on concurrent error detection (CED) using time or space
redundancy [1][3]. Without proper encoding of data, time redundancy based
CED can only detect transient faults, although hardware overhead can be min-
imized. In space redundancy, some extra hardware, typically a copy, is used
to perform the same function, and the results are compared. In [2] coding tech-
niques have been applied to detect errors in block ciphers. The overhead required
for encoding/decoding is relatively small compared to the traditional hardware
redundancy technique.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 121–130, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

122 M.-H. Lee and Y.-H. Choi

Karri et al. [4] have proposed a concurrent error detection technique for sym-
metric encryption algorithms, exploiting the inverse relationship between encryp-
tion and decryption. It has been applied to three different levels of encryption:
algorithm-level, round-level, and operation-level. A novel parity based error de-
tection technique where the parity of cipher text is compared with the parity of
plaintext to detect error has also been proposed in [7]. Since encryption process
does not preserve the parity between input and output, a carefully calculated
correction term is XORed to the parity of input to ensure that the resulting
parity equals the parity of ciphertext in a fault-free operation.

The proposed techniques so far, however, are insufficient to tolerate faults
since no mechanisms for fault location or recovery are provided. Although error
detection is necessary to guarantee security, it would be desirable for the system
to function correctly even with some faults. Fault tolerance requires a technique
for locating faults and some facilities to isolate them from the rest of the system.

In this paper, we present an easily-testable and reconfigurable pipeline for
achieving fault tolerance in symmetric block ciphers. Errors are detected during
normal operation by time-space redundancy with bypass links. One or more
extra stages with bypass links are employed to achieve fault tolerance. Duplicate
computation in the next stage is used for error detection by comparison. A faulty
stage identified is isolated by the same bypass link to resume normal operation.
The time overhead due to the CED can be controlled by applying test cycles
periodically or selectively depending on the needs.

2 Testable and Reconfigurable Pipeline for Block Ciphers

In order to provide dependable services while maintaining high throughput, we
propose an easily-testable and reconfigurable pipeline for block ciphers. The idea
is two-fold: 1) Exploit parallelism in encryption/decryption by pipelining to com-
pensate for the time overhead inherent in a time redundancy based CED; 2) Im-
plement CED and reconfiguration in a simple and unified structure to minimize
the hardware overhead. Due to the similarity between encryption and decryption,
without loss of generality, we focus on encryption of plaintexts. We begin with
a virtual n-stage linear pipeline, realizing the n rounds of encryption. A slight
variation should be allowed depending on preprocessing and postprocessing, if
necessary. Since those special processing can be treated as partial utilization of
the encryption block, our concern here is to detect faults in a pipeline of identical
encryption blocks and to reconfigure during normal operation to achieve fault
tolerance.

As a fault model, we assume that there is a single faulty encryption block in
the n-stage virtual pipeline. More specifically, an error due to a faulty encryption
block can be detected by duplicated computation using its neighboring block(s).
A mismatch in comparison does not tell which of the two blocks is faulty. Hence,
an additional computation/comparison is necessary to locate the faulty block
and isolate it from the rest of the pipeline.

An Easily Testable and Reconfigurable Pipeline 123

Let E1, E2,..., and En represent n encryption blocks in the n-stage virtual
pipeline. Then the encryption will be completed when a plaintext passes through
the chain of n blocks from left to right. In order to make the design easily
testable and reconfigurable, we modify the design as shown in Fig. 1, where the
n-rounds are realized using k pipeline stages, B1,B2,...,Bk. If k < n, circulation
through the pipeline more than once may be necessary by controlling the two
multiplexers Ma and Mb. The k-stage pipeline is extended to k + r stages with
r(≥ 1) spare stages to detect faults using time-space redundancy and reconfigure
with spares during normal operation. In addition, bypass links are added to
each stage as shown in Fig. 2 to allow data duplication for error detection.
The links will also be used for reconfiguration once a faulty block is identified.
The architecture has a round-key generator and a diagnostic unit. The round
key generator provides round-keys to the pipeline stages. It redistributes the
keys whenever a new configuration is needed due to faults in the pipeline. The
diagnostic unit is used to dynamically control the pipeline stages to operate
in one of the normal, test, and bypass modes, to be addressed shortly, and to
detect a fault, locate it, and reconfigure during normal operation. Comparators
and one extra encryption block Es are also included in the diagnostic unit for
fault location.

�
�

�
�

�
�

�
�

�
�

�
�

������	
��

�
�����

	
��
�
��� �������

���
���
��
�

����

�
������
��

�
���

�
����

���
��
����
�

�
����

�
�

�
�

�
�

�
�

�
�

���
������������

Fig. 1. An easily testable and reconfigurable pipeline for block ciphers

The multiplexer in front of B1 is to select one of the three possible inputs:
plaintext, intermediate result, and test vector. Each stage Bi receives a round
key and bypass control signal, and generates Ei(m) and Ii, where Ei(m) is the
encrypted output and Ii is the input to the next stage Bi+1. Ii will be used
only when an error is detected. With this input, a third computation can be
performed to locate the faulty encryption block.

In corporation of our concurrent error detection into symmetric block ciphers is
straightforward. In Fig. 2, the first three blocks are redrawn with a more detailed
internal structure for error detection and reconfiguration. Since all the blocks are
identical, we only need to explain the structure of a single stage B1, enclosed by
dotted lines to highlight a stage of the pipeline. It consists of an encryption block
E1, a register R1, and a 2-to-1 multiplexer M1. E1 takes an input and encrypts it

124 M.-H. Lee and Y.-H. Choi

with the key K1, provided by the round-key generator. The result is stored in the
intermediate pipeline register R1 for the next round of operation. The multiplexer
M1 is employed for error detection and reconfiguration. For normal encryption,
the lower input line will be selected. If the upper input line is selected, however,
E1 and R1 will be bypassed. This configuration can be used to isolate a faulty stage
from the rest of the pipeline. It may also be used for sending an input data to the
next stage B2. In other words, if the upper input line of M1 is selected, the input
to E2 is the same as the input to E1.

�� �� ��

�������

�
�

�
�

	
��

�����

�����

�������

�� �� ��

��

�� ��

Fig. 2. Internal structure of each stage of the pipeline for block ciphers

Fault tolerance of block ciphers is achieved by detecting faults and reconfig-
uring the pipeline with bypass links. Hence we first presents how an error due to
faults in an encryption block can be detected and located. The main idea is to
duplicate computation in the next stage by inserting a delay (an idle cycle) be-
tween two consecutive inputs. In order to explain this, we use Fig. 3, where only
two stages are shown to illustrate error detection. The diagnostic unit has to set
the two multiplexers, Mi and Mi+1, to 0 and 1, respectively. This will allow the
content of Ri−1 to enter both stages Bi and Bi+1 simultaneously. Apparently,
Bi+1 is not doing what it is normally supposed to do. It instead performs the
same function as Bi with the same round-key Ki. This provision should be made
under the control of the round-key generator and diagnostic unit. The results
are compared to see if they match. A mismatch in the comparison will imply
that there is a fault in one of the two encryption blocks, although we do not
know which one is faulty.

In order to identify the faulty block by a majority voting, we need to perform
one more computation and comparison. This additional computation is realized
with a spare encryption block Es. One multiplexer, under a single fault assump-
tion, is used to select the input that has caused a mismatch in comparison. The
selected data, Ii, is then encrypted with the same key Ki. A single comparison
after the recomputation in Es will be sufficient to determine which encryption
block is faulty.

In the proposed design, the pipeline has been modified by adding r ≥ 1
extra stages and bypass links to provide uninterrupted service even in the event
of failure. Since the bypass links can be pretested or easily checked when the
pipeline is idle, we assume that they are reliable for CED of the encryption

An Easily Testable and Reconfigurable Pipeline 125

�� �����

�

��

���������	
�������		

����	 �
���

��	

�
�

����������������������

�

�
�

����

�� �� ����

Fig. 3. Error detection using duplicate computation

��

��

��

���

����	
��

�

�������
���

������	������

��

Fig. 4. Fault location with recomputing and comparison

blocks. Initially, all the stages except the spare stages participate in the normal
operation.

Reconfiguration of the pipeline upon detection of a fault in stage i is straight-
forward with the bypass links. The newly formed pipeline may also perform the
proposed CED along with encryption. In practice, we suggest to use one or two
spare stages. This results in a low overhead design with fault tolerance capability.
In fact, error detection has been done without hardware overhead since one extra
stage for duplicate computation can be treated as a temporary utilization of the
existing stage(s) for reconfiguration.

3 Scheduling for Error Detection and Reconfiguration

In this section, we will discuss how to schedule the pipeline stages to set them to
operate momentarily in the test mode and how to isolate a pipeline stage in the
event of failure. In order to realize the dynamic test scheduling, each stage in
the pipeline is made to operate in one of three different modes: normal, bypass,
and test modes as shown in Table 1, depending on values of the control signals
to the multiplexers Ci−1 and Ci and the round key to each stage Kin. A stage
in the normal mode performs encryption. A stage in the bypass mode simply
bypasses the input to the output and will be removed from the pipeline. A stage
in the test mode will perform the same function as its previous stage for error
detection.

126 M.-H. Lee and Y.-H. Choi

Table 1. Three different modes of each stage Bi

mode Ci−1 Ci Kin explanation
normal 1 × Ki

test 0 × Ki−1 key of the previous stage
bypass × 0 × isolated all the time

Since the CED is done by stealing some of the normal cycles for testing pur-
poses, the time overhead for error detection depends on how often we insert an
idle cycle (for testing) in the pipeline. We consider the following four possible
strategies, although they can be combined in practice.

(1) Complete checking: Every encryption operation is duplicated and compared
to guarantee error-free operation. Inputs enter the pipeline every other cycles
to provide a test cycle in between. Apparently this strategy requires a 100%
time overhead.

(2) Periodic checking: A test cycle is inserted periodically depending on the load
of the pipeline.

(3) Selective checking: Test rate may change depending on the pipeline status.
If it is heavily loaded, we reduce the number of test cycles accordingly. If it
is lightly loaded, we insert more test cycles, not necessarily periodically.

(4) Checking with test vectors: This can be used when there are some cycles
without normal inputs (i.e., idle). The diagnostic unit generates test vectors
to be applied to the pipeline for cleaning it up.

Regardless of the strategies chosen, the proposed CED involves one idle cycle
for duplicate computation along the pipeline, equivalent to inserting a delay (test
cycle) into the pipeline. This can be realized by applying a zero control signal
to multiplexers, M1,M2,...,Mk, in the given order. Assuming that a test cycle
starts at time t=1, the required control signals for the k multiplexers are shown
in Table 2. A zero on a control line means a duplicated data for testing purposes
is given to the next stage as opposed to the normal data. Since a zero needs to
move along the pipeline, a shift register may be used.

As an illustration, assume that the pipeline consists of four stages B1−4 for
normal operations and one extra stage S1 for replacement in the event of failure.

Table 2. Controlling multiplexers for error detection

time M1 M2 M3 M4 − − Mk Ms1 −
t=1 0 1 1 1 1 1 1 1 1
t=2 1 0 1 1 1 1 1 1 1
t=3 1 1 0 1 1 1 1 1 1
t=4 1 1 1 0 1 1 1 1 1
t=− 1 1 1 1 0 1 1 1 1
t=− 1 1 1 1 1 0 1 1 1
t=k 1 1 1 1 1 1 0 1 1

An Easily Testable and Reconfigurable Pipeline 127

Case 1 requires a 100% time overhead as shown in Table 3, where inputs are
applied to the pipeline every other cycle with a test cycle between them (e.g,
3̃ between 2 and 3). S1 is used for duplicate computation of B4. The entire
operation is controlled by the diagnostic unit.

Table 3. Test scheduling for complete checking

stage t1 t2 t3 t4 t5 t6 t7 t8 t9 −
B1 1 - 2 - 3 - 4 -
B2 1̃ 1 2̃ 2 3̃ 3 4̃ 4
B3 1̃ 1 2̃ 2 3̃ 3 4̃ 4
B4 1̃ 1 2̃ 2 3̃ 3 4̃ 4
S1 1̃ 2̃ 3̃ 4̃

In case 3, test cycles are inserted selectively, as illustrated in Table 4, where
at time t5 the diagnostic unit inserts a delay for error detection. Only the result
of the fifth input is checked as it moves along the pipeline. It may take longer
to detect a fault due to selective checking.

Table 4. Test scheduling for selective checking

stage t1 t2 t3 t4 t5 t6 t7 t8 t9 −
B1 1 2 3 4 - 5 6 7
B2 1 2 3 4 5̃ 5 6 7
B3 1 2 3 4 5̃ 5 6 7
B4 1 2 3 4 5̃ 5 6
S1 5̃

In case 4, the pipeline is idle and hence test vectors are applied instead of plain-
text to check the functionality of the pipeline. Pipeline advances similar to case
1 until it receives a normal input. This testing will clean up the pipeline without
affecting throughput. In practice, a combination of the above four strategies may
be used to enhance system reliability with minimum degradation in throughput.

Although fault detection is necessary for reliable encryption of plaintext, the
pipeline cannot resume normal operation unless fault location and reconfigu-
ration techniques are provided. To locate a faulty encryption block, we use a
majority voting, as discussed in the previous section, with one extra encryption
block. Once the faulty block is identified, the diagnostic unit sets the faulty stage
to operate in the bypass mode from that time on to isolate it from the rest of
the pipeline. One of the spare stages has to participate in forming a new pipeline
with k stages. As illustrated in Fig. 5, B3 through Bk will take the role of B2
through Bk−1, respectively, and S1 will replace Bk. S2, which has been unused
so far, will now participate in error detection. B2, which is faulty, is then isolated
by setting the control input of its associated multiplexer, M2, to 0. The bypass
link highlighted in the figure is a logical view of the bypassing. It is actually

128 M.-H. Lee and Y.-H. Choi

realized by the internal bypass link in Fig. 2. Now the k-stage pipeline ends at
stage S1, control signal to the multiplexer which connects the last stage to the
first stage has to be changed. Once the faulty stage is bypassed, keys have to be
redistributed to resume normal operation.

�� �� �� �� �� ��

�����	
��

���������

��
�������

��

���������������

Fig. 5. Reconfigured pipeline after locating a faulty stage

4 Performance

In realizing symmetric block ciphers with a function of n rounds, we have em-
ployed a pipelined architecture to enhance throughput as well as fault tolerance
capability. A fully pipelined implementation, i.e., an n-stage pipeline, would
achieve the maximum throughput. If the cost or area is a concern, a compro-
mised design with k stages, where k < n, may be a desirable alternative. For
simplicity, we assume that n is a multiple of k (i.e., n = c · k). In case c ≥ 2, the
k-stage pipeline has to be used repeatedly (c times).

We evaluate the performance in terms of throughput, hardware overhead,
time overhead required for error detection, fault location, and reconfiguration.
Suppose we insert a test cycle for every q normal cycles on average. Then every
q normal inputs accompany one test input (i.e., a delay cycle) along the pipeline.
For m inputs, we insert at most �m

q � test cycles, equivalent to m+�m
q � inputs

along the pipeline. The resulting time overhead, is approximately 1
q , regardless of

the value of k. This overhead is incurred only when we duplicate a normal input
for comparison. If test vectors are used for testing the pipeline when it is idle,
the required time does not have to be treated as an overhead. The time overhead
due to periodic or selective checking can be adjusted by properly choosing the
value of q. Apparently, the time to identify a fault becomes longer as q increases.

Once an error is detected, however, the corresponding faulty encryption block
can immediately be identified. The pipeline will then be reconfigured by using
bypass links and resume normal operation. Keys for the pipeline stages have
to be redistributed due to the reconfiguration. This extra time for recovery is
negligibly small since setting the proper control signals will suffice.

In the design of block ciphers, pipelining is used to compensate for the loss
of throughput due to the implementation of our CED technique. Overall the

An Easily Testable and Reconfigurable Pipeline 129

throughput can be improved even with a complete checking, compared to the
non-pipelined design. Table 5 shows a comparison of our technique to a non-
pipelined (with time redundancy for error detection) technique.

Table 5. Comparison of the proposed technique with a simple time redundancy tech-
nique (non-pipelined)

non-pipelined time-redundancy proposed
Error detection no transient transient/permanent
Fault tolerance no no yes

No. of encryption blocks 1 1 k + 1
Error detection time n/a 1 cycle delayed immediately

Time overhead n/a 100% 1
q

× 100%
Throughput 1

n
1
2n

k
n
(q
1+q

)

The proposed technique can detect both permanent and transient faults in an
encryption block as long as the errors generated in the block are checked by dupli-
cate computation. It can locate the corresponding faulty block right away. More
importantly, it can tolerate faults through reconfiguration immediately after lo-
cating the faulty stage. Although the throughput goes down due to the delay in-
sertion for error detection, the k-stage pipeline will bring it up to k

n (q
q+1). If q=1

(complete checking) and k=2 (two-stage pipeline), for example, the throughput
is 1

n , which is the same as the nonpipelined design. If k changes to 4, the through-
put is doubled to 2

n , while making a complete checking of the entire encryption
operation. The throughput for various values of k and q is shown in Fig. 6.

The proposed pipelined architecture can tolerate multiple faulty blocks if there
is more than one extra stage. Moreover, its performance degrades gracefully since
the pipeline with bypass links can reconfigure itself into a pipeline with fewer
stages.

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7
k

th
ro

ug
hp

ut
(1

/n
)

q = 1

q = 2

q = 4

lower bound

upper bound

throughput = 1/n

Fig. 6. Throughput for various values of k and q

130 M.-H. Lee and Y.-H. Choi

5 Conclusions

In this paper, we have presented an easily-testable and reconfigurable pipeline
for symmetric block ciphers. Errors are detected by duplicate computations us-
ing bypass links. A faulty encryption block has been isolated by activating the
same bypass links for duplication. The time overhead for error detection can be
controlled by dynamically inserting test cycles into the pipeline. The reduction
in throughput due to the CED has been compensated by the increased perfor-
mance through pipelining. A two-stage pipeline will achieve the same throughput
as the original non-pipelined design. After that, throughput increases linearly in
the number of stages. Moreover, the performance degrades gracefully since it can
reconfigure itself to form a pipeline with fewer stages. The technique can best
be used for block ciphers, where throughput and availability are of the utmost
importance.

Acknowledgement

This work was supported by 2006 Hongik University Research Fund.

References

1. S. Wolter, H. Matz, A. Schubert, and R. Laur, ”On the VLSI implementation of
the International data encryption algorithm IDEA,” IEEE Int. Symp. Circuits and
Systems, vol.1, pp. 397-400, 1995.

2. S. Fernandez-Gomez, J.J. Rodriguez-Andina, and E. Mandado, ”Concurrent error
detection in block ciphers,” IEEE International Test Conference, 2000, pp. 979-984.

3. H. Bonnenberg, A. Curiger, N. Felber, H. Kaeslin, R. Zimmermann, and W. Ficht-
ner, ”Vinci: Secure test of a VLSI high-speed encryption system,” IEEE Interna-
tional Test Conference, 1993, pp. 782-790.

4. R. Karri, K. Wu, P. Mishra, and Y. Kim, ”Concurrent error detection schemes for
fault-based side-channel cryptanalysis of symmetric block ciphers,” IEEE Trans.
CAD, Vol. 21, No. 12, December 2002, pp. 1509-1517.

5. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,
CRC press, 1996.

6. J. Daemen, V. Rijmen, ”AES proposal: Rijndael,” http://www.esat.kuleuven.ac.
be/ rijmen/rijndael/rijndaeldocV2.zip

7. R. Karri, G. Kuznetsov, and M. Goessel, ”Parity-based concurrent error detection
in symmetric block ciphers,” IEEE Int. Test Conf., 2003, pp. 919-926.

An Adversarial Model for Fault Analysis
Against Low-Cost Cryptographic Devices�

Kerstin Lemke-Rust and Christof Paar

Horst Görtz Institute for IT Security
Ruhr University Bochum
44780 Bochum, Germany

{lemke, cpaar}@crypto.rub.de

Abstract. This contribution presents a unified adversarial model for
fault analysis which considers various natures of faults and attack sce-
narios with a focus on pervasive low-cost cryptographic devices. Accord-
ing to their fault induction techniques we distinguish the non-invasive
adversary, the semi-invasive adversary, and the invasive adversary. We
introduce an implementation based concept of achievable spatial and
time resolution that results from the physical fault induction technique.
Generic defense strategies are reviewed.

Keywords: Adversarial Model, Fault Analysis, Tampering, Physical Se-
curity, Implementation Attack, Tamper-Proof Hardware.

1 Introduction

Small low-cost cryptographic devices such as smartcards and RFID transpon-
ders have gained a high penetration in certain high-volume markets in the last
decade. These devices are deployed for various security services like authentica-
tion purposes, ticketing and electronic payment. As cryptographic tokens become
pervasive it is worth to reconsider the adversarial models of implementation at-
tacks as the adversary might be the legitimate owner of the cryptographic device.

We focus on active implementation attacks which can be classified as fault
analysis, physical manipulations and modifications. Fault analysis aims to cause
an interference with the physical implementation and to enforce an erroneous
behavior which can result in a vulnerability of a security service or even a to-
tal break. The terms manipulation and modification stem from definitions of
physical security, e.g., from ISO-13491-1 [1] and address similar attacks. Phys-
ical manipulation aims to obtain a service in an unintended manner. Physical
modification is an active invasive attack targeting the internal construction of
the cryptographic device.

� This is a revised version of [15]. Follow-up work to this contribution can be found
in [16]. The work described in this paper has been supported in part by the Eu-
ropean Commission through the IST Programme under Contract IST-2002-507932
ECRYPT, the European Network of Excellence in Cryptology.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 131–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

132 K. Lemke-Rust and C. Paar

If a cryptographic device is used in an hostile environment special properties
for the device are required to ensure a certain level of physical security for the
storage and processing of cryptographic keys. For the theoretical perspective
on algorithmic tamper-proof security we refer to the concepts on Read-Proof
Hardware and Tamper-Proof Hardware as given in [11]. Read-Proof Hardware
prevents that an adversary is able to read internal data stored and Tamper-
Proof Hardware prevents the adversary from changing internal data.

In a tamper-proof implementation, fault injections are not feasible per defin-
itionem. However, in real life, practical experiences have shown that approaches
towards tamper resistance are hard. Many contributions (e.g., [14,22,6,7,21])
have reported that semiconductor circuits are vulnerable against fault injec-
tions. Such findings are related to the development of devices for the use in
space exploration and high-energy physics which have to tolerate particle radi-
ation impact during operation [17,18]. In contrast to applications developed for
safety and reliability reasons, security applications have to withstand an active
malicious attacker. The importance of checking for errors in a cryptographic
algorithm was also probably known before the first scientific contribution [10]
appeared as the FIPS-140 standard already requires a cryptographic algorithm
test (“known-answer test”) [12] to be implemented in cryptographic modules
during start-up. Moreover, in an error state, according to [12], the use of cryp-
tographic algorithms shall be inhibited.

A variety of theoretical fault based attack scenarios has been published for dif-
ferent cryptographic algorithms in the past years. In the context of implemen-
tation attacks, however, the concrete assumptions on the adversarial capabilities
remain vague in many theoretical contributions. This contribution aims to reca-
pitulate and to present more graduated models that can be used as underlying as-
sumptions to measure success probability of adversaries at real implementations.

We recollect previous fault induction techniques as well as concrete fault
scenarios aiming at a unified adversarial model that may bridge the gap be-
tween the theoretical framework of algorithmic tamper-proof security and ex-
periences from fault induction techniques. In our model we cover fault analysis
against low-cost cryptographic devices. These devices are memory constrained
and are not equipped with a self-destruct capability as required in the model
of [11] and by the FIPS 140 security requirements for cryptographic modules
[12]. We extend the concept of Tamper-Proof Hardware to computations, i.e.,
the adversary is not limited to induce the fault at data contents prior to the
computation, as it is the case in [11]. In our model the fault can be induced
also during the computation of a cryptographic service. By doing so, we are
able to model the manifold nature of faults as well as to include Differential
Fault Analysis [9,20] in a more adequate manner in case of constrained devices.
Further, we also cover fault analysis at the use of non-cryptographic security
services.

We have already learnt from [11] that tamper-proofness is not realizable
against a powerful adversary applying a polynomial-time computable function
to the actual memory contents without a self-destruct capability of the device.

An Adversarial Model for Fault Analysis 133

We put forward the question whether experimental restrictions of the adversary
exist that limit the full power of the adversary or whether the assessment of
tamper-proofness is necessarily related to the efforts needed to break the cryp-
tographic device. This contribution aims at providing an adversarial model for
fault analysis that also captures implementation based properties.

1.1 Related Work

Reference [11] introduced algorithmic tamper-proof security. It defines a power-
ful tampering adversary who is able to perform (i) the cryptographic operation
(the command Run(·)1), (ii) a probabilistic modification of secret data contents
(the command Apply(·)), i.e., the fault injection, and (iii) a setup algorithm (the
command Setup(·)) which loads key data. The adversary knows all construction
details: especially, the adversary knows each bit-position in the device’s mem-
ory. It is concluded in [11] that a component is needed which is both read-proof
and tamper-proof to achieve general Algorithmic Tamper-Proof (ATP) Security.
Reference [11] also discusses restrictions of the model assuming that the adver-
sary is limited, for instance, it is only feasible for the adversary to perform a
probabilistic flipping of bits in the device’s memory. In this case [11] argues that
checking for faults can be sufficient for ATP security, even if the device is not
equipped with a self-destruct capability.

A recent survey on hardware security analysis with a strong focus on semi-
invasive attacks is presented in [23]. It is stated that any individual bit of SRAM
memory could be changed to a definitive state by optical fault induction. Both
the targeting state ‘0’ and ‘1’ could be set, just by a lateral adjustment of the
light spot.

Regarding the capabilities of adversaries other more practical approaches are
done in [2] and [4]. These assessments cover implementation attacks in general
and are not specialized to fault analysis.

The framework of Common Criteria [2] assesses the resistance of an implemen-
tation against attacks by rating the efforts that are needed for concrete attack
scenarios. The highest grade achievable is resistance against high attack poten-
tial for all feasible attack paths. The rating takes into account the efforts needed
for the identification and exploitation phase. Ratings are given for the categories
“Elapsed Time”, “Expertise”, “Knowledge of TOE2”, “Access to TOE” and
“Equipment”. To give an example for resistance against high attack potential
we consider an attack known in the public domain: the TOE is assessed to be
resistant against high potential if, e.g., an expert, who does not have detailed
knowledge about the concrete TOE, needs bespoke3 equipment and an attacking
time (including access time to the TOE) of more than one month.
1 Note that the command Run(·) itself is not subject to fault induction.
2 Target of Evaluation.
3 Extract of [2]: Bespoke equipment is not readily available to the public as it may

need to be specially produced . . ., or because the equipment is so specialised that
its distribution is controlled, possibly even restricted. Alternatively, the equipment
may be very expensive.

134 K. Lemke-Rust and C. Paar

R. Anderson and M. Kuhn [4] referred to three different classes of attackers.
They distinguish between “Class I (clever outsiders)”, “Class II (knowledge-
able insiders)”, and “Class III (funded organisations)”. Class I adversaries are
bounded by moderately equipment and may have insufficient knowledge on the
construction. The capabilities of Class II adversaries are manifold: they “have
varying degrees of understanding of parts of the system but potential access
to most of it. They often have highly sophisticated tools and instruments for
analysis.” Class III adversaries have access to great funding resources and can
assemble teams of specialists.

2 Model of Low-Cost Cryptographic Devices

We consider low-cost cryptographic devices used in high-volume markets. Low-
cost cryptographic devices may be based on hardware (circuitry) only such as,
e.g., some RFID tags. Moreover, other devices additionally include software com-
ponents such as, e.g., microcontroller based smart cards. In the latter case a
reliable hardware-software co-design is also of interest. For example, error detec-
tion for hardware components might be (partially) implemented in software. In
our discussions we aim to include both hardware and software aspects for fault
induction. As memory building blocks are expensive, low-cost implementations
iterate processing steps at the cost of an enlarged execution time. We assume
that the implementation is deterministic to a certain extent.4

Physical security measures that aim to prevent the disclosure and modification
of internals (software, cryptographic keys, application data and sub-components
of the circuit) can be either tamper resistant or tamper responsive. Tamper re-
sistance implies that the cryptographic module is able to avert all attacks even
without any active reaction. Tamper response measures are active responses of
the device once an attack is detected. Tamper responsiveness requires an in-
ternal non-interruptible surveillance of the device and mechanisms to zeroize
cryptographic keys once an intrusion attempt is detected.

Typically, low-cost devices do not contain an internal battery and are supplied
with energy and clock by a reader device. This has an implication towards tamper
responsiveness: as these modules are not permanently powered up, an internal
detection of active attacks is only possible if the device is powered up. The
external interfaces of the cryptographic device include the channels used for
communication and external supply of voltage and clocking. They are under
complete control of the adversary. Computations are only feasible if the device
is powered on and the computation can always be interrupted by removing the
power supply. It is assumed that the power-on sequence carries out a test on the
integrity of the internal construction. If the test fails, the device shall enter a
non-responsive mode5. Also in case of a recognized error during operation, the
device shall enter a non-responsive mode.
4 The implementation may include internal timing jitter as caused by random process

interrupts or asynchronous clocking.
5 Not necessarily a permanent non-responsive mode.

An Adversarial Model for Fault Analysis 135

We assume that the adversary has access to a security service, but it shall not
be feasible for the adversary to load a key into the device6 nor to modify the
implementation and internal data without any active, physical interaction.

The security service may include a cryptographic algorithm, but also security
enforcing services are feasible that work without any cryptographic means. An
example for a non-cryptographic mechanism is a human authentication based on
a Personal Identification Number (PIN) using an authentication failure counter.

3 Adversarial Models

The set-up for fault analysis based attacks consists of i) the physical device under
test, ii) a reader device for the communication interface, and iii) a fault injection
set-up. Optionally, iv) an analysis set-up can be additionally used to monitor the
fault induction process and its effects, e.g, by measuring side channel leakage.
The set-up as well as the information flow is illustrated in Fig. 1 and described
in more detail below.

Fig. 1. Fault Analysis Set-Up

We denote the adversary by A. By assumption A has physical access to the
physical device D under attack and can run a high number of instances of a secu-
rity service S. Each instance is initiated by a query Qi of A and D finishes after
some computational time at time Ti returning a response Ri with i ∈ {1, . . . , N}.
A applies a probabilistic physical interaction process aiming at disturbing the
intended computation of S. A may be able to monitor the effects caused by
physical interaction using auxiliary means, e.g., by observing the instantaneous
leakage Ii,t of the implementation at an analysis set-up at time t. If necessary,
A applies cryptanalytical methods for a final analysis step.

Moreover, we assume that A is able to perform multiple fault injections that
are bounded by M , wherein M is a small number. Let L be a small number of

6 This is different to [11] that assumes that a setup command can be invoked by the
adversary.

136 K. Lemke-Rust and C. Paar

spatial separated fault injection set-ups that can be operated in parallel. The
distinct fault injections during one invocation of S are numbered as Fi,l,m with
l ∈ {1, . . . , L} and m ∈ {1, . . . , M}. These fault injections occur at the times
{ti,1,1, . . . , ti,L,M} with ti,1,1 ≤ . . . ≤ ti,L,M ≤ Ti.

A acts in an active, adaptive way, i.e., both the queries Qi as well as the
parameters of Fi,l,m can be chosen adaptively. We point out that the leakage Ii,t

is typically not yet available for the configuration of Fi,l,m at the same instance
of S unless a more demanding real-time analysis is applied.

Fault induction is a probabilistic process with success rate p. Complementary
events with probability 1 − p are attempts that do not lead to any fault and
attempts causing an unintended fault.

Informally speaking, an adversary A is successful if the insertion of faults
either i) yields access to a security service S without knowledge of the required
secret or ii) yields partial information about the secret.

The objectives of A are detailed in Section 3.2. We differentiate according to
the means of A in Section 3.3.

3.1 Classification of Faults

For modeling, assumptions on the kind of faults as well as their consequences are
needed. The first publication [10] considered a random transient fault model, i.e.,
‘from time to time the hardware performing the computation may induce errors’.
The origin of the error is seen as a deficiency of the hardware that occurs by
chance without any active enforcement of an adversary. Reference [9] introduces
an asymmetric type of memory faults, so that changing one bit from zero to one
(or the other way around) is much more likely. Further, Non-Differential Fault
Analysis based on a permanent destruction of a memory cell is found in [9].
Reference [4] gives an example of a processing fault which leads to a bypass of
a check of parameter bounds.

In this contribution we consider an active adversary physically enforcing the
activation of faults. A fault is said to be transient if the device D remains full
functional after fault injection. A fault is permanent if the device D stucks at the
fault caused afterwards, i.e., the fault persists during life time of the device. If the
fault affects data, we call it a data fault. If the fault affects the processing of the
device D, we call it a processing fault7. It is said that a data fault has a preferred
direction if the probability to cause a bit transition from ‘0’ to ‘1’ is significantly
different from the probability to cause a bit transition from ‘1’ to ‘0’.

3.2 Objectives of the Adversary

Due to the variety of objectives of an adversary at a concrete implementation we
aim to categorize them into main categories. A either aims to disclose the cryp-
tographic secret by fault induction, or, alternatively, aims to disturb the intended
operation of the security service that not necessarily need to be a cryptographic
7 Note that processing faults may jeopardize any security service.

An Adversarial Model for Fault Analysis 137

service. We distinguish Simple Fault Analysis (SFA), Successive Simple Fault
Analysis (SSFA), and Differential Fault Analysis (DFA). SSFA and DFA apply
to cryptographic implementations only, whereas SFA has a wider scope.

Definition 1 (Simple Fault Analysis). Let S be a security service initiated by
the query Qi. Simple Fault Analysis (SFA) aims at the induction of faults (either
transient or permanent, either data fault or processing fault) at an invocation of
S and consists of the following steps:

– Choose the query Qi and the parameterization of Fi,l,m.
1. Invocation: Send the query Qi to the device D.
2. Fault Induction8: Apply physical interaction processes Fi,l,m.
3. Check (optional): Observe the processing of the device D by measuring

Ii,t.
4. Receipt (optional): Receipt and analysis of the response Ri.

– Exploitation: Exploit of the fault due to the concrete scenario.

Example 1. i) An example of SFA is a transient or permanent processing fault
like the physical deactivation of a hardware component, e.g., of an internal ran-
dom number generator. Preparation work for physical destruction is conveniently
done at power-down mode of the device. ii) Another example is the transient
or permanent modification of a security enforcing data item aiming at a more
privileged state. iii) Further, a modification of the security service itsself may
occur, e.g., by causing a computational fault during fetching and decoding of
program code in case of software implementations. iv) In the context of crypto-
graphic security services, Fault Analysis at an RSA-CRT implementation [10] is
a prominent example.

Definition 2 (Successive Simple Fault Analysis). Let S be a cryptographic
service using the secret key k and initiated by the query Qi. Successive Simple
Fault Analysis (SSFA) aims at the induction of multiple similar faults (either a
transient or permanent data fault) and consists of the following steps:

– Choose the query Qi and the parameterization of Fi,l,m.
1. Invocation: Send the query Qi to the device D.
2. Fault Induction8: Apply physical interaction processes Fi,l,m.
3. Check (optional): Observe the processing of the device D by measuring

Ii,t.
4. Receipt: Receipt and analysis of the response Ri. Store Ri.

– Cryptanalysis: Apply mathematical cryptanalysis in order to determine the
key k based on the responses Ri received.

Example 2. i) Permanent fault induction can also be applied iteratively to com-
promise a cryptographic key successively by exploiting a preferred direction of
data faults [8]. ii) In the presence of side channel countermeasures the proba-
bilistic information ‘error detected’ and ‘no error detected’ is an oracle that can
leak information on the secret key successively [13].
8 Alternatively, this step can be (partially) scheduled before the invocation of S .

138 K. Lemke-Rust and C. Paar

Definition 3 (Differential Fault Analysis). Let S be a cryptographic service
using the secret key k and initiated by a query Qi. Differential Fault Analysis
(DFA) consists of the following steps:

– Acquisition: Choose the query Qi and the parameterization of Fi,l,m.
1. Invocation: Send the query Qi to the device D.
2. Fault Induction9: Apply physical interaction processes Fi,l,m during com-

putation of the cryptographic device.
3. Check (optional): Observe the processing of the device D by measuring

Ii,t.
4. Receipt: Receipt and analysis of the response Ri. Store Ri if it is erro-

neous and appropriate for subsequent analysis.
– Cryptanalysis: Apply mathematical cryptanalysis in order to determine the

key k based on the erroneous cryptograms Ri revealed.

Example 3. DFA based on DES [9] and AES [20].

3.3 Means of the Adversary

According to FIPS 140-2 [3] we introduce the concept of the cryptographic bound-
ary that encloses all security relevant and security enforcing parts of an imple-
mentation. Additionally, we define a second boundary that we call the interaction
boundary that is specific for each physical interaction process. If the adversary
does not pass the interaction boundary, the physical interaction is not effec-
tive at the cryptographic device. The interaction boundary can be an outer
boundary of the cryptographic boundary, as, e.g., in case of temperature which
affects the entire cryptographic module. Interaction with light is only feasible if
a non-transparent encapsulation is partially removed, e.g., the chip is depack-
aged. Because of the limited range of the interaction, interaction processes using
particles with non-zero mass may require to breach the cryptographic boundary.

The means of A can be manifold. In our view the main limitations are caused
by the technical equipment available. The attacking time might not be that
important and the knowledge about the implementation can be improved by
reverse engineering. Because of this, we distinguish the non-invasive adversary
Anon−inv, the semi-invasive adversary Asemi−inv , and the invasive adversary
Ainv that are defined according to earlier work (e.g., [22]) on fault induction.

Definition 4 (Interaction Range). LetA chooseaphysical interactionprocess.
i) A uses non-invasive means if the interaction boundary is an outer boundary of
the cryptographic boundary. We denote the non-invasive adversary by Anon−inv.
ii) A uses invasive means if the interaction boundary is an inner boundary of the
cryptographic boundary. Accordingly, we denote the invasive adversary by Ainv.
iii) A semi-invasive adversary Asemi−inv uses light or electromagnetic fields as
the interaction process and is a special case of Anon−inv.

9 Alternatively, this step can be partially scheduled before the invocation of S .

An Adversarial Model for Fault Analysis 139

We outline that the interaction rate of physical interaction processes with matter
is another important aspect that is not further detailed here.

If precision is needed for the fault injection, e.g., a specific SRAM cell of
the cryptographic device is targeted, the fault has to be injected with sufficient
resolution in space and time. The following two definitions yield a first estimation
on the success rates for a given implementation.

Definition 5 (Spatial Resolution). Let dA be the target area at depth z with
depth dz so that dA · dz is the target volume of the device D for the fault in-
duction. Let ∆A be the area and ∆z be the depth of D that is affected by the
fault induction process. Let D be consisting of homogeneous material and let the
physical interaction depend only on the penetration depth z in D.

i) The probability to hit the target area is pArea =
{

1 : ∆A ≤ dA
dA
∆A : ∆A > dA

ii) The probability to hit the target depth is pDepth(z) =
� z+dz

z
η(z′)dz′

�
∆z
0 η(z′)dz′ , wherein

0 ≤ η(z) ≤ 1 is the transmission of the physical interaction process in depen-
dency on the penetration depth z.
iii) The probability for the spatial resolution is pSpace = pArea · pDepth.

If local precision is not needed for the concrete fault attack scenario it is pArea =
pDepth = 1. Note that we assume a uniform distribution of the interaction rate
which is the simplest possible approach. Due to the specific characteristics of
the interaction process as well as the concrete layout of the device, deviations of
the uniformity occur in practice. Consider an example for an optical interaction:
the power distribution of the light beam might be spatially approximated by
a Gaussian function and η(z) is locally reduced beneath metal layers of the
device. A derivation for spatial resolution considering the general case of both
the physical interaction process and the concrete layout of D can be found in
[16].

Definition 6 (Time Resolution). Let dt be the targeted time interval for the
fault induction. Given a timing resolution of ∆T for the fault induction process,

we define pTime =
{

1 : ∆T ≤ dt
dt

∆T : ∆T > dt

In case of a precised fault Fi,l,m in space and time p is reduced by a factor of
pArea · pDepth · pTime.

3.4 Applications

The Non-invasiveAdversary Anon−inv: Anon−inv attacks the cryptographic
device by using its external interfaces or by changing the environmental condi-
tions. Faults that are injected are random and they are not precise, i.e., the affected
area ∆A and the depth ∆z are given by the dimensions of the physical device in
our rough approximation. Changes in the environmental condition as overheat-
ing are long-lasting yielding a high value for ∆T which in turn gives a very small

140 K. Lemke-Rust and C. Paar

value for pTime. ∆T for glitches in the external lines can be small so that glitches
can yield high values for pTime, however, the product of pArea and pDepth is nearly
negligible resulting in a very low probability to induce specific errors.

The Semi-invasive Adversary Asemi−inv: Asemi−inv penetrates the inter-
action boundary of light (by depackaging the chip), but not the cryptographic
boundary. Note, that we allow photons, i.e., EM radiation, emitted by Asemi−inv

to pass the cryptographic boundary. Asemi−inv applies optical fault induction
[22] or electromagnetic induction [21]. Asemi−inv is able to target specific parts
of the implementation that are most promising. The local area resolution achiev-
able, i.e., pArea, is of medium quality. Considering an optical interaction: if the
area covered by the beam of photons exceeds the target area, the probability
pArea is roughly given by the ratio of the target area to the beam area. η(z) is
reduced exponentially with increasing target depth due to the interaction which
is dominated by the photo effect. Accordingly pDepth decreases exponentially in
case of optical interactions. Failures in inner chip layers are hard to achieve for
Asemi−inv . However, Asemi−inv can achieve high values for pTime.

The Invasive Adversary Ainv: Ainv penetrates the cryptographic bound-
ary. Matter can be inserted or removed from the cryptographic boundary. It
is typically required that the chip passivation is removed at invasive attacks.
Moreover, Ainv is able to probe within the overall internal construction, i.e., the
analysis set-up used to observe the leakage of the implementation may consist
of internal passive probes. By doing so, Ainv is bounded by L different loca-
tions that can be mounted in parallel. Fault injections are caused by particles
with non-zero mass (as ions) or directly at active probes. Ainv adaptively acts
within the cryptographic implementation. Therefore, Ainv is able to target and
possibly deactivate the most critical parts of the implementation. Ainv is able to
gain privileged insights by physical reverse engineering. The probabilities pTime,
pArea and pDepth are high resulting in a high overall probability to induce spe-
cific faults. Note, that also for Ainv pDepth decreases with increasing depth z
though the dependency is more complex and strongly depends on the concrete
interaction process.

Defense Strategies: For the development of defense strategies, assumptions
on the induced errors are required. Whereas data faults are assumed to lead to
computational errors, such assumptions may be hard to capture in the case of
processing faults. Defense strategies may be developed both for error detection
as well as fault prevention.

Detection of computational errors can be classified in software and hardware
measures. Software measures include well known error detection codes at data
items and internal verifications of the correctness of cryptographic computations.
Hardware measures comprise physical sensors and more advanced techniques as
dual-rail logic [22] including an alarm mechanism. Typically, these measures are
designed to detect one enforced error. The decision whether or not the device
shall enter a permanent non-responsive mode in case of alarms depends on the

An Adversarial Model for Fault Analysis 141

concrete impact probability as well as the concrete security service. It is a matter
of risk evaluation. Note that defenses are part of the implementation under attack
and are therefore subject to fault induction, too. Especially for software based
error detection, the time of the check is a parameter that can be used to shorten
the potential time frame dt for fault analysis if the check is performed at a late
point in time during computation of S. Additional checks at the end of the
computation of S are another choice of software implementations: by doing so
the adversary may be enforced to succeed in applying additional precised faults.
However, this measure is limited against Asemi−inv and Ainv as long as the
physical target area remains unchanged.

Prevention of precise faults may be enhanced by shrinking of semiconductor
devices. Shrinking decreases dA, but it may also enhance the sensitivity of the
circuit towards fault inductions. Randomness of the timing in the implemen-
tation of S can be further used as fault prevention technique to reduce p, as
p ∼ pTime for all adversarial models. For Asemi−inv and Ainv it should be aimed
to reduce η(z) at the locations of security relevant and enforcing parts of the
device, e.g. by shielding with metal layers. Another hardware based alternative
is Random Register Renaming [19] which decouples the logical naming of reg-
isters from the physical location of the registers and was originally designed to
counteract power analysis. The mapping between the virtual memory and the
physical memory is renewed for each execution of the security service. However,
Ainv may be able to analyze the memory management and to adaptively act
immediately.

The question arises whether a low-cost implementation can ever achieve a
reasonable security level against multiple precise fault injections, especially by
Ainv. An increase in the number of defenses generally requires a corresponding
increase in the number of fault injections resulting in a decrease of the overall
success rate p. By assumption, it is feasible for Ainv to monitor L locations in
parallel, whereat at each location M successive fault injections can be done at
different points in time. From the theoretical point of view the redundancy of
an implementation shall therefore exceed L in space to counteract Ainv (im-
plicitly assuming that L is considerably smaller than M). Such a redundancy
of the circuit may be acceptable at specialized developments but surely not for
high-volume products. Perfect protection against multiple fault injections of an
invasive adversary may not be achievable, especially for low-cost cryptographic
devices. Reliable protection against multiple fault injections of Anon−inv and
Asemi−inv is, however, much more reasonable, as the reduction of success prob-
ability is much more rigorous – if compared with Ainv – because of limitations
in spatial and time resolution.

4 Conclusion

In this contribution we presented an adversarial model that unifies various char-
acteristic fault attacks. According to their fault induction techniques we distin-
guish three classes of adversaries as there are the non-invasive adversary, the

142 K. Lemke-Rust and C. Paar

semi-invasive adversary, and the invasive adversary. In this work we give more
precise definitions of spatial and time resolution at fault injection and we review
the effectiveness of generic countermeasures according to the classes of adver-
saries.

We hope that our considerations are valuable at practical implementations
to categorize the efforts needed for concrete attacks. In our view, due to the
manifold flavours of attack strategies in this research area further efforts at the
graduation of adversarial capabilities are needed. It is concluded that reliable
defenses are reasonable against adversaries who are restricted in terms of exper-
imental equipment, but they are hard to achieve against an invasive adversary
applying multiple fault injections.

Acknowledgments. We wish to thank Ahmad-Reza Sadeghi for fruitful dis-
cussions and comments which helped to improve this paper.

References

1. ISO 13491-1:1998 Banking – Secure cryptographic devices (retail)– Part 1: Con-
cepts, requirements and evaluation methods.

2. Common Methodology for Information Technology Security Evaluation, CEM-
99/045, Part 2: Evaluation Methodology, 1999.

3. FIPS PUB 140-2, Security Requirements for Cryptographic Modules, 2001.
4. Ross Anderson and Markus Kuhn. Tamper Resistance — A Cautionary Note. In

The Second USENIX Workshop on Electronic Commerce Proocedings, pages 1–11,
1996.

5. Gildas Avoine. Adversarial Model for Radio Frequency Identification, available at
http://eprint.iacr.org/2005/049. Technical report, 2005.

6. Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whe-
lan. The Sorcerer’s Apprenctice’s Guide to Fault Attacks. In Workshop on Fault
Detection and Tolerance in Cryptography, 2004.

7. Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The Sorcerer’s Apprenctice’s Guide to Fault Attacks, available at
http://eprint.iacr.org/2004/100. Technical report, 2004.

8. Eli Biham and Adi Shamir. The Next Stage of Differential Fault Analysis: How
to break completely unknown cryptosystems, available at http://jya.com/dfa.htm,
1996.

9. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer, 1997.

10. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Importance
of Checking Cryptographic Protocols for Faults (Extended Abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, volume 1233 of Lecture
Notes in Computer Science, pages 37–51. Springer, 1997.

11. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security
against Hardware Tampering. In Moni Naor, editor, Theory of Cryptography, vol-
ume 2951 of Lecture Notes in Computer Science, pages 258–277. Springer, 2004.

An Adversarial Model for Fault Analysis 143

12. William N. Havener, Roberta J. Medlock, Lisa D. Mitchell, and Robert J. Wal-
cott. Derived Test Requirements for FIPS PUB 140-1, Security Requirements for
Cryptographic Modules, 1995.

13. Marc Joye, Jean-Jacques Quisquater, Sung-Ming Yen, and Moti Yung. Observ-
ability analysis - detecting when improved cryptosystems fail. In Bart Preneel,
editor, CT-RSA, volume 2271 of Lecture Notes in Computer Science, pages 17–29.
Springer, 2002.

14. Oliver Kömmerling and Markus G. Kuhn. Design Principles for Tamper-Resistant
Smartcard Processors. In Proceedings of the USENIX Workshop on Smartcard
Technology (Smartcard ’99), pages 9–20, 1999.

15. Kerstin Lemke and Christof Paar. An Adversarial Model for Fault Analysis against
Low-Cost Cryptographic Devices. In Workshop on Fault Detection and Tolerance
in Cryptography, pages 82–94, 2005.

16. Kerstin Lemke, Christof Paar, and Ahmad-Reza Sadeghi. Physical Security Bounds
Against Tampering. In Applied Cryptography and Network Security, volume 3989
of Lecture Notes in Computer Science, pages 253–267. Springer, 2006.

17. Reǵıs Leveugle. Early Analysis of Fault Attack Effects for Cryptographic Hardware.
In Workshop on Fault Detection and Tolerance in Cryptography, 2004.

18. P.-Y. Liardet and Y. Teglia. From Reliability to Safety. In Workshop on Fault
Detection and Tolerance in Cryptography, 2004.

19. David May, Henk L. Muller, and Nigel P. Smart. Random Register Renaming
to Foil DPA. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2001, volume 2162 of
Lecture Notes in Computer Science, pages 28–38. Springer, 2001.

20. Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and KHAZAD. In Colin D.
Walter, Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2003, volume 2779 of Lecture Notes in Computer Sci-
ence, pages 77–88. Springer, 2003.

21. David Samyde and Jean-Jacques Quisquater. Eddy Current for Magnetic Analysis
with Active Sensor. In Proceedings of ESmart 2002, pages 185–194, 2002.

22. Sergei P. Skorobogatov and Ross J. Anderson. Optical Fault Induction Attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in
Computer Science, pages 2–12. Springer, 2002.

23. Sergei S. Skorobogatov. Semi-invasive attacks — A new approach to hardware
security analysis, available at http://www.cl.cam.ac.uk/techreports/ucam-cl-tr-
630.pdf. Technical report, 2005.

Cryptographic Key Reliable Lifetimes:
Bounding the Risk of Key Exposure in the

Presence of Faults�

Alfonso De Gregorio†

Andxor S.r.l.
via F.lli Gracchi, 27

Cinisello Balsamo (MI) 20092, Italy
adg@crypto.lo.gy

Abstract. With physical attacks threatening the security of current
cryptographic schemes, no security policy can be developed without tak-
ing into account the physical nature of computation.

In this paper we adapt classical reliability modeling techniques to
cryptographic systems. We do so by first introducing the notions of
Cryptographic Key Failure Tolerance and Cryptographic Key Reliable
Lifetimes. Then we offer a framework for the determination of reliable
lifetimes of keys for any cryptographic scheme used in the presence of
faults, given an accepted (negligible) error-bound to the risk of key expo-
sure. Finally we emphasize the importance of selecting keys and design-
ing schemes with good values of failure tolerance, and recommend mini-
mal values for this metric. In fact, in standard environmental conditions,
cryptographic keys that are especially susceptible to erroneous compu-
tations (e.g., RSA keys used with CRT-based implementations) are ex-
posed with a probability greater than a standard error-bound (e.g., 2−40)
after operational times shorter than one year, if the failure-rate of the
cryptographic infrastructure is greater than 1.04 × 10−16 failures/hours.

Keywords: Key Lifetimes, Fault-Attacks, Dependability, Security Poli-
cies, Fault Tolerance, Reliable Lifetimes, Reliability Modeling, Side-
Channels.

1 Introduction

The manifestation of faults at the user interface of a cryptographic module may
jeopardize the security by enabling an opponent to expose the secret key mate-
rial [9,12,13,14,27,20,15,16]. In fact, by failing to take into account the physical
nature of computation, the current mathematical models of cryptography are
unable to protect against physical attacks that exploit in a clever way the pecu-
liarities inherent the physical execution of any algorithm [31,23]. Consequently,
† This work was completed during the summer 2003 while the author was a visitor in

the Katholieke Universiteit Leuven, Dept. Elect. Eng.-ESAT/SCD-COSIC, Kasteel-
park Arenberg 10, B-3001 Leuven-Heverlee, Belgium.

� A preliminary version of this paper appeared as a COSIC Technical Report.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 144–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Cryptographic Key Reliable Lifetimes 145

one should not rely on the services delivered by today’s cryptographic modules,
if specific dependability guarantees are not satisfied. However, the possession of
dependability attributes should be interpreted in a relative, probabilistic, sense
[38,40]. Due to the unavoidable occurrence of transient faults or the presence of
dormant faults, there will be always a non-zero probability that the system will
fail, sooner or later.

In order to keep the risk of key exposure below a desired boundary ε, the use
of error detection techniques in fault-tolerant cryptographic modules is neces-
sary but not sufficient [39,5,6,8,7,26]. In fact, for standard error-bounds (2−40, or
also lower values), with typical fault rates and using fault-tolerant systems with
high levels of coverage, the probability of a key exposure may exceed the desired
error bound within very short mission times, depending on the number of incor-
rect cryptographic values necessary to perform the fault attack against a specific
cryptographic scheme. We show that this is true also at standard environmental
conditions, where examples of transient and dormant faults - potentially affecting
both hardware and software components - are respectively: Single Event Upsets
(SEUs) [22,21,34], and code defects with low activation probability, such as those
described by Harvey in [24] for software implementation of the DFC block cipher.
For instance, as will be shown in Sect. 3, cryptographic modules that implement
cryptographic schemes especially susceptible to erroneous computations (e.g.,
RSA based on the residue number system [27,30]), will expose the key material
with a probability greater than ε by exceeding the required reliability level after
operational times so short, that the number of scenarios where these schemes
find application in the presence of faults results to be remarkably limited. Trying
to increase further the coverage of fault-tolerant systems is not the most viable
solution, since the difficulty of obtaining statistical confidence for extremely low
failure-rates would raise the costs of cryptographic modules, by requiring a much
larger number of hours during the design and assessment phases. Moreover, mod-
ules implemented in software typically need to be executed on different hardware
or software platforms, and their testing phases may be iterated, depending on
the Software Development Life Cycle (SDLC) in use.

Therefore, we argue that a careful management of key-lifetimes can provide
a sensible and pragmatic approach to protect against fault attacks at standard
environmental conditions. In particular, since reliability is a function of time,
key-lifetimes should be selected so that the key material will no longer be used
when the effective reliability of the system falls below the level required to guar-
antee the accepted negligible risk of key exposure.

In this work, we adapt classical reliability modeling techniques to crypto-
graphic systems. We do so by first introducing the notions of Cryptographic
Key Failure Tolerance and Cryptographic Key Reliable Lifetimes. Then we of-
fer a framework that enables to limit the risk of key exposure to a desired
error-bound in the presence of faults, by modeling the reliability of typical cryp-
tographic infrastructures and relating their failure rates, the failure tolerances
of the cryptographic keys and the mission duration for the required reliabil-
ity goals, to the lifetimes of keys. Using this framework, we provide guidelines

146 A. De Gregorio

both for the determination of reliable lifetimes of keys for any cryptographic
scheme implemented in generic cryptographic modules, or for the selection of
cryptographic infrastructures that can provide the required level of reliability, if
specific lifetimes and schemes are desired. In fact, as long as the mathematical
models of cryptography are not extended to the physical setting, reliability and
security will remain strictly related. Consequently, security policies will have to
be developed by carefully taking into account the peculiarities inherent in the
physical execution of any algorithm.

Our framework is intended to be used together with the existing guidelines
to the selection of cryptographic key sizes and lifetimes [17,29,28,35,37,18,25,32,
33,10,42], assuming one agrees with the formulated hypotheses of the prior works
or with the explicit assumptions on which our recommendations are based. The
existing guidelines should be considered complementary to this framework, as
based on the analysis of the computational effort required to break cryptographic
schemes by exhaustive search.

The major advantage of our approach, besides its simplicity, is that it allows
to keep the risk of key exposure below an accepted error-bound using one or
more cryptographic modules characterized by different failure rates.

Organization. The rest of the paper is organized as follows. We describe
the model and introduce the notion of Cryptographic Key Failure Tolerance in
Sect. 2. In Sect. 3 we extend the notion of reliable life to cryptographic keys
and offer a first framework to model the risk of key exposure in the presence of
faults and to compute upper bounds to the lifetimes of keys, by incrementally
modeling the reliability of the following two cryptographic infrastructures: 1)
single systems implementing cryptographic schemes tolerating a generic num-
ber of erroneous computations, 2) highly available cryptographic infrastructures
characterized by a pool of independent systems providing service concurrently,
using any cryptographic scheme, and sharing the key material. Sect. 4 will be de-
voted to provide examples of how to use the proposed framework. We discuss the
consequences of our estimates and emphasize the importance of choosing cryp-
tographic keys and designing cryptographic schemes with good levels of failure
tolerance in Sect. 5. We conclude in Sect. 6.

2 The Model

The model consist of a cryptographic module containing some cryptographic
secret. The interaction with the outside work follows a cryptographic protocol.
On some rare occasions, the module is assumed to be affected by faults causing
it to output incorrect values [14].

2.1 Key Points

In the presence of faults, the choice of cryptographic key lifetimes depends pri-
marily on the following points:

Cryptographic Key Reliable Lifetimes 147

I. Environmental conditions;
II. The failure tolerance of cryptographic keys (defined in Sect. 2.3) - 1st security
parameter;
III. Accepted (negligible) risk of key exposure: the desired security margin - 2nd

security parameter;
IV. Failure rates: the rate of occurrence for incorrect values at the cryptographic
module user interface - 3rd security parameter;

2.2 Environmental Conditions and Passive Fault Attacks

We limit our analysis to the black-box scenario characterized by the occurrence
and activation of faults in standard environmental conditions.

Assumption 1. Our main assumption is that the security of cryptographic
modules will not be compromised by any deliberate or accidental excursions
outside their normal operating ranges of environmental conditions. For instance,
a cryptographic module has been designed according to today’s security stan-
dards [19] to operate, or to respond, in a safe way also with widely varying
environmental conditions. Or, the computing device can be simply kept in a
controlled environment (e.g., a network-attached HSM working in a controlled
data center).

The Threat Model. As the attacker does only observes failures as they are oc-
curring, tries to exploit them in an opportunistic way, and does not deliberately
induce faults, we call this kind of attack Passive Fault Attacks. For instance, a re-
mote attacker may observe erroneous digitally-signed objects (e.g., CRLs, X.509
PKC, X.509 AC) stored in X.500 Directory Services [11]. We emphasize that,
according to the second principle outlined by Anderson in [1], system designers
should expect real problems to come from blunders in the system design and
in the way it is operated. It is interesting to note how an opportunistic threat
model characterize largely deployed systems, such as payment systems [2,3] and
prepayment electricity meter systems [4].

All the estimates offered in this paper would be drastically modified if a mod-
ification of the environmental conditions can augment the occurrences of failures

Table 1. The Cryptographic Key Failure Tolerance of some cryptographic schemes

Crypto Scheme + Sec. Parameter(s) Fault Model CKFT Author(s) Year
Fiat-Shamir Id. Scheme (t = n) ∼1bit O(n) Boneh, et al. [14] 1996
RSA (1024 bit) 1bit O(n) Boneh, et al. [14] 1996
Schnorr’s Id. Protocol (p = a, q = n) 1bit n · log 4n Boneh, et al. [14] 1996
RSA+CRT 1bit 0 Lenstra [27] 1997
AES (n=128) 1bit 49 Giraud [20] 2003
AES (n=128) 1byte 249 Giraud [20] 2003
AES (n=128) 1byte 1 Piret, et al [36] 2003
KHAZAD 1byte 2 Piret, et al [36] 2003

148 A. De Gregorio

(i.e., as happens in presence of active fault attacks). Hence, the framework pro-
vided in this paper is complementary to fault-diagnosis and tolerance techniques
aimed at increasing the reliability of cryptographic systems.

2.3 Cryptographic Key Failure Tolerance

Definition 1. Let B be a black-box implementing a cryptographic scheme S
and containing a secret key K that is inaccessible to the outside world, and with
the set of security parameter(s) P . The Cryptographic Key Failure Tolerance,
CKFT m

K(S,P)
∈ ZZ0

+, is defined to be the maximum number of faulty values,
occurring according to the fault model identified by the label ’m’, that B can
output through its cryptographic protocol before K gets exposed by a fault-attack1.

Whenever there is no ambiguity we will write f for CKFT m
K(S/P)

.

Remark 1. In the presence of fault-attacks, the Cryptographic Key Failure Tol-
erance (CKFT) is a security parameter. As the value assumed by this metric
increases, the probability of succeeding in a fault-attack within time T decreases.
A quantitative estimate of this probability is provided in Sect. 3.

In Table 1 the failure tolerance of some cryptographic schemes is provided. For
example, an AES-128 key can be exposed by 2 faulty ciphertexts while consider-
ing the 1byte fault model and the attack suggested by Piret and Quisquater in
[36]. It should be noted how several cryptographic keys may be characterized by
a common value of this metric. We denote the set of all cryptographic keys with
failure tolerance f under the fault model m, Cm

f . Obviously, new fault attacks or
improvements to already existing attacks can determine new failure tolerance val-
ues for a given set of keys. Hence, we will refer in a generic way to the CKFT val-
ues. For instance, a beautiful refinement by Lenstra [27] to the first fault-attack on
RSA used with Chinese Remainder Theorem (CRT) [12,13,14] caused the shifting
of all RSA private keys used with the CRT from C1bit

1 to C1bit
0 , where 1bit denotes

the fault-model considering single faults affecting one bit at a time.

2.4 Accepted Error-Bound to the Risk of Key Exposure

This is the 2nd security parameter. It can assume every desired value in the
interval (0, 1). Typical values are 2−40 or lower.

2.5 Failure Rates

Throughout the rest of this paper, unless specified differently, we will refer to
the failure rate, µm, as the rate of occurrence of incorrect values at the user
interface of a given cryptographic module, while considering the fault model m.
1 If the CKFT of a a given key is equal to 0, then K do not tolerate any failure. Hence

it is sufficient to output a single faulty value in order to expose the key material.
This is the case of RSA private keys used by implementations based on the Chinese
Remainder Theorem, under the fault models described in [27] and [41].

Cryptographic Key Reliable Lifetimes 149

The failure rate is a security parameter. In fact, as will be shown in Sect. 3,
as the failure rate increases the mean time to failure (MTTF) decreases, and
consequently the probability of succeeding in a fault-attack within time T
increases.

In Sect. 3, we model the failure rates of cryptographic infrastructures com-
posed by multiple independent subsystems2 providing service concurrently and
characterized by different failure rates. Since failure rates of each component
are strongly dependent, among other factors, either on the implementation de-
tails of cryptographic modules, or on each target fault model, we leave them
as parameters. Therefore, the estimates of lifetimes are provided for a rep-
resentative sample of failure rates in the range (1 × 10−15, 1 × 10−9), in
failures/hours.

3 Cryptographic Key Reliable Lifetimes

In order to limit the risk of key exposure, it is necessary to limit the lifetime of
the key so that the key material will no longer be used when the reliability of
the computing system falls below the required level.

Definition 2. Let B be a black-box implementing a cryptographic scheme S
and containing a secret key K ∈ Cm

f . The Cryptographic Key Reliable Lifetime,
CKRLε,m

K , is defined to be the longest period of time elapsed from the activation
of the key-material, tR, after which the reliability of B, R(tR), has fallen below
the level required to enforce the security margin ε, while considering the fault
model identified by m.

It is easy to extend the notion of CKRL to multiple target fault models by
computing this quantity for each fault model being considered, and taking the
smallest lifetime estimate as the upper bound to the lifetime of the cryptographic
credential: CKRLε,M

K = min (CKRLε,m
K) for all m ∈ M where M is the set of

target fault models.

3.1 Estimation Methodology

Given M, the accepted error-bound ε, and the failure tolerance value that char-
acterize a generic key CKFT m

K(S,P)
, we first determine the reliability level R(tR)

necessary to enforce the security margin. Then, by modeling the reliability of
specific infrastructures, we determine the final failure rate µm

Infr. for each fault
model m ∈ M. The resulting values are used to compute respective reliable
lifes of the infrastructure tmR , or the mission durations for the required reliability
level. The smallest mission duration is the upper bound to the lifetime of the
key K(S,P), CKRLε,M

K .

2 We consider two subsystems to be independent if electrically isolated from each other,
using separate power supplies and located in separate chassis. The subsystems can
share common data objects and cryptographic keys.

150 A. De Gregorio

3.2 Single Cryptographic Modules Implementing a Generic
Cryptographic Scheme

Let T be a random variable representing the time of occurrence of faulty values
at the user interface of the computing system. Let F (T) be the distribution of T .
Typically, computing systems are assumed to fail according to the exponential
distribution. This distribution, being characterized by constant failure rates, is
consistent with the Assumption 1.

In particular, we use the two-parameter exponential distribution. Its proba-
bility density function (pdf) is given by,

f(T) = µe−µ(T−γ), f(T) ≥ 0, µ ≥ 0, T ≥ 0 or γ (1)

The location parameter γ, enables the modeling of those systems that can man-
ifest incorrect values at their user interface only after γ time units (e.g., hours)
of operation.

From (1) follows that the two-parameter exponential cumulative density func-
tion (cdf) and the exponential reliability function are respectively:

Q(T) = 1 − e−µ(T−γ) (2)

R(T) = 1 − Q(T) = e−µ(T−γ), 0 ≤ R(T) ≤ 1 (3)

Equations (2) and (3) give respectively the probability of failure, and the relia-
bility of the system. The system is considered to be functioning as long as the
key material has not been exposed (i.e., as long as the number of failures is less
than or equal to f) with a probability greater than ε. Hence, the cryptographic
key can be viewed as a pool of f +1 of identical, independent and non-repairable
sub-systems each characterized by a generic failure rate µ, under the fault model
m3. The components of the pool provide service concurrently. As soon as a failure
occurs the number of sub-systems in the parallel pool decreases by one unit. The
pool fails (i.e., the key gets exposed) when no sub-systems remains in service.
Given the accepted risk of key exposure ε:

R(T) = 1 −
f+1∏
i=1

Qi(T) ≥ 1 − ε (4)

The sub-systems are identical, hence:

R(T) = e−µ(T−γ) ≥ 1 − f+1
√

ε (5)

Therefore, the key lifetime for KS,P , L(KS,P), must be:

L(KS,P) ≤ CKRLε,m
K = tR = γ − ln(1 − f+1

√
ε)

µm
(6)

3 Cryptographic keys that do not tolerate any failure at all, Cm
0 , can be viewed as a

single non-repairable system with failure rate µm, under the fault model m.

Cryptographic Key Reliable Lifetimes 151

Table 2. Upper Bounds to Key Lifetimes for typical failure rates, with an accepted
error-bound ε = 2−40 and γ = 0. Failure rates are expressed in failures/hours; upper
bounds to key lifetimes are expressed in hours.

Cm
f µm

0 µm
1 µm

2 µm
3 µm

4 µm
5 µm

6

↓ 1 × 10−15 1 × 10−14 1 × 10−13 1 × 10−12 1 × 10−11 1 × 10−10 1 × 10−9

f=0 9.09 × 102 9.09 × 101 9.09 × 100 9.09 × 10−1 9.09 × 10−2 9.09 × 10−3 9.09× 10−4

f=1 9.54 × 108 9.54 × 107 9.54 × 106 9.54 × 105 9.54× 104 9.54 × 103 9.54 × 102

f=2 9.69 × 1010 9.69 × 109 9.69 × 108 9.69 × 107 9.69 × 106 9.69 × 105 9.69e × 104

f=3 9.77 × 1011 9.77 × 1010 9.77 × 109 9.77 × 108 9.77 × 107 9.77 × 106 9.77 × 105

f=4 3.91 × 1012 3.91 × 1011 3.91 × 1010 3.91 × 109 3.91 × 108 3.91 × 107 3.91 × 106

f=5 9.89 × 1012 9.89 × 1011 9.89 × 1010 9.89 × 109 9.89 × 108 9.89 × 107 9.89 × 106

f=6 1.92 × 1013 1.92 × 1012 1.92 × 1011 1.92 × 1010 1.92 × 109 1.92 × 108 1.92 × 107

f=7 3.17 × 1013 3.17 × 1012 3.17 × 1011 3.17 × 1010 3.17 × 109 3.17 × 108 3.17 × 107

f=8 4.70 × 1013 4.70 × 1012 4.70 × 1011 4.70 × 1010 4.70 × 109 4.70 × 108 4.70 × 107

f=9 6.45 × 1013 6.45 × 1012 6.45 × 1011 6.45 × 1010 6.45 × 109 6.45 × 108 6.45 × 107

f=10 8.38 × 1013 8.38 × 1012 8.38 × 1011 8.38 × 1010 8.38 × 109 8.38 × 108 8.38 × 107

f=11 1.04 × 1014 1.04 × 1013 1.04 × 1012 1.04 × 1011 1.04 × 1010 1.04 × 109 1.04 × 108

In case there are multiple fault models to consider, it is possible to estimate
the reliable lifetime of the same key by taking the smallest mission time, given
every possible faul model in M (i.e., computing the reliable life given the biggest
failure rate: µm

max, m ∈ M).
Table 2 provides upper bounds to key lifetimes for a number of representative

failure rates affecting systems using keys characterized by a CKFT value in the
interval (0, 11), ε = 2−40, and γ = 0. Failure rates are expressed in failures/hours
and upper bounds to key lifetimes (i.e., CKRL) are in hours.

3.3 Highly Available Cryptographic Infrastructures

It is straightforward to extend the modeling of the risk of key exposure to highly
available cryptographic infrastructures. Consider a pool of l different and inde-
pendent cryptographic modules (i.e., failing independently), each characterized
by its own failure rate µm

l , that provides service using a common generic key
characterized by a failure tolerance of CKFT m

K(S,P)
. For example the key mate-

rial may be stored in a shared secure device, or replicated among the l modules.
Moreover we assume the following:

Assumption 2. All cryptographic module present in the pool start to pro-
vide service simultaneously (i.e., γ1 ≈ γ2 ≈ . . . ≈ γl).

Similarly to single cryptographic modules, the infrastructure is considered to
be functioning as long as the cryptographic key has not been exposed (i.e., as
long as the number of failures is less than or equal to CKFT m

K(S,P)
) with a

probability greater than ε. It should be noted that in this scenario the failures
of each module should be considered to be cumulative. In fact, by affecting a

152 A. De Gregorio

shared resource (i.e., the cryptographic key), each failure affects also the residual
lifetime of the remaining units in the pool. For example, assuming that the in-
frastructure is using a cryptographic key that does not tolerate any failure, it is
sufficient a single faulty output to compromise the service provided by the entire
infrastructure. Hence, the pool of cryptographic modules should be modeled as
a series of systems.

RHA(T) =
l∏

i=1

Ri(T) = e−
∑ l

i=1 µm
i (T−γ) (7)

Equation (7) gives the reliability of the series of cryptographic modules present
in the pool. This is equivalent to reliability of a system with failure rate µHA =∑l

i=1 µm
i . Using (6) is possible to compute the reliable life of the key K(S,P)

used by the considered highly available cryptographic infrastructure:

L(KS,P) ≤ CKRLε,m
K = tR = γ − ln(1 − f+1

√
ε)∑l

i=1 µm
i

(8)

Remark 2. Scaling-Out May Be a Hazard
Obviously, the number l of cryptographic modules present in this typical high-
availability configuration (i.e., active-active model) affects one of the security
parameters, since it increases the risk of exposure of cryptographic credentials.
In fact, as the final failure rate gets higher, the MTTF gets smaller; hence, de-
creasing the reliable life of the whole HA system. Consequently, the use of cryp-
tographic modules with very low failure rates becomes especially critical when its
necessary to design highly available cryptographic infrastructures. In Fig.1 the
required reliability goals necessary to limit the risk of key exposure to ε = 2−40

are shown for either a single cryptographic module with µm
single = 1 × 10−15

failures/hours, or a pool of 10 independent and identical cryptographic mod-
ules with µm

HA =
∑10

i=1 µm
single, providing service concurrently using a common

cryptographic credential with a CKFT value in the interval (0, 9).

4 Using This Framework

4.1 Estimating Upper Bounds for Cryptographic Key Lifetimes

Suppose one needs to select the lifetime of a cryptographic key that belongs to
Cm

1 (i.e., has cryptographic failure tolerance 1). Suppose also that is necessary
to guarantee a risk of key exposure less than or equal to ε = 2−40 using a
cryptographic infrastructure with failure rate µm

Infr = 1 × 10−11 failures/hours.
Using (8), or looking at the row of a precomputed table (e.g., Table 2) for the
failure tolerance 1, one finds that the key lifetime should not exceed 10 years.
This is only the upper bound. Additional considerations, related to the specific
cryptographic scheme and to the application context, may obviously decrease
the selected lifetime. We emphasize, however, that there are cases when the

Cryptographic Key Reliable Lifetimes 153

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.00e+00 2.00e+13 4.00e+13 6.00e+13 8.00e+13 1.00e+14

R
 (

re
qu

ire
d

re
lia

bi
lit

y
go

al
)

T (mission time)

RSingle(T) µ=1e-15
RHA(T) µ=1e-14

CKFT0
CKFT1
CKFT2
CKFT3
CKFT4
CKFT5
CKFT6
CKFT7
CKFT8
CKFT9

Fig. 1. Reliability goals for CKFT values in the internal (0,9), with Pr. Key Exposure
ε = 2−40. Mission times are expressed in hours.

CKRL value is well below any recommended lifetime for the given credential. For
instance, any cryptographic key in Cm

0 in presence of a failure rate µm = 1×10−15

failures/hours has a reliable life no longer than 9.09 × 10−2 hours, if the desired
security margin is equal to 2−40.

4.2 Selecting Dependable Cryptographic Infrastructures

It is straightforward to use Table 2 (or equation (7)) also to look up the failure
rate that is necessary to guarantee the accepted negligible risk of key expo-
sure, given a required key lifetime and cryptographic scheme. Suppose one needs
to choose a cryptographic infrastructure among a number of alternatives, each
characterized by different costs. The entire system must be able to use a crypto-
graphic key with failure tolerance 9 and a lifetime of 4 years, while keeping the
risk of key exposure below 2−128. Expressing the failure rate as a function of the
reliable life from equation (7) one finds that is sufficient to select an infrastruc-
ture characterized by a failure rate not greater than 4 × 10−9 failures/hours.

4.3 Scaling-Out Cryptographic Infrastructures

Suppose now that one wants to provide a cryptographic service with an infras-
tructure characterized at the initial stage by a pool of l cryptographic devices
and needs to scale-out it, without changing the key material and guaranteeing
a risk of key exposure not greater than 2−40.

If the number h of additional sub-system that will be added in the future,
and the respective failure rates µm

h , are known a priori, and there is a required
lifetime, it is possible to use Table 2 to look up the column with failure rate

154 A. De Gregorio∑l
i=1 µm

i +
∑h

j=1 µm
h to find the first level of failure tolerance fmin, character-

ized by an error bound greater than or equal to the desired one. In this scenario,
the cryptographic key must be characterized by a level of failure tolerance greater
than or equal to fmin. It is worth to note that these are conservative estimates,
since here all the l + h components are assumed to start their operation simul-
taneously.

If the failure rates of the additional sub-systems are not known at the time
the initial nodes are deployed and it is necessary to use a cryptographic scheme
with failure tolerance f , it is possible to lookup the row f of Table 2, to find the
first failure rate µm

max, characterized by an error bound greater than or equal
to the desired lifetime of keys. In this second scenario, the final failure rate of
the cryptographic infrastructure

∑l+h
i=1 µm

i must be less then or equal to µm
max.

Hence, the sum of the failure rates of the additional sub-systems needs to be:∑h
j=1 µm

j ≤ µm
max −∑l

i=1 µm
i .

5 Consequences of the Presented Estimates

According to equation (8), in order to achieve a reliable life long at least one year,
while requiring ε = 2−40, cryptographic keys that do not tolerate any erroneous
computation (i.e., Cm

0) must be used on a cryptographic infrastructure that fail
with a rate lower than µm = 1.04 × 10−16 failures/hours. The required rates
decreases further when lower error-bounds are desired.

These are certainly very low rates. Although it is possible to design highly
reliable cryptographic modules, the costs necessary during the design and assess-
ment phases and the still low reliable life strongly limits the number of scenarios
where keys especially susceptible to erroneous computation may find application.
Unfortunately, this is the case of RSA keys used with CRT-based implementa-
tions [27,14]. The same considerations applies for keys in Cm

1 (e.g., AES keys,
see Table 1) at failure rates beyond 9.54 × 10−5 failures/hours.

In today’s cryptographic applications (e.g., e-commerce and bank secure web
servers, smart IC cards) it is common to find RSA keys used with CRT-based

Table 3. Effective risk of key exposure for credentials in Cm
0 . The estimates are com-

puted for a number of typical lifetimes (in years) and failure rates (failures/hours). The
exponents are rounded up to the nearest integer.

T µm
0 µm

1 µm
2 µm

3 µm
4 µm

5 µm
6

↓ 1 × 10−15 1 × 10−14 1 × 10−13 1 × 10−12 1 × 10−11 1 × 10−10 1 × 10−9

1 2−36 2−33 2−30 2−26 2−23 2−20 2−16

2 2−35 2−32 2−29 2−25 2−22 2−19 2−15

3 2−35 2−31 2−28 2−25 2−21 2−18 2−15

4 2−34 2−31 2−28 2−24 2−21 2−18 2−14

5 2−34 2−31 2−27 2−24 2−21 2−17 2−14

10 2−33 2−30 2−26 2−23 2−20 2−16 2−13

20 2−32 2−29 2−25 2−22 2−19 2−15 2−12

Cryptographic Key Reliable Lifetimes 155

implementation characterized by lifetimes long months, or often years. These
lifetimes are selected without modeling the risk of key exposure in the presence
of faults. Therefore it is interesting to estimate this risk for cryptographic cre-
dentials with CKFT = 0. The probabilities are furnished in Table 3 for typical
lifetimes and failure rates, using (6) and (8). The exponents are rounded up to
the nearest integer. The estimates shows hazard rates that are likely beyond
those initially predicted without considering dependability metrics.

In the next section we emphasize the importance of choosing keys with a good
CKFT values, by offering estimates of minimal values of this metric necessary to
enable the selection of key lifetimes long enough for any real application scenario.

5.1 On the Importance of Good CKFT Values

Let Tmax a maximum desirable key lifetime (i.e., the maximum lifetime of a
key for any real application scenario). From (6) and (8) follows that the min-
imum value of CKFT required to guarantee a desired ε using a cryptographic
infrastructure with failure rate µm, is given by:

CKFT m
min = �lnQ(Tmax−γ) ε − 1� (9)

In Table 4 we provide the minimal CKFT values for a number of error-bounds
and failure rates, and with Tmax = 200years .

Table 4. Minimal CKFT required to enable the selection of CKRL long up to Tmax =
200 years, for a number of ε and µ. γ = 0.

ε µm
0 µm

1 µm
2 µm

3 µm
4 µm

5 µm
6

↓ 1 × 10−15 1 × 10−14 1 × 10−13 1 × 10−12 1 × 10−11 1 × 10−10 1 × 10−9

2−40 1 1 1 2 2 3 4
2−64 2 2 2 3 4 5 6
2−80 2 3 3 4 5 6 8
2−128 4 4 5 6 8 10 13
2−256 8 9 11 13 16 20 27

6 Conclusions

As long as the mathematical models of cryptography are not extended to the
physical setting [31,23], reliability and security will remain strictly related. Con-
sequently, security policies will have to be developed by carefully taking into
account the peculiarities inherent the physical execution of any algorithm. In
this paper we have offered a first framework that enables to bound the risk of
key exposure in the presence of faults, by modeling the reliability of typical cryp-
tographic infrastructures and relating their failure rates, the failure tolerance of
the cryptographic keys, and the accepted (negligible) error-bound, to the life-
times of keys.

156 A. De Gregorio

Acknowledgments.The author would like to thank Bart Preneel for his de-
terminant support and valuable comments, anonymous reviewers for providing
helpful feedback, and all the people at COSIC for their great hospitality.

References

1. R. J. Anderson, Liability and Computer Security: Nine Principles, in Proceedings
of the Third European Symposium on Research in Computer Security, Lecture
Notes In Computer Science, Vol. 875, Springer-Verlag, pp. 231-245, 1994.

2. R. J. Anderson, Why Cryptosystems Fail, in Proceedings of the 1st ACM Confer-
ence on Computer and Communications Security, pp. 215-227, 1993.

3. R. J. Anderson, Why Cryptosystems Fail, in Communications if the ACM, Novem-
ber, 1994.

4. R. J. Anderson, S. Bezuidenhout, On the Security of Prepayment Metering Systems,
to appear.

5. C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, J.P. Seifert, Fault Attacks on RSA
with CRT: Concrete Results and Practical Countermeasures, Lecture Notes in Com-
puter Science, Vol. 2523, Springer-Verlag, pp. 260-275, 2002.

6. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, Error Analysis and
Detection Procedures for a Hardware Implementation of the Advanced Encryption
Standard, in IEEE Transactions on Computers, Vol. 52, No. 4, pp. 493-505, ISSN
0018-9340, April, 2003.

7. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri, On the Propagation
of Faults and Their Detection in a Hardware Implementation of the Advanced En-
cryption Standard, in Proc. Int’l Conf. Application-Specific Systems, Architectures,
and Processors (ASAP ’02), pp. 303-312, 2002.

8. G. Bertoni, L. Breveglieri, I. Koren, and V. Piuri, Fault Detection in the Ad-
vanced Encryption Standard, in Proc. Conf. Massively Parallel Computing Systems
(MPCS ’02), pp. 92-97, 2002.

9. E. Biham, A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems,
Lecture Notes in Computer Science, Vol. 1294, Springer-Verlag, 1997.

10. M. Blaze, W. Diffie, R. Rivest, B. Schneier, T. Shimomura, E. Thompson, and M.
Wiener, Minimal Key Lengths for Symmetric Ciphers to Provide Adequate Com-
mercial Security, Report of ad-hoc panel of cryptographers and computer scientists,
January 1996. Available via http://www.crypto.com/papers/.

11. S. Boeyen, T. Howes, P. Richard, Internet X.509 Public Key Infrastructure
LDAPv2 Schema, Internet Engineering Task Force, RFC 2587, June 1999. Avail-
able via http://www.ietf.org/rfc/rfc2587.txt.

12. D. Boneh, R. A. DeMillo, R.J. Lipton, On the Importance of Checking Computa-
tions, Lecture Notes in Computer Science, Vol. 1233, Springer-Verlag, pp.37-51,
1997

13. D. Boneh, R. A. DeMillo, R.J. Lipton, On the Importance of Checking Crypto-
graphic Protocols for Faults, in Lecture Notes in Computer Science, Vol. 1233,
Springer-Verlag, pp. 37-51, 1997.

14. D. Boneh, R. A. DeMillo, R.J. Lipton, On the Importance of Eliminating Errors
in Cryptographic Computations, in Journal of Cryptology, Vol. 14, no. 2, Springer-
Verlag, pp. 101-119, 2001.

15. M. Ciet, M. Joye, Elliptic Curve Cryptosystems in the Presence of Permanent and
Transient Fault, Cryptology ePrint Archive, Report 2003/028, 2003, available via
http://eprint.iacr.org/2003/028.

Cryptographic Key Reliable Lifetimes 157

16. E. Dottax, Fault Attacks on NESSIE Signature and Identification Schemes, report
NES/DOC/ENS/WP5/031/1 of the NESSIE Project, 2002, https://www.cosic.
esat.kuleuven.be/nessie/reports/phase2/SideChan 1.pdf.

17. ECRYPT - European Network of Excellence in Cryptology, ECRYPT Yearly Re-
port on Algorithms and Keysizes (2004), D.SPA.10, Revision 1.1, 17 March 2005.
http://www.ecrypt.eu.org/documents/D.SPA.10-1.1.pdf.

18. ETSI, SR 002 176 V1.1.1 Special Report, Electronic Signatures and Infrastructures
(ESI); Algorithms and Parameters for Secure Electronic Signatures, March 2003.

19. Federal Information Processing Standards Publication 140-2, Security Require-
ments for Cryptographic Modules.

20. C. Giraud, DFA on AES, Cryptology ePrint Archive, Report 2003/008, 2003, avail-
able via http://eprint.iacr.org/2003/008.

21. P. Graham, M. Caffrey, J. Zimmerman, P. Sundararajan, E. Johnson, C. Patterson,
Consequences and Categories of SRAM FPGA Configuration SEUs, in Proc. of
Military and Aerospace Applications of Programmable Logic Devices (MAPLD
2003), September 9-11, 2003.

22. R. K. Iyer, I. Lee, Measurement-Based Analysis of Software Reliability, in M. Lyu,
Editor, Handbook of Sofware Reliability Engineering, pp. 303-358, IEEE Computer
Society Press and McGraw-Hill, 1996.

23. Y. Ishai, A. Sahai, D. Wagner, Private Circuits: Securing Hardware against Probing
Attacks, 23rd Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 17-21, 2003, Lecture Notes in Computer Science, Vol. 2729,
Springer-Verlag, ISBN 3-540-40674-3.

24. I. Harvey, The DFC Cipher: an attack on careless implementations, presented at
the Rump Session of Second AES Candidate Conference (AES2), March 22-23,
1999.

25. B. Kaliski, TWIRL and RSA Key Size, RSA Laboratories Technical Notes, Revised
May 6, 2003.

26. R. Karri, W. Kaijie, P. Mishra, and K. Yongkook, Fault-Based Side-Channel Crypt-
analysis Tolerant Rijndael Symmetric Block Cipher Architecture in Proc. Defect
and Fault Tolerance in VLSI Systems (DFN ’01), pp. 418-426, 2001.

27. A. K. Lenstra, Memo on RSA signature generation in the presence of faults, Avail-
able at: http://cm.bell-labs.com/who/akl/rsa.doc.

28. A. K. Lenstra, Unbelievable security. Matching AES security using public key sys-
tems, Proceedings Asiacrypt 2001, Lecture Notes in Computer Science, Vol. 2248,
pp. 67-86, Springer-Verlag, 2001.

29. A. K. Lenstra and E. R. Verheul, Selecting Cryptographic Key Sizes, Journal of
Cryptology, Vol. 14, No. 4, pp. 255-293, 2001.

30. A. J. Menezes, P. C. van Oorschot, S. A. Vanstone. Handbook of Applied Cryptog-
raphy, CRC Press, ISBN: 0-8493-8523-7, October, 1996.

31. S. Micali, L. Reyzin, Physically Observable Cryptography, In Cryptology ePrint
Archive: Report 2003/120, http://eprint.iacr.org/2003/120.

32. NESSIE Consortium, Portfolio of Recommended Cryptographic Primitives, Febru-
ary 27, 2003. Available via http://www.cryptonessie.org/.

33. NIST, Special Publication 800-57: Recommendation for Key Management, Part
1: General Guideline. Draft, January 2003, Available at: http://csrc.nist.gov/
CryptoToolkit/tkkeymgmt.html.

34. E. Normand, Single Event Upset at Ground Level, IEEE Transactions on Nuclear
Science, Vol. 43, No. 6, December, 1996.

158 A. De Gregorio

35. H. Orman, P. Hoffman, Determining Strengths For Public Keys Used For Exchang-
ing Symmetric Keys, Internet Engineering Task Force, RFC 3766/BCP 86, April
2004. Available via http://www.ietf.org/rfc/rfc3766.txt.

36. G. Piret, J.J. Quisquater, A Differential Fault Attack Technique against SPN Struc-
tures, with Applications to the AES and KHAZAD, in C. Walter, C. K. Koç, C.
Paar, editors, Fifth International Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES 2003), Lecture Notes in Computer Science, Vol. 2779, pp.
291-303, Springer-Verlag, 2003.

37. RSA Labs, A Cost-Based Security Analysis of Symmetric and Asymmetric Key
Lengths, RSA Labs Bulletin #13, Available at http://www.rsasecurity.com/
rsalabs/.

38. SQUALE Consortium, Dependability Assessment Criteria, January 1999, http://
www.newcastle.research.ec.org/squale/SQUALE4.pdf.

39. A. Shamir, Method and Apparatus for protecting public key schemes from timing
and fault attacks, U.S. Patent Number 5,991,415, November, 1999; also presented
at the rump session of EUROCRYPT’97.

40. K. S. Trivedi. Probability and Statistics with Reliability, Queueing, and Computer
Science Applications - Second Edition, John Wiley and Sons, New York, 2001,
ISBN number 0-471-33341-7.

41. D. Wagner, Cryptanalysis of a provably secure CRT-RSA algorithm, in the Pro-
ceedings of ACM Conference on Computer and Communications Security 2004,
pp. 92-97.

42. L. C. Williams, A Discussion of the Importance of Key Length in Symmetric and
Asymmetric Cryptography, Available via http://www.giac.org/practical/gsec/
Lorraine Williams GSEC.pdf.

A Comparative Cost/Security Analysis
of Fault Attack Countermeasures

Tal G. Malkin1, François-Xavier Standaert1,2, and Moti Yung1

1 Dept. of Computer Science, Columbia University
2 UCL Crypto Group, Université Catholique de Louvain

{tal, moti}@cs.columbia.edu, fstandae@dice.ucl.ac.be

Abstract. Deliberate injection of faults into cryptographic devices is
an effective cryptanalysis technique against symmetric and asymmetric
encryption algorithms. To protect cryptographic implementations (e.g.
of the recent AES which will be our running example) against these
attacks, a number of innovative countermeasures have been proposed,
usually based on the use of space and time redundancies (e.g. error de-
tection/correction techniques, repeated computations). In this paper, we
take the next natural step in engineering studies where alternative meth-
ods exist, namely, we take a comparative perspective. For this purpose,
we use unified security and efficiency metrics to evaluate various recent
protections against fault attacks. The comparative study reveals secu-
rity weaknesses in some of the countermeasures (e.g. intentional mali-
cious fault injection that are unrealistically modelled). The study also
demonstrates that, if fair performance evaluations are performed, many
countermeasures are not better than the naive solutions, namely dupli-
cation or repetition. We finally suggest certain design improvements for
some countermeasures, and further discuss security/efficiency tradeoffs.

Keywords: Attacks and countermeasures in hardware and software.

1 Introduction

Fault attacks consist of forcing a cryptographic device to perform some erroneous
operations, hoping that the result of that wrong behavior will leak information
about the secret parameters involved. These techniques have been increasingly
studied since the publication of Boneh, Demillo and Lipton in 1996 [9] in the
context of public key cryptosystems, and its extension to the private key setting
by Biham and Shamir [8]. They were improved thereafter by several different
authors in various contexts (e.g. [7,17,27]). Two survey papers have recently
described practical and algorithmic issues of these methods [3,13].

Countermeasures against fault attacks can be deployed in hardware or soft-
ware and generally help circuits to avoid, detect and/or correct faults. Certain
active protections use sensors and detectors to infer abnormal circuit behav-
iors. Passive protections such as randomization of the clock cycles or bus and
memory encryption [10,14] may also be used to increase the difficulty of suc-
cessfully attacking a device. However, in practice, most proposed schemes are

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 159–172, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 T.G. Malkin, F.-X. Standaert, and M. Yung

based on classical error-detecting techniques using space or time redundancies
[5,6,16,20,19,21,22,23,32]. In this paper, we conduct a comparative study regard-
ing these latest techniques, assessing their security and efficiency. We believe that
while the original investigations are useful and inventive in many ways, the com-
parative perspective is valuable since it forces a more uniform and perhaps more
realistic view of the effectiveness of the countermeasures, from both security and
cost point of view. In particular, our findings underline that certain published
countermeasures may not be sufficient to counteract fault attacks due to lim-
ited modelling (e.g. intentional malicious fault injection that are unrealistically
modeled as random limited number of faults, more typical in non-malicious envi-
ronments). We also point out that, if fair performance evaluations are conducted,
many countermeasures are not better than the naive solutions, namely duplica-
tion or repetition. Finally, we discuss the resulting security vs. efficiency tradeoff
in the general context of hardware implementations that our study implies.

The rest of this paper is structured as follows. Section 2 investigates error de-
tection techniques based on the use of space redundancies, including parity checks
and other codes. We discuss limitations of security models in certain countermea-
sure designs which lead to attacks and, when overcome, lead to efficiency overhead.
Section 3 similarly discusses techniques based on repetition or duplication. We re-
veal certain design issues that need corrections and we essentially realize that these
schemes tend to resemble the naive countermeasures. Our conclusions, outlining
the usefulness of our comparative study are in Section 4.

2 Error Detection Techniques Using Space Redundancies

2.1 Description of a First Scheme

References [23,32] describe a solution for the low cost concurrent error detec-
tion in substitution-permutation networks. We briefly summarize the proposed
schemes in this section. For clarity purposes, we target the AES Rijndael [11].

A round of an unprotected block cipher implementation is represented in Figure
1. S blocks, representing non-linear substitution boxes (i.e. SubBytes in Rijndael),
are followed by a linear diffusion layer (i.e. ShiftRows and MixColumns in Rijn-
dael) and a bitwise key addition. The basic purpose of the countermeasure is to
add a parity bit to the scheme in order to track errors during the execution of the

S S S S S S S S

LINEAR DIFFUSION LAYER

k k k k k k k k

Fig. 1. Block cipher round without error check

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 161

S S S S S S S S

LINEAR DIFFUSION LAYER

k k k k k k k k P(K)

Pin=P(X)

P(X) P(Y)

x x x x x x x x

y y y y y y y y

z z z z z z z z

u u u u u u u u Pout

Fig. 2. Block cipher round with error check

algorithm. A single block cipher round with concurrent error check is represented
in Figure 2 and the different steps of the error check are as follows.

1. Computing the input parity. The parity of the 128-bit input, denoted as
Pin, is determined by a tree of XOR gates. This parity is computed once at
the beginning of the algorithm.

2. Parity modification according to the S-boxes. An output bit is added
to the S-boxes in order to implement the XOR of the parity of all S-boxes
input bits with the parity of all S-boxes output bits, denoted as P (X)⊕P (Y).
The value of this additional output bit can be determined from the truth
table of the original S-box. It is represented as a black box in Figure 2.

3. No parity modification according to the diffusion layer. As detailed
in [23,32], the linear substitution layer of Rijndael does not involve any
modification of the previously defined parity. It is obvious for ShiftRows
which only permutes the bytes of the state and does not affect their values.
For MixColumn, it is observed that, due to the linearity of the transform, it
does not alter the parity when the 32-bit columns are considered.

4. Parity modification according to the key addition. Since a 128-bit
round key is bitwise XORed with the output of the diffusion layer, the input
parity has to be modified by the parity P (K).

5. Output parity checking. The parity of the actual outputs finally has to
be compared with the modified input parity of the round.

According to the original paper, the proposed step-by-step parity modification
overcomes the high diffusion of faults in block ciphers. Namely, a local fault
detected within a processing step by parity checking of this processing step
outputs will also be detected by comparing the modified parity of the round
outputs. As an illustration of the technique, let us consider an input X with
correct parity P (X) and assume that a single bit fault occurs on this value of
X , producing new intermediate values X∗, Y ∗, Z∗, U∗.

162 T.G. Malkin, F.-X. Standaert, and M. Yung

First, the parity will be modified as follows:

Pout = P (X) ⊕ P (X∗) ⊕ P (Y ∗) ⊕ P (K)

Then, computing the output bits parity, we find:

P (U∗) = P (Z∗) ⊕ P (K) = P (Y ∗) ⊕ P (K)

It is clear that the parities will only be equal if P (X) = P (X∗), therefore allowing
to detect the fault at the end of the round. Similarly, a single bit fault introduced
after the S-boxes will cause:

Pout = P (X) ⊕ P (X) ⊕ P (Y) ⊕ P (K) = P (Y) ⊕ P (K)

This is because the parity P (Y) is computed independently of the value of Y .
Also, we have:

P (U∗) = P (Z∗) ⊕ P (K) = P (Y ∗) ⊕ P (K)

Again the output parities will allow to detect the fault, and so will be for faults
introduced after each processing unit of the block cipher. Although it is clear
that multiple faults of even order will not be detected by such a scheme, the
authors argue that, according to [26], the probability of 1-bit, 2-bit, 3-bit and 4-
bit errors is respectively approximated by 85%, 10%, 3% and 1% in combinatorial
logic circuits. It is therefore concluded that the error-correcting scheme allows
to prevent most practical attackers, with a low hardware overhead.

2.2 Security of the Presented Scheme

Before discussing the presented countermeasure, let us first emphasize that, from
an algorithmic point of view, the number of faults necessary to mount a successful
attack has been dramatically reduced during the last years. In particular, it has
been shown in [27] that the AES Rijndael can be corrupted with only two faulty
ciphertexts. As a very straightforward consequence, a protection detecting only
85% of the injected faults is clearly not enough. Moreover, considering single-bit
faults only is certainly not a conservative approach, as multiple-bit faults start
to be a concern in very deep submicron technologies. Recent experiments have
notably shown that high-energy ions can energize two or more adjacent memory
cells in a circuit [15,28].

Anyway, in practice, it is unlikely that the mentioned experiments (i.e. evalu-
ations of fault occurrences due to radiations effects) correctly model the behavior
of a malicious insider. In particular, there are at least two parameters missing in
the previous analysis, namely time and space localization, that may enhance the
attacker capabilities to much more precision than unintended radiation effects.

Starting with time localization, it is clear that being able to induce a single-
bit fault twice during a round function will simply bypass the previous coun-
termeasure. Choosing the time at which the fault occur can be done by using
side-channel information to monitor the progress of the algorithm. As present

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 163

pulse generators allow to deal with high frequencies, it is virtually possible to
insert a fault anytime during a cryptographic computation.

Similarly, being able to induce single faults in different nodes of an imple-
mentation also bypass a single-bit parity check. Choosing the location of the
fault can be done if light [31] or electromagnetic [29] induction are considered.
These techniques have been proven very efficient to force low cost faults in cryp-
tographic devices. More expensive techniques are susceptible to be even more
powerful.

As a consequence, the fault detection technique in Section 2.1 is practically
insecure as soon as real attacker capabilities are considered. This discussion also
suggests that resistance against faults attacks involve higher constraints than
usually required for integrated circuits. In particular, multiple bit faults have to
be taken into account, as well as space and time localization.

2.3 Description of Improved Schemes

From the previous descriptions, there are two basic reasons making the counter-
measure in [23,32] susceptible to multiple-bit faults: (1) only one parity bit is
used, (2) parity codes are linear. Both reasons involve simple extensions in order
to improve the detection capabilities of the method. In this section, we discuss
these improvements of the original scheme and their additional cost1.

1. Using more parity bits is suggested and implemented in [5] in order
to improve multiple-bit faults detection. Simple arguments allow to evaluate
the effect of such a countermeasure if the faults are uniformly distributed. For
example, let n be the number of parity bits used, the probability that a double
fault affects twice the same parity bit is:

P =
n(

n + 1
2

) =
2

n + 1
(1)

[5] proposes one parity bit per byte for Rijndael, which yields P = 0.12.
Again, from a simple probabilistic point of view, the proposed improvement

is not sufficient to reject all attackers. Moreover, it is likely that multiple faults
will not be uniformly distributed, as multiple-bit faults usually target adjacent
memory cells. As a consequence, the probability of masked errors (e.g. double
faults occurring in the same byte) will actually be higher than predicted.

Regarding the additional cost for AES implementations, the proposal involves
more hardware overhead as there are more parity bits, but also because the pari-
ties are now affected by MixColumn, which involves the need of parity predictors
for this transform as well. These overheads are summarized in Table 1.
1 Note that making the parity checks only once a round does not affect the fault

coverage. As suggested in Section 2.1, what is detectable inside the round is also
detectable at its output. As a consequence, the use of more parity checkers only
affects the detection latency and may not be considered as a relevant improvement.

164 T.G. Malkin, F.-X. Standaert, and M. Yung

Finally, let us remark that using pipelined implementations (i.e. dealing with
multiple inputs in parallel) is another solution to decrease the probability of (1).
Double masked errors then have to affect twice the same parity bit and text.

2. Using non linear robust codes is another solution proposed in [19,20,24] to
obtain good resistance against single and multiple fault errors. For this purpose,
the authors use a much more restricting fault model where faults are uniformly
distributed throughout the circuit and the expected number of faults (i.e. fault
multiplicities) is proportional to the number of gates in the circuit. Two proposals
are actually considered.

In the first one [19], the AES Rijndael is divided into two blocks: linear and
non-linear, where the non-linear block only consists in the multiplicative inverse
of the Rijndael S-box. The non-linear code is simply represented in Figure 3
and computes the product of two inverses X and Y . In order to reduce the area
overheads, it is proposed to check only a few bits (typically 2) of the result.
Then, for the linear-part, every column of the AES is associated with an 8-bit

inverse x

X

Y 01?

Fig. 3. Multiplicative inverse with error check

parity, namely the XOR between the 4 bytes of the column. It yields a 32-bit
redundancy for the complete algorithm, which is computed independently, as the
S-boxes parities in Section 2.1. The fault coverage of this scheme is contrasted.
On the one hand, the non-linear part allows good detection of multiple faults,
while low-order faults can clearly be masked because of the 2-bit comparison. On
the other hand, the linear part suffers from the same problems as the previous
linear schemes for the detection of higher-order faults. Globally, it is conjec-
tured that the scheme only provides good error detection for faults with high
multiplicities. The hardware overheads of the proposal are again summarized
in Table 1. Note that [19] requires the S-box inverters and affine transforms
to be implemented independently, while hardware implementations frequently
combine both transforms in one single RAM block.

In the second proposal [20], a robust non-linear code is described, based on
the addition of two cubic networks, computing y(x) = x3 in GF (2)8, to the
previous linear scheme. The method allows to produce r-bit signatures to detect
errors. It is shown that the fraction of undetectable errors is proportional to 2−2r.
Although the proposal offers a good fault coverage, its actual implementation
is a real concern as the ratio throughput/area (a usual estimator of hardware
efficiency) is decreased by a factor of two. As a consequence, the solution cost is
somewhat comparable to duplication, which also has good non-linear properties

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 165

and therefore provides good fault coverage. Note finally that non-linear robust
codes have been additionally discussed in [24] and the question to know if they
can lead to more efficient implementations is open.

2.4 Summary of the Results

We have investigated 5 recent countermeasures against fault attacks, based on
the use of space redundancies. Those are summarized in Table 1. The first two
ones use an unrealistic fault model, considering single faults only, and may not
be considered as sufficient to protect against a malicious attacker. [5] proposes
to use more parity bits to improve their fault coverage, but faults of even order
may still be masked with non-negligible probability.

Table 1. Space redundancy based techniques

Ref. Method Sin. fault Mul. fault Area Delay Thr. Thr./Area
detection detection overhead overhead overhead overhead

[23,32] single yes no +7.4% +6.4% - -
parity bit

[5] multiple yes double faults +20% - - -
parity bits masked with
(n = 16) P ∝ 2

n+1

[19] linear + weak good +35%∗ - - -
non-linear

codes
[20] non-linear good, good, +77% +15% -13% -51%

r-bit codes missed with missed with
(r = 28) P ∝ 2−2r P ∝ 2−2r

The last two ones use a much more restrictive fault model, but only [20]
provides good error detection properties against faults of all multiplicities. For
this last scheme, the hardware overhead is comparable to duplication, as the
ratio throughput/area has been divided by two. Remark that the objective of this
table is only to summarize the results, not to provide fair comparisons between
the different proposals. As a matter of fact, the area overhead is a function of
the hardware cost of the unprotected primitive and, for example, [19,20] are low
cost architectures compared to the ones used in the parity code papers. As a
consequence, their overhead in % are higher.

3 Error Detection Using Repetition and Duplication

The previous section underlined that error-detection techniques based on space
redundancies become as expensive as duplication if realistic attackers are consid-
ered. As a consequence, it is natural to investigate how codes based on repetition

166 T.G. Malkin, F.-X. Standaert, and M. Yung

or duplication can be used to improve the security of cryptographic devices. For
this purpose, we start with some precisions about our model.

(1) We consider a n-bit block cipher, with q rounds independently implemented.
(2) We assume that the error detection can be performed at three different levels:
algorithm-level, round-level or operation level. Working at one level involves that
the observed level is performed in at least one clock cycle, as its result has to
be stored and compared. (3) In operation level detection schemes, we denote
the number of operations considered per round as p. (4) The error detection
latency only depends on the detection level. (5) Depending on the detection
level, the codes have different non-linearity properties. However, as we perform
n-bit comparisons, we assume that the error miss rate is 2−n for all levels.

In general, the performance reduction in repetition or duplication schemes
has two parts. One corresponds to the comparators required to check the valid-
ity of intermediate values. It is inversely proportional to the detection latency,
as illustrated in Table 2, where τ denotes the timing function2. The other one
corresponds to the repetition or duplication itself and directly affects the im-
plementation throughput or area. Namely, repetition codes will cause a -50%
reduction of the throughput while duplication will require +100% additional
hardware. Regarding their detection properties, both solutions are not equiv-
alent, as repetition codes only allow to detect temporary (or soft) faults while
duplication also allows to detect permanent (or hard) faults.

Table 2. Latency vs. additional resources tradeoff

Latency Additional 1-bit comparators
τ (Algorithm) n

τ (Round) nq

τ (Operation) npq

While these solution may be straightforwardly implemented, the next sections
show that certain particular contexts allow to obtain the effects of repetition or
duplication for less than their usual cost.

3.1 Description of a First Scheme

Reference [16] describes a solution for the low cost concurrent error detection
in involutional block ciphers, exploiting the involution property to check if the
condition f(f(x)) = x is respected through the cipher. The authors argue that
the scheme achieves close to 0% time overhead. In this section, we show that:

1. The proposal can be improved by modifying the comparison scheme.
2. The proposal can be extended to non-involutional ciphers.
3. The proposal is actually a kind of repetition code.

2 Remark that the registers needed to store intermediate values are not considered as
hardware overhead. We show in the next section that, if well chosen, they can be
combined with the original implementation registers.

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 167

mux

f

=?

in

out
error

Fig. 4. Concurrent error detection for involutional functions [16]

The original error correction principle is represented in Figure 4. Reference
[16] applies it to the Khazad block cipher [4], for which the non-linear and lin-
ear layer are involutional. First, let us observe that the area overhead can be
straightforwardly reduced by changing the comparison scheme. Indeed, by com-
paring the function f ’s output with its following register output in place of
with the multiplexor output, we can avoid the comparison register. It is repre-
sented in Figure 5, where we extend the scheme to a complete block cipher loop
architecture.

involutional S-boxes

=?

round input

S-boxes output

error

mux

involutional diffusion

=?

diffusion input

round output

error

mux

mux

input

Fig. 5. Improved concurrent error detection for involutional rounds

Now, let us investigate the real time overhead of the countermeasure. For
clarity purposes, we assumed that the work frequency was not affected by the
comparison scheme. In Figure 5, we represented the original round operations in
light grey and the overhead in dark gray. Removing the dark grey boxes, it is clear
that the round can be performed in two clock cycles. It is basically a pipelined
implementation dealing with two different plaintexts concurrently. Then, adding

168 T.G. Malkin, F.-X. Standaert, and M. Yung

the dark grey registers, the round operations (i.e. S-boxes and diffusion layer)
will be used half the clock cycles for encrypting, the other half for checking
the involution property. As a consequence, the proposed countermeasure will
cause a -50% throughput overhead. We show that the proposed countermeasure
is actually a repetition code, by extending it to non-involutional ciphers, as
illustrated in Figure 6. Looking at the light grey boxes, the round is again divided

S-boxes

input

mux

diffusion

=?error

=?error

Fig. 6. Similar concurrent error detection for non involutional ciphers

into two operations and pipelined. Let us imagine an encryption mode where the
same plaintext is encrypted twice and we add the comparison boxes. We can then
detect errors as in Figure 5. The repetition is now obvious. The only differences
between schemes 5 and 6 are:

1. The involutional scheme allows to detect permanent errors.
2. The involutional scheme needs two additional multiplexors.

At this point, it is not clear how the proposal can achieve a 0% time overhead and
actually, this assumption is not generally true. However, considering the context
of feedback encryption modes, the countermeasure of [16] becomes particularly
interesting, as the pipeline cannot be used to deal with different plaintexts3 but
still allows to ensure error-proofness. Compared to a non-pipeline loop architec-
ture, as usually required in feedback modes, we still require twice more clock
cycles for one encryption, but it is likely that the clock frequency will be im-
proved proportionally, so that the throughput will only slightly be affected. Note
that this latter point is not a particular quality of the proposed technique, but
a general rule in hardware design. A fair comparison of architectures for feed-
back encryption modes is represented in Figure 7, where we can clearly observe
the tradeoff between the number of cycles increase for one encryption and the
expected increase of clock frequency (because the critical path is reduced).

3 It is mandatory to complete one plaintext encryption before starting the next one.

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 169

mux

round

half-round

half-round

mux

plaintext plaintext

error

=?

=?

error

Fig. 7. Encryption with feedback, without and with error detection

encrypt round 1

decrypt round r

=?encrypt round 2

decrypt round r-1

=?

encrypt round r

decrypt round 1

=?

plaintext

ciphertext

Fig. 8. Concurrent error detection using encryption/decryption designs

3.2 Another Proposal Equivalent to Repetition/Duplication

A very similar scheme has been presented in [21] for the concurrent error detec-
tion in symmetric block ciphers. It is based on exactly the same ideas as [16], in
the more general context of non-involutional ciphers.

Basically, as the involutional property is not available, it is replaced by a
design allowing to perform encryption and decryption. The error-detection prin-
ciple is illustrated in Figure 8 and can be viewed as (1) duplication if the encryp-
tion and decryption blocks are independently implemented, or (2) repetition if
the same hardware resources are used for encryption and decryption4. However,
as in the previous section, the proposal gain particular interest in certain specific
contexts. For example, if the cost of a decryption design is less than the one for

4 For most algorithms, only a part of the resources can be shared between encryption
and decryption. A perfect repetition scheme is only possible for involutional ciphers.

170 T.G. Malkin, F.-X. Standaert, and M. Yung

encryption5, the solution has a lower cost than duplication. Also, in applications
where encryption and decryption are necessary, but not concurrently, the ac-
tual performances will not be harmed by using the (otherwise unused) reverse
operation for error detection.

4 Discussion and Conclusions

In this paper, we reviewed a certain number of countermeasures against fault
attacks based on the use of space or time redundancies. It is shown that most
of these countermeasures are either insecure, due to an unrealistic fault model,
or their cost is close to duplication or repetition, excepted in certain particular
implementation contexts (e.g. encryption with feedback, encryption/decryption
designs). From an information theoretic point of view, this conclusion is close to
the one in [25], stating that most of efficient concurrent error detection schemes
exceed the cost of duplication. In general, improvements of these protections are
possible in two different directions.

First, restricting the fault model could allow to design more efficient solutions,
but it requires to consider the behavior of a malicious insider. Presently, only
a few works have been published about actual methods for fault injections and
more practical experiments are a preliminary step for such improvements. In
particular, it is not clear that attacker capabilities could reasonably be reduced
in terms of fault multiplicities or any other parameter. A conservative approach
therefore requires to provide an equal security for faults of any multiplicity, with
possible space and time localization.

Second, considering probabilistic fault detection is another usual alternative to
design schemes less expensive than duplication. However, regarding the require-
ments of present attacks (e.g. in [27], Rijndael is corrupted with only two faulty
ciphertexts), fault detection in cryptographic devices has particularly strong con-
straints. Therefore, this proposal has to be taken with care as faults have to be
detected with high probability.

More specifically, this work:

1. Points out the unrealistic fault model used in certain recently proposed coun-
termeasures [23,32].

2. Suggests that the actual cost of other countermeasures [19,20] are close to
duplication if fair comparisons are performed.

3. Improves the comparison scheme of [16] and generalizes it from involutional
block ciphers to all block ciphers.

4. Observes that countermeasures proposed in [16,21] are actual repetition
codes used in a specific context.

As a consequence of these observations, theoretical solutions to the problem of
fault attacks, as suggested in [12], no more appear as completely unpractical.
Also, due to their good detection properties, non-linear robust codes, such as
the ones in [19,20,24], would deserve further analysis to improve their hardware
cost and see how better they can compare with duplication.
5 This is very rarely the case in practice.

A Comparative Cost/Security Analysis of Fault Attack Countermeasures 171

References

1. R. Anderson, M. Kuhn, Tamper Resistance - a Cautionary Note, in the proceedings
of the USENIX Workshop on Electronic Commerce, pp 1-11, Oakland, CA, USA,
November 1996.

2. R. Anderson, M. Kuhn, Low Cost Attacks on Tamper Resistant Devices, in the pro-
ceedings of the 5th International Workshop on Security Protocols, Lecture Notes in
Computer Science, vol 1361, pp 125-136, Paris, France, April 1997, Springer-Verlag.

3. H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan, The Sor-
cerer’s Apprentice Guide to Fault Attacks, IACR e-print archive 2004/100,
http://eprint.iacr.org, 2004.

4. P.Barreto, V.Rijmen, The KHAZAD Legacy-Level Block Cipher, Submission to
NESSIE project, available from http://www.cosic.esat.kuleuven.ac.be/nessie/

5. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri, Error Analysis And De-
tection Procedures for a Hardware Implementation of the Advanced Encryption
Standard, IEEE Transactions on Computers, vol 52, num 4, pp 492-505, April
2003.

6. G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, An Efficient Hardware-Based Fault
Diagnosis Scheme for AES: Performance and Cost, in the proceedings of DFT
2004, 9 pp, Cannes, France, October 2004.

7. I. Biehl, B. Meyer, V. Müller, Differential Fault Analysis on Elliptic Curve Cryp-
tosystems, in the proceedings of Crypto 2000, Lecture Notes in Computer Science,
vol 1880, pp 131-146, Santa Barbara, California, USA, August 2000.

8. E. Biham, A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems, in
the proceedings of Crypto 1997, Lecture Notes in Computer Science, vol 1294, pp
513-525, Santa Barbara, CA, USA, August 1997, Springer-Verlag.

9. D. Boneh, R. DeMillo, R. Lipton, On the Importance of Checking Cryptographic
Protocols for Faults, in the proceedings of Eurocrypt 1997, Lecture Notes in Com-
puter Science, vol 1233, pp 37-51, Konstanz, Germany, May 1997, Springer-Verlag.

10. E. Brier, H. Handschuh, C. Tymen, Fast Primitives for Internal Data Scrambling
in Tamper Resistant Hardware, in the proceedings of CHES 2001, Lecture Notes
in Computer Science, vol 2162, pp 16-27, Paris, France, May 2001.

11. J. Daemen, V. Rijmen, “The Design of Rijndael. AES – The Advanced Encryption
Standard,” Springer-Verlag, 2001.

12. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, T. Rabin, Algorithmic Tamper-
Proof Security: Theoretical Foundations for Security Against Hardware Tampering,
in the proceedings of TCC 2004, Lecture Notes in Computer Science, vol 2951, pp
258-277, Cambridge, MA, USA, February 2004, Springer-Verlag.

13. C. Giraud, H; Thiebauld, A Survey on Fault Attacks, in the proceedings of CARDIS
2004, Toulouse, France, August 2004.

14. J.D. Golic, DeKaRT: A New Paradigm for Key-Dependent Reversible Circuits, in
the proceedings of CHES 2003, Lecture Notes in Computer Science, vol 2779, pp
98-112, Cologne, Germany, September 2003.

15. K. Johansson, M. Ohlsson, N. Blomgren, P. Renberg, Neutron Induced Single-Word
Multiple-Bit Upset in SRAM, in IEEE Transactions on Nuclear Science, vol 46, num
7, pp 1427-1433, December 1999.

16. N. Joshi, K. Wu, R. Karry, Concurrent Error Detection Schemes for Involution
Ciphers, in the proceedings of CHES 2004, Lecture Notes in Computer Science,
vol 3156, pp 400-412, Cambridge, Massachusset, USA, August 2004.

172 T.G. Malkin, F.-X. Standaert, and M. Yung

17. M. Joye, A.K. Lenstra, J.-J. Quisquater, Chinese Remaindering Based Cryptosys-
tems in the Presence of Faults, Journal of Cryptology, vol 12, num 4, pp 241-246,
1999, Springer-Verlag.

18. T. Karnik, P. Hazucha, J. Patel, Characterization of Soft Errors Caused by Single
Event Upsets in CMOS Processes, IEEE Transactions on Secure and Dependable
Computing, vol 1, num 2, April 2004.

19. M. Karpovsky, K.J. Kulikowski, A. Taubin, Differential Fault Analysis Attack Re-
sistant Architectures For The Advanced Encryption Standard, in the proceedings
of CARDIS 2004, Toulouse, France, August 2004.

20. M. Karpovsky, K.J. Kulikowski, A. Taubin, Robust Protection against Fault Injec-
tion Attacks on Smart Cards Implementing the Advanced Encryption Standard, in
the proceedings of DSN 2004, 9pp, Florence, Italy, June 2004.

21. R. Karri, K. Wu, P. Mishra, Y. Kim, Concurrent Error Detection Schemes for
Fault-Based Side-Channel Cryptanalysis of Symmetric Block Ciphers, in IEEE
Transactions on Computer-Aided Design, vol 21, num 12, pp 1509-1517, December
2002.

22. R. Karri, M. Gössel, Parity-Based Concurrent Error Detection in Symmetric Block
Ciphers, in the proceedings of ITC 2003, pp 919-926, Charlotte, USA, September
2003/

23. R. Karri, G. Kuznetsov, M. Gössel, Parity-Based Concurrent Error Detection of
Substitution-Permutation Network Block Ciphers, in the proceedings of CHES 2003,
Lecture Notes in Computer Science, vol 2779, pp 113-124, Cologne, Germany,
September 2003.

24. K.J. Kulikowski, M.Karpovsky, A. Taubin, Robust Codes for Fault Attack Resistant
Cryptographic Hardware, in the proceedings of FDTC 2005, pp 2-12, Edinburgh,
Scotland, September 2005.

25. S. Mitra, E.J. McCluskey, Which Concurrent Error Detection Scheme ro Choose,
in the proceedings of the International Test Conference 2000, pp 985-994, October
2000, Atlantic City, NJ, USA.

26. V. Moshanin, V. Otscheretnij, A. Dmitriev, The Impact of Logic Optimization on
Concurrent Error Detection, in the proceedings of the 4th IEEE International On-
Line Testing Workshop, pp 81-84, July 1998.

27. G. Piret, J.-J. Quisquater, A Differential Fault Attack Technique Against SPN
Structures, With Applications to the AES and Khazad, in the proceedings of CHES
2003, Lecture Notes in Computer Science, vol 2779, pp 77-88, Cologn, Germany,
September 2003.

28. R. Reed, Heavy Ion and Proton Induced Single Event Multiple Upsets, in the pro-
ceedings of the IEEE Nuclear and Space Radiation Effects Conference, July 1997.

29. D. Samyde, S. Skorobogatov, R. Anderson, J.-J. Quisquater, On a New Way to
Read Data from Memory, in the proceedings of the IEEE Security in Storage Work-
shop 2002, pp 65-69, Greenbelt, Maryland, USA, December 2002.

30. P. Shirvani, Fault Tolerant Computing for Radiation Environments, PhD Thesis,
Center for Reliable Computing, Stanford University, June 2001.

31. S. Skorobogatov, R. Anderson, Optical Fault Induction Attacks, in the proceedings
of CHES 2002, Lecture Notes in Computer Science, vol 2523, pp 2-12, Redwood
City, CA, USA, August 2002, Springer-Verlag.

32. K. Wu, R. Karri, G. Kuznetsov, M. Goessel, Low Cost Error Detection for the
Advanced Encryption Standard, in the proceedings of ITC 2004, Oct 2004.

Non-linear Residue Codes for Robust
Public-Key Arithmetic

Gunnar Gaubatz1,�, Berk Sunar1,�, and Mark G. Karpovsky2

1 Cryptography & Information Security Laboratory
Worcester Polytechnic Institute, Massachusetts, U.S.A

{gaubatz, sunar}@wpi.edu
2 Reliable Computing Laboratory

Boston University, Masachusetts, U.S.A
markkar@bu.edu

Abstract. We present a scheme for robust multi-precision arithmetic
over the positive integers, protected by a novel family of non-linear arith-
metic residue codes. These codes have a very high probability of detecting
arbitrary errors of any weight. Our scheme lends itself well for straight-
forward implementation of standard modular multiplication techniques,
i.e. Montgomery or Barrett Multiplication, secure against active fault
injection attacks. Due to the non-linearity of the code the probability of
detecting an error does not only depend on the error pattern, but also on
the data. Since the latter is not usually known to the adversary a priori,
a successful injection of an undetected error is highly unlikely. We give a
proof of the robustness of these codes by providing an upper bound on
the number of undetectable errors.

Keywords: Robust arithmetic, non-linear residue codes, public-key
cryptography, fault tolerance, error detection.

1 Introduction

In 1996 Boneh et al. demonstrated painfully how vulnerable straightforward
implementations of public-key cryptographic algorithms are to a class of attacks
now commonly referred to as “Bellcore attacks”. In the following a simple and
“low-cost” countermeasure was proposed by Shamir [1]. However, it was shown
to be flawed by Aumüller et al. [2], since it does not protect all steps of the
computation. More advanced protection schemes were proposed by Blömer et al.
[3] and Yen et al. [4], and there exist claims that some of them can be broken,
too [5], although this seems to be disputed.

Apart from Bellcore style attacks there exists another type of fault attack,
which is aimed at common countermeasures to passive attacks. In order to
prevent power and electro-magnetical analysis techniques, many VLSI imple-
mentations nowadays employ power balanced logic gate libraries, whose power
consumption and hence electro-magnetic emanations are data-independent. New
� This work was supported through grants by the National Science Foundation and

Intel Corporation.

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 173–184, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

174 G. Gaubatz, B. Sunar, and M.G. Karpovsky

fault attacks are aimed at introducing glitches into the circuit which cause such
gates to ‘loose balance’, i.e. reveal data through power imbalances. This opens
the door to various classical attacks on the circuit, like simple and differen-
tial power (SPA,DPA) and electromagnetic (SEMA,DEMA) analysis. All this
demonstrates the urgent need for a truly robust error detection scheme.

A family of systematic non-linear error detecting codes, termed ‘robust codes’,
was derived from systematic linear block codes in [6]. Their use in symmetric
ciphers like the AES has been proposed in [7] and later refined in [8]. The robust-
ness of these codes is due to the much more uniform error detection capabilities
these codes offer, which is independent of the error multiplicity. Furthermore,
the probability Q(e) of an undetected error e does not only depend on the error
pattern, but also on the data itself. In the case of a cryptographic key which is
not known to the attacker a priori, a fault-injection attack is much more difficult
to mount than with a linear encoding scheme. While robust codes work well with
symmetric ciphers that employ only little more than table look-ups, XORs and
byte-wise rotations, they are virtually unusable within the finite field arithmetic
structure that forms the basis of most public-key algorithms.

During the early years of fault-tolerant computing, residue codes were pro-
posed [9] as a means for checking arithmetic operations for errors, while preserv-
ing the integrity between operands and their check symbols. The check symbol
in residue codes is computed as the remainder of the operand (or its comple-
ment) with respect to the check modulus, usually a prime. Several variations
such as multi-residue and non-separate (AN) codes were also introduced early
on. Designed for the purpose of detecting only sporadically occuring bit errors
their arithmetic distance is limited to 2 or 3. Mandelbaum [10] introduced arith-
metic codes with larger distance properties, however, with an unattractively
large amount of redundancy. Unfortunately, due to the linear encoding scheme,
standard arithmetic residue codes do not offer robustness properties, since any
error pattern which itself is a codeword can not be detected, irrespective of the
actual data.

We summarize our contributions in this paper as follows: We start by stating
our assumptions about the fault model in section 2. In section 3, following the
definition of robustness, we propose a new class of non-linear, systematic arith-
metic residue codes, along with a proof of its robustness. We then use these codes
to derive robust arithmetic primitives for performing digit-serial multi-precision
arithmetic in a fault tolerant manner. In section 5 we use Montgomery modu-
lar multiplication as an example of how to implement field and ring arithmetic
for public-key cryptography, that can be used in RSA and Diffie-Hellman like
schemes as well as Elliptic Curve Cryptography over GF(p). In the future we are
planning to extend our analysis to include robust arithmetic in binary extension
fields, i.e. for ECC over GF(2k), in order to provide a complete set of robust
arithmetic operations for public key cryptography.

Our codes are attractive due to their data dependent and asymptotically low
probability of missing errors. These properties make it nearly impossible for an
adversary to successfully inject faults that are missed by the error detection

Non-linear Residue Codes for Robust Public-Key Arithmetic 175

network. A nice side-effect of encoding is that any arbitrary fault besides adver-
sarial faults, e.g. one introduced by ‘mother nature’, is also handled automatically.

2 Adversarial Fault Model

An active side channel attack such as differential fault analysis (DFA) relies
on the manifestation of injected faults as erroneous results which can then be
observed at the output of the device. The error is therefore the difference between
the expected output x and the observed output x̃ = x+e. In the following we do
not assume that the adversary is limited to any specific method of fault injection.
The only assumption is that direct invasive access to the chip itself is prevented
by some tamper-proof coating, a reasonable assumption, since this is a common
practice, e.g. in the smart card industry.

However, even if the attacker should manage to remove the shielding and ob-
tain direct access to the chip’s surface [11], a successful fault analysis is still
highly unlikely. Let us assume for a moment that he or she has the ability to
toggle the state of an arbitrary number of bits with the required spatial and tem-
poral resolution, i.e. reliably introduce an arbitrary error vector. Due to the data
dependent probability Q(e) of missing an error in the error detection network,
the expected number of attempts to successfully introduce a non-detectable er-
ror is at least 1

2 mine�=0
(
Q(e)−1

)
. For a sufficiently large digit size k (e.g. 32

bits), this number is on the order of several hundred million trials. While this
number seems low enough to warrant an exhaustive trial and error process, such
an attack can easily be defeated by a mechanism that detects an unusually large
number of errors and simply shuts off the device. Only if the attacker has the
capacity to read out the live state of the circuit and instantly compute an unde-
tectable error vector the attack will be successful. We note that these are rather
strong assumptions that require a high degree of sophistication and motivation.

When talking about errors as manifestations of faults, there are two principle
ways of characterization. A logical error is a bitwise distortion of the data, usually
modeled as the XOR of data and error, i.e. x̃ = x ⊕ e, while arithmetical errors
admit the propagation of carries up to the range limit: x̃ = x + e mod 2k, where
k is the width of the data path. The former is appropriate for storage dominated
devices (register files, RAM, flip-flops, etc.), the arithmetic error model is more
useful for arithmetic circuits such as adders and multipliers. For the remainder
of this paper we will assume the latter, since it helps to simplify the analysis.

3 Robust Arithmetic Codes

As mentioned before, a class of non-linear systematic error detecting codes, so-
called “robust codes”, were proposed by Karpovsky and Taubin [6]. They achieve
optimality according to the minimax criterion, that is, they minimize over all
(n, k) codes the maxima of the fraction of undetectable errors Q(e) for e �= 0.
While they are suitable for data transmission in channels with unknown char-
acteristics, and also for robust implementation of symmetric-key cryptosystems

176 G. Gaubatz, B. Sunar, and M.G. Karpovsky

with little arithmetic structure, they do not preserve arithmetic. We thus pro-
pose a new type of non-linear arithmetic code, based on the concept of arithmetic
residue codes. We define robustness as follows:

Definition 1. Let C = {(x, w)|x ∈ Z2k , w = f(x) ∈ Fp} be an arithmetic
single-residue code with a function f : Z2k �→ Fp to compute the check symbol
w with respect to the prime check modulus p of length r = �log2 p� bits. A non-
zero error e ∈ {(ex, ew)|ex ∈ Z2k , ew ∈ Z2r} is masked for a message x, when
(x + ex, w + ew) ∈ C, i.e. iff

f
(
(x + ex mod 2k)

)
= f(x) + ew mod 2r . (1)

The error masking probability for a given non-zero error is thus

Q(e) =
|{x|(x + ex, w + ew) ∈ C}|

|C| . (2)

We call the code C robust, if it minimizes maxima of Q(e) over all non-zero
errors. Total robustness is achieved for maxe�=0(Q(e)) = 2−r. We also call C ε-
robust if it achieves an upper bound maxe�=0(Q(e)) ≤ ε·2−r, where ε is a constant
much smaller than 2r.

In the following we propose a class of non-linear single-residue arithmetic codes
Cp based on a quadratic residue check symbol, which achieves ε-robustness.
Since in practice total robustness is hard to achieve, we will from now on refer
to ε-robustness simply as robustness.

Theorem (Robust Quadratic Codes). Let Cp according to Definition 1,
with f(x) := x2 mod p. Cp is robust iff r = k and 2k − p < ε, and has the error
masking equation

(x + ex mod 2k)2 mod p = w + ew mod 2k (3)

Proof. To prove robustness we proceed by proving an upper bound ε on the
number of solutions of the error masking equation (3), as that directly translates
into a bound on Q(e). The modulo 2k operator from the LHS of (3) stems from
the limitation of the data path to k-bits. This limits the ranges of both the
message and the message error to 0 ≤ x, ex < 2k. We can therefore remove
the modulo 2k operator by distinguishing between the two cases x + ex < 2k

and x + ex ≥ 2k. Similarly, an error is masked only if the faulty check symbol
w < p, so for k = r we can distinguish between the three cases w + ew < p,
p ≤ w + ew < 2k and 2k ≤ w + ew < 2k + p. This allows us to simplify the RHS
of (3).

1. Solutions x < 2k − ex: An error (ex, ew) is masked iff

(x + ex)2 mod p = w + ew mod 2k

Simplifying the RHS we have the following three cases:

Non-linear Residue Codes for Robust Public-Key Arithmetic 177

(a) If w < p − ew, the error is masked iff

(x + ex)2 mod p = w + ew (4)

If e = (p, 0) eq. (4) has exactly 2k−p solutions. For ex �= p and ex ≥ 2k−p
there exists at most a single solution; at most two solutions exist in the
case of ex < 2k − p.

(b) If p− ew ≤ w < 2k, the error will never be masked, since a check symbol
w ≥ p will always be detected.

(c) For w ≥ 2k − ew the error will be masked iff

(x + ex)2 mod p = w + ew − 2k . (5)

Eq. (5) has at most two solutions.
2. Solutions x ≥ 2k − ex: An error (ex, ew) is masked iff

(x + ex − 2k)2 mod p = w + ew mod 2k

For the RHS we distinguish the following three cases:
(a) If w < p − ew, the error is masked iff

(x + ex − 2k)2 mod p = w + ew (6)

Eq. (6) has at most two solutions, unless we have an error e = (2k −p, 0),
in which case there are 2k − p solutions.

(b) If p− ew ≤ w < 2k, the error will never be masked, since a check symbol
w ≥ p will always be detected.

(c) For w ≥ 2k − ew the error will be masked iff

(x + ex − 2k)2 mod p = w + ew − 2k . (7)

Eq. (7) has at most two solutions.

Q(e) is determined by the number of solutions to the error masking equation
(3). A simple counting argument involving the cases above provides us with an
initial, but somewhat weak bound:

There are at most 2k − p +2 solutions to (3) for errors of the form (p, 0)
or (2k − p, 0), and at most 8 solutions for all other errors.

A tighter bound can be established by differentiating more precisely under which
conditions two solutions can occur. We omit the proof here due to space restric-
tions and only give the result.

There are at most 2k − p + 1 solutions for errors of the form e = (p, 0)
or e = (2k − p, 0), and 4 solutions for all other error patterns.

We thus have maxe�=0(Q(e)) = 2−k · max(4, 2k − p + 1)

178 G. Gaubatz, B. Sunar, and M.G. Karpovsky

We would like to point out that the transition from linear arithmetic to robust
quadratic codes with the same parameters k, r and p results in a much more
uniform distribution of the error detecting capability of the code. For example,
for linear codes with k = r there are double errors with ex = ew such that Q(e)
is very close to 1, i.e. the errors cannot be detected. For robust quadratic codes
with the same parameters, Q(e) is close to zero for all e.

We now give an intuitive argument to show the existence of practical robust
codes for cryptographic purposes with the help of the prime number theorem.
The idea here is that for fault-tolerance in an adversarial situation, the probabil-
ity of not detecting an error should be insignificantly small. As we saw from the
proof, in the best case we have a probability of at most Q(e) = 4 ·2−k = 2−k+2 of
not detecting an error (assuming a uniform distribution of messages). Therefore,
a Q(e) that makes insertion of an error infeasible for an attacker, requires a suf-
ficiently large digit size k and a prime p close enough to 2k so that the difference
does not increase Q(e) too much. For example, for k = r = 32 the k-bit prime
closest to 2k is 232 − 5, thus bounding Q(e) by (2k − p + 1) · 2−k = 3 · 2−31.
According to the prime number theorem the number of primes smaller than or
equal to x is approximately x/ lnx, i.e. for our case 2k/k. Intuitively it thus
seems reasonable to expect to find a prime within the interval [2k − k, 2k). In
Table 1 we give the distance of the primes closest to 2k from below for practical
values of k.

Table 1. Closest prime number distances from 2k for practical values of k

k 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2k − p 1 5 1 3 9 3 15 3 39 5 39 57 3 35 1 5

k 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
2k − p 9 41 31 5 25 45 7 87 21 11 57 17 55 21 115 59

k 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
2k − p 81 27 129 47 111 33 55 5 13 27 55 93 1 57 25 59

4 Robust Arithmetic Operations

In the previous section we proved the robustness of quadratic codes for digits of
size k bits. We now wish to apply them in a generalized framework for multi-
precision arithmetic over the positive integers.

Due to the range limitation of the information bits to 0 ≤ x < 2k, we need to
handle any overflow resulting from arithmetic operations. This may be a carry
bit generated by the addition of two k-bit operands, or the 2k-bit result of a
multiplication. The new digits that are created in this manner will need their
own check symbols, which cannot be derived from the input operands’ check
symbols alone. Thus they need to be derived purely from the information bits of
the new digits, creating a potential loophole for the insertion of an error. This
can be avoided by re-computing the joint check symbol from the newly generated
individual check symbols and comparing it to the output of the predictor. This

Non-linear Residue Codes for Robust Public-Key Arithmetic 179

re-computation represents an integrity check which allows us bridge disconti-
nuities introduced by interleaving mixed modulus operations, here the check
modulus p and the implicit range limiting modulus 2k. Once the integrity check
is in place we can perform standard arithmetic operations, and implementing an
algorithm like Montgomery’s for modular arithmetic becomes straightforward.

In the following we show how this check may be implemented for various
arithmetic primitives. Let (a, |a2|p) and (b, |b2|p) denote encoded input operands
a and b, where |x2|p is short-hand notation for x2 mod p. We also introduce
mnemonics for these primitives, in order to tie them into a robust variant of the
digit serial Montgomery multiplication algorithm in the next section.

Addition (RADD and RADDC): RADD (Robust ADDition) and RADDC (Ro-
bust ADDition with Carry) compute the sum of the two input operands. This
is depicted in Figure 1. For reference, the operators ⊕p and ⊗p stand for ad-
dition and multiplication modulo p, respectively. The sum c = a + b (+cin)
may be larger than 2k by at most a single bit. Let ch denote this new carry,
and cl the k-bit sum. The predictor computes the joint check symbol |c2|p as
the sum of the check symbols and additional terms involving the operands:
|c2|p = |(a + b + cin)2|p = ||a2|p + |b2|p + 2(ab + cin(a + b)) + cin|p. For error
detection we first create the check symbol for the k-bit sum |c2

l |p (the check
symbol for the carry bit is the carry bit itself). Then we re-compute the joint
check symbol as

|c2|∗p = |(ch2k + cl)2|p
=
∣∣ch · |22k|p + ch · |cl|p · |2k+1|p + |c2

l |p
∣∣
p

=
∣∣ch · |22k + cl · 2k+1|p + |c2

l |p
∣∣
p

(8)

If the check |c2|∗p = |c2|p holds, then the result is deemed to be free from errors.
The resulting carry from both RADD and RADDC is held in a register local to
the addition circuit. If the following addition operation is RADDC, then that
carry is used for computation of the new sum. If it is RADD, then a zero carry
is used.

Multiplication (RMUL): The product of a and b and its joint check symbol
is (c, |c2|p) = (a · b, ||a2|p · |b2|p|p). However, the previous tuple is not a code
word, since c may exceed 2k. We therefore split c into two halves ch and cl (cf.
Figure 2), both of which are within the desired range:

c = ch · 2k + cl 0 ≤ ch, cl < 2k .

We then compute the check symbols |c2
h|p and |c2

l |p separately, and establish
their integrity with the composite check symbol |c2|p:

|c2|∗p =
∣∣(ch · 2k + cl)2

∣∣
p

=
∣∣c2

h · 22k + ch · cl · 2k+1 + c2
l

∣∣
p

=
∣∣|c2

h|p · |22k|p + |ch|p · |cl|p · |2k+1|p + |c2
l |p
∣∣
p

(9)

180 G. Gaubatz, B. Sunar, and M.G. Karpovsky

E
rror D

etection N
etw

ork

p

|b2|p|a2|pa b

cl

|x|p

lc |cl
2

p| x==y?
p

carry

p

2x

p

|x2|p

k+1x+22k|p|2

2x

0

Error

0

RADDC?

0
0 p−1

P
redictor

Fig. 1. Robust addition

P
redictor

2|p

ch cl

|a2|pa

hc |ch
2

p| lc |cl
2

p|

|x|p

|x2|p

p

|x2|p

|x|p

p |2k+1 x| p

|22kx|p p

p

b

x==y?

Error

E
rror D

etection N
etw

ork

|b

Fig. 2. Robust multiplication

Non-linear Residue Codes for Robust Public-Key Arithmetic 181

Observe that the values |22k|p and |2k+1|p are constant for a given implementa-
tion and that |ch|p and |cl|p are intermediate results from the computation of the
separate halves’ check symbols. Hence we have all the necessary ingredients to
re-compute the joint check symbol as |c2|∗p and compare it to the value obtained
from the predictor. If the comparison passes we assume there were no errors.

Shifts, Subtraction, Logic Operations: We can apply similar re-computation tech-
niques for other operations. Out of space considerations and since we do not need
these other operations for the next section, we skip their details at this point.

Error Detection: The comparison between the predictor output and the re-
computed joint check symbol is an easy target for an attack if carelessly imple-
mented. We therefore require implementation as a totally self-checking circuit
[12]. The same holds for any other integrity checks.

5 Robust Montgomery Multiplication

We now show how to apply our robust code in a digit serial Montgomery Mul-
tiplication scheme. A good overview over several variants of the Montgomery
algorithm is given in [13]. In this example we will refer to the finely integrated
operand scanning (FIOS) variant. It is the most suitable one for hardware im-
plementations since it can be used in a pipelined fashion offering some degree of
parallelization [14].

Algorithm 1. k-bit Digit-Serial FIOS Montgomery Multiplication
Require: d = {0, . . . , 0}, M ′

0 = −M−1
0 mod 2k

1: for j = 0 to e − 1 do
2: (C, S) ⇐ a0bj + d0

3: U ⇐ SM ′
0 mod 2k

4: (C, S) ⇐ (C, S) + M0U
5: for i = 1 to e − 1 do
6: (C, di−1) ⇐ C + aibj + MiU + di

7: end for
8: (de, de−1) ⇐ C
9: end for

In the following we require some basic familiarity on part of the reader with the
way of how Montgomery multiplication works. To review briefly: the objective is
to compute the modular product of two N -bit numbers with respect to the N -bit
modulus M . Montgomery’s algorithm requires the initial transformation of all
operands into residues of the form x̂ = xR mod M and some final transformation
back x = x̂R−1 mod M . Here R is the Montgomery radix, usually 2k·e, where e =
�N/k� represents the number of digits per operand. Without loss of generality
we assume that the transformation into the Montgomery residue system has
already taken place and we operate entirely within the residue system, so in
order to simplify notation we will refer to a residue x̂ simply as x.

182 G. Gaubatz, B. Sunar, and M.G. Karpovsky

Algorithm 2. Robust Montgomery Multiplication
Require: d = {(0, 0), . . . , (0, 0)}, M ′

0 = −M−1
0 mod 2k

1: for j = 0 to e − 1 do
2: if Check((a0, |a2

0|p), (bj , |b2
j |p), (d0, |d2

0|p), (M ′
0, |(M ′

0)2|p), (M0, |M2
0 |p)) then

3: ((T1, |T 2
1 |p), (T0, |T 2

0 |p)) ⇐ RMUL((a0, |a2
0|p), (bj , |b2

j |p))
4: (T0, |T 2

0 |p) ⇐ RADD((T0, |T 2
0 |p), (d0, |d2

0|p))
5: (T1, |T 2

1 |p) ⇐ RADDC((T1, |T 2
1 |p), (0, 0))

6: ((−, −), (U, |U2|p)) ⇐ RMUL((T0, |T 2
0 |p), (M ′

0, |M ′2
0 |p))

7: ((T3, |T 2
3 |p), (T2, |T 2

2 |p)) ⇐ RMUL((M0, |M2
0 |p), (U, |U2|p))

8: (−, −) ⇐ RADD((T0, |T 2
0 |p), (T2, |T 2

2 |p))
9: (T0, |T 2

0 |p) ⇐ RADDC((T1, |T 2
1 |p), (T3, |T 2

3 |p))
10: (T1, |T 2

1 |p) ⇐ (carry, carry)
11: for i = 1 to e − 1 do
12: if Check((ai, |a2

i |p), (bj , |b2
j |p), (di, |d2

i |p), (U, |U2|p), (Mi, |M2
i |p)) then

13: (T0, |T 2
0 |p) ⇐ RADD((T0, |T 2

0 |p), (di, |d2
i |p))

14: (T1, |T 2
1 |p) ⇐ RADDC((T1, |T 2

1 |p), (0, 0))
15: ((T4, |T 2

4 |p), (T3, |T 2
3 |p)) ⇐ RMUL((ai, |a2

i |p), (bj , |b2
j |p))

16: (T0, |T 2
0 |p) ⇐ RADD((T0, |T 2

0 |p), (T3, |T 2
3 |p))

17: (T1, |T 2
1 |p) ⇐ RADDC((T1, |T 2

1 |p), (T3, |T 2
3 |p))

18: (T2, |T 2
2 |p) ⇐ (carry, carry)

19: ((T4, |T 2
4 |p), (T3, |T 2

3 |p)) ⇐ RMUL((Mi, |M2
i |p), (U, |U2|p))

20: (di−1, |d2
i−1|p) ⇐ RADD((T0, |T 2

0 |p), (T3, |T 2
3 |p))

21: (T0, |T 2
0 |p) ⇐ RADDC((T1, |T 2

1 |p), (T3, |T 2
3 |p))

22: (T1, |T 2
1 |p) ⇐ (carry, carry)

23: else
24: ABORT
25: end if
26: end for
27: (de−1, |d2

e−1|p) ⇐ (T0, |T 2
0 |p)

28: (de, |d2
e|p) ⇐ (T1, |T 2

1 |p)
29: else
30: ABORT
31: end if
32: end for

The k-bit digit serial FIOS Montgomery algorithm (Alg. 1.) takes as its inputs
the e-digit vectors a and b, and computes the product MM(a, b) = a ·b ·R−1 mod
M . The value M ′

0 is pre-computed whenever the modulus changes. In terms
of notation, a pair (C, S) represents the concatenation of two variables as the
destination for the result of an operation. Furthermore, the variable C is slightly
larger than the other variables, i.e. k + 1 bits. This is so to efficiently handle
extra carries from the accumulation of C, di and the two products aibj and
MiU . The division by R is handled by the algorithm implicitly. For example,
in line 4 the sum (C, S) + M0U is assigned to (C, S), but in the following step
S is dropped. This shift to the right by k bits, repeated e times, results in
division by R. As one can easily verify, Algorithm 1. consists of only very basic
addition and multiplication steps. We may therefore obtain a robust digit-serial
Montgomery algorithm (Alg. 2.) simply by mapping all arithmetic steps to our

Non-linear Residue Codes for Robust Public-Key Arithmetic 183

robust arithmetic primitives introduced in the previous section. Additionally
we insert intermediate checks during which we verify the integrity of operand
values and their check symbols. This is indicated by a call to the pseudofunction
Check((x, |x2|p), . . .). Although not indicated in the algorithm description, we
further assume that the error signal generated by the the internal integrity check
within the arithmetic primitives RADD, RADDC and RMUL, is also constantly
evaluated. In the case of an error the algorithm is aborted with an exception.

Some comments about the robust algorithm: Algorithm 1. appears much
shorter than Algorithm 2., since it combines multiple arithmetic operations into
a single step. Also, while it handles carries implicitly using a larger width vari-
able C, the robust algorithm is restricted to a digit size of exactly k bits. Thus,
extra carry handling steps are required. In Alg. 2., line 6, the destination of the
top half of the result is not assigned: (−, −). This is equivalent to computing
the result modulo 2k, as in Alg. 1., line 3. A similar thing happens in Alg. 2.,
line 8, where the lower half of the result is dropped due to the implicit shift to
the right. The point of performing the addition is purely to determine whether
or not a carry is generated.

6 Conclusion

We have presented a novel systematic non-linear arithmetic code which is robust
against adversarial injection of faults and statistically occurring random faults
(soft-errors). Based on this code we have introduced arithmetic primitives for ro-
bust computation over encoded digits. We have further used the example of digit
serial Montgomery modular multiplication to demonstrate how robust arithmetic
can be deployed for fault-secure multi-precision public-key computations.

Quite naturally the robustness of our scheme adds overhead, which has a
negative impact on performance. This is a price we have to pay for the non-
linearity that enables robustness. In terms of critical path delay we estimate
that multiplication incurs a performance hit of a little less than 100%, compared
to a linear scheme, due to the re-computation of the quadratic check symbol. For
addition, the absolut overhead is roughly the same, however, in terms of relative
overhead it fares much worse. One of our aims for future research is to quantify
more precisely the performance and area overhead, and compare a variety of
system parameters, i.e. digit size k, check modulus p, degree of parallelism, etc.
For example, for certain values of k there exist Mersenne prime check moduli,
which enable very efficient implementations for check symbol computation.

Our scheme scales reasonably well, since once the digit size is determined, the
complexity of the predictor and error detection networks remain constant. We
would like to emphasize that we clearly prioritize robustness over performance.
Given the increased vulnerability level of mobile and ubiquitous security devices,
and the progress in adversarial fault analysis techniques, we believe that this is a
sensible argument. For future research we aim to extend these codes to arithmetic
in extension fields GF(2k), i.e. for use in elliptic curve cryptography, as well as
give more concrete performance numbers, as mentioned above.

184 G. Gaubatz, B. Sunar, and M.G. Karpovsky

References

1. Shamir, A.: Method and apparatus for protecting public key schemes from timing
and fault attacks. US Patent No. 5,991,415 (1999)

2. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault attacks on
RSA with CRT: Concrete results and practical countermeasures (2002)

3. Blömer, J., Otto, M., Seifert, J.: A new crt-rsa algorithm secure against bellcore
attacks. In: CCS ’03: Proceedings of the 10th ACM conference on Computer and
communications security, New York, NY, USA, ACM Press (2003) 311–320

4. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Comp. 49 (2000) 967–970

5. Wagner, D.: Cryptanalysis of a provably secure CRT-RSA algorithm. In: CCS
’04: Proceedings of the 11th ACM Conference on Computer and Communications
Security, New York, NY, USA, ACM Press (2004) 92–97

6. Karpovsky, M., Taubin, A.: New class of nonlinear systematic error detecting
codes. IEEE Transactions on Information Theory 50 (2004) 1818–1820

7. Karpovsky, M., Kulikowski, K., Taubin, A.: Robust protection against fault-
injection attacks of smart cards implementing the advanced encryption standard.
In Simoncini, L., ed.: Proc. Int. Conf. Dependable Systems and Networks (DSN’04),
IEEE Computer Society, IEEE Press (2004) 93–101

8. Kulikowski, K., Karpovsky, M., Taubin, A.: Robust codes for fault attack resistant
cryptographic hardware. In Breveglieri, L., Koren, I., eds.: 2nd Int. Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC’05). (2005)

9. Rao, T., Garcia, O.: Cyclic and multiresidue codes for arithmetic operations. IEEE
Trans. Inf. Theory 17 (1971) 85–91

10. Mandelbaum, D.: Arithmetic codes with large distance. IEEE Transactions on
Information Theory 13 (1967) 237–242

11. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: Proceedings of
the Second Usenix Workshop on Electronic Commerce, USENIX Assoc., USENIX
Press (1996) 1–11

12. Pradhan, D., ed.: Fault Tolerant Computing – Theory and Techniques. 1st edn.
Volume 1. Prentice-Hall, New Jersey (1986)

13. Koç, Ç.K.., Acar, T., Kaliski, B.J.: Analyzing and comparing montgomery multi-
plication algorithms. IEEE Micro 16 (1996) 26–33

14. Gaubatz, G.: Versatile montgomery multiplier architectures. Master’s thesis,
Worcester Polytechnic Institute, Worcester, Massachusetts (2002)

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 185 – 195, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Fault Attack Resistant Cryptographic Hardware with
Uniform Error Detection

Konrad J. Kulikowski, Mark G. Karpovsky, and Alexander Taubin

Reliable Computing Laboratory, Boston University
8 Saint Mary's Street, Boston, MA 02215

{konkul, markkar, taubin}@bu.edu

Abstract. Traditional hardware error detection methods based on linear codes
make assumptions about the typical or expected errors and faults and concen-
trate the detection power towards the expected errors and faults. These tradi-
tional methods are not optimal for the protection of hardware implementations
of cryptographic hardware against fault attacks. An adversary performing a
fault-based attack can be unpredictable and exploit weaknesses in the traditional
implementations. To detect these attacks where no assumptions about expected
error or fault distributions should be made we propose and motivate an architec-
ture based on robust nonlinear systematic (n,k)-error-detecting codes. These
code can provide uniform error detecting coverage independently of the error
distributions. They make no assumptions about what faults or errors will be in-
jected by an attacker and have fewer undetectable errors than linear codes with
the same (n,k). We also present optimization approaches which provide for a
tradeoff between the levels of robustness and required overhead for hardware
implementations.

1 Introduction

Hardware implementations of cryptographic algorithms are vulnerable to malicious
analyses that exploit the physical properties of the designs. These attacks which ex-
ploit the implementation specific weaknesses are known as Side-Channel Attacks
(SCA). Information derived from the power consumption, electro-magnetic radiation,
execution time, and behavior in the presence of faults of a device can all be used to
drastically decrease the complexity of cryptanalysis. Mobile cryptographic devices
such as smartcards and mobile computers are especially vulnerable since the physical
hardware implementing the algorithms, and hence the side-channel information, is
easily accessible.

The side-channel attacks of interest to this paper are Differential Fault Analysis
(DFA) attacks. DFA attacks use the information obtained from an incorrectly func-
tioning implementation of an algorithm to derive the secret information. DFA attacks
were first proposed by Biham et al. [1] against hardware implementations of the Data
Encryption Standard (DES). They have since been extended to other symmetric key
algorithms, such as the Advanced Encryption Standard (AES) in [5-9].

Incorrect operation can result from faults within the circuit (permanent or transient)
which may be due to natural effects or be maliciously induced. Faults can be injected

186 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

into a circuit even in the presence of tamper resistant packaging by introducing the
device to elevated levels of radiation or temperature, atypical clock rate, or incorrect
voltage [3].

Current DFA protection methods for symmetric ciphers based on error-detecting
codes use linear codes such as parity or repetition codes (e.g. duplication). These
linear methods provide for good overall coverage but their error detecting capabilities
depend on error distributions. The protection they provide is not uniform against all
errors. Linear codes have areas of poor error coverage which can be exploited by an
attacker regardless of how good the overall average protection is. In this paper we
demonstrate a method of transforming from protection based on linear codes to pro-
tection based on non-linear robust codes which provide for more uniform error-
detection coverage. This results in a drastic reduction of a number of undetected faults
which can be exploited by an attacker. We also present optimization methods for
design of robust smart cards which provide for a tradeoff between levels of robustness
(uniformity of error coverage) and hardware overheads.

2 Current Protection Methods for Symmetric Ciphers

Several methods and architectures have been proposed for protecting symmetric key
ciphers like AES against DFA attacks. These methods range in their granularity, pro-
tection they provide, and the overhead they require. One method proposed by several
groups is based on linear error-detecting codes [11-12]. Hardware redundancy is
added to the circuit to concurrently predict and verify a signature of the device. Usu-
ally very simple linear codes such as parity or duplication are used. The second
method [10] exploits the symmetry and reversibility of private key algorithms. The
method performs the encryption (or decryption) operations followed by their inverse
decryption (or encryption). If no error was present in the operation, then performing
the inverse operation should lead to the original data. The inverse and comparison can
be performed on various granularities. This method usually requires large temporal
overhead, since the inverse operation cannot be performed before the original compu-
tation is performed, or large hardware overhead to facilitate the verification on a finer
granularity. The solutions based on linear codes can have smaller overheads but are
efficient only if the errors are within the given distribution for which the codes were
designed. We note that several recently published DFA attacks [5-9] require very few
faults to be injected.

3 Attack Model

Attackers inject faults and observe errors which are manifestations of the faults at the
output. In general, a fault produces useful information for analysis for a symmetric
cipher only if an erroneous output can be observed by the attacker. The erroneous
output is the expected output distorted by some error e (e x x= ⊕ , where x is the

expected output and x is the observed distorted output, and ⊕ stands for componen-
twise XOR of binary vectors). In this model, detection and prevention of a fault attack
is equivalent to determining if the output is distorted by an error (error detection) and

 Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection 187

suppressing the output to prevent analysis. Multiple faults have to be injected and
observed for successful cryptanalysis so it is important to have the highest protection
possible to detect the attack before it is successful and disable the device.

We do not limit the analysis to any method of fault injection but assume that tam-
per proof packaging is used so that the attacker does not have direct access to the chip
surface. We assume that the attacker cannot precisely control the location of the in-
jected faults and so the locations of the actual faults are randomly distributed within
some given area of the chip. We assume that it is realistic for the attacker to have
control over the multiplicity (number) of faults introduced. The multiplicity of faults
can be controlled by manipulating the fault injection mechanisms such as the level of
radiation, temperature, etc.

4 Limitations of Methods Based on Linear Error-Detecting Codes

Protection methods based on linear error-detecting codes do not provide for uniform
level of protection against all possible faults but rather concentrate on a certain subclass
of the possible faults. One of the most important criteria for evaluating the effectiveness
of a protection method is not to consider the overall average protection the method
provides, but rather focus on the size and type of the security holes which exist.

The three main criteria that are important for evaluating the effectiveness and prac-
ticality of a protection scheme are:

1. The number of undetectable output distortions or output errors
2. The maximum probability of missing an error or class of errors
3. Spatial and temporal overhead

Methods based on linear error-detecting codes do not provide optimum solutions
with respect to the above criteria. For example, consider protection based on duplica-
tion where the hardware is doubled and the outputs of both copies are compared. If
the copies match, then no error was assumed to have occurred. If an error affects an
odd number of bits per a (,n k r k r= + =)-bit codeword (where k=number of in-

formation bits, r=number of redundant bits), then this protection scheme can detect
those errors, and hence prevent an attack, 100% percent of the time. However, when
errors are of an even multiplicity it is possible that the error will distort both copies in
the same manner thus making the error undetectable. As an example, Figure 1 shows
the percent of detectable errors as a function of error multiplicity (number of distorted
bits) for 7-bit duplication (k=r=7).

Duplication is not robust; its detection capability depends largely on the multiplic-
ity and type of the error. The scheme offers relatively poor protection for errors of
even multiplicities. Although the overall probability of injecting an undetectable error

(assuming all errors are equally likely) is 2 r− , which for the k=r=7 linear duplication

example is 72 0.78%− = , it is deceiving to imply that the method provides for this
level of protection. In addition to the overall average protection it is important to note
the class of errors with the weakest protection level. As shown in Figure 1, for errors
with multiplicity 2, the probability of successfully injecting an undetectable error
increases by an order of magnitude.

188 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

90

91

92

93

94

95

96

97

98

99

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Error Multiplicity
P

er
ce

nt
 D

et
ec

te
d

Fig. 1. Percent of errors detected for 7 bit linear duplication (k=r=7)

The above limitations shown for duplication are present in any protection scheme
based on linear error-detecting codes. The classes of errors with lower probabilities of
detection can serve as weak points for attack, regardless of how good the overall pro-
tection is.

The protection method proposed in this paper minimizes the size and weakness of
the least protected areas under given limitations imposed by overheads. We propose a
protection method based on a class of nonlinear systematic error-detecting codes
called robust codes. Robust nonsystematic codes which provide equal probabilities of
detection for all error distributions were presented in [15-16]. The methods in this
paper are based on systematic robust nonlinear error detecting codes which are similar
to those described in [4, 13]. We present a new construction of these codes which uses
a multiplicative inverse as the nonlinear transformation. A method of reducing the
hardware overhead while preserving much of the robustness is also presented.

These nonlinear codes are robust in terms of having the capability of providing
equal protection against all errors. That is, for a completely robust code C the prob-
ability ()Q e of missing an error e should be constant independently of an error, i.e.

| { | , } |
() Constant, 0

| |

w w C w e C
Q e e

C

∈ ⊕ ∈
= = ≠ . (1)

Where , (2)nw e GF∈ , (2)nC GF⊆ , | |C is the number of codewords of the code.

Additionally, these codes for the same n and k have fewer undetectable errors than
their linear counterparts. As we will see in the next section, for a systematic nonlinear

(n,k) robust code the number of undetectable errors is 2k r− versus 2k for a linear
code with the same length n and same number of redundant bits r. The construction
and details of these robust codes are discussed in the next section.

5 Systematic Robust Codes

The binary robust codes presented in [4] were constructed using a cubic signature. In
this paper we use inversion (multiplicative inverse in the field) as the nonlinear trans-
formations for the signature. The same robust properties observed with the cubic are
also observed with the robust codes which use inversion: data dependent error

 Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection 189

detection, reduction of the number of undetectable errors, and uniform distribution of
the error-detecting power.

We will present now a formal description of these codes.

Let V be a binary linear (n,k) – code with 2n k≤ and check matrix []|H P I=

with ()rank P n k r= − = over (2)GF . Code V can be made into a nonlinear

systematic robust code VC by taking the multiplicative inverse in (2)rGF of the r

redundant bits:

1{(,) | (2), () (2)}k r

VC x v x GF v Px GF−= ∈ = ∈ (2)

where 10− is defined to be 0 .

For the code VC , error ((2), (2))k r

x ve e GF e GF= ∈ ∈ is not detected for data
1(, ())x Px − iff

1 1(()) ()x vP x e Px e− −⊕ = ⊕ (3)

For linear codes an error is either always missed or never missed (() {0,1})Q e ∈ ,

regardless of data to which the error occurred, and error detection depends only on the
error pattern. For these nonlinear codes detection of errors depends not only on the
error, as shown in (3), but also on the data to which the error occurred. For these ro-
bust codes there are additional classes of errors which are conditionally detected.
There is also a redistribution of errors among the new classes of errors.

Table 1 summarizes this redistribution for nonlinear robust codes, VC , when the

data is assumed to be uniformly distributed. The redistribution differs depending on
the number of redundant bits r. If the code has a signature where the multiplicative

inverse is over (2)rGF where r is odd and 2r > , then there are 3 different classes of

errors, identical to the nonlinear robust codes based on a cubic signature presented in
[4]. When r is even and 2r > , there is an additional class of errors which are detected

with probability 21 2 r− +− .

Table 1. Redistribution of errors among the three classes for a linear and a robust code

 Number of errors

detected with
probability of

Linear Robust with inver-
sion (r is odd)

Robust with inversion (r is
even)

0 k2 2k r−
 2k r−

1 2 2n k−

1 12 2 2n k k r− − −+ −

1 12 2 2 2 2n k k r k k r− − − −+ − + −

11 2 r− +− 0 1 12 2n k− −−
1 12 2 2(2 2)n k k k r− − −− − −

21 2 r− +− 0 0 2 2k k r−−

190 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

As Table 1 shows, one very desirable consequence of the addition of inversion to
create a robust code is the reduction in the number of undetectable errors. The number
of undetectable errors is reduced from k2 to rk−2 . When k=r, all nonzero errors are
detectable.

The codes described above are capable of providing almost uniform error detection
coverage for all errors. For example, if instead of performing simple duplication, the

redundant bits are the multiplicative inverse (in (2)rGF) of the k-information bits,

the detection profile is much more uniform. In contrast to Figure 1, Figure 2.a shows

the k=r=7 robust duplication (codewords are in the form ()1 7, , (2)x x x GF− ∈).

The error detection is much more uniform independently of the type of error that is
injected. This kind of error profile is more desirable for security applications, since it
provides equal protection regardless of what type of errors are injected.

90
91
92
93
94
95
96
97
98
99

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Error Multiplicity

P
er

ce
nt

 D
et

ec
te

d

99.992

99.993

99.994

99.995

99.996

99.997

99.998

99.999

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Error Multiplicity

P
er

ce
nt

 D
et

ec
te

d

Fig. 2. Robust Duplication where k=r=7 a. detection for M=1, b. M=2 and M=3

Additionally, as Table 1 shows, for the robust codes there is a class of errors which
are conditionally detected. That is, for these errors their detection depends on the data

to which the error occurred, and each error in this class is missed for 12k r− + or 22k r− +
messages. Unlike in the linear case where all errors are either always detected or al-
ways missed regardless of the message, the detection of these errors for robust codes
is data dependent. If an error of this class is missed for one message, there is a very
high probability that it will be detected by the next message. For example, for the
robust duplication for any k=r, where r is odd, there are at most two messages for
which an error is missed. So if the same error is present for three different messages,
the error is guaranteed to be detected, regardless of what the error is. More precisely,
if k=r and all messages are different, then:

 1max () 2 rQ e − += after M=1 message

 max () 2 rQ e −= after M=2 messages

 max () 0Q e = after M=3 messages

Figure 2.b shows the increased probability of detecting an error after M=2 and M=3
messages for the robust duplication where k=r=7.

 Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection 191

For the case k=r these systematic robust codes are optimum in terms of providing
uniform level of protection against all errors [4]. We note that for any linear code
there are always undetectable errors, so max () 1Q e = regardless for how many

messages the error is present.

6 General Architecture

The method of transforming protection based on a linear code to a more robust pro-
tection based on the systematic robust codes involves slight modification of the gen-
eral linear error-detection architecture.

The general architecture used for protection with linear codes is presented in Fig-
ure 3. The architecture is composed of three major hardware components: original
hardware, redundant hardware for predicting the r-bit signature v (which is a linear
combination of components of the output x of the original device), and an error-
detecting network (EDN).

The signature predictor contains the majority of the redundant hardware. The k bits
of output of the original hardware and the r redundant output bits of the signature
predictor form the n=k+r extended output of the device. The extended output forms a
codeword of the systematic (n,k) error-detecting code which can be used to detect
errors in the original hardware or in the Predictor. It is the EDN which verifies, that
the extended output of the device belongs to the corresponding code V, if it does not
then the EDN raises an error signal. In a linear protection scheme the predicted r-bit
signature v of the Predictor is a linear combination of the k-bit output of the original
device. (v Px= , where P is a ()r n× - check matrix for the linear (n,k) code V used

for protection)

Original Device Predictor

Extended Output

Input

Output Error

r

k

Redundant
Hardware

P +
EDN

r

v Px=x

Fig. 3. General architecture for protection of hardware with error-detecting codes

With only a slight modification, the same architecture used for protection with linear
error-detecting codes, can be used to provide protection based on the robust systematic
nonlinear error-detecting codes presented earlier. The transformation only requires an

addition of two copies of one extra component for multiplicative inverse in (2)rGF .

192 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

Original Device Predictor

Extended Output

Input

Output Error

r

k

Redundant
Hardware

P +
EDN

1()v Px −=x

Redundant
Hardware
needed for
robustness

^-1

^-1
r

Fig. 4. Architecture for protection of hardware with robust error-detecting codes

The modified architecture is shown in Figure 4. The Extended Output of the device
is now protected with the robust nonlinear code with the properties outlined above.
An additional (and identical) multiplicative inverse is also needed in the EDN to ver-
ify the nonlinear signature. This transformation can be applied to any linear protection
method regardless of what algorithm it is protecting.

7 Architectural Optimizations

The method for modifying an architecture based on linear codes into a robust archi-

tecture codes requires an overhead for computation of inverses in (2)rGF , which is

of the order 2()O r .

Since large r may be necessary to provide for a sufficiently high error-detecting
probability the use of one large device which takes the multiplicative inverse of all of
the r-redundant bits might not be practical. Transforming an implementation protected
by a linear code with r=32 into a robust systematic code would require several thou-
sands additional 2-input gates.

It is possible to tradeoff the level of robustness for the amount of hardware over-
head required to transform linear protection to protection based on systematic robust
codes. Instead of taking one multiplicative inverse for all r-bit vectors, it is possible
to divide the one large inversion into disjoint smaller inversions while retaining many
of the robust properties outlined earlier. That is, we can replace multiplicative inverse

in (2)rGF by t s -bit disjoint inverses in (2)
r

tGF to produce the nonlinear r bit

output (r ts=). Thus, instead of having two r-bit multiplicative inverses in

(2)rGF for the whole design, there could be 2t inverses in (2)
r

tGF as it is pre-

sented in Figure 5 for t=2. Since the number of two input gates to implement the
inverse is proportional to the square of the number of bits at its input, a modification

 Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection 193

Original Device Predictor

Extended Output

Input

Output Error

k

Redundant
Hardware

P

EDN

Redundant
Hardware
needed for
robustness

^-1

^-1

^-1

^-1

+
+

/ 2r / 2r

/ 2r

/ 2r

Fig. 5. Optimized architecture, the multiplicative inverse in split into t=2 separate modules

where t=2 would result in roughly 50% decrease of an overhead associated with the
architecture based on robust codes. As a consequence this also results in a slight de-
crease in the level of robustness and an in introduction of errors which are detected
with different probabilities.

The division of the nonlinear signature results in the creation of additional classes of
errors which detected with different probabilities depending on the number of divided
signatures they affect. To account for this division Table 1 has to be extended. Table 2
shows the redistribution of errors among the additional classes for t s-bit signatures if r
is odd, a very similar table can be constructed for the case when r is even.

Table 2. Redistribution of errors as function of the number of blocks t of the signature when r
is odd

Number of errors missed with probability p

#of
blocks

p=1
(unde-

tectable)

p=0
(always detected) p= 12 s− + p= 2(1)2 s− + p= (1)2 i s− +

Linear 2k 2 2k r k+ − 0 0 0

1t =
(robust)

1N 2N 3N 0 0

2

r
t <

(robust)

1()tN
2 2

1

(2)
t

i s t i

i

t
N N

i
−

=

−

2(2) (2)s t s tN= − −

1
3 1()ttN N −

2 2
3 1() ()

2
tt

N N −

3 1() ()i t it
N N

i
−

2

r
t ≥

2k 2 2k r k+ − 0 0 0

where 1 2
k

s
tN

−
= ,

1 1

2 2 2 2
k r k k

s
t t tN
+ − − −

= + − ,
1 1

3 2 2
k r k

t tN
+ − −

= −

194 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

The splitting of the signature has several effects. Depending on the number of
blocks, t, there is a redistribution of errors and a difference in the level of robustness.
The maximum robustness is achieved with no divisions when t=1. With an increas-
ing number of blocks the robustness of the resulting code is reduced. As the number
of blocks, t, increases, the number of undetectable errors increases exponentially.
Likewise, the number of classes of errors increases linearly as t increases.

Figure 6 demonstrates the increase of robustness, or uniformity of error coverage,
as the number of blocks in a r-bit signature decreases for duplication where k=r=8.
The level of robustness, or uniformity of error detection, increases as the number of
signature divisions t decreases providing a tradeoff between overhead and robustness.

t=8

92
93
94
95
96
97
98
99

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Error Multiplicity

P
er

ce
nt

 D
et

ec
te

d

t=4

92
93
94
95
96
97
98
99

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Error Multiplicity

P
er

ce
nt

 D
et

ec
te

d

t=2

92

93

94

95

96

97

98

99

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Error Multiplicity

P
er

ce
nt

 D
et

ec
te

d

t=1

92
93
94
95
96
97
98
99

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Error Multiplicity

P
er

ce
nt

 D
et

ec
te

d

Fig. 6. The effect of splitting the r-bit signature into t disjoint inverses on robustness where
k=r=8

8 Conclusions

The protection provided by linear error detecting codes is not uniform and is not suit-
able for cryptographic hardware which is susceptible to fault attacks. The level of
protection they provide depends largely on the type of error that is considered. We
presented a method of protection based on nonlinear systematic robust codes which
can provide for uniform protection against all errors thus drastically reducing the
probability that an attacker will be able to inject an undetected error. We also pre-
sented an optimization which allows for a tradeoff between the level of robustness
and area overhead.

 Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection 195

The construction of the presented robust codes was based on the use of a multipli-
cative inverse as the nonlinear transformation. The multiplicative inverse is a building
block of the Sbox of the Advanced Encryption Standard. This inverse based construc-
tion of the codes might be useful in further reduction of overhead if the inversion
hardware in AES can be used to produce the nonlinear signature.

References

1. Biham, E. and A. Shamir, "Differential fault analysis of secret key cryptosystems",
CRYPTO 97, LNCS 1294, pp.513-525

2. FIPS PUB 197: "Advanced Encryption Standard", http://csrc.nist.gov/publications/
fips/fips197/fips-197.pdf

3. Bar-El H., H. Choukri, D. Naccache, M. Tunstall and C. Whelan. "The Sorcerer’s Appren-
tice Guide to Fault Attacks". Cryptology ePrint Archive, Report 2004/100. Available:
http://eprint.iacr.org/2004/100.pdf

4. Karpovsky, M.G. and A. Taubin, "A New Class of Nonlinear Systematic Error Detecting
Codes", IEEE Trans Info Theory, Vol 50, No.8, 2004, pp.1818-1820

5. Chen, C.N. and S.M. Yen. “Differential Fault Analysis on AES Key Schedule and Some
Countermeasures”. ACISP 2003, LNCS 2727, pp18-129, 2003.

6. Dusart, P., G. Letourneux, O. Vivolo, “Differential Fault Analysis on AES”. Cryptology
ePrint Archive, Report 2003/010. Available: http://eprint.iacr.org/2003/010.pdf

7. Giraud, C. “DFA on AES”. Cryptology ePrint Archive, Report 2003/008. Available:
http://eprint.iacr.org.

8. Blömer, J. and J.P. Seifert. "Fault Based Cryptanalysis of the Advanced Encryption Stan-
dard (AES)". Financial Cryptography 2003: pp. 162-181.

9. Quisquater, J.J. and G. Piret. “A Differential Fault Attack Technique against SPN Struc-
tures, with Application to the AES and KHAZAD”. CHES 2003, LNCS 2779, pp 77-88,
2003.

10. Karri, R., K. Wu, P. Mishra, and Y. Kim. "Concurrent Error Detection of Fault Based Side-
Channel Cryptanalysis of 128-Bit Symmetric Block Ciphers". IEEE Trans. on Computer-
Aided Design of Integrated Circuits and Systems, Vol.21, No.12, pp. 1509-1517, 2002

11. Karri, R., G. Kuznetsov, M. Gössel. "Parity-Based Concurrent Error Detection of Substitu-
tion-Permutation Network Block Ciphers". In Proc. of CHES 2003. pp.113-124.

12. Bertoni, G., L. Breveglieri, I. Koren, P. Maistri and V. Piuri. "Error Analysis and Detec-
tion Procedures for a Hardware Implementation of the Advanced Encryption Standard".
IEEE Transactions on Computers, vol. 52, no. 4, 2003

13. Karpovsky, M.G., K. Kulikowski, and A. Taubin, "Robust Protection against Fault-
Injection Attacks of Smart Cards Implementing the Advanced Encryption Standard". Proc.
Int. Conference on Dependable Systems and Networks (DNS 2004), July, 2004

14. Karpovsky, M.G., K. Kulikowski, and A. Taubin, "Differential Fault Analysis Attack Re-
sistant Architectures for the Advanced Encryption Standard". Proc. World Computing
Congress, Cardis, Aug., 2004

15. Karpovsky, M.G., P. Nagvajara, "Optimal Robust Compression of Test Responses," IEEE
Trans. on Computers, Vol. 39, No. 1, pp. 138-141, January 1990.

16. Karpovsky, M.G., P. Nagvajara, "Optimal Codes for the Minimax Criterion on Error De-
tection," IEEE Trans. on Information Theory, November 1989.

Robust Finite Field Arithmetic for
Fault-Tolerant Public-Key Cryptography�

Gunnar Gaubatz and Berk Sunar

Cryptography & Information Security Laboratory
Worcester Polytechnic Institute, Massachusetts, U.S.A

{gaubatz, sunar}@wpi.edu

Abstract. We present a new approach to fault tolerant public key cryp-
tography based on redundant arithmetic in finite rings. Redundancy is
achieved by embedding non-redundant field or ring elements into larger
rings via suitable homomorphisms obtained from modulus scaling. Our
approach is closely related to, but not limited by the exact definition of
cyclic binary and arithmetic codes. We present a framework for system-
designers that allows flexible trade-offs between circuit area and desired
level of fault tolerance. Our method applies to arithmetic in prime fields
and extension fields of characteristic 2 where it serves two mutually ben-
eficial purposes: The redundancy of the larger ring can be used for error
detection, while its modulus has a special low Hamming-weight form,
lending itself particularly well to efficient modular reduction.

Keywords: Finite field arithmetic, public-key cryptography, fault toler-
ance, homomorphic embedding, modulus scaling, error detection, cyclic
codes, arithmetic codes, idempotency.

1 Introduction

Finite field arithmetic over GF(q) and GF(qk) has found many uses in crypto-
graphy, particularly in public key cryptography and for substitution functions
in symmetric key algorithms like the AES. For quite some time before cryptog-
raphers discovered its usefulness, most of its applications were in coding theory.
The high performance of many error correcting codes is due to the efficient arith-
metic in binary extension fields. Real world implementations of cryptographic
algorithms and protocols are rarely challenged by the computational resources of
an attacker anymore. Key sizes of 128 bits for symmetric schemes and matching
sizes for public key schemes offer sufficiently large security margins to withstand
even huge leaps in the cryptanalytical progress. The real, tangible threat stems
from side-channel attacks in which an attacker tries to use flaws in the imple-
mentation, rather than flaws in the algorithm. This threat is accelerated further
through the growing adoption of embedded and ubiquitous security devices, e.g.
smart cards, cryptographic tokens, etc. Several different classes of side-channel
� This work was supported by the National Science Foundation under grants No.

NSF-ANI-0112889 (ITR) and No. NSF-ANI-0133297 (CAREER).

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 196–210, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography 197

attacks have been identified and a variety of countermeasures have been pro-
posed. Passive attacks such as power and electromagnetic analysis typically re-
quire a circuit designer to go to great lengths for balancing power consumption or
shielding EM emissions from leaving the security perimeter. Other approaches
use adaptive masking techniques for randomization and hence, de-correlation
between the power signature and the secret information.

Active attacks are much more powerful than passive attacks, since they no
longer confine the attacker into the role of an observer. Through the deliberate
insertion of faults into the computation an adversary might cause the leakage
of secret key information. The consequences of not employing at least an er-
ror detection scheme have been demonstrated vividly in [1]. Protecting against
this class of attacks requires more than elaborate circuit tricks; it requires a
mechanism for detecting modification of data, faulty behavior of the arithmetic
circuit, or both. Just as traditional mission critical applications like avionics and
systems working under harsh environmental conditions require fault tolerant de-
sign techniques, it becomes increasingly important for embedded security devices
operating in a hostile environment.

In this paper we propose scaled embedding as a new approach to fault tol-
erant arithmetic for public key cryptography that is based in principal on two
important classes of codes: arithmetic and binary cyclic codes. The former were
designed with the intention of protecting integer arithmetic operations against
faults, while applications of the latter can be found mostly in a communications
setting, where they ensure the reliable transmission of data. Incidentally, the
arithmetic structure of these codes is in principle the same as that of public key
cryptographic schemes based on integer and binary polynomial rings and fields,
in particular Elliptic Curve Cryptography. The theories of both classes of codes
contain a significant amount of overlap, which suggests a unified treatment. It is
possible and useful to view the encoding of operands along with their arithmetic
operations as a ring homomorphism. It can be used to embed elements from
the non-redundant ring or field F into a larger, redundant ring R by means of
multiplication with a constant scaling factor. While this may not adhere to the
strict definition of cyclic codes, a less stringent definition allows a more flexible
choice of scaling factors, despite the absence of theory proving the robustness
of this method. When robustness is required, one can always fall back on the
special case of cyclic codes. Arithmetic operations executed in R preserve the
operations that otherwise would have to be executed without redundancy in F .
This redundancy can be utilized in every step of the computation to detect er-
rors caused either by transient faults due to circuit crosstalk and radiation, or
by malicious fault insertion from an adversary. Our method serves two mutually
beneficial purposes: The redundancy of the larger ring can be used for error de-
tection, while its modulus has a form lending itself particularly well to efficient
modular reduction. Our method constitutes a generalization of homomorphic
embedding for fault tolerant arithmetic which contains arithmetic and binary
cyclic codes as special cases. This generalization is what enables us to obtain a
larger choice of parameters, thereby allowing flexible time-space trade-offs.

198 G. Gaubatz and B. Sunar

The remainder of this contribution is structured as follows. Following a sum-
mary of related work in Section 2 we provide definitions for ring and field homo-
morphisms in Section 3 and show how they can be applied to create redundant
computational paths, particularly in the case of homomorphic embedding. The
practical implications of our scheme become more apparent in Section 4 where we
discuss issues pertaining to the implementation of different embedding functions,
error detection strategies and the analysis of error coverage. The relationship of
scaled embedding to the theory of cyclic codes is illustrated with more detail in
Section 5, followed by concluding remarks.

2 Related Work

Early work on fault tolerant cryptography has either revolved around the use of
simple parity prediction schemes or adapted traditional mechanisms like triple
modular redundancy (TMR) and time redundancy for determining the correct
result in the presence of errors. It seems, however, that most of the current effort
is concentrated on concurrent error detection (CED) schemes for symmetric ci-
phers. Efforts to provide error detection capabilities to public key schemes based
upon finite field arithmetic have so far only seen sporadic treatment. A common
approach is augmentation of finite field multipliers over Fk

2 with parity prediction
capabilities [2,3]. These techniques, however, do not make use of the rich mathe-
matical structures provided by finite rings and fields, which form the arithmetic
foundation for many cryptographic schemes. Furthermore, their error detecting
capabilities are mostly aimed at faults caused by single event upsets (SEU), e.g.
due to background radiation, but not faults induced by an intelligent attacker.

A strategy that has not been explored yet is the use of error detecting codes
(EDC) with arithmetic structure, specifically cyclic and arithmetic codes, upon
which our approach is based. The main difficulty is that our purpose is not only
to encode and decode data for transmission over a noisy channel. In viewing the
computation itself as a noisy channel, we aim to compute with encoded operands
while preserving the arithmetic structure. We thus propose to embed finite field
elements into a larger ring via a suitable ring homomorphism, and to utilize the
redundancy for error detection purposes. Embedding finite fields into larger rings
has been used before, e.g. for the implementation of efficient finite field multi-
plier architectures based on redundant representation in cyclotomic rings [4].
The authors, however, have not explored the usefulness of this redundancy for
fault tolerance. Our work on scaled embedding was motivated by earlier work on
modulus scaling [5,6] and its connection to coding theory. In [6] a scaled modulus
of special low Hamming-weight form was used to enable low-complexity modular
reduction, but the redundancy was not used for error detection. By additionally
scaling the operands with a constant factor, the information is spread out across
an extended range of bits. This allows the detection of errors by simply dividing
out that factor and checking for the remainder to be zero.

As mentioned earlier, cyclic codes may be used for fault tolerant arithmetic,
albeit with some practical limitations. Most importantly, in the case of cyclic

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography 199

binary codes there is only a severely limited number of cryptographically sig-
nificant fields, e.g. those suitable for elliptic curve cryptography, that can be
embedded into the ring GF (2)[x]/(xn − 1). In order to avoid attacks based on
Weil descent [7], a cautious implementor will want to select a field whose (irre-
ducible) field polynomial is of prime degree k. The precise definition of a cyclic
code, however, limits suitable field polynomials to those which are proper divi-
sors of xn − 1 mod 2. For fields with an extension degree in the range that is of
interest for elliptic curve cryptography, i.e. 130 ≤ k ≤ 500, there are exactly ten
suitable choices, and each carries a large amount of redundancy, i.e. n = 2k + 1
as shown in Table 1. The situation is only slightly better with cyclic arithmetic
codes which are defined in a similar way. In this case the field modulus and the
amount of redundancy is determined by the integer factorization of 2n ± 1.

We can increase the number of suitable parameters by taking an alternative
viewpoint. By relaxing the notion that the code has to be strictly cyclic, we can
find ring structures which can embed fields of nearly arbitrary cardinality, with
flexible trade-offs between field size and amount of redundancy. We thus obtain a
generalized interpretation in which arithmetic and binary cyclic codes constitute
special cases. The generalized ring modulus can now take any form, preferably
one of pseudo-Mersenne form 2n ± u (xn + u(x) in the binary polynomial case),
where u is odd and of low weight (has small degree). Via factorization of the
ring moduli we can obtain a broad range of suitable field and scaling factor
parameters. For illustration we have included a selection of parameters in Tables
2, 3 and 4 in the Appendix.

3 Redundancy Through Ring and Field Homomorphisms

Our intention is to devise an error detection/correction scheme which utilizes
the rich mathematical structure of the very foundation of public key cryptogra-
phy: finite fields and rings. For this we want to use a transformation through
which we introduce redundancy in our representation and thereby gain error
detection/correction capabilities. We require the transformation φ : F → G to
map between the additive identities and preserve the addition and multiplication
operations in rings F , G, i.e. for all a, b ∈ F :

φ(0) = 0 ,

φ(a) · φ(b) = φ(a · b) and
φ(a) + φ(b) = φ(a + b) .

If these criteria are satisfied then φ is a ring homomorphism. Note, however, that
the two conditions do not necessarily warrant the preservation of multiplicative
inverses. Under a ring homomorphism we can develop two strategies for error
detection/correction:

– If |F| ≥ |G| then φ(.) may be used to create an additional verifier datapath
besides the original main datapath. It mimics all computations on the main
datapath using the homomorphic representations initially generated through

200 G. Gaubatz and B. Sunar

φ(.) (cf. Fig. 1). At the end of all computations the result from the regular
main datapath is run through φ(.) again and compared to the output of the
verifier datapath. This type of strategy is similar to the one employed for
parity prediction circuits, e.g. in [2]. We will not further elaborate on this
strategy in this paper.

– If |F| < |G| then we speak of embedding F into G, and the difference in
cardinality establishes the amount of redundancy present in the embedding.
After mapping all operands from F to G via the homomorphism φ(.), all
computation is carried out in G. At the end of all computations the result is
converted back to F via the inverse homomorphism φ−1(.) (cf. Fig. 2).

φ(Α), φ(Β)

Datapath Datapath

A,B∈F ∈G

C
om

pu
ta

tio
n

C = AB
φ(.)

φ(.)

?
φ(ΑΒ)

φ(Α)φ(Β)

Comparison

C
om

pu
ta

tio
n

Main Verifier

Fig. 1. |F| ≥ |G|

φ (.)−1

φ(Α), φ(Β)
φ(.)

Non−Redundant
Representation

Redundant
Encoding

A,B∈F ∈G

C
om

pu
ta

tio
n

C = AB φ(ΑΒ)=φ(Α)φ(Β)

Fig. 2. |F| < |G|

4 Homomorphic Embedding in Rings and Extension
Fields

One may exploit the natural embedding provided by the field/subfield relation-
ship of field extensions. For instance, we may carry out arithmetic in a finite field
F = GF(qn) by embedding all operands into an extension G = GF((qn)m). This
method has the advantage of carrying the same field operations, i.e. addition,
multiplication, inversion. To construct such an embedding we need a function
mapping elements from F to G, i.e. an injective map φ : F �→ G. However,
having both the domain and the range of the mapping to be fields may prove
to be too restrictive. As an alternative we may define the mapping from a field
F = GF(qn) to a ring R which offers more flexibility in choosing suitable pa-
rameters. As described in the previous section the function φ(.) needs to be a
homomorphism and preserve the addition and multiplication operations.

Consider the case when F ⊂ R. Embedding works by mapping any element
a ∈ F via a ring homomorphism φ : F �→ R onto an element φ(a) ∈ R.
Therefore we can carry out all arithmetic operations originally defined for F in
R instead. At the end of the computation it will be required to use the inverse
homomorphism φ−1 : R �→ F to transform the result back to the field. In

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography 201

the following we will explicitly define homomorphisms to make our approach
more vivid. We investigate two different methods for embedding: Basic and
Idempotent scaled embedding. Both methods tie into the theory of cyclic codes
for certain parameter selections, but can also be seen as a generalization of the
concept without making claims about any sort of minimum distance metric. We
discuss this link to coding theory further in Section 5. We would like to point
out that both methods apply equally well to integer and polynomial rings. For
sake of simplicity, however, we will refrain from making explicit distinctions in
notation throughout the remainder of this paper, unless such a distinction is
required.

As pointed out before, scaled embedding is closely related to modulus scaling,
which was applied in [6] to obtain a modulus of pseudo-Mersenne form, leading
to efficient modular reduction. The redundancy introduced by the scaled mod-
ulus allows us to implement an error detection scheme. Näıve direct embedding
φ(a) = a, however, does not provide error detection capabilities, since there is
no way to distinguish errors from data. Scaled embedding on the other hand mul-
tiplies operands by a generator value g, which may be distinct from the modulus
scaling factor s. It effectively partitions the ring R into cosets, of which only one
contains valid codewords. Error detection can therefore be based upon check-
ing for membership in the right coset. With respect to the choice of a suitable
modulus scaling factor we strive to achieve two goals:

1. To select the resulting ring large enough to have sufficient redundancy for
error detection purposes, i.e. an amount proportional to the length of the
scaling factor, i.e. log2 s.

2. To obtain a ring modulus m = p ·s for which an efficient reduction technique
exists. This helps to offset some of the overhead in complexity that we incur
from the redundancy.

If the field F and its associated modulus (prime integer or irreducible poly-
nomial) p are determined by the application, then the choices for a suitable
scaling factor might be limited. If, however, the value of the modulus is not
fixed, then one can choose a suitable pair (s, p) based on the required levels
of security (modulus size) and redundancy. The computationally most efficient
moduli in (pseudo-)Mersenne form have very small Hamming-weight, e.g. less
than 5. Therefore, in order to find such a pair we let m = 2n ± u, with u
small and n = �log2 p + log2 s�, be the preferred ring modulus and find a
suitable field by way of factorization. Depending on the size of n factoriza-
tion might take a long time, especially in the case of finding suitable prime
fields.

For polynomial moduli the ideal form is a binomial m(x) = xn ±1, as in cyclic
codes, but other moduli xn ± u(x) with small degree u(x) are also conceivable.
When u(x) = 1 then the reduction of partial products, e.g. during the shifting
step of bit-serial multiplication, becomes trivial since the shift with reduction can
be simplified to a bit rotation due to the equivalence xn+1 ≡ 1 mod p(x). The
factorization of binomials is well studied, and there exist many efficient methods.
What we are looking for specifically are large irreducible factors of prime degree.

202 G. Gaubatz and B. Sunar

This is important mainly for applications in elliptic curve cryptography due to
the vulnerability of composite degree fields to a class of attacks based on Weil
descent [7].

4.1 Basic Scaled Embedding

Once we have found suitable parameters for the modulus and its scaling factor,
we can encode the input operands by means of multiplication with the generator
value g. For basic scaled embedding this is the same value as the modulus scaling
factor s, i.e. g = s. The function φs(a) = g · a maps an element a from F to
R. It provides error detection capabilities since all valid elements of R must be
proper multiples of g. Note that while the mapping preserves addition, it does
not preserve regular multiplication, i.e.

φs(a · b) = g · a · b �= φs(a) · φs(b) .

However, by re-defining1 the multiplication operation such that it implicitly
eliminates the extra scaling factor, φs(.) becomes a ring homomorphism with
respect to + and ·/� operations, i.e. φs(a · b) = φs(a) � φs(b).

Definition 1. Let A = φs(a) and B = φs(b) denote the elements found by
mapping a and b ∈ F to the ring R. We re-define multiplication in the ring R
as A� B = ((g · a · g · b)/g) mod m = φs(a · b), where division by g occurs strictly
before modular reduction by m.

Therefore, multiplications in R are implemented using the � operation instead
of regular ring multiplication, while addition in the ring remains the same. Since
the value for g is constant for a specific modulus, division may be implemented
more efficiently than in the general case. Algorithms for division by constants
have been treated, for example, in [8].

Error Detection. As mentioned earlier, detection of errors can be based on
checking for membership of an operand in a specific coset of the ring R by
means of computing the remainder modulo g. A value of zero indicates that the
operand is likely to be free of errors. We have to use caution here, because quite
naturally our scheme can not detect error patterns that are proper multiples of g.
We apply a relatively simple error model to determine the error coverage of this
method: We assume that errors only occur as additive terms on input operands
and that the operation itself is fault-free. Consequently, the output is the sum of
the correct result and another additive error term related to the input errors and
the operation. While such an error model may be rather simple, we would like
to make a point for its validity in the context of fault-insertion attacks. From
an adversarial point of view, the most accessible targets with high probability
of success for introducing an error are storage elements like registers and SRAM
memory cells. A glitch attack on such a bistable device, e.g. using optical fault
induction with a focussed laser beam [9], is able to cause an error regardless of
1 We use a different symbol here to prevent confusion.

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography 203

the exact point in time during which it is carried out (with respect to the clock
interval). A glitch in a combinational part of a circuit will manifest itself as an
error, only if it reaches the next register in time for the next clock edge and if it
does not significantly violate setup and hold time requirements.

We will now determine the conditions under which we can detect errors. Let
A = φs(a), B = φs(b) ∈ R denote the fault-free input operands of the multipli-
cation operation A � B and C the fault-free result.

C = A�B = (A·B)/g (mod m) = ((g ·a·g ·b)/g) (mod m) = g ·a·b (mod m)

Furthermore let C′ denote the result in the presence of additive error terms eA,
eB ∈ R on the inputs:

C′ = (A + eA) � (B + eB)
= (g2 · a · b + g(a · eB + b · eA) + eA · eB)/g (mod m)

= C + a · eB + b · eA +
eA · eB

g
(mod m)

= C + eC

Here eC ∈ R is the resulting error on the output. Certain errors can be detected
immediately during the division step of the � multiplication procedure, i.e. if
the remainder C′ mod g �= 0, which means that g � eA · eB. There are two other
non-trivial cases of potentially undetectable errors:

1. A one-sided error, e.g. eA = 0, eB �= 0. Then eC = a · eB mod m, which is
not detectable if g|eC .

2. A two-sided error eA, eB �= 0. Now we have eC = a·eB +b·eA+ eA·eB

g mod m.
The error is undetectable iff g|eC .

The procedure for error detection is based on modular reduction of the operands
with respect to the scaling factor g and checking for a non-zero remainder. Here
it can be performed outside of the critical path of the computation. As long as
there is no error in any of the previous operations, the result can immediately be
used as the input for subsequent operations, while an error check is performed in
parallel. The major problem we face with basic scaled embedding is the division
step that is intrinsic to the � multiplication, since it adds to the critical path.
Division is notoriously complex in hard- and software implementations unless
the divisor is a constant of special form, which is not usually the case. In the
next section we present a modification to the basic scaled embedding idea, which
completely avoids the division step of � multiplication.

4.2 Idempotent Scaled Embedding

The division step of � multiplication in the basic scaled embedding scheme is
required because both operands contain a multiplicative factor g which results
in a square factor g2 for the product. One way to avoid the extra g is to perform
multiplication with only one scaled input, the other unscaled, but this introduces

204 G. Gaubatz and B. Sunar

a host of other problems. First we would loose error detection capabilities in
the unscaled operand, and secondly the product of two results from previous
multiplications would again require division.

The solution is to find a scaling factor that is idempotent with respect to the
scaled modulus, i.e. g ≡ g2 mod m. A class of non-separate arithmetic codes
known as AN codes use the same encoding principle as scaled embedding and
suffer from the same problem of an extra residue of the generator value. In [10]
Proudler introduced a class of idempotent AN codes that preserve addition and
multiplication in the ring. These codes can therefore be used to form a ring ho-
momorphism φi(.) that avoids division altogether. A critical flaw of idempotent
AN codes is, however, that a one-sided error, i.e. one that only appears in one of
two input operands, will be masked in a multiplication with the other error-free
operand due to the distributive law:

A′ = φi(a) + eA

B = φi(b)
A′ · B = (g · a + eA)(g · b) (mod m)

= g2 · a · b + g · b · eA (mod m)
= φi((a + eA)b)

This flaw can be compensated for by extending from idempotent AN to idempo-
tent AN+B codes. These were also introduced in [10] and like AN codes derive
their names from the encoding procedure. In addition to being scaled by the
generator value g, a constant term c is added to the operands during encoding.
AN+B codes exist whenever the ring modulus m = p · s and gcd(p, s) = 1. Then
we can construct the values g and c idempotent with respect to the modulus m
as follows:

g = (s−1 mod p) s (1)
c = (p−1 mod s) p (2)

where

g2 ≡ g (mod m) , (3)
c2 ≡ c (mod m) and (4)

g · c ≡ 0 (mod m) . (5)

Unlike AN codes, AN+B codes are no longer addition preserving. In the presence
of a heterogeneous mix of addition and multiplication operations it is therefore
necessary to convert2 operands back and forth between codes. Luckily this is
a rather trivial exercise since both codes share the same generator g. We can
re-define multiplication to implicitly handle the conversion steps by adding the
2 Note that conversion is only necessary at the boundary between heterogeneous oper-

ations like addition and multiplication. It can be omitted for homogeneous operations
like modular exponentiation, which are based exclusively upon multiplication.

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography 205

constant term c to each operand before multiplication and subsequently sub-
tracting it from the result. The difference to ordinary multiplication in the ring
is indicated through the use of the � symbol:

Definition 2. Let A = φi(a) and B = φi(b) denote operands embedded in R,
where φi(x) = g · x mod m. Then addition in the ring is defined as usual and
multiplication is re-defined as

A � B = (g · a + c) · (g · b + c) − c (mod m)
= g2 · a · b + c · g(a + b) + c2 − c (mod m)
= φi(a · b) = g(a · b) (mod m)

due to the equivalences defined in (3), (4) and (5).

We can thus define an idempotent ring homomorphism with respect to + and
�/· operations as

φi(0) = 0,

φi(a) + φi(b) = φi(a + b) and
φi(a) � φi(b) = φi(a · b) .

Now a one-sided error eA will not be masked anymore, provided that s � eA:

A′ � B = (g · a + c + eA)(g · b + c) − c (mod m)
= g(a · b) + eA(g · b + c) (mod m)
≡ eA mod s

Once all computations have been performed the non-redundant result needs to
be converted back from the ring to the field via the inverse homomorphism φ−1

i ().
This is achieved through modular reduction of the result with respect to the field
modulus p.

We now have an efficient method for embedding a field into a larger ring with
meaningful redundancy that we want to use for error detection purposes. Since
valid code words need to be proper multiples of the generator value g ≡ 0 mod s,
an error check can be performed by computing the remainder of a division by
s. An additive error eR on the result will be detected as e′R = eR mod s, if it
is not evenly divisible by s. Hence, if e′R = 0, the result can be assumed free
of errors with high probability. There may, however, be cases in which an error
eA remains undetectable. In the following we establish the probability of this
happening.

Error Detection. We apply the same error model as before, which assumes
that errors only occur at the input operands. In the presence of additive error
terms we can model system behavior for addition as

A′ = A + eA , B′ = B + eB

A′ + B′ = g(a · b) + (eA + eB) mod m

eR+ = eA + eB (6)

206 G. Gaubatz and B. Sunar

and for multiplication as

A′ � B′ = (g · a + eA + c) · (g · b + eB + c) − c mod m

= g(a · b) + eA(g · b + c) + eB(g · a + c) + eA · eB mod m

eR� = eA(g · b + c) + eB(g · a + c) + eA · eB mod m . (7)

From the reduction modulo s we obtain the detectable portion of the error
term. In the case of addition (6) this is e′R+ = eA + eB mod s. A faulty result
is undetectable if eA ≡ −eB mod s. For simplicity we assume that the errors
eA and eB are independent and identically distributed random variables from
uniform. Thus the probability of an undetectable error is 1/s2.

An error occurring during multiplication will produce the term e′R� = eA +
eB+eA ·eB mod s which we obtained through application of the equivalences g ≡
0 mod s and c ≡ 1 mod s to (7). We can find the probability of an undetectable
error during multiplication using the following lemma:

Lemma. Let X, Y be two independent and identically distributed random vari-
ables uniform over [0, s−1] and let the event A = {(X = x, Y = y) : x+y+x·y ≡
0 mod s}. Then the probability of A occurring is Pr[A] = Φ(s)/s2, where Φ()
denotes the Euler totient function.

Proof. We can rewrite the event A as follows: A = {(X = x, Y = y) : y = f(x)},
where f(x) = −x · (x + 1)−1 mod s. The function f(x) will only be defined if
the inverse of x + 1 exists. For any given modulus s this is the case only for
Φ(s) choices in the range 0 ≤ x < s. Hence, f(x) is defined and has a value with
probability pR = Φ(s)/s. Y takes on a specific value y with probability pL = 1/s.
The joint probability of the event A occurring is therefore p = pL ·pR = Φ(s)/s2,
due to the independence of X (and hence f(X)) and Y . ��
Here the event A stands for the occurrence of an undetectable error at the output
of the multiplier. It is easy to see that the best error coverage can be obtained
when the modulus scaling factor s is composite and large. We would like to re-
iterate that the error detection mechanism requires a full modular reduction by
s, which in the general case does not have a suitable special form as the scaled
modulus m. While this might be conceived as a drawback, it should be noted
that checking for errors can be done outside of the critical path (in hardware) or
at regular intervals (software realization), while the main computation continues
operation. As a matter of fact, the regular field modulus p does not in general
have a suitable special low Hamming-weight form either, such that the overhead
due to error detection is easily offset by the efficient reduction modulo m = s ·p.

4.3 Error Correction Using Algorithm-Based Fault Tolerance

Quite naturally one would like to build an arithmetic architecture with the ability
to also correct errors that occur during computation. For cyclic codes syndrome
decoding allows the correction of the most likely error pattern. It does not,

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography 207

however, give good results in the presence of burst errors, as they would likely
occur if an adversary tries to influence the computation.

A different approach is the use of algorithm-based fault tolerance. The prin-
cipal idea here is to keep the input operands available until the computation
has finished and an error check determines a valid result. If the error check fails,
the computation can be repeated until a valid result is available. Alternatively,
if the computation fails repeatedly, an alarm can be signaled and the operation
canceled. The advantage of this method is clearly its robustness in the presence
of transient burst errors. It does not matter which of all possible errors covered
under a specific syndrome triggered the detection, when the computation can
simply be repeated. Another advantage is the relatively low overhead that is re-
quired, which is mostly caused by the storage elements necessary to keep backup
copies of operands. A potential disadvantage is that the method does not degrade
gracefully, meaning that permanent faults due to stuck-at-0/1 errors can not be
compensated for. Circuit defects thus render this method completely useless and
do not help, for example, to increase the yield of circuit production.

5 Relation to Cyclic Codes

We have frequently mentioned the relation of our scaled embedding method of
fault tolerance to the theory of arithmetic and binary cyclic codes. Principally,
these codes constitute special cases of our generalized method. The advantage
of using cyclic codes for embedding is that we can make statements about the
worst-case minimum distance (design distance) of codewords based on the BCH
theorem given as follows:

Theorem (BCH bound). Let C be a q-ary (n, k) cyclic code with generator
polynomial g(x). Let m be the multiplicative order of q modulo n (GF(qm) is
thus the smallest extension field of GF(q) that contains a primitive nth root of
unity). Let α be a primitive nth root of unity. Select g(x) to be a minimal-degree
polynomial in GF(q)[x] such that g(αb) = g(αb+1) = . . . = g(αb+δ−2) = 0 for
some integers b ≥ 0 and δ ≥ 1. g(x) thus has (δ − 1) consecutive powers of α as
zeros. ⇒ The code defined by g(x) has minimum distance dmin ≥ δ.

The design distance δ given by this theorem, however, is not necessarily a tight
bound that gives the true minimum distance. The most serious disadvantage of
cyclic codes, as mentioned briefly in the related works section, is the small number
of suitable parameters that allow the embedding of finite fields applicable to el-
liptic curve cryptography. These fields require an irreducible polynomial of prime
degree. Cyclic codes are defined as the principal ideals generated by the divisors
of xn − 1 mod q. For q = 2, which is a frequent choice due to the ease of imple-
mentation with logic circuits, the number of useful parameters (n, k) for which
the factorization of this binomial yields irreducible polynomials of prime degree
k is vanishingly small for useful sizes of k. In the range 130 < k < 500, which
represents typical elliptic curve cryptography operand sizes, there are only ten in-
stances which fulfill the requirements. In all cases the redundancy exceeds the field
size by more than 100%. Table 1 lists the design distances for suitable pairs (n, k).

208 G. Gaubatz and B. Sunar

Table 1. Cyclic codes with prime degree irreducible divisors in the range 100 < k < 500

n 263 359 383 479 503 719 839 863 887 983
k 131 179 191 239 251 359 419 431 443 491
δ 8 9 9 13 9 11 11 9 9 11

6 Conclusion

We have presented a novel scheme for fault-tolerant finite field computation
with applications in public-key cryptography. Our method of scaled embedding
is practical and allows designers of cryptographic systems to add fault tolerance
with moderate resource overhead. It provides adequate protection against tran-
sient faults of either random or adversarial nature. The latter is of particular
importance, due to the continuing success of fault-insertion attacks on crypto-
graphic embedded systems. The close relation to binary and arithmetic codes
with arithmetic structure (which constitute special cases of our method), coupled
with our initial error coverage analysis is indicative of our scheme’s robustness.
A more detailed analysis, however, is desirable and therefore the subject of on-
going research.

References

1. Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic
protocols for faults. In Fumy, W., ed.: Advances in Cryptology - EuroCrypt’97.
Volume 1233 of Lecture Notes in Computer Science., Heidelberg, Springer (1997)
37–51 Proceedings.

2. Reyhani-Masoleh, A., Hasan, M.: Error detection in polynomial basis multipliers
over binary extension fields. In Kaliski, Jr., B., Koç, Ç. K.., Paar, C., eds.: Cryp-
tographic Hardware and Embedded Systems CHES 2002. Volume 2523 of Lecture
Notes in Computer Science., Heidelberg, Springer (2002) 515–528 4th International
Workshop, Redwood Shores, CA, USA.

3. Reyhani-Masoleh, A., Hasan, M.: Towards fault-tolerant cryptographic computa-
tions over finite fields. ACM Transactions on Embedded Computing Systems 3
(2004) 593–613

4. Wu, H., Hasan, M., Blake, I., Gao, S.: Finite field multiplier using redundant
representation. IEEE Transactions on Computers 51 (2002) 1306–1316

5. Walter, C.: Faster modular multiplication by operand scaling. In Feigenbaum, J.,
ed.: Advances in Cryptology - CRYPTO ’91: Proceedings. Volume 576 of Lecture
Notes in Computer Science., Heidelberg, IACR, Springer (1992) 313–323

6. Öztürk, E., Sunar, B., Savaş, E.: Low-power elliptic curve cryptography using
scaled modular arithmetic. In Joye, M., Quisquater, J.J., eds.: Workshop on Cryp-
tographic Hardware and Embedded Systems–CHES 2004. Volume 3156 of Lecture
Notes in Computer Science LNCS., Springer (2004) 92–106

7. Gaudry, P., Hess, F., Smart, N.P.: Constructive and destructive facets of weil
descent on elliptic curves. Journal of Cryptology 15 (2002) 19–46

8. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press (2000)

Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography 209

9. Skorobogatov, S., Anderson, R.: Optical fault induction attacks. In Kaliski, Jr.,
B., Koç, Ç. K.., Paar, C., eds.: Cryptographic Hardware and Embedded Systems -
CHES 2002. Volume 2523 of Lecture Notes in Computer Science., Berlin, Heidel-
berg, New York, Springer-Verlag (2002) 2–12

10. Proudler, I.: Idempotent AN codes. In: IEE Colloquium on Signal Processing
Applications of Finite Field Mathematics, London, IEE, IEE (1989) 8/1–8/5

Appendix

For practical purposes we present a selection of useful parameters for scaled em-
bedding. In all three tables the parameter n refers to the size in bits, respectively
degree, of the scaled modulus m = p ·s, while the parameter k is indicative of the
size (degree) of the field modulus of F to be embedded in the ring. Finally, the
amount of redundancy due to the scaling factor s is quantified by the difference
n − k. Table 2 provides parameters for prime field embedding, while Tables 3
and 4 give parameters suitable for embedding binary extension fields.

Table 2. Factorizations of m = p · s = 2n + u, with k =
log2 p� and n − k =
log2 s�

n k u n-k
300 160 1 140
205 161 1 44
211 162 3 49
236 162 1 74
239 162 -1 77
232 163 1 69
209 166 -3 43

n k u n-k
203 168 -3 35
261 168 -1 93
208 171 3 37
227 172 -1 55
205 173 3 32
210 173 3 37
202 174 -3 28

n k u n-k
206 177 3 29
200 180 -3 20
221 181 -1 40
223 184 1 39
259 184 -1 75
233 186 -1 47
210 193 -3 17

n k u n-k
229 203 1 26
256 206 1 50
233 208 1 25
241 217 -1 24
248 227 1 21
251 232 1 19

Table 3. Factorizations of p ·s = xn +x+1, with prime deg(p) = k and deg(s) = n−k

n k n-k
173 163 10
190 163 27
202 163 39
264 163 101
209 179 30
235 191 44
308 191 117
334 191 143
239 193 46
306 211 95
390 211 179
371 239 132
391 239 152
452 251 201
412 263 149

n k n-k
482 269 213
419 277 142
495 277 218
587 311 276
605 311 294
470 313 157
355 337 18
446 337 109
544 337 207
604 337 267
669 337 332
578 349 229
590 349 241
674 349 325
468 353 115

n k n-k
475 359 116
662 359 303
456 367 89
728 373 355
407 379 28
401 389 12
626 389 237
724 389 335
492 397 95
559 397 162
623 397 226
715 401 314
458 409 49
827 419 408
746 443 303

n k n-k
862 443 419
786 449 337
831 457 374
920 461 459
630 463 167
760 463 297
618 467 151
577 479 98
748 491 257
763 503 260
764 503 261
849 503 346
957 503 454
553 521 32
779 521 258

210 G. Gaubatz and B. Sunar

Table 4. Factorizations of p ·s = xn +x2+1, with prime deg(p) = k and deg(s) = n−k

n k n-k
235 167 68
283 179 104
199 181 18
207 199 8
319 199 120
405 223 182
357 229 128
281 233 48

n k n-k
291 251 40
383 269 114
321 281 40
417 281 136
543 281 262
295 293 2
341 293 48
509 317 192

n k n-k
381 373 8
473 389 84
463 401 62
617 409 208
477 431 46
521 431 90
471 433 38
615 457 158

n k n-k
765 457 308
823 457 366
785 463 322
965 487 478
675 503 172

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 211 – 222, 2006.
© Springer-Verlag Berlin Heidelberg 2006

DPA on Faulty Cryptographic Hardware and
Countermeasures

Konrad J. Kulikowski, Mark G. Karpovsky, and Alexander Taubin

Reliable Computing Laboratory, Boston University
8 Saint Mary's Street, Boston, MA 02215

{konkul, markkar, taubin}@bu.edu

Abstract. Balanced gates are an effective countermeasure against power analy-
sis attacks only if they can be guaranteed to maintain their power balance. Tra-
ditional testing and reliability methods are used primarily only to ensure the
correctness of the logical functionality and not the balance of a circuit. Due to
the hardware redundancy in balanced gate designs, there are many faults which
can imbalance a balanced gate without causing logical errors. As a result, tradi-
tional testing and reliability methods and architectures are unable to test and
verify if a gate is completely defect and fault-free and hence balanced. Our si-
mulations show that a few faulty balanced gates can make a circuit as vulner-
able to power analysis attacks as a completely imbalanced implementation. This
vulnerability opens the possibility of new methods of attacks based on a combi-
nation of fault and power attacks. A solution to the vulnerability based on a
built-in differential self-balance comparator is presented.

1 Introduction

Cryptographic algorithms are vulnerable to attacks which exploit the physical character-
istics of their hardware implementations. The formal security models of cryptographic
algorithms assume that information about the intermediate data during computation
(encryption, decryption, etc.) is not available to an adversary. An adversary with access
to intermediate data can drastically decrease the complexity of cryptanalysis. Examining
the power consumption or behavior in the presence of faults of a device can provide
such information to an attacker. Efficient methods for performing power analysis and
fault analysis attacks have been developed which can analyze the side-channels and
extract useful information which can be used to aid in cryptanalysis.

To prevent such attacks several countermeasures have been proposed which aim to
reduce or eliminate the amount of information which can be inferred about intermedi-
ate data in a hardware implementation of a cryptographic algorithm. Traditionally, the
power and fault attacks and their countermeasures have been considered and devel-
oped separately. One of the most effective countermeasures against power analysis
attacks is based on the use of specially designed balanced gates for which the power
consumption is equal for all data and all transitions of the gate. Several such gates
have been previously presented (SABL [1], DyCML [2], BSDT [3], WDDL [4], Rep-
lication Gates [5]). The proposed fault attack countermeasures have been based on
adding redundancy to the device, usually in the form of error-detecting codes, to de-
tect errors in the logical values of the processed data (i.e. [6-8]).

212 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

Balanced gates and error-detecting codes are effective countermeasures for their
respective attacks if the side-channels are considered separately. The details of the
proposed countermeasures and a joint consideration of both power and fault side-
channels raises several practical security limitations of the approaches. There are
several major limitations and potential problems with the current power and fault
countermeasures which stem from the redundancy associated with balanced gate
designs when power and fault attacks are considered together.

All the currently known balanced gate designs require considerable hardware re-
dundancy and overhead to ensure balanced computations (2.5 to 10x area overhead
over standard synchronous static-CMOS implementations). Much of this redundant
hardware is not directly associated with the logical or Boolean function of the gate; it
is present to ensure power balance during computations. The additional consideration
of data independent power consumption means that a gate’s primary functionality is
no longer limited just to its logical or Boolean function. The power balance of the
gate is just as important. Weaknesses in the present balanced gate designs exist due to
the redundancy of the gate; there exist many internal transistor level faults which will
not affect the Boolean function of the gate but will affect the balance of the gate.

There are a number of methods to ensure proper Boolean functionality of circuits in
all stages of the device’s lifecycle. Techniques for post manufacturing testing, built in
self-test (BIST), and on-line testing have been developed and are available for a variety
of applications. While the methods which ensure proper Boolean functionality and
hence provide reasonable protections against traditional fault attacks are mature, there
are practically no developed architectures, methods, or techniques for testing and veri-
fication of the other crucial component of a gate’s functionality: its balance.

The inability to ensure proper balance functionality during the lifecycle of a device
creates a serious security weakness. The security of the cryptographic devices is de-
pendent on the balance of the circuit. Without methods to test or verify this balance
no guarantees can be made about the security. Moreover, the lack of built-in self
balance test (BISBT) opens a possibility of combined fault and power attacks. The
addition of a few imbalances, either from natural effects or from malicious tampering,
can make it possible to perform established power analysis attacks even on protected
devices.

The next section analyzes some proposed balanced gate designs and shows that
faults can easily be manifested in a circuit which can imbalance the proposed gates
without changing the gate’s functionality. The effects of a few imbalances in a circuit
are analyzed. The proposed countermeasures and research avenues for developing
BISBT techniques and architectures are examined.

2 Vulnerabilities of Existing Balanced Gates

The additional constraint of data independent power consumption translates to more
complex and more elaborate gate designs than the traditional minimal static CMOS
gate implementations. The additional structures necessary to meet the balance re-
quirements create redundancy with respect to the structures which are necessary for
the Boolean functionality. Indeed, all current balanced gate designs are based on dual-
rail return-to-zero (RTZ) signaling protocols which have an inherent hardware

 DPA on Faulty Cryptographic Hardware and Countermeasures 213

overhead. The two respective functions of a balanced gate are mostly separate and
correct operation of one of the functionalities does not imply the correctness of the
other functionality.

Examples of two balanced gates styles which demonstrate this redundancy and par-
tial separation of functionalities are pictured in Figure 1. The two gate styles represent
the two ends of a spectrum of the approaches to balanced gate design. The first, (Fig-
ure 1A) proposed by Jaffe et al. in [5], balances gates with the use of standard unse-
cured static CMOS gates to create a larger balanced gate. Approaches such as this one
have very large overheads but also have an advantage in that existing standard-cell
libraries can be used reducing the development costs. The other end of the spectrum is
exemplified with the SABL gate, (Figure 1B) proposed by Kris Tiri et al. in [1]. The
SABL gate is a much more compact, highly specialized implementation but requires a
custom dedicated standard-cell library or a completely custom design flow. Both of
these implementations have redundancy which is not directly associated with the
Boolean functionality of the gate.

(A) (B)

Fig. 1. (A). Balanced NAND gate proposed by Cryptographic Research (B). SABL AND-
NAND gate with enhanced special DPDN

The first balanced gate design, shown in Figure 1A, requires a 700% hardware re-
dundancy to achieve balance. The gate combines a dual-rail design with additional
gates which are used to balance the internal switching characteristics of the sub-gates.
In the resulting balanced gate the bottom 6 sub-gates of the larger balanced gate
shown in Figure 1A are only used for balancing purposes and are not connected to
logical outputs of the gate. The SABL gate, Figure 1B, has a similar, but smaller,
redundancy. Specifically, transistor's M1 function is to discharge all the internal ca-
pacitance of the whole gate for every cycle of operation and has no direct Boolean
purpose.

If the implementations can be guaranteed to be 100% reliable, then this hardware
redundancy in itself is not a problem. The complications with such arrangements
arise when the reality of physical devices, the imperfect manufacturing methods, and
the adaptability of an active attacker are considered.

The fact that real devices are not perfect and not completely reliable has been a
crucial consideration in standard circuit and system level design. Through the years a

214 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

vast number of techniques and architectures have been developed to test and verify a
device’s functionality throughout its complete life-cycle. Methods for testing and
verification for on-line and post manufacture are all indispensable to today’s digital
devices to ensure reliability and correct operation. Testing and fault hardening is of
even more importance where the correct functionality of the device is crucial to the
safety or security of a system. However, virtually all of the developed testing and
reliability methods have been based around ensuring and verifying the correct func-
tionality of the Boolean function of the device. Testing and reliability measures for
the power functionality, in terms of power balance, have not been previously consid-
ered and there are neither developed methods nor architectures for ensuring balanced
computations. Manufacturing a component for a critical application without verifica-
tion and built-in reliability measures is unthinkable for standard Boolean circuits
considering process yields and reliability of devices which are only declining as a
result of scaling.

Aside from performing a full differential power analysis (DPA) attacks or other
statistical analysis [9] on a manufactured circuit there have been no known methods
for balance verification since the actual differences in current and behavior of a bal-
anced circuit and an imbalanced faulty circuit are almost indistinguishable by normal
current testing techniques such as IDDQ [10] and IDDT [11]. Verification by per-
forming an attack for all parts of the designed circuit is impractical due to the dra-
matic increase in time and hence the cost of the procedure. Even if the drastic cost
increase can be acceptable for some applications there are still no methods or mecha-
nisms to ensure proper balanced functionality once the device is deployed.

Relying only on Boolean testing and reliability measures to detect defects and
faults is not adequate. In existing designs there is not a complete overlap between the
structures necessary for the balanced-power and Boolean functionality of a gate. As a
result there are faults and failures (transistor failures, open circuits, wire shorts, etc)
which can easily imbalance the gate without affecting the Boolean functionality. This
non-overlapping functionality can be drastic as in, for example, the gate in Figure 1A
where over 75% of the hardware of the gate is used only for balancing purposes. For
that implementation it means that a fault is over three times more likely to affect the
balance functionality than the Boolean functionality of the gate. About 75% of faults
would not be detected if only the traditional Boolean off-line testing and on-line self-
error- detecting methods based on error-detecting codes are used. A similar effect is
also present in the SABL gate style shown in Figure 1B. Although the percentage of
faults which can imbalance but not affect the logical function of the gate is smaller it
is still not comparable to the reliability measures for key life-time requirements for

cryptographic algorithms which are on the order of 402− [12].
Even with the optimized gates such as the SABL gate, there is still the need for ad-

ditional methods and considerations which will ensure balance at a comparable level
to that of the logical functionality. The problem of weakened security due to unde-
tectable failures is a real threat. Without a guaranteed level of balance no precise
estimates can be given about the security of the device (in terms of power analysis
attack resistance). A couple of faults can easily imbalance a circuit making power
analysis attacks easier than the original design seemed to ensure.

The next section will show an example of the realistic nature of such weaknesses in
the balanced SABL gate implementations.

 DPA on Faulty Cryptographic Hardware and Countermeasures 215

3 Effects of Failures on Imbalance and Power Analysis Attacks

To demonstrate the effects of faults on balanced gates and their consequence on
power analysis attacks faulty versions of the SABL style gates were simulated. The
resulting imbalances were measured and compared to the non-faulty gates. To illus-
trate how a few imbalance-causing faults can affect a DPA attack was simulated on a
substitution box (Sbox) of the Data Encryption Standard (DES) implemented with
both normal and faulty SABL [1] gates.

The SABL gate represents the state-of-art for synchronous balanced gate designs.
It is a compact and optimized dynamic implementation which has a high level of
balance and small level of redundancy. Despite the optimized design the gates still
have areas of redundancy which are only used for balancing purposes. Using a simple
fault model, the gate can easily be imbalanced without affecting the logical output of
the gate.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
−10

0

1

2

x 10
−4

seconds

po
w

er
 (

W
)

faulty
normal

Fig. 2. Absolute power imbalance of a correctly functioning and a faulty SABL AND/NAND
gate during the evaluation phase

For the properly functioning SABL AND/NAND gate implemented in a 0.18um
technology assuming equal output load capacitances on both data output rails there is
relatively little temporal difference in the gate’s power signature. Figure 2 shows the
absolute imbalance of the gate with respect to time where the magnitude of the curve
represents the value of the instantaneous power consumption for the four possible
input combinations.

To imbalance the gate pictured in Figure 1B, the gate VDD voltage of the M1 tran-
sistor was removed simulating a simple open circuit fault. As a consequence of the
disabled transistor the effective internal balance of the gate is reduced to that of a
normal differential dynamic gate. By disabling the M1 transistor, practically all the
benefits of using a sense-amplified balanced design are removed. The effective abso-
lute power imbalance of the gate is effectively more than doubled. The injected fault
has no effect on the logical output of the gate. The gate continues functioning cor-
rectly in all respects except its balance. Many other more drastic faults can be envi-
sioned which could create larger power imbalances.

216 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

Full analog SPICE simulations were performed on a Sbox of DES to evaluate the
impact a small number of faulty gates can have on power analysis attacks. The circuit
is a small component of a complete symmetric cryptosystem. The Sbox is usually the
circuit component which is targeted for power analysis attacks. The simulation circuit,
shown in Figure 3, is composed of 137 two-input OR, AND, and XOR gates. It has a
10-bit text input , a 6-bit secret-key input and a 4-bit output. The Sbox1 combina-
tional circuit was automatically synthesized from a table specification using Design
Compiler from Synopsys. The circuit was simulated on the transistor level (schematic
level, pre layout) using the analog Spectre simulator from Cadence for all of the 1024
input combinations and fixed key input. The power consumption of the circuit was
recorded and then analyzed by performing a Differential Power Analysis attack.

Fig. 3. Circuit used for DPA simulations

The DPA attack was performed by finding the measured power and hypothesis cor-
relation on the 4-bit output of the Sbox by using the Pearson's correlation coeffi-
cient (,)C M P :

2 2

(,) () ()
(,)

() ()

M P M P
C M P

M P

µ µ µ

σ σ

−
=

(1)

where P is the set of predictions, M is the set of recorded power measurements,

()Xµ is the mean of the set X and 2 ()Xσ is its variance. The Pearson's correla-

tion coefficient gives a measure of the data dependence of the power consumption. A
survey of correlation methods and attacks on S-boxes can be found in [13].

In comparing the security of vulnerability of balanced gate designs the most com-
mon method has been to determine the number of necessary power measurements for
disclosure of the secret key. Since the simulations performed are only on a small cir-
cuit with a very limited number of inputs and no additional circuitry which would
create noise and etc. we used a new comparison approach.

An important practical aspect in considering the feasibility of a power attack is to
evaluate the required capability of an attacker which is necessary for a successful at-
tack. An important capability consideration is the required sophistication of the meas-
uring equipment or rather the required minimal precision for estimation of a power
consumption which is necessary to have a successful attack. The necessary precision
was used as a comparison metric. All simulations and all the data were recorded with
the maximum level of precision of the simulator. After all the power data was recorded
the precision of the measurements was incrementally reduced until the attack was no
longer successful. The reduction of precision was based the following formula:

 DPA on Faulty Cryptographic Hardware and Countermeasures 217

mod() * ()rp np np precison precision rand= − + (2)

where rp are the reduced precision measurement, np are normal precision measure-
ments, precision is the maximum assumed precision capability of the attacker, and
rand() is a random number from the interval [-1,1].

Table 1. Minimum required measurement precision for a successful DPA attack for normal and
faulty implementations of the DES Sbox

Implementation Min required meas-
urement precision for

successful DPA

Normal 45.5 10 W−×
Four Gates Faulty 411.2 10 W−×
All Gates Faulty 411.6 10 W−×

The consequences on the required precision of the measurements for all input com-
binations for the normal and faulty Sbox test circuits are shown in Table 1. The re-
sults shown in Table 1 provide for a relative comparison of the results of faults within
the circuit. It should be noted that the absolute precision values might not completely
reflect the precision required for an actual physical attack on a complete circuit. The
simulation results are based on ideal measurements from a small test circuit. Actual
attacks and measurements would be subject to noise of additional power consumption
of the extra circuitry, timing uncertainty in measurements, as well as additional ca-
pacitive and inductive effects from packaging and probing materials. These effects
would certainly reduce the capacity to perform successful attacks. In physical attacks
it should be expected that the absolute values of the minimum precision required
should be lower (more precision would be required) than the table suggests. However,
the relative value of the minimum precision should still be accurate and provide for an
accurate relative comparison of the effects of faults on power analysis.

The first row in Table 1 represents results from simulations performed on the nor-
mal non-faulty SABL implementation. This value is used as a relative reference point
for comparison. The absolute minimum precision measurement value required for
successful DPA analysis was slightly more than four times the imbalance of a normal
SABL AND gate (Figure 2). This absolute value of the necessary precision reflects
the fact that four Sbox outputs were targeted for the attack and hence it was their
driving gates whose combined imbalance was observed in Table 1. For the second
result in Table 1, the four output gates of the 137 2-input gates which make up the
Sbox were made faulty by making the gate terminal of the M1 transistor disconnect
from VDD. The effective imbalance of the faulty gates was doubled as shown in
Figure 2. Although only a small fraction of the gates were imbalanced, the necessary
minimum precision necessary for a successful attack more than doubled. The mini-
mum precision required for the attack increased proportionately to effective imbal-
ance of the individual gate. Moreover as the last row of Table 1 indicates, the effect of
just a few imbalanced gates on the required precision of DPA was almost equal to that

218 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

of the implementation in which all the gates are faulty. The implementation in which
all the gates were faulty is roughly equivalent to an unprotected normal implementa-
tion based on differential dynamic logic.

The above results demonstrate the criticality of considering faults on balanced
gates. As the results suggest, only a few imbalanced gates are enough to make a pro-
tected implementation be as vulnerable to DPA analysis as an unprotected implemen-
tation. In compact implementations, for example in some sensor network applications,
the datapath widths are kept at a minimum to meet the required maximum instantane-
ous power requirements. In such implementations where the datapath can be as small
as 8 bits, a single fault which causes an imbalance can be enough to reveal a complete
key and completely compromise the security of the device.

4 Countermeasure Strategies

The experimental results from the previous section confirm that the inability to verify
and check balanced computation can create serious holes in the security of even “pro-
tected” cryptographic devices. Architectures and methods for detecting imbalance
need development. Detection of imbalances is a difficult paradigm shift in that it
requires an exact consideration of an analog continuous functionality, the power con-
sumption of the device, in hardware which is optimized for digital processing. Some
possible countermeasures are considered next.

One of the least invasive methods to combat the problem would be to redesign the
balanced gates so that all internal faults which can cause imbalances will also cause
logical faults. This would allow the use of existing error detection architectures and
techniques which are already a standard requirement on secured hardware for the
prevention of fault analysis attacks. If successful, this approach would greatly sim-
plify the additional design tasks since after one redesign, everything else would
involve “standard” considerations. However, due to the large difference between
Boolean and balance functionalities the chances of success of this approach are small
as exemplified in the designs of current balanced gates which are unable to meet this
requirement.

Another possible approach is to adapt existing analog based techniques used in
testing. In architectures based on IDDQ and IDDT Built-in Self Test approaches the
circuit is tested by measuring its current or power consumption while it performs
predetermined computations. The current is then compared with a stored reference
value. Any differences (exceeding a selected threshold) from the predetermined signa-
ture can mean faults within the circuit. One disadvantage of this approach is the in-
herent complexity of performing comparisons with a stored reference value. To detect
imbalances the built in test circuits needs to record, digitize and compare the power
signatures to a stored reference value (threshold for current consumption) with a high
level of accuracy. The necessary precision translates into large and precise Analog to
Digital (AD) converters which require substantial amount of hardware. Thus the ap-
proach is only suitable for larger designs where one current sensor is used for a large
portion of the circuit. Even more problematic is the fact that since the current and
power consumptions of circuits vary depending on temperature, process variability
and voltage levels the thresholds used for comparing good and bad circuits needs to

 DPA on Faulty Cryptographic Hardware and Countermeasures 219

be quite lax. As a result mostly catastrophic or short circuit faults in the original and
redundant parts of the device can be tested in this manner and the sensitivity needed
to determine if some gates are only out of balance is beyond the capabilities of the
method.

A possible solution to the problem which overcomes the drawbacks of the previ-
ously mentioned approaches is based on modifying some of the concepts present in
IDDQ testing. The solution also exploits the symmetry which is present in many
cryptographic hardware implementations. The approach is based on a number of dis-
tributed analog voltage or current comparators whose detection capability can be
propagated into a conventional digital alarm signal (which can be used to disable the
device). The details of this approach, which will be referred to as a built-in differen-
tial self balance test (BISBT), are discussed in the remainder of this section.

 (A) (B)

Fig. 4. (A) Datapath of one Round of AES is divided into four separate parallel slices. (B) Sub-
division of parallel slices with an analog comparator to check for equal power consumption.

Many of the encryption algorithms, especially symmetric key algorithms such as
the Advanced Encryption Standard (AES) [14], have lots of symmetry in their struc-
ture. In AES-128 (AES with a 128 bit key) for example, the 128 bit parallel datapath
of each round of the algorithm is divided into four 32-bit independent and parallel
slices each of which is composed of exactly the same hardware (Figure 4). (These
parallel slices are also internally divided into smaller parallel slices.) The data along
the complete 128-bit datapath is generally synchronized and all slices perform the
exact same functions but on different data. If the circuits of the slices are implemented
with truly balanced gates which are functioning correctly then the power consumption
of all the respective slices should be practically equal even if the circuits are process-
ing different data. More importantly, the power consumption of the two circuits
which are processing different data will be the same only if their implementa-
tions are balanced.

The proposed differential balanced comparison approach exploits the above men-
tioned property of balanced design by partitioning the parallel slices of the data path
so that a small analog comparator can be used to compare the current consumption of
two equal circuit components from respective slices (Figure 4b). The comparator
should have a suitable maximum difference threshold upon which a latch in the com-
parator is set to indicate an imbalanced operation. This error signal can be, in the case
of asynchronous fine-grained balanced gate implementations [15, 16], used to stall the
pipeline thereby providing a distributed protection mechanism without a single point
of failure.

220 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

This approach allows a distributed protection because the balance check is not
based on an absolute stored reference value but on a low cost comparison. The com-
parison operation generally requires much smaller hardware since neither AD
converters nor memory is needed. Additionally, since the method is based on a com-
parison of power of two equal circuits which are on the same chip the method is not
sensitive to temperature and manufacturing variability which is a large problem with
reusing normal IDDQ or IDDT testing methods. Both of the compared circuits will be
subjected to the same temperature fluctuations. Likewise, because the small circuits
can be grouped locally within a chip, they will by subject only to the local manufac-
turing process variability effects. Finally, one of additional benefits is that such pro-
tection is that it is continuously active whenever the module operates; there would be
no need for a special test cycle.

The critical requirement of this method is best possible balance of gates. The bal-
ance of the gates will determine the maximum size of the comparison circuits, the
maximum granularity, and the required sensitivity of the comparator. As a first order
evaluation of the critical parameters of the comparator the power effect details of faults
was examined for the balanced symmetric with discharge tree (BSDT) gates [3].

For the initial feasibility experiment two AND gates were simulated side by side
with identical inputs and timing. In one of the gates stuck-at faults were injected. The
current used by each gate was recorded and compared. Of special interest were those
faults which were logically undetectable but could potentially imbalance a gate. An
exhaustive set of stuck at faults was injected into one of the gates. The gates were
simulated for all possible input combinations. Example current comparison curves of
normal and faulty gates for two logically undetectable faults are shown in Figure 5.
All of the injected faults produces large differences in the temporal power signatures
which are easily identifiable by a current comparison. The internal undetectable faults
in the functional block produced large differences in the current consumption of the
AND gates. Most faults resulted in a shift and amplitude difference of the current
curves which are easily recognizable in the power. The current differences needed to

be observed by a comparator are on the order of 45 10 A−× , which is two orders of
magnitude larger than the normal imbalance of a gate. As was shown in [3] the maxi-
mum temporal current difference of a balanced BSDT-style AND gate was no more

than 66 10 A−× in post layout simulations.
Additionally, the power fault simulations show that this method can also serve as a

natural compliment to traditional built-in reliability measures since it is able to detect
many faults or errors which cause logical errors. For example, faults which created an
invalid value on the dual-rail output of the BSDT gate (11) also resulted in large tem-
poral current differences which can be detected by a comparator.

Based on the initial experiments, it should be practical to place a differential cur-
rent comparator for partitions of 50 to 60 gates. If a comparator can be on the order of
40 transistors then the overhead will be lower than a traditional BIST architecture.
Many of the physical design components, such as current sensors and differential
amplifiers, have been developed for IDDQ BIST architectures and can potentially be
adapted for this application but many challenges remain in fine tuning the methods to
achieve the necessary sensitivity and speed.

 DPA on Faulty Cryptographic Hardware and Countermeasures 221

1.1 1.11 1.12 1.13 1.14 1.15 1.16 1.17

x 10
−7

0

1

2

3

4

5

6

7

x 10
−4

seconds

C
ur

re
nt

 (
A

)

balanced
faulty

Fig. 5. The effect of a logically undetectable fault in the functional block on power where
dotted and solid lines are for the faulty and normal AND gate respectively

5 Conclusions

As the approaches and architectures for balanced gate designs mature many practical
considerations need to be addressed. Reliability and balance preserving fault toler-
ance will be of critical importance. As it has been shown in this paper, a small num-
ber of faults can potentially make power analysis attacks feasible even on protected
devices. Due to the redundancy of balanced gates these faults might not create logical
errors and hence would not be detected by traditional voltage level testing and reli-
ability measures. A possible solution method was described which exploits the sym-
metry of cryptographic hardware and the operation of balanced gates.

Acknowledgements

This work was partially supported by a grant from OmniBase Logic Inc.

References

1. Tiri, K., M. Akmal, and I. Verbauwhede. A Dynamic and Differential CMOS Logic with
Signal Independent Power Consumption to Withstand Differential Power Analysis on
Smart Cards. 28th European Solid-State Circuits Conference (ESSCIRC 2002), pp. 403-
406, September 2002

2. Mace, F., F. X. Standaert, J.J. Quisquater, J.D. Legat, A Design Methodology for Secured
ICs Using Dynamic Current Mode Logic, Lecture Notes in Computer Science, Volume
3728, Aug 2005, Pages 550 - 560

3. MacDonald, D.J., A Balanced-Power Domino-Style Standard Cell Library for Fine-Grain
Asynchronous Pipelined Design to Resist Differential Power Analysis Attacks. Master of
Science Thesis. 2005, Boston University: Boston, availabe at http://reliable.bu.edu/Pro-
jects/MacDonald_thesis.pdf.

4. Tiri, K. and I. Verbauwhede, A Logic Level Design Methodology for a Secure DPA Resis-
tant ASIC or FPGA Implementation. Design, Automation and Test in Europe Conference
(DATE 2004), pp. 246-251, February 2004.

222 K.J. Kulikowski, M.G. Karpovsky, and A. Taubin

5. Jaffe, J., P. Kocher, and B. Jun, "Hardware-level mitigation and DPA countermeasures for
cryptographic devices" US Patent 6654884.

6. Karpovsky, M., K. Kulikowski, and A. Taubin. Differential Fault Analysis Attack Resis-
tant Architectures for the Advanced Encryption Standard. in Proc. World Computing Con-
gress, CARDIS, pp. 177-192, 2004.

7. Kulikowski, K., M. Karpovsky, and A. Taubin. Robust Codes for Fault Attack Resistant
Cryptographic Hardware. in Fault Diagnosis and Tolerance in Cryptography, 2nd Interna-
tional Workshop. 2005. Edinburgh.

8. Karri, R., G. Kuznetsov, and M. Gossel. Parity-Based Concurrent Error Detection of Sub-
stitution-Permutation Network Block Ciphers. Lecture Notes in Computer Science, Vol-
ume 2779, Sep 2003, Pages 113 - 124

9. Coron, J.S., D. Naccache, and P. Kocher, Statistics and Secret Leakage. Trans. on Embed-
ded Computing Sys. 3, 3 (Aug. 2004), 492-508.

10. Rajsuman, R., Iddq testing for CMOS VLSI. Proceedings of the IEEE, 2000. 88(4): p.
544-568.

11. Su, S.-T., R.Z. Makki, and T. Nagle, Transient power supply current monitoring - A new
test method for CMOS VLSI circuits. Journal of Electronic Testing, 1995. 6(1): p. 23-43.

12. Gregorio, A.D. Cryptographic Key Reliable Lifetimes: Bounding the Risk of Key Expo-
sure in the Presence of Faults. in FTDC. 2005.

13. Canovas, C. and J. Clediere, What do S-boxes Say in Differential Side Channel Attacks?,
in IACR e-Print archive. 2005/311.

14. FIPS PUB 197: Advanced Encryption Standard, http://csrc.nist.gov/publications/fips/
fips197/fips-197.pdf.

15. Smirnov, A., A. Taubin, and M. Karpovsky. An Automated Fine-Grain Pipelining Using
Domino Style Asynchronous Library. in ACSD 2005: Fifth International Conference on
Application of Concurrency to System Design. 2005.

16. Kulikowski, K., A. Smirnov, and A. Taubin. Automated Design of Cryptographic Devices
Resistant to Multiple Side-Channel Attacks. in Cryptographic Hardware and Embedded
Systems (CHES), 2006.

Fault Analysis of DPA-Resistant Algorithms

Frederic Amiel1, Christophe Clavier1, and Michael Tunstall2

1 Gemalto, Security Labs,
Avenue des Jujubiers, La Ciotat, F-13705, France

{frederic.amiel, christophe.clavier}@gemalto.com
2 Smart Card Centre, Information Security Group,

Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK

m.j.tunstall@rhul.ac.uk

Abstract. In this paper several attacks are presented that allow infor-
mation to be derived on faults injected at the beginning of cryptographic
algorithm implementations that use Boolean masking to defend against
Differential Power Analysis (DPA). These attacks target the initialisa-
tion functions that are used to enable the algorithm to be protected,
allowing a fault attack even in the presence of round redundancy. A de-
scription of the experiments leading to the development of these attacks
is also given.

1 Introduction

The use of collisions to find and exploit a fault at the beginning of an algorithm
has appeared in several papers. In [7] a method of exploiting faults in the early
rounds of a DES implementation is described. This detailed a complex attack
where faults were injected in the early rounds of DES, and the fault injected was
then derived by finding a message that would naturally give the same ciphertext.
This information was then used to derive information on the key.

A trivial case of this type of attack is given in [3] where a known bit of the
first XOR in AES is assumed to be forced to zero. If the ciphertext changes then
this bit would have been a 1; if the ciphertext remains the same then the bit is
a 0. This would break an AES implementation with a mere 128 executions with
successful fault injections. However, modifying bits in such a manner requires
too much precision to be practical. We refer to this type of attack as Collision
Fault Analysis (CFA).

Some variations of these types of attack will be presented that can be imple-
mented against AES on embedded devices. A simple byte-wise implementation
of the attack presented in [3] will be described. Several other, more complex, at-
tacks that take advantage of DPA countermeasures to derive information on the
key are also detailed. Implementations of some of these attacks, conducted un-
der controlled conditions, are described. A similar attack will also be described,
using the DES as an example, where the initialisation of randomised S-boxes are
faulted. It will be demonstrated that the simplest version of this attack is by
combining the modification of S-box values with differential fault analysis [2].

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 223–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

224 F. Amiel, C. Clavier, and M. Tunstall

The experiments implementing these attacks using glitches on the power supply
or clock are also given.

The paper is organised as follows. Section 2 discusses an attempt at imple-
menting a bytewise version of the attack described in [3], and the changes to the
attack that needed to be made. Section 3 describes the most popular method
for protecting algorithms against DPA attacks. Section 4 describes a possible
attack against the first XOR in the AES. Section 5 gives an attack against the
key masking process used to initialise the key. Section 6 describes the first attack
found using this method. Section 7 details how the countermeasure proposed for
the attack described in Section 6 can be circumvented, and proposes a different
attack. More complete countermeasures are given in Section 8, followed by the
conclusion.

2 Another Trivial Case

Another trivial CFA based attack is a bytewise implementation of the attack
given in [3]. If a fault is injected so that a byte of the output becomes zero during
the first AddRoundKey function a similar attack can be implemented. All the
possible combinations of message bits corresponding to the modified byte can be
tested and the algorithm executed again for each value. This process is stopped
once a collision is found with the faulty ciphertext. This will give a message with
an intermediate state where the fault was injected that is naturally equal to 0.
This means that the message byte found is equal to 0 after being XORed with
the corresponding key byte. This message byte will therefore be equal to the
corresponding key byte.

This requires 16 faulty ciphertexts to be generated, and a search of 28 with
the targeted device to find each key byte giving a total search time of 212.

This attack was attempted with several different microprocessors with differ-
ent methods of fault injection. Varying from glitches on the Vcc to laser light
injection. No successful implementation of this attack was achieved.

In [11] faults are demonstrated that enable a for loop to be terminated be-
fore it has finished all of its iterations. If the memory where the result of the
XOR between the message and the key is stored has not been used, it has a
high chance of being 00 or FF depending on the logical representation of the
physical state. If this attack is applied to the key XOR an attack can be imple-
mented by changing one byte of the output to zero and generating the corre-
sponding ciphertext. Then two bytes etc. as in Table 1, as originally proposed
in [2].

This can be achieved with 15 successful faults. The first byte of the key can
then be found by searching through the 29 (i.e. 28 values for XX and 2 possible
values for the rest of the bits depending on the logical representation of the
physical state) possible key values that could produce C15. Once the first key
byte is known the second key byte can be found with a further 28 AES executions
using C14. This can be continued with 28 AES executions for each subsequent
byte, for a total of 213 AES executions to derive the entire key.

Fault Analysis of DPA-Resistant Algorithms 225

Table 1. The Biham-Shamir Attack

Input AES Key Output
M → K0 = XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX → C0

M → K1 = XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 00 → C1

M → K2 = XX XX XX XX XX XX XX XX XX XX XX XX XX XX 00 00 → C2

M → K3 = XX XX XX XX XX XX XX XX XX XX XX XX XX 00 00 00 → C3

...
...

...
M → K14 = XX XX 00 00 00 00 00 00 00 00 00 00 00 00 00 00 → C14

M → K15 = XX 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 → C15

The basic attack (memory content set to ’0’) was been implemented on an
8-bit smart card microprocessor using a glitch as fault injector by scanning
the entire loop that copies the AES key from Non-Volatile Memory (NVM)
to a temporary working RAM buffer at the beginning of AES execution (just
before the AddRoundKey function). This produced 127 different faulty cipher-
texts (whereas 15 different ones were expected), giving as a result the 22 pos-
sible keys listed below in base 16 by searching though the results in a bytewise
fashion:

00000000000000000000000000000000
FE000000000000000000000000000000
FEDC0000000000000000000000000000
FEDCBA00000000000000000000000000
FEDCBA98000000000000000000000000
FEDCBA98760000000000000000000000
FEDCBA98765400000000000000000000
FEDCBA98765432000000000000000000
FEDCBA98765432100000000000000000
FEDCBA98765432100100000000000000
FEDCBA98765432100123000000000000
FEDCBA98765432100123450000000000
FEDCBA98765432100123456700000000
FEDCBA98765432100123456789000000
FEDCBA98765432100123456789ABCDEF
FEDCBA98765432100123456789ABCD00
FEDCBA98765432100123456789ABCDCD
FEDCBA98765432100123456789AB0000
FEDCBA98765432100123456789AB00EF
FEDCBA98765432100123456789AB00AB
FEDCBA98765432100123456789ABEF00
FEDCBA98765432100123456789AB5300

Due to desynchronisation effects and the exhaustive scanning of the copy loop,
some unexpected faulty ciphertexts are produced. In the possible keys it can be
seen that there are several possible values for the last two bytes, which makes

226 F. Amiel, C. Clavier, and M. Tunstall

the attack slightly more complicated than originally supposed but it still remains
practical. The correct key during these experiments was:

FEDCBA98765432100123456789ABCDEF

3 Secure Algorithm Implementations

Implementations are made secure against DPA [9] and related attacks by mask-
ing the data being manipulated with a random value. The data is then manipu-
lated in such a way that the value present in memory is always masked with the
same random. An example of this sort of implementation can be found in [1],
based on ideas proposed in [4].

The size of the random is generally limited as S-boxes need to be randomised
before the execution of the random so that the input and output values of the
S-box leak no information. This is done using an algorithm such as Algorithm 1,
where the notation (·)x denotes values of base x i.e. (s0, s1, s2, . . . , sn)x contain-
ing S broken into words of size x.

Algorithm 1. Randomising S-Box Values
Input: S = (s0, s1, s2, . . . , sn)x containing the S-box, R a random ∈ [0, n], and r

a random ∈ [0, x).
Output: RS = (rs0, rs1, rs2, . . . , rsn)x containing the randomised S-box.

for i ← 0 to n do
rs(i⊕R) ← si ⊕ r

end

return RS

As shown, the random used for masking the input data can be no larger than
n, and the random used for the output value can be no larger that x. In the case
of AES both R and r will be one byte, which means that the random mask used
during the calculation is likely to be one byte. This is more problematic for DES
as the input and output have a different size, and the bitwise permutations add
complexity, but the principal remains the same.

4 Attacking the First XOR

At the beginning of AES the algorithm conducts an XOR between the message
and the key before the first ByteSub function. This will happen as shown in
Algorithm 2.

As in Section 2 faults are used that enable a for loop to be ended before it
would normally do so. If Algorithm 2 is attacked in this way so that the loop
only runs to 14, rather than 16, two bytes will not be written to KM i.e. two
bytes will be untouched. This means that physically these bytes will be set to 0,
but the algorithm will take the value as R due to the masking.

Fault Analysis of DPA-Resistant Algorithms 227

Algorithm 2. The First XOR
Input: M = (m1, m2, m3, . . . , m16)256 containing the message,

K = (k1, k2, k3, . . . , k16)256 containing the key masked with R a random
byte.

Output: KM = (km1, km2, km3, . . . , km16)256 also masked with R.

for i ← 1 to 16 do
kmi ← mi ⊕ ki

end

return KM

By searching through the 216 possible values for m15 and m16, it will be pos-
sible to find a collision where k15 ⊕ m15 ⊕ R = 0 and k16 ⊕ m16 ⊕ R = 0 i.e.
m15 ⊕ R = k15 and m16 ⊕ R = k16, and therefore m15 ⊕ m16 = k15 ⊕ k16.
It is not important what values km15 and km16 become, but they do need
to be the same value. If the value of the memory becomes FF, for example,
it can still be assumed to be 00 and the error can be taken up in the value
of R.

This in itself only reduces the keyspace from 2128 to 2120. The attack can
be continued by repeating the attack with three bytes of the key being left
uninitialised by Algorithm 2. The same method can then be used to derive
k14 ⊕ k15 with the same amount of work as k15 ⊕ k16.

For each fault injected the attacker needs to search through 216 different
values to determine the message values that enable information on the key to be
derived. This needs to be done with the smart card under attack so the attack
process will be lengthy.

In DPA-resistant algorithms it is usual to do as much as possible in a random
order, as this is an additional countermeasure to that described in Section 3. The
loop given in Algorithm 2 would therefore take one of the 120, i.e.

(16
2

)
, different

orders possible to XOR the message with the key. This is so that the data being
manipulated from one execution to another will occur at different points in time
which is primarily a DPA countermeasure.

If a random order is implemented and the last two bytes are not assigned
these will be two random bytes in the buffer. To find a collision an attacker will
have to search through the 223 possible messages. The random involved will be
different each time so two pairs, e.g.

ki ⊕ mi ⊕ R, kj ⊕ mj ⊕ R, and
kj ⊕ m′

j ⊕ R′, kk ⊕ mk ⊕ R′

These pairs cannot be directly related to each other. However, if they have one
message byte in common it is possible to change the random mask so that they
become the same by XORing the two values together i.e.:

kj ⊕ mj ⊕ R ⊕ kj ⊕ m′
j ⊕ R′ = mj ⊕ R ⊕ m′

j ⊕ R′

228 F. Amiel, C. Clavier, and M. Tunstall

As mj and m′
j are known values these values can be removed from this value

with an XOR, leaving R ⊕ R′. This value can be applied to kk ⊕ mk ⊕ R′ so
that it becomes kk ⊕ m′

k ⊕ R. This then gives:

mi ⊕ R = ki

mj ⊕ R = kj

mk ⊕ R = kk

This process can then be repeated until information is derived on every byte
of the key. This then leaves an exhaustive search of 28 to find the value of R
and therefore the key.

In order to be able to find collisions the attacker needs to generate a dictionary
of 223 entries. These values depend on the key so they need to be generated with
the device under attack, which is prohibitively large for devices such as smart
cards that use relatively slow communication protocols. To form an idea of the
amount of time required to create a dictionary a smart card with a DPA-resistant
AES was timed. It took the smart card approximately 149 milliseconds to create
one dictionary entry. The whole dictionary will therefore require around 14.5
days to create.

This is an advantage over the version that does not use a random order, as
the dictionary can be generated once and used numerous times. As the fault
injected will not always do what is expected this may help speed up the overall
attack process. In the first version of this attack each search of 216 will require
around 3 hours with the test card used.

The implementation conditions of the attack are the same as those described
in Section 2 with two exceptions. The implementation used was DPA resistant
and the timing of the glitch injection was fixed as the random order provided the
temporal variation. The key was known a priori so the dictionary was generated
with a computer rather than with the smart card.

By conducting faults using glitches on the Vcc for less than one hour, 118
faulty ciphertexts were obtained. Amongst these, 72 unique collisions were ex-
tracted. The information in these 72 collisions was compiled to find 31 unique
keys i.e. no linear relationship between any of the 31 keys. This process took
approximately 10 minutes on a standard PC.

Only one 16-byte key candidate was expected, but 31 were produced showing
that some fault injections have produced some collisions not related to the key
values. However, the number of keys produced can easily be tested to determine
the correct key, requiring 31 × 28 = 212 AES executions.

As mentioned above, generating 223 ciphertexts with a smart card takes a
prohibitively long time to generate. This can be reduced by only generating a
certain amount of the dictionary and conducting more fault attacks to generate
the data required to derive the key.

For example, if a dictionary of size 219 was generated, which would take
around 21 hours with the test card, faulty ciphertexts could be generated until
a collision was found. It would be expected that 1 in 24 faulty ciphertexts would
be present in the dictionary. An attacker would therefore need 16 times as much

Fault Analysis of DPA-Resistant Algorithms 229

data compared to the attack described above, but as only a few faulty ciphertexts
are required to realise the attack this is an efficient option.

5 Attacking the Key Masking

Before the key can be used by the algorithm in the fashion described in Section 3
the random value, R, that is applied to the S-boxes needs to be applied to the
key. The key values are usually stored XORed with a random value of the same
size as the key. This is because this random is a static value for one card as it is
stored in the EEPROM and is diversified from one card to another. This mask
needs to be removed, and replaced with R without the key being manipulated.
This process is shown in Algorithm 3. Again, this happens in a random order
rather than as shown.

Algorithm 3. Masking the Key
Input: KR = (kr1, kr2, kr3, . . . , k16)256 masked with a random

R = (r1, r2, r3, . . . , r16)256, R a random byte.
Output: K = (k1, k2, k3, . . . , k16)256 masked with R.

for i ← 1 to 16 do
ki ← kri ⊕ R
ki ← ki ⊕ ri

end

return K

A similar attack can be envisaged against this process to that shown in Sec-
tion 4. If only one byte is initialised by this loop the the resulting memory will be
predominately set to zero. Again, the algorithm will take this value as being R,
which gives 220 possible ciphertexts that need to be generated before the attack
is conducted. As this attack changes key bytes this dictionary can be generated
by a PC as the values are not dependent on the rest of the key.

This attack can be repeated until enough information is derived about the
key to enable an exhaustive search to take place. The expected number of faulty
ciphertexts needed to derive each byte in this way can be calculated by using
the coupon collectors test given in [8]. In the case of AES this would require 50
ciphertexts to derive the whole key.

The implementation conditions of the attack are the same as that described in
Section 2. The same software implementation was run on the same smart card.

The precomputation of the dictionary was generated in a matter of minutes
on a standard PC. Unlike the attack described in Section 2 the dictionary does
not dependent on the value of the secret key used, so the dictionary generated
would be valid for any secret key value.

After attacking the implementation for approximately one hour around 60 col-
lisions were generated from faulty ciphertexts. After acquiring these ciphertexts
the a posteriori processing was trivial as no incorrect hypotheses were produced
by the collisions found.

230 F. Amiel, C. Clavier, and M. Tunstall

6 Modifying Known S-Box Values

If the S-box values are created as shown in Algorithm 1, the order in which the
S-box is constructed is therefore known (as i is incremented from 0 to 63). A
fault attack can then be constructed around the modification of known S-box
values.

The first S-box value of the first S-box is modified by a fault and the algorithm
executed with a message for which the ciphertext is known. If the ciphertext
is not equal to the known ciphertext then this S-box value was used by the
algorithm; if it stays the same the S-box value was not used anywhere in the
algorithm. All 64 values of the first S-box can each be changed in this manner
and the algorithm executed. After which, all the S-box entries used from the
first S-box will be known for a given message.

The expected number of S-box entries used per DES execution can be calcu-
lated using the solution to the classical occupancy problem, as described in [10],
giving a value of 14.3. Therefore, if the attack is repeated for each S-box a list
of around 14 different values will be given for the number of entries used in each
S-box.

If these values are taken as possible hypotheses for the S-box entries used in the
first round, the index values of the S-box entries can be turned into hypotheses
on the first subkey. To do this, the index values simply need to be XORed with
the relevant message bits. This will produce slightly under 231 hypotheses for
the first subkey leading to a total exhaustive search of 239 to find the entire DES
key.

In order to reduce the size of the exhaustive search the attack can be repeated
with a different message. The intersection of the two keyspaces will contain the
first subkey. This provides 14.255 × (14.255/64) = 3.18 different hypotheses
per S-box, which gives 213 hypotheses for the first subkey, leading to a total
exhaustive search of 221 keys.

In practice, embedded implementations of DES are unlikely to have the 512
S-box values necessary for DES written separately in memory. These are gen-
erally compressed to optimise the amount of memory required by the DES
implementation.

One way of achieving this is to store the data on 256 bytes where the odd
numbered S-boxes are stored in the high nibbles and the even numbered S-boxes
are stored in the low nibbles. This corresponds to the attack implementation
detailed below and all further discussion will assume this is the case. There are
several other ways in which the S-box data could be compressed, but is not
considered to be something an attacker needs to know before conducting an
attack, as all the possible combinations can be attempted until the correct one
is found.

The number of key hypotheses generated by implementing this attack against
a DES using compressed S-boxes is shown in Table 2 for different numbers of
messages used. As can be seen, this is more efficient than modifying 1 S-box
value as information on 2 boxes can be gained at once i.e. less faults are required
to derive the key.

Fault Analysis of DPA-Resistant Algorithms 231

Table 2. The hypotheses generated by attacking a compressed S-box

Messages Hypotheses per Hypotheses for Total
S-box pair the first round key Keyspace

1 25.3 237 245

2 10.0 227 235

3 3.97 216 224

4 1.57 25 213

In attempting to implement the attacks described in [2], it was observed that
when the duty cycle1 of the clock given to the smart card was too small an
incorrect ciphertext was produced. This was on a different chip to that used
in the previous attacks on the initial functions of the actual algorithm. Further
study revealed that if the duty cycle was below 15% data written to certain areas
of the chip’s memory would then be written incorrectly.

This attack could therefore be implemented against a smart card using this
effect. As mentioned above, the S-boxes were written in a compressed format to
save memory, so this needed to be taken into account. The attack was conducted
with three different messages, followed by a small exhaustive search to find the
key. The entire attack took 45 minutes using tools created specifically for this
purpose.

This attack can be further optimised by analysing the faulty ciphertexts gen-
erated by the modified S-boxes. It should be apparent from the ciphertext if a
faulty S-box values has been used in the fifteenth or sixteenth round. As the aim
is to try and derive hypotheses on the first subkey these ciphertexts provide no
information. Ciphertexts where the faulty S-box is used in the last round can
be considered to be equivalent to the S-box value not being used. If the faulty
value is used in the fifteenth round no information is provided as the detection of
this event is subject to false positives (as described in Section 7) and a different
message needs to be used to provide information on this S-box value.

The countermeasure for this specific attack is to randomise the order in which
the S-boxes are randomised. This applies to the order in which the S-boxes are
treated, and to the order in which the S-box elements are masked. The data
masking can be done as shown in Algorithm 4, which adds no extra time to the
algorithm implementation. The counter i is XORed with a random before being
used so the order in which the S-box elements are treated is unknown.

If just the order in which the S-boxes are treated is randomised an attack
could be envisaged based on searching for S-box elements that never change the
ciphertext when modified. This is because the information about which index
value has been changed will be present. If the same S-box element is repeatedly
changed, but after numerous executions with the same message the ciphertext
never changes, it can reasonably be assumed that this index value does not

1 The duty cycle is the amount of time that a voltage is applied to the clock pin
compared to the time no voltage is applied e.g. a standard clock will have a duty
cycle of 50%.

232 F. Amiel, C. Clavier, and M. Tunstall

Algorithm 4. Randomising DES S-Box Values
Input: S = (s0, s1, . . . , s63)16 containing the S-box, R a random ∈ [0, 63], and r a

random ∈ [0, 15].
Output: RS = (rs0, rs1, . . . , rs63)16 containing the randomised S-box.

for i ← 0 to 63 do
rsi ← s(i⊕R) ⊕ r

end

return RS

represent a key hypothesis for any part of the first subkey. The expected number
of executions required to be sure of this information is 22 (given by the coupon
collectors test as defined in [8]). The randomisation of the order of treatment
would therefore render the attack much slower. 1408 fault injections would be
required to treat every S-box value for a given message, this would give an
expected number of hypotheses of 55.5 per S-box and a total key search of 254.3

possibilities. A total of 10 different messages would be required to bring the
expected key search to 239.5 which is more possible. The amount of fault attacks
required may make this amount of fault injections unrealistic if the effect of the
fault is not deterministic.

The attack presented in this section require a high degree of precision, as
information is derived from a fault having occurred and then not having an
effect on the ciphertext. This was possible due to the manner in which the fault
was injected, but is unlikely to be possible with other fault injection methods.
A fault is generally expected to be successful with a certain probability when it
is applied to a chip [3], in this case the probability of success was equal to 1.

7 Modifying Unknown S-Box Values

If an S-box element can be modified, but the attacker does not know which
element has been modified (i.e. Algorithm 4 is used), the attack described in
Section 6 will not work. Nevertheless, an attack can be used by implementing
the algorithms given in [2,6].

If one S-box value is modified and used in round 15, and only in round 15,
then the ideas described in [2] will apply. The modification of 1 S-box look-up
in the fifteenth round will, on average, change the entry value for 3.2 different
S-boxes in the sixteenth round, providing differential across these S-boxes for
key hypothesis testing.

The advantage of this attack over the attack described in Section 6 is that the
effect of the desired fault can be seen in the ciphertext. The fault can be detected
by calculating the differential of the S-box output in the fifteenth round, which
can be done by observing the ciphertext. If only one nibble in this value is not
equal to zero, then there is a high probability that the corresponding S-box value
was only used in the fifteenth round. The probability that this event occurs is(63

64

)15 1
64 = 0.0123.

Fault Analysis of DPA-Resistant Algorithms 233

This probability is high enough that an attacker can conduct the attack nu-
merous times until the desired event is observed. Some key information can then
be derived and the process repeated.

There is a possibility that the S-box is used in the fourteenth round and that
this will yield a value that will be detected as a S-box value used in the fifteenth
round. This occurs when the modification in the fourteenth round produces a 1
bit fault (all the output bits go to different S-boxes). There are 4 possible values
among the 15 possible faults that will produce this effect. Half of these values
will modify more than one S-box in the fifteenth round, i.e. they will span two
S-boxes due to the expansion permutation. This leaves only two possible values
from the fifteen possible faults. The probability of a false positive is therefore
2
15

(63
64

)15 1
64 = 0.00165.

The probability of a false positive is relatively high when compared to the
probability of the event that will enable the attack. Approximately 1 in 7 de-
tections will be false positives. However, as described in [6], the false hypotheses
introduced by these false positives will not have a major effect on the success of
the attack.

As detailed in Section 6, S-box values are usually stored in a compressed state
so an attacker may be forced to modify several S-box entries at once. If two S-
box entries are modified the probability of one of the values being used in the
fifteenth round is 2

(63
64

)15 1
64

(63
64

)16 = 0.0192.
This is more efficient than modifying 1 S-box value as the probability of the

S-box value being used in the fifteenth round is higher. This probability will
change following the method of S-box compression, but only the case under
study is analysed.

The probability of one S-box value being used in the fourteenth round and
causing a false positive can be calculated as before. If two modified S-box values
are used in the fourteenth round this can also provoke a false positive if two
one-bit errors are caused and these bits are used in the same S-box without
being reproduced by the expansion permutation in the fifteenth round. This
probability was derived by simulating all the possible combinations as 89/147456.
The overall probability of a false positive is therefore 2 2

15

(63
64

)15 1
64

(63
64

)16 +
89

147456

((63
64

)15 1
64

)2
= 0.00256.

The probability of a false positive given that a detection has occurred is
about the same (≈ 2/15) given that the event has been detected for both
implementations. The implementation using a compressed S-box will provide
results quicker as the desired event occurs with a higher probability.

This attack was implemented on the same chip as the attack described in
Section 6 because the fault used was ideal for modifying the S-box values as they
were created. The first attempt at this attack was against a DES implementation
that just used data masking and constructed S-boxes using Algorithm 4. The
tools conducting the attack waited until at least 1 differential had been found
across each S-box before conducting an exhaustive search of the hypotheses
derived from the fault injection. The tools found the key after 8 minutes.

234 F. Amiel, C. Clavier, and M. Tunstall

A second attempt was conducted with the addition of random delays in hard-
ware and software, so that a fault would be produced with a lower probability.
The same tools took 20 minutes to derive the key.

This attack was easier to implement than the attack described in Section 6,
as only one fault injection position was needed to attack a random S-box entry.
In the previous attack it was necessary to shift the position of the fault injection
for each new fault injection attempt.

In the case of an implementation using compressed S-boxes it would be logical
to use the event of both faulty S-box values being used in the fifteenth round.
As previously, this can be observed by looking for two nibbles with a non-zero
differential in the ciphertext. This information can be combined with the event
of one nibble having a differential in the ciphertext. The probability of this

occurring is 2
(63

64

)15 1
64

(63
64

)16 +
((63

64

)15 1
64

)2
= 0.0193.

As previously, there is a chance of a false positive. In this case the events
of one or two modified S-box values being used in the fourteenth round could
potentially simulate one or two changed values in the fifteenth round. If one
S-box value is changed in the fourteenth round the probability that two values
are modified in the fifteenth round is 1/5, if two values are changed in the four-
teenth round the probability that two values are changed in the fifteenth round is
914609/29491200. Again, these were derived by simulating all the possible com-
binations. The probability of a false positive is therefore 2 2

15

(63
64

)15 1
64

(63
64

)16 +
89

147456

((63
64

)15 1
64

)2
+ 2 1

5

(63
64

)15 1
64

(63
64

)16 + 914609
29491200

((63
64

)15 1
64

)2
= 0.00640.

The probability of getting useful information remains approximately the same
as when only one modified S-box is considered, but the probability of a false
positive is 2.5 times greater. The data acquired will therefore be much more
noisy and will increase the amount of time required to conduct the attack. There
is therefore little interest in conducting the attack in this manner.

8 Countermeasures

There are several countermeasures that can be used to protect an algorithm
against this type of attack. As has been described above, randomisation of the
algorithm is not an efficient countermeasure against this fault attack.

Random Delay: If a high degree of precision is required the attack could be
slowed to the point where an attacker will not believe the attack is possible.
This applies to both hardware and software random delays. A study of the
effect of random delays on DPA is given in [5], similar effects will be seen
when this is used against fault attacks.

Checksums: If S-boxes need to be constructed in RAM they need to be pro-
tected by a checksum. The simplest method of achieving this would be to
XOR all the values together after the table has been created i.e. after the

Fault Analysis of DPA-Resistant Algorithms 235

table has been written to memory. This has the added advantage of removing
the randomisation, as the amount of entries in the S-box will be an even
number. Nevertheless, this is not adequate to defend against the attacks
described above. If the checksum is on 1 byte an attacker could modify
several values and have a probability of 1/256 of having a valid checksum. A
second checksum calculated in a different manner could remove this problem,
as the second checksum can be chosen such that there is no fault that will
allow both checksums to remain valid.

Redundancy: It is already known that it is advisable to repeat the first 2 or 3
rounds of a secret key algorithm to protect against attacks like [7]. The initial
functions can be repeated and the memory contents verified, in the same way
that rounds of an algorithm are repeated to ensure no exploitable faults can
be injected. However, this is prohibitively time consuming especially for the
construction of S-boxes.

Memory Randomisation: All “work” areas of RAM used can be filled with
independent random values before the start of the algorithm. The feasibil-
ity of the attack would then rest on the quality of the random values used.
If, for example, an LFSR was used to generate these values it may be pos-
sible to predict the value of one byte if the previous byte is known. This
could mean that the attack described in Section 4 is still possible with very
little change i.e. the end search would be 216 rather than 28 because an
attacker would have to exhaust the possible initial values of the random
used.

9 Conclusion

Several different attacks where faults were used to generate faults at the begin-
ning of a secure implementations of AES and DES were presented. The imple-
mentations of some of these attacks have been briefly described. The algorithms
were chosen because the source code for several different implementations was
already available.

These attacks are generic attacks and can be considered to apply to any secret
key implementation. These attacks show that DPA countermeasures are not an
intrinsic barrier against fault attacks and that depending on round redundancy
is not sufficient to achieve a secure implementation on smart cards.

Acknowledgements

The authors would like to thank Pascal Moitrel and Christophe Mourtel who
designed and built the hardware mentioned in this paper, which enabled us
to implement the attacks described above. The work described in this paper
has been financially supported by the European Commission through the IST
Program under Contract IST-2002-507932 ECRYPT.

236 F. Amiel, C. Clavier, and M. Tunstall

References

1. M.-L. Akkar and C. Giraud. An implementation of DES and AES secure against
some attacks. In Ç. K. Koç, D. Naccache, and C. Paar, editors, Cryptogaphic
Hardware and Embedded Systems — CHES 2001, volume 2162 of Lecture Notes in
Computer Science, pages 309–318. Springer-Verlag, 2001.

2. E. Biham and A. Shamir. Differential fault analysis of secret key cryptosystems.
In B. S. Kaliski Jr., editor, Advances in Cryptology — CRYPTO ’97, volume 1294
of Lecture Notes in Computer Science, pages 513–525. Springer-Verlag, 1997.

3. J. Blömer and J.-P. Seifert. Fault based cryptanalysis of the advanced encryption
standard (AES). In R. N. Wright, editor, Financial Cryptography — FC 2003, vol-
ume 2742 of Lecture Notes in Computer Science, pages 162–181. Springer-Verlag,
2003.

4. S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards approaches to counteract
power-analysis attacks. In M. Wiener, editor, Advances in Cryptology — CRYPTO
’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer-
Verlag, 1999.

5. C. Clavier, J.-S. Coron, and N. Dabbous. Differential power analysis in the presence
of hardware countermeasures. In Ç. K. Koç and C. Paar, editors, Cryptographic
Hardware and Embedded Systems — CHES 2000, volume 1965 of Lecture Notes in
Computer Science, pages 252–263. Springer-Verlag, 2000.

6. C. Giraud and H. Thiebeauld. A survey on fault attacks. In Y. Deswarte and
A. A. El Kalam, editors, Smart Card Research and Advanced Applications VI —
18th IFIP World Computer Congress, pages 159–176. Kluwer Academic, 2004.

7. L. Hemme. A differential fault attack against early rounds of (triple-)DES. In
M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages
254–267. Springer-Verlag, 2004.

8. D. Knuth. The Art of Computer Programming, volume 2, Seminumerical Algo-
rithms. Addison–Wesley, third edition, 2001.

9. P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. J. Wiener,
editor, Advances in Cryptology — CRYPTO ’99, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer-Verlag, 1999.

10. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

11. D. Naccache, P. Q. Nguy˜̂en, M. Tunstall, and C. Whelan. Experimenting with
faults, lattices and the DSA. In S. Vaudenay, editor, Public Key Cryptography
— PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages 16–28.
Springer-Verlag, 2005.

Java Type Confusion and Fault Attacks

Olli Vertanen

University of Kuopio, Department of Computer Science,
Microkatu 1, 70210 Kuopio, Finland

vertanen@cs.uku.fi

Abstract. Virtual machines executing high level languages are nowa-
days found even in small secure embedded systems. We have studied
properties of the Java virtual machine and the Java virtual machine lan-
guage under certain fault attacks. Focused glitching attacks may enforce
type confusion situations. Defensive Java virtual machine is prosed as a
counter-measure.

Keywords: Java, Java Card, type confusion, fault attacks, embedded
systems.

1 Introduction

Recently, high level language virtual machines (HLL VMs) have established
themselves in small embedded devices, e.g. mobile phones [1], smart cards [2]
and even sensor networks [3]. Advantage of the HLL VMs is high density of the
translated code, which makes transferring code over communication lines eco-
nomical. The use of high level languages also aims at easier programmability
and shorter application management cycles than in traditional embedded ap-
plication development. On the other hand, virtual machines always introduce
performance degradation compared to native code execution.

Some embedded devices, especially smart cards, are designed to store and
process data in a secure manner. It can even be claimed that the existence of
smart cards is solely justified by their ability to “keep secrets”. This implies that
the HLL VM on the device must also be secure. The product as a whole, the
hardware and software, must be designed to be tamper-resistant.

Java is a common language in HLL VM systems. It is generally considered as a
secure language because it is strongly typed, enforces boundary checks for arrays,
does not use pointers or pointer arithmetics, variables are initialised before they
are used, and the language contains access modifiers for classes, methods and
fields. Naturally, the compiled Java code, the bytecode (also called Java virtual
machine language, JVML), must preserve these properties. Thus, the bytecode is
checked for correctness before it is executed. This checking is done by a bytecode
verifier.

However, verification introduces a time of check, time of use (TOCTOU)
condition, because the code is checked well before it is used. The fact that the
verification process is very memory intensive may cause a vulnerability. In small

L. Breveglieri et al. (Eds.): FDTC 2006, LNCS 4236, pp. 237–251, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

238 O. Vertanen

systems, it is not necessarily possible to run the verifier on-device but the verifi-
cation must be done off-device. So, there is a significant cap, in space and time,
between checking and using the code.

Fault attacks may also turn TOCTOU condition over to a vulnerability. Faults
have proven to be a very powerful way to break secure systems. Several authors
[4,5,6,7,8,9] have shown that, by introducing transitive faults into a system, it is
possible to change program’s run-time behaviour. With sophisticated equipment
the fault may be focused on a particular instruction in memory or a particular
value on the system bus. This, in effect, means that the executed program is not
the same as the verified one.

To counter fault attacks normal fault tolerance schemes can be used. In some
environments a defensive Java virtual machine (dJVM) [10,11], a VM that does
’on-the-fly verification’, can be one possibility to prevent execution of fraudulent
Java code.

In this paper, we study properties of the Java bytecode and the Java virtual
machine in presence of fault attacks. Inspired by the earlier work, we present
some scenarios how fault attacks can be utilised in order to produce type confu-
sion, i.e. circumvention of the Java type system, in Java programs. The scenarios
are based on previous observations of processors behaviour under attack (e.g.
[5]).

The rest of the paper is organised in the following way. In Section 2 we review
some known attack techniques, both logical and fault attacks. In Section 3 we
take a look how combining fault attacks with valid but intentionally malicious
bytecode can break Java’s type system. In Section 4 we reason, whether these
attacks designed on basis of Java bytecode can be applicable on real systems.
Finally, we discuss about counter-measures to proposed attacks.

2 Types of Attacks

Attacks against secure systems can be classified by their objectives or by their
means [12]. The purpose may be to attack privacy, integrity or availability of
the system or data. The means describe how to technically implement an attack.
We use following classification for the means:

1. Physical attacks: Direct tampering of the hardware, for example, optically
reading the ROM, or micro-probing the system bus.

2. Fault attacks: Affecting the system behaviour via an injected physical fault.
Source of the fault can be voltage or system clock manipulation, external ra-
diation (X-ray, laser beam, electromagnetic field, white light) or temperature
variation. To be useful, faults have to be transient and repeatable.

3. Observation attacks: Information retrieval by observing an unusual informa-
tion channel, e.g. power consumption, or instruction timing. These attacks
are often called side-channel or covert channel attacks.

4. Malicious code: Affecting the system behaviour by illegitimate programs
like Trojan horses, viruses or worms. Malicious code may be injected into a
system as result of buffer overflow or other logical fault.

Java Type Confusion and Fault Attacks 239

The means are ordered here by descending degree of physical interference
needed to launch the attack. In order to achieve the ultimate goal these tech-
niques can be mixed. Faults can be used to open a side-channel, or malicious
code can be used to find out the right point of execution for a fault. Here we
focus primarily on malicious code and fault attacks.

2.1 Basic Type Confusion Attacks

We are primarily concerned about embedded devices which are fully accessible to
the attacker. If the system is on a single chip, like smart card, accessing physically
the hardware requires special equipment. It is impossible to change the ROM
or system software. But if the attacker can freely install Java programs, can the
secrets in the memory be exposed?

Java overcomes many traditional security problems. Java programs cannot
directly access the hardware or address arbitrary memory. Programs run on a
virtual hardware – the Java Virtual Machine. Programs also run in a constrained
environment called sandbox. Type safety is one cornerstone of the Java language
security and the verifier is the key defender in the front line. If this defence breaks
(i.e. the code is not verified or the code can be changed after the verification)
then security can be broken. Also, flaws in the language implementation can
open up opportunities for attackers.

Buffer overflows are a common way to break systems. The basic idea is that
the target program contains an unchecked buffer which will overflow if the input
to the program is long enough. Program code can be placed to the overflowing
part of the input and change the running program. A stack overflow typically
injects some executable code to the stack area and then overwrites the return
address on the stack in order to get the injected code executed. Similarly, a heap
overflow overwrites a buffer in the heap memory area.

The Java type system and run-time checks should prevent buffer overflow
attacks. Some cases have been reported, but those typically exploit bugs in parts
that are written in some native language [13] and are external to the JVM.

However, similar attacks are possible. In order to emulate a stack overflow
attack in Java, we must first be able to place the attack code somewhere. Second,
we must learn the physical address of the code, and third, we must be able to
replace a return address on stack with the address of the attack code. A normal
byte-array might be a good place to store the injected code, but the second and
third requirements are trickier. Language constraints of the bytecode must be
circumvented. We now present principles of the attack. The details are always
environment dependent.

The JVM operates with references, not with direct addresses. Originally, after
compilation, references are symbolic and resolved during linking of the applica-
tion. The actual run-time representation of references is implementation depen-
dent. A reference can be, for example, an indirection to a handle of an object,
an offset within a object or it can be a direct pointer to a memory area. The last
one is interesting: For performance reasons direct references are desirable, and

240 O. Vertanen

in the case of a class methods and class variables (static methods and variables)
even very likely in implementations[14].

To learn the address of a static variable, a type confusion can be used. The
principle of type confusion is very simple and also commonly used in weakly
typed languages like C. Figure 1 shows a example of a method that casts an
address to an integer. This is against Java’s typing rules and the method does
not compile. The bytecode has to be handcrafted and does not pass verification.

Java:

private int illegalCast(Object ref)
{
return ref;

}

bytecode:

aload_0 ; push reference to stack
ireturn ; return as integer

Fig. 1. Illegal casting from reference to integer

To change the return address on the stack the method in Figure 2 can be
used. It assumes that return address is just on the top of the stack when method
is invoked.

Java:

private void goWild(int goHere, int dummy)
{
// some fill instructions here ..
return;

}

bytecode:

istore_1 ; pop return address and store it to dummy
iload_0 ; push address ’goHere’ to stack
return ; ’return’ to address goHere

Fig. 2. Jump into an array

Depending on the environment there are alternative ways to perform the steps
of the attack. For example, in some virtual machines the address of an object
can be derived from the return value of the .hashCode() method [9]. In Java
Card environment [15] (Java Card is a special Java release for memory constraint
devices) user may infiltrate physical memory references to the bytecode. In this
environment a part of the linking task is done off-line in order to minimise the

Java Type Confusion and Fault Attacks 241

amount of meta-data and the size of the binary file (converted applet file, CAP
file). The CAP file has a special RefLocation table. It lists all code offsets
with variable references that should be resolved during the applet loading. If the
applet installer trusts this table and does not check the integrity of RefLocation
table, the attacker can write direct physical addresses into the method code and
‘resolve’ the variable references manually.

Often it suffices for an adversary to dump out a memory location in order
to expose private information. This might be possible if buffer boundaries can
be overrun. Forgery of the size of an array is possible by forging the type of
the array elements. For example, the baload bytecode (byte array element load,
hexadecimal 0x33) retrieves an element of one byte. If the instruction is forged to
iaload (integer array element load, hexadecimal 0x2e), the program can access
memory outside the actual array memory area. This kind of confusion has been
already applied in Java Card environment [16]. Of course, this attack can be
used for writing into memory as well.

These scenarios are eliminated if an on-device verifier can be used. However,
not all devices can embody a verifier. The verification can be run off-device,
but then there exists a risk that verified programs are modified. To counter
that threat the compiled class-files can be digitally signed. That, in turn, needs
utilisation of some cryptographic mechanisms, key-management system etc. In
principle, the whole tool-chain (compilers etc.) must be trusted. The overall
system gets complex and there still remains risk for insider attacks.

2.2 Glitching

Methods of generating faults are numerous. Currently, various glitching tech-
niques are most practical. A glitch can be a variation in the clock signal, fluc-
tuations in the power line or a change in the external electric field around the
processor. Glitches make some of the flip-flops inside the processor temporarily
adopt a wrong state. Glitching attacks require physical access to the target, and
therefore can be applied to small ubiquitous embedded devices such as smart
cards, sensors in senor networks or car electronics.

Several types of effects of glitches have been reported [17]. For example branch
instruction may be ignored or by-passed, run-time loops can be extended or
reduced, and CPU may execute completely different instruction. Also values on
the data bus can be changed.

To design a successful attack careful searching of values for glitch variables
(amplitude, frequency, duration, timing etc.) and a lot of re-iteration is needed.
Power analysis can be applied to focus glitches to a correct point in the program
flow. Analysis can recognise power profile of certain instructions and fault can
be applied when program reaches certain point of execution.

Bar-El et.al [5] reported on successful experiments where glitching and power
analysis was combined. They dropped the power line to ground voltage for a
few nanoseconds and it made the processor to “skip number of instructions” in
the instruction flow and resume normal execution after some microseconds. Also

242 O. Vertanen

data manipulation was possible this way. They also noted that “value of data
could be corrupted while the interpretation of instructions was left unchanged”.

In addition, it can be noted that so called single event upsets (SEUs) [18]
have become an increasing problem. This is mainly because of the decreased
feature size and smaller voltage safe-margins in the current chips. Less energy
than before is needed to disturb transistors. SEUs can flip transistors logical
state to the opposite, so the effect may resemble the one of fault-attacks. The
main difference is that SEUs are generated by energetic particles from the space
or from the chip’s packaging material. These particles bring external energy into
transistor gates and change change the direction of hole or electron flow. So,
SEUs have a random nature and are in that sense less critical to the systems
security than fault attacks which are carefully targeted.

3 Combined Attacks

As noted earlier, successful attacks often combine different techniques. In this
section we take a look how malicious code and fault induction can be used
together in order to break Java’s type system.

An successful example of this kind of attack was reported in [9]. In that
experiment the Java code itself was valid and accepted by the Java verifier.
On the other hand the code was crafted so that a memory error easily led to
circumvention of the type system. Even when the applet was run inside a normal
Java sandbox, the attacker was able to break the sandbox protection and run
arbitrary code in most of the cases. In this case, faults were random bit flips
and were generated by heating up RAM chips with a standard 50W spotlight
bulb. At certain temperature memory chip began malfunction. The most notable
conclusion of the experiment was that letting an attacker to choose the program
to run is fatal to the system security.

We now present a hypothetical scenario that will use focused faults and tech-
niques presented in [5]. The basic idea of the attack is following:

1. Program an applet that is legal and passes the verifier. It must be pro-
grammed so that, if some lines of the bytecode is bypassed, the code can be
used as an attack.

2. Analyse the power curve of the applet and locate the place where critical
instruction lie on the curve.

3. Apply a voltage or power glitch (or combination) attack. Reiterate 2 and 3
until desired effect is observed.

The Java code and the corresponding bytecode (of the method main()) is
presented in Figures 3 and 4 respectively. The valid version of the code just
prints out one byte. If lines from B5 to B7 can be jumped over, a reference to
the static variable a1 will be stored to b (on line B8) and later loaded for loop
termination check at B12. The effect of the glitch will be the same if we would
change line A14 of the source code to byte b[]= a1;. Class BogusArr has just
one field length and that mimics the length field of arrays. The result is that

Java Type Confusion and Fault Attacks 243

arbitrary memory context can be dumped out. To tune the attack, suitable glitch
parameters can be searched and also bytes can be added to code between line
B5 and B7.

A1 public class Attack
A2 {
A3 public static class BogusArr
A4 {
A5 int length;
A6 }
A7
A8 static BogusArr a1 = new BogusArr();
A9
A10 public static void main()
A11 {
A12 a1.length = 0x8000;
A13 BogusArr a2 = a1;
A14 byte [] b = new byte[1];
A15 for (int i=1; i<b.length; i++)
A16 System.out.print(b[i]);
A17 }
A18 }

Fig. 3. Java source of the combined attack

Similar scenarios can be generated. An interesting application for ‘jumping
over instructions’ glitches could be bypassing checkcast bytecodes. Java com-
piler generates a checkcast bytecode instruction from each casting expression
in the program code (figure 5 illustrates the placement of the operation in the
bytecode). The operator should check assignment compatibility in the run-time.
The verifier notices checkcast bytecode and trusts the run-time system to do
the ultimate decision. If we can bypass the check using a glitch, the type system
is broken, and attack programs can be programmed direct in Java with no need
to play with the bytecode representation.

To further illustrate vulnerability of the JVM in the presence of faults we
assume that the adversary can manipulate the program counter register either
by changing the offset in a branch instruction or by directly affecting the register
itself. The idea is to program the code in a way that all instruction operands
are also valid bytecodes. When the PC value is corrupted, the virtual machine
executes totally other code that was intended.

Figure 6 shows a simplified version of this attack. The method illegalCast
originally returns integer value 42. But 42 (hexadecimal 2a) is also the opcode of
aload_0 instruction. If the first byte of the method can be skipped, the method
returns a reference to the object it took as a parameter.

As a final note to this section we point out that semantics of some byte-
code instructions are very complex. Implementations of these bytecodes consist

244 O. Vertanen

B1 getstatic #2
B2 sipush 2048
B3 putfield #3
B4 getstatic #2
B5 astore_0 ; assign top of stack to a2
B6 iconst_1 ;
B7 newarray byte ;
B8 astore_1 ; assign top of stack to b
B9 iconst_1
B10 istore_2
B11 iload_2
B12 aload_1
B13 arraylength
B14 if_icmpge 40
B15 getstatic #4
B16 aload_1
B17 iload_2
B18 baload
B19 invokevirtual #5
B20 iinc 2, 1
B21 goto B11
B22 return

Fig. 4. Bytecode of the combined attack. Skipping lines B5 to B7 causes a type con-
fusion situation.

Java:

ClassA a;
ClassB b;

a = (ClassA)b;

bytecode:

aload b
checkcast #ClassA
astore a

Fig. 5. Checkcast is used to check assignment compatibility of the top of the stack
variable with the class given as instruction operand

of sub-operations that are not visible to instruction level. These operations are
often security critical like array boundary checks (e.g. in baload and iaload
instructions) or null pointer checks (in every instruction referencing a class in-
stance). Also, firewall checks in the Java Card environment must be embedded
in the implementations of bytecodes accessing objects [15]. These sub-operations
might be a good targets for “instruction skip attacks”.

Java Type Confusion and Fault Attacks 245

Java 1:

private int illegalCast(Object ref)
{
return 42;

}

bytecode 1:

bipush 42 0x10 0x2a
ireturn 0xac

bytecode 2:

aload_0; 0x2a
ireturn; 0xac

Java 2:

private int illegalCast(Object ref)
{
return ref;

}

Fig. 6. PC shift attack: The original method (Java 1) always returns an universal
answer 42. Bytecode 1 shows the corresponding symbolic (left column) and binary
(right column) formats. Bytecode 2 presents the scenario when the byte 0x10 has been
skipped. Java 2 is the resulting high level code – a reference is illegally casted to an
integer

.

4 Execution of Java Bytecode

We have presented some simple scenarios how to break Java’s type system using
focused glitching attacks. In this section, we take a look how applicable the at-
tacks would be in a running system. In order to take advantage of the method,
the adversary must know how each bytecode instruction maps to native instruc-
tions, and where are the boundaries of separate bytecode implementations in the
native code.

Java virtual machines come in many flavours. Table 1 summarises various
approaches to execute Java bytecode. The main reason for the diversity is to
find ways to improve performance in different environments. The JVML is still
generally considered as an interpreted language. A switched interpreter consists
of an instruction dispatcher loop. In the loop bytecode is fetched and passed to
the subroutine that implements the bytecode. When the subroutine exits, con-
trol is handed back to the interpreter loop, next bytecode is fetched etc.. The
structure is the most simple one, but dispatching causes significant overhead. In
a direct threading interpreter bytecodes of a program are replaced by addresses
to bytecode implementations. Dispatching is done in the end of each subroutine

246 O. Vertanen

by a direct jump to next implementation. This removes the dispatcher loop. The
inline threading scheme further drops dispatching overhead by creating dynami-
cally groups of bytecode implementations from basic blocks of the program.[19].
Dispatching is needed only after every basic block, but bytecode boundaries are
still very clear and distinct during the execution.

Table 1. Different ways to implement Java bytecode execution

1. Interpreted a. switched
b. direct threading
c. inline threading

2. Compiled a. just in time (JIT)
b. ahead of time (AOT)
c. selective dynamic compilation (Hotspot)

3. Hardware a. hardware translation
b. Java processor
c. co-processor

Interpreted code always suffers from performance penalties due to dispatching
compared to compiled code. In case of Java, the stack architecture adds another
source of poor performance on register machines. Also, some sub-operations of
JVML instructions (e.g. array boundary checks), could be optimised, but the
JVML presentation inhibits it (that is: operations are not visible at the bytecode
level). To make better use of underlying architecture and modern optimisation
techniques the JVML must be compiled.

Just-in-time compilation (JIT) [20], or dynamic compilation, suits well with
a mobile and dynamic language like Java. A JIT compiler translates a method
from bytecode to native code at the moment when the method is invoked. JIT
compiler has the advantage over traditional compilers that it can make use of
run-time information of the program. Heavily optimising JIT compiler requires a
lot of resources from the target machine: The compiler itself is a large program,
requires a fair amount of processing time, and also the resulting executable is
bigger than the original bytecode. For example, the Jikes RVM uses, while com-
piling, three different intermediate formats, and performs optimisations after
each transformation from one format to another [21]. Because there is a com-
pilation overhead a the first time method is executed, significant performance
gain over interpretation is achieved only after several runs of the method. Differ-
ent optimisation and instruction scheduling schemes may split execution of one
bytecode instruction to several distinct locations in the final code.

In embedded systems a JIT compiler will very likely not fit into memory, and
a different approach must be considered. Traditional compilation, which can be
called ahead-of-time compilation (AOT) in contrast to JIT, is an alternative
although some dynamic features of the language are lost. If the system has fixed
set of programs and is not designed extensible, AOT compilation may suffice
and the compiler can feature significant optimisations [22].

Java Type Confusion and Fault Attacks 247

Dynamic compilation strategies special to embedded systems has also been
proposed. Resource requirements can be kept small if only performance critical
parts (hotspots) are compiled and compiler is kept simple. For example, E-Bunny
[23] is a selective one-pass compiler that uses precompiled codelets and generates
stack-based code. The resulting native code has thus similar structure than the
original bytecode. Deville and Grimaud [24] use a simple intermediate language
to facilitate on-device compilation. The language maps each bytecode to a pre-
implemented method, which also preserves bytecode boundaries in the native
code.

Java on hardware may be implemented with an extension to instruction set
architecture (ISA) (Jazelle [25]), with a pure Java ISA processor (picoJava [26])
or as a co-processor (MOCA-J [27]). The first approach is also know as hardware
translation [28]. It adds a special unit in the front of the processor’s instruction
path. The unit translates bytecodes to sequences of microcode which are fed
into execution. The most complex bytecodes are implemented with an interpreter
routine. As bytecodes are fetched in sequence the bytecode boundaries are visible
also in the final code. Co-processor solution is similar, and is used with co-
processor aware JVM.

PicoJava’s ISA contains more than 300 instruction. Most of the ISA are imple-
mented hardwired or in microcode. Only a group of 30 very complex instructions
need operating system support. An interesting detail is that the JVM specifica-
tion define only 226 bytecodes. The additional instructions are for coping with
the real hardware, and for performance optimisations.

Instruction folding was the most important optimisation introduced by the
picoJava. Folding groups several bytecode instructions to a single instruction
(also called super-instruction). The main purpose of folding is to mitigate ac-
cess inefficiency in stack machines. Folding has been recently proposed to other
environments as well [29][30].

Java resolves identifiers dynamically, which is slow. One optimisation is to
replace a bytecode with another version (so called quick-instructions) [31] when
an identifier is resolved. It means that the code changes its appearance during
the execution.

As a conclusion to the discussion in this section we can notice that mapping
from a JVML instructions to native instructions can be 1:1, 1:N (one bytecode
corresponds to many native instructions), N:1 (many bytecodes form a single
native instruction as in case of folding and super-instructions) or N:M (bound-
aries may be blurred because of optimisations). One must also notice that same
sequence of bytecodes may map to several alternative native code sequences be-
cause of the execution or optimisation techniques used. So, the actual attack
based on the scheme presented in the previous section will after all be heav-
ily platform specific in spite of the universal nature of the bytecode. In small
embedded systems the executed code is generated from to bytecode in a straight-
forward way, and the implementation of the attack will be easier than in heavily
optimising environments.

248 O. Vertanen

To find the correct point of execution to attack is thus difficult if the original
bytecode of the target program is not know. If the adversary can load programs
into the target hardware the task will be a lot easier. The behaviour of the
JVM in question can be learnt by observing some physical property (electrical
emission, power curve etc.). By bracketing the interesting points of the program
with easily observable events, as presented in [32], the adversary can observe
the characteristics of the bytecodes she is interested in, and pick up the right
moment to launch the attack.

5 Counter-Measures

Defence against faults depends on the required protection policy. The policy
how to deal with faults can be defined as prevention, detection or tolerance.
Trying to prevent faults (with physical shields etc.) can be successful only if the
causes of faults are known in advance. If the purpose is to prevent unauthorised
information disclosure, it suffices to detect faults, and halt computation directly
afterwards. If integrity of data is the concern, the detection mechanism should
combined with a transaction mechanism. If availability of the system must be
guaranteed then fault tolerance methods with significant redundancy must be
applied.

There are basically three choices to place protection mechanism: to hardware
external to computing logic, as part of logic circuits or in software. The first
choice must target specific physical phenomenas (e.g. detectors for temperature,
power, etc.) causing faults while the second and the last ones react on the conse-
quences of faults. Basically, redundancy in circuit level (dual-rail encoding [8]),
in hardware blocks, or in time can be used. Software mechanisms typically use
redundancy in time, for example computing same value twice and comparing the
result.

A good overview of fault protection techniques can be found in [5] and [33] .
As the source of the vulnerabilities presented in this paper is the ‘time of check,

time of use’ condition created by the verifier, we propose solving the problem by
removing this TOCTOU situation. It can be done by doing the verifier checks at
the moment of use. This approach is called defensive Java virtual machine. The
dJVM enforces the language constraints during program execution. It would not
guarantee fault free operation, but merely program execution according to rules
given to Java language.

For example, the attack situation in figure 4 would be detected and the ex-
ecution halted at line B13, because of a type conflict. If the lines B5 to B7 in
the bytecode had been jumped over, then the local variable 1 (of the current
method) would contain a reference to class BogusArr (not to byte[] as in un-
tampered code). Thus, on line B13 we would apply arraylength instruction to
type BogusArr, which is against language constraints.

The dJVM would make bytecode verifier obsolete, because it implements
same functionality. On the other hand, the dJVM would introduce severe penal-
ties in memory consumption (type information has to be stored to stack) and

Java Type Confusion and Fault Attacks 249

especially in performance. Also one should note, that pure software dJVM would
be just a set of new checking instructions that could be bypassed (like checkcast
operation). So, a dJVM without hardware assistance cannot be a solution.

6 Discussion and Further Work

We have presented some simple scenarios how to break Java’s run-time type
system using fault attacks. Earlier work has demonstrated how to enforce type
confusion situation with random bit flips. We propose using focused faults with
programs specially designed for attacks.

In the Java run-time environment the verifier checks that instructions follow
all language constraints. The check is done well before the code is executed,
and the time cap can be exploited by the adversary. We propose using defensive
virtual machine that would close the cap and do the verification on the fly. Attack
counter-measures come never free, so also the dJVM is intrinsically resource
demanding. The actual cost, in terms of time and memory, is not yet known,
and our future work is focused on the study of feasibility, implementation and
optimisation of the dJVM for embedded devices.

References

1. Lawton, G.: Moving Java into mobile phones. Computer 35(6) (2002) 17–20
2. Baentsch, M., Buhler, P., Eirich, T., Hring, F., Oestreicher, M.: JavaCard – from

hype to reality. IEEE Concurrency 7(4) (1999) 36–43
3. Levis, P., Culler, D.: Maté: a tiny virtual machine for sensor networks. In: ASPLOS-

X: Proceedings of the 10th international conference on Architectural support for
programming languages and operating systems, New York, NY, USA, ACM Press
(2002) 85–95

4. Naccache, D.: Finding faults. IEEE Security & Privacy (2005) 61–65
5. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sor-

cerer’s apprentice guide to fault attacks. http://www.gemplus.com/smart/rd/
publications/pdf/BCN 04sor.pdf In: Workshop on Fault Diagnosis and Toler-
ance in Cryptography. (2004)

6. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Security
Protocols, 5th International Workshop. Volume 1361 of LNCS., Springer-Verlag
(1997) 125–136

7. Skorobogatov, S., Anderson, R.: Optical fault induction attacks. In: Crypto-
graphic Hardware and Embedded Systems Workshop (CHES-2002). Number 2523
in LNCS, Springer-Verlag (2002) 2–12

8. Moore, S., Anderson, R., Cunningham, P., Mullins, R., Taylor, G.: Improving
smart card security using self-timed circuits. In: ASYNC ’02: Proceedings of the
8th International Symposium on Asynchronus Circuits and Systems, Washington,
DC, USA, IEEE Computer Society (2002) 211

9. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: Proceedings of 2003 IEEE Symposium on Security and Privacy. (2003) 154–165

10. Stärk, R., Schmid, J., Börger, E.: JavaTM and the JavaTM Virtual Machine, Defi-
nition, Verification, Validation. Springer-Verlag (2001)

250 O. Vertanen

11. Cohen, R.M.: The defensive Java virtual machine specification version 0.5. Tech-
nical report, Computational Logic Inc., Austin, Texas (1997)

12. Ravi, S., Raghunathan, A., Chakradhar, S.: Tamper resistance mechanisms for se-
cure, embedded systems. In: VLSID ’04: Proceedings of the 17th International Con-
ference on VLSI Design, Washington, DC, USA, IEEE Computer Society (2004)
605

13. Hoglund, G., McGraw, G.: Exploiting Software, How to break code. Addison-
Wesley (2004)

14. Venners, B.: Inside the Java Virtual Machine. 2nd edn. McGraw-Hill (2000)
15. Sun Microsystems Inc. Palo Alto, California: Java Card 2.2 Run-Time Environment

(JCRE) Specification. (2002)
16. Witteman, M.: Java card security. Information Security Bulletin 8 (2003) 291–298
17. Kömmerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard

processors. In: USENIX Workshop on Smartcard Technology (Smartcard’99).
(1999) 9–20

18. Dodd, P.E., Massengill, L.W.: Basic mechanims and modeling of single-event upset
in digital electronics. IEEE Transactions on Nuclear Science 50(3) (2003) 583–602

19. Gagnon, E.: A Portable Research Framework for the Execution of Java Bytecode.
PhD thesis, School of Computer Science, McGill University, Montreal (2002)

20. Aycock, J.: A brief history of just-in-time. ACM Comput. Surv. 35(2) (2003)
97–113

21. Alpern, B., Attanasio, C.R., Barton, J.J., Burke, M.G., Cheng, P., Choi, J.D.,
Cocchi, A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov,
V., Mergen, M.F., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd,
J.C., Smith, S.E., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeño virtual
machine. IBM System Journal 39(1) (2000)

22. Schultz, U.P., Burgaard, K., Christensen, F.G., Knudsen, J.L.: Compiling Java
for low-end embedded systems. In: LCTES ’03: Proceedings of the 2003 ACM
SIGPLAN conference on Language, compiler, and tool for embedded systems, New
York, NY, USA, ACM Press (2003) 42–50

23. Debbabi, M., Gherbi, A., Ketari, L., Talhi, C., Yahyaoui, H., Zhioua, S.: A syn-
ergy between efficient interpretation and fast selective dynamic compilation for the
acceleration of embedded Java virtual machines. In: PPPJ ’04: Proceedings of the
3rd international symposium on Principles and practice of programming in Java,
Trinity College Dublin (2004) 107–113

24. Deville, D., Grimaud, G.: On board compiling in the very small. In: Construc-
tion and Analysis of Safe, Secure, and Interoperable Smart Devices: International
Workshop, CASSIS04. (2004)

25. Porthouse, C.: High performance Java on embedded devices, JazelleTMtechnology:
ARMTMaccelerator technology for the JavaTMplatform, white paper,
http://www.arm.com/pdfs/JazelleWhitePaper.pdf (2004)

26. McGhan, H., O’Connor, M.: PicoJava: A direct execution engine for Java bytecode.
Computer 31(10) (1998) 22–30

27. NanoAmp Solutions Inc: The MOCA-J Accelerator: Mem-
ory Oriented Coprocessor Accelerator for the J2METMPlatform.
http://www.nanoamp.com/MOCA-J%20ProductBrief.pdf (2004)

28. Radhakrishnan, R., Bhargava, R., John, L.K.: Improving Java performance using
hardware translation. In: ICS ’01: Proceedings of the 15th international conference
on Supercomputing, New York, NY, USA, ACM Press (2001) 427–439

Java Type Confusion and Fault Attacks 251

29. Oi, H.: Instruction folding in a hardware-translation based Java virtual machine.
In: CF ’06: Proceedings of the 3rd conference on Computing frontiers, New York,
NY, USA, ACM Press (2006) 139–146

30. Azevedo, A., Kejariwal, A., Veidenbaum, A., Nicolau, A.: High performance
annotation-aware JVM for Java Cards. In: EMSOFT ’05: Proceedings of the 5th
ACM international conference on Embedded software, New York, NY, USA, ACM
Press (2005) 52–61

31. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. The JavaTM

Series. Addison-Wesley Professional (1997)
32. Chaumette, S., Sauveron, D.: An efficient and simple way to test the security

of Java CardsTM. In: Security in Information Systems, Proceedings of the 3rd
International Workshop on Security in Information Systems, WOSIS. (2005) 331–
341

33. Mitra, S., Seifert, N., Zhang, M., Shi, Q., Kim, K.S.: Robust system design with
built-in soft-error resilience. Computer 38(2) (2005) 43–52

Author Index

Amiel, Frederic 223

Blömer, Johannes 13, 36, 106
Boreale, Michele 24
Breveglieri, Luca 71, 98

Choi, Yoon-Hwa 121
Clavier, Christophe 88, 223

De Gregorio, Alfonso 144

Fumaroli, Guillaume 62

Gaubatz, Gunnar 173, 196
Gueron, Shay 1, 80

Karpovsky, Mark G. 173, 185, 211
Kim, Dongryeol 53
Koren, Israel 71, 98
Krummel, Volker 106
Kulikowski, Konrad J. 185, 211

Lee, Myeong-Hyeon 121
Lemke-Rust, Kerstin 131
Leveugle, Régis 88

Maistri, Paolo 71, 98
Malkin, Tal G. 159
Moitrel, Pascal 88
Monnet, Yannick 88
Moon, SangJae 53

Otto, Martin 13, 36

Paar, Christof 131

Ravasio, Moris 71
Renaudin, Marc 88

Seifert, Jean-Pierre 1, 36
Standaert, François-Xavier 159
Sunar, Berk 173, 196

Taubin, Alexander 185, 211
Tunstall, Michael 223

Vertanen, Olli 237
Vigilant, David 62

Yen, Sung-Ming 53
Yung, Moti 159

	Frontmatter
	Attacks on Public Key Systems
	Is It Wise to Publish Your Public RSA Keys?
	Wagner's Attack on a Secure CRT-RSA Algorithm Reconsidered
	Attacking Right-to-Left Modular Exponentiation with Timely Random Faults
	Sign Change Fault Attacks on Elliptic Curve Cryptosystems
	Cryptanalysis of Two Protocols for RSA with CRT Based on Fault Infection

	Protection of Public Key Systems
	Blinded Fault Resistant Exponentiation
	Incorporating Error Detection in an RSA Architecture
	Data and Computational Fault Detection Mechanism for Devices That Perform Modular Exponentiation

	Attacks on and Protection of Symmetric Key Systems
	Case Study of a Fault Attack on Asynchronous DES Crypto-Processors
	A Fault Attack Against the FOX Cipher Family
	Fault Based Collision Attacks on AES
	An Easily Testable and Reconfigurable Pipeline for Symmetric Block Ciphers

	Models for Fault Attacks on Cryptographic Devices
	An Adversarial Model for Fault Analysis Against Low-Cost Cryptographic Devices
	Cryptographic Key Reliable Lifetimes: Bounding the Risk of Key Exposure in the Presence of Faults
	A Comparative Cost/Security Analysis of Fault Attack Countermeasures

	Fault-Resistant Arithmetic for Cryptography
	Non-linear Residue Codes for Robust Public-Key Arithmetic
	Fault Attack Resistant Cryptographic Hardware with Uniform Error Detection
	Robust Finite Field Arithmetic for Fault-Tolerant Public-Key Cryptography

	Fault Attacks and Other Security Threats
	DPA on Faulty Cryptographic Hardware and Countermeasures
	Fault Analysis of DPA-Resistant Algorithms
	Java Type Confusion and Fault Attacks

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

