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Abstract. Restrictive blind signatures allow a recipient to receive a
blind signature on a message unknown to the signer but the choice of
the message is restricted and must conform to certain rules. Partially
blind signatures allow a signer to explicitly include necessary informa-
tion (expiration date, collateral conditions, or whatever) in the resulting
signatures under some agreement with the receiver. Restrictive partially
blind signatures incorporate the advantages of these two blind signatures.
In this paper we first propose a new restrictive partially blind signature
scheme from bilinear pairings. Since the proposed scheme does not use
Chaum-Pedersen’s knowledge proof protocol, it is much more efficient
than the original restrictive partially blind signature scheme. We then
present a formal proof of security in the random oracle model. Moreover,
we use the proposed signature scheme to build an untraceable off-line
electronic cash system followed Brand’s construction.

Keywords: Restrictive partially blind signatures, Bilinear pairings,
Electronic cash.

1 Introduction

Blind signatures, introduced by Chaum [10], allow a recipient to obtain a signa-
ture on message m without revealing anything about the message to the signer.
Blind signatures play an important role in a plenty of applications such as elec-
tronic voting, electronic cash where anonymity is of great concern.

A serious problem in electronic cash schemes is double-spending. On-line elec-
tronic cash scheme provides a possible solution against double-spending. How-
ever, it requires that the shop must contact the bank during each transaction.
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So the bank will soon become the bottleneck of the systems. Chaum [11] also
proposed an off-line electronic cash scheme, which ensures the bank to trace the
double-spenders after the fact. However, such a system is very inefficient due to
the cut-and-choose protocol.

Restrictive blind signatures were first introduced by Brands [7,8], which allow
a recipient to receive a blind signature on a message unknown to the signer
but the choice of the message is restricted and must conform to certain rules.
Furthermore, he proposed a highly efficient electronic cash system, where the
bank ensures that the user is restricted to embed his identity in the resulting
blind signature. Brand’s electronic cash system has received wide attention for
its distinguished characters. However, Brand’s original restrictive blind signature
scheme is mainly based on Chaum-Pedersen’s interactive zero-knowledge proof
of common exponent [12]. The communication cost is a little high and the length
of the signature is a little too long.

Partially blind signatures, first introduced by Abe and Fujisaki [1], allow a
signer to produce a blind signature on a message for a recipient and the signa-
ture explicitly includes common agreed information which remains clearly visible
despite the blinding process. This notion overcomes some disadvantages of fully
blind signatures such as the signer has no control over the attributes except for
those bound by the public key. Partial blind signatures play an important role
in designing the efficient electronic cash system. For example, the bank does not
require different public keys for different coin values. On the other hand, the size
of the database that stored the previously spent coins to detect double-spending
would not increase infinitely over time.

Maitland and Boyd [15] first incorporated these two blind signatures and
proposed a provably secure restrictive partially blind signature scheme, which
satisfies the partial blindness and restrictive blindness. Their scheme followed
the construction proposed by Abe and Okamoto [2] and used Brand’s restrictive
blind signature scheme. Therefore, the scheme still uses Chaum-Pedersen’s zero-
knowledge proof of common exponent and this increases the communication cost
and the length of the signature.

Our Contribution. In this paper we first propose a new restrictive blind sig-
nature scheme and a restrictive partially blind signature scheme from bilinear
pairings, and the former can be regarded as a special case of the latter. Our blind
signature schemes use the so-called gap Diffile-Hellman group [5,9,13], where De-
cisional Diffie-Hellman Problem (DDHP) can be solved in polynomial time but
there is no polynomial time algorithm to solve Computational Diffie-Hellman
Problem (CDHP) with non-negligible probability. So it is not required to use
the inefficient zero-knowledge proof of common exponent to ensure the validity
of a Diffie-Helllman tuple in our schemes. Compared to the original schemes, the
advantages of our scheme are shorter length of the signature and lower communi-
cation complexity. Furthermore, we give a formal security proof for the proposed
schemes in the random oracle model.

The rest of the paper is organized as follows: The definitions associated with
restrictive partially blind signatures are introduced in Section 2. The proposed
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restrictive blind signature scheme is given in Section 3. The proposed restrictive
partially blind signature scheme is given in Section 4. Finally, conclusions will
be made in Section 5.

2 Definitions

Juels, Luby and Ostrovsky [14] gave a formal definition of blind signatures. They
proved the existence of secure blind signatures assuming the one-way trapdoor
permutation family. Pointcheval and Stern [17] showed the security of a certain
type of efficient blind signature in the random oracle model. Later, they [16,18]
developed a generic approach that converts logarithmically secure schemes into
polynomially secure ones at the cost of two more data transmissions between
the signer and the receiver.

Abe and Okamoto first presented the formal definition of partially blind sig-
natures. Restrictive partially blind signatures can be regarded as partially blind
signatures which also satisfies the property of restrictiveness. In the context of
partially blind signatures, the signer and user are assumed to agree on a piece
of information, denoted by info . In real applications, info may be decided by
the negotiation between the signer and user. For the sake of simplicity, we omit
the negotiation throughout this paper. In the following, we follow the definitions
of [2,14,7] to give a formal definition of restrictive partially blind signatures.

Definition 1. (Restrictive Partially Blind Signatures) A restrictive partially
blind signature scheme is a four-tuple (PG, KG, SG, SV).

– System Parameters Generation PG: On input a security parameter k,
outputs the common system parameters Params.

– Key Generation KG: On input Params, outputs a public and private key
pair (pk, sk).

– Signature Generation SG: Let U and S be two probabilistic interactive
Turing machines and each of them has a public input tape, a private random
tape, a private work tape, a private output tape, a public output tape, and
input and output communication tapes. The random tape and the input tapes
are read-only, and the output tapes are write-only. The private work tape is
read-write. Suppose info is agreed common information between U and S.
The public input tape of U contains pk generated by G(1k), and info. The
public input tape of S contains info. The private input tape of S contains sk,
and that for U contains a message m which he knows a representation with
respect to some bases in Params. The lengths of info and m are polynomial to
k. U and S engage in the signature issuing protocol and stop in polynomial-
time. When they stop, the public output of S contains either completed or
not-completed. If it is completed, the private output tape of U contains either
⊥ or (info, m, σ).

– Signature Verification SV : On input (pk, info, m, σ) and outputs either
accept or reject.
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Definition 2. (Completeness) If S and U follow the signature issuing protocol,
the signature scheme is complete if, for every constant c > 0, there exists a bound
k0 such that S outputs completed and info on its proper tapes, and U outputs
(info, m, σ) that satisfies

SV(info, m, σ) = accept

with probability at least 1 − 1/kc for k > k0. The probability is taken over the
coin flips of KG, S and U .

We say a message-signature tuple (info , m, σ) is valid with regard to pk if it
leads to SV to accept.

Definition 3. (Restrictiveness) Let m be a message such that the user U knows
a representation (a1, · · · , ak) of m with respect to a generator-tuple (g1, · · · , gk)
at the start of a blind signature issuing protocol. Let (b1, · · · , bk) be the repre-
sentation U knows of the blinded number m′ of m after the protocol finished. If
there exist two function I1 and I2 such that

I1(a1, · · · , ak) = I2(b1, · · · , bk)

regardless of m and the blinding transformation applied by U , then the protocol
is called a restrictive blind signature protocol. The function I1 and I2 are called
blinding-invariant functions of the protocol with respect to (g1, · · · , gk).

Definition 4. (Partial Blindness) Let U0 and U1 be two honest users that follow
the signature issuing protocol.

1. (pk, sk) ← KG(Params).
2. (m0, m1, info0, info1) ← S∗(1k, pk, sk).
3. Set up the input tapes of U0 and U1 as follows:

– Select b ∈R {0, 1} and put mb and m1−b on the private input tapes of U0
and U1, respectively.

– Put info0 and info1 on the public input tapes of U0 and U1, respectively.
Also put pk on their public input tapes.

– Randomly select the contents of the private random tapes.
4. S∗ engages in the signature issuing protocol with U0 and U1.
5. Let U0 and U1 output (info0, mb, σb) and (info0, m1−b, σ1−b), respectively,

on their private tapes. If info0 �= info1, then give ⊥ to S∗. If info0 =
info1, then provide S∗ with the additional inputs (σb, σ1−b) ordered accord-
ing to the corresponding messages (mb, m1−b).

6. S∗ outputs b′ ∈ {0, 1}. We say that S∗ wins if b′ = b.

A signature scheme is partially blind if, for every constant c > 0, there exists a
bound k0 such that for all probabilistic polynomial-time algorithm S∗, S∗ outputs
b′ = b with probability at most 1/2 + 1/kc for k > k0. The probability is taken
over the flips of KG, U0, U1, and S∗.
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Definition 5. (Unforgeability) Let S be an honest signer that follows the signa-
ture issuing protocol.

1. (pk, sk) ← KG(Params).
2. Put sk and info on proper tapes of S.
3. U∗ engages in the signature issuing protocol with S in a concurrent and

interleaving way. For each info, let linfo be the number of executions of the
signature issuing protocol where S outputs completed and info on its output
tapes. (For info that has never appeared on the private output tapes of S,
define linfo = 0.)

4. U∗ outputs a single piece of common information, info, and linfo +1 signa-
tures (m1, σ1), · · · , (mlinfo+1, σlinfo+1).

A partially blind signature scheme is unforgeable if, for any probabilistic polynomial-
time algorithm U∗ that plays the above game, the probability that the output of U∗

satisfies
SV(pk, info, mj , σj) = accept

for all j = 1, · · · , linfo + 1 is at most 1/kc where k > k0 and some constant c > 0.
The probability is taken over the coin flips of KG, S, and U∗.

3 Restrictive Blind Signatures from Pairings

In Brand’s restrictive blind signature scheme, the Chaum-Pedersen’s protocol
must be used to provide a proof that logg y = logm z, i.e., < g, y, m, z > is a
valid Diffie-Hellman tuple. We argue the knowledge proof can be avoided in the
gap Diffie-Hellman (blind) signature scheme [6,3]. However, if we directly use
the gap Diffie-Hellman blind signature scheme as a building block to design our
restrictive blind signature scheme from pairings, there exists a cheating attack.1

In this section, we first propose a variant of gap Diffie-Hellman blind signature
scheme, the security of which is based on a variant of CDHP, named RCDHP,
which is equivalent to CDHP. We then propose a restrictive blind signature
scheme which is derived from the variant of gap Diffie-Hellman blind signature
scheme and Brand’s original blind signature scheme.

3.1 A Variant of Gap Diffie-Hellman Blind Signature Scheme

We firstly introduce a variant of CDHP in G which we call Reversion Compu-
tational Diffie-Hellman Problem (RCDHP).2

RCDHP: Given g, ga and gb, to compute gc which satisfies a ≡ bc mod q.
1 It is trivial to see that the user can get the signature σ̃ = m̃x for any message

m̃ with the signature z = mx for a message m. This will destroy the property of
restrictiveness of the signature scheme. We argue that this attack can be avoidable
if the form of z and σ̃ is different. For details, refer to section 3.2.

2 We distinguish it with Inversion Computational Diffie-Hellman Problem: Given g

and ga, to compute ga−1
.
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Theorem 1. RCDHP is equivalent to CDHP in G.

Proof. Given (g, ga, gb), suppose we can solve RCDHP in G, then we can obtain
gb−1

from g and gb. Note a = (ab)b−1 mod q, we can compute gab from ga and
gb−1

, i.e., we can solve CDHP in G.
Given (g, ga, gb), let h = gb, so g = hb−1

. Suppose we can solve CDHP in G,
so with h and hb−1

we can obtain hb−2
, i.e., gb−1

. Then we can obtain gab−1
from

ga and gb−1
, i.e., we solve RCDHP in G. ��

In the following, we present a variant of Boneh et al ’s signature scheme, the
security of which is based on the assumption that RCDHP in G is intractable.
The system parameters are the same as above.

Given the signed message m and the signer’s secret key x, the signature on
m is σ = H(m)x−1

. Anyone can verify that < g, y, σ, H(m) > is a valid Diffie-
Hellman tuple.

Similarly, we can present the corresponding blind signature scheme based on
the above variant of Boneh et al ’s signature scheme.

– The user picks a random number r ∈R Z∗
q , and sends m̃ = H(m) · yr to the

signer.
– The signer computes σ̃ = m̃x−1

and sends it to the user.
– The user computes σ = σ̃ · g−r.

If < g, y, σ, H(m) > is a valid Diffie-Hellman tuple, then σ is a valid signature
on message m.

3.2 The Proposed Restrictive Blind Signature Scheme

– System Parameters Generation: Given a security parameter k, let G1
be a gap Diffie-Hellman group generated by g, whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order q. A bilinear pairing
is a map e : G1 × G1 → G2. H : G1 × G1 → G1 is a cryptographic hash
function. The system parameters are Params = {G1, G2, e, q, g, k, H}.

– Key Generation: Let (x, y = gx) be the private and public key pair of the
signer.

– Signature Generation: Let m be a message from the receiver.
• The signer generates a random number r ∈R Zq and sends z = mrx,

b = mr, and a = yr to the receiver.
• The receiver checks whether e(z, g) = e(b, y) = e(m, a). If not, he ter-

minates the protocol. Else, he generates random numbers α, λ, u ∈R Zq

and computes

m′ = mα, z′ = zαλ, b′ = bαλ, a′ = aλ, m̃ = H(m′, z′, b′, a′)yu.

The receiver then sends m̃ to the signer.
• The signer responds with σ̃ = m̃x−1

and the receiver computes σ = σ̃g−u.
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Signer Receiver

r ∈R Zq

Compute
z = mrx

b = mr, a = yr z, b, a � Check
e(z, g) = e(b, y) = e(m,a)
α, λ, u ∈R Zq

Compute
m′ = mα, z′ = zαλ

b′ = bαλ, a′ = aλ

m̃ = H(m′, z′, b′, a′)yu� m̃
Compute
σ̃ = m̃x−1

σ̃ � Compute
σ = σ̃g−u

Fig. 1. Restrictive Blind Signature Scheme from Pairings

Thus, the receiver obtains a signature on the message m′ where m′ = mα

and α is chosen by the receiver.
– Signature Verification: (z′, b′, a′, σ) is a valid signature on m′ if the fol-

lowing equations hold:

e(σ, y) = e(H(m′, z′, b′, a′), g); e(z′, g) = e(b′, y) = e(m′, a′).

3.3 Security Analysis of the Proposed Scheme

Theorem 2. The proposed restrictive blind signature scheme achieves the prop-
erties of Correctness, Blindness, Restrictiveness.

Proof. We show that our scheme satisfies all the security properties.

– Correctness: Firstly, note that σ = σ̃g−u = H(m′, z′, b′, a′)x−1
, we have

e(σ, y) = e(H(m′, z′, b′, a′), g). Secondly, since z′ = zαλ = mrxαλ, b′ = mrαλ,
and a′ = yrλ, so e(z′, g) = e(b′, y) = e(m′, a′).

– Blindness : Let (m̃, m, z, b, a, σ̃) be any of the review of the protocol as seen
by the signer. Therefore, σ̃ = m̃x−1

and e(z, g) = e(b, y) = e(m, a). Let
(z′, b′, a′, σ) be a valid signature on message m′ obtained by the receiver.
Choose the unique blinding factor F = σ̃/σ and determine three represen-
tations m′ = mα, a′ = aλ, F = gu.3 Note that σ = H(m′, z′, b′, a′)x−1

and
e(z′, g) = e(b′, y) = e(m′, a′) have been established by the fact that the blind
signature is valid, therefore we have

m̃ = σ̃x = (σF )x = H(m′, z′, b′, a′)yu, z′ = zαλ, b′ = bαλ.

3 Though it is difficult to compute (α, λ, u), we only need to exploit the existence of
them.
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– Restrictiveness: Similar to [7,15], the restrictiveness nature of the scheme can
be captured by the following assumption: The recipient obtains a signature
on a message that can only be the form m′ = mα with α randomly chosen
by the receiver. In addition, if there exists a representation (μ1, μ2) of m
with respect to bases g1 and g2 such that m = gμ1

1 gμ2
2 and if there exists a

representation (μ′
1, μ

′
2) of m′ with respect to g1 and g2 such that m′ = g

μ′
1

1 g
μ′

2
2 ,

then the relation I1(μ1, μ2) = μ1/μ2 = μ′
1/μ′

2 = I2(μ′
1, μ

′
2) holds. In the

applications of an electronic cash system, a user chooses a random number
u as his identification information and computes m = gu

1 g2. He then with
the bank performs the signature issuing protocol to obtain a coin. When
spending the coin at a shop, the user must provide a proof that he knows a
representation of m′ with respect to base g1 and g2. This restricts m′ must
be the form of mα. For more details, refer to [7]. ��

4 Restrictive Partially Blind Signatures from Pairings

In this section, we firstly propose a concrete restrictive partially blind signature
scheme from pairings based on [19,20]. The proposed restrictive blind signature
scheme in section 3 can be regarded as a special case of it when H0(c) equals to 0.
We then discuss the security and efficiency of the scheme under the assumption of
ideal randomness of hash functions H and H0. Finally, we describe an electronic
cash system using the proposed signature scheme.

4.1 The Proposed Restrictive Partially Blind Signature Scheme

– System Parameters Generation PG: Given a security parameter k. Let
G1 be a gap Diffie-Hellman group generated by g, whose order is a prime
q, and G2 be a cyclic multiplicative group of the same order q. A bilinear
pairing is a map e : G1 ×G1 → G2. Define two cryptographic hash functions
H : G1 × G1 × {0, 1}∗ → G1, H0 : {0, 1}∗ → Zq. The system parameters are
Params = {G1, G2, e, q, g, k, H, H0}.

– Key Generation KG: On input Params, outputs the private and public
key pair (x, y = gx) of the signer.

– Signature Generation SG: Let the shared information info = c, and the
signed message be m′ = mα, where α is a value chosen by the receiver.

• The signer generates a random number r ∈R Zq and sends z = mrx,
b = mr, and a = yr to the receiver.

• The receiver checks whether e(z, g) = e(b, y) = e(m, a). If not, he ter-
minates the protocol. Else, he generates random numbers α, λ, u ∈R Zq

and computes

m′ = mα, z′ = zαλ, b′ = bαλ, a′ = aλ, m̃ = H(m′, z′, b′, a′, c)(gH0(c)y)u.

The receiver then sends m̃ to the signer.
• The signer responds with σ̃ = m̃

1
H0(c)+x and the receiver computes σ =

σ̃g−u.
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The resulting signature for the shared information c and message m′ is
(z′, b′, a′, σ).

Signer Receiverc ��

r ∈R Zq

Compute
z = mrx

b = mr, a = yr z, b, a � Check
e(z, g) = e(b, y) = e(m,a)
α, λ, u ∈R Zq

Compute
m′ = mα, z′ = zαλ

b′ = bαλ, a′ = aλ

m̃ = H(m′, z′, b′, a′, c)(gH0(c)y)u� m̃
Compute
σ̃ = m̃

1
H0(c)+x

σ̃ � Compute
σ = σ̃g−u

Fig. 2. Restrictive Partially Blind Signature Scheme from Pairings

– Signature Verification SV: (z′, b′, a′, σ) is a valid signature on c and m′

if the following equations hold:

e(σ, gH0(c)y) = e(H(m′, z′, b′, a′, c), g); e(z′, g) = e(b′, y) = e(m′, a′).

4.2 Security Analysis of the Proposed Scheme

Theorem 3. The proposed scheme achieves the property of completeness.

Proof

e(σ, gH0(c)y) = e(σ̃g−u, gH0(c)y) = e(m̃
1

H0(c)+x g−u, gH0(c)y)

= e(H(m′, z′, b′, a′, c)
1

H0(c)+x , gH0(c)y)
= e(H(m′, z′, b′, a′, c), g)

e(z′, g) = e(mrxαλ, g) = e(b′, y) = e(mα, grxλ) = e(m′, a′)

Theorem 4. The proposed scheme achieves the property of restrictiveness.

Proof. It is same to Theorem 2. ��

Theorem 5. The proposed scheme achieves partial blindness.

Proof. Suppose S∗ is given ⊥ in step 5 of the game in definition 4, S∗ determines
b with a probability 1/2 (the same probability as randomly guessing b).
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Suppose that in step 5, the shared information c0 = c1. Let (z′, b′, a′, σ, m′)
be one of the signatures subsequently given to S∗. Let (z, b, a, m̃, σ̃, m, c) be data
appearing in the view of S∗ during one of the executions of the signature issuing
protocol at step 4. Therefore, σ̃ = m̃

1
H0(c)+x and e(z, g) = e(b, y) = e(m, a).

It is sufficient to show that there exists a tuple of random blinding factors
(α, λ, u) that maps (z, b, a, m̃, σ̃, m) to (z′, b′, a′, σ, m′). Suppose m′ = mα, a′ =
aλ, and F = σ̃/σ = gu.4 Note that σ = H(m′, z′, b′, a′, c)

1
H0(c)+x and e(z′, g) =

e(b′, y) = e(m′, a′) have been established by the fact the signature is valid.
Therefore, we have

m̃ = σ̃H0(c)+x = (σF )H0(c)+x = H(m′, z′, b′, a′, c)(gH0(c)y)u, z′ = zαλ, b′ = bαλ.

Thus, the blinding factors which lead to the same relation defined in the signature
issuing protocol always exist. Therefore, even an infinitely powerful S∗ succeeds
in determining b with probability 1/2. ��

Theorem 6. The proposed scheme is unforgeable if linfo < poly(log k) for all
info.

Proof. The proof follows the security argument given by Abe and Okamoto [2].
We first deal with the common-part forgery where an attacker forges a signature
with regard to common information c that has never appeared in the game of
the definition 5, i.e., lc = 0. We then treat one-more forgery where lc �= 0.

Suppose a successful common-part forger U∗ who plays the game of the def-
inition 5 and produces a valid message-signature tuple (z′, b′, a′, σ, c, m′) such
that lc = 0 with a non-negligible probability ε, we can construct a machine M
to solve the q-Strong Diffie-Hellman Problem for q = 0 [4]: given (g, y), output
a pair (c, g

1
c+x ) where c ∈ Z∗

q .
Let qH and qH0 be the maximum number of queries asked from U∗ to H

and H0, respectively. Similarly, let qS be the maximum number of invocation of
the signer S. All those parameters are limited by a polynomial in the security
parameter k. For simplicity, we assume that all queries are different. Let (x, y =
gx) be the private and public key pair of the signer. Machine M simulates the
game in definition 5 as follows:

1. Choose randomly vi, wj , ω ∈ Zq for i = 1, 2, · · · , qH + qS , j = 1, 2, · · · , qH0 +
qS .

2. Select I ∈U {1, 2, · · · , qH + qS} and J ∈U {1, 2, · · · , qH0 + qS}. Run U∗ with
(g, y, q) simulating H, H0 and S as follows.
– For i-th query to H, respond

H(mi, zi, bi, ai, ci) =
{

gω, if i = I
(y · gwi)vi , if i �= I

– For j-th query to H0, respond H0(cj) = wj .

4 Similarly, we only need to exploit the existence of (α, λ, u).
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– For requests to S, first negotiate the common information. Let ck be the
result of negotiation, then respond

σk =
{

“Fail”, if ck = cI

gvk , if ck �= cI

3. If U∗ eventually outputs a valid signature σ with regard to cJ and mI , output
them.

The probability that U∗ is successful without querying H, H0 in a proper way is
negligible because of the randomness of those hash functions.

Now we use M to solve the q-Strong Diffie-Hellman Problem for q=0. Note
that σ = g

ω 1
H0(cJ )+x , therefore we can output a valid pair (H0(cJ), σω−1

).

We then consider the case where the forgery is attempted against the common
information such that lc �= 0. Here we only need to consider a single c in the
game of the definition 5. For the case where c is not all the same in the game of
the definition 5, we can follow the solution [2] to turn the game into the fixed-info
version.

Since there is a unique c in the game of the definition 5, we only need to prove
the security of fully blind version of our scheme. For any public information c,
the signer sets up the system parameters params = {G1, G2, e, q, g, k, H, H0}.
Let (X = H0(c) + x, Y = gH0(c)+x) be the private and public key pair of the
signer, here x ∈R Z∗

q . Let m′ be the signed message. The blind signature issuing
protocol of this fully blind signature scheme is shown as follows:

– The signer generates a random number r ∈R Zq and sends z = mrX , b = mr,
and a = Y r to the receiver.

– The receiver checks whether e(z, g) = e(b, Y ) = e(m, a). If not, he terminates
the protocol. Else, he generates random numbers α, λ, u ∈R Zq and computes

m′ = mα, z′ = zαλ, b′ = bαλ, a′ = aλ, m̃ = H(m′, z′, b′, a′)Y u.

The receiver then sends m̃ to the signer.
– The signer responds with σ̃ = m̃

1
X and the receiver computes σ = σ̃g−u.

(z′, b′, a′, σ) is a valid signature on m′ if the following equations hold:

e(σ, Y ) = e(H(m′, z′, b′, a′), g); e(z′, g) = e(b′, Y ) = e(m′, a′).

We call above fully blind signature scheme FuBS, which is actually the re-
strictive blind signature scheme proposed in section 3. It is easy to see that
if a message-signature pair (m, c, S) can be forged for the proposed partially
blind signature scheme, then a blind signature on the message m′ = m||c for the
corresponding FuBS can be forged.

Next, we show that FuBS is secure against one-more forgery under chosen
message attack using the similar technique in [3]. In the following we firstly
introduce a variations of chosen-target CDHP, named “Chosen target RCDHP”.
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Definition 6. Let G1 be a gap Diffie-Hellman group of prime order q and g
is a generator of G1. Let x be a random element of Z∗

q and y = gx. Let
H0 : {0, 1}∗ → G1 be a cryptographic hash function. The adversary A is given
input (q, g, y, H0) and has access to the target oracle TG1 that returns a random
element zi in G1 and the helper oracle RCDH-x(·), i.e., compute (·)x−1

. Let qT

and qH be the number of queries A made to the target oracle and the helper
oracle, respectively. The advantage of the adversary attacking the chosen-target
RCDHP Advct−rcdh

G1
(A) is defined as the probability of A to output a set of l

pairs ((v1, j1), (v2, j2), . . . , (vl, jl)), for all 1 ≤ i ≤ l ∃ 1 ≤ ji ≤ qT such that
vi = zx−1

ji
where all vi are distinct and qH < qT .

The chosen-target RCDH assumption states that there is no polynomial-time
adversary A with non-negligible Advct−icdh

G1
(A).

The following lemma shows that FuBS is secure under the assumption that the
chosen-target RCDHP in G1 is intractable.

Lemma 1. If the chosen-target RCDH assumption is true in the group G1 then
FuBS is secure against one-more forgery under the chosen message attack.

Proof. (sketch). If there is a probabilistic polynomial time one-more forger al-
gorithm F with a non-negligible probability ε for FuBS under a chosen message
attack, then we can use F to construct an algorithm A to solve the chosen-target
RCDHP with a non-negligible probability.

Suppose that a probabilistic polynomial time forger algorithm F is given.
Suppose that A is given a challenge as in Definition 6. Now F has access to a
blind signing oracle x(·) and the random hash oracle H0(·). First, A provides
(G1, G2, e, q, g, H0, y) to F and A has to simulate the random hash oracle and
the blind signing oracle for F .

Each time F makes a new hash oracle query which differs from previous one,
A will forward to its target oracle and returns the reply to F . A stores the pair
query-reply in the list of those pairs. If F makes a query to blind signing oracle,
A will forward to its helper oracle RCDH-x(·) and returns the answer to F .

Eventually F halts and outputs a list of message-signature pairs ((m1, S1),
(m2, S2), . . . , (ml, Sl)). A can find mi in the list stored hash oracle query-reply
for i = 1, 2, . . . , l. Let ji be the index of the found pair, then A can output its
list as ((S1, j1), (S2, j2), . . . , (Sl, jl)). Then this list is a solution to the problem
in Definition 6. ��

4.3 Efficiency

We compare our signature scheme to previous restrictive partially blind signature
scheme. In the following table we denote by |G1| the bits of representing any
element of G1. Similarly, let |p| and |q| denote the bits of primes p and q such
that q|p−1, respectively. Also, let P be the pairings operation, M exponentiation
in G1, E exponentiation in Zp and R inversion in Zq (we ignore other operations
such as hash in both schemes).
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Table 1. Comparison with Maitland-Boyd’s signature scheme

Properties Scheme [14] Our Proposed Scheme

Length of signature |p| + 4|q| 4|G1|
Communication 4|p| + 5|q| 5|G1|

Computation 20E + 2R 9M + 1R + 3P
(for signature generation)

Computation 6E 5P
(for signature verification)

The computation complexity of our signature scheme requires more overhead
than that of Maitland-Boyd’s signature scheme since the pairing computation is
the operation which by far takes the most running time. However, the advantages
of our scheme are the short length of the signature and low communication
complexity (remember that the order of G1 is only q). Therefore, it is more
suitable for low-bandwidth communication environments.

4.4 Application for Electronic Cash System

We follow Brand’s construction to describe an electronic cash system using the
proposed restrictive partially blind signature scheme from pairings. We denote
the bank by B, a generic account-holder by U , and a generic shop by S.

The setup of the system. Let G be a gap Diffie-Hellman group with the
prime order q, (g, g1, g2) be a random generator tuple. The key pair of B is
(x, y = gx). Define three cryptographic secure hash functions H : G×G×G → G,
H0 : {0, 1}∗ → Zq and H1 : G × G × IDS × Date/T ime → Zq.

Opening an account. When U opens an account at B, B requests U to identify
himself. U then generates at random a number u1 ∈R Zq, and computes the
unique account number I = gu1

1 . If gu1
1 g2 �= 1, then U transmits I to B, and

keeps u1 secret. B stores the identifying information of U in the account database,
together with I. The information I enables B to uniquely identify U in case he
double-spends.

The withdrawal protocol. When U wants to withdraw a coin, he first proves
ownership of his account and negotiates a common information c. To this end,
the following withdrawal protocol between U and B is performed:

Step 1. B generates a random number r ∈R Zq and sends z = (Ig2)rx, b =
(Ig2)r, and a = yr to U .
Step 2. U checks whether e(z, g) = e(b, y) = e(Ig2, a). If the equation does not
hold, he terminates the protocol. Else, he generates random numbers α, λ, x1, x2,
u ∈R Zq and computes A = (Ig2)α, z′ = zαλ, b′ = bαλ, a′ = aλ, B = gx1

1 gx2
2 and

m̃ = H(A, B, z′, b′, a′, c)(gH0(c)y)u. He then sends m̃ to B.
Step 3. B responds with σ̃ = m̃

1
H0(c)+x , and U computes σ = σ̃g−u.
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If e(σ, gH0(c)y) = e(H(A, B, z′, b′, a′, c), g), then A, B, c, (z′, b′, a′, σ) is a valid
coin of which U knows a representation.

The payment protocol. When U wants to spend his coin at S, the following
protocol is performed:

Step 1. U sends A, B, c, (z′, b′, a′, σ) to S.
Step 2. If A �= 1, S then sends a challenge d = H1(A, B, IDS , date/time)
to U , where IDS can be the account number of S, date/time is the number
representing date and time of the transaction.
Step 3. U computes the responses r1 = d(u1α)+x1 and r2 = dα+x2 and sends
them to S.

S accepts the coin if and only if the equations e(σ, gH0(c)y) = e(H(A, B, z′, b′,
a′, c), g), e(z′, g) = e(b′, y) = e(A, a′), and gr1

1 gr2
2 = AdB hold.

The deposit protocol. After some delay in time, S sends B the payment tran-
script, consisting of A, B, c, (z′, b′, a′, σ), (r1, r2) and date/time of transaction. B
first checks the validity of the coin. If the verifications hold, he then searches
its deposit database to find out whether A has been stored before. If A has
not stored before, B stores A, c, date/time, (r1, r2) in its database; Else, B can
detect double-depositing (the same challenge) or double-spending (the different
challenge). The number (r1 − r′1)/(r2 − r′2) serves as a proof of double-spending.

5 Conclusions

In this paper we first propose a new restrictive blind signature scheme and a
restrictive partially blind signature scheme from bilinear pairings. The former
can be regarded as a special case of the latter. Compared to other schemes, our
schemes have the advantages of the shorter signature length and lower commu-
nication complexity. We also provide a formal security proof for the proposed
schemes in the random oracle model.
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security flaw in the first version of this paper. Also, we would like to thank Marina
Blanton for the suggestions to improve this paper. Finally, we are grateful to the
anonymous referees of Financial Cryptography and Data Security 2006 for their
invaluable suggestions.

References

1. M. Abe and E. Fujisaki, How to date blind signatures, Advances in Cryptology-
Asiacrypt 1996, LNCS 1163, pp. 244-251, Springer-Verlag, 1996.

2. M. Abe and T. Okamoto, Provably secure partially blind signature, Advances in
Cryptology-Crypto 2000, LNCS 1880, pp. 271-286, Springer-Verlag, 2000.



Efficient Provably Secure Restrictive Partially Blind Signatures 265

3. A. Boldyreva, Efficient threshold signature, multisignature and blind signature
schemes based on the Gap-Diffie-Hellman-group signature scheme, PKC 2003,
LNCS 2567, pp. 31-46, Springer-Verlag, 2003.

4. D. Boneh and X. Boyen, Short signatures without random oracles, Advances in
Cryptology-Eurocrypt 2004, LNCS 3027, pp. 56-73, pringer-Verlag, 2004.

5. D. Boneh and M. Franklin, Identity-based encryption from the Weil pairings, Ad-
vances in Cryptology-Crypto 2001, LNCS 2139, pp. 213-229, Springer-Verlag, 2001.

6. D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairings,
Advances in Cryptology-Asiacrypt 2001, LNCS 2248, pp. 514-532, Springer-Verlag,
2001.

7. S. Brands, Untraceable off-line cash in wallet with observers, Advances in
Cryptology-Crypto 1993, LNCS 773, pp. 302-318, Springer-Verlag, 1993.

8. S. Brands, An efficient off-line electronic cash system based on the representa-
tion problem, Technical Report CS-R9323, Centrum voor Wiskunde en Informatica
(CWI), 1993.

9. J. Cha and J.H. Cheon, An identity-based signature from gap Diffie-Hellman
groups, PKC 2003, LNCS 2567, pp. 18-30, Springer-Verlag, 2003.

10. D. Chaum, Blind signature for untraceable payments, Advances in Cryptology-
Eurocrypt 82, Plenum Press, pp. 199-203, 1982.

11. D. Chaum, A. Fiat, and M. Naor, Untraceable electronic cash, Advances in
Cryptology-Crypto 1988, LNCS 403, pp. 319-327, Springer-Verlag, 1990.

12. D. Chaum and T.P. Pedersen, Wallet databases with observers, Advances in
Cryptology-Crypto 1992, LNCS 740, pp. 89-105, Springer-Verlag, 1992.

13. F. Hess, Efficient identity based signature schemes based on pairingss, SAC 2002,
LNCS 2595, Springer-Verlag, pp. 310-324, 2002.

14. A. Juels, M. Luby, and R. Ostrovsky, Security of blind signatures, Advances in
Cryptology-Crypto 1997, LNCS 1294, pp. 150-164, Springer-Verlag, 1997.

15. G. Maitland and C. Boyd, A provably secure restrictive partially blind signature
scheme, PKC 2002, LNCS 2274, pp. 99-114. Springer-Verlag, 2002.

16. D. Pointcheval, Strengthened security for blind signatures, Advances in Cryptology-
Eurocrypt 1998, LNCS 1403, pp. 391-403, Springer-Verlag, 1998.

17. D. Pointcheval and J. Stern, Provably secure blind signature schemes, Advances in
Cryptology-Asiacrypt 1996, LNCS 1163, pp. 252-265, Springer-Verlag, 1996.

18. D. Pointcheval and J. Stern, Security arguments for digital signatures and blind
signatures, Journal of Cryptography, Vol.13, No.3, pp. 361-396, Springer-Verlag,
2000.

19. F. Zhang, R. Safavi-Naini, and W. Susilo, Efficient verifiably encrypted signature
and partially blind signature from bilinear pairings, Indocrypt 2003, LNCS 2904,
pp. 191-204, Springer-Verlag, 2003.

20. F. Zhang, R. Safavi-Naini and W. Susilo, An efficient signature scheme from bi-
linear pairings and its applications, PKC 2004, LNCS 2947, pp. 277-290, Springer-
Verlag, 2004.


	Introduction
	Definitions
	Restrictive Blind Signatures from Pairings
	A Variant of Gap Diffie-Hellman Blind Signature Scheme
	The Proposed Restrictive Blind Signature Scheme
	Security Analysis of the Proposed Scheme

	Restrictive Partially Blind Signatures from Pairings
	The Proposed Restrictive Partially Blind Signature Scheme
	Security Analysis of the Proposed Scheme
	Efficiency
	Application for Electronic Cash System

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




