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Abstract. In this paper we consider the problem of constructing se-
cure auctions based on techniques from modern cryptography. We com-
bine knowledge from economics, threshold cryptography and security
engineering to implement secure auctions for practical real-world
problems.

1 Introduction

The area of secure auctions combines three different areas of research: economics
(mechanism design), cryptology, and security engineering.

From economy and game theory, we know that many forms of auctions and
trading mechanisms rely on/can benefit from a trusted third party (TTP), also
known as a mediator or social planner. However, in a real application, it will
often be the case that such a TTP cannot be found, or is very expensive to
establish (since one basically has to counter-bribe it). Multiparty computation
can be used to “implement” such a TTP in such a way that we only need to
trust some fraction, say a majority, of the parties. Our goal is to investigate
if this can also work in practice, and our work indicates that the answer is
yes.

In this paper we give an overview of practical cryptographic protocols which
securely implements basic integer operations. Detail of these protocols can be
found in [7] and [20]. We also give an overview of specific types of auctions which
are practically realizable based upon these protocols. Detail of these auctions can
be found in [2], but the details of the applications areas are held confidential due
to commercial interests of the industry partners. Finally, we give a report on the
empirical results from our prototype implementation.

2 Secure Auctions

Secure auctions are emerging as a field of research in its own right. In recent
years a number of contributions have been made (e.g. [10, 17, 3, 4, 21, 15]).
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In this paper, our primary motivating application is the case of double auc-
tions with many sellers and buyers (hundreds or thousands), and where a single
divisible commodity is traded. Bidding in such an auction ideally involves sub-
mitting full schemes or strategies to an auctioneer, i.e., bidders should specify
the quantities they want to sell or buy as a function of the price per unit. Based
on the bids, the auctioneer then computes the so called market clearing price,
i.e., the price that best balance aggregated demand and supply. Knowledge of
individual bids may be of great value to others, who may use this knowledge
to better their own situation. It is important to note that this does not only
apply to the current auction going on. A bid contains information about the
bidder’s general economic situation, and such information can be (mis)used in
many other contexts. Hence, if bidders are not fully convinced that their bids
are kept private—i.e., are used only for the purpose intented—they may deviate
from playing the otherwise optimal strategy.

Assuming that the communication of bids is secure, the auctioneer is the
primary target of attacks on both off- and on-line auctions. Hence much work
has been done on how to ensure the trustworthiness of the auctioneer1. One
approach to this is to replace him by a set of n Trusted Third Parties (TTPs),
where it is assumed that at most some number t of TTPs are corrupt, so called
threshold trust. With this assumption, one can emulate the auctioneer via multi-
party computation (MPC) (see e.g. [19, 12, 8]).

3 Contributions and Relation to Previous Work

To our knowledge the only other secure double auction is that of [21]. They
realise two types of double auctions, McAfee and Yokoo, both of which only
auction a single item. Our auctions handle multiple items (in fact, one of our
real-life auction handles multiple items of three different goods).

From the perspective of implementation this paper contributes the first—to
our knowledge—practically feasible implementation of the multiple TTP trust
model based on MPC, and our results give strong empirical evidence that our
protocols are sufficiently efficient for real-world applications. To some extent this
adresses an open challenge from Malkhi et al. [16].

We are currently only aware of similar work by Malkhi et al. [16] and Feigen-
baum et al. [9]. Malkhi et al. use a two TTP trust model based on Yao encryption
and constructs a full system called FairPlay including a special purpose language
and compiler (this system is available on-line, see [16]). They implement several
functions in this system and provide benchmarks on performance. The system
of Feigenbaum et al. is dedicated to a particular problem, a salary survey. Their
procotol supports a multiple TTP trust model, but their current implementation
only use two TTPs. In fact, the implementation of Feigenbaum et al. uses parts
of the FairPlay system.
1 There are many other threats towards auctions. Most importantly, collusion among

the participants also known as bidding rings. Though in auctions with many partic-
ipants bidding rings are unlikely to be successful.
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4 The Cryptographic Protocols

In our protocols we have (many) Input Clients, who supply inputs to the compu-
tation and a set of n TTPs, who are responsible for executing the computation,
such as computing an auction result. We assume that input clients can commu-
nicate privately with the TTPs, and also that TTPs can broadcast information
to all TTPs. We want the computation to be secure, even if up to t of the TTPs
are corrupted by an adversary. Typical values of (n, t) might be (3,1) or (5,2).

Using Canetti’s universal Composability Framework[5], we can specify what
we want to achieve as an ideal functionality, which can be thought of as an
incorruptible computer which can do the following:

– Confidentially receive as input a set of integers from each input client.
– Execute a built-in program. The program may use the standard integer arith-

metic operations and comparisons.
The program is public and part of the specification of the functionality.

– Send the outputs of the program to the players.

If we use a protocol securely realizing this functionality to play the role of an
auctioneer, we obtain an auction with the desired security properties – assuming,
of course, that the computation to done by the auctioneer can be specified using
integer operations as specified above,

In [7][20], protocols realizing the above functionality are presented. The proto-
cols are shown to be secure under standard cryptographic assumptions, namely
existence of a secure public-key cryptosystem and a secure pseudorandom func-
tion. Under these assumptions, the protocols can tolerate any set of less than
n/2 TTPs being passively corrupt, i.e. they may share all their information but
they continue to follow the protocol. Active corruption, where corrupted parties
may deviate from the protocol, can also be handled using standard methods,
although this has not yet been implemented.

We essentially assume that the clients giving input always follow the protocol.
This assumption could be removed at the expense of some efficiency, however,
such participants in a typical application will be bidders in an auction, who take
part because it is in their interest to do so. The chosen auction mechanisms make
sure that they can expect no economic gain from providing inputs of incorrect
form. Hence protecting against dishonest bidders is not our first priority, and is
handled only by having the client software check that the inputs are contributed
correctly.

Since our goal in this paper is to report on the implementation and its im-
plications, we only give a short summary of the protocols here: We use Shamir
secret sharing and input clients provide input by distributing shares of the in-
puts privately to the TTPs. We use the pseudorandom secret sharing technique
from [6], this allows us to create sharings of random values without interaction,
and also saves work in several other cases. This immediately allows addition,
multiplication and multiplication by constants using standard techniques.

Comparison is more involved and seems to require that we look at individual
bits of a shared number. For instance, if we know about shared numbers a, b that
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0 ≤ a, b < 2l, we can easily compute shares in the number 2l +a− b, and we have
a ≥ b if and only if the l + 1’st least significant bit of 2l + a − b is set. Converting
shares mod p of an unknown number to shares of individual bits is possible, but
quite cumbersome (see [1]). In [7],[20] (using ideas from [13]), a different approach
is taken by observing that it is much easier to compute a random shared number
together with shares of its individual bits. This can be done in a preprocessing
phase. Once the inputs are supplied, we can combine the preprocessed data with
the shares of 2l + a − b to get securely the bit we are after.

5 Double Auction Design

A relatively small fraction of the literature on auctions considers multi-unit dou-
ble auctions, or exchanges, where sellers and buyers reallocate multiple units of
a product or a service (Klemperer [14] provides a recent survey of the litera-
ture in auctions). Important real world markets are double auctions, e.g. the
typical stock exchanges. Consider a large number of both sellers and buyers
that meet in a double auction to exchange multiple items of a good. The sell-
ers have well-defined supply schemes represented by a set of quantity-price bids
(s1, p1), (s2, p2), . . . , (sL, pL). Here, sl is the quantity seller i offer for sale at pl. In
this general representation, the supply scheme consists of L bids, one for each of
the L possible bid prices. Likewise the buyers have well-defined demand schemes
represented by a set of quantity-price bids (d1, p1), (d2, p2), . . . , (dL, pL). The de-
mand and supply schemes are assumed to be monotone in the price. That is for
any two prices ph and pl where ph ≤ pl, we have sh ≤ sl, i.e. a seller will supply
at least the same when the price increases, and dh ≥ dl, i.e. a buyer will demand
at least the same when the price falls. All trade is executed at the same market
clearing price. Bids to buy above and sell below the market clearing price are
accepted, the remaining bids are rejected. The market clearing price is computed
as follows: Let I be the number of buyers, J the number of sellers, and i and
j be the associated counters. For any price pl, l = 1, 2, . . . , L, the aggregated
demand is given by ADl =

∑I
i=1 di

l and the aggregated supply is ASl =
∑J

j=1 sj
l .

Also the excess demand is defined as Zl = ADl − ASl, ∀l = 1, 2, . . . , L. We then
define the market clearing price to be pl, where l is such that Zl is closest to
zero. With price-taking behavior the optimal bidding strategy is simply to sub-
mit the true demand and/or supply schemes, see e.g. Nautz [18]. It is easy to
see that this computation can be done using the protocols we described. The
correct value of l can be found by binary search using O(log L) comparisons due
to the monotonicity of ADl, ASl. Each comparison result can be made public:
once the market clearing price is public, it is also known whether ADl > ASl

for each l.

6 Prototype

We have implemented the cryptographic protocols of [7] as well as the auctions of
[2] on top of the protocols. Our main conclusion from implementing this
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prototype is that this approach is indeed feasible in practice. A demo of the imple-
mentation is found at http://www.sikkerhed.alexandra.dk/uk/projects/scet.htm.

Our setup ignores some practical and theoretical issues that should be han-
dled by a commercial application. These include key management, integrity of
the executed programs, etc. Further we introduce a coordinator component, fa-
cilitating, e.g., the required broadcast functionality. All code is written on the
Microsoft .Net platform using C# , using the communication libraries etc. of
this platform.

We present here measurements on multiplication and comparison of 32 bit in-
tegers. More details can be found in [11]. The coordinator and all but one TTP
were run on seperate Win XP machines (3.1GHz dual core, 2GB ram) placed
on the university LAN; the last TTP was run on another Win XP machine
(1.7GHz, 512MB ram) accessing the coordinator via a ADSL internet connec-
tion (1024/256 bits/s) over a VPN connection. The first table show times (in
milliseconds) for doing x multiplications. Parallel execution is faster since the
same amount of data can be sent in fewer rounds of communication. This is
reflected in the tables below, where our parallel measurements have been fitted
into a linear approximation, ax+b, to estimate this constant (see [11] for further
details).

(n,t) (3,1) (5,2) (7,3)
sequential execution 42x 47x 70x
parallel execution 3x + 41 7x + 43 29x + 44

The next table shows times for doing x comparisons (time in milliseconds).

(n,t) (3,1) (5,2) (7,3)
pre-processing (s) 420x 680x 1780x
pre-processing (p) 320x + 90 580x + 90 1700x + 90
evaluation 354x 405x 617x

Based on the benchmarks of comparisons the double auction certainly seem
feasible for a wide range of parameters (say, a price grid of size L = 2000—
leading to some 11 comparisons—corresponding to the actual numbers of real-
world markets as described in [2]).
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