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Preface

The 10th International Conference on Financial Cryptography and Data Security
(FC 2006) was held in Anguilla, British West Indies, from February 27 to March
2, 2006. This conference continues to be the premier international forum for
research, advanced development, education, exploration, and debate regarding
security in the context of finance and commerce.

As we were honoured to put together the program in this conference’s 10th
edition, we attempted to combine the naturally festive mood with its interdis-
ciplinary nature. Kicking off the 10th-year festivities were a welcome speech by
Victor Banks, the Minister of Finance of Anguilla, and our Keynote Address by
the renowned cryptographer Ron Rivest. One of the most influential figures in
cryptography, Ron reviewed some of his past predictions and lessons learned over
the last 10 years, and prognosticated directions for the next decade. The confer-
ence also featured an invited talk by Michael Froomkin about the current legal
landscape of financial cryptography, and two interesting panel sessions: one on
identity management and a second one providing further reflections on the past
10 years of financial cryptography, featuring talks by Jacques Stern, and Nicko
van Someren, representing reflections from the academic and industrial world, re-
spectively. The technical program featured 19 regular papers and 6 short papers,
selected out of 64 submissions, and as always, other conference attendees were
invited to make short presentations during the rump session, which maintained
its lively and colorful reputation.

Putting together such a strong program would not be possible without the
hard work of the Program Committee and of a large number of external review-
ers, whose names are listed on separate pages. Each submission was refereed by
at least three experts, and often detailed technical discussions were necessary
before decisions could be made. These were often challenging due to the high
quality of the submitted papers, many of which could not be included in the
program. Additional thanks go to all researchers who submitted papers, hoping
that enough feedback was given to them for further developments of their work.

We also would like to thank this year’s General Chair, Patrick McDaniel,
for valuable assistance on several aspects of the conference organization, and
the Local Arrangements Chair, Rafael Hirschfeld, for handling several logistics
in Anguilla. Special thanks also go to Ted Lu for helping with setting up the
Web-based submission and reviewing system, which was essential for handling
such a large number of submissions and reviewers, and to William Enck for on-
site logistic help. We hope to have fulfilled our goal of a successful conference.
Like all its participants, we look forward to (at least) 10 more years of Financial
Cryptography and Data Security!

June 2006 Giovanni Di Crescenzo
Avi Rubin
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Phoolproof Phishing Prevention

Bryan Parno, Cynthia Kuo, and Adrian Perrig

Carnegie Mellon University

Abstract. Phishing, or web spoofing, is a growing problem: the Anti-Phishing
Working Group (APWG) received almost 14,000 unique phishing reports in Au-
gust 2005, a 56% jump over the number of reports in December 2004 [3]. For fi-
nancial institutions, phishing is a particularly insidious problem, since trust forms
the foundation for customer relationships, and phishing attacks undermine confi-
dence in an institution.

Phishing attacks succeed by exploiting a user’s inability to distinguish legiti-
mate sites from spoofed sites. Most prior research focuses on assisting the user in
making this distinction; however, users must make the right security decision ev-
ery time. Unfortunately, humans are ill-suited for performing the security checks
necessary for secure site identification, and a single mistake may result in a total
compromise of the user’s online account. Fundamentally, users should be au-
thenticated using information that they cannot readily reveal to malicious parties.
Placing less reliance on the user during the authentication process will enhance
security and eliminate many forms of fraud.

We propose using a trusted device to perform mutual authentication that elim-
inates reliance on perfect user behavior, thwarts Man-in-the-Middle attacks after
setup, and protects a user’s account even in the presence of keyloggers and most
forms of spyware. We demonstrate the practicality of our system with a prototype
implementation.

Keywords: Identity Theft, Phishing and Social Engineering, Fraud Prevention,
Secure Banking and Financial Web Services.

1 Introduction

In phishing, an automated form of social engineering, criminals use the Internet to
fraudulently extract sensitive information from businesses and individuals, often by im-
personating legitimate web sites. The potential for high rewards (e.g., through access
to bank accounts and credit card numbers), the ease of sending forged email messages
impersonating legitimate authorities, and the difficulty law enforcement has in pursu-
ing the criminals has resulted in a surge of phishing attacks: estimates suggest that
phishing affected 1.2 million U.S. citizens and cost businesses billions of dollars in
2004 alone [40]. Phishing also leads to additional business losses due to consumer fear.
Anecdotal evidence suggests that an increasing number of people shy away from Inter-
net commerce due to the threat of identity fraud, despite the tendency of US companies
to assume the risk for fraud. Also, many users now default to distrusting any email they
receive from financial institutions [16].

Current phishing attacks are still relatively modest in sophistication and have sub-
stantial room for improvement, as we discuss in Section 2.2. Thus, the research com-
munity and corporations need to make a concentrated effort to combat the increasingly

G. Di Crescenzo and A. Rubin (Eds.): FC 2006, LNCS 4107, pp. 1–19, 2006.
c© IFCA/Springer-Verlag Berlin Heidelberg 2006



2 B. Parno, C. Kuo, and A. Perrig

severe economic consequences of phishing. Unfortunately, as we discuss in Section 8,
current anti-phishing techniques do not offer adequate safeguards for ordinary users.

We present three main contributions in this paper. First, we propose several design
principles needed to counter phishing attacks: 1) sidestep the arms race, 2) provide mu-
tual authentication, 3) reduce reliance on users, 4) avoid dependence on the browser’s
interface, and 5) forgo network monitoring. Anti-phishing solutions that fail to follow
these principles will likely be overcome or circumvented by phishers.

Second, to fulfill our design principles, we propose a foolproof anti-phishing system
that does not rely on users to always make the correct security decision. Our mutual
authentication protocol uses a trusted device (e.g., a cellphone) both to manage a second
authenticator for the user and to authenticate the server. Since a user cannot readily
disclose the additional authenticator to a third party, attackers must obtain the user’s
password and compromise the trusted device to gain account access. By making the
trusted device an active participant in the authentication process, our protocol protects
the users against Man-in-the-Middle attacks.

Our approach also defends against keyloggers and other mechanisms designed to
monitor user input. The user can easily employ our scheme across multiple platforms
without relying on the information in the browser’s display.

Finally, we demonstrate the practicality of our system with a prototype implementa-
tion. We use a cellphone as the trusted device, and we show that the system introduces
minimal overhead. In addition, the server-side changes are minor, as well as backwards
compatible.

2 Problem Definition

In this section, we consider various formulations of the phishing problem and survey
phishing tactics, both those in use today and those likely to appear in the near future.
We also consider the aspects of user behavior typically exploited by phishing attacks.

2.1 Goals and Assumptions

In this section, we enumerate the goals of an anti-phishing technique, arranged in de-
creasing order of protection and generality:

1. Ensure that a user’s data only goes to the intended recipient.

2. Prevent a user’s data from reaching an untrustworthy recipient.

3. Prevent an attacker from abusing a user’s data.

4. Prevent an attacker from modifying a user’s account.

5. Prevent an attacker from viewing a user’s account.

Our scheme guarantees the last two goals via technical measures. Clearly, an ideal
solution would also address the first goal. However, divining a user’s intentions remains
a difficult problem, particularly when even the user may find it difficult to quantify his or
her precise intentions. The next two goals, while more constrained than the first, require
complete control over the user’s data. Although we present techniques to assist with the
goal of preventing the user’s data from reaching an untrustworthy recipient, ultimately,
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we cannot guarantee this result, since a determined user can always find some means of
disclosing personal information to an adversary.

To realize our goals, we assume users can be trusted to correctly identify sites at
which they wish to establish accounts. We justify this assumption on the basis of the
following observations. First, phishing attacks generally target users with existing ac-
counts. In other words, the phishers attempt to fool a victim with an online account into
revealing information that the phishers can use to access that account. Second, users
typically exercise greater caution when establishing an account than when using the
account or when responding to an urgent notice concerning the account. This results in
part from the natural analogue of the real world principle of caveat emptor, where con-
sumers are accustomed to exercising caution when selecting the merchants they wish
to patronize. However, consumers in the real world are unlikely to encounter a Man-in-
the-Middle attack or an imitation store front, and so they have fewer natural defenses
when online. Our solution addresses these new threats enabled by the digital market-
place. Our approach is largely orthogonal to existing anti-phishing solutions based on
heuristics, and it can be combined with these earlier schemes, particularly to protect the
user from a phishing attack during the initial account establishment.

2.2 Attacks

A typical phishing attack begins with an email to the victim, supposedly from a rep-
utable institution, but actually from the phisher. The text of the message commonly
warns the user that a problem exists with the user’s account that must immediately be
corrected. The victim is led to a spoofed website designed to resemble the institution’s
official website. At this point, the phishing site may launch a passive or an active at-
tack. In a passive attack, the web page prompts the victim to enter account information
(e.g., username and password) and may also request other personal details, such as the
victim’s Social Security number, bank account numbers, ATM PINs, etc. All of this in-
formation is relayed to the phisher, who can then use it to plunder the user’s accounts. In
an active attack, the phisher may act as a man-in-the-middle attacker, actively relaying
information from the legitimate site to the user and back.

While early phishing emails typically employed plain text and grammatically incor-
rect English, current attacks demonstrate increased sophistication. Phishing emails and
websites often employ the same visual elements as their legitimate counterparts. As a
result, spoofed sites and legitimate sites are virtually indistinguishable to users. Phish-
ers also exploit a number of DNS tricks to further obscure the nature of the attack. The
spoofed site may use a domain name like www.ebay.com.kr, which very closely re-
sembles eBay’s actual domain, but instead points to a site in Korea. Some attacks use
obscure URL conventions to craft domain names like www.ebay.com@192.168.0.5,
while others exploit bugs in the browser’s Unicode URL parsing and display code to
conceal the site’s true domain name [21].

Although most phishing attacks are initiated via email, there are many other poten-
tial means of initiation. The phisher could contact the victim via Instant Messenger,
via a popup or other advertisement on another website, or even via fax [22]. Phishers
can also exploit mistyped URLs by registering domain names like gooogle.com or
goggle.com, or even employ techniques to artificially inflate their rankings in search
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engines. To make matters worse, researchers have discovered automated phishing kits
circulating online that enable novice phishers to employ some of these techniques [36].

Attackers have also been quick to exploit attempts at user education. For instance,
many users believe that a transaction is secure if they see the ’lock’ icon displayed in the
browser window. One possible attack uses JavaScript to display a spoofed lock image
in the appropriate location [43]. Phishers may also acquire their own SSL certificate,
relying on users’ inability or unwillingness to verify the certificates they install. There
have also been cases in which Certificate Authorities issued certificates to attackers
posing as legitimate Microsoft employees [26]. Phishers can also try to confuse users
by simultaneously loading a legitimate page and a spoofed page using HTML frames
or popups. Unfortunately, even these techniques barely scratch the surface of potential
phishing scams.

Despite the advances and innovations discussed above, phishing attacks are continu-
ously evolving into increasingly sophisticated forms. For example, attackers have begun
targeting specific individuals within an organization. These highly customized attacks,
dubbed spear-phishing, often try to trick employees into installing malware or reveal-
ing their organizational passwords [31,23]. As a more general form of advanced attack,
Jakobsson introduces the notion of context-aware phishing in which an attacker exploits
some knowledge about the victim in order to enhance the efficacy of the attack [19]. In a
user study, Jakobsson found that context-aware phishing attacks dramatically enhanced
the probability of a successful attack, from 3% percent for an ordinary attack to 48-96%
for a specially-crafted context-aware attack. Another attack variant uses socially-aware
phishing. In a socially-aware attack, the phisher uses publicly available information
to craft an email that purports to come from someone the victim knows and trusts.
To defend against phishing attacks, organizations are in a constant race to detect and
take down phishing sites. In the future, this could become even more difficult with dis-
tributed phishing attacks [20], where each page a user visits is hosted at a different
location and registered to a different owner.

2.3 User Issues

In this section, we consider user-related issues for phishing. Some of these observations
were also made by Dhamija and Tygar [9].

First, users exhibit certain tendencies that inherently undermine security. Security is
often a secondary concern; few users start a web browser with the objective of “doing
security.” Users want to make purchases, check their accounts and authorize payments
online. Because of this, users will tend to ignore or, if they become too invasive, cir-
cumvent or disable security measures. Similarly, users have become habituated to ignor-
ing strange warning boxes that appear when they access secure sites, and they blithely
click through such warnings. Moreover, prior work shows that humans pick poor pass-
words with low entropy [42] and readily volunteer them to complete strangers [2].
Finally, users have become accustomed to computers and websites behaving errat-
ically. They will often attribute the absence of security indicators to non-malicious
errors [41]. In addition, most users cannot distinguish between actual hyperlinks and
spoofed hyperlinks that display one URL but link to a different URL (i.e., URLs of the
form: <a href=’http://phishing.org/’> <img src=’ebay-url.jpg’> </a>).
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Furthermore, users are unable to reliably parse and understand domain names or PKI
certificates.

Clearly, current technology makes it difficult for even a knowledgeable user to con-
sistently make the right decision, particularly when security is not a primary goal. As
a result, we argue that anti-phishing techniques must minimize the user’s security re-
sponsibilities.

3 Design Principles

Based on the previous discussion, we advocate the following set of design principles
for anti-phishing tools:

Sidestep the arms race. Many anti-phishing approaches face the same problem as anti-
spam solutions: incremental solutions only provoke an ongoing arms race between re-
searchers and adversaries. This typically gives the advantage to the attackers, since
researchers are permanently stuck on the defensive. As soon as researchers introduce
an improvement, attackers analyze it and develop a new twist on their current attacks
that allows them to evade the new defenses. Instead, we need to research fundamental
approaches for preventing phishing. As Clayton noted, we need a “Kilimanjaro effect,”
where the level of security overwhelms potential attackers, and only the most deter-
mined (and skilled) will succeed [7].

Provide mutual authentication. Most anti-phishing techniques strive to prevent phish-
ing attacks by providing better authentication of the server. However, phishing actually
exploits authentication failures on both the client and the server side. Initially, a phishing
attack exploits the user’s inability to properly authenticate a server before transmitting
sensitive data. However, a second authentication failure occurs when the server allows
the phisher to use the captured data to login as the victim. A complete anti-phishing
solution must address both of these failures: clients should have strong guarantees that
they are communicating with the intended recipient, and servers should have similarly
strong guarantees that the client requesting service has a legitimate claim to the accounts
it attempts to access.

Reduce reliance on users. The majority of current phishing countermeasures rely on
users to assist in the detection of phishing sites and make decisions as to whether to con-
tinue when a potentially phishy site is found. Unfortunately, as discussed in Section 2.3,
users are in many ways unsuited to authenticating others or themselves to others. As a
result, we must move towards protocols that reduce human involvement or introduce
additional information that cannot readily be revealed. These mechanisms add security
without relying on perfectly correct user behavior, thus bringing security to a larger
audience.

Avoid dependence on the browser’s interface. The majority of current anti-phishing
approaches propose modifications to the browser interface. Unfortunately, the browser
interface is inherently insecure and can be easily circumvented by embedded JavaScript
applications that mimic the “trusted” browser elements. In fact, researchers have shown
mechanisms that imitate a secure SSL web page by forging security-related elements
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The User Experience
Alice lives in New York and has an account
at the National Bank of Anguilla. She often
worries about the security of her online ac-
count. Recently, the bank began offering the
Phoolproof cellphone authentication system to
its customers. Alice is thrilled, but she cannot
go to the bank in person to sign up. Alice con-
tacts the bank. The bank mails a randomly cho-
sen shared secret to the postal address on file.
When Alice receives the shared secret in the
mail, she logs into the National Bank of An-
guilla web page and navigates to the cellphone
authentication signup page. The signup page
prompts her to enter the shared secret into her
cellphone (see Section 4.1 for technical details
and alternatives). Alice confirms she wants to
create a new account on her cellphone, and a
bookmark for the National Bank of Anguilla
then appears in her phone’s list of secure sites.
From then on, whenever Alice wants to ac-
cess her account, she navigates to the Anguilla
bookmark on her cellphone, as shown in Fig-
ure 1. The phone directs her browser to the cor-
rect website, and Alice enters her username and
password to login (see Section 4.2 for techni-
cal details). After login, the interaction with her
bank remains unchanged.

Fig. 1. Cellphone User Interface The
cellphone displays the secure book-
marks for sites at which the user has es-
tablished accounts

on the screen [43]. Even recent anti-phishing proposals that create trusted browser win-
dows or input mechanisms are ultimately still vulnerable to JavaScript attacks [9,33]
Given the complexity of current web browsers and the multitude of attacks, we propose
to avoid reliance on browser interfaces.

Forgo network monitoring. A naive approach to phishing prevention might involve
monitoring a user’s outgoing communication and intercepting sensitive data in transit.
Unfortunately, this approach is unlikely to succeed. For example, suppose this approach
is implemented to monitor information transmitted via HTML forms. An attacker could
respond by using a Java applet or another form of dynamic scripting to transmit the
user’s response. Worse, client-side scripting could easily encrypt the outgoing data to
prevent this type of monitoring entirely. In the end, this approach is unlikely to provide
a satisfactory solution.

4 Our Phoolproof Anti-phishing System

While no automated procedure can provide complete protection, our protocol guards
the secrecy and integrity of a user’s existing online accounts so that attacks are no more
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Device Browser Server

User
Prompt

Establish SSL/TLS Connection

User Information

Account Creation Tag, MACη(CertS)
CertS, Domain, Name, MACη(CertS)

K1,MACη(K1||CertS)
K1,MACη(K1||CertS)

Fig. 2. Account Setup Protocol steps for establishing a new user account

effective than pre-Internet scams (e.g., an attacker may still be able to access a user’s
account by subverting a company insider). We base our system on the observation that
users should be authenticated using an additional authenticator that they cannot readily
reveal to malicious parties. Our scheme establishes the additional authenticator on a
trusted device, such that an attacker must compromise the device and obtain the user’s
password to access the user’s account.

The trusted device in our system can take the form of a cellphone, PDA or even
a smart watch; in this paper, we assume the use of a cellphone. Users cannot readily
disclose the authenticator on the cellphone to a third party, and servers will refuse to
act on instructions received from someone purporting to be a particular user without
presenting the proper authenticator. As discussed in Section 8, our technique is one of
the first systems to prevent active Man-in-the-Middle attacks. In addition, the use of the
cellphone allows us to minimize the effect of hijacked browser windows and facilitates
user convenience, since it can be used at multiple machines. We assume that the user
can establish a secure connection between their cellphone and their browser and that
the cellphone itself has not been compromised. We discuss these assumptions further in
Section 5.2.

Below, we explain how a user creates an account (or updates an existing account)
using our protocol. We then define the protocol for account usage, as well as steps for
recovering if the user’s trusted device is lost or compromised.

4.1 Setup

To enable our system for an online account, the user must establish a shared secret with
the server. This can be done using one of the out-of-band channels suggested below.
These mechanisms for establishing a shared secret rely on institutions to implement
measures that ensure 1) their new customers are who they say they are, and 2) the infor-
mation in existing customers’ files is accurate. Institutions have dealt with this problem
since well before the existence of computers, and thus, they have well-established tech-
niques for doing so.

The out-of-band channel used for establishing a shared secret can take many forms.
For example, banks often utilize the postal service as a trusted side-channel. Alterna-
tively, a telephone call may suffice. Banks could provide the shared secret at ATMs by
displaying the shared secret in the form of a barcode that the user could photograph with
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the camera on a cellphone [25,32]. As another possibility, initial account setup could
be performed on the premises of the financial institution. That way, employees can be
trained to assist users with setup; users’ identification can be checked in person; and
users can trust that they are associating with the correct institution. Trusted financial in-
stitutions could also provide setup services for organizations that lack brick-and-mortar
infrastructure, such as online vendors.

Using one of the mechanisms discussed above, the institution sends a randomly cho-
sen secret η to the user. The secret should be of sufficient length (e.g., 80-128 bits) to
prevent brute-force attacks. The user navigates to the institution’s website and initiates
setup. The setup steps are summarized in Figure 2 and described below. The server
responds with a specially crafted HTML tag (e.g., <!-- SECURE-SETUP -->), which
signals the browser that account setup has been initiated. The server also authenticates
its SSL/TLS certificate by including a MAC of the certificate, using the shared secret η
as a key.

The browser contacts the cellphone via Bluetooth,1 transmitting the server’s SSL/
TLS certificate, domain name, site name and MAC to the phone. The cellphone prompts
the user to confirm the account creation (to avoid stealth installs by malicious sites) and
enter the shared secret provided by the institution (if it has not already been entered, e.g.,
at the ATM or at the financial institution). It also verifies the MAC on the server’s cer-
tificate and aborts the protocol if the verification fails. Assuming verification succeeds,
the cellphone creates a public/private key pair {K1,K

−1
1 } and saves a record associating

the key pair with the server’s certificate. It also creates a secure bookmark entry for the
site, using the site’s name and domain name. The cellphone sends the new public key
authenticated with a MAC, using the shared secret as a key, to the server. The server
associates the public key with the user’s account, and henceforward, the client must use
the protocol described in the next section to access the online account. All other online
attempts to access the account will be denied.2

4.2 Secure Connection Establishment

Once the user’s account has been enabled, the server will refuse access to the account
unless the user is properly authenticated via the established public key pair and user-
name/password combination. Thus, even if the user is tricked into revealing private
information to a phisher or a social engineer, the attacker still cannot access the user’s
account.

A user who wishes to access the account must always initiate the connection using
the secure bookmark on the cellphone. As an alternative, we could have the cellphone
detect when a user navigates to a previously registered site. However, a cellphone is ill-
equipped to detect if the user visits a phishing site and thus will be unable to prevent the
user from disclosing private information to malicious parties. While a phisher would
still be unable to access the user’s account (without compromising the cellphone),
we prefer to help prevent this unnecessary disclosure (see Section 5 for additional
discussion).

1 Our system is not exclusive to Bluetooth. Any mechanism that allows the user’s trusted device
to communicate with the browser (e.g., infrared, 802.11, USB cable, etc.) will suffice.

2 Note that this does not preclude Alice from conducting business in person, for example.
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Fig. 3. Secure Connection Establishment The browser establishes an SSL/TLS connection to
the server using client authentication, with help from the cellphone. DHS and DHC represent the
Diffie-Hellman key material for the server and client respectively, and h is a secure MAC of the
handshake messages. See Section 4.2 for additional details.

When the user selects a secure bookmark on the cellphone, the cellphone directs the
browser to the associated URL. The use of secure bookmarks provides the user with
a higher degree of server authentication and helps to protect the user from inadver-
tently arriving at a phishing site, either via a spoofed or a mistyped URL. When the
remote server provides its SSL/TLS certificate, the browser forwards the certificate to
the cellphone. If the certificate does not match the certificate previously provided, the
cellphone closes the browser window and displays a warning message. If a server up-
dates its certificate, then we need a protocol to update the server certificate stored on
the cellphone; for example, the server could send the new certificate along with a signa-
ture using the previous private key, and upon successful verification, the cellphone can
update the certificate it has stored.

If the certificate check is successful, the browser and the server then establish an
SSL/TLS connection [11,14]. The cellphone assists the browser in performing the client
authentication portion of the SSL/TLS establishment, using the public key pair associ-
ated with this site (the SSL/TLS protocol includes a provision for user authentication,
but this is rarely used today). Figure 3 summarizes the messages exchanged. Essen-
tially, the browser initiates an SSL/TLS connection with Ephemeral Diffie-Hellman key
agreement. After agreeing on the cryptographic parameters in the Hello messages, the
server sends:

CertS,g, p,gsmod p,{g, p,gsmod p}K−1
S

(1)

(i.e., its certificate, its ephemeral Diffie-Hellman key information and a signature on
the key information) to the client. The browser retrieves the appropriate user certifi-
cate CertK1 from the cellphone based on the server’s certificate and domain. Then, the
browser generates the necessary Diffie-Hellman key material and calculates a secure
hash of the SSL/TLS master secret K (which is based on the derived Diffie-Hellman
key) and all of the previous handshake messages (as well as the client’s choice of Diffie-
Hellman key material), HM, as follows:
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h = MD5(K ||pad2||MD5(HM||K ||pad1))||SHA-1(K ||pad2||MD5(SHA-1||K ||pad1)) (2)

(where || represents concatenation) and sends the hash to the cellphone. The cellphone
replies with a signature on h. Note that as long as the phone remains uncompromised,
an attacker cannot produce this signature, and hence cannot successfully authenticate
as the user. The browser forwards the signature to the server, along with the user’s
certificate and the client’s Diffie-Hellman key material:

CertK1 ,g
cmod p,{h}K−1

1
(3)

The browser and the server then exchange the final phase of an SSL/TLS negotiation.
Once the user has been authenticated and the SSL/TLS connection has been established,
the user can use the browser to conduct transactions and account inquiries as usual. Note
that we do not change the SSL/TLS protocol; we merely use the cellphone to assist the
browser establish a session key with the server.

4.3 Recovery

Inevitably, users will lose or break their cellphones, or replace them with newer models.
When this happens, the user must revoke the old keys and establish a new key pair with
a new cellphone. In the case of a lost cellphone, revocation prevents an attacker from
accessing the user’s accounts.

To revoke the old key pairs, we favor using a process that exists today: the user
calls the institution via telephone. This is a well-established, familiar process. Today,
customers already call credit card companies to report the loss of a card and to freeze
any transactions on the account. With the loss of a cellphone, users would still call the
institutions to revoke their keys. The institution would then send the information needed
to establish a new key pair using the techniques described in Section 4.1.

We initially considered other methods, such as storing revocation information in the
user’s browser or on a USB key. However, telephone calls are superior for three reasons.
First, users already know how to call customer service. The reuse of an existing business
process reduces the costs – mental and monetary – for all parties. Second, cellphones
are mobile devices that travel with their users, and users may lose them anywhere. A
user whose cellphone is lost on a business trip should act immediately to minimize
financial (or other) losses; waiting to access the revocation information stored at home
is not acceptable. Finally, since revocation information is rarely used, it is easily lost.
For example, if revocation information is stored on paper, CD’s, or USB keys, it can be
misplaced or damaged.

5 Security Analysis

In this section, we discuss the effectiveness of various attacks on our system.

5.1 Hijacking Account Setup or Re-establishment

The largest vulnerability in our system arises during account setup (or re-establishment),
when the user must ensure that the account is created at a legitimate site. The server also
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faces an authentication problem, since it must ensure that the person creating the account
is the person described by the user information submitted. However, as we discuss in
Section 4.1, this threat can be mitigated by having users establish accounts in person,
at trusted businesses.

A clever phisher may have a user’s key pair revoked and hijack the account when the
user tries to re-establish a new key pair. We do not consider this to be a grave threat,
however. Phishing is so successful because the perpetrators target large numbers of
people with a low success rate. It would be difficult for phishers to target a large num-
ber of people without attracting attention; a bank would surely notice if thousands of
customers suddenly needed new key pairs. In addition, phishers typically have limited
resources in the physical world. Sending information for key re-establishment through
postal mail or requiring users to verify their identity in person would greatly reduce the
effectiveness of a phishing attack.

5.2 Theft of the Trusted Device

Since the user’s cellphone (or PDA) holds cryptographic keys for all of the user’s ac-
counts, device theft is a risk. After stealing the device, an attacker would still need the
user’s password(s) in order to compromise the accounts (a problem sufficient to deter
casual attackers). The attacker must obtain the passwords before the user discovers the
theft and revokes the stored keys. Nonetheless, additional layers of security may be de-
sirable. For example, the cellphone could require the user to enter a PIN number or use
biometrics to authorize use of the keys. A more security-conscious user could consider
a tamper-resistant storage module for the cellphone to reduce the possibility of leaking
the secret keys.

5.3 Malware on the Trusted Device

With the advent of more powerful cellphones and network-enabled PDAs, malware on
mobile devices will become an increasingly serious problem. Attacks are inevitable –
particularly if mobile devices are used to protect financial accounts.

Numerous vendors have released anti-malware software for mobile devices. More
high-profile attacks may be required before the software becomes ubiquitous on mobile
devices, as it is on computers.

For additional security, we could leverage a Trusted Platform Module (TPM) that
will likely exist on future cellphone architectures. The keys would reside in the TPM’s
trusted storage facility. In the absence of additional security hardware, we could instead
use recent advances in software attestation [35] to verify the integrity of both the trusted
device and the user’s computer. When the user’s cellphone contacts the computer, each
device attests to the security of its current state, and the SSL/TLS connection only
proceeds if both parties are satisfied. As a result, a successful attack would require
simultaneous compromise of both the user’s cellphone and computer.

In addition, we can leverage the capture-resilient cryptographic mechanisms pro-
posed by MacKenzie and Reiter [24]. In their approach, secrets and cryptographic op-
erations are split up and performed on the mobile device and a server. Compromising
either the mobile device or the server reveals no useful information. After loss of the
mobile device, the user can revoke the information stored on the server.
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5.4 Malware on the Computer

Our system protects the user against many forms of malware. For example, standard
keyloggers would be ineffective, since they can only capture user input – and not the
private key stored on the cellphone. However, without additional resources, we cannot
protect users against certain classes of malicious code installed on users’ computers.
The two largest threats are malicious modifications to the browser and operating system
kernel compromises. If the user’s browser has been compromised, then the malicious
code could use the cellphone to login to a legitimate site and subsequently redirect
the connection to a phishing site. A kernel compromise would allow a similar attack.
Both attacks require a significant and sophisticated compromise of the user’s computer.
As mentioned earlier, we can use new security hardware such as the TPM or software
attestation techniques to mitigate these threats.

5.5 Attacks on the Network

Possible network-based attacks include Man-in-the-Middle attacks, pharming3 attacks,
and domain hijacking. None of these attacks will succeed against our system. By storing
the user’s public key, the server prevents a Man-in-the-Middle attack, since the attacker
will not be able to attack the authenticated Diffie-Hellman values from the ephemeral
Diffie-Hellman exchange. By checking the certificate provided by the server against the
stored certificate, the cellphone even protects the user from DNS poisoning and domain
hijacking. Thus, our scheme provides very strong guarantees of authenticity to both
the client and the server and stops virtually all forms of phishing, DNS spoofing and
pharming attacks.

5.6 Local Attacks on Bluetooth

Phishing attacks rely on the attacker’s ability to target a large number of users and
swindle them quickly without being caught. As a result, phishing attacks are typically
conducted remotely. To provide an additional layer of protection, we can use existing
research (e.g., from McCune et al. [25]) to establish a secure connection between the
user’s device and the computer they use, preventing attacks on the Bluetooth channel.

6 Discussion

6.1 Infrastructure

As described above, our protocol requires very minimal changes to existing infras-
tructure. In Section 7, we provide specific details of our prototype implementation to
demonstrate the limited changes necessary to support our protocol.

For servers, the primary change is the addition of an extra record associated with
a user’s account to store the user’s public key. Servers must also respond to account

3 Pharming attacks exploit vulnerabilities in a DNS server to redirect users to another site. Such
DNS attacks are powerful in conjunction with phishing, since the domain name appears to be
correct.
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creation requests by adding an extra HTML tag4 to the page. The authentication of the
user’s public key uses existing options in the SSL/TLS protocol, so that the SSL/TLS
protocol remains unchanged and client authentication code requires only minor tweaks.

From the client’s perspective, the browser’s portion of the protocol can be imple-
mented as a simple browser extension, as we have done in our prototype, or it could
eventually be incorporated into the browser itself.

As for the user’s trusted device, cellphones today are one of the first examples of
truly ubiquitous computing. According to a survey in 2003, over 49% of Americans and
90% of Europeans have cellphones [37]. However, as mentioned earlier, our protocol
can work just as well with a user’s PDA or other mobile-computing device (e.g., a smart
watch). Using Bluetooth as a basis for communication between the trusted device and
the computer is also increasing practical. According to the Bluetooth SIG, over five
million units are shipped with Bluetooth every week, with an installed base of over 500
million units at the end of 2005 [4].

As we discuss in Section 7, the software for the user’s trusted device can be devel-
oped in Java, simplifying portability between devices.

6.2 Deployment Incentives

Our system provides strong deployment incentives for both parties involved in online
transactions. Consumers will be motivated to use the system, since it imparts very strong
guarantees regarding the integrity of their online accounts and helps prevent them from
inadvertently visiting a phishing website. Financial institutions and merchants will want
to adopt a system that will help reduce losses due to phishing attacks. Our scheme can
be deployed by individual organizations without the need for universal adoption and
deployment. Each server that deploys the system benefits, regardless of whether or not
it is adopted by other sites. In addition, the scheme can be deployed alongside legacy
authentication so that legacy users will still be able to access their accounts.

6.3 Convenience

There are many other two-factor authentication schemes using stand-alone accessories,
such as security tokens or smart cards [34]. However, each organization must currently
issue its own accessory, and users are saddled with multiple accessories that may be
confused or lost. Our system enables all this functionality to be consolidated onto one
device the user already carries. Furthermore, our approach prevents Man-in-the-Middle
attacks, which are still possible with many of the accessories since a one-time password
entered into a browser window can be captured by a phishing site and exploited to hi-
jack the user’s account. Moreover, browser-based countermeasures can be inconvenient,
since state kept on the browser may not be easily portable.

7 Prototype Implementation

To evaluate the usability and performance of our scheme, we developed a prototype
on a cellphone, a web browser and a server. We discuss the details and performance
results below.

4 The tag is designed so that legacy clients will simply ignore it.
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7.1 Implementation Details

Equipping a server with our system required very minimal changes, namely changes to
two configuration options and the addition of two simple Perl scripts. From the server’s
perspective, our scheme requires no changes to the SSL/TLS protocol. Indeed, most ma-
jor web servers, including Apache-SSL, Apache+mod ssl and Microsoft’s IIS already
include an option for performing client authentication. In our case, we used Apache-
SSL and enabled the SSLVerifyClient option that indicates that clients may present
certificates, but the certificates need not be signed by a trusted Certificate Authority
(since our client certificates are self-signed). We also enabled the SSLExportClient
Certificates option that exports information about the client’s certificate to CGI-
accessible variables. Aside from these two minor configuration changes, we only
needed two additional CGI scripts (written in Perl) to implement the server’s side of
the protocol. One script handles account creation and writes user information and pub-
lic keys to a file. When the client attempts to use the account, it provides a self-signed
certificate as part of the normal SSL/TLS authentication process. The server’s existing
SSL/TLS module verifies that the signature in the certificate corresponds to the public
key enclosed and provides the information in the client’s certificate to the authentication
script. The authentication script checks the public key in the certificate against that asso-
ciated with the user’s account. If the keys match, then the authentication script permits
the client to access the site. This approach has several benefits. First, the changes required
are extremely minor and nonintrusive. Second, it still allows legacy clients to establish an
SSL/TLS connection with the server. The authentication script can then detect whether
the client has presented a legitimate certificate. If the script detects a legacy client, it
can make a policy decision as to whether to allow the client access to the account, allow
restricted access to the account, or redirect the client to the account creation page.

On the client side, we developed an extension to Firefox, an open-source web
browser, to detect account creation. When the extension detects a page containing the
account creation tag, it signals the cellphone with the appropriate information, and
passes the cellphone’s reply to the server. Similarly, when the user selects a secure book-
mark on the cellphone, the cellphone sends the URL to the extension, which redirects
the browser to the appropriate site. We also chose to apply a small patch to the Fire-
fox code that handles the client authentication portion of the SSL/TLS exchange.5 The
patch passes the server’s certificate to the cellphone, along with a hash of the SSL/TLS
handshake messages and receives from the cellphone a certificate for the user’s pub-
lic key and a signature on the hash. The browser can then use these items to complete
the SSL/TLS handshake. By involving the cellphone in the SSL/TLS computations, we
guarantee that the private key for the account never leaves the phone, preventing even a
compromised browser or OS from accessing it.

Our prototype runs on a Nokia 6630 cellphone. We developed a Java MIDlet (an ap-
plication conforming to the Mobile Information Device Profile (MIDP) standard) that
provides the functionality described in Section 4 with a user-friendly interface. A Java

5 Instead of patching Firefox, we could also implement our scheme as an SSL/TLS proxy on
the user’s computer. This would enable our solution to work with proprietary browsers as
well. However, the patch to Firefox was small and straightforward, so we chose that route for
testing purposes.
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Table 1. This table summarizes the performance overhead imposed by our scheme. The averages
are calculated over 20 trials, and the keys created are 1024-bit RSA key pairs. Note that key
creation happens offline and thus has little or no impact on the user’s experience.

Time (s) [Min, Max] (s)

Key Creation 75.0 [29.8, 168.3]

Account Creation 0.4 [0.3, 0.5]

Site Navigation 0.2 [0.1, 0.2]

SSL/TLS Assistance 1.7 [1.6, 1.9]

implementation also simplifies porting the code to other devices. For the cryptographic
operations, we used the light-weight cryptography library provided by Bouncy Cas-
tle [38]. Since key generation can require a minute or two, we precompute keys when
the user first starts the application, rather than waiting until an account has been created.
When the cellphone receives an account creation packet from the browser extension, it
selects an unused key pair, assigns it to the server information provided by the browser
extension, and then sends the key pair and the appropriate revocation messages to the
browser extension. When the user selects a secure bookmark (see Figure 1), the cell-
phone sends the appropriate address to the browser extension. It also computes the
appropriate signatures during the SSL/TLS exchange.

7.2 Performance

If our system is to provide a realistic defense against phishing attacks, it must impose
minimal overhead, since a solution that significantly slows the web browsing experi-
ence will be unlikely to be adopted. Table 1 summarizes our performance measure-
ments. These results represent the average over 20 trials, each run on a cold cellphone
cache. Clearly, key creation takes the largest amount of time (which is understandable,
given that the cellphone must create a 1024-bit RSA key pair), but since we precompute
the keys, the user will not be affected by this overhead. We could also make use of the
efficient key generation technique proposed by Modadugu et al. [27] to significantly de-
crease the delay. More importantly, account creation time is negligible, as is the delay
for the cellphone to direct the browser to a given domain. The overhead for using the
system during an SSL/TLS exchange requires less than two seconds on average, which
is tolerable in most cases. Furthermore, newer phones already promise better perfor-
mance, and an optimized implementation of the necessary cryptographic primitives in
C would likely reduce the overhead by an order of magnitude (our current RSA imple-
mentation is written entirely in Java), though at the potential cost of additional overhead
when porting the code to a new device. Together, these improvements would reduce the
usage overhead to well under a second.

8 Related Work

The importance of the phishing problem has attracted much academic and industrial
research. Many of the systems described below represent complementary approaches
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and could be used in conjunction with our system, particularly to help protect the user
during account setup. We discuss related work in three categories: heuristic approaches,
password modification, and origin authentication.

8.1 Heuristics

A popular initial approach for preventing phishing attempts is to find a pattern in phish-
ing web sites and then alert the user if a given site matches the pattern. Several browser
toolbars have been proposed to perform this function, for example SpoofGuard [5],
TrustBar [18], eBay Toolbar [12], and SpoofStick [8]. Among other heuristics, these
toolbars detect malicious URLs and inform the user about the true domain of the site
visited. The Net Trust system incorporates information from users’ social networks, as
well as centralized authorities, to help users make decisions about a website’s trustwor-
thiness [15]. Unfortunately, heuristics are inherently imprecise and invite attackers to
adapt to the defenses until they can bypass the heuristics. Such an approach can lead to
an arms race as we describe in Section 3, with all of the problems it entails. In addi-
tion, Wu et al. found that 13-54% of users would still visit a phishing website, despite
warnings from an anti-phishing toolbar [41].

8.2 Modified Passwords

Phishers often exploit the tendency of users to pick weak passwords and to re-use the
same passwords at several websites. If a phisher obtains a password at a low-security
site, they can use it to login to a high-security site as well.

One-time passwords are widely used in several contexts, including the S/Key sys-
tem [17] and corporate uses such as Citibank [6]. The RSA SecurID system is a time-
based one-time password, where the password is generated on a hardware token [34].
The user must enter the code in a web form and submit it to the server to show that she
possesses the trusted device, but there is no server authentication on the user’s part. In
addition, the system is vulnerable to an active Man-in-the-Middle attack, since a phisher
can intercept the value from the user and then use it to access the user’s account. The
PwdHash approach uses a cryptographic hash function computed on the user’s pass-
word and the site name to derive a unique password for each site [33]. PwdHash is a
promising system, but is ineffective against pharming or DNS spoofing attacks where a
phisher presents the correct domain name to the browser but redirects the request to its
server. In the case of DNS attacks, PwdHash will hand the correct password for the site
to the phisher. Moreover, PwdHash does not prevent a phisher from breaking a weak
master password using dictionary attacks.

Another approach is single-sign-on, where users sign in to a single site that will
subsequently handle all authentications with other sites, but so far such systems have
encountered consumer resistance, since they involve storing sensitive user data with a
third party. If these services did grow in popularity, they would undoubtedly attract the
same attention from phishers currently visited on individual sites. Another approach
is “Verified by VISA,” where merchants redirect clients to a special VISA site which
requires a username and password to authenticate the transaction [1].

Unfortunately, none of these approaches provide sufficient protection against Man-
in-the-Middle attacks, particularly if the phisher also uses DNS spoofing. As the user
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enters personal information into the phishing website, the phisher can forward the infor-
mation to the legitimate banking site. Once authenticated, the adversary has full control
over the hijacked connection. Banks have already reported such attacks against their
one-time password systems [29]. Our approach precludes such Man-in-the-Middle at-
tacks because the cell phone and server mutually authenticate each other and establish
a session key end-to-end.

8.3 Origin Authentication

In this class of countermeasures, researchers propose user-based mechanisms to authen-
ticate the server. Ideally, if the user arrives at a malicious website, he or she will detect
that the phishing site is not the correct web site.

Jakobsson presents a theoretical framework for phishing attacks [19]. He also pro-
poses better email authentication to prevent phishing email, in addition to better secrecy
protection for user email addresses (such that phishers have a harder time harvesting
email addresses from, for example, eBay).

The Petname project [39] associates a user-assigned nickname with each website
visited. If the browser loads a page from a spoofed web site, the nickname will be miss-
ing or wrong – the approach relies on users to notice either case. In addition, users will
likely choose predictable nicknames (e.g., nicknaming Amazon.com’s website “Ama-
zon”), making nicknames easy to spoof.

Dhamija and Tygar propose Dynamic Security Skins (DSS) to enable a user to au-
thenticate the server [10,9]. In their system, a server opens a user-customized popup
window that displays an image only the correct server can produce. Similar to the Pet-
name project, this approach relies on the user to perform the verification.

Myers proposes that servers display a series of images as users type their pass-
words [28]. It would be difficult for phishing sites to guess the correct sequence of
images, and users know what images to expect. Again, this scheme relies on the user to
perform the verification.

Similarly, PassMark stores a secure cookie on the client and sets up an image asso-
ciated with the account that the user should remember [30]. Unfortunately, PassMark is
a proprietary system – they do not disclose a detailed description of their approach.

All of these approaches require user diligence – even a single mistake on the user’s
part will result in a compromised account. Several of these approaches are also sus-
ceptible to Man-in-the-Middle attacks since a phisher can simply forward information
between the browser and the legitimate site.

9 Conclusion

Phishing is a significant and growing problem which threatens to impose increasing
monetary losses on businesses and to shatter consumer confidence in e-commerce. We
observe that phishing attacks have the potential to become much more sophisticated,
making user-based protection mechanisms fragile given the user population of non-
experts. Instead of relying on users to protect themselves against phishing attacks (as
previous work suggests), we propose mechanisms that do not rely on the user, but are
based on cryptographic operations on a trusted mobile device that many users already
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possess. We anticipate that our approach would be deployed for websites requiring a
high level of security, and that it would ultimately help in regaining consumer confi-
dence in using web-based commerce. In conclusion, our system satisfies the guidelines
published by the FDIC, which strongly urge financial institutions to adopt two-factor
authentication for Internet-based financial services by the end of 2006 [13].

Acknowledgements

The authors would like to thank Jon McCune, Jason Rouse and Ai Qi Chua for their
assistance in implementing the prototype. Ari Juels, Dawn Song, and Chris Karlof pro-
vided interesting discussions and insightful comments. We would also like to thank the
anonymous reviewers for their helpful suggestions.

References

1. Verified by VISA. http://usa.visa.com/personal/security/vbv/how it works.
html.

2. A. Adams and M. A. Sasse. Users are not the enemy. Communications of the ACM,
42(12):40–46, Dec. 1999.

3. Anti-Phishing Working Group. Phishing activity trends report. http://
antiphishing.org/apwg phishing activity report august 05.pdf, Aug. 2005.

4. Bluetooth SIG. Bluetooth Technology Benefits. http://www.bluetooth.com/Bluetooth/
Learn/Benefits/.

5. N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C. Mitchell. Client-side defense against
web-based identity theft. In NDSS, Feb. 2004.

6. CitiBank. Virtual account numbers. http://www.citibank.com/us/cards/tour/cb/
shp van.htm.

7. R. Clayton. Who’d phish from the summit of kilimanjaro? In Financial Cryptography, pages
91–92, 2005.

8. Core Street. Spoofstick. http://www.corestreet.com/spoofstick/ .
9. R. Dhamija and J. D. Tygar. The battle against phishing: Dynamic security skins. In ACM

Symposium on Usable Security and Privacy (SOUPS ’05), July 2005.
10. R.DhamijaandJ.D.Tygar. PhishandHIPs:Humaninteractiveproofs todetectphishingattacks.

In Human Interactive Proofs: Second International Workshop (HIP 2005), May 2005.
11. T. Dierks and C. Allen. The TLS protocol version 1.0. Internet Request for Comment RFC

2246, Internet Engineering Task Force, Jan. 1999. Proposed Standard.
12. eBay. eBay toolbar. http://pages.ebay.com/ebay toolbar.
13. FDIC. Authentication in an internet banking environment. Technical Report FIL-103-2005,

Federal Deposit Insurance Corporation, Oct. 2005.
14. A. Freier, P. Kariton, and P. Kocher. The SSL protocol: Version 3.0. Internet draft, Netscape

Communications, 1996.
15. A. Genkina, A. Friedman, and J. Camp. Net trust. Trustworthy Interfaces for Passwords and

Personal Information (TIPPI) Workshop, June 2005.
16. G. Goth. Phishing attacks rising, but dollar losses down. IEEE Security and Privacy, 3(1):8,

January–February 2005.
17. N. Haller. The S/Key one-time password system. In Proceedings of the Symposium on

Network and Distributed Systems Security, pages 151–157, Feb. 1994.



Phoolproof Phishing Prevention 19

18. A. Herzberg and A. Gbara. Trustbar: Protecting (even naive) web users from spoofing and
phishing attacks. Cryptology ePrint Archive, Report 2004/155, 2004.

19. M. Jakobsson. Modeling and preventing phishing attacks. In Financial Cryptography, 2005.
20. M. Jakobsson and A. Young. Distributed phishing attacks. Workshop on Resilient Financial

Information Systems, Mar. 2005.
21. E. Johanson. The state of homograph attacks. http://www.shmoo.com/idn/

homograph.txt, Feb. 2005.
22. J.Leyden. Fax-backphishingscamtargetspaypal. http://www.channelregister.co.uk/

2005/08/11/fax-back phishing scam/.
23. J. Leyden. Spear phishers launch targeted attacks. http://www.theregister.co.uk/

2005/08/02/ibm malware report/, Aug. 2005.
24. P. MacKenzie and M. K. Reiter. Networked cryptographic devices resilient to capture. Inter-

national Journal of Information Security, 2(1):1–20, Nov. 2003.
25. J. M. McCune, A. Perrig, and M. K. Reiter. Seeing is believing: Using camera phones for

human-verifiable authentication. In IEEE Symposium on Security and Privacy, May 2005.
26. Microsoft. Erroneous VeriSign-issued digital certificates pose spoofing hazard.

http://www.microsoft.com/technet/security/bulletin/MS01-017.mspx , 2001.
27. N. Modadugu, D. Boneh, and M. Kim. Generating RSA keys on a handheld using an un-

trusted server. In RSA Conference 2000, Jan. 2000.
28. S. Myers. Delayed password disclosure. Trustworthy Interfaces for Passwords and Personal

Information (TIPPI) Workshop, June 2005.
29. Out-law.com. Phishing attack targets one-time passwords. http://www.theregister.

co.uk/2005/10/12/outlaw phishing/, Oct. 2005.
30. Passmark Security. Protecting your customers from phishing attacks: an introduction to

passmarks. http://www.passmarksecurity.com/ , 2005.
31. P. F. Roberts. Spear phishing attack targets credit unions. http://www.eweek.com/

article2/0,1895,1902896,00.asp , Dec. 2005.
32. M. Rohs and B. Gfeller. Using camera-equipped mobile phones for interacting with real-world

objects. In Proceedings of Advances in Pervasive Computing, pages 265–271, Apr. 2004.
33. B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C. Mitchell. Stronger password authenti-

cation using browser extensions. In 14th USENIX Security Symposium, Aug. 2005.
34. RSA Security. Protecting against phishing by implementing strong two-factor au-

thentication. https://www.rsasecurity.com/products/securid/whitepapers/
PHISH WP 0904.pdf, 2004.

35. A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla. Pioneer: Verifying
integrity and guaranteeing execution of code on legacy platforms. In Proceedings of ACM
Symposium on Operating Systems Principles (SOSP), pages 1–16, Oct. 2005.

36. Sophos. Do-it-yourself phishing kits found on the internet, reveals sophos.
http://www.sophos.com/spaminfo/articles/diyphishing.html .

37. D. Standish. Telephonic youth. http://www.techcentralstation.com/090903C.html .
38. The Legion of the Bouncy Castle. Bouncy Castle crypto APIs. http://www.

bouncycastle.org.
39. Waterken Inc. Petname tool. http://www.waterken.com/user/PetnameTool/ , 2005.
40. Wikipedia. Phishing. http://en.wikipedia.org/wiki/Phishing .
41. M. Wu, S. Garfinkel, and R. Miller. Users are not dependable - how to make security indi-

cators to better protect them. Talk presented at the Workshop for Trustworthy Interfaces for
Passwords and Personal Information, June 2005.

42. J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password memorability and security:
Empirical results. IEEE Security and Privacy, 2(5):25–31, September–October 2004.

43. E. Ye and S. Smith. Trusted paths for browsers. In Proceedings of the 11th USENIX Security
Symposium. USENIX, Aug. 2002.



A Protocol for Secure Public Instant Messaging�

Mohammad Mannan and Paul C. van Oorschot

School of Computer Science
Carleton University, Ottawa, Canada

Abstract. Although Instant Messaging (IM) services are now relatively
long-standing and very popular as an instant way of communication over
the Internet, they have received little attention from the security research
community. Despite important differences distinguishing IM from other
Internet applications, very few protocols have been designed to address
the unique security issues of IM. In light of threats to existing IM net-
works, we present the Instant Messaging Key Exchange (IMKE) protocol
as a step towards secure IM. A discussion of IM threat model assump-
tions and an analysis of IMKE relative to these using BAN-like logic
is also provided. Based on our implementation of IMKE using the Jab-
ber protocol, we provide insights on how IMKE may be integrated with
popular IM protocols.

1 Introduction and Overview

Instant Messaging (IM) is a popular Internet based application enabling indi-
viduals to exchange text messages instantly and monitor the availability of a list
of users in real-time. Starting as a casual application, mainly used by teenagers
and college students, IM systems now connect Wall Street firms [9] and Navy
warships [8]. The Gartner Group predicts that IM traffic will surpass email traf-
fic by 2006 [31]. A survey report from the Radicati Group suggests that 85% of
businesses use public IM services but only 12% use security-enhanced enterprise
IM services and IM-specific policies [15].

Protocols currently used in popular public IM systems (e.g. AOL, Yahoo!,
MSN and Google Instant Messenger) are open to many security threats [21]. Re-
lying on SSL-based solutions – the most common security protocol of corporate
IM systems – for security in public IM services has major limitations, e.g., mes-
sages may not be private when they go through the IM server [16]. Shortcomings
of public and business IM protocols highlight the need of a secure IM protocol.

Contributions. We present a novel protocol called Instant Messaging Key Ex-
change (IMKE) for strong authentication and secure communications (see Table
1 for definitions) in IM systems. IMKE enables mutual strong authentication
between users and an IM server, using a memorable password and a known
server public key. IMKE provides security (authentication, confidentiality and
integrity) for client-server and client-client IM connections with repudiation.
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Although pairs of users generally share no secret between themselves, IMKE
enables secure and private communications among users through a trusted IM
server, without revealing the contents of users’ messages to the server.

An analysis of the protocol in terms of security using a BAN (Burrows-Abadi-
Needham)-like logic [7] is provided.1 The protocol has also been tested (with no
flaws found) by the AVISPA (Automated Validation of Internet Security Proto-
cols and Applications) formal analysis tool [1]. IMKE may be implemented using
any well-known public key cryptosystem (e.g. RSA, ElGamal, elliptic curve) that
supports encryption, without requiring any additional special constraints (unlike
e.g. SNAPI [20]) for a safe protocol run.2 In contrast, the majority of existing
Password Authentication and Key Exchange (PAKE) protocols which require
no known server public key are based on Diffie-Hellman (DH)-based key agree-
ment; these must be carefully implemented to avoid many known attacks which
exploit the structure of many choices of parameters in DH-based key agreement
(e.g. [19]). Although IMKE has been designed as a secure IM protocol, it may
also provide an alternative to other two- and three-party PAKE protocols (e.g.
EKE [4]) beyond IM. IMKE may be used in server-mediated peer-to-peer (P2P)
communications as well.

We have implemented a prototype of IMKE using the Jabber [30] open-
source IM protocol (for details of the implementation and execution performance,
see [23]). Although implementing IMKE requires changing both the IM server
and client, our implementation provides evidence that IMKE may be integrated
with existing public IM protocols without a large implementation effort, and
keeping underlying messaging structures intact.

Organization. The sequel is organized as follows. §2 outlines motivation for
IMKE and related work. In §3, we briefly discuss threats considered in IMKE,
and list terminology, end user goals, and long- and short-term secrets of IMKE.
The protocol messages are discussed in §4. §5 provides our IM threat model and
a partial security analysis. §6 concludes.

2 Motivation and Related Work

We now discuss the motivation for IMKE, similarities and differences of IMKE
with existing secure IM protocols and two- and three-party PAKE protocols.

Relationship of IMKE to Pluggable and Independent Secure IM Pro-
tocols. A pluggable security protocol – i.e. one that is implemented in a third-
party client “add-on module” without requiring any changes to popular IM
clients and servers – could easily be deployed at the client-end in addition to de-
fault IM clients. Therefore several initiatives, e.g., Off-the-record messaging [5],
Gaim-e [25], have been taken to make IM secure using pluggable security proto-
cols. Limitations of those proposed to date include: client-server messages remain
1 We do not claim to give a full proof of the security of IMKE; and moreover, no such

complete formal proof would be conclusive.
2 However, general requirements for secure choice of public key parameters must of

course be fulfilled.
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plaintext, and the requirement of long-term client private keys, whose secrecy
must be maintained.

Independent secure IM protocols developed in practice, e.g., Secure Internet
Live Conferencing (SILC) [28], do not appear to have been peer-reviewed in
an academic sense, nor designed to be integrated with popular IM protocols. A
lightweight protocol which can easily be embedded into existing IM protocols (by
IM service providers, changing both the IM client and server) seems practical to
achieve security without limiting usability or requiring a large implementation
effort. We propose IMKE to achieve such objectives. Although IMKE requires
changes in both the client and server software, users do not need to maintain
or carry any long-term public key. IMKE also secures client-server communica-
tions.

Relationship of IMKE to Two- and Three-Party Protocols. IM is es-
sentially a three-party system. The IM server’s main role is to enable trusted
communications between users. In traditional models, a third-party is often con-
sidered a disinterested party [3]. In contrast, the IM server plays an active role
in users’ communications (e.g. forwarding users’ messages). Therefore we take
advantage of the presence of an active IM server in IMKE, e.g., by using the
server as a trusted public key distribution center for clients.

Another major difference of IMKE with other three-party systems is that,
although the IM server in IMKE helps establish a secure session between two
clients, the server does not know the session key shared between the clients.
This is a desirable property for consumer IM networks; users may want their
conversations to be inaccessible to the IM server even though they must trust
the server for login, sharing user profiles, etc.

In a typical three-party case, two users start a session3 only when they need
to communicate. The IM scenario is a bit different in the following way: users
authenticate themselves only when they login to the IM server; then users initiate
sessions with other online users whenever they wish to – i.e. logging in to the IM
server does not necessarily precede IM sessions (e.g. text messaging, file transfer).

Two-party PAKE protocols that use a known server public key (e.g. [14])
have similarities with IMKE. These, as well as two-party password-only proto-
cols (e.g. [4]) may be transformed into a three-party protocol in the following
way: run two two-party protocols between the server and each of the users; then
use the established secure channel to distribute communication primitives, e.g.,
public keys among users, thereby providing the communicating users a secure
channel. The advantage of this approach is that several PAKE protocols are
well-scrutinized, and some even come with proofs of security. However, we are
interested in more efficient practical protocols, whereas these solutions may re-
quire up to three extra messages per protocol run – one for sending a client’s
public key to the server and two for verifying the public key. Also, even minor
modifications to an existing protocol may invalidate its security attributes (not
to mention any related security proofs).

3 i.e. authenticating themselves to a trusted server, and each receiving a server-
generated client-client session key.
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An important idea behind IMKE is to avoid number theoretic relationships
between a public key and a password. IMKE uses a known server public key to
encrypt a random (session) key (e.g. 128 bits) and uses that key to encrypt the
(weak) user-password and the user’s dynamic public key. This enables IMKE to
avoid partition attacks [4].

In summary, the design of IMKE is inspired by following considerations: (1)
existing IM security solutions are inadequate to address IM threats; (2) existing
PAKE protocols do not directly fit into the IM communications model; and (3) a
lightweight security protocol, which can conveniently be embedded into popular
IM protocols without breaking underlying messaging structures, is essential for
a greater integration.

3 Setup for IMKE

In this section, we discuss threats considered in IMKE. We list the notation and
terminology used, end user goals, and long- and short-term secrets for IMKE.

3.1 Threats Considered in IMKE

We summarize significant IM threats which are addressed by IMKE. We defer
a more concrete discussion of the IM threat model to §5.1. IMKE provides no
protocol level protection against general software and platform attacks. Further
discussion of IM threats is provided elsewhere (e.g. [21]).

IM connections generally involve a client and a server, or two clients. Most
IM threats arise from these connections being easily compromised. IMKE aims
to provide security (confidentiality, authentication and integrity protection) for
all IM connections. Impersonation attacks based on compromised connections
are also prevented in IMKE, assuming no theft of users’ passwords, including,
e.g., through the use of keyloggers. The security related goal of availability is
beyond the scope of our work – i.e. denial of service (DoS) attacks against IM
clients or the server are not fully addressed by IMKE. However, IMKE helps the
server and clients to limit the extent of these attacks. Replay of captured mes-
sages (from an ongoing session or older sessions) is also detected in IMKE. An
attacker may spoof DNS entries in a user machine (the local DNS cache) to redi-
rect all communications to a rogue IM server. IMKE prevents this attack from
being successful by authenticating the IM server to users by using a password,
and verifying the known server public key (online). IMKE helps complementary
techniques to restrict the propagation of IM worms4 to be more effective by
securing IM connections.

3.2 Notation, Goals and Secrets

We specify IMKE notation and terminology in Table 1. A password is shared
between an IM server and a user. This is the only long-term secret for users
4 e.g., throttling file transfer and URL messages, challenging the sender of a file or

URL message with an automated Turing test; see [22] for details.
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and they choose their initial passwords during the IM account setup. A user
may change the password whenever he/she wishes to do so. The server stores
original passwords.5 The other long-term secret is the IM server’s private key
(for decryption). A server public key generally remains valid for a long time (a
year or more), and a key renewal is done by a client-update, i.e. by sending
users the updated key when they attempt to log in. Clients’ private keys (for
decryption), session keys, and MAC keys are short-term secrets in IMKE. We
assume that IM clients are installed with the digital certificate of the IM server.

Table 1. Notation and terminology used in IMKE

A,B, S Two IM users (Alice and Bob respectively), and the IM server.
IDA User ID of A (unique within the IM service domain).
PA Password shared by A and S.
RA Random number generated by A.
{data}K Symmetric (secret-key) encryption of data using key K.
{data}EA Asymmetric (public-key) encryption of data using A’s public key KUA.
X, Y Concatenation of X and Y .
Ks

AS Symmetric (s) session (encryption/decryption) key shared by A and S.
Km

AS Symmetric MAC key shared by A and S (m is short for MAC).
[X]AS MAC output of data X under key Km

AS .
“Strong”
password
protocol

A passive or active attacker should be unable to gather enough infor-
mation to launch an offline dictionary attack even if a relatively weak
password is used [4].

Secure comm-
unications

Communications where authentication, integrity and confidentiality are
achieved.

End-to-end
security

Securing messages cryptographically across all points between an orig-
inating user and the intended recipient.

Repudiation A way to ensure that the sender of a message can (later) deny having
sent it. Some [5] believe this is important for casual IM conversations.

Forward
secrecy

The property that the compromise of long-term keys does not compro-
mise previously established session keys.

End-user Goals. The following are security-related goals (from end-users’ per-
spectives) in IMKE. Terms denotated by asterisk (∗) are defined in Table 1.
Fulfilling the end-user goals corresponds to the threats we consider in §3.1. We
outline how IMKE achieves these goals in §5.

G1. Assurance of server’s and clients’ identities to the communicating parties
without exposing clients’ passwords to offline dictionary attacks.

G2. Secure communications� between a client and the IM server.
G3. Secure communications for messages directly sent between clients (cf. G5).
G4. Forward secrecy and repudiation.�

5 Alternatively, the server could store only an image or one-way hash of passwords to
minimize the impact of the password (image) file exposure, although this typically
still does not prevent brute force attacks on passwords.
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G5. End-to-end security� for messages that are relayed through the IM server.
G6. Detection of replay attacks on clients and the IM server.

4 The IMKE Protocol

We now introduce the IMKE protocol, along with a discussion on protocol mes-
sages. We defer a more specific security analysis of IMKE messages to §5.2.

An IM session (e.g. text messaging) between two users is established in the
following phases. A and B first authenticate to the server S, then S distributes
A’s public key to B and vice-versa, and then the users negotiate a session key to
follow an IM session. Table 2 summarizes the protocol messages for these phases.
Assume for now that fi denotes a one-way cryptographic hash function (publicly
known, see further discussion below). We describe the protocol messages in the
following way: (1) the password authentication and key exchange, and client-
server communications, and (2) client-client communications.

Table 2. Summary of IMKE messages (see Table 1 for notation)

Phases Message
Labels

Messages

Authentication and Key
Exchange

a1 A → S : IDA, {KAS}ES , {KUA, f1(PA)}KAS

a2 A ← S : {RS}EA , {f2(PA)}KAS

a3 A → S : f3(RS)

Public Key Distribution
b1 A ← S : {KUB , IDB}Ks

AS
, [KUB , IDB ]AS

b2 B ← S : {KUA, IDA}Ks
BS

, [KUA, IDA]BS

Session Key Transport

c1 A → B : {KAB}EB , {RA}KAB

c2 A ← B : {RB}EA , {f6(RA)}KAB

c3 A → B : f7(RA, RB)

4.1 PAKE and Client-Server Communications

In the PAKE phase, A and S authenticate each other using PA, establish a
secret session key, and transport a verified dynamic public key from A to S. The
server’s public key KUS is verified online, using e.g., the public password [14]
method, whereby users verify the hash of the server public key represented in
plain English words. Then the login process between A and S proceeds as follows:

1. A generates a dynamic public/private key pair (KUA, KRA), and a random
symmetric key KAS, and then encrypts KAS with the server’s public key. A
sends message a1 (see Table 2 for message labels) to S.

2. S calculates f1(PA) independently (S looks up PA using IDA), compares
it with the corresponding value received in a1, and disconnects if they mis-
match. Otherwise, S generates a random challenge RS and responds with a2.
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3. A calculates f2(PA) independently and compares it with the corresponding
value received in a2, and disconnects if they mismatch. Otherwise, A calcu-
lates the session key (encryption key) Ks

AS and MAC key Km
AS as in (4.1),

and responds with a3.

Ks
AS = f4(KAS , RS), Km

AS = f5(RS , KAS) (4.1)

4. S independently calculates f3(RS) and compares it with the quantity re-
ceived in message a3. If they mismatch, S disconnects; otherwise, S also
calculates Ks

AS and Km
AS as in (4.1). S now indicates A a successful IM

client login using a message of the form (4.3).

After authentication, a client and server communications include, e.g., a server
sends a user’s contact list, a client requests to communicate with other users. To
exchange data, A and S use:

A → S : {ClientDataA}Ks
AS

, [ClientDataA]AS (4.2)

A ← S : {ServerData}Ks
AS

, [ServerData]AS (4.3)

Caveats. f1 and f2 must differ; otherwise, if an attacker can replace KUS in
A’s system, he can deceive A without knowing PA, i.e. the attacker can make A
readily believe that she is communicating with the legitimate server. Neverthe-
less, even when f1 and f2 differ, replacing KUS with the attacker’s public key
in a user’s machine enables an offline dictionary attack on PA. Having different
f1 and f2 makes the attacker’s active participation in the protocol harder.

RS and KAS must be large enough (e.g. 128-bit) to withstand an exhaustive
search. A must encrypt KUA in message a1. Otherwise the following attack may
succeed. Suppose an adversary generates a new private-public key pair, and is
able to replace KUA with the fraudulent public key in message a1; this enables
the adversary to decrypt RS in a2 and send a correct reply to S in a3. Hence,
IMKE requires the secrecy of A’s public key in the PAKE phase. Examples of
secret “public keys” exist in the literature (e.g. [13]). At the end of the PAKE
phase, A and S zero out KAS and RS from the program memory to help in
achieving forward secrecy (see §5.3).

The duration of the session key (Ks
AS) should be set carefully. This is impor-

tant for clients in an always-connected mode, wherein clients stay logged in to S
for a long period of time (e.g. days or weeks). A new session key should be nego-
tiated after a certain period (e.g. a couple of hours) depending on the expected
security level and size of the session key (e.g. a shorter period for 80-bit keys
than 128-bit keys) to reduce consequences from cryptographic (e.g. brute-force)
attacks on the key. To do so, A and S exchange two random values KAS1 and
RS1 in the following way and generate the new session key and MAC key as
before (cf. (4.1)). Either A or S can begin the key renewal process. The initiator
must stop sending any messages before the new keys are established.

A → S : {{KAS1}ES}Ks
AS

, [{KAS1}ES ]AS (4.4)

A ← S : {{RS1}EA}Ks
AS

, [{RS1}EA ]AS (4.5)
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4.2 Client-Client Communications (Direct and Relayed)

Client to client communications include, e.g., server mediated/relayed messages,
file transfer, audio/video chat. If A wants to send ClientDataA to B (both must
be logged in to S), she first sends her request to communicate with B to S (using
message type (4.2)), and then the messages below follow:

1. A and B receive the other party’s current dynamic public key from S through
messages b1 and b2. Note that B and S authenticate each other and derive
Ks

BS and Km
BS in the analogous way described above for A.

2. Having each other’s current public key, A and B exchange messages c1, c2
and c3. Then A and B derive the session key Ks

AB and MAC key Km
AB:

Ks
AB = f8(KAB, RB), Km

AB = f9(RB, KAB) (4.6)

3. Now, A sends ClientDataA to B:

A → B : {ClientDataA}Ks
AB

, [ClientDataA]AB (4.7)

Caveats. Although client-to-client connection setup messages (c1, c2 and c3) can
be exchanged directly between A and B, we suggest they be relayed through the
server using messages (4.2, 4.3) – i.e. with the additional encryption and MAC –
to reduce threats from DoS attacks on clients. However, while relaying the setup
messages, a malicious IM server can launch a typical man-in-the-middle attack
in the following way. When A notifies S that she wants to communicate with B,
S generates a public key pair for B and distributes the rogue public key to A,
and vice-versa. Now S can impersonate A to B and vice-versa, and thereby view
or modify messages exchanged between the users. Apparently, if users exchange
the connection setup messages directly, this attack could be avoided; but, if A
and B get each other’s network address for direct communication from S (which
is the most usual case), then this attack is still possible. The attack is made
possible – albeit detectable (see below) – by the facts that, (1) pairs of users
do not share any long-term secret, and (2) they do not use any authenticated
(long-term) public key. Note that, this is an active attack where the server needs
to participate in a protocol run online.

In general, IM accounts are anonymous, i.e. users can get an IM account
without giving explicit identification information to the server.6 Therefore, the
motivation to launch the aforementioned man-in-the-middle attack against ran-
dom users appears less rewarding for the server. In a public IM service, if the
server launches this attack against any pair of users, the attack could be ex-
posed, e.g., if that pair attempts to verify their (per-login session) public keys
through, e.g., a dynamically updated web site or another service. In contrast, if
using SSL (see §1), the server has direct access to end-user content, and such an
attack is not necessary. Complex methods, e.g., the interlock protocol [29], may
6 From the IP address of a particular user, the server may be able to retrieve the

user’s location in many cases (e.g. [26]), and thereby associate an IM account to
some (albeit indirect) identifying attributes of a real-world user.
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also be considered to expose an intruding server. An area of future research is
how to reduce the trust assumptions required on the server, and yet still have
an efficient relaying protocol.

At the end of the session key transport (i.e. after c3), A and B also zero out
ephemeral values RA, RB and KAB from the program memory. Message (4.7)
is used to send ClientDataA directly from A to B. For relaying data through
the server, the same message type can be used. If two clients communicate for a
long time (in a session), they may re-negotiate a session key (and a MAC key)
in a similar way as described for the client-server key renewal.

5 Security Analysis

In this section, we provide a partial BAN-like [7] analysis intended to provide
a baseline of confidence in the security of IMKE. The setup for our analysis,
and other security properties of IMKE are also discussed. While BAN analysis
is somewhat informal in certain aspects and is well-known to have shortcomings
(e.g. [6]), it is nonetheless helpful in explaining the reasonings behind security
beliefs of protocol designers, and often leads to security flaws being uncovered.
However, a more rigorous security analysis as well as a proof of security of
IMKE using alternate (non-BAN) techniques would be preferable to provide
supplementary confidence. (Note however, that such a proof does not necessarily
guarantee security; see Koblitz and Menezes [17] for an interesting analysis of
provable security.) We thus consider the BAN-like analysis to be a first step.

As an important additional confidence-building analysis step, we have had the
protocol tested7 using the AVISPA (Automated Validation of Internet Security
Protocols and Applications) [1] formal analysis tool. The AVISPA tool claims to
be a push-button, industrial-strength technology for the analysis of large-scale
Internet security-sensitive protocols and applications. The tool did not to find
any attack against IMKE.

5.1 Setup for the Analysis

Table 3 lists definitions used in the IMKE analysis (borrowed in part from Bur-
rows et al. [7]). Table 4 lists the technical sub-goals of IMKE which are, although
idealized, more concrete and specific than the end-user goals (recall §3.2), and
are of the type which can be verified from a BAN analysis point of view. The
analysis in §5.2 shows how IMKE achieves the technical sub-goals, and leading
to the end-user goals. We also provide operational assumptions and an informal
IM threat model for IMKE.

IM Threat Model and Operational Assumptions. A threat model identi-
fies the threats a system is designed to counter, the nature of relevant classes of
attackers (including their expected attack approaches and resources, e.g., tech-
niques, tools, computational power, geographic access), as well as other envi-
ronmental assumptions. This IM threat model is not what would typically be
7 Test code is available at http://www.scs.carleton.ca/∼mmannan/avispa-imke/
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Table 3. BAN-like definitions used in the IMKE analysis

A believes X User A behaves as if X is true.
A once said X User A at some past time sent a message including X.
X is fresh A message X is said to be fresh if (with very high probability) it has

not been sent in a message at any time before the current protocol
execution.

A controls X User A is an authority on X (she has jurisdiction over X) and should
be trusted on this matter.

Table 4. Technical sub-goals of IMKE

T1. A and S believe that they share a (secret) password PA.�

T2. A believes that she is communicating (in real-time) with a other party that
knows S’s private key.

T3. S believes that it is communicating (in real-time) with a other party that
knows A’s private key.

T4. A believes that she is communicating (in real-time) with a other party that
knows B’s private key.

T5. B believes that he is communicating (in real-time) with a other party that
knows A’s private key.

T6. A and S believe that they share a (secret) session key and a MAC key.
T7. A and B believe that they share a (secret) session key and a MAC key.

� See assumption A1 below; this goal is fulfilled when both parties demonstrate knowl-
edge of the pre-established password PA.

expected of a formalized (academic) threat model, but it nonetheless provides
a practically useful and clear definition of what types of attacks we intend that
IMKE provides protection against. Now we list the IM threat model assumptions.

M1. The IM client software is trusted. By trusted we mean the IM client soft-
ware has not been tampered with and the underlying operating system pro-
tects the IM client’s memory space (RAM and virtual memory) from other
programs (including malicious programs). This assumption is required as
ephemeral secret keys are stored in the program memory.

M2. Communications between IM servers are secure using e.g., encryption and
MAC. IMKE does not provide security for server-to-server messaging.

M3. Software and hardware keyloggers are not installed in a client system.
M4. Clients’ keys stay only in program memory which are zeroed out while

terminating the program.
M5. The server public key stored in client machines is verified at each login

attempt (using e.g. the public password method [14]).
M6. Underlying communication channels need not be secure; attackers are as-

sumed capable of viewing, altering, inserting and deleting any bitstream
transfered from IM clients or servers.

M7. We consider realistic attackers [14] who can exhaustively search over a
password dictionary (e.g. 264 computational steps) but cannot defeat (in a



30 M. Mannan and P.C. van Oorschot

reasonable amount of time) the cryptographic primitives (e.g. 280 compu-
tational steps) used in the protocol.

We provide a few additional comments related to the above assumptions. Mod-
ern operating systems provide reasonable protection for process-memory spaces;
yet, accessing a process’s memory from the context of a compromised privileged
(root or administrator) process is not difficult [2]. Zeroing out memory-resident
secrets is not trivial [11] as well. An attacker can capture a user’s password using
a keylogger, i.e. a program or hardware device specialized in (secretly) recording
keystrokes. Very few, if any, security guarantees can be provided in environments
susceptible to keyloggers. However, threats from keyloggers are not insignificant.
Also, attackers may collect passwords using social engineering techniques. There-
fore, meeting the threat model assumptions in reality is not trivial. Nonetheless,
these challenges are faced by many security protocols in practice. We now list
operational assumptions of IMKE.

A1. Each IM user shares a user-chosen password only with the legitimate IM
server (e.g. established a priori using out-of-band methods), and the pass-
word is not stored long-term on the user machine.

A2. The IM server’s valid, authentic public key is known to all parties.
A3. Each party controls the private key for each public key pair they generate,

i.e. the private key is not known or available to other parties.
A4. IMKE clients use fresh keys and challenge values where specified by the

protocol, e.g., they do not intentionally reuse old values.
A5. The IM server relays clients’ public keys correctly.

5.2 Analysis of IMKE Messages

We analyze IMKE messages and their possible implications in different phases
of the protocol run. Refer to the earlier protocol description (§4) for the actions
each party takes upon receiving a message. We start by analyzing message a1
(recall the message labels in Table 2). Upon successful verification of f1(PA) by
S, the locally calculated f1(PA) by S is the same as the f1(PA) retrieved from
a1. Message a1 thus implies the following. (1) A believes that KAS and KUA

are fresh, as they are freshly generated by herself. (2) Before the protocol run, S
knows that it shares PA with A. Here, S gains the evidence that the keys KAS

and KUA which message a1 links to PA, were generated by and associated with
A. Hence, S believes the identity of A, which partially satisfies goal T1. (3) S
believes that A once said that KAS and KUA are fresh. (4) S believes that A
has a valid copy of its public key KUS.

The successful verification of message a2 means that the locally calculated
f2(PA) by A is the same as the f2(PA) decrypted from a2. This implies the
following. (1) A believes that S knows PA, thus satisfying goal T1. (2) Knowing
the private key KRS enables S to decrypt KAS and KUA in message a1. S
encrypts f2(PA) using KAS; hence, the successful verification of f2(PA) by A
implies that A is communicating (in the current protocol run) with a party that



A Protocol for Secure Public Instant Messaging 31

knows S’s private key, thus satisfying goal T2. (3) A believes that the current
message a2 is fresh as KUA is fresh; this provides assurance to A that the current
protocol run is not a replay. (4) A believes that S once said that RS is fresh.

The successful verification of message a3 by S means that the locally cal-
culated f3(RS) by S is the same as received in a3. This and the login success
response from S to A imply the following. (1) S receives the evidence that A
knows her private key KRA, otherwise A could not decrypt RS in message a2.
Hence, goal T3 is established. (2) The current message a3 is fresh as RS is fresh;
this guarantees S that the current protocol run is not a replay. (3) In message a2,
A retrieves RS using her dynamic private key for the current protocol run. At
this point only S has a copy of A’s public key. Therefore from the login success
message, A believes that S possesses a valid copy of KUA. (4) As both A and
S derive the session key Ks

AS and MAC key Km
AS from their ephemeral shared

secrets (KAS and RS), goal T6 is achieved.
From messages b1 and b2, A and B get each other’s public keys from S securely.

In b1, A receives the public key of B (KUB) encrypted under the shared key
Ks

AS providing confidentiality of KUB. Also, the MAC in b1 provides integrity
of KUB. Message b2 provides similar guarantees to B for A’s public key.

The successful verification of messages c1, c2 and c3 implies the following. (1)
A believes that she shares KAB with B, as only B could decrypt RA in c1 and
respond with a function of RA in c2. (2) B believes that he shares KAB with A,
because only A knows KRA which is necessary to recover RB for use in message
c3, and the chain of messages links RB with RA, and RA back to KAB. (3) A and
B achieve some assurance of freshness through the random challenges RA and
RB respectively. (4) A and B receive each other’s public keys securely from a
trusted source S (in messages b1 and b2). The successful verification of message
c2 provides the evidence to A that B knows the private key corresponding to B’s
public key which A received earlier from S, thus satisfying goal T4. Message c3,
when verified, provides the similar evidence to B, thus satisfying goal T5. (5) A
and B derive the session key Ks

AB and the MAC key Km
AB from their ephemeral

shared secrets (KAB and RB), thus goal T7 is achieved.

Satisfying End-user Goals. We now provide informal reasonings regarding
how end-users’ goals (recall §3.2) are satisfied. We argue that in the PAKE phase
of IMKE, it is computationally infeasible to launch offline dictionary attacks on
PA (assuming our assumptions in §5.1 are not violated). To recover f1(PA) from
a1, an attacker apparently has to guess KAS , which is computationally infeasible
if KAS is generated from a large key space (e.g. 128-bit). Another way to recover
f1(PA) is to learn KAS by guessing the server’s private key. Brute-force attacks
on KAS or KRS appear to be computationally infeasible if the key length is
chosen appropriately. To recover f2(PA) from a2, an attacker must guess KAS ,
which is infeasible. This apparently makes PA resistant to offline dictionary
attacks. As goal T1 is fulfilled in messages a1 and a2 without exposing PA to
offline dictionary attacks, IMKE achieves goal G1. Goal T6 establishes that
A and S achieve confidentiality, and integrity (with authentication) using the
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secret session key Ks
AS and the MAC key Km

AS respectively. Technical sub-goal
T6, along with G1, now satisfies goal G2.

A and B do not authenticate each other directly. They trust the other party’s
identity as they receive each other’s public key from S and trust S on the au-
thenticity of those public keys. Thus fulfilling sub-goals T4, T5 and T7 provides
A and B a way to communicate securely and satisfies goal G3.

Message authentication between A and B is achieved by MACs, instead of
digital signatures. The same session and MAC keys are shared between A and
B, which provide confidentiality and authentication of the messages exchanged.
Any message created by A can also be created by B. Therefore the sender of a
message can repudiate generating and sending the message. Clients’ public keys
are also temporary, hence binding an IM identity with a real user is technically
impossible. The confidentiality of communications channels between users is pro-
tected by session keys generated from random nonces, instead of users’ long-term
secrets; so, the exposure of long-term secrets does not compromise past session
keys. Thus repudiation and forward secrecy (goal G4) of users’ messages are
achieved (for more discussion on forward secrecy see §5.3). Direct or relayed
messages (cf. message type (4.7)) between A and B are encrypted with Ks

AB,
which is shared only between A and B (goal T7). Therefore S (or other malicious
parties) cannot decrypt them, and thus goal G5 is apparently satisfied.

If message a1 is replayed to a server by an attacker, the attacker cannot de-
crypt message a2 without knowing A’s private key and KAS. If message a2 is
replayed to A by an attacker in a separate run of IMKE, A will refuse to reply
with a3 as she will fail to decrypt f2(PA) (A randomly generates KAS in each
run of the protocol). After A has successfully logged in to the server, A receives
only messages of type (4.3) from S. Therefore, if message a2 is replayed to A
after she logs in, A can readily detect the replay, and discard that message. If
message c1 is replayed to B by an adversary, the adversary gains no useful infor-
mation from B’s reply in message c2. To detect replay attacks in data messages,
ClientDataA and ServerData are appended/prepended with time-stamps or se-
quence numbers, with appropriate checks by the receiver (e.g. [24, p.417–418]).
Freshly generated session keys and clients’ public keys help in detecting replays
from earlier protocol runs. Hence, goal G6 is apparently satisfied.

Hence we have provided informal sketches of how end-user goals are satisfied.

5.3 Other Security Attributes of IMKE

Below we discuss a few more security attributes of IMKE. These properties make
IMKE resistant to several recently devised attacks on security protocols.

Chaining of Messages. In the PAKE phase, messages a1 and a2 are crypto-
graphically linked by KUA, and messages a2 and a3 are cryptographically linked
by RS . Moreover, both KUA and RS are dynamically generated in each protocol
run. According to Diffie et al. [12] this kind of the chaining of protocol messages
may prevent replay and interleaving attacks.
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Insider-Assisted Attacks. If either of A or B is a rogue user8 participating in
IMKE, we need to guard against the following attack: A or B learns the password
of the other party, and the session keys that they share with other users. In
IMKE, users never receive a protocol message containing any element related to
other users’ passwords or session keys; thus, IMKE avoids these insider-assisted
attacks even when IMKE assumptions are violated by malicious users.

Exposure of Secrets. IMKE provides forward secrecy (see Table 1 for def-
inition) as the disclosure of a client-server password (long-term secret keying
material) does not compromise the secrecy of the exchanged session keys from
protocol runs (using that password) before the exposure. Exposure of the IM
server’s long term private key allows an attacker to launch offline dictionary
attacks on f1(PA) although the attacker cannot compromise the session key or
readily impersonate S. If the session key Ks

AS between A and S is exposed,
an attacker cannot learn PA. However, the disclosure of an ephemeral key KAS

(which is supposed to be zeroed out from the program memory after the PAKE
phase) enables an offline dictionary attack on f1(PA). Although the disclosure
of A’s dynamic private key (which exists in the program memory as long as A
remains logged in9) enables an attacker to reply correctly in message a3, IMKE
still provides forward secrecy.

When both the IM server’s long term private key and a user’s dynamic private
key are exposed, an attacker can calculate the session key from the collected
messages of a successful protocol run; in this case, the notion of forward secrecy
breaks (for the targeted session).

In addition, IMKE is (apparently) also resistant to the Denning-Sacco at-
tack [10], many-to-many guessing attack [18] etc. as discussed elsewhere [23].

6 Concluding Remarks

IMKE enables private and secure communications between two users who share
no authentication tokens, mediated by a server on the Internet. The session key
used for message encryption in IMKE is derived from short-lived fresh secrets,
instead of any long-term secrets. This provides the confidence of forward secrecy
to IMKE users. IMKE allows authentication of exchanged messages between two
parties, and the sender is able to repudiate a message. Also, IMKE users require
no hardware tokens or long-term user public keys to log in to the IM server.

Group-chat and chat-room [21] are heavily used features in IM. A future
version of IMKE would ideally accommodate these features, as well as an online
server public key verification method. Introducing methods to ensure human-in-
the-loop during login, e.g., challenging with an automated Turing test, can stop
8 For example, someone who, maliciously or naively, exposes his/her private key, pass-

word, or session/MAC keys.
9 Private keys may easily be extracted from memory as Shamir and van Someren [32]

outlined, if the operating system allows reading the entire memory space by any
program. However, we assume that such an operation is not allowed; see assumption
M1 in §5.1.
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automated impersonation using compromised user name and password. However,
deploying such a method for large IM networks may put an enormous load on IM
servers; measures as outlined by Pinkas and Sander [27] can help minimize this.

The growing number of IM users in public and enterprise world provides
evidence that IM is increasingly affecting instant user-communication over the
Internet. We strongly advocate that security of IM systems should be taken
seriously. IMKE is a step towards secure public IM systems. Note that typical
end-users of IM systems are casual. A secure IM protocol, implemented in a
restrictive user interface, might force such casual users to switch to a competing
product that is less secure but more user-friendly. We emphasize that usability
issues must be considered while designing a secure IM system.
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Abstract. New or emerging technologies such as e-services, e-/m-commerce, 
Cyber-payment, mobile banking and pay-as-you-go insurance services are 
opening up new avenues for criminals to commit computer-related financial 
fraud and online abuse. This serious situation has been evidenced by the UK In-
formation Security Breach Survey 2004 and the UK National Hi-Tech Crime 
Unit’s recent report, “Hi-Tech Crime: The Impact On UK Business1”. It high-
lights that online financial fraud is one of the most serious e-crimes and takes 
the lion’s share of over 60% of e-crime costs, and most of the financial fraud 
cases are committed by authorised insiders. Authorised insiders can more easily 
break the security barrier of a bank or a financial institution due to their operat-
ing privileges on the banking automated systems. Failure to detect such cases 
promptly can lead to (sometimes huge) financial loses and damage the reputa-
tion of financial institutions. This paper introduces a real-time fraud detection 
solution - the Transaction Authentication Service (TAS) - to tackle the problem 
of transaction manipulation by authorised insiders. The paper also introduces an 
important building block used in the design of TAS, Automated Banking Cer-
tificates (ABCs).  

Keywords: Data integrity, financial fraud, Insider threats, Security architecture. 

1   Introduction 

With the increasing popularity of the Internet and Information Technology (IT), 
nearly all the sectors, such as the public, the retail and the banking and financial  
sectors, are adopting e-services and improving their Internet presence. Electronic fi-
nancial services reduce costs, increase operational efficiency, and allow banking 
institutions to reach out to more customers. However, the e-service provisions are also 
opening up new avenues for criminals to commit computer-related financial fraud and 
online abuse. This serious situation has been evidenced by the UK Information Secu-
rity Breach Survey 2004 and the UK National Hi-Tech Crime Unit’s recent report, 
“Hi-Tech Crime: The Impact On UK Business1”. It highlights that online financial 
fraud is one of the most serious e-crimes and takes the lion’s share of over 60% of e-
crime costs, and most of the financial fraud cases are committed by authorised insid-
ers. This is because authorised users (e.g. banking employees) are assets and have the 

                                                           
1 http://www.nhtcu.org/ 
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privileges to access and operate on automated banking systems and to perform finan-
cial transactions using financial services provided by these systems. At the same time, 
they are also threats and in the position to more easily break any security barrier im-
plemented in these systems and services [3]. In addition, the nature of e-services al-
lows more fraudulent transactions to be performed within a given time period in com-
parison with manual ways of performing transactions. Each year, billions of pounds 
are lost in the banking sector due to fraud committed by authorised insiders through 
the exploitation of system vulnerabilities [2]. Therefore, more effective security 
measures are needed to detect promptly fraudulent or erroneous financial transactions 
performed by authorised users and to ensure transaction integrity. 

In existing e-transaction systems, a transaction is said to be ‘authentic’ (1) if it is 
performed by an authorised entity (hardware, software or user), (2) if it has not been 
altered since it was generated, and (3) if it is not a replay of an earlier valid transac-
tion. By this definition, an illegitimate transaction (e.g. an unauthorised transaction 
performed to launder dirty money) performed by an authorised user (e.g. a bank em-
ployee) will be regarded as authentic. In current banking systems, such transactions 
can only be identified by an audit that is usually executed after the transactions have 
already taken place. A more effective solution to fight against these fraudulent trans-
actions performed by authorised insiders would be a real-time mechanism that can 
identify inconsistencies in transactions and detect them while they are taking place. 
This paper introduces such a solution, called Transaction Authentication Service 
(TAS). It makes use of Automated Banking Certificates (ABCs) – integrity protected 
transaction audit trails – and the workflow technology to ensure that any malicious or 
accidental alteration or manipulation of any of the transactions in a set entered by 
authorised users can be detected promptly.  

In detail, the next section of this paper provides background on cryptographic 
primitives and security techniques which are used for the TAS design. In Section 3, 
notation and an example using the notation is presented. Section 4 provides identifica-
tion of security breaches in banking transaction processes. In Section 5 the idea and 
the design requirements of an ABC are described. Section 6 gives the design of two 
types of ABC, intra-system and inter-system ABCs, and finally, the conclusion of the 
work is given in section 7. 

2   Cryptographic Primitives and Security Techniques 

This section gives an overview of the cryptographic primitives and security tech-
niques that are used in the design of ABCs and TAS. 

2.1   User Identification and Data Authentication 

Traditionally, in order to prove that a transaction is authentic (i.e. the transaction is 
originated from an authorised entity, the data in the transaction has not been altered 
since it was created, and the transaction is not a replay of an earlier transaction), two 
authentication measures are required. One is the user identity authentication [16], and 
the other is data authentication [18]. 
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User identity authentication is necessary to ensure that a transaction has come from a 
claimed source or performed by a claimed originator. This is typically done by having 
the user to demonstrate the possession/knowledge of a secret (e.g. a password or a 
private key) or possession of a smart token locked with a PIN (personal identification 
number) or some biometrics (e.g. fingerprint). This user identity authentication 
mechanism is used to help to prevent an unauthorised user from accessing a sys-
tem/service and/or performing a transaction.  

Data (or message) authentication is typically achieved by appending to the original 
message an authenticator, which is generated using a secret shared between the sender 
and the receiver, or a digital signature signed by the transaction originator. The au-
thenticator is a function of the data in the transaction as well as the secret (or the sig-
nature key). When the authenticator and the message are received, the receiver calcu-
lates a fresh authenticator using the secret (or recovers the hash value in the signature) 
and the data received, and then compares this freshly computed authenticator (or the 
hash value) with the one received (or recovered). If both values are equal, then the 
data is said to be faithful to the one originated from the sender, and therefore the 
transaction is said to be authentic. The data authentication method is used to detect 
counterfeit or altered messages. If the transaction has been manipulated at source 
prior to being transmitted by the authorised sender, then this authentication method 
cannot detect the fraudulent manipulation.  

The above discussions state that the user identity and message authentication methods 
can not detect fraudulent transactions manipulated at source by the authorised sender.  

2.2   One Way Collision Free Hash Functions 

The first person to prove the existence of collision free hash functions was Damgard 
[4]. A one-way collision free hash function is an algorithm that transforms data of any 
length into a fixed length data known as the hash value (or Message Digest). A hash 
value is like a checksum of a block of data. It should be one-way in that, given a hash 
value, it is nearly impossible to recover the data that produced the given hash value. 
In other words, it is computationally infeasible (i.e. it would take a very long time, 
e.g. hundreds of years, using a fast available computer) to invert the transformation. 
Moreover, an impostor should not be able to generate two sets of different data that 
would generate the same hash value [4, 17]. This property is called collision-free. A 
hash function possessing both one-way and collision-free properties is usually called a 
cryptographic (secure) hash function. However, it is important to highlight that some 
but not all hash functions have been broken by collision as shown in [20].  

A cryptographic hash, with no current security function which can replace its func-
tionality, has many uses in security arena. For instance, its one-way property can be 
used for password confidentiality preventing clear-text passwords having to be stored 
in a computer system [9]. Instead of storing a password in clear-text, the hash value of 
a password is stored instead. A user of an operating system where a password authen-
tication method is implemented first enters a clear-text password. Then this clear-text 
password is used as the input of a one-way collision free hash function to generate the 
hash value of the password. The hash value is then compared to the authentic pass-
word hash value stored in the system. In this way, clear-text passwords are not  
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exposed during transmission or in storage. This scheme provides password confiden-
tiality allowing a user to prove the knowledge of a secret (i.e. the password) without 
exposing the secret. This method, however, does have one disadvantage, i.e. if an 
(authorised) entity, e.g. the system administrator, is able to add an entry for an unau-
thorised user, then the user, even if he/she is unauthorised, will still be able to access 
the system. In other words, without additional security control, this simple hashed 
password solution can prevent (to some extent) unauthorised accesses by external en-
tities, but it can not protect the system against manipulation or threats imposed by 
authorised insiders (i.e. the system administrator). 

In addition, a cryptographic hash function, jointly with the use of a symmetric key, 
can be used to generate a message authenticator, as mentioned in Section 2.1. For ex-
ample, as initially proposed by Tsudik [16], a message (M) to be protected, and a se-
cret key (K) shared by a group of authorised entities, are concatenated and then 
hashed to produce a key hashed value, HV, i.e. HV=hash(M||K), where || stands for 
concatenation. This scheme imposes some control in that only the entities with the 
knowledge of the secret key could generate an authentic hash value. However, due to 
the nature of the symmetric key cryptosystem, namely, more than one entities sharing 
the same key, the scheme does not protect against false denials that an event has actu-
ally taken place.  

In systems dealing with e-transactions, the non-repudiation (i.e. protection against 
repudiation) security property is essential. A popular security service used to provide 
non-repudiation is a digital signature. 

2.3   Digital Signatures 

A digital signature is a signed digest typically used for entity identification and au-
thentication. It can also be used for proof of message authenticity. In comparison with 
keyed hash values, this authentication method is slower, but can protect against non-
repudiation. Digital signatures are implemented using an asymmetric cryptosystem 
[8]. In an asymmetrical cryptosystem, two matching keys are required per user; one of 
the key pair is privately held, and the other is made public (usually through the use of 
public key certificates). For example, if Ann is an entity then she is the only one that 
knows her private key, whereas all the communicating parties have access to her pub-
lic key. The private key can be used by Ann to sign her signature on a message. The 
counterpart, say Bob, uses Ann’s matching public key to verify if the message is in-
deed from the claimed sender, i.e. Ann, and that the message has not been changed 
during transit. This idea, first introduced by Diffie and Hellman [7], can be summa-
rized as follows. If Ann needs to sign some data, M, she uses her private key KrAnn to 
generate a signed token, CT, on the hashed value of M with her private key, i.e. 
CT=EKrAnn(hash(M)) (for the sake of simplicity, here we assume that some other essen-
tial information such as time stamps and the identity of the signer are also part of 
message M). Ann then sends the M together with token, CT, to Bob. Bob checks the 
message by using Ann’s public key. If the authentication procedure is successful then 
Ann cannot easily repudiate that she is the author of the message because she is the 
only one who knows the private key.  

Digitally signing the hash value of M, instead of signing the entire message M, has 
several advantages [5]. The major advantage is that the signing process is made more  
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efficient because the hash value of some data is in most cases smaller in length than the 
original data, thus improving the response time of the digital signature signing process. 
With public key cryptosystems, a trusted third party is required in order to certify that 
the public key is the one that indeed belongs to Ann (i.e. it is a trustworthy public key 
and Ann has the matching private key). The first working asymmetric cryptosystem was 
proposed by Rivest, Shamir and Adleman [15], i.e. the so called RSA algorithm.  
Though a digital signature can provide message integrity, authenticity and non-
repudiation protections, it along may not be sufficient where integrity is required for a 
group of inter-related messages as a whole. In other words, when a group of messages 
should be verified to determine if any of the messages in the group has been changed, 
deleted or omitted from the group, an additional mechanism is required. Interleaving 
data structures is such a mechanism that can be used for this purpose. 

2.4   Interleaving Data Structures  

Interleaving data structures [1] link two or more data in a group. It is important to  
define boundaries of this group. For example, the group can be defined as all data 
generated during one day by an automated financial system. An interleaving data 
structure provides integrity protection to a group of data so that any changes to the 
group can be detected.  

Audit trail files frequently use interleaving data structures [1]. One strategy used to 
interleave data is to include bits from the previous created data so that a sequence is 
produced. For example, let us say that we have three data structures, named as data2, 
data3 and data4, and each data structure contains three fields. The first field contains a 
sequence number assigned to the data record of the data structure. The second field 
contains the data record of this data structure. Let us say, X, R, and U are the records 
of data2, data3, and data4, respectively. The third field contains the sequence number 
of the preceding data structure. Thus, we have, data2= {M, X, M-1}, data3= {M+1, R, 
M}, data4= {M+2, U, M+1}. In this way, if data3 is deleted from the audit log file 
then we can detect that there is a missing data record by observing the sequence on 
data4 and the sequence on data2. Equally, if a new unauthorised data record is in-
serted into the group, then this new record will not have the sequence number match-
ing with the rest of the records, and the unauthorised data record can be detected. 
Therefore, we say that the interleaving data structure provides us with a means to pro-
tect the integrity of a set of data.  

2.5   Digital Time Stamping  

In our solution to be presented shortly, we use a time stamping scheme similar to that 
presented by Haber and Stornetta in [10]. The authors proposed to design an inter-
leaving data structure for providing a digital time stamping service. In this system, a 
user makes a request to the time stamping service by sending its identification and the 
hash value of the document, M, that requires the timestamp. The timestamp system 
responds by creating a signed e-data record (Cseq_num) with a timestamp in the form of 
a digital certificate. The digital certificate contains a sequence number (seq_num), the 
date and time (date_time) when this timestamp is generated, the identification of the 
user (id_user) making the request, a hash value of the document (hash (M)), and some 
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linking bits (link_bits) from a previous issued certificate. In detail, the signed certifi-
cate can be written as: Cseq_num(signed certificate)=(seq_num, date_timeseq_num, 
id_userseq_num, hash(M)seq_num, link_bitsseq_num), where link_bitsseq_num = 
date_timeseq_num-1, id_userseq_num-1 , (hash(M))seq_num-1, (hash(link_bits))seq_num-1. A third 
party called the time stamping authority provides the time stamping service. A secure 
interleaving data structure and the provision of the time stamping service by a trusted 
entity prevents users from backdating or forward dating their documents. It also pre-
vents users from denying that the document has been time stamped. This type of inter-
leaving data structure can link a group of data one after the other (i.e. lineally).  

2.6   Merkle’s Hash trees 

A Merkle Hash Tree (MHT) is a more elaborated interleaving data structure [12]. It is 
a binary tree with two types of nodes; one containing authenticators and the other 
containing the clear-text (e.g. Data 1 and Data 2) used for generating the authentica-
tors in the MHT. Each parent in the tree contains the hash value of its two children 
(see Fig. 1). Leaves of the MHT are clear-text nodes, whereas the root contains the 
authenticator of all the data in the tree. In Merkle’s proposal, the root of the tree is 
transmitted prior to the authentication procedure. An entity that needs to authenticate 
one data from a MHT requires only those hash values starting from the leaf and pro-
gressing to the root. This reduces the authentication data required for the authenticat-
ing procedure from n, where n is the number of data to be authenticated from a tree, to 
log2n. One further advantage of this scheme is that in a MHT it is impossible to add 
new leaves once the root has been computed. This can help detect data that are added 
or deleted by authorised users.  

 

Parent (root)

Child1 Child2

Authenticator = hash (data1 || data2)

Data 1 Data 2

Authenticator

 
Fig. 1. An example of a Merkle hash tree 

Merkle’s hash trees have been used in several security solutions such as Certificate 
Revocation Lists [11], and Authenticated Dictionaries [13]. We use them in our de-
sign to provide an audit trail that enables prompt detection of unauthorised financial 
transactions performed by authorised users.  

3   Notation 

In the remaining part of this paper, the following notation is used: 

lk
jiCT  (1) 



42 C. Corzo et al. 

Notation shown on (1) stands for a transaction message generated by an authorised 
user i working for bank j using an automated service k for task l. In other words: 
i: refers to an authorised user who generates the transaction.  
j: refers to the bank for which the user i is working for. 
k: refers to an automatic financial service. Five different financial services are used 
throughout this paper, as specified below:  

k = 1; Financial Exchange (FE) 
k = 2; Automated Clearing House (ACH) 
k = 3; Central Security Depository (CSD) 
k = 4; Automated Accounting System (AAS) 
k = 5; MS for Mail Services (MS) 

l: is a task identifier indexing the following tasks:  

l =1 to buy a market instrument; 
l =2 to sell a market instrument; 
l =3 to pay a market instrument that has been reported as bought; 
l =4 to transfer a market instrument that has been reported as sold; 
l =5 to register a financial transaction; and 
l =6 to report one of the previously described financial transactions. 

3.1   An Illustrating Example  

Fig. 2 illustrates the use of the notation. The values assigned to each index in CT de-
pend on the tasks carried out within a banking workflow. 

Suppose that Ann (i.e. i=1), Bob (i.e. i=2), Cat (i.e. i=3) and Dan (i.e. i=4) are 
authorised users (i.e. employees) working for bank A (j=1), and that bank A is a 
buyer. At bank A, the following transactions are performed: 

• Ann buys a market instrument using FE ( 1,1
1,1CT ).  

• Ann reports her financial transaction to Bob using MS ( 5,6
1,1CT ). 

• Bob makes a payment transaction using ACH ( 2,3
2,1CT ). 

• Bob reports his financial transaction to Dan using MS ( 5,6
2,1CT ).  

• Dan registers the payment made by Bob using the AAS ( 4,5
4,1CT ) upon the transfer 

transaction made by Sue.  

Similarly, the employees from bank B (i.e. the selling bank), Fraser (i.e. i=1), Steve 
(i.e. i=2), Sue (i.e. i=3) and Sam (i.e. i=4), will perform a set of corresponding tasks 
related to the selling tasks mentioned above. These corresponding tasks constitute an-
other workflow in Bank B. 

• Fraser sells a market instrument using FE ( 1,2
1,2CT ). 

• Fraser reports his financial transaction to Sue ( 5,6
1,2CT ) using MS. 

• Sue then transfers a market instrument ( 3,4
2,2CT ) using the CSD. 

• Sue reports her financial transaction to Sam 5,6
2,2CT  using MS.  
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Fig. 2. A graphical example showing workflow activities 

• Sam registers the transfer of a market instrument made by Sue using the AAS 

( 4,5
4,2CT ) upon the payment transaction made by Bob.  

The above example illustrates that a single stock dealing activity generates two sepa-
rate workflows. One is at the buyer bank (i.e. bank A), and consists of 

tasks 1,1
1,1CT , 6,5

1,1CT , 2,3
2,1CT , 6,5

1,2CT , 4,5
4,1CT , and the other is by the seller bank (i.e. 

bank B), and consists of 1,2
1,2CT , 6,5

2,1CT , 3,4
2,2CT , 6,5

2,3CT , 4,5
4,2CT .  

4   Identifying Security Breaches  

In the above example, we can identify three security problems. The first problem is that 
Sue (from Bank B) may decide not to transfer a market instrument previously paid by 
bank A. In such circumstances, bank A will not be able to detect easily when the market 
instrument has not been transferred. In other words, one bank alone cannot easily audit 
the fulfilment of related tasks performed jointly by two or more counterpart banks.  
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Existing auditing procedures implemented for verifying the integrity of a flow of finan-
cial transactions is based merely on internal workflow tasks leaving out tasks performed 
by its counterpart bank, which may affect the outcome of financial activities (i.e. limited 
and static workflow definitions). 

The second problem is that, currently, although external auditing services do gen-
erate audit trails for those financial transactions entered in each automated financial 
service, these audit trails are not sent to the financial institutions using these services 
(i.e. incomplete audit trails). In such circumstances, if Ann decides to manipulate the 
report that she sends to Bob (internally), either maliciously or accidentally by mis-
take, then bank A will probably not be able to detect such integrity drifts promptly. 

The third problem is that Ann’s report to Bob (of her financial transaction) depends 
totally on the information given by Ann. is the information received by Bob is not 
cross-checked with data on the financial service where Ann entered her financial 
transaction. In other words, Bob may not get a truthful report of Ann’s activity be-
cause the verification procedure does not enable the involved parties (including the 
financial services) to crosscheck and verify the authenticity of financial transactions 
jointly performed.  

In order to solve these problems we re-define the current audit workflow into one 
that includes an audit trail of e-tasks carried out by users from the same bank (e.g. 
Bank A), as well as the audit trail of related e-tasks performed by its counterpart (i.e. 

Bank B).This  newly redefined audit workflow contains 1,1
1,1CT || 6,5

1,1CT  || 2,3
2,1CT  

|| 6,5
1,2CT   || 4,5

4,1CT  || 1,2
1,2CT  || 6,5

2,1CT  || 3,4
3,2CT  || 6,5

2,3CT   || 4,5
4,2CT . 

Our strategy is to use a more complete data flow generated from a set of related 
tasks within this newly re-defined workflow in order to identify unauthorised finan-
cial transactions entered by authorised users. The new workflow is also dynamic, as 
shown in Fig. 3. For example, a financial transaction entered by Ann can trigger a fi-
nancial transaction entered by Bob. By looking at the data flow generated from Ann`s 
task, we can see that if Bob performs a payment, which has not triggered a corre-
sponding transaction at Ann’s side then there is a possibility that Bob may have 
performed either by mistake or on purpose an unauthorised financial transaction. In 
addition, Ann’s financial transaction should have been triggered by a financial trans-
action entered at bank B (i.e. Fraser’s financial transaction at bank B). We propose an 
audit trail, which is gathered and sent to both parties (i.e. bank A and Bank B) so that 
a crosscheck verification procedure (upon authentication) can take place. We call this 
authentication procedure the Transaction Authentication Service (TAS). We believe 
that TAS can detect integrity drifts within a workflow. We have not found in our lit-
erature review other systems aiming to detect unauthorised financial transaction  
entered by authorised users in this way. 

TAS is a security service that consists of three main building blocks: 

• An audit agent: responsible for gathering information and verifying the relation-
ships between two or more audit trails, and linking them depending on their rela-
tionships.  

• A mail service: responsible for dispatching the audit logs to another corresponding 
audit agent.  
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Fig. 3. A graphical example of a dynamic workflow cycle 

• An Automated Banking Certificate (ABC): an integrity-protected audit trail, used 
to crosscheck and verify financial transactions generated from banking workflow 
activities.  

We, in the following section, specify the security requirements of the ABC. 

5   Requirement Specification  

The main objective of designing ABCs is to enable cross transaction authentication 
within the newly re-defined workflow. For this purpose, we need to devise a system-
atic and structured means to generate, collect and maintain an integrity-protected au-
dit trail related to a complete financial transaction workflow.  This audit trail is done 
with an ABC.  

The following requirements have been specified for the design of the ABCs. 
1. Authenticity: to provide the means to enable a third party to verify that: 

a. An ABC is generated by an authorised entity. 
b. An ABC has not been altered after its creation. 
c. An ABC is not a replay of an earlier valid financial transaction. 

2. Completeness: to provide the means to enable a third party to verify that: 

a. Two or more financial transactions are related and have been performed 
through the use of two or more automated financial systems. 

b. There is no financial transaction that has been overlooked. 

3. Adaptability: to provide flexible means to reflect the relationships among a set of 
related transactions within a workflow. These transactions can have the following re-
lationships:  
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a. One-to-one: One financial transaction is entered into one automated financial 
service and subsequently one financial transaction is entered into a directly 
related automated financial service. For example, Ann makes a deal to buy a 
£5 bond in the FE automated financial service, Bob completes Ann’s £5 deal 
by making a payment of £5 using the ACH automated financial service. 

b. One-to-many: One financial transaction is entered into one automated finan-
cial service and subsequently more than one financial transaction is entered 
into a directly related automated financial service. For example, Ann makes a 
deal to buy a £5 bond in the FE automated financial service, Bob completes 
Ann’s £5 deal by making two £2.50 payment financial transactions using the 
ACH automated financial service. 

c. Many-to-one: More than one financial transaction is entered into one auto-
mated financial service and subsequently one financial transaction is entered 
into the subsequent automated financial service. For example, Ann makes 
two deals to buy one bond in each financial transaction by making use of the 
FE automated financial service. One deal is to buy a bond worth £3 and the 
other deal is to buy a bond worth £2, to the same bank. Bob completes Ann’s 
deals by making one £5 payment using the ACH automated financial service. 

d. Many-to-many: More than one financial transaction are entered into one 
automated financial service and more than one financial transactions are en-
tered into the subsequent automated financial service. For example, Ann 
makes two deals to buy one bond in each financial transaction. One deal is to 
buy a bond worth £3 and the other deal is to buy a bond worth £2, to the 
same bank, by making use of the FE automated financial service. Bob com-
pletes Ann’s deals by making two payments; one for £2.50 and the other one 
for £2.50, both are made using the ACH automated financial service.  

6   Automated Banking Certificates (ABCs) 

An ABC is a data structure that fulfils the requirements described in the previous sec-
tion. It allows to the grouping of data records securely according to the way in which 
financial transactions take place. Each group, named transaction set from now on, 
contains a group of related financial transactions. For example, if Ann buys a market 
instrument worth £5, and Bob pays for this market instrument then these two financial 
transactions are grouped in the same transaction set.  

A complete banking certificate (complete ABC) is a binary tree containing one 
transaction set, as shown in Fig. 4. The leaves in the complete ABC are called intra-
system ABCs and the parents in the tree are called inter-system ABCs. Each intra-
system ABC contains the audit data records of one financial transaction entered into 
one automated financial service. Each inter-system ABC contains the data that links 
the two related intra-system ABCs. Intra-system ABCs in one complete ABC can re-
sult from two or more related automated financial services increasing the depth of the 
tree. Intra-system ABCs and Inter-system ABCs are linked together depending on the 
workflow cycle formed from financial transactions generated by an activity.  

An ABC provides the means to fulfil the requirements identified in section 5, i.e. 
3a, 3b, 3c and 3d, as illustrated in Fig. 5. 
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Fig. 4. A complete ABC 
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Fig. 5. Adaptation of a complete ABC 

Each intra-system ABC (i.e. CT) contains several items of data, each with a specific 
purpose. It consists of a sequence number (seq_num), the identification (id_user), date 
and time (date_time), details of the financial transaction record (detail_ft), and certain 
linking information (link_bits), which come from the previously issued intra-system 
ABC. The form of an intra-system ABC is as follows: 
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link_bit)detail_ft,date_time,id_user,um,hash(seq_ntor)KR(originaE||link_bitdetail_ft,date_time,id_user,seq_num,
lk,

ji,CT =

where )1seq_numbithash(link_ ,1seq_numdetail_ftlink_bit −−=  

The seq_num field contains a sequence number which is assigned by a trusted third 
party to each financial transaction set (allocated when a buyer bank originated a com-
plete transaction set). The data in seq_num and date_time fields enable the linkage of 
two intra-system ABCs. The detail_ft field provides details of one financial transac-
tion, and link_bit (i.e. a concatenating sequence) links this intra-system ABC to the 
previous intra-system ABC that has triggered this current transaction. By looking at 

Fig. 3 we can see that 1,1
1,1CT  triggers 2,3

2,1CT  and 4,5
4,1CT  whereas in bank B 1,1

1,1CT  

triggers 1,2
1,2CT , 3,4

2,2CT , 4,5
4,2CT .  

A trusted party from the service provider’s side signs each intra-system ABC. The 
signature on the intra-system ABC prevents the trusted party from denying the crea-
tion of an intra-system ABC. The data items of a data structure are given in Table 1. 
The signature is also appended to this data structure. 

Table 1. Data structure definition of an intra-system ABC 
 

Intra_system 
ABC 

SIGNATURE 

seq_num Id_user date_time  detail_ft  link_bit 
 

seq_num -
1 
 

detail_ft-
1  

hash(link_bit) 
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256 bits 
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256 
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Structure 
1024 bits 
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structure 
1024 bits 

Char [2] 
256 bits 

 

In this data structure, the design of detail_ft aims to provide minimum amount of 
required information needed to record a transaction. This field will be used to decide 
on what and how to construct the complete ABC of a workflow, which will in turn be 
used for cross checking and verifying the workflow tasks. The field detail_ft contains 
at least the following items: i (user identifier), j (bank identifier), k (automated finan-
cial service used), l (task performed), AM (Amount of money involved in the transac-
tion), BIN (Buyers Identification Name), SIN (Sellers Identification Name), MI  
(Market Instrument identification) and NV (Nominal Value of a market instrument).  

An inter-system ABC contains a hash value, and two data items that are used as in-
put to generate this hash value. These data items vary depending on the context. It can 
be any of the three combinations. When the inter-system ABC is the parent of two 
leaves then these two data items are two intra-system ABCs. When the inter-system 
ABC is the parent of one sub-tree and a leaf then these two data items are an inter-
system ABC and an intra-system ABC. When the inter-system ABC is the root of the 
tree, then these two data items are two inter-system ABCs. In other words, these two 
data items can be two intra-system ABCs, one intra-system ABC and one inter-system 
ABC, or two inter-system ABCs when the inter-system ABC is also the root of the 
tree. A trusted party located at the user’s side that groups intra-system ABCs together 
through inter-system ABCs signs all inter-system ABCs. The root of a complete ABC 
is the authenticator of one complete transaction set.  
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An ABC has a three-dimensional audit trail. In a complete ABC contains an audit 
trail of the transactions within the same automated financial system of one bank, be-
tween two or more related automated financial systems of the same bank, and be-
tween the related transactions taken place in two or more different banks. 

We have shown the design of one complete ABC, and shown how the records gen-
erated from related financial transactions are concatenated. This design provides in-
tegrity protection to the data set generated in each of the related automated financial 
services (intra-system ABCs), and to the data within one or more transaction sets. In 
other words, our approach allows the generation of audit trails of transactions that are 
performed with the automated financial services that are run by different banks but 
support a mutually involved financial activity.  
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Fig. 6. The structure of audit trails in one complete ABC 

By combining intra-system and inter-system ABCs, we can provide evidence of 
one transaction set in one complete ABC as shown in Fig. 6. Also, by detecting miss-
ing sequences within one transaction set we can detect irregularities. We can also de-
tect unauthorised financial transactions entered by authorised users because we can 
crosscheck and verify the data contained in one complete ABC to track the entire 
workflow cycle.  
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7   Conclusions and Future Work 

We have re-defined the concept of transactional workflow.  The workflow should not 
be restricted to an institutional boundary, or an administrative domain. If necessary, 
such as in the case discussed in this paper, a workflow should encompass tasks per-
formed in more than one institutions so long as the tasks are related. This concept is 
particularly important in today’s world where large-scale and/or cross-institutional 
sharing of data, services, and CPU cycles is increasingly common. In this world of e-
commerce, e-services, e-transactions, e-science, etc, a new way and framework is re-
quired to conduct auditing procedures.  

Based upon our observations that an authorised transaction is either triggered by 
another transaction or triggering another transaction in a workflow, the paper has pro-
posed a novel way of constructing audit trails for integrity drift detection in e-trading 
applications. We propose to use Automatic Banking Certificates (ABCs) to record 
transactional details of individual transactions and to use Merkle Hash Trees to record 
the relationships among transactions in a workflow. Any missing transaction(s) in the 
set indicates that there may be irregularities in the financial workflow (or activity). 
Cryptographic primitives, namely the digital signature techniques and one-way colli-
sion free hash function, and the idea of Merkle Hash Trees are used as building blocks 
of our solution. 

We have shown that the detection of an unauthorised financial transaction made by 
an authorised user is achievable through the exploitation of inter-relationship of trans-
actions generated by one financial activity. We are currently working on the genera-
tion and integration of intra-system and inter-system ABCs, a vital component in the 
design of the Transaction Authentication Service.  
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Abstract. In many content distribution systems it is important both to
restrict access to content to authorized users and to protect the identities
of these users. We discover that current systems for encrypting content
to sets of users are subject to attacks on user privacy. We propose a new
mechanism, private broadcast encryption, to protect the privacy of users
of encrypted file systems and content delivery systems. We construct a
private broadcast scheme, with a strong privacy guarantee against an
active attacker, that achieves ciphertext length, encryption time, and
decryption time comparable with the non-private schemes currently used
in encrypted file systems.

1 Introduction

In both large and small scale content distribution systems it is often important
to make certain data available to only a select set of users. In commercial con-
tent distribution, for example, a company may wish for its digital media to be
available only to paying customers. On a smaller scale, suppose a department’s
faculty need to access the academic transcripts of graduate applicants. If elec-
tronic copies of the transcripts were stored on the department’s file server, they
should only be accessible by the faculty and students.

It is often equally important to protect the identities of the users who are
able to access protected content. Students receiving an email from an instructor
notifying all students failing a class would likely wish to keep their identities pri-
vate. Commercial sites often not want to disclose identities of customers because
competitors might use this information for targeted advertising. If an employee
is up for promotion, a company might wish to hide who is on his promotion
committee and therefore who is able to read his performance evaluation.

Employing a trusted server is the most commonly used method for protecting
both electronic content and the privacy of users who can access it. Whenever a
user wishes to access content stored on a trusted server, the user contacts the
server, authenticates himself or herself, and is sent the content over a secure
channel. As long as the server behaves correctly, only authorized users will be
� Supported by NSF.
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able to access the content and which users are authorized to access which content
will not be divulged, even to other authorized users. While this simple method
of data protection is adequate for some applications, it has some significant
drawbacks. First, both data content and user privacy are subject to attack if the
server is compromised. Additionally, content providers often not distribute their
data directly, but for economic reasons outsource distribution to third parties
or use peer-to-peer networks. In this case, the content owners will no longer be
directly in control of data distribution.

For these reasons, we examine the problem of efficiently distributing encrypted
content in such a way that (1) only authorized users can read the content and
(2) the identities of authorized users are hidden. We study this problem for the
case of encrypted file systems. However, our results can be generalized to larger
content distribution systems, including encrypted email.

Encrypted File Systems. Encrypted file systems implement read access control
by encrypting the contents of files such that only users with read permission are
able to perform decryption. Typical encrypted file systems, such as Windows
EFS, encrypt each file under its own symmetric key, KF , and then encrypt
the symmetric key separately under the public keys of those users authorized to
access the file, labeling these encryptions with user identities to speed decryption
(Fig. 1(a)).

(a) A : {KF }pkA
(b) {KF }pkB

B : {KF }pkB
{KF }pkC

C : {KF }pkC
{KF }pkA

{F}KF {F}KF

Fig. 1. Simple constructions of broadcast encryption systems. File F is encrypted under
the key KF , which in turn is encrypted under the public keys of users A, B, and
C. (a) The scheme typically used by encrypted file systems reveals the set of users
authorized to access F . (b) Modifying this scheme by removing the labels, using a
key-private cryptosystem, and randomly reordering the users yields a private broadcast
scheme resistant to passive attacks on recipient privacy, but decryption time is increased
because recipients must attempt to decrypt each unlabeled component. These simple
schemes are both vulnerable to active attacks.

While these systems protect file contents from unauthorized users, they do
little to protect the identities of users allowed to access the file. Who can access
a file, however, is often more sensitive than the contents of the file itself. Suppose,
for example, a university provides a document on its file server to students with
low average grades. To maintain the privacy of the students, the set of authorized
users should be kept private, not only from outsiders, but from the students in
the group as well.

Current implementations expose the identities of authorized users in two ways.
First, the individual public key encryptions of the symmetric key, KF , are labeled
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with the identity of the user, as shown in Fig. 1(a). These labels direct authorized
users to their encryptions of KF , speeding decryption. Second, even without
these labels, an adversary examining the actual ciphertexts can learn information
about the user’s identity. For example, suppose an attacker wants to determine
whether Alice or Bob has access to a particular file. Further suppose Alice has a
1024-bit key and Bob has a 2048-bit key. An attacker can easily determine which
of the two has access to the file by examining the encryption of KF , specifically
the ciphertext length. Thus, the encryptions of KF leak some information about
who has access to the file.

Private Broadcast Encryption. Our goal is to provide recipient privacy: an en-
crypted file should hide who can access its contents. We approach the problem
of recipient privacy by introducing a notion we call private broadcast encryption.
A private broadcast encryption scheme encrypts a message to several recipients
while hiding the identities of the recipients, even from each other.

The most straightforward construction of a private broadcast encryption
scheme is to modify the scheme currently used in encrypted file systems by
removing the identifying labels and using a public key system that does not
reveal the public key associated with a ciphertext, such as ElGamal or Cramer-
Shoup [1] (Fig. 1(b)). While this scheme is secure against passive attacks on
recipient privacy, it has two disadvantages. First, decryption time is increased as
recipient must perform, on average, n/2 trial decryptions to obtain KF , where
n is the number of message recipients. Second, an active attacker can mount a
chosen-ciphertext attack and learn whether a user can decrypt a message.

Returning to our example, consider an active attacker who is authorized to
decrypt the document for students with low average grades, where the list of
authorized users should be private. Now, suppose that the attacker wishes to
determine whether Alice can read the document. Because the attacker is a le-
gitimate recipient, he or she knows KF and can maliciously prepare a different
encrypted file by replacing the encrypted contents of the original file with con-
tent of the attacker’s choice, encrypted under KF . Alice is able to read this
maliciously created file if, and only if, she can read the original file. For exam-
ple, a malicious legitimate recipient of the document could copy the document
header, but replace the document body with the message “please visit the fol-
lowing URL for free music,” as illustrated in Fig. 2. Students with low average
grades will expose themselves when they visit the given URL because they are
the only ones who can read the message.

While one could avoid this attack by giving separate encryptions for each user
of the bulk data, this would greatly increase the overall storage demands, as the
contents of each file would need to be replicated for each authorized user. We
solve this problem by building efficient private broadcast encryption systems that
are secure under chosen-ciphertext attacks. Our construction achieves storage
space, encryption time, and decryption time comparable to schemes currently
employed in encrypted file systems.

The remainder of the paper is organized as follows. We define private broad-
cast encryption in Sect. 2, giving a game definition of recipient privacy under a
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(a) c1; c2; c3; {F}KF (b) c1; c2; c3; {F ′}KF

Fig. 2. Active attack on recipient privacy. (a) The sensitive document, F , is encrypted
for three recipients. If the attacker is a recipient, he or she learns KF . (b) The ma-
licious document created by an attacker contains F ′ of the attacker’s choice and can
be decrypted by the same users as the original document. Recipients of the original
document can be discovered by tricking them into decrypting the malicious document.

chosen-ciphertext attack. In Sect. 3, we examine the PGP encryption system and
demonstrate attacks against recipient privacy. We present our private broadcast
encryption constructions in Sect. 4. Finally, we conclude in Sect. 5.

1.1 Related Work

The notion of key privacy in the public key setting was first formalized by Bellare
et. al. [1]. A public key encryption system is key-private if ciphertexts do not
leak information about the public keys for which they were encrypted. Specifi-
cally, an adversary viewing a chosen message encrypted under one of two pub-
lic keys is unable to guess (with non-negligible advantage) which public key
was used to produce the ciphertext. The authors formalize these definitions for
key privacy under chosen-plaintext attack (IK-CPA) and chosen-ciphertext at-
tacks (IK-CCA). They show that ElGamal and Cramer-Shoup are secure un-
der these definitions, respectively, when public keys share a common prime
modulus.

Our constructions use a key-private public key system as a component in
building private broadcast encryption systems. One interesting observation is
that the straightforward construction of a private broadcast encryption scheme
using an IK-CCA secure encryption scheme does not result in a private broadcast
encryption system resistant to chosen-ciphertext attacks.

Previous work on broadcast encryption has focused on increasing collusion
resistance and reducing the length of the ciphertext [2, 3, 4]. We differ from these
works in that we focus on maintaining the privacy of users, but do not attempt
to achieve ciphertext overhead that is sub-linear in the number of users. Whether
private broadcast encryption systems can be realized with sub-linear ciphertext
overhead is currently an open problem.

2 Private Broadcast Encryption

In this section, we define private broadcast encryption in terms of its correctness
and security properties. A private broadcast encryption system consists of four
algorithms.

– I ← Setup(λ). Setup is a randomized algorithm that generates global param-
eters I for the system from a security parameter λ.
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– (pk, sk) ← Keygen(I). Keygen is a randomized algorithm that generates
public-private key pairs from the global parameters I.

– C ← Encrypt(S, M). Encrypt is a randomized algorithm that generates a
ciphertext C for a message M using a set of public keys S = {pk1, . . . , pkn}
generated by Keygen(I).

– M ← Decrypt(sk, C). Decrypt extracts M from a ciphertext C using a private
key sk if the corresponding public key pk ∈ S, where S is the set used to
generate C. Decrypt can also return ⊥ if pk �∈ S or if C is malformed.

For ElGamal-like systems, the global parameters I simply contain the prime p
and generator g ∈ Zp. This definition enables each user to generate his or her
own public-private key pair individually.

The definition above departs from the standard definition of broadcast encryp-
tion in that the standard definition explicitly provides S, the set of recipients, to
the Decrypt algorithm. Here we omit this parameter in order to capture systems
that hide S. There is no loss of generality, however, as S can be included in the
ciphertext, C, directly.

2.1 Recipient Privacy

We define a notion of recipient privacy under a chosen-ciphertext attack for
private broadcast encryption systems using a game between a challenger and an
adversary. This game ensures that the adversary cannot distinguish a ciphertext
intended for one recipient set from a ciphertext intended for another recipient set.
To model a chosen-ciphertext attack we allow the adversary to issue decryption
queries. More precisely, the game defining recipient privacy of a private broadcast
encryption system with n users is as follows:

Init: The challenger runs I ← Setup(λ) and publishes the global parameters I.
The adversary outputs S0, S1 ⊆ {1, . . . , n} such that |S0| = |S1|.

Setup: The challenger generates keys for each potential recipient, (pki, ski) ←
Keygen(I), and sends to the adversary each pki for i ∈ S0 ∪ S1 as well as
each ski for i ∈ S0 ∩ S1.

Phase 1: The adversary makes decryption queries of the form (u, C), where
u ∈ S0 ∪ S1, and the challenger returns the decryption Decrypt(sku, C). The
adversary may repeat this step as desired.

Challenge: The adversary gives the challenger a message M . The challenger
picks a random b ∈ {0, 1}, runs C∗ ← Encrypt({pki | i ∈ Sb}, M), and sends
ciphertext C∗ to the adversary.

Phase 2: The adversary makes more decryption queries, with the restriction
that the query ciphertext C �= C∗. The adversary may repeat this step as
desired.

Guess: The adversary outputs its guess b′ ∈ {0, 1}.

We say that the adversary wins the game if b′ = b.
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Definition 1. A private broadcast encryption system is (t, q, n, ε) CCA recipient
private if, for all t-time adversaries A, the probability A wins the above game
using recipient sets of size at most n and making at most q decryption queries
is at most 1/2 + ε.

Definition 2. A private broadcast encryption system is (t, n, ε) CPA recipient
private if it is (t, 0, n, ε) CCA recipient private.

In addition to recipient privacy, a secure broadcast encryption scheme must
be semantically secure against CCA attacks under the standard definition of
semantic security for broadcast encryption systems (see for example [5]).

A standard hybrid argument [6] shows that our definition also implies un-
linkability among sets of ciphertexts. We also observe our definition of recipient
privacy allows C to leak the number of recipients, just as semantic security
allows a ciphertext to leak the length of the plaintext. The number of recipi-
ents can be hidden by padding the recipient set to a given size using dummy
recipients.

Just as public key encryption is a special case of broadcast encryption, key
privacy is a special case of recipient privacy. In key privacy [1], the adversary
is restricted to n = 1, that is to recipient sets S0 and S1 of size 1, mirroring
the restriction on the public key Encrypt algorithm to encrypt only for a single
recipient. Therefore, the IK-CCA definition is equivalent to our recipient privacy
definition with n = 1.

3 Broadcast Encryption in Practice

In this section, we make concrete our discussion of privacy problems in broadcast
encryption systems by examining broadcast encryption systems used in practice.
We study the widely used OpenPGP [7] encryption standard and the GNU
Privacy Guard (GPG) [8] implementation as well as discuss the systems used by
Windows EFS and by Microsoft Outlook.

3.1 The PGP Encryption System

While OpenPGP is commonly associated with encrypted email, it can be used as
a general encryption system. When encrypting a message to multiple recipients,
OpenPGP functions as a broadcast encryption system: it encrypts each message
under a symmetric key K and then encrypts K to each user using his or her
public key. Either ElGamal or RSA encryption can be used for the public key
encryption.

Key IDs and Recipient Privacy. In standard operation, GPG completely exposes
recipient identities (including blind-carbon-copy recipients). Figure 3 contains a
transcript of an attempted GPG decryption of a ciphertext created with a PGP
implementation. The ciphertext reveals the key IDs of two recipients. A key’s ID
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is essentially its hash. PGP uses key IDs for two purposes. First, public keys in
the Web of Trust are indexed by key ID. For example, the MIT PGP Public Key
Server [9], when queried for a specific name, returns the key IDs, names, and
email addresses of the principals with the specified name. A principal’s public key
can then be retrieved by querying the server by key ID. Second, key IDs are used
in ciphertexts to label encryptions of the message key (Fig. 1(a)). These labels
speed decryption because the decryptor knows his or her key ID and can locate
the encryption of the message key he or she is able to decrypt. Unfortunately,
attackers also know key IDs. Moreover, after examining a ciphertext, an attacker
need only query a public key server to learn the full name and email address of
the owner of the associated public key.

C:\gpg>gpg --verbose -d message.txt
gpg: armor header: Version: GnuPG v1.2.2 (MingW32)
gpg: public key is 3CF61C7B
gpg: public key is 028EAE1C

Fig. 3. Transcript of an attempted GPG decryption of a file encrypted for two users.
The identities of the users are completely exposed by their key IDs. These key IDs can
be translated to real identities by a reverse look up on a public key directory.

Throwing Away Key IDs. The OpenPGP standard allows implementations to
omit key IDs from ciphertexts by replacing them with zeros (ostensibly to foil
traffic analysis [10]). This option is available in GPG using the --throw-keyids
command line option, but is disabled by default and thus will not be used if
the command is not given. Omitting key IDs increases the amount of work
required to decrypt a message. A message without key IDs, encrypted to n
recipients, contains n unidentified ciphertexts. To decrypt the message, every
recipient must attempt to decrypt each ciphertext, performing on average n/2
decryption operations.

Even when omitting key IDs, GPG does not achieve recipient privacy. When
GPG generates an ElGamal public key, it does so in the group of integers modulo
a random prime. Thus, different principals are very likely to have public keys
in different groups, making GPG encryptions vulnerable to passive key privacy
attacks. These attacks can be directly translated into attacks on CPA recipient
privacy. GPG could defend against these attacks by using the same prime for
every public key, for example one standardized by NIST [11].

Active Attack. While omitting key IDs and standardizing the group used for
public keys achieves CPA recipient privacy, it does not achieve CCA recipient
privacy. An active attacker could determine the recipients as follows. Suppose
Charlie, the attacker, received the encrypted message {K}pkA

||{K}pkC
||{M}K

and wishes to determine whether Alice or Bob was the other recipient. As Char-
lie possesses his private key skC , he can recover K, the message key. He can
then encrypt a new message M ′ for the same recipient as the original message,
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{K}pkA
||{M ′}K , by copying the first portion of the header and encrypting M ′

under K. When Alice decrypts this message, she obtains M ′, whereas when Bob
decrypts this message, he does not obtain M ′.

This active attack is potentially more dangerous than the passive attack in
practice. If an attacker wishes to determine a recipient from a large pool of recip-
ients, the passive attack will likely only eliminate some fraction of the possible
recipients. An active attack, however, could probe each of the potential recip-
ients individually and learn exactly which ones were recipients of the original
message.

3.2 Other Broadcast Systems

Windows EFS. An encrypted file system can be viewed as a broadcast encryption
system: the file system itself is the broadcast channel, the files are the messages,
and the users who can access a file are the broadcast recipients. The underlying
broadcast encryption scheme used in the Windows Encrypted File System (EFS)
is vulnerable to privacy attacks. A file in EFS is encrypted under a symmetric key,
which in turn is encrypted under the public keys of the users authorized to read
the file. These encryptions of the symmetric key are stored in the file header and
are usually accessible only to the operating system kernel. An attacker who has
physical access to the storage media, for example by duplicating a file server’s
hard drive or stealing a backup copy of the file system, can learn the list of
users authorized to read a file by directly examining the ciphertext component
labels.

Outlook. Microsoft Outlook, like many S/MIME clients, is vulnerable to at-
tacks on recipient privacy. When Outlook sends an encrypted email message
to multiple recipients, it prepares a single encrypted message and sends copies
of that ciphertext to each recipient. Components of the ciphertext are labeled
with the issuer and serial number of each recipient’s public key certificate. Many
certificate authorities, including VeriSign [12], provide a free directory service
that translates certificate serial numbers into the certificates themselves. This
reveals the identities of all recipients, compromising the privacy of blind-carbon-
copy (BCC) recipients. Worse, if a BCC recipient uses a self-signed certificate,
Outlook includes his or her full name and email address in the clear in the
message ciphertext sent to all recipients.

In addition to these passive attacks, active attacks on recipient privacy are
particularly easy to mount against encrypted email systems. Each legitimate
message recipient can mount an active attack simply by sending a carefully con-
structed email message to a suspected recipient. Some S/MIME clients avoid
these attacks by separately encrypting messages for each recipient. This pre-
vents legitimate recipients both from learning the identities of other message
recipients and from learning the number of other recipients. However, send-
ing separate encryptions decreases mail server efficiency and uses more
bandwidth.
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4 Constructions

In this section, we present two constructions for private broadcast encryption
that achieve CCA recipient privacy. The first is a generic construction from any
public key encryption scheme that has key indistinguishability under chosen-
ciphertext attacks (IK-CCA) [1]. The disadvantage of this first scheme is that
decryption time is linear in the number of recipients because the decryption
algorithm must try decrypting each ciphertext component until it decrypts
successfully. The second construction is a specialized system in which the de-
cryption algorithm performs one asymmetric key operation to locate the appro-
priate ciphertext component (if one exists). This construction is more efficient for
decryptors than the first because no trial decryptions are required. We describe
our two schemes and give intuition for their security.

Both constructions require the underlying public key scheme to be strongly
correct. Essentially, a public key scheme is strongly correct if decrypting a ci-
phertext encrypted for one key with another key results in ⊥, the reject symbol,
with high probability. While this property is not ensured by the standard pub-
lic key definitions, most CCA-secure cryptosystems, such as Cramer-Shoup, are
strongly correct. Before giving a formal definition of strong correctness, we de-
fine a function that generates a random encryption of a given message and then
returns the decryption of that ciphertext with a different random key.

Test(M) : I ← Init(λ); (pk0, sk0) ← Gen(I); C ← Encpk0
(M);

(pk1, sk1) ← Gen(I); Return Decsk1(C).

Definition 3. A public key scheme (Init, Gen, Enc, Dec) is ε strongly correct if,
for all M , the probability Test(M) �= ⊥ is at most ε.

4.1 Generic CCA Recipient Private Construction

We realize our first construction by modifying the simple CPA recipient private
construction (Fig. 1(b)). Encrypt first generates a random signature and verifi-
cation key for a one-time, strongly1 unforgeable signature scheme [13, 14] such
as RSA full-domain hash. Then, the encryption algorithm encrypts a ciphertext
component containing the generated verification key using a public key encryp-
tion scheme that has key-indistinguishability under CCA attacks (IK-CCA).
Finally, the algorithm signs the entire ciphertext with the signing key.

The decryption algorithm attempts to decrypt each ciphertext component. If
the public key decryption is successful (i.e. returns non-⊥), Decrypt will decrypt
the message only if the signature verifies under the extracted verification key.
Intuitively, an adversary cannot reuse a ciphertext component from the challenge
ciphertext in another ciphertext because he or she will be unable to sign the new
ciphertext under the same verification key. We now give a formal description of
our scheme.
1 In a strongly unforgeable signature scheme, an adversary cannot output a new sig-

nature, even on a previously signed message.
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Given a strongly correct, IK-CCA public key scheme (Init, Gen, Enc, Dec), a
strongly existentially unforgeable signature scheme (Sig-Gen, Sig, Ver), and se-
mantically secure symmetric key encryption and decryption algorithms (E, D),
we construct a private broadcast encryption system as follows.

Setup(λ): Return Init(λ).
Keygen(I): Run (pk, sk) ← Gen(I) and return (pk, sk).
Encrypt(S, M):

1. (vk, sk) ← Sig-Gen(λ).
2. Choose a random symmetric key K.
3. For each pk ∈ S, cpk ← Encpk(vk||K).
4. Let C1 be the concatenation of the cpk, in random order.
5. C2 ← EK(M).
6. σ ← Sigsk(C1||C2).
7. Return the ciphertext C = σ||C1||C2.

Decrypt(sk, C): Parse C as σ||C1||C2 and C1=c1|| · · · ||cm. For each i∈{1, . . . , m}:
1. p ← Dec(sk, ci).
2. If p is ⊥, then continue to the next i.
3. Otherwise, parse p as vk||K.
4. If Vervk(C1||C2, σ), return M = DK(C2).

If none of the ci decrypts and verifies, return ⊥.

Notice the time taken by Decrypt to execute could leak information. Recipient
privacy relies on the attacker being unable to determine whether a decryption
fails because p = ⊥ or because the signature did not verify. Implementations
must take care to prevent such timing attacks. We state our main theorem as
follows. Due to space constraints, we give the proof in the full version of the
paper [15].

Theorem 1. If (Init, Gen, Enc, Dec) is both ε1 strongly correct and (t, q, ε2) CCA
key private and (Sig-Gen, Sig, Ver) is (t, 1, ε3) strongly existentially unforgeable,
the above construction is (t, q, n, n(ε1 + ε2 + ε3)) CCA recipient private.

The semantic security of our scheme follows in a straightforward manner. Be-
cause our scheme achieves broadcast encryption by concatenating public key
encryptions, each user can generate his or her own public key and have an au-
thority issue a certificate binding it to his or her identity.

4.2 CCA Recipient Privacy with Efficient Decryption

To decrypt a ciphertext in the CCA recipient private scheme above, a recipient
must attempt to decrypt n/2 components of the ciphertext, on average, where
n is the number of recipients. Non-private schemes improve performance by
labeling ciphertext components with recipient identities, directing the attention
of decryptors to appropriate ciphertext components. However, these labels reveal
the identities of the recipients.
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In this section, we construct a private broadcast encryption system that re-
quires only a constant number of cryptographic operations in order to decrypt,
regardless of the number of recipients. Our scheme is similar to the previous one
with small modifications. Each private key is extended with a random exponent
a and each public key is extended with the corresponding value ga. The en-
cryption algorithm first chooses a random exponent r and labels the ciphertext
component for the public key (pk, ga) with H(gra), where the hash function H is
modeled as a random oracle. When decrypting, each user first calculates H(gra)
and then uses the result to locate the ciphertext component encrypted for him or
her. Users need only perform one public key decryption to recover the message.

The recipient privacy of this scheme relies on a group G in which the computa-
tional Diffie-Hellman problem is believed to be hard, but there exists an efficient
algorithm for testing Diffie-Hellman tuples (i.e. CDH is hard, but DDH is easy).
For example, groups with efficiently computable bilinear maps are widely be-
lieved to have this property [16]. The algorithm for deciding DDH is used in the
simulation proof, but not in the construction itself. The requirement that DDH
be easy can be relaxed, at the cost of a looser reduction.

Let G be a group, with generator g, where CDH is hard and DDH is easy
and let H : G → {0, 1}λ be a hash function that is modeled as a random
oracle (for some security parameter λ). Given a strongly correct, IK-CCA public
key scheme (Init, Gen, Enc, Dec), a strongly existentially unforgeable signature
scheme (Sig-Gen, Sig, Ver), and semantically secure symmetric key encryption
and decryption algorithms (E, D), we construct a private broadcast encryption
system as follows.

Setup(λ): Return Init(λ).
Keygen(I): Run (pk, sk) ← Gen(I) and choose a random exponent a. Let pk′ =

(pk, ga) and sk′ = (sk, a). Return (pk′, sk′).
Encrypt(S, M):

1. (vk, sk) ← Sig-Gen(λ).
2. Choose a random symmetric key K.
3. Choose a random exponent r and set T = gr.
4. For each (pk, ga) ∈ S, cpk ← H(gar)||Encpk(vk||gar||K).
5. Let C1 be the concatenation of the cpk, ordered by their values of H(gar).
6. C2 ← EK(M)
7. σ ← Sigsk(T ||C1||C2).
8. Return the ciphertext C = σ||T ||C1||C2.

Decrypt((sk, a), C): Parse C as σ||T ||C1||C2 and C1 = c1|| · · · ||cm.
1. Calculate l = H(T a) = H(gar).
2. Find cj such that cj = l||c for some c, if it exists, else return ⊥ and stop.
3. Calculate p ← Dec(sk, c).
4. If p is ⊥, return ⊥ and stop.
5. Otherwise, parse p as vk||x||K.
6. If x �= T a, return ⊥ and stop.
7. If Vervk(T ||C1||C2, σ), return M = DK(C2); otherwise, return ⊥.
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Notice decryption time is independent of the number of recipients. Also, the
algorithm for deciding DDH tuples is not used in the construction. The DDH
decisions algorithm is used by the simulator in the proof of the following theorem
to recognize when the adversary has successfully computed a ciphertext compo-
nent label (and thus can be used to defeat CDH). Due to space constraints, we
give the proof in the full version of the paper [15].

Theorem 2. If (Init, Gen, Enc, Dec) is ε1 strongly correct, (t, q, ε2) CCA semanti-
cally secure and (t, q, ε3) CCA key private, (Sig-Gen, Sig, Ver) is (t, 1, ε4) strongly
existentially unforgeable, CDH is (t, ε5) hard in G, and DDH is efficiently com-
putable in G, then the above construction is (t, q, n, n(ε1 + 2ε2 + ε3 + ε4 + 2ε5))
CCA recipient private.

4.3 Identity-Based Encryption Extensions

We can extend our constructions to use Identity-Based Encryption (IBE) [17, 18]
by using an anonymous IBE [19, 20] scheme. An IBE scheme is called anonymous
if a ciphertext does not reveal the identity under which it was encrypted. The
Boneh-Franklin scheme [18] has this property, for example. Identity-based en-
cryption is advantageous in our setting where the identities of the recipients
should be kept private because an identity-based encryption algorithm need not
retrieve a recipient’s public key certificate in order to encrypt to him or her. Typ-
ical public key systems require encryptors to obtain the public keys of recipients
over a network. An eavesdropper could potentially ascertain information about
message recipients by monitoring the public keys requested by the encryptor.
An IBE encryptor, however, need not make such network requests and avoids
this potential vulnerability.

5 Conclusions

In many content distribution applications it is important to protect both the
content being distributed and the identities of users allowed to access the content.
Currently, encrypted file systems and encrypted email systems fail to protect
the privacy of their users. User privacy is compromised because the underlying
encryption schemes disclose the identities of a ciphertext’s recipients. Many such
systems simply give away the identities of the users in the form of labels attached
to the ciphertext. Additionally, those systems that attempt to avoid disclosing
the recipient’s identity, such as GnuPG, are vulnerable to having their user’s
privacy compromised by a new chosen-ciphertext attack that we introduced.

Our proposed mechanism, private broadcast encryption, enables the efficient
encryption of messages to multiple recipients without revealing the identities of
message recipients, even to other recipients. We presented two constructions of
private broadcast encryption systems. Both of these satisfy a strong definition of
recipient privacy under active attacks. The second additionally achieves decryp-
tion in a constant number of cryptographic operations, performing comparably
to current systems that do not provide user privacy.
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Abstract. Existing stable matching algorithms reveal the preferences of
all participants, as well as the history of matches made and broken in the
course of computing a stable match. This information leakage not only
violates the privacy of participants, but also leaves matching algorithms
vulnerable to manipulation [8, 10, 25].

To address these limitations, this paper proposes a private stable
matching algorithm, based on the famous algorithm of Gale and Shap-
ley [6]. Our private algorithm is run by a number of independent par-
ties whom we call the Matching Authorities. As long as a majority of
Matching Authorities are honest, our protocol correctly outputs a sta-
ble match, and reveals no other information than what can be learned
from that match and from the preferences of participants controlled by
the adversary. The security and privacy of our protocol are based on re-
encryption mix networks and on an additively homomorphic semantically
secure public-key encryption scheme such as Paillier.

1 Introduction

Stable matching algorithms are best explained with the terminology of marriage
and are thus also known as stable marriage algorithms. Let us consider an equal
number n of men and women. We assume that every man ranks the n women
according to how desirable each is to him, without ties. Similarly, every woman
ranks the n men according to how desirable each is to her, without ties.

A match is a bijection between men and women, or equivalently a set of
n heterosexual monogamous marriages between the n men and the n women.
Ideally, a perfect match would pair every man with the woman he likes best and
vice versa. Clearly the preferences expressed by men and women rarely allow
for a perfect match. For example, if two men rank the same woman first, one of
them at least will have to settle for a less desirable partner.

A weaker requirement is to find a match that is, if not perfect, then at least
stable. Consider a match in which a man A is married to a woman B and a man
A′ to a woman B′. If A prefers B′ to his wife B, and B′ prefers A to her husband
A′, A and B′ both have an incentive to leave their partner and marry each other
(the match is thus unstable). A stable match is a match such that there is no
man and woman that both like each other better than their respective partners.
When a match is stable, all couples are static: a man tempted to abandon his
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wife for another woman he ranks higher will be rebuffed, since that woman ranks
her partner higher than the new suitor.

A stable matching algorithm takes as inputs the preferences of men for women
and of women for men, and outputs a stable matching between them. Efficient
stable matching algorithms are well known [6] and have important real-world
applications. They are used notably to assign graduating medical students to
residency programs at hospitals in the US [15], Canada [3] and Scotland [23]: a
stable match between students and hospitals is computed automatically based
on the preferences of students for hospitals and of hospitals for students. In Nor-
way and Singapore [25], stable matching algorithms are used to assign students
to schools and universities. In fact, the use of stable matching algorithms is suffi-
ciently widespread that there exist companies dedicated solely to administering
matching programs. National Matching Services [14], for example, administers
matching programs for psychology internships in the US and Canada [1], for arti-
cling positions with law firms in Alberta (Canada) and for many others. All told,
stable matching algorithms impact the careers of tens of thousands of students
and professionals annually.

Considering the stakes involved and the sensitive nature of the preferences
expressed, stable matching algorithms should afford participants the maximum
amount of privacy possible. Ideally, the algorithm should output a stable match
without leaking any additional information. Unfortunately, existing stable
matching algorithms fall far short of that ideal. They take as input the com-
plete list of preferences of men and women (or students and hospitals), and
reveal the complete history of engagements made and broken in the process of
computing a stable match.

This information leakage violates the privacy of participants, and potentially
exposes them to embarrassment or ridicule. Consider for example that no medical
student would like it to be known that she was matched to her least favorite hos-
pital. Worse still, the public disclosure of preferences leaves matching algorithms
vulnerable to manipulation [8, 10, 25]: under certain circumstances, participants
with knowledge of the preferences of other participants have incentives to alter
their own true preference list (see Section 2 for detail).

In the absence of a better solution, these problems have up to now been
weakly mitigated by the assumption that all participants trust a third party
to receive their preference lists, run the algorithm and output a stable match
without revealing any other information. This approach requires a consider-
able amount of trust in a single entity and runs counter to the security tenet
that trust should be distributed. Reliance on a single trusted third party is
particularly problematic when the third party must protect the interests of par-
ticipants with unequal power and influence. The third party is at risk of cor-
ruption by the more powerful protocol participants (e.g. the hospitals) at the
expense of the less powerful participants (e.g. the medical students). To afford
equal privacy protection to all participants, we propose a private stable matching
algorithm.
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Our private stable matching algorithm is based on the famous algorithm of
Gale and Shapley [6], which we review in Section 2. The private algorithm is run
by a number of independent parties whom we call the Matching Authorities. As
long as a majority of Matching Authorities are honest, our protocol correctly
outputs a stable match, and reveals no other information than what can be
learned from that match and from the preferences of participants controlled
by the adversary. The security and privacy of our protocol are based on re-
encryption mix networks and on an additively homomorphic semantically secure
public-key encryption scheme such as Paillier.

1.1 Financial Applications of Stable Matching Algorithms

The stable matching problem describes a two-sided, one-to-one matching market.
The most famous examples of such markets are college admissions and entry-
level labor markets. But examples of two-sided markets go far beyond labor
markets [20, 21]. Among others examples, two-sided markets have been used to
model the matching of venture capitalists and companies in capital markets [24]
and the matching of suppliers and consumers in supply chain networks [17]. Aside
from matching markets, the use of stable matching algorithms has recently been
proposed to determine stable winner allocations in certain types of multi-unit or
combinatorial auctions [2].

2 Gale-Shapley Stable Matching Algorithm

There exist several formulations of the stable matching problem, all closely re-
lated. In this section and the rest of the paper, we consider a model of one-to-one
matchings (i.e. no polygamy), with complete preference lists (i.e every man ranks
all women and every woman ranks all men). The results of this paper can eas-
ily be adapted to other models. For example, the many-to-one model (in which
one hospital has internship slots for multiple students) reduces to the one-to-one
model by cloning an appropriate number of times the participants who accept
multiple partners.

We review the famous stable matching algorithm of Gale and Shapley [6]. In
this algorithm, men and women play different roles. Arbitrarily, we present a
matching algorithm in which men propose to women (these roles can naturally
be reversed). The algorithm takes as input the lists of preferences of men and
women. Throughout the algorithm, men and women are divided into two groups:
those that are engaged, and those that are free (i.e. not yet or no longer engaged).
Initially, all men and all women are free.

As long as the group of free men is non-empty, the algorithm selects at random
one man A from the group of free men. Man A proposes to the woman whom
he ranks highest among the women to whom he has never proposed before (let’s
call this woman B). One of three things may happen:

– B is free. In this case, A and B are engaged to each other and both move to
the engaged group.
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– B is already engaged to A′ and ranks A ahead of A′. In this case, B breaks
her engagement to A′ and instead gets engaged to A. A and B join the
engaged group, whereas A′ goes back to the group of free men.

– B is already engaged to A′ and ranks A′ ahead of A. In this case, B stays
engaged to A′ and A stays in the group of free men.

Properties and limitations. Let n denote the number of men and women.
The algorithm terminates in at most n2 steps and outputs a match that is stable
(see [6] for more detail). This “men-propose” algorithm is men-optimal [19]: the
optimal strategy for men is to reveal their true preference lists, as long as all other
participants also reveal their true preferences. Women on the other hand have
incentives to falsify their preferences [25] in men-propose algorithms, assuming
they have full knowledge of the preference lists of all participants. This attack
is of real practical concern. In fact, the Gale-Shapley algorithm gives women
all the knowledge they need to manipulate the algorithm, since it exposes the
complete preference lists of men and women, together with the entire history of
engagements made and broken.

Private Gale-Shapley with Secure Multiparty Computation. Generic
secure multiparty computation techniques [26, 9] allow n men and n women to
compute privately the outcome of the Gale-Shapley algorithm. However, these
generic techniques are ill-suited for this purpose:

– Generic protocols incur high computation and communication
costs. It is hard to estimate precisely the number of gates required to
build a circuit that implements the (randomized) Gale-Shapley algorithm.
A lower bound is O(n2 log(n)) gates to perform n2 comparisons between
values of log(n) bits. With n players, this gives a lower bound on the com-
putational and communication cost of the protocol of O(n3 log(n)) against
passive adversaries. Against an active adversary corrupting less than n/2 of
the players, the lower bound on the computational and communication cost
is O(n4 log(n)) using the most efficient multiparty computation protocol [4].
In contrast, our protocol incurs a computational and communication cost
of O(n3).

– Generic protocols are impractical. The process of building a circuit
that implements Gale-Shapley is difficult and error-prone. In contrast, our
protocol relies on standard cryptographic components (mix networks) with
known efficient implementations.

Efficient private variant of Gale-Shapley. In this paper, we propose an
efficient private variant of the Gale-Shapley matching algorithm that is based
on mix networks rather than generic secure multiparty computations. A private
variant of Gale-Shapley must address two main problems. The first problem is
to redesign the algorithm so as to hide the history of engagements made and
broken, the number of participants free or engaged at any given point, as well as
any other information about the internal state of the algorithm. We propose a
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solution to this problem in Section 4. The second problem is that the preferences
of participants must be encrypted. We solve this problem in Section 5 and 6.
Finally, we present a complete private stable matching algorithm in Section 7
and analyze its properties in Section 8.

3 Model and Definitions

Our algorithm is run jointly by a number of independent parties whom we
call matching authorities. The matching authorities collectively run a number
of distributed cryptographic protocols, such as distributed key generation, re-
encryption mix networks, oblivious tests of plaintext equalities, etc. These pro-
tocols serve as building blocks for our private stable matching algorithm and are
described in Section 5.

The security and privacy of our stable matching algorithm reduces to the
security and privacy of the underlying cryptographic building blocks. We can
thus define our adversarial model loosely as the intersection of the adversarial
models of the building blocks. For simplicity, we present our results assuming a
“honest-but-curious” adversary. More precisely, we consider a static adversary
who has passive control over up to all the participants (men and women), and
passive control over up to all but one of the matching authorities, as is commonly
assumed in the literature on mix networks. Our techniques can easily be extended
to accommodate active adversaries, as discussed in Section 8.1.

Definition 1. (Private stable matching algorithm) An algorithm for com-
puting a stable match is private if it outputs a stable match and reveals no other
information to the adversary than what the adversary can learn from that match
and from the preferences of the participants it controls.

4 Hiding the Internal State of the Algorithm

We propose a variant of the Gale-Shapley algorithm that hides its internal state
variables, such as the number of men and women free and engaged at any given
time, or the history of engagements made and broken. The algorithm described
here will not become private until it is combined in Section 7 with the techniques
of Sections 5 and 6. It is presented here in non-private form to simplify the
understanding of later sections. As before, the algorithm takes as input the lists
of preferences of n men and n women and outputs a stable match between them.

Rankings. Let A1, . . . , An denote n men and B1, . . . , Bn denote n women. Every
man ranks the women from most to least desired. Thus, a man assigns rank 0
to the woman he likes best, rank 1 to his second place favorite, and so on all the
way to rank n − 1 to the woman he likes the least (rankings do not allow for
ties). Similarly, every woman assigns ranks to men from 0 (most favorite man) to
n−1 (least favorite man). Being ranked ahead of someone means being assigned
a lower rank, and thus being preferred to that other person. Being ranked behind
someone means being assigned a higher rank, and thus being less desired than
that other person.
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Notations. The preference of man Ai is a vector ai = (ri,1, . . . , ri,n), where
ri,j ∈ {0, n−1} is the rank of woman Bj for man Ai. Similarly, the preference of
woman Bj is a vector bj = (sj,1, . . . , sj,n), where sj,i ∈ {0, . . . , n−1} is the rank
of man Ai for woman Bj . The algorithm takes as inputs the vectors a1, . . . ,an

and b1, . . . , bn.

Preprocessing. The first step of the algorithm consists of introducing an addi-
tional n “fake” men, denoted An+1, . . . , A2n (no fake women are defined). The
preferences of fake men for women are unimportant to the algorithm. Arbitrarily,
we let ai = (0, 1, . . . , n − 1) for i = n + 1, . . . , 2n. The preferences bj of women
must be augmented to reflect the addition of the fake men. As long as women
rank all fake men behind all real men, their preferences are unimportant to the
algorithm. Arbitrarily, we let every woman Bj assign rank sj,i = i − 1 to man
Ai for i = n + 1, . . . , 2n. We keep the notation bj for the vector of 2n elements
that encodes the augmented preference of woman Bj . After this preprocessing
step, the algorithm has 2n vectors a1, . . . ,a2n (each vector contains n elements
that express the rankings assigned by one man to the n women) and n vectors
b1, . . . , bn (each vector contains 2n elements that express the rankings assigned
by one woman to the 2n men). Note that the introduction of fake men, and the
corresponding update of preferences is done entirely by the algorithm without
any involvement from real men or real women.

Computing a stable match. The algorithm proceeds in n rounds. We let Ek denote
the set of engaged men and Fk denote the set of free men at the beginning of
round k = 1, . . . , n + 1 (there are only n rounds; with a slight abuse of notation,
we let Fn+1 and En+1 denote the set of free and engaged men at the end of
the last round). Initially, all real men are free F1 = {A1, . . . , An}, and all fake
men are engaged E1 = {An+1, . . . , A2n}. Arbitrarily, we let fake man An+i be
initially engaged to women Bi. The other sets are initially empty: Ek = Fk = ∅
for k > 1. The algorithm executes the following routine for k = 1, . . . , n:

– While the set Fk is non-empty, select at random one man (denoted Ai) from
Fk. Ai proposes to the woman whom he ranks highest among the women to
whom he has never proposed before (let’s call this woman Bj). Note that
women Bj is always already engaged to a man Ai′ , for some i′ �= i. One of
two things may happen:
• If Bj ranks Ai ahead of Ai′ , Bj breaks her engagement to Ai′ and be-

comes engaged to Ai. Man Ai is removed from the set Fk and added to
Ek, whereas man Ai′ is removed from Ek and added to Fk+1.

• If Bj ranks Ai behind Ai′ , she stays engaged to Ai′ . Man Ai is removed
from set Fk and added to set Fk+1.

– When Fk is empty, we define Ek+1 = Ek.

The algorithm ends after n rounds and outputs the set En+1 of engaged men
and their current partners.

Invariants. Note that this algorithm preserves certain invariants. All n women
are always engaged to some man. During round k, the number of engaged men
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is always exactly |Ek| = n. Engaged men do not move progressively from set Ek

to set Ek+1 during round k, but rather they move all at once at the end of round
k. Every time a new proposal is made, the cardinality of Fk decreases by one,
the cardinality of Fk+1 increases by one and the cardinality of Ek is unchanged,
irrespective of whether a woman changes partner or not.

Proposition 1. This algorithm outputs a stable match between the real men
A1, . . . , An and the n women B1, . . . , Bn.

Proof. We must prove that the match is stable and involves only real men (no
fake men). The proof that the final match is stable is exactly similar to that
given for the original Gale-Shapley algorithm in [6].

The proof that the final match involves only real men is by contradiction. We
observe first that once a woman is engaged to a real man, she will stay engaged
to real men in subsequent rounds, since all women rank all real men ahead of all
fake men. Now assume that a fake man Ai is engaged to a woman Bj when the
algorithm ends after n rounds. This implies that Bj was never engaged to a real
man. Since there are only n women, there must be at least one real man Ai′ who
remains free at the end of the protocol. Now the free real man Ai′ must have
proposed to all n women, Bj included, and must have been rejected by all. But
Bj , who was always engaged to fake men, could not reject Ai′ without breaking
the assumption that all women prefer real men to fake men. �

5 Cryptographic Building Blocks

Our private stable matching algorithm uses cryptographic building blocks which
we now describe briefly. These building blocks are all standard distributed cryp-
tographic algorithms run jointly by the matching authorities.

Threshold Paillier encryption. The Paillier encryption scheme [18] allows
for threshold encryption [5, 7]. In what follows, all ciphertexts are encrypted
with a threshold version of Paillier. The matching authorities hold shares of the
corresponding decryption key, such that a quorum consisting of all parties can
decrypt.

Robust re-encryption mix network. A re-encryption mix network
re-encrypts and permutes a number of input (Paillier) ciphertexts. In our appli-
cation, the matching authorities play the role of mix servers. If we allow active
adversaries (see Section 8.1), we must use robust re-encryption mixnets such
as [11] or [16]. When we say the matching authorities “mix” a set of inputs ac-
cording to a permutation π, we mean that they run the set of inputs through a
mix network and we let π denote the global (secret) permutation (which is not
known to the matching authorities).

Oblivious test of plaintext equality. Let E(m1) and E(m2) be two Pail-
lier ciphertexts. An oblivious test of plaintext equality [12, 13] lets the joint
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holders of the decryption key determine whether m1 = m2 without reveal-
ing any other information (hence the name oblivious). We denote this protocol
EQTEST(E(m1), E(m2)). The protocol outputs either m1 = m2 or m1 �= m2.

Repeated test of plaintext equality. The protocol INDEX(a, E(ρ)) takes
as input a vector a = (E(a1), . . . , E(an)) of n Paillier ciphertexts and an ad-
ditional Paillier ciphertext E(ρ) such that there exists one and only one value
i ∈ {1, . . . , n} for which ρ = ai. The protocol outputs the index i such that
ai = ρ. The protocol INDEX can be implemented with n instances of EQTEST.

Finding the larger of 2 plaintexts. Let E(m1) and E(m2) be two Pail-
lier ciphertexts such that m1, m2 ∈ {0, . . . , n − 1} and m1 �= m2. We pro-
pose a protocol COMPARE(E(m1), E(m2)) that outputs true if m1 > m2 and
false otherwise, without leaking any other information. The protocol proceeds
as follows. For i = 1, . . . , n − 1, the matching authorities compute ciphertext
Di = E(m1−m2−i) using Paillier’s additive homomorphism. Note that m1 > m2
if and only if one of the ciphertexts Di is an encryption of 0. The matching au-
thorities mix (i.e. re-encrypt and permute) the set of ciphertexts D1, . . . , Dn−1.
Let D′

1, . . . , D
′
n−1 denote the mixed set. The matching authorities then compute

EQTEST(D′
i, E(0)) for i = 1, . . . , n−1. If an equality is found, they output true,

otherwise they output false.

6 Encrypting Preferences

Let E denote the encryption function for a threshold public-key encryption
scheme with an additive homomorphism, such as for example a threshold ver-
sion [5, 7] of the Paillier encryption scheme [18]. We assume that the matching
authorities are the joint holders of the private decryption key.

Let A1, . . . , Am be m men and B1, . . . , Bn be n women. As in Section 4,
we let ri,j ∈ {0, . . . , n − 1} denote the rank of woman Bj for man Ai, and
sj,i ∈ {0, . . . , m − 1} denote the rank of man Ai for woman Bj . We define pi,j =
E(ri,j) and ai = (pi,1, . . . , pi,n). Similarly, we define qj,i = E(sj,i) and bj =
(qj,1, . . . , qj,m).

6.1 Bid Creation

We define a “bid” as an encrypted representation of the preferences of one
men for women, together with additional “book-keeping” information. For i ∈
{1, . . . , m}, the bid Wi that represents the preferences of man Ai consists of
3n + 2 Paillier ciphertexts defined as follows:

– An encryption E(i) of the index i of man Ai.
– The vector ai = (pi,1, . . . , pi,n).
– A vector vi = (E(1), . . . , E(n)).
– The vector qi = (q1,i, . . . , qn,i).
– A ciphertext E(ρ), where ρ is the number of times the bid has been rejected.

Initially ρ = 0.
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The role of the ciphertext E(i) is to maintain the association between bid
Wi and the man Ai whose preferences the bid expresses. The vector ai en-
codes the preferences of man Ai for women B1, . . . , Bn. As we shall see, the
elements of ai are permuted at random in the course of the private stable
matching algorithm. Thus the need for the vector vi, whose role is to main-
tain the association between the rankings contained in ai and the women these
rankings pertain to: the element in position j of vi is always an encryption
of the index of the woman whose rank is given by the element in position
j of ai. The vector qi encodes the initial rank given to man Ai by women
B1, . . . , Bn. Finally, the ciphertext E(ρ) records the number of times that the
bid has been rejected: the value ρ is updated every time an engagement is
broken.

Free and engaged bids. A bid by itself, as defined above, is called a free
bid because it is not paired up with a woman. A bid paired up with a woman is
called an engaged bid. More precisely, an engaged bid is a triplet (Wi, E(j), qj,i),
where:

– Wi = [E(i), ai, vi, qi, E(ρ)] is the bid of man Ai

– E(j) is an encryption of the index j ∈ {1, . . . , n} of a woman Bj

– qj,i is an encryption of the rank given to man Ai by woman Bj

Breaking an engagement. Let (Wi, E(j), qj,i) be an engaged bid. If this bid
loses woman Bj to another bid, we update it as follows. First, we strip the triplet
of the values E(j) and qj,i, keeping only the free bid Wi. Next, we increment the
counter ρ in Wi by one, using Paillier’s additive homomorphism (i.e. we multiply
E(ρ) by E(1) to obtain E(ρ + 1)).

6.2 Bid Mixing

The Paillier cryptosystem allows for semantically secure re-encryption of cipher-
texts. Since bids (both free and engaged) are made up of Paillier ciphertexts, they
can be re-encrypted, and in particular they can be mixed with a re-encryption
mix network. We consider two types of mixing for bids: “external” mixing and
“internal” mixing.

External bid mixing. External mixing takes as input a set of bids, either all
free or all engaged, and mixes them in a way that hides the order of the bids
but preserves the internal position of ciphertexts within a bid. External mixing
considers bids as atomic elements and preserves their internal integrity. More
precisely, let us consider an initial ordering of k free bids W1, . . . , Wk and let σ
be a permutation on k elements. The external mixing operation re-encrypts all
the Paillier ciphertexts in all the bids (preserving the order of ciphertexts within
each bid) and outputs Wσ(1), . . . , Wσ(k). A set of engaged bids can be mixed
externally in exactly the same way. In this paper, free and engaged bids are
never mixed externally together (since free bids are made of 3n + 2 ciphertexts
and engaged bids of 3n+4, they would not blend together). Intuitively, external
bid mixing hides which bid encodes the preferences of which man.
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Internal bid mixing. Internal mixing takes as input a set of bids that may
contain both free and engaged bids. These bids are mixed “internally” in a way
that hides the order of a subset of the ciphertexts within the bids but preserves
the order of the bids themselves. More precisely, let us consider a set of k bids
and let π be a permutation on n elements. The bids in the set are processed one
by one, and output in the same order as they were given as input. A free bid is
processed as follows. Let Wi = [E(i), ai, vi, qi, E(ρ)] be a free bid. We define
the internally permuted bid as π(Wi) = [E(i), π(ai), π(vi), π(qi), E(ρ)], where
the permuted vectors π(ai), π(vi) and π(qi) are defined as follows:

Let ai = (pi,1, . . . , pi,n). Let p′i,1, . . . , p
′
i,n be re-encryptions of the ciphertexts

pi,1, . . . , pi,n. We let π(ai) =
(
p′i,π(1), . . . , p

′
i,π(n)

)
. The vectors π(vi) and

π(qi) are defined in exactly the same way.

Engaged bids are processed in the same way. Let (Wi, E(j), qj,i) be an en-
gaged bid. We define the corresponding internally permuted engaged bid as
(π(Wi), E(j), qj,i).

Note that the same internal permutation π is applied to all the bids in the
set. Note also that, as always in mix networks, the global permutation π is in
fact the combination of permutations chosen by all the matching authorities,
so that the matching authorities themselves do not know π (unless they all
collude). Intuitively, internal mixing hides which woman a particular ciphertext
pertains to.

6.3 Conflicts Between Bids

Opening a free bid. Let π(Wi) = [E(i), π(ai), π(vi), π(qi), E(ρ)] be a
free bid that has been internally permuted by a permutation π on n elements.
Since π is the result of one (or several) internal bid mixing operations, it is not
known to the matching authorities. Let j be the index of the woman Bj assigned
rank ρ by that bid. Opening Wi means determining E(j) and qj,i = E(sj,i)
without learning anything else about the bid. Note that opening a bid would be
trivial if the permutation π were known. Without knowledge of π, the matching
authorities open a bid as follows. The matching authorities jointly compute
α = INDEX(π(ai), E(ρ)). Since the same permutation π is applied to ai, vi and
qi, the element in position α of π(vi) is E(j) and the element in position α of
π(qi) is qj,i = E(sj,i).

Detecting a conflict. Let π(Wi) be a free bid, and let
(
π(Wi′ ), E(j′), qj′,i′

)
be an engaged bid, both internally permuted according to the same permutation
π on n elements (we assume again that π is not known to the matching author-
ities). Let E(j) and qj,i be the ciphertexts obtained when the free bid π(Wi) is
opened. Detecting a conflict between these two bids means determining whether
j = j′, without learning anything else about the bids. To do so, the matching
authorities jointly compute EQTEST(E(j), E(j′)). The bids conflict if and only
if EQTEST returns an equality.
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Resolving a conflict. Let π(Wi) be a free bid that opens up to E(j), qj,i and

conflicts with an engaged bid
(
π(Wi′ ), E(j), qj,i′

)
for woman Bj . Resolving

the conflict means outputting a new free bid and a new engaged bid such that:

– if Bj ranks Ai ahead of Ai′ , the free bid is a re-encryption of Wi′ and the
engaged bid is a re-encryption of (Wi, E(j), qj,i)

– if Bj ranks Ai behind Ai′ , the free bid is a re-encryption of Wi and the
engaged bid is a re-encryption of (Wi′ , E(j), qj,i′)

without revealing anything else about the bids (in particular the protocol does
not reveal which bid wins the contested woman). To resolve the conflict, the
matching authorities first create an engaged bid

(
π(Wi), E(j), qj,i

)
out of the

free bid π(Wi). The two engaged bids are then mixed externally. Let q′j,i′ and
q′j,i denote the re-encrypted and permuted images of qj,i′ and qj,i. The matching
authorities jointly compute COMPARE(q′j,i′ , q′j,i). The result of this comparison
determines (privately) which bid stays engaged, and which is stripped of Bj to
make a free bid.

7 Private Stable Matching Algorithm

We describe a private algorithm for finding a stable matching in which men
propose to women. The algorithm follows the general structure of the algorithm
described in Section 4, but operates on encrypted bids to preserve privacy. The
algorithm is run by a number of matching authorities. We use the notations
defined in Section 6.

Setup. In a setup step, the matching authorities jointly generate the pub-
lic/private key pair for a threshold public-key encryption scheme E with an
additive homomorphism. For example, E may be a threshold version [5, 7] of the
Paillier encryption scheme [18].

Input submission. As before, we let ri,j ∈ {0, . . . , n − 1} denote the rank of
woman Bj for man Ai, and sj,i ∈ {0, . . . , n − 1} denote the rank of man Ai for
woman Bj. Every man Ai submits a vector of n Paillier ciphertexts

ai = (pi,1, . . . , pi,n),

where pi,j = E(ri,j), and every woman Bi similarly submits a vector of n Paillier
ciphertexts

bj = (qj,1, . . . , qj,n),

where qj,i = E(sj,i).

Addition of fake men. The matching authorities define an additional n fake
men An+1, . . . , A2n as described in Section 4. Specifically, the matching authori-
ties define ri,j = j− i+n mod (n−1) for i ∈ {n + 1, . . . , 2n} and j ∈ {1, . . . , n}
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and compute the corresponding vectors ai = (pi,1, . . . , pi,n) for i = n+1, . . . , 2n,
where pi,j = E(ri,j). The matching authorities also define sj,i = i − 1 for
j ∈ {1, n} and i ∈ {n + 1, 2n} and augment the vectors bj with these new values
(we keep the notation bj for the augmented vectors): bj = (qj,1, . . . , qj,2n). After
this preprocessing step, the matching authorities have 2n vectors a1, . . . ,a2n

(each vector contains n ciphertexts that express the rankings assigned by one
man to the n women) and n vectors b1, . . . , bn (each vector contains 2n cipher-
texts that express the rankings assigned by one woman to the 2n men).

Bid creation. The matching authorities create 2n bids W1, . . . , W2n, where Wi

encodes the preferences of man Ai. Bid Wi is defined as follows (see Section 6.1):

Wi = [E(i), ai, vi, qi, E(0)]

Throughout the algorithm, bids are divided into free bids and engaged bids. Ini-
tially, the n bids corresponding to real men are free: F1 = (W1, . . . , Wn), whereas
the n bids corresponding to the fake men are engaged: E1 = (Wn+1, . . . , W2n).
More precisely, man Wn+j is paired with woman Bj . For j = 1, . . . , n the engaged
bid of (fake) man An+j is thus defined as:(

Wn+j , E(j), qj,n+j

)
Initial mixing. The sets E1 and F1 are each independently mixed externally
by the matching authorities. Next, the matching authorities mix internally the
set E1 ∪ F1.

Computing a stable match. As in Section 4, the core of our private stable
matching algorithm proceeds in n rounds. We let Ek denote the set of engaged
bids and Fk denote the set of free bids at the beginning of round k = 1, . . . , n+1.
The algorithm executes the following routine for k = 1, . . . , n:

While the set Fk is non-empty, select at random one free bid (denoted Wi) from
Fk. Then:

1. The matching authorities jointly open up bid Wi, and learn E(j) and qj,i =
E(sj,i).

2. There is always exactly one engaged bid in Ek that conflicts with Wi. The
matching authorities jointly find that engaged bid using (at most |Ek| = n
times) the conflict detection protocol described in Section 6.3. Let’s call the
conflicting engaged bid (Wi′ , E(j), qj,i′ ).

3. Using the conflict resolution protocol of Section 6.3, the matching authorities
resolve the conflict. The conflict resolution protocol does not reveal which
bid wins but it ensures that one bid (either Wi or Wi′) is added to Ek and
the other to Fk+1. For clarity, we explain what happens behind the scene:
– If Wi wins, it becomes an engaged bid (Wi, E(j), E(sj,i)) and is moved

from the set Fk to the set Ek. The engagement of bid (Wi′ , E(j), E(sj,i′ ))
is broken (see Section 6.1) and the newly free bid Wi′ moves from the
set Ek to Fk+1.
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– If Wi loses, it remains free and moves from Fk to Fk+1. The engaged
bid (Wi′ , E(j), E(sj,i)) stays in the set Ek.

4. The set Ek is mixed externally. All bids in the sets Ek ∪ Fk ∪ Fk+1 are then
mixed internally.

At the end of the round (when the set Fk is empty), we define Ek+1 = Ek. The
sets Ek+1 and Fk+1 are independently mixed externally. The set Ek+1 ∪ Fk+1 is
then mixed internally.

Bid decryption and final output. After n rounds, the final set En+1 con-
sists of n engaged bids of the form (Wi, E(j), E(sj,i)), where Wi = [E(i),
ai, vi, qi, E(ρ)]. At this point, the matching authorities retain only two ci-
phertexts from an engaged bid: E(i) and E(j). The matching authorities thus
obtain n pairs of the form (E(i); E(j)). These pairs (E(i); E(j)) are (externally)
mixed by the matching authorities, then jointly decrypted. The decryption of
pair (E(i); E(j)) reveals than man Ai is paired with woman Bj.

8 Properties

Proposition 2. The algorithm of Section 7 terminates after n rounds and out-
puts a stable matching between n real men and n real women. The computational
cost of the algorithm is dominated by the cost of running 3n2 re-encryption mix
networks on at most 2n Paillier ciphertexts. The corresponding communication
cost is O(n3).

Since we assume an honest-but-curious passive adversary, the proof of correct-
ness follows directly from Proposition 1. The computational cost is dominated
by the cost of re-encryption mix networks. For every element in Fk in every
round k, the matching authorities must run 3 re-encryption mix networks: one
to resolve the conflict between bids, one for external mixing and one for internal
mixing. The overall computational cost is thus O(n3) modular exponentiations.
This is a substantial cost, but not unreasonable considering that stable matching
algorithms are typically run off-line and that low latency is not a requirement.
In practice, stable matching algorithms involving up to a few thousands of par-
ticipants could be run privately within a day on commodity hardware.

Proposition 3. The algorithm of Section 7 is private according to Definition 1,
assuming Paillier encryption is semantically secure and the underlying
re-encryption mix network is private.

Proof (Sketch). In the execution of the protocol, the matching authorities com-
pute and output intermediate values (Paillier ciphertexts, modular integers and
boolean values), then finally a stable match. We prove that a passive adversary
cannot distinguish between the sequence of intermediate values produced by the
protocol, and a random sequence of intermediate values drawn from an appro-
priate probability distribution. The proof is by contradiction. If an adversary A
can distinguish with non-negligible advantage the output of the algorithm from
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random, then by a standard hybrid argument, there exists one intermediate value
V that A can distinguish from random.

If V is a Paillier ciphertext, we can use A to break the semantic security of
Paillier encryption, contradicting our assumption about Paillier’s security.

If V is a modular integer or a boolean value, the value of V depends on the
internal or external permutation applied by the matching authorities immedi-
ately before computing V . Thus if A can distinguish between different values of
V , we can use A to distinguish between the outputs produced by a re-encryption
mix-network using different permutations, breaking the assumption that the mix
network is private. �

8.1 Active Adversaries

We have assumed a passive adversary throughout, but our techniques can be
extended to accommodate active adversaries at the cost of additional proofs of
correct execution. We consider here an active adversary who has static control
over up to all the participants (men and women), and static control over up to
a strict minority of matching authorities. We must augment the private stable
matching algorithms of Section 7 with proofs of correct protocol execution by
participants and matching authorities. These proofs are verified by the matching
authorities (a strict majority of whom is assumed honest).

The participants need only prove to the matching authorities that the pref-
erence vectors they submit (ai for man Ai and bj for woman Bj) follow the
protocol specifications, i.e. are Paillier encryptions of a permutation of the set
{0, . . . , n − 1}. We use non-interactive zero-knowledge (NIZK) proofs that the
decryption E−1(C) of a Paillier ciphertext C lies within a given plaintext set
{0, . . . , n − 1}. For Paillier encryption, these proofs reduce to proving knowledge
of the root of the randomization factor [5]. These proofs can also be combined
conjunctively and disjunctively using standard techniques [22]. We can thus
prove that a vector ai = (E(r1), . . . , E(rn)) is well-formed with the following
NIZK proof:

∧
j∈{0,...,n−1}

(∨
i∈{1,...,n}(E

−1(E(ri)) = j)
)
.

The correct behavior of matching authorities must itself be verified. The
building blocks of Section 5 all accept variants that are secure against active
adversaries. As usual, a matching authority caught not following the protocol is
excluded from future computations and replaced by a new authority.

9 Conclusion

We have proposed a private stable matching algorithm based on a variant of the
Gale-Shapley algorithm. Assuming a majority of honest matching authorities,
our protocol correctly outputs a stable match, and reveals no other information
than what can be learned from that match and from the preferences of par-
ticipants controlled by the adversary. We have proved the security and privacy
of our protocol based on assumptions about standard distributed cryptographic
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protocols. Our protocol is practical and we hope that it will be used to offer
greater privacy to the tens of thousands of students and professionals whose
careers are affected every year by matching algorithms.
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Abstract. With the increasing importance of correctly handling privacy-
sensitive data, significant work has been put in expressing and enforc-
ing privacy policies. Less work has been done however on negotiating a
privacy policy, especially if the negctiation process itself is considered
privacy-sensitive. In this paper, we present a formal definition of the
mutually privacy-preserving policy negotiation problem, i.e. the problem
of negotiating what data will be revealed under what conditions, while
no party learns anything about the other parties’ preferences other than
the outcome of the negotiation.

We validate the definition by providing a reference solution using
two-party computation techniques based on homomorphic encryption
systems. Based on an evaluation of the efficiency of our protocol in terms
of computation, bandwidth and communication rounds, we conclude that
our solution is practically feasible for simple policies or high-bandwidth
communication channels.

1 Introduction

With the increasing amount of electronic data produced by day-to-day interac-
tions, as well as the ability to link or otherwise process this data, the handling of
privacy-sensitive personal data has emerged as an important field in computer
security. Many online services require the user to submit some information about
himself (e.g. name, address, . . . ) in order to access the service. The type of in-
formation to be provided is described in a policy.

Substantial work has been done on defining privacy policies (e.g. P3P [23] and
EPAL [3]), and their enforcement [19, 5, 7]. Less work however has been done on
policy negotiation. Usually, it is assumed that both sides somehow agree on a
common policy specifying what data will be transmitted and how sensitive data
should be handled. In various settings, this negotiation is complicated by the
effect that a person’s privacy preferences may already give away information
about that person. Since the vast majority of the population is still willing to
reveal seemingly innocent data (e.g. their consumption of alcohol), a person that
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considers this piece of data as sensitive might quickly raise suspicion and conse-
quently be treated with a worst-case assumption (e.g. that he’s an alcoholic).

Given that both parties’ preferences themselves are to be considered as private
data, can they still discover whether a matching policy exists, and if so, what
this policy is? In this paper, we answer this question in a positive way.

Our contributions. We formally define the problem of negotiating a privacy
policy from two sets of preferences, in such a way that no party learns any infor-
mation about the other’s preferences other than the policy agreed upon. We then
develop a concrete protocol by implementing (a special case of) the definition as
a boolean circuit, and using efficient two-party computation techniques based on
threshold homomorphic cryptosystems of [20] to evaluate it. Based on a detailed
analysis of the efficiency of our protocol in terms of bandwidth, rounds of com-
munication and computational overhead, we conclude that while this protocol is
efficient enough for reasonably small policies, its overhead becomes prohibitive
for larger ones. Therefore, we see our protocol more as a proof-of-concept, and as
a benchmark against which the performance of future special-purpose protocols
can be measured.

Related work: policy frameworks. The most common framework for pri-
vacy policy negotiation today is the Platform for Privacy Preferences Project
(P3P) [23]. A P3P policy consists of a number of attributes (e.g. the user’s
name, address,. . . ), and the conditions tied to the user’s willingness to reveal
these attributes (e.g., it may not be forwarded to third parties, and has to be
deleted once it is no longer needed). P3P was designed with two goals in mind.
Firstly, it creates transparency about an organization’s privacy policy. Secondly,
it allows for automatic comparison of the policies. To reduce the initial com-
plexity of the standard, the current version of P3P deliberately left out any
negotiation. Rather, the server simply reveals its policy, and the client then pro-
ceeds with the interaction, or not. In some sense, this does protect the client’s
privacy, but the server’s policy is fully exposed.

Our negotiation protocol can be used within the context of P3P, though some
practical restrictions may be necessary for efficiency reasons. The design of P3P
is hierarchical in the sense that attributes (e.g. first name, last name) can be
contained in other attributes (e.g. name). In the non-private case, this is not a
problem – a policy may group attributes and thus not need to individually specify
the preferences for each and every attribute. Our protocol, however, cannot
efficiently handle such groups, as it makes the number of attributes too large to
be practical. Also, P3P allows a policy designer to freely define attributes. This
poses a problem for automated systems such as ours, as a user may not have
predefined his preference on an attribute that the server defined.

Another popular framework for the definition of privacy policies is the Enter-
prise Privacy Authorization Language (EPAL) [3]. EPAL is designed as a back-
end language to be used internally inside an enterprise, allowing to automatically
enforce its privacy rules. As such, EPAL allows a fine-grained and flexible set of
rules, which also represent the internal data flows within the corporation. While
the possibility to express complex policies makes EPAL interesting for secret
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negotiations, its complexity makes it hard even to compare policies [3], let alone
to negotiate them without revealing any information about the preferences.

The theoretical model for policy negotiations proposed by Yu et al. [25] fo-
cuses on allowing for a maximal independence in choice of strategy between the
negotiating parties, without sacrificing efficient interoperability. They mainly
consider a setting in which credential holders prove certified properties to a
server, whereas we consider clients submitting unverified personal data, but their
techniques can be applied to both types of negotiations. More importantly, they
recognize the need to protect sensitive details of the parties’ preferences [21, 25],
and propose protocols achieving this goal through a gradual release of require-
ments. Thereby, the disclosure of sensitive requirements is postponed until a
certain level of trust has been established. It is hard to quantify however how
much privacy this approach actually gives for general policies. In contrast, we
employ cryptographic techniques guaranteeing that the only information leaked
about the other party’s preferences is the policy that was agreed upon.

Related work: cryptographic protocols. The problem of private policy ne-
gotiation is a specific instance of secure two-party computation [24, 17], which is
the problem where two parties want to jointly evaluate a function on private in-
puts, while leaking no other information about their inputs than what is implied
by the result. An efficient approach to secure two-party computation in the multi-
party setting is to model the function as a boolean circuit, and to use a threshold
homomorphic encryption scheme to evaluate it on encrypted inputs [1, 13, 9, 20].
(See Section 2 for more details on this approach.) We build on these results by
implementing policy negotiation as a boolean circuit and evaluating it using the
multiplication gates of [20]. The recently proposed double-homomorphic encryp-
tion scheme of [6] cannot be applied to our setting because it can only handle cir-
cuits with a single level of multiplication gates. Though some attacks exist for the
schemes underlying our (and in fact, most) zero knowledge circuits implementa-
tions with a dishonest majority [8], they can be resolved by applying a slightly
weaker model than usuall and carefull implemenatation, as the cheating party
would clearly be exposed before any damage is done.

Private policy negotiation is also related to the problems of private matching
and set intersection [14], where two parties want to compute the intersection of
their private datasets. Private set intersection could be used for a basic form of
policy negotiation by letting the client’s dataset contain the attributes that the
client is willing to reveal, and letting the server’s dataset contain the attributes
that he wants to see. A matching policy exists if the intersection is equal to
the server’s dataset (which has to be determined using an extra zero knowledge
comparison technique). Our protocol however supports more flexible preferences,
allowing the client to express which attributes cannot be revealed together, and
allowing the server to declare multiple combinations as sufficient for accessing
the service. Moreover, to be useful in the model provided by existing privacy
frameworks, we need to be able to model obligations. A user may well be willing
to reveal data he otherwise would keep private if he is promised that it will be
deleted within a week, or not forwarded to a third party.
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Policy-based cryptography [4, 2] is a way of enforcing need-to-know policies
on the distribution of data, by allowing to encrypt data such that only users with
certain roles can decrypt it. A trusted authority has the responsibility of issuing
role certificates to the appropriate users. This line of work is complementary to
ours, as it considers policy enforcement rather than negotiation. Moreover, their
solution is not fully privacy preserving, as the ciphertexts leak information on
the policies of the parties involved.

Further use cases. While our protocol was originally designed to negotiate
privacy preferences, the approach can be used in various other settings as well.

Assume two people want to find out whether they share common interests in
order to decide if they should go on a date. To prevent humiliation, no interests
are revealed unless shared by the other person, if any at all. In its simplest form,
every party has a constant set of interests. A more complex setting is where each
party has several sets of interests, corresponding to the different offers the party
is willing to make. For example, a person may simultaneously seek quick affairs
and more permanent relationships. Furthermore, he does not want a partner
matching the “permanent relationship policy” to know that he was also looking
for a quick affair, even if (or especially if) a match happens.

The protocol may further be used for classical negotiation deals, i.e., for buy-
ing goods or services. Classical private negotiation systems are one-dimensional,
i.e., both parties define an amount of money they are willing to spend or want to
get, respectively, and the system tells them if a deal can happen (and potentially,
for how much). However, most negotiations today have more facets. The seller
may offer some discount if paid in cash, or if several items are bought, and the
buyer may pay more if home delivery is ensured, or the warranty is extended.
Assuming the number of options is not exceedingly high, our protocol delivers a
practical way to privately negotiate the proper conditions.

2 Secure Two-Party Computation

We have chosen to use the tools of [20] based on threshold homomorphic cryp-
tosystems for various reasons. Firstly, threshold homomorphic cryptosystems
allow for very efficient solutions of multi-party computation problems that are re-
sistant against active adversaries [18, 10, 9]. There exist very efficient distributed
key generation protocols for the discrete logarithm setting, making it attrac-
tive for ad-hoc contacts. Moreover, discrete-logarithm based protocols can be
implemented using elliptic curves, resulting in smaller bandwidth requirements.
Compared to the mix and match technique of [18] it offers the same round com-
plexity of O(d), where d is the depth of the circuit being evaluated, but it is much
more efficient for multiplications. (More precisely, the techniques developed in
[20] are about ten times more efficient.)

2.1 Cryptographic Tools

Homomorphic encryption. Given an encryption function E, a public key p
with corresponding secret key s, and a message m, we denote by Ep(m) the
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encryption of m with the public key p. An encryption function E is called ad-
ditively homomorphic if for all messages m1 and m2, we have Ep(m1 + m2) =
Ep(m1)Ep(m2).

We describe briefly the homomorphic version of the El Gamal cryptosys-
tem. Let G = 〈g〉 denote a finite cyclic (multiplicative) group of prime or-
der q for which the Decision Diffie-Hellman (DDH) problem is assumed to
be infeasible: given gx, gy, gz ∈R G, it is infeasible to decide whether xy ≡ z
(mod q).

The public key of the El Gamal cryptosystem is an element h ∈ G and the
encryption of a message m ∈ Zq is given by the pair (a, b) = (gr, hrgm) where
r ∈r Zq. The secret key s is given by s = logg h.

Given the private key s, decryption of the ciphertext (a, b) = (gr, gmhr)
is performed by first calculating b/as = gm, and then solving for m ∈ Zq.
This is done by restricting ourselves to messages m belonging to a sufficiently
small domain M ⊆ Zq which allows for exhaustive testing. Here, we take
M = {0, 1}.

We define the multiplication of two ciphertexts (for the same public key) (a, b)
and (a′, b′) by (a, b)(a′, b′) = (aa′, bb′). It readily follows that this encryption
scheme is additively homomorphic for this multiplication. It is well known that
under the DDH assumption, this cryptosystem is semantically secure [20].

For ease of notation, we will use [[m]] to denote an encryption of the message
m under some understood public key. In this notation we have [[x]][[y]] = [[x + y]]
and [[x]]y = [[xy]].

Threshold decryption. In an (n, t) threshold cryptosystem [11], the private
key is distributed over n parties such that only coalitions of size at least t parties
can decrypt the message hidden inside a ciphertext. In this paper we use a
(2, 2) threshold cryptosystem where encryptions are computed with a common
public key h but decryption is performed by running a protocol between the
two involved parties. Every party holds a share si ∈ Zq of the private key
s = s1 + s2 = logg h, where the corresponding value hi = gsi is public. For
decryption of the ciphertext (a, b), the players P1 and P2 produce a decryption
share di = asi (i = 1, 2) together with a proof that loga di = logg hi. Assuming
that both players produce correct decryption shares, the message is recovered
from solving gm = b/as (where as is obtained as d1d2) for m. Finally, it is
checked whether m ∈ {0, 1}. If this does not hold decryption fails. In case both
parties need to obtain the decrypted value, the protocol has to be run in a fair
way. A protocol for this is given in [20].

Distributed key generation. In order to set up the key generation in a P2P
situation, the users have to run a distributed key generation (DKG) protocol.
We describe very briefly a practical protocol [15] here. In the first step, both
parties broadcast a Pedersen commitment ci = gsih′ri , with si, ri ∈R Zq along
with a proof of knowledge for si, ri. In the second step, both parties broadcast ri

along with a proof of knowledge of logg hi, where hi = ci/h′ri . The joint public
key is h = h1h2, with corresponding private key s = s1 + s2. In many practical



86 K. Kursawe, G. Neven, and P. Tuyls

cases, a more lightweight one-round protocol4 can be used. Then, both players
broadcast hi = gsi and a proof of knowledge of si.

2.2 Secure Two-Party Computation from Homomorphic Encryption

In order to be able to securely evaluate any circuit using an additive homo-
morphic encryption scheme, a protocol for secure multiplication is needed. We
briefly remind the private multiplier gate and the conditional gate developed
in [20]. Those protocols are simulatable even in the malicious case.

First consider the situation where the encryptions [[x]] = (a, b) = (gr, gxhr)
and [[y]] = (c, d) are given with player P1 knowing x. Player P1 computes on
its own a randomized encryption [[xy]] = (e, f) = (gs, hs)[[y]]x, with s ∈R Zq,
using the homomorphic properties. Finally player P1 broadcasts [[xy]] along with
a proof showing that this is the correct output.

Next we consider the conditional gate which takes only encrypted inputs. Let
[[x]], [[y]] denote encryptions, with x ∈ {−1, 1} ⊆ Zq and y ∈ Zq. The following
protocol enables players P1 and P2, to compute an encryption [[xy]] securely.

1. Player P1 broadcasts an encryption [[s1]], with s1 ∈R {−1, 1}. Then P1 applies
the private-multiplier multiplication protocol to multiplier s1 and multipli-
cands [[x]] and [[y]], yielding random encryptions [[s1x]] and [[s1y]]. Analogously,
player P2 broadcasts an encryption [[s2]], with s2 ∈R {−1, 1}. Then P2 applies
the private-multiplier multiplication protocol to multiplier s2 and multipli-
cands [[s1x]] and [[s1y]], yielding random encryptions [[s1s2x]] and [[s1s2y]].

2. The players jointly decrypt [[s1s2x]] to obtain s1s2x. If decryption fails be-
cause s1s2x �∈ {−1, 1}, the protocol is aborted.

3. Given s1s2x and [[s1s2y]], an encryption [[(s1)2(s2)2(xy)]] = [[xy]] is computed
publicly.

2.3 Secure Evaluation of Some Basic Gates

In Section 3 we turn the private policy negotiation problem into a problem of
the secure evaluation of a function that can be described as a circuit consisting
of basic gates, in casu NOT, OR and AND gates. For bits x, y ∈ {0, 1}, we use
the shorthand notation ¬x to denote the negation of x, we use x ∧ y to denote
the logical conjunction (AND) of x and y, and we use x∨ y to denote the logical
disjunction (OR) of x and y. We present protocols for the secure evaluation of
those gates within the model of secure two-party computation; i.e. we consider
two parties who evaluate these gates without revealing anything about their
input (except the information that leaks from the output of the function).

AND with Encrypted Inputs. Given two encrypted bits [[x]] and [[y]], the
players run a conditional gate on those two inputs to compute [[x ∧ y]].

4 Although the trivial protocol allows one of the parties to influence the distribution
of the public key h slightly, this need not be a problem for the application in which
the key is used; see [16] for more details.
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AND Gate with one Encrypted and one Unencrypted Input. Let x de-
note the private input and [[y]] the encrypted input which is available to both.
The players run the private multiplier gate on inputs x and [[y]].

OR Gate with Encrypted Inputs. Given two encrypted bits [[x]] and [[y]],
[[x∨ y]] is securely computed by running a conditional gate on the inputs [[x]]
and [[y]]. Then, using the homomorphic properties of the cryptosystem, they
compute [[x ∨ y]] as [[x + y − xy]].

OR with an Encrypted and an Unencrypted Input. Given unencrypted
input x and encrypted input [[y]], the players run the private multiplier gate,
yielding [[xy]]. Then, the players compute [[x ∨ y]] = [[x + y − xy]].

NOT Gate on Encrypted Inputs. Computing [[¬x]] given [[x]] is done by com-
puting [[1 − x]] publicly.

3 Private Policy Matching: Definition and Approaches

Formal definition. By the preferences of a user we mean a strategy defining
which attributes (e.g. credit card number, address, ...) he is willing to reveal in
order to gain access to certain service. The preferences of a server define the
attributes he requires from a user before granting access to the service. Policy
negotiation refers to the process of finding out whether a match exists between
the attributes that the user wants to reveal and the set of attributes that the
server requires. We say that a combination of attributes is a matching policy if it
is acceptable to both the client and the server. We define the problem of policy
matching more formally as follows.

Definition 1. Let A be a set of attributes, and let S be a totally ordered set of
scores with least element 0. Preferences over the set of attributes A are described
by functions f, g : 2A → S that assign to each combination of attributes A ⊆
A a score s ∈ S, indicating the client’s willingness to reveal the combination
of attributes A (in the case of client preferences f), or indicating the server’s
inclination to accept that combination of attributes as sufficient to access the
service (in the case of server preferences g). A matching function M : 2A ×S ×
S → S assigns a matching score to a combination A ⊆ A based on A, the client’s
willingness f(A) and the server’s acceptance g(A). A combination A is said to
be a matching policy with respect to client preferences f , server preferences g
and matching function M if M(A, f(A), g(A)) > 0. The best matching policy is
the combination A ⊆ A for which M(A, f(A), g(A)) is maximal.

We introduced the set S to allow the expression of fine-grained preferences by
assigning weights to sets of attributes. Throughout this paper however, we limit
ourselves to the case S = {0, 1} and M(A, f(A), g(A)) = 1 iff f(A) = g(A) =
1, which corresponds to a client being either willing or unwilling to reveal a
combination of attributes, a server either accepting a combination of attributes
or not, and a match occurring whenever both parties accept the policy.

By private policy negotiation we mean a protocol between the client and the
server during which they learn nothing about each other’s preferences except
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whether a matching policy exists, and possibly what that matching policy is. In
our model, we consider an active but static adversary who can corrupt one of
both players and hence get access to all data of the corrupted player. External
measures should be taken to prevent the client from extracting the server’s pref-
erences through repeated negotiations with different input preferences, e.g. by
limiting the number of negotiations per client within a certain time interval or
requiring human interaction.

A straightforward approach. Let A = {a0, . . . , an−1} be the set of the client’s
attributes (e.g. a0 = “credit card number”, a1 = “birth date”, . . . ). If x is a bit
string of length n, then we refer to the individual bits of x as x0 . . . xn−1. To
each x ∈ {0, 1}n, we associate a set of attributes A(x) = {ai ∈ A : xi = 1, 0 ≤
i ≤ n − 1}. The client’s preferences can be modeled as a boolean function f :
{0, 1}n → {0, 1}, where f(x) = 1 if the client is willing to reveal the combination
of attributes A(x), and is 0 if he’d rather not reveal this combination. Likewise,
the server’s preferences can be modeled as a boolean function g : {0, 1}n →
{0, 1}. A matching policy is an assignment x ∈ {0, 1}n such that f(x) = g(x) = 1.

The functions f(x) and g(x) are most naturally represented through their
truth tables. Deciding whether a matching policy exists comes down to finding a
row with a 1 in the output column of both truth tables. The most straightforward
way to implement this approach as a boolean circuit is to let the client’s and
server’s input be the output column of the truth tables of f and g, and to design
a circuit that outputs an index x ∈ Z2n such that f(x) = g(x) = 1. The size
of this circuit (in number of inputs and number of gates), however, is O(2n),
making it unsuitable for evaluation through secure two-party protocols.

Generating subsets. A more compact yet quite natural description of the
client’s and server’s policies can be obtained by observing that in most real-
world cases, f is a monotonically decreasing boolean function, meaning that if
f(A) = 1 and B ⊆ A, then also f(B) = 1. Indeed, if the client is willing to show
the combination of attributes A, then it is natural to assume that he is willing
to show any subset of these attributes as well. Likewise, it is easy to see that
usually g is monotonically increasing, meaning that if g(A) = 1 and B ⊇ A, then
g(B) = 1. Indeed, if showing attributes A is sufficient to access the service, then
so should be any combination B ⊇ A.

Definition 2. Let h : 2A → {0, 1} be a monotonically increasing boolean func-
tion. We say that H = {H1, . . . , Ha} ⊆ 2A is a set of generating subsets for h
iff for all A ⊆ A

h(A) = 1 ⇔ ∃ i ∈ {1, . . . , a} : Hi ⊆ A .

Note that since f is a monotonically decreasing function, ¬f is a monotonically
increasing function that is described through its set of generating subsets F =
{F1, . . . , Fa}. Essentially, the sets F1, . . . , Fa are the minimal combinations of
attributes that the client does not want to reveal together. Likewise, the function
g is described through its set of generating subsets G = {G1, . . . , Gb}, where the
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sets G1, . . . , Gb are the minimal combinations of attributes that the server wants
to see before delivering the service.

These generating subsets are not only a very compact representation of the
client’s and server’s preferences, they are at the also a natural way of thinking
about such preferences. The client for example may be reluctant to simultane-
ously show his credit card number and his mother’s maiden name (the latter is
sometimes used as a backup secret to reactivate lost cards), independent of other
attributes he has to reveal in addition to that. Analogously, the server knows
the minimal information that he needs from users (e.g. name and either email
address or phone number), but he won’t mind getting extra attributes

Using the notation of generating subsets, finding a match is equivalent to
finding a set of attributes A ⊆ A such that Fi �⊆ A for all Fi ∈ F , and there
exists Gj ∈ G such that Gj ⊆ A.Without loss of generality, we can assume that
the matching policy is one of the server’s generating subsets, if a match exists.
(This is the match with the smallest number of shown attributes.) Therefore, we
can write the condition for the matching policy A more compactly as the set of
attributes Gj ∈ G such that ∀ Fi ∈ F : Fi �⊆ Gj .

4 A Boolean Circuit for Policy Matching

A boolean circuit implementing the generating subsets approach is given in
Figure 1. The client’s input consists of the generating subsets F1, . . . , Fa en-
coded as n-bit strings, where the j-th bit of Fi is 1 iff attribute aj ∈ Fi. The
server’s input consists of the subsets G1, . . . , Gb in the same encoding. Since
the values of a and b leak information about the complexity of the client’s and
server’s preferences, the circuit needs to be designed for some fixed maximum
values of a and b. Note that this leads to a worst-case scenario from the point of
view of efficiency, but this is unavoidable as otherwise the run time would leak
information about the preferences. The client and server assign arbitrary val-
ues to unused Fi and Gj entries, but distinguish “real” subsets from “dummy”
subsets by setting the additional input bits fi and gj to 1 or 0, respectively.
The output of the circuit is the encoding of a matching policy M , and a bit e
indicating whether a matching policy exists (e = 1) or not (e = 0). We will see
that when no matching policy is found, M takes the value 0 . . . 0.

Gates with multiple fan-in in Figure 1 can be implemented as a cascade of
binary gates (e.g. x0 ∨ x1 ∨ x2 ∨ x3 = ((x0 ∨ x1)∨ x2)∨ x3, or as a balanced tree
of binary gates (e.g. x0 ∨ x1 ∨ x2 ∨ x3 = (x0 ∨ x1) ∨ (x2 ∨ x3)). Both options
are equivalent in the total number of gates, but the latter option gives a better
efficiency in terms of communication rounds, as we will see later. The thick lines
in Figure 1 represent buses, which are essentially collections of parallel wires to
carry words, rather than individual bits. Thick gates represent bitwise operations
on words, e.g. the bitwise AND of n-bit words x, y ∈ {0, 1}n is the n-bit word
z = (x0 ∧ y0, . . . , xn−1 ∧ yn−1).

The circuit consists of two layers. The first layer checks, for all j = 1, . . . , b,
whether Gj is a suitable candidate for a matching policy, meaning that Gj does
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Fig. 1. An efficient circuit for policy negotiation The client’s inputs are generating
subsets F1, . . . , Fa, encoded as n-bit strings, and corresponding real-or-dummy bits
f1, . . . , fa. The server’s inputs are generating subsets G1, . . . , Gb, strings, with corre-
sponding real-or-dummy bits g1, . . . , gb. The output e indicates whether a matching
policy exists (e = 1) or not (e = 0). The output M is an encoding of a matching
combination of attributes, or 0n if no such policy exists.

not conflict with any of the client’s sets Fi. The wire labeled cj in Figure 1
carries a one if Gj is a candidate policy, and a zero if not. The second layer
finds the candidate policy with the lowest index and outputs it as the matching
policy. To select the match with the smallest index, the circuit uses intermediate
variables ej that are 1 iff a matching policy exists among G1, . . . , Gj , and the
output bit e = eb is one iff a matching policy was found. AND-ing cj with ¬ej−1
ensures that the only non-zero bit coming out of any of the leftmost AND gates
in Layer 2 is on the wire corresponding to the first match. The final gates of
the circuit encode a matching policy onto the output bus M . If no matching
policy was found, then M is set to 0n, leaking no information about the server’s
preferences except the fact that no match exists with the given client preferences.

5 Policy Matching with Obligations

In this section, we extend the circuit to allow the client to express demands
concerning certain attributes, such as that the data is deleted after a certain
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time, that it is not forwarded to third parties, or even to receive a discount in
exchange for a certain attribute. The server expresses the promises he’s willing
to make for each attribute. A matching policy is then defined as a combination
of attributes such that (1) they are deemed sufficient by the server to access the
service, (2) the client is willing to reveal them, and (3) the server is willing to
comply with the client’s demands related to the revealed attributes. We extend
Definition 1 with obligations as follows.

Definition 3. Let A be a set of attributes, let S be a totally ordered set of scores
with least element 0, let f, g be functions describing the client’s and server’s pref-
erences, and let M be a matching function as in Definition 1. Let O be a set of
obligations. The client’s demand function d : A → 2O associates to each attribute
a set of obligations that the client demands from the server when revealing that
attribute. The server’s willingness function w : A → 2O maps an attribute to
the set of obligations that the server is willing to respect for that attribute. We
say that A ⊆ A is a match with respect to preferences f, g, matching function
M , demand function d and willingness function w if M(A, f(A), g(A)) > 0 and
∀ a ∈ A : d(a) ⊆ w(a). The best match is the subset A ⊆ A for which
M(A, f(A), g(A)) is maximal.

Again, we will only consider here the special case of Definition 3 where S =
{0, 1}, where f and g are monotonically decreasing, respectively increasing,
boolean functions,and where the result of thematching functionM(A,f(A),g(A))=
1 iff f(A) = g(A) = 1. Let O = {o0, . . . , om−1} be the set of promises that the
client can demand for each attribute (e.g. o0 = “Delete after session”, o2 =
“Delete after one year”, o3 = “Do not forward to third parties”,. . . ). The modi-

Gj

D1

Dn

W1

Wn

…

cj

…

cj’

M

D1

Dn

M

… …

O1

On

Fig. 2. Extensions to the circuit of Figure 1 to support promises. The circuit on
the left computes whether the server is willing (as defined by additional server in-
puts W1, . . . , Wn) to meet the client’s demands (as defined by additional client inputs
D1, . . . , Dn) for all attributes in a candidate policy Gj . The circuit on the right encodes
the agreed-upon promises as part of the output.

fications to the circuit of Figure 1 are depicted in Figure 2. The client’s demand
function and the server’s willingness function are described by additional input
sets Di = d(ai) and Wi = w(ai) for i = 0 . . .m − 1, respectively, encoded as m-
bit strings. Apart from the matching policy M and a bit e indicating whether a
match was found, the circuit now also outputs the obligations O0, . . . , On−1 ⊆ O
that the server has to adhere to for attributes a0, . . . , an−1.
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The left circuit in Figure 2 is inserted b times between Layers 1 and 2 in
Figure 1 on each wire cj , j = 1, . . . , b, replacing cj with a bit c′j before passing
it to Layer 2. For each candidate policy Gj , this subcircuit computes a bit c′j
indicating whether the server is also willing to make all promises that the client
requires for attributes in Gj . The right circuit in Figure 2 is to be appended to
the right of the circuit in Figure 1. If attribute ai ∈ M , then the bitwise AND
gate encodes the client’s demands Di onto the output promises Oi, or it encodes
the all-zeroes string if ai �∈ M .

6 The Private Policy Matching Protocol

Security. In Section 3, we transformed the policy negotiation problem into a
function evaluation problem to which each of the two parties provides its own pri-
vate inputs (policies). Let us denote the corresponding function by C. First, the
function C is described as a circuit consisting of AND, OR and NOT gates in Sec-
tion 3. It was shown that those gates can be evaluated if addition and multiplica-
tion can be performed on encrypted inputs. Addition on encrypted inputs follows
immediately from the homomorphic property of the used cryptosystem and the
multiplication is done with the conditional gate of [20]. The function C is then
privately evaluated by the following protocol FuncC(F1, . . . , Fa; G1, . . . , Ga).

1. Both players encrypt their inputs; i.e. they encrypt (bit by bit) the strings
describing their generating subsets. They broadcast zero-knowledge proofs
that they know the content of their encryptions and that the values they
encrypted are bits.

2. They carry out all the gates of the circuit that describes the function f by
using the secure evaluation of the gates described in section 2.3. Gates that
can be run in parallel will be securely evaluated in parallel, the others will
be evaluated sequentially.

3. Finally, the output of the protocol is decrypted with a threshold decryption
protocol.

Note that if the output should only be revealed to one of the players instead to
both, then a threshold decryption with private outputs has to be used [20]. Fi-
nally, we mention that fairness can be achieved easily by using the fair decryption
protocol developed in [20]. We have the following theorem.

Theorem 1. On input of the generating subsets F1, . . . , Fa and G1, . . . , Ga of
the client and the server respectively, the protocol FuncC evaluates the private
policy negotiation without leaking any additional information about F1, . . . , Fa

and G1, . . . , Ga.

Proof. Completeness of the FuncC protocol follows from the analysis in section 3
and of the construction of the gates in section 2.3. The fact that the FuncC pro-
tocol can be simulated follows from the following observation. The gates that are
evaluated during the FuncC protocol consist on their turn of sequences of addi-
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tions and multiplications. Hence it follows that the structure of the FuncC pro-
tocol follows exactly the structure of the function evaluation protocols in [9, 20].
This implies that the FuncC protocol can be simulated and hence leaks no addi-
tional information on its inputs F1, . . . , Fa and G1, . . . , Ga. �

From the description of the extensions to the circuit given in Section 5, it is
straightforward to write down the full protocol for policy matching with obliga-
tions. Obviously, it consists entirely of AND, OR and NOT gates, and hence its
security follows from a similar reasoning as made above.

Efficiency. In order to assess the practical feasibility of our protocol, we esti-
mated the overhead incurred by evaluating the circuits given in Figures 1 and 2
using the techniques laid out in Section 2. (A constant factor on the number
of gates can probably be saved by applying a design automation tool such as
Xilinx.) A number of representative values are given in Table 1. For both the
basic circuit and the extended circuit with obligations, we computed the total
amount of data sent over the network, the number of communication rounds, and
the number of exponentiations to be performed by each of the participants. The
actual values were obtained by observing that the evaluation of an AND/OR
gate on encrypted inputs involves 11 exponentiations from each participant and
26 group elements to be communicated over the network in 2 rounds; that the
evaluation of an AND/OR gate with one known input involves 4 exponentiations
by one of the participants and 10 group elements to be communicated in a single
round; and that the evaluation of a NOT gate comes practically for free (using
the homomorphic properties of the encryption scheme). We were able to save
on the number of rounds by evaluating independent gates in parallel, and by
implementing bitwise gates on n-bit vectors using binary gates organized in a
tree of depth �log2 n�, rather than in a cascade.

Table 1. Efficiency estimates of our protocol for various parameter values when using
the two-party computation protocol of [20] over 170-bit elliptic curves. We give the
amount network traffic (bandwidth), the number of communication rounds and the
number of exponentiations to be performed by each of the players for realistic values
of the number of attributes n, the maximal number of client and server preferences a
and b, and the maximal number of obligations per attribute m.

without obligations with obligations
n a, b m bandwidth rounds exponentiations bandwidth rounds exponentiations
10 5 10 235 KB 16 4.11 · 103 1.15 MB 36 2.15 · 104

50 25 25 24.0 MB 24 4.29 · 105 88.3 MB 52 1.62 · 106

200 50 100 373 MB 30 6.66 · 106 1.97 GB 66 3.76 · 107

Asymptotically speaking, the basic circuit without obligations requires O(abn)
exponentiations to be computed and O(abn) group elements to be communicated
in O(b + log(bn)) rounds. The circuit with obligations takes O((a +m)bn) expo-
nentiations and O((a + m)bn) group elements in O(b + log(abmn)) rounds.

From Table 1, one can see that our protocol is practically feasible only for rela-
tively simple preferences and/or resourceful environments. For larger parameter
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values, the overhead may become prohibitive. This is due to both the use of
generic cryptographic primitives and the severeness of our privacy requirements.
We think that our implementation, however, can still serve as a benchmark for
protocols that use specialized techniques or relaxed privacy requirements.

7 Conclusion

We consider this paper as a first step towards privacy preserving negotiation
protocols, whereas the main goal is to cleanly define the problem and demon-
strate its feasibility. Consequently, this work raises a number of new questions
that need to be addressed for the system to become practical.

One issue is that ourdefinitions of security are very strict.Formanyapplications,
this level of security is not required, while it prohibits possibly useful functional-
ity such as user-defined or hierarchical attributes, or mixing data interpretation
into the policy. It would be interesting to investigate whether a less strict privacy
metric [22, 12] can be conceived under which more efficient protocols are possible.

Another issue is that our protocols use generic two-party computation. We
expect that the cost of the protocols can be significantly brought down by de-
signing special-purpose protocols that do not base on generic circuit evaluation.

Acknowledgements

The work of the first two authors was supported in part by the Concerted Re-
search Action (GOA) Ambiorics 2005/11 of the Flemish Government and in part
by the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT. Gregory Neven is a Postdoctoral Fellow of the Research
Foundation – Flanders (FWO – Vlaanderen).

References

1. M. Abadi and J. Feigenbaum. Secure circuit evaluation. J. Cryptology, 2(1):1–12,
1990.

2. S. S. Al-Riyami, J. Malone-Lee, and N. P. Smart. Escrow-free encryption support-
ing cryptographic workflow. Cryptology ePrint Archive, Report 2004/258, 2004.
Available from http://eprint.iacr.org/.

3. M. Backes, G. Karjoth, W. Bagga, and M. Schunter. Efficient comparison of en-
terprise privacy policies. In ACM SAC 2004, pages 375–382, New York, NY, USA,
2004. ACM Press.

4. W. Bagga and R. Molva. Policy-based cryptography and applications. In A. Patrick
and M. Yung, editors, Financial Cryptography 2005, volume 3570 of LNCS, pages
72–87. Springer, 2005.

5. A. Barth and J. C. Mitchell. Enterprise privacy promises and enforcement. In
WITS ’05: Proceedings of the 2005 workshop on Issues in the Theory of Security,
pages 58–66. ACM Press, 2005.

6. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In J. Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 325–341. Springer,
2005.



Private Policy Negotiation 95

7. J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix
anonymous credential system. In Proc. of the 9th CCS, pages 21–30, New York,
NY, USA, 2002. ACM Press.

8. R. Cleve. Limits on the security of coin flips when half the processors are faulty.
In Proc. of the 18th ACM STOC, pages 364–369. ACM Press, 1986.

9. R. Cramer, I. Damg̊ard, and J. B. Nielsen. Multiparty computation from threshold
homomorphic encryption. In B. Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 280–300. Springer, 2001.

10. I. Damg̊ard and J. B. Nielsen. Universally composable efficient multiparty com-
putation from threshold homomorphic encryption. In D. Boneh, editor, CRYPTO
2003, volume 2729 of LNCS, pages 565–582. Springer, 2003.

11. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In G. Brassard, editor,
CRYPTO 1989, volume 435 of LNCS, pages 307–315. Springer, 1990.

12. C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards measuring anonymity.
In R. Dingledine and P. Syverson, editors, PET 2002 , volume 2482 of LNCS.
Springer, 2002.

13. M. K. Franklin and S. Haber. Joint encryption and message-efficient secure com-
putation. J. Cryptology, 9(4):217–232, 1996.

14. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 1–19. Springer, 2004.

15. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gen-
eration for discrete-log based cryptosystems. In J. Stern, editor, EUROCRYPT
1999, volume 1592 of LNCS, pages 295–310. Springer, 1999.

16. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure applications of Ped-
ersen’s distributed key generation protocol. In M. Joye, editor, CT-RSA 2003,
volume 2964 of LNCS, pages 373–390. Springer, 2003.

17. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In Proc. of the 19th
ACM STOC, pages 218–229. ACM Press, 1987.

18. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via cipher-
texts. In T. Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
346–358. Springer, 2000.

19. M. C. Mont, S. Pearson, and P. Bramhall. Towards accountable management of
identity and privacy: Sticky policies and enforceable tracing services. In DEXA
2003 , pages 377–382. IEEE Computer Society, 2003.

20. B. Schoenmakers and P. Tuyls. Practical two-party computation based on the
conditional gate. In P. J. Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS,
pages 119–136. Springer, 2004.

21. K. E. Seamons, M. Winslett, and T. Yu. Limiting the disclosure of access control
policies during automated trust negotiation. In NDSS 2001 . The Internet Society,
2001.
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Abstract. Reputation systems aggregate mutual feedback of interact-
ing peers into a “reputation” metric for each participant. This is then
available to prospective service “requesters” (clients) for the purpose
of evaluation and subsequent selection of potential service “providers”
(servers). For a reputation framework to be effective, it is paramount
for both the individual feedback and the reputation storage mechanisms
to be trusted and able to deal with faulty behavior of participants such
as “ballot stuffing” (un-earned positive feedback) and “bad-mouthing”
(incorrect negative feedback). While, in human-driven (e.g. Ebay) envi-
ronments, these issues are dealt with by hired personnel, on a case by
case basis, in automated environments, this ad-hoc manner of handling is
likely not acceptable. Stronger, secure mechanisms of trust are required.

In this paper we propose a solution for securing reputation mecha-
nisms in computing markets and grids where servers offer and clients
demand compute services. We introduce threshold witnessing, a mecha-
nism in which a minimal set of “witnesses” provide service interaction
feedback and sign associated ratings for the interacting parties. This
endows traditional feedback rating with trust while handling both
“ballot-stuffing” and “bad-mouthing” attacks. Witnessing relies on a
challenge-response protocol in which servers provide verifiable computa-
tion execution proofs. An added benefit is ensuring computation result
correctness.

Keywords: Trust, Reputation Systems, Electronic Commerce.

1 Introduction

In a reputation system, satisfaction feedback provided by interacting entities
is aggregated and used in the construction of a “reputation” metric of each
participant. This metric is then to be used by prospective service clients in
evaluating and selecting among potential servers. One example of a reputation
system is eBay. In a typical scenario, following a sale, the buyer provides a
satisfaction rating which is then stored in a publicly available reputation profile
of the seller which can be later consulted by prospective buyers.
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In the case of eBay, interacting entities are human. One could envision lever-
aging a paradigm of interaction feedback reputation in fully automated digi-
tal interactions, for example in distributed servicing systems. The promise of
such reputation frameworks [3, 5, 6, 11, 12, 13, 20] is to offer a low cost, scal-
able method for assessing reliability (and possibly level of trust) of connected
system entities. Now centralized trust becomes a costly, often un-realistic pro-
posal. A distributed alternative for reputation management is required. In hos-
tile settings, malicious behavior can interfere significantly with the ability to
provide and manage interaction and service ratings (possibly with the pur-
pose of inflicting reputation damage to the competition or the system itself).
Nevertheless, these are the type of frameworks where a reputation paradigm
would yield the most benefits, not only because of its scalability and virtually
zero-cost, but mainly because of its potential to provide feedback to security
and resource managers, essential in ad-hoc and faulty (possibly malicious) set-
tings. This is why, for a reputation framework to be effective, it is paramount
for both the individual feedback and the reputation storage mechanisms to be
trusted and able to deal with faulty behavior of participants such as “ballot
stuffing” (un-earned positive feedback) and “bad-mouthing” (incorrect nega-
tive feedback). While, in human-driven (e.g. Ebay) environments, these issues
are handled by an army of hired individuals, in automated environments, this
is likely not acceptable. Strong and secure automatic mechanisms of trust are
required.

Here we introduce a solution for secure reputation management in a dis-
tributed computing environment. We believe this to be a first required step
in the integration of reputation as a trusted automated assessment mechanism
in distributed computing environments. Our solution is composed of two ma-
jor elements: a proof of computation method (an extension of the “ringer”
concept first introduced in [10]) and a “threshold witnessing” mechanism. In
the witnessing protocol, a set of sufficient “witnesses” are gathered to wit-
ness service interactions and subsequently sign a document certifying a new
associated rating. The witnessing is coupled with a mechanism of computation
proofs which provides an (arbitrary high) confidence level that a particular set
of computations was indeed performed by a given party. This is required in wit-
nessing to make sure that ratings are in fact correlated to the quality of the
result. The main contributions of this paper include: (i) the proposal and defi-
nition of the problem of securing rating correctness and their associated seman-
tics (computational result correctness) in distributed computing markets, (ii)
a solution proposing the use of threshold witnessing and computation proofs to
produce securely signed ratings and (iii) the evaluation thereof, (iv) an exten-
sion to the ringers concept for arbitrary computations and an analysis of its
applicability.

The paper is structured as follows. Section 2 introduces the main system and
adversary models as well as some of the basic construction primitives. Section
3 overviews, details and analyzes our solution and its building blocks. Section 4
surveys related work and Section 5 concludes.
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2 Model and Tools

2.1 Communication and System Model

Let n be the average total number of uniquely identified (e.g., through a numeric
identifier Id(X))) processes or participants in the system at any given point in
time. Due to the potentially dynamic nature of real systems (with participants
joining and leaving continuously), defining n precisely is inherently hard.

The system’s purpose is to provide a market for computations. Participants
can export CPU cycles that others can use in exchange for payment. We assume
that there exists a finite set of computation “services”, {f1, ..., fs} and each
participant has the ability to perform them, albeit at different costs. Let Alice
be a service provider and Bob a service requester. In such a computing market,
as part of a service request, Bob specifies an amount he is willing to pay for it
as well as additional quality of result constraints, e.g., time bounds. Bob’s aim
is to maximize the investment, for a set of computations it needs to perform.

For any interaction between Alice (Id(Alice) = A) and Bob (Id(Bob) = B), let
there be a unique session identifier, e.g., a composition of the current time and
the identities of the two parties, sid(A, B, time) = H(A; B; time). We will use the
notation sid when there is no ambiguity. Let f be a service provided, f : D → I,
and let (xi)i∈[1,a] ∈ D be the computation inputs.

As it is not central to our contribution, to model costs and execution times
we are proposing the following intuitive model: (i) for a computation f and
a given input data set {x1, ..., xa} the amount of associated CPU instructions
NI(f) required to compute it, can be determined easily (for simplicity we assume
that for each xi, this amount is the same); for every system participant X both
(ii) the execution time per CPU instruction TPI(X) and (iii) the charged cost
per time unit CPT(X) are publicly known and easily accessible to every other
participant While this model can be made more complex, we believe it fits best
the current scope. Thus, any entity can determine every other’s entity associated
cost and execution time. This is an important element in the process of matching
a particular service request (including time and cost constraints) to the most
appropriate service provider (see Section 3.1).

There exists a universal time authority that provides the current absolute time
value (e.g., UTC) with a certain precision εt. There exists a PKI [14], that can
distribute certified public keys to all participants. This enables them to sign and
check signatures of others. We propose to use this same infrastructure to also
provide verifiable threshold signatures [17]. More precisely, we use it to distribute
to each participant a certified master secret key share and the master public key.
The key shares are set up such that any c + 1 participants can sign an arbitrary
message with the master secret key, and the correctness of any signature share
can be verified by anyone in a non-interactive manner (c or less participants
cannot perform the same operation, see Section 2.4).

We assume that the underlying distributed communication layer offers the
following types of communication channels: (i) secure point to point between
two entities (cost: ψpp), (ii) secure multicast within a group (cost per multicast:
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ψmcast) and (iii) broadcast (cost per broadcast: ψbcast). The multicast channel
allows group creation and message delivery to group members. Additionally, as
the main focus of this paper is not on the communication layer we assume that
there exist join/leave protocols for participating entities that enable them to
both become aware of and communicate with the other entities in the system.
The only extension that our solution proposes is to the join protocol, enabling
new entities to gain knowledge of existing reputation values (see Section 3.1).

Let the ratings be numeric in our system. We say that a reputation is a
trustworthy enclosure of a rating. More precisely, the reputation of participant
X is rep(X) = SMK(Id(X), rating(X), T), where SMK(M) denotes message M signed
with the secret master key, rating(X) ∈ [0, 1] is X’s rating (a higher value
is a better rating), and T is the creation time of the reputation. Addition-
ally, upon receiving the results r of an interaction of X performed in time
ΔT, let ρ() be any function that aggregates r and ΔT with the previous rat-
ing of X, to create the new rating of X; the new rating value of X becomes
ratingnew(X) = ρ(ratingold(X), r, ΔT).

2.2 The Adversary

Let c be the upper bound on the number of active faulty participants at any
point in time (e.g., no more than c participants can collude, crash or act dis-
honestly). The mechanisms proposed here are always secure but most efficient
when the size of the input data sets a is truly large. More specifically, when on
average, a > (2c + 1) holds for (most of) the computation jobs in the system.
To bring efficiency even for smaller input sets, one could envision a mechanism
for gathering multiple inputs over a time period, until a critical mass is attained
and only then submit them for execution.

The role of reputation ratings is then to allow service requesters to choose
service providers with a good history. Of concern here are scenarios of ballot
stuffing and bad-mouthing [7] in which participants collude in order to build
fake pasts. In ballot stuffing un-earned good reputation ratings are provided to
service providers by colluding clients. The main purpose of bad-mouthing is to
provide incorrect negative ratings, possibly for the competition.

2.3 Ringers

Ringers were first introduced in [10]. The main idea is to (cheaply) provide
computation proofs for the evaluation of a certain hypothesis over a large input
set where only certain items will match (e.g., interesting patterns in [1]). Here we
propose ringers in a distributed computing market context where a computation
needs to be performed on all the data items in the input set.

In their initial version ringers work as follows. The first underlying assump-
tion is that the computations in the system are non-invertible one-way. A service
client wishes to get one of these computations h computed for a set of inputs,
{x1, ..., xa} by a service provider. To perform the computation it first computes
a challenge (“ringer”) to be submitted along with the inputs to the service
provider. This challenge is exactly the result of applying h to one of the inputs
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h(xt), where t ∈ [1, a] is not known to the service provider. The implicit as-
sumption here is that computing h for the entire input set is significantly more
expensive than for a single item in the input (e.g, if a is large enough). The
client then submits {x1, ..., xa} and h(xt) to the service provider. In addition
to the normal computation results {h(x1), ..., h(xa)} the service provider is ex-
pected to return also (as a computation proof) the correct value for t. Due to
the non-invertible nature of h, a correct return provides a confidence of actual
computation over the set of inputs.

The main power of the ringers lies in the assumed non-invertibility of the
performed computations. To directly fake a proof (and produce a “valid” t),
the service provider would have to either: (i) act honest and perform a compu-
tations or (ii) cheat and perform only 0 ≤ w < a computations hoping it finds
the ringer in the process and, if not, guess. The probability to succeed in cheat-
ing is positively correlated to the amount of work performed; over the course
of multiple interactions it can be forced to arbitrary small values. For more de-
tails see Section 3.3. The ringer construct (for arbitrary computations) in this
paper is obtained by “wrapping” results in one-way, random crypto-hash func-
tions. In other words, we lift the assumption of one-way non-invertibility for
the computations in the system; h can be any function. The ringer challenge
submitted to the service provider becomes now H(h(xt)) where H() is a one-
way non-invertible cryptographic hash function. Thus, instead of the assumed
one-wayness of computations, our extension puts the main power of ringers
in the non-invertibility and randomness of the cryptographic hash deployed.
Additionally, we extend the adversary model to also consider “guessing” (see
Section 3.2).

2.4 Verifiable Threshold Signatures

The model of verifiable threshold signatures [17] consists of a set of n participants
and a trusted dealer. Since we already assume the existence of a decentralized
trusted infrastructure providing public key distribution, see Section 2.1, we can
use it to play the part of the trusted dealer. Initially, the trusted infrastruc-
ture needs to generate a master public key PK, a verification key VK, n shares
of a master secret key SKi:1..n and n verification keys VKi:1..n. Each participant
Pi receives PK, VK and its shares SKi and VKi, each certified by the trusted
infrastructure. Additional secret and verification key shares can easily be gen-
erated later on, for the use of new participants that join the system. This is
not generating a high overhead, requiring only the computation of a polyno-
mial and an exponentiation [17]. The signature verification algorithm takes a
message, its signature and the master key PK and determines if the signature is
correct. The signature share verification algorithm takes a message, PK, VK, the
signature share of process Pi, and VKi and determines if the signature share is
valid. The share combination algorithm takes as input a message, c + 1 valid
signature shares for the message and PK and produces a valid signature of the
message. Any c processes cannot collude and produce a valid signature of a
message.
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3 Solution

At an overview level our initial solution proceeds as follows (Figure 1 (a)). Bob
wishes to get a given computation f executed over a set of input data items
{x1, ..., xa}, in exchange for payment. Both the payment and the amount of
time he is willing to wait for service completion are upper-bounded. In an ini-
tial witness selection phase (step 1, Section 3.1), Bob selects a set of 2c+ 1
computation “witnesses” Wi (this provides a threshold-secure way of avoiding
illicit ratings). He then sends to all of them (via multicast) a service request in-
cluding f, the inputs, the payment and target execution time upper bounds
(step 2). The witnesses then perform a distributed server selection process
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Servers for f()

broadcast
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S2
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W2c+1W1 Wj
……
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Server Selection
(cost function + rating)

3

Witnessing

unicast

4

f(x1),…,f(xa)
5

reputation(Alice)
6

multicast

Witness
Selection

1

f,{x1,…,xa},
ΔΔΔΔTmax,Cmax

2

witness multicast

ringer:
rj=H(f(xz))

1

proof: z’
2

Wj

no

Alice (Server)

check: z’ = z ?
3

yes

new (+) rating
threshold
signature
share for Wj

4

unicast

failure proof (z,rndj,rj),
new (-) rating threshold
signature share for Wj

4’

Fig. 1. (a) Solution Overview (b) Building Block: Witnessing Protocol

(step 3, Section 3.1), at the end of which the least-costly, best-reputation, avail-
able server is selected to perform f for Bob. As the adversary model in Section
2.2 guarantees a majority of the witnesses are honest and non-colluding, this
process is to complete successfully. Let the selected server be “Alice”. Note that
the selection of Alice is not under the control of Bob. Alice is provided f and the
input data set and the witnesses then initiate the process of threshold witnessing
(step 4, Section 3.1) by sending (each in turn) a set of challenge ringers to Al-
ice. Upon executing the computation Alice completes the witnessing process by
returning the execution proofs associated with the challenge ringers to the wit-
nesses, as well as the actual computation results back to Bob (step 5). Finally,
depending on the proof correctness, the witnesses sign (using verifiable threshold
signatures, Section 2.4) a new rating (a combination of the previous rating and
“good” if correct proofs or “bad” otherwise) for Alice and distribute (broadcast)
it (step 6, Section 3.1). If the rating does not change it is not distributed.

3.1 Building Blocks

Rating Storage Management. We start by first exploring the way the actual
reputation information is stored. As the rating of each participant is ultimately
a numeric value, in itself it can be easily altered. Our solution for introducing
trust in reputation values is to allow their creation only if a certain number of
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participants agree on that reputation. For this, the reputation of participant X is
stored signed with the secret master key, as SMK(Id(X), rating(X), T). Then, we
use verifiable threshold signatures (see Section 2.4) to allow no less than c + 1
participants to sign a reputation with the secret master key. Thus, the reputation
of a participant can be created or changed only if at least c + 1 participants agree
on the participant’s new rating.

Every participant stores the most recent reputation for every other partici-
pant together with: the time it takes the participant to execute an instruction,
time per instruction (TPI), and the amount charged by the participant per unit
of its processor time, cost per time (CPT) (see Section 2.1). Both values are
constant and signed with the participant’s private key before distribution.

In order for participants to store consistent reputations, we need each joining
participant to acquire the current view of the system, and a change in one’s
reputation to be advertised to all. It is thus straightforward to see that at most
c participants may have an incorrect view of the system, since we assume that
at most c participants are faulty. A joining participant has then to make its
presence known through a broadcast message, followed by the transfer of rep-
utations knowledge of at least 2c + 1 participants, already part of the system.
Specifically, when a participant X receives the broadcast message of a new par-
ticipant, J, it stores J’s identity under an initial, pre-agreed upon rating. X
then retrieves the current time, T, and if the selection test is positive, that is,
H(Id(X), T) mod �n/(2c+ 1 + e)� = 0, X sends back to J its collection of reputa-
tions. J waits to receive c + 1 replies and then for each participant only stores
the most recent reputation. Since we assume that the current time can be re-
trieved with error εt, each participant uses only the most significant bits of T
in order to perform the selection test with the same value of T. e is a positive
integer, used to ensure that at least 2c + 1 of the participants will be selected.

Witness Selection. Before exporting a job, service client B first needs to select
2c+ 1 witnesses, ensuring that even if c participants are faulty, a majority, at
least c + 1, will be honest and alive for the duration of the protocol. Since
B already stores the reputations of all the participants, the witnesses can be
elected randomly among them. This corresponds to step 1 in Figure 1 (a). In
step 2, B creates a multicast channel for the witnesses and sends the (signed) job
description: f, the set of input values (xi)i∈[1,a], the maximum time B is willing
to wait for job completion, ΔTmax, and the maximum amount B is willing to pay
for the computation, Cmax, a signed digest SB(H(f, (xi)i∈[1,a], ΔTmax, Cmax)), along
with a certificate containing B’s public key, meant to prevent integrity attacks.

Server Selection. The 2c+ 1 witnesses need to first select the most suitable
service provider (see step 3 in Figure 1 (a)). This is performed subject to the
following constraints. First, all participants X for which TPI(X)× NI(f) × a is
greater than ΔTmax, or TPI(X)× CPT(X) × NI(f)× a is greater than Cmax, are not
further considered. Secondly, the participant with the best reputation among the
remaining ones is selected. Let that participant be Alice (A). Even with c faulty
witnesses, no less than c + 1 witnesses will select A.
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Next, A is added to the witness multicast group. The first witness in a certain
order [4] (“the leader”) multicasts the job description received from B. If the
other witnesses receive this message, they know that A also received it, and stop;
else, after waiting a small amount of time, the next witness in the ordering
assumes leadership and sends this multicast. This continues until the witnesses
hear the expected job description. In Section 3.1 we show that in fact the number
of expected multicasts is exactly one.

Threshold Witnessing. The 4th step in Figure 1 (a), detailed in Figure 1
(b), depicts the service witnessing operation. This operation requires the 2c+ 1
witnesses to first export B’s computation to A, then verify the accuracy of the
computation performed by A, and based on the quality of the service performed,
compute and sign the new rating of A. The essence of the service witnessing op-
eration is the usage of ringers (see Section 2.3). We now show how the threshold
witnessing operation is performed securely by 2c + 1 external witnesses.

Ringer Generation. Each witness Wj:1..2c+1 selects one (or a small random
number of values – we illustrate here the case with one single value for clarity)
random value xz from the input set (xi)i∈[1,a] specified by B in the job description
and computes a ringer rj = H(f(xz)). Based on the identities of A and B and the
current time, Wj generates a unique session identifier, sid, (see Section 2.1). The
purpose of sid is to prevent replay attacks by introducing a freshness element.
Then Wj computes SWj(H(Id(Wj), sid, rj)), and sends its identifier, Id(Wj), sid,
the ringer rj, together with the signed digest and Wj’s public key certificate
to A (step 1 in Figure 1 (b)). When A receives such a message, it verifies Wj’s
signature. Although A knows rj and it may collude with a subset of the witnesses,
none of them actually knows the xz value generated by an honest witness. Also,
since at most c witnesses can be malicious, at least c + 1 witnesses will be honest
and generate good ones; these are enough to ensure A’s cooperation.

A waits to receive 2c + 1 valid messages for the same session identifier, sid. If,
within a given time frame, starting with the receipt of the first ringer, A receives
less than c + 1 such messages, it ignores the job received. Otherwise, A sends a
multicast message to all the witnesses that participated. The message contains a
concatenation of all the signed ringers received. The witnesses that receive this
message, inquire the remaining witnesses for their ringers. If the remaining wit-
nesses, less than c + 1 of them, show that they chose a different service provider,
A should perform the job with only the initial ringers (necessarily from honest
witnesses). If the remaining witnesses reply with ringers, A should perform the
job using all ringers. This mechanism is required to avoid a case of malicious wit-
nesses mounting a denial of service attack in which they don’t send out ringers
but claim Alice to be malicious. It also handles the case of a malicious Alice
claiming to have not received all the ringers.

Revealing the Ringers. Next, A performs the computation and reveals the in-
put values xz hidden in the 2c + 1 ringers. It creates a single message containing
Swj(H(Id(Wj), sid, rj)) and SA(H(Id(A), sid, z)), for j = 1..2c+ 1. The message
also contains the results of the computation, f(x1), .., f(xa), along with its signed
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digest. Note that the first signed digest was sent by Wj, and is used to prove the
value of the ringer rj. A then sends this message on the witness multicast channel
(step 2 in Figure 1 (b)). Each witness Wj verifies the correctness of only its own
ringer, that is, rj = H(f(xz)). The multicast of A is meant to prevent a witness
from falsely claiming that A did not send back a correct answer.

If any witness Wj discovers that A did not send back xz or that rj �= H(f(xz)),
Wj sends a multicast message to all the other witnesses revealing this fact. The
other witnesses are able to verify the claim by computing the correct answer to
Wj’s ringer and compare it with the answer sent back by Alice (received during
A’s previous multicast, step 3 in Figure 1 (b)). This acts as the proof that A did
not perform the entire computation. A negative rating is then issued.

Signature Generation. Based on A’s current rating, rating(A), the returned
results of the current computation, r, and the time elapsed since A received the
job description, ΔT, each witness Wj is able to compute A’s new rating using the
ρ function (see Section 2.1). In general, if A is caught cheating, either by not
performing the entire computation or performing it slower than advertised, its
rating will decrease, otherwise, it will increase. Each Wj then generates a veri-
fiable signature share of A’s new reputation, SshrWj (Id(A), ρ(rating(A), r, ΔT), T),
where T is the current time and SshrWj (M) denotes message M signed with Wj’s share
of the secret master key. Then Wj sends this value, along with its certified ver-
ification key VKj (see Section 2.4) and A’s new rating in clear, to all the other
witnesses, using the group’s multicast channel. Each witness waits to receive c
correct signature shares for the same new reputation of A as the one generated
by itself. As mentioned in Section 2.4, any participant can verify the validity of
a signature share by using the master public key, master verification key and the
verification key of the share, VKj. Additionally, since no more than c witnesses
are malicious, an honest witness will receive at least c such correct signature
shares, ensuring progress. Since c + 1 different and correct signature shares are
enough to generate a valid signature (see Section 2.4), each witness is able to
generate the signed new rating of A locally.

Reputation Distribution. In the last stage of the protocol, depicted in steps
5 and 6 in Figure 1 (a), the results of the computation are returned to B and
the new reputation of A is distributed. Since we assume that A can only be lazy,
if A performed the computation, it will send the correct results to B. The wit-
nesses know each other’s identities and a global ordering of the group members
is assumed [4]. The first witness is in charge of sending the new reputation of
A on the broadcast channel to all the participants in the system. If during this
broadcast the remaining witnesses hear the expected reputation, they stop. How-
ever, if the next witness (in the given group order) does not hear the expected
reputation in a given time frame, it will itself send A’s new reputation on the
broadcast channel. This process goes on until all the witnesses are satisfied with
the distributed reputation. Note that a witness cannot simply send an incorrect
reputation since it will be easily detected, as it would need a fresh timestamp
and to be signed with the master key, that is, by at least c + 1 honest witnesses.
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If un-changing ratings are ignored, the number of broadcasts is reduced to a
fraction of c

n (Section 3.3).

3.2 Attacks and Improvements

Cheating and Laziness. Is bad-mouthing still possible? Due to the nature
of the solution, issuing a bad rating requires a secured proof of non-compliance
by Alice, that all witnesses agree with. This would only happen if at least one
of them will show its ringer H(f(xz)) for which Alice did not respond correctly
with z. But, if Alice responded correctly, all messages are signed, ringers are
non-invertible, and at most c of the witnesses are malicious, this is not possible.

Furthermore, a straight-forward ballot-stuffing attack, where clients create
and duplicate simple compute jobs in order to artificially increase the ratings
of preferred servers, is thwarted through the indirection introduced by the wit-
nessing layer. For each job requested by a client, a server is chosen by 2c+ 1
witnesses, containing an honest majority.

Next, we ask what are the chances of malicious entities to succeed in cheating in
the witnessing phase? In other words, is lazy behavior (resulting in ballot-stuffing)
possible and how likely? An analysis on the power of ringers can be found in [10].
Without duplicating these results, here we are exploring a scenario not considered
in [10]. Let us start by asking the question: For r ringers, what is the probability of
“finding” (i.e., finding the rank of the corresponding input item in the item set) x
of them by performing only w < a work? In other words, what is the likelihood of
cheating by simply finding the ringers after doing less work than required.

This can be modeled as a classical sampling experiment without replacement
(retrieving x black balls out of w draws from a bowl of (a− r) white and r black

balls): P0(a, w, r, x) =
(rx)×(a−r

w−x)
(aw)

where x ∈ [max(0, w+ r− a), min(r, w)]. Addition-
ally, we know the success probability of simple guessing of r ringers without
performing any work is (choosing r out of a items): P1(a, r) = 1

(ar)
A rational

malicious Alice could deploy the following cheating strategy: do w < a work
(compute only w results) and, if not all the ringers are discovered (possible if
also r < w), simply guess the remaining ones. It can be shown that the success
probability of such a strategy is:

P(w, r) =
min(r,w)∑

i=max(0,w+r−a)

[P0(a, w, r, i) × P1(a− w, r− i)] =
1

(ar)

min(r,w)∑
i=max(0,w+r−a)

(wi)

To better understand what this means we depicted the behavior of P(w, r) in
Figure 2 for b = 20. It can be seen that (e.g., for r = 5) a significant amount
of work (e.g., w > 3

4b) needs to be performed to achieve even a 33% success
probability. Figure 2 (b) illustrates the inverse dependency on the number of
ringers r for specific values of performed work. The more challenges are presented
to Alice, the less its probability of getting away with less work.

Maybe more importantly, Figure 2 (c) illustrates the inverse exponential de-
pendency on the number of ringers r for specific values of performed work. The
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Fig. 2. The behavior of P(w, r) (a = 20). (a) 3-dimensional view, (b) inverse dependency
of r to w (2-dimensional cut through (a)). (c) The behavior of P(w, r). A 2-dimensional
cut through (a) showing the relationship between P(w, r) and the amount of performed
work w, plotted against the base case with one ringer (r = 1). (d) P′(w, r, f) and P(w, r)
plotted for r = 5, f = 3.

more ringers are presented to Alice, the less its probability of getting away with
less work. Over multiple interactions, lazy behavior is not sustainable as the
probability of getting caught increases exponentially and the cheating success
probability converges to 0:

∏v
i=1(P(wi)) → 0, where wi < a is the work performed

in each of the interactions.

Fake Ringers. There exists an important issue of concernwith the above scheme.
Because Alice knows the number of ringers, once she finds all of them she can sim-
ply stop working. One simple yet effective solution to this problem is to add “fake”
ringers to the set of submitted ringers. In otherwords, instead of the witnesses com-
puting and sending a total of (r + f) correct ringers, theywill compute justr correct
ones and then simply generate f > 0 random ringer-like items and add them to the
set. This has the additional benefit of reducing computation costs. Now Alice has
to respond correctly only to the non-fake ones. Because she does not know which
ones and how many of the challenges are fake, she is forced to execute all the queries
to guarantee a correct answer (she cannot stop after it finds all the correct ones, as
it doesn’t know which ones and how many they are).

Introducing the fake ringers solves the issue of Alice being able to simply
stop after discovering all the ringers. It also offers higher security assurances.
Let us explore why by first assessing the impact of fake ringers on the success
probability of Alice’s malicious behavior P′(w, r, f). To succeed, at each step, she
needs to first guess exactly what the value of f is. If she is off even by one and
replies with a value to a fake ringer (instead of stating it is fake), the witnesses
know that Alice did not compute f() over all the inputs. It can be shown that:

P′(w, r, f) =
1

(ar)

min(r,w)∑
i=max(0,w+r−a)

[
(wi)

min(a− w, max(1, r+ f− i))
]

where 1
min(a−w,max(1,r+f−i)) is the probability of Alice guessing the value of r (and

f) after performing w work and discovering i correct ringers. This is so because
Alice knows that clearly (r− i) ≤ (a− w) (number of remaining ringers cannot
exceed number of remaining un-considered inputs). Then, there are (r − i) + f
remaining possible values for f, only one of which is correct. The max() needs to
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be considered if f = 0 and Alice discovers all r ringers: it knows then that f = 0.
In Figure 2 (d) the evolution of P′(w, r, f) is plotted against P(w, r) for r = 5,
f = 3. Only 3 additional fake ringers (no additional cost) significantly decrease
the cheating success probability of Alice (e.g., for w = 17 from 60% to 20%).

To function properly, deploying fake ringers requires the assumption that their
number is random for every witnessing procedure and cannot be predicted by
Alice. Now we are faced with solving the following problem: the witnesses have
to make sure that, through-out time, both r and f are secret, randomly chosen
and not correlated to each other or with their previous values.

But how can this be achieved in an environment where up to c of the witnesses
could be malicious? If all the witnesses somehow agree upon values for r and f,
nothing is stopping the malicious ones to leak these very values to Alice, thus
defeating the advantages of fake ringers all-together. To solve this, we propose
the following adjustment to the ringer generation mechanism. Instead of each
witness generating exactly a single correct ringer, let it generate a random, secret
number of correct and incorrect ringers. As a majority of witnesses are non-
malicious, even if the rest of the witnesses are not cooperating, this mechanism
will result in a random value for the (total) number of fake and real ringers,
neither of which are known to, or under the control of any one party.

If c is large enough it may warrant the argument that, due to the law of large
numbers, this will result, on average, in 50% true ringers and 50% false ones.
This might make it easier for Alice to approximate the moment when it can
simply stop and guess f. In that case, the following alternative can be deployed:
each witness performs a separate witnessing round with Alice, (using its own
random numbers of true and fake ringers). After initially performing all the
computations (just once) for each such round, Alice will simply respond to the
ringers challenges only. Let us also note that this alternative can be put into
place at no additional cost, by having Alice not discard the computed results
until all the witnesses have been satisfied. No extra computations will be required
in each witnessing round.

3.3 Analysis

Communication Overhead. Let us analyze the incurred communication
costs. These are composed of: (i) the initial request multicast, in the witnessing
stage, (ii) one multicast with the service request (witnesses to Alice), (iii) 2c+ 1
unicasts with ringers (each witness to Alice), (iv) one multicast with proofs (Al-
ice to witnesses), (v) 2c+ 1 multicasts with threshold signature shares (within
witnesses groups) and (vi) one final broadcast with the actual signed reputation:

ψcomm = (1 + 1 + 1 + (2c + 1))ψmcast + (2c + 1)ψpp + ψbcast

If we normalize with respect to the cost of the point to point communication,
(i.e., ψpp = 1):

ψcomm = (2c + 4)ψmcast + ψbcast + (2c + 1)
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To understand this better, let us assume a simple multicast mechanism that
yields an average cost (number of messages) of ψmcast(x) = βmcastx (for a group
of x members) where βmcast ∈ (0, 1):

ψcomm = βmcast(2c + 2)(2c+ 4) + (2c + 1) + ψbcast

Now, if we consider that a traditional scenario deploying reputation ratings
(without witnessing and computation proofs) would only pay the communica-
tion cost of distributing the ratings (ψbcast), the actual total incurred overhead
for securing the rating mechanism is

Δψcomm = βmcast(2c + 2)(2c+ 4) + (2c + 1)

Thus, the communication overhead is of an O(c2) complexity order.
Let us now consider the optimization proposed in Section 3.1, namely, to

not distribute un-changing ratings. Because we assume a maximum of c faulty
parties, the ratio of negatively rated interactions is roughly c

n . Thus, intuitively,
on average the ratio of interactions that result in “changing” ratings can also be
considered roughly c

n . This results in an additional reduction of communication
costs, as for (1− c

n ) of the interactions, stages (v) and (vi) are not necessary:

Δψcomm = βmcast(2c + 2)(2c + 1)
c

n
+ 2βmcast(2c + 2) + (2c + 1)

Now the communication overhead is reduced to an order of O( c
3

n ).

Computation Overhead. The computation overhead includes: (i) the genera-
tion of 2c + 1 ringers by the witnesses, (ii) the computation of a hashes over each
function output, by Alice and (iii) the generation of (2c + 1) threshold signature
shares for the new ratings by the witnesses. Let ωf be the cost of computing f
for one of the inputs. We have

Δωcomputation = (2c + 1 + a)(ωhash + ωf) + (2c + 1)ωs

where ωhash is the cost of hashing a function output (when generating a ringer)
and ωs is the cost of generating a threshold signature share.

Let us assess the complexity of computations as a function of a, the number
of input items in the request data set. For this purpose ωf = 1. Also, because
ratings are numeric and of small size, and the hashes are likely computed over
finite amounts of data, in the current scope, to assess overhead dependency
of a, we are considering both ωs and ωhash to be constants. The computation
overheads are thus of an order of O(c + a); because a > c, this becomes O(a).
If we apply the optimization proposed in Section 3.1 (i.e., not to distribute un-
changing ratings) these costs are further reduced with 2c + 1. This would still
leave the computation complexity at O(a), with smaller constants however.

4 Related Work

Due to the initial “social” dimension associated with reputation research, the
essential issue of securing reputation mechanisms in automated environments has
only recently [2, 6, 7, 8, 12, 15, 16] been identified. Resnick et al [15] provide an
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excellent overview of the problems of providing trust in such systems. Damiani et
al. [6] extend Gnutella to include reputations not only for participants but also
for individual resources. The paper describes several interesting attacks, such
as pseudospoofing, ID stealth or shilling, and proposes a protocol that is secure
against them. An extension of the security analysis for such attacks performed
by multiple colluding participants would make for interesting future work.

Maybe closest to our research in terms of the actual strong security goals
is the research by Dewan and Dasgupta [8]. There they propose a mechanism
that allows each participant to store its own reputation, as a signed chain of
past transactions. Drawbacks of such an approach include the inability to deal
directly with attacks such as ballot stuffing or bad mouthing, nor with the issue
of rating semantics and execution correctness. Their solution however is certainly
elegant and space efficient when applicable. An additional difficulty however also
resides in securely storing the record of the last transaction in a reputation chain.

In the area of verifiable distributed computations we already discussed work
by Golle and Mironov [10]. Szada et al. [19] extend their solution to optimization
functions, Monte Carlo simulations and sequential function applications. In the
work of Du et al. [9], the service provider commits to the computed values using
a Merkle tree. Then, the service provider is queried on the values computed
for several sample inputs. The commitment prevents the service provider from
changing the output of its computations.

For more related research please refer to the full version of this paper at
http://www.cs.stonybrook.edu/∼sion.

5 Conclusions

In this work we have studied the problem of providing a secure reputation infras-
tructure for distributed computations. Our solution uses ringers [10] to construct
computation correctness proofs. We also constrain the generation and modifica-
tion of reputations, by requiring at least one non-faulty external observer to
agree with the new reputation. We achieve this by employing a novel threshold
witnessing mechanism, coupled with threshold signatures. We analyze the com-
munication and computation overheads, as well as the level of security achieved.
We believe that in a significant number of scenarios the goal of achieving se-
cure trust among participants is as important as the applicability of the system,
and thus, well worth the overheads. In future work we plan on building a proof
of concept of the proposed mechanisms and exploring their capability in boot-
strapping and maintaining trust. We also plan to increase the level of security
provided by our solution against actively malicious service providers.
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Abstract. We propose here the first efficient publicly verifiable hybrid
mix-net. Previous publicly verifiable mix-net was only efficient for short
ciphertexts and was not suitable for mixing long messages. Previous hy-
brid mix-net can mix long messages but did not have public verifiability.
The proposed scheme is efficient enough to treat large scale electronic
questionnaires of long messages as well as voting with write-ins, and
offers public verifiability of the correctness of the tally. The scheme is
provably secure if we assume random oracles, semantic security of a one-
time symmetric-key cryptosystem, and intractability of decision Diffie-
Hellman problem.

Keywords: Hybrid-mix, public verifiability, multiple encryption,
efficient.

1 Introduction

Mix-net[5] schemes are useful for applications which require anonymity, such as
voting and anonymous questionnaires. The core technique in a mix-net scheme
is to execute multiple rounds of shuffling and decryption by multiple, indepen-
dent mixers, so that the output decryption can not be linked to any of the input
encryptions. To ensure the correctness of output, it is desirable to have the prop-
erty of public verifiability. A typical realization of a publicly verifiable mix-net
scheme is that based on a zero-knowledge proof system for shuffling of ElGamal
ciphertexts[1, 8, 9, 11, 12, 16, 20, 26].

However, these schemes only achieve their best efficiency when sets of cipher-
texts are of a short length, one fixed to the length determined by the employed
encryption algorithm. A typical length is, say 160 bits long. In order to verifiably
shuffle texts of a fixed but a longer length, a straightforward approach, for exam-
ple, is to divide each text into blocks of the predetermined short bits, re-encrypt
each block, and concatenate them to form a string. Then, this block-wisely re-
encrypted string is permuted. This approach requires public key operations and
shuffle-proving operations for each block, thus the computational cost is linear
in the length of the input. Another kind of mix-net scheme, referred to as “hy-
brid mixing,”[15, 21, 22, 25], is able to shuffle long ciphertexts efficiently, but the
correctness of its shuffling is not publicly verifiable. It is only mutually verifiable
among its component mixers.

G. Di Crescenzo and A. Rubin (Eds.): FC 2006, LNCS 4107, pp. 111–125, 2006.
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Neither of these approaches would be applicable, when long messages, such as
those which might form the replies to questionnaires or write-in votes, are to be
tallied, and when the correctness of the tallying needs to be publicly verifiable.
A scheme that is publicly verifiable and is capable of shuffling ciphertexts of long
but common length efficiently is yet to be proposed.

Our Contributions: We propose here the first efficient hybrid-mixing scheme
that provides public verifiability. In our scheme, the number of zero-knowledge
arguments for proving a shuffle does not depend on the length of the input ci-
phertext. Although the resulting mix-net does not provide full public verifiability
of the hybrid decryption in the case when a user and a mixer collude, the best
adversary can do is to switch the input between a valid and an invalid one. More-
over, all the users whose input failed decrypted correctly are traced. We prove the
security properties of the proposed scheme assuming the random oracle model,
semantically secure one-time symmetric-key cryptosystem, and intractability of
decision Diffie-Hellman problem.

In the course of constructing the verifiable hybrid-mix, we have developed
(1) a new IND-ME-CCA secure [32] encryption scheme that multiply uses IND-
CCA2 secure hybrid encryption and (2) a 3-move efficient perfect zero-knowledge
argument for shuffle-and-decryption of ElGamal ciphertexts.

Construction of Our Mix-Net Scheme: A commonly adopted construction
of publicly verifiable mix-net is a combination of IND-CCA2 secure encryption
scheme that is suitable for shuffling, a secure group decryption scheme to be
performed by mixers, and zero-knowledge arguments for shuffle and decryption.
For example, a typical construction [1, 11] is a combination of IND-CCA2 se-
cure ElGamal type cryptosystem, a threshold decryption scheme of ElGamal
ciphertexts, and zero-knowledge arguments for shuffling and decrypting ElGa-
mal ciphertexts. Such construction provides secure verifiable mix-net but suffers
from the restriction that the input message should be within the domain of
ElGamal encryption scheme.

Our construction follows the above approach, but we use a hybrid encryption
instead of a plain ElGamal encryption so that we can handle long messages.
In order to achieve the group decryption property, we designed a new multiple
encryption scheme where hybrid encryptions are repeatedly applied each public
key of the mixers. In order to achieve the secure threshold decryption property
and IND-CCA2 secure property we devised our multiple encryption scheme to
achieve the IND-ME-CCA secure [32] property with repetitive IND-CCA2 secure
hybrid encryptions. For public verifiability, we add encryption of a hash of the
plaintext in the ciphertext in each repetition to achieve the publicly verifiable
hybrid decryption.

We also provide an zero-knowledge argument for shuffle of the proposed mul-
tiple encryption scheme. For this purpose, we use a perfect zero-knowledge ar-
gument for shuffle-and-decryption of ElGamal ciphertexts [17, 10]. We note that
a cost we pay for public verifiability is that the length of the input ciphertext
grows in linear in the number of mixers unlike the scheme in [25].
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The rest of the paper is organized as follows. Section 2 proposes IND-ME-
CCA secure multiple encryption scheme using IND-CCA2 secure hybrid encryp-
tion scheme with efficient verifiable decryption property. Section 3 illustrates
our publicly verifiable mix-net scheme, Section 5 discusses with analysis on the
efficiency of our mix-net scheme.

2 IND-ME-CCA Secure Multiple Encryption in Hybrid
Setting

We present here our multiple encryption scheme that is suitable to be used
in a verifiable mix net. We adopted the model from [32] with modifications to
add auxiliary output of Dec algorithm to suit for use in mix-net. A multiple
encryption scheme ME is a public key encryption scheme, which consists of a set
of a key generation algorithm (MKey-Gen), an encryption algorithm (MEnc),
and a decryption algorithm (MDec). Each of these algorithms invokes respective
algorithms of a public key encryption scheme (Key-Gen, Enc, Dec) for multiple
times. We also adopt the security notion of multiple encryption called IND-ME-
CCA which is introduced in [32]. This notion differs from IND-CCA2 security
in the sense that the adversaries are allowed to access key exposure oracle. We
note that our multiple encryption scheme additionally offers public verifiability
of decryption, which is a property not considered in [32].

We provide a formal model and the definitions in the following:

Definition 1. (Multiple Encryption) Multiple encryption scheme ME is a
set of following algorithms (Key-Gen, Enc, Dec, MKey-Gen, MEnc, MDec):

Key-Gen: A probabilistic key generation algorithm that, given a security param-
eter 1k, outputs a pair of a public key and a secret key (pk, sk).

Enc: A probabilistic encryption algorithm that, given the public key pk and a
message M , outputs a cipher-text C.

Dec: An probabilistic algorithm that, given a ciphertext C and the secret key sk,
outputs a message M( or ⊥) and auxiliary data.

MKey-Gen: An algorithm that, given a security parameter 1k, invokes Key-Gen
m times to output a public key {pk(j)}j=1,...,m and a secret key {sk(j)}j=1,...,m.
We assume that the message space is M and the ciphertext space is C.

MEnc: An algorithm that, given M ∈ M and a public key {pk(j)}j=1,...,m, re-
peatedly invokes Enc m times, where in the first invocation Enc takes pk(1)

and M as input, in the second invocation Enc takes pk(2) and the output
of the previous invocation as input, and so on. The output is a ciphertext
C ∈ C, which is thus multiply encrypted M .

MDec: A probabilistic algorithm that, given C∈C and a secret key {sk(j)}j=1,...,m,
repeatedly invokes Dec m times to output M ∈ M and auxiliary data gener-
ated by Dec’s. In j-th invocation, MDec gives sk(j) to Dec.

Definition 2. (IND-ME-CCA [32]) Assume any polynomially bounded ad-
versary A plays the following game with ME. First, key generation algorithm
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MKey-Gen is run. The public key PK = {pk(j)}j=1,...,m is given to A and an
challenging oracle CO. The secret key SK = {sk(j)}j=1,...,m is given to a decryp-
tion oracle DO and a key exposure oracle KE. If two messages M0, M1 ∈ M
and b ∈ {0, 1} are given to CO, it outputs C∗ = MEnc(Mb) ∈ C. If index
j ∈ {1, . . . , m} is given to KE , it returns sk(j). A is allowed to invoke KE only
(m − 1) times. When C ∈ C such that C �= C∗ is given, DO executes MDec to
obtain decryption of C and auxiliary data. εneg is a negligible function of k. We
call this ME IND-ME-CCA secure. if

Pr
[
b = b′

∣∣∣∣ (PK, SK) ← MKey-Gen(1k), (M0, M1, state) ← A(PK)DO,KE

b ←R {0, 1}, C∗ ← CO(M0, M1, b), b′ ← A(PK, state)DO,KE

]
<

1
2

+ εneg.

2.1 The Idea of the Proposed Multiple Encryption Scheme

In the proposed encryption scheme, the following three operations are repeated
m times using m independent symmetric keys {K(j)}j=1,...,m and m public keys
{X(j)}j=1,...,m. (1) Symmetric-key encryption of the input ciphertext μ(j) using
a symmetric key K(j), and ElGamal encryption of this symmetric key {K(j)}. (2)
Hashing the input ciphertext μ(j), and ElGamal encryption of this hashed value,
and (3) generating a proof that the user himself was engaged in this repetition.

The first procedure is the main function of hybrid encryption scheme. The
second procedure generates hashed value that will be used to verify decryptions.
If we compare this value to the hash of a decrypted text using symmetric-key
cryptosystem, we can efficiently verify that that the symmetric-key decryption
has been operated correctly. The case of colluding user and one of the decryptor
is discussed in Remark 1.

The third procedure comprises the core technique to make the total encryp-
tion scheme IND-ME-CCA secure. The main purpose of the procedure is to
make sure that the user himself performed the encryption, and not an ad-
versary who has eavesdropped some intermediate data. A simplified descrip-
tion for the third procedure is as follows: Let G be a generator of an ellip-
tic curve E 1. In (m − j + 1)-th repetition of the third procedure, user gen-
erates (E(j), J (j)) = ([r(j)]X(j), [r(j)]G + J (j+1)), which is an encryption of
J (j+1) = [r(m)+· · ·+r(j+1)]G and provides the knowledge of the random number
r(j). After m-th repetition, the output is ([r(1)]X(1), [r(m) + · · · + r(1)]G). The
user also provides the proof on the knowledge of r(m) + · · · + r(1).

The scheme is so designed to achieve malleability, that is, that even if a
malicious adversary copied a j-th partially decrypted ciphertext and submitted
a modified version of this copy to the mix-net, he will be detected. This is because
the adversary will fail to prove the knowledge of at least one random number used
for generating ciphertexts unless he can solve the discrete logarithm problem.

1 Any DDH hard cyclic group suits for our purpose. But, we use the notation of scalar
multiplication in elliptic curves since we need many superscripts and subscripts.
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Therefore, by adding these operations, we can restrict the accepted ciphertexts
to be those which the submitter himself engaged in very repetition himself.

2.2 Proposed Multiple Encryption with Verifiable Decryption

We define k, q, E, G,O,HE ,Hq, and Hσ as follows: k is a security parameter, q
is a prime such that |q| = k and q mod 3 = 2, E is a set of points on an elliptic
curve of an order q, G is a generator of E, O is the zero of E, HE ,Hq, and
Hσ are cryptographic hash functions that map, respectively, arbitrary strings to
points in E, arbitrary strings to elements of Z/qZ, and arbitrary points in E to
k/2 bit strings. Let (encκ, decκ) be an encryption algorithm and a decryption
algorithm of a symmetric-key cryptosystem which is semantically secure under
chosen plaintext attack, where κ is a symmetric-key of length k/2. The message
space M is {0, 1}� and the corresponding ciphertext space of MEnc is denoted
by C.

We first describe the key generation phase.

MKey-Gen: Given a security parameter 1k, first chooses an arbitrary set of
parameters
(q, E, G, �,HE ,Hq,Hσ, (encκ, decκ),M, C), which we call D, then MKey-Gen
invokes Key-Gen m times with D to obtain public keys {X(j)}j=1,...,m and
secret keys {x(j)}j=1,...,m. Finally, MKey-Gen outputs D, {X(j)}j=1,...,m, and
{x(j)}j=1,...,m.

Key-Gen: Given D in j-th invocation, outputs a randomly chosen secret key
x(j) ∈R Z/qZ and an ElGamal public key

X(j) = [x(j)]G. (1)

We will now show how to multiply encrypt a message M ∈ M. The first
invocation of Enc is performed on the message M using a public key X(m).
Then, its output, μ(m−1), will be the input to the next invocation of Enc. The
output μ(0) of the last invocation together with the additional proof of knowledge
will be the final output of our multiple encryption algorithm Enc. Let a message
space and a ciphertext space of (m − j + 1)-th invocation of Enc be denoted as
M(j) and C(j), where C(j) = M(j−1).

As we will see below in Eq.(2), each element in μ(j−1) ∈ C(j) can be represented
as a structure of multiple data μ(m) = (M,O).

Enc: The ElGamal public key X(j) and a message μ(j) ∈ M(j) are given. Enc
randomly chooses K(j) ∈R E, a tuple (r(j)

K , r
(j)
H , r

(j)
J ) ∈R (Z/qZ)3, and a

tuple (s(j)
K , s

(j)
H , s

(j)
J ) ∈R (Z/qZ)3. The message μ(j) is encrypted in hybrid

manner, that is, data K(j) is encrypted with ElGamal public key X(j), while
K(j) transformed to a symmetric key κ(j) and used to encrypt μ(j) with
symmetric encryption encκ(j)

(E(j)
K , D

(j)
K ) =

(
[r(j)

K ]X(j), [r(j)
K ]G + K(j)

)
, κ(j) = Hσ(K(j)), χ(j) = encκ(j)(μ(j)).
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The input message μ(j) is hashed and then encrypted with ElGamal public
key X(j) to be used in verification of the decryption.

H(j) = HE(μ(j)) , (E(j)
H , D

(j)
H ) =

(
[r(j)

H ]X(j), [r(j)
H ]G + H(j)

)
.

The element J (j+1) in μ(j) is encrypted to be used to prove that the user him-
self was engaged in the computation, which operation makes total multiple
encryption IND-ME-CCA secure.

(E(j)
J , J (j)) =

(
[r(j)

J ]X(j), [r(j)
J ]G + J (j+1)

)
The rest of the data are introduced to make the procedure Enc IND-CCA2
secure [23] by using the technique presented in [29]. The data P

(j)
K , P

(j)
H , and

P
(j)
J are twin encryption parts of the above public-key encryptions and the

data (c(j), t
(j)
K , t

(j)
H , t

(j)
J ) is a non-interactive proof of these twin encryptions.

(F (j)
K , F

(j)
H , F

(j)
J ) = ([s(j)

K ]X(j), [s(j)
H ]X(j), [s(j)

J ]X(j))

Y
(j)
K = HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J(j), F

(j)
K , F

(j)
H , F

(j)
J , key)

Y
(j)
H = HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J(j), F

(j)
K , F

(j)
H , F

(j)
J , hsh)

Y
(j)
J = HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J(j), F

(j)
K , F

(j)
H , F

(j)
J , jnt)

(P (j)
K , P

(j)
H , P

(j)
J ) = ([r(j)

K ]Y (j)
K , [r(j)

H ]Y (j)
H , [r(j)

J ]Y (j)
J )

(Q(j)
K , Q

(j)
H , Q

(j)
J ) = ([s(j)

K ]Y (j)
K , [s(j)

H ]Y (j)
H , [s(j)

J ]Y (j)
J )

c(j) = Hq(D, χ(j), X(j), E
(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J(j), Y

(j)
K , Y

(j)
H , Y

(j)
J ,

P
(j)
K , P

(j)
H , P

(j)
J , F

(j)
K , Q

(j)
K , F

(j)
H , Q

(j)
H , F

(j)
J , Q

(j)
J )

(t(j)K , t
(j)
H , t

(j)
J ) = (s(j)

K − c(j)r
(j)
K , s

(j)
H − c(j)r

(j)
H , s

(j)
J − c(j)r

(j)
J ) mod q

Here, key, hsh, and jnt are strings. Then Enc outputs a ciphertext

μ(j−1) = {χ(j), c(j), E
(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J (j),

P
(j)
K , P

(j)
H , P

(j)
J , t

(j)
K , t

(j)
H , t

(j)
J ) ∈ C(j). (2)

MEnc: A message M ∈ M and a public key {X(j)}j=1,...,m are given. MEnc first
sets J (m+1) = O and μ(m) = (M, J (m+1)). Next, MEnc repeatedly invokes
Enc m times to generate

μ(0) = Enc(X(1), Enc(· · ·Enc(X(m−1), Enc(X(m), μ(m))) · · ·))

Next, MEnc proves the knowledge of sum of the randomness
∑m

j=1 r
(j)
J used

in the all invocations. For that purpose, it randomly chooses s
(0)
J ∈R Z/qZ

and generates

R
(0)
J = [s(0)

J ]G , GJ = HE(D, μ(0), R
(0)
J ) , RJ = [s(0)

J ]GJ , J = [
m∑

j=1

r
(j)
J ]GJ

c(0) = Hq(D, μ(0), GJ , J, R
(0)
J , RJ ,U) , t

(0)
J = s

(0)
J − c(0)

m∑
j=1

r
(j)
J mod q



An Efficient Publicly Verifiable Mix-Net for Long Inputs 117

where U is an identity of user. Finally, MEnc outputs a cipher-text

C = (μ(0), J, c(0), t
(0)
J ) ∈ C (3)

Dec: The secret key x(j) and cipher-text μ(j−1) ∈ C(j) are given. We assume
here {μ(j)}j are parsed as Eq.(2). Dec first computes

(F (j)
K , F

(j)
H , F

(j)
J ) = ([t(j)K ]X(j)+[c(j)]E(j)

K , [t(j)H ]X(j)+[c(j)]E(j)
H , [t(j)J ]X(j)+[c(j)]E(j)

J )

Y
(j)
K = HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J(j), F

(j)
K , F

(j)
H , F

(j)
J , key)

Y
(j)
H = HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J(j), F

(j)
K , F

(j)
H , F

(j)
J , hsh)

Y
(j)
J = HE(D, χ(j), X(j), E

(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J(j), F

(j)
K , F

(j)
H , F

(j)
J , jnt)

Next, Dec verifies if

c(j) = Hq(D, χ(j), X(j), E
(j)
K , D

(j)
K , E

(j)
H , D

(j)
H , E

(j)
J , J (j),

Y
(j)
K , Y

(j)
H , Y

(j)
J , P

(j)
K , P

(j)
H , P

(j)
J , F

(j)
K , [t(j)K ]Y (j)

K + [c(j)]P (j)
K , F

(j)
H ,

[t(j)H ]Y (j)
H + [c(j)]P (j)

H , F
(j)
J , [t(j)J ]Y (j)

J + [c(j)]P (j)
J ) (4)

hold. If not, Dec outputs ⊥(j)
1 and stops. Next, Dec computes

K(j)† = D
(j)
K − [1/x(j)]E(j)

K (5)

H(j)† = D
(j)
H − [1/x(j)]E(j)

H (6)

J (j+1)† = J (j) − [1/x(j)]E(j)
J (7)

κ(j) = Hσ(K(j)†) (8)
μ(j) = decκ(j)(χ(j)) (9)

and outputs H(j)† and J (j+1)†. Next, if either of the following equations does
not hold,

H(j)† = Hq(μ(j)) , J (j+1)† = J (j+1) ∈ μ(j) (10)

Dec outputs K(j)† and ⊥(j)
2 and stops. Finally, Dec outputs μ(j) ∈ M(j).

MDec: A ciphertext C ∈ C and the secret key {x(j)}j=1,...,m are given. MDec
first computes

R
(0)
J = [t(0)J ]G + [c(0)]J (1) , GJ = HE(D, μ(0), R

(0)
J )

and verifiers if

c(0) = Hq(D, μ(0), GJ , J, R
(0)
J , [t(0)J ]GJ + [c(0)]J,U) (11)

holds. If not MDec outputs ⊥ and stops. Next, MDec recursively invokes
Dec m-times to generate

μ(m) = (M,O) = Dec(Dec(· · ·Dec(Dec(μ(1))) · · ·)).

If any of invocations of Dec stops, MDec also stops. MDec outputs the output
of each invoked Dec. Finally, MDec outputs first elements M of μ(m) and
stops.
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Theorem 1. The proposed multiple encryption scheme is IND-ME-CCA
secure and Encryption scheme (Key-Gen, Enc, Dec) is IND-CCA2 secure as-
suming random oracles, intractability of decision Diffie-Hellman problem, and
semantic security of the one-time symmetric-key cryptosystem. (The proof is
given in [10].)

The possible output of Dec and MDec are either results of decryption or one of
the set of symbols {⊥,⊥(j)

1 ,⊥(j)
2 }. Each symbol represents that the input cipher-

text was improperly generated. In order to prove the validity of the decryption
result or these symbols, we introduce interactive protocols Ver and MVer. Ver
is performed between a prover P and a verifier V to prove the validity of the
output of Dec, and MVer is performed between a prover MP and a verifier MV
to prove the validity of the output of MDec.

Ver: P and V are given μ(j−1) ∈ C(j) and the output Out of Dec. P is also given
x(j). Suppose Out = ⊥1. Then, V evaluates Eq.(4). If this holds, V rejects
P and stops. Otherwise V accepts P and stops.

Suppose that Out �= ⊥1. V first checks if Eq.(4) holds or not. If it does
not hold, V rejects P and stops. Next, P proves to V in zero-knowledge the
knowledge of x(j) satisfying Eqs, (1), (6), and (7). V rejects P and stops if
this proof in unacceptable. Next, if the output of Dec was ⊥2, P additionally
proves to V in zero-knowledge the knowledge of x(j) satisfying Eqs, (1) and
(5). V rejects P and stops if this proof in unacceptable. Finally, V accepts
P and stops if neither of the above proofs are unacceptable.

MVer MP and MV are given given a ciphertext C ∈ C and the output Out
of MDec. MP is given secret keys {x(j)}j=1,...,m. Suppose Out = ⊥. Then,
MV evaluates Eq. (11). If this holds, MV rejects MP and stops. Otherwise
MV accepts MP and stops.

Suppose Out �= ⊥. MV first checks if Eq. (11) holds or not. If it does not,
MV rejects MP and stops. Next, MP plays the role of P in all Ver with
respect to all Dec invoked by MDec. If any of V rejects P in Ver, MV rejects
MP. Otherwise, MV accepts MP.

From the construction, one can easily observe that the following theorems
hold.

Theorem 2. Suppose that C ∈ C is an encryption of M ∈ M generated by
honestly following Algorithm MEnc. MP will be accepted by MV in MVer when
M is input to MP and MV as the output of MDec. Here, we assume random
oracles. �

Theorem 3. No polynomial time adversary is able to output (C, M ′, M) ∈ C ×
(M)2 such that M ′ �= M and the adversary will be accepted by MV as MP in
MVer with non negligible probability both when they are given M and when they
are given M ′. Here, we assume random oracles. �

Remark 1. As Theorem 3 assures, no ciphertext can be decrypted in two valid
messages, no matter how the ciphertext is generated. But our scheme can not
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prevent an adversary to generate a ciphertext that can be treated in two ways
by a malicious decryptor: either it is decrypted to a ’correct’ message, or claimed
invalid(i.e. malicious decryptor outputs ⊥2)

The strategy for the adversary and the corrupted j-th decrypter to generate
such ciphertext is as follows. The adversary executes multiple encryption up to
m − j + 1-th iteration and obtain χ(j) ∈ μ(j−1). But then he starts the next
iteration starting with a different data, say χ(j)∗, and process correctly then.
Thus generated ciphertext will be processed without any problem until the j-th
iteration of decryption. If j-th decryptor is honest, he will output ⊥2 and K(j)

and show that the decryption of HE(decHσ(K(j))(χ(j∗))) does not coincide with
H(j)† = HE(decHσ(K(j))(χ(j))). A malicious j-th decryptor has a choice, whether
to honestly claim the ciphertext is malicious, or to secretly replace χ(j)∗ with χ(j)

obtained from the adversary and continue the procedure assuming nothing has
happened. The semantic advantage of this attack is the adversary can decide
his input to be either valid message or invalid, not at the submission of the
encrypted input but in the midst of decryption, when the colluding decryptor
proceeds.

3 Publicly Verifiable Mix-Net Under Hybrid
Construction

Now we will present our publicly verifiable mix-net that can mix long messages.
The idea of the construction is as follows: The input to the mix-net will be a
list of ciphertext, where each ciphertext is generated by a user following the
multiple encryption scheme proposed in Section 2. Within a mix-net, each mixer
performs Dec to each ciphertext in the input list. He then permute the list
of the decrypted data which will be the input list to the next mixer. Thus
the mixers comprise MDec of the proposed multiple encryption scheme but the
correspondence between the input ciphertext and the output message is hidden
due to the permutation.

In Section 2, we have shown that the decryption can be done verifiably. In
this sectionwe present how to do so without revealing the permutation. The way
we achieved the verifiability of decryption is by adding an encryption of the hash
value of resulting decryption in the input ciphertext. If we compare the set of
encryptions of the hashed values in the input list and the set of values where
hash function is applied to the decrypted messages, the latter should be a set
of decryptions of the former set. Therefore, by performing the zero-knowledge
argument of shuffle-and-decrypt on these sets, we can prove that the output list
is a correct decryption of the input list.

We note that [17] provides 7-move zero-knowledge argument of shuffle-and-
decrypt. We provide in Section 4 an alternative scheme which provide 3-move
zero-knowledge argument but the detail is omitted for space limitations.

Our mix-net satisfies anonymity property defined in [3], whose definition is
presented in the following:



120 J. Furukawa and K. Sako

Definition 3. (Anonymity)[3]. Let A be an adversary that plays the following
game. At any moment of the game, A is allowed to corrupt up to tu users and
tm servers. Once corrupted, the user or the server is thoroughly controlled by A.

1. (y, x) ← Gmix(1k). Public-key y and each shared decryption key xi is given
to Mi.

2. A is given y and allowed to invoke M an arbitrary number of times for
arbitrary chosen input ciphertexts (i.e., A can use M as a decryption oracle).

3. . A outputs LC = (μ1, . . . , μn) that is a list of messages chosen from My.
4. Choose a permutation, π ← Πn. Each Ui is given μπ(i) privately and outputs

ciphertext Ci. If Ui is corrupted and outputs nothing, let Ci be an empty
string. Let C = {C1, . . . , Cn}.

5. M performs mix processing on C.
6. A is again allowed to invoke M an arbitrary number of times for arbitrarily

chosen input ciphertexts except for the ones included in C.
7. A outputs (i∗, j∗) ∈ {1, . . . , n}. The restriction is that Ui∗ �∈ UA (i.e., Ui∗

has never been corrupted).

A wins the game if π(i∗) = j∗. Mix-net is anonymous against (tu, tm)-limited
adaptive and active adversary A if the probability that any polynomial-time
(tu, tm)-limited adaptive and active adversary A wins the above game is at most

1
n−tu

+ ε where ε is negligible in k. Probability is taken over the coin flips of
Gmix, U, M, A and the choice of π.

3.1 Proposed Mix-Net

Players of our mix-net are m mixers {S(j)}j=1,...,m, n users {Ui}i=1,...,n, and a
verifier V . The scheme is composed of the following steps: (1) Setup, (2) Public-
Key Generation, (3) Message Encryption, and (4) Shuffle and Prove. We assume
that the input to a mixer S(j) , which is an output of the previous mixers, has
been publicly verified of its correctness. If this assumption is not appropriate,
S(j) needs to verify previous Mixers {S(h)}h<j .

Setup: In Setup, domain parameters of the scheme are determined. They are a
security parameter k, an elliptic curve E of prime order q, a randomly chosen
generator G of the curve E, the length � of the messages, a semantically se-
cure one-time symmetric-key cryptosystem (encκ, decκ), and cryptographic hash
functions HE ,Hq, and Hσ.

Public-key Generation: Given the domain parameters, each server S(j) gen-
erates its own secret key x(j) and the corresponding public-key X(j) as described
in Section 2.

Message Encryption: Each user Ui encrypts the message Mi of length � fol-
lowing the encryption scheme proposed in Section 2, and sends the ciphertext
Ci to S(1) with a signature of Ui.
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Shuffle and Prove: Suppose S(1) is given {Ci}i=1,...,n. Mixers {S(j)} collabora-
tively decrypts all multiply encrypted ciphertexts {Ci}i=1,...,n as in the following.
We assume every ciphertext in {Ci} and {μ(j)

i } are parsed as Eqs. (3) and (2).

1. S(1) verifies the validity of each signature attached to {Ci}i=1,...,n. S(1) also
verifies that each c

(0)
i ∈ Ci include correct Ui. From the all elements μi in

Ci that are accepted in the above verification, S(1) generates the the set
{μi}i=1,...,n(1) .

2. From j = 1 to j = m do the following:
(a) Each S(j) receives a set {μ(j)

i }i=1,...,n(j) .
(b) S(j) deletes μi which does not satisfy Eq.(4) from the set.
(c) S(j) continue decryption of each ciphertext in the set as Eqs. (5), (6),

(7), (8), and (9).
(d) For each ciphertext μi that does not satisfy Eqs. (10), S(j) reveals H(j)†,

J (j+1)†, and K(j)† as Dec does. Then S(j) proves to V in zero-knowledge
the knowledge of x(j) satisfying (1), (5), (6), and (7) as in Ver does.

(e) From ciphertexts μi’s that satisfy Eqs. (10), S(j) generates a set
{μi}i=1,...,n(j+1) . Here indices are reallocated. S(j) randomly permutes
the order of the corresponding {μ(j+1)

i , H
(j)†
i , J

(j+1)†
i }i=1,...,n(j+1) and

reallocates their indices. S(j) proves to V in zero-knowledge, using the
argument proposed in [17] or in [10], the knowledge of x(j) and an per-
mutation of {1, . . . , n(j+1)} that prove the validity of generating a set
{H(j)†

i , J
(j+1)†
i }i=1,...,n(j+1) from {μi}i=1,...,n(j+1) .

3. {Mi}i=1,...,n output by S(m) is the output of the mix-net.

Theorem 4. The proposed mix-net is anonymous assuming random oracles,
intractability of decision Diffie-Hellman problem, and semantic security of the
one-time symmetric-key cryptosystem. (The proof is given in [10].)

From the property of our hybrid encryption scheme described in Remark 1,
our mix-net does not provide full public verifiability unlike the one proposed
in [26, 1, 12, 20, 16, 9]. However, it satisfies a stronger notion of robustness than
that proposed in [22] as follows: (1) Our scheme allows any verifier to verify
the validity of the output to a certain extent whereas that in [22] only allows
mixers to verify it. (2) The scheme in [22] allows colluding mixer and user to
find two translations (renderings) for a ciphertext. Thus, such colluders are able
to arbitrary switch messages during their mixing procedure without being de-
tected. However, our scheme only allows them to switch messages between a
valid message and an invalid message as described in Remark 1.

Definition 4. We say a ciphertext C ∈ C is correct if MDec, given C, outputs
a message in m ∈ M. We call m as the correct decryption of C.

Definition 5. Let MDecf be the same as MDec except that it uses the pair
(f, f−1) of a permutation f of strings and its inverse instead of the pair (encκ,
decκ). We say a message m ∈ M is the correct translation of a ciphertext C ∈ C
if there exists some f such that MDecf , given C, outputs m.
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Definition 6. (Correctness) Let I be a set of all ciphertexts input to the mix-
net and O be the set of all the output messages of mix-met. We say a O is correct
with respect to I if the following hold:

1. Let I ′ ⊂ I be the full set of correct ciphertexts. Then, there exists O′ ⊂ O
that contains a unique correct decryption of every element in I′.

2. There exists Î ⊂ I \ I′ such that Ô := O \ O′ contains the full set of the
correct translation of Î.

Definition 7. (Robustness) We say a mix-net is robust if the following hold:

1. V accepts the protocol if all the mixers are honest.
2. The output O of the mix-net is correct with respect to its input I with over-

whelming probability if V accepts the protocol.
3. It is computationally difficult to find two correct translations for any cipher-

text C ∈ C.
4. For ciphertexts that are not decrypted into a message in M but into ⊥,⊥1, or

⊥2, the mixers are able to find their corresponding users in publicly verifiable
manner.

In our mix-net, as noted in Remark 1, a malicious user colluding with a mixer
can generate a ciphertext C which the mixer can decide to provide the unique
correct translation of C or it claim it invalid. Any ciphertexts that is claimed
invalid will be traced back in a publicly verifiable manner to the original user who
submitted the ciphertext. It is indeed a weakness in our mix-net, that a collusion
have advantage of delaying the decision of the input ciphertext, although the
choice is between a valid message and an invalid message. It may be a problem if
it is the last mixer who enjoys this advantage since he can decide his choice after
seeing the other inputs. To make this advantage insignificant, one can make the
output of the mix-net to be a ciphertext that additionally need to be decrypted
in a threshold manner. The same strategy is also used in the hybrid mix-net
of [22].

Theorem 5. The protocol is robust assuming random oracles.

Proof. The theorem follows from Theorems 2 and 3 and the construction of the
scheme. Here, random oracles are used only within the IND-ME-CCA encryption
scheme.

4 3-Move Zero-Knowledge Argument for
Shuffle-and-Decrypt

In this section, we discuss an alternative way to prove here shuffle-and-decryption.
Since using the 7-move scheme presented in [17] suffices to build our publicly
verifiable hybrid mix-net, we will only provide the ideas to construct 3-move zero
knowledge argument. Details appear in the full version of this paper [10].



An Efficient Publicly Verifiable Mix-Net for Long Inputs 123

Our 3-move scheme is based on the perfect zero knowledge argument for shuffle
proposed in [9] combined with a decryption proof. [9] is perfect zero-knowledge
version of [12]. As discussed in [11], a sequential composition of zero-knowledge
arguments on shuffle and that on decryption does not provide zero-knowledge
argument on shuffle-and-decrypt since the intermediate state is not simulatable.
So the combination is not straight forward.

In [9], a prover is given an input ciphertexts set (G′
i, M

′
i)i=1,...,n and its shuffled

ciphertexts set (G′
i, M

′
i)i=1,...,n such that

(G′
i, M

′
i) = ([si]G0 + Gπ−1(i), [si]M0 + Mπ−1(i)) i = 1, . . . , n

holds for witness set of a {si ∈ Z/qZ}i=1,...,n and a permutation π. Then the
prover proves to the verifier the knowledge of the witness by exploiting the
property of permutation matrices.

Now we consider constructing a zero-knowledge argument for shuffle-and-
decryption by composing the above zero-knowledge argument for shuffle and
a zero-knowledge proof for decryption. As previously stated, the intermediate
state, that is, (M ′

i)i=1,...,n, is unsimulatable. The rest of the message that prover
generates is simulatable.

We avoid this problem by using

M̄i = [s′′i ]M−1 + [si]M0 + Mπ−1(i) i = 1, . . . , n

instead of the above (M ′
i)i=1,...,n, where {s′′i ∈R Z/qZ}i=1,...,n is randomly chosen

elements in (Z/pZ)∗ and M−1 is a public parameter. Since M̄i can be considered
as a perfect hiding commitment of M ′

i , a simulation of M̄i will be possible.
We need some new methods to prove the knowledge of committed {si}i=1,...,n

instead of knowledge of simple exponents, which can be obtained using similar
tricks that appears in [9]. Applying these methods we are able to construct a
perfect zero-knowledge argument for shuffle-and-decryption of Elements cipher-
texts.

5 Efficiency of the Proposed Verifiable Mix-Net

Most costly computation in our scheme is scalar multiplications over the elliptic
curve. But the amount of these computations does not depend on the length
of input ciphertext �. The only computations that depends on the length � are
hash function and symmetric-key operations, which is negligibly small compared
to scalar multiplications. Therefore, we estimate the computational cost by the
number of scalar multiplications required in our scheme. We also estimate the
amount of data that each player need to communicate. These results of estima-
tion are given in Table 1, where |q| is 160, m is the number of mixers, and n
is the number of users. Here, the cost for mixers does not include the cost for
verifying other mixers.

We now give estimates in how fast our scheme can be implemented. Sup-
pose that n = 100, 000, m = 3, and that available computers are Pentium III
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Table 1. Complexity

user j-th mixer verifying j-th mixer
# of scalar multiplications 15m + 3 32n 32n

communication bits 2080m + � + 480 (2080j+� + 960)n (2080j+� + 960)n

(700MHz) machines. Suppose that it takes 100μ sec to compute a single scalar
multiplication in E by one computer. Such an implementation and experiment
are reported in [4]. Suppose that each mixer has two machines, one machine for
verifications of the previous mixers, and the other for shuffling and proving the
correctness of its shuffle. We assume mixers generate Fiat-Shamir transforma-
tions of proofs so that any mixer is able to verify the proofs independently and
in parallel without assuming trusted verifier. Such a operation makes the total
time required for the proposed verifiable mix-net linear in the number of the
mixers. Using variants of fixed-based comb method and simultaneous modular
exponentiations in [19], we can estimate the total time required for mix-net,
which tallies 100, 000 long ciphertexts and proves and verifies its correctness by
3 mixers, to be less than 10 minutes.
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Abstract. We introduce the notion of tamper-evidence for mix net-
works in order to defend against attacks aimed at covertly leaking secret
information held by corrupted mix servers. This is achieved by letting
observers (which need not be trusted) verify the absence of covert chan-
nels by means of techniques we introduce herein. Our tamper-evident
mix network is a type of re-encryption mixnet in which a server proves
that the permutation and re-encryption factors that it uses are correctly
derived from a random seed to which the server is committed.

Keywords. Mix network, covert channel, malware, observer, subliminal
channel, tamper-evident.

1 Introduction

In several countries, experiments with electronic voting are taking place. While
the primary political goal is to increase voter turnout by allowing for streamlined
casting of votes, electronic voting also offers substantial benefits in terms of pre-
cision, speed of tallying and privacy guarantees. The flip-side is the difficulty to
guarantee these properties, and maintain security when under attack. Electronic
voting, not surprisingly, has been at the heart of intense debate.

In electronic voting, just as in manual voting, security properties related to
concrete phenomena are easier to guarantee than those related to abstract phe-
nomena. In particular, the desirable property of correctness (the accurate count-
ing of votes) is easier to guarantee than privacy (retaining secrecy of who voted
for whom). Tallying – while time consuming and subjective in its current in-
carnation – is by nature easily auditable. One can duplicate functionality, and
count votes in multiple ways in order to ascertain that each vote was counted
exactly once. However, no similar auditing process has been proposed to verify
that privacy was maintained – neither for manual nor for electronic voting. The
reason, informally stated, is that a leak is a leak is a leak.

Failure to guarantee privacy is particularly severe in the social context of vote
buying, and the technical context of malicious code, and makes any transition
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to electronic elections fraught with the risk of large-scale abuse. In particular,
it was shown [24, 25] how covert channels can be employed to intentionally (and
unnoticeably) leak secret information to collaborators. Covert channels allow
tallying machines to leak either their secret keys, the state of their pseudo-
random generators, or information about the votes they process. There is also
real-life evidence [21] that malicious code (written to specification) has been used
to spy on voters. While public code audits may address such concerns to some
extent, they are hardly a panacea, especially given the difficulty of ascertaining
that the audited code is in fact the code that gets loaded and deployed.

We study how to ensure public verifiability of privacy for synchronous mix
networks, with direct applications to electronic elections (see, e.g., [2]). We
consider an adversary that fully controls all servers in a mix network at all
time, except during an initial setup phase. In the setup phase, the servers are
free from adversarial control and can establish and exchange keys. The ad-
versary only gains control over the servers after the completion of the setup
phase. This models both typical malware attacks, and attacks in which the
software developer writes software that “switches behavior” [28] to a mali-
cious mode after some initial testing has established that the software is cor-
rect. We note that corruption during the setup phase can be detected using
zero-knowledge proof techniques such as, for example, Juels and Guajardo’s
scheme [9].

Following [3], we assume the existence of observers, whose sole purpose is
to monitor the input-output behavior of servers being observed, and determine
if any of the generated transcripts could contain information that should not
have been included. Observers are not provided with any secret information.
Consequently, we do not have to trust observers – apart from having to trust
that at least one of them is honest. There is no limit on the number of pos-
sible observers, and there is no way for the adversary to determine how many
there are. Moreover, given that we employ undercover observers, i.e., observers
that do not need to interact with any mix server in order to perform their du-
ties (except for when they raise alerts), there is also no clear way to locate
them.

While [3] is concerned with the potential leak of private key information from
corrupted servers of a certification authority, we focus instead on any type of
leak from mix servers. (In particular, we consider both leaks of the secret key
and leaks that somehow reveal parts of the permutation applied by the mix
network.) Although the main principles are closely related on a conceptual level,
the technical approaches differ in more ways than they coincide.

The crux of our investigation is how to eliminate all covert channels [24] from
communication channels in a mix network. For concreteness, imagine malware
that leaks the permutation applied by a corrupted mix server by encoding this
permutation in the publicly available random strings associated with mixing
(whether in the ciphertexts or the proof of robustness.) Or, conversely, consider
malware that applies to a set of inputs a permutation that looks random, but is
known to and chosen by the attacker.
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To prevent such attacks, we need to both ensure that no covert channels can
be established1, as well as ascertain that no “exterior randomness” is used in
place of the intended “interior randomness”. Technically, these two requirements
translate to exactly the same issue: the ability to audit that all the randomness
used by a server was correctly generated by the server’s on-board pseudo-random
generator. This must be done without exposing the actual state of the pseudo-
random generator, since we do not wish to have to place any trust in observers
– other than the assumption that at least one of them would truthfully alert the
community if any irregularity is detected.

To protect the observers from attacks aimed at suppressing their activity, we
use the notion of undercover observers (as introduced in [3]). Undercover ob-
servers are network participants that verify non-interactive proofs (or witnesses)
of consistent generation and use of randomness, and which do not need to ad-
vertise their existence until they detect cheating and raise an alert.

The construction of witnesses of correct randomness is made difficult by the
fact that these must not reveal what randomness is used, but must still elimi-
nate covert channels with all but an exponentially small probability, and must
not introduce covert channels themselves. In particular, this makes most of the
recently developed techniques for efficient mixing unsuitable, since there is no
apparent way to prove a disjunction in a way that (a) uses only pre-committed
random strings, and (b) does not reveal what component of the proof the prover
knows a witness to. (However, we will show that our proposed technique in fact
can be used to implement such a proof, by ways of first implementing a mix
network that has the property.)

Also, it is interesting to note that the traditional use of cut-and-choose tech-
niques is not suitable either. It is clear that commitments that are not opened can
trivially be made to leak a logarithmic amount of information (in the length of
the commitment). In a situation with binary challenges, this allows an attacker
to select one commitment in a (2 × k) matrix of commitments, and use the se-
lected commitment to leak the information in question. Since this commitment
will only be audited with a 50% probability, this corresponds to a success rate
of an attacker of 50%. While it is easy to reduce this success rate, we note that
a success rate that is polynomial in the length of the transcripts is not desir-
able. However, defying the intuition associated with this example, we show how
to use vectors of homomorphic commitments to generate witnesses that defend
against attacks with all but an exponential probability. This is applied both to
re-encryption exponents and to permutations (as either could potentially be used
to implement a covert channel.) More precisely, we introduce a method by which
commitments are tied together in a pairwise manner, and where it is impossible
to modify either of the two committed values without this being detected when
only one of them is opened up.

While we base our design on a mix network construction that is not highly
efficient [18], we note that the overhead caused by the addition of our security

1 For practical reasons, we do not consider timing channels; we will discuss this later
on.
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measures is minimal. In spite of the difficulties to design protocols that imple-
ment tamper-evidence, we see no reason why more efficient designs could not be
feasible. Thus, tamper-evidence is not a theoretical curiosity, but a practically
achievable goal. It is our hope that tamper-evidence will become a mainstream
design feature of any protocol that is potentially vulnerable to coercive attacks,
particularly in the context of electronic elections.

Organization of the paper. We begin by outlining related work (section 2),
followed by a description of our model and requirements (section 3), and a brief
overview of re-encryption mix networks (section 4). In section 5, we present
collapsed Merkle hash trees that will serve as a building block for our proto-
col. Finally, we present our tamper-evident mix network protocol in section 6,
together with relevant proofs.

2 Related Work

The concept of covert channels in cryptographic protocols was introduced in 1983
in the seminal work of Simmons [24, 25]. Simmons specifically demonstrated the
use of the Digital Signature Standard (DSS) signature scheme for covert commu-
nication. This showed that a secrete message could be hidden inside the authen-
ticator. Young and Yung [29, 30] later showed the existence of covert channels
in the key establishment algorithms of signature schemes.

Desmedt [4] presented a practical authentication scheme free of covert-chan-
nels, in which an observer (named “active warden”) intercepts all the messages
exchanged between two parties and verifies that they are free from covert in-
formation before passing them on. The observer defined by Desmedt is “active”
in the sense that it interacts with the communicating parties. In contrast, [3]
defines signature schemes which can be verified free of covert channels by un-
dercover observers. Undercover observers verify signatures non-interactively, so
that their stealthy existence can remain a secret at least up until the point when
they detect an incorrect signature and raise an alarm. Undercover observers are
preferable to active observers, because they are far less vulnerable to attacks
aimed at suppressing their activity. This paper adopts the model of undercover
observers of [3], but considers the far more complicated problem of ensuring the
covert-free (or “tamper-evident”) operation of a mix network.

To motivate our tamper-evident mixnet construction, we review briefly other
mix networks in the literature and highlight the difficulties in making them
tamper-evident. As a first example, consider the mix network recently proposed
by Jakobsson, Juels and Rivest [10], and later used in the election scheme put
forward by Chaum [2]. Therein, each mix server re-encrypts and permutes a
list of n input ciphertexts two times, and commits to the ciphertext values in-
between the two rounds. Then, a set of verifiers selects some n challenges2 ; if
the ith challenge is a zero (resp. one) then the computation resulting in (resp.
2 As usual, this step can be replaced by a random oracle if the Fiat Shamir heuristic

is employed for challenge selection.
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starting from) the ith ciphertext value in-between the two rounds is revealed.
Whereas this method does not result in the maximum anonymity set (namely
n), it still provides reasonable anonymity for many applications, and at a very
low cost. There is no straightforward way to design a tamper-evident variant of
this scheme, since pairs of commitments (to the left and to the right) do not
have the property that the modification of one of the values invalidates both
commitments. This results in a success probability of 50% for an adversary. This
can trivially be limited to 1/k if one were to employ k successive rounds of
re-encryption and permutation. The cost of this, though, would be linear in k.

Turning now to a second (and rather common) class of mix network con-
structions, let us take a brief look at a scheme suggested by Abe [1]. Therein,
the inputs are broken up in pairs, each one of which is mixed; the resulting list
of ciphertexts are then (deterministically) shifted around and paired up, and
the resulting pairs are mixed. This is repeated a logarithmic number of times in
the number of input ciphertexts. In each mix-of-two, it is proven that either the
identity permutation is used, or the “cross-over” permutation – along with cor-
responding proofs of correct re-encryption. This type of construction therefore
employs disjunctive proofs. While we can construct tamper-evident disjunctive
proofs using our proposed mix network scheme, we have not been able to find any
simple (and inexpensive) construction for disjunctive proofs. Naturally, the same
holds for disjunctive proofs involving larger number of inputs. Thus, this class
of mix network schemes are not easily adopted to implement tamper-evidence.

Given that electronic elections is one of our motivating applications, it is
meaningful to consider the impact of our approach in such settings. An interest-
ing example of a situation in which our construction has an immediate impact
is the coercive attack proposed by Michels and Horster [16] in which an attacker
succeeds in verifying the value of a cast vote by corrupting both a voter and
some random subset of mix servers. If an approach like ours is deployed (and
the model changed correspondingly) then such an attack will be detected, and
thus, will fail.

Some approaches, such as [17, 22], allow servers to verify each other’s actions
to avoid leaks of secret information (such as random permutations.) Our ap-
proach, in contrast, prevents the replacement of the state of the pseudo-random
generator. Moreover, and in comparison to these efforts, our scheme reduces the
threats associated with potential covert channels caused by use of interaction.

The strongest relation to previous work is found in the collusion-free pro-
tocols defined by Lepinksi, Micali, and Shelat [14], which allow for the detec-
tion of collusion by malicious participants during the execution of the protocol.
Our proposed scheme can be considered as the first practical implementation
of collusion-free protocol for mix-networks. While [14] presents a well-defined
abstract structure for collusion-free protocols, its application to mix networks
is not obvious, in particular given the need to retain privacy. From that point
of view, our contribution is to present a practical implementation eliminating
collusions, i.e., possibilities to build covert-channels while maintaining privacy
guarantees.
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3 Model

Participants. We consider the following entities: users, servers, and observers.
In addition, we assume the existence of an authority and an attacker.

– The users generate ciphertexts and post these to a public bulletin board BB.
– Sequentially, the servers read the contents of BB and process portions of its

contents in batches, writing the results of the operation back to BB. These
results consist of a set of ciphertexts (that constitute the inputs to the next
server in the sequence) and a witness of tamper-freeness. The witness of
tamper-freeness constitutes evidence that the (pseudo) random source of the
server was not tampered with, and that the operation of the server correctly
proceeded according to that random source. As we shall see, the witness of
tamper-freeness implies the correctness of the mixing operation, and thus
our servers do not need to provide an additional proof of correct mixing.

– The attacker is allowed to corrupt all but two of the users all of the time;
this is corruption in the standard cryptographic sense, involving full read
and write access to the compromised machines. The servers are also able
to corrupt all of the servers all the time except during the key generation
phase; this corruption allows full write access to compromised machines, but
requires any information to be read from the machine to be transmitted us-
ing the standard communication media (as opposed to a secret side-channel).
Thus, it is assumed that an attacker can send messages to corrupted servers
out of band, but that all communication in the opposite direction (from a
corrupted server to the attacker) must utilize the BB, to which all servers
have constant read and (appendive) write access. The latter is not a stan-
dard cryptographic assumption, but corresponds to realistic attacks in which
software is corrupted by a “remote” attacker able to inject or replace code,
e.g., by means of malware. Finally, the attacker is assumed able to corrupt
(in the standard sense) all but one observer all of the time.

– The observers access BB and verify the correctness of witnesses posted
thereon; if any witness is invalid (or missing) then any uncorrupted observer
will initiate an alert.

– When an alert occurs, the authority will verify the validity of the alert
(that it was done in accordance with the protocol specifications) and then
physically disconnect any server whose witness was found to be invalid or
missing3.

Note that our techniques do not protect against timing covert-channels. How-
ever, by imposing strict requirements on synchronization or introducing random
delays, one can protect against timing attacks as well, at the cost of a somewhat
reduced (but predictable) throughput.

3 We are mainly concerned with detection. After such detection, one can act on that
information using standard methods, such as emulation or replacement of the faulty
servers.



132 J.Y. Choi, P. Golle, and M. Jakobsson

Goals

– Correctness/robustness. The goal of the honest servers is to generate an
output that consists of a set of ciphertexts, with a one-to-one correspondence
to the batch of input ciphertexts given as input to the sequence of servers.
Two ciphertexts must both decrypt to the same plaintext in order for us to
say that they correspond to each other.

– Privacy. The goal of the attacker is to determine the mapping between
input and output ciphertexts (for input ciphertexts not generated by users
he has corrupted) with a probability of success that is significantly better
than what could be achieved by a guess made uniformly at random from
the possible mappings; or to extract information from a server that allows it
to be impersonated with a probability of success that is significantly better
that the probability of success that can be achieved without corruption of
any servers4.

– Tamper-evidence. The goal of the observers is to detect the use of any
randomness inconsistent with the initial state of the corresponding server.
This effectively corresponds to preventing covert communication and avoid-
ing that the output of a corrupted server is a non-trivial function of infor-
mation communicated to it by the attacker.

Trust. For the correctness property to hold, it is normally required that a
majority of mix servers are honest. In our setting, though, it suffices that one
observer and the authority are uncorrupted5.

Similarly, for the privacy property to hold in our proposed scheme, no trust
assumptions need to be made of either users or servers, but we have to assume
that at least one observer and the authority are uncorrupted. If we recall that the
main role of the observer is to detect inconsistent use of the randomness used
for privacy, we can provide correctness against privacy abuse to build covert
channel.

We do not need to trust any server with keeping any secret information of any
other server. We assume that the authority will promptly disconnect any server
failing to generate and output a valid witness for each transcript it writes to the
bulletin board.

4 We note that the second goal does not necessarily subsume the first. Consider, for
example, a re-encryption mix network in which each server authenticates its output
using its secret key. Knowledge of this key will not allow the attacker to determine
the permutation, but knowledge of the state of pseudo-random generator does. In
contrast, if we consider a decryption mix server based on padded RSA ciphertexts,
it is clear that knowledge of the secret key will allow an adversary to infer the
permutation.

5 Alternatively, the correctness property can be seen to hold in a slightly different
model in which there is no authority. Then, the requirement is instead that at least
one observer is uncorrupted, and that all consumers of information pay attention to
alerts.
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Remark 1: Note that we make two simultaneous and different trust assump-
tions on servers. As far as tamper-evidence is concerned, we assume that the
servers are honest (i.e., not corrupted) during the key generation phase. How-
ever, in terms of the protocol robustness, we do not make this assumption. This
means that our protocol remains robust even if servers are corrupted during the
key generation phase, whereas the same does not hold for tamper-evidence.

Remark 2: We note that in the following, we only address how to make re-
encryption mixing tamper-evident. In most applications involving re-encryption
mix networks, there is a phase involving decryption of output ciphertexts. We
may assume that this functionality (which can be made tamper-evident follow-
ing the techniques presented in [3]) can be blocked by the authority in the case
of an alert. Practically speaking, this will be possible if a sufficient number of
decryption servers can be disconnected immediately upon detection of an irreg-
ularity in the mix phase. In the following, we focus solely on the re-encryption
mix process, and do not address the decryption process any further.

4 Preliminaries

We give a brief overview of re-encryption mix networks [18] based on the ElGamal
cryptosystem (a more detailed description can be found, e.g., in [6]):

– Key generation: let p and q be primes such that q | (p − 1) and let g ∈ Z∗
p

be an element of order q, such that the ElGamal cryptosystem defined by g
in Z∗

p is semantically secure against plaintext attacks [32] and also adaptive
chosen plaintext attacks. Consider a (t, l)-threshold encryption scheme [7]
where the secret key is shared among l mix-servers. For i = 1, · · · , l, mix-
server Si has secret key xi ∈ Z∗

q and publicizes the corresponding public key
yi = gxi mod p. Let y =

∏l
i=1 yi mod p.

– Batch generation: Let mj denote the plaintext input of user Uj for j =
1, · · · , n. The ElGamal encryption of mj is

Enc(mj , rj) � (grj , yrjmj),

where rj ∈ Z∗
q is chosen uniformly at random. Let the ciphertext be (aj , bj) =

Enc(mj , rj). Each user Uj submits the ciphertext (aj , bj) as well as a proof
of knowledge for the corresponding plaintext mj (See [8]).

– Mixing phase: Each mix-server Si performs two operations: re-encryption
and permutation. More precisely, server Si takes as input a list of n cipher-
texts ((a1, b1), · · · , (an, bn)) from BB. For j = 1, . . . , n, server Si re-encrypts
input (aj , bj) as follows:

(a′
j , b

′
j) = ReEnc ((aj , bj), αj) � (gαj · aj , yαj · bj) ,
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where αj is a re-encryption parameter chosen at random in Z∗
q . Server Si

then chooses a random permutation π on {1, 2, · · · , l} and outputs to BB
the permuted list

((
a′

π(1), b
′
π(1)

)
, · · · ,

(
a′

π(n), b
′
π(n)

))
.

– Decryption phase: A quorum of mix servers can do a threshold decryp-
tion of the final set of outputs, which yields the set of inputs (m1, · · · , mn)
permuted according to the successive permutations applied by the l mix
servers.

5 Building Block – Merkle Hash Tree Verification

A Merkle tree [15] is a tree consisting of nodes whose values are a one-way hash
function (for example, SHA-1 or MD5) of the values of their children nodes. Due
to their simplicity, Merkle trees are used for a wide range of secure authentication
schemes. A Merkle tree is generally a binary tree where the value at a node N
in the tree is defined with respect to the values Nleft and Nright of its children
by

N � h(Nleft ||Nright)

where h denotes a one-way hash function and “ || ” denotes concatenation.

· · ·

ρ

L1 R1 L2 R2 · · · Ln Rn

· · ·

ρ

L1 R1 R2 · · · Ln Rn

(a) (b)
L2

Fig. 1. A binary Merkle hash (a) and collapsed Merkle hash tree (b)

For better efficiency, our protocol does not use binary Merkle trees, but instead
collapsed Merkle hash trees in which 2n leaves are connected to the root of the
tree directly as shown in Fig. 1(b). In our protocol, the 2n leaves of the collapsed
Merkle hash tree will be the elements of two sets (L1, · · · , Ln) and (R1, · · · , Rn)
each of size n. We define a function MerTree that takes these sets as inputs and
outputs the root ρ of the corresponding collapsed Merkle hash tree:

MerTree((L1, · · · , Ln), (R1, · · · , Rn)) � h
(
h(L1) ||h(R1) || · · · ||h(Ln) || h(Rn)

)
The root ρ of the tree functions as a commitment to the sets (L1, · · · , Ln) and
(R1, · · · , Rn). Note that this commitment can be verified given:

– either (L1, · · · , Ln) and (h(R1), · · · , h(Rn))
– or (h(L1), · · · , h(Ln)) and (R1, · · · , Rn).
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6 Tamper-Evident Mix Network

We propose a tamper-evident mix network in which each mix server pre-generates
a random permutation together with a sequence of random re-encryption param-
eters that will be used to re-encrypt and mix the input batch. As explained in
section 3, we assume that the generation of these parameters occurs in a setup
phase prior to mixing, during which the mix servers are uncorrupted. During the
mixing phase, the mix server outputs a proof that it operates in accordance with
pre-generated parameters. Any deviation from these parameters invalidates the
corresponding proof with all but negligible probability. This mix-network proto-
col thus ensures that the operation of mix-servers is tamper-evident.

Key generation. As explained in section 4, the l mix servers jointly gener-
ate the secret and public parameters for a (t, l)-threshold ElGamal encryption
scheme. The public parameters are two primes p and q such that q|(p − 1) and
an element g ∈ Z

∗
p of order q. For i = 1, . . . , l, we let xi ∈ Z∗

q denote the secret
key of mix-server Si and yi = gxi mod p the corresponding public key. We let
y =

∏l
i=1 yi mod p.

Let κ be a security parameter, such that 2−κ constitutes an acceptable error
probability (for example κ = 80). To prove tamper-evident mixing, each server Si

generates additional values as follows. For notational clarity, we omit the suffix
i, but it should be clear that each server generates its own set of the following
values:

• a random permutation π on n elements
• n random values αj ∈ Z∗

q (j = 1, · · · , n) which are used as re-encryption
parameters in the mixing phase

• κ pairs of permutations on n elements
(
σ(1), τ (1)

)
, . . . ,

(
σ(κ), τ (κ)

)
such that

π = τ (k)◦σ(k) for all k = 1, · · · , κ. (As notational simplicity, we will continue
to represent the index k in the superscripted braces.)

• κn pairs of integers
(
β

(k)
j , δ

(k)
j

)
∈ Z∗

q × Z∗
q such that αj = β

(k)
j + δ

(k)
j for all

j = 1, . . . , n and k = 1, · · · , κ.

The mix then computes commitments to the values σ(k), τ (k), β
(k)
j , δ

(k)
j using

collapsed Merkle hash trees. More precisely, the mix server constructs κ collapsed
Merkle hash trees T (1), . . . , T (κ). For k = 1, · · · , κ, the leaves of T (k) consist of
the following 2n + 2 values in this order:

σ(k), τ (k),
(
β

(k)
1 , . . . , β(k)

n

)
,
(
δ
(k)
π(1), δ

(k)
π(n)

)
.

We let ρ(k) denote the root of T (k). Each mix-server publicizes the root values
ρ(1), . . . , ρ(κ) of its Merkle trees.

Batch generation. Each user Uj (j = 1, · · · , n) encrypts its plaintext message
mj by using group ElGamal encryption as described in Section 3 and posts the
corresponding ciphertext to BB.
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Fig. 2. Overview - A mix-server Si re-encrypts the input (aj , bj) by ReEnc((aj , bj), αj)
for j = 1, · · · , n and outputs (a′

π(j), b
′
π(j)) which is permuted according

to the permutation π. In the meanwhile, the mix-server computes as proof
κ sets of values; for k = 1, . . . , κ, the prover P computes (for j =
1, . . . , n) the values

(
a
(k)
j , b

(k)
j

)
= ReEnc

(
(aj , bj), β

(k)
j

)
and outputs W(k) =(

a
(k)
σ(k)(1)

, b
(k)
σ(k)(1)

)
, . . . ,

(
a
(k)
σ(k)(n)

, b
(k)
σ(k)(n)

)
.

Mixing phase. For i = 1, · · · , l, mix-server Si reads from BB the list of n
ciphertexts output by Si−1 (the first server S1 gets from BB the list of n inputs
ciphertexts submitted by the n users). We denote this list of ciphertexts by
((a1, b1), . . . , (an, bn)). For j = 1, . . . , n, server Si re-encrypts the input (aj , bj)
as follows: (

a′
j, b

′
j

)
= ReEnc ((aj , bj) , αj) ,

where the αj are the values generated by Si in the key generation phase (again,
we omit the index i for notational clarity). The mix server Si then outputs these
values permuted according to the permutation π, i.e.(

a′
π(1), b

′
π(1)

)
, · · · ,

(
a′

π(n), b
′
π(n)

)
.

Proof of tamper-evidence. The mixnet outputs a witness of tamper-freeness.
This witness is computed non-interactively. However, the construction of the wit-
ness is easier to understand if we describe it in terms of an interaction between a
prover P (the mix-server) and a verifier V (the observers). It will be immediately
clear that this interactive protocol can be turned into a non-interactive witness
using the Fiat-Shamir heuristic.
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1. (Commitments) For k = 1, . . . , κ, the prover P computes (for j = 1, . . . , n)
the values (

a
(k)
j , b

(k)
j

)
= ReEnc

(
(aj , bj), β

(k)
j

)
(1)

and outputs

W(k) =
(
a
(k)
σ(k)(1), b

(k)
σ(k)(1)

)
, . . . ,

(
a
(k)
σ(k)(n), b

(k)
σ(k)(n)

)
(2)

2. (Challenges) The verifier V outputs κ random challenges c(1), . . . , c(κ) ∈
{0, 1}.

3. (Response to challenges) For k = 1, · · · , κ:
– If c(k) = 0: P outputs σ(k), h

(
τ (k)

)
, β

(k)
1 , . . . , β

(k)
n and

h
(
δ
(k)
π(k)(1)

)
, . . . , h

(
δ
(k)
π(k)(n)

)
– If c(k) = 1: P outputs h

(
σ(k)

)
, τ (k), h

(
β

(k)
1

)
, . . . , h

(
β

(k)
n

)
and

δ
(k)
π(k)(1), . . . , δ

(k)
π(k)(n)

4. (Verification) For k = 1, · · · , κ, the verifier checks the following depending
on the value of c(k):

– If c(k) = 0: V re-encrypts input (aj , bj) with re-encryption factors β
(k)
j ,

then permutes them according to permutation σ(k) and checks that the
result matches the set W(k) received from P in Step 1.

– If c(k) = 1: V re-encrypts output
(
a′

π(j), b
′
π(j)

)
with re-encryption factors

−δ
(k)
π(k)(j), then permutes them according to the inverse of permutation

τ (k) and checks that the result matches the set W(k) received from P in
Step 1.

Finally, V reconstructs the collapsed Merkle hash tree T (k) and verifies that
the root of that tree is equal to the root ρ(k) output by server Si in the
key generation step. It should be clear that the values output at the end
of step 3 enable V to reconstruct the Merkle hash tree T (k) regardless of
whether c(k) = 0 or c(k) = 1.
If any of the verification steps fails, the verifier V raises an alarm and the
prover (i.e. mix-server Si) is discarded.

Non-interactive proof of tamper-evidence. The interactive protocol given
above to verify the tamper-freeness of a mix server’s operation can be trans-
formed into a non-interactive protocol with the Fiat-Shamir heuristic (also known
as the random oracle model): the κ challenges in Step 1 of the proof can be re-
placed by the κ left-most bits of the hash of

(
(a′

π(1), b
′
π(1)), · · · , (a′

π(n), b
′
π(n))

)
.

A non-interactive protocol allows proofs of tamper-freeness to be verified by un-
dercover observers. Undercover observers need not reveal their existence until
they detect an incorrect proof and raise an alarm.
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Decryption phase The final outputs of the mix server is decrypted by a quo-
rum of mix servers. Quorum ElGamal decryption can be made tamper-evident
following the techniques of [3].

6.1 Properties

Proposition 1. If the hash function h is second pre-image resistant, then a
dishonest prover P can cheat the verifier V with probability at most 2−κ in the
proof of tamper-evidence.

Proof. The proof is by contraposition. Let us assume the existence of a prover
P who can cheat the verifier V in the proof of tamper-evidence with probability
2−κ + ε. We show how to use P to find a second pre-image for the function h.
We proceed as follows:

1. V executes one instance of the key generation step described in Section 6. In
particular, V outputs the roots ρ(1), . . . , ρ(κ) of κ collapsed Merkle hash trees
T (1), . . . , T (κ). V also outputs a batch of n input ciphertexts ((a1, b1), . . . ,
(an, bn)).

2. P outputs a new batch of n ciphertexts ((a′′
1 , b′′1), . . . , (a′′

n, b′′n)), such that
there exists at least one index j ∈ {1, . . . , n} such that

(a′′
j , b′′j ) �= ReEnc

((
aπ(j), bπ(j)

)
, απ(j)

)
.

This condition expresses the assumption that P is a dishonest prover.
3. P outputs commitments W(k) for k = 1, . . . , κ. We distinguish two cases:

– If W(k) is not equal to the re-encryption of the inputs (aj , bj) with re-
encryption factors β

(k)
j permuted according to permutation σ(k), then

we say that the commitment W(k) is “input-incorrect” and we define
c(k) = 1.

– Otherwise, the commitment W(k) is equal to the re-encryption of the
inputs (aj , bj) with re-encryption factors β

(k)
j permuted according to

permutation σ(k). But since (a′′
j , b′′j ) �= ReEnc

((
aπ(j), bπ(j)

)
, απ(j)

)
, it

must then be the case that W(k) is not equal to the re-encryption of
the outputs (a′

π(j), b
′
π(j)) with re-encryption factors −δ

(k)
π(k)(j) permuted

according to the inverse of permutation τ (k). We say then that the com-
mitment W(k) is “output-incorrect” and we define c(k) = 0.

4. The verifier V outputs κ random challenges c(1), . . . , c(κ) ∈ {0, 1}.
5. The prover responds to these challenges and the responses are verified by V

as described in the protocol of section 6.

With probability 2−κ, we have c(k) = c(k) for all k = 1, . . . , κ. The prover,
however, succeeds in convincing the verifier with probability 2−κ + ε. It follows
that with probability ε, the prover succeeds in convincing the verifier when there
exists an index k such that c(k) �= c(k). In this case, we show how to compute a
second pre-image for the function h.
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Without loss of generality, let us assume that for some k ∈ {1, . . . , κ}, we have
c(k) = 1 and c(k) = 0. In other words, the commitment W(k) is “input-incorrect”,
and V verifies the relationship between the inputs and the commitment. The root
ρ(k) of the Merkle tree T (k) commits P to the values σ(k), τ (k), β

(k)
1 , . . . , β

(k)
n

and δ
(k)
1 , . . . , δ

(k)
n . Let us denote σ

′(k), τ
′(k), β

′(k)
1 , . . . , β

′(k)
n and δ

′(k)
1 , . . . , δ

′(k)
n

the values used by P to compute W(k). Let us denote T
′(k) the collapsed Merkle

tree computed with these alternate values and let ρ
′(k) be the root of that tree.

We know two things:

• The commitment W(k) is “input-incorrect”. Thus
(
σ

′(k), β
′(k)
1 , . . . , β

′(k)
n

)
�=(

σ(k), β
(k)
1 , . . . , β

(k)
n

)
.

• The proof succeeds. Thus ρ(k) = ρ
′(k).

Thus we have used P to compute a second pre-image for the function h. �
Proposition 2. Our mix network protocol is tamper-evident.

Proof. This is an immediate corollary of Proposition 1. The proof of tamper-
evidence ensures that the operation of every mix server is entirely deterministic
based on the inputs committed to in the key generation step. �
Proposition 3. Our mix network protocol guarantees correctness.

Proof. The correctness of the mixing follows immediately from tamper-freeness.
Indeed, we assume that correct re-encryption factors and permutations are se-
lected in the key-generation phase, since the mix server is assumed uncorrupted
during that phase (see our model and its justification in Section 3). �

7 Conclusion

Motivated by electronic elections, much research has been devoted to building
mix networks that are secure against privacy threats, and whose operation can be
verified correct. This paper introduces a new notion of security, which we call
tamper-evidence. A mix server is tamper-evident if any variation from a prescribed
deterministic mode of operation is detectable. The tamper-evident mix network
scheme we propose extends the security requirements of mix networks to the run-
time detection of covert channels (which constitute one kind of disallowed vari-
ation from the prescribed deterministic operation). The tamper-evidence of mix
servers is verified by non-interactive observers,whom we call undercover observers.
Undercover observers can operate stealthily (at least up to the point when they
must raise an alarm) and are thus nearly impossible to detect and attack.
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Abstract. In this paper we consider the problem of constructing se-
cure auctions based on techniques from modern cryptography. We com-
bine knowledge from economics, threshold cryptography and security
engineering to implement secure auctions for practical real-world
problems.

1 Introduction

The area of secure auctions combines three different areas of research: economics
(mechanism design), cryptology, and security engineering.

From economy and game theory, we know that many forms of auctions and
trading mechanisms rely on/can benefit from a trusted third party (TTP), also
known as a mediator or social planner. However, in a real application, it will
often be the case that such a TTP cannot be found, or is very expensive to
establish (since one basically has to counter-bribe it). Multiparty computation
can be used to “implement” such a TTP in such a way that we only need to
trust some fraction, say a majority, of the parties. Our goal is to investigate
if this can also work in practice, and our work indicates that the answer is
yes.

In this paper we give an overview of practical cryptographic protocols which
securely implements basic integer operations. Detail of these protocols can be
found in [7] and [20]. We also give an overview of specific types of auctions which
are practically realizable based upon these protocols. Detail of these auctions can
be found in [2], but the details of the applications areas are held confidential due
to commercial interests of the industry partners. Finally, we give a report on the
empirical results from our prototype implementation.

2 Secure Auctions

Secure auctions are emerging as a field of research in its own right. In recent
years a number of contributions have been made (e.g. [10, 17, 3, 4, 21, 15]).
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In this paper, our primary motivating application is the case of double auc-
tions with many sellers and buyers (hundreds or thousands), and where a single
divisible commodity is traded. Bidding in such an auction ideally involves sub-
mitting full schemes or strategies to an auctioneer, i.e., bidders should specify
the quantities they want to sell or buy as a function of the price per unit. Based
on the bids, the auctioneer then computes the so called market clearing price,
i.e., the price that best balance aggregated demand and supply. Knowledge of
individual bids may be of great value to others, who may use this knowledge
to better their own situation. It is important to note that this does not only
apply to the current auction going on. A bid contains information about the
bidder’s general economic situation, and such information can be (mis)used in
many other contexts. Hence, if bidders are not fully convinced that their bids
are kept private—i.e., are used only for the purpose intented—they may deviate
from playing the otherwise optimal strategy.

Assuming that the communication of bids is secure, the auctioneer is the
primary target of attacks on both off- and on-line auctions. Hence much work
has been done on how to ensure the trustworthiness of the auctioneer1. One
approach to this is to replace him by a set of n Trusted Third Parties (TTPs),
where it is assumed that at most some number t of TTPs are corrupt, so called
threshold trust. With this assumption, one can emulate the auctioneer via multi-
party computation (MPC) (see e.g. [19, 12, 8]).

3 Contributions and Relation to Previous Work

To our knowledge the only other secure double auction is that of [21]. They
realise two types of double auctions, McAfee and Yokoo, both of which only
auction a single item. Our auctions handle multiple items (in fact, one of our
real-life auction handles multiple items of three different goods).

From the perspective of implementation this paper contributes the first—to
our knowledge—practically feasible implementation of the multiple TTP trust
model based on MPC, and our results give strong empirical evidence that our
protocols are sufficiently efficient for real-world applications. To some extent this
adresses an open challenge from Malkhi et al. [16].

We are currently only aware of similar work by Malkhi et al. [16] and Feigen-
baum et al. [9]. Malkhi et al. use a two TTP trust model based on Yao encryption
and constructs a full system called FairPlay including a special purpose language
and compiler (this system is available on-line, see [16]). They implement several
functions in this system and provide benchmarks on performance. The system
of Feigenbaum et al. is dedicated to a particular problem, a salary survey. Their
procotol supports a multiple TTP trust model, but their current implementation
only use two TTPs. In fact, the implementation of Feigenbaum et al. uses parts
of the FairPlay system.
1 There are many other threats towards auctions. Most importantly, collusion among

the participants also known as bidding rings. Though in auctions with many partic-
ipants bidding rings are unlikely to be successful.
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4 The Cryptographic Protocols

In our protocols we have (many) Input Clients, who supply inputs to the compu-
tation and a set of n TTPs, who are responsible for executing the computation,
such as computing an auction result. We assume that input clients can commu-
nicate privately with the TTPs, and also that TTPs can broadcast information
to all TTPs. We want the computation to be secure, even if up to t of the TTPs
are corrupted by an adversary. Typical values of (n, t) might be (3,1) or (5,2).

Using Canetti’s universal Composability Framework[5], we can specify what
we want to achieve as an ideal functionality, which can be thought of as an
incorruptible computer which can do the following:

– Confidentially receive as input a set of integers from each input client.
– Execute a built-in program. The program may use the standard integer arith-

metic operations and comparisons.
The program is public and part of the specification of the functionality.

– Send the outputs of the program to the players.

If we use a protocol securely realizing this functionality to play the role of an
auctioneer, we obtain an auction with the desired security properties – assuming,
of course, that the computation to done by the auctioneer can be specified using
integer operations as specified above,

In [7][20], protocols realizing the above functionality are presented. The proto-
cols are shown to be secure under standard cryptographic assumptions, namely
existence of a secure public-key cryptosystem and a secure pseudorandom func-
tion. Under these assumptions, the protocols can tolerate any set of less than
n/2 TTPs being passively corrupt, i.e. they may share all their information but
they continue to follow the protocol. Active corruption, where corrupted parties
may deviate from the protocol, can also be handled using standard methods,
although this has not yet been implemented.

We essentially assume that the clients giving input always follow the protocol.
This assumption could be removed at the expense of some efficiency, however,
such participants in a typical application will be bidders in an auction, who take
part because it is in their interest to do so. The chosen auction mechanisms make
sure that they can expect no economic gain from providing inputs of incorrect
form. Hence protecting against dishonest bidders is not our first priority, and is
handled only by having the client software check that the inputs are contributed
correctly.

Since our goal in this paper is to report on the implementation and its im-
plications, we only give a short summary of the protocols here: We use Shamir
secret sharing and input clients provide input by distributing shares of the in-
puts privately to the TTPs. We use the pseudorandom secret sharing technique
from [6], this allows us to create sharings of random values without interaction,
and also saves work in several other cases. This immediately allows addition,
multiplication and multiplication by constants using standard techniques.

Comparison is more involved and seems to require that we look at individual
bits of a shared number. For instance, if we know about shared numbers a, b that
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0 ≤ a, b < 2l, we can easily compute shares in the number 2l +a− b, and we have
a ≥ b if and only if the l + 1’st least significant bit of 2l + a− b is set. Converting
shares mod p of an unknown number to shares of individual bits is possible, but
quite cumbersome (see [1]). In [7],[20] (using ideas from [13]), a different approach
is taken by observing that it is much easier to compute a random shared number
together with shares of its individual bits. This can be done in a preprocessing
phase. Once the inputs are supplied, we can combine the preprocessed data with
the shares of 2l + a − b to get securely the bit we are after.

5 Double Auction Design

A relatively small fraction of the literature on auctions considers multi-unit dou-
ble auctions, or exchanges, where sellers and buyers reallocate multiple units of
a product or a service (Klemperer [14] provides a recent survey of the litera-
ture in auctions). Important real world markets are double auctions, e.g. the
typical stock exchanges. Consider a large number of both sellers and buyers
that meet in a double auction to exchange multiple items of a good. The sell-
ers have well-defined supply schemes represented by a set of quantity-price bids
(s1, p1), (s2, p2), . . . , (sL, pL). Here, sl is the quantity seller i offer for sale at pl. In
this general representation, the supply scheme consists of L bids, one for each of
the L possible bid prices. Likewise the buyers have well-defined demand schemes
represented by a set of quantity-price bids (d1, p1), (d2, p2), . . . , (dL, pL). The de-
mand and supply schemes are assumed to be monotone in the price. That is for
any two prices ph and pl where ph ≤ pl, we have sh ≤ sl, i.e. a seller will supply
at least the same when the price increases, and dh ≥ dl, i.e. a buyer will demand
at least the same when the price falls. All trade is executed at the same market
clearing price. Bids to buy above and sell below the market clearing price are
accepted, the remaining bids are rejected. The market clearing price is computed
as follows: Let I be the number of buyers, J the number of sellers, and i and
j be the associated counters. For any price pl, l = 1, 2, . . . , L, the aggregated
demand is given by ADl =

∑I
i=1 di

l and the aggregated supply is ASl =
∑J

j=1 sj
l .

Also the excess demand is defined as Zl = ADl − ASl, ∀l = 1, 2, . . . , L. We then
define the market clearing price to be pl, where l is such that Zl is closest to
zero. With price-taking behavior the optimal bidding strategy is simply to sub-
mit the true demand and/or supply schemes, see e.g. Nautz [18]. It is easy to
see that this computation can be done using the protocols we described. The
correct value of l can be found by binary search using O(log L) comparisons due
to the monotonicity of ADl, ASl. Each comparison result can be made public:
once the market clearing price is public, it is also known whether ADl > ASl

for each l.

6 Prototype

We have implemented the cryptographic protocols of [7] as well as the auctions of
[2] on top of the protocols. Our main conclusion from implementing this
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prototype is that this approach is indeed feasible in practice. A demo of the imple-
mentation is found at http://www.sikkerhed.alexandra.dk/uk/projects/scet.htm.

Our setup ignores some practical and theoretical issues that should be han-
dled by a commercial application. These include key management, integrity of
the executed programs, etc. Further we introduce a coordinator component, fa-
cilitating, e.g., the required broadcast functionality. All code is written on the
Microsoft .Net platform using C# , using the communication libraries etc. of
this platform.

We present here measurements on multiplication and comparison of 32 bit in-
tegers. More details can be found in [11]. The coordinator and all but one TTP
were run on seperate Win XP machines (3.1GHz dual core, 2GB ram) placed
on the university LAN; the last TTP was run on another Win XP machine
(1.7GHz, 512MB ram) accessing the coordinator via a ADSL internet connec-
tion (1024/256 bits/s) over a VPN connection. The first table show times (in
milliseconds) for doing x multiplications. Parallel execution is faster since the
same amount of data can be sent in fewer rounds of communication. This is
reflected in the tables below, where our parallel measurements have been fitted
into a linear approximation, ax+b, to estimate this constant (see [11] for further
details).

(n,t) (3,1) (5,2) (7,3)
sequential execution 42x 47x 70x
parallel execution 3x + 41 7x + 43 29x + 44

The next table shows times for doing x comparisons (time in milliseconds).

(n,t) (3,1) (5,2) (7,3)
pre-processing (s) 420x 680x 1780x
pre-processing (p) 320x + 90 580x + 90 1700x + 90
evaluation 354x 405x 617x

Based on the benchmarks of comparisons the double auction certainly seem
feasible for a wide range of parameters (say, a price grid of size L = 2000—
leading to some 11 comparisons—corresponding to the actual numbers of real-
world markets as described in [2]).
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Abstract. In this paper, we present two failures in the blind signatures
based voting system Votopia [2] which was used at the 2002 World Soc-
cer Cup. We then propose a fix which relies on fair blind signatures. The
resulting scheme is practical, satisfies the fundamental needs of security
in electronic voting, including public verifiability, and compares favorably
with other like systems in terms of computational cost. As an illustra-
tion, our variant of Votopia was successfully trialed during the French
referendum on the European Constitution in May 2005.

1 Introduction

A blind signature scheme is a protocol allowing to get a signature from a signer
such that the signer’s view of the protocol cannot be linked to the resulting
message-signature pair.
Blind signatures can be used in applications where anonymity of a message is
required such as untraceable electronic cash or electronic voting. One of the
standard electronic voting scheme using blind signatures was proposed by Fu-
jioka, Ohta and Okamoto (FOO for short) at Auscrypt’92. Unfortunately, their
scheme suffers from several major drawbacks. The main one is that all voters
have to participate to the ballot counting process. This means that each voter
must stay until all other voters complete the casting stage, which makes the
scheme unpractical for real life. In [3], Ohkubo et al. showed how to avoid this
inconvenience by proposing a variant of FOO’s voting scheme with a simple mix-
net that allows voters to “vote and go”: they need not to make any action after
voting. Votopia [2] is a practical implementation of this system and was used at
the 2002 FIFA World Cup to select the Most Valuable Players.
In this paper, we first focus on the security of Votopia. We describe two failures
where the first mix server in the system can affect the result of the election in an
unnoticeable way. We then show how to repair Votopia [2]. The resulting scheme
remains practical for large scale elections, allows voters to “vote and go” and
satisfies the fundamental needs of security in electronic voting, including public
verifiability (that is, anyone can check the validity of the whole voting process).
� Work partially supported by the French Ministry of Research RNRT Project
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The key component that makes our voting protocol convenient for voters and
publicly verifiable is a (threshold) fair blind signature scheme, a variant of a blind
signature scheme introduced by Stadler et al. at Eurocrypt’95. In this variant,
the signer can, with the help of a trusted authority (or a quorum of authorities),
either identify from the transcript of a signing session the resulting signature
(signature tracing) or link a message-signature pair to the corresponding signing
session (session tracing).

2 Protocol Failures in Votopia

Five basic entities are involved in the Votopia voting system [2]: the voters (Vi

will denote the voter i), an Admin Server AS, the mix servers or mix-net M
(Mi will denote the mix server i), the talliers T (Tj will denote the tallier j)
and a bulletin board BB which, as usual, is publicly readable and which every
participant can write to (into his own section) but nobody can delete from. The
role of these different entities will be clarified in the sequel. The system makes
use of the following cryptographic primitives: a threshold encryption scheme, a
digital signature scheme, a blind signature scheme and a simple mix-net (i.e.
not universally verifiable). Any secure implementation of these primitives suits
this system. We will therefore use generic notation to describe such primitives:
ET and DT will denote respectively T ’s threshold encryption and decryption
schemes whereas EM will denote M’s “encryption scheme”. B and UB will
denote respectively the blinding and unblinding functions of the blind signature
scheme. In the sequel, we will assume that each eligible voter has a pair of keys of
an agreed signature scheme and that the corresponding public key was certified
by AS. Si (respectively SAS) will denote Vi’s signing function (respectively
AS’s signing function), Ci the certificate of the corresponding public key and
Vi’s identifier is denoted by Idi.

Voting Stage

1. Vi selects the vote vi of his choice and encrypts vi with T ’s public key of the
threshold encryption scheme as xi = ET (vi). Vi blinds xi as ei = B(xi, ri),
where ri is a randomly chosen blinding factor. Vi signs ei as si = Si(ei) and
sends (Idi, Ci, ei, si) to AS.

2. AS checks that the signature si is valid and that it comes from a registered
voter who has not already submitted a blind ballot. If all these verifications
are valid (the protocol is aborted otherwise), then AS signs ei as di =
SAS(ei) and sends di to Vi. At the end of the voting phase, AS announces
the number of voters receiving AS’s signature, and publishes the final list
LAS of (Idi, Ci, ei, si).

3. Vi retrieves the desired signature yi of ballot xi by yi = UB(di, ri). Vi

encrypts (xi, yi) with the “encryption key” of the mix-net as ci = EM(xi, yi).
Vi signs ci as σi = Si(ci) and sends (Idi, Ci, ci, σi) to BB.

4. BB checks the signature of the posted message and checks that Idi appears
in LAS . BB publishes the list LBB of (Idi, Ci, ci, σi).
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Counting Stage

1. M decrypts the list of ci and outputs the list L of (xi, yi) in random order.
2. T checks the signature yi of xi. If the verification fails, T claims that yi

is not a valid signature on xi by publishing (xi, yi). If more than t (the
threshold) talliers claim about the same (xi, yi), the mix servers have to
reveal the corresponding ci and prove in zero-knowledge that (xi, yi) is the
correct result of decryption of ci (we call back-tracing such procedure). Each
tallier checks the proofs issued by each mix server. If the checks fail, the
mix server that issued a wrong proof is disqualified. If all proofs are valid, it
means that the voter cast an invalid vote. Thus, the vote is excluded from
further steps of the counting stage. After excluding the invalid results of
mix processing, T (cooperatively) decrypts ballots xi and retrieves vote vi

as vi = DT (xi). T then publishes the result of the election.

In [2], Kim et al. emphasize on the fact that their system satisfies the “vote and
go” property. Here, we will show that if we really let the voters “vote and go” then
their system doesn’t satisfy the accuracy requirement (that is the impossibility
to alter a cast ballot). More precisely, we will show that the first mix server
(and only this mix) can modify the result of the election in an unnoticeable way.
Indeed, since the ballots sent to BB are signed by the voters (see step 3 of the
voting stage), this first mix can easily recognize or substitute the ballots that
come from voters who are members of a political party different from its own. We
distinguish two cases: the case where the number n of (encrypted) ballots sent
to BB is smaller than the number N of voters who interacted with AS (which
could correspond to the case where some voters obtained their ballots from AS
and finally decided not to cast it) and the case where n is equal to N .

1) n < N . Suppose that the first mix server, denoted by M1, has m � N − n
accomplices. M1 can ask its m accomplices to execute step 1 and step 2 of
the voting stage (and consequently to obtain valid signed ballots from AS) but
not the following steps (in other words, they will not send their ballots to BB).
M1 can then replace m valid ballots of targeted voters by the m ballots of its
accomplices. As the latter ballots are valid (they contain AS’s signature) there
will be no anomaly in the list L. The back-tracing procedure will consequently
not be executed and no one will detect the subterfuge. This fraud will thus allow
M1 and its accomplices to affect the result of the election.
2) n = N . As in the previous case, we suppose that M1, has m (m < N)
accomplices. M1 asks its accomplices to obtain valid signed ballots from AS.
But this time, the accomplices will not abstain from casting their ballots. Rather,
they will send dummy ballots to BB, while keeping the valid ballots provided
by AS for future use. M1 can then replace m valid ballots of its choice by the
m ballots of its accomplices. Obviously, the dummy ballots will be detected and
discarded in the counting stage. (Note that the back-tracing procedure will not
detect M1’s substitution). So T will decrypt the remaining ballots (after having
discarded the invalid ones) and tallies the final result. Again, this subterfuge will
allow M1 and its accomplices to modify the result of the election.
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Another issue is what should be done in case of a “suicide attack” : suppose that
the first mix server substitutes an invalid ballot for the valid one posted by a
targeted voter. The substitution will be detected after the decryption of the full
list of ballots in a provisional tally, and the cheating mix-server identified. But
what should be done now? Either the excluded vote is added in the final tally,
in which case it will be exposed as the difference between the provisional and
final tally or else the vote cannot be counted!

3 Our Electronic Voting Scheme

Our aim in this section is to repair Votopia. Before describing our main proposal,
we envision several approaches that seem possible.

Possible Approaches: to detect the frauds described above, we could require
the active participation of the voters in the counting stage to verify that their
votes were counted (i.e., that their pairs (xi, yi) appear in the list L). However,
this would clearly contradict the “vote and go” property and it would be imprac-
tical for large scale elections to force all voters to check the result. Furthermore,
although each voter can check that his or her vote was correctly counted, no
voter can be assured that all ballots were tallied correctly. Such solution would
only provide individual verifiability and not public verifiability. Moreover, it is
not clear how a voter can complain to the scrutineers or officials of the election
without taking the risk of compromising the privacy of his or her vote.

Another option is to have the first mix server provide a proof of correct mix-
ing. But this doesn’t solve the problem anymore. Indeed, if the first mix server
colludes with the second one, as well as with malicious voters, they will still be
able to change valid votes in an unnoticeable way (in a similar manner at what
was done by the first mix server in section 2). This remark remains valid even if
we assume that the first k mix servers (among the l servers) provide a proof of
correct mixing (with k � l − 2). In this case a collusion of malicious voters and
the k + 1 first servers will still be able to manipulate votes.

A radical solution to overcome such shortcomings is therefore to require that
all mix servers prove that they have correctly mixed the set of encrypted ballots.
In other words a solution would be to use a universally verifiable mix-net. But
if verifiable mixes are used anyway, there is no need for blind signatures at all!
So we cannot assume that the mixes are verifiable when considering the use of
blind signatures for efficiency reasons. Still, the security must be ensured.

We try to solve this seemingly paradox in the next section by using a threshold
fair blind signature scheme and two simple mix-nets (care must be taken however
on the choice of these mix-nets), though robust against server failures (which
means that when a server is unavailable, it is possible to replace it by another
one). However, we would like to emphasize that in most cases, the mix servers
will not have to prove that the mixing was done correctly. Our solution can then
be seen as an optimistic mix-type voting scheme [1]. As we will see, a cheating
mix server will always be detected. Therefore, if the penalties for cheating are
severe this will preclude any attempt.
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In the sequel, we will denote by M and T M the two sets of mix-net servers
(where T Mj will denote the mix server j) and by EM and ET M their respec-
tive encryption scheme. The “private key” of M will be denoted by SKM and
the one of T M by SKTM. We will denote by J the revocation authorities of
the threshold fair blind signature scheme (FBSS for short) and by REVJ the
corresponding signature tracing mechanism.

We saw that the problem of Votopia comes from the fact that some votes
can easily be removed or substituted by other valid ballots (by valid we mean
a correctly formed ballot that was signed by the Admin Server). We want to
repair Votopia by making everybody sure that, before tallying the result of the
election, the ballot box doesn’t contain any fraudulent ballots. We consider that
fraudulent votes can be deployed either by mix servers and/or voters and from
various types of actions: adding, removing or replacing a valid ballot by another
one. Owing to space limitations, we will only give a sketch of our fix.

Voting Stage. This stage is similar to the one of Votopia (see section 2). The
main differences are that xi = ET M(vi) instead of xi = ET (vi) and that yi is
a (threshold) fair blind signature of xi rather than a conventional blind signa-
ture. (We would also like to stress that, as usual, the voter should prove that
he knows the plaintext of ci in order to prevent vote-duplication). At closing
time of the poll, the two lists LBB and LAS are compared. If Idi appears in
LBB but not in LAS , which means that Vi didn’t request a fair blind signature,
then (Idi, Ci, ci, σi) is removed from LBB. If a voter Vi requested a fair blind
signature to AS but didn’t submit (deliberately or owing to a network failure
for example) a ballot to BB (which means that there is an entry (Idi, Ci, ei, si)
in LAS but not a corresponding one (Idi, Ci, ci, σi) in LBB), then the anonymity
of ei is revoked. The value fi = REVJ (ei) is then put in a black list RL so that
everybody can recognize the message-signature pair (xi, yi) later. Note that by
using REVJ , we do not compromise the privacy of the vote vi of Vi: depending
on the fair blind signature scheme used, the revocation authorities can at most
obtain yi but not xi!

Counting Stage. M decrypts the list of ci and outputs the list L of (xi, yi) in
random order.

Case 1: if all pairs (xi, yi) are found to be correct (i.e., no pair (xi, yi) con-
tains an invalid signature yi, “belongs” to RL or is duplicated) then SKTM is
revealed (which means that all the mix servers T Mi have to reveal their own
private keys). The ballots xi are decrypted (using SKTM). T M outputs the
corresponding votes vi and then publishes the result of the election.
Case 2: otherwise for each incorrect pair (xi, yi), the back tracing algorithm
(see section 2, step 2 of the counting phase of Votopia) is used to determine
whether this anomaly comes from a mix server or a voter.
Case 2.1: if a mix server cannot prove that it correctly decrypted and permuted
such a suspicious pair (xi, yi), it is then disqualified. SKM is revealed, which
means that all the mix servers Mi have to reveal their own private keys (as we
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use a robust mix-net, it is then possible to retrieve the key of any malicious mix
server even if the latter refuses to cooperate). The list of ci is decrypted using
SKM and a new list L containing all the decrypted (xi, yi) is sent to T M. T M
decrypts and randomly permutes the list of xi (but this time, the mix servers
have to prove that they correctly decrypt and mix their inputs, which is costly),
outputs the corresponding votes vi in random order and publishes the result of
the election (we thus solve the issue of suicide attacks).
Case 2.2: if no mix server cheats this means that the fraud comes from a voter.
The misbehaving voter is identified (thanks to the back tracing algorithm) and
the anonymity of the blind ballot ei she submitted to AS is revoked. The pair
(xi, yi) is removed from L and the revoked value fi = REVJ (ei) is put on the
black list RL. We then redo the counting stage with the new lists L and RL.

At the end of the protocol, the lists LAS , LBB, RL, L0, L and every step of the
counting phase (as well as the intermediate lists outputted by the mix-servers
and the back-tracing procedures) are made public. Therefore, anybody can check
that only invalid ballots are discarded and that the outcome of the election is
consistent with the valid cast ballots (public verifiability), provided however that
all the voting entities will not collude. Indeed, if one mix-server and all the admin
servers collude, they can produce as many valid ballots as they wish and substi-
tute the ballots of legitimate voters with the fraudulent ones they produced.

4 Conclusion

In this paper, we have shown some weaknesses of Votopia [2] and proposed
a heuristic method, relying on fair blind signatures, to defeat our attacks. Our
solution, which can be seen as an optimistic mix-type voting system based on fair
blind signatures, provides, almost for free, both individual and public verifiability
so that everyone can be convinced of the correctness of the voting result. In terms
of efficiency, it appears that our solution, when all goes well (which is a priori
always the case), is better than existing mix-net based solutions. We therefore
believe that fair blind signatures could represent a more promising alternative for
secure on-line voting than ordinary blind signatures and an appealing direction
for future work.
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Abstract. In this paper we apply techniques from secret sharing and
threshold decryption to show how to properly design an ID-based thresh-
old system in which one assumes no trust in any party.

In our scheme:

– We avoid that any single machine ever knew the master secret s of
the trusted authority (TA). Instead only shares of it will be known
by parties of the distributed TA and it can be seen as a virtual key.

– The threshold tTA and the number of shareholders nTA used by the
distributed TA do not need to be identical to the ones used by user
ID. Moreover, each user ID can use its own values for the threshold
ti and the number of parties ni that will acquire shares.

– No single machine will ever know the secret key of the user – this
means no single machine in the distributed TA and no shareholder
of the user ID and not ID itself.

Like Baek and Zheng suggest, such a scheme can be turned into a medi-
ated system.
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schemes to share the master key among a system of mutually untrusted servers.
For the users it is also desirable to share their private keys in order to prevent
loss or theft. Secret sharing schemes allow one to distribute critical data among
n servers such that any t out of these n servers can jointly recover the secret
but any lower number of players is not able to learn any information about the
secret. The problem of transforming an t1-out-of-n1 scheme into an t2-out-of-n2
scheme is usually referred to as key redistribution [8,11]. Typical applications can
be found e. g. in the area of key escrow [7] and in dynamic systems where users
leave or join a group and the shares need to be adjusted.

In their seminal paper on ID-based encryption, Boneh and Franklin [5] made
a brief remark on distributed private key generation. Generalizing the ID-based
mediated schemes built on RSA [2,9], Libert and Quisquater [13] at PODC
2003 proposed an ID-based mediated scheme based on pairings. This scheme
is derived from a threshold pairing based protocol. The trusted authority (TA)
shares its secret and issues shares of the user’s private key. In their mediated
version the TA uses a 2-out-of-2 sharing and sends only one part of the private
key. Therefore, an interaction with the TA is needed for the execution of each
protocol which implies that the TA can also act as a security mediator (SEM)
and can easily stop helping in case of revocation. For ID-based cryptography as
proposed in [17] the TA is supposed to issue the key once and then drop out of
any interaction. In the scheme of [13] the second share of the user’s private key
is not computed and, hence, it must be the TA to play the role of the SEM, too.

To overcome this difficulty [1] share the private key of the user. Because
now the decryption is performed by non-trusted shareholders, the mechanism
to check the validity of the contributed parts of the decrypted message is more
complicated as any certificate would be issued just by the very same untrusted
parties. Furthermore, in [1] the private key is received by a single entity who
then issues shares. The typical scenario being a head of unit going on leave and
allowing people to act on his behalf provided that they have enough shares of
the secret.

In this paper we look at the whole process and describe how one should handle
a “distributed” TA sharing a virtual key not known to any entity and how to
issue keys to participants. The proposals issued so far for secret sharing in ID-
based cryptography are each missing some important points and since pairing
based cryptography is now entering the world of standards and is available in
commercial products we see the need for such a detailed case study. (Note that
the techniques used are much simpler than those that have been used in the
context of generating shares of the decryption exponent of RSA (see e.g. [3,16]).)

Our protocols scale well allowing the master key to be shared in an tTA-out-
of-nTA manner and the secret key of user ID in an tID-out-of-nID manner, the
numbers chosen by the user. To this aim we apply a key-redistribution scheme
as proposed in [8]. These schemes work particularly efficient as soon as one deals
with a homomorphic encryption which is satisfied for the main ingredient of
ID-based cryptosystems.
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2 Background on Pairings and ID-Based Cryptography

The ID-based system proposed by Boneh and Franklin [4,5] uses the discrete
logarithm problem in two groups. To ease notation we assume that the first
group is additive while the second one is written multiplicatively.

Definition 1. Let G1 and G2 be two cyclic groups of prime order �. A map
ê : G1 × G1 → G2 is called a bilinear map or pairing if for any integers a, b it
satisfies

ê(aP, bQ) = (ê(P, Q))ab.

Throughout this paper we assume the pairing to be non-degenerate, i. e. there
is at least a pair P, Q ∈ G1 such that ê(P, Q) �= 1. Since we are dealing with a
prime order group this implies that ê(P, Q) generates G2.

For applications we assume that the discrete logarithm problem is hard in
both groups G1 and G2.

To build an ID-based system on such a bilinear map ê one needs a hash
function H mapping identity strings to elements of G1 and a key derivation
function K. In the scheme by Boneh and Franklin [5] the TA starts by secretly
selecting the master key s < �. He then publishes PTA = sP as the public
master key together with the base point P . The public key of user ID2 is given
by H(ID2) ∈ G1. He obtains his private key sH(ID2) from the TA. Note that
this operation is done only once.

If user ID1 wants to send a message m to user ID2 he chooses a random nonce
r and computes rP and k = ê(PTA, H(ID2))r. He then encrypts m to c under
the key derived from k using some key derivation function and a symmetric en-
cryption. The ciphertext consists of rP and c. To recover the message, ID2 needs
his private key sH(ID2) and computes ê(rP, sH(ID2)) = ê(P, H(ID2))rs = k.
He obtains m as decryption of c under the key derived from k. In the sequel we
consider how the master key s and user’s private keys sH(ID) can be shared in
a threshold manner ensuring that no entity ever has access to the full secret.

3 ID-Based Threshold Cryptography

This section shows that it is not necessary that one party ever possessed the
master key s or the user’s secret key sH(ID) and that threshold systems can be
applied on the TA’s side as well as on the user’s side so that there is no need to
ever combine a secret key to issue the shares for the user ID or – on the user’s
side – to decrypt a given ciphertext. We refer to the full version of the paper for
a complete presentation of the protocols and background.

Part 1 In the set-up phase the master secret key is generated in a distributed
manner such that no single party ever knew it. For this part we suggest
verifiable secret sharing schemes as [12,6] building on [10,14,15].

Part 2 To compute the secret key sH(ID) of a user ID at least tTA out of
the nTA shareholders of TA issue shares of sH(ID) to the shareholders
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Ui of ID in a tID-out-of-nID manner. It is important to notice that
at no time during this process the user’s secret key was known to any
entity (assuming 1 < tTA and 1 < tID) and that we do not need any
dependence between the number of shareholders and thresholds of ID
and TA. This step is considered in more detail further on.

Part 3 To decrypt a ciphertext, tID out of the nID shareholders of ID compute
partial decryptions of the ciphertext which are then combined by the
user. This part works as in [1].

For all these steps the user’s secret key and the plaintext message are hidden
from the shareholders and the protocols can deal with dishonest shareholders by
checking the shares.

Part 2 is the missing link in the previous proposals. This made it necessary for
them to either have a shared master secret or a shared user secret. The idea is
to apply resharing of secret according to Desmedt and Jajodia [8] in the setting
of pairings. Note that the shares of the master secret are integers modulo � (a
prime) while the shares of ID’s secret key are elements of G1. We also make use
of the pairing for verifying the contributed values to deal with dishonest parties.

Protocol 1 (Shared computation of shares of sH(ID) (sketch))
In: Set {V1, . . . , VnT A} of nTA mutually untrusted authorities with their shares
si of a joint secret s shared in an tTA-out-of-nTA manner, system parameters
G1, G2, P ∈ G1, pairing ê, user ID.
Out: Per shareholder Uj ∈ {U1, . . . , UnID} of user ID a valid share Qj of
sH(ID) according to tID-out-of-nID distribution.

Step 1 Each party Vi, i = 1, . . . , nTA views his own share si as a secret and
computes for each participant Uj, j = 1, . . . , nID a temporary share sij

using an tID-out-of-nID scheme. Then he sends Qij = sijH(ID) to Uj

and publishes Rij = sijP .
Step 2 Each participant Uj, j = 1, . . . , nID, after having received Qij from each

Vi, i = 1, . . . , nTA checks whether ê(Qij , P ) = ê(H(ID), Rij). Then he
computes his share as

Qj =
tT A∑
i=1

cijQij ,

where the cij are the Lagrange coefficients corresponding to the tTA-out-
of-nTA threshold scheme.

Step 3 Each user erases all si, sij, and Qij and keeps Qj.

4 Conclusions

One could observe that the techniques we used to enable threshold decryption
together with a distributed generation of the user’s secret key without the need
for any party to ever know any secret key, are quite standard. However, the
works by Libert-Quisquater (PODC 2003) and later by Baek-Zheng (PKC 2004)
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demonstrate that it is apparently not straightforward to find how to apply them
for pairings.

Note that our solution generalizes trivially to other access structures. We used
threshold schemes to make the text easier to read.

Our proposal could be applied in mediated schemes using a 2-out-of-2 sharing
on the user’s side where the mediator would be given one of the two shares.
This example shows the importance that shares of sH(ID) can be computed
without ever having to know the value itself and also that k = ê(rP, sH(ID))
can be computed from shares such that at no time the secret sH(ID) needs to
be combined. This might be particularly interesting in view of key escrow.
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Abstract. The lingua franca of a market-based resource allocation in-
frastructure is the credit transfer protocol. The protocol design deter-
mines the expressible access-control policies and the supported trading
patterns. This paper presents a protocol supporting fine grained manip-
ulation of ownership authorities for enhanced expressiveness.

1 Introduction

A rich body of research explores the use of market-based mechanisms for resource
allocation within computing infrastructure. Aiming to reproduce the scalability
and efficiency of market-based allocation within the general economy, this re-
search proposes analogous institutions for allocating CPU cycles, memory, band-
width, etc. within a computer, a data center, an intranet, or even the Internet.
Participants in these infrastructures interact through the exchange of owner-
ship claims, varyingly referred to as: money, tokens, tickets, claims, rights and
here referred to as credits. Some designs propose a new credit transfer protocol,
whereas others point to an existing ecash protocol. In each case, the choice of
protocol influences the features of the resource allocation infrastructure.

This paper studies the impact of existing credit transfer protocols on the
design and resulting features of market-based infrastructures, and proposes a
new protocol. A list of crucial features provides the basis for analysis.

Strategyproof. From seminal works [1] to current ones [2, 3, 6, 8], the vision
is of managing an ecosystem of self-interested parties who will seek advan-
tage, even to the detriment of others. The challenge is therefore to design
strategyproof [5] protocols that enable cooperation without vulnerability.

Universal. Just as in the general economy, different kinds of goods in a compu-
tational economy are more efficiently allocated by different kinds of auctions.
An open infrastructure [1, 5] supports the composition [7] of varied, and even
unforeseen, services via a universal credit transfer protocol.

Transparent. Simulation of market-based resource allocation has revealed that
widespread access to comprehensive price information is key to market effi-
ciency [2], much as it is in the general economy. A credit transfer protocol
that ensures collection of price information helps create market transparency.

Liquid. Market participants react to changing requirements or market condi-
tions by trading. Timely trading requires market liquidity. Creating market
liquidity requires fungible assets [5] and support for arbitrageurs [7].
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Segregated. As network resource allocation infrastructures, such has Planet-
Lab [9], have grown, demand has evolved for segregation within the network.
Without the autonomy to choose which participants they will transact with,
and which not, some providers will choose not to participate at all, or even be
compelled so. Providing a protocol that preserves the autonomy of resource
providers is crucial to securing their participation [5].

Asymmetric. Some resource marketplaces, such as data center resource alloca-
tion infrastructures [4], are designed with defined consumer versus merchant
roles that underlie the business plan. The credit transfer protocol must en-
able expression of asymmetric ownership roles.

Simple. Simplicity is a subjective requirement compared to the previously listed
ones; however, its importance cannot be overlooked. Reducing coordination
costs is crucial to creating a broadly inclusive infrastructure [5].

The preceding feature list is an amalgam of requirements set forth in a num-
ber of papers [1, 2, 3, 4, 5, 6, 7, 8], including all those presented in [5]. The review
of existing credit transfer protocols does not yield one that satisfies all these re-
quirements. To this end, the second half of this paper proposes the IOU protocol.

2 Prior Work

The full-length version of this paper [10] examines four different credit transfer
protocols, each based on a different implementation mechanism: cryptographic
ecash, certificate chains, signed messages, and distributed object capabilities.
Despite disparate techniques, the protocols share common flaws that result from
granting too much authority. Though working with different tools, each designer
faced a similar task of choosing authority divisions, and patterns for exchang-
ing these authorities, to represent credit transfer. Similar divisions of authority
resulted in similar flaws, embodied in different mechanisms.

This short paper repeats the analysis of SHARP [3], one of the four credit
transfer protocols examined in the original paper. SHARP is a framework for se-
cure distributed resource management in an Internet-scale computing infrastruc-
ture. A SHARP prototype manages access to virtual machines in PlanetLab [9],
a federation of servers across the Internet.

The medium of exchange in SHARP is the ticket. A ticket is a certificate chain,
where each certificate in the chain is referred to as a claim. A claim is a signed
assertion that a principal, identified by a public key, may be granted access to a
resource set during a specified time interval. A resource set is a number of units
of a specified type; for example, a number of virtual machines.

The principal identified by a claim may delegate access to another principal
by producing a new ticket containing an additional claim asserting this del-
egation. Double spending, or generating multiple tickets delegating the same
access claim, is explicitly allowed. This policy, called oversubscription, improves
resource utilization.

SHARP principals interact by requesting and trading claims for resource
sets. In theory, a principal, Bob, with access to a virtual server during a futur
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timeslice could trade this asset with another principal, Carol, with access to a vir-
tual server during a present timeslice. Unfortunately, the details of the SHARP
protocol complicate this exchange.

Appraisal complexity. In judging the value of the trade, Bob must consider
not only the value of the two timeslices, but also the degree to which Carol
is oversubscribing her timeslice. This information is not available to Bob
at the time of the exchange and so must be a guess based on information
provided by Carol, and Carol’s reputation, as seen by Bob. The require-
ment to dynamically track the reputation of potential trading partners is an
impediment to trade, reducing market liquidity.

Loss of fungibility. Since Carol may oversubscribe her claim, the timeslice of-
fered by Carol is not interchangeable with one offered by David. The value
of Carol’s timeslice incorporates Carol’s reputation and the value of David’s
timeslice incorporates David’s reputation. Essentially, each claim is a new
brand of currency with its own value proposition. Under the SHARP proto-
col, claims are not fungible. Fungible assets are crucial to market liquidity.

Value dilution. Completing the Bob and Carol trade results in the creation
of two new tickets: one delegating Carol’s claim to Bob and one delegat-
ing Bob’s claim to Carol. These new claims again represent two new non-
fungible brands of currency, but with more complicated value propositions.
Since Bob may oversubscribe the claim delegated to him by Carol, its value
to a prospective buyer is now a function of the value of the underlying times-
lice, Carol’s reputation and Bob’s reputation. By taking possession of the
asset, Bob has devalued it. Each trade of the asset further devalues it, as
prospective buyers must take into account the possibility of oversubscription
by an ever larger pool of principals. Devaluation of traded assets discourages
participants from trading in response to changing market conditions.

Reputational burden. A new participant without an established reputation
faces the daunting reality that the value of any acquired asset will imme-
diately drop to zero, since prospective buyers have no means by which to
appraise the trustworthiness of the claim. As a result, a new participant is
unable to trade in response to changing requirements or market conditions.

Not segregated. Since the holder of a claim may delegate it to any other
principal, the resource provider has no control over the pool of principals
that may redeem the claim. The SHARP paper claims this shortcoming is
mitigated by the nature of the asset, a virtual machine isolated from other
virtual machines. However, if the legal responsibility for a denial of service
attack falls to the site authority, this design deficiency may be a showstopper.
For some asset classes, counter-party restriction is an absolute requirement.

Opaque markets. Using the SHARP protocol, two participants could agree
on a trade and complete it as a purely bilateral operation. In this scenario,
the pricing information generated by the trade is known only to the two
participants. Other participants are unable to react to the lost price signal
and so cannot adjust their trading activity to changing market conditions.
This loss of transparency results in market inefficiency.
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3 IOU Protocol

IOU is the object capability protocol shown in Figure 1. Notice the major au-
thority divisions represented by the four interfaces. The authority to transfer
credits between owners is distinct from the authority to be an owner and both
are separate from the authority to approve new owners.

interface Account {
GUID getBrand();
int getBalance();
Hold accept();
Hold offer(int amount);
int reclaim(Hold child);

}

interface Hold {
GUID getBrand();

}

interface Terms {
GUID getBrand();
int transfer(Hold src, Hold dst);

}

interface Restrictions {
GUID getBrand();
Account approve();

}

Fig. 1. The IOU protocol

Account versus Hold. An Account embodies the authority to play a con-
sumer role using a particular brand of credit. An Account maintains a count
of credits of a specified brand. A brand of credit is represented by a GUID.
An Account holder can spend credits by invoking offer() and passing the
returned Hold to the payee. If the purchase does not complete, the credits
in the Hold can be reclaimed by using it as an argument to a reclaim() invo-
cation. Once this invocation completes, the argument Hold is destroyed and
is no longer eligible to contain credits. Only a Hold produced by either this
Account’s offer() or accept() method is a valid argument to this Account’s
reclaim() method. The accept() method produces an empty Hold, into which
a holder of a Terms object can transfer credits.

Terms. A Terms embodies the authority to transfer credits between partici-
pants. A Terms, together with an Account, provides the authority to play a
merchant role for a particular brand of credit. The transfer() method trans-
fers all credits in a source Hold to a destination Hold, returning the number
of credits removed from the source Hold.

Restrictions. A Restrictions embodies the authority to play a conformance
officer role for a particular brand of credit. The approve() method produces
a new Account. The holder of the Restrictions can require that participants
meet certain requirements before invoking approve() on their behalf.

The above authority divisions are crucial to satisfying the specified requirements.

Strategyproof. Effective property rights are the key to enabling strategyproof
market mechanisms. In the IOU protocol, a participant can gain exclusive
ownership of credits and has autonomy in the choice to redeem or sell them.
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Universal. Similar to the reviewed protocols, the unit of account in the IOU
protocol is a unit of a specified brand. A common protocol provides for the
exclusive transfer of these credits from one owner to another. More special-
ized kinds of transfer are implemented through the creation of a derivative
currency and an associated smart contract [6] for redeeming the derivative
brand credits for the base brand credits. A smart contract is simply a soft-
ware agent that performs credit transfers according to predetermined rules.
An example is described in a later discussion of oversubscription in SHARP.

Transparent. The authority to transfer credits between distinct owners is rei-
fied in the Terms object. The creator of a brand of credit can ensure market
transparency by only granting the Terms capability to market mechanisms
that publish price information. In this case, owners of these credits are unable
to trade with each other, except through authorized market mechanisms.

Liquid. In an exclusive transfer, credit ownership changes without accruing any
encumbrances from past owners. This style of transfer ensures that all credits
of a particular brand remain fungible.

Segregated. A resource provider can restrict its pool of counter-parties by
keeping the Restrictions capability private and only granting an Account to
an approved participant. Exclusive ownership of credits is only achievable by
a participant with an Account, thus preserving the binding between credit
owner and approved counter-party.

Asymmetric. A resource provider can also restrict the pool of authorized mer-
chants, by restricting access to the Terms capability; without which, a par-
ticipant is unable to take exclusive possession of offered credits.

Simple. The IOU protocol is highly configurable; however, this configuration
is expressed through the composition of a small set of primitives. The en-
tire protocol consists of four interfaces and a total of six methods (ignoring
the brand property of each interface which is provided for optional type
checking). Restriction of a participant’s possible actions is expressed by the
absence of a capability. In other words, access-control policy is expressed
through the reduction of coordination costs. Further, fundamental features,
such as double spending prevention, are not expressed through additional
checks, but through the innate workings of the protocol, such as determin-
ing the amount of a received payment. In the IOU protocol, security is a
side-effect of the way in which credit transfers are expressed.

4 Custom Transfer Via Derivatives

To improve resource utilization, a SHARP [3] participant may oversubscribe
held resources. Using the IOU protocol, this non-exclusive ownership transfer
is expressed through the creation of a derivative currency. A smart contract [6]
allows holders of the oversubscribed, derivative currency to redeem it for units
of the base currency. Creation of new currencies is now an explicit operation,
instead of an implicit part of every transfer; thus preserving fungibility.
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5 Conclusion

This paper summarizes requirements, drawn from the research literature on
market-based resource allocation, for a credit transfer protocol. An analysis of
existing protocols reveals which requirements have yet to be satisfied. The IOU
protocol is described and found to satisfy all requirements set forth.

The IOU protocol disaggregates ownership authority into the authority to:
hold, offer and transfer. This decomposition enables a wide range of access-
control policies through the selective granting, or withholding, of capabilities.

The IOU protocol is used in DonutLab [8], a decentralized PlanetLab [9]. The
DonutLab designers found the IOU protocol provided the flexibility required to
meet their security goals, while being simple and productive to work with.
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Abstract. This note discusses two Decisional Diffie-Hellman assump-
tion variants introduced by Abdalla and Pointcheval at Financial Cryp-
tography’ 05. Those authors introduce two new problems and associated
assumptions called the Chosen-Basis Decisional Diffie-Hellman assump-
tion #1 (CDDH1), and the Chosen-Basis Decisional Diffie-Hellman as-
sumption #2 (CDDH2), and suggest that these assumptions warrant
further analysis. The problems are each defined in terms of a formal
experiment, and advantage function, and the assumption is that an ad-
versary should have negligible advantage. However, in this note, we ex-
hibit a simple adversary for each problem, such that the advantage is
significant. These new assumptions were motivated by the requirements
of a proof of security for a three-party password authentication scheme
described by the same authors. We conclude that the level of security
assurance provided by this scheme is an open question.

Keywords: Chosen basis, Decisional Diffie-Hellman, Interactive assump-
tions.

1 Introduction

The Decisional Diffie-Hellman assumption is a well-known cryptographic as-
sumption. It is a simply stated, non-interactive assumption, and is often used as
the basis of asymptotic and concrete security proofs. This note provides an analy-
sis of two somewhat related assumptions introduced by Abdalla and Pointcheval
at Financial Cryptography’ 05[1]. The two new assumptions are more complex,
and are defined with an interactive adversarial experiment, and corresponding
advantage function. The authors conjectured that the new assumptions may be
stronger than the usual Diffie-Hellman assumptions, and suggested that the new
assumptions be studied further.

Our brief contribution is to provide an adversary for each such experiment
which does have significant advantage. This shows that the assumptions them-
selves are not a sound basis for a security proof. These observations do not
translate to a direct attack on the scheme, but only imply that the existence of
a proof of security is an open issue.
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2 The CDDH1 Problem

The first new assumption is called the Chosen-Basis Decisional Diffie-Hellman
Assumption #1. The new supposedly hard problem makes use of a cyclic group
G of prime order p, generated by a fixed public element g. This problem consists
of an adversary running in two stages interacting in one of two games, specified
by parameter b = 0 or b = 1. The adversary’s goal is to distinguish between the
two games, i.e., the goal is determine whether b is 0 or 1. In the first stage the
adversary is presented with three random elements of G, U = gu, V = gv, and
X = gx, where u, v, x are random elements in Zp. The adversary can use these
elements to generate an element Y . Next, a random bit b0 is generated, and b1 is
set to b⊕ b0. Based on b0 and b1, and two random numbers r0 and r1, two pairs
of group elements (X0, K0); (X1, K1) and one group element Y0 are calculated
as in Definition 1, below and presented to the adversary. The adversary must
then output its best guess at b .

The authors provide intuition suggesting that it would be difficult for an ad-
versary to succeed with probability greater than 1/2. This proceeds by evaluating
two specific adversarial strategies. The first considers setting Y = gy in the first
stage, so that Y has known discrete log. The second considers setting Y = X/U .
Indeed, it does appear that if the adversary follows these approaches, it would
likely be difficult to improve on the strategy of randomly guessing b in the last
stage. However, there are other adversaries.

We first recap the formal definition of the experiment, which for consistency
this definition is taken directly from [1]. Let us clarify some of the notation
used in this definition. The expression R← is used to denote an algorithm which
is randomized, and in particular, R← {0, 1} denotes a uniformly random bit se-
lection. The function CDH is defined in terms of the basis element g, so that
CDH(ga, gb) means gab. The two-stage adversary A is presented as having a
variable number of arguments depending on whether the first argument is find
or guess.

Definition 1. Let G be a cyclic group of prime order p, generated by element g,
and let A be an adversary. For any group elements U , V , and X in G, modular
integers r0 and r1 in Zp, and b ∈ {0, 1} an experiment is defined by:

Experiment Expcddh1
G,b (A, U, V, X, r0, r1)

(Y, s) R← A(find, U, V, X)
b0

R← {0, 1}; b1 = b ⊕ b0
X0 ← (X/U)rb0 ; K0 ← CDH(X/U, Y )rb0

X1 ← (X/V )rb1 ; K1 ← CDH(X/V, Y )rb1

Y ′ ← Y r0

d ← A(guess, s, X0, K0, X1, K1, Y
′)

return d
The advantage of A with respect to (U, V, X, r0, r1) is defined to be

2Pr[Expcddh1
G,b (A, U, V, X, r0, r1) = b] − 1.
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The advantage function Advcddh1
G,b (A) of the entire experiment is defined to be

the expected advantage when U, V, X, r0, r1 are chosen at random.
The CDDH1 assumption is that for a time bounded adversary A, the advan-

tage Advcddh1
G,b (A) should be very small. However, we now exhibit an adversary

which has advantage of approximately 1/2. In the first stage, the adversary will
select Y = V/U . Upon reception of X0, X1, and Y ′, the adversary will test
whether X0/X1 = Y ′. If this is true, the adversary will output 0, otherwise it
will output 1.

We now analyze this adversary. The intuition is that the adversary will most
likely be correct unless b0 = b1 = 1. To analyze the exact success proba-
bilities, we use the fact that the condition X0/X1 = Y ′ holds exactly when
(X/U)rb0/(X/V )rb1 = (V/U)r0 . Then we consider four separate cases depending
on the values of b0 and b1. Case 1: Suppose that b0 = b1 = 0 (so b = 0). Then the
condition X0/X1 = Y ′ hold with probability 1, so the adversary succeeds with
probability 1. Case 2: Assume that b0 = 0 and b1 = 1 (so b = 1). Then, equal-
ity occurs when (V/X)r1 = (V/X)r0 , which happens exactly when V = X or
r0 = r1, an event of probability 1−(1−1/p)2. Thus our adversary is correct with
probability 1−2/p+p2. Case 3: A similar situation occurs when b0 = 1 and b1 = 0
(so b = 1), since equality holds when (X/U)r1 = (X/U)r0 . Case 4: Assume that
b0 = b1 = 1 (so b = 0). Then equality holds when (V/U)r1 = (V/U)r0 , which hap-
pens exactly when V = U or r0 = r1, an event of probability 1−(1−1/p)2. In this
case our adversary is correct with probability 2/p− p2. Collecting these results,
our adversary is correct with probability 1+(1−2/p+p2)+(1−2/p+p2)+2/p−p2

divided by 4, or 3/4 − 1/2p + p2/4.
Since the probability of success is greater that 3/4 − 1/2p, the advantage is

about 2(3/4 − 1/2p)− 1 = 1/2 − 1/p.

Advcddh1
G,b (A) ≈ 1/2.

Thus, this adversary effectively breaks the CDDH1 assumption. We could not
find a way to improve this advantage further since we do not have an adversary
which is effective in case b0 = b1 = 1.

3 The CDDH2 Problem

The second new assumption is called the Chosen-Basis Decisional Diffie-Hellman
Assumption #2. This new assumption is somewhat simpler, and is also interac-
tive. The problem resembles the previous one except that the adversary chooses
X , and no values of K are computed. Before exhibiting our adversary, we recap
the definition of the CDDH2 Experiment.

Definition 2. Let G be a cyclic group of prime order p, generated by element
g, and let A be an adversary. For any group elements U and V in G, modular
integers r0 and r1 in Zp, and b ∈ {0, 1} an experiment is defined by:
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Experiment Expcddh2
G,b (A, U, V, r0, r1)

(X, Y, s) R← A(find, U, V )
b0

R← {0, 1}; b1 = b ⊕ b0
X0 ← (X/U)rb0 ;X1 ← (X/V )rb1 ; Y ′ ← Y r0

d ← A(guess, s, X0, X1, Y
′)

return d

The advantage of A with respect to (U, V, r0, r1) is defined to be

2Pr[Expcddh2
G,b (A, U, V, r0, r1) = b] − 1.

The advantage function Advcddh2
G,b (A) of the entire experiment is defined to be

the expected advantage when U, V, r0, r1 are chosen at random.

The CDDH2 assumption is that for a time bounded adversary A, the advantage
Advcddh2

G,b (A) should be very small. However, we now exhibit an adversary which
has advantage of approximately 1! In the first stage, the adversary will select
X =

√
(UV ). This requires the extraction of a square root in G, which can be

efficiently found by raising to the power (p+1)/2. Y is selected arbitrarily. Upon
reception of X0 and X1, the adversary will test whether X0X1 = 1. If this is
true, the adversary will output 0, otherwise it will output 1.

We now analyze this adversary. Notice that condition X0X1 = 1 holds ex-
actly when (U/V )rb0/2 = (U/V )rb1/2 . When b0 = b1, (so b = 0) this always
holds, and the adversary is correct. Otherwise equality can hold only upon a
coincidence U = V , or r0 = r1. Such a coincidence will happen with probability
1− (1−1/p)2 = 2/p−1/p2 < 2/p, so the adversary will succeed in this case with
probability greater than 1 − 2/p. Averaging these cases, we see that our adver-
sary is successful with probability greater than 1 − 1/p, and the corresponding
advantage is about 2(1 − 1/p)− 1 = 1 − 2/p, just short of 1.

Advcddh2
G,b (A) ≈ 1.

Thus, this adversary effectively breaks the CDDH2 assumption.

4 Conclusions

Due to the existence of the two adversaries we exhibit, the two new assumptions
introduced in [1] appear not to useful variants of the classic Diffie-Hellman as-
sumptions as they stand. The application of these assumptions to the proof of
security of a three party password protocol in [1], thus appears to automatically
render that security proof flawed. It is still possible that their protocol has de-
sirable security properties, but the search for a reduction proof with respect to
reasonable assumptions is an open research issue.

As a final note on the exposition of the first new hard problems, we notice
the experiment only deals with ratios X/Uand X/V , rather than X , U , and V ,
individually. This indicates that a simpler, equivalent formulation of the problem
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would have been possible. This might have made the existence of the type of
adversary we exhibit more transparent.

In general, proofs based on non-interactive assumptions do appear to be more
compelling, although finding appropriate non-interactive assumptions (with one-
stage adversaries) on which to base the security proof might be a significant
challenge. Finally, due to the difficulty of producing security proofs post-facto,
it may be more practical to design cryptographic schemes with security proofs
in mind.
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Abstract. Partially blind signature scheme is a cryptographic primitive
mainly used to design efficient and anonymous electronic cash systems.
Due to this attractive application, some researchers have focused their
interest on it. Cao, Lin and Xue recently proposed such a protocol based
on RSA. In this paper we first show that this protocol does not meet
the anonymous property since the bank is able to link a signature with a
user. We then present a cryptanalysis of this scheme. In practical appli-
cations, a consequence would be the possibility for an attacker to forge,
for example, valid $100 bills after the withdrawal of only two bank notes
of $1 and $2.

Keywords: Cryptanalysis, partially blind signature, electronic cash.

1 Introduction

Blind signatures are variants of digital signature schemes for which the signer
does not learn the message he actually signs. At first sight, such a primitive is
surprising but it enables the design of electronic cash or voting system which
protect the anonymity of users. This idea was initially introduced by Chaum [4]
but many work has been done on this topic since then [5, 6].

In a very simple approach, an e-cash system can be described in the following
way: first, a user withdraws a bill from the bank. This means that the bank
digitally signs a message and decreases the balance of the user’s account. Then,
the user gives the electronic bill to the merchant when he wants to pay. Finally,
the merchant gives the bill back to the bank to be refunded. Since the bill is
electronically signed by the bank, the merchant and the bank itself can check its
validity. However the double-spending of a bill can be avoided only in an online
setting. Otherwise, the only solution is to trace dishonest users.

In order to make the money anonymous, a nice solution is to use blind signa-
tures during withdrawal; in such a way, the bank is not able to link a withdrawn
bill and an electronic banknote given by a merchant for refunding. We refer to [8]
for an exhaustive bibliography on this topic. An elegant solution to cope with
the necessity of checking the correctness of messages during blind signature is

G. Di Crescenzo and A. Rubin (Eds.): FC 2006, LNCS 4107, pp. 171–176, 2006.
c© IFCA/Springer-Verlag Berlin Heidelberg 2006
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to use so-called partially blind signatures. They have been introduced by Abe
and Fujisaki [1] and further formalized by Abe and Okamoto [2]. In the e-cash
scenario, the bank signs messages made of two parts; some information such as
the value of the bill and the expiration date are visible by the signer but other
data such as serial numbers are still invisible and blindly signed.

Recently, Cao, Lin and Xue [3] proposed such a partially blind signature
protocol. We describe this scheme in section 2. Then, we show that the scheme
does not fulfill the requirement on the anonymity of the user. We also show
that this scheme is not secure since an attacker can generate valid signatures
under the realistic assumption that concurrent signatures are allowed. In the
e-cash scenario, the consequences could be dramatic; for example, it is possible
to withdraw two small bills of, let’s say, $1 and $2 and then to generate, without
any communication with the bank and consequently without any modification
of the account balance, a $100 bank note which has apparently been correctly
signed by the bank. Furthermore, this cheating cannot be detected by the bank
if the small bills are never spent.

2 The Cao-Lin-Xue Partially Blind Signature Scheme

Let us now remind the partially blind signature scheme proposed by Cao, Lin
and Xue [3]. We consider two parties, a user and a signer; at the end of the
protocol, the user obtains a valid signature issued by the signer for a message m
of its choice and for a string a agreed by both the user and the signer.

The protocol uses a one-way hash function H that generates k-bit hash values.
We also need a variant τ of H defined by τ(a) = 2k + H(a).

The signer has a standard RSA signature key pair with large public exponent.
More precisely, let p and q be two primes such that the factorization of n = p×q
is intractable. The public exponent e is an integer larger than 2k+1 and relatively
prime with (p − 1) × (q − 1). The private exponent d is the inverse of e modulo
(p − 1) × (q − 1). The signer’s public key is (e, n) and the private key is (d, n).

Let a be a string agreed by both the user and the signer. For example it may
encode the value of a bill and an expiration date. This information is known by
the signer and should not help to further reveal the anonymity of the user. We
also consider a message m chosen by the user and not revealed to the signer; this
message is blindly signed by the signer who must not learn information about
m. The partially blind signature of the pair (a, m) is performed as described in
figure 1. The following notations are used:

– x ∈U X means that x is randomly chosen in the set X using a uniform
distribution,

– Zn denotes the set of integers modulo n,
– Zn

∗ denotes the multiplicative group of invertible elements of Zn,
– all the computations are performed modulo the RSA modulus n,
– H(x||y) means that the hash value of the concatenation of the binary strings

representing data x and y is computed using the hash function H .
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User Signer
Private input : a message m

Choose a string a
a−−−−−−−−−−→ check the validity of a

x ∈U Zn
∗

y←−−−−−−−−−− y = xe mod n
r ∈U Zn

∗, u ∈U Zn
∗

α = reuH(m||uey mod n) mod n
α−−−−−−−−−−→

t, x←−−−−−−−−−− t = (αx)−dτ(a) mod n
c = ux mod n

s = rτ(a)t mod n
(s, c, a) is a signature of the message m

Fig. 1. The Cao, Lin and Xue protocol from [3]

A signature (s, c, a) for a message m is valid if

se(H(m||ce)c)τ(a) = 1 mod n (1)

The correctness of the protocol can be easily checked since, if both the user
and the signer are honest and follow the protocol:

se(H(m||ce)c)τ(a) =
(
reτ(a)te

)
H(m||uexe)τ(a)

uτ(a)xτ(a)

= reτ(a)
(
α−edτ(a)x−edτ(a)

)
H(m||uexe)τ(a)

uτ(a)xτ(a)

= reτ(a)r−eτ(a)u−τ(a)H(m||uey)−τ(a)
H(m||uexe)τ(a)

uτ(a)

= 1 mod n

3 Anonymity in the Cao-Lin-Xue Scheme

The anonymity property ensures that a user and a valid signature cannot be
linked, even by the signer. This property, also known as blindness property, has
been formalized in [5]. Informally, it guarantees that an attacker cannot deduce
from a target signature the transcript from which it is issued. Even the signer
should not be able to trace a signature, i.e. the knowledge of the private signing
key should not help to break this property.

Let us now consider the Cao-Lin-Xue scheme. In [3] the blindness property is
considered. However the proof given is clearly wrong since the signer is able to
link a signature with one of his transcript.

Using the notations of figure 1, let {(a, yi, αi, ti, xi)} be the set of transcripts
between a signer and all the users. Let (s, c, a) a target signature for a message
m, computed during the k-th transcript, (a, yk, αk, tk, xk). The signer’s goal is to
link this signature with one of the users. We suppose the value a is the same for
all of the users, otherwise the signer trivially associates the signature with the
corresponding transcript. For all the values i, since the signer knows the private
signature key, he can compute the following values:
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u =
c

xi
mod n and r =

(
αi

u × H(m||ueyi)

)d

mod n

If i = k, then the values u and r computed are those used during the signature
generation, i.e. u = uk and r = rk. Otherwise, these values are random ones,
linked neither with ui and ri nor with uk and rk. The signer then computes the
value s = rτ(a)ti and checks if s = si. If the equality holds, then k = i and
the signer can link the target signature with a user. Otherwise, the transcript is
not the one used to generate the target signature and the signer tries another
one.

4 Cryptanalysis of Cao-Lin-Xue Scheme

4.1 Some Basic Ideas

A strong goal for an attacker may be to forge signatures, i.e. to generate valid
signatures that has not been actually produced by the signer. Let us assume
that we know two signatures (s1, c1, a1) and (s2, c2, a2) of the same message m
for two different strings a1 and a2. In order to give the intuition of the attack,
we analyze the consequences of the equality of c1 and c2. Let c = c1 = c2. Using
the verification equation (1), we have:

se
1(H(m||ce)c)τ(a1) = 1 mod n and se

2(H(m||ce)c)τ(a2) = 1 mod n

We further consider what happens if τ(a1) and τ(a2) are relatively prime;
as explained in details below, such an assumption is realistic. Using the Bezout
theorem and the extended Euclid’s algorithm, we can efficiently compute integers
k and � such that

k × τ(a1) + � × τ(a2) = 1 (2)

Then, we can use the so-called Shamir’s trick [7] and combine the two signatures:(
se
1(H(m||ce)c)τ(a1)

)k

×
(
se
2(H(m||ce)c)τ(a2)

)�

= 1k × 1� = 1 mod n

This equation can be rearranged in the following way:(
sk
1 × s�

2
)e × (H(m||ce)c)kτ(a1)+�τ(a2) = 1 mod n

and finally, using the Bezout equation (2) and the notation s = sk
1 × s�

2,

se(H(m||ce)c) = 1 mod n (3)

The pseudo-signature (s, c) can be interpreted as a signature of message m
for a string a such that τ(a) = 1 even if, of course, we are not able to exhibit
such a value a. However, pseudo-signatures are very useful for an attacker since
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they can be immediately converted into valid signature (s̃, c̃, ã) for any string
ã by selecting s̃ = sτ(ã) mod n and c̃ = c. Indeed, from equation (3), we have:

s̃e ((H(m||c̃e)c̃)τ(ã) = sτ(ã)×e ((H(m||ce)c)τ(ã)

= (se(H(m||ce)c))τ(ã)

= 1 mod n

Consequently, in the e-cash scenario, if the attacker can withdraw two ban-
knotes of value $1 and $2 with the same secret message m, and then compute
the pseudo-signature (s, c), he can choose a string ã that he would have used to
withdraw a $100 bill and derive from the pseudo-signature a valid signature for
a $100 banknote that has never been really withdrawn !

Those observations show that the goal of an attacker is reduced to obtaining
two valid signatures (s1, c, a1) and (s2, c, a2) sharing the same c element and for
the same message m. We now describe how this can be done in a concurrent
scenario where two users can simultaneously interact with the signer.

4.2 Description of the Attack

Let us assume that two users can simultaneously request a partially blind sig-
nature, for two different strings a1 and a2 respectively, from the same signer.
For example, the first user withdraws a $1 banknote and a second one asks the
bank for a $2 bill. In practice, such a scenario seems realistic if the bank wants
to be able to issue e-cash efficiently. Furthermore, the formal security model of
Abe and Okamoto [2] explicitly allows concurrent and interleaving executions of
signature protocols. In the sequel we consider those to users as a single attacker
that performs simultaneously two blind signature protocols with the bank.

We further assume that the strings a1 and a2 are such that gcd(τ(a1), τ(a2)) =
1. We think that in practice the attacker can easily choose a1 and a2 which fulfill
this property. However, even if the attacker cannot choose the strings, we know
from a well-known theorem of Dirichlet that the probability for two k-bit integers
to be relatively prime tends towards 6/π2 ≈ 0.6 for large enough values of k.
Consequently, the probability of success of an attacker is larger than one half
in any case. Furthermore, this condition may be relaxed since the attack can be
easily modified to apply even if gcd(a1, a2) = δ. In that case, a pseudo-signature
can be converted into a valid signature for any string ã such that δ divides τ(ã).
Since the attacker chooses ã, he can for example select an expiration date such
that this property is verified.

As explained in section 4.1, since τ(a1) and τ(a2) are assumed to be relatively
prime, we can apply the Bezout theorem and efficiently compute, using the
extended Euclid’s algorithm, two integer k and � such that equation 2 is verified.

Then, the attack proceeds as described in figure 2; the attacker asks simul-
taneously for two blind signatures of the same (blinded) message m for the two
different public strings a1 and a2. For each communication, represented by an
arrow, we note with an index on the right which protocol it is part of.



176 G. Martinet, G. Poupard, and P. Sola

Attacker Signer
Choose a string a1 and a2

s.t. gcd(τ (a1), τ (a2)) = 1 a1−−−−−−−−−−→1 check the validity of a1
a2−−−−−−−−−−→2 check the validity of a2

x1 ∈U Zn
∗

y1←−−−−−−−−−−1 y1 = xe
1 mod n

x2 ∈U Zn
∗

y2←−−−−−−−−−−2 y2 = xe
2 mod n

r1 ∈U Zn
∗, r2 ∈U Zn

∗, u ∈U Zn
∗

Compute k and � s.t.
kτ (a1) + �τ (a2) = 1
ξ = uey

kτ(a1)
1 y


τ(a2)
2 mod n

α1 = re
1uH(m||ξ) mod n

α1−−−−−−−−−−→1

α2 = re
2uH(m||ξ) mod n

α2−−−−−−−−−−→2
t1, x1←−−−−−−−−−−1 t1 = (α1x1)−dτ(a1) mod n

c = ux
kτ(a1)
1 x


τ(a2)
2 mod n

t2, x2←−−−−−−−−−−2 t2 = (α2x2)−dτ(a2) mod n

s =
(
r

τ(a1)
1 t1

)k(
r

τ(a2)
2 t2

)


mod n

(s, c) is a pseudo-signature of the message m

Fig. 2. Concurrent attack of the Cao, Lin and Xue protocol [3]

The attacker uses the bezout coefficients to combine y1 and y2 into ξ. At the
end of the two interleaved protocol’s executions he obtains a pseudo-signature
(s, c) for the chosen message m. Indeed, se(H(m||ce)c) = 1 mod n. As explained
in section 4.1, it enables to compute valid signatures for any string ã.
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Abstract. Token-controlled public key encryption (TCPKE) schemes,
introduced in [1], offer many possibilities of application in financial or
legal scenarios. Roughly speaking, in a TCPKE scheme messages are en-
crypted by using a public key together with a secret token, in such a way
that the receiver is not able to decrypt this ciphertext until the token
is published or released. The communication overhead for releasing the
token is small in comparison with the ciphertext size.

However, the fact that the same ciphertext could decrypt to differ-
ent messages under different tokens was not addressed in the original
work. In our opinion this is an essential security property that limits the
use of this primitive in practice. In this work, we formalize this natural
security goal and show that the schemes in [1] are insecure under this no-
tion. In the second place, we propose a very simple and efficient generic
construction of TCPKE schemes, starting from any trapdoor partial one-
way function. This construction is obtained from a slight but powerful
modification of the celebrated Fujisaki-Okamoto transformation [7]. We
prove that the resulting schemes satisfy all the required security proper-
ties, in the random oracle model. Previous to this work, only particular
instantiations of TCPKE schemes were proposed.

Keywords: Public key encryption, provable security, timed-release cryp-
tography, random oracle model.

1 Introduction

Baek, Safavi-Naini and Susilo [1] have recently introduced a cryptographic prim-
itive called token-controlled public key encryption (TCPKE). The intuitive idea
is that the sender encrypts messages by using the public key of the receiver to-
gether with a secret token, in such a way that the receiver is able to decrypt
the ciphertext only when the token is delivered. The communication overhead
needed for releasing the token is small. This provides a solution to situations
� The work of the second author was carried out during the tenure of an ERCIM

fellowship.
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where someone wants a receiver to obtain some confidential information only
when some condition is fulfilled, but he is afraid he could not encrypt the mes-
sage when this condition (a date, an event) is already satisfied. The sender can
encrypt the message in advance and give the employed secret token to some ex-
ternal party (a lawyer, for example) under the requirement that this party will
deliver the token to the intended receivers when the stated condition holds. Note
that this notion is related to other previously considered primitives in the con-
text of timed-release cryptography [11,13,6,10], where the receiver can decrypt
a ciphertext only when some specific date arrives; a trusted entity is also needed
in most of the proposals, which must perform some costly cryptographic opera-
tions. In token-controlled cryptography, the only cost for the external entity is to
store and deliver a token when some condition (not necessarily related to time)
is satisfied. Some desirable properties are that storing this token requires much
less space than storing the ciphertext, and that the same token can control the
decryption of multiple receivers without compromising security.

As a motivating example of application of token-controlled encryption, let
us consider the will scenario explained in [1]: a millionaire writes his will m
to his sons but he wants to keep it secret until his death. He can encrypt the
will with a token-controlled scheme, provide his sons with the corresponding
ciphertexts, and then give the used token τ to a lawyer. The lawyer should sign
a document where he commits himself to give the token to the sons when the
millionaire passes away. At that moment, each son could use his secret key and
the obtained token to decrypt his ciphertext and recover the original will.

Other financial situations can be imagined where this notion is useful. Suppose
that some person wants to keep some important documents (or money) in a safe-
deposit box of a bank. He can encrypt the secret key which opens the box to his
wife and his sons, by using a token-controlled scheme, and secretly deliver the
token to the bank, along with the conditions in which the bank should provide
his wife or his sons with the token, in order to allow them to open the box:
death, illness, legal problems, etc.

Of course, it is important to properly define the security requirements for
this cryptographic primitive. In [1] the authors define in essence two security
properties. The first property intuitively ensures that a person who obtains a
token cannot obtain any information about a message which has been encrypted
to a different person with the same token. In the case of the will, for example,
if the millionaire encrypts to each son only the part of the will which concerns
that son, then each son should not be able to know the part of the will of the
other sons, even after obtaining the employed (common) token.

The second property ensures that a receiver does not obtain any information
about the encrypted message if he does not know the employed token. This is
the most natural property for this kind of schemes.

1.1 Our Contributions

We introduce a new security property for TCPKE , which is named as strong
existential token unforgeability; it is related to the possible misbehavior of the
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entity who is in charge of keeping and releasing the token. Roughly speaking,
both the person who encrypts the message and the intended receivers want to
be sure that this party will later provide the correct token. If this party tries to
boycott the process and give a false token to the receivers, they should be able to
detect this misbehavior. This property, which we believe is not only quite natural
but essential, is not considered in [1]. In fact, the two TCPKE specific schemes
proposed in [1] are insecure under this notion: a malicious ‘trusted’ party can
deliver a false token τ ′ different from the valid token τ , without being detected
for this, in such a way that the receiver will obtain a decrypted message m′

different from the original message m. Obviously, this fact is unacceptable for
any practical usage of TCPKE we can think of. This new security requirement
follows the usual cryptographic practice of removing as much trust assumptions
as possible on third parties.

After that, we present a simple, efficient and generic construction of token-
controlled public key encryption schemes, starting from any trapdoor partial
one-way function, which satisfies all the required security properties. The new
construction is obtained from a slight modification of the Fujisaki-Okamoto (FO)
transformation [7], and adds no computational overhead. The formal proofs hold
in the random oracle model [4]. When implemented with El Gamal [8] or RSA [12]
primitives, our conversion yields more efficient schemes than the ones previously
proposed.

1.2 Further Applications

Encrypting into the future. Due to the fact that the same token τ can con-
trol the decryption of multiple ciphertexts/receivers, TCPKE provides a very
efficient solution for sending messages into the future [13,6]: the sender encrypts
multiple messages to multiple receivers by means of a TCPKE scheme, using
the corresponding public keys but the same token. The sender provides to a
third party the token and the date on which the receivers are able to read
the confidential information. At the appointed time, the third party publicly
announces the token, so every receiver is able to read the message. The con-
fidentiality of the messages is not compromised, and every communication is
off-line. This proposal favorably compares with the solution given in [5] using
identity-based encryption, since the latter requires major band-with, private
channels between the receivers and the third party as well as on-line communi-
cations.
‘Private-opening’ commitment scheme. A TCPKE scheme with strong ex-
istential token unforgeability can be seen as some sort of commitment scheme. A
sender commits to a string m to a receiver by encrypting m using the public key
of the receiver and a certain token τ , and sends the ciphertext to the receiver as
the commitment. In the revealing phase, the sender releases τ to the receiver,
who accepts m as the committed string if and only if decryption is successful.
We notice that the opening algorithm can only be executed by the receiver, since
he/she is the only entity in possession of his/her secret key.
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1.3 Organization of this Paper

The rest of this work is organized as follows. In Section 2 we briefly explain some
primitives and notation that will be used throughout the paper. In Section 3 we
recall the definition of token-controlled public key encryption, and the security
properties that these schemes should satisfy (including the new notion of strong
existential token unforgeability). Later, we show that the previous schemes by
Baek et al. are forgeable. In Section 4, we propose our construction of a general
family of such schemes and provide the formal proofs that the resulting schemes
satisfy the required security properties. We conclude in Section 5 by summing
up our contributions and suggesting future research on to this topic.

2 Preliminaries

Notation. A probabilistic polynomial time algorithm will be named in short as
PPT algorithm, while PT refers to polynomial time algorithms. 1� refers to the
security parameter �. If A is a non-empty set, then x ← A denotes that x has
been uniformly chosen in A. Finally, if A is an (probabilistic) algorithm, x ← A
means that A has been executed on some specified input and its (random) output
has been assigned to the variable x. We denote by negl(�) the class of negligible
functions in the parameter �.

2.1 Trapdoor Partial One-Way Functions

The material in this section is adapted from [9]. A trapdoor partial one-way
(TPOW) function is a family of injective maps f : X × Y → Z, where X , Y and
Z are polynomial size set families, with the following properties:

1. There exists a PPT algorithm TPOW.Gen that on input a security parameter
1� returns a pair (pk, sk) of public and secret keys, as well as a description
of sets Xpk, Ypk, Zpk.

2. There exists a PPT algorithm TPOW.Eval that on input pk, x ∈ Xpk and
y ∈ Ypk outputs fpk(x, y).

3. There exists a PPT algorithm TPOW.Inv that on input sk, fpk(x, y), where
x ∈ Xpk and y ∈ Ypk, outputs x.

4. for any PPT algorithm APOW,

Advf

APOW(1
) = Pr
[
APOW(pk, fpk(x, y)) = x x ← Xpk; y ← Ypk

]
∈ negl(�)

Xpk is assumed to be a recognizable set for any valid pk. A set Xpk is recognizable
if there exist a PT algorithm that on input a string s, with size polynomial in �,
outputs 1 if and only if s ∈ Xpk.

2.2 Public Key Encryption

In this section we recall the definition of a public key encryption (PKE) scheme.
A PKE scheme consists of three probabilistic polynomial time (PPT) algorithms:
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Key Generation, PKE.Gen: it takes as input a security parameter 1� and returns
a pair (pk, sk) of public and secret keys, as well as a description of plaintext and
ciphertext spaces, denoted as Mpk and Cpk, respectively. It is assumed there
exists a PPT algorithm that on input pk outputs the security parameter 1�.

Encryption, PKE.Enc: takes as inputs m ∈ Mpk, and pk of the intended receiver;
the output is a ciphertext c ∈ Cpk.

Decryption, PKE.Dec: takes as inputs a ciphertext c ∈ Cpk and a secret key sk,
returns either a message m ∈ Mpk or the special reject symbol ⊥.

The standard security notion for PKE schemes is indistinguishability against
chosen-ciphertext attacks, named in short as IND-CCA [3]. Let us denote as
AdvIND−CCA

BPKE
(1�) the advantage of an adversary BPKE in the IND-CCA game.

2.3 Fujisaki-Okamoto Transformation

Let f be a TPOW function family over the sets X , Y and Z. The asymmetric
scheme PKEf = (PKE.Genf , PKE.Encf , PKE.Decf ), proposed by Fujisaki and
Okamoto [7], works as follows 1.

PKE.Genf . First, run (pk, sk) ← TPOW.Genf (1�) and let M� = {0, 1}p(�). Let
G : Xpk → M� and H : Xpk ×M� → Ypk be hash functions to be modelled as
random oracles [4]. Then Cpk = Zpk ×M�. Finally, the public key is pk together
with the description of the hash functions and plaintext-ciphertext spaces.

PKE.Encf . The ciphertext for a message m ∈ M� is

c = (fpk(x, y), G(x) ⊕ m),

where y = H(x, m) and x is uniformly chosen in Xpk.

PKE.Decf . To decrypt a ciphertext c = (c1, c2), firstly compute x =
TPOW.Invf (c1). Then, compute m = G(x) ⊕ c2 and return m if c1 =
fpk(x, H(x, m)). Otherwise, return the reject symbol ⊥. If it is not possible
to compute either TPOW.Invf (c1) or G(x) ⊕ c2, return ⊥.

Let BIND−CCA
PKEf [t, ε, qG, qH , qD] denote an adversary against the IND-CCA secu-

rity of the above cryptosystem that runs in time t with advantage ε, doing no
more than qG, qH and qD queries respectively to the random oracles G, H and
to the decryption oracle. Then,

Theorem 1 ([7,9]). If there exists an adversary BIND−CCA
PKEf [t, ε, qG, qH ,

qD], then there exists an adversary APOW for f in time t′ with advantage ε′

such that

ε ≤ (2(qG + qH)ε′ + 1)
(

1 − 1
|Ypk|

− 1
|M�|

)−qD

− 1

1 For the sake of simplicity, we only present here the case in which the symmetric
scheme is the one-time pad.
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and
t = t′ − O((qG + qH) log(|Xpk||M�|)),

where log is the logarithm in base 2.

3 Token-Controlled Public Key Encryption

In this section we recall the definition of TCPKE given in [1], together with the
necessary security properties that such a scheme should satisfy; the two first
properties are taken from [1], whereas the last requirement is considered for the
first time in this work. A TCPKE scheme consists of four probabilistic polynomial
time (PPT) algorithms:

Key Generation, TCPKE.Gen: it takes as input a security parameter 1� and
returns a pair (pk, sk) of secret and public keys, as well as a description of the
plaintexts (or messages), ciphertexts and tokens spaces, denoted as Mpk, Cpk

and T�, respectively. It is assumed there exists a PPT algorithm that on input
pk outputs the security parameter 1�.

Token Generation, TCPKE.Tok: it takes as input the security parameter 1� and
returns a token τ ∈ T� chosen according to some probability distribution in T�.

Encryption, TCPKE.Enc: the encryption algorithm takes as inputs a message
m ∈ Mpk, a public key pk for the receiver and a token τ ; the output is a
ciphertext c ∈ Cpk of the message.

Decryption, TCPKE.Dec: this algorithm, taking as inputs a ciphertext c ∈ Cpk,
a secret key sk and a token τ , returns either a message m ∈ Mpk or the special
reject symbol ⊥.

3.1 Security Requirements

Next we present three requirements for a TCPKE scheme. In the original work
[1], the authors define three properties; however, the two first properties are
related to the same sort of attacks, one of them being stronger than the other.
For this reason, we only consider here one of those two definitions.

TCPKE.1 Security against Outsider Attacks. In this first attack scenario,
we want to protect the situation where the same token is used to encrypt mes-
sages to many different receivers; later, maybe some of these receivers obtain
the correct token and aims at obtaining information about a message encrypted
to some different receiver(s) with the same token. We want this to be infeasi-
ble. This security notion also captures the situation where the external entity
(which knows the token) wants to obtain information about the messages en-
crypted with this token. Formally, we define security against this kind of attacks
by considering an adversary A1 which tries to win the following game:
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1. The algorithm τ ← TCPKE.Tok(1�) is executed one time, whereas the algo-
rithm TCPKE.Gen is independently executed n times, namely (pki, ski) ←
TCPKE.Gen(1�) for i = 1, . . . , n. The same security parameter 1� is taken
as input for all these executions. The adversary A1 receives the public keys
pk1, . . . , pkn and the token τ , but not the secret keys sk1, . . . , skn.

2. The adversary can make queries to a decryption oracle TCPKE.Dec(ski, τ, c),
for secret keys ski (where i ∈ {1, . . . , n}) and ciphertexts c that it adaptively
chooses.

3. The adversary A1 outputs two messages m0, m1 ∈
⋂

1≤i≤n Mpki of the same
length. A random bit b ∈ {0, 1} is chosen, and the encryption algorithm is
executed for every i = 1, . . . , n, giving c�

i = TCPKE.Enc(pki, τ, mb). The
challenge ciphertexts c�

1, . . . , c
�
n are given to A1.

4. The adversary can proceed as in step 2, with the restriction that it cannot ask
for the decryption of a ciphertext c�

i under secret key ski, for any i = 1, . . . , n.
5. The adversary A1 outputs a guess b′ ∈ {0, 1}.

The advantage of such an adversary against the TCPKE .1 property is defined
as

AdvTCPKE.1
A1

(1�) = | 2 Pr[b′ = b] − 1|.

Definition 1. A TCPKE scheme is secure against outsider attacks if, for any
polynomially bounded n and for any PPT adversary A1 playing the game defined
above, the function AdvTCPKE.1

A1
(1�) is negligible as a function of 1�.

TCPKE.2 Security against Insider Attacks. In the second attack scenario,
we consider a malicious user to whom the token has not been yet released. This
user should be unable to obtain any information about the message encrypted in
the received ciphertexts. Formally, this security notion is defined by the following
game played against a challenger by some adversary A2:

1. The challenger chooses a security parameter 1� and executes τ ←
TCPKE.Tok(1�). The obtained token is kept secret, whereas the security
parameter 1� is given to A2.

2. The adversary runs (pk, sk) ← TCPKE.Gen(1�) and can make queries to an
embedded-token encryption oracle TCPKE.Enc(pk, τ, m), for messages m that
it adaptively chooses.

3. The adversary A2 outputs two messages m0, m1 ∈ Mpk of the same length.
The challenger chooses a random bit b ∈ {0, 1}, and executes the encryption
algorithm to obtain c� = TCPKE.Enc(pk, τ, mb). The resulting challenge
ciphertext c� is given to A2.

4. The adversary can again proceed as in step 2, with no restrictions on its
queries.

5. The adversary A2 outputs a bit b′ ∈ {0, 1}.

The advantage of such an adversary against the TCPKE .2 property is defined
as

AdvTCPKE.2
A2

(1�) = | 2 Pr[b′ = b] − 1|.
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Definition 2. A TCPKE scheme is secure against insider attacks if, for any
PPT adversary A2 playing the game defined above, the function AdvTCPKE.2

A2
(1�)

is negligible as a function of 1�.

TCPKE.3 Strong Existential Token Unforgeability. Finally, we introduce
a new security notion for TCPKE schemes which was not considered in [1]. In
fact, the two schemes that are proposed in [1] do not satisfy this property (see
below). Roughly speaking, the new notion ensures it is infeasible to obtain a
valid ciphertext c such that correctly decrypts under two different tokens τ �= τ ′,
giving as outputs two different valid messages m �= m′. This is a strong security
requirement, since we do not only ask that it is difficult to make up a fake token
after a challenge ciphertext is received, but that this is infeasible even if we let
the adversary choosing the challenge ciphertext.

We denote this desirable property for TCPKE schemes as strong existential
token unforgeability, and is formally defined by considering an adversary A3 who
plays the following game against a challenger:

1. The challenger chooses a security parameter 1� and executes the algorithms
(pk, sk) ← TCPKE.Gen(1�). The challenged public key pk is given to A3,
while the secret key sk is kept by the challenger.

2. The adversary can also make queries to a decryption oracle TCPKE.Dec
(sk, τ, c), for pairs (τ, c) of ciphertexts and tokens that it adaptively chooses.

3. The adversary A3 outputs two different tokens τ and τ ′, and a ciphertext
c.

The advantage of such an adversary against the unforgeability property of a
TCPKE scheme is defined as

AdvTCPKE.3
A3 (1
) = Pr

[
TCPKE.Dec(sk, τ, c) = m �= m′ = TCPKE.Dec(sk, τ ′, c)

and m �=⊥ and m′ �=⊥
]

Definition 3. A TCPKE scheme is strong existentially token unforgeable if, for
any PPT adversary A3 playing the game defined above, the function AdvTCPKE,3

A3

(1�) is negligible as a function of 1�.

3.2 Previous TCPKE Schemes Are Forgeable

In this section we show that the two specific TCPKE schemes proposed in [1]
do not satisfy the strong existential token unforgeability property. We will con-
sider only their second specific scheme, based on ElGamal encryption + Schnorr
signatures. The same analysis applies to their first scheme, which uses bilin-
ear pairings techniques. Let us first recall the protocols of this scheme, called
TCPKEES:
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TCPKE.GenES: the input is a security parameter 1�. A finite cyclic subgroup
G = 〈g〉 of the multiplicative group Z∗

p is chosen, where p is a prime and the
order of G is a prime q ≥ 2�. The message and token spaces are defined as
Mpk = {0, 1}�M and T� = {0, 1}�T , for some integer parameters �M and �T which
infer from the security parameter 1�. Two hash functions H1 : G×G×T� → Mpk

and H2 : Mpk × G → Z
∗
q are chosen. All these parameters are made public.

The user then chooses a random integer sk ∈ Z∗
q as his secret key, and defines

the public key to be pk = gsk (formally, the public key will also contain all the
previously defined parameters).

TCPKE.TokES: it takes as input the security parameter 1�, infers the parameter
�T , and chooses uniformly at random a token τ ∈ T� = {0, 1}�T .

TCPKE.EncES: given a public key pk, a token τ and a message m ∈ {0, 1}�M ,
this algorithm first chooses at random r ∈ Z∗

q and computes the values u = gr,
κ = pkr, K = H1(u, κ, τ) and v = K ⊕ m. Later, a different integer z ∈ Z∗

q

is chosen at random, and the values ω = gz, h = H2(v, ω) and s = z − hr are
computed. The final ciphertext is defined as c = (u, v, h, s).

TCPKE.DecES: this algorithm takes as inputs a ciphertext c = (u, v, h, s), a
secret key sk and a token τ , and proceeds as follows:

– If h = H2(v, gsuh), then compute κ = usk and K = H1(u, κ, τ), and return
m = K ⊕ v.

– Otherwise, return ⊥.

Now assume that a millionaire encrypts his will m by using a token τ and the
public key pk of his son, obtaining as a result a ciphertext c = (u, v, h, s). The
ciphertext is made public, whereas the token τ is given to a lawyer.

The day when the millionaire dies, the lawyer is assumed to deliver the token
τ to the son of the millionaire. However, if the lawyer is malicious, he can deliver
a different token τ ′ �= τ . The son of the millionaire will compute κ = usk and
K ′ = H1(u, κ, τ ′), which with overwhelming probability will be different from
the correct value K = H1(u, κ, τ). Therefore, the son of the millionaire would
obtain a final will m′ = K ⊕ v �= K ′ ⊕ v = m, different from the original will
m encrypted by his father, and without being able to detect that he has been
cheated by the lawyer.

4 TCPKE Schemes from Any TPOW Function

Let f be a TPOW function family over the sets X , Y and Z. The generic
construction of TCPKE asymmetric schemes

TCPKEf = (TCPKE.Genf , TCPKE.Tokf , TCPKE.Encf , TCPKE.Decf ),

works as follows.
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TCPKE.Genf . First, run (pk, sk) ← TPOW.Genf (1�) and let M� = {0, 1}p(�),

T� = {0, 1}t(�). Let G̃ : Xpk × T� → M� and H̃ : Xpk × M� → Ypk be hash
functions to be modelled as random oracles [4]. Then Cpk = Zpk ×M�. Finally,
the public key is pk together with the description of the hash functions and
plaintext-ciphertext spaces. The secret key is sk.

TCPKE.Tokf . Output τ ← T�.

TCPKE.Encf . The ciphertext for a message m ∈ M� with token τ is

c = (fpk(x, y), G̃(x, τ) ⊕ m),

where y = H̃(x, m) and x is uniformly chosen in Xpk.

TCPKE.Decf . To decrypt a ciphertext c = (c1, c2) using token τ , firstly compute
x = TPOW.Invf (c1). Then, compute m = G̃(x, τ) ⊕ c2 and return m if c1 =
fpk(x, H̃(x, m)). Otherwise, return the reject symbol ⊥. If it is not possible to
compute either TPOW.Invf (c1) or G̃(x, τ) ⊕ c2, return ⊥.

4.1 Security Against TCPKE.1 Attacks

Let ATCPKE.1[n, t, ε, qG, qH , qD] denote an adversary against the TCPKE .1 secu-
rity of the TCPKEf scheme that runs, against n different public keys, in time
t with advantage ε, doing no more than qG, qH , and qD queries to the random
oracles G̃, H̃ and to the decryption oracle respectively.

Theorem 2. If there exists an adversary ATCPKE.1[n, t, ε, qG, qH , qD] against
TCPKEf , then there exists an adversary BIND−CCA

PKEf [t+O(qG+qH +n), ε/n, qG, qH ,

qD] against PKEf .

Proof: We show that any adversary ATCPKE.1[n, t, ε, qG, qH , qD] against TCPKEf

can be used to construct an adversary BIND−CCA
PKEf [t, ε, qG, qH , qD] against PKEf .

To do this, we proceed in two steps. In the first one, an adversary A against
the TCPKE.1 security of TCPKEf is converted into an adversary F against PKEf

in the multi-user setting considered by Bellare, Boldyreva and Micali in [2]. The
adversary F simulates the environment of the TCPKE.1 game for ATCPKE.1.
The PKEf challenger in the multi-user setting starts by giving n public keys
pk1, . . . , pkn to F corresponding to the scheme PKEf . After that, F chooses
a polynomial p and sets T� = {0, 1}p(�). F sends pk′

i := (pki, T�) to A, for
i = 1, . . . , n as the public keys of n users of the TCPKE scheme. Next, F chooses
a token τ ← T� and gives it to A. The random oracles H̃i, G̃i, for i = 1, . . . , n
are simulated by F by querying its random oracles Hi, Gi in the IND-CCA game
in the multi-user setting (remember that Hi, Gi are part of the public key pki).
In particular,



A Generic Construction for Token-Controlled Public Key Encryption 187

– H̃i(σ) := Hi(σ) for any σ ∈ {0, 1}�.

– G̃i(x, τ) := Gi(x) and G̃i(x, τ ′) := Gi(x, τ ′) for any x ∈ Xpk, and τ ′ �= τ ∈
T�. Finally, G̃i(σ) := Gi(σ) for any σ ∈ {0, 1}�, s.t. σ /∈ Xpk × T�.

The decryption queries made by A with respect to any ski are answered by F
as

TCPKE.Dec(c1, c2, sk
′
i) := PKE.Dec(c1, c2, ski),

by querying its own decryption oracles in the multi-user IND-CCA game. It is
easy to see that H̃i and G̃i behave as random oracles and that the simulation of
A decryption queries is sound.

Once A starts the challenge phase, F sends to its IND-CCA multi-user chal-
lenger the messages m0, m1 chosen by A, and obtains from its challenger cipher-
texts c�

i = PKE.Enc(pki, mb) for i = 1, . . . , n. This list of n challenge ciphertexts
is sent to A, which outputs a guess b′. The same bit b′ is output by B as its final
guess.

The advantage of F in its IND-CCA game against PKEf , in the multi-user
setting, is exactly the same as the advantage of A, that is, ε. The running time
of F is the running time t of A plus O(qG + qH) to simulate the random oracle
queries. Note that we are assuming that deciding if an element belongs to a set
is a one unit time operation.

After that, the second reduction transforms an adversary F against PKEf in
the multi-user setting into an adversaryB against PKEf in the single-user setting.
This reduction can be found in Theorem 1 of [2]. In this case, the advantage of
B in its game is the advantage of F divided by n, and the running time of B is
the running time of A plus O(log n).

Putting together the two reductions, we obtain the result stated in this theo-
rem: the advantage of B is ε/n, and its running time is t + O(qG + qH + n). �

Corollary 1. If f is a TPOW function, then the scheme TCPKEf is TCPKE.1
secure.

Proof: It follows immediately from Theorems 1 and 2. �

4.2 Security Against TCPKE.2 Attacks

Let ATCPKE.2[t, ε, qG, qH , qE ] denote an adversary against the TCPKE.2 security
of the TCPKEf scheme that runs in time t with advantage ε, doing no more than
qG, qH , and qE queries to the random oracles G̃, H̃ and to the embedded-token
encryption oracle respectively.

Theorem 3. Any adversary ATCPKE.2[t, ε, qG, qH , qE ] satisfies ε ≤ qG + qE

2p(�) ,

where T� = {0, 1}p(�) (in the random oracle model).

Proof: Let us consider the challenge ciphertext c� that A gets from the TCPKE.2
challenger. We denote by x�, τ�, y� the values

c� = (fpk(x�, y�), G(x�, τ�) ⊕ mb),
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where y� = H(x�, mb). Let us denote by AskG the event that A queries G at the
point (x�, τ�). Since G is modelled as a random oracle, the value b is independent
from A’s view as long as AskG does not hold. Therefore,

Pr[b′ = b] = Pr[b′ = b ∧ AskG] + Pr[b′ = b ∧ ¬AskG] =

= Pr[b′ = b | AskG] Pr[AskG] +
1
2

Pr[∧AskG]

Due to the fact that A is in possession of the secret key sk, it can recover the
randomness x� from c�. If AskG holds, A can compute mb from c� and it can
check if c� = (fpk(x�, y�), G(x�, τ�) ⊕ mb). Therefore Pr[b′ = b|AskG] = 1 and

Pr[b′ = b] =
1
2

+
1
2

Pr[AskG].

Finally, it lacks to compute an upper bound for Pr[AskG]. To do this, notice
that A has two ways of evaluating G at (x, τ�) for x ∈ Xpk:

• By directly querying G at (x, τ�).
• By querying the embedded-encryption oracle c = (c1, c2) = TCPKE.Enc(pk,

τ�, m) on m ∈ M�. Let x ∈ Xpk the randomness used by the encryption
oracle. Then, A can recover x by using the secret key sk and it computes
G(x, τ�) := c2 ⊕ H(x, m).

It follows that Pr[AskG] ≤ qG + qE

2p(�) , where T� = {0, 1}p(�). Finally,

ε = | 2 Pr[b′ = b] − 1| ≤ qG + qE

2p(�) .

�
4.3 Security Against TCPKE.3 Attacks

Let ATCPKE.3[t, ε, qG, qH , qD] denote an adversary against the TCPKE.3 security
of the TCPKEf scheme that runs in time t with advantage ε, doing no more than
qG, qH , and qD queries to the random oracles G̃, H̃ and to the decryption oracle
respectively.

Theorem 4. Any adversary ATCPKE.3[t, ε, qG, qH , qD] satisfies ε ≤ 1
|Ypk|

(in the

random oracle model).

Proof: The goal of A is to find m �= m′ ∈ M�, c ∈ Cpk and τ �= τ ′ ∈ T� such that

c = (fpk(x, H̃(x, m)), G̃(x, τ) ⊕ m) = (fpk(x′, H̃(x′, m′)), G̃(x′, τ ′) ⊕ m) (1)

From the definition of a TPOW function, we know that fpk is injective. Therefore,
(1) implies that x = x′ and H̃(x, m) = H̃(x, m′). The fact that H̃ is modelled
as a random oracle implies that Pr[H̃(x, m) = H̃(x, m′)] = 1/|Ypk| for m �= m′

and then it immediately follows AdvTCPKE.3
A3

(1�) ≤ 1/|Ypk|. �
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4.4 Instantiation with RSA

For example, it is possible to instantiate our general construction by using RSA
as the TPOW function. Note in particular that any injective trapdoor one-way
function f̃(x) such as RSA can be easily converted into a TPOW by using
f(x, y) = (f̃(x), y).

The TCPKERSA scheme resulting from this instantiation is almost as efficient
as the RSA primitive. Moreover, in this case the concrete security result stated
in Theorem 1 can be made tight, since the RSA TPOW function is easy verifi-
able, that is, given z it is easy to verify if there exists y such that f(x, y) = z.
It is shown in [9] that easy verifiable functions provide a tight security reduc-
tion for the Fujisaki-Okamoto transformation, which in our case implies that
that a TCPKE.1 adversary with advantage ε can be converted into an algorithm
breaking RSA with advantage nε. On the contrary, the schemes in [1] present a
less tighter security reduction under TCPKE.1 adversaries to the Computational
Diffie-Hellman assumption.

5 Conclusion

In this paper we have revisited the work [1] where Baek, Safavi-Naini and Susilo
introduced a new cryptographic primitive called token-controlled public key en-
cryption. We have added a new security property which is naturally desirable for
these schemes, and which is not satisfied by the specific schemes proposed in [1].
We believe that the essential security model for this primitive is now complete,
although additional properties might be added in the future.

In the second part of our work, we propose and analyze a general construc-
tion of TCPKE schemes from trapdoor partial one-way functions. The resulting
schemes are simple and efficient, and satisfy the three required security prop-
erties in the random oracle model. Previously, only particular instantiations of
TCPKE were known, and they were less efficient than the schemes obtained with
our construction when instantiated with El Gamal or RSA trapdoor functions.
The natural problem which remains open is to design a secure token-controlled
public key encryption scheme in the standard model.
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Abstract. In this paper we consider two security notions related to
Identity Based Encryption: Key-insulated public key encryption, intro-
duced by Dodis, Katz, Xu and Yung; and Timed-Release Public Key
cryptography, introduced independently by May and Rivest, Shamir and
Wagner. We first formalize the notion of secure timed-release public key
encryption, and show that, despite several differences in its formulation,
it is equivalent to strongly key-insulated public key encryption (with op-
timal threshold and random access key updates). Next, we introduce the
concept of an authenticated timed-release cryptosystem, briefly consider
generic constructions, and then give a construction based on a single
primitive which is efficient and provably secure.

Keywords: timed-release, authenticated encryption, key-insulated
encryption.

1 Introduction

Timed-Release cryptography. The goal of timed-release cryptography is to
“send a message into the future.” One way to do this is to encrypt a message
such that the receiver cannot decrypt the ciphertext until a specific time in the
future. Such a primitive would have many practical applications, a few examples
include preventing a dishonest auctioneer from prior opening of bids in a sealed-
bid auction [26], preventing early opening of votes in e-voting schemes, and
delayed verification of a signed document, such as electronic lotteries [28] and
check cashing. The problem of timed-release cryptography was first mentioned
by May [21] and then discussed in detail by Rivest et. al. [26]. Let us assume
that Alice wants to send a message to Bob such that Bob will not be able to
open it until a certain time. The possible solutions fall into two categories:

– Time-lock puzzle approach. Alice encrypts her message and Bob needs to
perform non-parallelizable computation without stopping for the required time
to decrypt it.
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CNS-0448423 and by the Intelligent Storage Consortium at the Digital Technology
Center (DTC), University of Minnesota. The first author was supported by Korea
Telecom. ∗: Contact author.

G. Di Crescenzo and A. Rubin (Eds.): FC 2006, LNCS 4107, pp. 191–205, 2006.
c© IFCA/Springer-Verlag Berlin Heidelberg 2006



192 J.H. Cheon et al.

– Agent-based approach. Alice encrypts a message such that Bob needs some
secret value, published by a trusted agent on the required date, in order to
decrypt the message.

The first approach puts immense computational overhead on the message
receiver, which makes it impractical for real-life scenarios. In addition, know-
ing the computational complexity of decryption, while giving us a lower bound
on the time Bob may need to decrypt the message, does not guarantee that
the plaintext will be available at a certain date. Still, this approach is widely
used for specific applications [9, 4, 28, 19, 18]. The agent-based approach, on the
other hand, relieves Bob from performing non-stop computation, sets the date
of decryption precisely and does not require Alice to have information on Bob’s
capabilities. This comes at a price, though: the agents have to be trusted and
they have to be available at the designated time.

In this paper we concentrate on the agent-based approach. Several agent-
based constructions were suggested by Rivest et. al. [26]. For example, the agent
could encrypt messages on request with a secret key which will be published on
a designated date by the agent. It also could precompute pairs of public/private
keys, publish all public keys and release the private keys on the required days.
A different scheme was proposed in [13], in which non-malleable encryption was
used and receiver would engage in a conditional oblivious transfer protocol with
the agent to decrypt the message. In [11], the authors proposed to use Boneh
and Franklin’s IBE scheme [8] for timed-release encryption: for that, one can
replace the identity in an IBE scheme with the time of decryption. Similar pro-
posals appear in [20, 7]. While some of these proposals contain informal proofs
of security, none of them consider and/or give a formal treatment of the security
properties of timed-release public key encryption (or TR-PKE).

Since all known efficient constructions rely on the Boneh-Franklin IBE con-
struction, a natural question to ask is if the existence of IBE is necessary for
an efficient timed-release public key encryption. In this paper, we formalize the
security requirements of TR-PKE and show that indeed this is the case: the ex-
istence of secure TR-PKE is equivalent to the existence of strongly key-insulated
encryption with optimal threshold and random access key updates; existence of
which in turn is known to be equivalent to the existence of IBE [5, 14].

SKIE-OTRU: Strongly key-insulated encryption with Optimal Thresh-
old and Random Access Key Updates. Strongly key-insulated encryption
addresses the problem of computer intrusion by breaking up the lifetime of a
public key into periods, and splitting the decryption key between the user (say,
a mobile device) and a trusted “helper” (say, a desktop server) so that:

– (Sequential Key Updates) At the beginning of each time period, the helper
securely transmits a “helper secret key” hski to the user, which he combines
with his previous key, uski−1, to obtain a secret key uski that will decrypt
messages encrypted during time period i.

– (Random Access Key Updates) Given any uski and hskj , the user can com-
pute uskj . This is useful for error recovery and it also allows the user to
decrypt old messages.
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– (User Compromise) An adversary who is given access to (uski, hski) for
several time periods i cannot break the encryption for a new time period.

– (Helper Compromise) An adversary given only the hsk cannot break the
encryption scheme.

Combining results of Bellare/Palacio [5] and Dodis/Katz [14] 1, it follows that
existence of SKIE-OTRU is equivalent to IBE.

Authentication for Timed-Release Encryption. Many of the applications
of timed-release cryptography mentioned above require some form of authentica-
tion as well. For example, if there is no authentication of bids in a sealed auction,
any bidder may be able to forge bids for others, or force the auction to fail by
submitting an unreasonably high bid. In this paper, we consider the security
properties required by these applications and develop formal security conditions
for a Timed-Release Public Key Authenticated Encryption (TR-PKAE) scheme.

One avenue for developing a TR-PKAE scheme would be composing an unau-
thenticated TR-PKE scheme with either a signature scheme or a (non-timed-
release) PKAE scheme. Although such constructions are possible, we note that
the details of this composition are not trivial; examples from [2, 14] illustrate that
naive constructions can fail to provide the expected security properties. Addi-
tionally, we note that such schemes are likely to suffer a performance penalty
relative to a scheme based on a single primitive. Thus we also introduce a prov-
ably secure construction of a TR-PKAE scheme that is essentially as efficient as
previous constructions of non-authenticated TR-PKE schemes [11, 20, 7].

Our Contribution. This paper proposes a new primitive that provides timed-
release public key authenticated encryption (in short, TR-PKAE). The contri-
bution of this paper is four fold:

– We give the first formal analysis of the security requirements for timed-
release public key encryption (TR-PKE) and show that this notion is equiv-
alent to SKIE-OTRU.

– We introduce the notion of TR-PKAE, as satisfying four notions: IND-KC-
CCA2, security against adaptive chosen ciphertext attacks under compro-
mise of the timed-release agent and sender’s private key; TUF-CTXT, or
third-party unforgeability of ciphertexts; IND-RTR-KC-CCA2, or receiver un-
decryptability before release time under compromise of sender’s private key;
and RUF-TR-CTXT, or receiver unforgeability before release time.

– We introduce a protocol that provides authenticated timed-release public
key encryption using a single primitive. The proposed protocol is essentially
as efficient as Boneh and Franklin’s chosen-ciphertext secure IBE scheme [8]
(FullIdent, which will be referred to as BF-IBE in the rest of the paper) and is
provably secure in the random oracle model. The proposed protocol requires
minimal infrastructure (a single trusted agent) that can be shared among
many applications and can be naturally converted to a threshold version,

1 Bellare/Palacio showed that KIE-OTRU is equivalent to IBE, while Dodis/Katz
showed equivalence of SKIE-OTRU and KIE-OTRU.
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which provides robustness as well as stronger security by allowing outputs
of multiple agents to be used.

Overview of our construction. Consider a public agent (similar to NTP
server [23]), called TiPuS (Timed-release Public Server), which at discrete time-
intervals publishes new self-authenticating information IT = f(PT , s) for current
time T , where f and PT are public, and s is secret. Alice can encrypt a message
for Bob at time T using PT , her private key and Bob’s public key. Only when
IT is published on day T , will Bob be able to decrypt the message using IT , his
private key and Alice’s public key.

We implement the above setting using an admissible bilinear map e (see Sec-
tion 4.1), which along with the choice of groups and generator P is chosen
independently of TiPuS. Each TiPuS chooses a secret s ∈ Zq and publishes
Ppub = sP . At time T , the TiPuS publishes IT = sPT = sH(T ) 2 (i.e. the pri-
vate key for identity T in BF-IBE [8]), where H is a cryptographic hash function.

Let (ska, pka) = (a, aP ) and (skb, pkb) = (b, bP ) be Alice’s and Bob’s authen-
ticated private/public key pairs respectively. To encrypt message m for Bob, 1)
Alice computes bilinear map d = e(sP + r1 · bP, (r2 + a)PT ) for random r1, r2,
and applies hash function H2 to obtain K = H2(d), 2) she then encrypts mes-
sage m as EK(m), where EK is a symmetric encryption using key K. Bob also
receives r1PT and r2P . To decrypt the ciphertext, 1) Bob, having sPT , computes
d as e(r2P + aP, sPT + b · r1PT ) 3, 2) applying hash function H2, Bob computes
K and uses it to decrypt EK(m).4 The full detailed protocol and all required
definitions/discussions are presented in later sections.

Note the following practical aspects exhibited by the scheme: 1) (User Secret
vs TiPuS Secret) the secret value of TiPuS, system parameters and users’ private
keys are completely independent. It will be shown later that compromise of
TiPuS does not jeopardize confidentiality and unforgeability of user ciphertexts;
2) (Sharing) the published value sPT can be shared among multiple applications;
3) (Scalability) the protocol can take full advantage of a) several independent
TiPuS’s, 5 b) threshold generation of sPT [24]. The increase in computational
complexity is minimal when such schemes are applied to the protocol.

2 Timed-Release Public Key Encryption (TR-PKE)

In this section we formalize the functionality and security requirements for
a timed-release public key encryption system. These requirements are meant
2 The authenticity of IT can be verified by checking equality e(Ppub, PT ), since by

bilinearity e(sP, H(T )) = e(P, sH(T )) = e(P, H(T ))s.
3 Note that according to properties of bilinear map, e(r2P + aP, sPT + b · r1PT ) =

e((r2 + a)P, (s + b · r1)PT ) = e((s + r1 · b)P, (r2 + a)PT ) = d.
4 Without authentication, this scheme is similar to Bellare and Palacio’s construction

of an SKIE-OTRU scheme, in which d = e(sP + bP, r2PT ). However note that it
cannot be used for timed-release: the receiver can publish as public key bP = τP −sP
for any chosen τ allowing him to decrypt any ciphertext before designated time.

5 If siP is Ppub of the i-th token generator, then combined Ppub is
∑

siP and combined
sPT is

∑
siPT .
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to capture the required security requirements not addressed in previous work
[21, 26, 11, 20, 7]; in particular they do not address the authentication require-
ments, which we add in section 3.

2.1 Functional Requirements

Formally, we define a timed-release public-key encryption system Γ to be a tuple
of five randomized algorithms:

– Setup, which given input 1k (the security parameter), produces public pa-
rameters πg, which include hash functions, message and ciphertext spaces
among others.

– TRSetup, which on input πg, produces a pair (δ, πtr) where δ is a master
secret and πtr the corresponding timed-release public parameters. This setup
is carried out by TiPuS which keeps the master secret key confidential, while
all other parameters are public. We denote the combined public parameters
of πg and πtr by π.

– KeyGen, given public parameters πg, outputs a pair of secret key and public
key (sk, pk).

– TG(π, δ, T ) computes the token tknT corresponding to time T using (δ, π).
This functionality is performed by TiPuS which publishes tknT at time T .

– Encrypt(π, pk, m, T ) computes the timed-release ciphertext c denoting the
encryption with public key pk of message m with public parameters π and
time encoding T .

– Decrypt(π, sk, ĉ, tknT ) outputs the plaintext corresponding to ĉ if decryption
is successful or the special symbol fail otherwise.

For consistency, we require that Decrypt(π, sk,Encrypt(π, pk, m, T ), TG(π, δ, T ))=
m, for all valid (pk, sk), (π, δ), T , and m,

2.2 Security

It is standard to require that the PKE cryptosystem be secure against adap-
tive chosen-ciphertext (IND-CCA2) adversaries [25, 3, 2]. Ideally, in TR-PKE,
one should separate the timed-release security from security of PKE. Namely,
TR-PKE should maintain receiver confidentiality properties even if the timed-
release master secret is compromised. To that effect, we require that IND-CCA2
security against a third party is provided even when master secret is given to the
adversary. We model this attack by a slightly modified IND-CCA2 game, shown
in Figure 1. Here, in addition to adaptively choosing two “challenge plaintexts”
that the adversary will need to distinguish between, he also adaptively chooses
a “challenge time” for which his challenge ciphertext will be decrypted; he wins
when he can tell whether his challenge ciphertext is an encryption of his first or
second plaintext for the challenge time, given access to a decryption oracle and
the master secret key of the TiPuS.

The timed-release functionality is provided by the token-generating infras-
tructure (i.e. TiPuS). Not knowing the corresponding token is what keeps the
receiver from decrypting ciphertext until a designated time. To effect secure
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Algorithm 2.1: ExpIND−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pk, sk) ← KeyGen(πg)

(m0, m1, T
∗) ← ADecrypt(π,sk,·,·)(π, δ, pk)

β ←R {0, 1}
c∗ ← Encrypt(π, pk, mβ , T ∗)

β′ ← ADecrypt(π,sk,·,·)(π, δ, pk, c∗)
if (A queried Decrypt(π, sk, c∗, tknT∗))
then return (false)
else return (β′ = β)

Algorithm 2.2: ExpIND−RTR−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(m0, m1, pk∗, T ∗)

← ATG(π,δ,·),Decrypt∗(π,δ,·,·,·)(π)
β ←R {0, 1}
c∗ ← Encrypt(π, pk∗, mβ , T ∗)

β′ ← ATG(π,δ,·),Decrypt∗(π,δ,·,·,·)(π, c∗)
if (A queried Decrypt∗(π, sk∗, c∗, T ∗),
where sk∗ corresponds to pk∗,
or A queried TG(π, δ, T ∗))
then return (false)
else return (β′ = β)

AdvIND−CCA2
A,Γ (k) = Pr[ExpIND−CCA2

A,Γ (k) = true] − 1
2

AdvIND−RTR−CCA2
A,Γ (k) = Pr[ExpIND−RTR−CCA2

A,Γ (k) = true] − 1
2

Fig. 1. TR-PKE security experiments for the IND-CCA2 and IND-RTR-CCA2 games

timed-release, any TR-PKE cryptosystem must provide confidentiality against
the receiver itself until the corresponding token is made available. We model
this property by the IND-RTR-CCA2 game, shown in Figure 1; in this game,
we modify the basic IND-CCA2 game by allowing the adversary to adaptively
choose receiver public key pk∗ and time T ∗ for the challenge. Instead of access
to the timed-release secret, the adversary is given access to arbitrary tokens
tknT , where T �= T ∗, and a decryption oracle Decrypt∗(π, δ, ·, ·, ·) which com-
putes Decrypt(π, ·, ·, TG(π, δ, ·). The adversary may thus compute the decryption
of any ciphertext for any time, except the challenge ciphertext in the challenge
time T ∗ with chosen public key pk∗. We say a timed-release public-key cryptosys-
tem Γ is secure if every polynomial time adversary A has negligible advantages
AdvIND−CCA2

A,Γ (k) and AdvIND−RTR−CCA2
A,Γ (k).

2.3 Strongly Key-Insulated Public Encryption and Timed-Release

The notion of key-insulated public key encryption has been discussed in [15, 16, 5].
As mentioned previously, combining Bellare/Palacio [5] and Dodis/Katz [14] one
obtains that the existence of secure SKIE-OTRU is a necessary and sufficient
condition for the existence of secure IBE. Briefly, a SKIE-OTRU consists of
following algorithms: KG, which generates a triple (pk, usk0, hsk) of public key,
initial user secret key, and master helper key; HKU which computes a stage
i helper secret key hski given (pk, hsk, i); UKU, which computes the stage i
user secret key uski given i, pk, hski, uski−1; RUKU, which computes the stage i
user secret key uski given i, j, pk, hski, uskj , ∀i ≥ 1, j ≥ 0; Enc, which produces
a ciphertext corresponding to m to be decrypted in stage i, given (pk, m, i);
and Dec, which, given (i, pk, uski, c) attempts to decrypt a ciphertext for stage
i. Intuitively, hsk is given to a “helper”, who will securely transmit, at the
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beginning of each stage i, the secret hski to the user. The user can then compute
uski, delete any old usk’s in his possession, and use uski to decrypt messages
sent to him during stage i. Existence of RUKU facilitates error recovery and
allows for decryption of old ciphertexts.

A SKIE (and SKIE-OTRU) scheme is considered CCA-secure with optimal
threshold if two conditions hold: (1) given access to pk, a decryption oracle,
and pairs (hski, uski) of his choosing, an adversary cannot break the encryption
scheme for a stage j for which he has not been given hskj ; and (2) given pk, hsk,
and a decryption oracle, an adversary cannot break the encryption scheme for
any stage [15, 16, 5]. The idea of separation of the timed-release master and user
secrets in a TR-PKE very closely parallels the notions of helper and user secrets
in a key-insulated cryptosystem; and both involve a “time period” parameter for
encryption and decryption. Furthermore, the two security conditions for a SKIE
scheme, in which either user keys or helper keys are assumed to be compromised,
closely resemble the conditions IND-CCA2 and IND-RTR-CCA2 developed here.

However, there is a key difference between the SKIE-OTRU and TR-PKE no-
tions. In the SKIE-OTRU setting, a helper is associated with at most one user,
and cooperates exclusively with that user, whereas in the TR-PKE setting, it
is assumed that many users may use the services of the TiPuS server, but the
interaction between each user and the server will be minimal. This results in sev-
eral operational differences: 1) User and Master Key Generation – in a TR-PKE
scheme, they are generated independently, whereas in a SKIE-OTRU they are
generated jointly; 2) Dissemination of secrets per time period – a SKIE scheme
must use a secure channel to send the hski to only one user, whereas the tokens
generated by a TiPuS are assumed to be publicly disseminated; 3) Security no-
tion of “user compromise” – a SKIE scheme’s notion of “user compromise” is
limited to chosen time periods and the keys are generated by the victim, whereas
in TR-PKE’s notion the attacker is the user itself and can generate its public
key adaptively (perhaps without necessarily knowing the corresponding secret
key) in order to break timed-release confidentiality. The following theorem shows
that despite these differences, these notions are essentially equivalent.

Theorem 1. There exists a (chosen-ciphertext) secure timed-release public key
cryptosystem if and only if there exists a secure strongly key-insulated public-key
encryption scheme with optimal threshold that allows random-access key updates.

Proof. (Sketch) Suppose we have a secure TR-PKE scheme Γ = (Setup, TRSetup,
TG, Encrypt, Decrypt). We construct a SKIE-OTRU scheme from Γ as fol-
lows. Set KG(1k) = ((π, pk), sk, δ), where (π, δ) ← TRSetup(1k) and (pk, sk) ←
KeyGen(π); HKU((π, pk), δ, i) = tkni, where tkni ← TG(π, δ, i); UKU(i, (π, pk),
tkni, (sk, tkni−1)) = (sk, tkni);RUKU(i, j, (π, pk), tkni, (sk, tknj)) = (sk, tkni);
Enc((π, pk), m, i) = c, where c ← Encrypt(π, pk, m, i); and set Dec(i, (π, pk),
(sk, tkni), c) = Decrypt(π, sk, c, tkni). This scheme essentially makes the TiPuS
server in TR-PKE scheme Γ into a helper for an SKIE-OTRU scheme.

It is easy to see that this scheme must be a secure SKIE-OTRU scheme.
Suppose an attacker given access to spk = (π, pk), hsk = δ and a decryption
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oracle can break the scheme; then it is easy to see that such an adversary can also
be used to mount an IND-CCA2 attack on Γ , since these are exactly the resources
given to an adversary in the IND-CCA2 game. Likewise, an adversary who can
break the scheme given access to spk = (π, pk), selected (uski, hski) = (sk, tkni)
pairs, and a decryption oracle can easily be used to mount an IND-RTR-CCA2
attack on Γ : when the SKIE adversary makes a corruption request for stage i,
the corresponding RTR-CCA2 adversary queries its TG oracle for tkni and can
forward (sk, tkni) to the SKIE adversary since the RTR-CCA2 adversary gets sk
as an input; all other queries made by the SKIE adversary can be passed directly
to the corresponding oracles of the RTR-CCA2 adversary.

Now suppose we have a secure SKIE-OTRU scheme Σ. If Σ has the ad-
ditional property that KG can be implemented as two independent keying al-
gorithms that generate (pkh, hsk) and (pku, usk), then it is straightforward to
transform Σ into a TR-PKE scheme. Since we would not expect this property
to hold in general, we work around this problem as follows. We know that by
the existence of Σ there also exists an ordinary chosen-ciphertext secure PKC
Π = (PKGen, PKEnc, PKDec). The idea behind our construction is that TRSetup
will sample (spk, hsk, usk0) ← Σ.KG(1k) and set π = spk and δ = (hsk, usk0);
KeyGen will sample (pk, sk) ← Π.PKGen(1k) and output (pk, sk). TG(π, δ, i) will
first compute hski = HKU(spk, hsk, i) and then use usk0 and hski to compute
tkni = uski = RUKU(i, 0, spk, usk0, hski). Encryption and Decryption will use
the multiple-encryption technique of Dodis and Katz [14].6 Applying the results
of [14], an IND-CCA2 attack on this scheme reduces to a chosen-ciphertext attack
on Π , while an IND-RTR-CCA2 attack (even when receiver chooses its public key
adaptively) on this scheme reduces to an SKIE chosen-ciphertext attack on Σ.

3 Authenticated TR-PKE (TR-PKAE)

The notion of authenticated encryption has been explored in depth in [2, 1]. In
this section we adapt these definitions to give formal security and functionality
requirements for a TR-PKAE scheme.

3.1 Basic Cryptosystem

The syntactic definition of a TR-PKAE is essentially the same as that of a TR-
PKE with the addition of the sender’s public and secret key. Namely, the types
of Setup, TRSetup, KeyGen and TG stay the same, but Encrypt and Decrypt are
modified to take into account sender’s keys:

– Encrypt(π, skA, pkB, m, T ) returns an authenticated timed-release ciphertext
c denoting the encryption from sender A to receiver B of m for time T .

6 Specifically, to encrypt message m for time T , we: (1) pick s1 ← U|m|, and set
s2 = m⊕s1, (2) pick signing and verification keys (SK, V K) for a one-time signature
scheme, (3) let c1 = Σ.EncV K(spk, s1, T ), c2 = Π.PKEncV K(pk, s2), and (4) output
(V K, c1, c2, Sig(V K, (T, c1, c2))). Decryption follows the scheme of [14], except that
c1 is decrypted using tknT = uskT .
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Algorithm 3.1: ExpIND−KC−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pka, ska) ← KeyGen(πg)
(pkb, skb) ← KeyGen(πg)
κ ← (π, δ, pka, ska, pkb)
(m0, m1, T

∗)

← ADecrypt(π,pka,skb,·,·)(κ)
β ←R {0, 1}
c∗ ← Encrypt(π, ska, pkb, mβ , T ∗)

β′ ← ADecrypt(π,pka,skb,·,·)(κ, c∗)
if (A queried

Decrypt(π, pka, skb, c
∗, tknT∗))

then return (false)
else return (β′ = β)

Algorithm 3.2: ExpIND−RTR−KC−CCA2
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pka, ska) ← KeyGen(πg)
κ ← (π, pka, ska)
(m0, m1, pk∗

b , T ∗)

← ATG(π,δ,·),Decrypt∗(π,δ,pka,·,·,·)(κ)
β ←R {0, 1}
c∗ ← Encrypt(π, ska, pk∗

b , mb, T
∗)

β′ ← ATG(π,δ,·),Decrypt∗(π,δ,pka,·,·,·)(κ, c∗)
if (A queried Decrypt∗(π, pka, sk∗

b , c∗, T ∗)
or TG(π, δ, T ∗))
then return (false)
else return (β′ = β)

AdvIND−KC−CCA2
A,Γ (k) = Pr[ExpIND−KC−CCA2

A,Γ (k) = true] − 1
2

AdvKC−RTR−KC−CCA2
A,Γ (k) = Pr[ExpIND−RTR−KC−CCA2

A,Γ (k) = true] − 1
2

Fig. 2. TR-PKAE experiments for the IND-KC-CCA2 and IND-RTR-KC-CCA2 games

– Decrypt(π, pkA, skB, ĉ, tknT ) outputs plaintext m̂ if both decryption and au-
thentication are successful and the special symbol fail otherwise.

The consistency requirement is modified to require that, for all valid (pkA, skA),
(pkB, skB), (π, δ), T , and m, Decrypt(π, pkA, skB, Encrypt(π, skA, pkB , m, T ),
TG(π, δ, T ))=m.

3.2 Security

Confidentiality. The confidentiality requirements of a TR-PKAE are essen-
tially the same as the confidentiality requirements of a TR-PKE; except that
we make the conservative assumption that the third party (in the case of IND-
CCA2) or the receiver (in the case of IND-RTR-CCA2) has compromised the
sender’s secret key. This results in two new notions, IND-KC-CCA2 and IND-
RTR-KC-CCA2, which we define formally in Figure 2. As before, we say that a
TR-PKAE scheme provides confidentiality if every polynomial time adversary
has negligible advantage, as defined in Figure 2.

As in the case of TR-PKE, the difference between IND-KC-CCA2 and IND-
RTR-KC-CCA2 is in reversal of adversary roles. In IND-RTR-KC-CCA2, the goal
is to ensure security against the receiver itself prior to the designated time.
Ciphertext (Plaintext) Forgery. For authentication properties of TR-PKAE,
we concentrate on ciphertext forgery (plaintext forgery is defined analogously).
We consider two types of ciphertext forgery: third-party forgery (TUF-CTXT),
by an adversary that does not know the sender’s and receiver’s private keys but
knows the master secret; and forgery by the ciphertext receiver (RUF-CTXT) [2].
If the TR-PKAE is not secure against TUF-CTXT then the scheme cannot claim
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authentication properties since a third party may be able to forge new (perhaps
decrypting to junk) ciphertexts between two users. If a TR-PKAE is not secure
against RUF-CTXT, then the scheme does not provide non-repudiation 7 and fur-
thermore, if the receiver’s private key is compromised, the attacker can imperson-
ate any sender to this receiver. We introduce the following games to model un-
forgeability (see Figure 3).

Timed-Release RUF-CTXT (RUF-TR-CTXT). We introduce a slightly weaker
timed-release notion of RUF-CTXT 8, which requires that the receiver should
not be able to forge ciphertext to himself for a future date. This notion has two
important implications: (1) the receiver should discard any ciphertexts received
past decryption dates if his private key may be compromised; and (2) the re-
ceiver may be able to prove to a third party that a ciphertext was generated
by the alleged sender if he can produce a proof of ciphertext existence prior
to the decryption date. The game in Figure 3 is an enhancement of the RUF-
CTXT condition proposed by An [2] to allow adaptive adversarial behavior: the
receiver is not given access to the token for a single, adaptively-chosen challenge
time period; in addition, the adversary can choose any receiver public key in
the encryption queries. We say that a TR-PKAE encryption is secure against
RUF-TR-CTXT, if every polynomial-time adversary A has negligible advantage,
AdvRUF−TR−CTXT

A,Γ (k), against the challenger in the RUF-TR-CTXT game.

TUF-CTXT. In addition to timed-release receiver unforgeability, we also require
a time-independent third-party unforgeability (TUF-CTXT) condition, which al-
lows to separate timed-release functionality from PKAE. Thus, in the TUF-CTXT
game defined in Figure 3, the master key is given to the adversary. We say that
a TR-PKAE scheme Γ is secure against TUF-CTXT if every polynomial time
adversary A has negligible advantage, AdvTUF−CTXT

A,Γ (k), in k.

4 The Proposed TR-PKAE 9

Following the proof of Theorem 1, one approach to achieve TR-PKAE would be
to combine a key-insulated encryption scheme with a PKAE scheme in a modular
fashion using techniques such as given in [14]. However, it is desirable for modern
authenticated encryption to have one primitive that achieves the desired security
7 Since the receiver can generate the ciphertext allegedly coming from another user to

himself, the receiver will not be able to prove to anybody that ciphertext was gener-
ated by the alleged sender even if all secret information is disclosed.

8 This allows us to avoid use of digital signature mechanisms.
9 We can easily adapt the proposed TR-PKAE to SKIE-OTRU. However, receiver

unforgeability will be lost although third-party unforgeability remains, resulting in
a weaker form of authenticated SKIE-OTRU. This is expected since the proposed
TR-PKAE does not use digital signature mechanisms, which can be added if receiver
unforgeability is needed. Still, note that attacker which compromises “helper” of user
A, still will not be able to forge ciphertexts to A from another user, and if user A’s
decryption keys are compromised for some time-periods attacker will not be able to
forge ciphertexts to A for a new time-period.
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Algorithm 3.3: ExpTUF−CTXT
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pka, ska) ← KeyGen(πg)
(pkb, skb) ← KeyGen(πg)
(c∗, T ∗)

← AEncrypt∗(π,ska,pkb,·,·)(π, δ, pka, pkb)
if (Decrypt∗(π, δ, pka, skb, c

∗, T ∗) = fail

or
Encrypt∗(π, ska, pkb, ·, T

∗) returned c∗)
then return (false)
else return (true)

Algorithm 3.4: ExpRUF−TR−CTXT
A,Γ (k)

πg ← Setup(1k)

(δ, πtr) ← TRSetup(1k)
(pka, ska) ← KeyGen(πg)
(c∗, T ∗, pk∗

b , sk∗
b )

← ATG(π,δ,·),Encrypt∗(π,ska,·,·,·)(π, pka)
if (Decrypt∗(π, δ, pka, sk∗

b , c∗, T ∗) = fail

or Encrypt∗(π, ska, pk∗
b , ·, T ∗) returned c∗

or (pk∗
b , sk∗

b ) �∈ [KeyGen(1k)]
or A queried TG(T∗))
then return (false)
else return (true)

AdvTUF−CTXT
A,Γ (k) = Pr[ExpTUF−CTXT

A,Γ (k) = true] .

AdvRUF−TR−CTXT
A,Γ (k) = Pr[ExpRUF−TR−CTXT

A,Γ (k) = true .

Fig. 3. TR-PKAE security experiments for the TUF-CTXT and RUF-TR-CTXT games

properties [10]: such solutions generally allow for a more efficient scheme, tighter
security bounds and more stringent security. Below we construct an example of
such a scheme that satisfies all of the above security requirements and is nearly as
efficient as BF-IBE scheme [8]. We start with a review of Bilinear Diffie-Hellman
Problem.

4.1 Bilinear Diffie-Hellman Problem

Let G1 and G2 be two abelian groups of prime order q. We will use additive
notation for group operation in G1 (where aP denotes P added a times for
P ∈ G1, a ∈ Zq) and multiplicative notation for G2 (ga denotes the g multiplied
a times for element g of G2). Let e : G1 × G1 → G2 be an admissible bilinear
map [8]. The properties of the groups and constructions of e are explained in
detail in [8]. We assume that the Decisional Diffie-Hellman Problem (DDHP)
is hard in G2. Note that as a trivial consequence of DDHP assumption, the
Discrete Logarithm Problem (DLP) is also hard in G2. As a consequence of the
above assumptions, it follows that DLP is hard in G1 [22].

Let G be a Bilinear Diffie-Hellman (BDH) Parameter Generator [8], i.e. a
randomized algorithm that takes positive integer input k, runs in polynomial
time in k and outputs prime q, descriptions of G1, G2 of order q, description of
admissible bilinear map e : G1 × G1 → G2 along with polynomial deterministic
algorithms for group operations and e and generators P ∈ G1, Q ∈ G2. We say
that algorithm A has advantage ε(k) in solving the computational BDH Problem
(BDHP) for G if there exists k0 such that:

Advcbdh
A,G (k) = Pr[〈q, G1, G2, e〉 ← G(1k), P ← G

∗
1, a, b, c ← Z

∗
q :

A(q, G1, G2, e, P, aP, bP, cP ) = e(P, P )abc] ≥ ε(k), ∀k > k0 (1)
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We say that G satisfies the computational BDH Assumption if for any ran-
domized polynomial-time algorithm A and any polynomial f ∈ Z[x] we have
Advcbdh

A,G (k) < 1/f(k) for sufficiently large k

4.2 Description of the Scheme

Let G be a BDH Parameter Generator. Figure 4 gives a complete description of
our construction10. The symmetric encryption scheme used is a straightforward
adaptation of the Fujisaki-Okamoto scheme [17]. We briefly demonstrate the
consistency of the scheme before moving on to security considerations. Given
ciphertext c = 〈Q1, Q2, σ ⊕K, m⊕ H4(σ)〉 computed using skA, pkB and T , we
note that in the corresponding Decrypt computations we have 1) K̂ = K since
e(Q2+pka, sPT +skb ·Q1) = e(r2P +skaP, sPT +skb ·r1PT ) = e([r2 +ska]P, [s+
r1 · skb]PT ) = e([s + r1 · skb]P, [r2 + ska]PT ) = e(Ppub + r1 · pkb, [r2 + ska]PT ), 3)
as in Fujisaki-Okamoto, it follows that σ̂ = σ, m̂ = m and 4) Q1 = H3(σ̂, m̂)P
and Q2 = H4(σ̂, m̂)P . Thus the original plaintext is retrieved.

4.3 Security of the Scheme

The following security results apply to TR-PKAE. The hash functions are mod-
eled as random oracles [6]. Due to space considerations, the detailed proofs
of these results are omitted from this extended abstract and are available on-
line [12]. First, we note the confidentiality properties of the proposed scheme.

Theorem 2 (IND-KC-CCA2) Let A be a IND-KC-CCA2 adversary that makes
q2 queries to H2. Assume that AdvIND−KC−CCA2

A,TR-PKAE (k) ≥ ε. Then there exists an
algorithm B that solves computational BDHP with advantage Advcbdh

B,G (k) ≥ 2ε
q2

and running time O(time(A)).

Theorem 3 (IND-RTR-KC-CCA2) Let A be a IND-RTR-KC-CCA2 adversary
that makes qd decryption queries, q2 queries to H2 and qtok queries to TG. Assume
that AdvIND−RTR−KC−CCA2

A,TR-PKAE (k) ≥ ε. Then there exists an algorithm B that solves

computational BDHP with advantage Advcbdh
B,G (k) ≥ 1

4q2·max(q2,qd)

[
ε

e·(1+qtok)

]3
and

running time O(time(A)), where e = 2.71828....

The proposed protocol also satisfies the authentication properties specified in
the previous section, i.e., TUF-CTXT and RUF-TR-CTXT.

Theorem 4 (TUF-CTXT) Let A be a TUF-CTXT adversary that makes qe en-
cryption queries and q2 queries to H2, and let AdvTUF−CTXT

A,TR-PKAE(k) ≥ ε. Then there
exists an algorithm B with computational BDHP advantage Advcbdh

B,G (k) ≥ ε
2·qe·q2

and running time O(time(A)).
10 As in [8], we can weaken surjectivity assumption on hash function H1. The security

proofs and results will hold true with minor modifications. We skip the details and
refer reader to [8].

.

.

.

.
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Setup: Given security parameter k ∈ Z
+, the following steps are followed

1: G takes k and generates a prime q, two groups G1, G2 of order q, an admis-
sible bilinear map e : G1 × G1 → G2 and arbitrary generator P ∈ G1.

2: The following cryptographic hash functions are chosen: 1) H1 : {0, 1}∗ →
G

∗
1, 2) H2 : G2 → {0, 1}n for some n, 3) H3, H4 : {0, 1}n × {0, 1}n → Z

∗
q

and 4) H5 : {0, 1}n → {0, 1}n. These functions will be treated as random
oracles in security considerations.

3: The message space is chosen to be M = {0, 1}n and the ciphertext space
is C = G

∗
1 × {0, 1}n × {0, 1}n. The general system parameters are πg =

〈q, G1, G2, e, n, P, Hi, i = 1...5〉
TRSetup :

1: Choose s ∈R Z
∗
q and set Ppub = sP .

2: The timed-release public system parameter is πtr = Ppub and the mas-
ter key δ is s ∈ Z

∗
q . The combined public parameters are π = πg||πtr =

〈q, G1, G2, e, n, P, Ppub, Hi, i = 1...5〉
KeyGen: Uniformly choose private key sk = a ∈ Z

∗
q , and compute the corresponding

public key pk as 0 �= aP ∈ G
∗
1 .

TG: On input the time encoding T ∈ {0, 1}n, output sPT where PT = H1(T )
Encrypt: Given the private key ska of the sender, public key pkb of receiver, plain-

text m ∈ M and time encoding T , encryption is done as follows: 1) sample
σ ∈R {0, 1}n, compute r1 = H3(σ, m) and r2 = H4(σ, m); set Q1 = r1PT and
Q2 = r2P ; 2) compute L = e(Ppub + r1 · pkb, (r2 + ska)PT ) and symmetric key
K = H2(L) and 3) the ciphertext c is set to be c = 〈Q1, Q2, σ ⊕K, m ⊕H5(σ)〉

Decrypt: Given ciphertext c = 〈Q1, Q2, c1, c2〉 encrypted using ska, pkb and time
T , one decrypts it as follows: (1) obtain tknT = sPT ; (2) K̂ = H2(e(Q2 +
pka, sPT + skb · Q1)); 3) retrieve σ̂ = c1 ⊕ K̂ and compute m̂ = c2 ⊕ H5(σ̂)
and 4) verify that Q1 = H3(σ̂, m̂)P and Q2 = H4(σ̂, m̂)P ; if so, output m̂,
otherwise output fail.

Fig. 4. The proposed TR-PKAE scheme

Theorem 5 (RUF-TR-CTXT).Let A be a RUF-TR-CTXT adversary that makes
qe encryption queries, q2 queries to H2, and qtok queries to TG, and let
AdvRUF−TR−CTXT

A,TR-PKAE (k) ≥ ε. Then there exists an algorithm B with computational
BDHP advantage Advcbdh

B,G (k) ≥ ε
2·q2·qe·e·(1+qtok) and running time O(time(A)),

where e = 2.71828....

5 Efficiency of TR-PKAE

To compare the proposed scheme to BF-IBE [8], note that, in terms of significant
operations – bilinear pairings, MapToPoint, exponentiations – TR-PKAE adds
3 additional exponentiations in G1 for encryption and 2 for decryption. More
precisely, encryption in TR-PKAE involves 1 bilinear map, 4 exponentiations
in G1 and 1 MapToPoint (to compute PT ). The decryption involves 1 bilinear
map and 3 exponentiations in G1 (assuming PT is pre-computed). Second, the
proposed scheme adds additional point in G1 to the ciphertext. Taking into
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account functionality of TR-PKAE and the fact that naive combinations yielding
hybrid protocols generally fail to provide required security, we expect hybrid
constructions of TR-PKAE to be at least as expensive as our scheme.

We implemented the proposed primitives using Miracl library v.4.8.3 [27] with
Tate pairing for the bilinear map. The group G1 was chosen to be a subgroup
of order q in a supersingular elliptic curve E over Fp, where p is a 512 bit and
q is a 160 bit primes. Group G2 was a subgroup of a finite field of order 1024
bits. We used a P4-3.2 GHz ”Northwood” (800MHz FSB) with 2GB of 400
MHz RAM desktop. The performance measurements are summarized in Table 1
and are all averaged over 10000 runs, except that the RSA results were ob-
tained by running OpenSSL v.0.9.8 speed command. As expected, the proposed
TR-PKAE is somewhat more expensive than BF-IBE in encryption/decryption,
but when BF-IBE is extended to provide comparable functionality to TR-PKAE
we expect the resulting scheme to be at least as expensive as the proposed
protocol.

Table 1. Cost of basic operations

Function modulus (bits) exponent (bits) performance (msec)
RSA(Sig/Dec) 1024 1024 2.96
RSA(Ver/Enc) 1024 16 (e = 216 + 1) 0.14

Scalar Mul in EC over Fp 160 160 2.23
MapToPoint 512 - 1.52

Pairing 512 160 18.15
TR-PKAE Enc 512 160 29
TR-PKAE Dec 512 160 25

BF-IBE Enc 512 160 24
BF-IBE Dec 512 160 21
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Abstract. We consider the problem of comparing two encrypted num-
bers and its extension – transferring one of the two secrets, depending on
the result of comparison. We show how to efficiently apply our solutions
to practical settings, such as auctions with the semi-honest auctioneer,
proxy selling, etc. We propose a new primitive, Conditional Encrypted
Mapping, which captures common security properties of one round pro-
tocols in a variety of settings, which may be of independent interest.

Keywords: Two Millionaires with encrypted inputs, auctions, private
selective payments, conditional encrypted mapping.

1 Introduction

In this paper we study secure evaluation of the Greater Than (GT) predicate.
It is one of the most basic and widely used functionalities. It plays an especially
important role in secure financial transactions and database mining applications.

Auctions and Bargaining. With the expansion of the Internet, electronic
commerce and especially online auctions continue to grow at an impressive pace.
Many sellers also discover the appeal of flexible pricing. For example, sites such
as priceline.com ask a buyer for a price he is willing to pay for a product, and
the deal is committed to if that price is greater than a certain (secret) threshold.

In many such situations, it is vital to maintain the privacy of bids of the
players. Indeed, revealing an item’s worth can result in artificially high prices or
low bids, specifically targeted for a particular buyer or seller. While a winning
bid or a committed deal may necessarily reveal the cost of the transaction, it is
highly desirable to keep all other information (e.g. unsuccessful bids) secret.

There has been a large stream of work dedicated to ensuring privacy and
security of online auctions and haggling (e.g.,[3,5,6,14]). Our work complements,
extends, and builds on it. We discuss the Private Selective Payments protocols
of Di Crescenzo [5] and show how our improvements benefit this application.

The need for comparing encrypted numbers. It is often beneficial to both
sellers and buyers to employ a mutually semi-trusted server S to assist them
in their transaction. The use of such a server simplifies secure protocol design,
allowing for more efficient protocols. It allows the seller to be offline most of the
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time, allowing S to act on behalf of the seller in handling bid requests. Further,
a reputable S (such as eBay) may provide additional assurance of security to the
potential buyer. However, since sellers and buyers wish to hide their inputs from
S, the latter must work with, e.g. compare, encrypted numbers. We propose a
formalization of this setting, as well as new, more efficient GT protocols for it.

Other applications. We mention other interesting applications that benefit
from efficient secure evaluation of GT. These applications might need to employ
a proxy server S, as above; if so, our work improves their performance as well.

In Distributed Database Mining, several parties, each having a private data-
base, wish to determine some properties of, or perform computations on, their
joint database. Many interesting properties and computations, such as trans-
action classification or rule mining, involve evaluating a very large number of
instances of GT [10,13]. Our improvements also apply to solving interval mem-
bership problems (reduced to GT in [2]). The immediate uses lie in appointment
scheduling, flexible timestamp verification, biometrics, etc. Certain kinds of set
intersection problems, as studied in [7,9], can be represented succinctly as GT
instances, resulting in more efficient solutions using our constructions.

1.1 Our Contributions, Setting and Outline of the Work

We approach several practical problems (auctions, proxy selling, GT) in a variety
of settings, concentrating on a setting with a semi-honest helping server.

We are interested in one-round protocols, where clients send their encrypted
inputs to a “cypto computer” S, who produces an output that can be decoded by
the clients. Such scenarios arise in a variety of practical settings. To enable formal
discussion of crucial parts of our protocols in a number of settings simultaneously,
we extract what these settings have in common – the following requirements on
the output of S: it allows the reconstruction of the value of the function, and does
not contain any other information. This allows to postpone the (easy but tedious)
discussion of setting-specific clients’ privacy requirements. We formalize (Def.
1) a special case of this notion, which we call Conditional Encrypted Mapping
(CEM). Here, S has two secrets s0, s1, is given encryptions of two values x, y,
and outputs something that allows (only) reconstruction of sQ(x,y), where Q is
a fixed public predicate. We note that our statistical privacy requirement on the
output of S is very strong, e.g., precluding Yao’s garbled circuit-based solutions.

We propose two new, more efficient CEM protocols for the GT predicate
(Sect. 4). We use ideas of the recent protocol of Blake and Kolesnikov [2]. Their
protocol requires S to know one of the compared numbers, and thus cannot be
naturally cast as a CEM. We overcome this with a new tool – a randomized way
to represent secrets to be transferred by S (presented in Sect. 4.3). The cost of
our solution is comparable to that of [2]. We believe this method may be used to
improve efficiency of other constructions relying on homomorphic encryptions.

In Sect. 5, we show how our constructions result in new, more efficient, proto-
cols for the examples of private selective payments of Di Crescenzo [5] and proxy
selling. We discuss methods of protection against malicious behavior of parties.
We mention that efficient CEM schemes exist for any NC1 predicate (Sect. 4.7).
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In Sect. 6 we summarize and compare resource requirements of schemes based
on the work of Di Crescenzo [5], Fischlin [6], Laur and Lipmaa [12] and ours.

2 Related Work

We discuss related work in both directions of our contributions – definition of
CEM and concrete protocols for auction-like functionalities.

Variants of CEM. Several notions similar to CEM were previously proposed.
The notion of Conditional Oblivious Transfer (COT) was introduced by Di

Crescenzo, Ostrovsky and Rajagopalan [4] in the context of timed-release en-
cryption. It is a variant of Oblivious Transfer (OT) [16]. Intuitively, in COT,
the two participants, a receiver R and a sender S, have private inputs x and
y respectively, and share a public predicate Q(·, ·). S has a secret s he wishes
(obliviously to himself) to transfer to R iff Q(x, y) = 1. If Q(x, y) = 0, no in-
formation about s is transferred to R. R’s private input and the value of the
predicate remain computationally hidden from S.

A similar notion to COT, Conditional Disclosure of Secrets (CDS), was intro-
duced by Gertner, Ishai, Kushilevitz and Malkin [8] in the context of multi-server
Symmetrically Private Information Retrieval (SPIR). In their work, the receiver
of the secret apriori knows the inputs of the (many) senders. The secret is un-
known to the receiver and sent to him only if a predicate holds on the inputs.

Aiello, Ishai and Reingold [1] adapt CDS into the single server setting, where
the (single) sender holds encryptions of parts (i.e. bits) of input. The receiver
knows both the input and the decryption key. Again, the receiver does not know
the secret; it is sent to him only if a predicate holds on the input.

Laur and Lipmaa [12] extend the study of CDS for the case of additive ho-
momorphic encryptions, give generic constructions and specific protocols (GT).

The lack of requirement of privacy of the value of Q(x, y) and the sender’s in-
put often prevents the use of COT or CDS as a building block of other protocols.
Di Crescenzo [5] described a stronger concept, Symmetrically-private COT, by
additionally requiring that both parties’ inputs x, y remain private. Later, Blake
and Kolesnikov [2], independently proposed and formalized essentially the same
notion, which they call Strong COT. Of the above, CEM is most similar to this
notion. We note that CEM is a stronger notion, explicitly allowing reuse of gen-
erated encryption keys in multiple executions. We also have the feature of not
specifying the precise security properties of the used encryptions, allowing for
more flexibility and applicability (see Sect. 1.1 and 3 for more discussion).

Auctions and Private Selective Payments Protocols (PSPP). PSPP,
introduced by Di Crescenzo [5], solve the following practical problem. A server
has a private message representing, say, a signed authorization, and wants to
give it to one among several clients, according to some public criteria, evaluated
on the server’s and clients’ private inputs. Client’s inputs may represent their
auction bids, and a server’s input may be a lowest acceptable price or a required
signature. Di Crescenzo considers a natural instance of PSPP, where the highest
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bidding client obtains the authorization. He considers a setting with a helping
semi-honest server and malicious clients.

Di Crescenzo designs his protocols in several phases. During registration, ex-
ecuted between each client and the server, the client’s public/private key pair is
established, and the server obtains the public key. Then the selection protocol is
executed between all registered clients and the server, during which the selected
client obtains the server’s secret. Finally, in the verification phase, the selected
client presents his claim – the obtained secret – and convinces the server that
he indeed is the selected client. The registration and verification phases are de-
signed using standard cryptographic tools; it is the selection phase that is the
challenging computationally expensive area. The main contribution of [5] is the
novel maximum bidder selection protocols.

Our main contribution, GT-CEM constructions, can be used to replace the
core – the selection protocols – of the PSPP of [5] (with corresponding natural
modifications of the other two phases). Appropriately modified protocols of Fis-
chlin [6] and Laur and Lipmaa [12] can be similarly used. We discuss more details
and the resulting efficiency improvements of our protocols in Sect. 5 and 6.

We mention, but do not discuss in detail the auction protocols for use in the
settings, significantly different from ours. Naor, Pinkas and Sumner [14] use Yao’s
garbled circuit approach in the setting with a semi-honest mostly offline server,
whose role is to ensure that the auctioneer does not cheat. Cachin [3] suggested
a protocol for private bidding with the semi-honest server in the setting where
the bidders additionally exchange messages between each other.

2.1 Notation, Definitions and Preliminaries

A function μ : N  → R is negligible if for every positive polynomial p(·) there ex-
ists an N , such that for all n > N, μ(n) < 1/p(n). A probability is overwhelming
if it is negligibly different from 1. Statistical distance between distributions X
and Y is defined as Dist(X, Y ) = 1/2

∑
α |Pr(X = α) − Pr(Y = α)|.

Informally, an encryption scheme E = (Gen, Enc, Dec) is additively homo-
morphic, if it is possible to compute an encryption of x + y from encryptions of
x and y. E is probabilistic if its encryption function randomly encrypts plaintext
as one of many possible ciphertexts. Many such schemes (e.g. Paillier [15]) exist.

We denote a uniform sampling of an element r of domain D by r ∈R D.

3 Conditional Encrypted Mapping

We consider the setting where one of the players is a facilitator of the compu-
tation of the multiparty functionality f . This player – the Server S – is given
the encrypted inputs to f ; he produces some representation of the value of f .
The value of f can later be decoded from this representation using the private
key of the employed encryption scheme. This scenario is appealing for its round
efficiency and is widely applicable in practice. For example, it applies to auctions
with semi-honest servers. There, the server S is given encryptions of parties’ bids,
and he wants to commit to a deal (e.g. by sending a secret) with the winner.
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The first step in designing secure protocols is making explicit the setting in
which they are run and the necessary security requirements. This is a difficult
task, especially since we would like our constructions to be applicable to a variety
of settings. For example, the server S may obtain encrypted inputs from parties
A and B and let either A or B or a third party C decode the output. Protocols
can use encryption schemes, which may or may not be re-initialized for each
execution of the protocol. Players A, B or C may have different levels of trust.

Encompassing all these situations in one definition is difficult. We propose to
extract and formalize what these definitions would have in common – require-
ments of correctness and privacy of the output of the semi-honest Server S. This
modularity is very convenient, since we can now model S as a non-interactive
algorithm. A variety of setting-specific requirements for hiding the input from
the server can be later defined and satisfied with appropriate use of encryption.

Encrypted Mapping. We model the Server S as a polytime randomized map-
ping algorithm Rmap. Rmap takes as input the public key of the encryption
scheme E, the (encrypted with E) input(s), and outputs some representation of
the value of f . Of course, this output should be interpreted. We require existence
of the polytime recovery procedure Rec, which takes the representation of the
value of f and the private key of E and computes the intended output (this is the
correctness condition). Further, we require that the randomized representation
statistically hides all other information, ensuring privacy of arbitrary composi-
tions of outputs of Rmap even against computationally unlimited attackers. We
call the pair (Rmap, Rec) an Encrypted Mapping (EM). We formalize a variant
of this notion in Def. 1 below.

We choose not to specify the requirements of security of encryption in the def-
inition. This allows a protocol designer to concentrate on the high-level combina-
torial properties of EM and defer discussion of detailed setting-specific concerns.
Such low-level concerns include considering whether some inputs to S contain
decryption keys (which would allow S to learn more than he should) and con-
sidering malicious behaviour, such as providing invalid or substituted inputs. A
protocol designer can now first describe the combinatorial Rmap and Rec, which
would imply solutions to a variety of settings in the semi-honest model, assuming
the semantic security of the employed encryption scheme. Afterwards, the pro-
tocols can be adapted to a variety of specific settings and modified to withstand
certain malicious behaviours (e.g. using the conditional disclosure techniques of
[1,12]. See more in Sect. 5.1).

We wish to give a very strong definition, so that the constructions can be used
in a variety of settings. In particular, we want our construction to work with all
instantiations of used encryption schemes. In many popular encryption schemes
(e.g. Paillier [15]) the plaintext domain DP varies with different instantiations.
Many interesting functions f are defined on fixed domains, independent of DP .
We handle this detail by ensuring that DP includes the domain of inputs to f by
appropriately modifying the family of encryptions to only include members with
sufficiently large DP . We note that a sufficiently large DP is usually implied by
the semantic security requirement of the scheme.
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We remark that we achieve a very strong definition by quantifying over all
valid inputs and randomness used by encryptions – i.e. over everything but the
randomness used by Rmap. This, for example, ensures that adversary does not
benefit from knowing the randomness used for encrypting inputs to Rmap.

Conditional Encrypted Mapping. In this work, we are mainly interested in
constructing the protocols for transferring a secret (e.g. a sale commitment or a
rejection) depending on whether a certain predicate on two inputs (e.g. the bid is
greater than the asking price) holds. We call the corresponding EM a Conditional
Encrypted Mapping (CEM). We give a formal definition for this special case and
note that a more general EM definition can be naturally constructed.

We define CEM with respect to an encryption scheme E = (Gen, Enc, Dec).
Denote by (sk, pk) a public/private key pair for E, and by Epk denote the ini-
tialized encryption scheme E. Let DPpk

denote the plaintext domain of Epk and
DRpk

denote the domain of randomness used by Encpk. Denote by Encpk,α(x)
the encryption of x under pk using randomness α. Let Q : DQ × DQ  → {0, 1}
be a deterministic predicate defined on a fixed domain. Recall, we only consider
families of Epk where DQ ⊂ DPpk

. Let ν be the security parameter1. Let DS be
the (fixed) domain of secrets2.

Definition 1. (Q-Conditional Encrypted Mapping) AQ -ConditionalEncrypted
Mapping (Q-CEM) is a pair of polytime algorithms (Rmap, Rec) (with implicitly
defined domain of mappings DMpk

), such that the following holds.
The probabilistic randomized mapping algorithm Rmap takes as input

(s0, s1, e0, e1, pk), where e0, e1 are encryptions under Epk, and s0, s1 ∈ DS.
Rmap outputs an element from DMpk

. The deterministic recovery algorithm Rec
takes as input secret key sk and an element from DMpk

and outputs an element
from the domain of secrets DS or a failure symbol ⊥.

Rmap and Rec satisfy the following conditions:

– (correctness) ∀(sk, pk) ← Gen(ν), ∀s0, s1 ∈ DS , ∀α, β ∈ DRpk
, ∀x, y ∈ DQ :

with overwhelming probability in ν, taken over random inputs of Rmap:
Rec(Rmap(s0, s1, Encpk,α(x), Encpk,β(y), pk), sk) = sQ(x,y).

– (statistical privacy) ∃ Sim, s.t. ∀(sk, pk) ← Gen(ν), ∀s0, s1 ∈ DS , ∀x, y ∈
DQ, ∀α, β ∈ DRpk

: the statistical distance Dist(Sim(sQ(x,y), pk),
Rmap(s0, s1, Encpk,α(x), Encpk,β(y), pk)) is negligible in ν.

Note, Def. 1 does not require E to have any security properties. Thus, formally,
inputs e0, e1 to Rmap are simply encodings of elements in DQ (and Q-CEM
can be constructed unconditionally). In practice, however, we envision using
a semantically secure E; thus we call e0, e1 encryptions. Jumping ahead, we
1 In practice, we are also interested in the correctness parameter λ. Security and

correctness properties of Def. 1 are formulated with the notion of statistical closeness.
Since ν and λ are polynomially related, we, for simplicity, use only the parameter ν.

2 Even though for simplicity of presentation the domains DQ and DS are fixed, their
elements representation is polynomially related to all other parameters. Further, in
practice (and in our constructions), DQ and DS can grow with ν at no extra cost.
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note that in our GT constructions 4.4, the inputs e0, e1 to Rmap are bitwise
encryptions of the clients’ bids. Note that Def. 1 allows this interpretation, since
encrypting x bit-by-bit can be viewed as an encryption scheme itself.

Further, Def. 1 does not guarantee either correctness or privacy if e0 or e1 are
not proper encryptions of elements of DQ. This is sufficient in the semi-honest
model; we discuss methods of handling malicious behaviour in Sect. 5.1.

4 The GT-CEM Construction and Protocols

Our construction builds on the ideas of the GT protocol of Blake and Kolesnikov
[2]. Their protocol can be cast as a variant of GT-CEM, where one of the inputs
is given in plaintext. We present their main idea and observe that a part of their
protocol – the randomization procedure – requires S to know his input. In Sect.
4.2, we discuss the necessary properties of our new randomization, which works
with encryptions only. In Sect. 4.3, we present such a randomization procedure
and in Sect. 4.4 we give a GT-CEM construction. We give an alternative ran-
domization procedure in Sect. 4.5, which can be incorporated into our GT-CEM.

4.1 The GT Protocol of [2]

We give a brief overview of the protocol and direct the reader to [2] for more
details. Recall, there are two players, a receiver R with input x and a sender S
with input y, s0, s1. S needs to send R the secret sGT (x,y).

The protocol operates on (homomorphically encrypted) bits of the inputs. The
idea is to isolate the “important” position – the one where input bit strings first
differ – by mapping it to a predetermined value and simultaneously randomizing
values in all other positions. The rest is easily accomplished by applications
of linear functions. In this work, we pay special attention to and improve the
isolating randomization procedure.

In [2], the Receiver R sends bitwise additively homomorphic encryption of his
input x = 〈x1, ..., xn〉 to the Sender S. For each bit position i, S computes (an
encryption of) fi = xi ⊕ yi, i.e. whether xi = yi (this requires the knowledge
of yi; knowing Enc(yi) is not sufficient). It is easy to see that GT (x, y) = xj ,
where j = minfi �=0i. S’s randomization procedure crucially relies on the fact that
fj = 1. Our randomization relies on the (encrypted) difference vector di = xi−yi,
the “important element” of which may be (an encryption of) one of {−1, 1}.

4.2 The Intuition of GT-CEM and the Formalization of the
Randomization Requirements

Recall, we are given secrets s0, s1 and bitwise encryptions of inputs x and y. We
can compute an encryption of the bit difference vector d, where di = xi − yi.
Elements of the difference vector d assume one of {−1, 0, 1}. Let j = mindi �=0i
be the index of the “important” position. Our goal is to isolate the value dj by
computing an encryption of vector μ, such that ∀i �= j, μi ∈R DPpk

and μj = dj .
As in [2], we can obtain such μi for i ≥ j by computing for i = 1..n: μ0 = 0; μi =
riμi−1 + di, where ri ∈R DPpk

. Now vector μ is a vector of encryptions of (in
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order): one or more 0, either a 1 or a −1, one or more random elements of DPpk
.

We need to map the zeros of μ to random elements in DPpk
, while preserving

the properties of μi, i ≥ j. Our randomization maps −1 → s0, 1 → s1 (under
encryption). At the same time, it maps 0 and random elements from DPpk

to
random elements from DPpk

. It is not hard to see (and we explicitly show it in
Sect. 4.4) that such randomization naturally leads to a GT-CEM.

We believe that such randomization may be useful in other applications as
well. Therefore, we formalize its requirements. We present the definition in a
slightly more general way, by allowing arbitrary constants instead of −1, 1. Fur-
ther natural extensions of this definition are possible.

Let v0, v1 ∈ Z\{0} be fixed, and v0 �= v1. Let E, ν, sk, pk, Epk, DPpk
, DRpk

, DS

be as in Def. 1. Let i ∈ {0, 1}. We view vi as an element of DPpk
in the natural

manner (i.e. as vi mod |DPpk
|). We note that even though this representation

may vary with the choice of pk, vi is a constant. Further, we require vi �= 0
mod |DPpk

| and v0 �= v1 mod |DPpk
|.

Definition 2. ((v0, v1)-Randomizing Mapping) A (v0, v1) - Randomizing Map-
ping (RM) is a pair of polytime algorithms (Rmap, Rec) (with implicitly defined
domain of mappings DMpk

), such that the following holds.
The probabilistic randomized mapping algorithm Rmap takes as input

(s0, s1, e, pk), where e is an encryption under Epk, and s0, s1 ∈ DS. Rmap out-
puts an element from DMpk

. The deterministic recovery algorithm Rec takes as
input secret key sk and an element from DMpk

and outputs an element from the
domain of secrets DS or a failure symbol ⊥.

Rmap and Rec satisfy the following conditions:

– (correctness) ∀(sk, pk) ← Gen(ν), ∀i ∈ {0, 1}, ∀s0, s1 ∈ DS , ∀α ∈ DRpk
,

for x ∈R DPpk
, with overwhelming probability in ν:

Rec(Rmap(s0, s1, Encpk,α(vi), pk), sk) = si

Rec(Rmap(s0, s1, Encpk,α(x), pk), sk) =⊥,
where the probability is taken over choices of x and random inputs of Rmap.

– (statistical privacy at v0, v1) ∃Sim, s.t. ∀(sk, pk) ← Gen(ν), ∀s0, s1 ∈ DS ,
∀i ∈ {0, 1}, ∀α ∈ DRpk

: the statistical distance
Dist(Sim(si, pk), Rmap(s0, s1, Encpk,α(vi), pk)) is negligible in ν.

– (statistical privacy at 0 and at random elements of DPpk
) ∃Sim0, such that

∀(sk, pk) ← Gen(ν), ∀s0, s1 ∈ DS , ∀α ∈ DRpk
: the statistical distances

Dist(Sim0(pk), Rmap(s0, s1, Encpk,α(0), pk)) and Dist(Sim0(pk), Rmap
(s0, s1, Encpk,α(R), pk)) are negligible in ν, where R is uniform on DPpk

.

4.3 A Space-Efficient (−1, 1)-RM

We present a construction for (−1, 1)-RM, based on the Paillier encryption
scheme [15], which we use to construct GT-CEM. Let E be the Paillier scheme
initialized as described in Def. 2. Let Rmap be given an encryption under Epk.
Our (−1, 1)-RM is space optimal – Rmap outputs a single encryption under Epk.

At first glance, the requirements on Rmap are conflicting: we must satisfy
three data points ((v0, s0), (v1, s1), (0, random)) with a linear function (only lin-
ear functions can be applied under the homomorphic encryption). Our idea is for



214 I.F. Blake and V. Kolesnikov

Rmap to produce not encryptions of secrets si, but of their randomized encodings
Si. We carefully randomize the encodings Si, such that their linear combination
of interest (i.e. the value that 0 is mapped to) is a random element in DPpk

.
Let f = ax + b be a linear mapping, such that f(−1) = −a + b = S0 and

f(1) = a+b = S1. Then b = (S0+S1)/2 and a = S1−(S0+S1)/2 = (S1−S0)/2.
We want to ensure that f(0) = b = (S0 + S1)/2 is random, while, for i ∈ {0, 1},
Si encodes si and contains no other information.

Construction 1 ((−1, 1)-RM)
Let λ and ν be the correctness and security parameters. Let the plaintext group
of Epk be DPpk

= ZN , where N = pq is of bit size n > ν. Let k = !(n − 1)/2".
Define the domain of secrets to be DS = DSpk

= {0, 1}k−λ, and the domain of
mappings DMpk

to be the domain of encryptions under Epk.
Rmap on input (s0, s1, e, pk) proceeds as follows. Set s′i = si0λ (to help dis-

tinguish secrets from random strings). View s′0, s
′
1 as elements of ZN . Choose

R ∈R N and a bit c ∈R {0, 1}. Let r1 (resp. r0) be the integer represented by k
lower (resp. remaining) bits of R, i.e. R = r02k + r1.

Set S0, S1 as follows. If c = 0, then set S0 = r02k + s′0 and S1 = s′12k + r1. If
c = 1, then set S0 = s′02

k + r1 and S1 = r02k + s′1.
Compute a = (S1 − S0)/2 mod N and b = (S0 + S1)/2 mod N .
Finally, apply f = ax + b to e under the encryption and re-randomize the

result, that is, choose r′ ∈R Z∗
N and output eagbr′N mod N2.

Rec on input (e′, sk) proceeds as follows. Rec computes d = Decsk(e′). Let
dn, ..., d1 be the bit representation of d. Let D1 = d2k, ..., dk and D0 = dk, ..., d1.
For i ∈ {0, 1}, if Di = s0λ, output s and halt. Otherwise output ⊥.

Theorem 1. (Rmap, Rec) described in Construction 1 is a (−1, 1)-RM.

Proof. (Sketch): We first show that the two correctness properties hold. It is easy
to follow the construction of Si and observe that either its lower k bits or the
remaining bits contain the intended secret si. Further, the part of Si that does
not represent the secret is random. Therefore the secret is easily distinguishable
thanks to the added trailing zeros. Thus, the first correctness condition holds
with overwhelming probability in λ. Further, f applied by Rmap is a linear func-
tion, which is a permutation on ZN with overwhelming probability in ν. (Indeed
f = ax+ b is not a permutation only if a = (S1−S0)/2 is not invertible.) There-
fore, Rmap, evaluated on an encryption of a random element of ZN , produces a
random encryption of a random element of ZN . It is easy to see that Rec outputs
⊥ on an encryption of a random element with overwhelming probability in λ.

The privacy at v0, v1 condition also holds. Indeed, given a secret s ∈ DS , and
pk, the required Sim(s, pk) simulates the output of Rmap(s0, s1, Encpk,α(vi), pk)
as follows. Choose a random bit c′ ∈R {0, 1} and a random S′ ∈ N . If c′ = 0
set the lower k bits of S′ to be s0λ. If c′ = 1 set the the higher n−k bits of S′ to
be s0λ. Return a random encryption of S′ under pk. It is easy to see that Sim
satisfies the necessary conditions.

The privacy at 0 and at random elements of ZN holds for the following reasons.
Firstly, as shown in the proof of correctness, Rmap, evaluated on encryptions
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of random elements of ZN , produces random encryptions of random elements
of ZN . This is easy to simulate with only knowing pk. It remains to show that
Rmap evaluated on an encryption of 0 does the same. Recall, Rmap applies f
to the input encryption. There are two cases.

If c = 0 then f(0) = 1/2(S0 + S1) = 1/2(r02k + s0 + s12k + r1) = 1/2(r02k +
r1 + s0 + s12k) = 1/2(R + s0 + s12k).

If c = 1 then f(0) = 1/2(S0 + S1) = 1/2(s02k + r1 + r02k + s1) = 1/2(r02k +
r1 + s1 + s02k) = 1/2(R + s1 + s02k).

In any case, f(0) is random on ZN due to the additive random term R/2. �

4.4 GT-CEM Based on Bitwise Paillier Encryption of Inputs

Let n be the length of the compared numbers. We will use the Paillier en-
cryption scheme E to encrypt inputs to Rmap in the bitwise manner. That is,
Gen(ν) is run, fixing (sk, pk) and the instance Epk. The inputs to Rmap are
(s0, s1, e0, e1, pk), where e0 = 〈Encpk(x1), ..., Encpk(xn)〉, e1 = 〈Encpk(y1), ...,
Encpk(yn)〉, where x1 and y1 are the most significant bits. The sender addition-
ally has the secrets s0, s1 ∈ DS as inputs. Let (Rmap1, Rec1) be a (−1, 1)-RM
based on the Paillier encryption scheme (e.g. Constr. 1), instantiated with Epk.
Let DMpk1 , DS1 be the domains of mappings and secrets of (Rmap1, Rec1).

Construction 2 (GT-CEM)
Let λ and ν be the correctness and security parameters. Let the plaintext group
of Epk be DPpk

= ZN , where N = pq is of bit size n > ν. Define the domain of
secrets DS = DS1 and the domain of mappings DMpk

= Dn
Mpk1

.
Rmap on input (s0, s1, e0, e1, pk) computes, for each i = 1..n :

1. an encryption of the difference vector d, where di = xi − yi.
2. an encryption of vector γ, s.t. γ0 = 0 and γi = riγi−1 + di, where ri ∈R N .
3. a randomized mapping vector μ, where μi = Rmap1(s0, s1, Encpk(γi)).

Rmap outputs a random permutation π(μ).
Rec on input (μ′

1..μ
′
n, sk) proceeds as follows. For i=1..n, let zi =Rec1(μ′

i, sk).
If zi �= ⊥, output zi and halt. Otherwise, if ∀i = 1..n, zi = ⊥, output ⊥.

Theorem 2. Construction 2 is a GT-CEM.

Proof. (Sketch) We will first show that Construction 2 satisfies the correctness
requirement. It is easy to see that the homomorphic properties of the encryption
scheme allow Rmap and Rec to perform all necessary operations.

Let j be the position where x and y first differ; thus dj determines GT(x, y).
With overwhelming probability, γ is a vector with the following structure: it
starts with zero or more zeros, then, in position j, a one or a minus one, then a
sequence of random elements in N . It is not hard to see that, by the correctness
and privacy properties of (−1, 1)-RM, Rec, using Rec1, will recover sGT (x,y).

We now show that the privacy condition holds as well. We construct simulator
SimGT (s, pk), where pk is the public key established in the setup phase and
s = sQ(x,y). SimGT (s, pk) has to generate a distribution statistically close to the
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output of Rmap. SimGT (pk, s) proceeds as follows, using the simulators Sim0 and
Sim, required by (−1, 1)-RM. It runs Sim0(pk) n− 1 times and Sim(s, pk) once,
obtaining a vector z′ of n simulated mappings. SimR(s, pk) outputs a random
permutation π′(z′). It is easy to see that SimGT (pk, s) statistically simulates the
output of Rmap, due to properties of Sim0 and Sim. �

4.5 A General (v0, v1)-RM Construction

We informally present the construction for any two constants v0, v1. We note
that it can be naturally generalized for any number of constants v1, ..., vn.

Rmap proceeds as follows. First, as in Construction 1, add trailing zeros to
s0, s1 to distinguish them from random elements in DPpk

. For i = 1..2 do the
following. Choose random linear functions fi = aix+ bi on the plaintext domain
DPpk

of the underlying (Paillier) encryption, such that fi(vi) = si. Apply fi

to the encrypted input, obtaining Encpk(si) if x = vi, or an encryption of a
random value otherwise. Re-randomize and randomly permute the two obtained
encryptions. It is easy to see that this sequence encodes at most a single secret
si and contains no other information. Rec decrypts the vector, recognizes the
secret and outputs it with overwhelming probability.

This (v0, v1)-RM can be used with Construction 2, producing GT-CEM with
slightly different performance properties. Because this (v0, v1)-RM uses larger
domains of mappings DMpk

than Construction 1, the resulting GT-CEM is less
efficient for transferring smaller secrets. When the transferred secrets are large,
this (v0, v1)-RM performs better due to slightly smaller loss in bandwidth due
to redundancy in secrets. See Table in Sect. 6 for detailed comparisons.

4.6 Resource Analysis

We evaluate the message and modular multiplication efficiency of Construction
2, used with (−1, 1)-RM of Sect. 4.3 (which we refer to as CEM1) and of Sect. 4.5
(CEM2). The generated encryption key is reused for a polynomial number of exe-
cutions of our protocols, thus we do not count the relatively small computational
cost of key generation. Let n be the length of inputs x and y in base 2, and N be
the size of the plaintext domain of the Paillier scheme. Then the message com-
plexity (the size of the output of Rmap) of CEM1 is l1 = n log(N2) = 2n logN
bits, and that of CEM2 is l2 = 2n log(N2) = 4n logN . We do not count the
encrypted inputs x, y for message complexity, since their length is usually small,
and, in many settings, they are not sent to S, but computed by S.

To encrypt the 2n input bits, 2n logN multiplications are required. Step 1 of
Construction 2 requires n multiplications, and step 2 requires (log N + 1)n mul-
tiplications. Step 3 of CEM1 requires (3 log N + 2)n multiplications (2 log N + 1
multiplications for application of the linear function f , and log N to re-randomize
the encryption). Similarly, step 3 of CEM2 requires (6 logN+4)n multiplications.

Rec of CEM1 (resp. CEM2) costs 2n logN (resp. 4n logN) multiplications
(We expect to perform half of them before Rec recovers the secret and halts).

In total, CEM1 (resp. CEM2) requires no more than ≈ 8n logN (resp. ≈
13n logN) modular multiplications. Of those, 4n logN (resp. 7n log N) are



Conditional Encrypted Mapping and Comparing Encrypted Numbers 217

performed by Rmap, and 4n logN (resp. 6n logN) are spent for encrypting in-
puts and reconstructing the output. Note that the encryption and re-encryption
multiplications can be precomputed once the encryption scheme is initialized.

Our modular multiplications are four times slower than those of [5,6], since
they are performed mod N2, while the Goldwasser-Micali (GM) multiplications
(used in [5,6]) are mod N .

One execution of CEM1 (resp. CEM2) allows transfers of secrets of size up to
(log N)/2 − λ (resp. log N − λ) for the same cost.

Care must be taken in choosing appropriate parameters for comparisons of
our results with the performance of other schemes, in particular those based
on the potentially weaker quadratic residuosity assumption ([5,6]). Note that
in practice no known attack on the Paillier system is better than factoring the
modulus N . Clearly, factoring based attacks would also be effective against the
GM scheme with the same modulus size. Thus we assume that the security of
Paillier and GM schemes with the same size moduli is approximately the same.

The performance comparisons are summarized in the Table in Sect. 6.

4.7 CEM for any NC1 Predicate From Homomorphic Encryption

We note that it is possible to construct CEM for any NC1 predicate Q, using, for
example, an information-theoretic abstraction of Yao’s garbled circuit [11]. The
idea is to assign two specially constructed secrets to each input wire of the (poly-
size) formula representation of the NC1 circuit. Here each secret corresponds to
one of the two possible wire values. The secrets satisfy the following property: a
set of secrets, one for each wire of the circuit, allows us to compute the value of
the circuit on the corresponding input, and carries no other information.

It is easy to use the homomorphic encryption properties to allow Rec to
reconstruct only one appropriate secret for each wire. Combined with the tools
discussed in the previous paragraph, this implies CEM for any NC1 predicate.

5 Protocol Constructions from GT-CEM

As mentioned in the discussion of CEM in Sect. 3, natural protocol constructions
immediately arise from CEM in the semi-honest model. We demonstrate this
on a special case of PSPP of [5], where the server S runs the auction with two
bidders C0, C1. (Our solution can naturally accomodate more bidders, using, e.g.,
technique of Sect. 5.2 of [5].) As discussed in Sect. 2 and [5], in the initialization
phase, each of the clients generates and publishes his public key pki with S.

The main selection phase proceeds as follows. Each client Ci sends to S two
encryptions of his input, with his own and with the other client’s public keys
(i.e. S obtains Encpki(xi), Encpk1−i (xi)) from Ci). S applies GT-CEM twice
(once under each key) and sends the outputs of Rmap to the corresponding Ci

for reconstruction. That is, S sends mi = Rmap(s0, s1, Encpki(xi), Encpki(x1−i),
pki) to each Ci, who then applies Rec(ski, mi) and obtains s1 if his bid is greater
and s0 otherwise. (We note that the receipt of the non-winning s0 is crucial to
hide the rank of the bid of Ci in auctions with more than two parties [5].)
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It is easy to see that this protocol is secure in the semi-honest model. Indeed,
by the definition of CEM, each mi contains only the intended secret and no other
information. Further, it is not hard to see that computationally-bounded S does
not learn anything from seeing semantically secure encryptions of clients’ bids
(under a natural assumption that the secrets s0, s1 are a polytime computable
function of the transcript of S’s view of execution of the auction and arbitrary
information available prior to the key generation phase).

5.1 Handling Malicious Behaviours

One of the main reasons for the introduction of the semi-honest facilitator is
the simplification and efficiency improvement of protocols. In this discussion, we
assume the presence of such semi-honest S running Rmap and discuss methods
of protection against malicious behaviour of other participants. We note that
the CEM model is well suited for this task, since the malicious actions of parties
are limited to improper input submission and reporting of the decoded output.

First, we observe that the free choice of secrets is a powerful tool. For example,
when secrets are randomly chosen, they may serve as a proof of the value of
Q in the evaluated Q-CEM. Indeed, the recipient of si is not able to claim
Q(x, y) = 1 − i, since he cannot obtain s1−i. Further, for example, secrets can
contain S’s signatures, proving the correctness of reconstruction to anyone.

A harder task is ensuring that malicious players do not gain from submitting
contrived inputs to S. Firstly, zero-knowledge (ZK) techniques could be used to
ensure players’ compliance with the prescribed protocol. This is often compu-
tationally expensive and requires either a common random string or an extra
round of interaction. There exist light-weight alternatives to ZK, such as con-
ditional disclosures of Aiello, Ishai and Reingold [1] and Laur and Lipmaa [12].
Their idea, well suited for our setting, is to ensure that an improperly formed
input will render useless the obtained output of Rmap. For example, suppose
Rmap requires input encryption e to be a Paillier encryption of a bit (i.e. that
Dec(e) ∈ {0, 1}). We ensure that non-compliant inputs result in garbled output
as follows. Let s0, s1 ∈ DS be inputs to Rmap. We choose a random r ∈R DS

and run Rmap with secrets s0 ⊕ r, s1 ⊕ r. We now only need a CEM procedure
that would transfer r iff Dec(e) ∈ {0, 1}, which can be easily constructed.

5.2 Proxy Selling with a Secret Reserve Price

We sketch how to apply GT-CEM to an interesting variant of a proxy selling task,
mentioned in the Introduction. Here, the seller wishes to be offline and delegate
selling to the semi-trusted S. The seller initializes Epk, publishes pk and sends an
encryption Encpk(x) of his lowest acceptable price (i.e. reserve) to S, who later
interacts with buyers as follows. On an encrypted offer Encpk(y), S replies with
Rmap(s0, s1, Encpk(y), Encpk(x), pk), where s1 serves as S’s certification of the
successful buyer (e.g. in a form of a signature), and s0 is a non-winning (e.g.
empty) secret. Thus, successful buyers obtain (an encryption of) the contract,
which they later present to the seller.
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Combining GT-CEM with the general CEM techniques based on secret rep-
resentations, described in sect. 4.7, allows us to obtain very efficient CEM de-
pending on several GT evaluations. This allows us to proxy sell not only based
on a reserve price, but on a price range, delivery date ranges, etc.

6 Comparison with Previous Work

We continue the resource analysis of Sect. 4.6. Note that the protocols of [5,6,12]
can be appropriately modified to be cast as GT-CEM. We summarize the cost of
comparable modular multiplications and communication of evaluating GT-CEM
based on [5,6,12] and our constructions CEM1 and CEM2 (i.e. Construction 4.4
instantiated with (−1, 1)-RM of Sect. 4.3 and 4.5 respectively).

Here c-bit secrets are transferred based on comparison of n-bit numbers. λ and
ν are the correctness and security parameters, and N > 2ν is the modulus of the
employed encryption scheme (GM for [5,6] and Paillier for [12] and our work). We
do not include the one-time cost of key generation. We measure communication
as the size of the output of Rmap.

Solutions of [5,6] transfer one-bit secrets per execution, therefore c-bit secrets
can be transferred at a factor c cost increase. Our CEM1 (resp. CEM2) protocols
transfer secrets of size c < ν/2 − λ (resp. c < ν − λ) per execution. Today’s
common parameters ν ≈ 1000, λ ≈ 40..80 imply transfers of approximately 450
(resp. 950)-bit secrets per execution of CEM1 (resp. CEM2). For CEM of longer
secrets, multiple execution is needed. Note the significant advantage of CEM1
for the most frequent case where the transfer of medium-size secrets is required.

Costs and Comparisons. GT-COT of [12] can be modified to obtain GT-CEM
similar in cost to CEM2. Solution of [2] (in a more restricted setting, where one
of the compared numbers is given in plaintext) carries approximately half of
the cost of CEM2. Other costs and comparisons are summarized below. (The
cost of (client-run) GM decryption, used in [6,5], is not less than log N modular
multplications. For simplicity, we assume that it is log N .)

Protocol Comparable Modular Multiplications Communication Comment
client server total

of [6] 4ncλ logN 24ncλ 32ncλ + 4ncλ log N 4ncλ log N
of [5] 8n2c log N 12n2c 12n2c + 8n2c log N 8n2c logN
CEM1 16n logN 16n logN 32n logN 2n logN c < ν/2 − λ
CEM2 24n logN 28n logN 52n logN 4n logN c < ν − λ
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Abstract. In this paper, we investigate an interesting and practical
cryptographic construct - Oblivious Signature-Based Envelopes (OSBEs)
- recently introduced in [15]. OSBEs allow a sender to communicate infor-
mation to a receiver such that the latter’s rights (or roles) are unknown
to the former. At the same time, a receiver can obtain the informa-
tion only if it is authorized to access it. This makes OSBEs a natural
fit for anonymity-oriented and privacy-preserving applications. Previous
results yielded three OSBE constructs: one based on RSA and two based
on Identity-Based Encryption (IBE). Our work focuses on the ElGamal
signature family: we succeed in constructing practical and secure OSBE
schemes for several well-known signature schemes, including: Schnorr,
Nyberg-Rueppel, ElGamal and DSA. As illustrated by experiments with
a prototype implementation, our schemes are more efficient than previ-
ous techniques. Furthermore, we show that some OSBE schemes, despite
offering affiliation privacy for the receiver, result in no additional cost
over schemes that do not offer this feature.

1 Introduction

The recent surge in popularity of electronic communication and electronic trans-
action prompts many natural concerns about anonymity and, more generally, pri-
vacy of communicating entities. In the last decade, there has been a lot interest
in privacy-enhancing tools and techniques. Prominent topics include advanced
cryptographic constructs, such as: blind signatures [10], group signatures (e.g.,
[4]), identity escrow (e.g., [14]), secret handshakes [2] and privacy-preserving
trust negotiation [7].

In a recent paper [15], Li, et al. introduced a simple and interesting crypto-
graphic concept termed OSBE: Oblivious Signature-Based Envelopes. One mo-
tivating scenario for OSBE is as follows: suppose that Bob is a Secret Service
agent and has a digitally signed certificate asserting his membership. The rules
of the trade stipulate that an agent must only reveal his certificate to another
party if that party is also an agent. Thus, if Bob and Alice (who is also a secret
agent) want to communicate securely, they are seemingly at an impasse since
someone must reveal their certificate first. A simpler, and perhaps more appeal-
ing, scenario occurs if Alice is a regular entity without any specific affiliation.

G. Di Crescenzo and A. Rubin (Eds.): FC 2006, LNCS 4107, pp. 221–235, 2006.
c© IFCA/Springer-Verlag Berlin Heidelberg 2006
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However, she has some information that she is only willing to reveal to another
party (who claims the name Bob) if that party has certain credentials, for exam-
ple, Alice might be a potential informant and Bob might be an FBI agent. At the
same time, Bob is unwilling – or not allowed – to reveal his credentials. In this
case, Alice and Bob are also stuck since neither wants to be the first to reveal
information. Note that, in both examples, Bob has a signed credential which he
cannot reveal; specifically, Bob needs to keep the signature secret, whereas, the
message covered by the signature is not secret at all.

An OSBE scheme can help in the aforementioned situations since it allows
Alice to communicate information to Bob in such a way that: (1) Bob only
obtains the information if he possesses appropriate credentials, (2) Alice does
not determine whether Bob possesses such credentials, and (3) no other party
learns anything about Alice’s information and Bob’s possession, or lack of, the
credentials. A more detailed discussion about OSBE applications can be found
in the extended version of this paper [19].

Besides introducing the OSBE concept, [15] presented three concrete OSBE
schemes: RSA-OSBE, BLS-OSBE and Rabin-OSBE. The last two use Identity-
Based Encryption (Boneh-Franklin [5] and Cocks [11] schemes, respectively) and
do not require interaction, while RSA-OSBE is a 2-round protocol1 with some
very interesting properties. (A discussion of these properties is in Section 8).
Notably, no OSBE schemes for any of the ElGamal family [13] of signature
schemes have been developed. In fact, OSBE for DSA is explicitly mentioned as
an open problem in [15]. In this paper, we begin where the work of [15] left off.

Contributions: Our main result is the development of a series of OSBE schemes
for the ElGamal family of signature schemes, including Schnorr, Nyberg-Rueppel
and DSA. We prove the security of Schnorr-OSBE and discuss the security of the
other schemes. We analyze and compare their respective costs and present the
results of our prototype implementation. Our schemes are very efficient and, in
fact, demonstrate that, in some cases, added privacy introduces no additional
costs.

Organization: This paper is organized as follows: the next section contains
the necessary OSBE definitions. Section 3 shows the construction of OSBE
for Schnorr signatures, followed by Section 4 which does the same for Ny-
berg/Rueppel signatures. Section 5 presents OSBE schemes for other ElGamal
family signatures, including an OSBE scheme for the Digital Signature Algo-
rithm (DSA). Costs of all OSBE schemes and the results of the implementation
of the OSBE schemes are analyzed in Sections 6 and 7. Finally, we discuss certain
other security features in Section 8

Remark: Due to length restrictions, certain relevant material is not included in
this paper. An extended version [19] of this paper contains more detailed discus-
sions of: related work, potential OSBE applications, secret handshake extensions
as well as semantic security of OSBE schemes.

1 See [19] for a re-cap of RSA-OSBE.
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2 Preliminaries

This section presents some background material, including definitions of OSBE
components and OSBE security properties. (Since much of the material in this
section is adapted from [15], those familiar with [15] may wish to skip this section
with no lack of continuity.)

An OSBE scheme enables a sender to encrypt a message and send it to a
receiver who can decrypt the message if and only if the receiver has the right
third party’s signature (e.g., a signature from a certification authority) on a
previously agreed upon message. However, the sender is not allowed to know
– not even at the end – if the receiver has the right third party’s signature.
The sender is assured only that the encrypted message will only be decrypted
if the receiver has the right signature. The components of an OSBE scheme are
(1) a setup algorithm and (2) three parties S, R1 and R2 or sender, authorized
receiver and unauthorized receiver (adversary), respectively. In other words, S is
the party who wants to send message P to the authorized receiver who has the
right signature on some authorization string M , e.g., M can be thought of as a
certificate. R1 is the receiver who has the right signature σ on message M and
R2 is the receiver who does not have σ and who might try to impersonate R1.

An OSBE scheme consists of two phases: Setup and Interaction. (Note that
[15] defines an additional Open phase. We merged it with Interaction.)

Setup: This algorithm generates two messages M and P and a public/private
key-pair for a given signature scheme. It uses the secret key to generate a signa-
ture σ on an input message M . The values M and the public parameters/keys
for the signature scheme are known to all parties. Whereas, P is known only to
S and σ is known only to R1. Since the setup algorithm generates the signature,
we assume that it also takes the role of a certification authority (CA). (However,
this is not a requirement.)

Interaction: In this phase, S communicates with the receiver R, which is either
R1 or R2. However, in the process, S cannot distinguish between R1 or R2. At
the end of this phase, if R = R1, R1 outputs message P .

An OSBE scheme must satisfy three properties: soundness, obliviousness and
semantic security against the receiver, which are informally defined as (formal
treatment of these properties can be found in [15]):
Soundness: An OSBE scheme is sound if the authorized receiver R1 (who has
the signature σ on message M) can output P with non-negligible probability at
the end of the Interaction phase.
Obliviousness: An OSBE scheme is oblivious if, at the end of the interaction phase,
S does not know whether it is communicating with R1 or R2. In other words, if
one of: R1 or R2 is randomly picked to take part in the Interaction with S, the
probability of S correctly guessing the other party is, at best, negligibly over 1/2.
Semantic Security Against the Receiver: An OSBE scheme is semantically secure
against the receiver if R2 learns nothing about P . Even if P can be only one
of two possible messages (selected by R2), at the end of the Interaction phase,
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R2 cannot determine – with probability non-negligibly greater than 1/2 – which
message was actually sent.

In the remainder of this paper we use the term negligible to refer to functions
with a certain property: a function f(x) is said to be negligible if, for each
polynomial p(k), there exists a k0 with

f(x) ≤ 1
|p(k)| for all x ≥ k0 (1)

As discussed in Section 8 below, there are other features that could be desired
from OSBE schemes.

3 OSBE with Schnorr Signatures

Recall that Schnorr’s signature scheme works as follows [22]:

Let p be a large prime and q be a large prime factor of p−1. Let g be an
element of order q in Z∗

p, M be the message space and H : M → Z∗
q be a

suitable cryptographic hash function. The signer’s secret key is: a ∈R Z∗
q

and the corresponding public key is: y = ga mod p. The values: p, q and
y are public, while a is only known to the signer. A signature σ = (e, s)
on input message M is computed as follows:

1. select a random value k ∈R Z∗
q

2. compute e = H(M, gk mod p)
3. compute s = ae + k mod q

A Schnorr signature is verified by checking that H(M, gsy−e mod p)
matches e.

Similar to RSA-OSBE [15] and all other non-IBE-based OSBE schemes, the
interaction in Schnorr-OSBE is essentially a Diffie-Hellman style key agreement
protocol. It is run between S and either R1 or R2 where the former is a legitimate
certificate holder and the latter is an adversarial party. If S and R1 take part in
the protocol, then – at the end – both parties agree on the same shared secret
key. Whereas, if S and R2 run the protocol, then they compute distinct values
and R2 is unable to derive the key computed by S. Since the very nature of
OSBE prohibits R1 (or R2) from authenticating to S, no key confirmation flows
in either direction.

Once S computes the Diffie-Hellman secret KS, it sends its message (P ) to
the other party (either R1 or R2) encrypted under a key derived from KS .

R1 starts the protocol by sending to S one part of its signature: X = gsy−e

mod p = gk mod p. S then generates a random z ∈R Z∗
q and computes its version

of the secret as:
Ks = [yH(M,X)X ]z = g(ae+k)z (2)

and sends Z = gz mod p to R1. R1 knows the other half of the signature:
s = ae + k mod q. It can thus easily compute Kr = Zs = gz(ae+k). Both S
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and R1 employ a function H ′() for deriving from the Diffie-Hellman secret, the
actual key to be used for the symmetric encryption of message P.

R2 starts the protocol by sending to S a value X ′ = gk′
mod p to S.2 S then

generates a random z ∈R Z∗
q and computes its version of the secret as:

Ks = [yH(M,X′)X ′]z (3)

and sends Z = gz mod p to R2. As we will show in the proof of security of
Schnorr-OSBE, R2 cannot compute the Diffie-Hellman secret, since he does not
have the necessary signature.

In more detail, Schnorr-OSBE is as follows:

Setup: On input of a security parameter t, this algorithm creates a Schnorr
key: (p, q, g, a, y), selects a suitable cryptographic hash function H , a function
H ′ for key derivation and two security parameters t1 and t2, which are linear
in t. It also chooses a semantically secure symmetric encryption scheme E , two
messages M and P . It computes a Schnorr signature σ = (e, s) on message M .
Finally, it gives M, σ and (p, q, g, y) to R1, M and (p, q, g, y) to R2 and M, P
and (p, q, g, y) to S.

Interaction

Step 1a: R1 −→ S : X = gs · y−e mod p = gk mod p
– OR
Step 1b: R2 −→ S : X = gk′

mod p for some k′ ∈ Z∗
q

Step 2: S receives X , checks that: (X)(p−1)/q mod p /∈ {0, 1}, picks a random
z ∈ {1..2t1q} with z mod q �= 0, computes Ks = [yH(M,X)X ]z, ks = H ′(Ks)
and:
Step 3: S −→ R1 or R2 : Z = gz mod p, C = Eks [P ]
Step 4: R1 receives (Z, C), computes Kr = Zs mod p, derives kr = H ′(Kr)
and finally decrypts C with kr.

We now prove that Schnorr-OSBE is sound, oblivious and semantically secure
against the receiver.

Soundness: To see that Schnorr-OSBE is sound, at the end of Interaction,
Kr = Ks has to hold. This is easily established, since:

Ks = [yH(M,X)X ]z = [gaegsy−e]z = [gae+ae+kg−ae]z = gsz = Zs = Kr (4)

Showing that Schnorr-OSBE is oblivious is similar to the proof of obliviousness
for RSA-OSBE in [15]. We first re-state the notion of statistical indistinguisha-
bility. Two distribution families D1(t1) and D2(t1) are said to be statistically
indistinguishable if:

Σy|Prx∈D1(t1)[x = y] − Prx∈D2(t1)[x = y]| (5)

2 Note that R2 has to send a value X ′ with X ′ p−1
q mod p /∈ {0, 1} to S, i.e. there

exists a k′ ∈ {1, ..., q − 1} with X ′ = gk′
mod p. Otherwise, X ′ will be immediately

rejected by S.
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is negligible in t.
If two distribution families are statistically indistinguishable, then there exists

no algorithm that can distinguish between the two with non-negligible advantage
by sampling from them. We use this to prove the following theorem.

Theorem 1. Schnorr-OSBE is oblivious.

Proof (sketch): Two distribution families:

D1(t1) = {gsy−e mod p = gk mod p | k ∈ {1..2t1q}} (6)

and
D2(t1) = {gk

′
mod p | k

′ ∈ {1..2t1q}} (7)

range over the same values and, during each run of Interaction, a random value
from one of these distribution families is sent by a communicating partner (either
R1 or R2). Since these values are chosen at random and the two distribution
families range over the same values, S cannot decide whether the other party is
R1 or R2. Consequently, Schnorr-OSBE is oblivious.

In more detail, since q is the order of g, D1(t1) and D2(t1) (for a fixed t1) each
have q points. The probability difference on any point is at most 1

2t1q , therefore,
the total difference is at most q

2t1q = 1
2t1 . Since this quantity is negligible in t1

and t1 is linear in t, the total difference is also negligible in t. Thus, the two
distribution sets are statistically indistinguishable.

Theorem 2. Assuming the non-existence of a polynomial time algorithm for
solving the CDH Problem and that H and H ′ are modelled as random oracles,
Schnorr-OSBE is secure against the receiver.

Proof. Schnorr-OSBE uses a semantically secure symmetric encryption algo-
rithm and H ′ is modelled as a random oracle. Therefore, Schnorr-OSBE is se-
mantically secure against the receiver if no polynomially bounded adversary, who
does not possess the signature σ = (e, s) on M , can compute with non-negligible
probability the OSBE key Ks = gz(ae+k) mod p. More precisely, Schnorr-OSBE
is semantically secure against the receiver if there is no polynomially bounded
adversary who can win with non-negligible probability the following game:

1. A is given a message M and the public key (p, q, g, y) with y = ga mod p.
2. A chooses a value X = gk mod p.3

3. A is given the value Z = gz mod p.
4. A outputs a value K.

A wins the game if and only if K = gz(ea+k) mod p with e = H(M, gk). We prove
our claim by contradiction. We show that if there is a polynomial adversary who
wins the above game with non-negligible probability, then such an adversary
3 Note that we do not make any assumptions about A’s knowledge about k. A might

know the value of k, it might have partial knowledge of k or k might even be com-
pletely unknown to A.
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can also solve every instance (ga, gz) of the CDH Problem in polynomial time.
Assume there is an adversary A who does not have a signature σ = (e, s) but
who nevertheless wins the above game (i.e. computes the value gz(ae+k) mod p)
with non-negligible probability ε. Using the forking lemma [21], we know that
then, A can be executed twice in a row with the same value X = gk mod p and
different random oracles H and H ′ (such that e = H(M, gk) �= H ′(M, gk) = e′)
and A wins both games with non-negligible probability of at least ε2

qH
, where

qH is the number of queries A makes to the hash function. This means, A
can compute with non-negligible probability the values K = gz(ea+k) mod p
and K ′ = gz(e′a+k) mod p with e �= e′. Consequently, A can also efficiently
compute gaz:

(
K

K ′

)(e−e′)−1

=
(
gzea−ze′a

)(e−e′)−1

=
(
gza(e−e′)

)(e−e′)−1

= gaz mod p. (8)

However, this means that A can solve the CDH Problem in polynomial time,
which is a contradiction to our assumption.

Note that the Schnorr signature scheme is existentially unforgeable assuming
there is no polynomial time algorithm which can solve the Discrete Logarithm
(DL) Problem [21]. Since we assume that there is no polynomial time algorithm
for solving the CDH Problem, this also implies that there is no polynomial time
algorithm which can solve the DL Problem. Therefore, assuming there is no
polynomial time algorithm which can solve the DL Problem, a polynomial time
adversary A cannot forge a signature on M in order to be able to compute the
OSBE key.

4 Nyberg/Rueppel OSBE

We now turn to the Nyberg/Rueppel signature scheme. Recall that the Ny-
berg/Rueppel signature scheme [18] is as follows:

Let p be a large prime and q be a large prime factor of p−1. Let g be an
element of order q in Z∗

p, M be the message space and H : M → Zp be a
suitable cryptographic hash function. (Note that the textbook description
of Nyberg-Rueppel scheme does not require a hash function, since the
scheme provides the message recovery feature.) The signer’s secret key is:
a ∈R Z∗

q and the corresponding public key is: y = ga mod p. The values:
p, q and y are public, while a is only known to the signer. A signature
σ = (e, s) on input message M is computed as follows:
1. select a random value k ∈R Z∗

q and set h = H(M)
2. compute e = hg−k mod p

3. compute s = ae + k mod q

A Nyberg-Rueppel signature is verified by checking that: (1) 0 < e < p,
0 < s < q, and (2) h′ = gsy−ee mod p matches h′ = H(M).
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NR-OSBE is very similar to Schnorr-OSBE presented above:
Setup: This algorithm takes as input a security parameter t and creates a
Nyberg-Rueppel key: (p, q, g, a, y), selects a suitable cryptographic hash func-
tion H , a function H ′ for key derivation and two security parameters t1 and t2,
which are linear in t. It also chooses a semantically secure symmetric encryption
scheme E , two messages M and P and computes σ = (e, s) where:4

e = hg−k mod p where k ∈R Z
∗
q , (9)

e mod q �= 0 and s = ae + k mod q (10)

It then gives M, σ and (p, q, g, y) to R1, M and (p, q, g, y) to R2 and M, P and
(p, q, g, y) to S.

Interaction: Although in the following, we describe actions for S, R1 and R2,
it is understood that only one of [R1, R2] actually participates in the protocol.
(The term participates means: sends a message in Step 1a/b below.)

Step 1a: R1 −→ S : e = hg−k mod p
– OR
Step 1b: R2 −→ S : e = hg−k′

mod p for some k′ ∈ Z∗
q

Step 2: S receives e, checks that: (e/h)(p−1)/q mod q /∈ {0, 1}, picks a random
z ∈ {1..2t1q}, computes Ks = [ye(e/h)−1]z derives ks = H ′(Ks) and:
Step 3: S −→ R1 or R2 : Z = gz mod p, C = Eks [P ]
Step 4: R1 receives (Z, C), computes Kr = Zs = gz(ae+k), derives kr =
H ′(Kr) and finally decrypts C with kr.
Note that, in Step 1b, the value e sent by R2 must be such that: (e/h)(p−1)/q

mod p /∈ {0, 1}. In other words, e/h has to be in the unique group of order
q, which is generated by g. If this is not the case, e is immediately rejected
by S. Therefore, there must be k′ ∈ {1..2t1q} such that: e = hg−k′

mod p.

Soundness: To show that NR-OSBE is sound, S and R1 must share the same
symmetric key when the protocol completes successfully, i.e., Kr = Ks. It is easy
to see that:

Ks = [ye(e/h)−1]z = g(ae+k)z = gzs = Zs = Kr (11)

Theorem 3. NR-OSBE is oblivious.

Proof (sketch): Two distribution families:

D1(t1) = {e = hg−k mod p|k ∈ {1..2t1q}} (12)

and
D2(t1) = {e = h · g−k′

mod p|k ∈ {1..2t1q}} (13)

4 We need the property e mod q �= 0 for the proof of security of our scheme. Note that
this is only a restriction on the signer and in particular no restriction on S or R1/2.
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range over the same values and, during each execution of the Diffie-Hellman key
exchange protocol, a random value from one of the two families is sent by each
party. Since these values are chosen at random and, since the two distribution
families have the same values, S does not know if the other party is R1 or
R2. Consequently NR-OSBE is oblivious. More concretely, since q is the order
of g, both D1(t1) and D2(t1) (for a fixed t1) have q points. The probability
difference on any point is at most 1

2t1q and, therefore, the total difference is at
most q

2t1q = 1
2t1 . Since the total difference is negligible in t1 and t1 is linear

in t, the total difference is also negligible in t. Thus, two distribution sets are
statistically indistinguishable.

Semantic security against the receiver: While proving the semantic se-
curity of Schnorr-OSBE is straightforward, the proof of the semantic security
of Nyberg/Rueppel-OSBE and also that of ElGamal-OSBE and DSA-OSBE is
far from easy, if standard cryptographic assumptions are to be made. Further
discussion of semantic security for Nyberg/Rueppel-OSBE, ElGamal-OSBE and
DSA-OSBE can be found in the extended version of this paper [19].

5 ElGamal and DSA OSBE

A number of ElGamal variants are known in the literature. The following 6
are taken from [16] (note that none of them corresponds to either Schnorr or
Nyberg-Rueppel schemes):

(1) s = (h−agk)k−1 (2) s = (h−kgk)a−1 (3) s = agk +kh
(4) s = ah+kgk (5) s = (gk−kh)a−1 (6) s = (gk−ah)k−1

All computations are done mod (p − 1) and a smaller prime q is not required,
although (p − 1) cannot be a product of small factors (to prevent the so-called
Pohlig-Hellman attack [20]). In each case, the second part of the signature is:
e = gk mod p.

It is easy to construct OSBE schemes for variants 3. and 4. above. In each
case, the interaction component is as follows (the Setup component is trivial):

Step 1: R1 −→ S : e = gk mod p

Step 2: S receives e, generates z ∈R {1..2t1q}, computes:

Ks = [ye · eh]z = gz(agk+kh) for variant 3. (14)

Ks = [yh · ee]z = gz(ah+kgk) for variant 4. (15)

and derives ks = H ′(Ks)
Step 3: S −→ R1; : Z = gz mod p, C = Eks [P ]
Step 4: R1 receives (Z, C), computes Kr = Zs, derives kr = H ′(Kr) and
decrypts C with kr.
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To avoid repetition, we omit proofs of obliviousness and semantic security against
the receiver for the above OSBE variants. Suffice it to say that the proofs are
almost identical to those for Schnorr-OSBE and NR-OSBE.

OSBE constructs for variants 1., 2. , 5. and 6. are less trivial since the signing
equation (computation of s) involves either a−1 or k−1. We now focus on vari-
ant 1. since it represents the original ElGamal signature scheme [13] and also
naturally leads to an OSBE scheme for DSA.

The Interaction Component in EG-OSBE is as follows:

Interaction:

Step 1: R1 −→ S : e = gk mod p
Step 2: S receives e, generates z ∈R {1..2t1p} with e mod (p − 1) �= 0, com-
putes Ks = yez · g−hz mod p and derives ks = H ′(Ks)
Step 3: S −→ R1; : Z = ez mod p, C = Eks [P ]
Step 4: R1 receives (Z, C), computes Kr = Z−s, derives kr = H ′(Kr) and
decrypts C with kr.

Soundness. It is easy to see that:

Ks = yezg−hz = g(ae−h)z = gk(ae−h)k−1z = e−sz = e−zs = Z−s = Kr (16)

Theorem 4. EG-OSBE is oblivious.

Proof. Almost identical to that for Schnorr-OSBE.

The Digital Signature Algorithm (DSA) [17] was developed by NIST as a more
efficient alternative to ElGamal. The DSA signature scheme works as follows [17]:

Let p be a prime such that p− 1 has a large prime divisor q, let g be an
element of order q in Z

∗
p, M be the message space and H : M → Z∗

q be a
cryptographic hash function. Furthermore, let a ∈R Z∗

q and y = ga mod p
be signer secret and public keys, respectively. A DSA signature σ = (e, s)
on input message M is computed as follows:

1. generate k ∈R Z∗
q and set h = H(M).

2. compute e = (gk mod p) mod q and s = k−1(h + ea) mod q.
A DSA signature is verified by checking that: (gs−1hyes−1

mod p) mod q
matches e.

To avoid unnecessary repetition, due to similarities between ElGamal and
DSA, we omit the full description of DSA-OSBE. The only details worth men-
tioning involve the arithmetic of computing the secret:

1. Ks = (yegh)z = g(ae+h)z

2. Kr = Zs = ezs = gk(ae+h)k−1z = g(ae+h)z

Semantic security against the receiver: as mentioned in Section 4, prov-
ing the semantic security of Nyberg/Rueppel-OSBE, ElGamal-OSBE and DSA-
OSBE is far from straightforward, if standard cryptographic assumptions are to
be used. A discussion of the semantic security of these schemes can be found
in [19].
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6 Cost Analysis and Comparison

We now consider the communication and computation costs of the five schemes
discussed in this paper, including RSA-OSBE. Table 1 below summarizes the re-
sults. (We do not include IBE-based OSBE schemes since they are non-interactive
and, also, because BLS-IBE involves cryptographic operations in a very different
setting, while Rabin-OSBE is very space-inefficient.) We collapse EG-OSBE and
DSA-OSBE since they are substantially similar. However, we keep in mind that
exponentiations and other modular arithmetic in DSA are appreciably cheaper
than in ElGamal.

The number of rounds and the number of messages exchanged between the
parties are the same (two rounds and two messages of constant length) for all
OSBE schemes.

Schnorr-OSBE involves the most total exponentiations, while NR and EG/DSA
have the fewest. Interestingly, all schemes require S to perform 3 exponentiations,
whereas, R1 performs between 1 and 3 exponentiations. Although we show the
number of exponentiations for R1 in RSA-OSBE as 2, this can be reduced to 1 by
observing that R1 does not need to generate a new blinding factor for each OSBE
run. (Re-using blinding factors sacrifices the impostor obliviousness property – as
discussed in Section 8 – but does not affect other security properties.) Other cost
factors, such as inverses and multiplications, are relatively minor and we do not
elaborate on them further.

Table 1. Cost Factors for Various OSBE Schemes

. OSBE Schemes:
Costs: NR Schnorr EG/DSA RSA

protocol rounds 2 2 2 2
protocol messages 2 2 2 2
mod exps. for S 3 3 3 3
mod exps. for R1 1 3 1 2
inverses for S 2 0 0 1
inverses for R1 0 0 0 0
mod mults. for S 2 1 1 1
mod mults. for R1 0 1 0 2

To put the costs of OSBE schemes into perspective, we consider the hypo-
thetical scenario whereby S and R1 communicate securely without OSBEs (i.e.,
without the obliviousness factor). If R1’s affiliation privacy were not an issue, S
would expect R1 to first supply a valid signed certificate. Verifying a certificate
would involve a cryptographic operation (e.g., one exponentiation for RSA and
two for DSA). This would be in addition to cryptographic operations necessary
to compute a Diffie-Hellman session key: two for S and at least one for R1.
(Here we are assuming that S always computes a new Diffie-Hellman exponent,
whereas R1 does not; to mimic their respective actions in all of the above OSBE
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schemes.) It becomes clear that the total costs (three exponentiations for S and
one for R1) would be the same as these for NR − OSBE, EG/DSA − OSBE
and RSA − OSBE. This is an interesting observation demonstrating that, for
some OSBE schemes, there is no extra cost for added privacy.

7 Implementation

Section 6 presented a comparison of the cost factors for different OSBE schemes.
However, this only gives us a rough overview of the efficiency of OSBE schemes
since arithmetic operations are performed in different algebraic structures. Con-
sequently, a comparison of the number of multiplications alone does not provide a
fair overall cost comparison. For instance, modular operations in ElGamal-OSBE
are performed in Z∗

p while modular operations in DSA-OSBE are performed in
a subgroup of Z∗

p (of order q) and are appreciably cheaper. Apart from that,
arithmetic operations in BLS-IBE-OSBE scheme [6] – which were not consid-
ered in Section 6 – are performed in a different algebraic setting and thus a fair
comparison becomes more difficult.

To provide a more accurate comparison, we implemented all OSBE schemes
(including BLS-IBE-OSBE) in ’C’. We used the popular OpenSSL5 crypto-
graphic library for modular arithmetic with long integers and Miracl6 library for
the implementation of BLS-OSBE. We modified some functions in the Miracl
IBE package and introduced some new data structures. The following modifica-
tions were made:

– The original IBE implementation uses AES to encrypt the message (using
a randomly chosen session key) while all other our OSBE implementations
use RC4. For the sake of consistency we replaced AES with RC4.

– Miracle saves the parameters of the IBE scheme, the extracted key corre-
sponding to an ID string (which, in our case, is the signature), the ciphertext
and the decrypted cleartext in separate files and loads them every time they
are needed. Whereas, other OSBE schemes use user-defined data structures
kept in memory. Once again, for consistency’s sake, we modified Miracl to
work with user-defined data structures.

We also consider two implementation flavors of RSA-OSBE: plain and optimized.
Recall that in RSA-OSBE, R1 sends to S a blinded RSA signature hx+d using
the blinding factor hx. Since it is chosen anew for each interaction, RSA-OSBE
provides two extra properties (discussed in Section 8): Perfect Forward Secrecy
(PFS) and Impostor Obliviousness. However, it also requires one extra modular
exponentiation and one extra modular multiplication for each interaction. This
slows down the scheme. Since neither property is, strictly-speaking, required
and since none of the other OSBE schemes provide them7 we can improve the
5 http://www.openssl.org/
6 http://indigo.ie/ mscott/.
7 Note, however, that PFS can be provided in all of these schemes using a blinding

factor as described in Section 8.
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performance of RSA-OSBE by re-using the same blinding factor. The optimized
version is referred to as “RSA(optimized)” in Table 2 below.

We measured the schemes’ performance with the following settings:

– For all ElGamal-family schemes we set |p| = 1024 and q = 160
– For RSA schemes we set |n| = 1024
– For BLS-IBE scheme we set |p| = 512 and q = 160

Our results (in milliseconds) are illustrated in Table 2. All of them were obtained
on an IBM Thinkpad R40 with Pentium M processor running at 1.3Ghz with
256MB of RAM. The experimental OS platform was Debian Linux (Kernel Ver-
sion 2.4.27). Timings for each scheme represent average values taken over 1, 000
executions. The results illustrate that the most efficient scheme is Schnorr-OSBE
while BLS-IBE-OSBE is the least efficient one. We also observe that three El-
Gamal family schemes (DSA-, NR- and Schnorr-OSBE) are more efficient than
even the optimized RSA scheme.

Table 2. Average running time for different OSBE Schemes

# Runs: RSA RSA(optimized) BLS-IBE(Miracl) EG DSA NR Schnorr

1,000 60.29 45.21 181.53 57.68 22.71 23.37 27.27

8 Additional Features

In addition to the two security properties specified in [15] and in Section 2
(sender obliviousness and semantic security against the receiver), another inter-
esting and useful feature is Perfect Forward Secrecy (PFS). PFS is a well-known
property particularly desirable in key distribution and key agreement protocols.
Informally, PFS means that compromise of a long-term secret (or secrets) does
not result in compromise of short-term (session or ephemeral) secrets. In [15],
this feature is considered but neither recognized nor referred to as PFS. Instead,
it is called inability to recover a shared secret even if the adversary knows the
signature and is treated as a useful but not mandatory feature.

Another way to motivate PFS in OSBE is to re-state it as: security against
the original signer (TTP or CA), i.e., the party who originally issued σ to R1.
Since the signer is assumed to know all such signatures, it can successfully
eavesdrop on all communication between S and R1, unless, of course, PFS is
provided.

RSA-OSBE offers PFS, as proven in [15]. In contrast, none of the OSBE
schemes presented in this paper offer PFS. This can be easily seen by observing
that, in all variants, Interaction involves R1 computing, in Step 4, Kr = Zs or
Kr = Z−s. An adversary – who at some point discovers σ = (e, s) – can thus
trivially compute Kr = Ks.
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While we recognize and acknowledge lack of PFS as a shortcoming, a small
change to each of our OSBE schemes would enable PFS. The change involves
adding a new quantity: gb mod p (where R1 picks b at random from Z∗

p) to Step
1 of the Interaction. Then, S computes K ′

s as Ks · gbz where Ks is the secret
as computed by S in each protocol as presented above. Similarly, R1 computes
K ′

r as Kr · gbz. This change does not influence any OSBE security properties
for our schemes but would introduce some additional computation costs.

Showing that PFS is attained entails proving that the adversary (who knows
σ and can compute Kr = Ks) cannot compute K ′

s or K ′
r, or equivalently, cannot

compute gbz. But, computing gbz from gz and gb represents a solution to the
CDH problem which is assumed to be intractable.

Another closely related feature is what we refer to as: impostor oblivious-
ness. This, incidentally, is a new feature, not considered either in prior work.
Suppose that S runs two different instances of OSBE Interaction, each time with
someone who claims to be R1 and claims to possess the necessary credentials (i.e.,
σ). We call an OSBE scheme impostor-oblivious if, after running both Interac-
tion instances, S is unable to determine (with probability non-negligibly greater
than 1/2) whether one of the counter-parties was an impostor. This definition
can be trivially extended to cover more than two Interaction instances.

Clearly, since our goal is to maximize anonymity, impostor-obliviousness is
a very useful feature. Its main advantage is that, over multiple OSBE Interac-
tions, the sender remains totally unaware of the genuineness of the population
of receivers. It is easy to see that RSA-OSBE is impostor-oblivious, owing to
the very same feature that provides PFS: randomized encryption of the RSA
signature in Step 1 of RSA-OSBE Interaction. (Recall that in RSA-OSBE, for
each Interaction, R1 chooses a new random x and encrypts its RSA signature as
hx+d mod n.)

None of the OSBE schemes presented in this paper are impostor-oblivious. To
see this, consider what happens if S engages in two instances of OSBE Interaction
(using any of our proposed OSBE schemes): once with R2 (the impostor) and
once with R1. Since each of our schemes involves revealing gk in Step 1 of the
Interaction component and this value is constant for a given signature σ, only
R1 reveals the correct gk. Whereas, R2 reveals some other value – gk′

. At that
point, S would determine, with certainty, that one of the parties is an impostor.
One of the items for our future work is the further investigation of impostor
obliviousness for the proposed OSBE schemes.

References

1. N. Asokan, V. Shoup and M. Waidner, Optimistic Fair Exchange of Digital Sig-
natures IEEE Journal on Selected Areas in Communications, Vol. 18, No. 4, April
2000.

2. D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon, and H. Wong, Secret
Handshakes from Pairing-Based Key Agreements, In Proceedings of IEEE Sympo-
sium on Research in Security and Privacy, May 2003.



Revisiting Oblivious Signature-Based Envelopes 235

3. F. Bao, R. Deng and W. Mao, Efficient and Practical Fair Exchange Protocols with
Off-line TTP, In Proceedings of 1998 IEEE Symposium on Security and Privacy,
May 1998.

4. M. Bellare, D. Micciancio, and B. Warinschi, Foundations of Group Signatures:
Formal Definitions, Simplified Requirements and a Construction Based on General
Assumptions, In Proceedings of EUROCRYPT 2003.

5. D. Boneh and M. Franklin, Identity-Based Encryption from the Weil Pairing, SIAM
Journal of Computing, Vol. 32, No. 3, pp. 586-615, 2003.

6. D. Boneh, B. Lynn, and H. Shacham, Short Signatures from the Weil Pairing,
In Proceedings of Asiacrypt 2001, volume 2248 of LNCS, pages 51432. Springer-
Verlag, 2001.

7. R. Bradshaw, J. Holt, and K. Seamons, Concealing Complex Policies with Hidden
Credentials, In Proceedings of ACM CCS 2004.

8. S. Brands, Rethinking Public Key Infrastructures and Digital Certificates: Building
in Privacy, MIT Press, August 2000.

9. C. Castelluccia, S. Jarecki, and G. Tsudik, Secret handshakes from ca-oblivious
encryption, In Proceedings of ASIACRYPT 2004.

10. D. Chaum, Blind Signatures for Untraceable Payments, In Proceedings of CRYPTO
1982.

11. C. Cocks, An Identity Based Encryption Scheme Based on Quadratic Residues,
In Proceedings of Cryptography and Coding: 8th IMA International Conference,
Springer-Verlag, LNCS Vol. 2260/2001, December 2001.

12. W. Diffie and M. E. Hellman, New Directions in Cryptography, IEEE ToIT, Vol.
22 pp. 644–654, November 1976.

13. T. ElGamal, A Public Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms, IEEE Transactions on Information Theory, Vol. 31, No. 4, 1985.

14. J. Kilian and E. Petrank, Identity Escrow In Proceedings of CRYPTO 1998.
15. N. Li, W. Du and D. Boneh, Oblivious Signature-Based Envelopes, In Proceedings

of ACM Symposium on Principles of Distributed Computing (PODC’2003), 2003.
Extended version to appear in of Distributed Computing, 2005.

16. A. Menezes, P. Van Oorschot and S. Vanstone, Handbook of Applied Cryptography,
Chapter 11, CRC press, 2nd Edition, 2001.

17. National Institute of Standards and Technology, Digital Signature Standard, NIST
FIPS PUB 186, U.S. Department of Commerce, 1994.

18. K. Nyberg and R. Rueppel, A New Signature Scheme Based on DSA Giving Mes-
sage Recovery, In Proceedings of ACM Conference on Computer and Communica-
tions Security, November 1993.

19. S. Nasserian and G. Tsudik, Revisiting Oblivious Signature-Based En-
velopes, Cryptology ePrint Archive Report 2005/283. Avaiable at
http://eprint.iacr.org/2005/283.

20. S. Pohlig and M. Hellman, An Improved Algorithm for Computing Logarithms over
GF(p) and its Cryptographic Significance, IEEE Transactions on Information The-
ory, Vol. 24 pp. 106-110, January 1978.

21. D. Pointcheval and J. Stern, Security Proofs for Signature Schemes, In Euro-
crypt’96, pp. 387 - 398, 1996.

22. C. Schnorr, Efficient Signature Generation by Smart Cards, Journal of Cryptology,
Vol. 4, pp. 161-174, 1991.

23. S. Xu and M. Yung. k-Anonymous Secret Handshakes with Reusable Credentials,
In Proceedings of ACM CCS 2004.



Provably Secure Electronic Cash Based on Blind
Multisignature Schemes

Yoshikazu Hanatani1, Yuichi Komano2, Kazuo Ohta1,
and Noboru Kunihiro1

1 The University of Electro-Communications,Chofugaoka 1-5-1,
Chofu-shi, Tokyo, Japan

{hana, ota, kunihiro}@ice.uec.ac.jp
2 TOSHIBA Corporation, Komukai Toshiba-cho 1, Saiwai-ku,

Kawasaki-shi, Kanagawa, Japan
yuichi1.komano@toshiba.co.jp

Abstract. Though various blind multisignature schemes have been pro-
posed for secure electronic cash, the formal model of security was not dis-
cussed. This paper first formalizes the security notions for e-cash schemes
based on the blind multisignature scheme. We then construct a blind mul-
tisignature scheme and propose a new untraceable e-cash scheme which is
provably secure under the DDH assumption in the random oracle model
applying the blind multisignature scheme. The proposed scheme can en-
sure the framing attack by banks where they collude to simulate the
double-spending of an honest user.

Keywords: Blind multisignature, electronic cash, provable security,
random oracle model.

1 Introduction

1.1 Background

The on-line businesses including electronic commerce widely spread and many
applications are researched. Especially, since the electronic cash (e-cash) scheme
is basic primitive, many researches have been done on this topic. The secu-
rity requirements for e-cash schemes are the untraceability for honest users, the
traceability against dishonest users, and the unforgeability of e-cash. In order to
realize the untraceability, Chaum proposed a blind signature scheme [7].

The blind signature scheme consists of three entities: a signer, a user and a veri-
fier. The signer issues a signature for a message concealed by the user. The verifier
checks whether the signature is valid or invalid with a public key of the signer. Re-
cently, many provably secure blind signature schemes are proposed[14, 15, 3].

There are various untraceable e-cash schemes[8, 6, 10, 1] in which shops can
verify the validity of the e-cash off-line. In these schemes, the user to whom the
bank issues the e-cash can be indistinguishable. The user’s privacy is protected
by using the blind signature scheme, but the user’s personal information is leaked
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by spending the same e-cash twice (double-spending, hereafter). Because of this
traceability against dishonest users, the double-spending is prevented by this
deterrent.

In [1], Abe proposed a blind signature scheme which is provably secure with
polynomially many signatures, by improving the partially blind signature scheme
of [2]. This scheme allows the user to blind the tag public key so that the resulting
signature can be verified with the real public key by the signer and the blinded
tag key provided by the user. An untraceable e-cash scheme with the blind
signature was also proposed in [1].

An untraceable e-cash scheme suffers from the framing by a bank where the
bank could compute a private key of the user who had (erroneously) spent an e-
cash of a small amount twice. In previous schemes [8, 6, 10, 1], since the e-cash is
issued by only one bank, the bank can maliciously simulate the withdrawal and
payment protocols with user’s private key. We say this a framing attack. If the
issuing function by a blind multisignature scheme is split among several banks
and at least one of the banks is trusted, then this drawback can be avoided. The
untraceable e-cash scheme in which the e-cash is issued by plural banks will be
able to provide higher degree of robustness than that is issued by only one bank.
Not only does it distribute burden among banks, but also it provides the security
improvement: the damage caused by the secret leakage of only few banks will
not affect the system, while in a system with one bank, the secret leakage of the
bank will bring the security of total break of the system.

Horster et al. [11] introduced a notion of a blind multisignature scheme by ap-
plying a notion of the blind signature scheme to multisignature schemes, and gave
a concrete blind multisignature scheme based on Meta-blind signature scheme.
The blind multisignature scheme is utilized for constructing secure e-cash and
e-voting systems without the framing attack. Afterwards, Chen et al. [9] gave
another concrete scheme from a bilinear map. Unfortunately, the above two con-
crete blind multisignature schemes are not proven to be secure, and therefore,
the security of the e-cash or e-voting system is questionable.

In the blind multisignature scheme, there are three entities; a group of signers,
a user and a verifier. A signature is issued to the user who has hidden a message of
signing target from the group of signers. The signers in the group must cooperate
with each other, in order to produce a blind signature. The verifier can check the
validity of the blind multisignature by using the public keys of corresponding
signers.

1.2 Our Contribution

In this paper, we will construct a blind multisignature scheme based on [1] and
propose a new untraceable e-cash scheme which is provably secure in the random
oracle model [4] by applying it. To the best of our knowledge, this paper is the
first one which discusses the formal security of the untraceable e-cash schemes
based on the blind multisignature schemes. This paper is organized as follows.
Section 2 reviews the definitions of intractable problems on which our proposed
scheme is based, the concept of a blind multisignature scheme, and its security
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requirements. In sections 3 and 4, we will describe the proposed e-cash scheme
and prove the security of proposed scheme, respectively.

1.3 Related Work

The notion of the multisignatures is introduced by Itakura and Nakamura[12].
In the multisignature scheme, multiple signers cooperate with each other to gen-
erate one signature for some message; the aim of the multisignature scheme is
to reduce the length of the signature compared to that of concatenation of indi-
vidual signatures. Micali et al. [13] provided a formal model for multisignature
schemes, and proposed a provably secure multisignature scheme based on the
discrete logarithm problem.

2 Security Definitions

Let us review the definitions of the discrete logarithm problem(DLP) and the
decision Diffie-Hellman problem(DDHP)[5], and discuss the concept of a blind
multisignature scheme and the security requirement of untraceable e-cash based
on the blind multisignatures.

Definition 1 (Negligible). We say that a function ν(·) is negligible (for n) if for
all constant c, there exists N such that for all n > N , ν(n) < 1/nc. We write
such the negligible function ν(·) as negl, hereafter.

Definition 2 (Discrete Logarithm Problem and Decision Diffie-Hellman
Problem). Let G be a group of order p, where p is prime.

– A DL algorithm A for G is a probabilistic polynomial time (in |p|) algorithm
with a success probability Pr[A(p, g, ga) = a] where g is a generator of G.
The group G satisfies the DLP assumption if there is no DL algorithm A for
G with non-negligible success probability.

– A DDH algorithm A for G is a probabilistic polynomial time algorithm satisfy-
ing with an advantage |Pr[A(p, g, ga, gb, gab) = ”true”]−Pr[A(p, g, ga, gb, gc)
= ”true”]|where g is a generator of G. The group G satisfies the DDH assump-
tion if there is no DDH algorithm A for G with non-negligible advantage.

Definition 3 (Blind Multisignature Scheme)
A blind multisignature scheme is a quadruple (G, {Si}i,U ,V), where {Si}i be a
group of signers.

G is a probabilistic polynomial-time algorithm which takes a security parameter
k and outputs a pair of public and secret keys (pk, sk). After generating the
key pair, the signer registers her public key to the PKI using zero-knowledge
interactive proof(ZKIP) for the knowledge of her secret key.

{Si}i and U are probabilistic polynomial-time interactive Turing machines
(PPITM). Each Si is given a key pair pki, ski which is produced by G(1k), and
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U is given a public key {pk} and a message m. {Si}i and U engage in the inter-
active protocol with some polynomial number of rounds. At the end of this issuing
protocol, {Si}i outputs either success or fail, and U outputs either σ(m) or fail.

V is a deterministic polynomial-time algorithm which takes ({pki}i, m, σ(m),
S-list) as an input to output accept or reject. Here S-list denotes a ID-list of
signers {Si}i who are concerned in signing.

In an untraceable e-cash scheme based on the blind multisignature scheme, there
are three entities; a group of banks, a user and a shop. The e-cash is issued to the
user who hides a user-ID (which corresponds the message m) from the resulting
e-cash (which corresponds the blind multisignature). The banks in the group
must cooperate with each other, in order to issue the e-cash. The verifier can
check the validity of the e-cash by using the public keys of corresponding banks.
We will describe the security requirements for untraceable e-cash as follows.

Definition 4 (Completeness). Let (pk, sk) be a key pair generated by the key
generation algorithm G properly. The untraceable e-cash schemes is complete if,
(i) following the issuing protocol, {Bi}i and U always output success and e-cash,
respectively, and (ii) following the payment protocol, the user U and the shop S
always output success and accept, with ({pki}i, e-cash, B-list) issued by {Bi}iand
U correctly.

Definition 5 (Untraceability for Honest Users). Let D∗, {Bi}i, and S be a dis-
tinguisher, a group of banks, and a shop, respectively. Let U0,U1 be honest users
who follow the protocols. Let view0B and view1B be views of {Bi}i during the
issuing protocol where Ub and U1−b obtain e-cash respectively. Let viewbS and
view(1−b)S be views of S during the payment protocol where U0 and U1 spend
e-cash respectively. D∗, given (view0B, view1B, viewbS) for b ∈R {0, 1}, out-
puts b′ ∈ {0, 1}. The e-cash scheme is untraceable for honest users if for all
polynomial-time machines D∗, {Bi}i and S, b′ = b happens with probability
1/2 + negl.

Definition 6 (Traceability against Dishonest Users). Let D, {Bi}i, and S be a
distinguisher, a group of honest banks, and an honest shop, respectively. {Bi}i,
and S follow the protocols. Let U∗ be a dishonest user who used the same e-
cash twice (double-spending). Let viewB be views of {Bi}i during the issuing
protocol where U∗ obtains e-cash. Let view0S and view1S be views of S during
the payment protocol where U∗ spends the same e-cash respectively. D, given
(viewB, view0S , view1S), outputs an U∗’s ID. The e-cash scheme is traceable
against dishonest users if, for all polynomial-time machines U∗, there exists D,
D can detect the dishonest user U∗ with probability 1 − negl.

Definition 7 (Attack Model to E-cash Scheme)

Adaptive Chosen Message Attack(ACMA): A forger FM can request an
arbitrary group of banks to issue an e-cash. The forger FM can also inquire
the hash value for an arbitrary input of a hash function.
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Restricted Adaptive Insider Attack(restricted AIA): The forger FM can
corrupt arbitrary banks and shops except a bank to be attacked. The corrupted
banks leak their private keys to FM but they follow a scheme. (They do not
answer the queries from FM . So we call this attack a restricted AIA. Not
that FM is allowed to act as corruptted banks using their leaked private keys
within FM .)

Adaptive Insider Attack(AIA): The forger FM can corrupt arbitrary banks
and shops except a bank to be attacked. The corrupted banks leak their secret
information, and also answer the queries from the forger FM .

The forger FM generates an arbitrary keys (pk∗, sk∗), and registers pk∗ as a
public key of the corrupted bank B∗ at the PKI. Note that from the property
of ZKIP, the forger FM cannot register pk∗ to the PKI without knowing sk∗.

Definition 8 (One-more Unforgeability of e-cash). The untraceable e-cash
scheme based on the blind multisignature is (l, l + 1) unforgeable, if for all prob-
abilistic polynomial-time algorithm F∗, F∗ uses (l + 1) number of e-cash at a
shop with negligible success probability after F∗ interacts with legitimate banks
{Bi}i at most l times in the attack model.

3 Proposed Scheme

We propose a new untraceable e-cash scheme based on a blind multisignature
scheme. The blind multisignature scheme used here is based on the blind signa-
ture scheme proposed by Abe [1] .

Assumption. Assume that there is a trusted third party PKI which sets up a
system parameter and authorizes a public key generated by each bank.

The PKI runs a probabilistic polynomial-time algorithm with security param-
eter k to generate the system parameter (p, q, g) where p and q are large primes
which satisfy q|p − 1, and g is a generator of the group 〈g〉 ⊆ Z

∗
p whose order

is q, and randomly selects h ∈ 〈g〉. The PKI also publishes the following four
hash functions :H1 : {0, 1}∗ → 〈g〉, H2 : {0, 1}∗ → 〈g〉,H3 : {0, 1}∗ → Zq, and
H4 : {0, 1}∗ → Zq.

Let {B0, B1, . . . , Bn} be a group of banks which cooperate to issue e-cash.
Each bank has three kinds of keys an issuing key, a guaranteeing key, and a tag
key. The banks use these keys following the rules below. When a bank issues
e-cash, the bank uses his issuing key and tag key. The issuing key certifies that
the e-cash is issued by the issuing bank, and the tag key enables the issuing bank
to trace a dishonest user who has spent the same e-cash twice. When the bank
guarantees the e-cash which is issued by the other bank, the bank utilizes the
guaranteeing key.

Let U be a user who has a savings account at the issuing bank1 B0. When the
user asks B0 to issued e-cash, the user selects one issuing bank B0 and several
1 Without loss of the generality, we denote 0 as the index of the bank where the user

has a savings account.
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guaranteeing banks. Let B ⊆ {0, 1, . . . , n} be a list of bank’s IDs which are
chosen by the user.

We two untraceable e-cash schemes. One is the scheme in which only B0
generates a tag. Though the length of e-cash is constant (independent of the
number of banks), the unforgeability can be ensured against only ACMA &
restricted AIA. The other is the scheme in which all banks sequentially generate
tags, respectively. Though the length of e-cash is proportional to the number of
banks, the unforgeability can be proven against ACMA & AIA. Here we call this
scheme full tag scheme.

For simplicity, this paper will discusses only the former case. Figure 1 shows
a model of the issuing protocol.

B0

B2

B1

User
Issuing

bank

Guaranteeing

banks

Bank

Bank

Bank

e
-c
a
s
h

User U

Fig. 1. Model of Issuing Protocol

3.1 Key Generation Protocol

Each bank Bi(i = 1, 2, . . . , n) selects a private key x1,i, x2,i ∈R Zq and com-
putes an issuing public key y1,i = gx1,i mod p and a guaranteeing public key
y2,i = gx2,i mod p. Bi also fixes a tag key zi = H1(p||q||g||h||y1,i||y2,i). If zi = 1,
then Bi throws away the keys and tries to set new keys again. If zi �= 1,
then Bi proves the possession of knowledge of his private keys x1,i = logg y1,i

and x2,i = logg y2,i to the PKI with ZKIP2 [16]. If the PKI is convinced,
the public key is registered to the PKI. Here we assume sequential
registrations.

The public and private keys of Bi are (p, q, g, h, y1,i, y2,i, zi) and (x1,i, x2,i)
respectively.

3.2 Issuing Protocol

Let B = {0; j, . . . , k} be a list of banks’ IDs in participate issuing e-cash. 0 is
an ID of the issuing bank, and {j, . . . , k} are IDs of the guaranteeing banks.
Hereafter, all arithmetic operations are processed in Zp unless otherwise noted.
Figure 2 shows flows of issuing protocol.

2 Without ZKIP, a malicious bank can forge a multisignature by registering a malicious
public key. See [13] for details.
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Fig. 2. Proposed e-cash scheme (issuing protocol)

Step 1. The user U sends the issuing bank B0 a list B which consist of an ID
of issuing bank B0 and IDs of guaranteeing banks {Bj}j .

Step 2. B0 requests the guarantees of the e-cash from banks {Bj}j in B.
Step 3. Each Bj randomly selects uj ∈ Zq, computes a commitment aj = guj

and send it to B0.
Step 4. B0 randomly chooses u0 ∈ Zq, and computes a commitment a0 = gu0 .

When B0 receives the commitments {aj} from all guaranteeing banks, B0
computes a =

∏
i∈B ai. B0 then chooses a random string rnd ∈ {0, 1}∗, and

computes tag keys z1,0 = H2(rnd) and z2,0 = z0/z1,0. With these tag keys,
B0 computes commitments b1 = gs1zd

1,0 and b2 = hs2zd
2,0 with randomly

chosen s1, s2, d ∈ Zq. These commitments (a, b1, b2) and rnd are sent to U ,
and the tag key z1,0 is recorded on a database of B0 with ID of the user U .

Step 5. U checks if b1, b2 ∈ 〈g〉 holds. If it does not hold, U outputs fail. Oth-
erwise, U computes z1,0 = H2(rnd). U selects γ ∈ Z∗

q at random, and uses
it to compute blind tag keys ζ := zγ

0 , ζ1 := zγ
1,0, and ζ2 := ζ

ζ1
. U then
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converts the commitments a, b1 and b2 into α := agt1
(
y1,0

∏
j∈B\{0} y2,j

)t2
,

β1 := bγ
1gt3ζt4

1 ,and β2 := bγ
2ht5ζt4

2 by using t1, t2, t3, t4, t5 ∈R Z∗
q . U ran-

domly chooses τ ∈ Z∗
q , and computes ε := H3 (ζ||ζ1||α||β1||β2||zτ

0 ||B) and a
challenge e = ε − t2 − t4 mod q. U finally sends e to B0.

Step 6. B0 computes an answer r0 = u0 − cx1,0 mod q where c = e − d mod q,
and sends c to the guaranteeing banks {Bj}j.

Step 7. Each Bj answers rj = uj − cx2,j mod q.
Step 8. B0 computes r =

∑
i∈B ri mod q and sends the answers (r, c, s1, s2, d)

to U .
Step 9. U verifies whether the received answers satisfy the following equations;

a
?= gr

⎛⎝y1,0

∏
i∈B\{0}

y2,i

⎞⎠c

, b1
?= gs1zd

1,0, b2
?= gs2zd

2,0. (1)

If the above equations hold, U converts the answers to ρ := r + t1 mod q,
ω := c + t2 mod q, σ1 := γs1 + t3 mod q, σ2 := γs2 + t5 mod q, and δ :=
d + t4 mod q, and checks whether (ρ, ω, σ1, σ2, δ) satisfies Eq.(2).

ω + δ = H3

⎛⎝ζ||ζ1||gρ

⎛⎝y1,0

∏
i∈B\{0}

y2,i

⎞⎠ω

||gσ1ζδ
1 ||hσ2

(
ζ

ζ1

)δ

||zτ
0 ||B

⎞⎠ mod q

(2)

If Eq.(2) holds, U sets e-cash = (ζ, ζ1, ρ, ω, σ1, σ2, δ) and records (e-cash,
τ, γ) on his database.

Note: To prevent issuing e-cash without U ’s agreement, U sends her signature
and B to B0 in the first step of issuing protocol. Then, the honest bank is able
to notice that U agrees this issuing or not. Our scheme improved a resistance to
the framing attack, because the honest bank dose not cooperate to the issuing
protocol without the user’s agreement.

3.3 Payment Protocol

The U uses the e-cash (ζ, ζ1, ρ, ω, σ1, σ2, δ,B) at a shop S as follows.

Step 1. U sends the e-cash to the shop S.
Step 2. S selects a challenge cha ∈ {0, 1}∗, and sends cha to U .
Step 3. U computes εp = H4(zτ

0 ||e-cash||cha) and μp = τ + εpγ mod q, and
sends (μp, εp) to S.

Step 4. S checks whether both Eq.(3) and Eq.(4) hold or not:

ω + δ
?= H3

⎛⎝ζ||ζ1||gρ

⎛⎝y1,0

∏
i∈B\{0}

y2,i

⎞⎠ω

||gσ1ζδ
1 ||hσ2

(
ζ

ζ1

)δ

||zμpζεp ||B
⎞⎠ mod q

(3)
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εp
?= H4(zμpζεp ||e-cash||cha) (4)

If both equations hold, then S sends a service or goods to U . Afterward, S
sends the used e-cash and its transaction histories to the issuing bank B0. If the
e-cash isn’t used twice, S exchanges the e-cash to a money and B0 records the
used e-cash and its transaction histories on its database; otherwise, B0 traces
the user who uses the same e-cash twice.

4 Security Considerations

In this section, we will prove that our scheme satisfies correctness, untraceability
for honest users, traceability against dishonest users who double-spent the same
money, and unforgeability.

4.1 Completeness

If all participants follow the protocols, the proposed scheme works properly.

Theorem 1. If the banks {Bi}i, the user U and the shop S follow the protocols;
{Bi} and U output success and e-cash in the issuing protocol, respectively, S
accepts the resulting e-cash with probability 1 and in the payment protocol.

Proof. We show that the resulting e-cash satisfies the following equations with
probability 1 if U , {Bi}i∈B and S follow the issuing and payment protocols.

We first show that (r, c, s1, s2, d) satisfies Eq.(1) if {Bi}i and U follow the
issuing protocol. Since we have

r =
∑
i∈B

ui − c

⎛⎝x1,0 +
∑

i∈B\{0}
x2,i

⎞⎠ mod q and (5)

logg

⎛⎝y1,0

∏
i∈B\{0}

y2,i

⎞⎠c

= c

⎛⎝x1,0 +
∑

i∈B\{0}
x2,i

⎞⎠ mod q, (6)

Eq.(1) holds.
Next, we show the resulting e-cash = (ω, ρ, σ1, σ2, δ,B), τ and γ satisfy Eq.(2).

If {Bi}i and U follow the issuing protocol,

ω + δ = (c + t2) + (d + t4) = e + t2 + t4 = ε mod q

holds. Therefore, in order to confirm that Eq.(2) holds, we have to see that
gρ(y1,0

∏
j∈B\{0} y2,j)ω = α, gσ1ζδ

1 = β1, and hσ2ζδ
2 = β2 hold. In fact, with the

first equation of Eq.(1),
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gρ

⎛⎝y1,i

∏
j∈B\{0}

y2,j

⎞⎠ω

= gr

⎛⎝y1,0

∏
i∈B\{0}

y2,i

⎞⎠c

gt1

⎛⎝y1,0

∏
i∈B\{0}

y2,i

⎞⎠t2

= agt1

⎛⎝y1,0

∏
i∈B\{0}

y2,i

⎞⎠t2

= α

holds. Moreover, from Eq(1), gs1 = b1z
−d
1 holds, which implies

gσ1ζδ
1 = gγs1+t3ζd+t4

1 =
(
b1z

−d
1

)γ
gt3ζd+t4

1 = bγ
1gt3ζt4

1 = β1.

Similarly, from Eq(1), hs2 = b2z
−d
2 holds, which implies

hσ2 (ζ/ζ1)
δ = hγs2+t5ζd+t4

2 =
(
b2z

−d
2

)γ
ht5ζd+t4

2 = bγ
2ht5ζt4

2 = β2.

From the above equations, Eq.(2) holds.
Finally, we show that (μp, τp) satisfies Eq.(3) and Eq.(4) if U and S follow the

payment protocol.
μp = τ − εpγ mod q holds because of the step 3 of the payment protocol, so

z
μp

0 ζεp = z
τ−εpγ
0 ζεp = zτ

0 holds. Therefore, Eq.(3) and Eq.(4) hold, too �

4.2 Untraceability for Honest Users

We show that as long as a user spends the e-cash only once, no one can trace
the user if the decision Diffie-Hellman problem is intractable.

Theorem 2. If a user spends e-cash only once, no one can trace the user even
if all banks and shops collude with each other, under the decision Diffie-Hellman
assumption in the random oracle model.

Proof. Suppose that there exist PPITMs ({B∗
i }, S∗, D∗) which can trace the

honest user with probability 1/2+ ε where ε is non-negligible. Then we will con-
struct an algorithm I which can solve the DDH problem by using ({B∗}, S∗, D∗)
as oracles. The aim of I to distinguish whether a quadruplet (A, B, C, D) is DDH
tuplet or not, namely, whether logA C = logB D holds or not. A construction of
I is as follows.

Step 1. With an input (A, B, C, D), I selects b ∈R {0, 1}. I simulates two users
U0 and U1 to run the issuing and payment protocols with {B∗

i }i, S∗, and
D∗. Without loss of generality, we denote the issuing bank3 as B∗

0 .
Step 2. If B∗

0 asks (p, q, g, h, y1,i, y2,i) to H1, I simulates z0 = H1(p||q||g||h||
y1,i||y2,i) = A. For the other queries from B∗

0 to H1, I simulates zi at random.

3 In the proposed e-cash scheme, the issuing and guaranteeing banks are publicly
verifiable. With regard to the untraceability for honest users, note that the users who
spend e-cash issued and guaranteed by the same banks cannot be distinguishable.
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Step 3. U0 sends her ID and B to B∗
0 to execute the issuing protocol. We call

the execution run0. If B∗
0 asks a random string rnd to H2 and if b = 0, then I

simulates z1,0 = H2(rnd) = B. If B∗
0 asks rnd to H2 and if b = 1, I answers

z1,0 ∈ 〈g〉 at random. Let V iew0B be a view of {B∗
i }i in the run0.

Step 4. U1 sends her ID and B, which is the same list utilized in the run0, to
B∗

0 to execute the issuing protocol. We call the execution run1. If B∗
0 asks

rnd′ to H2 and if b = 1, then I simulates z′1,0 = H2(rnd′) = B. If B∗
0 asks

rnd′ to H2 and if b = 0, I answers z′1,0 ∈ 〈g〉 at random. Let V iew1B be a
view of {B∗

i }i in the run1.
Step 5. I sets (ζ, ζ1) = (C, D) and randomly chooses ρ, ω, σ1, σ2, δ, εp, μp ∈ Z∗

q .
The output of H3 is simulated by ω + δ = H3(ζ||ζ1||gρ(y1,i ·

∏
j∈B\{i} y2,j)ω ||

gσ1ζδ
1 ||hσ2ζδ

2 || zμpζεp ||B). Let (ζ, ζ1, ρ, ω, σ1, σ2, δ) be e-cash.
Step 6. I uses the e-cash at a shop S in the payment protocol. If I receives the

random string cha from S, then I simulates εp = H4(zμpζεp ||e-cash||cha)
and sends (εp, μp) to S. Let V iewS be a view of S in the payment protocol.

Step 7. I inputs (V iew0B, V iew1B, V iewS) into D∗ to receive b′.
Step 8. If b = b′ then I outputs true, otherwise outputs false.

The random oracles reply at random and record the query and answer on
their lists, if there is no especially description.

In the above strategy, I can solve the DDH problem with non-negligible ad-
vantage. This is because if (A, B, C, D) is a DDH tuplet, logz z1 = logA B =
logC D = logζ ζ1 holds, and the e-cash can be produced only in runb. In fact,
the blinding factors t1, t2, t3, t4, and t5 which can convert the V iewbB into the
e-cash produced in step5. In run1−b, however, the e-cash cannot be produced be-
cause logz z1 �= logζ ζ1 holds with overwhelming probability. Therefore, D∗ which
can break the untraceability for the honest user with (V iew0B, V iew1B, V iewS)
can output correct b with probability 1/2 + ε.

On the other hand, if (A, B, C, D) is not a DDH tuplet, logz z1 = logA B �=
logC D = logζ ζ1 holds in both runs. Thus the e-cash which is generated in Step5
cannot have the blinding factors t1, t2, t3, t4, and t5 which convert either V iew0B

or V iew1B into e-cash with overwhelming probability. Hence, b is independent
from the runs, and b′ = b holds with probability 1/2.

In the DDH problem, if (A, B, C, D) is chosen from DH tuplet or non-DH
tuplet with probability 1

2
4, the advantage of I is 1/2(1/2 + ε) + 1/2(1/2) =

1/2 + ε/2, which contradicts the DDH assumption when ε is not negligible. �

4.3 Traceability Against Dishonest Users

As we will discuss later, we can assume that the proposed scheme is (l, l + 1)-
unforgeable, so the user cannot generate another e-cash from the issued one.
Therefore, {Bi}i are not paid more than the issued e-cash if no one can use the
same e-cash twice.

4 The proof for the general case will be described in the final version.
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Theorem 3. Assume that H4 is a collision resistant hash function. In the pro-
posed scheme, if a user U∗ uses the same e-cash twice maliciously, the bank B0
can trace U∗ with overwhelming probability.

Proof. Suppose that U∗ uses the same e-cash = (ζ, ζ1, ρ, ω, σ1, σ2, δ,B) twice
as (e-cash,εp, μp) and (e-cash,ε′p, μ

′
p). Since H4 is collision resistant and the

input of H4 contains the random challenge cha of a shop S, εp �= ε′p holds with
overwhelming probability. Moreover, since εp �= ε′p and zμpζεp = zτ

0 = zμ′
pζε′

p ,
μp �= μ′

p also holds with overwhelming probability. With (εp, μp) and (ε′p, μ
′
p),

B0 is able to compute γ = μ′
p−μp

εp−ε′
p

mod q and z1 = ζ
1
γ

1 .
B0 keeps (IDU∗ , z1,0) in its database, therefore, B0 can detect the user U∗ by

searching the database by z1,0.
On the other hands, if εp = H4(zτ

0 ||e-cash||cha) = ε′p = H4(zτ
0 ||e-cash||cha′)

holds, the bank B0 cannot specify U∗. This happens with probability 1
q , and

hence, B0 can trace the dishonest user U∗ with probability 1 − 1
q . �

4.4 Unforgeability

Theorem 4. The proposed scheme with simplified tag is (l, l + 1)-unforgeable
against ACMA & restricted AIA for polynomially bound l if the discrete loga-
rithm problem is intractable in the random oracle model.

Proof. The proof is done by reducing the forging problem of the blind signature
scheme[1] of the single signer to that of the proposed e-cash scheme. Namely,
given a public key (p, q, g, h, y, z) for a signer of the blind signature scheme [1] and
corresponding signing oracle Σ, our aim is to construct the forging algorithm F
against the blind signature scheme [1] with the forger FM against the proposed
e-cash scheme.

Note that, since the blind signature scheme [1] is proven to be unforgeable
under the DLP assumption in the random oracle model, the reduction shows
that the proposed scheme is also unforgeable.

There are two kinds of forgery against the proposed e-cash scheme; forging the
e-cash issued by the issuing bank B0, and forging a guaranteeing bank Bi. Note
that, if FM can (l, l + 1)-forge the e-cash with non-negligible success probability,
thenF can (l, l+1)-forge the blind signature of [1] with non-negligible probability.

This proof deals with the forger who uses l + 1 forgeries of e-cash after the
forger (l, l + 1)-forges e-cash.

Firstly, we prove the unforgeability with respect to a issuing bank. Suppose
that FM forges the e-cash issued by B0. For simplicity, assume that all banks
except B0 are corrupted by FM . Let ε0 be the success probability of FM to
(l, l + 1)-forge e-cash issued by B0 and to use them.

Initializing: With the public key (p, q, g, h, y, z), F initializes the e-cash scheme.

Step 1. F sets the public key of B0 as y1,0 = y, y2,0 = gx2,0 with a private key
x2,0 ∈R Zq, and simulates z0 = H1(p||q||g||h||y1,0||y2,0) = z.
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Step 2. F sets the public keys {(y1,j = gx1,j , y2,j = gx2,j , zj)}j∈B\{0} with
private keys x1,j , x2,j ∈R Zq of the other banks with the key generation pro-
tocol. Note that, FM can issue the public keys for corrupted banks; however,
FM has to register the public keys to the PKI with ZKIP.

Forging e-cash: Corrupted banks leak their private keys to FM , but they calcu-
lates according to the protocol. For the queries of issuing the e-cash from FM ,
therefore, we simulate the answers of B0 as follows. Here, H3 is regarded as the
hash function H∗

3 (the random oracle) utilized in the blind signature scheme [1],
and note that F (or B0) simulates the answer of H3 through H∗

3.

– Simulation of B0:
Step 1. If B0 is given a list of banks B by FM , B0 asks a signature for

message m = B to the signing oracle Σ and receives a commitment
(a, b1, b2,rnd).

Step 2. B0 asks the guaranteeing banks in B for guarantees and receives
{aj}j∈B\{i} from them.

Step 3. B0 sends (a, b1, b2, rnd) to FM and receives e from FM .
Step 4. B0 sends e to Σ and receives a signature (r, c, s1, s2, d). B0 sends c

to the guaranteeing banks.
Step 5. B0 receives {rj}j∈B\{i} from each Bj.
Step 6. B0 computes r following the issuing protocol, and sends the blinded

e-cash (r, c, s1, s2, d) to FM .

If F succeeds the simulation of B0, FM (l, l + 1)-forges the e-cash with non-
negligible probability and uses the e-cash {(ζk, ζ1,k, ρk, ωk, σ1,k, σ2,k, δk,Bk)}l+1

k=1.

Payment forged e-cash: To extract the elements of the blind signature scheme
[1] from the forged e-cash, F executes this phase twice by resetting FM with
different random tapes.

– Simulation of a shop S:
Step 1. If S receives e-cash from FM , then S sends a challenge cha to FM .
Step 2. If S receives an answer (εp, μp), then S verifies the answer with

Eq.(3) and Eq.(2). If the answer (εp, μp) is valid, then S records the
e-cash and the answer on database of S.

In the first run, FM uses (l + 1) e-cash at S5. Therefore {(εp,k, μp,k)}l+1
k=1 is

recorded on the database of B0. This phase completes with probability ε0.
In the second run, F resets FM and restarts the payment phase by using

different random tape. Note that, the challenges chosen by S are different from
those used in the first run with overwhelming probability.

After ending these simulations, F has following values.

{(ζk, ζ1,k, ρk, ωk, σ1,k, σ2,k, δk,Bk), (εp,k, μp,k, cha), (ε′p,k, μ′
p,k, cha′)}l+1

k=1

5 FM can use each e-cash at different shop (simulated by F).
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We can extract (l, l + 1)-forgery for Abe’s blind signatures[1] from utilizing
the (l, l + 1)-forged e-cash is as follows. For k = 1, 2, . . . , l + 1, F can compute ρ̃
from (ρk, ωk) and other banks’ secret keys {x2,j}j∈B\{i},

ρ̃k := ρk + ωk

∑
k∈B\{0}

x2,k mod q. (7)

From the step 3 of payment protocol, (εp,k, μp,k) and (ε′p,k, μ′
p,k) hold μp,k =

τk +γkεp,k mod q and μ′
p,k = τk +γkε′p,k mod q. With these equations, F can also

compute (τk, γk). Thus μ̃k = τk +γkδk mod q is obtained. Therefore, F succeeds
to (l, l + 1)-forge the signature of Σ {(ζk, ζ1,k, ρ̃k, ωj , σ1,j , σ2,j , δj , μ̃j ,B)}l+1

k=1.
The success probability of F is evaluated as follows. The probability with

which F hits the prediction in initialization phase is 1/L. The probability that
F succeeds two simulations of “payment forged e-cash” is ε20. F can compute all
{μp,k}l+1

k=1, if the challenge of first and second runs are completely different such
that {εp,k �= ε′p,k}l+1

k=1: It happens with probability (1 − 1
q )l+1. For sufficiently

large q,(
1 − 1

q

)l+1

≥
(

1 − 1
q

)q

≥ 1
4
.

So, the probability ε1 that F succeeds to the output (l, l + 1)-forgeries is

ε1 ≥ ε20
4L

.

Secondly, we prove the unforgeability with respect to a guaranteeing bank.
The procedure is almost the same as the previous one. In the initialization phase,
F guesses a bank Bj which is attacked, and sets its guaranteeing public key
y2,j = y. F guesses another bank Bk which may behaves the issuing bank sets
its fixed tag key zk = z by simulating H1. Other keys are decided following
the protocol. The other procedure is almost the same as the previous one. F
succeeds to (l, l + 1)-forge if the guesses are correct. Note that, in the case that
the issuing bank is corrupted, F cannot answer all queries of FM . �

For example, if FM asks the corrupted issuing bank B∗
0 that “please open

your commitments a, b1, b2”, F cannot answer this question, because B∗
0 receives

a, b1, b2 directly from Σ,and F has no information about them.

Theorem 5. The proposed full tag scheme is (l, l + 1)-unforgeable against
ACMA & AIA for polynomially bounded l if the discrete logarithm problem is
intractable in the random oracle model.

Proof. In this situation, F always sets public keys of Σ to the attacked bank.
Thus the problem which occurs the above proof is avoided. �

5 Conclusion

We discussed the formal notions of the untraceable e-cash schemes based on the
blind multisignature schemes, and presented the provably secure e-cash scheme
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under assumption of DDH problem in the random oracle model. To the best
of our knowledge, this paper is the first one which discusses the formal security
notions of the untraceable e-cash schemes based on blind multisignature schemes.
We will describe the formal security of the blind multisignature and concrete
provably secure scheme in a full paper. We will directly prove the unforgeability
without depending the proof of [1].
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Abstract. Restrictive blind signatures allow a recipient to receive a
blind signature on a message unknown to the signer but the choice of
the message is restricted and must conform to certain rules. Partially
blind signatures allow a signer to explicitly include necessary informa-
tion (expiration date, collateral conditions, or whatever) in the resulting
signatures under some agreement with the receiver. Restrictive partially
blind signatures incorporate the advantages of these two blind signatures.
In this paper we first propose a new restrictive partially blind signature
scheme from bilinear pairings. Since the proposed scheme does not use
Chaum-Pedersen’s knowledge proof protocol, it is much more efficient
than the original restrictive partially blind signature scheme. We then
present a formal proof of security in the random oracle model. Moreover,
we use the proposed signature scheme to build an untraceable off-line
electronic cash system followed Brand’s construction.

Keywords: Restrictive partially blind signatures, Bilinear pairings,
Electronic cash.

1 Introduction

Blind signatures, introduced by Chaum [10], allow a recipient to obtain a signa-
ture on message m without revealing anything about the message to the signer.
Blind signatures play an important role in a plenty of applications such as elec-
tronic voting, electronic cash where anonymity is of great concern.

A serious problem in electronic cash schemes is double-spending. On-line elec-
tronic cash scheme provides a possible solution against double-spending. How-
ever, it requires that the shop must contact the bank during each transaction.
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So the bank will soon become the bottleneck of the systems. Chaum [11] also
proposed an off-line electronic cash scheme, which ensures the bank to trace the
double-spenders after the fact. However, such a system is very inefficient due to
the cut-and-choose protocol.

Restrictive blind signatures were first introduced by Brands [7,8], which allow
a recipient to receive a blind signature on a message unknown to the signer
but the choice of the message is restricted and must conform to certain rules.
Furthermore, he proposed a highly efficient electronic cash system, where the
bank ensures that the user is restricted to embed his identity in the resulting
blind signature. Brand’s electronic cash system has received wide attention for
its distinguished characters. However, Brand’s original restrictive blind signature
scheme is mainly based on Chaum-Pedersen’s interactive zero-knowledge proof
of common exponent [12]. The communication cost is a little high and the length
of the signature is a little too long.

Partially blind signatures, first introduced by Abe and Fujisaki [1], allow a
signer to produce a blind signature on a message for a recipient and the signa-
ture explicitly includes common agreed information which remains clearly visible
despite the blinding process. This notion overcomes some disadvantages of fully
blind signatures such as the signer has no control over the attributes except for
those bound by the public key. Partial blind signatures play an important role
in designing the efficient electronic cash system. For example, the bank does not
require different public keys for different coin values. On the other hand, the size
of the database that stored the previously spent coins to detect double-spending
would not increase infinitely over time.

Maitland and Boyd [15] first incorporated these two blind signatures and
proposed a provably secure restrictive partially blind signature scheme, which
satisfies the partial blindness and restrictive blindness. Their scheme followed
the construction proposed by Abe and Okamoto [2] and used Brand’s restrictive
blind signature scheme. Therefore, the scheme still uses Chaum-Pedersen’s zero-
knowledge proof of common exponent and this increases the communication cost
and the length of the signature.

Our Contribution. In this paper we first propose a new restrictive blind sig-
nature scheme and a restrictive partially blind signature scheme from bilinear
pairings, and the former can be regarded as a special case of the latter. Our blind
signature schemes use the so-called gap Diffile-Hellman group [5,9,13], where De-
cisional Diffie-Hellman Problem (DDHP) can be solved in polynomial time but
there is no polynomial time algorithm to solve Computational Diffie-Hellman
Problem (CDHP) with non-negligible probability. So it is not required to use
the inefficient zero-knowledge proof of common exponent to ensure the validity
of a Diffie-Helllman tuple in our schemes. Compared to the original schemes, the
advantages of our scheme are shorter length of the signature and lower communi-
cation complexity. Furthermore, we give a formal security proof for the proposed
schemes in the random oracle model.

The rest of the paper is organized as follows: The definitions associated with
restrictive partially blind signatures are introduced in Section 2. The proposed
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restrictive blind signature scheme is given in Section 3. The proposed restrictive
partially blind signature scheme is given in Section 4. Finally, conclusions will
be made in Section 5.

2 Definitions

Juels, Luby and Ostrovsky [14] gave a formal definition of blind signatures. They
proved the existence of secure blind signatures assuming the one-way trapdoor
permutation family. Pointcheval and Stern [17] showed the security of a certain
type of efficient blind signature in the random oracle model. Later, they [16,18]
developed a generic approach that converts logarithmically secure schemes into
polynomially secure ones at the cost of two more data transmissions between
the signer and the receiver.

Abe and Okamoto first presented the formal definition of partially blind sig-
natures. Restrictive partially blind signatures can be regarded as partially blind
signatures which also satisfies the property of restrictiveness. In the context of
partially blind signatures, the signer and user are assumed to agree on a piece
of information, denoted by info . In real applications, info may be decided by
the negotiation between the signer and user. For the sake of simplicity, we omit
the negotiation throughout this paper. In the following, we follow the definitions
of [2,14,7] to give a formal definition of restrictive partially blind signatures.

Definition 1. (Restrictive Partially Blind Signatures) A restrictive partially
blind signature scheme is a four-tuple (PG,KG,SG,SV).

– System Parameters Generation PG: On input a security parameter k,
outputs the common system parameters Params.

– Key Generation KG: On input Params, outputs a public and private key
pair (pk, sk).

– Signature Generation SG: Let U and S be two probabilistic interactive
Turing machines and each of them has a public input tape, a private random
tape, a private work tape, a private output tape, a public output tape, and
input and output communication tapes. The random tape and the input tapes
are read-only, and the output tapes are write-only. The private work tape is
read-write. Suppose info is agreed common information between U and S.
The public input tape of U contains pk generated by G(1k), and info. The
public input tape of S contains info. The private input tape of S contains sk,
and that for U contains a message m which he knows a representation with
respect to some bases in Params. The lengths of info and m are polynomial to
k. U and S engage in the signature issuing protocol and stop in polynomial-
time. When they stop, the public output of S contains either completed or
not-completed. If it is completed, the private output tape of U contains either
⊥ or (info, m, σ).

– Signature Verification SV : On input (pk, info, m, σ) and outputs either
accept or reject.
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Definition 2. (Completeness) If S and U follow the signature issuing protocol,
the signature scheme is complete if, for every constant c > 0, there exists a bound
k0 such that S outputs completed and info on its proper tapes, and U outputs
(info, m, σ) that satisfies

SV(info, m, σ) = accept

with probability at least 1 − 1/kc for k > k0. The probability is taken over the
coin flips of KG, S and U .

We say a message-signature tuple (info , m, σ) is valid with regard to pk if it
leads to SV to accept.

Definition 3. (Restrictiveness) Let m be a message such that the user U knows
a representation (a1, · · · , ak) of m with respect to a generator-tuple (g1, · · · , gk)
at the start of a blind signature issuing protocol. Let (b1, · · · , bk) be the repre-
sentation U knows of the blinded number m′ of m after the protocol finished. If
there exist two function I1 and I2 such that

I1(a1, · · · , ak) = I2(b1, · · · , bk)

regardless of m and the blinding transformation applied by U , then the protocol
is called a restrictive blind signature protocol. The function I1 and I2 are called
blinding-invariant functions of the protocol with respect to (g1, · · · , gk).

Definition 4. (Partial Blindness) Let U0 and U1 be two honest users that follow
the signature issuing protocol.

1. (pk, sk) ← KG(Params).
2. (m0, m1, info0, info1) ← S∗(1k, pk, sk).
3. Set up the input tapes of U0 and U1 as follows:

– Select b ∈R {0, 1} and put mb and m1−b on the private input tapes of U0
and U1, respectively.

– Put info0 and info1 on the public input tapes of U0 and U1, respectively.
Also put pk on their public input tapes.

– Randomly select the contents of the private random tapes.
4. S∗ engages in the signature issuing protocol with U0 and U1.
5. Let U0 and U1 output (info0, mb, σb) and (info0, m1−b, σ1−b), respectively,

on their private tapes. If info0 �= info1, then give ⊥ to S∗. If info0 =
info1, then provide S∗ with the additional inputs (σb, σ1−b) ordered accord-
ing to the corresponding messages (mb, m1−b).

6. S∗ outputs b′ ∈ {0, 1}. We say that S∗ wins if b′ = b.

A signature scheme is partially blind if, for every constant c > 0, there exists a
bound k0 such that for all probabilistic polynomial-time algorithm S∗, S∗ outputs
b′ = b with probability at most 1/2 + 1/kc for k > k0. The probability is taken
over the flips of KG, U0, U1, and S∗.
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Definition 5. (Unforgeability) Let S be an honest signer that follows the signa-
ture issuing protocol.

1. (pk, sk) ← KG(Params).
2. Put sk and info on proper tapes of S.
3. U∗ engages in the signature issuing protocol with S in a concurrent and

interleaving way. For each info, let linfo be the number of executions of the
signature issuing protocol where S outputs completed and info on its output
tapes. (For info that has never appeared on the private output tapes of S,
define linfo = 0.)

4. U∗ outputs a single piece of common information, info, and linfo +1 signa-
tures (m1, σ1), · · · , (mlinfo+1, σlinfo+1).

A partially blind signature scheme is unforgeable if, for any probabilistic polynomial-
time algorithm U∗ that plays the above game, the probability that the output of U∗

satisfies
SV(pk, info, mj , σj) = accept

for all j = 1, · · · , linfo + 1 is at most 1/kc where k > k0 and some constant c > 0.
The probability is taken over the coin flips of KG, S, and U∗.

3 Restrictive Blind Signatures from Pairings

In Brand’s restrictive blind signature scheme, the Chaum-Pedersen’s protocol
must be used to provide a proof that logg y = logm z, i.e., < g, y, m, z > is a
valid Diffie-Hellman tuple. We argue the knowledge proof can be avoided in the
gap Diffie-Hellman (blind) signature scheme [6,3]. However, if we directly use
the gap Diffie-Hellman blind signature scheme as a building block to design our
restrictive blind signature scheme from pairings, there exists a cheating attack.1

In this section, we first propose a variant of gap Diffie-Hellman blind signature
scheme, the security of which is based on a variant of CDHP, named RCDHP,
which is equivalent to CDHP. We then propose a restrictive blind signature
scheme which is derived from the variant of gap Diffie-Hellman blind signature
scheme and Brand’s original blind signature scheme.

3.1 A Variant of Gap Diffie-Hellman Blind Signature Scheme

We firstly introduce a variant of CDHP in G which we call Reversion Compu-
tational Diffie-Hellman Problem (RCDHP).2

RCDHP: Given g, ga and gb, to compute gc which satisfies a ≡ bc mod q.
1 It is trivial to see that the user can get the signature σ̃ = m̃x for any message

m̃ with the signature z = mx for a message m. This will destroy the property of
restrictiveness of the signature scheme. We argue that this attack can be avoidable
if the form of z and σ̃ is different. For details, refer to section 3.2.

2 We distinguish it with Inversion Computational Diffie-Hellman Problem: Given g

and ga, to compute ga−1
.
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Theorem 1. RCDHP is equivalent to CDHP in G.

Proof. Given (g, ga, gb), suppose we can solve RCDHP in G, then we can obtain
gb−1

from g and gb. Note a = (ab)b−1 mod q, we can compute gab from ga and
gb−1

, i.e., we can solve CDHP in G.
Given (g, ga, gb), let h = gb, so g = hb−1

. Suppose we can solve CDHP in G,
so with h and hb−1

we can obtain hb−2
, i.e., gb−1

. Then we can obtain gab−1
from

ga and gb−1
, i.e., we solve RCDHP in G. �

In the following, we present a variant of Boneh et al ’s signature scheme, the
security of which is based on the assumption that RCDHP in G is intractable.
The system parameters are the same as above.

Given the signed message m and the signer’s secret key x, the signature on
m is σ = H(m)x−1

. Anyone can verify that < g, y, σ, H(m) > is a valid Diffie-
Hellman tuple.

Similarly, we can present the corresponding blind signature scheme based on
the above variant of Boneh et al ’s signature scheme.

– The user picks a random number r ∈R Z∗
q , and sends m̃ = H(m) · yr to the

signer.
– The signer computes σ̃ = m̃x−1

and sends it to the user.
– The user computes σ = σ̃ · g−r.

If < g, y, σ, H(m) > is a valid Diffie-Hellman tuple, then σ is a valid signature
on message m.

3.2 The Proposed Restrictive Blind Signature Scheme

– System Parameters Generation: Given a security parameter k, let G1
be a gap Diffie-Hellman group generated by g, whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order q. A bilinear pairing
is a map e : G1 × G1 → G2. H : G1 × G1 → G1 is a cryptographic hash
function. The system parameters are Params = {G1, G2, e, q, g, k, H}.

– Key Generation: Let (x, y = gx) be the private and public key pair of the
signer.

– Signature Generation: Let m be a message from the receiver.
• The signer generates a random number r ∈R Zq and sends z = mrx,

b = mr, and a = yr to the receiver.
• The receiver checks whether e(z, g) = e(b, y) = e(m, a). If not, he ter-

minates the protocol. Else, he generates random numbers α, λ, u ∈R Zq

and computes

m′ = mα, z′ = zαλ, b′ = bαλ, a′ = aλ, m̃ = H(m′, z′, b′, a′)yu.

The receiver then sends m̃ to the signer.
• The signer responds with σ̃ = m̃x−1

and the receiver computes σ = σ̃g−u.
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Signer Receiver

r ∈R Zq

Compute
z = mrx

b = mr, a = yr z, b, a � Check
e(z, g) = e(b, y) = e(m,a)
α, λ, u ∈R Zq

Compute
m′ = mα, z′ = zαλ

b′ = bαλ, a′ = aλ

m̃ = H(m′, z′, b′, a′)yu� m̃
Compute
σ̃ = m̃x−1

σ̃ � Compute
σ = σ̃g−u

Fig. 1. Restrictive Blind Signature Scheme from Pairings

Thus, the receiver obtains a signature on the message m′ where m′ = mα

and α is chosen by the receiver.
– Signature Verification: (z′, b′, a′, σ) is a valid signature on m′ if the fol-

lowing equations hold:

e(σ, y) = e(H(m′, z′, b′, a′), g); e(z′, g) = e(b′, y) = e(m′, a′).

3.3 Security Analysis of the Proposed Scheme

Theorem 2. The proposed restrictive blind signature scheme achieves the prop-
erties of Correctness, Blindness, Restrictiveness.

Proof. We show that our scheme satisfies all the security properties.

– Correctness: Firstly, note that σ = σ̃g−u = H(m′, z′, b′, a′)x−1
, we have

e(σ, y) = e(H(m′, z′, b′, a′), g). Secondly, since z′ = zαλ = mrxαλ, b′ = mrαλ,
and a′ = yrλ, so e(z′, g) = e(b′, y) = e(m′, a′).

– Blindness : Let (m̃, m, z, b, a, σ̃) be any of the review of the protocol as seen
by the signer. Therefore, σ̃ = m̃x−1

and e(z, g) = e(b, y) = e(m, a). Let
(z′, b′, a′, σ) be a valid signature on message m′ obtained by the receiver.
Choose the unique blinding factor F = σ̃/σ and determine three represen-
tations m′ = mα, a′ = aλ, F = gu.3 Note that σ = H(m′, z′, b′, a′)x−1

and
e(z′, g) = e(b′, y) = e(m′, a′) have been established by the fact that the blind
signature is valid, therefore we have

m̃ = σ̃x = (σF )x = H(m′, z′, b′, a′)yu, z′ = zαλ, b′ = bαλ.

3 Though it is difficult to compute (α, λ, u), we only need to exploit the existence of
them.
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– Restrictiveness: Similar to [7,15], the restrictiveness nature of the scheme can
be captured by the following assumption: The recipient obtains a signature
on a message that can only be the form m′ = mα with α randomly chosen
by the receiver. In addition, if there exists a representation (μ1, μ2) of m
with respect to bases g1 and g2 such that m = gμ1

1 gμ2
2 and if there exists a

representation (μ′
1, μ

′
2) of m′ with respect to g1 and g2 such that m′ = g

μ′
1

1 g
μ′

2
2 ,

then the relation I1(μ1, μ2) = μ1/μ2 = μ′
1/μ′

2 = I2(μ′
1, μ

′
2) holds. In the

applications of an electronic cash system, a user chooses a random number
u as his identification information and computes m = gu

1 g2. He then with
the bank performs the signature issuing protocol to obtain a coin. When
spending the coin at a shop, the user must provide a proof that he knows a
representation of m′ with respect to base g1 and g2. This restricts m′ must
be the form of mα. For more details, refer to [7]. �

4 Restrictive Partially Blind Signatures from Pairings

In this section, we firstly propose a concrete restrictive partially blind signature
scheme from pairings based on [19,20]. The proposed restrictive blind signature
scheme in section 3 can be regarded as a special case of it when H0(c) equals to 0.
We then discuss the security and efficiency of the scheme under the assumption of
ideal randomness of hash functions H and H0. Finally, we describe an electronic
cash system using the proposed signature scheme.

4.1 The Proposed Restrictive Partially Blind Signature Scheme

– System Parameters Generation PG: Given a security parameter k. Let
G1 be a gap Diffie-Hellman group generated by g, whose order is a prime
q, and G2 be a cyclic multiplicative group of the same order q. A bilinear
pairing is a map e : G1×G1 → G2. Define two cryptographic hash functions
H : G1 ×G1 × {0, 1}∗ → G1, H0 : {0, 1}∗ → Zq. The system parameters are
Params = {G1, G2, e, q, g, k, H, H0}.

– Key Generation KG: On input Params, outputs the private and public
key pair (x, y = gx) of the signer.

– Signature Generation SG: Let the shared information info = c, and the
signed message be m′ = mα, where α is a value chosen by the receiver.
• The signer generates a random number r ∈R Zq and sends z = mrx,

b = mr, and a = yr to the receiver.
• The receiver checks whether e(z, g) = e(b, y) = e(m, a). If not, he ter-

minates the protocol. Else, he generates random numbers α, λ, u ∈R Zq

and computes

m′ = mα, z′ = zαλ, b′ = bαλ, a′ = aλ, m̃ = H(m′, z′, b′, a′, c)(gH0(c)y)u.

The receiver then sends m̃ to the signer.
• The signer responds with σ̃ = m̃

1
H0(c)+x and the receiver computes σ =

σ̃g−u.
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The resulting signature for the shared information c and message m′ is
(z′, b′, a′, σ).

Signer Receiverc ��

r ∈R Zq

Compute
z = mrx

b = mr, a = yr z, b, a � Check
e(z, g) = e(b, y) = e(m,a)
α, λ, u ∈R Zq

Compute
m′ = mα, z′ = zαλ

b′ = bαλ, a′ = aλ

m̃ = H(m′, z′, b′, a′, c)(gH0(c)y)u� m̃
Compute
σ̃ = m̃

1
H0(c)+x

σ̃ � Compute
σ = σ̃g−u

Fig. 2. Restrictive Partially Blind Signature Scheme from Pairings

– Signature Verification SV: (z′, b′, a′, σ) is a valid signature on c and m′

if the following equations hold:

e(σ, gH0(c)y) = e(H(m′, z′, b′, a′, c), g); e(z′, g) = e(b′, y) = e(m′, a′).

4.2 Security Analysis of the Proposed Scheme

Theorem 3. The proposed scheme achieves the property of completeness.

Proof

e(σ, gH0(c)y) = e(σ̃g−u, gH0(c)y) = e(m̃
1

H0(c)+x g−u, gH0(c)y)

= e(H(m′, z′, b′, a′, c)
1

H0(c)+x , gH0(c)y)
= e(H(m′, z′, b′, a′, c), g)

e(z′, g) = e(mrxαλ, g) = e(b′, y) = e(mα, grxλ) = e(m′, a′)

Theorem 4. The proposed scheme achieves the property of restrictiveness.

Proof. It is same to Theorem 2. �

Theorem 5. The proposed scheme achieves partial blindness.

Proof. Suppose S∗ is given ⊥ in step 5 of the game in definition 4, S∗ determines
b with a probability 1/2 (the same probability as randomly guessing b).
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Suppose that in step 5, the shared information c0 = c1. Let (z′, b′, a′, σ, m′)
be one of the signatures subsequently given to S∗. Let (z, b, a, m̃, σ̃, m, c) be data
appearing in the view of S∗ during one of the executions of the signature issuing
protocol at step 4. Therefore, σ̃ = m̃

1
H0(c)+x and e(z, g) = e(b, y) = e(m, a).

It is sufficient to show that there exists a tuple of random blinding factors
(α, λ, u) that maps (z, b, a, m̃, σ̃, m) to (z′, b′, a′, σ, m′). Suppose m′ = mα, a′ =
aλ, and F = σ̃/σ = gu.4 Note that σ = H(m′, z′, b′, a′, c)

1
H0(c)+x and e(z′, g) =

e(b′, y) = e(m′, a′) have been established by the fact the signature is valid.
Therefore, we have

m̃ = σ̃H0(c)+x = (σF )H0(c)+x = H(m′, z′, b′, a′, c)(gH0(c)y)u, z′ = zαλ, b′ = bαλ.

Thus, the blinding factors which lead to the same relation defined in the signature
issuing protocol always exist. Therefore, even an infinitely powerful S∗ succeeds
in determining b with probability 1/2. �

Theorem 6. The proposed scheme is unforgeable if linfo < poly(log k) for all
info.

Proof. The proof follows the security argument given by Abe and Okamoto [2].
We first deal with the common-part forgery where an attacker forges a signature
with regard to common information c that has never appeared in the game of
the definition 5, i.e., lc = 0. We then treat one-more forgery where lc �= 0.

Suppose a successful common-part forger U∗ who plays the game of the def-
inition 5 and produces a valid message-signature tuple (z′, b′, a′, σ, c, m′) such
that lc = 0 with a non-negligible probability ε, we can construct a machine M
to solve the q-Strong Diffie-Hellman Problem for q = 0 [4]: given (g, y), output
a pair (c, g

1
c+x ) where c ∈ Z∗

q .
Let qH and qH0 be the maximum number of queries asked from U∗ to H

and H0, respectively. Similarly, let qS be the maximum number of invocation of
the signer S. All those parameters are limited by a polynomial in the security
parameter k. For simplicity, we assume that all queries are different. Let (x, y =
gx) be the private and public key pair of the signer. Machine M simulates the
game in definition 5 as follows:

1. Choose randomly vi, wj , ω ∈ Zq for i = 1, 2, · · · , qH + qS , j = 1, 2, · · · , qH0 +
qS .

2. Select I ∈U {1, 2, · · · , qH + qS} and J ∈U {1, 2, · · · , qH0 + qS}. Run U∗ with
(g, y, q) simulating H,H0 and S as follows.
– For i-th query to H, respond

H(mi, zi, bi, ai, ci) =
{

gω, if i = I
(y · gwi)vi , if i �= I

– For j-th query to H0, respond H0(cj) = wj .

4 Similarly, we only need to exploit the existence of (α, λ, u).
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– For requests to S, first negotiate the common information. Let ck be the
result of negotiation, then respond

σk =
{

“Fail”, if ck = cI

gvk , if ck �= cI

3. If U∗ eventually outputs a valid signature σ with regard to cJ and mI , output
them.

The probability that U∗ is successful without querying H,H0 in a proper way is
negligible because of the randomness of those hash functions.

Now we use M to solve the q-Strong Diffie-Hellman Problem for q=0. Note
that σ = g

ω 1
H0(cJ )+x , therefore we can output a valid pair (H0(cJ), σω−1

).

We then consider the case where the forgery is attempted against the common
information such that lc �= 0. Here we only need to consider a single c in the
game of the definition 5. For the case where c is not all the same in the game of
the definition 5, we can follow the solution [2] to turn the game into the fixed-info
version.

Since there is a unique c in the game of the definition 5, we only need to prove
the security of fully blind version of our scheme. For any public information c,
the signer sets up the system parameters params = {G1, G2, e, q, g, k, H, H0}.
Let (X = H0(c) + x, Y = gH0(c)+x) be the private and public key pair of the
signer, here x ∈R Z∗

q . Let m′ be the signed message. The blind signature issuing
protocol of this fully blind signature scheme is shown as follows:

– The signer generates a random number r ∈R Zq and sends z = mrX , b = mr,
and a = Y r to the receiver.

– The receiver checks whether e(z, g) = e(b, Y ) = e(m, a). If not, he terminates
the protocol. Else, he generates random numbers α, λ, u ∈R Zq and computes

m′ = mα, z′ = zαλ, b′ = bαλ, a′ = aλ, m̃ = H(m′, z′, b′, a′)Y u.

The receiver then sends m̃ to the signer.
– The signer responds with σ̃ = m̃

1
X and the receiver computes σ = σ̃g−u.

(z′, b′, a′, σ) is a valid signature on m′ if the following equations hold:

e(σ, Y ) = e(H(m′, z′, b′, a′), g); e(z′, g) = e(b′, Y ) = e(m′, a′).

We call above fully blind signature scheme FuBS, which is actually the re-
strictive blind signature scheme proposed in section 3. It is easy to see that
if a message-signature pair (m, c, S) can be forged for the proposed partially
blind signature scheme, then a blind signature on the message m′ = m||c for the
corresponding FuBS can be forged.

Next, we show that FuBS is secure against one-more forgery under chosen
message attack using the similar technique in [3]. In the following we firstly
introduce a variations of chosen-target CDHP, named “Chosen target RCDHP”.
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Definition 6. Let G1 be a gap Diffie-Hellman group of prime order q and g
is a generator of G1. Let x be a random element of Z∗

q and y = gx. Let
H0 : {0, 1}∗ → G1 be a cryptographic hash function. The adversary A is given
input (q, g, y, H0) and has access to the target oracle TG1 that returns a random
element zi in G1 and the helper oracle RCDH-x(·), i.e., compute (·)x−1

. Let qT

and qH be the number of queries A made to the target oracle and the helper
oracle, respectively. The advantage of the adversary attacking the chosen-target
RCDHP Advct−rcdh

G1
(A) is defined as the probability of A to output a set of l

pairs ((v1, j1), (v2, j2), . . . , (vl, jl)), for all 1 ≤ i ≤ l ∃ 1 ≤ ji ≤ qT such that
vi = zx−1

ji
where all vi are distinct and qH < qT .

The chosen-target RCDH assumption states that there is no polynomial-time
adversary A with non-negligible Advct−icdh

G1
(A).

The following lemma shows that FuBS is secure under the assumption that the
chosen-target RCDHP in G1 is intractable.

Lemma 1. If the chosen-target RCDH assumption is true in the group G1 then
FuBS is secure against one-more forgery under the chosen message attack.

Proof. (sketch). If there is a probabilistic polynomial time one-more forger al-
gorithm F with a non-negligible probability ε for FuBS under a chosen message
attack, then we can use F to construct an algorithm A to solve the chosen-target
RCDHP with a non-negligible probability.

Suppose that a probabilistic polynomial time forger algorithm F is given.
Suppose that A is given a challenge as in Definition 6. Now F has access to a
blind signing oracle x(·) and the random hash oracle H0(·). First, A provides
(G1, G2, e, q, g, H0, y) to F and A has to simulate the random hash oracle and
the blind signing oracle for F .

Each time F makes a new hash oracle query which differs from previous one,
A will forward to its target oracle and returns the reply to F . A stores the pair
query-reply in the list of those pairs. If F makes a query to blind signing oracle,
A will forward to its helper oracle RCDH-x(·) and returns the answer to F .

Eventually F halts and outputs a list of message-signature pairs ((m1, S1),
(m2, S2), . . . , (ml, Sl)). A can find mi in the list stored hash oracle query-reply
for i = 1, 2, . . . , l. Let ji be the index of the found pair, then A can output its
list as ((S1, j1), (S2, j2), . . . , (Sl, jl)). Then this list is a solution to the problem
in Definition 6. �

4.3 Efficiency

We compare our signature scheme to previous restrictive partially blind signature
scheme. In the following table we denote by |G1| the bits of representing any
element of G1. Similarly, let |p| and |q| denote the bits of primes p and q such
that q|p−1, respectively. Also, let P be the pairings operation, M exponentiation
in G1, E exponentiation in Zp and R inversion in Zq (we ignore other operations
such as hash in both schemes).
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Table 1. Comparison with Maitland-Boyd’s signature scheme

Properties Scheme [14] Our Proposed Scheme

Length of signature |p| + 4|q| 4|G1|
Communication 4|p| + 5|q| 5|G1|

Computation 20E + 2R 9M + 1R + 3P
(for signature generation)

Computation 6E 5P
(for signature verification)

The computation complexity of our signature scheme requires more overhead
than that of Maitland-Boyd’s signature scheme since the pairing computation is
the operation which by far takes the most running time. However, the advantages
of our scheme are the short length of the signature and low communication
complexity (remember that the order of G1 is only q). Therefore, it is more
suitable for low-bandwidth communication environments.

4.4 Application for Electronic Cash System

We follow Brand’s construction to describe an electronic cash system using the
proposed restrictive partially blind signature scheme from pairings. We denote
the bank by B, a generic account-holder by U , and a generic shop by S.

The setup of the system. Let G be a gap Diffie-Hellman group with the
prime order q, (g, g1, g2) be a random generator tuple. The key pair of B is
(x, y = gx). Define three cryptographic secure hash functions H : G×G×G → G,
H0 : {0, 1}∗ → Zq and H1 : G × G × IDS × Date/T ime → Zq.

Opening an account. When U opens an account at B, B requests U to identify
himself. U then generates at random a number u1 ∈R Zq, and computes the
unique account number I = gu1

1 . If gu1
1 g2 �= 1, then U transmits I to B, and

keeps u1 secret. B stores the identifying information of U in the account database,
together with I. The information I enables B to uniquely identify U in case he
double-spends.

The withdrawal protocol. When U wants to withdraw a coin, he first proves
ownership of his account and negotiates a common information c. To this end,
the following withdrawal protocol between U and B is performed:

Step 1. B generates a random number r ∈R Zq and sends z = (Ig2)rx, b =
(Ig2)r, and a = yr to U .
Step 2. U checks whether e(z, g) = e(b, y) = e(Ig2, a). If the equation does not
hold, he terminates the protocol. Else, he generates random numbers α, λ, x1, x2,
u ∈R Zq and computes A = (Ig2)α, z′ = zαλ, b′ = bαλ, a′ = aλ, B = gx1

1 gx2
2 and

m̃ = H(A, B, z′, b′, a′, c)(gH0(c)y)u. He then sends m̃ to B.
Step 3. B responds with σ̃ = m̃

1
H0(c)+x , and U computes σ = σ̃g−u.
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If e(σ, gH0(c)y) = e(H(A, B, z′, b′, a′, c), g), then A, B, c, (z′, b′, a′, σ) is a valid
coin of which U knows a representation.

The payment protocol. When U wants to spend his coin at S, the following
protocol is performed:

Step 1. U sends A, B, c, (z′, b′, a′, σ) to S.
Step 2. If A �= 1, S then sends a challenge d = H1(A, B, IDS , date/time)
to U , where IDS can be the account number of S, date/time is the number
representing date and time of the transaction.
Step 3. U computes the responses r1 = d(u1α)+x1 and r2 = dα+x2 and sends
them to S.

S accepts the coin if and only if the equations e(σ, gH0(c)y) = e(H(A, B, z′, b′,
a′, c), g), e(z′, g) = e(b′, y) = e(A, a′), and gr1

1 gr2
2 = AdB hold.

The deposit protocol. After some delay in time, S sends B the payment tran-
script, consisting of A, B, c, (z′, b′, a′, σ), (r1, r2) and date/time of transaction. B
first checks the validity of the coin. If the verifications hold, he then searches
its deposit database to find out whether A has been stored before. If A has
not stored before, B stores A, c, date/time, (r1, r2) in its database; Else, B can
detect double-depositing (the same challenge) or double-spending (the different
challenge). The number (r1 − r′1)/(r2 − r′2) serves as a proof of double-spending.

5 Conclusions

In this paper we first propose a new restrictive blind signature scheme and a
restrictive partially blind signature scheme from bilinear pairings. The former
can be regarded as a special case of the latter. Compared to other schemes, our
schemes have the advantages of the shorter signature length and lower commu-
nication complexity. We also provide a formal security proof for the proposed
schemes in the random oracle model.

Acknowledgement

We would like to express our gratitude to Jacques Traoré for pointing out a
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Abstract. At FC’05, Chen et al. introduced an elegant privacy protect-
ing coupon (PPC) system, CESSS05 [13], in which users can purchase
multi-coupons and redeem them unlinkably while being prevented from
overspending or sharing the coupons. However, the costs for issuing and
redeeming coupons are linear to the redeeming limit. Security of the sys-
tem is not proved and only some arguments on system properties are
provided. Coupons last indefinitely and can not be terminated. In this
paper, we propose the first PPC system with constant costs for com-
munication and computation. Coupons are revokable and the system is
provably secure.

Keywords: coupon, transaction, anonymity and privacy.

1 Introduction

Coupons are a useful means by which businesses may attract the attention of
new customers, or to increase the attractiveness of their business to existing
customers. A coupon can be redeemed for value in a transaction, but only with
the businesses associated with the coupon issuer, and so provides an incentive for
the user to buy products from those businesses rather than from other potential
suppliers [21]. A coupon may be able to be presented for more than one instance
of service: e.g. a cinema may sell a booklet of prepaid vouchers at a discount
that can be redeemed in the future for movie tickets. Prescriptions for medicines
can also be seen as a form of coupon, where the value to users is not in price,
but in access to some otherwise restricted goods, and a prescription may be
valid for the supply of several courses of the medication. Such coupons are called
multi-coupons. Because multi-coupons (like other coupons) can be only redeemed
at outlets associated with the coupon issuer, they represent a form of loyalty
scheme by giving a price incentive to use the issuer’s preferred businesses over
other businesses. Coupons are particularly interesting in Internet commerce,
because some of the costs normally associated with changing one’s business from
one supplier to another, for example ease of access to their retail outlets, or
familiarity with their staff, can be much lower on the Internet than in traditional
retail markets.

If coupons can be associated with their users, they represent a further ad-
vantage for the business, since they allow purchases to be linked and the user’s
buying habits to be collected by the vendor, even for transactions otherwise
paid in cash. This allows the business to target their marketing, including their
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marketing through coupons, more closely to the individual. However, it is not
attractive to the coupon user, since they may wish to maintain the privacy of the
nature of their purchasing from the business, as they can by using cash payments.
If unlinkability between purchases and untraceability of users of the coupon can
be assured, those who might otherwise do cash business with normal retail out-
lets might be attracted to do Internet business using coupons. A coupon issuer
who wishes to attract privacy-sensitive users may wish to forgo some of the other
marketing advantages offered by linkable or traceable coupons, and provide users
with a coupon system that assures them that their purchasing history cannot be
captured by their use of coupons, but maintains the other desirable properties
of a coupon system. PPC systems can be used in such situations.

In a PPC system, a multi-coupon presented for redemption will only reveal
that it is still valid for redemption and no further information can be deduced.
Redemptions cannot be linked with each other, and no information is revealed
that can link the coupon with the issuing process, so even if a coupon is purchased
by credit card, its use cannot be linked back to the owner of the card.

Chen et al. argue that on-selling a coupon, where the whole of the coupon’s
remaining value is purchased by another user, or splitting a coupon, where several
users each agree to only use some fraction of the coupon, can both be discouraged
if it is not possible to determine from an examination of the multi-coupon how
many of the component coupons are still redeemable [13]. In the case of on-
selling, the purchaser must then trust the seller as to the number of valid coupons
remaining on the multi-coupon. For splitting, each of the users who split a multi-
coupon must trust all the other users not to use more than their share of the
multi-coupon. A PPC system should at least provide this property, which is
termed all-or-nothing-sharing.

The CESSS05 system does not provide revocability, another important prop-
erty. It is common practice for coupons to have a limited validity in time, and
they commonly carry an expiry date. This provides an incentive for the coupon
user to possibly make a purchase earlier than they would otherwise, or consume
more than they would otherwise (to, say, use all the coupons in a multi-coupon
to avoid loss if they have some investment in the multi-coupons).

Our construction
Taking a different approach from CESSS05, we propose a PPC system providing
these properties with improved efficiency, security and functionality. This is the
first multi-coupon system whose costs, both communication and computation,
do not depend on the bound on the value of the multi-coupon. Our system is
also the first to combine protection of the user’s privacy with revocability of the
multi-coupon. We present a security model for PPC systems and prove security
of our system in this model.

Several coupon systems have been proposed, but none of them provides the
properties offered by our system, especially in term of efficiency. Some systems,
such as [12], [5] and [19], protect user privacy but allow coupon splitting. Some
systems [15,23], reveal the coupon’s remaining value or allow transaction linka-
bility. And coupon redemption can not be limited in some other systems [6,20].
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The k-times anonymous authentication systems proposed in [22,18] can be mod-
ified to be a PPC system of k-redeemable coupons, but its redeem protocol
requires a proof of knowledge of one-out-of-k discrete logs, so its communication
and computation costs for redeeming are linear to k.

The following section details some preliminary cryptographic primitives on
which our system depends. Section 3 presents our PPC system and compares it
in more detail with the CESSS05 system. Sections 4 presents the PPC security
model and security proofs of our system are shown in section 5.

2 Preliminaries

This section reviews the bilinear mapping concept, related complexity assump-
tions, signature schemes with efficient protocols and the CESSS05 PPC system.
The following notation, introduced in [10] for proofs of knowledge, will be used
in this paper. For example,

PK{(α, β, γ) : y = gαhβ ∧ z = aαbγ}
denotes “a zero-knowledge Proof of Knowledge of integers α, β and γ satisfying
y = gαhβ and z = aαbγ”. By x ∈R S we mean x is randomly chosen from a set
S. PPT denotes probabilistic polynomial time.

2.1 Bilinear Groups

Suppose G1, G2 and GT are multiplicative cyclic groups of the same prime order
p, and there is an isomorphism ψ : G2 → G1. Let g1 and g2 be generators of
G1 and G2, respectively, such that ψ(g2) = g1. A bilinear map is a function
e : G1 × G2 → GT satisfying the following properties:
1. Bilinear: e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Z.
2. Non-degeneracy: e(g1, g2) �= 1.
3. Computability: There exists an efficient algorithm for computing e.

2.2 Complexity Assumptions

Let G1 and G2 be cyclic groups of prime order p, and let g1 and g2 be generators
of G1 and G2, respectively. The Strong Diffie-Hellman (SDH) [2] and Decisional
Bilinear Diffie-Hellman Inversion (DBDHI) [3] assumptions are briefly reviewed
as follows.
Strong Diffie-Hellman assumption. The q-SDH problem is defined as “com-
puting a pair (x, g

1/(γ+x)
1 ), given a tuple (g1, g2, g

γ
2 , g

(γ2)
2 , . . . , g

(γq)
2 )”. The q-SDH

assumption states that no PPT algorithm can solve the q-SDH problem with
non-negligible probability.
Decisional Bilinear Diffie-Hellman Inversion assumption. The DBDHI
problem is defined as “distinguishing between (g1, g2, g

γ
2 , . . . , g

(γq)
2 , e(g1, g2)1/(γ))

and (g1, g2, g
γ
2 , . . . , g

(γq)
2 , Λ), where γ is randomly chosen from Z∗

p and Λ is ran-
domly chosen from G∗

T ”. The DBDHI assumption states that no PPT algorithm
can solve the DBDHI problem with non-negligible probability.
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2.3 BB Signature Scheme

This signature scheme [2], which is unforgeable under a weak chosen message
attack, allows simple and efficient signature generation and verification. It is also
efficient to prove knowledge of a BB signature without revealing anything about
the signature and message.
Key Generation. Let G1, G2, p, g1 and g2 be bilinear mapping parameters as
generated above. Generate random γ ∈R Z∗

p and compute w ← gγ
2 . The public

key is (g1, g2, w) and the secret key is γ.

Signing. Given a message r ∈ Zp \ {−γ}, output the signature a ← g
1/(γ+r)
1 .

Verification. Given a public key (g1, g2, w), a message r ∈ Zp \ {−γ}, and a
signature a ∈ G1, verify that e(a, wgr

2) = e(g1, g2).

2.4 CL-SDH Signature Scheme

Camenisch and Lysyanskaya proposed a signature scheme (CL) [8] which pos-
sesses 3 valuable properties. It is possible to generate a single CL signature for
multiple messages. A signer can produce a CL signature for many messages
without learning anything about the messages. And there is an efficient zero-
knowledge proof of knowledge of a CL signature and its messages.

A variant with these properties is the CL-SDH signature scheme, whose se-
curity relies on the SDH assumption. As we do not use this scheme to generate
a single signature for multiple messages, the following just present signing and
verifying algorithms for a single message.
Key Generation. Let G1, G2, p, g1 and g2 be bilinear mapping parameters.
Generate random γ ∈R Z∗

p and b, c ∈R G1 and compute w ← gγ
2 . The public key

is (b, c, g1, g2, w) and the secret key is γ.
Signing. On input x ∈ Z∗

p, generate random s ∈R Zp and d ∈R Zp \ {−γ} and
compute v ← (gx

1 bsc)1/(γ+d). The signature is (v, d, s).
Verification. Given a public key (b, c, g1, g2, w), a message x ∈ Z

∗
p, and a sig-

nature (v, d, s), verify that e(v, wgd
2) = e(gx

1 bsc, g2).
Security of the CL-SDH signature scheme is stated in Theorem 1, which can

be proved similarly to the proof for the CL signature scheme [8].

Theorem 1. The CL-SDH signature scheme is unforgeable under chosen mes-
sage attacks if the SDH assumption holds.

2.5 BlindSign-SDH Protocol

In the CESSS05 system, the vendor runs a BlindSign protocol [8] to issue a CL
signature for multiple messages to a user without learning anything about the
messages. Similarly, the BlindSign-SDH protocol allows a user to obtain a CL-
SDH signature without revealing anything about the corresponding message to
the signer. Let G1, G2, p, g1 and g2 be bilinear mapping parameters. Suppose
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((b, c, g1, g2, w), γ) is a pair of CL-SDH public key and secret key, the BlindSign-
SDH protocol between a user U and a signer S is executed as follows.

Common input : the CL-SDH public key (b, c, g1, g2, w).
User’s input : a message x ∈ Z∗

p.
Signer’s input : the CL-SDH secret key γ.

Protocol

– U chooses s′ ∈R Zp, sends D = gx
1 bs′

to S with a proof PK{(ξ, σ) : D =
gξ
1b

σ}.
– After checking that the proof is valid, S generates random s′′ ∈R Zp and

d ∈R Zp \ {−γ} and computes v ← (Dbs′′
c)1/(γ+d). S then sends (v, d, s′′)

to U .
– U computes s ← s′ + s′′, checks if e(v, wgd

2) = e(gx
1 bsc, g2), and obtains the

CL-SDH signature (v, d, s) for x.

Note that x and s are U ’s secrets and S does not learn anything about x from
the protocol.

2.6 CESSS05 PPC System

The system consists of an Initialisation algorithm and 2 protocols, Issue and
Redeem. There is a vendor and many users. The vendor can issue a m-redeemable
coupon to a user such that the user can unlinkably redeem the coupon for exactly
m times. The system also provides all-or-nothing-sharing property.

The initialisation algorithm generates a system public key, which is a CL
public key, and a vendor secret key, which is the corresponding CL secret key. In
the issue protocol, the user generates m random messages X = (x1, x2, . . . , xm),
performs the BlindSign protocol with the vendor to obtain a CL signature (v, e, s)
for the m messages without revealing anything about the messages. The user’s
m-redeemable coupon is (X, v, e, s). In the redeem protocol, the user reveals a
message xi to the vendor without revealing i and the vendor checks that xi has
not been revealed previously and stores xi. The user then runs a zero-knowledge
proof of knowledge of m messages X and their CL signature (v, e, s) and also
proves that xi ∈ X without revealing i. A component coupon of the multi-
coupon is redeemed if the vendor accepts these proofs as valid. The component
coupon can not be redeemed again as the vendor has stored xi. The protocols
and proofs are zero-knowledge and X is the user’s secret, hence, the redeem
execution is unlinkable. The user is required to know (X, v, e, s) to perform the
redeem protocol, so the coupon (X, v, e, s) has all-or-nothing-sharing property.

3 A New Privacy-Protecting Coupon System

3.1 Overview

We first outline general construction of our scheme and compare it with the
CESSS05 system. As in the CESSS05 system, participants include a vendor and
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many users, and there is an Initialisation algorithm, an Issue protocol and a
Redeem protocol, but there is one more algorithm, Terminate, which allows the
vendor to terminate coupons.

The Initialisation algorithm generates a system public key and a vendor secret
key. The vendor secret key consists of a CL-SDH secret key and a BB secret key.
The system public key includes the corresponding CL-SDH and BB public keys,
m random messages a1, a2, . . . , am and their BB signatures o1, o2, . . . , om. Some
other signature schemes, such as CL-SDH or those proposed in [2,9], can be used
in place of the BB scheme, but the BB scheme is used for the sake of efficiency
and simplicity.

In the Issue protocol, the user generates a random x and runs the BlindSign-
SDH with the vendor to obtain a CL-SDH signature (v, d, s) for x and the coupon
is (x, v, d, s). So the issuing costs do not depend on the coupon bound m. In
contrast, in the issue protocol of the CESSS05 system, the user and the vendor
perform the BlindSign protocol to obtain a CL signature for m random messages,
so the numbers of exponentiations and transmitted bytes are linear to m.

In the Redeem protocol, the user chooses a message ai with a BB signature
oi and reveals C = fai(x) to the vendor without revealing ai, where f is a one-
way function. The vendor checks that C has not been revealed previously and
stores C. The user then shows a zero-knowledge proof of knowledge of a BB
message-signature pair (a, o) and a CL-SDH message-signature pair (x, (v, d, s))
such that C = fa(x). The coupon is redeemed if the vendor successfully verifies
the proof. So the redeeming costs do not depend on m, whereas in previous PPC
schemes these costs depend on m. One important issue is that, in order to protect
privacy of the coupon system, the one-way function f must be “unlinkable”. That
means it is hard to distinguish between (fai(x), faj (x)) and (fai(x), faj (x′)).
Fortunately, the DBDHI assumption [3] can be employed to construct such a
one-way function that can be efficiently used for our scheme. The function is the
same as a recent verifiable random function [14].

We use the “accumulating” approach [7,4] for coupon revocation. To termi-
nate a coupon, the vendor recomputes the system public key and adds some
information to a public revocation list (RL) such that unrevoked coupons can
be efficiently updated to be valid under the new system public key but it is hard
to update the terminated coupon. This approach can also be used to provide
coupon revocation for the CESSS05 system.

The CESSS05 system has not been presented in details, so we can not pro-
vide a thorough efficiency comparison with this system. Even if m is small,
the numbers of transmitted bytes and exponentiations in our scheme are quite
smaller than those in the CESSS05 scheme. Our scheme requires a number of
pairings, but most of them can be pre-computed before the protocols: e(g′1, g

′
2),

e(g1, g2), e(b, g2), e(b, w), e(b, g′2), e(b, w′) and e(c, g2). The user U can compute
e(v, wgd

2), e(gx
1 bsc, g2), e(T1, g2) and e(T2, g

′
2) without computing any pairing

online if e(v, w), e(v, g2), e(g1, g2), e(b, g2), e(c, g2), e(oi, g
′
2) and e(b, g′2) are pre-

computed. So only four pairings are needed to be computed online by the verifier
in the PKSign Proof: e(T1, g2), e(T1, w), e(T2, g

′
2) and e(T2, w

′).
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3.2 Description

The system consists of an Initialisation algorithm, a Terminate algorithm, an
Issue protocol and a Redeem protocol and involves a vendor V and a number of
users.

Initialisation
Let G1, G2, p, g1 and g2 be bilinear mapping parameters. Generate random
b, c, g′1 ∈R G1, g′2 ∈R G2 and γ, γ′ ∈R Z∗

p and compute w ← gγ
2 and w′ ←

g′γ
′

2 . Generate different a1, a2, . . . , am ∈R Zp \ {−γ} and their BB signatures
o1, o2, . . . , om ∈ G1 where oi = g

′1/(γ′+ai)
1 , (i = 1 . . .m). The system public

key is PK = (A, R, b, c, g1, g2, w, g′1, g
′
2, w

′) and the vendor secret key is SK =
(γ, γ′), where A = (a1, a2, . . . , am) and R = (o1, o2, . . . , om). There is a public
Revocation List RL, which is empty initially.

Issue
The vendor V and a user U perform this protocol. U chooses a random x ∈R

Z∗
p and runs the BlindSign-SDH protocol with V to obtain a blind CL-SDH

signature (v, d, s) on x (the CL-SDH public key is (b, c, g1, g2, w) and the CL-
SDH secret key is γ). The user’s multi-coupon is M = (x, v, d, s), where v and d
are known by V and x and s are U ’s secrets.

Terminate
Suppose the current public key is PK = (A, R, b, c, g1, g2, w, g′1, g

′
2, w

′), V ter-
minates a coupon (·, ·, d1, ·) by computing ḡ1 ← g

1/(γ+d1)
1 , ḡ2 ← g

1/(γ+d1)
2 ,

b̄ ← b1/(γ+d1), c̄ ← c1/(γ+d1) and w̄ ← (ḡ2)γ , setting the new public key
PK = (A, R, b̄, c̄, ḡ1, ḡ2, w̄, g′1, g

′
2, w

′), and adding (d1, ḡ2, b̄, c̄) to RL.

Redeem
This is a protocol between the vendor V and a user U . It consists of 2 stages,
Updating and Proof of Signatures.
Updating
In this stage, U updates the system public key and his unrevoked coupon, as the
vendor may have terminated some coupons and changed the system public key.

U obtains RL and suppose (d1, g
∗
1 , b∗1, c

∗
1), (d2, g

∗
2 , b∗2, c

∗
2), . . . , (dk, g∗k, b∗k, c∗k) are

the new items on RL (in that order) since the last time U updated the public
key and his coupon. U can update the current public key and his coupon by
repeating the following process for each of these items.

For terminated item (d1, g
∗
1 , b∗1, c

∗
1), U (or anyone) can simply compute a new

public key from the old public key PK = (A, R, b, c, g1, g2, w, g′1, g
′
2, w

′) as ĝ1 ←
ψ(g∗1), ĝ2 ← g∗1 , b̂ ← b∗1, ĉ ← c∗1 and ŵ ← g2(g∗1)−d1 . Then ĝ1 = g

1/(γ+d1)
1 and

ŵ = (g∗1)γ+d1(g∗1)−d1 = ĝγ
2 . The new public key is

PK = (A, R, b̂, ĉ, ĝ1, ĝ2, ŵ, g′1, g
′
2, w

′).
U then updates his unrevoked coupon (x, v, d, s) by computing

v∗ ← ψ(g∗1)x(b∗1)
sc∗1 and v̂ ← (v∗/v)1/(d−d1). Then v∗ = v(γ+d)/(γ+d1) and

v̂γ+d = (v(γ+d)/(γ+d1)/v)(γ+d)/(d−d1) = v(γ+d)/(γ+d1) = ψ(g∗1)x(b∗1)sc∗1. So the
updated coupon (x, v̂, d, s) is valid.
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By orderly repeating the process for each of the items (d1, g
∗
1 , b∗1, c

∗
1),

(d2, g
∗
2 , b

∗
2, c

∗
2), . . ., (dk, g∗k, b∗k, c∗k), the user can update the current public key and

his unrevoked coupon.
Proof of Signatures
Suppose the updated system public key is PK = (A, R, b, c, g1, g2, w, g′1, g

′
2, w

′)
and U ’s updated coupon is (x, v, d, s).

U sends h = fai(x) to the vendor V where fai(x) = e(g′1, g′2)1/(x+ai). V checks
if h has been revealed before (from its storage S of these values). If it has, V
stops the protocol and output reject. Otherwise, V stores h in S. Then U shows
V the following proof

PKSign = PK{(α, τ, β, δ, ε, ε) : e(δ, wgε
2) = e(gβ

1 bεc, g2)
∧e(τ, w′g′α2 ) = e(g′1, g

′
2) ∧ hα+β = e(g′1, g

′
2)}

PKSign proves that U knows a CL-SDH message-signature pair (x, (v, d, s))
and a BB message-signature pair (a, o) such that h = e(g′1, g

′
2)

1/(x+a). PKSign
is presented in details in the next subsection.

3.3 PKSign Proof

The following PKSign proof between U and V is an honest-verifier zeroknowledge
proof under the Discrete Log assumption in G1 (its proof is standard and so
omitted).

– Common input : PK = (A, R, b, c, g1, g2, w, g′1, g
′
2, w

′); h = e(g′1, g
′
2)

1/(x+ai).
– U ’s input : ai, oi, x, v, d, s.
– Proof : PK{(α, τ, β, δ, ε, ε) :

e(δ, wgε
2) = e(gβ

1 bεc, g2) ∧ e(τ, w′g′α2 ) = e(g′1, g
′
2) ∧ hα+β = e(g′1, g

′
2)}.

Protocol
U generates random t1, t2, u1, u2 ∈R Zp and computes

y1 ← t1d, y2 ← t2ai,
T1 ← vbt1 , U1 ← bt1cu1 , T2 ← oib

t2 , U2 ← bt2cu2 .
U and V then perform a proof of knowledge of (t1, t2, u1, u2, y1, y2, ai, x, d, s)
satisfying

bt1cu1 = U1, bt2cu2 = U2,
e(g1, g2)xe(b, g2)s+y1e(T1, g2)−de(b, w)t1 = e(T1, w)e(c, g2)−1,
e(T2, g

′
2)−aie(b, w′)t2e(b, g′2)y2 = e(T2, w

′)e(g′1, g′2)−1,
hx+ai = e(g′1, g

′
2),

Ud
1 b−y1c−u1d = 1, Uai

2 b−y2c−u2ai = 1.
It proceeds as follows. U generates random
rt1 , rt2 , ru1 , ru2 , ry1 , ry2 , rai , rx, rd, rs, ru1d, ru2ai ∈R Zp

and computes
R1 ← brt1 cru1 , R2 ← brt2 cru2 ,
R3 ← e(g1, g2)rxe(b, g2)rs+ry1 e(T1, g2)−rde(b, w)rt1 ,
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R4 ← e(T2, g
′
2)

−rai e(b, w′)rt2 e(b, g′2)
ry2 ,

R5 ← hrx+rai ,
R6 ← U rd

1 b−ry1 c−ru1d , R7 ← U
rai

2 b−ry2 c−ru2ai .
U sends (T1, T2, U1, U2, R1, . . . , R7) to V . V returns a challenge μ ∈R Zp. U then
responses with the following values

zt1 ← rt1 + μt1, zt2 ← rt2 + μt2, zu1 ← ru1 + μu1, zu2 ← ru2 + μu2,
zy1 ← ry1 + μy1, zy2 ← ry2 + μy2,
zai ← rai + μai, zx ← rx + μx, zd ← rd + μd, zs ← rs + μs
zu1d ← ru1d + μu1d, zu2ai ← ru2ai + μu2ai.

V finally verifies that
bzt1 czu1 = Uμ

1 R1, bzt2 czu2 = Uμ
2 R2,

e(g1, g2)zxe(b, g2)zs+zy1 e(T1, g2)−zde(b, w)zt1 = (e(T1, w)e(c, g2)−1)μR3,
e(T2, g

′
2)

−zai e(b, w′)zt2 e(b, g′2)
zy2 = (e(T2, w

′)e(g′1, g
′
2)

−1)μR4,
hzx+zai = e(g′1, g

′
2)

μR5,
Uzd

1 b−zy1 c−zu1d = R6, U
zai

2 b−zy2 c−zu2ai = R7.
V accepts if and only if all equations hold.

3.4 Remark

– By removing the Terminate algorithm and the Updating stage of the Redeem
protocol, we have a PPC system without coupon revocation that has the
same functionality as the CESSS05 system.

– Both of the CESSS05 system and our system can be modified to allow the
vendor to assign different redeeming bounds to different coupons, where
the bounds are not greater than some value m. For instance, the vendor
V wants to issue n-redeemable coupon to a user U where n ≤ m. In the
Issue protocol of the CESSS05 system, U also reveals xn+1, . . . , xm to V
with a zero-knowledge proof that xn+1, . . . , xm ∈ X . In the Issue protocol
of our system, U also reveals e(g′1, g

′
2)

1/(x+an+1), . . . , e(g′1, g
′
2)

1/(x+am) with a
zero-knowledge proof of knowledge of x corresponding to (v, d, s).

4 Security Model

4.1 Syntax

A Privacy-Protecting Coupon System is a tuple of polynomial-time algorithms
(Init, IssueU , IssueV , Terminate, RedeemU , RedeemV ). Participants include a
vendor and a number of users. There is a public Revocation List (RL) which
consists of terminated coupons and is empty initially.

– Init : The initialisation algorithm Init on input 1k returns a pair (PK, SK)
where PK is the system public key and SK is the vendor secret key.

– (IssueU , IssueV ): These interactive algorithms form the issue protocol be-
tween a user (IssueU ) and the vendor (IssueV ). The common input is PK
and IssueV also takes SK as the private input. IssueU outputs a coupon M
and IssueV returns the coupon’s public information dM .
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– Terminate: This termination algorithm takes as input PK, SK, RL and a
coupon’s public information d. It outputs a new pair ( ¯PK, ¯SK) and appends
(d, inf) to RL where inf is some public information about this termination.
The new system public key is ¯PK and the new vendor secret key is ¯SK.
Coupon d can no longer be redeemed afterwards.

– (RedeemU , RedeemV ): These interactive algorithms form the redeem protocol
which allows a user (IssueU ) to redeem a coupon with the vendor (IssueV ).
The common input includes the current public key PK and the revocation
list RL. The vendor’s private input is the current secret key SK and the
user’s private input is its coupon M . At the end, IssueV returns accept or
reject, which indicates if the coupon is redeemed or it is invalid, respectively.
IssueU outputs M̄ which is a coupon updated from M .

Correctness: Informally, it requires that if a coupon is obtained by correctly
performing the issue protocol, has not been redeemed more than its bound and
has not been terminated, then an execution of the redeem protocol for the coupon
shall end successfully with the vendor outputting accept, with overwhelming
probability.

4.2 Oracles

Security requirements of PPC systems are formulated in experiments between
an adversary and an honest party. In each experiment, the adversary plays a
vendor and the party plays a user or vice versa. The adversary’s capabilities are
modelled by access to the following oracles.

OIs(·, ·): The adversary can request this issue oracle to execute the Issue proto-
col. The oracle takes 2 inputs and the first input can be either ′user′ or ′vendor′.
If the adversary plays a user, it does not need to call OIs(′user′, ·), and if the
adversary plays a vendor, it does not need to call OIs(′vendor′, ·). If the first
input is ′user′, the oracle plays the honest user, takes the second input as the
vendor’s message of the Issue protocol and outputs a message back to the ven-
dor. If the first input is ′vendor′, the oracle plays the honest vendor, takes the
second input as the user’s message of the Issue protocol and outputs a message
back to the user.

ORd(·, ·, ·): This redeem oracle allows the adversary to run the Redeem protocol.
It takes 3 input where the first input can be ′user′, ′vendor′ or ′correct′, the
second input is the public information of the coupon to be redeemed. If the ad-
versary plays a user, it does not need to call ORd(′user′, ·, ·), and if the adversary
plays a vendor, it does not need to call ORd(′vendor′, ·, ·). If the first input is
′user′, the oracle plays the honest user, takes the third input as the vendor’s
message of the Redeem protocol and outputs a message back to the vendor. If
the first input is ′vendor′, the oracle plays the honest vendor, takes the third
input as the user’s message of the Redeem protocol and outputs a message back
to the user. If the first input is ′correct′, the oracle just correctly executes the
Redeem protocol on the coupon and outputs either accept or reject to indicate
whether the vendor accepts the coupon or not.



276 L. Nguyen

OOp(·): On input a coupon’s public information, this open oracle returns the
coupon’s content.

OTe(·): This terminate oracle takes as input a coupon’s public information and
terminates the coupon.

OCh(·, ·) This challenge oracle takes as input 2 coupons with public information
d0 and d1. It randomly chooses a bit j, correctly runs the Redeem protocol on
the coupon dj and returns the transcript.

OCo(·) This count oracle takes as input either ′total′ or a coupon’s public infor-
mation. If it is ′total′, the oracle returns the total number of successful redemp-
tions. If it is a coupon’s public information d, the oracle returns the number
of times d has been successfully redeemed. In case d has been terminated, the
oracle outputs the number of successful redemptions by using d before it was
terminated.

4.3 Security Notions

A PPC system is secure if it satisfies 3 security requirements: Unlinkability,
Unforgeability and Unsplittability. Each requirement is defined by an experiment
between a PPT adversary and an honest party. Suppose m is each coupon’s
redeemable number.

Unlinkability
Loosely stated, Unlinkability requires that, given 2 coupons and a redeeming
transcript generated by using one of the coupons, the adversary can not decide
which coupon has been used. In the Unlinkability experiment, the adversary A
plays a vendor V and the party plays an honest user U . The adversary can access
oracles OIs, ORd, OOp, OCh, OCo. OTe is not needed as A can terminate any
coupon.

The adversary first runs the Init algorithm on input 1k to obtain a key pair
(PK, SK) ← Init(1k). The adversary can then query OIs to issue many coupons
to U , query ORd to redeem any coupon, query OOp to open any coupon, query
OCo to obtain the number of successful redemptions totally or for any coupon,
and terminate any coupon. At some point, the adversary query OIs twice to issue
U two coupons with public information d0 and d1. The adversary then continues
the experiment as before, except that it can not query OOp on d0 and d1 and
can not terminate d0 and d1. After a while, the adversary query OCh(d0, d1) to
obtain a challenge transcript, which has been generated by OCh using a random
bit j. It then continues the experiment as before, except that it now can not
query OCo and OOp on d0 and d1. The adversary finally output a bit j′. At this
point, it is required that OCo(d0),OCo(d1) < m. Let

Advunli
A (k) = |Pr(j′ = 0 | j = 0) − Pr(j′ = 0 | j = 1)|

Definition 1. A PPC system is said to be unlinkable if Advunli
A (k) is negligible

for any PPT adversary A.
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Unforgeability
Intuitively, Unforgeability requires that the adversary can not forge any success-
ful redemption, i.e. it can not forge a new valid coupon or successfully redeem an
overspent or terminated coupon. In the Unforgeability experiment, the adversary
A plays a user U and the party plays an honest vendor V . The adversary can
access oracles OIs, ORd, OTe, OCo. OOp is not needed as U obtains all coupons
issued from V (A actually represents all users).

The party first runs the Init algorithm on input 1k to obtain a key pair
(PK, SK) ← Init(1k) and publish PK. The adversary can then query OIs to
obtain many coupons from V , query ORd to redeem any coupon, query OTe

to terminate any coupon and query OCo to obtain the number of successful
redemptions totally or for any coupon. At the end, suppose A has obtained l
unrevoked coupons from the vendor. If OCo(′total′) > m × l +

∑
d∈RL OCo(d),

then the adversary is considered to be successful. Let Advunfo
A (k) denote the

probability that the adversary is successful.

Definition 2. A PPC system is said to be unforgeable if Advunfo
A (k) is negligi-

ble for any PPT adversary A.

Unsplittability
Unsplittability, i.e. all-or-nothing-sharing, intuitively means that if a user can
spend a coupon once, then he can spend it for m times. We do not model
the complete protection against splitting a coupon (Strong Unsplittability) as
neither CESSS05 nor our scheme satisfies this requirement. In the Unsplittability
experiment, the adversary A plays a user U and the party plays an honest vendor
V . The adversary can access oracles OIs, ORd, OTe, OCo. As for Unforgeability,
OOp is not needed as U obtains all coupons issued from V .

The party first runs the Init algorithm on input 1k to obtain a key pair
(PK, SK) ← Init(1k) and publish PK. The adversary can then query OIs to
obtain many coupons from V , query ORd to redeem any coupon, query OTe to
terminate any coupon and query OCo to obtain the number of successful re-
demptions totally or for any coupon. At some point, A outputs a coupon with
public information d and terminates. At that time, if 0 < OCo(d) < m, d is
not in RL and reject ← ORd(′correct′, d, ∅), then the adversary is considered
to be successful. Let Advunsp

A (k) denote the probability that the adversary is
successful.

Definition 3. A PPC system is said to be unsplittable if Advunsp
A (k) is negligi-

ble for any PPT adversary A.

4.4 Remarks

This model can be simplified for PPC systems without coupon termination by
removing the Terminate algorithm, the revocation list RL and OTe.

The above requirements are strong enough to capture the informal require-
ments listed in [13]. Minimum disclosure, which means the vendor should not
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learn from the Redeem protocol how many times more the coupon can be re-
deemed, follows from the unlinkability requirement. Unforgeability implies dou-
ble spending detection and redemption limitation, which means an m-redeemable
coupon should not be accepted more than m times. And unsplittability means
all-or-nothing-sharing.

5 Security of the Privacy-Protecting Coupon System

Correctness can be easily checked and proofs of the security requirements are
quite routine using approaches in [2,3,17]. Due to space limitation, we only pro-
vide sketches of the security proofs.

Theorem 2. The PPC scheme provides unlinkability if the DBDHI assumption
holds.

Proof Sketch. We show that if a PPT adversary A can break the unlinkability
property of the PPC system, then we can construct a PPT adversary B that
can break the DBDHI assumption. Suppose G1, G2, p, g̃1 and g̃2 are bilinear
mapping parameters. Suppose a tuple θ = (g̃1, g̃2, g̃

ϑ
2 , . . . , g̃

(ϑq)
2 , Θ) is uniformly

chosen from one of the sets S0 = {(g̃1, g̃2, g̃
ν
2 , . . . , g̃

(νq)
2 , e(g̃1, g̃2)1/(ν))|ν ∈R Z∗

p}
and S1 = {(g̃1, g̃2, g̃

ν
2 , . . . , g̃

(νq)
2 , Λ)|ν ∈R Z∗

p, Λ ∈R G∗
T }. To decide whether θ is

chosen from S0 or S1, B simulates the Unlinkability experiment with A where
B plays the honest party and provides oracles.

B selects a random bit j ← {0, 1} and let j′ be the other bit. From θ, B
can construct Hj = {e(g′1, g′2)1/(xj+a1), . . . , e(g′1, g

′
2)

1/(xj+am−1)} and Θ̄ for some
g′1, g′2, xj and {ai}m

i=1, where m < q and xj is B’s only unknown value, such
that Θ̄ = e(g′1, g′2)1/(xj+am) if and only if Θ = e(g̃1, g̃2)1/ϑ. B then generates
xj′ ∈R Z∗

p and computes Hj′ = {e(g′1, g′2)1/(xj′ +a1), . . . , e(g′1, g
′
2)

1/(xj′ +am)}. B
then generates random b, c, g1 ∈R G1, g2 ∈R G2 and γ, γ′ ∈R Z∗

p and computes

w ← gγ
2 and w′ ← g′γ

′
2 . For a1, a2, . . . , am, B computes their BB signatures

o1, o2, . . . , om ∈ G1 where oi = g
′1/(γ′+ai)
1 , (i = 1 . . .m). The system public key is

PK = (A, R, b, c, g1, g2, w, g′1, g
′
2, w

′) and the vendor secret key is SK = (γ, γ′),
where A = (a1, a2, . . . , am) and R = (o1, o2, . . . , om). As knowing γ, γ′ and
playing the honest user, B can easily simulate oracles OIs, OOp and OCo and a
pair of challenge coupons (x0, v0, d0, s0) and (x1, v1, d1, s1) for OCh.

For a query to ORd from A on d0 or d1, B can choose h from either H0 or H1,
respectively and simulates the PKSign proof (as PKSign is zero-knowledge).
For the query to OCh, B uses Θ̄ as h to simulate PKSign. Finally, if A returns
j, B decides that θ is chosen from S0. Otherwise, B decides that θ is chosen from
S1. Therefore, if A can break the unlinkability property of the PPC system, then
B can break the DBDHI assumption.

Theorem 3. The PPC scheme provides unforgeability if the SDH assumption
holds.

Proof Sketch. We show that if a PPT adversary A can break the unforgeability
property of the PPC system, then we can construct a PPT adversary B that
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can break the SDH assumption. As A breaks unforgeability, one of the 3 cases
below happens. B will randomly play one of 3 corresponding games such that
if B plays a game when the corresponding case happens, then B can break the
SDH assumption.

As PKSign is zero-knowledge, if it is accepted (when a coupon is successfully
redeemed), A knows (a, o, x, v, d, s) satisfying the equations in PKSign. Follow-
ing the Unforgeability experiment, if A is successful (OCo(′total′) > m × l +∑

d∈RL OCo(d)), there are 3 cases.

– A can generate a new BB message-signature pair
(am+1, om+1) /∈ {(a1, o1), (a2, o2), . . . , (am, om)}. If B plays a game similar
to the game in the proof of BB’s unforgeability under a weak chosen message
attack [2], then B can break the SDH assumption.

– A can redeem a revoked coupon. If B plays a game constructed using the
approach of proofs in [17], then B can break the SDH assumption.

– A can forge a new CL-SDH message-signature pair x, (v, d, s). If B plays a
game similar to the game in the proof of CL-SDH’s unforgeability under a
chosen message attack, then B can break the SDH assumption.

Theorem 4. The PPC scheme provides unsplittability.

Proof Sketch. Following the Unsplittability experiment, suppose the adversary
outputs a coupon (x, v, d, s) at the end, such that it has been successfully re-
deemed at least once but less than m times and it has not been terminated. That
means there are elements of {(a1, o1), (a2, o2), . . . , (am, om)} which have not been
used by the coupon. So if ORd is queried with input ′correct′ on the coupon,
one of the unused elements can be used and ORd outputs accept. Therefore, the
adversary is not successful and it indicates unsplittability.

Acknowledgements. Thanks go to Peter Lamb, who contributed to this paper
but declined to be a co-author.
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Abstract. In this paper, we present a broadcast encryption scheme with
efficient transmission cost under the log-key restriction. Given n users and
r revoked users, our scheme has the transmission cost of O(r) and re-
quires the storage of O(log n) keys at each receiver. These are optimal
complexities in broadcast encryptions using one-way hash functions (or
pseudo-random generators.) To achieve these complexities, the stratified
subset difference (SSD) scheme and the B1 scheme were introduced by
Goodrich et al. and Hwang et al. respectively. However, their schemes
have the disadvantage that transmission cost increases linearly according
to the number of stratifications. By assigning the related keys between
stratifications, our scheme remedies the defect and achieves very efficient
transmission cost even in an environment where the key storage is re-
stricted. To the best of our knowledge, our scheme has the most efficient
transmission cost in the existing schemes with log-key storage. In addi-
tion, our result is comparable to other schemes that allow a large key
storage.

1 Introduction

Broadcast encryption is an encryption scheme that enables a center to securely
distribute messages to a dynamically changing group of users over an insecure
channel, where only predetermined users can obtain available information. The
center should efficiently deliver information to the group of legitimate users and
prevent the group of revoked users from decrypting transmitted messages. There
are various practical applications such as pay-TV, multicast communication,
satellite-based commerce, and distribution of copyrighted materials (CD/DVD,
etc). In this area, an important requirement is for stateless receivers, which
cannot update their original state, i.e., they are not capable of recording the
past history of transmission and changing their state accordingly. Hence, each
receiver must be able to decrypt the current transmission with only its initial
configuration. Actually, in many practical environments most devices should be
stateless since it is difficult to keep the receiver constantly on-line and it is very
cumbersome for both the receiver and the center to keep the history of every
transmission.
� This research was supported by University IT Research Center Project, the Brain
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With the advent of mobile networks and other digital support services, the
need to deliver multimedia data to user’s handheld devices over a wireless net-
work becomes more important. This situation is more intricate since handheld
devices such as cellular phones and PDAs have only a small storage capability
and low computing power. In addition, the bandwidth of wireless networks is
narrower than that of wired networks. Therefore, we need an efficient broadcast
encryption scheme to overcome these obstacles.

Related Works. The notion of broadcast encryption was first discussed by
Berkovits [5]. Fiat and Naor [11] formalized the basic definitions and proposed
a systematic paradigm. However, their scheme is difficult to apply to a prac-
tical system because it is highly complex. After the multicast scheme based
on a logical tree hierarchy was independently introduced by Wallner et al.[21]
and Wong et al.[22], various schemes [1,2,19,15,12] based on a tree structure
were suggested. There are two approaches to construct an efficient tree-based
scheme. One is a scheme based on sequential one-way hash functions (or pseudo-
random generators)[19,15,12] and the other is based on the RSA accumulator
[1,2]. One-way hash function-based schemes have various trade-offs between O(r)
transmission cost and O(log n) key storage where n is the number of users and
r is the number of revoked users. While RSA accumulator-based schemes can
reduce key storage to O(1), their transmission cost depends on n.1 Moreover,
these schemes require expensive computations such as modular exponentiation
and prime number generation. We deal with one-way function based schemes in
this paper.

In 2001, Naor et al.[19] introduced a Subset-Cover framework and designed
two broadcast encryption schemes for stateless receivers under this framework.
One is the CS (Complete Subtree) scheme which requires O(r log n/r) transmis-
sion cost and O(log n) key storage, and the other is the SD (Subset Difference)
scheme which guarantees 2r−1 transmission cost and O(log n) key computation
cost, while each user should store O(log2 n) keys. The transmission cost of O(r)
and the key storage of O(log n) have been regarded as the optimal bounds of tree-
based schemes, which use the key assignment technique of sequentially applying
a one-way function (or a pseudo-random generator). Afterwards, a number of pa-
pers tried to reduce the storage size by sacrificing the transmission cost of the SD
scheme. Halevy and Shamir [15] proposed the LSD (Layered Subset Difference)
scheme that lowers the key storage to O(log1+ε n) while maintaining O(r) trans-
mission cost by labelling special layers in a binary tree. In addition, Goodrich et
al. [12] presented the SSD (Stratified Subset Difference) scheme that can lower
the transmission cost to O(r) with O(log n) key storage by stratifying subtrees
between special layers in a binary tree. The SSD scheme seems to be able to
achieve the lower bounds of both the transmission cost and the key storage in

1 Recently, an RSA accumulator-based scheme with transmission cost independent of
n was accepted by Asiacrypt 2005[3]. However, this scheme also has the disadvantage
that transmission cost linearly increases according to the number of stratifications,
like the SSD scheme.
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tree-based schemes using one-way functions. However, the LSD scheme and the
SSD scheme linearly increase the transmission cost according to the number of
layers or stratified subtrees, although key storage does approach the O(log n)
bound. Other interesting improvements were introduced in [4] and [18]. In [4]
the key storage of the SD scheme and the LSD scheme were slightly reduced
by the sequential key derivation method while maintaining their transmission
costs. In [18] the system complexity was adjusted by a hybrid structure based
on the CS, SD, and LSD schemes. Moreover, other variants related to broadcast
encryption have been investigated in [8,6,13,20,10,17].

Recently, new broadcast encryption schemes based on a hash-chain [16] were
proposed which can reduce the transmission cost below r by exploiting the trade-
off between the transmission cost and the key storage. In doing so, however, too
much secure memory must be sacrificed. For example, the transmission cost of
these schemes is similar to that of the SD scheme when key storage is bounded
as in the SD scheme. This approach seems useful in practical applications, since
the storage size of user’s devices, even in the case of cellular phones or PDAs,
seems to no longer be a problem because storage devices have become larger
and cheaper. However, to guarantee security, user keys must be securely stored
in tamper-proof storage devices, which are still small and expensive. To solve
this problem, Hwang et al. [14] introduced a compiler that made scalable broad-
cast encryption schemes by transforming ones that had impractical computation
costs or key storage requirements when there are huge numbers of users. They
applied a given broadcast encryption scheme to a relatively small subset in a
hierarchical and independent manner. Their compiler makes the computation
cost and the key storage reasonable by slightly increasing the transmission cost.
However, their compiler also does not achieve O(r) transmission cost when users
are holding strictly resource-restricted devices.

In addition, Boneh et al. [7] introduced a public keybroadcast encryption scheme
with O(1) for both the transmission cost and the private key. Their scheme requires
O(n) non-secure key storage and O(n−r) computation cost. To achieve reasonable
storage and computation cost, they constructed a general scheme divided into a
number of subsets. This scheme has O(

√
n) transmission cost and O(

√
n) key stor-

age. Consequently, their complexity is not independent of n.

Our Contribution. In this paper, we focus on stateless receivers which can
store at most O(log n) keys since it is actually difficult to store much data in
tamper-proof storage. We refer to this as the log-key restriction. We propose
a new broadcast encryption scheme which satisfies O(r) transmission cost and
O(log n) key storage at a reasonable computation cost. Our scheme has the
most efficient transmission cost under the log-key restriction. Table 1 shows the
comparison between schemes with O(log n) key storage per user.

In [14], Hwang et al. introduced the B1 scheme with the computation cost
proportional to n and transformed it to the B1 scheme, which has a practical
computation cost and log-key storage, by their compiler. Our scheme is also based
on the B1 scheme and extends it in a hierarchical manner to a scheme with at
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Table 1. Complexity of BE schemes with O(log n) key storage

Transmission cost (Bound) Key storage Computation cost
CS [19] O(r log n/r) O(log n) O(log log n)
SSD [12] O(r) 4kr O(log n) O(n1/k)
B1 [14] O(r) 2kr O(log n) O(n1/k)
Our scheme O(r) 2r O(log n) O(n1/k)
(k is an arbitrary system parameter.)

most 2r transmission cost under the log-key restriction. To achieve a transmission
cost free of the level of stratification, our scheme additionally assigns the related
keys between stratifications to the B1 scheme. There is a trade-off between the
key storage and the computation cost in our scheme. Consequently, while our
scheme reduces an upper bound of the transmission cost to 2r, (d + d+1

2 · log n)
key storage and (d · n1/d) computation cost are required.

Organization of The Paper. The remainder of this paper is organized as
follows. In Section 2, we formalize a model for a broadcast encryption scheme
based on a Subset-Cover framework. In Section 3, we first introduce our basic
scheme and propose the complete scheme based on it. Then we discuss the
performance and the properties of our scheme in detail and compare it with
various broadcast encryption schemes in Section 4. Finally, we give concluding
remarks in Section 5.

2 Model for Broadcast Encryption

We define a model for a broadcast encryption based on the Subset-Cover frame-
work introduced by Naor et al.[19] since our scheme is also based on it.

2.1 Generic Model

In broadcast encryption the center (or the broadcaster) assigns secret keys to
all users and broadcasts a encrypted message with the subset keys. Legitimate
users can derive the subset keys from the assigned secret keys and decrypt the
ciphertext with them. Let N be the set of all users, R the set of revoked users,
and N\R the set of remaining users. We suppose that |N | = n and |R| =
r. A broadcast encryption scheme BE consists of 3 phases (Setup, Broadcast,
Decryption):

- Setup: The center generates secret keys for each user and delivers them to
each user over a secure channel.

- Broadcast: In this phase, the center broadcasts a message to users. Given
R, the center divides N\R into disjoint subsets S1, . . . , Sm so that N\R
=

⋃m
i=1 Si, and computes a subset key ski for each subset Si. At this time,

ski is generated by a pre-defined algorithm. The center chooses a session
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key K at random and encrypts it m times with sk1, . . . , skm. In addition, an
“actual” message M is encrypted with K. The center broadcasts a ciphertext
〈Hdr, EncK(M)〉 where

Hdr =< I1, . . . , Im, Esk1(K), . . . , Eskm(K) > .

E:{0, 1}l → {0, 1}l and Enc:{0, 1}∗ → {0, 1}∗ are symmetric encryptions
where l is a security parameter and Ij is the information on the subset Sj .
Generally, a fast encryption scheme such as a stream cipher is used for Enc
to encrypt the actual message. We call Hdr a Header (or an enabling block).

- Decryption: After receiving the ciphertext, a user u first finds the subset Si

including him from Ii. A legitimate user can then generate a subset key ski

from his secret keys. He decrypts Eski(K) with it and obtains the actual
message M from K.

A legitimate user should be included in an arbitrary subset and be able to
derive its subset key from his secret keys and the current transmission. In ad-
dition, even though all the revoked users collude with one another, it must be
impossible for them to obtain any of the subset keys. The important factors for
evaluating the broadcast encryption scheme are as follows.

- Transmission cost - the length of the Header for delivering the session key
to users in N\R. This depends on the number of subsets covering N \ R;
namely, the number of partitions included in a Header.

- Key storage - the number of secret keys which each user should store in his
secure device.

- Computation cost - the processing time to compute the subset key from the
user’s secret keys.

2.2 Adversarial Model

Our adversarial model follows the security model of Definition 10 in [19]. We
briefly review their attack scenario. The attack game between the challenger
and the adversary is as follows.

- Setup: The challenger runs the Setup algorithm and generates secret keys
for all users.

- Phase 1: The adversary adaptively selects a set R of revoked users and
obtains the secret keys of users in R from the challenger. He can get the
encryption of message selected by himself when R is chosen. In addition, he
can also create a ciphertext and see how any non-corrupted user decrypts it.

- Challenge: The adversary chooses a message M and a set R′ including all
the sets of revoked users selected in Phase 1. The challenger picks a random
bit b ∈ {0, 1} and sets C = Broadcast(R′, Mb) where M1 is M and M0 is a
random message of similar length. Then he sends it to the adversary.

- Guess: The adversary outputs a guess b′ ∈ {0, 1}.
We say that a broadcast encryption scheme is secure if for any polynomial

time adversary, the probability that he distinguishes between M0 and M1 is
negligible.
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3 Proposed Scheme

In this section we propose an efficient broadcast encryption scheme with log-key
storage. Our construction is based on the B1 scheme by Hwang et al. [14]. While
the B1 scheme has at most 2r transmission cost and O(log n) key storage, its
computation cost is proportional to n. To achieve a reasonable computation cost,
in [14] the B1 scheme was constructed from the B1 scheme by their compiler.
However, its transmission cost increases in proportion to the number of levels
in the hierarchy. While our complete scheme has a similar structure to the B1
scheme, it achieves efficient transmission cost by the related keys between each
level in the hierarchy. We first introduce the modified B1 scheme and construct
an efficient broadcast encryption scheme from it.

3.1 Basic Scheme

In this section, we slightly modify the B1 scheme. Actually, this scheme is iden-
tical to the B1 scheme except for technique that the information I on the subset
is represented and a user searches a subset including him. In the B1 scheme,
a non-revoked user first finds two adjacent revoked users and should performs
a binary search in an interval of two revoked users. In our scheme, a user can
directly search his subset from the indexes and the direction of a hash chain.

We define two one-way chains for users between ui and uj (i ≤ j) as OCi→j

and OCi←j . Let f : {0, 1}l → {0, 1}l be a one-way function. Then OCi→j is a
one-way chain from i to j that, given a label Li ∈R {0, 1}l for ui, has the value
f j−i(Li). On the other hand, OCi←j is a one-way chain from j to i that, given
a label Lj ∈R {0, 1}l for uj, has the value is f j−i(Lj). Our basic scheme is as
follows.

- Setup: The center imagines the number line L with n nodes where each node
is numbered i (i = 1, . . . , n) with level order from left to right. Each user
is assigned to each node. Let a user assigned to a node i be ui. The center
randomly selects a label Li ∈ {0, 1}l for each node i (1 ≤ i ≤ n). We denote
a set of users in an interval of i and j by Ii;j . The center recursively repeats
the following key assignment staring from I1;n. Assume that a user um is
included in Ii;j . Then fm−i(Li) and f j−m(Lj) are given to um as the secret
key. After secret keys for Ii;j are assigned, Ii;j is divided into two intervals,
Ii;t and It+1;j where t = ! i+j

2 " and then um is assigned secret keys for Ii;t or
It+1;j by the same method. If m ≤ t, it assigns only f t−m(Lt) to um for Ii;t
since fm−i(Li) can be used for both Ii;j and Ii;t. If m > t, only fm−t(Lt) is
assigned for It+1;j . Therefore, one additional key is given to a user whenever
a new interval is made. This procedure starts from I1;n and finish at Im;m.
Consequently, a user should store 1 + log n keys in his secure storage. For
example, assume that there are 16 users in total. Then the secret keys for
u7 are f6(L1), f9(L16), f(L8), f2(L5), and L7 as shown in Figure 1.

- Broadcast: Given R, the center first divides the number line L into the in-
tervals where each interval include one revoked user or successively revoked
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5
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f 3(L1) f (L8) f (L9) f 4(L16)

Key assignment for u7

Revoked users: u5, u6, u11

OC 1     4 OC7     8 OC 9     10 OC12     16

Fig. 1. An example of the basic scheme for n=16

users. If a user ut in Ii;j is revoked, non-revoked users in Ii;j are covered
by two hash chains OCi←t−1 and OCt+1←j . Then, for users in Ii;j , a ses-
sion key K is encrypted with the chain values of OCi→t−1 and OCt+1←j ,
namely f t−1−i(Li) and f j−(t+1)(Lj). Here, the subset information for two
hash chains OCi←t−1 and OCt+1←j can be [+;i, t − 1] and [−;t + 1, j].

- Decryption: After receiving the ciphertext, a user um first finds the subset
including him from the subset information [±;i, j] by checking whether i ≤
m ≤ j. If the direction of his subset is +, then he computes OCi→j by
f j−m(fm−i(Li)). Otherwise, he computes OCi←j by fm−i(f j−m(Lj)).

In Figure 1, if u5, u6 and u11 are revoked, the session key is encrypted with
f3(L1), f(L8), f(L9), and f4(L16) respectively. The scheme requires at most
2r transmission cost because at most two ciphertexts for one revoked user are
generated. Its security is provided under the pseudo-randomness of f [14].

3.2 Complete Scheme

The basic scheme is not reasonable for practical applications because it has a
computation cost proportional to n, though it satisfies the log-key restriction
and 2r bound of the transmission cost. We extend the basic scheme to a hier-
archical structure similar to the generic transformation of [14]. Actually, in all
the schemes with hierarchical structure for efficient trade-offs among the trans-
mission cost, the key storage, and the computation cost, the transmission cost
increases linearly according to the number of hierarchies (or stratifications).2

However, our construction can maintain the 2r bound of the transmission
cost while satisfying the reasonable computation cost and log-key storage re-
2 For example, the LSD scheme, the SSD scheme, and the B1 scheme have a transmis-

sion cost proportional to the number of layers, stratifications, and the levels in the
hierarchy respectively.
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Fig. 2. An example of the complete scheme for n=64

quirements. Our scheme achieves it from additional keys and computation cost
proportional to the number of the levels in the hierarchy. In addition, our scheme
has a trade-off between the key storage and the computation cost under a rea-
sonable bound. The complete scheme is as follows.

- Setup: We assume that n is ad. The center imagines a-ary tree Tv with a
depth d and assigns one user to each leaf. Then, each leaf in Tv is numbered
i (i = 1, . . . , n) with level ordered from left to right. Let a root of Tv denote
v and i-th child of a node w denote w; i. Note that this notation can be
sequentially represented as w; i1; . . . ; il. In addition, we call a set of children
of a node w a sibling set Sw. In an example of Figure 2, a node 34 is repre-
sented as v; 3; 1; 2 and Sv;3;1 is {33, 34, 35, 36}.

Let Tw be a subtree rooted at a node w of Tv. The center randomly selects
each label Lw for each node w in Tv. Then it generates keys for Sw by Setup
of the basic scheme. Keys for w; t in Sw are given to users assigned to leaves
of Tw;t. In consequence, a user assigned to v; i1; · · · ; id has keys for Sv, Sv;i1 ,
. . . , Sv;i1;··· ;id−1 . Then, in Figure 2, a user u34 has secret keys, f2(Lv;1),
f(Lv;4), Lv;3 Lv;3;1, f3(Lv;3;4), f(Lv;3;2) f(L33), f2(L36), L34. This assign-
ment is actually identical to that by the compiler introduced in [14].

In our scheme, to eliminate the transmission cost of the hierarchical struc-
ture, users are assigned additional keys. Let g : {0, 1}l → {0, 1}l be a different
one-way function with f . Let f(f(L)) denote f ◦ f(L), and g ◦ fk(L) denote
gk(L). Then g ◦ fx ◦ g ◦ fy(L) can be represented as gx ◦ gy(L) and g0(L) is
equal to g(L).

If a user w; i1; ..it is given f j(Lw;m) for Sw where m < i1, the center addi-
tionally assigns the following keys;

f i2 ◦ gj−1(Lw;m), f i3 ◦ gi2−1 ◦ gj−1(Lw;m),
. . . , f it ◦ git−1−1 ◦ · · · ◦ gi2−1 ◦ gj−1(Lw;m).

(1)
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On the other hand, if m > i1, the center assigns the following keys;

fa−i2+1 ◦ gj−1(Lw;m), fa−i3+1 ◦ ga−i2 ◦ gj−1(Lw;m),
. . . , fa−it+1 ◦ ga−it−1 ◦ · · · ga−i2 ◦ gj−1(Lw;m).

(2)

When i1 = m, the additional keys are not given. Consequently, 1 + t · log a
keys are assigned to a user for Sw. A user v; i1; . . . ; id in Tv has all secret keys
for Sv, Sv;i1 , . . . , Sv;i1;...;id−1 . Therefore, the number of secret keys for a user is
d + (d+1)

2 · log n in total;

d∑
t=1

1 + t log a = d + log a ·
d∑

t=1

t = d +
d2 + d

2
· (log a) = d +

(d + 1)
2

· log n.

Therefore, user 34 in the example of Figure 2 is assigned his secret keys as follows.

Sv : f2(Lv;1), f ◦ g1(Lv;1), f2 ◦ g ◦ g1(Lv;1)
f(Lv;4), f4 ◦ g(Lv;4), f3 ◦ g3 ◦ g(Lv;4)
Lv;3

Sv;3 : f3(Lv;3;4), f3 ◦ g2(Lv;3;4)
f(Lv;3;2), f3 ◦ g(Lv;3;2)
Lv;3;1

Sv;3;1 : f(L33), f2(L36), L34

User 34 receives the additional keys f ◦ g1(Lv;1), f2 ◦ g ◦ g1(Lv;1) derived from
f2(Lv;1), and f4 ◦ g(Lv;4), f3 ◦ g3 ◦ g(Lv;4) from f(Lv;4) for Sv, and f3 ◦ g2(Lv;3;4),
f3 ◦ g(Lv;3;2) for Sv;3 by (1), (2). Figure 3 shows the paths generating the addi-
tional keys of the user 34 for Sv. In consequence, a user has 15 secret keys in total
because d = 3 and n = 26.

- Broadcast: The center imagines the number line L composed by leaves of Tv. Given
R, the center makes the hash chains in the form of OCi→j or OCi←j which cover L

as in Broadcast of the basic scheme. If a least common ancestor of nodes from i to
j is w, we denote this chain by OCw

i→j( or i←j). Then i and j can be represented as
w; i1; · · · ; it and w; j1; · · · ; jt (t ≤ d.) First, we consider OCw

i→j . The chain value
of OCw

i→j is computed by the following process.
1. If i and j are siblings (namely, w is a parent of i and j), then the chain value

of OCw
i→j equals that of OCi→j in the basic scheme.

2. Else if j is the rightmost leaf in a subtree Tw;j1;··· ;jm of Tw where 1 ≤ m < t.
• If m = 1, then the chain value of OCw

i→j is f j1−i1(Lw;i1 ).
• Otherwise, the chain value of OCw

i→j is f jm ◦ gjm−1−1 ◦ · · · ◦ gj2−1 ◦
gj1−i1−1(Lw;i1)

3. Otherwise, the chain value of OCw
i→j is f jt ◦gjt−1−1◦· · ·◦gj2−1◦gj1−i1−1(Lw;i1 ).

The chain value of OCw
i←j is generated by the opposite operation with the above

process. Consequently, our scheme has the same transmission cost as the basic
scheme.

In Figure 4, we assume that three users u19, u57, and u59 are revoked. Then the
following one-way chains are generated:

OCv
1→18, OCv;2

20←32, OCv
33→56, OC58←58, and OCv;4

60←64.
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Fig. 3. Key assignment to u34 for Sv

For them, the chain values are f2 ◦ g ◦ g(Lv;1), f ◦ g2(Lv;2;4), f2 ◦ g(Lv;3), and
f ◦g(Lv;4;4) respectively. For a specific example of a chain value, consider OCv

33→56.
A least common ancestor of 33 and 56 is v and 56 is the rightmost leaf of Tv;4;2.
Hence, this chain value f2 ◦ g(Lv;3) is computed from f2 ◦ g4−3−1(Lv;3) because a
node v; 3 is an ancestor of 33 and a child of v.

- Decryption: After receiving the ciphertext, a user uk finds his subset from [±; i, j].
If i ≤ k ≤ j, uk is included in the subset [±; i, j]. Suppose that k can be represented
as w; k1; · · · ; kt and the direction is +.
1. If i and j are siblings, then he computes a subset key f j−i(Li) by f j−k ◦

fk−i(Li) from his secret key fk−i(Li).
2. Else if j is the rightmost leaf in a subtree Tw;j1;··· ;jm of Tw where 1 ≤ m < t.

• If m = 1, then he computes the chain value f j1−i1(Lw;i1) for OCw
i→j by

iteratively operating the f function with his secret key fk1−i1(Lw;i1).
• Otherwise, he finds a common ancestor w; k1; · · · ; kl of j and himself where

0 ≤ l < m and computes the chain value f jm ◦ gjm−1−1 ◦ · · · ◦ gj2−1 ◦
gj1−i1−1(Lw;i1) for OCw

i→j using g and f with his secret key f jl+1−kl+1 ◦
gjl−1 ◦ · · · ◦ gj2−1 ◦ gj1−i1−1(Lw;i1).

3. Otherwise, he computes the chain value OCw
i→j is f jt ◦ gjt−1−1 ◦ · · · ◦ gj2−1 ◦

gj1−i1−1(Lw;i1) using g and f with his secret key f jl+1−kl+1 ◦gjl−1◦· · ·◦gj2−1◦
gj1−i1−1(Lw;i1).

If the direction is −, then it performs the above method in the opposite direction.
For example, u34 is included in OCv

33→56. A least common ancestor of nodes from
33 to 56 is v and an ancestor of 33 in the children of v is v; 3. Because 56 is a
rightmost leaf of Tv;4;2, a chain value for OCv

33→56 is f2 ◦ g(Lv;3). User u34 is also
a descendent of v; 3, so he has Lv;3 as his secret key. Therefore, he can obtain the
subset key by f2◦g(Lv;3). Because a revoked user u57 has secret keys f ◦g2◦g(Lv;3)
generated by Lv;3, he cannot obtain the subset key without inverting f ◦ g.

Efficiency. Transmission cost of the complete scheme is less than 2r because at
most two ciphertexts per revoked user are generated, as in the basic scheme. To
generate a subset key, a user needs at most d ·a computation cost. In addition, a
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Fig. 4. Revocation in the complete scheme

user stores d + d+1
2 · log n keys as shown above. Our scheme achieve the efficient

transmission cost from a trade-off with the computation cost and the key storage
by the number of stratification in hierarchical structure.

Security. The security of our scheme is provided under the pseudo-randomness
of f and g. Actually, because all secret keys given to users are generated by
one-way chains, excluded users (i.e. revoked users) by one-way chains cannot
compute any subset key without inverting the given one-way functions f and g.
However, a more formal security analysis is needed. We show that our scheme
is resilient to collusion of any set of revoked users.

Lemma 1. The key assignment of the complete scheme satisfies the key indis-
tinguishability property under the pseudo-randomness of two functions f , g.

Proof. Let f ◦ g define a function h : {0, 1}l → {0, 1}l. If an adversary A can
break the key-indistinguishability property of our scheme, we show that the
pseudo-randomness of f and h is also broken by simulating A. We assume that
our scheme is defined by a collection of subsets S1, . . . , Sw. For any 1 ≤ i ≤ w,
let Si1 , . . . , Sit be all the subsets that are contained in Si and ski1 , . . . , skit

be their corresponding keys. An adversary A attempts to distinguish the keys
ski1 , . . . , skit from the random keys rki1 , . . . , rkit . Consider a feasible adversary
A that

1. Selects i, 1 ≤ i ≤ w

2. Receives the secret keys Ku’s for all u ∈ N \ Si
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We denote the probability that A distinguishes the key from the random key by
ε as follows.

|Pr[A outputs i|ski] − Pr[A outputs i|rki]| ≤ ε.

If an adversary A can distinguish the key from the random key, we can break
the pseudo-randomness of f or h, since Ku includes an output of the function
f or h on the key. Hence, if the pseudo-randomness of two one-way functions f
and h is guaranteed, ε is negligible.

Also, let Pij be the probability that given the subset keys contained in Si, A
outputs i, where the first j keys are the true keys and the remaining t − j keys
are the random keys. Namely,

Pij = Pr[A outputs i|ski1 , . . . , skij , rkij+1 , . . . , rkit ].

Then we can obtain the following equation by the standard hybrid argument,
since |Pij − Pij+1 | < ε for 1 ≤ j < t.

|Pr[A outputs i|ski1 , . . . , skit ] − Pr[A outputs i|rki1 , . . . , rkit ]| ≤ t · ε.

In consequence, our scheme satisfies the key-indistinguishability property un-
der the pseudo-random-ness of given functions f and g. �

In addition, Naor et al. showed that the key-indistinguishability property is suf-
ficient for a scheme in the subset-cover framework to be secure in the adversarial
model of Section 2.2 [19]. By Lemma 1 and Theorem 11 of [19], the security of
the complete scheme is provided.

4 Discussions

We analyze the complexities of various broadcast encryption schemes in this
section. While the SD scheme needs at most 2r transmission cost, O(log2 n) key
storage is required. The LSD scheme, the SSD scheme, the π scheme, and the B1
scheme have trade-offs among the transmission cost, the computation cost and
the key storage. Their complexities change depending on the system parameters
that define the degree of stratification. Table 2 shows the comparison between
our scheme and other efficient schemes. In the transmission cost column of Table
2, ‘≤’ means an upper bound of the transmission cost.

We assume that the size of keys is 128 bits and n is 108 for a practical instance.
While the computation cost of the SD scheme and the LSD scheme is fixed to
O(log n), that of other schemes varies with the system parameters. Hence, we
bound the computation cost to 100. This computation cost is reasonable even
for low-power devices. If the computation cost of the SSD scheme and the B1
scheme is bounded to 100, their system parameters d and k are 4. Therefore,
their transmission cost is 2 · (4r).3 In addition, we compare other schemes to
3 The upper bound of the transmission cost of the SSD scheme should be 16r from

Table 1 when k = 4. However, its transmission cost is actually similar to that of the
B1 scheme. Hence we regard a upper bound of its transmission cost as 2kr.
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Table 2. Complexity of efficient BE schemes for n = 108

Transmission cost Key storage Computation cost
SD [19] ≤ 2r 368 (5.74 Kbyte) 27
Basic LSD [15] ≤ 4r 143 (2.24 Kbyte) 27
SSD [12] ≤ 8r 213 (3.33 Kbyte) 100
(1,100)-π1 [16] ≤ 2r + 106 5274 (82.4 Kbyte) 100
B1 [14] ≤ 8r 27 (0.432 Kbyte) 100
Our scheme ≤ 2r 129 (2.06 Kbyte) 80

the Basic LSD with k = 2 because the LSD scheme satisfies the most efficient
transmission cost when having two layers.

The SSD scheme and the B1 scheme have high transmission cost proportional
to the parameters d and k, and the (1,100)-π1 scheme does not have a good trans-
mission cost where the revocation rate is very small (i.e less than 1%). However,
our scheme maintains a low transmission cost regardless of the parameter and
revocation rate. For our scheme, we consider the case of a = 10 and d = 8 to
achieve a reasonable computation cost. At this time, the computation cost of our
scheme is less than 80. As shown in Table 2, our scheme has the most efficient
transmission cost under the reasonable computation cost and log-key restriction.

Because our scheme possesses low transmission cost and small storage size,
it can be efficiently used where the computation and the storage are restricted
as in a handheld device, or where the transmission is expensive as in a set-top
box and CD/DVD. In addition, when a group of malicious users (called traitors)
combines their secret keys to produce a pirate decode, the center can trace at
least one of the traitors given access to this decoder by a subset tracing procedure
introduced in [19] since our scheme is based on a subset-cover framework.

Our scheme is also suitable for broadcast encryption over wireless networks.
In a wireless network, the target of messages is a handheld device with small
memory and low computing power. Moreover, the bandwidth of wireless net-
works is narrower than that of wired networks. Therefore, our scheme is of great
use for broadcast encryption scheme over wireless networks.

In addition, the key assignment technique used to construct our scheme can be
applied to the schemes with a hierarchical structure such as the SSD scheme [12]
and the B2 scheme [14]. The transmission cost of the modified schemes would
be independent of the number of levels in hierarchy.

5 Concluding Remarks

We have presented a communication-efficient broadcast encryption scheme un-
der the log-key restriction. In many practical applications, the systems should
be efficiently able to deal with a very large group of users having a wide variety
of devices. Our scheme can provide an efficient transmission cost under a rea-
sonable computation cost for a large number of users by requiring key storage
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proportional to the log of the number of users. It is also a good solution for
systems that rely on devices with limited secure storage.
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Abstract. Participants in e-commerce and other forms of online collab-
orations tend to be selfish and rational, and therefore game theory has
been recognized as particularly relevant to this area. In many common
games, the joint strategy of the players is described by a list of pairs of ac-
tions, and one of those pairs is chosen according to a specified correlated
probability distribution. In traditional game theory, a trusted third party
mediator carries out this random selection, and reveals to each player its
recommended action. In such games that have a correlated equilibrium,
each player follows the mediator’s recommendation because deviating
from it cannot increase a player’s expected payoff. Dodis, Halevi, and
Rabin [1] described a two-party protocol that eliminates, through cryp-
tographic means, the third party mediator. That protocol was designed
and works well for a uniform distribution, but can be quite inefficient if
applied to non-uniform distributions. Teague [2] has subsequently built
on this work and extended it to the case where the probabilistic strat-
egy no longer assigns equal probabilities to all the pairs of moves. Our
present paper improves on the work of Teague by providing, for the same
problem, a protocol whose worst-case complexity is exponentially better.
The protocol also uses tools that are of independent interest.

1 Introduction

Many potentially beneficial collaborations over the Internet do not take place,
even when both participants stand to gain from the interaction. One of the major
reasons for this is the difficulty of finding a third party that they can both trust
with not revealing (to their counterpart, or to outsiders) their private data or
planned future actions and business moves. This reluctance to engage in appar-
ently win-win collaborations results in organizations making lower-quality (and
sometimes far-reaching) decisions and plans. Although this reluctance to collab-
orate causes large potential benefits to go unrealized, there are good reasons for
it: the information learned by the third party mediator could be highly propri-
etary, help the competition, be inadvertently (or maliciously) leaked out and
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cause embarrassment and lawsuits, be misused, etc. In addition to this, there
are substantial costs to being a mediator, not only in terms of the electronic
infrastructure but in other operational costs (such as liability insurance against
accidental data disclosure). Cryptography has much to contribute in solving the
problem, by obviating the need for a third-party mediator. This is why the recent
work of Dodis, Halevi, and Rabin [1] and Teague [2], in getting rid of the need
for a mediator, has such huge practical potential in addition to its intellectual
content. As our work builds on these papers, we briefly review these and explain
where our contribution lies.

The framework of this paper is the same as in [1,2]: two entities want to
coordinate their respective actions, implementing a strategy that is described as
a set of m pairs of actions, with each pair having an associated probability of
being selected (the action choices are correlated). If a pair is selected, the first
(second) element of the pair is the first (second) entity’s recommended action; no
entity should learn the recommended action of the other (although, unavoidably
inferences can be made from their knowledge of the public strategy and their own
recommended action). Each party is incentivized to follow the recommendation
given that an equilibrium exists, i.e., deviating from the recommended action
cannot increase a party’s expected payoff.

1.1 Related Work

Dodis, Halevi, and Rabin [1] described a two-party protocol that eliminates,
through cryptographic means, the third party mediator: The protocol assumes
a uniform distribution, selects at random and reveals to each party their re-
spective selected action only (i.e., not the other party’s action). Since crypto-
graphic solutions have to be efficient, one might ask at what computational and
communication cost this is achieved. The protocol of [1] works efficiently for a
uniform distribution, but not if the distribution is non-uniform (particularly if
a pair can have an associated probability much smaller than the probability of
another pair). Teague [2] subsequently extended the work to non-uniform dis-
tributions, and gave a better (but still worst-case exponential) protocol for the
case where pairs of moves can have widely differing probabilities. Other prior
work that addresses the same problem without help from a third-party mediator
includes [3,4,5,6]. All of the protocols of [3,4,1,2,5] may require communication
exponential in the size of the binary description of the correlated equilibrium
strategies. Our present paper improves on the work of Teague by providing, for
the same problem, a protocol whose worst-case complexity is exponentially bet-
ter. In addition, our protocol uses tools that are of independent interest and
advantageously modify protocols recently presented in areas unrelated to the
game-theoretic framework, such as [7].

Our work is not comparable to the polynomial solution given in [6], which
does not apply to the important two-party case we consider here, and imposes
assumptions (akin to ideal envelopes) on the physical channels used: they use
general results to perform the computation for three or more parties, and then
extend the protocols to achieve complete fairness during output recovery. Our
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work is also similar to the cryptographic randomized response techniques [8]:
the protocols in [8] allow a party to choose a value according to a probability
distribution. The primary difference is that in [8] one party (the pollster) learns
the result, but in our problem each of the two parties learns part of the result.

1.2 Notation

The rest of the paper uses the following notation. Let k denote a security pa-
rameter. The m action pairs are denoted as {(ai, bi)}m

i=1. Each of these pairs is
chosen with a certain probability qi, such that their overall sum is equal to 1.
Each qi is given in the rational form (i.e., same form as in prior work in this
area) as a pair of integers αi, βi such that qi = αi/βi. As our protocol will use
a somewhat different representation, we next describe an input conversion that
we thereafter assume has already taken place prior to the protocol.

Input Conversion: Our algorithms require us to convert each qi into an l-bit
integer pi such that qi = pi/

∑m
j=1 pj . If we let L denote the least common

multiple of all βj ’s, then we can set pi = L · qi = αi(L/βi), which implies that∑m
j=1 pj = L and hence qi = pi/L. This conversion can be done in polynomial

time and results in the pi integers having a length l, which is polynomial in the
number of bits in the original representation. To achieve worst-case polynomial
time performance, it therefore suffices for our protocols to be polynomial in l. Let
� denote the integer such that 2�−1 < L ≤ 2�: if L < 2�, we pad the probabilities
with a “dummy” pm+1 = 2� − L, so that

∑m+1
i=1 pi = 2�. Note that this is done

only for ease of computation and the (1 + m)th outcome is never chosen: if a
protocol execution returns the (1+m)th outcome, the computation is restarted.
The probability of restart is pm+1/(2�) < 1/2. In the rest of this paper we assume
that the m tuples (ai, bi, pi) contain a dummy element (whose action pair is a
“restart protocol” recommendation to both parties) if necessary.

1.3 Comparison with Previous Work

Our results are the following: a protocol for the malicious (resp., honest-but-
curious) model has computation and communication complexity O(m�) (resp.,
O(m + � log m)). See Table 1 for performance comparison with the prior work.

Note that secure function evaluation using generic garbled circuits constitutes
a viable alternative to the solutions given in this work, especially since recent
results (see, e.g., [9]) provide significant improvements over the initial results.
Any solution using circuits, however, will require at least O(m�) gates, while in
this work we concentrate on finding solutions asymptotically as low as possible.
In addition, any protocol that requires a majority of the players to be honest
(which is the case in [9]) does not provide security against malicious behavior in
the two-party case.

In the equal-probabilities case, the protocol of choice is that of [1]. Thus the
following discussion is for the case of unequal probabilities. For the malicious
model, our protocol is better than the previous approach of [2] in both asymp-
totic worst-case and in practical sense, as our protocol is polynomial and does
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Table 1. Comparisons of worst case performance (computation and communication
cost) of our and prior work. Here m is the number of action pairs, � is the number of
bits representing the probabilities, and σ is a security parameter for the cut-and-choose
technique (i.e., the adversary can cheat with the probability no more than 1/σ) that
must be linear in the payoffs to make the expected gain from cheating negative.

Teague [2] SFE [10,11,9] Our Protocols
honest-but-curious O(max{m, 2
}) O(m�) O(m + � log m)
malicious O(σ · max{m, 2
}) O(m�) O(m�)

not use the cut-and-choose technique as in [2]. For the honest-but-curious model,
however, we can only claim an improvement in the worst-case asymptotic com-
plexity, as there are inputs for which the approach of [2] is more practical, e.g.,
inputs where the number of bits (call it t) representing the smallest input prob-
ability is small enough that a complexity proportional to 2t can compete with
our poly(�) complexity. Of course, the honest-but-curious model is of limited
practical value in the kind of environments where these protocols are used, so
one would almost always need to assume a stronger adversary model.

The rest of the paper is organized as follows. Section 2 gives preliminaries,
our protocol, and security proofs for the semi-curious model. In section 3, we
deal with malicious adversaries and provide additional cryptographic tools and
our protocols for that setting.

2 A Protocol for the Honest-But-Curious Case

2.1 Security Model

Informally, we say that a two-party protocol Π privately computes function f if
anything that can be obtained from a party’s view during a semi-honest execu-
tion of Π could also be obtained from the input and the output of that party
themselves. We use the standard model, and the following definition, similar to
the one given in [11], formalizes our notion of security.

Definition 1. Let f1(x, y) and f2(x, y) be the first and the second elements of
f(x, y), respectively. Let viewΠ

1 (x, y) (resp., viewΠ
2 (x, y)) denote the view of the

first (resp., second) party during an execution of Π on (x, y). The views are
defined as (x, r1, m1, . . ., md) and (y, r2, m1, . . ., md) for the first and second par-
ties, respectively, where r1 (resp., r2) is the outcome of internal coin tosses of the
first (resp. second) player and m1, . . ., md are the messages that it received dur-
ing the protocol execution. Also let outputΠ

1 (x, y) (resp, outputΠ
2 (x, y)) denote

the first (resp., second) player’s output after an execution Π on (x, y); and let
outputΠ(x, y) = (outputΠ

1 (x, y), outputΠ
2 (x, y)). Then Π privately computes

f if there exist probabilistic polynomial-time algorithms M1 and M2 such that
the ensembles {M1(x, f1(x, y)), f(x, y)}x,y and {viewΠ

1 (x, y), outputΠ(x, y)}x,y

and the ensembles {M2(y, f2(x, y)), f(x, y)}x,y and {viewΠ
2 (x, y), outputΠ

(x, y)}x,y are computationally indistinguishable. Machine M1 (resp., M2) is
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called a simulator for the interaction of the first (resp., second) player with the
second (resp., first) player.

2.2 Homomorphic Paillier Encryption

Our protocols in the honest-but-curious setting use the homomorphic Paillier
encryption scheme [12,13], which was first developed by Paillier [12] and then
extended by Damg̊ard and Jurik [13]. Let n = pq be an RSA modulus, with
p = 2p′+1 and q = 2q′+1 where p, q, p′, and q′ are primes. Given a message M ∈
Zn, we use EncP (M) to denote encryption of M under the Paillier encryption
scheme. By the homomorphic property, EncP (a) · EncP (b) = E(a + b mod n).
It is easy to see that EncP (a)c = EncP (c · a mod n). A homomorphic Paillier
encryption scheme is semantically secure under the decisional composite residu-
osity assumption [12].

2.3 The Element Selection Protocol

As before, the (ai, bi) pairs are the move pairs in the joint strategy of the game,
where the ai’s (resp., bi’s) are possible moves for Alice (resp., Bob). During the
protocol, one of the indices {1, . . . , m} is selected randomly, where the proba-
bility of i being selected is pi/2�. The selected index (call it j) is not known
to either Alice or Bob, who learn only their respective recommended moves: aj

for Alice, bj for Bob. Note that, unavoidably, Alice’s learning of her move does
probabilistically reveal something about Bob’s recommended move, and vice-
versa (this comes from the game theoretic problem formulation and is true of
any protocol, including [1,2]).

Our protocol can be thought of as a secure version of the following naive
(and in this form flawed) approach: Alice and Bob compute Pi =

∑i
k=1 pk for

1 ≤ i ≤ m, and then generate a random value r ∈ [0, 2�−1]. Since the probability
that r ∈ [Pi−1, Pi) equals to pi/2�, Alice and Bob find the index i corresponding
to the chosen r and choose actions ai and bi, respectively. Making the above
simple idea work involves many challenges. Our protocol is presented next.

Setup: Alice generates a key pair (pk, sk) for the homomorphic Paillier encryp-
tion scheme such that |n| = k and n > 2� + 1, where k is a security parameter.
We separate this step from the protocol itself, because in this application the
correlated element selection may be executed by two parties on a regular basis,
while it is sufficient to select the keys only once.

Input: Items {(ai, bi, pi)}m
i=1 are known to both parties; public key pk is known

to both and secret key sk is known only to Alice.

Output: Alice obtains the value of aj , and Bob obtains the value of bj , where
j is the index selected according to the probability distribution.

Protocol Steps

1. Alice encrypts each item in each triplet obtaining {(EncP (ai), EncP (bi),
EncP (pi))}m

i=1. She then picks a random permutation πa over [m] and
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permutes the encrypted triplets obtaining {EncP (aπa(i)), EncP (bπa(i)),
EncP (pπa(i))}m

i=1 and sends them to Bob.
2. Bob picks a random permutation πb over [m] and permutes the encrypted

triplets received in the previous step. Let (EncP (a′
i), EncP (b′i), EncP (p′i))

denote (EncP (aπb(πa(i)), EncP (bπb(πa(i)), EncP (pπb(πa(i))) for i = 1, . . ., m.
3. We use P ′

i to denote
∑i

k=1 p′k. For each i=1, . . . , m, Bob computes EncP (P ′
i )

=
∏i

k=1 EncP (p′k) = EncP (p′1 + · · · + p′i).

4. For i = 1, . . ., m, Bob uniformly generates a random value yi
R← Zn and

computes EncP (P ′
i − yi) = EncP (P ′

i ) · EncP (−yi). He sends {EncP (P ′
i −

yi)}m
i=1 to Alice.

5. Alice decrypts {EncP (P ′
i − yi)}m

i=1 and obtains {P ′
i − yi mod n}m

i=1. Let xi

denote P ′
i − yi mod n. At this point, Alice has {xi}m

i=1 and Bob has {yi}m
i=1,

such that xi + yi mod n = P ′
i .

6. Alice picks ra
R← {0, 1}� and Bob picks rb

R← {0, 1}�. Let r denote ra ⊕ rb.
Clearly, r is a random �-bit integer.

7. Alice and Bob jointly find the index of the value P ′
i such that r < P ′

i and r ≥
P ′

i−1 (if P ′
i−1 exists) from the list {P ′

i}m
i=1 using the binary search protocol

described in section 2.4. Let the outcome of the search be index j.
8. Bob chooses a random ρ

R← Zn, computes {γ1, γ2} = {EncP (a′
j + 0), EncP

(b′j − ρ)}, and sends the pair to Alice1. Alice decrypts {γ1, γ2}, obtains
{a′

j, b
′
j − ρ}, and sends b′j − ρ back to Bob. In the end, Alice learns a′

j and
Bob learns b′j.

The complexity of this protocol is O(m + � logm) and the round complexity
is O(log m). Note that any other known solution (e.g., using general circuit
simulation results) is less efficient and requires at least O(m�) computation.

2.4 Binary Search Protocol

This section gives an efficient search protocol for step 7 of the element selection
protocol for semi-honest players. We use binary search to compute which action
the randomly chosen r corresponds to, i.e., the index j such that r ∈ [P ′

i−1, P
′
i ).

Input: Alice has {xi}m
i=1 and Bob has {yi}m

i=1 such that P ′
i = xi + yi mod n,

0 < P ′
i ≤ 2�, and P ′

i < P ′
i+1. Alice has ra and Bob has rb, such that r = ra ⊕ rb.

Output: The index j such that r < P ′
i and r ≥ P ′

i−1 (if P ′
i−1 exists).

Protocol Steps: Alice and Bob execute the following recursive procedure on
the list {P ′

i}m
i=1:

1. If the size of the current working set |{P ′
i , . . ., P

′
j}| = 1, return i.

2. Otherwise, Alice and Bob run a scrambled circuit evaluation protocol [10,11]
to compute whether r ≥ P ′


 j−i+1
2 � (i.e., compute whether ra⊕rb ≥ x
 j−i+1

2 �+

1 Here EncP (a′
j +0) is computed by EncP (a′

j) ·EncP (0). We intentionally randomize
EncP (a′

j).
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y
 j−i+1
2 � mod n). Let c denote the outcome of the protocol that returns 1

if the condition holds, and 0 otherwise. Note that we can use the technique
from [14] to reduce the communication and computation from being a func-
tion of k = |n| to a function of � + 1 (i.e., the number of bits required to
represent the value P ′


 j−i+1
2 �).

3. If c = 1, recurse on list {P ′

 j−i+1

2 �+1
, . . . , P ′

j}; otherwise, recurse on list {P ′
i ,

. . . , P ′

 j−i+1

2 �}.

Step 2 takes O(�) communication and computation and O(1) rounds, therefore
the overall complexity is O(� log m) and the round complexity is O(log m).

Lemma 1. The protocol for binary search is secure against honest-but-curious
adversaries.

Proof (Sketch). The basic idea behind this proof is that from a particular index,
i.e., from the output of the binary search, one can easily simulate the individual
zigs and zags of the binary search. It is worth noting that this is similar to the
proof of [15]. �

2.5 Security Proofs

To be able to show the correctness of the element-selection protocol, we first
prove that, if both Alice and Bob follow the protocol, the output pair of actions
is selected according to the probability distribution.

Lemma 2. For any i ∈ {1, . . . , m}, the probability that the randomly chosen
r ∈ {0, 1}� results in index i being returned, is equal to p′i/2�.

Proof. Let us set P ′
0 = 0. The probability that index i is returned, equals the

probability that r ∈ [P ′
i−1, P

′
i ). This is equal to (P ′

i − P ′
i−1)/2� = p′i/2�. �

Recall that the binary search step of the element-selection protocol reveals the
index, so we next prove that this index does not leak any information.

Lemma 3. Let π be a random permutation over [m] and let r be a random
value in {0, 1}�. Given any set {pi}m

i=1 such that
∑m

i=1 pi = 2�, the probability of

r ∈
[∑i−1

k=1 pπ(k),
∑i

k=1 pπ(k)

)
is equal to 1/m for i = 1, . . . , m.

Proof. Let us fix i. We have

Pr

[
r ∈ [

i−1∑
k=1

pπ(k),

i∑
k=1

pπ(k))

]
=

pk ·Pr[k = π(i)]
2�

=
1
2�

m∑
k=1

pk

m
=

1
2�

· 2�

m
=

1
m

In other words, if π and r are random, the output of the binary search in the
element-selection protocol does not depend on {pi}m

i=1 and is uniformly dis-
tributed over [1, m], i.e., it can be simulated by a random value in [1, m]. �
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Theorem 1. The element-selection protocol is secure against honest-but-curious
adversaries.

Proof. Correctness: Follows directly from Lemma 2.
Secrecy: To show that the element-selection protocol is secure, it is sufficient
to show that there exists a simulator M1 (resp., M2) that, given Alice’s (resp.,
Bob’s) input and output, can simulate Alice’s (resp., Bob’s) interaction with
Bob (resp., Alice) during the execution of the protocol, such the Alice’s (resp.,
Bob’s) view in real execution is computationally indistinguishable from the view
produced by the simulator. That is, according to Definition 1:

{M1(x, f1(x, y)), f(x, y)}x,y
c≡ {viewΠ

1 (x, y),outputΠ(x, y)}x,y

{M2(y, f2(x, y)), f(x, y)}x,y
c≡ {viewΠ

2 (x, y),outputΠ(x, y)}x,y

where
c≡ denotes computational indistinguishability by families of polynomial-

size circuits.
Consider the following simulator M1({(ai, bi, pi)}m

i=1, a
′
j):

1. On receipt of the first message from Alice, for i = 1, . . ., m randomly select
xi

R← Zn and send {EncP (xi)}m
i=1 to Alice.

2. Select rb
R← {0, 1}�. At random select m distinct values from {0, 1}�, sort

them in the increasing order obtaining {r1, . . ., rm}, and set yi = EncP (ri −
xi mod n) for i = 1, . . ., m. Engage in the execution of the binary search
protocol with Alice using rb and {yi}m

i=1 as input. At the end of the execution
Alice receives a random index i as the outcome of the protocol.

3. Select a random ω
R← Zn, compute {EncP (a′

j), EncP (ω)}, and send the pair
to Alice.

According to Definition 1, Alice’s view during an execution of the element-
selection protocol Π is viewΠ

1 = (x, r1, m1, m2, m3). The distribution of x and
r1 remains the same for all possible input values, regardless of whether M1 is
used or a real protocol execution is performed. Next, we examine the messages
that Alice receives. Let M1(x, f1(x, y)) = (x′, r′1, m

′
1, m

′
2, m

′
3).

Message m1 is received in Step 4 of Π and is m1 = {EncP (P ′
i − yi)}m

i=1;
message m′

1 is received in Step 1 of simulation and is m′
1 = {EncP (xi)}m

i=1.
Due to the semantic security of the encryption scheme, encrypted values are
uniformly distributed over the entire range resulting in identical distributions.
After Alice decrypts the values, she still cannot distinguish between P ′

i − yi and
xi because yi’s and xi’s are uniformly distributed over Zn.

Let us use Πs to denote the binary search protocol of section 2.4. Then m2 =
(viewΠs

1 (xs, ys), i) and m′
2 = (viewΠs

1 (x′
s, y

′
s), i

′), where xs = ({xi}m
i=1, ra), ys =

({yi}m
i=1, rb), x′

s = ({x′
i}m

i=1, r
′
a), and y′

s = ({y′
i}m

i=1, r
′
b), and all of {xi}m

i=1 and
{x′

i}m
i=1, {yi}m

i=1 and {y′
i}m

i=1, ra and r′a, and rb and r′b are pair-wise identically
distributed. From Lemma 1 we obtain that the execution of Π does not leak any
private information, and Lemma 3 tells us that i is uniformly distributed over
[1, m], and so is i′. Therefore m2 and m′

2 are also indistinguishable.
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Lastly, m3 = {EncP (a′
j), EncP (b′j − ρ)} and m′

3 = {EncP (a′
j), EncP (ω)}.

After Alice decrypts the values, the value of b′j − ρ is identically distributed to
ω, and a′

j is the same in both messages. Also, no information can be gained from
the encrypted values themselves. Thus m3 and m′

3 are also indistinguishable.
Since we had f(x, y) = outputΠ(x, y), we conclude Alice’s view during an

execution of Π is computationally indistinguishable from a simulation. The simu-
lator M2 for Bob’s interaction can be constructed in a similar way and is omitted.
Thus, Π privately computes the correlated action selection function. �

3 Handling Dishonest Behavior

In the previous section, we gave an efficient element-selection protocol for the
honest-but-curious model. However, it is inefficient to make the preceding proto-
col secure against malicious adversaries, as the zero-knowledge proofs for certain
steps of the protocol are very expensive. Instead, we present a new protocol for
the malicious model, which uses two-party computation based on the conditional
gate and relies on the use of threshold homomorphic ElGamal encryption.

3.1 Review of Cryptographic Tools Used

Homomorphic ElGamal Encryption. Let Gq be a finite cyclic group of a
prime order q, |q| = k, and g be the group’s generator such that the Decision
Diffie-Hellman (DDH) problem for Gq is assumed to be hard.2 Given a published
generator g, a public-private key pair for ElGamal encryption is generated as (pk,
sk) = (y, x), where x

R← Zq and y = gx. Given a public key y and a message
M ∈ Zq, encryption is performed as EncG

y (M) = (α, β) = (gr, gMyr), where

r
R← Zq. Given the private key x, decryption of (α, β) = (gr, gMyr) is performed

by first computing β/αx = gM and then solving it for M ∈ Zq. This amounts
to solving a discrete log problem and thus the message space must be small. In
our protocols, the message space is {0, 1} in most cases.

Such encryption is additively homomorphic, that is EncG
y (a1) · EncG

y (a2) =
(gr1 ·gr2 , ga1yr1 ·ga2yr2) = (gr1+r2 , ga1+a2yr1+r2) = EncG

y (a1 +a2). In addition,
EncG

pk(a)b = EncG
pk(ab). Also, homomorphic ElGamal encryption is semantically

secure assuming that the DDH problem is hard. When it is clear from the context
or not essential to the discussion, we omit the encryption key from the notation
and use EncG(x) instead.

When Alice generates a ciphertext using homomorphic ElGamal encryption,
she can prove that she knows the plaintext for the encryption using the tech-
niques of [16]. She can make this a non-interactive proof of knowledge using
Fiat-Shamir techniques [17]. Another proof of knowledge used in our protocols
is a proof that a particular encryption is the encryption of 0 or 1. This protocol
follows from the ability to prove the disjunction of two boolean values [18], and
was given in [19].
2 From this point on, arithmetic is assumed to be modulo q and operator mod q is

implicit for each arithmetic operation.
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Threshold Homomorphic ElGamal Encryption. Homomorphic ElGamal
encryption scheme can be used to construct (t, n)-threshold cryptosystem, where
0 < t ≤ n. In this case, the key is generated jointly by n parties, and decryption
succeeds only if at least t parties participate. Encryption is performed in the
traditional way, where anyone can use the public key y to encrypt messages.

Let A1, . . ., An denote n players. As before, let the public key be y and let
the private key be x with y = gx. Then player Ai has a share xi of the private
key, where yi = gxi is public. Such shares can be generated using a secure dis-
tributed key generation protocol such as [20,21], with communication complexity
of O(n2k) and a small hidden constant, where k is a security parameter.

To recover message M from its encryption (α, β), each player Ai computes
a decryption share di = αxi and a proof that logα di = logg hi. Then having t

correct decryption shares, M can be recovered from gM = β/αx by computing
αx from these shares using Lagrange interpolation. Decryption of private outputs
is also possible in this framework, and it was shown in [7] how private output
decryption used in RSA-like cryptosystem (such as Paillier’s) can be modified
to avoid having to decrypt an ElGamal encryption of a random messages in
Zq. A non-interactive version of the protocol is also possible and can be found
in [7].

Threshold homomorphic ElGamal cryptosystem is robust for t < n/2, but
(non-robust) fairness can also be achieved for the two-party case using (2, 2)-
threshold scheme. Note that neither party gains any advantage by quitting at an
intermediate step of a protocol, and thus to achieve fairness, only the decryption
phase of the protocols needs to be considered. This can be done using gradual
release of information for a security parameter k′ < log q. See [7] for more detail.
Note that allowing parties to prematurely quit during protocol execution will
not allow us to finish the execution (and thus prove indistinguishability with the
view in the ideal setting), and the protocol must be restarted.

Two-Party Computation Based on the Conditional Gate. A recent work
of Schoenmakers and Tuyls [7] introduced a new type of multiplication gate
called conditional gate that permits efficient computation of two-party multi-
plication. In short, conditional gates permit efficient multiplication of x and y
using homomorphic threshold ElGamal, where x is from a two-valued domain
and y is unrestricted. In that work, conditional gates are also used to perform
other types of secure computations such as XOR and different kinds of com-
parisons. In particular, the authors show how to perform comparison of two
bitwise encrypted values x and y. Such operation requires � rounds and 2� − 1
conditional gates, where |x| = |y| = �, with the total of about 12� modular
exponentiations.

While individual operations are rather efficient and secure against malicious
adversaries, the difficulty in applying these techniques to general function evalu-
ation is in different representation of operands in such operations. That is, some
operands are encrypted integers x ∈ Zq, while others are required to be en-
crypted in bitwise form, and there is no conversion procedure available between
the two encryption formats.
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Mixes. One of the building blocks in our work is a mix, which was introduced in
[22]. The parties “mix” a list of values by re-encrypting the values and permuting
the order of the individual values. Furthermore, our protocols for the malicious
model require that the mixing party be able to prove that the values were mixed
properly. Also, we require that the protocols be able to mix vectors of values
(where the vector consists of several encrypted values and the vector must be
preserved). Examples of efficient mixes are [23,24], and protocols for achieving
a permutation of vectors can be found in [25].

3.2 The Element Selection Protocol

As before, we assume that
∑m

i=1 pi = 2�. We use [ai]�−1. . .[ai]0 to denote the
binary representation of ai. For the purposes of this and subsequent sections,
homomorphic ElGamal (2, 2)-threshold encryption is used.

Setup: Alice and Bob generate a key pair (pk, sk) for a security parameter k,
where public key pk is known to both, but secret key sk is shared and is not
known to either party.

Input: Items {(ai, bi, pi)}m
i=1 are known to both parties; public key pk is known

to both and secret key sk is not known to either.

Output: Alice learns aj , and Bob learns bj, where j is the index selected ac-
cording to the probability distribution.

Protocol Steps

1. Alice encrypts tuples {(ai, bi, [pi]�, [pi]�−1. . .[pi]0)}m
i=1 with pk and then mixes

them using a permutation πa that she randomly generates. In the above, each
of ai and bi are encrypted as an integer, but pi’s are encrypted bit by bit as
� + 1 bit integers (i.e., the most significant bit is always 0).
Alice proves in zero-knowledge that the output of this step was obtained
using mixing πa on the tuples {(ai, bi, pi)}m

i=1. Note that in order for Alice
to prove proper mixing using known techniques, she first encrypts the list
using no randomness (i.e., 0 in place of random values) and then proves that
her output is a blinded permuted re-encryption of this list.

2. Bob blinds each of the items (EncG(aπa(i)), EncG(bπa(i)), EncG([pπa(i)]�),
. . . , EncG([pπa(i)]0)) by multiplying each value with EncG(0) and mixes the
tuples using a random permutation πb. Let (EncG(a′

i), EncG(b′i), EncG(p′i))
denote (EncG(aπb(πa(i)), EncG(bπb(πa(i)), EncG(pπb(πa(i))) for i = 1, . . ., m.
Bob proves in zero-knowledge that his output was constructed by applying
a random mix πb to his input.

3. Alice and Bob compute (EncG(a′
i), EncG(b′i), EncG([P ′

i ]�), . . ., EncG([P ′
i ]0)),

where P ′
i =

∑m
i=1 p′i. The description of this step (i.e., the addition opera-

tion) is given in section 3.3.
4. Alice picks ra

R← {0, 1}�, computes {EncG([ra]�−1), . . ., EncG([ra]0)} and
sends it to Bob. She also proves in zero-knowledge that each [ra]i in the
encryptions corresponds to either 0 or 1. Similarly, Bob picks rb

R← {0, 1}�,
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sends Alice {EncG([rb]�−1), . . ., EncG([rb]0)}, and proves in zero-knowledge
that each [rb]i corresponds to a single bit.

5. Alice and Bob compute the bitwise encrypted value of x = ra + rb mod 2�

using the addition protocol of section 3.3. They prepend bitwise encrypted
x with EncG(0) to obtain (� + 1)-bit representation of x.

6. Alice and Bob jointly find the index of the value P ′
i such that x < P ′

i and
x ≥ P ′

i−1 (if P ′
i−1 exists) from the list {EncG([P ′

i ]�), . . ., EncG([P ′
i ]0)}m

i=1
using the binary search algorithm described in section 3.5. Let the outcome
of the search be index j.

7. Having EncG(a′
j) and EncG(b′j), Alice helps Bob to decrypt b′j and Bob

helps Alice to decrypt a′
j (see section 3.1 for detail).

Note that most of the work done in step 1 can be performed in advance (if
the public key is available prior to protocol execution), by generating as many
encryptions of 0’s and 1’s as needed. At the time of protocol execution, Alice
then just selects the right combination of such encryptions to match the pi’s.
Similarly, values for the zero-knowledge proof in that step and encryptions of 0 in
step 2 can be pre-computed, thus reducing computational cost of asymptotically
least efficient parts of the protocol.

The security proof of the protocol is omitted. One interesting direction for
future work is to narrow the gap in the complexities between the semi-honest
and malicious models.

3.3 Addition of Bitwise Encrypted Values

Here we first present an addition protocol with computational and round com-
plexity of O(�). After its description we show how its round complexity can be
significantly lowered using standard techniques.

Input: Common input consists of encryptions {EncG([x]�−1), . . . , EncG([x]0)}
and {EncG([y]�−1), . . . , EncG([y]0)}.

Output: Alice and Bob obtain {EncG([z]�−1), . . . , EncG([z]0)}, where z = x+y
mod 2�.

Protocol Steps

1. Alice and Bob compute encryptions of [z]0 = [x]0 XOR [y]0 and c = x0 AND y0
as follows. Computation of EncG(c) = EncG([x]0 · [y]0) is performed using
the conditional gate; then computation of EncG([z]0) = EncG([x]0 + [y]0 −
2[x]0 · [y]0) = EncG([x]0 + [y]0 − 2c) is performed locally using common
randomness.

2. For i = 1, . . ., � − 1, Alice and Bob compute encryptions of [z]i = (([x]i XOR
[y]i) XOR c) and c = MAJ([x]i, [y]i, c) as follows:
(a) Using the conditional gate, Alice and Bob compute EncG(axy) = EncG

([x]i · [y]i), EncG(axc) = Enc([x]i · c), EncG(ayc) = EncG([y]i · c), and
EncG(axyc) = EncG([x]i · [y]i · c).
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(b) Using common randomness, Alice and Bob locally compute EncG([z]i) =
EncG(4axyc − 2axy − 2axc − 2ayc + [x]i + [y]i + c) and then EncG(c) =
EncG(axy + axc + ayc − 2axyc).

Logarithmic depth addition of two integers is carried out by the textbook carry-
lookahead addition circuit [26] that has logarithmic depth and linear size (num-
ber of Boolean gates). Given p1, . . . , pm, the prefix sum problem [27] is to com-
pute all the sums p1 + . . . + pi, i = 1, . . . , m. It can be solved by a logarithmic
depth circuit with a linear number of addition nodes [27]. If each addition node
of the circuit of [27] is replaced by the circuit of [26], then the resulting Boolean
circuit for the prefix problem for �-bit numbers has O(m�) gates and depth
O(log m log �). However, the use of the Wallace tree technique [28] is known to
reduce the depth to O(log m + log �) (see, e.g., [29]).

3.4 Constant-Round Comparison

Although we could carry out comparison in our model using the method given
in [7], this would require O(�) number of rounds. Below we give a constant-round
comparison protocol, which is of independent interest.

Input: Alice and Bob each have encryptions {EncG([x]�−1), . . . , EncG([x]0)}
and {EncG([y]�−1), . . . , EncG([y]0)}.

Output: Alice and Bob obtain 1 if x ≥ y, and 0 otherwise.

Protocol Steps

1. Alice and Bob both locally compute EncG(e�−1) = EncG(x�−1 − y�−1) and
then compute EncG(ei) = EncG(2ei+1 + xi − yi) for all i ∈ {� − 2, . . . , 0}.
Note that the value ei will be 0 until the first difference between x and y.

2. Alice and Bob locally compute EncG(f�−1) = EncG(y�−1 − x�−1 − 1) and
then EncG(fi) = EncG(3ei+1 + yi − xi − 1) for all i ∈ {� − 2, . . . , 0}. Note
that the value fi will be 0 if the first i − 1 bits are equal and the ith bit of
x is false and the ith bit of y is true. Thus if there is a single 0 entry (and
there will be at most one) then x < y and otherwise x ≥ y.

3. Alice and Bob raise EncG(fi) to a random power (a protocol for doing this
was described in [30]). Note that now the list of values will contain a 0 if
x < y and will be a set of random non-zero values otherwise.

4. Alice mixes the list and sends the mixed list to Bob along with a proof of
proper mixing. Similarly, Bob mixes the list and sends the mixed list to Alice
along with a proof of proper mixing.

5. Alice and Bob jointly decrypt the list and if a single entry is 0, then they
output 0. If no entry is 0, then they output 1.

3.5 Binary Search

Here we give an efficient search protocol for step 6 of the main protocol. The
overall complexity is O(� log m) and the round complexity is O(log m).
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Input: A list of sorted bitwise encrypted m values {EncG([yi]�−1), . . . , EncG

([yi]0)}m
i=1 and value x bitwise encrypted as EncG([x]�−1), . . . , EncG([x]0).

Output: The smallest index j such that yj > x.

Protocol Steps: Alice and Bob execute the following recursive procedure on
the bitwise-encrypted list {yi}m

i=1:

1. If the size of the current working set |{yi, . . ., yj}| = 1, return i.
2. Otherwise, Alice and Bob execute the constant-round comparison protocol

(see section 3.4) on (the encrypted values of) x and y
 j−i+1
2 � (i.e., check

whether x ≥ y
 j−i+1
2 �). Let c denote the outcome of the protocol.

3. If c = 1, recurse on list {y
 j−i+1
2 �+1, . . . , yj}; otherwise, recurse on list {yi,

. . . , y
 j−i+1
2 �}.
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Abstract. Perfect (or “first degree”) Price Discrimination is a standard
economic practice that is used to increase the pricing effectiveness over
a diverse population of prospective buyers. It is done by selling to differ-
ent buyers at different prices based on their respective willingness to pay.
While the strategy achieves Pareto efficiency, there are a number of prob-
lems in realizing and giving incentive to buyers to participate (and stay) in
a market with price discrimination. This is especially true in an open pro-
cess (like Internet commerce), where parties may learn about their price’s
individual standing (within the group of buyers) and may withdraw due to
being relatively “over-charged” or may “resell” due to getting the goods
at a relatively low price. We investigate the difficulties of realizing per-
fect price discrimination markets when full information is available to the
participants even under the assumption of using standard cryptographic
techniques. We then propose a “fair solution” for price discrimination in e-
markets: using efficient cryptographic protocols (much more efficient than
secure function evaluation protocols) we give incentives to users to stay in
a market that utilizes price discrimination. Our protocols assure that the
seller obtains the total revenue it expects and no buyer learns the price
of other buyers. In addition, each buyer gets a “fair” discount off the sur-
plus (the accumulated suggested payments by buyers minus the seller’s
expected revenue) when applicable and the seller may get part of the sur-
plus as well. Further, the seller gets to learn the market “willingness to
pay” (for potential future use), while this knowledge does not affect the
pricing of the current e-market instance. Along the way we investigate the
cryptographic primitive of “robust distributed summation” that may be
of independent interest as a protocol construction.

1 Introduction

Economics is a field where decision making is being studied and where meth-
ods, mechanisms and procedures are developed to solve market situations under
rationality and other assumptions about agents. On the other hand computer
science and cryptography in particular, study manipulation and exchanges of
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information in the electronic world, based on the computational model and
computational environment constraints. In this paper we investigate the con-
cept of using cryptographic protocols to solve problems of economics: markets,
exchanges and collaboration of agents, can be assisted in various environments
where exchange and combination of information is done in a setting that due
to partial-information constraints cryptography can help. We demonstrate the
usefulness of what may be called a “Crypto-Economics” proposal by showing
how under certain operational constraints we can employ efficient cryptographic
protocols to realize e-markets with first order price discrimination.

Price Discrimination is a standard economic practice that can be used to
increase the market efficiency in cases where there is a diverse population of
prospective buyers of a certain good or service. We deal here with first-degree
price discrimination, where users express their “willingness to pay” which is
accumulated and if it is above or equal the revenue the seller wants to obtain
(this is called “the surplus”), then the market transaction is performed. While
having “Pareto efficiency” (no party’s situation can be made better off without
making someone else worse off), the practice generates “consumer discomfort”
since users may realize that relative to other users they have paid too much
(discouraging loyalty) or too little (encouraging re-sale). We refer to the works
of Varian [Va96] and Odlyzko [Od02] for more information of such issues in
the setting of Internet commerce. The present work focuses on the problem of
how to incentivize agents to remain in such markets not using economic means
and business tricks (versioning, bundling, etc. see below) but rather through
cryptographic techniques.

Suppose that a seller S advertises a good and attracts a number of prospective
buyers B1, . . . , Bn. Let ρ be the total revenue that S wishes to extract out of
selling the good. Suppose additionally that buyer Bi is willing to pay an amount
vi for obtaining the advertised good. In the perfect price discrimination setting
the good is sold to buyer Bi at price vi resulting in a total revenue of

∑n
i=1 vi.

If the summation exceeds ρ the transaction can take place.
To illustrate the benefits of price discrimination consider the following sce-

nario: the seller wishes to sell an advertised good expecting a total revenue of
ρ = $1500. Three buyers express interest for the product with respective prices
v1 = $400, v2 = $600 and v3 = $800. Without price discrimination the seller can
set an average price of $1500/3 = $500. This will result in a revenue of $1000
that is below the expectations of the seller (this is because the product would
be too expensive for the first buyer). In the perfect price discrimination setting
the total revenue is $1800 but it is quite likely that the third buyer will not be
willing to pay $500 more than the first buyer for the same product (and similarly
for the second).

Indeed, this setting, although ideal from a simple economical point of view
(the “name your price” practice as in priceline.com and other Internet selling
sites follow this strategy), it is not practical in many cases, and it is hardly
possible to enforce in cases where potential buyers have concerns about fairness.
Indeed, economists have noticed that there are numerous problems that arise
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in the employment of price-discrimination despite the fact that in most settings
it is beneficial both for the buyers as well as for the seller. One of the most
important problems is convincing the buyers to accept the price discrimination
scheme. Possible techniques include versioning and bundling, nevertheless these
do not apply to all settings and types of goods. When the same product or
service is to be sold in different prices, buyers may worry about their relative
price and the unfairness of the process. They may realize that they pay “too
much” and hold it against the seller, or may realize that they can resell in case
their price was low.

We would like a mechanism that employs price discrimination, yet assures
some conditions of fairness. First we view a number of potential realizations of
a market with perfect price discrimination. We explain the difficulties in these
realizations. Then, a fair solution that we propose in this setting is to use cryp-
tographic methods to enable the sale only under certain conditions and without
leaking private information. In particular, the protocol allows the transaction
to take place only if the seller gets the expected revenue he has expressed ρ.
The solution then yields a discount to all buyers (this will be the incentive to
remain in the price discriminated market). The price discrimination happens
in an oblivious manner and is distributed among all buyers based on buyer i
calling a price vi that remains private. In this case all users will be willing to
participate motivated by the potential discount. Moreover, they will be given a
(cryptographic) guarantee that their price will be kept secret while computing
the discount and they will not be treated unfairly, in case the seller’s constraints
are satisfied.

The total discount that can be applied is
∑n

i=1 vi − ρ (the slack), and in the
particular example above it is $300. This slack can be divided among the buyers
using some method accepted by all parties. In the simplest example we consider,
all buyers should get a $300/3 = $100 discount: in particular the buyers will pay
$300, $500, $700 respectively. Provided that no buyer learns the price paid by
other buyers, all parties are motivated to participate in the protocol: the seller
obtains the total revenue he expected; all buyers get a discounted price. In our
second solution we consider weighted discounts where the slack will be divided
according to the relative bids of each party; in this setting the buyers will pay
$333, $500, $667 respectively (i.e., the higher bidder receives more discount).

Let us complete the section by clarifying the distributed secure computation
problem that we consider:

– n+1 active participants: S denotes the seller, and B1, . . . , Bn the prospective
buyers.

– The private inputs of the participants S, B1, . . . , Bn are ρ, v1, . . . , vn.
– The goal of the the protocol is the following: provided that

∑n
i=1 vi ≥ ρ,

each buyer Bi privately computes a value v′i so that (i) no other participant
gets to learn the value vi; (ii) the values

∑n
i=1 v′i = ρ; (iii) v′i ≤ vi.

– In case of a transaction, the seller gets the revenue he declared as its desire
(this is an incentive for the seller to input its “real willingness for revenue.”
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– The seller gets a feedback about the “market willingness to pay as a whole”
which does not influence the current transaction. On the other hand, the
seller does not learn the individual price bids (vi’s).

– We consider two alternative methods for the calculation of the discounted
values v′k:
(a) Same discount for all buyers: v′k = vk −

∑ n
i=1 vi−ρ

n .
(b) Weighted Discount: v′k = vk

ρ∑ n
i=1 vi

.

The cryptographic protocol realizing this “oblivious price discrimination me-
thod” assures secrecy (no buyer or seller learns the initial price bid of another
buyer), auditability (the buyers are sure the realization was calculated correctly)
and robustness (the solution can be calculated distributedly with no disruptions).

We can also vary the treatment of the surplus. The parties may decide a-priori
to split it between the buyers and the seller (in some chosen way that can be
calibrated); this allows markets that support sellers based on global conditions.
For example, in depressed markets, the buyers may be willing (or be regulated)
to give half the surplus to the seller, in order to keep it in business.

1.1 Motivation: Problems with Potential Realizations

The motivation for our cryptographic protocol designs is illustrated by the fol-
lowing potential “solutions” to the above problem, that are not satisfactory:

1. Non-Cryptographic Solution #1: All buyers send their values vi to the seller
who, in turn, returns the values v′i. Problem: This may result in over-pricing
since there is no guarantee that the seller will not get for more revenue than
it expects and the fairness-minded group of buyers do not like this situation.
(This is the “name your price” mechanism).

2. Non-Cryptographic Solution #2: The seller publicizes the expected revenue
ρ. Problem: It is hard to achieve price-discrimination in this setting, since
the seller has “revealed its cards” and it is unreasonable to expect that buyers
would be willing to pay more than ρ/n.

3. Commitment Based Setting: Seller commits to his value and buyers commu-
nicate their prices to him. Problem: Buyers only collectively can verify the
commitment of the seller with respect to the slack. Without employing any
other cryptographic techniques, this results in revealing all buyers’ prices
and this level of insecurity may allow buyers to learn prices of other buy-
ers. Naturally a trusted third party may carry the checking but this would
centralize too much trust on a single entity.

4. Cryptographic Setting: The seller and buyer may employ generic secure func-
tion evaluation [Ya86, GMW87] to compute the total discount

∑n
i=1 vi − ρ

or the discount ratio ρ/
∑n

i=1 vi. These general procedures, in fact, can solve
any mechanism design problem as noted in [Ni99]. Problem: While these
methods are “universal protocols” that solve any problem, these methods
are computationally very demanding and serve only as plausibility results;
instead here we seek more efficient solutions of a specific secure function
evaluation problem, (cf. [G97]).
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We assume that a seller and a buyer have signed a contract clarifying the rules
of payments after the protocol is over and the confidentiality of payments; this can
also use cryptography (digital signing). In addition, we need to assure the seller
its revenue. The protocol has to be auditable by the participants assuming they
are fairness-minded users who monitor the publicly available protocol transcript.
Furthermore, the tool has to be robust against userswho attempt to fail the system.

2 Tools

In this section we go over some basic cryptographic tools that we employ in our
construction. In particular, Homomorphic Encryption Schemes, Paillier Encryp-
tion, Proofs of Knowledge, Interval Proofs, etc. Readers familiar with these tools
may skim read this section and move on to section 3.

Homomorphic Encryption Schemes. An encryption scheme is a triple 〈K, E ,
D〉. The key-generation K is a probabilistic TM which on input a parameter 1w

(which specifies the key-length) outputs a key-pair pk, sk (public-key and secret-
key respectively).

The encryption function is a probabilistic TM Epk : R×P → C, where R is the
randomness space, P is the plaintext space, and C the ciphertext space. When
the P = Za for some integer a, we will say that encryption function has “additive
capacity” (or just capacity) a.

The basic property of the encryption scheme is that Dsk(Esk(·, x)) = x for all
x independently of the coin tosses of the encryption function E . If we want to
specify the coin tosses of E we will write Epk(r, x) to denote the ciphertext that
corresponds to the plaintext x when the encryption function Epk makes the coin
tosses r. Otherwise we will consider Epk(x) to be a random variable.

For homomorphic encryption, we assume additionally the operations +,⊕,
⊙

defined over the respective spaces P, R, C, so that 〈P, +〉, 〈R,⊕〉, 〈C,
⊙

〉 are
groups written additively (the first two) and multiplicatively respectively.

Definition 1. An encryption function E is homomorphic if, for all r1, r2 ∈ R

and all x1, x2 ∈ P, it holds that Epk(r1, x1)
⊙

Epk(r2, x2) equals Epk(r1⊕r2, x+y).

Here we will employ a Homomorphic Encryption scheme due to Paillier, [Pai99],
that is presented in the next section.

Paillier Encryption. We use the first encryption scheme presented in [Pai99]. It
is a triple 〈K, E ,D〉, defined as follows: the key-generation K outputs an integer
N , that is a product of two safe primes, and an element g ∈ Z

∗
N2 of order a

multiple of N . The public-key of the system pk is set to 〈g, N〉 and the secret-
key sk is set to the factorization of N .

For a public-key 〈g, N〉, the encryption function E(r, x) equals the value
gxrN (modN2) and the domains P := ZN , R := Z∗

N , and C := Z∗
N2 . The op-

eration + is defined as addition modulo N , and the operations ⊕,
⊙

are defined
as multiplication modulo N2. The decryption function D for a secret-key p, q
it operates as follows: first it computes λ := λ(N) the Carmichael function of
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N , and given a ciphertext c, it returns L(cλ(modN2))/L(gλ(modN2)) where
L(u) = u−1

N and L is defined over the set of integers {u | u ≡ 1(modN)}.
Observe that 〈P, +〉, 〈R,⊕〉 and C,

⊙
〉 are all groups, and the encryption E is

homomorphic with respect to these operations. Finally notice that the capacity
of E is N .

Threshold Variant. A (t, m)-threshold homomorphic encryption scheme is a
triple 〈K, E ,D〉 so that K is a protocol between a set of participants A1, . . . , Am,
that results in the publication of the public-key pk and the sharing of the secret-
key sk so that any t of them can reconstruct it. Additionally, D is also a protocol
between the participants A1, . . . , Am that results in the decryption of the given
ciphertext in a publicly verifiable manner (i.e. each participant writes a proof
that he follows the decryption protocol according to the specifications). Paillier
encryption has a threshold variant see [FPS00, DJ00].

Proofs of Knowledge. Proofs of knowledge are protocols between two players,
the Prover and the Verifier. In such protocols there is a publicly known predicate
Qy with parameter y for which the prover knows some witness x, i.e. Qy(x) =
1. The goal of such protocols is for the prover to convince the verifier that
he indeed knows such witness. The reader may refer to [DDPY94, CDS94] for
descriptions of such protocols and their composition in AND-OR circuit fashion.
We note that we will employ such protocols based on a computational soundness
argument: i.e., soundness on the side of the prover will be ensured only under
the presumed hardness of a certain computational problem. This technique was
used in a number of previous works, notably in [FO97, DF02].

Interval Proof for Paillier Encryption. An interval proof shows that a com-
mitted integer value belongs to a certain interval. Such proofs have been used
in a variety of settings, e.g. in group-signatures [ACJT00], or e-cash [CFT98].
In our protocol constructions we will need the design of an interval proof for an
integer that is encrypted into a Paillier ciphertext. We start by presenting in
figure 1 a basic interval proof for a commitment (for related previous work see
also [CFT98, Bou00, KTY04]).

For the proof, we consider security parameters k, l and further let N ′ be a safe
RSA Modulus with unknown factorization to the prover and verifier. Also let g0
be an element that generates the quadratic residues in Z∗

N ′ and h a full order
element inside 〈g0〉 with unknown discrete logarithm base g0. Let 0, . . . , B be
the interval over which the prover will show that a committed value belongs to.
The commitment scheme that is used is defined as follows: V = gx

0hr(modN ′)
where r is selected at random from the interval {0, . . . , �N ′/4�}.

A crucial tool for the soundness of interval proofs is the Strong-RSA assump-
tion, defined below:

Strong-RSA Assumption. Given N ′ and v ∈ Z∗
N ′ it is computationally hard

to find b ∈ Z∗
N ′ and e a prime number such that be = v(modN ′).

We remark that the proof of knowledge of figure 1 has the following prop-
erties: (1) If x ∈ {0, . . . , B} the honest prover always convinces the honest
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Prover Verifier
selects ω ∈R {−2k+lB, . . . , 2k+lB}

η ∈R {−2k+l�N ′/4�, . . . , 2k+l�N ′/4�}
computes W = gω

0 hη(modN ′) W−→
c←− c ∈R {0, . . . , 2k}

d1 = ω − xc,d2 = η − rc (in Z) d1,d2−→ d1 ∈? {−2k+lB − (2k − 1)B, . . . , 2k+lB}
gd1
0 hd2V c =? W (modN ′)

Fig. 1. Interval Proof x ∈ {0, . . . , B} for the commitment V = gx
0hr

verifier. (2) Conditional Soundness. A cheating prover using an integer x �∈
{−2k+l+2B, . . . , B + 2k+l+2B} can succeed with probability less than 2−k, un-
der the Strong-RSA assumption. (3) The protocol is statistical zero-knowledge
for a honest verifier with statistical distance negligible in the parameter l.

We can combine the above protocol using regular AND composition with a
standard proof of knowledge of a Paillier encryption (e.g. as those presented
in [DJ00]) in order to obtain a proof of knowledge that shows that a Paillier
Encryption hides a value in the interval {−2k+l+2B, . . . , B+2k+l+2B}. Let g, N
be a public-key for the Paillier encryption function with N > N ′. This can be
done as shown in figure 2.

Prover Verifier
selects r ∈ {0, . . . , �N ′/4�}
ω ∈R {−2k+lB, . . . , 2k+lB}

η ∈R {−2k+l�N ′/4�, . . . , 2k+l�N ′/4�}
u ∈R Z

∗
N

computes W = gω
0 hη(modN ′), V = gx

0hr(modN ′),
U = gωuN (modN2) W,U,V−→

c←− c ∈R {0, . . . , 2k}
d1 = ω − xc , d2 = η − rc (in Z)

z = uvc(modN2) d1,d2,z−→ d1 ≥? −2k+lB − (2k − 1)B
d1 ≤? 2k+lB

gd1
0 hd2V c =? W (modN ′)

gd1zN =? UEc(modN2)

Fig. 2. Interval Proof x ∈ {0, . . . , B} for the Paillier Encryption E = gxvN (modN2)

Boudot, in [Bou00], improved interval proofs of the type described above so
that they become tight (i.e. there does not exist a discrepancy between the
interval used for completeness, and the interval used for soundness). We can
combine Boudot’s proof in a standard AND fashion with a proof of knowledge
of a Paillier encryption as we did above in figure 2 in order to obtain a interval
proof for a Paillier encryption.

Notation. In the sequel we will use the notation Q
E,[0..B]
interval for the predicate that

is 1 for values x, v such that E = gxvN (modN2) and x ∈ {0, 1, . . . , B}. We will
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say that a player writes a proof for Q
E,[0..B]
interval when he executes an interval proof

for the Paillier encryption E.

Proving Equality of Paillier Ciphertexts with Different Bases. Let g, N
be a public-key for the Paillier encryption. Let g0 be an additional value in Z∗

N2

with order a multiple of N . In this section we will show how the prover can show
that two ciphertexts C, C′ encrypted under the public-keys g, N and g0, N can be
shown to encrypt the same plaintext. We will denote the corresponding predicate
by QC,C′,g,g0,N

equal , i.e. QC,C′,g,g0,N
equal (x) = 1 if and only if there exist v, v′ ∈ Z∗

N such
that C = gxvN (modN2) and C′ = gx

0 (v′)N (modN2). The proof of knowledge
is presented in figure 3.

Prover Verifier
select y, y′ ∈R Z

∗
N and r ∈R ZN

A := gryN(modN2) mod N2, A′ = gr
0(y′)N (modN2) A,A′

−→
c←− c ←R {0, 1, . . . , N − 1}

z=yvc, z′ =y′(v′)c, s=r + cx(modN) s−→ gszN =? ACc(modN2)
gs
0(z′)N =? A′(C′)c(modN2)

Fig. 3. Proof of knowledge for the predicate QC,C′,g,g0,N
equal where C = gxvN (modN2)

and C′ = gx
0 (v′)N(modN2)

3 Price Discrimination Protocols

– Active Participants: The Seller (S), the prospective buyers (B1, . . . , Bn).
All communication takes place through a “bulletin board,” a model that
abstracts away all lower level communication details [CF85].

– Inputs: the expected revenue ρ ∈ Z of the Seller. The maximum amount that
player Bi is willing to spend vi < B.

– Output: The seller computes the total contribution
∑n

i=1 vi. Each buyer
either,
1. receives the discounted price v′i, that has the properties (i) v′i ≤ vi, (ii)∑

v′i = ρ.
2. receives a notification that the expected revenue of the Seller has not

been met.
– Correctness. Each active participant computes the outputs as specified above.
– Security Specifications.

1. Privacy. The initial amount that each Buyer is willing to spend is kept
secret (modulo the information that is leaked by the results of the pro-
cedure). Formally, privacy is intended to be shown by comparison to the
ideal implementation of the scheme using a trusted third party: All buy-
ers and sellers transmit privately their values to the trusted third party
who announces the output as defined above.
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2. Robustness. No participant can prevent the procedure from terminating.
3. Verifiability. Participants’ actions can be verified to follow the protocols’

specifications.

As explained above, we will consider two discount schemes: (i) absolute dis-
count where v′i = vi −

∑ n
i=1 vi

ρ , and (ii) weighted discount where v′i = vi
ρ∑

n
i=1 vi

.
We remark that in the absolute discount case, some buyers may compute a

negative value as their final price v′i. This is not inconsistent with the specifica-
tions of price discrimination with absolute discount (i.e. in this case these buyers
may end up getting some credit for participating in the procedure).

Meeting the security specifications will rely on assuming the semantic security
of Paillier scheme, and on the assumptions (and idealized model, if used) needed
for the proofs of knowledge (as explained above). More detailed treatment will
be given in the full version of this work.

3.1 Robust Private Distributed Summation

Our protocol constructions can be seen as modifications of a basic primitive
which we call Robust Private Distributed Summation. The primitive may be of
independent interest and as it is quite general we present it first. As a primitive it
relates to homomorphic encryption based voting schemes, e.g. [CGS97, FPS00];
the goal of the primitive is to add a sequence of distributed numbers into their
sum while at the same time avoiding wraparounds (as the calculation is per-
formed in a finite ciphertext domain).

We stress that distributed summation is very different from e-voting. To begin
with, the individual summation terms are not supposed to be revealed and as a
result no e-voting procedure based on blind-signatures and/or anonymous chan-
nels is suitable. Further, in case of homomorphic encryption based voting the
difference is that the range of each summation term may be exponentially large
and thus standard OR proofs ranging through the entire allowed domain cannot
be used to validate the encrypted bid. Moreover the range of the summation
register is exponentially large itself. Finally, we only need to avoid wraparounds,
and thus a tight range proof may even not be required. For the above reasons a
new construction is in place to solve the distributed summation problem. Below
we outline the protocol problem we intend to solve.

We describe the protocol below. Let 〈K, E ,D〉 be the (t, m)-threshold variant
of Paillier encryption defined in section 2.

1. Setup. The authorities A1, . . . , Am execute the protocol K which results in
the publication in the bulletin board of the public-key pk. At the same time
the secret-key sk is shared amongst the authorities A1, . . . , Am.

2. Value Submission. Each eligible player gets authorized to the bulletin
board and reads the public-key pk of the system. The player Pi publishes
the encryption C[i] := Epk(si), where si ∈ {0, . . . , B}.
At the same time the player must publish an interval proof to show that he
is not exceeding the boundary B. So he writes a proof of knowledge for the
predicate Q

C[i],[0..B]
interval .
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Parameters t, m, B ∈ Z. Number of players is n.
Tools Paillier Encryption 〈K, E ,D〉 with capacity N such that N > nB.

Participants A set of players P1, . . . , Pn. We also assume a set of authorities
A1, . . . , Am (which may coincide or overlap with the set of play-
ers).

Input Each player has a private input, an integer si ∈ {0, 1, . . . , B}.
Output The sum

∑n
i=1 si.

Properties
Security Any adversary that controls a number of participants so that less

than t Authorities are controlled by the adversary is incapable of
computing the private input of any of the participants, prior to
the announcement of the sum, the output of the protocol.

Robustness Any adversary that controls a number of participants so that less
than m−t Authorities are controlled by the adversary is incapable
of preventing the publication of the output sum of the protocol.

Verifiability Any third party can verify that the participants are following the
protocol according to the specifications.

Fig. 4. Specifications of the Secure Distributed Summation Protocol

3. Aggregation. The bulletin board authority terminates the value submission
phase, and it collects the encrypted ballots C[1], . . . , C[n] to compute the
“summation ciphertext” Csum = C[1]

⊙
. . .

⊙
C[n]. Observe that due to the

homomorphic property of the Paillier encryption scheme it holds that Csum

is indistinguishable from encryptions of the value T :=
∑n

i=1 si.
4. Decryption and Announcement of the Sum. The authorities A1,. . . ,Am

execute the protocol D to reveal the the value T . Note that due to the ca-
pacity assumption there will be no wrap-arounds during the computation of
the summation ciphertext Csum.

Based on the properties of the cryptographic tools that are employed in our
scheme, one can formulate and prove a theorem as follows:

Theorem 1. The Distributed Summation Protocol defined above satisfies Secu-
rity, Robustness, and Verifiability, under the assumptions (i) Semantic Security
of Paillier encryption (ii) the strong-RSA assumption to show the soundness of
the necessary interval proofs.

Remark 1. A summation protocol for encrypted values appeared as part of a
different application scenario in [C01]; the approach taken there was based on
cut and choose techniques for ensuring proper value selection and thus compared
to the solution presented here is much less efficient.

Remark 2. By calibrating the capacity of the encryption function to be N >
nB2t where t is an appropriately chosen security parameter one can use more
efficient proofs of knowledge compared to the ones of Boutot [Bou00] as the one
in figure 2. We omit further details for the full version.
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3.2 The Absolute Discount Protocol

Let 〈K, E ,D〉 be the (t, m)-threshold version of the Paillier homomorphic encryp-
tion as defined in section 2. We assume a set of “authorities” A1, . . . , Am that may
either overlap with some of the active participants S, B1, . . . , Bn or they may be
third parties that participate in the procedure. We will denote by B an upper
bound on the maximum price that a certain buyer is willing to pay to the seller.

Initialization. The Authorities A1, . . . , Am execute the key-generation protocol
K. This results in writing the public-key g, N in the bulletin board of the system.
We assume that N > 2Bn where B is the bound to the input of each buyer1.

Depositing the Price-bids. Each buyer Bi selects his maximum price bid
vi and publishes C[i] = E(vi) = gvixN

i (modN2) where vi ∈ {0, . . . , B} and
xi ∈R Z

∗
N .

In addition Bi writes a proof for the predicate Q
C[i],[0..B]
interval , to ensure that the

bid vi is in the range {0, . . . , B}.
The seller writes the encryption C = E(ρ) = gρxN (modN2), together with

an interval proof for the predicate Q
C,[0.. N

2 ]
interval .

Closing the Deposition Phase. The bulletin board server closes the deposi-
tion phase by signing and time-stamping the contents of the bulletin board. All
proofs of knowledge are checked to ensure that all buyers have conformed to the
interval requirement.

Computation of the Total Discount. The bulletin board server computes
Ct−disc =

∏n
i=1 C[i]/C. Observe that due to the capacity of the encryption

function E and the homomorphic properties of the Paillier encryption func-
tion it follows that Ct−disc is a valid Paillier ciphertext that hides the integer
D =

∑n
i=1 vi − ρ ∈ {−!N

2 ", . . . , 0, . . . , !N
2 "}.

The authorities A1, . . . , Am execute the decryption protocol on the ciphertext
Ct−disc to reveal the valueD. Note that ifD < 0 all parties conclude that themarket
cannot be realized (too high revenue expected / too little market interest).

Computation of Individual Prices. Provided that D ≥ 0 each buyer Bi com-
putes his discounted value as follows: v′i := vi − D

n . The Seller can also compute
the gross value that its offer raised by calculating the sum

∑n
i=1 vi = D + ρ.

Observe that the publication of the total discount D =
∑n

i=1 vi − ρ is not
inconsistent with the security properties dictated by an ideal implementation
of the absolute discount protocol since the value D is accessible also in the
ideal implementation by each one of the buyers: indeed given vi, v

′
i in the ideal

implementation one can compute D as follows: D = n(vi − v′i) (recall that we
assume that the total number of buyers n is common knowledge).

1 Note that the bound B will be chosen to be substantially larger from the actual bid
and will be the same for all buyers. The only purpose of the bound is to ensure that
no wraparound occurs during the modular addition of the buyers’ bids. It will be
easy to select B high enough so that no information about the buyers’ prices leaks
from the disclosure of B.
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Under our cryptographic assumptions, one can argue that the absolute dis-
count protocol above satisfies privacy, robustness and verifiability.

3.3 The Weighted Discount Protocol

The main technical issue for the weighted discount protocol compared to the
absolute discount protocol is that the computation of the summation of the
bid-prices appears in the denominator of the discounted final price values.

As in the case of the absolute discount protocol, let 〈K, E ,D〉 be the (t, m)-
threshold version of the Paillier homomorphic encryption as defined in section
2. As before, we also assume a set of “authorities” A1, . . . , Am that may either
overlap with some of the active participants S, B1, . . . , Bn or they may be third
parties that participate in the procedure.

Initialization. The Authorities A1, . . . , Am execute the key-generation protocol
K. This results in writing the public-key g, N in the bulletin board of the system.
We assume that the capacity of the encryption N satisfies N > ABn where B
is the bound to the input of each buyer, and A is an integer parameter.

Seller-Initialization. The seller computes ρ′ := �10e 1
ρ� where e is a public

parameter so that ρ′ < A. The seller publishes the encryption C = E(ρ′) =
gρ′

xN (modN2). together with an interval proof for the predicate Q
C,[0..A]
interval .

Depositing the Price-bids. Each buyer Bi selects his maximum price bid
vi and publishes C[i] = CvixN

i (modN2) and C′[i] = gvi(x′
i)

N (modN) where
vi ∈ {0, . . . , B} and xi ∈R Z

∗
N2 .

In addition Bi writes a proof for the predicate Q
C′[i],[0..B]
interval , to ensure that

the bid vi is in the range {0, . . . , B}, and additionally it writes a proof for the
predicate Q

C′[i],C[i],g,C,N
equal to ensure that the two Paillier ciphertexts C[i], C′[i]

that have different bases hide the same value vi.

Closing the Deposition Phase. The bulletin board server closes the deposi-
tion phase by signing and time-stamping the contents of the bulletin board. All
proofs of knowledge are checked to ensure that all participants have conformed
to the interval requirements.

Computation of the Discounts. The bulletin board server (or any observer)
computes Cfactor =

∏n
i=1 C[i]. Observe that due to the capacity of the encryption

function E and the homomorphic properties of the Paillier encryption function it
follows thatCfactor is a validPaillier ciphertext thathides the integerF =ρ′

∑n
i=1 vi.

The authorities A1, . . . , Am execute the decryption protocol on the ciphertext
Cfactor to reveal the value F . Note that if F < 10e all parties conclude that the
market cannot be realized (too high revenue expected / too little market interest).

Otherwise, each buyer Bi computes his discounted price bid by as follows

v′i := vi
10e

F
= vi

10e

� 10e

ρ �
∑n

i=1 vi

≈ vi
ρ∑n

i=1 vi

The Seller can also compute the total contribution
∑n

i=1 vi = F/ρ′.
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As an example of the above computation consider the case where ρ = 500 and
there are three prospective buyers with initial price bids v1 = 60, v2 = 300, v3 =
400. Let e = 4. In this case ρ′ = 20 and F = ρ′

∑n
i=1 vi = 15200. It follows that

10e

F = 0.657 i.e. the discounted prices will be v′1 = 39.5, v′2 = 197.2, v′3 = 262.9
(note that round-up can be used to ensure that the discounted values are not
below the expected revenue).

Observe that the publication of the factor F , as it was the case with the
total discount D for the absolute discount protocol, is not inconsistent with the
security properties dictated by an ideal implementation of the weighted discount
protocol since the value F is accessible also in the ideal implementation by each
one of the buyers: indeed given vi, v

′
i in the ideal implementation one can compute

F as follows: F ≈ vi/v′i.
Under our cryptographic assumptions, one can prove that the absolute dis-

count protocol above satisfies privacy, robustness and verifiability.

3.4 Variations on Dealing with the Surplus

In our two price-discrimination protocols, the surplus was divided among the
buyers so that they could obtain a discount on their initial price bid. The seller
on the other hand obtained exactly the price he named.

This is not satisfactory in some settings and for the purpose to increase the
incentive of the seller, one can have some of this surplus actually be returned
to the seller. We examine how this simple modification can be implemented in
both of our protocols to give half the slack to the seller (other fractions are also
easily implementable):

1. For the Absolute Discount Protocol: in the computation of the final prices
v′i each buyer divides the total discount D by 2, and computes he discounted
price as v′i = vi −

∑ n
i=1 vi−ρ

2n . This will give half of the “slack”
∑n

i=1 vi − ρ
back to the seller.

2. For the Weighted Discount Protocol: the multiplier mult = 10e

F that satisfies
0 < mult < 1 that is computed at the end of the protocol is modified to
multiplier mult′ := mult + 1−mult

2 . Subsequently all buyers are using mult′

in order to compute their final discounted value.

4 Cryptographic Infrastructure for Transaction Support

A major advantage of the procedure of computing the discounted prices and
the market be means of cryptographic protocol is that it is possible to use fur-
ther Cryptographic tools to assist in the continuation of the transaction, af-
ter prices have been determined. The additional support can help maintaining
certain privacy and enforcement properties that markets need. We will only
briefly survey the methods; a more detailed description will be given in the next
version.
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4.1 Payment Services

To actually complete the transaction, the buyers should present a proof that
they actually were assigned a certain price discount. While the total discount is
publicly available on the bulletin board, this does not indicate the exact amount
that a certain buyer is supposed to pay. In fact, it may be the case that an
agent cheats and claims that he was actually awarded a larger discount than the
one that was actually assigned by the protocol. The discrepancy would only be
revealed after the last participating buyer submits his payment. As a result it
is crucial during payment to produce some proof that a certain price bid was
made. This is possible in our setting since the bid of the user appears encrypted
on the bulletin-board, and acts as a public commitment to his original bid. As a
result after the termination of the protocol the buyer can open the random pad
that he used in the encryption of his bid and thus convince a third party (e.g.
a payment server) of the real value of his discount; note that the total discount
is publicly available information, and thus once the payment server is convinced
that the original price bid of the user is vi, he can verify whether the claimed
discounted price by re-computing v′i (depending on the protocol used weighted
or absolute discount). Convincing can also be done in a zero-knowledge fashion.
The payment server can serve as a trusted interface providing anonymity to users
or a combination of anonymity and affinity programs based on user accounts.

4.2 Reducing Reselling Potential Using “Receipt-Freeness”

The ability of the buyers to present proofs of the original bids is useful on the
one hand for the implementation of the final monetary transaction part, however
it also raises some concerns. In particular, buyers are capable of proving to other
potential buyers their price which will encourage “resell market.” To prevent this
we can have a private re-randomizing server (which is used in “voting protocols”
to provide receipt-freeness, [Poi00]), and this server makes sure that the buyer
cannot convince a third party what his price is.

Further, the same server can be the payment server above, thus it is possible
for a user to be able to convince the server and only the server itself of his/her
price.
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