
A Tutorial Introduction to CSP in
Unifying Theories of Programming

Ana Cavalcanti and Jim Woodcock

Department of Computer Science
University of York

York, UK

In their Unifying Theories of Programming (UTP), Hoare & He use the alphabet-
ised relational calculus to give denotational semantics to a wide variety of con-
structs taken from different programming paradigms. In this chapter, we give a
tutorial introduction to the semantics of CSP processes, as presented in Chapter
3. We start with a summarised introduction of the alphabetised relational cal-
culus and the theory of designs, which are pre-post specifications in the style of
specification statements. Afterwards, we present in detail a theory for reactive
processes. Later, we combine the theories of designs and reactive processes to
provide the model for CSP processes. Finally, we compare this new model with
the standard failures-divergences model for CSP.

In the next section, we give an overview of the UTP, and in Section 2 we
present its most general theory: the alphabetised predicates. In the following
section, we establish that this theory is a complete lattice. Section 4 restricts the
general theory to designs. Section 5 presents the theory of reactive processes;
Section 6 contains our treatment of CSP processes; and Section 7 relates our
model to Roscoe’s standard model. We summarise the work in Section 8.

1 Introduction

The book by Hoare & He [117] sets out a research programme to find a common
basis in which to explain a wide variety of programming paradigms: unifying
theories of programming (UTP). Their technique is to isolate important language
features, and give them a denotational semantics. This allows different languages
and paradigms to be compared.

The semantic model is an alphabetised version of Tarski’s relational calculus,
presented in a predicative style that is reminiscent of the schema calculus in
the Z [257] notation. Each programming construct is formalised as a relation
between an initial and an intermediate or final observation. The collection of
these relations forms a theory of the paradigm being studied, and it contains
three essential parts: an alphabet, a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the the-
ory being studied. Names are chosen for any relevant external observations of
behaviour. For instance, programming variables x , y, and z would be part of
the alphabet. Also, theories for particular programming paradigms require the
observation of extra information; some examples are a flag that says whether

, LNCS 3167, pp. 220–268, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004

A Tutorial Introduction to CSP in Unifying Theories of Programming 221

the program has started (okay); the current time (clock); the number of avail-
able resources (res); a trace of the events in the life of the program (tr); or a
flag that says whether the program is waiting for interaction with its environ-
ment (wait). The signature gives the rules for the syntax for denoting objects
of the theory. Healthiness conditions identify properties that characterise the
theory.

Each healthiness condition embodies an important fact about the computa-
tional model for the programs being studied.

Example 1 (Healthiness conditions).

1. The variable clock gives us an observation of the current time, which moves
ever onwards. The predicate B specifies this.

B =̂ clock ≤ clock ′

If we add B to the description of some activity, then the variable clock
describes the time observed immediately before the activity starts, whereas
clock ′ describes the time observed immediately after the activity ends. If we
suppose that P is a healthy program, then we must have that P ⇒ B .

2. The variable okay is used to record whether or not a program has started.
A sensible healthiness condition is that we should not observe a program’s
behaviour until it has started; such programs satisfy the following equation.

P = (okay ⇒ P)

If the program has not started, its behaviour is not restricted.

Healthiness conditions can often be expressed in terms of a function φ that makes
a program healthy. There is no point in applying φ twice, since we cannot make a
healthy program even healthier. Therefore, φ must be idempotent, and a healthy
P must be a fixed point: P = φ(P); this equation characterises the healthiness
condition. For example, we can turn the first healthiness condition above into an
equivalent equation, P = P ∧ B , and then the following function on predicates
andB =̂ λX • X ∧ B is the required idempotent.

The relations are used as a semantic model for unified languages of specifi-
cation and programming. Specifications are distinguished from programs only
by the fact that the latter use a restricted signature. As a consequence of this
restriction, programs satisfy a richer set of healthiness conditions.

Unconstrained relations are too general to handle the issue of program ter-
mination; they need to be restricted by healthiness conditions. The result is the
theory of designs, which is the basis for the study of the other programming
paradigms in [117]. Here, we present the general relational setting, and the tran-
sition to the theory of designs. Next we take a different tack, and introduce the
theory of reactive processes, which we then combine with designs to form the
theory of CSP [115, 225].

222 A. Cavalcanti and J. Woodcock

2 The Alphabetised Relational Calculus

The alphabetised relational calculus is similar to Z’s schema calculus, except that
it is untyped and rather simpler. An alphabetised predicate (P ,Q , . . . , true) is
an alphabet-predicate pair, where the predicate’s free variables are all members
of the alphabet. Relations are predicates in which the alphabet is composed
of undecorated variables (x , y, z , . . .) and dashed variables (x ′, a′, . . .); the
former represent initial observations, and the latter, observations made at a
later intermediate or final point.

The alphabet of an alphabetised predicate P is denoted αP , and may be di-
vided into its before-variables (inαP) and its after-variables (outαP). A homoge-
neous relation has outαP = inαP ′, where inαP ′ is the set of variables obtained
by dashing all variables in the alphabet inαP . A condition (b, c, d , . . . , true) has
an empty output alphabet.

Standard predicate calculus operators can be used to combine alphabetised
predicates. Their definitions, however, have to specify the alphabet of the com-
bined predicate. For instance, the alphabet of a conjunction is the union of
the alphabets of its components: α(P ∧ Q) = αP ∪ αQ . If a variable is men-
tioned in the alphabet of P and Q , then they are both constraining the same
variable.

A distinguishing feature of the UTP is its concern with program development,
and consequently program correctness. A significant achievement is that the
notion of program correctness is the same in every paradigm in [117]: in every
state, the behaviour of an implementation implies its specification.

If we suppose that αP = {a, b, a′, b′}, then the universal closure of P is simply
∀ a, b, a′, b′ • P , which is more concisely denoted as [P]. The correctness of a
program P with respect to a specification S is denoted by S � P (S is refined
by P), and is defined as follows.

S � P iff [P ⇒ S]

Example 2 (Refinement). Suppose we have the specification x ′ > x ∧ y ′ = y,
and the implementation x ′ = x + 1 ∧ y ′ = y. The implementation’s correctness
can be argued as follows.

x ′ > x ∧ y ′ = y � x ′ = x + 1 ∧ y ′ = y �
= [x ′ = x + 1 ∧ y ′ = y ⇒ x ′ > x ∧ y ′ = y] universal one-point rule, twice
= [x + 1 > x ∧ y = y] arithmetic and reflection
= true

And so, the refinement is valid.

As a first example of the definition of a programming constructor, we consider
conditionals. Hoare & He use an infix syntax for the conditional operator, and
define it as follows.

A Tutorial Introduction to CSP in Unifying Theories of Programming 223

P � b � Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ
α(P � b � Q) =̂ αP

Informally, P � b � Q means P if b else Q .
The presentation of conditional as an infix operator allows the formulation

of many laws in a helpful way. Below, we reproduce some of the laws presented
in [117].

L1 P � b � P = P idempotence

L2 P � b � Q = Q � ¬ b � P symmetry

L3 (P � b � Q) � c � R = P � b ∧ c � (Q � c � R) associativity

L4 P � b � (Q � c � R) = (P � b � Q) � c � (P � b � R)distributivity

L5 P � true � Q = P = Q � false � P unit

L6 P � b � (Q � b � R) = P � b � R unreachable-branch

L7 P � b � (P � c � Q) = P � b ∨ c � Q disjunction

L8 (P * Q) � b � (R * S) = (P � b � R) * (Q � b � S) interchange

In Law L8, the symbol * stands for any truth-functional operator.
For each operator, Hoare & He give a definition followed by a number of

algebraic laws as those above. These laws can be proved from the definition;
proofs omitted here can be found in [117] or [256]. We also present extra laws
that are useful in later proofs, as well as in illuminating the theory. We give
the laws presented in [117] that we reproduce here the same labels used in that
original work: L1, L2 and so on. The extra laws that we present are numbered
independently.

Since a conditional is just an abbreviation for a predicate, for reasoning, we
can use laws that combine programming and predicate calculus operators. An
example is our first law below, which states that negating a conditional negates
its operands, but not its condition.

Law 60 (not-conditional). ¬ (P � b � Q) = (¬ P � b � ¬ Q)

Proof.

¬ (P � b � Q) conditional
= ¬ ((b ∧ P) ∨ (¬ b ∧ Q)) propositional calculus
= (b ⇒ ¬ P) ∧ (¬ b ⇒ ¬ Q) propositional calculus
= (b ∧ ¬ P) ∨ (¬ b ∧ ¬ Q) conditional
= (¬ P � b � ¬ Q)

If we apply the law of symmetry to the last result, we see that negating a
conditional can be used to negate its condition, but in this case, the operands
must be both negated and reversed: ¬ (P � b � Q) = (¬ Q � ¬ b � ¬ P).
Even though it does not make sense to use negation in a program, for reasoning,
the flexibility is very convenient.

224 A. Cavalcanti and J. Woodcock

Below is an instance of Law L8 with a compound truth-functional operator.

Law 61 (conditional-and-not-conditional).

(P � b � Q) ∧ ¬ (R � b � S) = (P ∧ ¬ R) � b � (Q ∧ ¬ S)

Proof.

(P � b � Q) ∧ ¬ (R � b � S) Law 60
= (P � b � Q) ∧ (¬ R � b � ¬ S) L8
= (P ∧ ¬ R) � b � (Q ∧ ¬ S))

As a consequence of the interchange (L8) and unit (L1) laws, any boolean
operator distributes through the conditional.

Law 62 (*-conditional).

(P * (Q � b � R)) = ((P * Q) � b � (P * R))
((P � b � Q) * R) = ((P * R) � b � (Q * R))

The details of this simple proof and of others omitted in the sequel are left as
exercises. We include here only proofs for the more surprising laws or proofs that
perhaps require more elaborate arguments.

Exercise 1. Prove Law 62.

A conditional may be simplified by using a known condition.

Law 63 (known-condition).

b ∧ (P � b � Q) = (b ∧ P)
¬ b ∧ (P � b � Q) = (¬ b ∧ Q)

Two absorption laws allow a conditional’s operands to be simplified.

Law 64 (assume-if-condition). (P � b � Q) = ((b ∧ P) � b � Q)

Law 65 (assume-else-condition). (P � b � Q) = (P � b � (¬ b ∧ Q))

Sequence is modelled as relational composition. Two relations may be composed
providing the output alphabet of the first is the same as the input alphabet of
the second, except only for the use of dashes.

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) if outαP = inαQ ′ = {v ′}
inα(P(v ′) ; Q(v)) =̂ inαP
outα(P(v ′) ; Q(v)) =̂ outαQ

Sequence is associative and distributes backwards through the conditional.

L1 P ; (Q ; R) = (P ; Q) ; R associativity

L2 (P � b � Q) ; R = ((P ; R) � b � (Q ; R)) left-distribution

A Tutorial Introduction to CSP in Unifying Theories of Programming 225

The definition of assignment is basically equality; we need, however, to be careful
about the alphabet. If A = {x , y, . . . , z} and αe ⊆ A, where αe is the set of free
variables of the expression e, the assignment x :=A e of expression e to variable
x changes only x ’s value.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)
α(x :=A e) =̂ A ∪ A′

There is a degenerate form of assignment that changes no variable: it has the
following definition.

II A =̂ (v ′ = v) if A = {v}
α II A =̂ A ∪ A′

Here, v stands for a list of observational variables. We use v ′ = v to denote the
conjunction of equalities x ′ = x , for all x in v . When clear from the context, we
omit the alphabet of assignments and II .

II is the identity of sequence.

L5 P ; II αP = P = II αP ; P unit

Since sequence is defined in terms of the existential quantifier, there are two one-
point laws. We prove one of them; the proof of the other is a simple exercise.

Law 66 (left-one-point). (v ′ = e) ; P = P [e/v]
provided αP = {v , v ′} and v ′ is not free in e.

Law 67 (right-one-point). P ; (v = e) = P [e/v ′]
provided αP = {v , v ′} and v is not free in e.

Proof.

P ; v = e sequence
= ∃ v0 • P [v0/v ′] ∧ (v = e)[v0 /v] substitution
= ∃ v0 • P [v0/v ′] ∧ (v0 = e) predicate calculus and v not free in e
= P [v0/v ′][e/v0] substitution
= P [e/v ′]

Exercise 2. Prove Law L7 above.

In theories of programming, nondeterminism may arise in one of two ways: either
as the result of run-time factors, such as distributed processing; or as the under-
specification of implementation choices. Either way, nondeterminism is modelled
by choice; the semantics is simply disjunction.

P � Q =̂ P ∨ Q if αP = αQ
α(P � Q) =̂ αP

The alphabet must be the same for both arguments.

226 A. Cavalcanti and J. Woodcock

Variable blocks are split into the commands var x , which declares and intro-
duces x in scope, and end x , which removes x from scope. Their definitions are
presented below, where A is an alphabet containing x and x ′.

var x =̂ (∃ x • II A)

end x =̂ (∃ x ′ • II A)

α(var x) =̂ A \ {x}

α(end x) =̂ A \ {x ′}

The relation var x is not homogeneous, since it does not include x in its alphabet,
but it does include x ′; similarly, end x includes x , but not x ′.

The results below state that following a variable declaration by a program Q
makes x local in Q ; similarly, preceding a variable undeclaration by a program
Q makes x ′ local.

(var x ; Q) = (∃ x • Q)

(Q ; end x) = (∃ x ′ • Q)

More interestingly, we can use var x and end x to specify a variable block.

(var x ; Q ; end x) = (∃ x , x ′ • Q)

In programs, we use var x and end x paired in this way, but the separation is
useful for reasoning.

Exercise 3. Prove the above equality.

Variable blocks introduce the possibility of writing programs and equations
like that below.

(var x ; x := 2 ∗ y ; w := 0 ; end x)
= (var x ; x := 2 ∗ y ; end x) ; w := 0

Clearly, the assignment to w may be moved out of the scope of the declaration
of x , but what is the alphabet in each of the assignments to w? If the only
variables are w , x , and y, and A = {w , y,w ′, y ′}, then the assignment on the
right has the alphabet A; but the alphabet of the assignment on the left must
also contain x and x ′, since they are in scope. There is an explicit operator for
making alphabet modifications such as this: alphabet extension.

P+x =̂ P ∧ x ′ = x for x , x ′ 	∈ αP
α(P+x) =̂ αP ∪ {x , x ′}

In our example, if the right-hand assignment is P =̂ w :=A 0 , then the left-hand
assignment is denoted by P+x .

A Tutorial Introduction to CSP in Unifying Theories of Programming 227

The next programming operator of interest is recursion. We define it in the
next section, where we explain that the UTP general theory of relations is a
complete lattice, a notion introduced in Chapter 0.

3 The Complete Lattice

As already explained in Chapter 0, the refinement ordering is a partial order: re-
flexive, anti-symmetric, and transitive; this also holds for refinement as defined
in the UTP. Moreover, the set of alphabetised predicates with a particular alpha-
bet A is a complete lattice under the refinement ordering. Its bottom element is
denoted ⊥A, and is the weakest predicate true; this is the program that behaves
quite arbitrarily. The top element is denoted +A, and is the strongest predicate
false; this is the program that performs miracles and implements every speci-
fication (see Chapter 0). These properties of abort and miracle are captured in
the following two laws, which hold for all P with alphabet A.

L1 ⊥A � P bottom-element

L2 P � +A top-element

The least upper bound is not defined in terms of the relational model, but by the
Law L1 below; this is because, in general, it is not possible to give such definition.
Fortunately, this law indirectly specifies the least upper bound operator; alone,
it is enough to prove Laws L1A and L1B, which are actually more useful in
proofs.

L1 P � (�S) iff (P � X for all X in S) unbounded-nondeterminism

L1A (� S) � X for all X in S lower-bound

L1B if P � X for all X in S , then P � (� S) greatest-lower-bound

These laws characterise basic properties of least upper bounds. In particular,
Law L1B is simply L1, from right to left.

A function F is monotonic if, and only if, P � Q ⇒ F (P) � F (Q). Operators
like conditional and sequence are monotonic; negation is not. There is a class
of operators that are all monotonic: the disjunctive operators. For example,
sequence is disjunctive in both arguments.

L6 (P � Q) ; R = (P ; R) � (Q ; R) sequence-�-left-distribution

L7 P ; (Q � R) = (P ; Q) � (P ; R) sequence-�-right-distribution

Exercise 4. Prove Law L6 above.

Since alphabetised relations form a complete lattice, every construction defined
solely using monotonic operators has a fixed point (see Chapter 1, Section 8).
Even more, a result by Tarski says that the set of fixed points is a complete

228 A. Cavalcanti and J. Woodcock

lattice. The extreme points in this lattice are often of interest; for example, + is
the strongest fixed point of X = X ; P , and ⊥ is the weakest.

The weakest fixed point of the function F is denoted by μF , and is simply
the greatest lower bound (the weakest) of all the fixed points of F .

μF =̂ �{X | F (X) � X }

The strongest fixed point νF is the dual of the weakest fixed point.
Hoare & He use weakest fixed points to define recursion. They write a re-

cursive program as μX • C(X), where C(X) is a predicate that is constructed
using monotonic operators and the variable X . As opposed to the variables in
the alphabet, X stands for a predicate itself, and we call it the recursive vari-
able. Intuitively, occurrences of X in C stand for recursive calls to C itself. The
definition of recursion is as follows.

μX • C(X) =̂ μF where F =̂ λ X • C(X)

The standard laws that characterise weakest fixed points are valid.

L1 μF � Y if F (Y) � Y weakest-fixed-point

L2 F (μ F) = μF fixed-point

Law L1 establishes that μF is weaker than any fixed point; L2 states that μF
is itself a fixed point. From a programming point of view, L2 is just the copy
rule.

The while loop is written b ∗P : while b is true, execute the program P . This
can be defined in terms of the weakest fixed point of a conditional expression.

b ∗ P =̂ μX • ((P ; X) � b � II)

Example 3 (Non-termination). If b always remains true, then obviously the loop
b ∗P never terminates, but what is the semantics for this? The simplest example
of such an iteration is true ∗ II , which has the semantics μX • X .

μX • X least fixed point

= �{Y | (λ X • X)(Y) � Y } function application

= �{Y | Y � Y } reflexivity of �
= �{Y | true } property of �
= ⊥

Exercise 5. Convince yourself that true ∗ II = μX • X using the laws presented
so far.

Surprisingly, it is possible to use the result Example 3 to show that a program
may be able to recover from a non-terminating loop!

A Tutorial Introduction to CSP in Unifying Theories of Programming 229

Example 4 (Aborting loop). Suppose that the sole state variable is x and that c
is a constant.

(true ∗ II) ; x := c Example 3
= ⊥ ; x := c ⊥
= true ; x := c assignment
= true ; x ′ = c sequence
= ∃ x0 • true ∧ x ′ = c predicate calculus
= x ′ = c assignment
= x := c

Example 4 is rather disconcerting: in ordinary programming, there is no recov-
ery from a non-terminating loop. It is the purpose of designs to overcome this
deficiency in the programming model.

4 Designs

The problem pointed out above in Section 3 can be explained as the failure of
general alphabetised predicates P to satisfy the equation below.

true ; P = true

We presented in Example 4 a program consisting of a non-terminating loop fol-
lowed by an assignment, and whose overall behaviour was to ignore the loop
and execute the assignment. This is not how programs work in practice. The
solution to this problem is to consider a subset of the alphabetised predicates
in which a particular observational variable, called okay, is used to record infor-
mation about the start and termination of programs. The above equation holds
for predicates P in this set. As an aside, note that false cannot possibly belong
to this set, since true ; false = false.

The predicates in this subset are called designs. They can be split into precond-
ition-postcondition pairs, and are a basis for unifying languages and methods like
B [3], VDM [134], Z [257], and refinement calculi [192, 17, 199]. They are similar
to the specification statements introduced in Chapter 0.

In designs, okay records that the program has started, and okay ′ that it has
terminated. In implementing a design, we may assume that the precondition
holds, but we have to fulfill the postcondition. In addition, we can rely on the
program being started, but we must ensure that it terminates. If the precondition
does not hold, or the program does not start, we are not committed to establish
the postcondition nor even to make the program terminate.

A design with precondition P and postcondition Q is written (P $ Q). It is
defined as follows.

(P $ Q) =̂ (okay ∧ P ⇒ okay ′ ∧ Q)

If the program starts in a state satisfying P , then it will terminate, and on
termination Q will be true.

230 A. Cavalcanti and J. Woodcock

Example 5 (Pre-post specifications). Suppose that we have a program with state
variables x and y, and we want to specify that, providing that x is strictly pos-
itive, x must be decreased whilst y is kept constant. The design that formalises
this is

x > 0 $ x ′ < x ∧ y ′ = y

This is more or less the same in Morgan’s refinement calculus, where the speci-
fication statement below could be used.

x : [x > 0 , x < x0]

Notice how the postcondition uses different conventions for distinguishing be-
tween before and after variables; also notice that the specification is prefixed
with a frame listing the variables that are permitted to change in order to sat-
isfy the postcondition.

Abort and miracle are defined as designs in the following examples. Abort has
precondition false: it is never guaranteed to terminate.

Example 6 (Abort).

false $ false design
= okay ∧ false ⇒ okay ′ ∧ false false zero for conjunction
= false ⇒ okay ′ ∧ false vacuous implication
= true vacuous implication
= false ⇒ okay ′ ∧ true false zero for conjunction
= okay ∧ false ⇒ okay ′ ∧ true design
= false $ true

Miracle has precondition true, and establishes the impossible: false.

Example 7 (Miracle).

true $ false design
= okay ∧ true ⇒ okay ′ ∧ false true unit for conjunction
= okay ⇒ false contradiction
= ¬ okay

Exercise 6. Prove that abort is refined by every other design, and that every
design is refined by miracle.

In VDM, B, and the refinement calculus, a pre-post specification may be refined
by weakening the precondition. This refinement step improves the specification,
since there are some states in which execution of the original specification leads
to abortion, but execution of the resulting specification has a well-defined be-
haviour.

A pre-post specification may also be refined by strengthening the postcon-
dition. Again, this is an improvement, since more is known about the result.

A Tutorial Introduction to CSP in Unifying Theories of Programming 231

Example 8 (Refining designs). In Example 5, the design aborts unless x > 0 ;
we can improve this by requiring it to work when x = 0 . This weakens the
precondition, since x > 0 ⇒ x ≥ 0 . The design requires that the after-value
of x should be strictly less than the before-value of x . We can strengthen this
by saying how much smaller it should be. For instance, we could require that
x ′ = x − 1 . Moreover, we can weaken the precondition and strengthen the
postcondition simultaneously. For example, the design below is a refinement of
that in Example 5.

x ≥ 0 $ (x > 0 ⇒ x ′ = 0) ∧ (x = 0 ⇒ x ′ = 1)

The behaviour for x = 0 is not related to that for when x > 0 . This is an im-
provement in the sense that, within the old precondition, the new postcondition
is stronger than the old postcondition.

We saw earlier that refinement between relations is just reverse implication; since
designs are a special case of relations, it would be nice if the notion of refinement
did not change. A reassuring result is that refinement of designs in the relational
sense does amount to either weakening the precondition, or strengthening the
postcondition in the presence of the precondition as expected. This is established
by the result below.

Law 68 (refinement-of-designs).

P1 $ Q1 � P2 $ Q2 = [P1 ∧ Q2 ⇒ Q1] ∧ [P1 ⇒ P2]

Proof.

P1 $ Q1 � P2 $ Q2 �
= [(P2 $ Q2) ⇒ (P1 $ Q1)] definition of design, twice
= [(okay ∧ P2 ⇒ okay ′ ∧ Q2) ⇒ (okay ∧ P1 ⇒ okay ′ ∧ Q1)]

case split okay
= [(P2 ⇒ okay ′ ∧ Q2) ⇒ (P1 ⇒ okay ′ ∧ Q1)] case split okay ′

= [(¬ P2 ⇒ ¬ P1) ∧ ((P2 ⇒ Q2) ⇒ (P1 ⇒ Q1))]
propositional calculus

= [(P1 ⇒ P2) ∧ ((P2 ⇒ Q2) ⇒ (P1 ⇒ Q1))] predicate calculus
= [P1 ⇒ P2] ∧ [P1 ∧ Q2 ⇒ Q1]

Exercise 7. Use Law 68 to prove the refinements in Example 8.

Sometimes, we need to refer to the precondition in the postcondition; this is
called exporting the precondition.

Lemma 1 (export-precondition).

(P $ Q) = (P $ P ∧ Q)

232 A. Cavalcanti and J. Woodcock

Proofs of this lemma and of some our other lemmas and theorems can be found
in Appendix B. They are usually results stated, but possibly not proved in [117],
and results that we need in the proofs of our laws.

The most important result in the theory of designs, however, is that abort is
a zero for sequence. This was, after all, the whole point for the introduction of
designs. First, we introduce a lemma relating designs and abort.

Lemma 2 (design-abort). When a design has not started (¬ okay), it offers
no guarantees.

(P $ Q)[false/okay] = true

This result holds for miracle as well, because even miracle cannot help if it does
not start.

The left-zero law now follows from this lemma, since one possibility for abort
is to make okay ′ false. If this is followed by a design, then the design will attempt
to start in a state with okay false, and Lemma 2 will be relevant.

L1 true ; (P $ Q) = true left-zero

Proof.

true ; (P $ Q) sequence
= ∃ okay0 , v0 • true[okay0 , v0/okay ′, v ′] ∧ (P $ Q)[okay0 , v0/okay, v]

predicate calculus
= ∃ okay0 • ∃ v0 • true[okay0 /okay ′][v0/v ′] ∧ (P $ Q)[okay0 /okay][v0 /v]

sequence
= ∃ okay0 • true[okay0 /okay ′] ; (P $ Q)[okay0 /okay] case split okay0

= true[true/okay ′] ; (P $ Q)[true/okay] ∨
true[false/okay ′] ; (P $ Q)[false/okay]

substitution, design-abort

= true ; (P $ Q)[true/okay] ∨ true ; true relational calculus
= true

In this new setting, it is necessary to redefine assignment and II , as those intro-
duced previously are not designs.

(x := e) =̂ (true $ x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

II D =̂ (true $ II)

Their existing laws hold, but it is necessary to prove them again, as their defi-
nitions have changed.

L2 (v := e ; v := f (v)) = (v := f (e)) assignment-composition

L3 (v := e ; (P � b(v) � Q)) = ((v := e ; P) � b(e) � (v := e ; Q))

assignment-conditional-left-distribution

L4 (II D ; (P $ Q)) = (P $ Q) left-unit

A Tutorial Introduction to CSP in Unifying Theories of Programming 233

Proof of L2.

v := e ; v := f (v) assignment, twice
= (true $ v ′ = e) ; (true $ v ′ = f (v)) sequence,case split okay0

= ((true $ v ′ = e)[true/okay ′] ; (true $ v ′ = f (v))[true/okay]) ∨
¬ okay ; true design

= ((okay ⇒ v ′ = e) ; (okay ′ ∧ v ′ = f (v))) ∨ ¬ okay relational calculus
= okay ⇒ (v ′ = e ; (okay ′ ∧ v ′ = f (v))) assignment composition
= okay ⇒ okay ′ ∧ v ′ = f (e) design
= (true $ v ′ = f (e)) assignment
= v := f (e)

When program operators are applied to designs, the result is also a design. This
follows from the laws below, for choice, conditional, sequence, and recursion.
These are stated in [117] as theorems. We label them T1, T2, and T3, and add
a simplified version of T3, which is mentioned in [117] and we call T3′.

A choice between two designs is guaranteed to terminate when they both do;
since either of them may be chosen, either postcondition may be established.

T1 ((P1 $ Q1) � (P2 $ Q2)) = (P1 ∧ P2 $ Q1 ∨ Q2)

Exercise 8. Prove Law T1.

If the choice between two designs depends on a condition b, then so do the
precondition and postcondition of the resulting design.

T2 ((P1 $ Q1) � b � (P2 $ Q2)) = ((P1 � b � P2) $ (Q1 � b � Q2))

A sequence of designs (P1 $ Q1) and (P2 $ Q2) terminates when P1 holds (that
is, ¬ (¬ P1 ; true)), and Q1 is guaranteed to establish P2 (¬ (Q1 ; ¬ P2)). On
termination, the sequence establishes the composition of the postconditions.

T3 ((P1 $ Q1) ; (P2 $ Q2))
= ((¬ (¬ P1 ; true) ∧ ¬ (Q1 ; ¬ P2)) $ (Q1 ; Q2))

We have said nothing in our discussion of designs that requires a precondition
to be a simple condition rather than a relation, and this fact complicates the
statement of Law T3; if P1 actually is a condition, then ¬ (¬ P1 ; true) can be
simplified.

T3′ ((p1 $ Q1) ; (P2 $ Q2)) = ((p1 ∧ ¬ (Q1 ; ¬ P2)) $ (Q1 ; Q2))

To understand the simplification, consider the following lemma.

Lemma 3 (condition-right-unit). Abort is a right-unit for conditions.

p ; true = p

234 A. Cavalcanti and J. Woodcock

A dual result is that abort is a left-unit for conditions on after-states: that is,
(true ; p′) = p′. We give two last results of this kind before we move on.

Lemma 4 (abort-condition).

true ; p = ∃ v • p

A special case of this lemma involves okay or, more generally, any boolean vari-
able used as a condition.

Lemma 5 (abort-boolean). Provided b is a boolean variable,

true ; b = true

A recursively defined design has as its body a function on designs; as such, it
can be seen as a function on pre-post pairs (X ,Y). Moreover, since the result
of the function is itself a design, it can be written in terms of a pair of functions
F and G, one for the precondition and one for the postcondition.

As the recursive design is executed, the precondition F is required to hold
over and over again. The strongest recursive precondition so obtained has to
be satisfied, if we are to guarantee that the recursion terminates. Similarly, the
postcondition is established over and over again, in the context of the precon-
dition. The weakest result that can possibly be obtained is that which can be
guaranteed by the recursion.

T4 (μX ,Y • (F (X ,Y) $ G(X ,Y))) = (P(Q) $ Q)
where P(Y) = (νX • F (X ,Y)) and Q = (μY • P(Y) ⇒ G(P(Y),Y))

Further intuition comes from the realisation that we want the least refined fixed
point of the pair of functions. That comes from taking the strongest precondition,
since the precondition of every refinement must be weaker, and the weakest
postcondition, since the postcondition of every refinement must be stronger.

Like the set of general alphabetised predicates, designs form a complete lattice.
We have already presented the top and the bottom (miracle and abort).

+D =̂ (true $ false) = ¬ okay

⊥D =̂ (false $ true) = true

Example 9 (Abort). All useful work is discarded once a program aborts. This is
shown in the following derivation.

x := e ; ⊥D assignment, bottom
= (true $ x ′ = e) ; (false $ true) design sequence
= true ∧ ¬ (x ′ = e ; ¬ false) $ x ′ = e ; true relational calculus
= ¬ (x ′ = e ; true) $ true relational calculus
= ¬ true $ true propositional calculus
= false $ true bottom
= ⊥D

A Tutorial Introduction to CSP in Unifying Theories of Programming 235

Abort, however, is not a right-zero for sequence, since it will not take over if it
is preceded by a miraculous program.

The greatest lower-bound and the least upper-bound are established in the fol-
lowing theorem.

Theorem 1 (meets-and-joins).

�i • (Pi $ Qi) = (
∧

i • Pi) $ (
∨

i • Qi)

,i • (Pi $ Qi) = (
∨

i • Pi) $ (
∧

i • Pi ⇒ Qi)

As with the binary choice, the choice �i • (Pi $ Qi) over the set of designs
(Pi $ Qi) terminates when all the designs do, and it establishes one of the
possible postconditions. The least upper-bound models a form of choice that is
conditioned by termination: only the terminating designs can be chosen. The
choice terminates if any of the designs do, and the postcondition established is
that of any of the terminating designs.

Designs are special kinds of relations, which in turn are special kinds of pred-
icates, and so they can be combined with the propositional operators. A design
can be negated, although the result is not itself a design.

Lemma 6 (not-design).

¬ (P $ Q) = (okay ∧ P ∧ (okay ′ ⇒ ¬ Q))

If the postcondition of a design promises the opposite of its precondition, then
the design is miraculous.

Law 69 (design-contradiction). (P $ ¬ P) = (P $ false)

Proof.

P $ ¬ P export-precondition
= P $ P ∧ ¬ P propositional calculus
= P $ false

Another way of characterising the set of designs is by imposing healthiness condi-
tions on alphabetised predicates. Hoare & He identify four healthiness conditions
that they consider of interest: H1 to H4. We discuss two of them.

4.1 H1: Unpredictability

A relation P is H1-healthy if and only if P = (okay ⇒ P). This means that
observations cannot be made before the program has started. The idempotent
corresponding to this healthiness condition is defined as

H1(P) = okay ⇒ P

It is indeed an idempotent, since implication is idempotent in its first argument.

236 A. Cavalcanti and J. Woodcock

Law 70 (H1-idempotent). H1 ◦ H1 = H1

Proof.

H1 ◦ H1(P) H1

= okay ⇒ (okay ⇒ P) propositional calculus
= okay ∧ okay ⇒ P propositional calculus
= okay ⇒ P H1
= H1(P)

Example 10 (H1 relations). The following are examples of H1 relations.

1. The relation true, since (okay ⇒ true) = true; it is also the design
⊥D : abort.

2. The relation ¬ okay, since (okay ⇒ ¬ okay) = ¬ okay; it is also the design
+D : miracle.

3. The relation (okay ∧ x 	= 0 ⇒ x ′ < x), which, when started in a state where
okay is true and x 	= 0 , ensures that the after value of x is strictly less than
its before value.

4. The design (x 	= 0 $ x ′ < x), which, when started in a state where okay is
true and x 	= 0 , ensures termination and that the after value of x is strictly
less than its before value.

Healthiness conditions give a way of imposing structure on a subset of rela-
tions, and H1-relations have some interesting algebraic properties. First, all
H1-relations have a left zero.

Lemma 7 (H1-left-zero). Provided P is H1-healthy,

true ; P = true

All H1-relations have a left unit.

Lemma 8 (H1-left-unit). Provided P is H1-healthy,

II D ; P = P

Finally, relations that have both left units and left zeros are also H1.

Lemma 9 (left-unit-zero-H1). Provided P has a left unit and a left zero,

P = (okay ⇒ P)

These three lemmas allow us to characterise H1-relations algebraically: they are
exactly those relations that satisfy the left zero and left unit laws.

Theorem 2 (H1-healthiness).

(P = H1(P)) = ((true ; P = true) ∧ (II D ; P = P))

We conclude this section by investigating a few more of H1’s properties. It
relates the two identities that we have seen so far.

A Tutorial Introduction to CSP in Unifying Theories of Programming 237

Law 71 (II D-H1- II). II D = H1(II)

Proof.

II D II D
= (true $ II) design
= (okay ⇒ okay ′ ∧ II) II

= (okay ⇒ okay ′ ∧ II ∧ okay ′ = okay) propositional calculus
= (okay ⇒ II ∧ okay ′ = okay) II

= (okay ⇒ II) H1

= II

H1 tells us that, try as we might, we simply cannot make an observation of the
behaviour of a design until after it has started. A design with a rogue postcondi-
tion, such as (true $ (¬ okay ⇒ x ′ = 0)), tries to violate H1, but it cannot. We
could simplify it by expanding the definition of a design, and then simplifying
the result with propositional calculus. It is possible to avoid this expansion by
applying H1 directly to the postcondition.

Law 72 (design-post-H1). (P $ Q) = (P $ H1(Q))

Proof.

P $ H1(Q) H1

= P $ (okay ⇒ Q) design
= okay ∧ P ⇒ okay ′ ∧ (okay ⇒ Q) propositional calculus
= okay ∧ P ⇒ okay ′ ∧ Q design
= P $ Q

We can also push the application of H1 in a postcondition through a negation.

Law 73 (design-post-not-H1). (P $ ¬ Q) = (P $ ¬ H1(Q))

Proof.

P $ ¬ H1(Q) H1

= P $ ¬ (okay ⇒ Q) propositional calculus
= P $ okay ∧ ¬ Q design
= okay ∧ P ⇒ okay ′ ∧ okay ∧ ¬ Q propositional calculus
= okay ∧ P ⇒ okay ′ ∧ ¬ Q design
= P $ ¬ Q

H1 enjoys many other properties, some of which we see later in this chapter.

238 A. Cavalcanti and J. Woodcock

4.2 H2: Termination Always Possible

The second healthiness condition is [P [false/okay ′] ⇒ P [true/okay ′]]. This
means that if P is satisfied when okay ′ is false, it is also satisfied then okay ′ is
true. In other words, P cannot require nontermination, so that termination is
always a possibility.

Example 11 (H2 predicates).

1. The design relations abort and miracle are both H2, since they leave the
value of okay ′ completely unconstrained.

2. The relation (okay ′ ∧ (x ′ = 0)) is H2, since it insists on termination.
3. The design (x 	= 0 $ x ′ < x) is H2, since (a) if it is not started properly

(¬ okay), or if x = 0 , then it leaves okay ′ unconstrained; and (b) if it is
started properly (okay) and x 	= 0 , then it insists on termination.

If P is a predicate with okay ′ in its alphabet, we abbreviate P [b/okay ′] as Pb ,
for boolean value b. Thus, P is H2-healthy if and only if [P f ⇒ P t], where f
and t are used as abbreviations for false and true.

This healthiness condition may also be described in terms of an idempotent.
For that, we define the following predicate.

Definition 1 (The idempotent J).

J =̂ (okay ⇒ okay ′) ∧ II −okay
rel

J permits a change in the value of okay, while the remaining variables stay
constant: if okay is changed, then it can be weakened, but not strengthened. We
use II −okay

rel to denote the conjunction of equalities v ′ = v for all variables v in
the alphabet, except okay.

The relationship between J and H2 (see Theorem 3) is based on an important
property called J -split. As its name suggests, it divides a relation into two parts,
but we must notice the asymmetry.

Lemma 10 (J -split). Provided okay and okay ′ are in the alphabet of P,

P ; J = P f ∨ (P t ∧ okay ′)

The healthiness condition H2 may now be expressed using J , as we show in the
following theorem, which uses J -split.

Theorem 3 (H2 equivalence). There are two equivalent ways of character-
ising H2-healthy relations.

(P = P ; J) = [P f ⇒ P t]

Based on this result, we use H2 to refer to the function H2(P) = P ; J .
Interestingly, J is actually an H2-healthy relation.

Lemma 11 (J is H2). J is H2-healthy.

J = H2(J)

This lemma makes it easy to show that J really is an idempotent.

A Tutorial Introduction to CSP in Unifying Theories of Programming 239

Law 74 (H2-idempotent). H2 ◦ H2 = H2

Proof.

H2 ◦ H2(P) H2
= (P ; J) ; J associativity
= P ; (J ; J) H2
= P ; H2(J) J H2-healthy
= P ; J H2
= H2(P)

As we see in the next two examples, the original formulation of H2 is often
easier to use in demonstrating that a relation is H2; however, because the de-
scription based on J is an idempotent function, it has some interesting algebraic
properties. First, we prove that a relation is H2 using substitution.

Example 12 (H2-substitution).

okay ′ ∧ (x ′ = 0) is H2

Proof.

(okay ′ ∧ (x ′ = 0))f ⇒ (okay ′ ∧ (x ′ = 0))t substitution
= false ∧ (x ′ = 0) ⇒ true ∧ (x ′ = 0) propositional calculus
= false ⇒ (x ′ = 0) propositional calculus
= true

Now we prove that the same relation is H2 using J .

Example 13 (H2-J).

okay ′ ∧ (x ′ = 0) is H2

Proof.

okay ′ ∧ (x ′ = 0) ; J J -splitting

= (okay ′ ∧ (x ′ = 0))f ∨ ((okay ′ ∧ (x ′ = 0))t ∧ okay ′) substitution
= (false ∧ (x ′ = 0)) ∨ (true ∧ (x ′ = 0) ∧ okay ′) propositional calculus
= false ∨ ((x ′ = 0) ∧ okay ′) propositional calculus
= okay ′ ∧ (x ′ = 0)

We said at the beginning of this section that we would characterise the space of
designs using our healthiness conditions, and we can now do this. If a relation is
both H1 and H2-healthy, then it is also a design.

Lemma 12 (H1-H2 is a design). If P is a relation that is both H1 and
H2-healthy, then it can be expressed as the design ¬ P f $ P t .

240 A. Cavalcanti and J. Woodcock

This result also holds in the other direction, as we have already illustrated in
the examples. First, we establish that designs are H2 relations.

Lemma 13 (Designs are H2). Provided P and Q do not have okay and okay ′

in their alphabets,

[(P $ Q)f ⇒ (P $ Q)t]

It is obvious that all designs are H1: the proof is a nice little exercise. So, we
have the following theorem.

Theorem 4. A relation with alphabet including okay and okay ′ is a design ex-
actly when it is both H1 and H2-healthy.

An important property of healthiness conditions is commutativity. For example,
H1 and H2 commute.

Law 75 (commutativity-H2-H1). H2 ◦ H1 = H1 ◦ H2

Proof.

H1 ◦ H2(P) H1, H2
= okay ⇒ P ; J propositional calculus
= ¬ okay ∨ P ; J miracle is H2
= H2(¬ okay) ∨ P ; J H2

= ¬ okay ; J ∨ P ; J relational calculus
= (¬ okay ∨ P) ; J propositional calculus
= (okay ⇒ P) ; J H1, H2
= H2 ◦ H1(P)

This means that we can apply H1 and H2 independently to make a relation
healthy. The result is a relation that is both H1 and H2-healthy, and, moreover,
it is the same no matter in which order we applied H1 and H2.

5 Reactive Processes

A reactive program interacts with its environment, which can include other pro-
grams as well as the users of the system. A reactive program’s behaviour cannot
be characterised by its final state alone; we need to record information about
interactions with the environment. Actually, many reactive programs never ter-
minate, and so do not even have a final state; their whole purpose is to interact
with the environment. Each interaction, whether it be a synchronisation or a
communication, is an event.

To model a reactive process, we use the okay variable and three extra obser-
vational variables: tr , ref , and wait , and their dashed counterparts. The finite
sequences tr and tr ′ record the events that occurred up to the moment of the ob-
servation. The sets ref and ref ′ record events that may be refused. The variables

A Tutorial Introduction to CSP in Unifying Theories of Programming 241

wait and wait ′ are boolean; wait ′ records whether the process has terminated or
is in an intermediate state awaiting further interaction with the environment.

When okay ′ is true for a design, it means that the design has reached a final
state. The same is true for a reactive process that has okay ′ true and wait ′ false.
If both okay ′ and wait ′ are true, then it means that the reactive process has
reached an intermediate state. If okay ′ is false, then it means that the process
has reached neither an intermediate nor a final state. So, the meaning of okay ′

is the same in both theories: when it is true, it indicates that a stable state has
been reached; when it is false it indicates the opposite. The difference is that the
notion of a stable state is richer for reactive processes, as it includes intermediate
states. In view of this, we change our terminology: instead of saying that a design
has aborted, we say that a process has diverged.

Of course, these comments apply to okay as well. When it is true, it means
that the process is in a stable state. This, however, may be an intermediate of
another process that is currently executing. The process only really starts when
wait is false.

In summary, there are three distinct observations that may be made of okay
and wait .

okay ∧ ¬ wait started in a stable state
okay ∧ wait not started, but in a stable state
¬ okay not started, but in an unstable state

Similarly, there are three observations that may be made of the final values of
these two variables.

okay ′ ∧ ¬ wait ′ terminated
okay ′ ∧ wait ′ in an intermediate state
¬ okay ′ in an unstable state

With these observations, it is clear that a reactive process is properly started if
it is initiated in a state with wait false; that is, if its predecessor has terminated.

We often want to refer to a predicate P [false/wait], which we abbreviate as
Pf . Combining this with our earlier notation, P t

f describes a reactive process
P that was properly started, and has not diverged. This substitution does not
disturb healthiness conditions that do not mention wait and okay ′, such as H1.

Law 76 (H1-wait-okay ′). (H1(P))cb = H1(Pc
b)

Not every relation is a reactive process; just like designs, some healthiness condi-
tions need to be imposed. Before we investigate them, however, we give a simple
example of a reactive process.

5.1 Reactive II

A reactive process is a relation with all eight observational variables in its alpha-
bet. Perhaps the simplest example is the reactive II , which is defined as follows.

242 A. Cavalcanti and J. Woodcock

Definition 2 (II rea).

II rea =̂ ¬ okay ∧ tr ≤ tr ′

∨
okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref

The behaviour of II rea depends on its initial state: if it was an unstable state
(¬ okay), then the first disjunct applies; otherwise, the second disjunct applies. In
the first case, the predicate tr ≤ tr ′ requires that tr is a prefix of tr ′. The trace tr
contains a record of all the events that occurred before the initial observation of
II rea ; in the final observation, the trace tr ′ must be an extension of tr : the process
cannot change history by modifying the sequence of events that have already
occurred. In the second case, the initial state was stable, and the behaviour is
the same, regardless of whether the process was started or not: all variables must
remain constant.

Alternative definitions of II rea can be formulated. For example, it can be
defined in terms of the relational II and in terms of the conditional.

Law 77 (II rea- II rel). II rea = ¬ okay ∧ tr ≤ tr ′ ∨ II rel

Law 78 (II rea- II rel-conditional). II rea = II rel � okay � tr ≤ tr ′

The law below states that in a stable state, II rea is just like II rel .

Law 79 (okay- II rea- II rel). okay ∧ II rea = okay ∧ II rel

As an obvious consequence, II rea is a unit for sequence in a stable state. Of
course, in general it is not an identity, since in an unstable state it guarantees
only that the trace is either left untouched or extended.

Law 80 (okay- II rea-sequence-unit). okay ∧ II rea ; P = okay ∧ P

Exercise 9. Prove Law 80.

Is II rea a design? Well, it is certainly H2-healthy.

Law 81 (II rea-H2). II rea = H2(II rea)

Proof.

H2(II rea) J -splitting

= II rea
f ∨ (II rea

t ∧ okay ′) II rea

= (¬ okay ∧ tr ≤ tr ′) ∨ (¬ okay ∧ tr ≤ tr ′ ∨ II rel) ∧ okay ′

propositional calculus
= (¬ okay ∧ tr ≤ tr ′) ∨ (¬ okay ∧ tr ≤ tr ′ ∧ okay ′) ∨ II rel

t ∧ okay ′

absorption
= ¬ okay ∧ tr ≤ tr ′ ∨ II rel

t ∧ okay ′ Leibniz
= ¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ II rel II rea

= II rea

A Tutorial Introduction to CSP in Unifying Theories of Programming 243

Although, being H2, II rea is half-way to being a design, it is not H1-healthy. This
is because its behaviour when okay is false is not arbitrary as H1 requires: the
restriction on the traces still applies. In fact, the healthiness condition H1 relates
the two identities in the following way.

Law 82 (H1- II rea- II rel). H1(II rea) = H1(II rel)

So II rea fails to be a design; in fact, no reactive process is a design, although as
we shall see, they can all be expressed in terms of a design. So, the theory of
reactive processes is a subtheory of the theory of relations that is distinct from
the theory of designs. The question is: which relations are reactive processes?
This answered by three healthiness conditions.

5.2 R1

Time travel is practically a weekly event in Star Trek and Doctor Who, and it
is certainly an interesting activity that has much to offer the curious mind, but
it will be outlawed by our first reactive healthiness condition, R1. This requires
that a relation cannot change the trace of events that have already occurred.
The idempotent is as follows.

R1(P) = P ∧ tr ≤ tr ′

We already saw this in the definition of II rea : if its initial observation is made in
an unstable state (okay is false), then the trace in its final observation will be an
extension of the initial trace; if the initial observation is made in a stable state,
then the trace is kept constant. We have that R1 is an idempotent because of
idempotency of conjunction.

Law 83 (R1-idempotent). R1 ◦ R1 = R1

The simplicity of R1 leads to many obvious algebraic laws. For example, it dis-
tributes through both conjunction and disjunction, and because it is defined by
conjunction, its scope may be extended over other conjunctions. As a conse-
quence of these laws, R1 distributes through the conditional and the unhealthy
effects of negation can be swiftly cured. Finally, substitution for wait and for
okay ′ both distribute through R1.

Law 84 (R1-∧). R1(P ∧ Q) = R1(P) ∧ R1(Q)

Law 85 (R1-∨). R1(P ∨ Q) = R1(P) ∨ R1(Q)

Law 86 (R1-extend-∧). R1(P) ∧ Q = R1(P ∧ Q)

Law 87 (R1-conditional). R1(P � b � Q) = R1(P) � b � R1(Q)

Law 88 (R1-negate-R1). R1(¬ R1(P)) = R1(¬ P)

Law 89 (R1-wait-okay ′). (R1(P))cb = R1(Pc
b)

244 A. Cavalcanti and J. Woodcock

Both the relational and the reactive identities are R1-healthy.

Law 90 (II rel-R1). II rel = R1(II rel)

Exercise 10. Prove Law 90.

The fact that II rel is R1 is helpful in proving that II rea is too.

Law 91 (II rea-R1). II rea = R1(II rea)

Proof.

R1(II rea) II rea-conditional
= R1(II rel � okay � tr ≤ tr ′) R1-conditional
= R1(II rel) � okay � R1(true) propositional calculus, R1

= R1(II rel) � okay � tr ≤ tr ′ II rel-R1
= II rel � okay � tr ≤ tr ′ II rea conditional
= II rea

By applying any of the program operators to an R1-healthy process, we get an-
other R1-healthy process. That is, R1 is closed under conjunction, disjunction,
conditional, and sequence.

Theorem 5. Provided P and Q are R1-healthy,

R1(P ∧ Q) = P ∧ Q R1-∧-closure

R1(P ∨ Q) = P ∨ Q R1-∨-closure

R1(P � b � Q) = P � b � Q R1-conditional-closure

R1(P ; Q) = P ; Q R1-sequence-closure

The distribution properties are stronger than the closure properties, and this
is clear from the fact that the proofs of R1-∧-closure, R1-∨-closure, and R1-
conditional-closure follow immediately from Laws 84, 85, and 87, respectively.
Law R1-sequence-closure is rather more interesting, since R1 does not distribute
through sequence. First we note a result from the relational calculus that relates
sequence and transitive relations.

Lemma 14 (sequence-transitive-relation). Provided � is a transitive
relation,

[((P ∧ x � x ′) ; (Q ∧ x � x ′)) ⇒ x � x ′]

This establishes that if the first program in the sequence assigns to x a value
that is related to its original value by the transitive relation �, and the second
program takes this (intermediate) value and assigns to x a value that is related
to it, then transitivity allows us to conclude that the original and final values of
x are related by �.

Exercise 11. Prove Lemma 14.

In our case, the transitive relation in which we are interested in sequence
prefixing.

A Tutorial Introduction to CSP in Unifying Theories of Programming 245

Proof of R1-sequence-closure.

P ; Q assumption: P and Q both R1

= R1(P) ; R1(Q) R1, twice
= P ∧ tr ≤ tr ′ ; Q ∧ tr ≤ tr ′ sequence-transitive-relation
= (P ∧ tr ≤ tr ′ ; Q ∧ tr ≤ tr ′) ∧ tr ≤ tr ′ R1, three times
= R1(R1(P) ; R1(Q)) assumption: P and Q both R1

= R1(P ; Q)

II rea is an R1 relation, but as we have seen it is not H1. Of course, we can make
it H1 by applying the healthiness condition, but then it is no longer R1. If we
apply R1 once again, we get back to where we started.

Law 92 (II rea-R1-H1). II rea = R1 ◦ H1(II rea)

Proof.

R1 ◦ H1(II rea) H1- II rea- II rel

= R1 ◦ H1(II rel) H1

= R1(okay ⇒ II rel) propositional calculus
= R1(¬ okay ∨ II rel) R1-∨-distribution
= R1(¬ okay) ∨ R1(II rel) II rel-R1
= R1(¬ okay) ∨ II rel R1

= ¬ okay ∧ tr ≤ tr ′ ∨ II rel II rea

= II rea

Law 92 shows that R1 and H1 are not independent: they do not commute; but
R1 does commute with H2.

Law 93 (R1-H2-commutativity). R1 ◦ H2 = H2 ◦ R1

Proof.

H2 ◦ R1(P) R1

= H2(P ∧ tr ≤ tr ′) H2-∧-non-okay
= H2(P) ∧ tr ≤ tr ′ R1

= R1 ◦ H2(P)

The space described by applying R1 to designs is a complete lattice because R1
is monotonic. The relevance of this fact is made clear in the next section.

5.3 R2

The trace of a reactive process is an observation that is useful in describing
the behaviour of concurrency and communication in reactive systems. We do

246 A. Cavalcanti and J. Woodcock

not imagine that any programmer would want to include such a variable in a
real program; the overhead of keeping an accurate record of all events that have
occurred since a program was started would be huge, and there is no need to
keep it anyway. Rather, tr and tr ′ play similar roles to okay and okay ′: they
are devices that allow us to give an account of the behaviour of programming
language constructs.

Designs are sensitive to the initial value of okay: the design cannot be started
unless okay is true. But there is no obvious reason why a reactive process should
be sensitive to the initial value of tr ; in fact, none of the programming language
constructs that we will introduce are sensitive to its value. The only purpose
given to the trace is to provide an abstract view of program behaviour. For
these reasons, we introduce a second healthiness condition that requires reactive
processes to be insensitive to the value of tr .

There are two alternative formulations for this healthiness condition. Intu-
itively, they each establish that a process description should not rely on the
history that passed before its activation, and should restrict only the new events
to be recorded since the last observation. These are the events in tr ′ − tr .

The first formulation requires that P is not changed if tr is replaced by an
arbitrary value. Of course, if tr is changed, then a corresponding change must
be made to tr ′, otherwise all chance of R1 healthiness will be compromised.

R2a(P(tr , tr ′)) = �s • P(s , s � (tr ′ − tr))

The second formulation requires that P is not changed if the value of tr is taken
to be the empty sequence.

R2b(P(tr , tr ′)) = P(〈〉, tr ′ − tr)

R2a and R2b are different functions. To see this, compare what happens when
each function is applied to the relation tr = 〈a〉.

R2a(tr = 〈a〉)
= � s • s = 〈a〉
= true � false
= true

R2b(tr = 〈a〉)
= (tr = 〈a〉)[〈〉, tr ′ − tr/tr , tr ′]
= (〈〉 = 〈a〉)
= false

Even though they are different functions, they do have much in common. First,
every R2b-healthy relation is also R2a-healthy; that is, for every relation P ,
R2b(P) is a fixed point of R2a.

Law 94 (R2b-R2a). R2b = R2a ◦ R2b

Proof.

R2a ◦ R2b(P(tr , tr ′)) R2b

= R2a(P(〈 〉, tr ′ − tr)) R2a

A Tutorial Introduction to CSP in Unifying Theories of Programming 247

= � s • P(〈 〉, tr ′ − tr)(s , s � (tr ′ − tr)) substitution

= � s • P(〈 〉, s � (tr ′ − tr) − s) property of −
= � s • P(〈 〉, tr ′ − tr) property of �
= P(〈 〉, tr ′ − tr) R2b

= R2b(P)

Similarly, every R2a-healthy relation is also R2b-healthy; that is, for every
relation P , R2a(P) is a fixed point of R2b.

Law 95 (R2a-R2b). R2a = R2b ◦ R2a

Proof.

R2b ◦ R2a(P(tr , tr ′)) R2a

= R2b(� s • P(s , s � (tr ′ − tr))) R2b

= (� s • P(s , s � (tr ′ − tr)))(〈 〉, tr ′ − tr) substitution

= � s • P(s , s � (tr ′ − tr) − 〈 〉) property of −
= � s • P(s , s � (tr ′ − tr)) R2a
= R2a(P)

Laws 94 and 95 show us that R2a and R2b have the same image; that is, they
characterise the same set of healthy predicates. We adopt R2b as our second
healthiness condition for reactive processes, and actually refer to it as R2.

R2 = R2b

Not all properties of R2b that we prove in the sequel hold for R2a; so this is
an important point.

The healthiness condition R2 is an idempotent.

Law 96 (R2-idempotent). R2 ◦ R2 = R2

Again, the programming operators are closed with respect to R2. For the condi-
tional, we have a result for quite specific conditions. For brevity, we omit proofs.

Theorem 6. Provided P and Q are R2-healthy, and tr and tr ′ are not in the
alphabet of b,

R2(P ∧ Q) = P ∧ Q R1-∧-closure

R2(P ∨ Q) = P ∨ Q R1-∨-closure

R2(P � tr ′ = tr � Q) = P � tr ′ = tr � Q R2-conditional-closure-1

R2(P � b � Q) = P � b � Q R2-conditional-closure-2

R2(P ; Q) = P ; Q R2-sequence-closure

Conditionals whose condition involves tr or tr ′ are problematic, but as shown
above, the particular condition tr = tr ′ does not hamper distribution.

248 A. Cavalcanti and J. Woodcock

Our proof of Law R2-sequence-closure is based on a suggestion due to Chen
Yifeng. R2 does not distribute through the sequence P ; Q because it cannot
constrain the hidden value of the trace that exists between the behaviours of P
and Q . For example, we consider the sequence below.

tr ′ = tr � 〈 a 〉; last tr = a ∧ tr ≤ tr ′

It is an R2 process, and so it is not changed by an application of R2. The
second process, however, is not R2 as it relies on a particular property of the
initial value of tr ; namely, that its last element is a. If we apply R2 to it, we
get false as a result. Therefore,

R2(tr ′ = tr � 〈 a 〉); R2(last tr = a ∧ tr ≤ tr ′)

is also false.

Exercise 12. Give an algebraic proof that the sequence above is R2-healthy,
or, in other words, R2(tr ′ = tr � 〈 a 〉; last tr = a ∧ tr ≤ tr ′) is equal to
tr ′ = tr � 〈 a 〉; last tr = a ∧ tr ≤ tr ′ itself, and that

R2(tr ′ = tr � 〈 a 〉); R2(last tr = a ∧ tr ≤ tr ′) = false

The proof below for R2-sequence-closure is based on the Laws left-one-point and
right-one-point for sequences.

Proof of R2-sequence-closure.

R2(P(tr , tr ′) ; Q(tr , tr ′)) sequence, predicate calculus
= R2(P(tr , tr ′

0) ; Q(tr0 , tr ′)) R2
= (P(tr , tr ′

0) ; Q(tr0 , tr ′))(〈〉, tr ′ − tr) substitution
= P(〈〉, tr ′

0) ; Q(tr0 , tr ′ − tr) assumption: Q is R2

= P(〈〉, tr ′
0) ; Q(〈〉, tr ′ − tr)(tr0 , tr ′ − tr) substitution

= P(〈〉, tr ′
0) ; Q(〈〉, tr ′ − tr − tr0) sequence property

= P(〈〉, tr ′
0) ; Q(〈〉, tr ′ − (tr � tr0)) substitution

= P(〈〉, tr ′
0) ; Q(〈〉, tr ′ − tr)[tr � tr0/tr] left-one-point

= P(〈〉, tr ′
0) ; tr ′ = tr � tr0 ; Q(〈〉, tr ′ − tr) sequence property

= P(〈〉, tr ′
0) ; tr0 = tr ′ − tr ; Q(〈〉, tr ′ − tr) right-one-point

= P(〈〉, tr ′ − tr) ; Q(〈〉, tr ′ − tr) assumption: P and Q are R2
= P ; Q

A by-product of the above proof is the following law.

Law 97 (R2 composition). R2(P ; R2(Q)) = R2(P) ; R2(Q)

Since R2 constrains only tr and tr ′, substitution for wait and okay ′ distribute
through its application.

A Tutorial Introduction to CSP in Unifying Theories of Programming 249

Law 98 (R2-wait-okay ′). (R2(P))cb = R2(Pc
b)

If J (see Definition 1) is lifted to an alphabet containing the reactive observa-
tions, then it keeps the trace constant. It is therefore R2-healthy.

Law 99 (J -R2). J = R2(J)

R2 is independent from H1, H2, and R1: it commutes with each of them.

Law 100 (commutativity-R2-H1). R2 ◦ H1 = H1 ◦ R2

Law 101 (commutativity-R2-H2). R2 ◦ H2 = H2 ◦ R2

Proof.

R2 ◦ H2(P) H2

= R2(P ; J) J R2
= R2(P ; R2(J)) R2 composition
= R2(P) ; R2(J) J R2
= R2(P) ; J H2

= H2 ◦ R2(P)

Law 102 (commutativity-R2-R1). R2 ◦ R1 = R1 ◦ R2

Proof.

R2 ◦ R1(P(tr , tr ′)) R1, R2
= (P ∧ tr ≤ tr ′)(〈〉, tr ′ − tr) substitution
= P(〈〉, tr ′ − tr) ∧ 〈〉 ≤ tr ′ − tr ≤ and −
= P(〈〉, tr ′ − tr) ∧ tr ≤ tr ′ R1, R2

= R1 ◦ R2(P(tr , tr ′))

The space of relations produced by applying R2 to designs is again a complete
lattice, since R2 is also monotonic.

5.4 R3

The third healthiness condition makes relational composition behave like a pro-
gram sequence. To see its relevance, consider the process

P = okay ′ ∧ wait ′ ∧ tr ′ = tr

P forever occupies a state that is both stable and waiting for interaction with
the environment, but none ever comes, since the trace never changes. What are
we to make of the sequence P ; Q , where

Q = okay ′ ∧ ¬ wait ′ ∧ tr ′ = tr � 〈a〉

Q immediately terminates, having added an a event to the trace? The relational
composition ignores the behaviour of P .

250 A. Cavalcanti and J. Woodcock

P ; Q sequence
= ∃ okay0 ,wait0 , tr0 , ref0 •

P [okay0 ,wait0 , tr0 , ref0/okay ′,wait ′, tr ′, ref ′] ∧
Q [okay0 ,wait0 , tr0 , ref0/okay,wait , tr , ref]

P and Q

= ∃ okay0 ,wait0 , tr0 , ref0 •
okay0 ∧ wait0 ∧ tr0 = tr ∧
okay ′ ∧ ¬ wait ′ ∧ tr ′ = tr0 � 〈a〉

predicate calculus

= ∃ ref0 • okay ′ ∧ ¬ wait ′ ∧ tr ′ = tr � 〈a〉 predicate calculus
= okay ′ ∧ ¬ wait ′ ∧ tr ′ = tr � 〈a〉 Q
= Q

We expect quite the opposite: that P ; Q = P . If P is forever waiting, then P ; Q
should be forever waiting in the same state. We formalise this requirement as a
healthiness condition, R3.

R3(P) = (II rea � wait � P)

An R3-healthy process does not start until its predecessor has terminated. Now
we have that P ; R3(Q) = P , as we wanted.

Exercise 13. Prove that P ; R3(Q) = P , where P and Q are the processes
defined above.

The following laws characterise the behaviour of R3 processes in particular
circumstances. R3 depends on the wait observation, so substitution for that
variable cannot distribute through the healthiness condition. Instead, it serves
to simplify R3’s conditional. If true is substituted, then the result is II rea , but
with the substitution applied to that as well. On the other hand, if false is
substituted for wait in R3(P), then the result is simply P , again with the
substitution applied. Substitution for okay ′ interferes with II rea , and so does not
distribute through its application.

Law 103 (R3-wait-true). (R3(P))t = (II rea)t

Law 104 (R3-not-wait-false). (R3(P))f = Pf

Law 105 (R3-okay ′). (R3(P))c = ((II rea)c � wait � Pc)

Closure properties are also available for R3.

Theorem 7. Provided P and Q are R3,

R3(P ∧ Q) = P ∧ Q R3-∧-closure

R3(P ∨ Q) = P ∨ Q R3-∨-closure

R3(P � c � Q) = P � c � Q R3-conditional-closure

For sequence, we actually require that one of the processes is R1 as well.

A Tutorial Introduction to CSP in Unifying Theories of Programming 251

Theorem 8. Provided P is R3, and Q is R1 and R3,

R3(P ; Q) = P ; Q R3-sequence-closure

This is not a problem because, as detailed in the next section, we actually work
with the theory characterised by all healthiness conditions.

As required, R3 is an idempotent.

Law 106 (R3-idempotent). R3 ◦ R3 = R3

Since II rea specifies behaviour for when ¬ okay holds, it should not be a big
surprise that R3 also does not commute with H1. It does commute with the
other healthiness conditions, though.

Law 107 (commutativity-R3-H2). R3 ◦ H2 = H2 ◦ R3

Law 108 (commutativity-R3-R1). R3 ◦ R1 = R1 ◦ R3

Law 109 (commutativity-R3-R2). R3 ◦ R2 = R2 ◦ R3

Moreover, if all that there is about a process that is not H1 is the fact that it
specifies the behaviour required by R1, then we have a commutativity property.
This sort of property is important because we are going to express reactive
processes as reactive designs.

Example 14 (R3-H1-non-commutativity). Why do R3 and H1 not commute?

H1 ◦ R3(P) H1, R3

= okay ⇒ (II rea � wait � P) *-conditional
= (okay ⇒ II rea) � wait � (okay ⇒ P) H1

= H1(II rea) � wait � H1(P) II rea is not H1
	= II rea � wait � H1(P) R3

= R3 ◦ H1(P)

This derivation shows the precise reason: it is because II rea is not H1.

This last example explains the need for the weaker commutativity laws below.

Law 110 (R3-H1 sub-commutativity). H1 ◦ R3 = H1 ◦ R3 ◦ H1

Law 111 (R3-H1-R1 sub-commutativity).

R3 ◦ R1 ◦ H1 = R1 ◦ H1 ◦ R3

Just like R1 and R2, R3 is monotonic and so gives us a complete lattice when
applied to the space of designs.

252 A. Cavalcanti and J. Woodcock

5.5 R

A reactive process is a relation that includes in its alphabet okay, tr , wait , and
ref , and their dashed counterparts, and satisfies the three healthiness conditions
R1, R2, and R3. We define R as the composition of these three functions.

R =̂ R1 ◦ R2 ◦ R3

Since each of the healthiness conditions R1, R2, and R3 commute, their order
in the definition above is irrelevant.

Reactive processes have a left zero.

Law 112 (reactive-left-zero). (tr ≤ tr ′) ; P = tr ≤ tr ′

Proof. First, we expand R3(P).

R3(P)
= II rea � wait � P II rea

= (II rel � okay � tr ≤ tr ′) � wait � P conditional
= (¬ okay ∧ wait ∧ tr ≤ tr ′) ∨ (okay ∧ wait ∧ II rel) ∨ (¬ wait ∧ P)

Now we can prove our result.

tr ≤ tr ′; P assumption: P is R3
= tr ≤ tr ′; R3(P) R3(P) expansion
= tr ≤ tr ′; ¬ okay ∧ wait ∧ tr ≤ tr ′

∨ tr ≤ tr ′; okay ∧ wait ∧ II rel

∨ tr ≤ tr ′; ¬ wait ∧ P

right-one-point, II rel

= (tr ≤ tr ′; tr ≤ tr ′) ∨ (tr ≤ tr ′) ∨ (tr ≤ tr ′; P) sequence
= (tr ≤ tr ′) ∨ (tr ≤ tr ′; ∧ P) assumption: P is R1

= (tr ≤ tr ′) ∨ (tr ≤ tr ′; ∧ P ∧ tr ≤ tr ′) sequence transitivity
= tr ≤ tr ′ ∨ ((tr ≤ tr ′; ∧ P ∧ tr ≤ tr ′) ∧ tr ≤ tr ′) absorption
= tr ≤ tr ′

Reactive processes also have a restricted identity.

Law 113 (reactive-restricted-identity).

II rea ; P = P � okay � tr ≤ tr ′

Substitution for wait cannot distribute through R, since it does not distribute
through R3; however, it does have the expected simplification properties. Fi-
nally, substitution for okay ′ does not quite distribute through R, since it inter-
feres with II rea . The following reductions hold for these substitutions.

Law 114 (R-wait-false). (R(P))f = R1 ◦ R2(Pf)

A Tutorial Introduction to CSP in Unifying Theories of Programming 253

Law 115 (R-wait-true). (R(P))t = (II rea)t

Law 116 (R-okay ′). (R(P))c = ((II rea)c � wait � R1 ◦ R2(Pc))

The set of reactive processes is closed under the program operators.

Theorem 9. Provided P and Q are R-healthy,

R(P ∧ Q) = P ∧ Q R-∧-closure

R(P ∨ Q) = P ∨ Q R-∨-closure

R(P � tr ′ = tr � Q) = P � tr ′ = tr � Q R-conditional-closure

R(P ; Q) = P ; Q R-sequence-closure

Since R1, R2, and R3 are all monotonic, so is their composition, and so the set
of reactive processes is a complete lattice. The R-image of any complete lattice
is also a complete lattice. In particular, the R-image of the lattice of designs is
a complete lattice. This image turns out to be the set of CSP processes, as we
establish in the next section.

6 CSP Processes

A CSP process is a reactive process satisfying two other healthiness conditions.

6.1 CSP1

The first healthiness condition requires that, in case of divergence, extension of
the trace is the only property that is guaranteed.

CSP1(P) = P ∨ ¬ okay ∧ tr ≤ tr ′

It is important to observe that R1 requires that, in whatever situation, the
trace can only be increased. On the other hand, CSP1 states that, if we are in
a divergent state, ¬ okay, then there is no other guarantee.

Exercise 14. Give an example of a reactive process that is R1, but not CSP1 .

CSP1 is a combination of R1 and H1; however, like R1, CSP1 does not
commute with H1. The reason is the same: it specifies behaviour for when ¬ okay
holds. The lack of commutativity means that, when applying R1 and H1, the
order is relevant. As a matter of fact, CSP1 determines the order that should
be used, for processes that are already R1.

Law 117 (CSP1-R1-H1).

CSP1(P) = R1 ◦ H1(P) provided P is R1-healthy

254 A. Cavalcanti and J. Woodcock

As expected, CSP1 is an idempotent.

CSP1 ◦ CSP1 = CSP1

The usual closure properties hold for CSP1 processes.

Theorem 10. Provided P and Q are CSP1-healthy,

CSP1(P ∧ Q) = P ∧ Q CSP1-∧-closure

CSP1(P ∨ Q) = P ∨ Q CSP1-∨-closure

CSP1(P � c � Q) = P � c � Q CSP1-conditional-closure

CSP1(P ; Q) = P ; Q CSP1-sequence-closure

This new healthiness condition is independent from the previous ones.

Law 118 (commutativity-CSP1-R1). CSP1 ◦ R1 = R1 ◦ CSP1

Law 119 (commutativity-CSP1-R2). CSP1 ◦ R2 = R2 ◦ CSP1

Law 120 (commutativity-CSP1-R3). CSP1 ◦ R3 = R3 ◦ CSP1

A reactive process defined in terms of a design is always CSP1-healthy. This is
because the design does not restrict the behaviour when ¬ okay holds, and R
insists only that tr ≤ tr ′.

Law 121 (reactive-design-CSP1). CSP1(R(P $ Q)) = R(P $ Q)

If an R1-healthy predicate R appears in a design’s postcondition, in the scope
of another predicate that is also R1, then R is CSP1-healthy. This is because,
for R1 predicates, CSP1 amounts to the composition of H1 and R1. A similar
law applies to the negation of such a CSP1 predicate.

Law 122 (design-post-and-CSP1).

P $ (Q ∧ CSP1(R))) = (P $ Q ∧ R)
provided Q and R are R1-healthy

Law 123 (design-post-and-not-CSP1).

P $ (Q ∧ ¬ CSP1(R))) = (P $ Q ∧ ¬ R)
provided Q and R are R1-healthy

These two laws are combined in the following law that eliminates CSP1 from
the condition of a conditional.

Law 124 (design-post-conditional-CSP1).

(P $ (Q � CSP1(R) � S)) = (P $ (Q � R � S))
provided Q, R and S are R1-healthy

A Tutorial Introduction to CSP in Unifying Theories of Programming 255

Proof.

P $ (Q � CSP1(R) � S) conditional
= P $ (Q ∧ CSP1(R)) ∨ (S ∧ ¬ CSP1(R)) design, propositional calculus
= (P $ Q ∧ CSP1(R)) ∨ (P $ S ∧ ¬ CSP1(R))

design-post-and-CSP1, assumption: Q and R are R1-healthy
= (P $ Q ∧ R) ∨ (P $ S ∧ ¬ CSP1(R))

design-post-and-not-CSP1, assumption: S is R1-healthy
= (P $ Q ∧ R) ∨ (P $ S ∧ ¬ R) design, propositional calculus, conditional
= P $ (Q � R � S)

Substitution for wait and okay ′ distributes through CSP1 .

Law 125 (CSP1-wait-okay ′).

(CSP1(P))cb = CSP1(Pc
b) provided P is R1-healthy

The many restrictions on these laws related to R1 healthiness are not a problem,
since CSP1 is a healthiness condition on reactive processes.

6.2 CSP2

The second healthiness condition for CSP processes, CSP2, is defined in terms
of J (which was introduced in Section 4) as follows.

CSP2(P) = P ; J

It is a direct consequence of Theorem 3 that CSP2 is a recast of H2, now with
an extended alphabet that includes okay, wait , tr , and ref . In other words, in
the theory of CSP processes, we let go of H1, but we retain H2, under another
disguise.

Idempotence and commutative properties for CSP2 follow from those for
H2. We add only that it commutes with CSP1.

Law 126 (commutativity-CSP2-CSP1).

CSP2 ◦ CSP1 = CSP1 ◦ CSP2

Closure of designs is not established considering H1 and H2 individually; we
consider H2, or CSP2 rather, below. It is not closed with respect to conjunction,
and it is not difficult to prove that P ∧ Q � CSP2(P ∧ Q), providing P and
Q are CSP2.

Theorem 11. Provided P and Q are CSP2-healthy,

CSP2(P ∨ Q) = P ∨ Q CSP2-∨-closure

CSP2(P � b � Q) = P � b � Q CSP2-conditional-closure

CSP2(P ; Q) = P ; Q CSP2-sequence-closure

256 A. Cavalcanti and J. Woodcock

Exercise 15. Prove algebraically that

P ∧ Q � CSP2(P ∧ Q)

providing P and Q are CSP2-healthy.

Substitution of true for okay ′ does not distribute through CSP2, but produces
the disjunction of two cases.

Law 127 (CSP2-converge).

(CSP2(P))t = P t ∨ P f

Proof.

(CSP2(P))t CSP2

= (P ; J)t substitution
= P ; J t J

= P ; ((okay ⇒ okay ′) ∧ II −okay
rel)t substitution

= P ; ((okay ⇒ true) ∧ II −okay
rel) propositional calculus

= P ; II −okay
rel propositional calculus

= P ; (okay ∨ ¬ okay) ∧ II −okay
rel relational calculus

= P ; okay ∧ II −okay
rel ∨ P ; ¬ okay ∧ II −okay

rel okay-boolean, II −okay
rel

= P ; okay = true ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′

∨
P ; okay = false ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′

one-point

= P t ∨ P f

Substitution of false for okay ′ eliminates CSP2 .

Law 128 (CSP2-diverge).

(CSP2(P))f = P f

Proof.

(CSP2(P))f CSP2

= (P ; J)f substitution

= P ; J f J

= P ; ((okay ⇒ okay ′) ∧ II −okay
rel)f substitution

= P ; ((okay ⇒ false) ∧ II −okay
rel) propositional calculus

= P ; (¬ okay ∧ II −okay
rel) okay-boolean, II −okay

rel

= P ; (okay = false ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′) one-point

= P f

A Tutorial Introduction to CSP in Unifying Theories of Programming 257

It is trivial to prove that any reactive design is CSP2 , since CSP2 and H2
are the same. A reactive process defined in terms of a design is always CSP2-
healthy.

Law 129 (reactive-design-CSP2). CSP2(R(P $ Q)) = R(P $ Q)

A CSP process is a reactive process that is both CSP1 and CSP2-healthy. The
following theorem shows that any CSP process can be specified in terms of a
design using R.

Theorem 12. For every CSP process P, P = R(¬ P f
f $ P t

f)

Together with Laws 121 and 129, this theorem accounts for a style of specifica-
tion for CSP processes in which we use a design to give its behaviour when the
previous process has terminated and not diverged, and leave the definition of
the behaviour in the other situations for the healthiness conditions. The precon-
dition of the design characterises the conditions that guarantee that the process
does not diverge: it is not the case that, having started (wait is false), then it
diverges (okay ′ is false). The postcondition gives the behaviour when, having
started, the process does not diverge (okay ′ is true).

Figure 1 summarises the relationship between the theories of the UTP we
presented so far. In black, we have all the alphabetised predicates; in white,
we have the relations: those predicates whose alphabet include only dashed and
undashed variables. Designs and reactive processes are disjoint sets of relations.
Finally, CSP processes are reactive; moreover, they are the R-image of designs.

predicates

relations

designs CSP
reactive

processes

Fig. 1. UTP theories

Motivated by the result above, we express some constructs of CSP as reactive
designs. We show that our definitions are the same as those in [117], with a few

258 A. Cavalcanti and J. Woodcock

exceptions that we explain. Before we proceed, however, we observe that, for
CSP processes, II rea is an identity.

Law 130 (II rea-sequence-CSP).

II rea ; P = P provided P is both CSP1 and CSP2-healthy

In spite of its name, II rea is not a true identity for reactive processes that are
not CSP.

Exercise 16. Give an example of a reactive process P for which II rea ; P 	= P .

6.3 STOP

We want the following definition for STOP .

STOP = R(true $ tr ′ = tr ∧ wait ′)

Since STOP deadlocks, it does not change the trace or terminates. Moreover,
all events can be refused; so, we leave the value of ref ′ unrestrained: any refusal
set is a valid observation.

The next law describes the effect of starting STOP properly and insisting that
it does not diverge. The result is that it leaves the trace unchanged and it waits
forever. We need to apply CSP1, since we have not ruled out the possibility of
its predecessor diverging.

Law 131 (STOP-converge). STOP t
f = CSP1(tr ′ = tr ∧ wait ′)

Proof.

STOP t
f STOP

= (R(true $ tr ′ = tr ∧ wait ′))tf R-wait -false, R1-okay ′, R2-okay ′

= R1 ◦ R2((true $ tr ′ = tr ∧ wait ′)tf) substitution

= R1 ◦ R2((true $ tr ′ = tr ∧ wait ′)t) design, substitution
= R1 ◦ R2(okay ⇒ tr ′ = tr ∧ wait ′) R2
= R1(okay ⇒ tr ′ = tr ∧ wait ′) H1

= R1(H1(tr ′ = tr ∧ wait ′)) R1
= R1(H1(R1(tr ′ = tr ∧ wait ′))) CSP1-R1-H1 and R1

= CSP1(tr ′ = tr ∧ wait ′)

Now we consider the behaviour if we start STOP properly, but insist that it
does diverge. Of course, STOP cannot do this, so the result is that it could not
have been started.

Law 132 (STOP-diverge). STOP f
f = R1(¬ okay)

A Tutorial Introduction to CSP in Unifying Theories of Programming 259

Proof.

STOP f
f STOP

= (R(true $ tr ′ = tr ∧ wait ′))ff R-wait -false, R1-okay ′, R2-okay ′

= R1 ◦ R2((true $ tr ′ = tr ∧ wait ′)ff) substitution

= R1 ◦ R2((true $ tr ′ = tr ∧ wait ′)f) design, substitution
= R1 ◦ R2(¬ okay) R2
= R1(¬ okay)

It is possible to prove the following law for STOP : it is a left zero for sequence.

Law 133 (STOP-left-zero). STOP ; P = STOP

This gives some reassurance of the validity of our definition.

6.4 SKIP

In the UTP, the definition of SKIP is as follows.

SKIP =̂ R(∃ ref • II rea)

We propose the formulation presented in the law below.

Law 134 (SKIP-reactive-design). SKIP = R(true $ tr ′ = tr ∧ ¬ wait ′)

This characterises SKIP as the program that terminates immediately without
changing the trace; the refusal set is left unspecified, as it is irrelevant after
termination.

6.5 CHAOS

The UTP definition for CHAOS is R(true). Instead of true, we use a design.

Law 135 (CHAOS-reactive-design). CHAOS = R(false $ true)

It is perhaps not surprising that CHAOS is the reactive abort.

Law 136 (CHAOS-left-zero). CHAOS ; P = CHAOS

The new characterisation of CHAOS can be used in the proof of the law above.

6.6 External Choice

For CSP processes P and Q with a common alphabet, their external choice is
defined as follows.

P � Q =̂ CSP2((P ∧ Q) � STOP � (P ∨ Q))

260 A. Cavalcanti and J. Woodcock

This says that the external choice behaves like the conjunction of P and Q if no
progress has been made (that is, if no event has been observed and termination
has not occurred). Otherwise, it behaves like their disjunction. This is an eco-
nomical definition, and we believe that its re-expression as a reactive design is
insightful. To prove the law that gives this description, we need a few lemmas,
which we present below.

In order to present external choice as a reactive design, we need to calculate
a meaningful description for the design R(¬ (P � Q)ff $ (P � Q)tf). that is
indicated by Theorem 12. We start with the precondition, and calculate a result
for (P � Q)ff .

Lemma 15 (external-choice-diverge). Provided P and Q are R1-healthy,
(P � Q)ff = (P f

f ∨ Q f
f) � okay � (P f

f ∧ Q f
f)

This result needs to be negated, but it remains a conditional on the value of
okay. Since it is a precondition, this conditional may be simplified.

Lemma 16 (external-choice-precondition).

(¬ (P � Q)ff $ R) = (¬ (P f
f ∨ Q f

f) $ R)

Now we turn our attention to the postcondition.

Lemma 17 (external-choice-converge).

(P � Q)tf =

(P ∧ Q) � STOP � (P ∨ Q)tf ∨ (P ∧ Q) � STOP � (P ∨ Q)ff

The second part of the postcondition is in contradiction with the precondition,
and when we bring the two together it can be removed. The conditional on
STOP can then be simplified.

Lemma 18 (design-external-choice-lemma).

(¬ (P � Q)ff $ (P � Q)tf) =

((¬ P f
f ∧ Q f

f) $ ((P t
f ∧ Q t

f) � tr ′ = tr ∧ wait ′ � (P t
f ∨ Q t

f)))

Finally, we collect our results to give external choice as a reactive design.

Law 137 (design-external-choice).

P � Q = R((¬ P t
f ∧ ¬ Q t

f) $ (P t
f ∧ Q t

f) � tr ′ = tr ∧ wait ′ � (P t
f ∨ Q t

f))

Proof.

P � Q CSP-reactive-design

= R(¬ (P � Q)ff $ (P � Q)tf) design-external-choice-lemma

= R((¬ P f
f ∧ ¬ Q f

f) $ (P t
f ∧ Q t

f � tr ′ = tr ∧ wait ′ � P t
f ∨ Q t

f))

A Tutorial Introduction to CSP in Unifying Theories of Programming 261

The design in this law describes the behaviour of an external choice P � Q when
its predecessor has terminated without diverging. In this case, the external choice
does not diverge if neither P nor Q does; this is captured in the precondition.
The postcondition establishes that if there has been no activity, or rather, the
trace has not changed and the choice has not terminated, then the behaviour is
given by the conjunction of P and Q . If there has been any activity, then the
choice has been made and the behaviour is either that of P or that of Q .

Exercise 17. Write out the reactive design that corresponds to the external
choice below, where a and b are events.

R(true $ wait ′ ∧ tr ′ = tr ∧ { a } 	∈ ref ′ ∨ ¬ wait ′ ∧ tr ′ = tr � 〈 a 〉)
�

R(true $ wait ′ ∧ tr ′ = tr ∧ { b } 	∈ ref ′ ∨ ¬ wait ′ ∧ tr ′ = tr � 〈 a 〉)

Exercise 18. How can we write the process below in the notation of CSP?

R(true $ wait ′ ∧ tr ′ = tr ∧ { a } 	∈ ref ′ ∨ ¬ wait ′ ∧ tr ′ = tr � 〈 a 〉)

6.7 Extra Healthiness Conditions: CSP3 and CSP4

The healthiness conditions CSP1 and CSP2 are not strong enough to charac-
terise a UTP model containing only those relations that correspond to processes
that can be written using the CSP operators as presented, for example, in Chap-
ter 3. In principle, we need more healthiness conditions to further restrict the
subset of reactive processes of interest. As a matter of fact, however, there are
advantages to this greater flexibility. In any case, a few other healthiness condi-
tions can be very useful, if not essential. Here, we present two of these.

CSP3. This healthiness condition requires that the behaviour of a process does
not depend on the initial value of ref . In other words, it should be the case
that, when a process P starts, whatever the previous process could or could
not refuse when it finished should be irrelevant. Formally, the CSP3 health-
iness condition is ¬ wait ⇒ (P = ∃ ref • P). If the previous process diverged,
¬ okay , then CSP1 guarantees that the behaviour of P is already independent
of ref . So, the restriction imposed by CSP3 is really relevant for the situation
okay ∧ ¬ wait , as should be expected.

We can express CSP3 in terms of an idempotent defined as follows.

CSP3(P) = SKIP ; P

The following lemma establishes that this is the right idempotent.

Lemma 19. P is CSP3-healthy if, and only if, SKIP ; P = P.

Using this idempotent, we can prove that SKIP is CSP3-healthy.

Law 138 (SKIP-CSP3). CSP3(SKIP) = SKIP

262 A. Cavalcanti and J. Woodcock

With this result, it is very simple to prove that CSP3 is indeed an idempotent.

CSP3 ◦ CSP3 = CSP3

Since CSP processes are not closed with respect to conjunction, we only worry
about closure of the extra healthiness conditions with respect to the other pro-
gramming operators.

Theorem 13. Provided P and Q are CSP3-healthy,

CSP3(P ∨ Q) = P ∨ Q CSP3-∨-closure

CSP3(P � tr = tr ′ � Q) = P � tr = tr ′ � Q CSP3-conditional-closure

CSP3(P ; Q) = P ; Q CSP3-sequence-closure

CSP4. The second extra healthiness condition, CSP4, is similar to CSP3.

CSP4(P) = P ; SKIP

It requires that, on termination or divergence, the value of ref ′ is irrelevant. The
following lemma makes this clear.

Lemma 20.

P ; SKIP = (∃ ref ′ • P) ∧ okay ′ ∧ ¬ wait ′ ∨
P ∧ okay ′ ∧ wait ′ ∨
(P ∧ ¬ okay ′) ; tr ≤ tr ′

This result shows that, if P = P ; SKIP , then if P has terminated without
diverging (okay ′ ∧ ¬ wait ′), the value of ref ′ is not relevant. If P has not
terminated (okay ′ ∧ wait ′), then the value of ref ′ is as defined by P itself. Finally,
if it diverges (okay ′), then the only guarantee is that the trace is extended; the
value of the other variables is irrelevant.

It is easy to prove that SKIP , STOP , and CHAOS are CSP4-healthy.

Law 139 (SKIP-CSP4). CSP4(SKIP) = SKIP

Law 140 (STOP-CSP4). CSP4(STOP) = STOP

Law 141 (CHAOS-CSP4). CSP4(CHAOS) = CHAOS

The usual closure properties also hold.

Theorem 14. Provided P and Q are CSP4-healthy,

CSP4(P ∨ Q) = P ∨ Q CSP4-∨-closure

CSP4(P � b � Q) = P � b � Q CSP4-conditional-closure

CSP4(P ; Q) = P ; Q CSP4-sequence-closure

As detailed in the next section, other healthiness conditions may be useful. We
leave this search as future work; [117] presents an additional healthiness condi-
tion that we omit here: CSP5.

A Tutorial Introduction to CSP in Unifying Theories of Programming 263

7 Failures-Divergences Model

The failures-divergences model is the definitive reference for the semantics of
CSP [225]. It is formed by a set F of pairs and a set D of traces. The pairs are
the failures of the process. A failure is formed by a trace and a set of events;
the trace s records a possible history of interaction, and the set includes the
events that the process may refuse after the interactions in the trace. This set
is the refusals of P after s . The set D of traces is the divergences of the pro-
cess. After engaging in the interactions in any of these traces, the process may
diverge.

Refinement in this model is defined as reverse containment. A process P1 is
refined by a process P2 if, and only if, the set of failures and the set of divergences
of P2 are contained or equal to those of P1 .

The simpler traces model includes only a set of traces. For a process P , the
set traces⊥(P) contains the set of all traces in which P can engage, including
those that lead to or arise from divergence.

7.1 Failures-Divergences Healthiness Conditions

A number of healthiness conditions are imposed on the failures-divergences
model. The first healthiness condition requires that the set of traces of a process
is captured in its set of failures, that this set is non-empty and prefix closed.
This is because the empty trace is a trace of every process, and every earlier
record of interaction is a possible interaction of the process.

F1 traces⊥(P) = { t | (t ,X) ∈ F } is non-empty and prefix closed

The next healthiness condition requires that if (s ,X) is a failure, then (s ,Y) is
also a failure, for all subsets Y of X . This means that, if after s the process may
refuse all the events of X , then it may refuse all the events in the subsets of X .

F2 (s ,X) ∈ F ∧ Y ⊆ X ⇒ (s ,Y) ∈ F

Also concerning refusals, we have a healthiness condition that requires that if an
event is not possible, according to the set of traces of the process, then it must
be in the set of refusals.

F3 (s ,X) ∈ F ∧ (∀ a : Y • s � 〈 a 〉 	∈ traces⊥(P)) ⇒ (s ,X ∪ Y) ∈ F

The event � is used to mark termination. The following healthiness condition
requires that, just before termination, a process can refuse all interactions. The
set Σ includes all the events in which the process can engage, except � itself.

F4 s � 〈� 〉 ∈ traces⊥(P) ⇒ (s , Σ) ∈ F

The last three healthiness conditions are related to the divergences of a process.
First, if a process can diverge after engaging in the events of a trace s , then it

264 A. Cavalcanti and J. Woodcock

can diverge after engaging in the events of any extension of s . The idea is that,
conceptually, after divergence, any behaviour is possible. Even � is included in
the extended traces, and not necessarily as a final event. The set Σ∗ includes all
traces on events in Σ, and Σ∗� includes all traces on events in Σ ∪ {� }.

D1 s ∈ D ∩ Σ∗ ∧ t ∈ Σ∗� ⇒ s � t ∈ D

The next condition requires that, after divergence, all events may be refused.

D2 s ∈ D ⇒ (s ,X) ∈ F

The final healthiness condition requires that if a trace that marks a termination
is in the set of divergences, it is because the process diverged before termination.
It would not make sense to say that a process diverged after it terminated.

D3 s � 〈� 〉 ∈ D ⇒ s ∈ D

Some of these healthiness conditions correspond to UTP healthiness conditions.
Some of them are not contemplated. They are discussed individually later on.

7.2 Failures-Divergences Model of a UTP Process

We can calculate a failures-divergences representation of a UTP process. More
precisely, we define a few functions that take a UTP predicate and return a
component of the failures-divergences model. We first define a function traces ;
it takes a UTP predicate P and returns the set of traces of the corresponding
process.

In the UTP model, the behaviour of a process is that prescribed when okay
and ¬ wait . The behaviour in the other cases is determined by the UTP health-
iness conditions, and is included in the UTP model so that sequence is
simplified: it is just relational composition. In the failures-divergences model,
this extra behaviour is not captured and is enforced in the definition of
sequence.

The value of tr records the history of events before the start of the process;
tr ′ carries this history forward. This simplifies the definition of sequence. In the
failures-divergences model, this extra behaviour is not captured. Therefore, the
traces in the set traces(P) are the sequences tr ′−tr that arise from the behaviour
of P itself.

traces(P) = { tr ′ − tr | okay ∧ ¬ wait ∧ P ∧ okay ′ }∪
{ (tr ′ − tr) � 〈� 〉 | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }

The set traces(P) only includes the traces that lead to non-divergent behaviour.
Moreover, if a trace tr ′ − tr leads to termination, ¬ wait ′, then traces(P) also
includes (tr ′ − tr) � 〈� 〉, since � is used in the failures-divergences model to
signal termination.

A Tutorial Introduction to CSP in Unifying Theories of Programming 265

Exercise 19. Calculate traces(STOP).

The traces that lead to or arise from divergent behaviour are those in the set
divergences(P) defined below.

divergences(P) = { tr ′ − tr | okay ∧ ¬ wait ∧ P ∧ ¬ okay ′ }

Exercise 20. Calculate divergences(STOP).

The set traces⊥(P) mentioned in the healthiness conditions of the failures-
divergences model includes both the divergent and non-divergent traces.

traces⊥(P) = traces(P) ∪ divergences(P)

The failures are recorded for those states that are stable (non-divergent) or final.

failures(P) =
{ ((tr ′ − tr), ref ′) | okay ∧ ¬ wait ∧ P ∧ okay ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′) | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′ ∪ {� }) | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }

For the final state, the extra trace (tr ′ − tr) � 〈� 〉 is recorded. Also, after
termination, for every refusal set ref ′, there is an extra refusal set ref ′ ∪ {� }.
This is needed because � is not part of the UTP model and is not considered in
the definition of ref ′.

Exercise 21. Calculate failures(STOP) and failures(SKIP).

The set of failures in the failures-divergences model includes failures for the
divergent traces as well.

failures⊥(P) = failures(P) ∪ { (s , ref) | s ∈ divergences(P) }

For a divergent trace, there is a failure for each possible refusal set.
The functions failures⊥ and divergences map the UTP model to the failures-

divergences model. In studying the relationship between alternative models for
a language, it is usual to hope for an isomorphism between them. In our case,
this would amount to finding inverses for failures⊥ and divergences. Actually,
this is not possible; UTP and the failures-divergences model are not isomorphic.
This is discussed in detail below.

7.3 Relationship Between the Failures-Divergences and the UTP
Model

The UTP model contains processes that cannot be represented in the failures-
divergences model. Some of them are useful in a model for a language that has
a richer set of constructions to specify data operations. Others may need to be
ruled out by further healthiness conditions.

The failures-divergences model, for example, does not have a top element;
all divergence-free deterministic processes are maximal. In the UTP model,
R(true $ false) is the top.

266 A. Cavalcanti and J. Woodcock

Lemma 21. For every CSP process P, we have that P � R(true $ false).

The process R(true $ false) is (II rea � wait � ¬ okay ∧ tr ≤ tr ′). Its behaviour
when okay and ¬ wait is false. As such, it is mapped to the empty set of failures
and divergences; in other words, it is mapped to STOP . Operationally, this can
make sense, but STOP does not have the same properties of R(true $ false).
In particular, it does not refine every other process.

Exercise 22. Give an algebraic proof that

R(true $ false) = (II rea � wait � ¬ okay ∧ tr ≤ tr ′)

Exercise 23. Take advantage of the result of the previous exercise to calculate
failures⊥(R(true $ false)) and divergences(R(true $ false)).

Exercise 24. Explain why STOP does not refine every other process. Consider
both the UTP and the failures-divergences models.

In general terms, every process that behaves miraculously in any of its initial
states cannot be accurately represented using a failures-divergences model. We
do not, however, necessarily want to rule out such processes, as they can be
useful as a model for a state-rich CSP.

If we analyse the range of failures⊥ and divergences, we can see that it does
not satisfy a few of the healthiness conditions F1-4 and D1-3.

F1. The set traces⊥(P) is empty for P = R(true $ false); as discussed above,
this can be seen as an advantage. Also, traces⊥(P) is not necessarily prefix closed.
For example, the process R(true $ tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′) engages in the
events a and b and then terminates. It does not have a stable state in which a
took place, but b is yet to happen.

Exercise 25. Calculate traces(R(true $ tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′)). Prove
that R(true $ tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′) is both CSP3 and CSP4.

F2. This is also not enforced for UTP processes. It is expected to be a conse-
quence of a healthiness condition CSP5 presented in [117].

F3. Again, it is simple to provide a counterexample.

R(true $ tr ′ = tr � 〈 a 〉 ∧ ref ′ ⊆ { b } ∧ wait ′ ∨ tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′)

In this case, a is not an event that can take place again after it has already
occurred, and yet it is not being refused.

Exercise 26. Calculate the failures of the process above, and check that it is
both CSP3 and CSP4 .

F4. This holds for CSP4-healthy processes.

A Tutorial Introduction to CSP in Unifying Theories of Programming 267

Theorem 15. Provided P is CSP4-healthy,

s � 〈� 〉 ∈ traces⊥(P) ⇒ (s , Σ) ∈ failures(P)

D1. Again, CSP4 is required to ensure D1-healthy divergences.

Theorem 16. Provided P is CSP4-healthy,

s ∈ divergences(P) ∩ Σ∗ ∧ t ∈ Σ∗� ⇒ s � t ∈ divergences(P)

D2. This is enforced in the definition of failures⊥.

D3. Again, this is a simple consequence of the definition (of divergences).

Theorem 17.

s � 〈� 〉 ∈ divergences(P) ⇒ s ∈ divergences(P)

We view the definition of extra healthiness conditions on UTP processes to
ensure F1 and F3 as a challenging task.

8 Conclusions

We have presented two UTP theories of programming: one for pre-post specifica-
tions (designs), and one for reactive processes. They have been brought together
to form a theory of CSP processes. This is the starting point for the unification of
the two theories, whose logical conclusion is a theory of state-rich CSP processes.
This is the basis for the semantics of a new notation called Circus [255, 51], which
combines Z and CSP.

The theory of designs was only briefly discussed. It is the subject of a com-
panion tutorial [256], where through a series of examples, we have presented the
alphabetised relational calculus and its sub-theory of designs. In that paper, we
have presented the formalisation of four different techniques for reasoning about
program correctness.

Even though this is a tutorial introduction to part of the contents of [117], it
contains many novel laws and proofs. Notably, the recasting of external choice
as a reactive design can be illuminating. Also, the relationship with the failures-
divergences model is original.

We hope to have given a didactic and accessible account of the CSP model
in the unifying theories of programming. We have left out, however, the defini-
tion of many CSP constructs as reactive designs and the exploration of further
healthiness conditions. These are going to be the subject of further work.

In [217], UTP is also used to give a semantics to an integration of Z and
CSP, which also includes object-oriented features. In [240], the UTP is extended
with constructs to capture real-time properties as a first step towards a semantic
model for a timed version of Circus. In [83], a theory of general correctness is

268 A. Cavalcanti and J. Woodcock

characterised as an alternative to designs; instead of H1 and H2, a different
healthiness condition is adopted to restrict general relations.

Currently, we are collaborating with colleagues to extend UTP to capture
mobility, synchronicity, pointers, and object orientation. In particular, in [52] we
propose a UTP model for an object-oriented extension of Circus based on the
language and results discussed in Chapter 2; the details of that model are part of
our ongoing work. As explained in Chapter 2, this model can be used to prove the
laws proposed there. We hope to contribute to the development of a theory that
can support all the major concepts available in modern programming languages.

	Introduction
	The Alphabetised Relational Calculus
	The Complete Lattice
	Designs
	$H1$: Unpredictability
	$H2$: Termination Always Possible

	Reactive Processes
	$Reactive II$
	$R1$
	$R2$
	$R3$

	CSP Processes
	$CSP1$
	$CSP2$
	$STOP$
	$SKIP$
	$CHAOS$
	Extra Healthiness Conditions: $CSP3$ and $CSP4$

	Failures-Divergences Model
	Failures-Divergences Healthiness Conditions
	Failures-Divergences Model of a UTP Process
	Relationship Between the Failures-Divergences and the UTP Model

	Conclusions

