


Lecture Notes in Computer Science 3167
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Ana Cavalcanti
Augusto Sampaio
Jim Woodcock (Eds.)

Refinement Techniques
in Software Engineering

First Pernambuco Summer School
on Software Engineering, PSSE 2004
Recife, Brazil, November 23-December 5, 2004
Revised Lectures

13



Authors

Ana Cavalcanti
University of York
Department of Computer Science
Heslington, York YO10 5DD, UK
E-mail: Ana.Cavalcanti@cs.york.ac.uk

Augusto Sampaio
Federal University of Pernambuco
Centre for Informatics
CEP 50740-540, Recife-PE, Brazil
E-mail: acas@cin.ufpe.br

Jim Woodcock
University of York
Department of Computer Science
Heslington, York YO10 5DD, UK
E-mail: jim@cs.york.ac.uk

Library of Congress Control Number: 2006933059

CR Subject Classification (1998): D.2, D.1, F.3, K.6.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-46253-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-46253-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11889229 06/3142 5 4 3 2 1 0



Preface

The Pernambuco School on Software Engineering (PSSE) 2004 was the first in
a series of events devoted to the study of advanced computer science and to
the promotion of international scientific collaboration. The main theme in 2004
was refinement (or reification). Refinement describes the verifiable relationship
between a specification and its implementation; it also describes the process of
discovering appropriate implementations, given a specification. Thus, in one way
or another, refinement is at the heart of the programming process, and so is the
major daily activity of every professional software engineer. The Summer School
and its proceedings were intended to give a detailed tutorial introduction to the
scientific basis of this activity.

These proceedings record the contributions from the invited lecturers. Each
chapter is the result of a thorough revision of the initial notes provided to the
participants of the school. The revision was inspired by the synergy generated
by the opportunity for the lecturers to present and discuss their work among
themselves, and with the school’s attendees. The editors have tried to produce
a coherent view of the topic by harmonizing these contributions, smoothing out
differences in notation and approach, and providing links between the lectures.
We apologize to the authors for any errors introduced by our extensive editing.

Although the chapters are linked in several ways, each one is sufficiently self-
contained to be read in isolation. Nevertheless, Chap. 1 should be read first by
those interested in an introduction to refinement.

Chapter 1. We begin by setting the scene, introducing ideas and notations that
are taken as general background by the lecturers. We discuss program seman-
tics, using Dijkstra’s language of guarded commands as an illustration. We start
with program assertions—perhaps the most widely used formal method in pro-
gramming (assertions form about 1% of Microsoft Windows code)—and then
continue with predicate transformers. We describe the basic notions of refine-
ment, and discuss a simple refinement algebra. Then we relate this to program
development by formalizing the process of stepwise refinement of specifications
into programs. Finally, we describe a useful mathematical structure: the lat-
tice of specifications ordered by refinement. Each of the following four chapters
uses these ideas to illustrate refinement for a given paradigm: object orientation,
concurrency, probabilistic programs, and real-time and fault-tolerant systems.

Chapter 2. Sampaio and Borba describe refinement in the object-oriented set-
ting, illustrating the ideas using sequential Java, although their work is of general
applicability. Their approach is algebraic: they give laws for reasoning about and
refining object-oriented programs. They discuss soundness with respect to predi-
cate transformer semantics, and demonstrate completeness by showing that their
set of laws is comprehensive enough to be able to reduce any program to a nor-



VI Preface

mal form. Finally, they show how their laws can be used to refactor programs,
in order to adapt their structure while preserving their semantics.

Chapter 3. Davies describes refinement of concurrent and distributed systems
using the notations of CSP. He starts by introducing CSP as a process alge-
bra, with a set of operators and a rich collection of laws for reasoning about
the behavior of processes. The denotational semantics of the language is used
to give a simple notion of refinement between processes: every behavior of an
implementation must be a specified behavior. These ideas are explored through
an example involving protocols and their service specifications.

Chapter 4. McIver and Morgan add probabilistic nondeterminism to Dijkstra’s
guarded command language. They make a corresponding change to the program-
ming logic, replacing weakest preconditions by greatest pre-expectations. These
are generalizations of predicates that can be used to express the probability that
a program achieves a postcondition. They explain how we can extend standard
reasoning concepts like invariants and variants to handle probabilistic programs.
They give a series of examples and two longer case studies.

Chapter 5. Liu and Joseph deal with refinement in real-time and fault-tolerant
systems. They use transition systems as their computational model and
Lamport’s “Temporal Logic of Actions (TLA)” as a specification language in
reasoning about functional correctness, timing properties, fault-tolerance, and
schedulability. Their work is explained through an example of the interface be-
tween a processor and a memory device.

Chapter 6. Cavalcanti and Woodcock introduce “Unifying Theories of Program-
ming” as a uniform foundation for all these paradigms. They give a tutorial in-
troduction to an alphabetized version of Tarksi’s relational calculus. They show
how this leads to a simple denotational semantics of a language of terminating
programs, and show that they form a complete lattice. They extend this work
to Hoare-He designs, a relational model of pre- and postcondition specifications,
exploring the space of designs as a subtheory of relations characterized by cer-
tain healthiness conditions. Then they turn their attention to another relational
subtheory—reactive processes—once again characterized by healthiness condi-
tions. Finally, they show that the reactive image of the design lattice gives a
suitable semantic model for CSP. They end by comparing this semantics with
the model given by Davies in his chapter. After this survey of refinement and its
different theories, the final two chapters are on mechanical or automated support
for refinement.

Chapter 7. Clayton and O’Halloran describe the practice of refinement in in-
dustry. They have designed the “Compliance Notation” for demonstrating the
refinement relation between software and its specification. They have built a tool
to support this demonstration, an essential item for industrial-scale application
of refinement. They describe an extended example of a correctness argument for



Preface VII

programs written in the Spark Ada subset. They present an application involv-
ing the correct implementation of control laws that govern control systems.

Chapter 8. Déharbe presents a very successful approach to verification, whose
high level of automation has made it very attractive to industry. This chapter
presents the main temporal logics used for specification of properties, and the
main structures and algorithms used in tools. Widely used tools like SPIN and
SMV are discussed. The approach is briefly compared with that adopted for
model checking of CSP processes.

We are grateful to the members of the Organizing Committee, who worked
very hard to provide an enjoyable experience for all of us. Without the support
of our sponsors, PSSE 2004 could not have been a reality. Their recognition of
the importance of this event for the Software Engineering community in Latin
America is greatly appreciated. We would also like to thank all the lecturers for
their invaluable technical and scientific contribution, and for their commitment
to the event; the effort of all authors is greatly appreciated. Finally, we are
grateful to all the participants of the school. They are the main focus of the
whole event.

April 2006 Ana Cavalcanti
Augusto Sampaio

Jim Woodcock



Organization

PSSE 2004 was organized by the Centro de Informática, Universidade Federal
de Pernambuco (CIn/UFPE), Brazil, in cooperation with the United Nations
University, International Institute for Software Technology (UNU/IIST), and
the University of York, UK.

Executive Committee

Ana Cavalcanti University of York
Antonio Cerone UNU/IIST
Zhiming Liu UNU/IIST
Augusto Sampaio CIn/UFPE (Managing Director)
Jim Woodcock University of York

Sponsoring Institutions

Formal Methods Europe
Sociedade Brasileira de Computação,Brazil
United Nations University, Macau
Universidade Federal de Pernambuco (CIn/UFPE), Brazil
University of York, UK

Acknowledgements

Paulo Borba and Augusto Sampaio. Several parts of their chapter were ex-
tracted and adapted from their previous joint work with Ana Cavalcanti and
Márcio Cornélio: “Algebraic reasoning for object-oriented programming”, Sci-
ence of Computer Programming, 52:53–100, 2004. They thank their collaborator
David Naumann for many discussions that significantly contributed to the work
they report here, which was partially carried out when the authors were visit-
ing the Stevens Institute of Technology at New Jersey, USA. They also thank
Tiago Massoni and Rohit Gheyi for several important comments on an earlier
version of their chapter, and Leila Silva for discussions concerning the impact
of reference semantics in the proposed laws for their language. They are par-
tially supported by the Brazilian Research Agency, CNPq, grants 521994/96–
9 (Paulo Borba), 521039/95–9 (Augusto Sampaio), and 680032/99-1 (DARE
CO-OP project, jointly funded by CNPq PROTEM-CC and the National Science
Foundation).



X Organization

Annabelle McIver and Carroll Morgan. Their chapter reports work carried out
with Jeff Sanders, Thai Son Hoang and Karen Seidel. It was supported in the
UK by the EPSRC and in Australia by the ARC. An earlier version of Sect. 1–5
of their chapter first appeared in the South African Computer Journal [42],who
have graciously allowed it to be reprinted. Section 6 is new; it is based on (and
extends) one of the lectures of the Summer School. The SACJ article was in turn
a“transliteration”of a still earlier work [194] concerning probabilistic Generalized
Substitutions [3]Chapters 1,2 and Sect. 3.1 of a text [181] by the same authors
provides further insight into the material of Sect. 1–5.

Zhiming Liu and Mathai Joseph. Zhiming Liu’s work has been supported by
the UNU-IIST Research Project on Formal Methods of Object and Component
Systems and the project HighQSoftD funded by Macao Science and Technology
Fund, and the Chinese NSF project 60573085.

Ana Cavalcanti and Jim Woodcock. Their contribution is partially funded by
the Royal Society of London and by QinetiQ Malvern, but their greatest debt
is to Tony Hoare and He Jifeng for their inspirational work in unifying theories.
The authors were the Formal Methods Europe Lecturers at the PSS 2004, and
are grateful to FME for their support of this event, where their chapter was first
presented. Earlier versions of the material were presented at the Universities of
Oxford, Kent, and York, at QinetiQ Malvern, at the Danish Technical University,
and as an invited tutorial at Integrating Formal Methods, IFM 2004. The authors
have benefited from discussions with Chen Yifeng about closure; their proof of
R2-L0 is based on his original idea. Augusto Sampaio made a large number of
detailed and useful comments on the technical material in the chapter.

Phil Clayton and Colin O’Halloran. Simulink is a registered trademark.

David Déharbe. His chapter subsumes and improves on his work in Logic for
Concurrency and Synchronisation, volume 18 of Trends in Logic.



Table of Contents

Refinement: An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ana Cavalcanti, Augusto Sampaio, Jim Woodcock

Transformation Laws for Sequential Object-Oriented Programming . . . . . . 18
Augusto Sampaio, Paulo Borba

Using CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Jim Davies

Developing and Reasoning About Probabilistic Programs in pGCL . . . . . . 123
Annabelle McIver, Carroll Morgan

Real-Time and Fault-Tolerant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Zhiming Liu, Mathai Joseph

A Tutorial Introduction to CSP in Unifying Theories
of Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Ana Cavalcanti, Jim Woodcock

Using the Compliance Notation in Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Phil Clayton, Colin O’Halloran

Techniques for Temporal Logic Model Checking . . . . . . . . . . . . . . . . . . . . . . . 315
David Déharbe

Elementary Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Proofs of Lemmas and Theorems in the UTP . . . . . . . . . . . . . . . . . . . . . . . . . 369

Library Block Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393



Refinement: An Overview

Ana Cavalcanti1, Augusto Sampaio2, and Jim Woodcock1

1 Department of Computer Science
University of York

York, UK
2 Centro de Informática

Universitates Federal de Pernambuco
Recife - PE, Brazil

The purpose of this initial chapter is to introduce concepts and techniques
assumed as general background in the remaining chapters of this book. The
relevant notions are introduced using a simple and well-known programming
notation: Dijkstra’s language of guarded commands [81], presented in
Section 1.

Three classical approaches to assigning semantic meaning to programs are
then explored. In Section 2 we discuss the annotation of programs with assertions
and the associated reasoning framework (Hoare Logic). Section 3 is dedicated to
a calculational style where the behaviour of a program is defined in terms of a
predicate transformer: its weakest precondition. Partial and total correctness of
programs are contrasted in these two sections. The important notion of program
refinement is introduced in Section 4. We start with some intuition and then
we give a weakest precondition based definition, followed by an alternative (but
equivalent) definition in terms of nondeterminism.

In Section 5, we explore another approach to program semantics, known as
refinement algebra, which is based on equations and inequations (laws) relating
programming constructs; algebraic laws allow a term rewriting style of program
transformation. We then show, in Section 6, how the programming constructs
can be embedded into a more abstract space of specifications; we introduce
Morgan’s specification statement and illustrate Morgan’s refinement calculus
concerning both algorithmic and data refinement. In Section 7 we discuss how
a programming (or specification) language with a refinement ordering can be
regarded as a lattice. This allows using well-established results of lattice theory
in programming methodologies. We conclude this chapter with a brief discussion
of refinement in other programming paradigms and the importance of tools to
support program refinement in practice.

1 A Simple Programming Notation

The version of Dijkstra’s Guarded Command Language (GCL) adopted here is
summarised below; c stands for a command, x for a list of variables, e for a list
of expressions, and ψ for a predicate.

, LNCS 3167, pp. 1–17, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004



2 A. Cavalcanti, A. Sampaio, and J. Woodcock

c::=skip | abort do nothing, abortion
| x := e | c; c assignment, sequence
| if []i • ψi → ci fi conditional
| do []i • ψi → ci od iteration
| c � c nondeterminism
| var x : T • c local variable block

The primitive constructs are standard. The command skip has no effect and,
when executed, terminates immediately. In contrast, the command abort has a
completely arbitrary behaviour; rather than being deliberately written by a pro-
grammer, it may arise as a result of some undesirable computation like division
by zero, or an infinite loop without any externally visible effect.

The remaining primitive command of GCL is assignment. The program x := e
is a multiple (or simultaneous) assignment, where x is a list of distinct variables
and e an equal-length list of expressions. The components of e are evaluated
and assigned to the corresponding components of x in the same position. All the
contributing chapters of this book assume that expressions have no side-effect.
In this chapter we further assume that expressions are always well-defined (their
evaluation is always successful). In Chapter 2, on refinement of object-oriented
programs, we consider assignments whose expressions might fail when evaluated,
and the impact of side effects in expressions is discussed. As a simple example
of a multiple assignment, the command

x , y := y, x

swaps the values of x and y.
In GCL, the body of the conditional is a guarded command set. A guarded

command takes the form ψ → c, where ψ, the guard, is a predicate. The choice
of which command executes is between those whose guards evaluate to true.
If more than one guard is satisfied, the choice is nondeterministic; if no guard
evaluates to true, the conditional behaves like abort. As an example, we consider
the following command that assigns to z the greatest value held by x or y.

if (x ≤ y) → z := y
[] (y ≤ x ) → z := x
fi

When x = y, the choice of which assignment executes is nondeterministic.
The body of an iteration (do []i • ψi → ci od) is also a guarded command

set. Similarly to the conditional, the choice of which guarded command executes
depends on the evaluation of the guards. If more than one guard is satisfied, the
choice is nondeterministic; if no guard evaluates to true, the iteration terminates
successfully, behaving like skip. In the program fragment below, the final value
of r is the factorial of the natural number assigned to n.

r := 1 ; do (n > 1 ) → r := r ∗ n; n := n − 1 od



Refinement: An Overview 3

The program c1 � c2 denotes an arbitrary (also known as demonic) choice be-
tween the commands c1 and c2 , in the sense that either one can be selected for
execution. For instance, consider the program fragment below.

x := 1 � x := 2 ;
if (x = 1 ) → skip
[] (x = 2 ) → abort
fi

In this context, either x := 1 or x := 2 will be selected, so that is possible
that the execution of the conditional leads to abortion. It is important to ob-
serve, however, that, according to equality and refinement notions that reflect
total correctness, any program that might abort (like the one above) is actually
identified with abort.

Some specification languages (like the one introduced in the next chapter)
include a complementary notion of nondeterminism known as angelic choice. In
this case the most suitable command for a given context is selected for execution.
If the choice in the above example were angelic, the assignment x := 1 would
have been selected. Operationally, the view is that of backtracking in the search
for the best possible execution of the program. For further considerations on
demonic and angelic choices see, for instance, [17].

The program (var x : T • c) declares the variable x of type T for use in
the command c. Local blocks of this form may appear anywhere a command is
expected. The occurrence of a variable x in the scope of a local declaration is
bound, and free otherwise. For example, y is bound in var y : T • x := y , but
free in x := y. The program fragment that computes the factorial of n, previously
presented, can be redesigned to leave n untouched, using a local variable.

r := 1 ; var t : N • t := n; do (n > 1 ) → r := r ∗ t ; t := t − 1 od

In the following two sections we discuss two well-established approaches to
define a formal semantics to programming languages; the guarded command
language introduced in this section is used as illustration.

2 Assertions and Hoare Logic

A classical approach to assigning formal meaning to (and reasoning about) pro-
grams, well-known as Hoare logic, is presented in [114]. Like in other branches
of mathematics, the basis of this approach is to define the behaviour of pro-
gramming constructs in terms of axioms and inference rules. Axioms define the
semantics of the primitive commands like skip, abort and assignment. Each ax-
iom takes the form of a Hoare triple, P {c}Q , where c is a command and P and
Q are logical assertions, playing the role of pre- and postcondition, respectively.
A Hoare triple is interpreted as follows: if P is true and c terminates successfully,
then Q must be established. The semantics of language operators like sequential
composition and conditional is defined by inference rules which assume that a
Hoare triples hold for the arguments.



4 A. Cavalcanti, A. Sampaio, and J. Woodcock

The original formulation of Hoare logic is for partial correctness, which means
that the axioms and inference rules assume successful termination of a program,
as can be inferred from the above interpretation. Nevertheless, several subsequent
formulations of Hoare logic as, for instance, [74, 106, 203], address total correct-
ness. In this case, the interpretation of a triple P {c}Q is: if P is true, then
c must terminate successfully and establish Q . While the semantics described
here regards partial correctness, the weakest precondition semantics defined in
the next section embodies termination.

The Hoare triples for the language presented in the previous section are sum-
marised in Table 1.

Table 1. Hoare triples for GCL

P {skip}P
true {abort} false
P [e/x ] {x := e}P
If P {c1 }Q andQ {c2}R then P {c1 ; c2}R
If, for all i , (ψi ∧ P) {ci} Q then P {(if []i • ψi → ci fi)}Q
If, for all i , (ψi ∧ P) {ci} P then P {do []i • ψi → ci od} (P ∧ (

∧
i • ¬ψi))

If P {c1 }Q and P {c2 }Q then P {c1 � c2} Q
If P {c} Q then (∀ x : T • P) {var x : T • c} (∃ x : T • Q)

As skip has no effect, any logical assertion that is true before its execution,
remains true after it terminates. Being totally unpredictable, nothing can be
guaranteed concerning what abort could establish as postcondition, if it termi-
nates. The axiom for assignment formalises that if P is to be established after
the assignment of e to x , then the assertion obtained from P , by replacing all
free occurrences of x with e, must be true before the assignment.

The semantics of the remaining constructs is defined by inference rules. For
c1 ; c2 , the precondition is that of c1 , and the postcondition is that established
by c2 ; furthermore, the postcondition established by c1 coincides with the pre-
condition of c2 . Concerning the conditional, each of its guarded commands must
establish the expected postcondition, provided the corresponding guard is true.
In the case of a nondeterministic execution of c1 and c2 , the expected result can
only be ensured if both produce such a result.

The semantics of iteration is based on an invariant P that is assumed to hold
for each guarded command in the body of the loop, whenever the corresponding
guard is true. This invariant is also assumed to hold before the entire iteration
starts executing. Then, P must also hold after (possible) termination of the
iteration, when none of the guards holds any longer.

Assuming that an assertion holds for the body of a local declaration block
(where occurrences of a variable, say x , might be free), the precondition for the
entire block is assumed to hold for all possible values of x . Then there must be
at least one possible value of x such that the postcondition holds. When P and
Q do not mention x the quantifiers have no effect and can be eliminated.



Refinement: An Overview 5

Apart from the axioms and inference rules that define the semantics of the
programming constructs, Hoare logic includes additional rules for reasoning, like
the rules of consequence [114] displayed below.

If Q {c}R and P ⇒ Q then P {c}R
If Q {c}R and R ⇒ S then P {c} S

As an example of the application of these rules, we can observe that the
behaviour of abort is really unpredictable, since a Hoare triple such as

x = 1 {abort} x = 2

holds. The proof follows from the fact that x = 1 ⇒ true and false ⇒ x = 2 .

3 Weakest Preconditions

The seminal work [81] presented an alternative technique to reason about pro-
grams: weakest preconditions calculus. In this approach, the semantics of a pro-
gram is characterised by a predicate transformer: a function from predicates to
predicates usually called wp. When applied to a program p and to predicate ψ,
wp gives a predicate that defines all states in which execution of p terminates
and leads to a state in which ψ holds. The predicate ψ is called a postcondition,
and wp.p.ψ is the weakest precondition that guarantees that the program estab-
lishes ψ; a period is used here to denote function application. In contrast with
the previous chapter, here we consider total correctness.

The weakest precondition semantics of the simple language presented in Sec-
tion 1 is shown in Table 2. The semantics of a loop is given in terms of the
semantics of recursion, which is discussed in Section 7.

Table 2. Weakest precondition semantics of GCL

wp.skip.ψ ψ
wp.abort.ψ false
wp.x := e.ψ ψ[e/x ]
wp.(c1 ; c2 ).ψ wp.c1 .(wp.c2 .ψ)
wp.(if []i • ψi → ci fi).ψ (

∨
i • ψ i) ∧ (

∧
i • ψi ⇒ wp.ci .ψ)

wp.(c1 � c2 ).ψ (wp.c1 .ψ) ∧ (wp.c2 .ψ)
wp.(var x : T • c).ψ ∀ x : T • wp.c.ψ

Since skip terminates, but does not affect any variables, the only way in which
it can establish a postcondition ψ is if it already holds. Because abort may not
even terminate, it can never provide a guarantee to establish any postcondition.
The assignment x := e establishes a postcondition ψ if it holds when the variables
x take the values e (and all other variables are not changed).



6 A. Cavalcanti, A. Sampaio, and J. Woodcock

The semantics of sequence is function composition. The weakest precondition
for c1 ; c2 to establish ψ is the weakest precondition for c1 to establish the
weakest precondition for c2 to establish ψ.

For a conditional to be guaranteed at least to terminate, one of its guards
has to be true. Moreover, if it is to be guaranteed that it establishes ψ, then
the weakest precondition for each of the commands ci associated with guards ψi
that are true have to be satisfied. This is because any of these commands may
be chosen for execution.

This also explains the semantics of the choice c1 � c2 . If it is to be guaran-
teed that it establishes ψ, then both c1 and c2 have to provide the guarantee.
Finally, arbitrary choice is also embedded in the semantics of a variable block
(var x : T • c); the initial value of x is nondeterministically chosen. It is only
guaranteed to establish ψ, if c does, for every value that x may take.

4 Refinement Notions

During development, sometimes the resulting program does not behave exactly
as the original program, but is possibly better, from the point of view of the
user. In this case, we say that we have a refinement of the original program.
Formally, an ordering relation on programs is used: c1 � c2 holds when c2 is at
least as good as c1 in the sense that it will meet every purpose and satisfy every
specification satisfied by c1 .

A refinement relation is a pre-order: it is reflexive and transitive.

Law 1 (Refinement reflexive). c � c

Law 2 (Refinement transitive). (c1 � c2 ) ∧ (c2 � c3 ) ⇒ (c1 � c3 )

Often, and in this book, � is a partial ordering, further satisfying the antisym-
metry law.

Law 3 (Refinement antisymmetric). (c1 � c2 ) ∧ (c2 � c1 ) ⇒ (c1 = c2 )

While the transitivity property of the refinement relation supports stepwise re-
finement, antisymmetry reduces proofs of equivalence to proofs of mutual re-
finement, just like equivalence of predicates in the predicate calculus can be
established using mutual implication.

Apart from these properties, to allow compositional transformations (inde-
pendent refinement of subcomponents of compound programs) the language op-
erators should preferably be monotonic with respect to �. For example, c1 � c2
must imply c1 ; c3 � c2 ; c3 . In general, we have the result below, where F is a
context: a function on programs built from the language operators.

Law 4 (Refinement compositional). (c1 � c2 ) ⇒ (F (c1 ) � F (c2 ))

Ideally, this must hold for all valid contexts F . Some languages, nevertheless,
allow constructs which are not monotonic with respect to �, and therefore re-



Refinement: An Overview 7

strictions must be imposed on F so that the above law holds. This is the case,
for instance, of private attributes in object-oriented languages. They cannot be
used to build contexts since an improved class does not necessarily has the same
private attributes of the original class.

A formal definition of the refinement relation can be given in the weakest
precondition model, in a simple and intuitive way. A refined program must work
in at least the same set of states as the original program, but possibly in a larger
set. The stronger a predicate is, the smaller is the set of elements it defines.
Therefore, for all postconditions ψ, the weakest precondition of a refined program
must be no stronger than that of the original program.

(c1 � c2 ) =̂ wp.c1 .ψ ⇒ wp.c2 .ψ

Refinement can also be understood as a reduction of nondeterminism. Therefore,
if the nondeterministic choice between c1 and c2 always yields c1 , this means
that c2 refines c1 . This gives an alternative characterisation of �.

(c1 � c2 ) =̂ (c1 � c2 = c1 )

Nondeterminism is used in specifications to provide abstraction: choices that are
better made during design or implementation are left open.

Exercise 1. Derive the above definition of refinement from the previous one and
the weakest precondition semantics of � given in Section 2.

5 Refinement Algebra

Program transformation with the preservation of semantics can be formally jus-
tified in terms of a semantic model like weakest precondition or Hoare logic, as
discussed in previous sections. For instance, a program c1 can be safely trans-
formed into a program c2 provided c1 and c2 have the same weakest precon-
dition; the transformation is also valid if c2 is a refinement of c1 (the weakest
precondition of c1 implies that of c2 ).

In an algebraic style of reasoning, the properties of the programming con-
structs are captured by equations and inequations (laws) that directly relate
these constructs. An attractiveness of algebraic reasoning, therefore, is that it
is entirely conducted at the programming level; at least in principle, this seems
more appealing for programmers. In this approach, given that the algebraic laws
are sound, transformations based on their application are also correct by con-
struction. Soundness of the laws is considered a separate issue; this is done by
proving the laws in a mathematical model, like weakest precondition. The focus
here is on the presentation of the laws, rather than on their proofs.

First we consider simple properties of skip, assignment and sequential com-
position. For example, the following law states that the assignment of the value
of a variable to itself has no effect.



8 A. Cavalcanti, A. Sampaio, and J. Woodcock

Law 5 (Void assignment). (x := x ) = skip

Such a vacuous assignment can also occur as part of a multiple assignment.

Law 6 (Identity assignment). (x , y := e, y) = (x := e)

The list of variables and expressions may be subjected to the same permutation,
without changing the effect of the assignment.

Law 7 (Assignment symmetry). (x , y := e, f ) = (y, x := f , e)

Two assignments to the same variables can be readily combined into a single
assignment.

Law 8 (Combine assignments). (x := e; x := f ) = (x := f [e/x ])

The notation f [e/x ] denotes the substitution of e the free occurrences of x in f .
As skip has no effect, it is both the left and the right identity of sequence.

Law 9 (Composition identity). (skip; c) = c = (c; skip)

A comprehensive set of laws for imperative programming can be found in [116].
The purpose here is to illustrate the algebraic reasoning style. As a simple ex-
ample, we prove that assignments can be swapped when there is no interference.

Example 1 (Swap assignments). Consider x , y, w and z are distinct identifiers.
Then (x := y; w := z ) = (w := z ; x := y)

Proof.

x := y; w := z [Law 6]
x ,w := y,w ; w , x := z , x [Law 7]
w , x := w , y; w , x := z , x [Law 8]
w , x := z , y [Law 8]
w , x := z , x ; w , x := w , y [Law 7]
w , x := z , x ; x ,w := y,w [Law 6]
w := z ; x := y

The laws allow us to prove that the two sequences of assignments (although syn-
tactically different) behave the same and, therefore, are semantically equivalent.

A nice feature of the algebraic style is modularity. One can explore program
properties incrementally, considering one construct at a time. For example, let
us now deal with variable declaration. A simple property is that, if the declared
variable is not used in its scope, then the declaration has no effect.

Law 10 (Void declaration). (var x : T • c ) = c provided x is not free in c

Recall that an occurrence of a variable x in c is bound (or local) if it is in the
scope of a declaration of x in c, and free (or global) otherwise.



Refinement: An Overview 9

Another property of local variable declaration is that assigning to a variable
at the end of its scope has no effect.

Law 11 (Assignment elimination).

(var x : T • c; x , y := e, f ) = (var x : T • c; y := f )

As is usual in an algebraic presentation, the introduction of the new laws for
declaration has no impact on the previous laws; actually they contribute to
the set of properties that hold of our simple programming language. Therefore,
the proof of Example 1 does not need to be revised. Transformations involving
declarations can now be performed using the previous and the new laws. The
following exercise serves as an illustration.

Exercise 2. Assuming that z is not free in x := y, and that these variables have
type T , prove the following equivalence:

(var z : T • z := y; x := z ) = (x := y)

As previously discussed, during program transformation, sometimes the re-
sulting program does not behave exactly as the original program, but is possibly
better than (a refinement of) it. The following is an example of a refinement
law.

Law 12 (Declaration initialisation).

(var x : T • c ) � (var x : T • x := e; c )

Since the initial value of a declared variable is totally arbitrary, initialisation of
a variable may reduce nondeterminism, leading to a more predictable program.

Nondeterminism can be understood as allowing choices to be made. Program
development usually starts with abstract specifications which leave several de-
sign decisions for the programmer to take. One important issue in refining a
specification into a program is reducing nondeterminism. This is addressed in
further detail in the next section.

6 Specification and Program Development

While the notation introduced so far exemplifies well-known (executable) pro-
gramming constructs, it is not suitable for writing abstract specifications. In the
view followed by consolidated approaches to program development, a mathe-
matical trick is applied: the programming language is embedded within a more
general specification notation. In this way, a single notation is used both for
programming and for specification; programs appear as a special kind of speci-
fication. Therefore, program development reduces to transformations of specifi-
cations within a uniform framework. Examples of approaches which adopt this
view are the refinement calculi by Back [14], Morgan [192] and Morris [199].



10 A. Cavalcanti, A. Sampaio, and J. Woodcock

A distinguishing feature of Morgan’s calculus is the specification statement:

w : [pre, post ]

which describes a program that, when executed in a state satisfying the pre-
condition pre, terminates in a state satisfying the postcondition post , possibly
modifying the values of variables in the list (frame) w .

As an example, consider the specification statement

s , r : [e 	∈ s , s = s0 ∪ {e} ∧ r = "Okay"]

whose effect is to add a new element e to a set s , and assign to r the con-
stant "Okay", indicating successful execution of the operation. By convention,
occurrence of framed variables in the precondition refer to their initial values,
whereas in the postcondition such occurrences refer to the final values of the
framed variables. To reference initial values of framed variables in the postcon-
dition, a subscript is adopted. Therefore, s0 stands for the initial value of s in
the postcondition above.

This specification can be refined into executable code, as discussed in the
sequel. In this way, the language allows us to start with an abstract specification
of a program and progressively refine it by mixing code and specifications, and
then finally obtain a program with executable constructs only.

Some extreme specifications are of particular interest for reasoning. For ex-
ample, we can write abort as a specification.

abort = x : [false, true]

It is the worst possible specification. It is never guaranteed to terminate (precon-
dition false), and even when it does, its outcome is completely arbitrary (post-
condition true). It allows any refinement; for instance, programs setting x to
arbitrary values. At the other extreme, we have the best possible specification

miracle = x : [true, false]

which can execute in any state (precondition true) and establishes as outcome
the impossible postcondition false. This is an infeasible specification; it cannot
be realised as an executable program. In fact, it is not refined by any other spec-
ification or code. So, arriving at this specification during development indicates
that the developer should return to a previous development step and make alter-
native design choices in order to be able to implement the initial specification.

It is also useful in program derivation or transformation to assume that a
condition b holds at a given point in the program text. This can be written as
{b}, and defined as follows.

{b} =̂ : [b, true]

If b is false, {b} reduces to abort. Otherwise, it behaves like skip: always termi-
nates and does nothing. In [192], and in this book, this is called an assumption;
it coincides with the concept of assertion in the setting of Hoare logic.



Refinement: An Overview 11

We can also give a simple specification to skip.

skip = : [true, true]

The empty frame guarantees that no variables are changed.

6.1 Algorithmic Refinement

Morgan’s calculus is perhaps the most appealing to practising programmers,
since it includes several laws that allow transforming specification statements
into executable programs. Some laws relate specification statements. Two of
these capture the notion of refinement in program development. The first states
that a program can be made more applicable (defined for a larger domain or set
of states) when refined; in other words, its precondition can be weakened.

Law 13 (Precondition weakening). w : [pre, post ] � w : [pre ′, post ]
provided pre ⇒ pre ′

Concerning the effect (postcondition), refinement might lead to a more deter-
ministic or predictable program, as already discussed in the previous section.

Law 14 (Postcondition strengthening). w : [pre, post ] � w : [pre, post ′]
provided pre[w0/w ] ∧ post ′ ⇒ post

This states that strengthening the postcondition, in states which satisfy the
precondition, leads to refinement. The substitution of w0 for w in the proviso
is necessary due to the convention that initial values of framed variables in the
postcondition are subscripted.

A refinement of our example specification is to increase its applicability,
recording an error message in r when the element is already in the set.

s , r : [true,(e 	∈ s0 ∧ s = s0 ∪ {e} ∧ r = "Okay "]) ∨
(e ∈ s0 ∧ s = s0 ∧ r = "AlreadyMember")]

Whenever the precondition of the original specification is satisfied (the ele-
ment is not in the set), the refined version exhibits exactly the same behaviour.
When the element is already in the set, the values of z and r are not defined in
the original specification, and therefore totally arbitrary. In the refined
version, when this happens, s is not modified and r takes the defined value
"AlreadyMember".

Exercise 3. Prove the refinement:

s , r : [e 	∈ s ,s = s0 ∪ {e} ∧ r = "Okay"]
�

s , r : [true, (e 	∈ s0 ∧ s = s0 ∪ {e} ∧ r = "Okay"]) ∨
(e ∈ s0 ∧ s = s0 ∧ r = "AlreadyMember")]

Most of the laws of Morgan’s refinement calculus relate particular forms of speci-
fication statements to programming constructs, serving as tools to refine abstract



12 A. Cavalcanti, A. Sampaio, and J. Woodcock

specifications into code which can be effectively executed. The process is known
as algorithmic or control refinement. For example, the law below allows the in-
troduction of an assignment.

Law 15 (Assignment introduction). w , v : [pre, post ] � v := e
provided (v = v0 ) ∧ pre ⇒ post [e/v ]

It states that if the value of the assigned expression is suitable to establish
the postcondition, in contexts where the precondition holds, then the assign-
ment is a valid implementation of such a specification. In the proviso, the con-
dition (v = v0 ) is necessary due to the convention that initial values of framed
variables in the postcondition are subscripted. For example, in a specification
statement of the form v : [true, v = v0 + 1 ], v0 denotes the initial value of
v in the postcondition, whereas in an assignment of the form v := v + 1
no subscript variables are used. Identifying v = v0 in the formulation allows
to justify this kind of refinement. For this example, the proof obligation is
v = v0 ∧ true ⇒ v + 1 = v0 + 1 , which clearly holds.

As another example, consider the following law.

Law 16 (Following assignment).

w , v : [pre, post ] � w , v : [pre, post [e/v ]]; v := e

It allows the extraction of an assignment from a specification statement , but
still keeps the remaining behaviour as a (modified) specification statement.

Exercise 4. Prove the following refinement:

s , r : [e 	∈ s , s = s0 ∪ {e} ∧ r = "Okay"] � (s := s ∪ {e}; r := "Okay")

6.2 Data Refinement

Complementarily to algorithmic refinement, program development normally in-
volves change of data representation. A typical development starts with a spec-
ification whose data structures are abstract and, possibly, not even available in
the target programming language. As the development progresses, the abstract
data types give rise to more concrete representations.

As a simple example, consider a specification statement similar to that of the
previous section, which adds a new element to a set.

s : [e 	∈ s , s = s0 ∪ {e}]

Then consider a possible implementation using a sequence, as a concrete repre-
sentation of a set.

t : [e 	∈ set t , t = t0 � 〈e〉]

We use set t to denote the set with the elements of the sequence t ; 〈e〉 stands for
the singleton sequence with element e, and � represents sequence concatenation.



Refinement: An Overview 13

Intuitively, the latter specification refines the former, since sequences (lists
or arrays) are well-known structures used for implementing sets. Furthermore,
both operations have the same observable effect of adding a new element to
the relevant data structure. Nevertheless, attempting to prove this refinement
using the laws for weakening precondition and strengthening postcondition soon
reveals that a direct comparison between the two statements is not possible
at all. The reason is that they operate on different data spaces: a set s and a
sequence t .

The missing connection is a relation between the abstract and the concrete
states. For the particular example,

s = set t

Based on this relation, it is possible to prove this data refinement. In general,
relations between abstract and concrete states can be arbitrary. In many cases of
practical interest, nevertheless, these relations are functional, and are called ab-
straction functions. In our example, the relation is functional and the abstraction
function is set.

In Morgan’s calculus, data refinement is formulated at the level of program-
ming modules. A module includes state variables, a state initialisation, and pro-
cedures which act on the module state. Broadly, the technique involves adding
the concrete variables to the module being data refined, making the abstract
variables auxiliary, and then removing the auxiliary (abstract) variables. When
the relation between abstract and concrete states is functional, these steps are
combined into a single step.

In this view, our abstract module would include the declaration of the variable
s (say, a set of natural numbers), a state initialisation (say, the empty set), and
several operations, including the one to insert new elements into the set, as
presented above. To proceed with the data refinement, several transformations
are proposed by Morgan to deal with initialisation, assignments, specification
statements, and so on.

To illustrate the technique, we present a transformation for specification state-
ments. A specification statement

w , x : [pre, post ]

becomes

w , z : [pre[af z/x ], post [af z0 , af z/x0 , x ]]

where af stands for the relevant abstraction function, x for the abstract variables,
and z for the concrete variables. Observe that this transformation replaces x with
z in the frame, and occurrences of x in the pre and in the postcondition with af z .
In the postcondition, both the initial and final values of x need to be replaced.

Exercise 5. Formalise the data transformation of the statement previously pre-
sented: s : [e 	∈ s , s = s0 ∪ {e}] into t : [e 	∈ set t , t = t0 � 〈e〉] considering the
abstraction function: s = set t .



14 A. Cavalcanti, A. Sampaio, and J. Woodcock

7 Refinement and Lattices

We have not given a semantics for recursion yet, and presented only a partial
semantics for iteration in Section 2. In this section, we come to this point as
part of a discussion of refinement as a partial order in a lattice of monotonic
predicate transformers [199, 97, 16]. A partial order is a reflexive, anti-symmetric
and transitive relation between elements of a set. If, given any two elements of
the set, they are always related by the order in some way, then we have a total
order. Refinement, however, is a partial order between programs.

To give the semantics and reason about simple (non-recursive) procedures,
we can use a copy rule: basically, it allows calls to the procedures to be replaced
with their bodies. As an example, we consider the program below, which defines
a procedure Inc, and calls it twice.

proc Inc =̂ x := x + 1 • Inc; Inc

It is equivalent to x := x + 1 ; x := x + 1 . In the case of a recursive procedure,
however, this approach does not work. As a second example, we take a procedure
Sum that adds the value of x to that of another variable y (and sets x to 0).

proc Sum =̂ if (x = 0 ) → skip
[] (x > 0 ) → y := y + 1 ; x := x − 1 ; Sum
fi

• y := 5 ; x := 10 ; Sum

In the main program, we call Sum; if we replace this call by the body of Sum,
another call of Sum is introduced, so the copy rule does not really sort out the
reasoning problem.

The declaration of Inc can be seen as a definition of this procedure through
the equation

Inc = x := x + 1 ; x := x + 1

In the case of Sum, this equation is

Sum = if (x = 0 ) → skip [] (x > 0 ) → y := y + 1 ; x := x − 1 ; Sum fi

The body of Sum can be regarded as a context: a function from programs to
programs, which can be defined as follows using the λ notation.

λX • if (x = 0 ) → skip [] (x > 0 ) → y := y + 1 ; x := x − 1 ; X fi

Therefore, the equation that defines Sum requires that it is a program that, when
given as argument to the above function, the result is itself. For any function
F , the arguments X for which F (X ) = X are called fixed points of F . So, the
equation for Sum requires it to be a fixed point of the function on programs
characterised by its body.

The problem is that fixed points may not exist, or there may be lots of them.
So, for the equation characterised by the declaration of a recursive procedure to



Refinement: An Overview 15

be a valid definition, we need to guarantee that there is at least one fixed point,
and that, when there are several, we have a way of choosing one. With this end,
it is usual taking lattices with various properties as semantic models.

A lattice is a set S with a partial order ≤ that satisfies a few extra properties.
They are based on the existence of lower and upper bounds for certain subsets
of S . For any subset T of S , an upper bound u of T is an element of S such
that t ≤ u for every t in T . Similarly, a lower bound l is such that l ≤ t , for
every t ∈ T . The least upper-bound is an upper bound that is smaller than all
others; likewise, the greatest lower-bound is a lower bound that is bigger than
all others.

Definition 1 (Lattice and complete lattice). A lattice is a partially ordered
set, in which all non-empty finite subsets have both a least upper-bound (join)
and a greatest lower bound (meet). A complete lattice is a lattice in which all
subsets have both a join and a meet. �

Every complete lattice has a bottom (smallest element) and a top (biggest
element).

Example 2 (Complete lattices). Complete lattices are often found in mathemat-
ics and computer science. We give two examples drawn from mathematics.

1. The power set of a given set S ordered by inclusion forms a complete lattice.
The least element is the empty set and the greatest element is S itself. Join
is union and meet is intersection of subsets.

2. The set of natural numbers ordered by divisibility forms a complete lattice.
Divisibility gives m � n exactly when (∃ k • k × m = n ), and so forms a
partial order. The bottom of this lattice is the number 1 , since it exactly
divides every other number. The top element of the lattice is 0 , since it can
be divided exactly by every other number. The join of finite sets is given
by the least common multiple; for infinite sets, the join will always be 0 .
The meet is the greatest common divisor, and for infinite sets this may well
be greater than 1 . For example, the set of all even numbers has 2 as the
greatest common divisor. �

An example of a complete lattice drawn from the area of refinement is the
set of monotonic predicate transformers ordered by refinement. A discussed in
Section 3, we can use a function wp to characterise (the semantics of) programs.
For a program p, wp.p is a predicate transformer; the set of all such predicate
transformers pt is a convenient model for programs. The partial order � for
predicate transformers defined as

pt1 � pt2 =̂ pt1 .ψ ⇒ pt2 .ψ, for all predicatesψ

corresponds to the refinement relation defined in Section 4.
A function f from a set S with a partial order ≤S to a set T with a partial

order ≤T is monotonic if, for every x and y in S , if x ≤S y, then f (x ) ≤T f (y).



16 A. Cavalcanti, A. Sampaio, and J. Woodcock

For every program p, the function wp.p is monotonic. The partial order consid-
ered for the set of predicates is implication. If a postcondition ψ1 implies another
postcondition ψ2 , we say that ψ1 is stronger than ψ2 , because less states satisfy
ψ1 , and every state that satisfies ψ1 also satisfies ψ2 . In this case, for every
program p, wp.p.ψ1 implies wp.p.ψ2 ; this is because if from a particular initial
state p is guaranteed to establish ψ1 , then it is also guaranteed to establish ψ2 .

The bottom of the complete lattice of monotonic predicate transformers is
abort; the top is miracle. The join operator the demonic choice, and the meet
operator is angelic choice.

Well-known results establish the existence of fixed points for functions on
complete lattices. For example, we know that every monotonic function on a
complete lattice has a fixed point. Since the body of a recursive procedure is a
monotonic function on programs (see Law 4), this is in the direction of what we
need to give meaning to recursive procedures. What we still need to sort out is
the fact that such functions may have several fixed points. An extreme example
is an infinite recursion: proc Inf =̂ Inf • . . .. The function defined by its body
is the identity λX • X . Every program is a fixed point of this function.

In such situations, we take the least fixed point to be the definition of the
recursive procedure; it is denoted by μX • F (X ), where F is the body of the
procedure written as a function of X . This is the least refined program that
satisfies the equation characterised by the definition of the recursive procedure.
From the point of view of program development, this is the natural solution,
since, as already explained, we want to impose as few restrictions as possible on
a specification, and leave design decisions open. The meaning of Inf , for example,
is taken to be the least refined program: abort.

The Knaster-Tarski fixed point theorem is very much used since it gives an
explicit characterisation for the least fixed point of a monotonic function on a
complete lattice; it is stated below.

Theorem 1 (Knaster-Tarski fixed point). For every monotonic function
F (X ) on a complete lattice with order ≤

μX • F (X ) = �{X : L | F (X ) ≤ X }

We use � S to denote the greatest lower-bound of the set S .
The greatest fixed point of F also exists; it is denoted by νX • X , and it is

possible to prove that νX • F (X ) =
⊔

{X : L | X ≤ F (X ) }. For a set S ,
⊔

S
is its least upper-bound.

As explained above, the top of the lattice of monotonic predicate transform-
ers is miracle, an infeasible program that is not implementable. Some seman-
tic models do not include this program, or any program that may behave like
miracle in some situations. In this case, it is usual that, instead of a complete
lattice, the semantic model is a CPO: complete partially ordered set.

Definition 2 (Complete partially ordered set). A CPO (complete partially
ordered set) is a partially ordered set, which has a bottom, and in which every
directed subset has a least upper-bound.



Refinement: An Overview 17

A set is directed if all its finite subsets have an upper bound as one of its own
elements. Monotonic functions on a CPO also have fixed points. If, in addition,
the function is continuous, then it has a least fixed point as characterised in the
theorem below. A function F is continuous if, and only if, it distributes over least
upper-bounds of directed sets: F (

⊔
D) =

⊔
{ d : D • F (d) }, for every directed

set D .

Theorem 2. For every continuous function F (X ) on a CPO with order ≤ and
bottom element ⊥

μX • F (X ) =
⊔
{ n : Z • Fn(⊥) }

For a function F , we define F 0 to be the identity function (F 0 (X ) = X ), and
Fn(X ) = F (Fn−1 (X )), for n > 0 . Continuity can be a strong property, and
is not satisfied by many programs involving unbounded nondeterminism [31]. A
more comprehensive account of lattice theory, including proofs for the theorems
presented above, can be found in [77].

8 Final Considerations

There are several program and programming models. We have briefly discussed
here Hoare logic, refinement algebra, and weakest preconditions. Other models
are presented in later chapters of this book. Chapters 3 and 6 give different
relational models for the process algebra CSP, and Chapter 4 gives a weakest
precondition model for probabilistic programs. Chapter 5 adopts a more oper-
ational model (transition systems) and the TLA (Temporal logic of Actions)
notation to explore specification, verification and scheduling of real-time and
fault-tolerant systems. A common feature to all of them is a formal characteri-
sation of refinement; this is central to any model that supports a development
technique.

Potential applications of algebraic reasoning in the context of object-oriented
programming is the major objective of the next chapter. Laws of the process
algebra CSP are explored in Chapter 3. Laws of programming involving proba-
bility are explored in Chapter 4.

Typically, the use of refinement techniques is potentially a very error-prone
activity that involves copious formula manipulations. If the benefits of the use
of a rigorous programming approach are not to be lost, and are to be avail-
able for large-scale industrial systems, the use of tools is essential. Many prod-
ucts are available. Model checking techniques have been particularly attractive
to industry due to their high level of automation; they are discussed in de-
tail in Chapter 8. A set of tools that have been very successful in industry
for the verification of control system in the area of avionics is presented in
Chapter 7.



Transformation Laws for Sequential
Object-Oriented Programming

Augusto Sampaio and Paulo Borba

Centro de Informática
Universidade Federal de Pernambuco

Recife - PE, Brazil

In this chapter, we present algebraic laws for a language similar to a subset
of sequential Java that includes inheritance, recursive classes, dynamic binding,
access control, type tests and casts, assignment, but no sharing. We show that
these laws are complete, in the sense that they are sufficient to reduce any
program to a normal form substantially close to an imperative program: classes
and inheritance are used only to preserve the notion of subtyping; all classes have
empty bodies, except the object class, which collects all the attributes moved
up from all its subclasses. Methods are also eliminated by first resolving dynamic
binding, and then in-lining their bodies in place of the calls. This suggests that
our laws are expressive enough to formally derive behaviour preserving program
transformations; this is illustrated through the derivation of refactorings.

We present the motivation for our work in Section 1. In Section 2, we give
an overview of the subset of Java that we consider. After that, in Section 3, we
present the algebraic laws of our language, concentrating on its object-oriented
features. Completeness of our set of laws is considered in Section 4, where we
present the normal form and a reduction strategy. In Section 5 we show how
the presented laws can serve as a basis for proving refactorings. Section 6 sum-
marises our results, briefly discusses soundness of the laws, considers the impact
of reference semantics, relates our results with work involving concurrency, and
suggests topics for further research.

1 Introduction

Reasoning about programs requires the characterisation of the behaviour (or
meaning) of programming operators. As explored in the previous chapter, this
is achieved through a formal semantics for the relevant programming language.
Program transformations should be based on a notion of equivalence (or refine-
ment) between programs defined using the semantics; they are useful to restruc-
ture programs or to support stepwise development from specifications.

There are three major consolidated approaches for defining semantics of pro-
gramming languages. Broadly, in the operational style [213] an abstract mathe-
matical model of a machine is defined, and the meaning of a program is given in
terms of the step by step execution of the program in this model. This allows, for
example, to check for feasibility (implementability) of the language operators.

, LNCS 3167, pp. 18–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004



Transformation Laws for Sequential Object-Oriented Programming 19

Another classical approach, the denotational style [233], maps each program-
ming construct to a value (denotation) in some convenient and independent
mathematical domain. The use of an explicit mathematical model helps to en-
sure consistency of the semantic mapping. The weakest precondition semantics
discussed in Chapter 1 is an example of a semantics that follows the denotational
style: it maps programs to functions from predicates to predicates.

Finally, the algebraic approach is based on postulating general properties of
the language constructs, typically as equations that relate the language opera-
tors. Unlike the previous approaches, no explicit mathematical model is defined
in an algebraic presentation. In principle, this has the advantage of modular-
ity: each new programming notation is introduced with its algebraic properties,
hopefully with no effect on the semantics of the existing constructs. Further,
equational reasoning, which can be easily mechanised by term rewriting, is im-
mediately available as a framework for reasoning and transforming programs.

Section 6 of the previous chapter has illustrated some algebraic laws of a
simple imperative programming language, as well as their use in program trans-
formation and refinement. A set of laws that captures general properties of (and
the relationship among) programming constructs is usually called a refinement
algebra; when the purpose of the laws is to derive executable programs from spec-
ifications, then they are collectively denoted as a refinement calculus. Our major
objective in this chapter is to define a refinement algebra for sequential object-
oriented programming, and discuss potential applications of algebraic reasoning
in the context of object-orientation.

Several paradigms have benefitted from algebraic programming laws. The laws
of imperative programming [116] have been useful for providing algebraic seman-
tic definitions and for establishing a sound basis for formal software
development methods. The laws of OCCAM [226] exhibit useful properties of
concurrency and communication; similar laws are available for CSP [116, 226].
Algebraic properties of functional programming are elegantly addressed in [28].
Algebraic reasoning for logic programming is presented in [237]. Apart from be-
ing useful for reasoning about programs, algebraic reasoning has been proved to
be promising for applications such as designing correct compilers [128, 228] and
hardware/software partitioning algorithms [242]. As previous contributions re-
lated to laws of object-oriented programming, we single out laws for small-grain
object-oriented constructs [187, 151]. Some laws have been informally discussed
as refactorings [94], and formalised to the degree that they can be encoded in
tools [208, 224], but not proved sound or complete.

Laws for an object-oriented programming language similar to sequential Java,
but with copy (rather than reference) semantics have been explored in [32, 33].
In [33], laws for the imperative features of the language are presented, but the
emphasis is on laws for object-oriented features. The set of laws is shown to be
complete in the sense that it is sufficient to reduce any program to a normal form
close to an imperative program. The formal derivation of refactorings from the
proposed set of laws is also illustrated. These results are extended to address
soundness of the laws and more refactorings in [32].



20 A. Sampaio and P. Borba

In this chapter, we use a uniform example to introduce the language considered
in [33, 32], to illustrate the application of some algebraic laws, to derive a design
pattern and a refactoring, and to illustrate the completeness result through a
normal form reduction process. In addition, we also explore some new issues.
The validity of the laws in the context of a language with reference semantics is
discussed in some detail, further examples of refinement of class hierarchies are
given, and the results are related with other programming paradigms, particu-
larly concurrency. On the other hand, as our major objective is to emphasise the
algebraic style, soundness is only briefly addressed in the final section.

Despite our focus on the algebraic approach, by no means we intend to induce a
general superiority of the algebraic approach compared to the other presentation
styles. As discussed above, each approach serves some noble and distinguishing
purposes; the three styles complement each other.For instance, thevalidity (sound-
ness) of a postulated set of laws can be established by linking the algebraic presen-
tation to a denotational or operational model in which the laws can be proved.

Our view, nevertheless, is that once the laws have been proved, in whatever
model, they should serve as tools for carrying out program transformations. The
mathematical definitions that allow their correctness proofs are normally more
complex, and therefore not appealing to practical use. This unified view of se-
mantic presentations is nicely described in detail in [117], which explores the
roles of algebras and models in the construction of theories relevant to Com-
puting. This approach to unifying theories of programming has been proposed
to study different paradigms, considering a variety of semantic presentations in
an integrated way: denotational, operational, and algebraic. Chapter 6 discusses
the unifying theories of programming in some detail.

2 The Language

In order to explore in detail the techniques and applications of algebraic reason-
ing for object-oriented programming, we use a specific language. It essentially is
a subset of sequential Java [102] with two major differences:

– it has a copy semantics for both objects and elements of primitive types,
whereas Java has a reference semantics for objects;

– it supports both programs and specifications, by also having non-executable
constructs, such as specification statements from Morgan’s refinement cal-
culus [192].

Similarly to Java, it includes classes, inheritance, access control, dynamic bind-
ing, type tests and casts, recursion, assignment, and many other imperative
features.

A program cds • c in this language is a set of class declarations cds followed
by a main command c, which creates and manipulates objects of the classes
in cds . This command might have free variables, corresponding to the program
inputs and outputs, but we assume that those can only hold elements of primitive
types, not objects. Before discussing class declarations and commands, we further
examine the differences just mentioned between our language and Java.



Transformation Laws for Sequential Object-Oriented Programming 21

2.1 Copy Semantics

As in the case of Java, our language supports copy semantics for elements of
primitive types. However, contrasting with Java, we adopt copy semantics for
objects too. So, variables store objects, not references to objects. For variables
a and b of a class Account , for example, the execution of the assignment b := a
stores in b a fresh copy (clone) of the object stored in a. This assignment actually
creates a new object in the heap. So changes to the account in a do not affect
the account in b, and vice-versa. For example, assuming that the initial balance
of a is 0 , after executing the following code, the object in a will have balance
600 , whereas the object in b will have balance 550 .

a.credit(550 ); b := a; a.credit(50 )

The method credit of Account , as expected, increases the balance of an account
by the amount it takes as argument. Similarly, object copies, not references, are
passed as parameters and returned as results of method calls.

Copy semantics is precisely what is necessary in several situations, and simpli-
fies reasoning by avoiding aliasing and corresponding side-effects. On the other
hand, this prevents us from modelling references and sharing. This is necessary,
for instance, to implement design patterns such as the Observer [96], where ob-
jects mutually refer to each other. In this case, a reference to an object would
be stored both in a variable of the main program and in an attribute of another
object. In our language, classes can be mutually dependent, being defined in
terms of each other, but objects cannot refer to each other.

A detailed discussion of the impact of reference semantics on the set of laws
introduced in this chapter is presented in the final section of this chapter.

2.2 Class Declarations

Classes are declared as in the example in Figure 1, where we define a class called
Account . Subclassing and single inheritance are supported through the extends
clause. The built-in object class is a superclass of all the other classes, so the
extends clause in the example could have been omitted.

The class Account includes three private attributes: number , balance and
owner , of types string, double and Client , a user-defined class omitted here.
Besides the pri qualifier for private attributes, there are qualifiers for pro-
tected (prot) and public (pub) attributes as in Java. For simplicity, the lan-
guage supports no attribute redefinition and allows only public methods, which
can have value and result parameters. The list of parameters of a method is
separated from its body by the symbol •. The method getNumber has a result
parameter n, and setNumber has a value parameter also called n. Constructors
are declared by the new clause and do not have parameters. In contrast to
Java, our language adopts a simple semantics for constructors: they are syntac-
tic sugar for methods that are called after creating objects of the corresponding
class.



22 A. Sampaio and P. Borba

class Account extends object
pri number : string
pri balance : double
pri owner : Client
meth credit =̂ (val value : double • self .balance := self .balance + value)
meth getBalance =̂ (res bal : double • bal := self .balance)
meth getNumber =̂ (res n : string • n := self .number)
meth setNumber =̂ (val n : string • self .number := n)
meth getOwnerName =̂ (res n : string • self .owner .getName(n))
new =̂ self .balance := 0 ; self .owner := newClient

end

Fig. 1. Class Account

Data types are either primitive (bool, double, string and others) or classes.
We consider that methods cannot be mutually recursive, but classes can. How-
ever, since we do not support references, we cannot have objects mutually refer-
ring to each other.

For simplicity, the language does not have interfaces or abstract classes. How-
ever, by defining a method as abort we basically specify that nothing can be
assumed about how subtypes implement (redefine) that method. In this respect,
such a method would be semantically similar to abstract methods in Java.

2.3 Commands

The body of methods and constructors are commands similar to those of Mor-
gan’s refinement calculus [192]. Their syntax is formalised as follows.

c ∈ Com ::=le := e | c; c assignment, sequence
| x : [ψ1 , ψ2 ] specification statement
| pc(e) parametrised command application
| if []i • ψi → ci fi conditional
| μ X • c | X recursion, recursive call
| var x : T • c local variable block
| avar x : T • c angelic variable block

We allow x , e, le, and T to also denote lists of identifiers, expressions and types;
this shall be clear from the context. The expressions le that are allowed to appear
as the target of assignments and method calls, and as result arguments, define
the subset Le (left expressions) of valid expressions. We define this set later in
this section.

Method bodies (such as res n : string • n := self .number) are parametrised
commands [14, 50], which can be applied to a list of arguments to yield a com-
mand, as indicated by the entry pc(e) in the description of commands. So
methods are seen as parametrised commands and, therefore, method calls are



Transformation Laws for Sequential Object-Oriented Programming 23

represented as the application of parametrised commands. The syntax of
parametrised commands is defined as follows.

pc ∈ PCom ::=pds • c parametrisation
| le.m | ((N )le).m method calls
| self .m | super.m

pds ∈ Pds ::=∅ | pd | pd ; pds parameter declarations
pd ∈ Pd ::=val x : T | res x : T

The parametrised command pds • c declares parameters pds used in a command
c. The parametrised command le.m is a call to a method m with target object
le. Parameters can be passed by value (keyword val) or result (res). In the body
of the getOwnerName method of the class Account , for instance, we have a call
to a method getName with target owner and argument n. The name of the
account’s owner will then be stored in n. A call to a method m on the current
object must be written as self .m since references self to the current object are
not optional in our language; in the case of redefinitions, the method declared
by the superclass can be called by writing super.m.

The conditional (alternation) is in the style of the guarded if of Dijkstra’s
language [81]. In the BNF, we use an informal indexed notation for a finite set
of guarded commands ψi → ci separated by []. In programs, it looks like

if ψ1 → c1
[] ψ2 → c2
...
[] ψn → cn
fi

where ψi are conditions and ci are commands. This command aborts when no
condition is valid, and is non-deterministic when more than one condition is
valid; an arbitrary valid guard is chosen.

We have recursion and variable blocks. Strictly, a recursive method can be
expressed in our language using the recursion operator μ (see [156] for the de-
tails). Angelic variables, also known as logical variables or logical constants,
are similar to standard local variables (which are not automatically initialised),
except that their initial values are angelically chosen to make sure that the pro-
gram in their scope succeeds, if possible at all. For example, in the program
fragment

avar x : Z • {x = 2}; . . .

the variable x is assigned value 2 upon (an implicit) initialisation; otherwise,
the assumption {x = 2} would behave like abort. Angelic declarations are not
code, but they are useful for specification and reasoning.



24 A. Sampaio and P. Borba

2.4 Expressions

Our language includes typical object-oriented expressions:

e ∈ Exp::=self ‘reference’ to current object
| null | new N null ‘reference’, object creation
| x | f (e) variable, built-in application
| e is N | (N )e type test, type cast
| e.x | (e; x : e) attribute selection and update

The expressions self and is have similar semantics to this and instanceof
in Java; and as in Java, the latter does not require exact type matching. We
must write self .a to access the attribute a of the current class, since as already
mentioned self is not optional. The update expression (e1 ; x : e2 ) denotes a copy
of the object e1 , but with the attribute x mapped to a copy of e2 ; this is similar
to update of arrays in Morgan’s refinement calculus [192]. So, despite its name,
the update expression, similarly to the other expressions, has no side-effects; in
fact, it creates a new object instead of updating an existing one. Variables can,
however, be updated through the execution of commands, as in o := (o; x : e),
which is semantically equivalent to o.x := e, and updates o. Expressions such as
null.x and (null; x : e) cannot be successfully evaluated; they yield the special
value error and lead the commands in which they appear to abort.

The left-expressions are defined as follows.

le ∈ Le ::= le1 | self .le1 | ((N )le).le1 le1 ∈ Le1 ::= x | le1 .x

These are the expressions that can appear as targets of assignments, and as
result arguments; they can also appear as targets of method calls, along with
self , super, and cast expressions.

Exercise 1. Using the language introduced in this section, define a Client class
having name and address as attributes, and getName (see the Account class
introduced in Section 2.2), setName, and getStreet as methods. Assume the
Address class is defined and contains a getStreet method.

Exercise 2. Extend the Account class (see Section 2.2) with methods withdraw
and transfer . The method withdraw should not leave the balance negative, and
transfer should receive the target account and the amount of money to be trans-
ferred, and return the updated target account. Then write the Java expressions

c.credit(c.getBalance() ∗ 3 )

and

c.transfer(d , c.getBalance())

as commands in our language.



Transformation Laws for Sequential Object-Oriented Programming 25

3 Algebraic Laws

The laws in Chapter 1 are presented as context-independent equations, such as

(x := x ) = skip

This is the usual approach for imperative programming [116, 226], for instance.
Such laws are compositional; they can be used, for example, as rewrite rules
and program transformations, and can be applied to any part of a program. We
can even think of more than one law being applied simultaneously to different
fragments of a program. Due to independence of a particular context, these laws
are also applicable to open programs: to commands occurring anywhere in an
individual class or main program, independent of any other possibly existing
class, method, or attribute declarations.

The laws we discuss in this section focus on the object-oriented features of
our language. These laws are mostly concerned with properties of class declara-
tions and method calls, which are inherently context-dependent, especially when
considering class hierarchies. Therefore, the proposed laws need to address con-
text issues. Equivalence of sets of class declarations cds1 and cds2 is denoted by
cds1 =cds,c cds2 , where cds is a context of class declarations for cds1 and cds2 ,
and c is the main command. This is just an abbreviation for the program equiv-
alence cds1 cds • c = cds2 cds • c. When we write cds1 =cds,c cds2 , we assume
cds1 is well-formed if, and only if, cds2 is well-formed, and that c is well-formed
considering both sets of class declarations cds1 cds and cds2 cds .

These laws consider the entire context, and therefore apply to closed programs.
This may generate a larger number of side conditions, which are, nevertheless,
purely syntactic. Furthermore, although the context is captured for each partic-
ular law application, this is by no means a requirement that the context be fixed
for successive transformations. The first law introduced below allows elimina-
tion and introduction of class declarations; thus its application may change the
context of a development. If, eventually, a modified context no longer satisfies
the conditions of a law previously applied, this does not invalidate the effected
transformation; it just means that in the current context the application of the
law would not be valid.

Law 17 (class elimination).

cds cd1 • c = cds • c

provided

(→) The class declared in cd1 is not referred to in cds or c;
(←) (1) The name of the class declared in cd1 is distinct from those of all

classes declared in cds; (2) the superclass appearing in cd1 is either object
or declared in cds; (3) and the attribute and method names declared by cd1

are not declared by its superclasses in cds, except in the case of method
redefinitions. �

We write ‘(→)’ before the first proviso since it is required only for applications
of this law from left to right. We also write ‘(←)’, when a proviso is necessary



26 A. Sampaio and P. Borba

only for applying a law from right to left, and ‘(↔)’ when it is necessary in both
directions. This also helps to interpret each law as two behaviour preserving
transformations with different provisos.

We now present laws concerned with attribute and method declarations,
method calls, and commands in general.

3.1 Attribute Declarations

The first laws we present in this section allow us to change the declaration of
attributes. The following law relates protected and public attributes. From left
to right, it establishes that a protected attribute can be made public; from right
to left, it asserts that a public attribute can be made protected, provided that it
is only directly used by the class in which it is declared and its subclasses. This
proviso is necessary to guarantee that the law relates well-formed programs.

Law 18 (change visibility: from protected to public).

class C extends D
prot a : T ; ads
ops

end

=cds,c

class C extends D
pub a : T ; ads
ops

end

provided

(←) B .a, for any B ≤ C, appears only in ops and in the subclasses of C in cds.
�

We write prot a : T ; ads to denote an attribute declaration prot a : T followed
by all declarations in ads , whereas ops stands for declarations of methods and
constructors. The notation B .a refers to uses of the name a via expressions whose
static type is exactly B , as opposed to any of its subclasses. For example, if we
write that B .a does not appear in ops , we mean that ops does not contain any
expression such as e.a, for any e of type B , strictly. For an implicit context of
class declarations, the subclass relation is denoted by ≤, where A ≤ B indicates
that A is a subclass of B . We consider that any class is a subclass of itself.

Our second law relates private and public attributes.

Law 19 (change visibility: from private to public).

class C extends D
pri a : T ; ads
ops

end

=cds,c

class C extends D
pub a : T ; ads
ops

end

provided

(←) B .a, for any B ≤ C, does not appear in cds , c. �



Transformation Laws for Sequential Object-Oriented Programming 27

When applied from right to left, this law makes a public attribute private. For
that, the attribute cannot be used anywhere outside the class where it is declared;
this is enforced by the proviso.

The law that allows us to change attribute visibility from private to protected,
and vice-versa, can be derived from the previous two laws. In fact, many laws
can be derived from the basic ones introduced here. Our aim is not to show
those derived laws, but to focus on a concise set of basic laws that captures
the essence of the language constructs and are, therefore, powerful enough to
derive many other laws. For example, instead of having different laws to deal
with attributes with different visibilities, we need only laws dealing with public
attributes. The corresponding laws for private and protected attributes can be
derived from those since protected and private attributes can always be made
public by applying Laws 18 and 19.

The following law establishes that we can move a public attribute a from a
class C to a superclass B , and vice-versa. To move the attribute up to B , it
is required that this does not generate a name conflict: no subclass of B , other
than C , can declare an attribute with the same name; our language does not
allow attribute redefinition or hiding as in Java. We do not need to worry about
a being declared in B itself, as this is not possible: if it were, then C would not
be well-formed. We can move a from B to C provided that a is used only as if
it were declared in C .

Law 20 (move attribute to superclass).

class B extends A
ads
ops

end
class C extends B

pub a : T ; ads ′

ops ′

end

=cds,c

class B extends A
pub a : T ; ads
ops

end
class C extends B

ads ′

ops ′

end

provided

(→) The attribute name a is not declared by the subclasses of B in cds;

(←) D .a, for any D ≤ B and D 	≤ C, does not appear in cds , c, ops, or ops ′.
�

The second proviso, according to the special notation D .a previously introduced,
precludes an expression such as self .a from appearing in ops , but does not
preclude self .c.a, for an attribute c : C declared in B . The last expression is
valid in ops no matter whether a is declared in B or in C .

The following law allows us to change the class type of an attribute to a
supertype, and vice-versa.



28 A. Sampaio and P. Borba

Law 21 (change attribute type).

class C extends D
pub a : T ; ads
ops

end

=cds,c

class C extends D
pub a : T ′; ads
ops

end

provided

(↔) T ≤ T ′ and every non-assignable occurrence of a in expressions of ops,
cds and c is cast with T or any subtype of T declared in cds.

(←) (1) every expression assigned to a, in ops, cds and c, is of type T or any
subtype of T; (2) every use of a as result argument is for a corresponding
formal parameter of type T or any subtype of T. �

Assignable occurrences of identifiers are result arguments and targets of assign-
ments. For instance, in self .a := e and le.m(self .a), the occurrences of a are
assignable, if the single parameter of m is passed by result. On the other hand,
in an assignment self .a.x := e, there is an assignable occurrence of x but not
of a. Therefore, a is required to be cast in the previous proviso. The same com-
ment applies to a result argument self .a.x . Occurrences of identifiers as result
arguments and targets of assignments are not cast anywhere; like in Java, this
is not allowed in our language.

Exercise 3. Using the laws presented so far, derive a law for changing attribute
visibility from private to protected, and vice-versa.

3.2 Method Declarations

In this section we give laws related to the declaration of methods. The following
law states that we can introduce or remove a trivial method redefinition, which
amounts simply to a call to the method in the superclass.

Law 22 (introduce method redefinition).

class B extends A
ads
meth m =̂ pc
ops

end
class C extends B

ads ′

ops ′

end

=cds,c

class B extends A
ads
meth m =̂ pc
ops

end
class C extends B

ads ′

meth m =̂ super.m
ops ′

end

provided (→) m is not declared in ops ′. �



Transformation Laws for Sequential Object-Oriented Programming 29

Strictly, we cannot define a method as meth m =̂ super.m. A method dec-
laration is an explicit parametrised command, so that, above, pc has the form
(pds • c); the redefinition of m should be meth m =̂ (pds • super.m(αpds)),
where αpds denotes the list of parameter names declared in pds . For simplicity,
however, we adopt the shorter notation meth m =̂ super.m.

The next law states that we can merge a method declaration and its redefini-
tion into a single declaration in the superclass. The resulting method uses type
tests to choose the appropriate behaviour.

Law 23 (move redefined method to superclass).

class B extends A
ads
meth m =̂ (pds • b)
ops

end
class C extends B

ads ′

meth m =̂ (pds • b′)
ops ′

end

=cds,c

class B extends A
ads
meth m =̂ (pds •
if ¬(self is C ) → b
[] self is C → b′

fi)
ops

end
class C extends B

ads ′

ops ′

end

provided

(↔) (1) super and private attributes do not appear in b′; (2) super.m does not
appear in ops ′;

(→) b′ does not contain uncast occurrences of self nor expressions of the form
((C )self).a for any protected attribute a in ads ′;

(←) m is not declared in ops ′. �

The provisos concerning super are needed because its semantics may be affected
if it is moved from a subclass to a superclass, or vice-versa. The other provisos
ensure the validity of the programs involved. We can only move the body of
m up if it does not refer to elements of the class where it is declared through
uncast self . As mentioned in the previous section, self must be used for calling
methods and selecting attributes of the current object.

Our third method law allows us to move up in the class hierarchy a method
declaration that is not a redefinition. Our language supports method redefini-
tion but, as opposed to Java, not overloading. Hence, we cannot have different
methods in the same class, or in a class and a subclass, with the same name,
but different parameters. Our law indicates that we can move a method down
too, if this method is used only as if it were defined in the subclass.



30 A. Sampaio and P. Borba

Law 24 (move original method to superclass).

class B extends A
ads
ops

end class C extends B
ads ′

meth m =̂ pc
ops ′

end

=cds,c

class B extends A
ads
meth m =̂ pc
ops

end class C extends B
ads ′

ops ′

end

provided

(↔) (1) super and private attributes do not appear in pc; (2) m is not declared
in any superclass of B in cds;

(→) (1) m is not declared in ops, and can only be declared in a class D, for any
D ≤ B and D 	≤ C, if it has the same parameters as pc; (2) pc does not
contain uncast occurrences of self nor expressions in the form ((C )self ).a
for any protected attribute a in ads ′;

(←) (1) m is not declared in ops ′; (2) D .m, for any D ≤ B and D 	≤ C, does
not appear in cds , c, ops or ops ′. �

The provisos for this law are similar to those of Laws 23 and 20. Only the first
two are necessary to preserve semantics; the others guarantee that we relate
syntactically valid programs. The second proviso, associated to applications of
the law in both directions, precludes superclasses of B from defining m, because,
otherwise, when moving it, we could affect the semantics of calls such as b.m(e),
for a b storing an object of B .

The next two laws allow us to change the type of a parameter; they are similar
to Law 21. The first law handles value parameters.

Law 25 (change value parameter type).

class C extends D
ads
meth m =̂

val x : T ; pds • b
ops

end

=cds,c

class C extends D
ads
meth m =̂

val x : T ′; pds • b
ops

end

provided

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions of b are
cast with T or any subtype of T;

(←) (1) every actual parameter associated with x in ops, cds and c is of type
T or any subtype of it; (2) every expression assigned to x in b is of type
T or any subtype of T; (3) every use of x as result argument in b is for a
corresponding formal parameter of type T or any subtype of T. �



Transformation Laws for Sequential Object-Oriented Programming 31

For a result parameter, we have the following law. As opposed to a value argu-
ment, the type of a result argument has to be that of the corresponding formal
parameter or a supertype of it. We cannot change the type of a parameter to a
supertype of any of the arguments used in the program.

Law 26 (change result parameter type).

class C extends D
ads
meth m =̂

res x : T ; pds • b
ops

end

=cds,c

class C extends D
ads
meth m =̂

res x : T ′; pds • b
ops

end

provided

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions of b are
cast with T or any subtype of T;

(→) every actual parameter associated with formal parameter x in ops, cds and
c is of type T ′ or any supertype of it;

(←) (1) every expression assigned to x in b is of type T or any subtype of T;
(2) every use of x as result argument in b is for a corresponding formal
parameter of type T or any subtype of T. �

The first proviso is the same as that in the previous law: it restricts the way in
which the parameter is used in the method body. The second proviso is related
to the use of arguments. The third proviso is similar to that in Law 21.

A method that is not called can be eliminated. Conversely, we can always
introduce a new method in a class, provided we avoid naming conflicts.

Law 27 (method elimination).

class C extends D
ads
meth m =̂ pc end; ops

end

=cds,c

class C extends D
ads
ops

end

provided

(→) B .m does not appear in cds , c nor in ops, for any B such that B ≤ C.
(←) m is not declared in ops nor in any superclass or subclass of C in cds. �

The introduction and elimination of attributes is considered in Section 3.5.

3.3 Method Calls

The laws in this and in the next section give properties of the equivalence rela-
tion for commands, instead of programs as those in the previous sections. The
following law indicates that we can replace a method call super.m in a class
C by a copy of the body of m as declared in the immediate superclass of C ,
provided the body does not contain super nor private attributes.



32 A. Sampaio and P. Borba

Law 28 (eliminate super). Consider that CDS is a set of two class declara-
tions as follows.

class B extendsA
ads
meth m =̂ pc
ops

end

class C extends B
ads ′

ops ′

end

Then we have that cds CDS ,C � super.m = pc
provided (→) super and the private attributes in ads do not appear in pc. �

The notation cds CDS denotes the union of the class declarations in cds and
CDS , and cds ,N � c = d indicates that the equation of commands c = d
holds inside class named N , in a context defined by the set of class declarations
cds . Instead of a class name, we might use main for asserting that the equality
holds inside the main program.

Law 28 is similar to the standard copy rule for procedures [192]; for calls
super.m, dynamic binding does not apply. The arguments to which super.m is
applied are not touched by this law; pc ends up applied to the same arguments.

In the case where a method is not redefined, and there are no visibility con-
cerns, we can again use the copy rule to characterise method calls. It might be
surprising that we need only such simple laws to characterise method call elimi-
nation. The reason is that dynamic binding is handled by Law 23 as a separate
issue. Hereafter, the notation cds ,N � e : C is used to indicate that in the class
N declared in cds , the expression e has static type C . Again, instead of a class
name, we might use main for asserting that the typing holds inside the main
program.

Law 29 (method call elimination). Consider that the following class decla-
ration

class C extends D
ads
meth m =̂ pc
ops

end

is included in cds, and that cds ,A � le : C. Then

cds ,A � le.m(e) = {le 	= null ∧ le 	= error}; pc[le/self ](e)

provided

(↔) (1) m is not redefined in cds and pc does not contain references to super;
(2) all attributes which appear in the body pc of m are public. �



Transformation Laws for Sequential Object-Oriented Programming 33

A method call le.m(e) aborts when le is null or error. Thus, we need the
assumption {le 	= null∧ le 	= error} on the right-hand side of the law. The law
for a call self .m(e) is similar. As already said in Section 2, the assumption {b}
behaves like skip if b is true, and as abort otherwise. The notation pc[le/self ]
denotes the parametrised command pc where self is replaced with le.

A type cast plays two major roles. At compilation time, casting is necessary
when using an expression in contexts where an object value of a given type is
expected, and this type is a strict subtype of the expression type. For example, if
x : B , C ≤ B and a is an attribute which is in C but not in B , then the selection
of this attribute using x requires a cast, as in ((C )x ).a. If a is declared in B ,
then the cast is not necessary for compilation, but once it is there, it cannot
simply be eliminated, because a cast also has a run time effect.

At run time, if the value of a cast expression does not have the required type,
its evaluation results in error, and the command in which it appears aborts. In
the previous example, if the attribute a is in class B , although the cast could
be eliminated regarding its static effect, it still has a dynamic effect when the
object value of x happens to be of type B , but not of type C .

In order to capture the behaviour of casts, we use assumptions. The following
law deals with the elimination of type casts in targets of method calls.

Law 30 (eliminate cast: method call). If cds ,A � e : B, C ≤ B and m is
declared in B or in any of its superclasses in cds, then

cds ,A � ((C )e).m(e ′) = {e is C}; e.m(e ′) �

Casts in arguments can also be eliminated, but we omit this similar law.

3.4 Commands and Expressions

In the same way that the type of an attribute (Law 21) or parameter (Laws 25
and 26) can be changed if all its uses are cast, we can also change the type of a
local variable in this case.

Law 31 (change variable type).

cds ,A � var x : T • c = var x : T ′ • c

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions of c is
cast with T or any subtype of T;

(←) (1) every expression assigned to x in c is of type T or any subtype of T;
(2) every use of x as result argument in c is for a corresponding formal
parameter of type T or any subtype of T. �

The same holds for angelic variables.
The following law formalises the fact that any expression can be cast with its

declared type.

Law 32 (introduce trivial cast in expression). If cds ,A � e : C, then

cds ,A � e = (C )e �



34 A. Sampaio and P. Borba

For simplicity, this is formalised as a law of expressions, not commands. Never-
theless, it should be considered as an abbreviation for several laws of assignments,
conditionals, and method calls that deal with each possible pattern of expres-
sions. For example, it abbreviates the following laws, and many others, all with
the same proviso as Law 32.

cds ,A � le := e.x = le := ((C )e).x
cds ,A � le.m(e) = le.m((C )e)
cds ,A � le.m(e) = ((C )le).m(e)

As illustrated by the last example, this law is equally valid for left-expressions,
which are a form of expression. However, our language, like Java, does not allow
casts to appear in targets of assignments and result parameters. So Law 32
should not be considered an abbreviation for equations such as

cds ,A � e := e ′.x = ((C )e) := e ′.x

which are not valid since ((C )e) := e ′.x is not a command in our language, even
if e is a left expression.

Law 30, presented in the previous section, allows us to eliminate casts in
targets of method calls. We can also eliminate casts in assignments using the
law below.

Law 33 (eliminate cast: expression). If cds ,A � le : B and cds ,A � e : B ′,
with C ≤ B ′ and B ′ ≤ B, then

cds ,A � le := (C )e = {e is C}; le := e �

Similar laws apply to expressions in conditionals and other points of a program.
Two simple laws of type test are presented below; they are laws of expressions.

Law 34 asserts that the type test self is M is true when appearing inside any
subclass of M , including M itself, of course.

Law 34 (is test true). If N ≤ M, then cds ,N � self is M = true �

In complement to Law 34, the following law asserts that type tests for unrelated
classes are mutually exclusive.

Law 35 (is test exclusive). If N � M and M � N , then

cds ,C � self is M = self is M ∧ ¬(self is N ) �

Similarly, we have laws expressing basic properties of self .

Law 36 (self and null). cds ,C � self 	= null = true �

Law 37 (self and error). cds ,C � self 	= error = true �

The law for attribute access establishes when such an access is successful.

Law 38 (attribute access).

cds ,C � le.a 	= error = le 	= null ∧ le 	= error �



Transformation Laws for Sequential Object-Oriented Programming 35

The following laws express simple properties of the alternation command. The
first law allows us to simplify an alternation whose commands are the same in
all branches, assuming that the disjunction of all guards is true.

Law 39 (if identical guarded commands). If
∨

i : 1 . .n • ψi = true, then

cds ,C � if [] i : 1 . . n • ψi → c fi = c. �

The other law states that the order of the guarded commands of an alternation
is immaterial.

Law 40 (if symmetry). If π is any permutation of 1 . . n, then

cds ,C � if [] i : 1 . .n • ψi → ci fi = if [] i : 1 . .n • ψπ(i) → cπ(i) fi �

Many other command and expression laws [116, 192] are useful for reasoning
about the imperative features of our language, but we omit them here since our
focus is on the object-oriented features.

Exercise 4. Using the laws presented in this section, derive the following law
that asserts that the test self is M is false inside a class N , provided N is not
a subclass of M , and vice-versa.

Law 41 (is test false). If N �cds M and M �cds N , then

cds ,N � self is M = false �

Exercise 5. Consider the following class declarations.

class B
pri a : Z
pri b : double
meth m =̂ if self is C → self .a := 3 [] self is D → self .b := 3 .25 fi

end
class C extends B end
class D extends B end

Derive an equivalent set of class declarations where the attributes a and b are
respectively declared in C and D . Are those set of declarations equivalent in all
contexts? Use the presented laws and the following laws for conditionals.

Law 42 (abort conditional).

cds ,C �
(
if ψ → c [] ψ′ → c′ fi

= if ψ → c [] ψ′ → c′ [] ¬ψ ∧ ¬ψ′ → abort fi

)
�

Law 43 (nest conditional).

cds ,C �
(
if ψ ∧ ψ1 → c1 [] ψ ∧ ψ2 → c2 [] ψ′ → c′ fi

= if ψ → (if ψ1 → c1 [] ψ2 → c2 fi) [] ψ′ → c′ fi

)
�



36 A. Sampaio and P. Borba

Exercise 6. Apply some of the laws presented so far in order to obtain a program
that is equivalent to

var a, b : Account •
a := newAccount ; b := a; a.credit(5 ); a.transfer(2 , b, b); . . .

but that does not have any casts and uses only variables of type object.

3.5 Class Refinement

Besides the equivalence laws presented so far, reasoning about classes usually
requires a notion of class refinement, which is related to data refinement. This
is necessary, for example, to show that the following class declaration

class Flag
pri b : bool
new =̂ self .b := true
meth change =̂ self .b := not(self .b)
meth get =̂ (res r : boolean • r := b)

end

which uses a boolean attribute to record its current status, can be replaced by
the declaration

class Flag
pri i : Z
new =̂ self .i := 1
meth change =̂ self .i := rem(self .i + 1 , 2 )
meth get =̂ (res r : boolean • r := self .i = 1 )

end

which internally uses an integer (with 1 playing the rôle of true and 0 of false),
but offers the same observational behaviour as the previous one. Users of Flag
through its change and get methods would not notice if the first declaration were
replaced by the second. So, we say that the first declaration of Flag is refined
by the second. In this particular case, we also have that the second declaration
is refined by the first. The declarations are actually equivalent. This kind of
equivalence, however, cannot be proved with the laws of classes previously intro-
duced. When a change of data representation, as from bool to Z in class Flag,
is involved, we have to resort to different notions of refinement and equivalence
and their associated laws.

The equivalence notion of class declarations used so far, cdsa =cds,c cdsc, is
just an abbreviation for the program equivalence cdsa cds • c = cdsc cds • c,
which simply corresponds to program refinement in both directions:

cdsa cds • c � cdsc cds • c and cdsc cds • c � cdsa cds • c

Similarly, cdsa =cds,c cdsc corresponds to cdsa �cds,c cdsc and cdsc �cds,c cdsa,
which are abbreviations for the program refinements just presented.



Transformation Laws for Sequential Object-Oriented Programming 37

We now use a different refinement notion that does not rely on uses of classes
by a specific main command c [49]. This is called class refinement and is defined
as follows. We say that a sequence of abstract class declarations cdsa is refined
by concrete class declarations cdsc, in the context of class declaration cds , which
is written cdsa �cds cdsc if, and only if, the following two conditions hold.

(a) cdsa cds and cdsc cds are both well-formed;
(b) for all commands c that use only methods and public attributes in cds and

cdsa, if c is well-typed for cdsa cds , then c is also well-typed in cdsc cds ;
and cdsa cds • c � cdsc cds • c.

By definition, proving that cdsa �cds cdsc guarantees that cdsa �cds,c cdsc holds
for all commands c satisfying the constraints above. This reveals the intuition
behind the definition: the classes in cdsa can be replaced by the classes in cdsc
without affecting the behaviour of main commands that use those classes through
their methods and public attributes only. It does not matter if the classes in cdsa
have “abstract” attributes that are implemented by different “concrete” ones in
cdsc; we are just interested on the external behaviour of those classes, not how
they internally represent state.

We can now manipulate class declarations in isolation. We do not need to
mention main commands as in several laws introduced so far. Proving class re-
finement, however, involves nontrivial induction on commands. To avoid that, we
rely on simulation laws that entail class refinement [49]. The simulation relation
cdas �cds,CI cdsc is similar to class refinement, but takes an additional argu-
ment: a coupling invariant CI that relates attributes in cdsa with corresponding
ones in cdsc. The fact that simulation entails class refinement is formalised as
cdas �cds,CI cdsc, for a coupling invariant CI , implies cdsa �cds cds′ cdsc for
any cds ′ not containing subclasses of cdsa.

Traditional simulation laws for data refinement deal with modules that encap-
sulate variables, since this is required for changing the internal representation
of those variables. Our first law follows this approach. It allows us to change
private attributes in a class, relating them with already existing attributes by
means of a coupling invariant. The application of this law changes the bodies of
the methods declared in the class. The changes follow the traditional laws for
data refinement [192].

Law 44 (pri attribute-coupling invariant).

class A extends C
adsA; ads
ops

end

�cds,CI

class A extends C
adsC ; ads
CI (ops)

end

provided adsA and adsC contain only private attributes. �

By convention, the attributes denoted by adsA are abstract, whereas those de-
noted by adsC are concrete. The coupling invariant CI relates abstract and



38 A. Sampaio and P. Borba

concrete attributes. The notation CI (ops) indicates that the methods in ops are
transformed according to command laws of data refinement [192] using CI as
a coupling invariant: every guard may assume the coupling invariant and every
command is extended by modifications to the new variables so that the coupling
invariant is maintained.

The law below, which can be used to introduce and eliminate attributes, is a
direct application of the previous law and definitions.

Law 45 (attribute elimination).

class B extends A
pri a : T ; ads
ops

end

=cds,c

class B extends A
ads
ops

end

provided

(→) B .a does not appear in ops;
(←) a does not appear in ads and is not declared as an attribute by a superclass

or subclass of B in cds. �

If a private attribute is not in use inside the class in which it is declared, we can
remove it. This law can be proved from the definition of class refinement and
with two applications of Law 44, for obtaining refinement in both directions.
From left to right, for example, a should be regarded as abstract, there should
be no concrete attributes, and the coupling invariant should be true.

Going beyond traditional simulation laws, we now consider changing data
representation in a hierarchy of classes. The simulation Law 46 below allows us
to change protected attributes in a class, relating them with already existing
attributes by means of a coupling invariant. The application of this law changes
the bodies of the methods declared in the class and in its subclasses, since the
refined protected attributes might be used there as well. In fact, simulation in
this case assumes a notion of module that extends the boundaries of classes to
consider its subclasses too, according to the visibility policy defined by prot.

Law 46 (prot attribute-coupling invariant).

class A extends C
adsA ads
ops

end
cds ′

�cds,CI

class A extends C
adsC ads
CI (ops)

end
CI (cds ′)

provided

(↔) (1) adsA and adsC contain only protected attributes; (2) CI does not refer
to private attributes in ads; (3) cds ′ only contains subclasses of A; (4) cds
contains no subclasses of A. �



Transformation Laws for Sequential Object-Oriented Programming 39

The notation CI (cds ′) indicates that all methods in cds ′ are transformed ac-
cording to the command laws of data refinement. These transformations are also
done in the class A; as before, this is indicated by the notation CI (ops).

These simulation laws, together with laws of commands and of the object-
oriented features, form a solid basis for proving more elaborate transformations
of object-oriented programs, as illustrated in Section 5 on formal refactoring.

Exercise 7. In order to derive Law 45, we need two applications of Law 44 to
establish class refinement in both directions. Choose an appropriate coupling
invariant and prove class refinement from right to left.

Exercise 8. Using i = 1 ⇔ b = true ∧ i = 0 ⇔ b = false as coupling invariant,
prove that the first declaration of Flag at the beginning of the section is refined
by the second. Prove class refinement in the other direction too.

4 Completeness

An algebraic characterisation of the semantics of a programming language (or of
an abstract data type) immediately raises the issue of completeness: is it possible
to derive any valid property from the equations (laws)? As we know from Gödel’s
incompleteness theorem (see, for instance, [250]), there is no consistent and finite
set of axioms that completely characterises even elementary arithmetic, let alone
a programming language like the one introduced in Section 2.

On the other hand, it is important to study the comprehensiveness of a
proposed set of laws. A standard approach is to define a reduction strategy,
based on the laws, whose target is a normal form described in terms of a
restricted subset of the language being discussed. This shows that the laws
are sufficiently powerful to reduce any program to this normal form. This is
what we describe here, for a normal form that uses classes and inheritance
only to preserve the notion of subtyping; all classes have empty bodies, ex-
cept object, which may include attribute declarations. This suggests that our
laws are expressive enough to reason about the object-oriented structure of
programs.

We consider that a program cds • c is in subtype normal form if it obeys the
following conditions.

– Each class declaration in cds , except object, has an empty body;
– The object class declares only public attributes, and their types are either

primitive or object;
– All local declarations in the main command c are of variables whose types

are either primitive or object;
– No type cast is used in c.

In a program in subtype normal form, the class object is explicitly included.
All other classes may include the inheritance and subtype clause extends, but
no declaration of methods, constructors or attributes is allowed. As an example



40 A. Sampaio and P. Borba

of the structure of a program in normal form, consider a simple bank account
application whose class diagram is depicted in Figure 2(a); the structure of the
corresponding normal form is given in Figure 3(g), also as a class diagram. Re-
garding the actual code of the bank account example, it is collected in Figure 4,
and its normal form program in Figure 10. For conciseness, here we simplify
the class Account , introduced in Section 2, by removing the attribute owner ,
the method getOwnerName and the class constructor. The class BonusAccount
extends Account by redefining the method Credit to generate a bonus: a per-
centage of the amount credited in the account; the bonus is recorded in the
attribute bonus and can be inspected through the method getBonus . The class
SavingAccount also inherits from account; it simply adds a new method to com-
pute interest. There is also the class AccountList that plays the role of a collection
of accounts. It is a recursive class: the attribute acc stores an account and prox
is itself a list of accounts.

Although this normal form preserves object-oriented features, namely the sub-
type hierarchy, object creation, and type tests, it is substantially close to an
imperative program. The class object, the only one with explicitly declared
elements, takes the form of a recursive record, as it contains only public at-
tributes. As no methods are allowed, the main command c is similar to an
imperative program, even though object creation and type test can still be
used.

For the elimination of all object-oriented features, the natural normal form
is the imperative subset of our language extended with recursive records. A
reduction to such a form, which would yield a stronger completeness result,
requires some sort of mapping from an object to a relational model; an extra
variable is necessary to keep the type information. The subtype normal form,
however, is close to an imperative program, and some of the additional laws for
a reduction to a pure imperative program are presented in Section 3.5.

It is important to note that the reduction of a program to normal form does
not suggest a compilation process. Its sole purpose is to show that we have a
comprehensive set of laws, which can be used to yield an equivalent program
written with a small subset of constructs. Roughly, the fewer constructs, the
better the normal form; a similar approach has been used for other programming
paradigms [116, 226].

The reduction strategy involves the following major steps:

– Move all the attribute and method declarations in the classes of the original
program to the object class;

– Change all the declarations of class-typed identifiers to define their type to
be object;

– Eliminate casts;
– Eliminate method calls and declarations.

Before analysing each step in detail, we illustrate the overall reduction strategy
in terms of class diagrams. Considering the diagram in Figure 2(a) as a repre-
sentation of the original program, the first relevant transformation is to move



Transformation Laws for Sequential Object-Oriented Programming 41

Fig. 2. Bank account diagrams—attributes and method credit in object

attributes up to the object class, as presented in Figure 2(b). Note that, in this
process, attribute visibility is changed to pub (represented as a + signal in the
diagram, whereas - precedes pri attributes). The reason for changing visibility
is that later on methods are eliminated, and direct access to the attributes in
the object class becomes necessary.

In order to move methods up to the object class, all methods of a class are re-
defined in the subclasses, if they are not already; this is illustrated in Figure 2(c).
The purpose of these (trivial) redefinitions is to simplify moving methods. In Fig-
ure 2(d), we single out moving method credit to object; Figure 3(e) shows the
result of moving the remaining methods.

The change of all declarations of class-typed identifiers to type object is illus-
trated in Figure 3(f); observe that declarations of identifiers of primitive types
are not affected. The next step, cast elimination, cannot be illustrated through
diagrams; this is dealt with and illustrated later on as code transformation. Fi-
nally, method declarations are eliminated (Figure 3(g)), and the corresponding
bodies are in-lined as replacements of the corresponding calls; this is valid be-
cause dynamic binding is resolved when methods are moved up in the hierarchy,
and all attributes are public.

In the remainder of this section we present the reduction strategy in detail, as a
sequence of simple and incremental steps justified by the application of algebraic
laws. We illustrate the process using the actual code of the bank account example
summarised in Figure 4, but the process is actually general.



42 A. Sampaio and P. Borba

Fig. 3. Bank account diagrams—methods up, change type to object, method
elimination

4.1 Make Attributes Public

The first major step in our reduction strategy is to move up the attributes.
Nonetheless, before that, we need to make sure that they are either public or
protected, otherwise method declarations in the subclasses might become in-
valid. As the final step of the strategy eliminates methods and requires that
the main program have direct access to the attributes, we make all attributes
public.

For that, we apply two laws: Law 18 to make protected attributes public, and
Law 19 to make private attributes public. In the strategy all the laws are applied
from left to right. We need to exhaustively apply these two laws to all classes
in cds . In our example, only Law 19 is effectively applied to classes Account ,
BonusAccount , and AccountList .

4.2 Move Attributes Up

After changing the visibility of all attributes to public, we move them up to the
object class using Law 20. Starting from the bottom of the class hierarchy, and
moving upwards, the exhaustive application of this law moves all attributes to
object. We assume that two distinct classes are not allowed to declare attributes
with the same name. Therefore, name conflicts do not arise and the proviso of



Transformation Laws for Sequential Object-Oriented Programming 43

classAccount
pri number : string
pri balance : double
meth credit =̂ (val value : double • self .balance := self .balance + value)
meth getBalance =̂ (res bal : double • bal := self .balance)
meth getNumber =̂ (res n : string • n := self .number)
meth setNumber =̂ (val n : string • self .number := n)

end

class BonusAccount extends Account
pri bonus : double
meth credit =̂ (val value : double •

super.credit(value); self .bonus := value ∗ 0 .05 )
meth getBonus =̂ (res bon : double • bon := self .bonus)

end

class SavingAccount extends Account
meth interest =̂

var bal : double • self .getBalance(bal); self .credit(bal ∗ 0 .1 )
end

class AccountList
pri acc : Account
pri prox : AccountList
meth lookup =̂ (val number : string; res ac : Account •

if (self .acc = null) → ac := null
[] ¬ (self .acc = null) → var n : string •

self .acc.getNumber(n);
if (n = number) → ac := self .acc
[] ¬ (n = number) → self .prox .lookup(number , ac)
fi

fi)
end

• var acc : Account •
acc := new SavingAccount ;
acc.setNumber("21 .342 − 7");
acc.credit(200 );
if (acc is SavingAccount) → ((SavingAccount)acc).interest()
[] ¬ (acc is SavingAccount) → skip
fi

Fig. 4. Bank account program



44 A. Sampaio and P. Borba

class object
pub number : string; balance : double; acc : Account
pub prox : AccountList ; bonus : double

end
class Account

meth credit =̂ (val value : double • self .balance := self .balance + value)
meth getBalance =̂ (res bal : double • bal := self .balance)
meth getNumber =̂ (res n : string • n := self .number)
meth setNumber =̂ (val n : string • self .number := n)

end
class BonusAccount extends Account

meth credit =̂ (val value : double •
super.credit(value); self .bonus := value ∗ 0 .05 )

meth getBonus =̂ (res bon : double • bon := self .bonus)
end
class SavingAccount extends Account

meth interest =̂
var bal : double • self .getBalance(bal); self .credit(bal ∗ 0 .1 )

end
class AccountList

meth lookup =̂ (val number : string; res ac : Account •
if (self .acc = null) → ac := null
[] ¬ (self .acc = null) → var n : string •

self .acc.getNumber(n);
if (n = number) → ac := self .acc
[] ¬ (n = number) → self .prox .lookup(number , ac)
fi

fi)
end
• . . .

Fig. 5. Bank account program—attributes in object

the law is always valid. Our assumption imposes no significant restriction on our
approach, since renaming can be used to meet this requirement.

Each attribute is progressively moved to its immediate superclass until it
reaches the object class. In our example, number and balance of Account are
directly moved to object; the same happens with the attributes acc and prox
of AccountList . The attribute bonus of BonusAccount is first moved to Account
and then to object. Part of the bank account program, after this transfor-
mation, is presented in Figure 5. The class object is explicitly defined to in-
clude all the attributes of the original classes, which now do not declare any
attributes; the main program is not touched. Part of the object-oriented design
is lost, but the program still behaves as before. The purpose here is to estab-
lish the expressiveness of the laws; in practical applications of program trans-
formation, like refactoring (see Section 5), the laws are applied in the reverse
order.



Transformation Laws for Sequential Object-Oriented Programming 45

4.3 Introduce Trivial Method Redefinitions

This and the next step are auxiliary to moving methods up, which requires the
elimination of occurrences of super in the method bodies. When eliminating
super there might be an arbitrary number of classes (in the inheritance hierar-
chy) between the class in which a method is defined and the class which invokes
the method via super. To avoid dealing with such arbitrary cases, we introduce
trivial method redefinitions using super. If an inherited method does not have
a redefinition, in this step we provide a trivial redefinition that simply calls the
method of the superclass.

We exhaustively apply Law 22, from left to right, considering all methods of
all classes with subclasses. We start from object and move downwards in the
class hierarchy. At the end, all classes have a definition for the methods they
provide: either a trivial redefinition or that in the original program.

Considering our bank account example, we include redefinitions for the meth-
ods of Account in the subclasses BounusAccount and SavingAccount ; the original
redefinition of the method credit in BonusAccount is preserved. As an example
of these trivial redefinitions, in the class BonusAccount we define

meth getBalance =̂ super.getBalance

This is an abbreviation for

meth getBalance =̂ (res bal : double • super.getBalance(bal))

since, as already mentioned, all methods are parametrised commands.

4.4 Eliminate super

As mentioned in the previous step, before moving methods up, we need to make
sure that their bodies do not contain references to super, otherwise the program
semantics may not be preserved. This is because, when moving up a method that
includes a method call of the form super.m, instead of referring to a method
m of the immediate superclass C , we may end up referring to a method m of
a superclass of C . Furthermore, when we move such a method to object, the
resulting program is invalid, since super cannot appear in object.

Our approach to eliminate super relies on Law 28, which is a form of copy
rule for calls of the form super.m in a class C , based on a declaration of m in the
immediate superclass of C . Since in the previous step we introduced a definition
for all methods available in a class, a method called via super is always declared
in the immediate superclass of the class where the call appears. Therefore, we
can exhaustively apply Law 28 to eliminate all method calls using super.

This elimination process starts at the immediate subclasses of object and
moves downwards. As the methods of object cannot refer to super, and all
attributes are already public at this point, the condition of Law 28 is valid for
the immediate subclasses of object. After eliminating super from those classes,
the condition will be valid for their immediate subclasses, and so on.



46 A. Sampaio and P. Borba

class object
pub number : string; balance : double; acc : Account
pub prox : AccountList ; bonus : double

end

class Account
meth credit =̂ (val value : double • self .balance := self .balance + value)
meth getBalance =̂ (res bal : double • bal := self .balance)
meth getNumber =̂ (res n : string • n := self .number)
meth setNumber =̂ (val n : string • self .number := n)

end

class BonusAccount extends Account
meth credit =̂ (val value : double •

self .balance := self .balance + value; self .bonus := value ∗ 0 .05 )
meth getBonus =̂ (res bon : double • bon := self .bonus)
meth getBalance =̂ (res bal : double • bal := self .balance)
meth getNumber =̂ (res n : string • n := self .number)
meth setNumber =̂ (val n : string • self .number := n)

end

class SavingAccount extends Account
meth interest =̂

var bal : double • self .getBalance(bal); self .credit(bal ∗ 0 .1 )

meth credit =̂ (val value : double • self .balance := self .balance + value)
meth getBalance =̂ (res bal : double • bal := self .balance)
meth getNumber =̂ (res n : string • n := self .number)
meth setNumber =̂ (val n : string • self .number := n)

end
. . .
• . . .

Fig. 6. Bank account program—eliminate super

For our example, the result of the previous and of this step is partially shown
in Figure 6. The main command is not affected. All classes explicitly define
all methods that are available for their objects directly, or rather, without us-
ing calls to the corresponding methods of the superclass. We use the fact that
(pds • (pds • c)(αpds)) is equivalent to (pds • c), in any context; this is conve-
nient for our use of the abbreviated notation meth m =̂ super.m.

Observe that the elimination of the original occurrence of super (in the
method credit of BonusAccount) is justified by exactly the same law as the
elimination of the occurrences introduced by the previous step.

4.5 Trivial Cast Introduction

In general, both to change the type of an object identifier (when this is an at-
tribute) and to move method declarations up in the class hierarchy require that



Transformation Laws for Sequential Object-Oriented Programming 47

the occurrences of these identifiers are cast. For example, consider the assign-
ment ac := self .acc in the body of the method lookup (see Figure 4). Both ac
and acc are declared with type Account . Changing the type of acc to object
clearly makes this assignment invalid; nevertheless, if acc is cast to Account
the assignment is still valid. Further, occurrences of self (as in the assignment
x := self) changes their type when they are moved up to a superclass, which
might result in ill-typed assignments; therefore, they must be cast. Occurrences
of super have been eliminated in the previous step.

Law 32 is sufficient to introduce trivial casts to non-assignable expressions
in any program, including the main command. Figure 7 presents part of the
bank account program that results from including the necessary casts. In the
main command, the global variables, which have a primitive type, are not cast.
Also, the existing cast (in class AccountLit) is not touched. As a result, all
non-assignable expressions are cast, either because they were in the original
program, or because casts were introduced by the current step of our reduction
strategy.

4.6 Move Methods Up

After having eliminated super and introduced casts, we can safely move methods
up to object. This is justified by Laws 23 and 24. We apply the first one when
the method declaration that we want to move up is a redefinition of a method
declared in the immediate superclass. The second should be applied when the
method that we want to move is not a redefinition. We start applying Laws 23
and 24 from the bottom of the class hierarchy and move upwards towards object.
The application of Law 23 introduces new occurrences of self in the program.
These need to be cast as described in Section 4.5.

Using this strategy, the conditions for applying Law 23 are always valid: at
this stage, all attributes are public and declared in object, and the method
bodies do not use the super construct. This also explains why most of the
conditions for applying Law 24 from left to right are valid. The only proviso
we need to worry about are those related to the declaration of m in B and
in its superclasses and subclasses. Since now every class redefines the methods
in its superclass, if m is declared in C , but not in B , then it is not declared in
any superclass of B . It is also not declared in any subclass of B , as, similarly
to attribute names (see Section 4.2), we assume that method names are only
reused for redefinitions.

For our example, all the methods of AccountList go directly to object.
Figure 8 presents the result of this step. The method credit of BonusAccount ,
and that of SavingAccount are combined with the method credit of Account .
One method is moved up first, and then the other one, in any order; the re-
sult is a method definition that tests for all the possible dynamic types of an
Account object; this method declaration is moved up to object. Similarly, the
other redefined methods are combined and moved all the way up to object.
The program in Figure 8 can be simplified if we consider that an alternation
of the form if b → c [] ¬ b → c fi can be simplified to c, as this is the



48 A. Sampaio and P. Borba

class object
pub number : string; balance : double; acc : Account
pub prox : AccountList ; bonus : double

end

classAccount
meth credit =̂ (val value : double •

((Account)self).balance := ((Account)self).balance + value)
meth getBalance =̂ (res bal : double • bal := ((Account)self).balance)
meth getNumber =̂ (res n : string • n := ((Account)self).number)
meth setNumber =̂ (val n : string • ((Account)self).number := n)

end

class BonusAccount extends Account
meth credit =̂ (val value : double •

((BonusAccount)self ).balance := ((BonusAccount)self ).balance + value;
((BonusAccount)self ).bonus := value ∗ 0 .05 )

. . .
end

class SavingAccount extends Account
meth credit =̂ (val value : double •

((SavingAccount)self ).balance := ((SavingAccount)self).balance + value)
. . .

end

class AccountList
meth lookup =̂ (val number : string; res ac : Account •

if (((AccountList)self).acc = null) → ac := null
[] ¬ (((AccountList)self ).acc = null) →

var n : string • ((Account)((AccountList)self ).acc).getNumber(n);
if (n = number) → ac := ((AccountList)self ).acc
[] ¬ (n = number) →

((AccountList)((AccountList)self ).prox).lookup(number , ac)
fi

fi)
end

• var acc : Account •
acc := (Account)new SavingAccount ;
((Account)acc).setNumber("21 .342 − 7");
((Account)acc).credit(200 );
if (((Account)acc) is SavingAccount) → ((SavingAccount)acc).interest()
[] ¬ (((Account)acc) is SavingAccount) → skip
fi

Fig. 7. Bank account program—trivial cast introduction



Transformation Laws for Sequential Object-Oriented Programming 49

command to be executed regardless of the condition b (see Law 39; other laws
of alternation can also be applied to combine and simplify nested alternations.
Nevertheless, this is not relevant for the purpose of obtaining a program in our
normal form.

Exercise 9. Complete the program in Figure 8 with all the methods moved to
class object.

Exercise 10. Identify the necessary laws of conditionals and of type test (is) that
are necessary to simplify the bodies of the methods moved to class object as a
result of the previous exercise. As an example, the body of the method credit in
Figure 8 can be simplified to

meth credit =̂ (val value : double •
if ¬ (self is BonusAccount) → self .balance := self .balance + value
[] (self is BonusAccount) →

self .balance := self .balance + value; self .bonus := value ∗ 0 .05
fi

4.7 Change Type to object

Here we use the laws that formalise the fact that the types of attributes, vari-
ables, and parameters can be replaced with a supertype, if all non-assignable
occurrences of these identifiers in expressions are cast: Laws 21, 25, 26, and 31.
The exhaustive application of these laws, instantiating the type T ′ with object,
allows the replacement of the types of all class-type identifiers with the object
class. The provisos of the laws are valid, since we already have casts in ex-
pressions, and every class is a subclass of object. Variables of primitive types,
including global variables, which we assume to be of a primitive type, are not
affected by this reduction step. Figure 9 presents the effect of changing types to
object in our example program.

4.8 Cast Elimination

After the previous step, the trivial casts introduced previously are not trivial
anymore, since the types of the identifiers were changed to object. Furthermore,
the program may include arbitrary casts previously introduced by a developer.
Therefore, the laws we use to eliminate casts are different from those we use to
introduce them.

Since a type cast may occur arbitrarily nested in an expression, it is convenient
to reduce expressions to a simple form, so that we can consider only a fixed
number of patterns. This form is as defined in the BNF for expressions (see
Section 2), with arbitrary expressions (denoted by e) replaced with variables.
The reduction of an arbitrary expression to this form is a reduction strategy in
itself. Nevertheless, it is a very standard one, and is not presented here; this kind
of reduction strategy can be found in [228].



50 A. Sampaio and P. Borba

class object
pub number : string; balance : double; acc : Account
pub prox : AccountList ; bonus : double

meth lookup =̂ (val number : string; res ac : Account •
if (((AccountList)self).acc = null) → ac := null
[] ¬ (((AccountList)self ).acc = null) →

var n : string •
((Account)((AccountList)self ).acc).getNumber(n);
if (n = number) → ac := ((AccountList)self ).acc
[] ¬ (n = number) →

((AccountList)((AccountList)self ).prox).lookup(number , ac)
fi

fi)

meth credit =̂ (val value : double •
if ¬ (((Account)self) is SavingAccount) →

if ¬ (((Account)self) is BonusAccount) →
((Account)self).balance := ((Account)self).balance + value)

[] (((Account)self) is BonusAccount) →
((BonusAccount)self).balance := ((BonusAccount)self).balance +value;
((BonusAccount)self).bonus := value ∗ 0 .05 )

fi
[] (((Account)self) is SavingAccount) →

((SavingAccount)self ).balance := ((SavingAccount)self ).balance + value)
fi)

. . .
end

classAccount end

class BonusAccount extends Account end

class SavingAccount extends Account end

class AccountList end

• var acc : Account •
acc := (Account)new SavingAccount ;
((Account)acc).setNumber("21 .342 − 7");
((Account)acc).credit(200 );
if (((Account)acc) is SavingAccount) → ((SavingAccount)acc).interest()
[] ¬ (((Account)acc) is SavingAccount) → skip
fi

Fig. 8. Bank account program—methods in object



Transformation Laws for Sequential Object-Oriented Programming 51

To deal with the elimination of casts in the remaining expression patterns, we
use Laws 33 and 30, and others that are similar and omitted here. At this stage
of our reduction strategy, all casts can be eliminated. The static role of each
cast is trivially fulfilled as a consequence of the fact that the type of each object
identifier is object, and that all methods and attributes have been moved to the
object class. Therefore, the provisos of each law are always satisfied. As a result,
the exhaustive application of these laws eliminates all casts in the program, as
illustrated in Figure 9.

4.9 Method Elimination

The purpose of this step is to eliminate all method calls and then all method
declarations, keeping in the object class only attribute declarations. For method
call elimination, we need only Law 29, which can be regarded as a version of the
copy rule. The reason is that we deal with dynamic binding when we move
methods up to the object class. In fact, there are no method redefinitions at
this point, since all methods are in object.

In this step, we apply Law 29 exhaustively. Before doing so, however, we need
to change all recursive calls of the form le.m. We eliminate them by defining the
method m with the use of the recursive command μX • c, in such a way that
recursive calls become references to X . The law that can be used to perform this
change is standard and omitted.

After all calls to a method are replaced with its body using Law 29, the method
definition itself can be eliminated using Law 27. These two laws are sufficient to
eliminate all methods. There is no particular order to be followed; methods can
be eliminated in any order. Even in the case where a method m invokes a method
n, it is possible to eliminate m first, since in every place where m is invoked,
we can replace this invocation by the body which includes an invocation to n;
this is no problem since n is still in scope. At this point there are no private
attributes, method redefinitions, or references to super.

As illustration, in Figure 10 we present part of the main command that shows
the elimination of the calls acc.setNumber("21 .342 − 7") and acc.credit(200 ).

Exercise 11. Complement the main program in Figure 10 and simplify it using
the laws identified in the previous exercise.

4.10 Summary of the Strategy

An arbitrary program can be reduced to subtype normal form by simply apply-
ing the steps described in Sections 4.1–4.9, in that order, eventually renaming
attributes and methods to avoid naming conflicts. Although our normal form
reduction strategy provides reassurance as to the expressiveness of our set of
laws, it might be surprising that some of the laws presented in Section 3 are
not referenced here. This is a consequence of the fact that our subtype nor-
mal form preserves classes, attributes, type tests, and object creation. We de-
cided to aim at this normal form because it is close to an imperative program



52 A. Sampaio and P. Borba

class object
pub number : string; balance : double; acc : object
pub prox : object; bonus : double
meth lookup =̂ (val number : string; res ac : object •

{self is AccountList};
if (self .acc = null) → ac := null
[] ¬ (self .acc = null) →

var n : string • {self is AccountList}; {self .accis Account};
self .acc.getNumber(n);
if (n = number) → {self is AccountList}; ac := self .acc
[] ¬ (n = number) →

{self is AccountList}; {self .prox is AccountList};
self .prox .lookup(number , ac)

fi
fi)

meth credit =̂ (val value : double •
{self is Account};
if ¬ (self is SavingAccount) →

{self is Account};
if ¬ (self is BonusAccount) →

{self is Account}; {self is Account};
self .balance := self .balance + value

[] (self is BonusAccount) →
{self is BonusAccount}; {self is BonusAccount};
self .balance := self .balance + value;
{self is BonusAccount}; self .bonus := value ∗ 0 .05

fi
[] (self is SavingAccount) →

{self is SavingAccount}; {self is SavingAccount};
self .balance := self .balance + value

fi)
. . .

end

classAccount end
class BonusAccount extends Account end
class SavingAccount extends Account end
class AccountList end

• var acc : object •
{newSavingAccountis Account}; acc := new SavingAccount ;
{accis Account}; acc.setNumber("21 .342 − 7");
{accis Account}; acc.credit(200 );
{accis Account};
if (accis SavingAccount) → {acc is SavingAccount}; acc.interest()
[] ¬ (accis SavingAccount) → skip
fi

Fig. 9. Bank account program—types changed to object, and elimination of casts



Transformation Laws for Sequential Object-Oriented Programming 53

class object
pub number : string; balance : double; acc : object
pub prox : object; bonus : double

end
classAccount end
class BonusAccount extends Account end
class SavingAccount extends Account end
class AccountList end

• var acc : object •
{new SavingAccount is Account}; acc := new SavingAccount ;
{acc is Account}; acc.number :="21 .342 − 7";
{acc is Account}; acc.credit(200 );
{acc is Account};
if ¬ (acc is SavingAccount) →

{acc is Account};
if ¬ (acc is BonusAccount) →

{acc is Account}; {acc is Account}; acc.balance := acc.balance + value
[] (acc is BonusAccount) →

{acc is BonusAccount}; {acc is BonusAccount};
acc.balance := acc.balance + value;
{acc is BonusAccount}; acc.bonus := value ∗ 0 .05

fi
[] (acc is SavingAccount) →

{acc is SavingAccount}; {acc is SavingAccount};
acc.balance := acc.balance + value

fi
. . .

Fig. 10. Bank account program in subtype normal form

and its reduction process is entirely algebraic; as mentioned before, reduction
to a pure imperative form requires some sort of encoding of the object data
model.

Exercise 12. The step for introducing trivial casts (Section 4.5) can be carried
out before that for introducing trivial occurrences of super (Section 4.3). Anal-
yse why changing the order of these steps would not affect the reduction strategy.
Verify whether any other permutation of the steps would be possible.

5 Formal Refactoring

One of the main applications of the laws introduced in Section 3 is the formal
derivation of refactorings. In fact, developers often wish to refactor programs
or to define new refactorings, but are usually not so sure about the necessary
preconditions and code transformations. Our laws give them a basis for proving
that the transformations they apply or define preserve behaviour and, therefore,



54 A. Sampaio and P. Borba

are indeed refactorings. In this section, we first illustrate how a simple program
can be refactored by systematically applying our laws, and then we present and
derive, using the previously introduced laws, one refactoring as an equivalence
law (a more extensive list can be found in [73]).

5.1 Refactoring a Banking Application

We consider a banking application where a user interface class accesses
system services through a facade, which, in turn, accesses a collection of ac-
counts. This sort of design is typical of well-structured layered object-oriented
applications.

class GUI
pri f : Facade
pri fields : GUIFields
meth action =̂

var a : Account •
a := newAccount(); . . .
self .f .add(a)

end

class Facade
pri c : Collection
meth add =̂ (val a : Account •

self .log("Adding . . .");
vare : bool • . . .

if ¬e → self .c.add(a) fi)
meth log =̂ (val s : string • . . .)

end

For simplicity, some details are omitted. For example, constructors do not ap-
pear; we assume that they initialise the attributes by creating objects. The action
method in GUI sets the fields of a with information from fields and then in-
vokes a facade service, add , which adds an account to the collection as long as
it contains no account with the same number.

The class Facade also keeps a log of the transactions on bank accounts; this
is the main concern of the method log. We could further improve this design
by using the wrapper pattern [96] in order to extract the calls to log. In this
case, a wrapper would be responsible for logging and the facade would focus on
business code only. We can actually show that this would be a valid refactoring
of the original specification, just introduced, by applying, in a stepwise way, our
laws.

We start the refactoring process by considering any context CDS contain-
ing at least classes Collection (with a method add), Account and GUIFields
(both with the necessary get methods), and not redefining Facade’s method
add . This will simplify the derivation, but is not strictly necessary, as we dis-
cuss later. We also consider any command c using only the methods and pub-
lic attributes in this context and in the classes GUI and Facade just
introduced.

By applying Law 27 from right to left, we introduce a new auxiliary method
add ′, a fresh name, to Facade. By applying Law 17 from right to left we introduce,
also with a fresh name, our wrapper, a direct subclass of object. We obtain the
following equivalent, according to CDS , c, set of class declarations.



Transformation Laws for Sequential Object-Oriented Programming 55

class GUI
pri f : Facade
pri fields : GUIFields
meth action =̂

var a : Account •
a := newAccount(); . . .
self .f .add(a)

end
class LWrapper

pri f : Facade
meth add =̂ (val a : Account •

self .f .log(‘Adding . . .′);
self .f .add ′(a))

end

class Facade
pri c : Collection
meth add =̂ (val a : Account •

self .log("Adding . . .");
var e : bool • . . .

if ¬e → self .c.add(a) fi)
meth add ′ =̂ (val a : Account •

var e : bool • . . .
if ¬e → self .c.add(a) fi)

meth log =̂ (val s : string • . . .)
end

The wrapper specification was chosen in such a way that calls to Facade’s add
can actually be replaced by calls to the wrapper’s add method.

Now Law 29 allows us to replace part of add ’s body by a call to add ′. This
is possible for the following reasons: as add ′ is fresh, it is not redefined in CDS ;
object has no methods, so there are no super method calls in add ′; from Laws 36
and 37, we can infer that {self 	= null ∧ self 	= error} is equivalent to skip,
which can be freely introduced before any command; and part of add ’s body can
be easily represented by a parametrised command applied to a. However, notice
that Law 19 should be applied before (from left to right) and after (from right
to left) Law 29 to make the attributes public and then hide them again.

class GUI
pri f : Facade
pri fields : GUIFields
meth action =̂•

var a : Account •
a := newAccount(); . . .
self .f .add(a)

end
class LWrapper

pri f : Facade
meth add =̂ (val a : Account •

self .f .log("Adding . . .");
self .f .add ′(a))

end

class Facade
pri c : Collection
meth add =̂ (val a : Account •

self .log("Adding . . .");
self .add ′(a))

methadd ′ =̂ (val a : Account •
var e : bool • . . .

if ¬e → self .c.add(a) fi)
meth log =̂ (val s : string • . . .)

end

As we want a specification of GUI that uses an object of LWrapper instead
of an object of Facade, we apply Law 44 to obtain a simulation of the previous
GUI class having a concrete LWrapper attribute w , a fresh new name, instead of
the abstract attribute f . The coupling invariant CI is self .f = self .w .f , and the
context CDS ′ for the simulation consists of CDS plus the previous LWrapper



56 A. Sampaio and P. Borba

and Facade classes. In the method bodies in GUI , simulation changes only the
method call self .f .add(a), since the other statements do not access the attribute
f ; they just declare a variable a, initialise it, and set its fields. So the resulting
simulation of GUI is as follows.

classGUI
pri w : LWrapper
pri fields : GUIFields
meth action =̂

var a : Account • a := newAccount(); . . . self .w .f .add(a)
end

The application of the simulation law gives us GUIf �CDS ′,CI GUIw , where
GUIf and GUIw denote the declarations of GUI with the f and w attributes.
As discussed in Section 3.5, this implies the class refinement GUIf �CDS ′ GUIw ,
and then GUIf �CDS ′,c′ GUIw for any c′ that uses only methods and public
attributes in CDS ′ and GUIf . This is precisely what we need to infer:

GUIf LWrapper Facade �CDS ,c GUIw LWrapper Facade

assuming that LWrapper and Facade denote here the respective class declara-
tions; we just moved class declarations from the subscript to the sets of related
class declarations.

This means that we can proceed with our derivation, still considering the con-
text CDS , c, but now having only refinement instead of equivalence. Equivalence
could be achieved by applying a simulation law in the opposite direction, but
we omit the details here. By applying Law 29 from left to right, we can start
to replace calls to Facade’s add by calls to LWrapper ’s add : self .w .f .add(a) is
equivalent to

{self .w .f 	= null ∧ self .w .f 	= error};
self .w .f .log("Adding . . ."); self .w .f .add ′(a)

But, by the definition of assumption and the precondition weakening law, and
using Law 38, we can infer that this is refined by

{self .w 	= null ∧ self .w 	= error};
self .w .f .log("Adding . . ."); self .w .f .add ′(a)

which, by Law 29 from right to left, is equivalent to self .w .add(a). As before,
this derivation is only possible by applying Law 19 before and after Law 29
to make the attributes public and then hide them again. Moreover, notice the
following: LWrapper was introduced during the derivation, so it has no subclasses
in CDS and, therefore, its methods are not redefined; we assumed that Facade’s
add is not redefined in CDS .



Transformation Laws for Sequential Object-Oriented Programming 57

This refinement leads to the following declarations.

class GUI
pri w : LWrapper
pri fields : GUIFields
meth action =̂

var a : Account •
a := newAccount(); . . .
self .w .add(a)

end
class LWrapper

pri f : Facade
meth add =̂ (val a : Account •

self .f .log("Adding . . ."); self .f .add ′(a))
end

class Facade
pri c : Collection
meth add =̂ (val a : Account •

self .log("Adding . . .");
self .add ′(a))

meth add ′ =̂ (val a : Account •
var e : bool • . . .

if ¬e → self .c.add(a) fi)
meth log =̂ (val s : string • . . .)

end

Now the GUI call to Facade’s add was removed; other calls to add in the
classes of CDS can be removed in a similar way. This changes the context we
have been considering so far, but, as cds =CDS ,c cds ′ is just an abbreviation
to cds CDS • c = cds ′ CDS • c, we can still benefit from transitivity and
proceed with our derivation. So, using Law 27, we eliminate the add method
from Facade, and then, using Law 27 in the opposite direction, introduce a new
add identical to add ′. As add and add ′ now have the same body, we then replace
calls to self .f .add ′(a) by self .f .add(a), following an strategy similar to the one
used to replace calls to Facade’s add by calls to LWrapper ’s add . We can then
eliminate add ′ and finally arrive at the refactored program below, which uses
the wrapper pattern.

class GUI
pri w : LWrapper
pri fields : GUIFields
meth action =̂

var a : Account •
a := newAccount(); . . .
self .w .add(a)

end
class LWrapper

pri f : Facade
meth add =̂ (val a : Account •

self .f .log("Adding . . .");
self .f .add(a))

end

class Facade
pri c : Collection
meth add =̂ (val a : Account •

var e : bool • . . .
if e → self .c.add(a) fi)

meth log =̂ (val s : string • . . .)
end

Method and constructors bodies in GUI are the same as before except that
now they access w instead of f : assignments to f were replaced by correspond-
ing assignments to w , and f := new Facade became w := new LWrapper .



58 A. Sampaio and P. Borba

Method bodies in Facade are unchanged except for the commands extracted
to LWrapper . The method log in Facade could be further moved to LWrapper ,
assuming it does not access c, but we omit the details here.

This refactoring process can be generalised to deal with arbitrary classes in
the same situation as GUI and LWrapper . In other words, we could formalise a
new refactoring law, as illustrated in the next section. We would then be able
to perform the same transformations with other classes, having several methods
and attributes, and also to extract command blocks, not just a single method
call. Also, we could drop the restriction that Facade’s add is not redefined; this
could be done by applying, during the refactoring, the normal form strategy used
to eliminate dynamic binding, and later performing the reverse process.

5.2 Refactoring Laws

Refactoring laws denote a pair of refactorings, corresponding to applications
of the law in each direction. They explicitly present generic transformations,
and the conditions that must be satisfied in order to apply a refactoring. If the
conditions are satisfied, the application of a refactoring to a program yields a new
program that preserves the behaviour of the original one. Here we present the
refactorings 〈Pull Up Method〉 and 〈Push Down Method〉, which combine and
organise redundant method declarations. They are captured by the following
law.

Refactoring 1 〈Pull Up/Push Down Method〉
class A extends D

adsa
opsa

end class B extends A
adsb
meth m =̂ (pds • b)
opsb

end class C extends A
adsc
meth m =̂ (pds • b)
opsc

end

=cds,c

class A extends D
adsa
meth m =̂ (pds • b)
opsa

end class B extends A
adsb
opsb

end class C extends A
adsc
opsc

end

provided

(↔) (1) super and private attributes do not appear in b; (2) super.m does not
appear in opsb or opsc; (3) m is not declared in a superclass of A in cds ;

(→) m is not declared in opsa, and can only be declared in a class N , for any
N ≤ A, if it has parameters pds ;

(←) (1) m is not declared in opsb or opsc; (2) N .m, for any N ≤ A such that
N � B or N � C , does not appear in cds , c, opsa, opsb or opsc. �



Transformation Laws for Sequential Object-Oriented Programming 59

Applying this law from left to right corresponds to the first refactoring; the
reverse direction corresponds to the other one. The class A that appears on the
left hand-side of this law is the superclass of B and C , which declare a method m
defined with the same parameters and body. As they have a common superclass
and the method m is the same in both classes, we can move this method to the
superclass. This helps maintenance as any modification will occur in just one
method definition.

The provisos are similar to those of Laws 24 and 23. Notice that if the method
in B uses elements of B through self , this method could not be the same as that
of C , which clearly does not have access to B elements. We also require that m
is not defined in a superclass of A, as otherwise the method m available in A
ends up being different when we apply this refactoring.

Proof. In order to derive the above refactoring, we assume that the provisos are
valid and begin the derivation with the class declarations on the left-hand side.

We cast occurrences of self in b to A, so that later we can move the methods
m to A. Every command in which there is an occurrence of self is preceded by
skip, the specification statement : [true, true]. By the definition of assumptions,
we can write this specification statement as {true}. By Law 34, we have that
the expression self is A is true in classes B and C . Applying this law, from right
to left, we obtain the assumption {self is A}. In this way, every command with
occurrences of self is now preceded by the assumption {self is A}. By applying
Law 33, from right to left, we cast every occurrence of self in b with A. The
result is denoted by b′.

By using Law 24, we move the method m that is declared in class B to its
superclass A, obtaining the following declarations.

class A extends D
adsa
meth m =̂ pds • b′

opsa
end

class B extends A
adsb
opsb

end

class C extends A
adsc
meth m =̂ pds • b′

opsc
end

The next step moves the method m declared in C to its superclass A. However,
this method is already declared in A. So, we use Law 23, which allows us to
move a redefined method from a subclass to its superclass. This introduces an
alternation in the method declared in the superclass, yielding the following result.

class A extends D
adsa
meth m =̂ (pds •

if ¬(self is C ) → b′

[] self is C → b′

fi)
opsa

end

class B extends A
adsb
opsb

end

class C extends A
adsc
opsc

end



60 A. Sampaio and P. Borba

The disjunction of the guards of the alternation we have introduced in the pre-
vious step is true, and the same command b′ is guarded in both branches of the
alternation. This allows us to apply Law 39 that reduces this alternation just
to the command b′. Now we can remove the casts to A by applying Law 32,
from right to left, obtaining the original command b. With this step we finish
the proof of the refactoring 〈Pull Up/Push Down Method〉. �

Exercise 13. Using the laws discussed here, derive the Extract Method refac-
toring, which is considered the Rubicon of refactoring tools. Consider that you
have imperative laws for transforming a command block into a parametrised
command application. This exercise is much harder than the previous ones.

6 Conclusions

In this tutorial, we have explored the algebraic properties of some common
object-oriented constructs available in languages like Java. Perhaps the ma-
jor benefit of an algebraic presentation is that it encourages separation of con-
cerns: the properties of each feature can be addressed in isolation. As an example,
the elimination of method invocation (Law 29) has been dissociated from dy-
namic binding (Law 23), as well as from the behaviour of super (Laws 28 and
22). We have addressed completeness of the laws based on a normal form that
mimics an imperative program: we presented a strategy to reduce an arbitrary
program to such a form.

Unfortunately, the proposed laws, when viewed as transformation rules, are
not compositional as the laws of pure imperative programming. Our laws, espe-
cially those involving classes, impose side conditions on the entire context (rep-
resented by the class declarations cds and the main program c). However, this
seems inevitable when dealing with object-orientation, which is a paradigm heav-
ily based on contextual information. It is worth stressing, nevertheless, that al-
though the proposed laws rely on conditions on cds and c, these contextual
elements are not modified by any of the laws.

Complementarily to exploring the properties of each language operator, we
have addressed data refinement of classes, generalising Morgan’s approach (that
deals with single modules with private information) to class hierarchies possibly
involving protected attributes. Together with the laws of commands and classes,
this law serves as a powerful tool to prove more elaborate transformations, like
refactorings, for instance, which are addressed in the previous section.

In the remainder of this section we discuss some additional issues: soundness
of laws; the impact of a reference semantics, as opposed to a copy semantics; laws
of other programming paradigms, particularly concurrency; and automation.

6.1 Soundness

A common criticism to the algebraic style is that merely postulating algebraic
laws can give rise to complex and unexpected interactions between programming



Transformation Laws for Sequential Object-Oriented Programming 61

constructions. This can be avoided by linking the algebraic semantics with a
mathematical model in which the laws can be verified. Our laws have been
proved sound [72] with respect to a weakest precondition semantics [48] defined
by induction on the typing rules of the language. Besides the semantics itself,
the cited work also introduces a notion of refinement, and defines equivalence
and refinement of programs in a standard way.

The laws clearly need to be proved again if a different semantic model is
adopted. The impact of adopting a reference semantics is discussed next.

6.2 Copy and Reference Semantics

As discussed in Section 2, we have adopted a copy semantics for our language;
a major objective was to simplify the definition of a formal semantics (and a
notion of refinement) [48] for an object-oriented language with features that are
common in languages like Java. Nevertheless, it is interesting to examine, more
closely, the algebraic laws that rely on copy semantics.

First we consider reference semantics assuming that expressions are side-effect
free, as in our language. If a reference model is adopted, it is essential to define
what is allowed as left expressions in assignments and the meaning of assignment.
In languages like C and C++, which allow direct pointer manipulation, laws such
as the one below for combining assignments are not valid.

(le := e1 ; le := e2 ) = (le := e2 [e1/le])

Assuming that x is a pointer to an integer variable, and that y is an integer
variable, in C and C++ the assignment x := &y assigns to x the address of y.
As a result of this assignment, an aliasing is created between ∗x (the value of
the address stored in x ) and y. Therefore, the sequence of assignments

∗x := 1 ; ∗x := y + 1

has the effect of assigning 2 to y. On the other hand, the combined assignment
∗x := y + 1 increments the value of y by 1 .

Some other languages like Java do not allow pointer manipulation, and attach
a copy semantics to assignments involving variables of primitive types, say x and
y. Therefore the effect of x := y is confined to copying the value of y to x . As
a result, if we adopt a Java-like reference semantics model for our language, the
law for combining assignments would still be valid.

On the other hand, combining assignments to the same object-valued left-
expression does not always preserve behaviour. For example, when a and b ref-
erence the same object, say an account of balance 2, the sequence of assignments

a.balance := b.balance + 1 ; a.balance := b.balance + a.balance

increases the balance attribute to 6, whereas the combined assignment

a.balance := b.balance + (b.balance + 1 )



62 A. Sampaio and P. Borba

updates it to 5. Nevertheless, it is interesting to observe that the law still holds
for assignments that do not involve access to attributes, even when the left-hand
side of the assignments are object identifiers, like a and b above. For instance,
the equality

(a := b; a := c) = (a := c)

holds because there is no operator that would allow the object expression c to
generate a side-effect on b. Thus the only effect of both programs is to assign
the object resulting from evaluating c to a.

This suggests that, if we adopt a Java-like reference semantics model for our
language, then we can replace the law for combining assignments with two laws.
The one below is similar to the original law, and is valid in general if x is an
identifier not involving attribute access.

(x := e1 ; x := e2 ) = (x := e2 [e1 /x ])

Another law deals with attribute access, with an explicit condition to preclude
sharing (aliasing) between the object identifier being assigned and any subex-
pression of the second expression assigned to this identifier.

(le.a := e1 ; le.a := e2 ) = (le.a := e2 [e1 /le.a])
providednoSharing(le, e2 )

The side condition is clearly not syntactic, and in general may require elaborate
techniques, such as program analysis, to be discharged; a possible implementa-
tion of noSharing is out of the scope of this chapter.

In a similar way, the law that allows the distribution of assignments over a
conditional also needs revising when considering a reference semantics. We need
an extra condition concerning the absence of sharing between the expression in
the assignment and those in the branches of the conditional.

(le := e; if []i • ψi → ci fi) = (if []i • ψi [e/le] → (le := e; ci) fi)
providednoSharing(le, ψi )

Surprisingly, perhaps, no other law of commands (including those introduced
in Section 3.4 as well as the ones presented in [72]) are affected by a model of
reference semantics as that of Java, adopted to our language.

The law for change of data representation, which generalises the traditional
data refinement law for a single module [192] to class hierarchies, on the other
hand, is also affected by reference semantics. To be valid in general, such a law
would have to consider pointer confinement issues as, for example, in [20].

Side-effect in expressions is another aspect that may impact the validity of
some laws; but this is a concern orthogonal to the semantic model (copy or
reference semantics). In the presence of side-effects like, for instance, method
calls as expressions, as allowed in Java, none of the laws considered above are
valid, regardless whether we adopt a copy or a reference model.



Transformation Laws for Sequential Object-Oriented Programming 63

In summary, reference semantics, as in Java, and side-effect free expressions
(for instance, avoiding method calls in the expression language) cause a rela-
tively small impact on the set of laws of our language, with copy semantics.
Furthermore, in the absence of sharing, all laws of our language are valid in the
context of a reference semantics as well.

Of course, these claims need to be formally proved. In [130], concepts of
the unifying theories of programming (UTP) are used to formalise a seman-
tic model based on that of Java for a language similar to ours. This model could
be an interesting basis for the formal verification of both the revised laws dis-
cussed in this section and the ones that we claim are not affected by a reference
semantics.

6.3 Laws of Other Programming Paradigms

This work shows that the laws of object-oriented programming naturally extend
well-established laws of pure imperative programming [116]. This is not sur-
prising given that, due to the concept of states in objects, object orientation is
considered by some authors to be a variation of the imperative paradigm, rather
than a strictly new paradigm.

As an orthogonal aspect, concurrency has been integrated to several pro-
gramming paradigms; Java itself is an object-oriented and concurrent language.
Nevertheless, laws that simultaneously address object-oriented and concurrent
features seem to be a recent topic of research. The language OhCircus [52] extends
Circus [255] with object-oriented features similar to those of our language. Circus
itself combines CSP, Z, and Morgan’s specification statements. Refinement laws
for concurrent processes in Circus are presented in [230, 51]. At the moment, we
are proposing laws for OhCircus, based on the ones presented here and those of
Circus. A formal UTP semantics for OhCircus is being defined.

The modeling language UML-RT (UML for Real Time) also combines object-
oriented and concurrent features. A formal semantics and laws for UML-RT are
presented in [220, 229].

6.4 Automation

Besides contributing to the formal verification of behaviour preserving transfor-
mations, the results presented here are useful as a basis for the implementation
of refactoring tools. The preconditions of our laws are purely syntactic, leading
to refactorings that have syntactic preconditions that can be automatically dis-
charged by tools. Moreover, our laws suggest essential refactorings, which should
be provided by tools that allow the user to compose existing refactorings to define
new ones [100]. Similarly, executable languages for specifying new refactorings
from scratch [46] should be able to express the laws presented here.



Using CSP

Jim Davies

Oxford University Computing Laboratory
Wolfson Building, Parks Road

Oxford OX1 3QD UK

This is a tutorial on Communicating Sequential Processes (CSP): a language
for modelling patterns of behaviour. It explores the design of the language, and
shows how it may be used to construct descriptions of behavioural properties
and distributed systems. It explains also how the use of the language may be
supported by verification tools.

In the next section, we motivate the use of communicating sequential processes
to model and reason about complex systems. After that, we present the basic
constructs of CSP that can be used to define sequential processes; a number
of laws and examples provide the intuition. The semantic models of CSP are
the subject of Section 3, where we also introduce the notion of refinement for
processes. Sections 4 and 5 present more elaborate CSP constructs to compose
processes, including those that model parallel behaviour; again, an extensive
number of laws and examples are presented. Data aspects of a system can also
be modelled in CSP; this is discussed in Section 6. An important application
of CSP is communication protocols; their modelling is discussed in Section 7.
Finally, in Section 8, we briefly present the main CSP tools: FDR and Probe.

1 Introduction

1.1 Complex Systems

The computing systems that we build are becoming closer to life; they are ever
more: pervasive, delivering increased functionality in a wider variety of situations;
connected, providing services and information on-demand; and powerful, holding,
processing, and integrating larger amounts of data. As a result, they are rapidly
becoming more complex.

The human ability to deal unaided with complexity is not increasing at the
same rate. We need to augment our faculties with appropriate languages, meth-
ods, and tools; the question of what is appropriate is still being answered. It is
not enough to look to older, established engineering disciplines for approaches
and solutions.

The development of computing systems presents particular challenges in terms
of: scale—the systems that we design need to be understood at many different
layers of abstraction, and viewed from many different perspectives; change—the
requirements upon these systems will change during development, as a result
of changes in the environment, or changes in our understanding; behaviour—

, LNCS 3167, pp. 64–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004



Using CSP 65

understanding structure and state is not enough, we need to understand also
how the system will behave.

To understand complex systems, we must construct comprehensible, abstract
models, including in each model only that information which is relevant to our
immediate purpose. A model might focus upon the structure, or architecture, of
a system; the data that it contains, and the effect of each operation upon that
data; or the behaviour that it might exhibit. In this chapter, we will see how to
construct comprehensible, abstract models of behaviour.

It is useful for us to distinguish between two kinds of behavioural model: in-
stance models and process models. An instance model presents a particular sce-
nario, giving an example of how a component may behave. The sequence diagram
of Figure 1 illustrates the following sequence of interactions between a person
User and a vending machine Machine: the user inserts a 50 cent coin, and then
selects orange; in response, the machine will dispense a can of orange drink.

:User :Machine

insertCoin(50)

select(orange)

dispense(orange)

Fig. 1. A sequence diagram

A process model, on the other hand, presents a complete picture, describing
all of the possible behaviours of a component with respect to a particular set
of actions or events. The state diagram of Figure 2 describes all of the possi-
ble behaviours of a vending machine, while partitioning the state space of the
component into two regions: Ready and Select .

In Ready, the insertion of a coin will result in a transition to Select if and only
if the value of the coin, when added to the current holding, equals or exceeds
the price of a can of drink. In Ready, any selection is ignored. In Select , a user
selection results in the corresponding can of drink being dispensed; if the new
value of holding is less than price, the component returns to the Ready state.

This diagram describes all of the possible behaviours of the machine with
regard to the insertCoin, select , and dispense actions. It is an idealized repre-
sentation, in that it does not take account of the fact that the machine may fill
up with coins, or run out of cans; neither does it take account of the nondeter-



66 J. Davies

Ready

insertCoin(value)
  [ holding + value < price ] /
     holding := holding + value

Select

insertCoin(value)
  [ holding + value >= price ] /
     holding := holding + value

select(x)
  [ holding < 2 * price ] / 
    dispense(x); holding := holding - price 

select(x)
  [ holding >= 2 * price ] /
    dispense(x); holding := holding - price

insertCoin(value) / 
  holding := holding + value

Fig. 2. A state diagram

minism that should result from the exclusion of this information (the capacity
of the coinbox, the number of cans remaining) from the model.

Instance models are ideal for the description of scenarios, particularly those
associated with requirements or tests. For a complete understanding, however,
process models are necessary: they can tell us what the system could do—in any
situation—as opposed what it should do—in a limited range of situations.

To be comprehensible, any complex model of behaviour must be presented in
terms of sequential descriptions: it is difficult for a human being to follow two or
more threads of a story at the same time. In general, a model of the behaviour of
a complex system will involve more than one sequential description: for otherwise
the multiplication of entities and states would make the narrative too long, and
the choices too numerous to contemplate.

A model of a complex system will need to be presented as a composition
of sequential descriptions, or model components, each explaining part of the
overall pattern of behaviour. Furthermore, the properties of the model must
be determined entirely by the properties of these sequential descriptions: our
language of models must be compositional.

1.2 Abstract Events

The language introduced in this chapter is compositional for a wide range of
behavioural properties: those expressible in terms of the occurrence and avail-
ability of abstract events. We will see how it can be used to compose process
models of complex systems from simple sequential descriptions, and how it can
be used to compare two models—instance or process—of the same system.



Using CSP 67

We will describe the behaviour of a component in terms of abstract events,
points at which there is some relevant interaction between the component and its
environment. This will be enough to explain how the component will behave in
combination; it should also be all that we need to understand about the resulting
system.

Abstract events are atomic and have no measurable duration. We may com-
pare them to lines in planar geometry: they act as a boundary between behaviour
before, and behaviour afterwards. They are also synchronous: if an event repre-
sents an interaction between two components, then it occurs for both components
at the same time, or not at all.

These events are perfectly symmetric, having the same interpretation in each
component: in particular, there is no notion of the source, or target, of an event.
There is no limit upon the number of components involved: events represent
abstract transactions, not point-to-point communications.

This notion of event is the ideal primitive for the abstract description of
behaviour. Where there is a need to distinguish between different stages of an
interaction, we may use an event for each distinction that we need to make.
Where no such need exists, a single event will suffice.

In constructing a model, we will aim for a minimal set of events: just enough
to express the properties that we wish to consider. We may wish to add further
events—for clarity, or regularity, or to suggest features of an implementation—
but we should remember that each new event increases the complexity of the
model, and makes it harder to reason about.

Example 1 (Doors). The number of events needed to represent the actions of
opening and closing a door will depend upon the purpose of the model in ques-
tion. If the model is intended to help us understand the part of an alarm system,
a single event may suffice: we may need only to model the action of opening
the door. In reasoning about the behaviour of a lift control system, we may
need several different events: to model the actions of the doors starting to open,
reaching fully open, starting to close, and reaching fully closed.

1.3 Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a language for the description and
analysis of complex systems. In CSP: all models are process models; a complex
model may be constructed from simple, sequential components; and behaviour
is described in terms of abstract events.

The language of CSP has a precise, mathematical interpretation: the mean-
ing of a model is the set of all behaviours that it admits; each behaviour is
described in terms of sequences of events performed, and sets of events subse-
quently refused. This semantics supports a powerful theory of refinement and
proof.

A number of tools have been developed to allow us to reason about complex
models written in CSP. Interaction with these tools involves not only the pro-
cess language, but also its semantics: individual behaviours are used to describe



68 J. Davies

particular scenarios. Because of this, the semantic language of behaviours is as
important as the process language itself.

In the subsequent sections, we will introduce first the language of sequential
models, then its semantics, and then the mechanisms for parallel composition
and abstraction. As we do so, we will see how the language, the semantics, and
the tools can be used together in reasoning about the behaviour of complex
systems.

2 Processes

The language of CSP is an algebraic notation, with event names, process names,
and operator symbols. In this section, we introduce the operators used to com-
pose sequential descriptions. We also introduce a number of algebraic proper-
ties: each time we observe that two expressions are simply different ways of
writing the same process, we learn something more about the meaning of our
language.

2.1 Basic Processes and Events

The language of CSP has two basic processes: Stop and Skip; neither of these
processes will ever engage in an event. The first represents the end of a pattern of
behaviour: no more events will be performed. The second represents successful
termination: again, no events will be performed, but if there is another com-
ponent to describe subsequent behaviour, then this is the point at which that
behaviour can begin.

If a is an event, and P is a process, then the expression a → P denotes a
process that is ready to engage in a; should this event occur, the process will then
behave as P . We call ‘→’ the event prefix operator: event a must happen first.
We say ‘ready to engage’, because no component can simply ‘do’ an event: each
event is a synchronisation with the environment; it can be performed only when
every other component involved is ready.

Example 2 (Vending machines). The process

coffee → Stop

is ready to engage in coffee; after this event, it will never do anything again. The
process

coin → (coffee → Stop)

is ready to engage in coin. If this happens, the process is then ready to engage
in coffee. Once both events have been performed, the process stops.

We may introduce a new process name with a simple equation: on the left is
the new name; on the right is an expression in the process language.

Name = . . .



Using CSP 69

Example 3 (Vending machines). We may use the process name OCM for our
coffee machine:

OCM = coin → (coffee → Stop)

These definitions may be recursive, in that the process name being introduced
may appear within the expression on the right-hand side.

Name = . . .Name . . .

Example 4 (Vending machines). A simple coffee machine accepts a coin, offers
a coffee, and then returns to its initial state. We may describe this behaviour
using a process CM , defined as follows:

CM = coin → (coffee → CM )

As far as the model is concerned, this component will accept coins, and offer
coffee, indefinitely.

2.2 Choice

Our process language has two forms of choice: internal and external. The first
of these represents nondeterminism, or uncertainty, regarding the behaviour of
a component—it is as if the choice is made within the component. The second
represents a menu of options for interaction—it is as if the choice is offered to
the environment.

If P and Q are processes, then we write P � Q to denote the internal choice
between them. This describes a component that may behave as either P or Q .
Whatever the factors are that influence or determine which of the two process
descriptions will apply, they are not considered in this model.

Example 5 (Vending machines). The process NVM describes the behaviour of
a vending machine that will decide, internally, whether to offer coffee or tea.

NVM = coin →
( coffee → NVM
�
tea → NVM )

An internal decision might be taken at any time before the result becomes ap-
parent. It may be that the internal design of the component would only ever
admit one of the two alternatives; or, at the other extreme, it may be that some
hidden action or computation has taken place immediately before the interaction
occurs. Our process language has the following property:

Law 47 (→–distribution). For any event a, and any processes P and Q,

a → (P � Q) = (a → P) � (a → Q)



70 J. Davies

An event followed by an internal choice is the same as an internal choice between
two processes, each starting with the event in question.

Example 6 (Vending machines). In the case of the nondeterministic vending
machine, the internal choice between coffee and tea may be made before or after
the coin is inserted:

coin →
( coffee → NVM
�
tea → NVM )

= (coin →
coffee → NVM )

�
(coin →

tea → NVM )

If P and Q are processes, we write P � Q to denote the external choice between
them. This describes a component that is offering to behave as either process: the
environment can choose between them by agreeing to perform an event that is
possible for exactly one of the two alternatives.

Example 7 (Vending machines). The following process describes the behaviour
of a more conventional vending machine:

VM = coin →
( coffee → VM
�

tea → VM )

This machine will respond to the insertion of a coin by offering the user a choice
between coffee and tea.

An external choice creates a menu of processes. The presence of Stop in such a
menu makes no difference to the overall behaviour: it is an option that cannot
be chosen.

Law 48 (�–Stop). For any process P,

Stop � P = P

If an event is possible for two or more of the alternatives in an external choice,
then the environment cannot use that event to decide between them. If it is
performed, then the outcome is nondeterministic.

Law 49. For any event a, and any processes P and Q,

(a → P) � (a → Q) = (a → P) � (a → Q)

This is a special case of the step law for external choice, presented later.
If one of the options in a menu is an internal choice, then the resulting be-

haviour is the same as that of an internal choice of menus.

Law 50 (�–distribution). For any processes P, Q, and R,

P � (Q � R) = (P � Q) � (P � R)



Using CSP 71

If E is a set of events, and for each element e of E we can define a parameterized
process P(e), then the process

� e : E • e → P(e)

describes the behaviour of a component that offers the environment a choice of
events from E . If event e is chosen, then the subsequent behaviour is that of the
corresponding process P(e).

This combination of event prefix and external choice is called prefix choice. It
is a particularly important construction in our language of processes: not only
does it allow us to describe a range of alternative actions as a single choice, but
it is also an ideal basis for explaining the meaning of the other operators. If the
process P satisfies

P = � e : A • e → P(e)

then we know which events P is willing to engage in at the next step, and what
the consequence of each event would be. If we have this information for each
component, then we can infer the same information for any composition of pro-
cesses (although there may be an internal choice of menus to consider). The
equation that expresses this inference is called the step law for the composition.

Step Law (�). If processes P and Q are such that

P=� e : A • e → P(e)

Q=� e : B • e → Q(e)

then

P � Q = � e : A ∪ B • e →
if e ∈ A \ B then

P(e)
else if e ∈ B \ A then

Q(e)
else

P(e) � Q(e)

The composition P � Q is ready to perform any event from the set A∪B . If the
event e is chosen, then what we know about the subsequent behaviour depends
upon whether e is in:

– the difference A \B , in which case it could only have been performed by P ,
and the subsequent behaviour must be described by P(e);

– the difference B \A, in which case it could only have been performed by Q ,
and the subsequent behaviour must be described by Q(e);

– the intersection A ∩ B , in which case it could have been performed by
either process, and that behaviour can only be described as P(e) � Q(e).



72 J. Davies

The conditional expression operator ‘if B then . . . else . . .’ saves us the trouble
of having to present two equations, one for each of the possible values of the
boolean expression B . It may be used for expressions of any type, but we will
find it most useful for processes.

Another useful choice construct is asymmetric choice. If P and Q are processes,
then we write P � Q to denote the behaviour of a component that may offer P ,
but must offer Q . That is,

P � Q = (P � Q) � Q

There is either a menu choice between P and Q , or there is just Q . Taking into ac-
count the Laws 48 and 50, we could write the same process as (P � STOP) � Q ,
because

(P � STOP) � Q
= (P � Q) � (STOP � Q) �-distribution
= (P � Q) � Q �-comm (below), �-Stop

The two choice operators admit the expected algebraic properties: for any pro-
cesses P , Q , and R

– idempotence:
P � P = P (�-idem)
P � P = P (�-idem)

– commutativity:
P � Q = Q � P (�-comm)
P � Q = Q � P (�-comm)

– associativity:
P � (Q � R) = (P � Q) � R (�-assoc)
P � (Q � R) = (P � Q) � R (�-assoc)

They also satisfy another distributive property presented below.

Law 51. If P and Q are processes, then

(P � Q) � R = (P � R) � (Q � R)

That is, an internal choice can be distributed over a menu—an external choice
of processes.

In an internal choice with R, the menu P � Q behaves as another menu, with
two options corresponding to P and Q , and internal choices to indicate that,
whichever option we would prefer, we may still be faced with R instead. This
law serves as a reminder that, in CSP, things change (and choices are resolved)
only when events occur.



Using CSP 73

2.3 Sequencing

If P and Q are processes, we write P ; Q to describe the behaviour of a com-
ponent that behaves according to the sequential composition of P and Q : that
is, it behaves as P until that process terminates successfully, and then behaves
as Q . You may recall that we use the basic process Skip to represent a point at
which a process may terminate successfully.

In CSP, we use shared events to indicate points at which one process may
affect the behaviour of another. The two processes in a sequential composition
can never share an event: indeed, one does not even start until the other has
terminated. As a result, there is a side-condition to the step law for this operator,
restricting the scope of the declaration of the event variable e.

Step Law ( ; ). If the process P is such that

P=� e : A • e → P(e)

and Q is any process, then

P ; Q = � e : A • e → (P(e) ; Q)

provided that e is not a parameter to the definition of Q (that would suggest
that e had some meaning, other than that of ‘some event from menu A’).

This law tells us that, whenever the behaviour of the first process can be de-
scribed as a prefix choice, the second process makes no immediate contribution
to the behaviour of a sequential composition.

We regard an empty prefix choice as equivalent to Stop: no event can be
chosen, and no progress can be made.

Step Law (Stop). If P is any process, then

� e : ∅ • e → P = Stop

In combination with the step law for sequential composition, this tells us that

Stop ; P = Stop

The only way that the second process can start is if the first process reaches a
point where Skip appears.

Law 52 (Skip–;). If P is any process, then

Skip ; P = P



74 J. Davies

Successful termination results in a seamless transition to the next process: no
event is observed.

Example 8 (Breakfast). If the processes Juice, Cereal , and Coffee are defined by

Juice = glass → juice → Skip

Cereal = bowl → cereal → milk → Skip

Coffee = cup → coffee → sugar → Skip

then we may use their sequential composition to describe the pattern of be-
haviour associated with a (rather sequential) breakfast:

Breakfast = Juice ; Cereal ; Coffee

Coffee does not begin until Cereal has terminated; Cereal itself does not begin
until Juice has terminated.

As termination is not marked by any external event, the Breakfast process
could have been defined using prefix and (eventually) successful termination.

Breakfast = glass → juice →
bowl → cereal → milk →

cup → coffee → sugar → Skip

Sequential composition distributes through � in both arguments.

Law 53 (;–distribution). For any processes P, Q, and R,

P ; (Q � R)=(P ; Q) � (P ; R)
(P � Q) ; R=(P ; R) � (Q ; R)

The fact that we cannot observe this abstract form of termination means that
we are not able to prevent it from occurring; if Skip appears as one of the
alternatives in a menu, then that menu behaves as an asymmetric choice.

Law 54. For any process P,

P � Skip = P � Skip

The initial events of P may be available; alternatively, the process may behave
exactly as Skip.

A second form of sequential composition is described using the interrupt oper-
ator. If P and Q are processes, then we write P � Q to represent the behaviour
of a component that behaves as P , except that an external choice with Q is
presented at every stage. Should Q be chosen, then P is forgotten, making no
further contribution to the overall pattern of behaviour.



Using CSP 75

Step Law (�). If processes P and Q are such that

P = � e : A • e → P(e) and Q = � e : B • e → Q(e)

then

P � Q = � e : A ∪ B • e → if e ∈ A \ B then
P(e) � Q

else if e ∈ B \ A then
Q(e)

else
(P(e) � Q) � Q(e)

provided that e does not appear in process expression Q .

The interrupt operator has the effect of a repeated external choice: as we might
expect, it is associative; it is also distributive in both arguments.

Example 9 (Pinball). A game of pinball may be interrupted at any point by a
tilt event, when the machine is pushed too hard. If the game-playing activity is
described by the following process

Game = launch → out → launch → out → launch → out → Skip

then we may describe the behaviour of the pinball machine using interrupt and
sequential composition:

Pinball = start → (Game � tilt → Skip) ; Pinball

The resulting behaviour is illustrated by the state machine in Figure 3.

start tilt

ball

out

ballout

ball

out

Fig. 3. Pinball states



76 J. Davies

3 Behaviours

Although we will write processes to represent our requirements and designs, the
question of whether a process is suitable or unsuitable will often be answered in
terms of individual behaviours. In this section, we see how individual behaviours
can be represented using the simple mathematical concepts of finite sets and
sequences, and how these concepts can be used to give a meaning, or semantics,
to our process notation.

3.1 Traces

One way of describing a behaviour is to write down a list of the events that
occur, in order of occurrence. Such a list, or sequence, of events is called a trace.
The information content of a trace is similar to that of an instance model: for
example, the sequence diagram of Figure 1 corresponds to the trace

〈insertCoin.50 , select .orange, dispense.orange〉

This trace is written using compound events, in which the second part of the
event name corresponds to a value chosen from some datatype; we will introduce
compound events and datatypes in Section 6.

Example 10 (Vending machines). The following trace could be performed by
NVM :

〈coin, coffee〉

It could also be performed by the more conventional VM .

Any process may be identified with a set of traces: the set of sequences of
events that it could perform. If CSP denotes the set of process terms, and Event
denotes the set of all events, then we may define a function

traces : CSP → P(seq Event)

mapping each term to a set of sequences of events. This function will help us to
understand the meaning of the language; it is also important in the construction
and use of analysis tools.

We define the function traces using recursion: the trace set of a compound
process is defined in terms of the trace sets of its components. The first clauses
in this recursive definition—for the basic processes, event prefix, choice, and
sequential composition—are shown in Table 1.

We use the special symbol � to distinguish between the behaviours of the two
basic processes. Stop has just one trace: the empty trace 〈〉. Skip has two: it may
have done nothing as yet, and so the trace is empty; or it may have terminated,
in which case the trace contains the special symbol �.

For any event a, and any process P , any non-empty trace of the prefix process
a → P must begin with the event a, and the remainder of the trace must be a



Using CSP 77

Table 1. The traces function

traces [[Stop]] = { 〈〉 }

traces [[Skip]] = {〈〉, 〈�〉}

traces [[a → P ]] = { 〈〉 } ∪ { trP : traces [[P ]] • 〈a〉 � trP }

traces [[P � Q ]] = traces [[P ]] ∪ traces [[Q ]]

traces [[P � Q ]] = traces [[P ]] ∪ traces [[Q ]]

traces [[P ; Q ]] = { trP : traces [[P ]]; trQ : traces [[Q ]] |
(� �∈ ran trP ∧ trQ = 〈〉) ∨ trP � 〈�〉 ∈ traces [[P ]] • trP � trQ }

possible trace of P . The trace set of this process is thus formed as a union: of the
set containing the empty trace, and the set of all traces formed as a concatenation
〈a〉 � trP , where trP is a trace of P .

Example 11 (Vending machines). Recall the definition of the one-shot coffee
machine:

OCM = coin → (coffee → Stop)

There are three possible traces of this process:

traces [[OCM ]] = { 〈〉, 〈coin〉, 〈coin, coffee〉 }

Any trace of a choice process must be a possible trace of at least one of the
two alternatives. This applies whether the choice is external or internal:

Example 12 (Vending machines). The two one-shot vending machines

OVM = coin →
( coffee → Stop
�

tea → Stop )

NOVM = coin →
( coffee → Stop
�
tea → Stop )

both admit the same set of traces:

traces [[OVM ]] = traces [[NOVM ]] = { 〈〉, 〈coin〉, 〈coin, coffee〉, 〈coin, tea〉 }

Any trace of a sequential composition will be formed as the concatenation of
two traces: one from the first process, and another from the second. The second
process can do nothing until the first terminates, and so the second trace must
be empty unless the first trace could be followed by a �.



78 J. Davies

Example 13 (Breakfast). The processes Juice and Cereal admit the following
sets of traces:

traces [[Juice]] = { 〈〉, 〈glass〉, 〈glass , juice〉, 〈glass , juice, �〉 }

traces [[Cereal ]] = { 〈〉, 〈bowl〉, 〈bowl , cereal〉, 〈bowl , cereal ,milk〉,
〈bowl , cereal ,milk , �〉 }

The traces of the sequential composition Juice ; Cereal are given by:

traces [[Juice ; Cereal ]] = {〈〉, 〈glass〉, 〈glass , juice〉,
〈glass , juice, bowl〉,

〈glass , juice, bowl , cereal〉,
〈glass , juice, bowl , cereal ,milk〉,

〈glass , juice, bowl , cereal ,milk , �〉 }
The successful termination of the first component does not mean termination of
the entire process, so we do not include a � at this point in the trace.

By considering traces, we can tell whether or not a process may accept a
particular sequence of events, in the sense that this sequence could be performed
if all of the other processes involved were ready to synchronize. However, we
cannot tell whether or not the process might also reject a particular sequence.
Example 14 (Vending machines). The two one-shot vending machines intro-
duced earlier have the same set of traces:

OVM = coin →
( coffee → Stop
�

tea → Stop )

NOVM = coin →
( coffee → Stop
�
tea → Stop )

In particular, both of them may accept the sequence 〈coin, coffee〉. However, one
of them, NOVM , may also reject it, by refusing to engage in coffee after coin
has occurred; the internal choice at this point may be resolved in favour of the
process tea → Stop.

If we were concerned only with the behaviour of our processes in a sequential
context, then it would be enough to record two sets of traces: those that may
be accepted, and those that might also be rejected. If a possible trace could also
be refused, then we will call it a ‘refusal trace’ of the process; we might define a
corresponding function

refusal traces : CSP → P(seqEvent)

to explain how the ‘refusal traces’ of a process are determined by the operators
used to define it.

If we avoid any operator, such as internal choice (� ), that may introduce
nondeterminism into a process description, then we will find that the two sets
of traces are disjoint. For any deterministic process P ,

traces [[P ]] ∩ refusal traces [[P ]] = ∅

For other processes, this intersection will be non-empty.



Using CSP 79

Example 15 (Vending machines).

refusal traces [[OVM ]] = { }

refusal traces [[NOVM ]] = { 〈coin, coffee〉, 〈coin, tea〉 }

In a sequential (or ‘single-threaded’) context, where the environment may present
the process a single sequence of events, this is all the information we need. Here,
it does not matter that NOVM will guarantee to offer either coffee or tea; all
that matters is that whichever sequence we offer, we might be disappointed.

In a concurrent context, where the environment may offer more than one event
at the same time, ‘refusal traces’ information is not enough.

Example 16 (Vending machines). Consider the following process, describing the
behaviour of a possibly-crooked vending machine:

COVM = coin → ( coffee → Stop
�
tea → Stop
�
Stop )

This has the same traces, and the same ‘live traces’, as NOVM . However, in an
environment that is ready to perform both coffee and tea after coin, NOVM is
guaranteed to make progress, whereas COVM might prove disappointing.

3.2 Failures and Divergences

If we wish to reason about the availability of events, based upon a nondetermin-
istic description, in a concurrent context, then we need to consider more than
just ‘refusal traces’. We need to consider the various combinations of events that
may be refused after each trace. We call such a combination a ‘refusal set’, or
simply a refusal.

Example 17 (Vending machines). The process COVM admits the following re-
fusals following the trace 〈coin〉:

∅, {coin}, {coffee}, {tea}, {coin, coffee}, {coin, tea}, {coffee, tea},
{coin, coffee, tea}

Two of these sets are not refusals of NOVM :

{coffee, tea}, {coin, coffee, tea}

the process NOVM cannot refuse both coffee and tea: whichever way the internal
choice is resolved, one of these events must be available.



80 J. Davies

Table 2. The failures function

failures [[Stop]] = { ref : PEvent • (〈〉, ref ) }

failures [[Skip]] = { tr : seq Event ; ref : PEvent |
(tr = 〈〉 ∧ � �∈ ref ) ∨ tr = 〈�〉 }

failures [[a → P ]] = { tr : seq Event ; ref : P Event |
tr = 〈〉 ∧ a �∈ ref ∨

head(tr) = a ∧ (tail(tr), ref ) ∈ failures [[P ]] }

failures [[P � Q ]] = { tr : seq Event ; ref : P Event |
tr = 〈〉 ∧ (tr , ref ) ∈ failures [[P ]] ∩ failures [[Q ]] ∨

tr �= 〈〉 ∧ (tr , ref ) ∈ failures [[P ]] ∪ failures [[Q ]] }

failures [[P � Q ]] = failures [[P ]] ∪ failures [[Q ]]

failures [[P ; Q ]] = {trP , trQ : seq Event ; ref : PEvent |
� �∈ ran trP ∧ trQ = 〈〉 ∧ (trP , ref ∪ {�}) ∈ failures [[P ]] ∨

trP � 〈�〉 ∈ traces [[P ]] ∧ (trQ , ref ) ∈ failures [[Q ]] •
(trP � trQ , ref )}

We will call each possible (trace, refusal) pair a failure of the process. It cor-
responds to the result of a failed experiment, in which the process is offered
all of the events in the refusal set after engaging in the trace, and refuses to
accept any of them, making further progress impossible. We define a function
failures that returns the set of all failures associated with a particular process
term:

failures : CSP → P(seqEvent × PEvent)

This gives (almost) the definitive meaning for our language of processes: see the
equations of Table 2.

The basic process Stop can refuse any combination of events after the empty
trace. Skip, on the other hand, can refuse anything after 〈〉 except the special
event �. Once this event has been performed—that is, after the trace 〈�〉 has
been recorded—Skip can refuse any combination of events ref .

The first event performed by the process a → P must be a: while the trace
is empty, it may refuse any combination of events that does not include a. If a
has been performed, the subsequent behaviour—the rest of the trace, and the
refusal set—must be a possible behaviour of P .

A behaviour of a choice process could be a behaviour of either alternative.
If the choice is external, then an additional constraint applies: when the trace
is empty, a set of events can be refused only if both process would refuse that
combination. (This is not quite the whole story: an external choice can also refuse
any set not including � when Skip is one of the alternatives.)



Using CSP 81

Example 18 (Vending machines). Failures information is enough to distinguish
between the three different one-shot vending machines:

– (〈coin〉, {coffee}) is a failure of NOVM , but not of OVM ;

– (〈coin〉, {coffee, tea}) is a failure of COVM , but not of NOVM or OVM .

The failures semantics of a sequential composition is complicated by the fact
that we do not record the � event that marks the successful termination of the
first component. We know that any trace must consist of a sequence (possibly
empty) of events performed by the first process, followed by another sequence
(again, possibly empty) performed by the second, but where one stops and the
other starts may not be fully determined.

If the behaviour is entirely due to the first component, then clearly � cannot
appear in the trace. Furthermore, � must not have happened, for otherwise the
refusal set would be due to the second component. To exclude this possibility,
we consider only those behaviours in which the first component could perform
the trace, and then refuse � (in addition to whatever else is being refused).

If both components have made a contribution to the behaviour, then the first
must have terminated: whatever trace was performed could have been followed,
in the traces of that process, by the special event �. In this case, only the second
process makes a contribution to the refusal set.

Example 19 (Breakfast). The process Juice can perform the trace

〈glass , juice, �〉

and the process Cereal has the failure

(〈bowl〉, {bowl ,milk})

The sequential composition Juice ; Cereal thus has a failure

(〈glass , juice, bowl〉, {bowl ,milk})

The equations in Table 2 give a precise meaning to some of the operators in
our process language, describing the failures of basic processes, and showing how
the failures of each kind of compound process may be derived from the failures
of its components. They support the step laws of the previous section, and help
us to understand why a particular failure might represent a possible behaviour
of a given process.

We could use them to compute (an expression for) all of the failures of a
given process but, in all but the most trivial of cases, the results would be
incomprehensible. Instead, we will compute all of the given (control) states of
a process, identify any problematic behaviours, and then report the results in
terms of failures of process components: the role of the equations is to assist us
in understanding and interpreting these results.

Whatever means of computation is adopted, whether we focus upon be-
haviours or control states, we must decide how to give a meaning to processes



82 J. Davies

defined using recursion. The equations above would be enough to explain the
meaning of a process such as

a → P � b → P

in terms of the meaning of P , but what if we are in the process of giving a
meaning to P itself? What if the above expression appears on the right-hand
side of the equation used to define P?

P = a → P � b → P

In this case, the meaning of P is determined as a fixed point of a function: the
function upon processes given by

F (X ) = a → X � b → X

With this definition, P = F (P): whatever process P is, it is not changed by the
application of F .

It is a simple matter to assign a trace semantics to a process such as P . We
consider the smallest set of traces required for a process to satisfy the equation;
we can construct this through repeated application of the function, starting with
the basic process Stop: that is, if P = F (P), then

traces [[P ]] =
⋃
{ n : N • Fn(Stop) }

That is

traces [[Stop]] ∪ traces [[F (STOP)]] ∪ traces [[F (F (Stop))]] ∪ . . .

Each application of the function should reveal more about the traces of the
process being defined.

Example 20 (Vending machines). The right-hand side of the equation defining
VM can be seen as the result of applying a function F , where. . .

F (X ) = coin → (coffee → X � tea → X )

The semantic equations for � and → us that

traces [[F (X )]] = {〈〉, 〈coin〉} ∪ { trX : traces [[X ]] • {〈coin, coffee〉 � trX } ∪
{ trX : traces [[X ]] • {〈coin, tea〉 � trX }

and hence that

traces [[F (Stop)]] = {〈〉, 〈coin〉, 〈coin, coffee〉, 〈coin, tea〉}

traces [[F (F (Stop))]] = {〈〉, 〈coin〉, 〈coin, coffee〉, 〈coin, tea〉,
〈coin, coffee, coin〉, 〈coin, tea, coin〉,
〈coin, coffee, coin, coffee〉, 〈coin, coffee, coin, tea〉,
〈coin, tea, coin, coffee〉, 〈coin, tea, coin, tea〉}

and so on. In this case, applying the function n times will yield all of the traces
of P of length ≤ 2n.



Using CSP 83

If every instance of a process name on the right-hand side of the equation
is prefixed—or guarded—by at least one event, then the defining function has
exactly one fixed point. If not, then there are other fixed points. For example,
the equation

Q = (a → Q) � Q

is satisfied by both QA and QB , where

QA = a → QA

QB = (a → QB) � (b → QB)

which are two quite different processes.
If we are interested only in the traces of a process, then we may arrive at a

suitable fixed point by repeated application of the defining function. However,
using failures information alone, we cannot consistently assign a meaning to pro-
cesses whose names appear unguarded within their defining equations: whatever
approach we take, some of the algebraic laws stated in Section 2 are certain to
fail.

The solution is to record, separately, the fact that we have reached a point
at which the future behaviour is described by a process whose defining equation
is unsatisfactory. We can do this by identifying each process with another set of
traces, its divergences:

divergences : CSP → P(seqEvent)

A sequence of events d is a divergence of process P if the behaviour of P ,
after performing trace d , is partly described by a process name that appears
unguarded in its defining equation.

Example 21 (Vending machines). The vending machine VM has no divergences:

divergences [[VM ]] = ∅

However, the diverging vending machine, described by

DVM = coin → MENU

MENU = (coffee → DVM � tea → DVM � MENU )

has the trace 〈coin〉 as a divergence:

〈coin〉 ∈ divergences [[DVM ]]

we can say nothing about the behaviour of this process once the first event coin
has been performed.



84 J. Davies

The above example illustrates a common misconception. In writing a menu for
the right-hand side of an equation, we might be tempted to express the fact that
‘if nothing external happens, we stay here’ by adding the name of the current
stage as an extra alternative. This is inappropriate: the equation is there to tell
us which observable events may happen next; adding the current process name to
the choice tells us nothing new, and renders the equation useless for the purpose
of describing failures.

The notion of divergences lets us complete the failures semantics; we can assign
a meaning to processes whose names appear unguarded within their defining
equations. This allows us to ensure that any tools that we build to analyse our
descriptions will produce correct, consistent results. The meaning is not terribly
helpful in itself: after any trace that is also a divergence, a process may refuse or
perform any combination of events: we can say nothing at all about the future
behaviour—it is completely unconstrained, or chaotic.

When we start to reason about our process descriptions, however, we will find
the notion of Chaos extremely useful. As part of a specification, it is a way of
saying that, at this point, we do not care—anything is allowed. As part of a
design, it is a way of saying that, at this point, we do not know—anything could
happen.

3.3 Refinement

Our analysis of process descriptions will depend mostly upon the theory of pro-
cess refinement. A process is a refinement if it introduces no new behaviours into
the semantic set:

Definition 1 (Refinement). If P and Q are processes, then we say that P is
refined by Q, written

P � Q

if every behaviour of Q is also a behaviour of P.

Our two notions of behaviour—traces and failures (with divergences)—give rise
to different, consistent, notions of refinement.

Definition 2 (Traces refinement). If P and Q are processes, then we say
that Q is a trace refinement of P, written

P �T Q

if every trace of Q is also a trace of P.

We can use trace refinement to check whether particular sequences of interaction
are possible for a component described by a process P . To do this, we write a
process that is capable of these sequences of interaction, and no others; if this
is a trace refinement of P , then every one of the sequences in question is indeed
possible.



Using CSP 85

Example 22 (Vending machines). We may confirm that our vending machine
might perform the sequence of interaction 〈coin, coffee, coin, tea〉, and every ini-
tial subsequence thereof, by defining

I = coin → coffee → coin → tea → Stop

and checking that VM �T I .

We can check also whether every sequence of interaction possible for a component
described by P is acceptable according to some specification. To do this, we write
a process that is capable of performing every acceptable sequence, and no others.
If P is a trace refinement of this process, then every sequence of interaction will
be acceptable.

Example 23 (Vending machines). We might wish to confirm that our coffee ma-
chine CM will never dispense a drink—either coffee or tea—without receiving
at least one coin per drink in payment. We may do this by defining

S = coin → Ready

Ready = coin → Ready � coffee → S � tea → S

and checking that S �T CM . In doing this, we have decided that it would
be acceptable for the machine to accept any number of coins before offering a
drink, but that—whenever a drink is dispensed—at least one more coin must be
inserted before a further drink is offered.

We can use trace refinement to demonstrate that a particular sequence of inter-
action may be possible for a given component. However, unless the component
description is deterministic in this regard, we cannot demonstrate that a se-
quence must be possible: that is, at every step, the component will be able to
perform the next event. To reason about availability, we need to consider failures
and divergences.

Definition 3 (Failures–divergences refinement). If P and Q are processes,
then we say that Q is a failures–divergences refinement of P, written

P �FD Q

if every failure of Q is also a failure of P, and every divergence of Q is also a
divergence of P.

With failures and divergences, it is less useful to check that a component de-
scription is refined by a process describing a particular behaviour. The fact that
a failure (tr , ∅) is a possible behaviour tells us nothing about availability of the
trace tr : for any prefix tr ′ of tr , and any non-empty set of events E , the failure
(tr ′,E ) might be another possible behaviour; tr could also be unavailable.

Instead, we write a specification that requires that the sequence is available
(anything else is unacceptable behaviour) and check that our component de-
scription is a refinement of this specification.



86 J. Davies

Example 24 (Vending machines). If we wish to insist that the vending machine
VM be capable of performing the following trace

〈coin, coffee, coin, tea〉

offering each event in sequence, then we may define

S1 = coin → S2 � (tea → Chaos � coffee → Chaos � Stop)

S2 = coffee → S3 � (coin → Chaos � tea → Chaos � Stop)

S3 = coin → S4 � (coffee → Chaos � tea → Chaos � Stop)

S4 = tea → Chaos � (coin → Chaos � coffee → Chaos � Stop)

and check that S1 �FD VM . This requires that the four events of the trace are
offered in sequence. Should the component and its environment choose to par-
ticipate in some other event, we no longer care about subsequent behaviour; the
same is true once the sequence is completed. We use the immediately-divergent
process Chaos to indicate this; any process refines Chaos .

Example 25 (Vending machines). The nondeterministic machine NVM will not
satisfy the requirement expressed using S1 above. It does not guarantee to offer
coffee after the first coin; its failure semantics includes the pair

(〈coin〉, {coffee})

This is not a failure of S1 , and hence S1 	�FD NVM .

If processes P and Q describe the same component, and Q is a failures–
divergences refinement of P , then the two descriptions are consistent. Q is a
better description or, equivalently, a description of a better design: everything
that P guarantees, in terms of behaviour, is also guaranteed by Q .

Example 26 (Vending machines). The machine NVM guarantees to offer either
tea or coffee once a coin has been inserted. On the trace 〈coin〉, it may refuse
{tea}, or {coffee}, but not the combination {tea, coffee}. This process is refined
by the vending machine VM , which guarantees to offer coffee, and also guar-
antees to offer tea: none of the sets above would be refused. It is also refined
by the coffee machine CM (Of course, CM cannot offer tea, but NVM never
guaranteed to do so).

Failures–divergences refinement is the definitive basis for the comparison of com-
ponent descriptions. It corresponds to the notion of equality used in the algebraic
identities and step laws, in that for any processes P and Q ,

P �FD Q ∧ Q �FD P ⇔ P = Q



Using CSP 87

It matches the notion of nondeterminism introduced by the internal choice op-
erator, in that for any P and Q

P �FD Q = P ⇔ P � Q

Finally, it is preserved by each of the operators used to construct processes (some
of which we have yet to introduce). If P is refined by Q , then

a → P � a → Q

P � R � Q � R

P � R � Q � R

P ‖ R � Q ‖ R

P \ E � Q \ E

Results established using refinement remain valid in any context.

4 Parallel Composition

We use the choice and sequencing operators to construct processes that describe
sequential (components of) components, or properties that we understand. We
may then compose these processes—using parallel composition—for the purposes
of analysis and design.

4.1 Alphabets

In order to place processes in parallel, we must identify the set of events in which
each is intended to participate. We cannot simply infer this from the events that
appear in the description: some of these may turn out to be unavailable; an
equivalent formulation might not mention them, but should lead to the same
behaviour in the parallel composition.

If P and Q are processes, and αP and αQ are sets of events, then we may
write

P |[ αP | αQ ]| Q

to denote the parallel composition of P and Q , in which P and Q are intended
to participate in every event from sets αP and αQ , respectively. In this parallel
composition, we call αP the alphabet of P ; P cannot perform any event in αP
without the cooperation of the environment; the environment cannot perform
any event in αP without the cooperation of P .

In the parallel composition P |[αP |αQ ]|Q , the second process Q forms part
of the environment of P , and the cooperation of both processes is required if any
event from the set αP ∩ αQ is to occur.



88 J. Davies

Step Law ( ‖ ). If processes P and Q are such that

P=� e : A • e → P(e)

Q=� e : B • e → Q(e)

then

P |[ αP | αQ ]| Q = � e : (A \ αQ) • e → (P(e) |[ αP | αQ ]| Q)
�

� e : (B \ αP) • e → (P |[ αP | αQ ]| Q(e))
�

� e : (A ∩ B) • e → (P(e) |[ αP | αQ ]| Q(e))

Example 27 (Boxes). Two people are loading boxes onto a truck: a red box, a
blue box, and a green box. Matthew is to load the red, while Marina loads the
blue; the green is particularly heavy, and both of them will be needed to lift it.
Matthew is happy to load the red and green boxes in either order:

Matthew = red → green → Stop � green → red → Stop

whereas Marina insists upon loading the green box before the blue:

Marina = green → blue → Stop

The parallel composition

Matthew |[ {red , green} | {blue, green} ]| Marina

is equivalent to the following description:

red → green → blue → Stop
�

green → ( red → blue → Stop
�

blue → red → Stop )

If a process is assigned the same alphabet wherever it appears, then we need
define αP only once. If αP and αQ have been defined, then we may write P ‖ Q
in place of P |[αP | αQ ]| Q .

Example 28 (Boxes). If

αMatthew={red , green}

αMarina={blue, green}

then

Matthew ‖ Marina = Matthew |[ {red , green} | {blue, green} ]| Marina



Using CSP 89

A parallel composition can terminate only when each of the processes involved
is ready to do so. It is as if the special event � is implicitly present in every
process alphabet.

Law 55 (‖–Skip).

Skip ‖ Skip = Skip

Example 29 (Breakfast). We might imagine a parallel version of our breakfast
process:

ParallelBreakfast = Juice ‖ Coffee ‖ Cereal

This process can terminate only when Juice has performed both glass and juice,
Cereal has performed bowl , cereal , and milk , and Coffee has performed cup,
coffee, and sugar .

4.2 Multi-way Synchronisation

The abstract events in CSP correspond to transactions, rather than point-to-
point communications: there is no limit to the number of processes that may be
involved. In particular, an event that is shared between two processes P and Q
may also be shared with a third process R: in the combination P ‖ Q ‖ R, the
intersection αP ∩ αQ ∩ αR may be non-empty.

Example 30 (Boxes). Alan drives the truck, and his cooperation is required for
the loading of any of the boxes.

αAlan = {red , green, blue}

For some reason, he insists that the green box is loaded before the red , and the
red before the blue.

Alan = green → red → blue → Stop

In the parallel combination Matthew ‖ Marina ‖ Alan all three processes are
involved in the event green. Fortunately, the order of events insisted upon by
Alan is allowed by the parallel combination of Matthew and Marina; all three
boxes can be loaded into the truck.

To ensure that the parallel operator is associative, we must be consistent in the
way that we assign alphabets to processes. If S is defined by

S = P ‖ Q



90 J. Davies

and we have assigned alphabets to P , Q , and S , then we must take care that

αS = αP ∪ αQ

Example 31 (Boxes). The parallel combination Matthew ‖ Marina ‖ Alan could
also be written as

(Matthew ‖ Marina) |[ αMatthew ∪ αMarina | αAlan ]| Alan

Furthermore, we must be consistent in the way that we assign alphabets to
processes constructed using the choice and sequencing operators. If S is defined
by any of the following equations,

S = a → P

S = P � Q

S = P � Q

S = P ; Q

and alphabets are assigned to S and P , then αS must be equal to αP
(and similarly for Q). The set of events in which a particular process is in-
tended to participate does not change as the process evolves. To avoid con-
fusion, we require also that any event appearing in an event prefix, such as
a → P above, is included in the alphabet of the resulting process. The use
of Stop or Skip in a process definition does not constrain our choice of
alphabets.

4.3 Concurrency and Nondeterminism

The parallel operator has the same distributive property as the other opera-
tors in our language. If one of the components is an internal choice, then the
parallel composition could also be written as an internal choice of parallel com-
positions: one for each alternative.

Law 56 (‖–distribution). For any processes P, Q, and R,

P ‖ (Q � R)=(P ‖ Q) � (P ‖ R)

(P � Q) ‖ R=(P ‖ R) � (Q ‖ R)

We may use the distributive and step laws to rewrite a parallel composition of
processes into sequential form. Before we do this, we may wish to give names
to various stages of each of the component processes: if each named
stage will be described as an external choice over a set of events, and the
behaviour after each event is described as a (possibly single) nondeterminis-
tic choice of named stages, then it will be easy to keep track of the rewriting
process.



Using CSP 91

Example 32 (Vending machines). An alternative design for a vending machine
might be described as the parallel composition of two processes. The first of
these represents a component that accepts a coin and determines whether or not
a drink should be offered.

αCoins={coin, approve, return}
Coins=coin → Approve � Return

Approve=approve → Coins
Return=return → Coins

The event approve represents the successful validation of a coin; return represents
the return of a coin that has not been successfully validated.

The second process represents a component that responds to approve by of-
fering a choice of tea or coffee:

αDrinks={approve, tea, coffee}

Drinks=approve → Ready

Ready=tea → Drinks �

coffee → Drinks

As we intend to use the step law for ‖ to construct a sequential view of a parallel
combination of these components, we have taken care to write their description
as a collection of named stages. The resulting descriptions are easily translated
into state diagrams, in which each transition is labelled with the name of an
event: see Figure 4.

Coins

coinreturn approve

Drinks

approvetea coffee

Fig. 4. Vending machine components

Using the two components introduced above, we may produce a description
of a vending machine as a parallel combination. The process defined by

CVM = Coins ‖ Drinks

is initially ready to engage in coin, and will then decide internally whether to
accept the coin, and offer a drink, or return it to the user.



92 J. Davies

We can use the step law for ‖, together with the Law 56, to rewrite this process
in sequential form.

Coins ‖ Drinks=coin → ( (Approve ‖ Drinks) � (Return ‖ Drinks) )

Approve ‖ Drinks=approve → (Coins ‖ Ready)

Return ‖ Drinks=return → (Coins ‖ Drinks)

Coins ‖ Ready=coin → ( (Approve ‖ Ready) � (Return ‖ Ready) ) �

tea → (Coins ‖ Drinks) �

coffee → (Coins ‖ Drinks)

Approve ‖ Ready=tea → (Approve ‖ Drinks) �

coffee → (Approve ‖ Drinks)

Return ‖ Ready=tea → (Return ‖ Drinks) �

coffee → (Return ‖ Drinks) �

return → (Coins ‖ Ready)

It should be obvious that the sequential equivalent of a parallel description may
be difficult to construct or understand, whether it is written in process notation
as here, or in graphical form: see Figure 5. The use of variable parameters to
represent state information (Section 6) will help in this regard.

Coins || 
Drinks

Approve || 
Drinks

Return || 
Drinks

coinreturn

Coins || 
Ready

coin

tea
coffee

Return || 
Ready

Approve || 
Ready

tea

coffee

tea

coffee

return

approve

Fig. 5. A sequential view of the parallel combination



Using CSP 93

If a choice is internal to a particular component, it will be internal to any par-
allel combination that the component is placed in. In the special case that two
components present choices across the same set of alternatives : a parallel com-
bination of two external choices presents an external choice to the environment;
a parallel combination of external and internal choices behaves as an internal
choice; a parallel combination of two internal choices behaves as an internal
choice that may deadlock.

Example 33 (Agreement). A group of people are trying to reach agreement upon
whether to go out or stay in. At a (very) abstract level, we might model the inter-
action between them in terms of just two events: goOut and stayIn, representing
agreement to go out, or agreement to stay in, respectively. The behaviour of a
helpful, obliging person might be modelled using external choice, whereas the
behaviour of someone who will not be influenced by the arguments of others
might be modelled using internal choice.

αHelpful = {stayIn, goOut}

Helpful = stayIn → Skip � goOut → Skip

αAwkward = {stayIn, goOut}

Awkward = stayIn → Skip � goOut → Skip

The step law for ‖ confirms that the parallel combination of two helpful people
is, again, entirely helpful.

Helpful ‖ Helpful = Helpful

Applying the distributive law for ‖, and then the step law to each of the alter-
natives, confirms that

Helpful ‖ Awkward = Awkward

Two applications of the distributive law, and four of the step law, together with
the fact that � is idempotent, confirm that

Awkward ‖ Awkward = Awkward � Stop

5 Abstraction

When an event appears in a process description, the default assumption is
that it represents a single transaction, a point of synchronisation between all
of the processes involved—those for which it appears in the corresponding pro-
cess alphabet—and the environment. In this section, we will introduce three
operators that allow us to vary this assumption.



94 J. Davies

5.1 Interleaving

We use the name of an event, in combination with the notion of alphabets in
parallel composition, to identify the processes whose cooperation is required. In
an abstract description, we might wish to use two events with the same name
to describe two different transactions; when we do this, it is quite possible that
two or more processes could perform the same event independently.

If P and Q are processes, and S is a set of events, then the partially interleaved
composition

P |[S ]| Q

describes a component that behaves as the parallel composition of P and Q ,
except that either process may perform events outside the shared set S without
reference to the other.

Example 34 (Vending machines). We might imagine two different kinds of cus-
tomer for the vending machine: a tea drinker, and a coffee drinker. Both are able
to insert coins, accept drinks, and engage in conversation: an event represented
by the event talk . Neither will talk properly between inserting a coin and re-
moving a drink: this does not count as engaging in conversation, at least for the
purposes of this example.

TCD = talk → TCD �

coin → coffee → TCD

TTD = talk → TTD �

coin → tea → TTD

The event coin appears in both process descriptions, but the two occurrences
are intended to represent separate transactions—we have simply chosen not to
distinguish between them. Although the two processes must agree upon talk
events, they can perform coin events independently.

Customers = TCD |[ {talk} ]| TTD

When we use the interleaving operator to construct a parallel composition,
the resulting process may be nondeterministic: if an event occurs that is possible
for more than one component, but is outside the shared set, then we may be
unable to determine which component was involved.

Step Law ( |[ ]| ). If processes P and Q are such that

P=� e : A • e → P(e)

Q=� e : B • e → Q(e)



Using CSP 95

and S is a set of events, then

P |[S ]| Q = � e : A \ (B ∪ S ) • e → (P(e) |[S ]| Q)
�

� e : B \ (A ∪ S ) • e → (P |[S ]| Q(e))
�

� e : A ∩ B ∩ S • e → (P(e) |[S ]| Q(e))
�

� e : (A ∩ B) \ S • e → ((P(e) |[S ]| Q) � (P |[S ]| Q(e)))

Example 35 (Vending machines). In combination, the two drinkers may engage
in either talk or coin. If the coin event occurs, the outcome is nondeterminis-
tic: we do not know whether tea or coffee is expected.

TCD |[ {talk} ]| TTD=talk → (TCD |[ {talk} ]| TTD)
�

coin → ((coffee → TCD |[ {talk} ]| TTD)
�
(TCD |[ {talk} ]| tea → TTD))

If the shared set is empty—if every common event is taken to denote separate
transactions—then we may write ||| in place of |[∅]|.

Example 36 (Vending machines).The parallel composition of two identical vend-
ing machines—operating independently—would be written as

PVM = (VM ||| VM )

It is worth observing that this is quite different from the synchronized parallel
combination:

VM ||| VM = coin → (coin → ((coffee → VM � tea → VM )
|||
(coffee → VM � tea → VM ))

�

coffee → PVM
�

tea → PVM )

whereas

VM ‖ VM = coin → (coffee → (VM ‖ VM )
�

tea → (VM ‖ VM )

which is exactly the behaviour described by a single copy of VM .



96 J. Davies

An interleaved parallel composition can terminate only when all of the compo-
nent processes have finished.

Law 57 (|||–Skip).

Skip ||| Skip = Skip

Example 37 (Breakfast). The behaviour of the ParallelBreakfast process would
be unchanged were it to be defined using the interleaving parallel operator:

ParallelBreakfast = Juice ||| Coffee ||| Cereal

5.2 Renaming

An alternative means of changing the set of events upon which a process is
required to synchronize—its alphabet—is afforded by the renaming operator: for
any process P ,

P [a ← b]

describes a component that behaves exactly as P , except that it is ready to
perform event b whenever P was ready to perform a: that is, any instance of a
within P is shared externally under the name b.

If a renaming operation corresponds to a non-injective function—that is, if
two or more source events are renamed to the same target—then the resulting
description may be more nondeterministic: we may not be able to tell which of
the renamed events has been performed.

Step Law ( [ ← ] ). If process P is such that

P=� e : A • e → P(e)

and a and b are events, then

P [a ← b] = � e : A \ {a, b} • e → P(e)[a ← b]
�

� e : A ∩ {a} • b → P(a)[a ← b]
�

� e : A ∩ {b} • b → P(b)[a ← b]

Example 38 (Breakfast). If we use the same name for the action of obtaining
a cup and the action of obtaining a glass , then we may not know whether the
parallel breakfast process is ready to accept juice or coffee.



Using CSP 97

ParallelBreakfast [glass ← cup] = cup → (juice → . . . �

bowl → . . . �

cup → . . . )
�

cup → (cup → . . . �

bowl → . . . �

coffee → . . . )
�

bowl → (cup → . . . �

cereal → . . . �

cup → . . . )

Renaming distributes through the sequential operators (→, �, �, and ;) but not,
in general, through parallel composition. A non-injective renaming may give two
separate, unshared events the same name. A parallel combination of renamed
components would share the renamed event internally; a renamed parallel com-
bination would not.

Example 39 (Boxes). If we were to represent both the red and blue boxes simply
as small boxes (and the green box as large), then we should still expect to see
three boxes loaded, with the large box being either the first or the second box
to be loaded.

(Matthew ‖ Marina)[red ← small , blue ← small , green ← large]

= small → large → small → Stop
�

large → small → small → Stop

If we were to rename the component processes, and then combine them in the
same way as before, we would obtain a different, incorrect result:

Matthew [red ← small , blue ← small , green ← large]
‖
Marina[red ← small , blue ← small , green ← large]

= large → small → Stop

This use of parallel combination is inconsistent with the intended interpretation
of the event names. If we wished to combine the renamed components, we would
need to use the partial interleaving operator:

Matthew [red ← small , blue ← small , green ← large]
|[{large}]|
Marina[red ← small , blue ← small , green ← large]

= small → large → small → Stop
�

large → small → small → Stop



98 J. Davies

5.3 Hiding

If P is a process, and A is a set of events, then the process P \ H describes a
component that behaves exactly as P , except that events from H are hidden: they
are no longer observed at the interface to the component.

Example 40 (Vending machines). The approve event was intended as an internal
communication between the two components of the machine CVM : we might
hide it to obtain a more complete description of its behaviour. The resulting
process CVM \ {approve} could be rewritten as follows.

(Coins ‖ Drinks)′ =
coin → ( (Coins ‖ Ready)′ � (Return ‖ Drinks)′ )

(Return ‖ Drinks)′ =
return → (Coins ‖ Drinks)′

(Coins ‖ Ready)′ =
coin → ( (Approve ‖ Ready)′ � (Return ‖ Ready)′ ) �

tea → (Coins ‖ Drinks)′ �

coffee → (Coins ‖ Drinks)′

(Approve ‖ Ready)′ =
tea → (Coins ‖ Ready)′ �

coffee → (Coins ‖ Ready)′

(Return ‖ Ready)′ =
tea → (Return ‖ Drinks)′ �

coffee → (Return ‖ Drinks)′ �

return → (Coins ‖ Ready)′

The stage known as Approve ‖ Drinks is now identified with Coins ‖ Ready: no
external events were possible in this state, and now-internal event approve leads
directly to Coins ‖ Ready (see Figure 6).

Hiding events will often increase the degree of nondeterminism in a process
description. At any point where a hidden event is possible, we will not know
whether or not it has occurred. In this case, the behaviour of a component will
be described by an internal choice: one alternative will describe the behaviour
of the component if the hidden event has not been performed; the other, the
behaviour if it has.

Step Law ( \ ). If process P is such that

P=� e : A • e → P(e)



Using CSP 99

Coins || 
Drinks

Approve || 
Drinks

Return || 
Drinks

coinreturn

Coins || 
Ready

coin

tea
coffee

Return || 
Ready

Approve || 
Ready

tea

coffee

tea

coffee

return

Fig. 6. Hiding the approve event

and H is any set of events, then

P \ H = � h : (A ∩ H ) • P(h) \ H
�
(� e : (A \ H ) • e → P(e) \ H
�

� h : (A ∩ H ) • P(h) \ H )

Any hidden event (any event in A ∩ H ) may have occurred, and so we may be
presented with an indexed internal choice of consequent processes.

� h : (A ∩ H ) • P(h) \ H

Alternatively, if no event has occurred, then the process presents an external
choice over the remaining, visible part of the menu (A \ H ), together with the
option of simply allowing an internal event to occur, and thus being presented
with the resulting indexed internal choice.

As we might expect, the hiding operator is distributive.

Law 58. For any processes P and Q, and set of events H ,

(P � Q) \ H = (P \ H ) � (Q \ H )

Example 41 (Vending machines). We may simplify our description of the vend-
ing machine by deciding to ignore the occurrence or availability of the return
event; the behaviour of the process CVM \ {return} is described by



100 J. Davies

(Coins ‖ Drinks)′′=coin → ( (Approve ‖ Drinks)′′ � (Coins ‖ Drinks)′′ )
(Approve ‖ Drinks)′′=approve → (Coins ‖ Ready)′′

(Coins ‖ Ready)′′=coin → ( (Approve ‖ Ready)′′ � (Return ‖ Ready)′′ �
(Coins ‖ Ready)′′ ) �

tea → (Coins ‖ Drinks)′′ �

coffee → (Coins ‖ Drinks)′′

(Approve ‖ Ready)′′=tea → (Approve ‖ Drinks)′′ �

coffee → (Approve ‖ Drinks)′′

(Return ‖ Ready)′′=tea → (Return ‖ Drinks)′′ �

coffee → (Return ‖ Drinks)′′

Coins || 
Drinks

Approve || 
Drinks

Return || 
Drinks

coin

Coins || 
Ready

coin

tea
coffee

Return || 
Ready

Approve || 
Ready

tea

coffee
tea

coffee

approve

Fig. 7. Hiding the return event

Figure 7 shows how the insertion of a coin at the initial stage Coins ‖ Drinks
may make no difference at all to the future behaviour: the internal choice could
be resolved in favour of Return ‖ Drinks , which is now indistinguishable from
Coins ‖ Drinks .

The insertion of a coin at the stage Coins ‖ Ready might also make no dif-
ference: as before, the future behaviour could be that of Approve ‖ Ready or
(what we have still decided to call) Return ‖ Ready, but it could also be that of
Coins ‖ Ready.

Hiding too many events in a process description can render it useless. Our pro-
cesses are defined in terms of the occurrence and availability of external, ob-
servable events; a recursive definition is valid only if each recursive instance of
the process name being defined is guarded by at least one event. When we hide



Using CSP 101

events that are serving as guards, we may find that the resulting behaviour is
chaotic; in hiding events, we may be introducing divergences.

Example 42 (Vending machines). If we hide both coin and return, then we might
hope to obtain a simpler description of the vending machine sufficient for the
analysis of properties involving tea, coffee, and approve.

For example, we might hope to establish that a choice between tea and coffee
is offered every time that an approve event occurs, by defining a process

Offer = approve → Choice
Choice = (tea → Offer � coffee → Offer)

and checking that

Offer �FD (CVM \ {coin, return})

However, this check will fail: the empty trace 〈〉 appears in the divergences
set divergences [[CVM \ {coin, return}]] but not in divergences [[Offer ]]. The be-
haviour at the initial stage is defined by an unguarded recursion:

Coins ‖ Drinks = Return ‖ Drinks
Return ‖ Drinks = Coins ‖ Drinks

There is not enough information here to determine a useful failure semantics.

Coins || 
Drinks

Approve || 
Drinks

Return || 
Drinks

Coins || 
Readytea

coffee

Return || 
Ready

Approve || 
Ready

tea

coffee

tea

coffee

approve

Fig. 8. Hiding both coin and return

The same is true following the occurrence of an approve event: there are three
unlabelled stages at this point—see Figure 8—at which the behaviour is defined
by an unguarded recursion; the loop of unlabelled transitions marks another
region of chaos in the process description.



102 J. Davies

If hiding a set of events would introduce divergences, and render our intended
analysis impossible, then we have three choices as to how to proceed: hide the
events, but restrict our analysis to properties that can be checked using the trace
semantics; do not hide the events, and rewrite any processes used to characterize
properties so that these events are ignored; and hide the events, but only after
introducing a constraining assumption process.

Example 43 (Vending machines). If we are content to check the weaker property
that the approve and drinks (tea or coffee) events occur alternately, if they occur
at all—then we could do this using the traces model, by defining

Alternate = approve → (coffee → Alternate � tea → Alternate)

and checking the refinement

Alternate �T CVM \ {coin, return}

Example 44 (Vending machines). If we wish to check the property that a choice
between tea and coffee is offered every time that an approve event occurs, then
we cannot hide the events coin and return—for we would lose all availability
information. Instead, we define a process that expresses this property in the
presence of those events.

Offer ′ = (approve → Choice)
�

(coin → Offer ′ � return → Offer ′ � Stop)

Choice′ = (tea → Offer ′ � coffee → Offer ′)
�

(coin → Choice′ � return → Choice′ � Stop)

Considered as a specification, the process Offer ′ does not require that coin or
return is offered at any stage; and if either event occurs, it has no effect upon
the offer of approve, or the choice between tea and coffee.

This is a more complex description than Offer , as we were forced to consider
other events, but it allows us to confirm that the required property holds—by
checking the following refinement:

Offer ′ � CVM

Example 45 (Vending machines). We may write a process to exclude the prob-
lematic behaviours—in which a coin is inserted, and the return button pressed,
and this cycle is repeated indefinitely—from consideration. The process defined
by



Using CSP 103

Assumption = return → Choose �

tea → Assumption �

coffee → Assumption

Choose = tea → Assumption �

coffee → Assumption

allows return to occur, but insists that one of tea or coffee must be performed
before it can occur again.

Placed in parallel with the description of the vending machine, using the
alphabet αAssumption = {return, tea, coffee} this process will have the required
effect of excluding the problematic behaviours: the process

(CVM ‖ Assumption) \ {coin, return}

has no divergences, and we can confirm that the property holds, using the re-
finement check:

Offer �FD (CVM ‖ Assumption) \ {coin, return}

If this assumption seems too restrictive, then we may use a value parameter—see
the next section—to count occurrences of return, and choose a higher limit upon
the number of times that it can occur between two consecutive occurrences of
tea or coffee.

6 Data

The process language of CSP is augmented by a language of datatypes: sets,
functions, and sequences. The names of processes and events may be parame-
terized using values from sets of any type, including sets of events. Indeed, we
have already seen an example of parameterisation: in our use of indexed external
choice, the consequence of the choice was described by a process parameterized
by a variable denoting the chosen event.

6.1 Process Parameters

We may use parameters in process names to record state information: represent-
ing the stages of a process in terms of the value of a collection of variables. These
values may change with the performance of events: expressions determining the
new values may be used to parameterize instances of the process name appearing
on the right-hand side of the defining equations.

If a process name includes a state parameter, it is better to enclose it within
a local definition environment: if D is a collection of declarations—of sets, func-
tions, or processes—then the expression

let D within E

has the value of E within the additional context provided by D .



104 J. Davies

Example 46 (Lift). We may use the following process to describe the behaviour
of a simple lift, moving up and down between three floors:

Lift = let
LiftAtFloor(0 )=up → LiftAtFloor(1 )
LiftAtFloor(1 )=down → LiftAtFloor(0 )

�

up → LiftAtFloor(2 )
LiftAtFloor(2 )=down → LiftAtFloor(1 )

within
LiftAtFloor(0 )

This process can perform the event up at stages 0 and 1 , corresponding to the
lift being at Floors 0 or 1 , and down at stages 1 and 2 .

We may use a conditional syntax to represent several definitions, or stages,
within a single defining equation. If B is a Boolean-valued expression, then the
value of

if B then X else Y

is that of X if B is true, and Y otherwise.

Example 47 (Lift). A lift that can move between Floors 0 and 9 could be de-
scribed by the following process:

Lift = let
LiftAtFloor(n) =

if n = 0 then
up → LiftAtFloor(1 )

else if n ∈ 1 . . 8 then
down → LiftAtFloor(n − 1 )
�

up → LiftAtFloor(n + 1 )
else

down → LiftAtFloor(8 )
within

LiftAtFloor(0 )

Here, variable n is declared on the left of the equation, and corresponds to the
number of the current floor.



Using CSP 105

If the conditional expression denotes a process, and that process is to appear in
an external choice, then we may find the following abbreviation useful: if B is a
Boolean-valued expression, and P is a process, then we write

B & P

to denote the conditional expression

if B then P else Stop

As the process Stop has no effect upon the other components of an external
choice (it is akin to an option on a menu being “greyed-out”) the expression B
serves as a guard, or enabling condition, for alternative P . For example, if B and
C are Boolean-valued expressions, and P and Q are processes, then

B & P
�

C & Q

is a more convenient way of presenting the conditional expression

if B ∧ C then
P � Q

else if B ∧ ¬ C then
P

else if C ∧ ¬ B then
Q

else
Stop

Example 48 (Lift). We may use guarded process expressions to describe the
behaviour of the lift moving between Floors 0 and 9:

Lift = let
LiftAtFloor(n) =

n ≤ 8 & up → LiftAtFloor(n + 1 )
�

n ≥ 1 & down → LiftAtFloor(n − 1 )
within

LiftAtFloor(0 )

We may also wish to parameterize process names in order to identify particular
instances of a generic process. If we employ the local declaration syntax, then the
two kinds of process parameter need never meet: instance (or static) parameters
keep the same value for the lifetime of the process, and appear as part of the
main, external process name.



106 J. Davies

Example 49 (Lift). A generic lift process, able to move between Floor 0 and
Floor max , could be described by the following process:

GenericLift(max ) = let
LiftAtFloor(n) =

n ≤ max & up → LiftAtFloor(n + 1 )
�

n ≥ 1 & down → LiftAtFloor(n − 1 )
within

LiftAtFloor(0 )

The value of parameter max does not change during the lifetime of an instance
of this process. For example,

GenericLift(9 ) = Lift

where Lift is the process describing a lift moving between 10 floors, defined in
the previous examples.

6.2 Compound Events

We may use parameters in event names to indicate an event that involves a par-
ticular instance of a generic process, or to represent data being passed between
processes in a parallel combination. In either case, each parameter will appear
after a single dot in the process name.

Example 50 (Car doors). A generic process representing the behaviour of a car
door could be described as

αSimpleDoor(i) = {open.i , close.i , lock .i , unlock .i}

SimpleDoor(i) = let
Open = close.i → Closed
Closed = open.i → Open

�

lock .i → unlock .i → Closed
within

Open

The process SimpleDoor(1 ) is capable of engaging in events from the set

{open.1 , close.1 , lock .1 , unlock .1}

It can perform these events independently of the other three processes in the
following parallel combination

CarDoors = ‖ k : 1 . . 4 • SimpleDoor(k)



Using CSP 107

A set of parameterized events with the same basic name, but with different
values for one or more of the parameters, is called a channel. A single channel
may be shared by several processes—all parties to the same transaction—with
each process able to constrain the values of the various parameters of any event
that occurs.

Example 51 (Meeting). A meeting event has three parameters: location, date,
and time of day. A typical occurrence of such an event might be written as

meeting.london.15/03/2006 .am

The behaviour of three people who are attempting to arrange a meeting may be
described in part by the following processes:

Steve = � l : {london}; d : Date; t : TimeOfDay •
meeting.l .d .t → . . .

Fiona = � l : Location; d : {14/03/2006}; t : TimeOfDay •
meeting.l .d .t → . . .

James = � l : Location; d : {14/03/2006 , 16/03/2006}; t : {am, lunch} •
meeting.l .d .t → . . .

Steve can attend a meeting on any of the possible dates, at any time of day,
provided that it is in London. Fiona can attend only on the 14th of March,
but is available at any time on that day. Like Fiona, James is happy with any
location, but is available only for morning or lunchtime meetings on the 14th or
the 16th.

The parallel combination of these three processes, all sharing the channel
meeting, has the same initial behaviour as the following external choice:

Steve ‖ Fiona ‖ James
= � l : {london}; d : {14/03/2006}; t : {am, lunch} •

meeting.l .d .t . . .

= meeting.london.14/03/2006 .am → . . .
�

meeting.london.14/03/2006 .lunch → . . .

If a process is ready to perform a parameterized event for several values of a
particular parameter, then we may represent that part of the external choice by
including a question mark at the appropriate point in the event name. For any
process P and parameterized event c, we define

c ?(x : X ) → P = � x : X • c.x → P

If the range T describes all possible values of the parameter x , then we write
c ?(x : T ) simply as c ?x . If the range is a singleton set, containing expression
e, then we write c ?(x : {e}) simply as c !e.



108 J. Davies

Example 52 (Meeting). The behaviour of the three people attempting to arrange
a meeting could be described in abbreviated form as:

Steve = meeting !london ?d ?t → . . .

Fiona = meeting ?l !14/03/2006 ?t → . . .

James =
meeting ?l ?(d : {14/03/2006 , 16/03/2006}) ?(t : {am, lunch}) → . . .

6.3 Message Passing

If a channel of parameterized events is shared between exactly two processes,
then it can be used to describe message-passing communication between them.
In most cases, one process will determine the value of any parameters, and the
other will be ready to accept any combination. A special case of the step law for
parallel composition shows how this corresponds to values being passed.

Law 59. If processes P and Q are such that

P=c!e → P ′

Q=c?x → Q(x )

where e is an appropriately-valued expression, then

P ‖ Q = c!e → (P ′ ‖ Q(e) )

Following the shared event, the future behaviour of Q may be determined by
the value of e, originally ‘known only’ to P .

Example 53 (Vending machines). The following process describes the behaviour
of a machine that accumulates coins, and will dispense selected drinks if the
current holding exceeds a fixed price.

SVM (price) =
let

Ready(holding) = insertCoin?value → if holding + value < price then
Ready(holding + value)

else
Select(holding + value)

Select(holding) = insertCoin?value → Select(holding + value)
�

select?x → if holding < 2 ∗ price then
dispense!x → Ready(holding − price)

else
dispense!x → Select(holding − price)

within
Ready(0 )

This is a process representation of the state machine shown in Figure 2.



Using CSP 109

The behaviour of a particular user, who will insert a 20 pence or a 50 pence
coin, select an orange drink, and then collect whatever drink is dispensed, might
be described by

User = � c : {20 , 50} •
insertCoin!c → select !orange → dispense?x → Stop

The possible interactions between this process and the vending machine (with
price set to 50) are described by the parallel combination

User ‖ SVM (50 ) =
insertCoin.20 → Stop
�
insertCoin.50 → select .orange → dispense.orange → Stop

This process is consistent with—but does not guarantee—the use case shown in
the sequence diagram of Figure 1.

A single channel is an adequate representation of message-passing commu-
nication only if the sending of a message is synonymous with its reception. If
it matters that a component may send a message without knowing that it has
been received, or that some event may be performed by another component
while the message is being passed, then we may need to use two channels, and
an intervening process, to model the communication.

7 Communication

One class of problems in distributed computing concerns the provision of reliable
communication across possibly unreliable media. In addressing these problems,
we may use processes to describe the service that we aim to provide, and check
that these are refined by a combination of processes representing the protocol
components and the media that they are intended to operate over.

7.1 Buffers

In most cases, our notion of a reliable service can be described in terms of
buffers : processes that store and forward messages in such a way that no messages
are lost, and the order of messages is preserved. If we use a channel send to
represent the sending of messages, and receive to represent their reception, then
this corresponds to the constraint that, in any behaviour of a buffer process:

– the sequence of values observed as parameters to receive events is an initial
subsequence of those observed as parameters to send ;

– if these two sequences are not equal, then an appropriate receive event is
available;

– if these two sequences are equal—so that there are no messages ‘in flight’,
then no send event can be refused.



110 J. Davies

This constraint upon behaviours is completely characterized by the requirement
that the process should be a refinement of the following process.

Buffer = let
State(s) = if s = 〈〉 then

send ?x → State(〈x 〉)
else

send ?x → State(s � 〈x 〉)
�
receive !head(s) → State(tail(s))

within
State(〈〉)

This process describes a buffer process of undetermined (and possibly changing)
capacity. If the value of state parameter s is the empty sequence, then send is
possible; if not, then send may or may not be possible, but the next receive event
is definitely available.

If we wish to use existing refinement-checking technology to establish that
a process is a buffer, then we will need to compare that process with a finite
approximation to Buffer .

Example 54 (Buffers). The following process describes a buffer with undeter-
mined capacity no greater than N .

Buffer(N ) = let
State(s) = if s = 〈〉 then

send ?x → State(〈x 〉)
else

(#s < N ) & send ?x → State(s � 〈x 〉)
�
receive !head(s) → State(tail(s))

within
State(〈〉)

Here, the send event is blocked if there are already N messages in flight. Using
the semantic functions for the failures-fivergences model, we can show that

Buffer �FD Buffer(N )

for any value of N greater than 0 . (It would not be possible to demonstrate this
automatically, using the existing refinement-checking tools, as the state space of
Buffer would be infinite.)

In many cases, the degree of buffering will be precisely determined, and will
remain constant throughout the lifetime of the process. We will then be able to
show that the process is a refinement of a deterministic buffer process of some
fixed capacity.



Using CSP 111

Example 55 (Buffers). A buffer of capacity exactly N is described by the fol-
lowing process:

Copy(N ) = let
State(s) = #s < N & send ?x → State(s � 〈x 〉)

�

#s > 0 & receive !head(s) → State(tail(s))
within

State(〈〉)

The limit upon the capacity of Buffer(N ) means that we can establish that

Buffer(N ) �FD Copy(N )

through an exhaustive exploration of the state space.

7.2 Protocols

A protocol is a set of rules for collaboration: if each party follows the rules that
apply to them, then the collaboration will be successful, in some respect. In the
case of a communication protocol, the outcome of a successful collaboration is
the provision of a reliable service for transferring data.

We may represent the design of a protocol as a parallel composition of pro-
cesses representing the intended behaviour of various protocol components like
nodes, service access points, clients, servers, senders, or receivers. For example,
a data transfer protocol that consists of rules for a Sender and Receiver process
would be described as

Protocol = Sender ‖ Receiver

In most cases, the alphabets of the processes representing protocol components
will be mutually disjoint. If these processes were to share events, then the design
of a reliable communication mechanism would most likely be a trivial matter.

We will define two further processes: one to describe the service provided to
the protocol components by the media connecting them, and another to describe
the communication service that the protocol itself is intended to provide. If we
call these processes Media and Service, respectively, then our intention will be
to show that

Service �FD (Protocol ‖ Media) \ Internal

where Internal is the set of all events used to describe the protocol implementa-
tion (and the supporting media) that do not form part of the description of the
intended service.

Example 56 (Protocols). Even if the supporting media provide a reliable service,
we may still wish to define a protocol to control the degree of buffering in a



112 J. Davies

system. We may consider a simple flow control protocol for data communication,
in which the behaviour of the sending component is described by

Sender = let
Ready = in?m → Holding(m)
Holding(m) = sender send !m → sender receive?a → Ready

within
Ready

and that of the receiver is described by

Receiver = let
Ready = receiver receive?m → Holding(m)
Holding(m) = out !m → receiver send !ack → Ready

within
Ready

We will suppose that the communication media linking them provide a reliable,
buffered service, with the degree of buffering no greater than N :

Media = Buffer(N )[send ← sender send , receive ← receiver receive]
‖
Buffer(N )[send ← receiver send , receive ← sender receive]

The intended service is that of a one-place buffer, described by

Service = Copy(1 )

and the set of events ‘internal’ to the mechanism is given by

Internal =
⋃
{ m : Message; a : Ack • { sender .send .m,

receiver .receive.m,
receiver .send .a,
sender .receive.a } }

For any value of N , we will be able to establish that

Service �FD (Protocol ‖ Media) \ Internal

and hence that this design of protocol reduces the degree of buffering to the
point where they can be at most one message ‘in flight’.

If the service provided by the supporting media is not reliable, then some strategy
for message numbering may be required. If the media may lose messages, then
the sender should be prepared to retransmit, but transmitting the same message
twice introduces the risk of duplicates arriving at the receiver: we require a means
of recognising that a particular message has already arrived. If the media may
reorder messages, then numbering is essential.



Using CSP 113

Example 57 (Protocols). A sending process may tag each message with a message
sequence number, and increment this number with each new message accepted
for transmission.

Sender ′ = let
Ready(num) = in?m → Holding(m,num)
Holding(m,num) = sender send !m!num → Waiting(m,num)
Waiting(m,num) = sender receive?a →

Ready((num + 1 ) mod max )
�

timeout → Holding(m,num)
within

Ready(0 )

If the sender times out while waiting for an acknowledgement, an action repre-
sented by the event timeout , then it will retransmit the current message with
the same message sequence number. Message sequence numbers are re-used once
the modulus value max is reached.

A complementary receiver process will discard any message that does not have
the expected sequence number—whether it is a duplicate of one already received,
or a message with a later number (indicating that an intervening message has
been lost).

Receiver ′ = let
Ready(num) = receiver receive?m?n →

if n = num then
Holding(m,num)

else
Ready(num)

Holding(m,num) = out !m → receiver send !ack →
Ready((num + 1 ) mod max )

within
Ready(0 )

The degree of flow control provided by the design of the sender process means
that no reordering will be possible, whatever the service provided by the media,
as there can be at most one message in flight at any one time.

This design can be generalized to one in which the sender can store sev-
eral messages pending acknowledgement, the receiver can store several messages
pending the arrival of a missing, earlier message, and each acknowledgement con-
tains a message sequence number. Such a design will cope with unreliable media
provided that there is some limit upon the degree of message loss; the sender
does not time out too quickly; and there may be no more than max messages in
flight.



114 J. Davies

7.3 Assumptions

If the supporting media may lose messages, or if there are timing properties
involved, then we may need to make make additional, explicit assumptions about
the behaviour of the protocol components. As in Section 5.3, these assumptions
may be incorporated by modifying the Service property, or by adding additional
processes to constrain the behaviour of the design.

Example 58 (Protocols). If the media connecting the sender and receiver were
described by the following process

Lossy = let
Ready = send?x → Holding(x )
Holding(x ) = receive!x → Holding(x )

�
Ready

within
Ready

then we may be unable to prove that our protocol provides a reliable service. This
process allows an unbounded number of send events without a corresponding
receive; when we hide these events for the purposes of the refinement check, the
parallel combination of the protocol and media is likely to have divergences, and
thus no useful failures semantics.

One way of solving this problem is to incorporate the assumption that the
medium cannot lose more than N consecutive messages. In the following pro-
cess, we use a parameter n to count the number of messages lost since the last
successful delivery.

Lossy(N ) = let
Ready(n) = send?x → Holding(x ,n)
Holding(x ,n) = if n < N then

receive!x → Ready(0 )
�
Ready(n + 1 )

else
receive!x → Ready(0 )

within
Ready(0 )

If our analysis requires an assumption relating a nondeterministic choice of
behaviours in the supporting media to actions of the protocol components,
then this behaviour should not be modelled using internal choice. Instead, we
should introduce one or more events to distinguish between the alternative out-
comes: these events can then be shared with another process expressing the
required assumption.



Using CSP 115

Example 59 (Protocols). In the following process, which again describes a lossy
medium that cannot lose more than N consecutive messages, the event lose is
used to represent the loss of the current message:

Lossy ′(N ) = let
Ready(n) = send?x → Holding(x ,n)
Holding(x ,n) = receive!x → Holding(x , 0 )

�

n < N & lose → Ready(n + 1 )
within

Ready(0 )

Note that Lossy ′(N ) \ {lose} = Lossy(N ).
If the sender is designed to retransmit any message that remains unacknowl-

edged, then we may wish to incorporate an assumption about the timing of any
retransmission. The following process, considered as a constraint, insists that no
retransmission will take place until it is certain that a message has been lost.

Timing = let
NoTimeout = loss → Timeout
Timeout = timeout → NoTimeout

within
NoTimeout

If we add Timing to the process representing the combination of supporting
media and protocol components, we will find that the resulting process provides
a reliable service. If

Protocol ′ = Sender ′ ‖ Receiver ′

Media′ = Lossy ′(N )[send ← sender send , receive ← receiver receive]
‖
Buffer(N )[send ← receiver send , receive ← sender receive]

Internal ′ = Internal ∪ {lose}

then

Service � (Protocol ′ ‖ Media′ ‖ Timing) \ Internal ′

8 Tools

We can use our language of processes to describe and analyse patterns of be-
haviour. Although this is a formal language, the descriptions that we present
may be informal, in the following sense: we may present processes—or traces, or
failures—to explain certain aspects of a property or design, without intending



116 J. Davies

that this explanation should be comprehensive, or even consistent. That is, the
language is formal, but its usage is not. This use of process or instance models
corresponds to the use of state and sequence diagrams to communicate features
of a design, perhaps as a basis for discussion.

Alternatively, we may take advantage of the formal semantics, and the anal-
ysis tools, by presenting processes as complete descriptions of a component or
property, at some level of abstraction. Our analysis of these processes, suit-
ably interpreted, may then allow us to draw conclusions about the components
or properties described. When we use the language in this way, we may make
discoveries, or establish properties, that would not be possible in informal ap-
plication: the tools amplify our modelling effort; they allow us to achieve things
that would not be possible through manual labour.

In this section, we will concentrate upon the use of processes to support formal
analysis, and hence upon the application of analysis tools. The following exer-
cises require the use of ProBE and FDR: a behavioural explorer and refinement
checker, respectively. Information on how to obtain these tools may be found
at the website www.usingcsp.com, or by contacting the author of this chapter.
We will present our definitions using a ‘machine-readable’ notation used by the
tools: a simple-but-effective approximation of the language used in the previous
sections.

The key features of this notation are the use of ASCII characters to approx-
imate the CSP operators and the requirement that all events are declared as
channels.

STOP ∼ STOP
a -> P ∼ a → P
P [] Q ∼ P � Q
P |~| Q ∼ P � Q
P [> Q ∼ P � Q
P ; Q ∼ P ; Q
SKIP ∼ skip

P /\ Q ∼ P � Q
P [A || B] Q ∼ P |[A | B ]| Q
P |[ A ]| Q ∼ P |[A ]| Q

P ||| Q ∼ P ||| Q
P[a <- b] ∼ P [a ← b]

P \ Q ∼ P \ Q

For example, the declarations

DOOR = {1,2,3,4}

channel coin, tea, coffee channel open, close :~DOOR

introduce events used in the Vending Machines and Car Doors examples of the
previous sections.

A declarative language of sets, sequences, and functions is provided for the
data expressions used in process definitions; below, we have a few examples.

a,b,c ∼ {a, b, c}
union(s,t) ∼ s ∪ t
inter(s,t) ∼ s ∩ t
diff(s,t) ∼ s \ t

e == f ∼ e = f
p and q ∼ p ∧ q
p or q ∼ p ∨ q
not(p) ∼ ¬ p



Using CSP 117

A useful feature of the language is the use of {| m, n, ...|} to denote the set
of all productions of the names m, n, . . . : that is, all of the possibly-compound
events whose names begin with these components.

A minor deficiency is the lack of any direct support for process alphabets;
we cannot write simply P || Q or P || Q || R; we must provide explicit anno-
tations. For example, the parallel combination of Matthew , Marina, and Alan
defined in Example 30 could be described as follows.

let
A(1) = {red,green}
A(2) = {blue,green}
A(3) = {red,blue,green}
P(1) = Matthew
P(2) = Marina
P(3) = Alan

within
|| i :~{1,2,3} @ [A(i)] P(i)

In our use of the analysis tool FDR, we may make assertions about the processes
that we present; the most useful of these are:

P [T= Q ∼ P �T Q
P [FD= Q ∼ P �FD Q

P :[deadlock free] ∼ P is free from deadlock

8.1 Refinement

If we declare

channel coin, coffee, tea

then we may introduce, and analyse, a number of simple processes representing
vending machines:

OCM = coin -> coffee -> STOP

CM = coin -> coffee -> CM TM = coin -> tea -> TM

VM = coin -> NVM = coin ->
(coffee -> VM (coffee -> NVM
[] |~|
tea -> VM) tea -> NVM)

(a) Use the ProBE tool to explore the behaviour of the processes OCM and CM.
Explain the (obvious) difference between them.



118 J. Davies

(b) Which of the following assertions will be true, and why? Use the FDR tool
to check your answers.

assert OCM [T= CM
assert CM [FD= OCM
assert CM [T= OCM
assert OCM [FD= CM

(c) The traces model provides an inadequate treatment of nondeterminism. Ex-
plain why this is the case, with reference to one or more of the following
assertions:

assert VM [T= NVM
assert VM [FD= NVM
assert NVM [T= VM
assert NVM [FD= VM

(d) Which of the following assertions will be true, and why? Use the FDR tool
to check your answers.

assert CM [T= VM
assert CM [FD= VM
assert VM [T= CM
assert VM [FD= CM

(e) Explain the difference between the processes CM |~| TM and NVM. Which of
these is a Failures–Divergences refinement of the other?

(f) There are six different processes that are refinements of NVM in the Failures–
Divergences model, including NVM itself. What are the others? Draw a dia-
gram to show how these six processes are related under the �FD refinement
ordering.

8.2 Sequential Design

A machine used in radiation therapy can create two types of beam: a low-current
beam, which plays directly upon the patient, and a high-current beam, which
needs to be diffused by a beam flattener or shield. Using a remote terminal, an
operator may select and perform a treatment; they are also able to cancel a
treatment that has been selected but not yet performed.

We can produce a description of the behaviour of this machine using the
following events:

datatype TREATMENT = high | low
channel select, current, shield : TREATMENT
channel treat, cancel

The event select.t represents the selection of treatment t, the event treat
represents the performance of a treatment (the firing of the beam), and the
event cancel represents a cancellation. The keyword datatype is used here to
introduce a type with exactly two elements, high and low.



Using CSP 119

The machine is configured initially for low-current treatment.

System = SetLow ; Ready

Ready =
select.high -> HighTreatment ; Ready
[]
select.low -> LowTreatment ; Ready

HighTreatment =
(SetHigh ; treat -> SetLow) /\ cancel -> SKIP

LowTreatment =
treat -> SKIP /\ cancel -> SKIP

When a high-current treatment is required, the machine is configured accord-
ingly, then re-configured for low-current use once treatment is completed. The
configuration processes are nondeterministic, but neither will terminate until
both current and shield have been moved to the new setting.

SetHigh =
current.high -> shield.high -> SKIP
|~|
shield.high -> current.high -> SKIP

SetLow =
current.low -> shield.low -> SKIP
|~|
shield.low -> current.low -> SKIP

The event current.t represents the current being set for treatment t, and the
event shield.t represents the shield moving into the correct position for t.

An important consideration in the operation of this machine is that the beam
and shield setting should always match when treatment is performed. If the
beam is fired on low-current when the shield is high, then the patient will not be
exposed to sufficient radiation; what is worse, if the beam is fired on high-current
when the shield is low, then immediate, serious injury or death will occur.

Of the events introduced above, only select, treat, and cancel describe
part of the interface presented at the remote terminal; although the current
and shield events are critical to the correct behaviour of the system, their
occurrence is not visible to the operator.

(a) Write a process OperatorView to describe the behaviour of the system from
the operator’s point of view. Check that your description is correct by con-
firming that the following refinements hold:

OperatorView [FD= System \ {| shield, current |}
System \ {| shield,current |} [FD= OperatorView



120 J. Davies

(b) Write a process Safe to characterize those sequences of events from the
set {| current, shield, treat |} in which treat occurs only when the
current and shield are at the same setting, high or low. Use this process
to test whether the design of the system is safe, by checking the following
refinement:

Safe [T= System \ {| select, cancel |}

(c) The trace refinement check in the previous part should have uncovered at
least one problem with the design of the system. Can this problem be solved
simply by eliminating the nondeterminism in the two processes SetHigh
and SetLow? If not, propose your own solution, and show that it works by
repeating the refinement check.

(d) An alternative approach to detecting a problematic trace is to place a mon-
itor process in parallel with that describing the system, and arrange for this
process to signal an error should such a trace be performed. Using the event
defined by

channel error

together with current, shield, and treat, write a process Monitor that of-
fers to perform error whenever the system performs treat when the beam
is on the high setting and the shield is on the low setting, or vice versa. Con-
firm that this would be enough to detect the problem in design by performing
the refinement check

CHAOS({| current, shield, treat, select, reset |}) [FD=
System [| {| current, shield, treat |} |] Monitor

Where CHAOS(A) is a process (pre-defined in FDR) that can perform or refuse
any event from set A, but does not diverge (unlike the process CHAOS in our
original language, which takes no parameter, and may diverge immediately).

(e) In this exercise, we used a process to characterize all of the good traces of a
system, with respect to a particular property, and a particular set of events.
Explain why it is impossible for us to use a process to describe directly all
of the bad traces of a system.

8.3 Parallel Combination

The behaviour of a particular design of central locking system can be described
using three kinds of process: one representing a door lock, another representing
a door button (or lever), and another representing the central control module.
For the purposes of this exercise, we will assume that communication between
the various components is immediate and reliable.

We will introduce sets of door numbers, command values, and movements
made by door buttons (or levers):

DOORS = {1,2}
datatype COMMANDS = lock | unlock
datatype MOVES = up | down



Using CSP 121

and events to represent: the action of issuing a command to the controller via the
remote control; the transmission of a command to a door lock (either from the
controller or from the button); the movement of a door button; and the opening
and closing of doors.

channel remote :~COMMANDS
channel command :~DOORS . COMMANDS
channel button :~DOORS . MOVES
channel open, close :~DOORS

An additional event crash will to used to represent the controller module de-
ciding, or being informed, that a collision is imminent (or even occurring).

channel crash

(a) A door should open and close only if unlocked. It can be locked only if
closed: it will ignore lock and unlock commands if open. Write a process
vDoor(d) to describe the behaviour of door d, using events from the set

{| open.d, close.d, command.d |}

(b) A door button can move up and down alternately. When it is moved down,
it sends a lock command to that door; when it is moved up, it sends an
unlock command. Write a process Button(d) to describe the behaviour of
the button on door d, using events from the set

{| button.d, command.d |}

(c) The controller will send a lock command to each of the two doors in re-
sponse to the signal remote.lock, and an unlock command in response to
vremote.unlock. It will also send unlock commands in response to the crash
signal. Write a process Controller to describe the behaviour of the controller,
using events from the set

{| remote, command, crash |}

(d) The controller and the buttons send commands to the door lock indepen-
dently of each other. Using parallel combination and partial interleaving,
write a process System to describe the behaviour of the central locking sys-
tem with two doors, two buttons, and a controller component.

(e) A key requirement upon the design is that the doors should be capable of
being opened immediately after a crash. Write a process Escape to express
this property, using events from the set

{| crash, open, close |}

Would it be useful to check the following refinement?

Escape [FD= System \ {| command, button, remote |}

(f) Instead of hiding the button and remote events, we may ignore them. We
can do this by writing a new property process in which, at every stage, these



122 J. Davies

events may or may not be available, and it would make no difference if they
occurred. Write a new process NewEscape, using events from the set

{|crash, open, close, button, remote |}

so that the refinement check

NewEscape [FD= System \ {| command |}

reveals further, useful information about the design.

(g) The refinement check in the previous part will not succeed. It is possible,
however, to show that our design will achieve the objective of permitting
escape under the assumption that no buttons are pressed after the crash
event occurs. Write a process Assume using events from the set

{| crash, button |}

so that

NewEscape [FD=
(System [| {| crash, button |} |] Assume) \ {| command |}

(h) Alternatively, we might change our description of the system so that the
problematic behaviours do not arise. Depending upon the circumstances,
such a change may reflect either an improved design, or an improved de-
scription of an already adequate design.
Here, we may choose to model a mechanism by which the controller is in-
formed whenever a door is locked or unlocked, using events

channel report :~DOORS . COMMANDS

Write a process NewSystem to describe the behaviour of the new design,
revising the definitions of the component processes, and the parallel combi-
nations, as necessary, so that

NewEscape [FD=
NewSystem \ {| command, remote |}

9 Further Reading

There are two publications on CSP that are particularly useful:

– C. A. R. Hoare. Communicating Sequential Processes.
– A. W. Roscoe. Theory and Practice of Concurrency.

Both of these are available for download: links to the latest versions can be
found at www.usingcsp.com, together with information about tools for exploring
behaviour and checking refinements.



Developing and Reasoning
About Probabilistic Programs

in pGCL

Annabelle McIver1 and Carroll Morgan2

1 Department of Computer Science
Macquarie University

NSW, Australia
2 Department of Computer Science and Engineering

University of New South Wales
NSW, Australia

As explained in Chapter 1, Dijkstra’s guarded-command language, which we
call GCL, was introduced as an intellectual framework for rigorous reasoning
about imperative sequential programs; one of its novelties was that it contained
explicit “demonic” nondeterminism, representing abstraction from (or ignorance
of) which of two program fragments will be executed. By introducing probabilistic
nondeterminism into GCL, we provide a means with which also probabilistic
programs can be rigorously developed and reasoned about.

The programming logic of “weakest preconditions” for GCL becomes a logic
of “greatest pre-expectations” for what we call pGCL. An expectation is a gen-
eralized predicate suitable for expressing quantitative properties such as “the
probability of achieving a postcondition”.

pGCL is suitable for describing random algorithms, at least over discrete dis-
tributions. In our presentation of it and its logic we give a number of small ex-
amples, and two case studies. The first illustrates probabilistic “almost-certain”
termination; the second case study illustrates approximated probabilities, ab-
straction and refinement.

After a brief historical account of work on probabilistic semantics in Section 1,
Section 2 gives a brief and shallow overview of pGCL, somewhat informal and
concentrating on simple examples. Section 3 sets out the definitions and prop-
erties of pGCL systematically, and Section 4 treats an example of reasoning
about probabilistic loops, showing how to use probabilistic invariants. Section 5
illustrates termination arguments via probabilistic variants with a thorough
treatment of Rabin’s choice-coordination algorithm [219]; Section 6 illustrates
abstraction and refinement, as well as “approximated probabilities”, by giving
a two-level treatment of an almost-uniform selection algorithm. An impression
of pGCL can be gained by reading Sections 2 and 4, with finally a glance over
Sections 3.1 and 3.2; more thoroughly one would read Sections 2, 3.1 and 3.2,
then 2 (again) and finally 4. The more theoretical Section 3.3 can be skipped on
first reading. Appendix A describes basic concepts of probability theory needed
in this chapter.

, LNCS 3167, pp. 123–155, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004



124 A. McIver and C. Morgan

1 Introduction

Probabilistic programs and systems are increasingly relevant: often random al-
gorithms are computationally feasible where their deterministic counterparts are
not; some concurrent applications are impossible without the symmetry breaking
that randomisation provides; and in hybrid systems the low-level hardware might
be represented by probabilistic program text that models quantitative unrelia-
bility. Because of that relevance, there has been a renewed interest in techniques
for establishing the correctness of such programs—for the more widespread they
become, the more we will depend on understanding their behaviour, and their
limits, exactly.

In this tutorial chapter we address that last concern, of understanding: we
survey a method for rigorous reasoning about probabilistic programs and sys-
tems. We give an impression of how they work, an operational view, and we
suggest how we should reason about them, a logical view—and we show how the
two views are designed to fit together.

We use Dijkstra’s Guarded Command Language GCL [81] as a simple and
“pared-down” syntax for presenting our ideas: it is a weakest-precondition based
method of describing computations and their meaning; here we extend it to
probabilistic programs, and we give examples of its use.

Most sequential programming languages contain a construct for “determin-
istic” choice, where the program makes a selection in a predictable way: for
example, in

if test thenThis elseThatfi (1)

the two-way choice between This and That is determined by test and the current
state.

In contrast, Dijkstra’s language of guarded commands brings to prominence
nondeterministic or “demonic” choice, in which the program’s behaviour is not
predictable, is not determined by the current state. At first [81], demonic choice
was presented as a consequence of “overlapping guards”, as almost an accident,
but as its importance became more widely recognized it developed a life of its
own. Nowadays it merits an explicit operator: the construct

This � That

chooses between the alternatives unpredictably and, as a specification, indi-
cates abstraction from the issue of which will be executed. The customer will
be happy with either This or That; and the implementor may choose between
them according to his own concerns. An alternative but equivalent view is that
the choice between the alternatives is made at runtime by an adversarial “de-
mon” whose aim is to make the program as unlikely as possible to achieve its
goal.

Early research on probabilistic semantics took a different route: demonic
choice was not regarded as fundamental. Rather it was abandoned altogether,
being replaced by probabilistic choice [140, 90, 89, 133, 132], written for example

This p⊕ That



Developing and Reasoning About Probabilistic Programs in pGCL 125

to indicate a program that behaved like This with probability p, but otherwise
like That. Without demonic choice, however, probabilistic semantics was divorced
from the contemporaneous work on specification and refinement: there was no
longer any means of abstraction.

More recently it has been discovered [131, 197, 247] how to bring the two topics
back together, taking the more natural approach of adding probabilistic choice,
while retaining demonic choice. In fact deterministic choice is a special case of
probabilistic choice, which in turn is a refinement of demonic choice.

We give the resulting probabilistic extension of GCL the name “pGCL”.

2 An Impression of pGCL

Let square brackets [·] be used to embed Boolean-valued predicates within arith-
metic formulae which, for reasons explained below, we call expectations ; we allow
them to range over the unit interval [0 , 1 ]. Stipulating that [false] is 0 and [true]
is 1 makes [P ] in a trivial sense the probability that a given predicate P holds: if
false, P holds with probability 0; if true, it holds with probability 1.

For (our first) example, consider the simple program

x : = −y 1
3
⊕ x : = +y (2)

over variables x , y: Z, using a construct 1
3
⊕ which, as explained above, we inter-

pret as “choose the left branch x : = −y with probability 1/3 , and choose the
right branch with probability 1 − 1/3”.

Recall [81] that for any predicate P over final states, and a standard command
S , the “weakest precondition” predicate wp.S .P acts over initial states: it holds
just in those initial states from which S is guaranteed to reach P . (Through-
out this chapter, we use standard to mean “non-probabilistic”.) We also write
f .x instead of f (x ) for function f applied to argument x , with left association.
Now suppose S is probabilistic, as Program (2) is; what can we say about the
probability that wp.S.P holds in some initial state?

It turns out that the answer is just wp.S .[P ], once we generalize wp.S to
expectations instead of predicates. For that, we begin with the two definitions

wp.(x : = E ).R =̂ “R with x replaced everywhere by E” 1 (3)
wp.(S p⊕ T).R =̂ p ∗wp.S .R

+ (1−p) ∗wp.T.R
(4)

in which R is an expectation, and for our example program we ask

what is the probability that the predicate “the final state will satisfy
x ≥ 0 ” holds in some given initial state of the Program (2)?

1 In the usual way, we take account of free and bound variables, and if necessary
rename to avoid variable capture.



126 A. McIver and C. Morgan

To find out, we calculate wp.S.[P ] in this case; that is

wp.(x : = −y 1
3
⊕ x : = +y). [x ≥ 0 ]

≡ (1/3 ) ∗ wp.(x : = −y). [x ≥ 0 ]
+ (2/3 ) ∗ wp.(x : = +y). [x ≥ 0 ]

using (3)

≡ (1/3 ) [−y ≥ 0 ] + (2/3 ) [+y ≥ 0 ] using (3)
≡ [y < 0 ] /3 + [y = 0 ] + 2 [y > 0 ] /3 using arithmetic

Thus our answer is the last arithmetic formula above, which we could call a “pre-
expectation”—and the probability we seek is found by reading off the formula’s
value for various initial values of y, getting

when y < 0 , 1/3 + 0 + 2 (0 )/3 = 1/3
when y = 0 , 0/3 + 1 + 2 (0 )/3 = 1
when y > 0 , 0/3 + 0 + 2 (1 )/3 = 2/3

Those results indeed correspond with our operational intuition about the effect
of 1

3
⊕. Later we explain the use of “≡” rather than “=”.

The above remarkable generalisation of sequential program correctness is due
to Kozen [140], but in its original form was restricted to programs that did
not contain demonic choice �. When He et al. [131] and Morgan et al. [197]
successfully added demonic choice, it became possible to begin the long-overdue
integration of probabilistic programming and formal program development: in
the latter, demonic choice—as abstraction—plays a crucial role in specifications.
The extension was based on a general approach to probabilistic power-domains
due to Jones and Plotkin [132, 133], which recently has been further developed
by Tix et al. [247].

To illustrate the use of abstraction, in our second example we abstract from
probabilities: a demonic version of Program (2) is much more realistic in that
we set its probabilistic parameters only within some tolerance. We say infor-
mally (but still with precision) that

– x : = −y is to be executed with probability at least 1/3 ,
– x : = +y is to be executed with probability at least 1/4 and
– it is certain that one or the other will be executed.

⎫⎪⎪⎬⎪⎪⎭ (5)

Equivalently we could say that alternative x : = −y is executed with probability
between 1/3 and 3/4 , and that otherwise x : = +y is executed (therefore with
probability between 1/4 and 2/3 ).

With demonic choice we can write Specification (5) as

x : = −y 1
3
⊕ x : = +y

� x : = −y 3
4
⊕ x : = +y (6)

because we do not know or care whether the left or right alternative of � is
taken—and it may even vary from run to run of the program, resulting in an



Developing and Reasoning About Probabilistic Programs in pGCL 127

“effective” p⊕ with p somewhere between the two extremes. A convenient nota-
tion for (6) would be based on the abbreviation

S p⊕q T =̂ (S p⊕ T) � (T q⊕ S) for p + q ≤ 1

we would then write x : = −y 1
3
⊕ 1

4
x : = +y.

To treat Program (6), we define the command

wp.(S � T).R =̂ wp.S.R min wp.T.R (7)

using min because we regard demonic behaviour as attempting to make the
achieving of R as im-probable as it can. Repeating our earlier calculation (but
more briefly) gives this time

wp.( Program (6) ). [x ≥ 0 ]
≡ [y ≤ 0 ] /3 + 2 [y ≥ 0 ] /3

min 3 [y ≤ 0 ] /4 + [y ≥ 0 ] /4
using (3), (3), (7)

≡ [y < 0 ] /3 + [y = 0 ] + [y > 0 ] /4 using arithmetic

Our interpretation is now

– When y is initially negative, the demon chooses the left branch of � because
that branch is more likely (2/3 vs. 1/4 ) to execute x : = +y—the best we
can say then is that x ≥ 0 will hold with probability at least 1/3 .

– When y is initially zero, the demon cannot avoid x ≥ 0—either way the
probability of x ≥ 0 finally is 1.

– When y is initially positive, the demon chooses the right branch because
that branch is more likely to execute x : = −y—the best we can say then is
that x ≥ 0 finally with probability at least 1/4 .

The same interpretation holds if we regard � as abstraction. Suppose Program
(6) represents some mass-produced physical device and, by examining the pro-
duction method, we have determined the tolerance (5) on the devices produced.
If we were to buy one arbitrarily, all we could conclude about its probability of
establishing x ≥ 0 is just as calculated above.

Refinement is the converse of abstraction: for two commands S , T we define

S � T =̂ wp.S .R � wp.T.R for all R (8)

where we write � for “everywhere no more than” (which ensures [false] � [true]
as the notation suggests). From (8) we see that in the special case when R is an
embedded predicate [P ], the meaning of � ensures that a refinement T of S is
at least as likely to establish P as S is. That accords with the usual definition
of refinement for standard programs—for then we know wp.S .[P ] is either 0 or
1, and whenever S is certain to establish P (whenever wp.S .[P ] ≡ 1 ) we know
that T also is certain to do so (because then 1 � wp.T.[P ]).

For our third example we prove a refinement: consider the program

x : = −y 1
2
⊕ x : = +y (9)



128 A. McIver and C. Morgan

which clearly satisfies Specification (5); thus it should refine Program (6). With
Definition (8), we find for any R that

wp.( Program (9) ).R
≡ wp.(x : = −y).R/2 + wp.(x : = +y).R/2
≡ R−/2 + R+/2 introduce abbreviations
≡ (3/5 )(R−/3 + 2R+/3 )

+ (2/5 )(3R−/4 + R+/4 )
arithmetic

� R−/3 + 2R+/3
min 3R−/4 + R+/4

any linear combination exceeds min

≡ wp.( Program (6) ).R

The refinement relation (8) is indeed established for the two programs.
The introduction of 3/5 and 2/5 in the third step can be understood by

noting that demonic choice � can be implemented by any probabilistic choice
whatever: in this case we used 3

5
⊕. Thus a proof of refinement at the program

level might read

Program (9)
= x : = −y 1

2
⊕ x : = +y

= (x : = −y 1
3
⊕ x : = +y)

3
5
⊕ (x : = −y 3

4
⊕ x : = +y)

arithmetic

� x : = −y 1
3
⊕ x : = +y

� x : = −y 3
4
⊕ x : = +y

(�) � (p⊕) for any p

≡ Program (6)

3 Presentation of Probabilistic GCL

In this section we give a concise presentation of probabilistic GCL—pGCL: its
definitions, how they are to be interpreted and their (healthiness) properties.

3.1 Definitions of pGCL Commands

In pGCL, commands act between “expectations” rather than predicates, where
an expectation is an expression over (program or state) variables that takes its
value in the unit interval [0 , 1 ]. (A more general treatment is possible in which
expectations are arbitrarily non-negative but bounded [197, 181].) To retain the
use of predicates, we allow expectations of the form [P ] when P is Boolean-
valued, defining [false] to be 0 and [true] to be 1.

Implication-like relations between expectations are

R � R′ =̂ R is everywhere no more than R′

R ≡ R′ =̂ R is everywhere equal to R′

R � R′ =̂ R is everywhere no less than R′



Developing and Reasoning About Probabilistic Programs in pGCL 129

The probabilistic guarded command language pGCL acts over “expectations”
rather than predicates: expectations take values in [0 , 1 ].

wp.(x : = E ).R The expectation obtained after replacing all free
occurrences of x in R by E , renaming bound vari-
ables in R if necessary to avoid capture of free vari-
ables in E .

wp.skip.R R
wp.(S ; T).R wp.S .(wp.T.R)
wp.(S � T).R wp.S .R min wp.T.R
wp.(S p⊕ T).R p ∗ wp.S .R + (1−p) ∗ wp.T.R

S � T wp.S .R � wp.T.R for all R

– R is an expectation (possibly but not necessarily [P ] for a predicate
P);

– P is a predicate (not an expectation);
– ∗ is multiplication;
– S , T are probabilistic guarded commands (inductively);
– p is an expression over the program variables (possibly but not nec-

essarily a constant), taking a value in [0 , 1 ]; and
– x is a variable (or a vector of variables).

Deterministic choice if B then S elseTfi is a special case of probabilistic choice: it
is just S [B]⊕ T. Recursions are handled by least fixed points in the usual way;
in practice however, the special case of loops is more easily treated using (proba-
bilistic) invariants and variants.

Fig. 1. pGCL—the probabilistic Guarded Command Language

Note that |= P ⇒ P ′ exactly when [P ] � [P ′], and so on; that is the motivation
for the symbols chosen.

The definitions of the commands in pGCL are given in Fig. 1.

3.2 Interpretation of pGCL Expectations

In its full generality, an expectation is a function describing how much each
program state “is worth”.

The special case of an embedded predicate [P ] assigns to each state a worth
of 0 or of 1: states satisfying P are worth 1, and states not satisfying P are
worth 0. The more general expectations arise when one estimates, in the initial
state of a probabilistic program, what the worth of its final state will be. That



130 A. McIver and C. Morgan

estimate, the “expected worth” of the final state, is obtained by summing over
all final states

the worth of the final state multiplied by the probability the program
“will go there” from the initial state.

Naturally the “will go there” probabilities depend on “from where”, and so that
expected worth is a function of the initial state.

When the worth of final states is given by [P ], the expected worth of the
initial state turns out to be just the probability that the program will reach P .
That is because

expected worth of initial state
≡ (probability S reaches P)∗(worth of states satisfying P)

+ (probability S does not reach P)∗(worth of states not satisfying P)

≡ (probability S reaches P)∗1
+ (probability S does not reach P)∗0

≡ probability S reaches P

where, of course, matters are greatly simplified by the fact that all states satis-
fying P have the same worth. We must, however, moderate this to “the greatest
guaranteed probability” when there is demonic choice: this is why the general
judgement is the inequality p � wp.S.[P ] rather than the special case of equality
given at (10).

Typical analyses of programs S in practice lead to conclusions of the form

p ≡ wp.S .[P ] (10)

for some p and P which, given the above, we can interpret in two equivalent
ways:

1. the expected worth [P ] of the final state is at least the value of p in the
initial state; or

2. the probability that S will establish P is at least p.

Each interpretation is useful, and in the following example we can see them
acting together: we ask for the probability that two fair coins when flipped will
show the same face, and calculate

wp.

(
c: = H 1

2
⊕ c: = T ;

d : = H 1
2
⊕ d : = T

)
. [c = d ]

≡ 1
2
⊕, : = and sequential composition

wp.(c: = H 1
2
⊕ c: = T ).([c = H ] /2 + [c = T ] /2 )

≡ (1/2 )([H = H ] /2 + [H = T ] /2 )
+ (1/2 )([T = H ] /2 + [T = T ] /2 )

1
2
⊕ and : =

≡ (1/2 )(1/2 + 0/2 ) + (1/2 )(0/2 + 1/2 ) definition [·]
≡ 1/2 arithmetic



Developing and Reasoning About Probabilistic Programs in pGCL 131

We can then use the second interpretation above to conclude that the faces are
the same with probability (at least ) 1/2 . Knowing there is no demonic choice
in the program, we can in fact say it is exact.

But part of the above calculation involves the more general expression

wp.(c: = H 1
2
⊕ c: = T ).([c = H ] /2 + [c = T ] /2 )

and what does that mean on its own? It must be given the first interpretation,
since its post-expectation is not of the form [P ], and it means

the expected value of the expression [c = H ] /2 + [c = T ] /2 after exe-
cuting c: = H 1

2
⊕ c: = T ,

which the calculation goes on to show is in fact 1/2 . But for our overall con-
clusions we do not need to think about the intermediate expressions—they are
only the “glue” that holds the overall reasoning together.

Exercise 1. We consider again the two coin-like variables c and d which are
flipped in various ways. We use the notation c: = H p⊕ T to represent the as-
signment of H to c with probability p, and of T with probability 1−p; similarly,
we write d : = H p⊕ T .

1. What if one of the two coins is not fair? Calculate

wp.(c: = H p⊕ T ; d : = H 1/2⊕ T ). [c = d ]
and wp.(c: = H 1/2⊕ T ; d : = H q⊕ T ). [c = d ]

2. What if one of the two coins is not even flipped, but rather is placed face-up
or -down at will? (At whose will?) Calculate

wp.(c: = H � T ; d : = H 1/2⊕ T ). [c = d ]
and wp.(c: = H 1/2⊕ T ; d : = H � T ). [c = d ] .

3. Of the five answers to the questions above, (including the two-fair-coins
example in the text) one is conspicuous. Which one? How do you explain
that answer?

3.3 Properties of pGCL

Recall that all GCL constructs satisfy the property of conjunctivity—that is, for
any GCL command S and post-conditions P ,P ′ we have

wp.S.(P ∧ P ′) = wp.S .P ∧ wp.S.P ′

That “healthiness property” [81] is used to prove general properties of programs.
In pGCL the healthiness condition becomes “sublinearity” [197], a generali-

sation of conjunctivity:



132 A. McIver and C. Morgan

Definition 1 (Sub-linearity). Let a, b and c be non-negative finite reals, and
R and R′ expectations; then all pGCL constructs S satisfy

wp.S.(aR + bR′ � c) � a(wp.S.R) + b(wp.S.R′) � c (11)

This property of S is called sublinearity. We have written aR for a ∗ R, and so
on. Truncated subtraction � is defined

x � y =̂ (x − y) max 0

with syntactic precedence lower than +.

Sublinearity characterizes probabilistic and demonic commands. In Kozen’s orig-
inal probability-only formulation [140] the commands are not demonic, and there
they satisfy the much stronger property of “linearity” [179].

Although it has a strange appearance, from sublinearity we can extract a
number of very useful consequences, as we now show [197]. We begin with mono-
tonicity, feasibility and scaling.

monotonicity: increasing a post-expectation can only increase the pre-expect-
ation. Suppose R � R′ for two expectations R,R′; then

wp.S .R′

≡ wp.S .(R + (R′ − R))
� wp.S .R + wp.S.(R′−R) sublinearity with a, b, c : = 1 , 1 , 0
� wp.S .R R′−R well defined, hence 0 � wp.S .(R′−R)

feasibility: pre-expectations cannot be “too large”. First note that wp.S .0 must
be 0, as we show below.

wp.S .0
≡ wp.S .(2 ∗ 0 )
� 2 ∗ wp.S .0 sublinearity with a, b, c : = 2 , 0 , 0

Now write max R for the maximum of R over all its variables’ values; then

0
≡ wp.S .0 feasibility above
≡ wp.S .(R � max R) R � max R ≡ 0
� wp.S .R � max R sublinearity with a, b, c : = 1 , 0 , max R

But from 0 � wp.S.R � (max R) we have trivially that

wp.S.R � max R (12)

which we identify as the feasibility condition for pGCL. Conveniently, the
general (12) implies the earlier special case wp.S .0 ≡ 0 .



Developing and Reasoning About Probabilistic Programs in pGCL 133

scaling: multiplication by a non-negative constant distributes through com-
mands. Note first that wp.S .(aR) � a(wp.S .R) directly from sublinearity.
For � we have two cases: when a is 0, trivially from feasibility

wp.S .(0 ∗ R) ≡ wp.S .0 ≡ 0 ≡ 0 ∗ wp.S .R

and for the other case a 	= 0 we reason as follows, establishing the identity
wp.S.(aR) ≡ a(wp.S.R) generally.

wp.S .(aR)
≡ a(1/a)wp.S.(aR) a 	= 0
� a(wp.S .((1/a)aR)) sublinearity using 1/a
≡ a(wp.S .R)

That completes monotonicity, feasibility and scaling.
The remaining property we examine is probabilistic conjunction. Since stan-

dard conjunction ∧ is not defined over numbers, we have many choices for a
probabilistic analogue & of it, requiring only, for consistency with embedded
Booleans, that

0 & 0=0
0 & 1=0
1 & 0=0
1 & 1=1

(13)

Obvious possibilities for & are multiplication ∗ and minimum min, and each of
those has its uses; but neither satisfies anything like a generalisation of conjunc-
tivity. Instead we define

R & R′ =̂ R + R′ � 1 (14)

whose right-hand side is inspired by sublinearity when a, b, c : = 1 , 1 , 1 . We now
state a (sub-)distribution property for it, a direct consequence of sublinearity.
This same operator (and its other propositional companions) was introduced by
�Lukasiewicz in the 1920’s [103]; here we have synthesized it by quite different
means.

sub-conjunctivity: the operator & subdistributes through commands. From
sublinearity with a, b, c : = 1 , 1 , 1 we have

wp.S .(R & R′) � wp.S .R & wp.S.R′

for all S .

Unfortunately there does not seem to be a full (rather than sub-)conjunctivity
property.

Beyond sub-conjunctivity, we say that & generalizes conjunction for several
other reasons. The first is of course that it satisfies the standard properties (13).

The second reason is that sub-conjunctivity implies “full” conjunctivity for
standard programs. Standard programs, containing no probabilistic choices, take



134 A. McIver and C. Morgan

standard [P ]-style post-expectations to standard pre-expectations: they are the
embedding of GCL in pGCL, and for standard S we now show that

wp.S .([P ] & [P ′]) ≡ wp.S . [P ] & wp.S. [P ′] (15)

First note that “�” comes directly from sub-conjunctivity above, taking R,R′

to be [P ] , [P ′].
For “�” we appeal to monotonicity, because [P ]& [P ′] � [P ] whence we have

wp.S .([P ] & [P ′]) � wp.S . [P ], and similarly for P ′. Putting those together gives

wp.S.([P ] & [P ′]) � wp.S . [P ] min wp.S. [P ′]

by elementary arithmetic properties of �. But on standard expectations—which
wp.S . [P ] and wp.S . [P ′] are, because S is standard—the operators min and &
agree.

A last attribute linking & to ∧ comes straight from elementary probability
theory. Let A and B be two events, unrelated by ⊆ and not necessarily indepen-
dent: then we can show that

if the probabilities of A and B are at least p and q respectively, then
the most that can be said about the joint event A ∩ B is that it has
probability at least p & q [235].

The & operator also plays a crucial role in the proof [193, 181] (not given here)
of the probabilistic loop rule presented and used in the next section.

Exercise 2. Say that a probabilistic program is standard if it takes 0/1 -valued
post-expectations to 0/1 -valued pre-expectations; typical examples are pro-
grams written in pGCL that nevertheless do not use p⊕. Show that such pro-
grams distribute minimum for all post-expectations. For hints, consult the ref-
erence text on pGCL [181].

4 Probabilistic Invariants for Loops

To show pGCL in action, we state a proof rule for probabilistic loops and apply
it to a simple example.

Just as for standard loops, we can deal with invariants and termination sep-
arately: common sense suggests that the probabilistic reasoning should be an
extension of standard reasoning, and indeed that is the case. One proves a pred-
icate invariant under execution of a loop’s body; and one finds a variant that
ensures the loop’s eventual termination: the conclusion is that if the invariant
holds initially then the invariant and the negation of the loop guard together
hold finally. Probability does lead to differences, however—and here are some of
them:

– The invariant may be probabilistic, in which case its operational meaning
is more general than just “the computation remains within a certain set of
states”.



Developing and Reasoning About Probabilistic Programs in pGCL 135

– The variant might have to be probabilistically interpreted, since the usual
“must strictly decrease and is bounded below” technique is no longer ade-
quate, even for simple cases. (It remains sound.)

– When both the invariant and the termination condition are probabilistic,
one cannot use Boolean conjunction to combine “correct if terminates” and
“it does terminate”.

4.1 Probabilistic Invariants

In a standard loop, the invariant holds at every iteration of the loop. It describes
a set of states from which continuing to execute the loop body is guaranteed to
establish the postcondition, if the guard ever becomes false—that is, if termina-
tion occurs.

For a probabilistic loop we have a post-expectation rather than a postcon-
dition, but otherwise the situation is much the same. Moreover, if that post-
expectation is some [P ] say, then—as an aid to the intuition—we can look for
an invariant that gives a lower bound on the probability that we will establish
P by (continuing to) execute the loop body. Often that invariant will have the
form

p ∗ [I ] (16)

with p a probability and I a predicate, both expressions over the state. From
the definition of [·] we know that the interpretation of (16) is

probability p if I holds, and probability 0 otherwise.

We see an example of such invariants in Section 4.3.

4.2 Termination

The probability that a program will terminate generalizes the usual definition: re-
calling that [true] ≡ 1 we see that a program’s probability of termination is
given by

wp.S .1 (17)

As a simple example of that, suppose S is the recursive program

S =̂ S p⊕ skip (18)

in which we assume that p is some constant strictly less than 1: on each re-
cursive call, P has probability 1−p of termination, continuing otherwise with
further recursion. Elementary probability theory shows that S terminates with
probability 1 (after an expected p/(1−p) recursive calls). By calculation based
on (17) we see that

wp.S.1
≡ p ∗ (wp.S.1 ) + (1−p) ∗ (wp.skip.1 )
≡ p ∗ (wp.S.1 ) + (1−p)



136 A. McIver and C. Morgan

so that (1−p) ∗ (wp.S.1 ) ≡ 1−p. Since p is not 1, we can divide by 1−p to see
that indeed wp.S .1 ≡ 1 : the recursion will terminate with probability 1 (for if
p is not 1, the chance of recursing N times is pN , which for p < 1 approaches 0
as N increases without bound).

We return to probabilistic termination in Section 5.

4.3 Probabilistic Correctness of Loops

As in the standard case, it is easy to show that if [P ] ∗ I � wp.S .I then

I � wp.(doP → S od).([¬P ] ∗ I )

provided the loop terminates. Thus the notion of invariant carries over smoothly
from the standard to the probabilistic case. This is an immediate consequence of
the definition of loops as least fixed points: indeed, for the proof one simply car-
ries out the standard reasoning almost without noticing that expectations rather
than predicates are being manipulated. The precise treatment of “provided” uses
weakest liberal pre-expectations [193, 180].

When termination is taken into account as well, we get the rule below [193].

Definition 2 (Proof rule for probabilistic loops). For convenience, we
write T for the termination probability of the loop, so that

T =̂ wp.(doP → Sod).1

Then partial loop correctness—preservation of a loop invariant I—implies total
loop correctness if that invariant I nowhere exceeds T: that is,

if [P ] ∗ I � wp.S.I
and I � T
then I � wp.(doP → Sod).([¬P ] ∗ I )

Note that it is not the same to say “implies total correctness from those initial
states where I does not exceed T”: in fact I must not exceed T in any state.
The weaker alternative is not sound.

We illustrate the loop rule with a simple example. Suppose we have a machine
that is supposed to sum the elements of a sequence ss of N elements indexed from
0 to N−1 , except that the mechanism for moving along the sequence occasionally
moves the wrong way. A program for the machine is given in Figure 2, where
the unreliable component

k : = k + 1 c⊕ k : = k − 1

misbehaves with probability 1−c. With what probability does the machine ac-
curately sum the sequence, establishing

r =
∑

ss (19)

on termination?



Developing and Reasoning About Probabilistic Programs in pGCL 137

var k : Z •
r , k : = 0 , 0 ;
do k < N →

r : = r + ss.k ;
k : = k + 1 c⊕ k : = k − 1 ← failure possible here

od

Fig. 2. An unreliable sequence-summer

We first find the invariant. Relying on our informal discussion above, we ask
the following question:

during the loop’s execution, with what probability are we in a state from
which completion of the loop would establish (19)?

The answer is in the form (16)—take p to be cN−k , and let I be the standard
invariant

0 ≤ k ≤ N ∧ r =
∑

ss[0 ..k)

Then our probabilistic invariant—call it J—is just p ∗ [I ], which is to say that

if the standard invariant holds then it is cN−k , the probability of going
on to successful termination; if it does not hold, then it is 0.

Having chosen a possible invariant, to check it we calculate

wp.

(
r : = r + ss.k ;
k : = k + 1 c⊕ k : = k − 1

)
.J

≡ wp.(r : = ss.k).(
c ∗ wp.(k : = k + 1 ).J

+(1−c) ∗ wp.(k : = k − 1 ).J )

; and c⊕

� wp.(r : = r + ss.k).

cN−k ∗
[
0 ≤ k + 1 ≤ N
r =

∑
ss[0 ..k)

] drop second term, and wp.(: = )

≡ cN−k ∗
[

0 ≤ k + 1 ≤ N
r + ss.k =

∑
ss[0 ..k)

]
wp.(: = )

� [k < N ] ∗ J arithmetic

where in the last step the guard k < N , and k ≥ 0 from the invariant, allow the
removal of +ss.k from both sides of the lower equality.

A more concise rendering of the above can be given using the following con-
vention. When reasoning “backwards”, as above, the compact notation

PostE
· � PreE applying wp.Prog



138 A. McIver and C. Morgan

allows the linear “step-by-step” layout of the proof to be more easily continued.
The “·” at left warns that we are asserting PostE � wp.Prog.PreE (rather than
PostE � PreE itself). Using this convention we would have written instead

J
· ≡ c ∗ wp.(k : = k + 1 ).J

+ (1−c) ∗ wp.(k : = k − 1 ).J
applying wp.(k : = k + 1 c⊕ k : = k − 1 )

� cN−k ∗
[
0 ≤ k + 1 ≤ N
r =

∑
ss[0 ..k)

]
drop second term; wp.(: = )

· ≡ cN−k ∗
[

0 ≤ k + 1 ≤ N
r + ss.k =

∑
ss[0 ..k)

]
applying wp.(r : = r + ss.k)

� [k < N ] ∗ J

Now we turn to termination: we note (informally) that the loop terminates with
probability at least

cN−k ∗ [0 ≤ k ≤ N ]

which is just the probability of N − k correct executions of k : = k + 1 , given
that k is in the proper range to start with; hence trivially J � T as required by
the loop rule.

That concludes reasoning about the loop itself, leaving only initialisation and
the post-expectation of the whole program. For the latter we see that on termi-
nation of the loop we have [k ≥ N ]∗J , which indeed “implies” (is in the relation
� to) the post-expectation [r =

∑
ss] as required.

Turning finally to the initialisation we finish off with

wp.(r , k : = 0 , 0 ).J

≡ cN ∗
[

0 ≤ 0 ≤ N
0 =

∑
ss[0 ..0 )

]
≡ cN ∗ [true]
≡ cN

and our overall conclusion is therefore

cN � wp.(sequence-summer). [r =
∑

ss]

just as we had hoped: the probability that the sequence is correctly summed is
at least cN .

Note the importance of the inequality � in our conclusion just above. It is
not true that the probability of correct operation is equal to cN in general, for
it is certainly possible that r is correctly calculated in spite of the occasional
malfunction of k : = k + 1 . The exact probability, should we try to calculate it,
might depend intricately on the contents of ss. (It could be very involved if ss
contained some mixture of positive and negative values.) If we were forced to
calculate exact results (as in earlier work [238]), rather than just lower bounds
as we did above, this method would not be at all practical.

Further examples of loops are given elsewhere [193].



Developing and Reasoning About Probabilistic Programs in pGCL 139

5 First Case Study: Probabilistic Termination

In this case study, we treat an algorithm whose termination argument is fairly
involved, showing how it is dealt with using probabilistic-variant arguments.
This example has also been given an automated proof using the pB proba-
bilistic extension of the B development method [182, 3]. For another example of
“easy correctness but difficult termination”, see the Probabilistic Dining Philoso-
phers [149], [181, Section 3.2].

5.1 Introduction

Rabin’s choice-coordination algorithm (explained in Sections 5.2 and 5.3 below)
is an example of the use of probability for symmetry-breaking: identical processes
with identical initial conditions must reach collectively an asymmetric state, all
choosing one alternative or all choosing the other. The simplest example is a coin
flipped between two people—each has equal right to win, the coin is fair, the
initial conditions are thus symmetric; yet, at the end, one person has won and
not the other. In this example, however, the situation is made more complex by
insisting that the processes be distributed : they cannot share a central “coin”.

Rabin’s article [219] explains the algorithm he invented and relates it to a
similar algorithm in nature, carried out by mites who must decide whether they
should all infest the left or all the right ear of a moth, but he does not give a
formal proof of its correctness. We do that here.

Section 5.3 writes the algorithm as a loop, containing probabilistic choice,
and we show the loop terminates “with probability 1” in a desired state: we use
invariants, to show that if it terminates it is in that state; and we use probabilistic
variants to show that indeed it does terminate. “Termination with probability
1”’ is the kind of termination exhibited for example by the algorithm “flip a fair
coin repeatedly until you get heads, then stop”. For our purposes that is as good
as “normal” guarantees of termination.

In this example, the partial correctness argument is entirely standard and so
does not illustrate the new probabilistic techniques. (It is somewhat involved,
however, and thus interesting as an exercise in any case.) In such cases one
treats probabilistic choice as nondeterministic choice and proceeds with stan-
dard reasoning, since the theory shows that any wp-style property proved of the
“projected” nondeterministic program is valid for the original probabilistic pro-
gram as well. More precisely, replacing probabilistic choice by nondeterministic
choice is an anti-refinement.

The termination argument is novel however, since probabilistic variant tech-
niques [107, 193] must be used.

5.2 Informal Description of Rabin’s Algorithm

This informal description is based on Rabin’s presentation [219].
A group of tourists are to decide between two meeting places: inside a (certain)

church, or inside a museum. They may not communicate all at once as a group.



140 A. McIver and C. Morgan

Each tourist carries a notepad on which he will write various numbers; out-
side each of the two potential meeting places is a noticeboard on which various
messages will be written. Initially the number 0 appears on all the notepads and
on the two noticeboards.

Each tourist decides independently (demonically) which meeting place to visit
first, after which he strictly alternates his visits between them. At each visit he
looks at the noticeboard there, and if it displays “here” goes inside. If it does
not display “here” it will display a number instead, in which case the tourist
compares that number K with the one on his notepad k and takes one of the
following three actions:

if k > K —The tourist writes “here” on the noticeboard (erasing K ), and goes
inside.

if k = K —The tourist chooses K ′, the next even number larger than K , and
then flips a coin: if it comes up heads, he increases K ′ by a further 1. He
then writes K ′ on the noticeboard and on his notepad (erasing k and K ),
and goes to the other place. For example if K is 8 or 9, first K ′ becomes 10
and then possibly 11.

if k < K —The tourist writes K on his notepad (erasing k), and goes to the
other place.

Rabin’s algorithm terminates with probability 1; and on termination all tourists
will be inside, at the same meeting place.

5.3 The Program

Here we make the description more precise by giving a pGCL program for it (see
Figure 3). Each tourist is represented by an instance of the number on his pad.

The Program Informally. Call the two places “left” and “right”.
Bag lout (rout) is the bag of numbers held by tourists waiting to look at the

left (right) noticeboard; bag lin (rin) is the bag of numbers held by tourists who
have already decided on the left (right) alternative; number L (R) is the number
on the left (right) noticeboard.

Initially there are M (N ) tourists on the left (right), all holding the number
0; no tourist has yet made a decision. Both noticeboards show 0.

Execution is as follows. If some tourists are still undecided (so that lout (rout)
is not yet empty), select one: the number he holds is l (r). If some tourist
has (already) decided on this alternative (so that lin (rin) is not empty), this
tourist does the same; otherwise there are three further possibilities:

If this tourist’s number l (r) is greater than the noticeboard value L (R), then
he decides on this alternative (joining lin (rin)).

If this tourist’s number equals the noticeboard value, he increases the notice-
board value, copies that value and goes to the other alternative (rout (lout)).

If this tourist’s number is less than the noticeboard value, he copies that value
and goes to the other alternative.



Developing and Reasoning About Probabilistic Programs in pGCL 141

lout , rout : = ��0��M , ��0��N ;
lin, rin: = �, �;
L,R: = 0 , 0 ;

do lout �= � →
take l from lout ;
if lin �= � then add l to lin else

l > L → add l to lin
[] l = L → L: = L + 2 1

2
⊕ (L + 2 ); addL to rout

[] l < L → addL to rout
fi

[] rout �= � →
take r from rout ;
if rin �= � then add r to rin else

r > R → add r to rin
[] r = R → R: = R + 2 1

2
⊕ (R + 2 ); addR to lout

[] r < R → addR to lout
fi

od

Fig. 3. Rabin’s choice-coordination algorithm

Notation. We use the following notations in the program and in the subsequent
analysis.

– ��· · ·  — Bag (multiset) brackets.
– � — The empty bag.
– ��n  N — A bag containing N copies of value n.
– b0 + b1 — The bag formed by putting all elements of b0 and b1 together

into one bag.
– take n from b — A program command: choose an element nondeterministi-

cally from non-empty bag b, assign it to n and remove it from b.
– addn to b — Add element n to bag b.
– if B thenProg else · · · fi — Execute Prog if B holds, otherwise treat · · · as

a collection of guarded alternatives in the normal way.
– n — The “conjugate” value n + 1 if n is even, and n − 1 if n is odd.
– ñ — The minimum n min n of n and n.
– #b — The number of elements in bag b.
– x : = m p⊕n — Assign m to x with probability p, and n to x with probability

1−p.

Correctness Criteria. We must show that the program is guaranteed with
probability 1 to terminate, and that on termination it establishes

#lin = M+N ∧ rin = � ∨ lin = � ∧ #rin = M+N



142 A. McIver and C. Morgan

That is, on termination the tourists are either all inside on the left or all inside
on the right.

5.4 Partial Correctness

The arguments for partial correctness involve no probabilistic reasoning; but
there are several invariants.

Three Invariants. The first invariant states that tourists are neither created
nor destroyed:

#lout + #lin + #rout + #rin = M + N (20)

It holds initially, and is trivially maintained.
The second invariant is

lin, lout ≤ R
rin, rout ≤ L (21)

and expresses that a tourist’s number never exceeds the number posted at the
other place. By b ≤ K we mean that no element in the bag b exceeds the integer
K . To show invariance we reason as follows:

– It holds initially.
– Since L,R never decrease, it can be falsified only by adding elements to the

bags.
– Adding elements to lin, rin cannot falsify it, since those elements come from

lout , rout .
– The only commands adding elements to lout , rout are

addL to rout and addR to lout

and they maintain it trivially.

Our final invariant for partial correctness is

max lin > L if lin 	= �

max rin > R if rin 	= �
(22)

expressing that if any tourist has gone inside, then at least one of the tourists
inside must have a number exceeding the number posted outside.

By symmetry we need only consider the left (lin) case. The invariant holds
on initialisation (when lin = �); and inspection of the program shows that it
is trivially established when the first value is added to lin since the command
concerned

l > L → add l to lin

is executed when lin = � to establish lin = ��l  for some l > L.
Since elements never leave lin, it remains non-empty and max lin can only

increase; finally L cannot change when lin is non-empty.



Developing and Reasoning About Probabilistic Programs in pGCL 143

On Termination. . . With these invariants we can show that on termination (if
it occurs) we have lout = rout = �—in fact with invariant (20) we need only

lin = � ∨ rin = �

Assuming for a contradiction that both lin and rin are non-empty, we then have
from invariants (21) and (22) the inequalities

L ≥ max rin > R ≥ max lin > L

which give us the required impossibility.

5.5 Showing Termination: The Variant

For termination we need probabilistic arguments, since it is easy to see that no
standard variant will do: suppose that the first M + N iterations of the loop
take us to the state below, differing from the initial state only in the use of 4’s
rather than 0’s.

lout , rout = ��4  M , ��4  N
lin, rin = �, �

L,R = 4 , 4

All coin flips came up heads, and each tourist had exactly two turns. Since
the program contains no absolute comparisons, we are effectively back where
we started: the program checks only whether various numbers are greater than
others, not what the numbers actually are. Because of that, there can be no
standard variant that decreased on every step we took.

So is not possible to prove termination using a standard variant whose strict
decrease is guaranteed. Instead we appeal to the following rule [107, 193, 181]:

Definition 3 (Probabilistic variant rule). If an integer-valued function of
the program state—a probabilistic variant—can be found that

– is bounded above,
– is bounded below and
– with probability at least p is decreased by the loop body, for some fixed non-

zero p,

then with probability 1 the loop will terminate. (Note that the invariant and guard
of the loop may be used in establishing the three properties.)

The rule differs from the standard one in two respects: the variant must be
bounded above (as well as below); and it is not guaranteed to decrease, but
rather does so only with some probability bounded away from 0. Note that the
probability of decrease may differ from state to state, but the point of “bounded
away from zero”—distinguished from simply “not equal to zero”—is that over



144 A. McIver and C. Morgan

an infinite state space the various probabilities cannot be arbitrarily small. Over
a finite state space there is no distinction.

To find our variant, we note that the algorithm exhibits two kinds of be-
haviour: the shuttling back-and-forth of the tourists, between the two meeting
places (small scale); and the pattern of the two noticeboard numbers L,R as
they increase (large scale). Our variant therefore will be “lexicographic”, one
within another: the small-scale inner variant will deal with the shuttling, and
the large-scale outer variant will deal with L and R.

Inner Variant: Tourists’ Movements. The aim of the inner variant is to
show that the tourists cannot shuttle forever between the sites without eventually
changing one of the noticeboards. Intuition suggests that indeed they cannot,
since every such movement increases the number on some tourist’s notepad, and
from invariant (21) those numbers are bounded above by L max R.

The inner variant is based on that idea. For neatness we make it increas-
ing rather than decreasing, which is of no consequence since we have taken
care to ensure that it is bounded above and below by fixed values, independent
of L and R—we could always subtract it from the upper bound to convert it
back to decreasing. The independence from L,R is important, given our variant
rule, because L and R can themselves increase without bound. We define V0 to
be

#��x : lout+rout | x ≥ L  
+ #��x : lout+rout | x ≥ R  
+ 3 × #(lin+rin)

(23)

This is bounded above by 3 (M+N ), because

(23) ≤ 2#(lout+rout) + 3#(lin+rin) ≤ 3#(lout+rout+lin+rin) = 3 (M+N )

where the last equality is supplied by the invariant (20). Since the outer variant
will deal with changes to L and R, in checking the increase of V0 we can restrict
our attention to those parts of the loop body that leave L,R fixed—and we show
in that case that the variant must increase on every step:

– If lin 	= � then an element is removed from lout (V0 decreases by at most 2)
and added to lin (but then V0 increases by 3); the same reasoning applies
when l > L.

– If l = L then L will change; so we need not consider that. (It will be dealt
with by the outer variant.)

– If l < L then V0 increases by at least 1, since l is replaced by L in
lout+rout—and (before) l 	≥ L but (after) L ≥ L.

The reasoning for rout , on the right, is symmetric.

Outer Variant: Changes to L and R. For the outer variant we need further
invariants; the first is

L̃ − R̃ ∈ {−2 , 0 , 2} (24)



Developing and Reasoning About Probabilistic Programs in pGCL 145

stating that the notice-board values can never be “too far apart”. It holds ini-
tially; and, from invariant (21), the command

L: = L + 2 1
2
⊕ (L + 2 )

is executed only when L ≤ R, thus only when L̃ ≤ R̃, and has the effect

L̃: = L̃ + 2

Thus we can classify L,R into three sets of states:

– L̃ = R̃ − 2 ∨ L̃ = R̃ + 2—write L 	=̃ R for those states.
– L = R (equivalently L = R)—write L =̃ R.
– L = R.

Then we note that the underlying iteration of the loop induces state transitions
as follows. (We write 〈L = R〉 for the set of states satisfying L = R, and so on;
nondeterministic choice is indicated by �; the transitions are indicated by →.)

〈L 	=̃ R〉 → 〈L 	=̃ R〉 � 〈L = R〉 1
2
⊕ 〈L =̃ R〉

〈L = R〉 → 〈L = R〉 � 〈L 	=̃ R〉
〈L =̃ R〉 → 〈L =̃ R〉

To explain the absence of a transition leaving states 〈L =̃ R〉 we need yet
another invariant

L 	∈ rout ∧ R 	∈ lout (25)

It holds initially, and cannot be falsified by the command addL to rout , because
L 	= L. That leaves the command L: = L + 2 1

2
⊕ (L + 2 ); but in that case,

from (21), we have

rout ≤ L < L + 2 , (L + 2 ) = (L + 2 ), (L + 2 )

so that in neither case does the command set L to the conjugate of a value
already in rout .

Thus with (25) we see that execution of the only alternatives that change L,R
cannot occur if L =̃ R, since, for example, selection of the guard l = L implies
L ∈ lout , impossible if L =̃ R and R 	∈ lout .

For the outer variant we therefore define V1 to be

2 , if L = R
1 , if L 	=̃ R
0 , if L =̃ R

(26)

and note that whenever L or R changes, the quantity V1 decreases with proba-
bility at least 1/2 .



146 A. McIver and C. Morgan

The Two Variants Together. If we put the two variants together lexicograph-
ically, with the outer variant V1 being the more significant, then the composite
satisfies all the conditions required by the probabilistic variant rule. In particular
it has probability at least 1/2 of strict decrease on every iteration of the loop.
Remember that the inner variant increases rather than decreases—we subtract
it from 3 (M+N ) to make it decrease.

Thus the algorithm terminates with probability 1—and we are done.

Exercise 3. Argue informally that the loop

c := H p⊕ T ;
do c 	= H →

c: = H p⊕ T ;
od

terminates with probability one provided p > 0 . Then prove it formally by
finding a variant function and using the Probabilistic variant rule.

Exercise 4. Show that the loop

c, d : = H ,H ;
do c = d →

c: = H p⊕ T ;
d : = H p⊕ T

od

establishes c = H on termination with probability 1/2 for any p, provided
0 < p < 1 . (Note that the two coins have the same bias, although it is almost
arbitrary: think of it as the same coin flipped repeatedly, where in the loop
guard we are comparing the last two results.) Hint: Consider the invariant (a
real-valued function) defined by the matrix(1

2 1
0 1

2

)
where c selects the row and d selects the column. Do not forget the variant.

Exercise 5. Let H be T and T be H , so that d : = d simply turns d over. Show
that the loop

c, d : = H ,H ;
do c = H →

c: = H 1/2⊕ T ;
d : = d

od

establishes d = H on termination with probability exactly 1/3 . (This is a good
way of dealing with the “one ice-cream, three sons” problem.) Hint: Consider
the invariant(1

3
2
3

1 0

)



Developing and Reasoning About Probabilistic Programs in pGCL 147

6 Second Case Study: Approximated Probabilities,
Abstraction and Refinement

In this case study, we give a small example of a probabilistic program developed
in two stages, linked by abstraction and refinement, and in which the issue of
“approximate” probabilities is highlighted. This section is based on an example
in Hurd’s thesis, where, however, the probabilities are exact [125]; we treat the
exact case elsewhere [196].

For practical purposes we suppose a source of randomness is available as a
stream of unbiased random bits; however many applications’ correctness relies
on more elaborate distributions. Those distributions can be generated by using
various sampling methods; here (Figure 4) we consider a small program which
uses (nearly) unbiased bits to generate a (nearly) uniform choice over a positive
number N of alternatives. That is, we imagine we have access to a stream of
bits, each equally likely to be 0 or 1, but we need to choose uniformly between
N alternatives (rather than just 2, which the bits could do directly). We want
to write a program to carry this out.

{ [0≤K<N ]/Nε }
var k : N •

k : = N ;
do k ≥ N →

var n: N;
k ,n: = 0 , N−1 ;
do n �= 0 →

k : = 2k 1
2 −ε⊕ 1

2 −ε k : = 2k + 1 ;
n: = n div 2

od
od

{ [k=K ] }

The inner loop selects k almost uniformly such that 0 ≤ k < $N , where $N is the
least power-of-two no less than N . The outer loop accepts that choice only if k < N ;
otherwise the inner loop is repeated. The effect overall is to select k almost uniformly
so that 0 ≤ k < N .

The pre- and post-expectation annotations express that for any K the probability
of achieving k = K on termination is at least 1/Nε if 0 ≤ K < N (and at least zero
otherwise), where Nε ≥ N . The “excess” Nε − N quantifies the inaccuracy, and should
tend to zero as ε does.

Fig. 4. Almost-uniform selection algorithm

6.1 Approximation Via Nondeterminism

Suppose we have access to a stream of bits b each of which is independently
unbiased but only to within some tolerance ε, by which we mean that the prob-
ability of a 1 (or 0) is only within ε of 1/2 on each occasion. In pGCL we would
express this by using the statement



148 A. McIver and C. Morgan

b: = 0 1
2 −ε⊕ 1

2 −ε b: = 1

That is, we are using this statement to model what probably is a piece of hard-
ware, and the ε in the probabilistic-choice operator represents how accurate we
have observed this hardware to be: if it were completely accurate (ε = 0 ) then
the statement would be just a “coin flip” of b.

In fact because we will always be “shifting left” our random bits into a bit-
string represented by k , we will use the statement

k : = 2k 1
2 −ε⊕ 1

2 −ε k : = 2k + 1 (27)

at the point where we access the random bit-stream. We recall that, for p+q ≤ 1
in general, by This p⊕q That we mean the nondeterministic combination

This p⊕ That � That q⊕ This (28)

of the two programs that (on the left) executes This with probability p (and
That with probability 1−p), and (on the right) executes That with probability
q (and This with probability 1−q).

The operational semantics of pGCL identifies Program (28) with one that
chooses This (rather than That) with any probability r satisfying p ≤ r ≤ 1−q,
because the space of possible program behaviours is “convex-closed”
[131, 197, 181], reflecting that nondeterministic choices can be resolved to ar-
bitrary probabilistic ones. Thus the program fragment (27) “flips the coin” with
any probability r satisfying 1/2 −ε ≤ r ≤ 1/2 +ε, which captures our intended
meaning above of “unbiased only to within some tolerance ε”. The value of r
can vary between separate executions of the fragment, and we recall that it is
adversarial in the sense that its choice is treated as worst-case by our program
logic, in effect determined by a “demon” whose aim is to make our program as
unlikely as possible to produce a uniform distribution.

What is the aim of the program? It is to set k to some value K in the
range [0 ,N ), and the effect of the introduced nondeterminism will be to make
it less likely to do that than the 1/N we would expect of an exactly uniform
distribution.

6.2 Overall Analysis Strategy

We will give a conservative analysis of the program, which is safe but slightly
pessimistic, on the grounds that it is simpler than an exact analysis would be,
and that for small biases the assurance it gives us is good enough. Informally
our reasoning will be as follows.

The inner loop chooses a number k in the range [0 , $N ), where $N is the
smallest power-of-two no less than N ; it does that by assembling a 	N -bit number
via a series of calls to the random bit generator, where 	N is the minimum
number of bits sufficient to represent any number in the given range.



Developing and Reasoning About Probabilistic Programs in pGCL 149

Because the bit generator is biased, however, the minimum guaranteed prob-
ability of producing any particular K with 0 ≤ K < $N is only 1/δ�N (instead
of 1/2 �N , that is 1/$N ), where for convenience we set 1/δ : = 1/2 − ε. Thus—
informally—the maximum guaranteed probability x of producing K in the given
range satisfies

x ≥ 1/δ�N + ($N − N )x/δ�N (29)

where the second term is a lower bound on the probability that the inner loop
chooses a k that is “too big”, that is with k ≥ N , thus forcing a subsequent
iteration. It is only a lower bound because the actual probability of achieving
N ≤ k < $N is usually higher, given the way in which k is constructed.

For example, note that although the minimum guaranteed probability of set-
ting k to $N−1 is 1/δ�N , and similarly to $N−2 , the probability of achieving
either, that is $N−2 ≤ k < $N , is in fact 1/δ�N−1 because in that case only the
first 	N−1 bits of k are constrained. That is more than the sum 1/δ�N + 1/δ�N

given by considering the two values separately (unless there is no bias, that is
unless δ = 2 exactly).

This is the essence of our abstraction, that we ignore the bit-by-bit structure
of k in order to get a good-enough result by simpler means. Solving (29) gives

x ≥ 1/(N + (δ�N − $N ))

which identifies the quantity δ�N − $N as a sort of “excess” E which lowers the
probability from the uniform 1/N to some 1/Nε where Nε: = N + E .

6.3 Proofs for Inner Loop

We analyse the program in two levels, first the inner loop and then the outer
loop.

As well as the definitions above, we let 	n be the number of bits used in
the binary representation of n, and let $n be the smallest power-of-two strictly
exceeding n, so that 2 �n = $n (which makes it clear that 	0 = 0 ). These “strict”
definitions have slightly better algebraic properties than the “non-strict” ones
above, and simplify the calculation. In fact $N = $(N +1 ) of course, so we are
just avoiding a mess of brackets and +1 ’s.

For the inner loop, where the selection range is $N , a nice power of two,
it’s a reasonable guess that the effect of the bias introduced by the nonde-
terminism will be to reduce any particular K ’s chances from 1/$N , that is
1/2 �N , down to 1/δ�N—and we note (reassuringly) that when ε = 0 those two
probabilities are equal. That suggests the overall precondition for our approx-
imating inner loop, and similar considerations suggest an invariant for it: the
resulting annotated loop is shown in Figure 5. In the following, we justify the
annotations.



150 A. McIver and C. Morgan

On Initialisation. This is straightforward; we reason[
k($n) ≤ K < (k+1 )($n)

]
/δ�n invariant

· ≡ applying wp.(k ,n: = 0 ,N−1 )[
0 ($(N−1 )) ≤ K < (0+1 )($(N−1 ))

]
/δ�(N−1 )

≡ [0 ≤ K < $N ] /δ�N arithmetic gives pre-expectation

While Iterating. We reason backwards from the end of the loop body towards
its beginning. The novelty here is the demonic nondeterminism in 1

δ
⊕ 1

δ
which

we interpret as at (28), leading to the use of min as indicated by the semantics
given at in (7).[

k($n) ≤ K < (k+1 )($n)
]
/δ�n invariant

· ≡ applying wp.(n: = ndiv2 )[
k($(ndiv2 )) ≤ K < (k+1 )($(ndiv2 ))

]
/δ�(ndiv2 )

· ≡ applying wp.(k : = 2k 1
δ
⊕ 1

δ
2k + 1 )

1/δ ∗

⎡⎣ (2k)($(ndiv2 ))
≤K
<((2k)+1 )($(ndiv2 ))

⎤⎦ /δ�(ndiv2 )

+ (1−1/δ) ∗

⎡⎣ (2k+1 )($(ndiv2 ))
≤K
<((2k+1 )+1 )($(ndiv2 ))

⎤⎦ /δ�(ndiv2 )

min

(1−1/δ) ∗

⎡⎣ (2k)($(ndiv2 ))
≤K
<((2k)+1 )($(ndiv2 ))

⎤⎦ /δ�(ndiv2 )

+ 1/δ ∗

⎡⎣ (2k+1 )($(ndiv2 ))
≤K
<((2k+1 )+1 )($(ndiv2 ))

⎤⎦ /δ�(ndiv2 )

� arithmetic; 1/δ ≤ 1−1/δ⎡⎣ (2k)($(ndiv2 ))
≤K
<(2k+1 )($(ndiv2 ))

⎤⎦ /δ�(ndiv2 )+1

+

⎡⎣ (2k+1 )($(ndiv2 ))
≤K
<(2 (k+1 ))($(ndiv2 ))

⎤⎦ /δ�(ndiv2 )+1

� [n 	= 0 ] ∗
(
[
k($n) ≤ K < (2k+1 )($(ndiv2 ))

]
/δ�n

+
[
(2k+1 )($(ndiv2 )) ≤ K < (k+1 )($n)

]
/δ�n )

2$(ndiv2 ) = $n; �(ndiv2 )+1 = �n



Developing and Reasoning About Probabilistic Programs in pGCL 151

{ [0≤K<$N ]/δ�N }
k ,n: = 0 , N−1 ;
{ [k($n)≤K<(k+1)($n)]/δ�n }
do n �= 0 →

{ [k($n)≤K<(k+1)($n)]/δ�n }
k : = 2k 1

δ
⊕ 1

δ
2k + 1 ;

{ [k$(ndiv2)≤K<(k+1)$(ndiv2)]/δ�(ndiv2) }
n: = n div 2
{ [k($n)≤K<(k+1)($n)]/δ�n }

od
{ [k=K ] }

Fig. 5. Approximating inner loop with annotations

� merging inequalities gives guard and invariant

[n 	= 0 ] ∗
[
k($n) ≤ K < (k+1 )($n)

]
/δ�n

On Termination. This is immediate; we have

[n = 0 ] ∗
[
k($n) ≤ K < (k+1 )($n)

]
/δ�n negated guard and invariant

�
[
k($0 ) ≤ K < (k+1 )($0 )

]
/δ�0 arithmetic

� [k ≤ K < (k+1 )] $0 = 1

� [k = K ] k ,K ∈ N gives post-expectation

6.4 The Algebra of Abstractions

We now use what we have proved about the inner loop to deduce a property for
use in the outer loop. As mentioned in Section 6.2, we are taking a conservative
view (though sound) to simplify the calculations. We write PostEK

k for PostE
with variable k replaced by constant K , and use sub-linearity from (11) to reason

wp.Inner.PostE
� arithmetic, wp.Inner monotonic

wp.Inner.(
∑

0≤K<$N PostEK
k ∗ [k = K ])

� sublinearity (11) used $N−1times

(
∑

0≤K<$N PostEK
k ∗ wp.Inner. [k = K ] )

� (
∑

0≤K<$N PostEK
k ∗ [0 ≤ K < $N ] /δ�N ) Section 6.3

� (
∑

0≤K<$N PostEK
k ) /δ�N within summation [0 ≤ K < $N ] = 1

� (
∑

0≤k<$N PostE ) /δ�N change bound variable K to k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(30)



152 A. McIver and C. Morgan

If we now took (30) as the wp-definition of Inner, rather than merely a property of
it, we would effectively have an abstraction (i.e. an anti-refinement) of the actual
inner loop. As usual for refinement, any conclusion we draw about Inner (such
as its contribution to the correctness of the outer loop, argued below) are valid
for the actual inner loop as well.

6.5 Proofs for Outer Loop

The complete annotations for our outer loop are given in Figure 6. Since it has
nonzero probability N /δ�N of termination on each iteration, its overall termina-
tion probability is one. We leave Nε undetermined for now: at the appropriate
moment in the proof we will discover what it must be.

{ [0≤K<N ]/Nε }
k : = N ;
{ [k=K ] �k<N� [0≤K<N ]/Nε }
do k ≥ N →

{ [0≤K<N ]/Nε }
Inner
{ [k=K ] �k<N� [0≤K<N ]/Nε }

od
{ [k=K ] }

Fig. 6. Outer loop, with inner loop abstracted

The on-initialisation and on-termination arguments are trivial. The while-
iterating argument is as follows:

[k = K ] � k < N � [0 ≤ K < N ] /Nε invariant

· ≡ (
∑

0≤k<N [k = K ]
+
∑

N≤k<$N [0 ≤ K < N ] /Nε

) /δ�N

applying wp.Inner from (30), and $N ≥ N

≡ ( [0 ≤ K < N ]
+($N − N ) [0 ≤ K < N ] /Nε

) /δ�N

arithmetic

� [0 ≤ K < N ] /Nε see below

� [k = K ] � k < N � [0 ≤ K < N ] /Nε assuming guard k ≥ N

The deferred justification in the second-last step is the information we need to
determine Nε: it is sufficient to have

(1 + ($N − N )/Nε)/δ�N ≥ 1/Nε

that is Nε ≥ N + (δ�N − $N ) = N + E , say.



Developing and Reasoning About Probabilistic Programs in pGCL 153

6.6 Discussion

The “excess” E can be regarded as a price we must pay for the bias in our
random-bit source: because δ ≥ 2 and so δ�N ≥ $N , it is never negative; and,
as expected, if the bias ε is zero then δ is 2 exactly, making the excess E zero
as well.

Another special case is when N is an exact power of two, whence N = $N
and so Nε ≥ δ�N , again as one would expect.

As an example of the general case, we suppose our bit-source is up to 1%
biased either way, and we are using it to make uniform selections from 10 alter-
natives; then we would have

ε = .01
and N = 10 ,

hence δ = 1/0 .49 ≈ 2 .04 ,
E ≈ 2 .04 4 − 16 ≈ 1 .35

and Nε ≥ ∼11 .35

so that our conservative estimate gives each of our ten choices a guaranteed prob-
ability of just under one-in-eleven of being chosen. A more exact but informal
analysis in our earlier style would look at the actual bit patterns as follows. The
probability of setting k : = K within the inner loop is at least 1/δ4 ; otherwise
there is a guaranteed probability that k will be set “high” so that the inner loop
will be tried again, as in this table:

inner-loop outcomes where k is “high”

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

10− 1010
11− 1011

}
probability 1/δ3

12− 1011
13− 1100
14− 1101
15− 1111

⎫⎪⎪⎬⎪⎪⎭ probability 1/δ2

This leads to the inequality

x ≥ 1/δ4 + (1/δ2 + 1/δ3 )x

giving Nε ≥ ∼11 .14—which is not much improvement for the extra trouble. In
general, exact calculations for the high-outcome probabilities would be unpleas-
ant.

7 Conclusion

It seems that a little generalisation can go a long way: Kozen’s use of expectations
and the definition of p⊕ as a weighted average [140] is all that is needed for a
simple probabilistic semantics, albeit one lacking abstraction. Then He’s sets of
distributions [131] and our min for demonic choice together with the fundamental



154 A. McIver and C. Morgan

property of sublinearity [197] take us the rest of the way, allowing abstraction
and refinement to resume their central role—this time in a probabilistic context.
And as Sections 4 and 5 illustrate, many of the standard reasoning principles
carry over almost unchanged.

Being able to reason formally about probabilistic programs does not of course
remove per se the complexity of the mathematics on which they rely: we do not
now expect to find astonishingly simple correctness proofs for all the large collec-
tion of randomized algorithms that have been developed over the decades [201].
Our contribution—at this stage—is to make it possible in principle to locate and
determine reliably what are the probabilistic/mathematical facts the construc-
tion of a randomized algorithm needs to exploit. . . which is of course just what
standard predicate transformers do for conventional algorithms.

In practice however, one is interested not only in certain and correct termina-
tion of random algorithms, but in how long they take to do so. Such algorithms’
performance cannot be put within bounds in the normal way: instead, one speaks
of the expected time to termination, how long “on average” should one expect the
algorithm to take. When the algorithm is also nondeterministic (as in Rabin’s,
where no assumptions are made about the order or frequency of the tourists’
travels), the estimate would have to be “worst-case” expected.

And there is the larger issue of probabilistic modules, and the associated
concern of probabilistic data refinement. That is a challenging problem, with
lots of surprises: using our new tools we have already seen that probabilistic
modules sometimes do not mean what they seem [183], and that equivalence or
refinement between them depends subtly on the power of demonic choice and
its interaction with probability.

Other areas in which probabilistic semantics is relevant include concurrent-
and relational models. For the former there is an extremely large literature on
probabilistic labelled transition systems in the CCS style [148, 248, for exam-
ple], with (as usual) an emphasis on bisimulation; the denotational approach
favoured by CSP is represented by a smaller but no less elegant body of re-
search [234, 172, 198, 190]. A connection between the latter and our sequential
approach can be made via action systems [195].

Probabilistic semantics has attractions for relational programming as well,
where programs are represented directly as relations between initial and final
states (or as predicates over them) as in the UTP (see Chapter 6). An attractive
generalisation is to replace the Booleans by real values, so that the “extended
relation” produces directly the probability of making a transition from a given
initial to a given final state; a challenge is to do this without losing the ability
to describe demonic nondeterminism as well.

Exercise 6. Let n be a natural number. The loop

c,n: = H , 0 ;
do c = H →

c: = H 1/2⊕ T ;
n: = n+1

od



Developing and Reasoning About Probabilistic Programs in pGCL 155

terminates with probability one, and can produce any positive integer as the
final value of n. Thus it is not image-finite, a condition normally considered
to be a “well-behavedness” criterion for sequential programs, and guaranteeing
their continuity.

But what do we mean by continuity in this context? Is the above program
continuous after all? If it is, can you give an example of a pGCL program that
is not?

Exercise 7. A more immediate approach to probabilistic semantics might be to
retain Boolean logic while extending the wp modality to include an explicit
lower-bound probability: thus

wpp .S.P (31)

would describe those initial states from which termination of S in a final state
satisfying P was guaranteed with probability at least p. (Free variables in p, if
present, would be resolved in the initial state.) Thus we could write for example
wp 1

2
.(c: = H 1/2⊕T ).(c = H ) to describe those states from which c: = H 1/2⊕T

is guaranteed to establish c = H with probability at least 1/2 (which is in fact
all states).

1. Write the precondition wpp .S .P in our logic of expectations, thus showing
that the latter is at least as expressive.

2. By considering the two programs

x : = A � (x : = B 1/2⊕ x : = C )
and (x : = A � x : = C ) 1/2⊕ (x : = B � x : = C ) ,

show that in fact (31) is not expressive enough.



Real-Time and Fault-Tolerant Systems

Zhiming Liu1 and Mathai Joseph2

1 International Institute for Software Technology
United Nations University

Macao SAR, China
2 Tata Research Development and Design Centre

Pune, India

In this chapter, we show that functional and many non-functional properties
of a real-time system, such as schedulability, or proving that its implementa-
tion meets its timing constraints, can be verified in a similar way. Likewise,
the fault-tolerance of a system can be proved using the same techniques. We
use a single notation and model and take a unified view of the functional and
non-functional properties of programs. A simple transformational method is
used to combine these properties [167, 168]. We show how the theory of con-
currency, fault-tolerance, real-time and scheduling can be built on the theories
of sequential programming, such as those of Dijkstra’s calculus of weakest pre-
conditions [81], Hoare Logic [114], Morgan’s refinement calculus [192] and Hoare
and He’s UTP [117]. These theories are discussed and used in Chapter 4 and
Chapter 6.

Section 1 gives an informal account of real-time systems. Section 2.1 presents
a historic background on formal techniques in real-time and fault-tolerance. Sec-
tion 2.2 gives an outline of the approach used in this chapter. Section 3 intro-
duces the computational model and the Temporal Logic of Actions [144] used
for program specification, verification and refinement. In Section 4, we show
how physical faults are specified, how fault-tolerance is achieved by transform-
ing a non-fault-tolerant program, and how fault-tolerance is verified and refined.
Section 5 extends the method given in Section 3 for the specification and veri-
fication of real-time programs. In Section 6 we combine the techniques used for
fault-tolerance and real-time. Section 7 shows how real-time scheduling policies
can be specified and combined with the program specification for verification of
schedulability of a program. Proof rules for feasibility and fault-tolerant feasibil-
ity are also developed and it is shown how methods and results from scheduling
theory can be formally verified and used. The notation, model and techniques
are illustrated using a simple processor-memory interface program.

1 Real-Time Systems: An Informal Account

A real-time system must meet functional and timing properties when imple-
mented on a chosen hardware platform. Some timing properties can be derived
from the specification of the system and others from the design choices made in
the implementation. Yet other properties can be determined only by examining
the timing characteristics of the implementation.

, LNCS 3167, pp. 156–219, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004



Real-Time and Fault-Tolerant Systems 157

Real-time systems often need to meet critical safety requirements under a
variety of operating conditions. One factor that then needs attention is the ability
of the system to overcome the effects of faults that may occur in the system.
Such faults are usually defined in terms of a fault-model. The degree of fault-
tolerance of the system must be established in terms of the fault-model and the
effect of faults upon the execution of the system.

Consider a car moving along a road that passes through some hills. Assume
that there is an external observer who is recording the movement of the car
using a pair of binoculars and a stopwatch. With a fast moving car, the observer
must move the binoculars at sufficient speed to keep the car within sight. If the
binoculars are moved too fast, the observer will view an area before the car has
reached there; too slow, and the car will be out of sight because it is ahead of
the viewed area. If the car changes speed or direction, the observer must adjust
the movement of the binoculars to keep the car in view; if the car disappears
behind a hill, the observer must use the car’s recorded time, speed and direction
to predict when and where it will re-emerge.

Suppose that the observer replaces the binoculars by an electronic camera
which requires n seconds to process each frame and determine the position of
the car. When the car is behind a hill, the observer must predict the position
of the car and point the camera so that it keeps the car in the frame even
though it is seen only at intervals of n seconds. To do this, the observer must
model the movement of the car and, based on its past behaviour, predict its
future movement. The observer may not have an explicit “model” of the car and
may not even be conscious of doing the modelling; nevertheless, the accuracy
of the prediction will depend on how faithfully the observer models the actual
movement of the car.

Finally, assume that the car has no driver and is controlled by commands
radioed by the observer. Being a physical system, the car will have some inertia
and a reaction time, and the observer must use an even more precise model if
the car is to be controlled successfully. Using information obtained every n sec-
onds, the observer must send commands to adjust throttle settings and brake
positions, and initiate changes of gear when needed. The difference between a
driver in the car and the external observer, or remote controller, is that the
driver has a continuous view of the terrain in front of the car and can ad-
just the controls continuously during its movement. The remote controller gets
snapshots of the car every n seconds and must use these to plan changes of
control.

1.1 Real-Time Computing

A real-time computer controlling a physical device or process has functions very
similar to those of the observer controlling the car. Typically, sensors will provide
readings at periodic intervals and the computer must respond by sending sig-
nals to actuators. There may be unexpected or irregular events and these must
also receive a response. In all cases, there will be a time-bound within which the



158 Z. Liu and M. Joseph

response should be delivered. The ability of the computer to meet these demands
depends on its capacity to perform the necessary computations in the given time.

If a number of events occur close together, the computer will need to schedule
the computations so that each response is provided within the required time-
bounds. It may be that, even so, the system is unable to meet all the possible
demands and in this case we say that the system lacks sufficient resources (since
a system with unlimited resources and capable of processing at infinite speed
could satisfy any such timing constraint). Failure to meet the timing constraint
for a response can have different consequences: in some cases, there may be no
effect at all; in other cases, the effects may be minor and correctable; in yet
other cases, the results may be catastrophic. Looking at the behaviour required
of the observer allows us to define some of the properties needed for successful
real-time control.

A real-time program must

– interact with an environment which has time-varying properties,
– exhibit predictable time-dependent behaviour, and
– execute on a system with limited resources.

Let us compare this description with that of the observer and the car. The
movement of the car through the terrain certainly has time-varying proper-
ties (as must any movement). The observer must control this movement us-
ing information gathered by the electronic camera; if the car is to be steered
safely through the terrain, responses must be sent to the car in time to alter
the setting of its controls correctly. During normal operation, the observer can
compute the position of the car and send control signals to the car at regular
intervals.

If the terrain contains hazardous conditions, such as a flooded road or icy
patches, the car may behave unexpectedly, for instance, skidding across the road
in an arbitrary direction. If the observer is required to control the car under all
conditions, it must be possible to react in time to such unexpected occurrences.
When this is not possible, we can conclude that the real-time demands placed
on the observer, under some conditions, may make it impossible to react in time
to control the car safely. In order for a real-time system to manifest predictable
time-dependent behaviour it is thus necessary for the environment to make pre-
dictable demands. With a human observer, the ability to react in time can be
the result of skill, training, experience or just luck. How do we assess the real-
time demands placed on a computer system and determine whether they will
be met? If there is just one task and a single processor computer, calculating
the real-time processing load may not be very difficult. As the number of tasks
increases, it becomes more difficult to make precise predictions; if there is more
than one processor, it is once again more difficult to obtain a definite prediction.
There may be a number of factors that make it difficult to predict the timing of
responses [39].

– A task may take different times under different conditions. For example,
predicting the speed of a vehicle when it is moving on level ground can



Real-Time and Fault-Tolerant Systems 159

be expected to take less time than if the terrain has a rough and irregular
surface. If the system has many such tasks, the total load on the system at
any time can be very difficult to calculate accurately.

– Tasks may have dependencies: Task A may need information from Task B
before it can complete its calculation, and the time for completion of Task
B may itself be variable. Under these conditions, it is only possible to set
minimum and maximum bounds within which Task A will finish.

– With large and variable processing loads, it may be necessary to have more
than one processor in the system. If tasks have dependencies, calculating task
completion times on a multi-processor system is inherently more difficult
than on a single processor system.

– The nature of the application may require distributed computing, with nodes
connected by communication lines. The problem of finding completion times
is then even more difficult, as communication between tasks can take varying
times.

Real-tim e
Applic ation

Requirem ents

Program
Spec ific ation

Program
Design

Program
Im plem entation

Hardw are Sys tem

Applic ation
dependent

Mathehem atic al
definition

Form al or
sem i-form al
rules

Program m ing
Language

Fig. 1. Real-Time System Development

Requirements, Specification and Implementation. The demands placed
on a real-time system arise from the needs of the application and are often
called the requirements. Deciding on the precise requirements is a skilled task
and can be carried out only with very good knowledge and experience of the
application. Failures of large systems are often due to errors in defining the re-
quirements. For a safety related real-time system, the operational requirements
must then go through a hazard and risk analysis to determine the safety require-
ments. Requirements are often divided into two classes: functional requirements,
which define the operations of the system and their effects and non-functional



160 Z. Liu and M. Joseph

requirements, such as timing properties. A system which produces a correctly
calculated response but fails to meet its timing-bounds can have as dangerous
an effect as one which produces a spurious result on time. So, for a real-time sys-
tem, the functional and non-functional requirements must be precisely defined
and together used to construct the specification of the system.

A specification is a mathematical statement of the properties to be exhibited
by a system. A specification should be abstract so that

– it can be checked for conformity against the requirement, and
– its properties can be examined independently of the way in which it will be

implemented as a program executing on a particular system.

This means that a specification should not enforce any decisions about the struc-
ture of the software, the programming language to be used or the kind of system
on which the program is to be executed: these are properly implementation
decisions. A specification is transformed into an application by taking design
decisions, using formal or semi-formal rules, and converted into a program in
some language (see Figure 1). We shall consider how a real-time system can be
specified and implemented to meet the requirements. A notation will be used for
the specification and it will be shown how the properties of the implementation
can be checked. It will be noticed as the specifications unfold that there are
many hidden complexities in even apparently simple real-time problems. This is
why mathematical description and analysis have an important role to play, as
they help to deal with this complexity. For both classical scheduling analysis and
formal specification and verification in different notations, we refer the reader
to [39].

1.2 An Example Real-Time System: Mine Pump

We illustrate the problem of real-time by a well-known case study [39]. Water
percolating into a mine is collected in a sump to be pumped out of the mine (see
Figure 2). The water level sensors D and E detect when water is above a high
and a low level respectively. A pump controller switches the pump on when the
water reaches the high water level and off when it goes below the low water level.
If, due to a failure of the pump, the water cannot be pumped out, the mine must
be evacuated within one hour.

The mine has other sensors (A,B ,C ) to monitor the carbon
monoxide, methane and airflow levels. An alarm must be raised and the op-
erator informed within one second of any of these levels becoming critical so
that the mine can be evacuated within one hour. To avoid the risk of explosion,
the pump must be operated only when the methane level is below a critical level.

Human operators can also control the operation of the pump, but within
limits. An operator can switch the pump on or off if the water is between the
low and high water levels. A special operator, the supervisor, can switch the
pump on or off without this restriction. In all cases, the methane level must be
below its critical level if the pump is to be operated.

Readings from all sensors, and a record of the operation of the pump, must
be logged for later analysis.



Real-Time and Fault-Tolerant Systems 161

Pum p

Pum p Controller

E

D

 C
B

A

Log

Operator

Sum p

A  Carbon Monoxide sensor
B  Methane sensor
C  Airflow  sensor
D  High w ater sensor
E  Low  w ater sensor

Fig. 2. Mine pump and control system (originally from Burns and Lister, 1991)

Safety Requirements. From the informal description of the mine pump and
its operations we obtain the following safety requirements:

1. The pump must not be operated if the methane level is critical.
2. The mine must be evacuated within one hour of the pump failing.
3. Alarms must be raised if the methane level, the carbon monoxide level or

the air-flow level is critical, in order for the be evacuated in time (say within
one hour).

Operational Requirement. The mine is normally operated for three shifts a
day, and the objective is for no more than one shift in 1000 to be lost due to
high water levels.

Problem. Write and verify a specification for the mine pump controller under
which it can be shown that the mine is operated whenever possible without
violating the safety requirements.

Comments. The specification is to be the conjunction of two conditions: the
mine must be operated when possible, and the safety requirements must not
be violated. If the specification read ”The mine must not be operated when
the safety requirements are violated”, then it could be trivially satisfied by not
operating the mine at all! The specification must obviate this easy solution by
requiring the mine to be operated when it is safely possible.

Note that the situation may not always be clearly defined and there may be
times when it is difficult to determine whether operating the mine would violate
the safety requirements. For example, the pump may fail when the water is at



162 Z. Liu and M. Joseph

any level; does the time of one hour for the evacuation of the mine apply to
all possible water levels? More crucially, how is pump failure detected? Is pump
failure always complete or can a pump fail partially and be able to displace only
part of its normal output?

It is also important to consider under what conditions such a specification
will be valid. If the methane or carbon monoxide levels can rise at an arbitrarily
fast rate, there may not be time to evacuate the mine, or to switch off the pump.
Unless there are bounds on the rate of change of different conditions, it will not
be possible for the mine to be operated and meet the safety requirements. Sensors
operate by sampling at periodic intervals and the pump will take some time to
start and to stop. So the rate of change of a level must be small enough for
conditions to not become dangerous during the reaction time of the equipment.

The control system obtains information about the level of water from the
Highwater and LowWater sensors and of methane from the Methane sensor.
Detailed data is needed about the rate at which water can enter the mine, and the
frequency and duration of methane leaks; the correctness of the control software
is predicated on the accuracy of this information. Can it also be assumed that
the sensors always work correctly?

The description explains conditions under which the mine must be evacuated
but does not indicate how often this may occur or how normal operation is
resumed after an evacuation. For example, can a mine be evacuated more than
once in a shift? After an evacuation, is the shift considered to be lost? If the
mine is evacuated, it would be normal for a safety procedure to come into effect
and for automatic and manual clearance to be needed before operation of the
mine can resume. This information will make it possible to decide on how and
when an alarm is reset once it has been raised.

1.3 Developing a Specification

We shall start by describing the requirements in terms of some properties, using
a simple mathematical notation. This is a first step towards making a formal
specification and we shall see various different, more complete, specifications of
the problem in later chapters. Properties will be defined with simple predicate
calculus expressions using the logical operators ∧ (and), ∨ (or), ⇒ (implies)
and ⇔ (iff), and the universal quantifier ∀ (for all). The usual mathematical
relational operators will be used and functions, constants and variables will have
types. We use

F : T1 → T2

for a function F from type T1 (the domain of the function) to type T2 (the
range of the function) and a variable V of type T will be defined as V : T . An
interval from C1 to C2 will be represented as [C1 ,C2 ] if the interval is closed and
includes both C1 and C2 , as (C1 ,C2 ] if the interval is half-open and includes
C2 and not C1 and as [C1 ,C2 ) if the interval is half-open and includes C1 and
not C2 .



Real-Time and Fault-Tolerant Systems 163

Assume that time is measured in seconds and recorded as a value in the set
Time and the depth of the water is measured in metres and is a value in the set
Depth; Time and Depth are the set of real numbers.

S1: Water level. The depth of the water in the sump depends on the rate at
which water enters and leaves the sump and this will change over time. Let us
define the water level Water at any time to be a function from Time to Depth:

Water : Time → Depth

Let Flow be the rate of change of the depth of water measured in metres per
second and be represented by a real number; WaterIn and WaterOut are the
rates at which water enters and leaves the sump and, since these rates can change,
they are functions from Time to Flow :

WaterIn, WaterOut : Time → Flow

The depth of water in the sump at time t2 is the sum of the depth of water at an
earlier time t1 and the difference between the amount of water that flows in and
out in the time interval [t1 , t2 ]. Thus for all t1 , t2 ∈ Time such that t1 ≤ t2 ,
we have

Water(t2 ) = Water(t1 ) +
∫ t2
t1

(WaterIn(t) − WaterOut(t))dt

HighWater and LowWater are constants representing the positions of the high
and low water level sensors. For safe operation, the pump should be switched
on when the water reaches the level HighWater and the level of water should
always be kept below the level DangerWater :

DangerWater > HighWater > LowWater

If HighWater = LowWater , the high and low water sensors would effectively be
reduced to one sensor.

S2: Methane level. The presence of methane is measured in units of pascals and
recorded as a value of type Pressure (a real number). There is a critical level,
DangerMethane, above which the presence of methane is dangerous.

The methane level is related to the flow of methane in and out of the mine.
As for the water level, we define a function Methane for the methane level at
any time and the functions MethaneIn and MethaneOut for the flow of methane
in and out of the mine:

Methane : Time → Pressure
MethaneIn,MethaneOut : Time → Pressure

and for all t1 , t2 ∈ Time,

Methane(t2 ) = Methane(t1 ) +
∫ t2
t1

(MethaneIn(t) − MethaneOut(t))dt



164 Z. Liu and M. Joseph

S3: Assumptions

1. There is a maximum rate MaxWaterIn : Flow at which the water level in
the sump can increase and at any time t , WaterIn(t) ≤ MaxWaterIn.

2. The pump can remove water with a rate of at least PumpRate : Flow ,
and this must be greater than the maximum rate at which water can build
up: MaxWaterIn < PumpRate.

3. The operation of the pump is represented by a predicate on Time which
indicates when the pump is operating:

Pumping : Time → Bool

and if the pump is operating at any time t it will produce an outflow of
water of at least PumpRate:

(Pumping(t) ∧ Water(t) > 0 ) ⇒ (WaterOut(t) > PumpRate)

4. There is enough reaction time tP before the water level becomes dangerous;

(HighWater + MaxWaterIn · (tP )) < DangerWater

5. The maximum rate at which methane can enter the mine is given by the
constant MaxMethaneRate.
If the methane sensor measures the methane level periodically every tM
units of time, and if the time for the pump to switch on or off is tP , then
the reaction time tM + tP must be such that,

(MaxMethaneRate · tm + HighMethane) < MethaneMargin∧
(MaxMethaneRate · tP + MethaneMargin) < DangerMethane

where HighMethane < MethaneMargin < DangerMethane. HighMethane is
the safety limit of methane and the methane is below this limit when the
system starts. The controller should start to turn the pump off when it
receives a methane level greater than HighMethane signal from the sensor.

6. The methane level does not reach MethaneMargin more than once in 1000
shifts; without this limit, it is not possible to meet the operational require-
ment. Methane is generated naturally during mining and is removed by en-
suring a sufficient flow of fresh air, so this limit has some implications for
the air circulation system.

S4: Pump controller. The pump controller must ensure that, under the assump-
tions, the operation of the pump will keep the water level within limits. At all
times when the water level is high and the methane level is not critical, the
pump is switched on, and if the methane level is critical the pump is switched
off. Ignoring the reaction times, this can be specified as follows:

∀ t ∈ Time·
(

Water(t) > HighWater∧
Methane(t) < DangerMethane

)
⇒ Pumping(t)

∧(Methane(t) ≥ DangerMethane) ⇒ ¬Pumping(t))



Real-Time and Fault-Tolerant Systems 165

This cannot really be achieved so let us see how reaction times can be taken into
account. Since tP is the time taken to switch the pump on, a properly operating
controller must ensure that:

∀ t ∈ Time·
(

Methane(t) < HighMethane ∧ ¬Pumping(t)∧
Water(t) ≥ HighWater

)
⇒ ∃ t0 ≤ tP · Pumping(t + t0 )

So if the operator has not already switched the pump on, the pump controller
must do so when the water level reaches HighWater. Similarly, the methane
sensor may take tM (later we assume tM = tP) units of time to detect a methane
level and turn the pump off if the level is critical. That is, the pump controller
must ensure that

∀ t ∈ Time·
(

Pumping(t)∧
Methane(t) ≥ HighMethane

)
⇒ ∃ t0 ≤ tM · ¬Pumping(t + t0 )

S5: Sensors. Sensors are modelled by variables. The high water sensor provides
information about the height of the water at time t in the form of predicates
HW (t) and LW (t) which represent the cases where the water level is above
HighWater and LowWater respectively. We assume that at all times a correctly
working sensor gives some reading (that is, HW (t) ∨ ¬HW (t)).

The readings provided by the sensors are related to the actual water level in
the sump:

∀ t ∈ Time·Water(t) ≥ HighWater ⇒ HW (t)
∧Water(t) < LowWater ⇒ LW (t)

Note that when HighWater = LowWater, LW(t) = ¬HW(t).
Similarly, the methane level sensor reads the methane level periodically and

signals to the controller that either HML(t) or ¬HML(t):

∀ t ∈ Time·Methane(t) ≥ HighMethane ⇒ HML(t)
∧Methane(t) < HighMethane ⇒ ¬HML(t)

S6: Actuators. The pump is switched on and off by an actuator which receives
signals from the pump controller. Once these signals are sent, the pump con-
troller assumes that the pump acts accordingly. To validate this assumption,
another condition is set by the operation of the pump. The outflow of water
from the pump sets the condition PumpOn; similarly, when there is no outflow,
the condition is PumpOff.

The assumption that the pump really is pumping when it is on and is not
pumping when it is off is specified below: assume the pump takes κ time units
to react after receiving the control signals of PumpOn and PumpOff:

∀ t ∈ Time·PumpOn(t) ⇒ ∃ t0 ≤ κ · Pumping(t + t0 )
PumpOff(t) ⇒ ∃ t0 ≤ κ · ¬Pumping(t + t0 )



166 Z. Liu and M. Joseph

We can then refine the specification of the controller as

HW (t) ∧ LM (t) ⇒ ∃ to ≤ ε · PumpOn(t + to)
HW (t) ∧ HM (t) ⇒ ∃ to ≤ ε · PumpOff(t + to)

where ε is the time for the control program to produce the corresponding control
command after receiving a sensor data, and ε + κ ≤ tP . Notice tP is the total
time needed in S4 for the pump to be on or off when the water level and methane
level require so.

The condition PumpOn is set by the actual outflow and there may be a delay
before the outflow changes when the pump is switched on or off. If there were no
delay, the implication ⇒ could be replaced by the two-way implication iff , rep-
resented by ⇔, and the two conditions PumpOn and PumpOff could be replaced
by a single condition.

The verification of the system specification is about to prove⎛⎝(Controller Specification) ∧
(Actuator Specification) ∧
(Sensors Specification)

⎞⎠⇒
(

Assumptions ⇒
(Requirement Specification)

)

where Controller Specification, Actuator Specification and Sensor Specification
are respectively the conjunctions of the specifications in S4, S5 and S6; As-
sumptions the conjunction of the assumptions specified in S1, S2 and S3; and
Requirement Specification is that was informally specified for the mine pump
system (that can be formalized).

1.4 Constructing the Specification

The simple mathematical notation used so far provides a more abstract and a
more precise description of the requirements than does the textual description.
Having come so far, the next step should be to combine the definitions given in
S1–S6 and use this to prove the safety properties of the system. The combined
definition should also be suitable for transformation into a program specification
which can be used to develop a program.

Unfortunately, this is where the simplicity of the notation is a limitation. The
definitions S1–S6 can of course be made more detailed and perhaps taken a little
further towards what could be a program specification. But the mathematical
set theory used for the specification is both too rich and too complex to be useful
in supporting program development. To develop a program, we need to consider
several levels of specification (and so far we have just outlined the beginnings
of one level) and each level must be shown to preserve the properties of the
previous levels. This is the case for the controller specification in particular.
The later levels must lead directly to a program and an implementation and
there is nothing so far in the notation to suggest how this can be done. The
interface of the control program and the physical environments must be also
further specified.



Real-Time and Fault-Tolerant Systems 167

What we need is a specification notation that has an underlying computa-
tional model which holds for all levels of specification. The notation must have
a calculus or a proof system for reasoning about specifications and a method for
transforming specifications to programs.

1.5 Analysis and Implementation

The development of a real-time program takes us part of the way towards an
implementation. The next step is to analyze the timing properties of the program
and, given the timing characteristics of the hardware system, to show that the
implementation of the program will meet the timing constraints. It is not difficult
to understand that for most time-critical systems, the speed of the processor is of
great importance. But how exactly is processing speed related to the statements
of the program and to timing deadlines?

A real-time system will usually have to meet many demands within limited
time. The importance of the demands may vary with their nature (for instance,
a safety-related demand may be more important than a simple data-logging de-
mand) or with the time available for a response. The allocation of the resources of
the system needs to be planned so that all demands are met by the time of their
deadlines. This is usually done using a scheduler which implements a scheduling
policy that determines how the resources of the system are allocated to the pro-
gram. Scheduling policies can be analyzed mathematically so the precision of the
formal specification and program development stages can be complemented by a
mathematical timing analysis of the program properties. Taken together, speci-
fication, verification and timing analysis can provide accurate timing predictions
for a real-time system.

We will discuss the relation between schedulability and verification and
refinement.

2 Background and Overview

In this section we present an overview of formal techniques for real-time and
fault tolerant systems. We also discuss how fault-tolerance and schedulability,
as well as functional and time correctness, can be specified and verified within
a single formal framework.

2.1 Historical Background of Formal Techniques in Real-Time and
Fault-Tolerance

Starting from the early work in the 1970’s, formal methods for concurrent and
distributed systems development have seen considerable development. They have
made a significant contribution to a better understanding of the behaviour of
concurrent and distributed systems and to their correct and reliable implemen-
tation. The most widely studied methods include:



168 Z. Liu and M. Joseph

– Transition systems with temporal logic [214, 177, 110].
– Automata with Temporal logic [63, 37].
– Process algebras [115, 189].

Traditional temporal logic methods (and similar formalisms) use a discrete
event approach: this is also the case with transition systems (such as
[137, 214, 176, 142, 215]), automata [63, 61] and action systems [15, 53]). Such
models abstract away time in the behaviour and describe the ordering of the
events of a system.

Real-time is introduced into transition systems either by associating lower
and upper bounds with enabled transitions [216] or by introducing explicit
clocks [9, 2]. For specification and verification, a temporal logic is then ex-
tended either with the introduction of bounded (or quantized) temporal operators
[216, 139] or with the addition of explicit clock variables [216, 7, 2]. The relation-
ship between the two approaches, the extent to which one can be translated into
another, is investigated in [110].

One approach to the construction of safe and dependable computing systems
is to use formal specification, development and verification methods as part
of a fault-intolerance approach in which the system safety and dependability
are improved by a priori fault avoidance and fault removal [13]. Another path
towards this goal is through fault-tolerance, which is complementary to fault-
intolerance but not a substitute for it [13]. This is based on the use of protective
redundancy: a system is designed to be fault-tolerant by incorporating additional
components and algorithms to ensure that the occurrence of an error state does
not result in later system failures [221, 222, 147]. Although fault-tolerance is by
no means a new concept [202], there was little work on formal treatment of fault-
tolerance until the 1980s [191, 232, 76, 159, 162, 163, 164]. These papers treat un-
timed fault-tolerant systems only. Recent work [70, 231, 146, 165] has shown how
fault-tolerance and timing properties can formally be treated uniformly.

The issue of schedulability arises when a real-time program is to be imple-
mented on a system with limited resources (such as processors) [135]. An infeasi-
ble implementation of a real-time program will not meet the timing requirement
even though the program has been formally proven correct. Schedulability has
been for a long time a concern of scheduling theory [158, 136, 150, 12, 40] but the
models and techniques used there are quite different from those used in formal
specification and development methods. The relationship between the computa-
tional model used in a scheduling analysis and the model (such as an interleav-
ing model) used in a formal development is not clear. Thus, results obtained in
scheduling theory are hard to relate to or use in the formal development of a
system. It is however possible to verify the schedulability of a program within a
formal framework [212, 261, 93, 169, 173] and this provides a starting point for a
proof-theoretic interpretation of results from scheduling theory.

2.2 Overview of the Formal Framework

We now show how fault-tolerance and schedulability, as well as functional and
time correctness, can be specified and verified within a single formal framework.



Real-Time and Fault-Tolerant Systems 169

We use transition systems [137, 214] as the program model, and the Temporal
Logic of Actions (TLA) [144, 145] as the specification notation. Physical faults in
a system are modelled as being caused by a set F of fault actions which perform
state transformations in the same way as other program actions. Fault-tolerance
is achieved if the program can be made tolerant to these faults (for instance, by
adding the appropriate recovery actions [221, 222, 159, 162, 163, 164]). We shall
show that proof of fault-tolerance is no different to proof of any functional
property.

Each action τ of a real-time program is associated with a volatile lower bound
L(τ) and a volatile upper bound U (τ), meaning that action τ can be performed
only if it has been continuously enabled for at least L(τ) time units, and τ must
not be continuously enabled for U (τ) time units without being performed. The
use of volatile time bounds or, correspondingly, volatile timers (or clock variables)
in the explicit-clock modelling approach has been described in the literature (see
the references in the previous subsection) to specify the time-criticality of an
operation.

To deal with real-time scheduling, it is important to model actions and their
pre-emption at a level of abstraction suitable for measuring time intervals and
to ensure that pre-emption of an execution respects the atomicity of actions.
To achieve this, we use persistent time bounds [166] to constrain the cumulative
execution time of an action in the execution of a program under a scheduler.
The persistent lower bound l(τ) for an action τ means that action τ can be
performed (or finished) only if it has been executed by a processor for at least a
total of l(τ) time units, not necessarily continuously’; the persistent upper bound
u(τ) means that ‘τ is not executed by a processor for a total of u(τ) time units
without being completed.

In TLA, programs and properties are specified as logical formulas, and this
allows the logical characterisation and treatment of the refinement relation be-
tween programs. We shall show how, using this approach, the untimed program,
the fault assumptions, the timing assumptions and scheduling policies are spec-
ified as separate TLA formulas.

The use of a well established computational model and logic has significant
advantages over the use of a specially designed semantic model and logic (as
in [232, 76, 70, 231] for fault-tolerance and [212, 173, 91] for schedulability). First,
less effort is needed to understand the model and the logic. Second, exist-
ing methods for specification, refinement and verification can be readily ap-
plied to deal with fault-tolerance and schedulability. Also, existing mechanical
proof assistance (such as [86, 29] and model-checking methods and tools (such
as [63, 8, 112]) can be used [9, 7, 37].

3 Program Specification, Verification and Refinement

This section introduces a transition system which is widely used as the compu-
tational model in temporal logic. This model serves as the semantic model of
TLA that we shall use for specification and verification.



170 Z. Liu and M. Joseph

3.1 Introducing TLA

Values, variables and states. TLA is a logic used for specifying and reasoning
about programs which manipulate data. Assume there is a set Val of values,
where a value is a data item. We assume that Val contains all the values, such as
numbers like 3 , strings such as abc and sets like Nat, needed for our programs.

Assume that a program manipulates data by changing its state, which is an
assignment of values to state variables. For describing all possible programs, we
assume an infinite set Var of variables, which are represented by symbols like
x , y, z . A state s is thus a mapping from Var to Val:

s : Var #−→ Val

For a state s , the value assigned to a variable x in state s is represented by s [x ]
and the values assigned to a subset z of variables is denoted by s [z ]. Given a
subset v ⊆ Val of variables, we also define a state s over v to be a mapping from
v to Val.

Examples of States. For state variables: {x , y}, let

– s = {x #→ 0 , y #→ 1}, s ′ = {x #→ 1 , y #→ 0}
– s [x ] = 0 , s [y] = 1 , s ′[x ] = 1 , s ′[y] = 0

Assume {On,Off,Bright} are state variables used to model a light system:

– s1 = {Off #→ true,On #→ false,Bright #→ false }
s2 = {Off #→ false,On #→ true,Bright #→ false }
s3 = {Off #→ false,On #→ true,Bright #→ true }

– s1 [On] = false, s2 [On] = true, etc.

State predicates. A state predicate, called a predicate for short, is a first-order
Boolean-valued expression built from variables and constant symbols. For exam-
ple, (x = y − 3 ) ∧ x ∈ Nat . The meaning [[Q ]] of a predicate is a mapping from
states to Booleans {true, false} once an interpretation is given to the predicate
symbols (like =) and the function symbols (like −) used in Q . We say that a
state s satisfies a predicate Q , denoted by s |= Q , iff [[Q ]](s) = true.

Consider variables {x , y} and initial and final states s = { x #→ 0 , y #→ 1 } and
s ′ = {x #→ 1 , y #→ 0}. Then (x−1 = y), (x+y > 3 ) and (x−1 = y)∨(x +y > 3 )
are all predicates. Assume x and y take values from the integers and the meanings
of the equality symbol (=), inequality symbol (>) and the function symbols (−
and +) are those defined in the arithmetic on integers. We can easily decide
which of the predicates are satisfied by state s and which by s ′.

Actions. The execution of a program changes the state of the program by the
execution of atomic actions, called an actions for short. An action is a first-order
Boolean-valued expression over the variables Var and their primed versions Var′.
For example, x ′ + 1 = y and x ′ ≥ y ′ + (x − 1 ) are actions.



Real-Time and Fault-Tolerant Systems 171

For a given interpretation of the predicate symbols (such as = and ≥) and
an interpretation of the function symbols (such as + and −), an action defines
a relation between the values of variables before and the values of primed vari-
ables after the execution of the action. Formally, given the interpretation of the
predicate and function symbols, the meaning [[τ ]] of an action τ is a relation
between states, that is, a function that assigns a Boolean value to a pair (s , s ′)
of states. We thus define [[τ ]](s , s ′) by considering s to be the pre-τ-state and
s ′ the post-τ-state and [[τ ]](s , s ′) is obtained from τ by replacing each unprimed
variable x it τ by its value s [x ] in s and each primed variable x ′ in τ by the
value s ′[x ] of x in s :

[[τ ]](s , s ′) = true iff τ(s [z ]/z , s ′[z ]/z ′) holds

where z and z ′ are the sets of unprimed and primed variables in τ . We say that
a pair (s , s ′) of states satisfies an action τ , denoted by (s , s ′) |= τ , if, and only
if, [[τ ]](s , s ′) = true. When (s , s ′) |= τ , (s , s ′) is called a τ -step.

A predicate Q can also be viewed as a particular action which does not have
primed variables. Thus Q is satisfied by a pair (s , s ′) of states iff it is satisfied
by the first state s in the pair. For an action τ , let en(τ) be the predicate, called
the enabling condition (or guard) of τ , which is true of a state s iff there exists
a state s ′ such that (s , s ′) |= τ . Formally, let x ′

1 , . . . , x ′
n be the primed variables

that occur in τ , let x̂1 , . . . , x̂n be new logical variables that do not occur in τ .
The enabling condition is the predicate defined below

en(τ) Δ= ∃ x̂1 , . . . x̂n · τ [x̂1 , . . . , x̂n/x ′
1 , . . . , x ′

n ]

where τ [x̂1 , . . . , x̂n/x ′
1 , . . . , x ′

n ] is the formula obtained from τ by replacing each
occurrence of x ′

i by x̂i , for i = 1 , . . . ,n. Note that en(τ) does not contain primed
variables. For example, assume that x takes values from integers. the enabling
condition of τ be (x > 0 ) ∧ (x ′ = x − 1 ) is

en(τ)=∃ x̂ · ((x > 0 ) ∧ (x̂ = x − 1 ))
=x > 0

Temporal formulas. We consider an execution of a program to be an infinite state
sequence, and take the semantics of the program to be the set of all its possible
executions. Reasoning about programs is reasoning about their executions and
thus reasoning about state sequences. We shall use TLA for this purpose.

Formulas in TLA are called temporal formulas which are built from actions
as the elementary temporal formulas using Boolean connectives and modal op-
erators in Linear-Time Temporal Logic [177]. Here we use only � (read always)
and its dual operator � (read eventually) defined as ¬�¬. Quantification (that
is, ∃ x , ∀ x) is possible over a set of logical (or rigid) variables, whose values are
fixed over states, and over a set of state variables, whose values can change from
state to state. Please note that in n [144, 145], the bold versions ∃ and ∀ are
used to quantify state variables.



172 Z. Liu and M. Joseph

To use these formulas for describing state sequences, it requires to define the
semantic meaning of such a formula as a function from executions to Booleans.
We must first lift the semantics of an action based on pairs of states to one based
on state sequences.

Given an infinite sequence σ = σ0 , σ1 , . . . of states, then:

– An action [[τ ]](σ) = true iff [[τ ]](σ0 , σ1 ) = true. Note that [[τ ]] is overloaded
here.

– The first-order connectives and quantification over logical variables retain
their standard semantics.

– [[�ϕ]](σ) = true iff [[ϕ]](η) = true for any suffix η of σ. This implies that
[[�ϕ]](σ) = true iff [[ϕ]](η) = true for some suffix η of σ.

– [[∃ x · ϕ]](σ) = true iff there is an η such that σ =x η and [[ϕ]](η), where the
relation σ =x η holds between state sequences σ and η iff σi [y] = ηi [y] for
any variable y which differs from x and for any i ≥ 0 . Thus, ∃ x · ϕ is true
of σ iff ϕ is true of some infinite state sequence η that differs from σ only in
the values assigned to the variable x .

We say that a formula ϕ is satisfied by σ, denoted by σ |= ϕ, if [[ϕ]](σ).

Exercise 1. For state variables {x , y} and a state sequence:

σ = s1 , s2 , s1 , s2 , . . .

where s1 = { x #→ 0 , y #→ 1} and s2 = {x #→ 1 , y #→ 0 }, which of the following
relations hold?

1. σ |= (x = y − 1 )
2. σ |= �(x + 1 = 1 )
3. σ |= �(y + y ′ = 1 )
4. σ |= ∃ x · �((y ≥ 0 ) ∧ (x = 1 ))
5. σ |= ��(y ′ = y − 1 )
6. σ |= ��(y ′ = y + 1 )
7. σ |= �(�(y ′ = y − 1 ) ∧ �(y ′ = y + 1 ))

A formula ϕ is valid if it is satisfied by any infinite state sequences over Var. A
relatively complete proof system is given in [144], with additional rules for using
the logic for reasoning about programs. Every valid TLA formula is provable
from the axioms and proof rules of the TLA proof system if all the valid action
formulas are provable. As the temporal operators � and � and the semantic
model are the same as those in [177], the rules and methods provided there for
verification can also be used.

Exercise 2. Which of the following formulas are valid?

– �(ϕ ∨ ¬ϕ), �ϕ ⇒ ϕ, ϕ ⇒ �ϕ, �ϕ ⇒ �ϕ, �(ϕ ∨ ψ) ⇒ �ϕ ∨ �ψ
– �(ϕ ∧ ψ) ⇒ �ϕ ∧ �ψ, �(ϕ ∨ ψ) ⇒ �ϕ ∨ �ψ, �(ϕ ∧ ψ) ⇒ �ϕ ∧ �ψ



Real-Time and Fault-Tolerant Systems 173

3.2 The Computational Model and Program Specification

We now give a mathematical definition of a program.

Definition 1. A program will be represented as an action system (or a tran-
sition system) which is a tuple P = (v , x , Θ,A) consisting of four components:

1. A finite non-empty set v of state variables.
2. A set x of internal variables, which is a subset of v and possibly empty. The

values of these internal variables are not observable to the environment of
the program.

3. An initial condition Θ which is a state predicate referring to only variables
in v that defines the set of initial states of the program.

4. A finite set A of atomic actions in which only variables in v and primed
variables in v ′ can occur.

The simple light control system can also be modelled as

– v Δ= {s}, x Δ= { }
– Θ

Δ= (s = off

– A Δ=
{

a : (s = off) ∧ (s ′ = on), b : (s = on) ∧ (s ′ = off),
c : (s = on) ∧ (s ′ = bright),d : (s = bright) ∧ (s ′ = off)

}
Notice that this model is not quite precise yet as it does not say what cannot be
changed by an action. One can imagine think of combining action b and c by a
disjunction ∨, that will illustrate the nondeterminism of a system.

Consider the composition of the two open systems:

– Light control system: LightC:

(s = off ∧ button = pressed) ∧ (s ′ = on ∧ button′ = released),
(s = on ∧ button = pressed) ∧ (s ′ = off ∧ button′ = released),
(s = on ∧ button = pressed) ∧ (s ′ = bright ∧ button′ = released),
(s = bright ∧ button = pressed) ∧ (s ′ = off ∧ button′ = released)

– The Button: Button with one action:

(button = released) ∧ (button′ = pressed)

LightC ‖ Button has the union of the set of variables and the union of the sets
of actions of the two components.

Definition 2. A computation (also called an execution or a run) of a program
P = (v , x , Θ,A) is an infinite sequence σ = σ0 , σ1 , . . . over v such that the
following two conditions hold:

Initiality: σ0 satisfies Θ.
Consecution: For all i ≥ 0 , either σi = σi+1 (a stuttering step) or there is an

action τ in A such that (σi , σi+1 ) is a τ-step (a diligent step). In
the latter case, we say that a τ step is taken at position i of σ.



174 Z. Liu and M. Joseph

Thus a computation either contains infinitely many diligent steps, or a diligent
step takes it to a terminating state after which only stuttering steps occur; in
this case we say that the computation is terminating.

The set of all the computations of a program is stuttering closed: if an infinite
state sequence σ is a computation of the program, then so is any state sequence
obtained from σ by adding or deleting a finite number of stuttering steps.

Remarks on atomicity, interleaving and concurrency

– Atomicity is a means of modelling mutual exclusion synchronization.
– Guarded atomic actions are for conditional synchronization. Notice that the

guard of an action here is the enabling condition of the action.
– A number of atomic actions can be executed in parallel iff the order in which

they take place does not affect the changes in the states. In this model, the
use of an interleaving semantics works well for concurrent systems.

– An atomic action can be understood, and in fact often though not always
implemented, as a piece of a sequential terminating program.

– A piece of a terminating concurrent program (nested parallelism) is equiva-
lent to a non-deterministic sequential program (this is also captured by the
expansion law of CCS [189] and CSP [115]).

Notice that in this definition, an atomic action in a program is semantically
taken just as a binary relation on the states. Therefore, although the actions
in the set A are syntactically distinct from each other, we do not require that
the actions be mutually disjoint in their semantics; in particular, one action
can semantically be a sub-relation of another. This implies that it is possible
that two actions have the same effect on a single state. This does not cause
any theoretical problem, as we are to reason about properties of the execution
of the program, not the effect of a individual action. In practice, when we use
this model to define the semantics of a concurrent program, each atomic action
defines a different piece of code of the program. Then the effect of all the actions
obtained from the program will be different in any state, as they at least modify
different control variables, such as process counter variables, which are usually
internal variables.

An atomic action of a program usually changes only a subset of the variables
of the program, leaving the others unchanged. For a finite set z of variables, we
define:

unchanged(z ) =
∧
x∈z

(x ′ = x )

For example, the atomic action x > 0 −→ x := x − 1 (in the form of a guarded
command) can be described as the action formula:

(x > 0 ) ∧ (x ′ = x − 1 ) ∧ unchanged(v − {x})

in which x > 0 is the enabling condition (or the guard).



Real-Time and Fault-Tolerant Systems 175

In the examples, we will simply omit the unchanged part when we specify an
action, by assuming it changes the values of only those variables whose primed
versions are referred to in the action formula.

To specify stuttering, we define also an abbreviation for an action τ and a
finite set of state variables z :

[τ ]z
Δ= τ ∨ unchanged(z )

asserting that a step is either a τ -step or a step which does not change the values
of the state variables z .

We are ready to define two normal forms of program specifications.

Definition 3. Given a program P = (v , x , Θ,A), let:

NP
Δ=
∨

τ∈A

τ

NP is the state-transition relation for the atomic actions of P. The exact (or
internal) specification of P is expressed by the formula:

Π(P) Δ= Θ ∧ �[NP ]v

An exact specification defines all the possible sequences of values that may be
taken by the state variables, including the internal variables x . Existential quan-
tification can be used to hide the internal variables x which automatically get
their adequate values although they are not visible to the observer.

Definition 4. The canonical (or external) safety specification of P is given
as:

Φ(P) Δ= ∃ x · Π(P)

An infinite state sequence σ over v satisfies Φ(P) iff there is an infinite state
sequence η that satisfies Π(P) and differs from σ only in the values assigned to
the variables xi , i = 1 , . . . ,n.

Importance of the stuttering closure property. Stuttering closure is important
when using a specification of a system in a larger system. In that case, the
actions of this subsystem will be interleaved with other actions in the larger
system, and the variables of the subsystem will not be changed when actions of
the rest of the system take place.

To understand this point, consider a digital clock that displays only the hour.
Let hr represents the clock’s display.

From any starting hour, say 11 , the behaviour of the clock is trivially:

{ hr #→ 11} −→ {hr #→ 12} −→ {hr #→ 1} −→ {hr #→ 2 } · · ·

Each step is carried out by the action

HCnext Δ= hr ′ = (hr mod 12 ) + 1



176 Z. Liu and M. Joseph

The clock can be specified by HCinit ∧ �HCnext, where HCinit is the initial
condition that the clock starts from any hour:

HCinit Δ= hr ∈ N ∧ (1 ≤ hr ≤ 12 )

This will work if the clock is considered in isolation and never related to another
system. However, this specification cannot be re-used when we model a device
that displays the current hour and temperature.{

hr #→ 11 ,
temp #→ 3 .5

}
−→

{
hr #→ 12 ,
temp #→ 3 .5

}
−→

{
hr #→ 12 ,
temp #→ 3

}
−→

{
hr #→ 12 ,
temp #→ 2 .5

}
...

Therefore, stuttering is essential for composition. We will also see later that
the stuttering closure property is the key to deal with refinement between two
programs.

Exercise 3. Write a specification Tempclock for a digital clock that displays the
current hour and temperature such that:

TempClock = HClock ∧ TempDisplay

where

HClock Δ= HCinit ∧ [HCnext]hr

Formulas Π(P) and Φ(P) are safety properties and they are satisfied by an
infinite state sequence iff they are satisfied by every finite prefix of the sequence.
Safety properties allow computations in which a system performs correctly for
a while and then leaves the values of all variables unchanged.

For an action τ , define the action 〈τ〉z
Δ= τ ∧ ¬unchanged(z ). Then we can

specify the following fairness properties.

Weak fairness: WFz (τ) Δ= (��〈τ〉z ) ∨ (��¬en(〈τ〉z ))
Strong fairness:SFz (τ) Δ= (��〈τ〉z ) ∨ (��¬en(〈τ〉z ))

The weak fairness condition WFz (τ) says that from any point in an execution,
the action τ must eventually be performed if it remains enabled until it is per-
formed. The strong fairness condition SFz (τ) says that from any point in an
execution, the action τ must be eventually executed infinitely often if it is in-
finitely often enabled.

The safety specifications Π(P) and Φ(P) are usually strengthened by conjoin-
ing them with one or more fairness properties: Π(P) ∧ L and ∃ x · (Π(P) ∧ L),
where L is the specification of the fairness conditions.

3.3 Running Example

The processor of a simple system issues read and write operations to be executed
by the memory. The processor-memory interface has two registers, represented
by the following state variables:



Real-Time and Fault-Tolerant Systems 177

op: Set by the processor to the chosen operation, and reset by the memory
after execution; its value space is {rdy, r ,w}, for ready, read and write,
respectively.

val : Set by the processor to the value v to be written by a write, and by the
memory to return the result of a read; its value space is the set of integers,
Z.

Let the interface be a program P1 with an (internal) variable d when denotes
the data in the memory.

v1
Δ={op, val , d}

Θ1
Δ=(op ∈ {rdy, r ,w}) ∧ d ∈ Z initial condition

Rp
1

Δ=(op = rdy) ∧ (op′ = r) processor issues read
W p

1
Δ=(op = rdy) ∧ (op′ = w) ∧ (val ′ ∈ Z) processor issues write

Rm
1

Δ=(op = r) ∧ (op′ = rdy) ∧ (val ′ = d) memory executes read
W m

1
Δ=(op = w) ∧ (op′ = rdy) ∧ (d ′ = val) memory executes write

A1={Rp
1 ,W p

1 ,Rm
1 ,W m

1 } actions of the program
P1=(v1 , Θ1 ,A1 ) the program

NP1 =Rp
1 ∨ W p

1 ∨ Rm
1 ∨ W m

1 state transition relation
Π(P1 )=Θ1 ∧ �[NP1 ]v1 exact specification
Φ(P1 )=∃ d · Θ1 ∧ �[NP1 ]v1 hiding the internal variable d

The two actions Rp
1 and W p

1 of the processor can be combined into a single
nondeterministic action:

RW p
1

Δ= (op = rdy) ∧ ((op′ = r) ∨ (op′ = w) ∧ (val ′ ∈ Z))

3.4 Verification and Refinement

In TLA, verification of a program property specified by a formula ϕ which does
not contain free internal variables is by proving the validity of the implication
Φ(P) ⇒ ϕ. A relatively complete proof system is given in [144], with additional
rules for using the logic for reasoning about programs. Every valid TLA formula
is provable from the axioms and proof rules of the TLA proof system if all the
valid action formulas are provable. As the temporal operators � and � and
the computational model are the same as those in [177], the rules and methods
provided there for verification can be used.

Definition 5. The relation Ph � Pl between two programs Ph = (vh , y, Θh ,Ah)
and Pl = (v l , x , Θl ,Al) characterizes refinement and can be understood as that
program Ph is correctly implemented by Pl . Let

Φ(Ph ) = ∃ y · Θh ∧ �[NPh ]vh

Φ(Pl ) = ∃ x · Θl ∧ �[NPl ]vl



178 Z. Liu and M. Joseph

be canonical specifications of Pl and Ph respectively, where

x = {x1 , . . . , xn} y = {y1 , . . . , ym}

Then the refinement relation is formalized as:

Ph � Pl iff Φ(Pl ) ⇒ Φ(Ph )

To prove the implication, we must define state functions ỹ1 , . . . , ỹm in terms
of the variables v l and prove the implication Π(Pl ) ⇒ Π̃(Ph), where Π̃(Ph)
is obtained from Π(Ph ) by substituting ỹi for all the free occurrences of yi in
Π(Ph), for i = 1 , . . . ,m. The collection of state functions ỹ1 , . . . , ỹm is called a
refinement mapping. The substitutions can be applied also to a sub-formula of
Π(Ph). ỹi is the concrete state function with which Pl implements the abstract
variable yi of Ph . The proof of the implication can be carried out in two steps:

1. initiality-preservation: Θl ⇒ Θ̃h ;
2. step-simulation: NPl ⇒ [ÑPh ]ṽ l

.

As NPl is the disjunction of the actions of Pl , step-simulation can be proved by
showing τ ⇒ [ÑPh ]ṽ l

for each τ ∈ Al ; each step of the state transition by Pl

corresponds to either a diligent step or a stuttering step by Ph .

Completeness Remarks. The validity of the implication Φ(Pl ) ⇒ Φ(Ph ) does
not imply the existence of a refinement mapping, but in general, refinement
mappings, can be found by adding dummy (or auxiliary) variables to specifica-
tions [1]. Once a refinement mapping is found, the verification of the refinement
is straightforward and can be aided by mechanical means (such as [86]). How-
ever, finding a refinement mapping may be difficult if it is not known how Pl is
obtained from Ph . On the other hand, knowing how an abstract state variable
in Ph is implemented by the variables in Pl , it is possible to define the map-
ping between them. Refinement supports stepwise development in which a small
number of abstract state variables are refined in each step.

Exercise 4. Consider the problem of Dinning Philosophers. Assume there are
five philosophers, pi , i = 1 , . . . , 5 , and five chopsticks, ci , i = 1 , . . . , 5 , that are
placed in five positions a dinning table. The life of each philosopher is repeatedly
thinking and eating. Assume that initially, all philosophers are thinking. After
thinking, a philosopher pi becomes hungry and want to eat. To eat, he has to
come to the position represented by the chair at the dinning table reserved form
him and gets the chopstick ci on his left and then the one, ci+1 , on his right.
A philosopher cannot start to eat before he gets both sticks. After eating, a
philosopher puts down both chopsticks and goes back to think.

1. Write a TLA specification of the problem of the dinning philosophers.
2. Specify in TLA that the fairness condition that an eating philosopher will

eventually put down the chopsticks.



Real-Time and Fault-Tolerant Systems 179

3. Specify the liveness property that no philosopher can be starved.
4. Does your specification for part (1) satisfies the liveness property under the

fairness condition (deadlock freedom)?
5. Suggest solutions to fix deadlock problem in the specification of part (1),

and write the TLA specifications for these solutions.

3.5 Linking Theories of Programming to TLA

The use of atomic actions allows us to use most of the theories of sequential pro-
gramming smoothly in this framework. In concurrent programming, an atomic
action is often implemented as a guarded command which can be a big piece of
program text [81] (also see Morgan’s chapter on ’Probability in the context of
wp’ in this volume). A guarded command is of the form g −→ C , where C can
be any programming statement such as

C ::= x := e
| C ; C sequential composition
| C � C nondeterministic choice
| C � b � C conditional choice
| b ∗ C iteration

For a given a command C , we can calculate a design [[C ]] following the calculus
of UTP [117]:

PreC $ PostC

The corresponding TLA action of g −→ C is then

g ∧ (PreC ⇒ PostC )

We can use (PreC ⇒ PostC ) � g � Skip, as we allow stuttering.
Also, reasoning about TLA specifications, such as verifying an invariant prop-

erty �Q , can be done by reasoning within UTP, Hoare Logic, or Dijkstra’s
Calculus of Weakest Preconditions. Refinement of a TLA specification can be
carried out by refinement methods in UTP [117] or using the refinement calculi
of Morgan [192] and Back [15].

Note that an atomic action does not have to be implemented by a sequential
command. It can be implemented as a piece of concurrent program, say, written
in Back’s action systems [15].

Exercise 5. Relating different formal notations

1. Specify sequential composition as TLA action?

τ1 ; τ2

where each action is treated as an atomic action.
What about when the whole composed < τ1 ; τ2 > is treated as an atomic
action?



180 Z. Liu and M. Joseph

2. Model the conditional choice as a TLA action

if b1 then τ1 else τ2

3. Define Hoare triple {p}τ{q} as a TLA action.
4. Define the Morgan’s specification statement w : [p; q] as a TLA action.
5. Define the non-deterministic choice τ1 � τ2 in TLA.
6. Understand how does the TLA notation unify the semantics of deterministic

choice and non-deterministic choice.

4 Fault-Tolerance

There are several different ways in which a program can be developed using for-
mal rules which guarantee that it will satisfy a specification when executed on
an fault-free system [142, 15, 144]. However, when a component of a computer
system fails, it will usually produce some undesirable effects and it can be said
to no longer behave according to its specification. Such a breakdown of a com-
ponent is called a fault and its consequence is called a failure. A fault may occur
sporadically, or it may be stable and cause the component to fail permanently.
Even when it occurs instantaneously, a fault such as a memory fault may have
consequences that manifest themselves after a considerable time.

4.1 Introduction

Fault-tolerance is the ability of a system to function correctly despite the occur-
rence of faults. Faults caused by errors (or “bugs”) in software are systematic
and can be reproduced in the right conditions. Formal methods can be used to
address the problem of errors in software and, while their use does not guarantee
the absence of software errors, they do provide the means of making a rigorous,
additional check. Hardware errors may also be systematic but in addition they
can have random causes. The fact that a hardware component functions correctly
at some time is no guarantee of flawless future behaviour. Note that hardware
faults often affect the correct behaviour of software.

Of course, it is not possible to tolerate every fault. A failure hypothesis stip-
ulates how faults affect the behaviour of a system. An example of a failure
hypothesis is the assumption that a communication medium might corrupt mes-
sages. With triple modular redundancy, a single component is replaced by three
replicas and a voter that determines the outcome, and the failure hypothesis
is that at any time at most one replica is affected by faults. A failure hypoth-
esis divides abnormal behaviour, that is the behaviour that does not conform
to the specification, into exceptional and catastrophic behaviours. Exceptional
behaviour conforms to the failure hypothesis and must be tolerated, but no at-
tempt need be made to handle catastrophic behaviour (and, indeed, no attempt
may be possible). For example, if the communication medium mentioned earlier
repeatedly sends the same message, then this may be catastrophic for a given
fault-tolerance scheme. It is important to note that “normal” behaviour does



Real-Time and Fault-Tolerant Systems 181

not mean “perfect” behaviour: after a time-out occurs, the retransmission of a
message by a sender is normal but it may result in two copies of the same mes-
sage reaching its destination. Exceptional and normal behaviours together form
the acceptable behaviour that the system must tolerate.

Fault-tolerant programs are required for applications where it is essential that
faults do not cause a program to have unpredictable execution behaviour. We
assume that the failures do not arise from design faults in the program, since
methods such as those mentioned above can be used to construct error-free pro-
grams. So, the only faults we shall consider are those caused by hardware and
system malfunctions or the environment of the component that is under devel-
opment. Many such failures can be masked from the program using automatic
error detection and correction methods, but there is a limit to the extent to
which this can be achieved at reasonable cost in terms of the resources and the
time needed for correction.

When the nature or frequency of the errors makes automatic detection and
correction infeasible, it may still be possible that error detection can be per-
formed. It is desirable that fault-tolerant programs are able to perform pre-
dictably under these conditions: for example when using memory with single
bit error correction and double bit error detection which operates even when
the error correction is not effective. In fact, the provision of good program level
fault-tolerance can make it possible to reduce the amount of expensive system
error correction needed, as program level error recovery can often be focussed
more precisely on the damage caused by an error than a general-purpose error
correction mechanism.

The task is then to develop programs which perform predictably in the pres-
ence of detected system errors, and this requires the representation of such errors
in the execution of a program. Earlier attempts to use formal proof methods for
verifying the properties of fault-tolerant programs were based on an informal
description of the effects of faults, and this limits their applicability. Here we
shall instead model a fault as an action which performs state transformations in
the same way as other program actions, making it possible to extend a semantic
model to include fault actions and to use a single consistent method of reasoning
for both program and fault actions.

Let P be a program satisfying the specification Sp. Let the effect of each
physical fault in the system on which P is executed be described as a fault
action which transforms a good program state into an error state which violates
Sp. Physical faults are then modelled as the actions of a fault program F which
interferes with the execution of P . A failure at any point during the execution
of P takes it into an error state (F is assumed not to change an error state into
a good state.).

In general a high level specification of a program is not sufficient to specify its
behaviour in the presence of system faults or to transform it into a fault-tolerant
program. It is also necessary to describe the hardware organisation of the system
on which the program is to be executed, on its use of the resources of the system
and the nature of the possible faults in the system, for instance, which processors



182 Z. Liu and M. Joseph

and channels may fail; all of these factors can affect the execution of the program.
Very little can be said about the effects of a system fault on a program until it
has been refined to the level where these effects can be observed. There is need
to represent faults and their effects at various levels of abstraction and here we
shall use specifications to develop both the program and the fault environment
in which it executes.

4.2 Formal Specification, Verification and Refinement of
Fault-Tolerant Programs

A physical fault occurring during the execution of a program P = (v , x , Θ,A)
can cause a transition from a valid state of P into an error state. This may lead
to a failure state which violates the specification of P . A physical fault can be
modelled as an atomic fault-action.

For example, a malicious fault may set the variables of P to arbitrary values,
a crash in a processor may cause variables to become unavailable, and a fault
may cause the loss of a message from a channel. Physical faults can thus be
described by a set, F , of atomic actions which interfere with the execution of
P by possibly changing the values of variables in v . The fault-environment F
can be specified by the action formula NF which is the disjunction of the action
formulas of all τ ∈ F .

Executing P = (v , x , Θ,A) on a system with a fault-environment F is equiv-
alent to interleaving the execution of the actions of P and F . Therefore, inter-
ference by F on the execution of P can be defined as a transformation F :

F(P ,F ) Δ= (v , x , Θ,A ∪ F )

The exact and canonical specifications of the computations of P when executed
on a system with faults F are given by:

Π(F(P ,F )) = Θ ∧ �[NP ∨ NF ]v
Φ(F(P ,F )) = ∃ x · Θ ∧ �[NP ∨ NF ]v

Definition 6. The fault-prone properties of P under F can be derived from the
properties of F(P ,F ), the F -affected version of P. A computation of F(P ,F )
is an F-affected computation of P.

4.3 Running Example Continued

For the processor-memory interface, assume that the memory is faulty and that
its value may be corrupted. Such a fault can be represented by the atomic
operation

fault Δ= d ′ 	= d

Let the fault-environment F1 contain the single action fault. The F1 -affected
version of P1 is then:

F(P1 ,F1 ) = (Θ1 , {Rp
1 ,W p

1 ,Rm
1 ,W m

1 , fault })



Real-Time and Fault-Tolerant Systems 183

Thus, NF1 = fault and:

NF(P1 ,F1 ) =NP1 ∨ fault
Π(F(P1 ,F1 ))=Θ1 ∧ �[NF(P1 ,F1 )]v1

Φ(F(P1 ,F1 )) =∃ d · Π(F(P1 ,F1 ))

For a program P to tolerate a set F of faults, correcting actions must be carried
out to prevent an error state entered by a fault transition from leading to a failure
state whose occurrence will violate the program requirement specification. In the
example, the F1 -affected version F(P1 ,F1 ) of P1 is not a refinement of P1 and
this implies that P1 does not tolerate the fault F1 .

Definition 7. For a given set F of faults, a program P is called a F-tolerant im-
plementation of a property (or requirement) ϕ, if F(P ,F ) is an implementation
of ϕ:

Φ(F(P ,F )) ⇒ ϕ

This means that the behaviours of P comply with the specification ϕ despite
the presence of faults F . When such a property ϕ is a canonical specification of
a program Ph ,

Φ(Ph ) = ∃ y · Θh ∧ �[NPh ]z

a program Pl is a F-tolerant refinement of Ph , denoted Ph �F Pl , if Pl is a
F -tolerant implementation of Φ(Ph ).

In general, a fault-tolerant program can be obtained from a fault-intolerant
program P through transformations by [159, 162]

1. Adding checkpointing operations: C(P) = PC ,
2. Adding recovery operations: R(C(P)) = PFT .

The checkpointing transformation C and recovery transformation R are required
so that P � PF(PFT ,F ) or P �F PFT . There are other ways to construct a
PFT such that P �F PFT .

In [159, 164], checkpointing actions and recovery actions are abstractly defined
and can be refined to implement different kinds of fault-tolerant mechanisms.

The F -tolerant refinement relation �F is stronger than the ordinary refine-
ment relation: if Pl is a F -tolerant refinement of Ph , then Pl is a refinement
of Ph but in general the converse is not true. Further, F -tolerant refinement is
generally not reflexive but it is transitive: if Ph �F Pl and Pl �F Pll , then
Ph �F Pll . Fault-tolerant refinements are fault-monotonic: if NF ⇒ NF1 and
Ph �F1 Pl , then Ph �F Pl . This means that a program which tolerates a set
of faults also tolerates any subset of these faults. This is easily achieved in a
linear time model, as with TLA. For a discussion of fault-monotonicity with a
branching time model, see [126].

Realistic modelling usually requires, in addition to the fault-actions, a be-
havioural fault assumption BF about the global properties of F , such as the



184 Z. Liu and M. Joseph

maximum number of memories corrupted at a time, and the minimum time
between faults. This suggests that the exact specification of the F -affected com-
putations of P should in general be specified as Π(F(P ,F )) ∧ BF , and the
F -tolerant refinement of Ph by Pl should be proved under the condition BF :

Π(F(Pl ,F )) ∧ BF ⇒ Π̃(Ph)

which is equivalent to BF ⇒ (Π(F(Pl ,F )) ⇒ Π̃(Ph )). This indicates that the
proof of F -tolerant refinement of Ph by Pl under BF can be established by
proving initiality-preservation and step-simulation under the assumption BF . A
behavioural fault assumption prevents certain fault transitions from taking place
from some states and is thus in general a safety property of the form �ϕ. Use
the equivalence of �ϕ1 ∧�ϕ2 and �(ϕ1 ∧ϕ2 ), the formula �[NPl ∨NF ]v ∧BF
can be transformed into an equivalent formula �[N1 ]v . In fact, as BF should not
constrain the actions of Pl , N1 is obtained from NPl and NF by enhancing the en-
abling conditions of the fault actions of F according to BF . For Π(F(Pl ,F ))∧BF ,
there is F1 such that Π(F(Pl ,F ))∧BF equals Π(F(Pl ,F1 )). This implies that
the behavioural assumption BF can be encoded into the set of fault actions
and the two standard steps for proving refinement can be directly applied to
the transformed specification Π(F(Pl ,F1 )). These two methods for proving a
fault-tolerant refinement will be demonstrated in the example at the end of this
section.

The separation of fault actions and behavioural assumptions simplifies the
specification of the F -affected computations of program Pl . Further, coding these
assumptions into the fault action makes the proof easier.

4.4 Running Example Continued

Let the fault-free memory of the processor-memory interface P1 be implemented
using three memories, such that at any time at most one suffers from faults.

Let di , i = 1 , 2 , 3 , be the data in the three memories and let memory i be
subject to faulti . The variables fi with value space {0 , 1} indicate that di has
been corrupted when fi = 1 . The fault actions can be specified as follows:

faulti=(d ′
i 	= di) ∧ (f ′

i = 1 ) corrupts di

F2
Δ={ fault1 , fault2 , fault3 }

NF2 =fault1 ∨ fault2 ∨ fault3
BF2

Δ=�(f1 + f2 + f3 ≤ 1 ) at most one corrupted memory at any time

Define the following auxiliary function:

vote(x , y, z ) Δ=
{

x if x = y or x = z
y if x 	= y and x 	= z

A program P2 which tolerates the faults F2 by using the vote function tomask
the corrupted copy of the memory, and its F2 -affected version are specified as
follows:



Real-Time and Fault-Tolerant Systems 185

v2
Δ={ op, val , d1 , d2 , d3 , f1 , f2 , f3 }

Θ2
Δ=(op ∈ {rdy, r ,w})∧ initially all

(d1 = d2 = d3 ) ∧ (∧3
i=1 (di ∈ Z)) contain the same value

Rp
2

Δ=(op = rdy) ∧ (op′ = r)
W p

2
Δ=(op = rdy) ∧ (op′ = w) ∧ (val ′ ∈ Z)

Rm
2

Δ=(op = r) ∧ (op′ = rdy)∧
val ′ = vote(d1 , d2 , d3 ) return the voted value

W m
2

Δ=(op = w) ∧ (op′ = rdy)∧
3∧

i=1

(d ′
i = val)∧ write simultaneously

3∧
i=1

(f ′i = 0 ) overwrite corrupted copy

A2={Rp
2 ,W p

2 ,Rm
2 ,W m

2 } all actions
P2=(v2 , Θ2 ,A2 ) program

NP2 =Rp
2 ∨ W p

2 ∨ Rm
2 ∨ W m

2 next-state relation
Π(P2 )=Θ2 ∧ �[NP2 ]v2 exact specification
Φ(P2 )=∃(d1 , d2 , d3 , f1 , f2 , f3 ) · Π(P2 ) canonical specification

F(P2 ,F2 )=(v2 , Θ2 ,A2 ∪ F2 ) fault-affected program
NF(P2 ,F2 )=NP2 ∨ NF2

Π(F(P2 ,F2 ))=Θ2 ∧ �[NP2 ∨ NF2 ]v2

Φ(F(P2 ,F2 ))=∃(d1 , d2 , d3 , f1 , f2 , f3 ) · Π(F(P2 ,F2 ))

To prove the refinement relation P1 �F2 P2 under the assumption BF2 , de-
fine the mapping from the states of v2 to those of d : d̃ = vote(d1 , d2 , d3 ).
Then, according to the definition of fault-tolerant refinement, we need to prove
Π(F(P2 ,F2 )) ∧ BF2 ⇒ Π̃(P1 ), where Π̃(P1 ) = Π(P1 )[d̃/d ], obtained by sub-
stituting d̃ for all occurrences of d in Π(P1 ).

Proof (of the F2 -tolerant Refinement). The initiality-preservation Θ2 ⇒ Θ̃1

holds trivially as d̃ = vote(d1 , d2 , d3 ), by definition. For step-simulation, we
have:

Case 1 : Rp
2 and W p

2 , and Rm
2 equal R̃p

1 , W̃ p
1 and R̃m

2 , respectively;

Case 2 : W m
2 ⇒ W̃ m

1 , as the right hand side is

(op = w) ∧ (op′ = rdy) ∧ (vote(d ′
1 , d ′

2 , d ′
3 ) = val ′)

Case 3 : No faulti -step, for i = 1 , 2 , 3 , changes the values val and op, and it is
sufficient to show that no faulti -step changes d̃ . We prove this for i = 1 ;



186 Z. Liu and M. Joseph

the proofs for i = 2 , 3 are similar. By the assumption BF2 and the TLA
rule for proving an invariance property, it is follows that F(P2 ,F2 ) has
the following invariance property

�(fi = 1 ⇒ (d2 = d3 ))

Thus, fault1 ⇒ (d ′
2 = d2 ) ∧ (d ′

3 = d3 ) ∧ (d ′
2 = d ′

3 ) and this implies
fault1 ⇒ unchanged(d̃).

Exercise 6. Show the fault-tolerant refinement as follows.

– First transform Θ2 ∧ �[NP2 ∨ NF2 ]v2 ∧ BF2 into

Π(F(P2 ,F21 )) Δ= Θ2 ∧ �[NP2 ∨ NF21 ]v2

where F21 = { fault2i | i = 1 , 2 , 3 } and

fault2i
Δ= (fi⊕1 = 0 ∧ fi⊕2 = 0 ) ∧ (d ′

i 	= di ) ∧ (f ′i = 1 )

where ⊕ is + modulo 3.
– Then prove Π(F(P2 ,F21 )) ⇒ Π̃(P1 ) by establishing initiality-preservation

and step-simulation.

5 Modelling Real-Time Programs

The most common timing constraints over a program require its actions to be
executed neither too early nor too late; for example, to use time for the synchro-
nization between a processor and a memory to ensure that a message written is
not overwritten before being read, the memory must not execute the read oper-
ation too slowly and the processor must not issue the write operation too soon.
Let time be represented by the non-negative real numbers R+. However, it is
not difficult to see that the methods and results apply to discrete time domains
as well.

We now specify timing constraints over the execution of an action in a program
P can be specified by assigning to each action τ a volatile lower time bound L(τ)
from R+ and a volatile upper time bound U (τ) which is either a value from R+,
or the special value ∞ which denotes the absence of an upper bound. Any real
number in R+ is assumed to be less than ∞, and the lower bound is assumed
not to exceed the upper bound for any action.

Definition 8. A real-time program can be represented as PT = 〈P ,L,U 〉,
where P is an untimed program, defined in the previous section, and L and U
are functions of the atomic actions of P defining the lower bound L(τ) and upper
bound U (τ) for any action τ of P.



Real-Time and Fault-Tolerant Systems 187

5.1 Specifying Real Time

As in the case of untimed programs, we shall need an exact specification Π(PT )
of a real-time program PT . We introduce a distinguished state variable now to
represent time that is is also known as the global clock, and an action to advance
time, under the following assumptions [2, 110]:

time starts at 0 : initially now = 0 .
time never decreases : �[now′ ∈ (now,∞)]now.
time diverges: ∀ t ∈ R+ · �(now > t).

Time divergence is also called the Non-Zeno property and ensures that only a
finite number of actions can be performed in any finite interval of time. The
three assumptions can be combined to specify real-time evolution:

RT Δ= (now = 0 ) ∧ �[now′ ∈ (now,∞)]now∧∀ t ∈ R+ · �(now > t)

To preserve the atomicity of the actions in the program, we model the execution
of the program so that program state and time do not change simultaneously and
that a program state can be changed only by program actions. This is specified
by the condition τ ⇒ (now′ = now) for each action τ of P . Then the conjunction
Π(P)∧RT specifies the interleaving of program actions and time evolution. The
program actions are further constrained by their lower bound and upper bound
conditions, and this is done by introducing auxiliary state variables called timers.

5.2 Specifying Time Bounds

An action τ in PT cannot take place before it has been enabled for L(τ) time
units and must take place before it has been enabled for more than U (τ) units.
We need to introduce auxiliary state variables to record how long an action has
been enabled.

Consider the hour-clock again. Assume it is now required that the clock display
the correct real time. Following what has been described earlier, we have:

– The newly added observable variable, now, representing time.
– The change of the display is instantaneous. For example{

hr #→ 12 ,
now #→

√
2 .47

}
,

{
hr #→ 12 ,

now #→
√

2 .5

}
, · · · ,

– now changes between of a change of display.
– The requirement that the interval between two ticks is one hour plus or

minus ρ seconds.
– The need of a timer t to record how much time has elapsed since the last

tick.

tNxt(HCnxt) Δ=(t ′ = 0 ) � HCnxt � (t ′ = t + (now ′ − now))
Timer(t ,HCnxt)Δ=(t = 0 ) ∧ �[tNxt](t,hr ,now)



188 Z. Liu and M. Joseph

– The timer t cannot exceed 360 + ρ before the next tick:

Max(t , 360 + ρ) Δ= �(t ≤ 360 + ρ)

– After a tick, the clock cannot tick again before t becomes 360 + ρ:

Min(t ,HCnxt, 360 + ρ) Δ= �[HCnxt ⇒ (t ≥ 360 − ρ)]hr

– The time bound specification HCB is then the conjunction:

HCB
Δ= Timer(t ,HCnxt) ∧ Maxt , 360 + ρ) ∧ Min(t ,HCnxt, 360 + ρ)

The exact specification of the real-time clock is:

RTHC Δ= HC ∧ RT ∧ HCB

Definition 9. In general, given a program P = (v , x , Θ,A), let τ ∈ A and δ be
a non-negative real. We can define a counting-up volatile timer:

Timer(tτ , τ) Δ=(t = 0 ) ∧ �[(t ′ = 0 ) � (< τ >v ∨¬en(τ)′) �
(t ′τ = tτ + (now ′ − now))](tτ ,v,now)

where A1 � g � A2 denotes the action g ∧ A1 ∨ ¬g ∧ ¬A2 .

Then we can specify the time bounds of a real-time version PT of program P
as follows:

Max ↑ (τ)Δ=�(tτ ≤ U (τ))
Min ↑ (τ) Δ=�[τ ⇒ t ≥ L(τ)](v ,now)

Bτ ↑ Δ=Timer(tτ , τ) ∧ Min ↑ (τ) ∧ Max ↑ (τ)
BP ↑ Δ=

∧
τ∈A

Bτ

The exact specification of PT can be given as Π(P) ∧ RT ∧ BP ↑.
Using counting-up timers gives a simpler specification of a real-time program.

However, our experience is that with them, the proof of a refinement is hard.
We now define a counter-down timer.

Definition 10. Given a program P = (v , x , Θ,A), let τ ∈ A and δ be a non-
negative real. We define volatile δ-timer t which is a state variable not in v.
The behaviour of the timer t is such that when τ is enabled from a state in which
it was disabled or τ is taken, t is assigned a clock time of now+ δ units of time:

Volatile(t , τ, δ, v) Δ=((t = δ) � en(τ) � (t = ∞)) ∧
�[ (en(τ)′ ∧ (τ ∨ ¬en(τ)) ∧ (t ′ = now + δ)

∨ en(τ) ∧ en(τ)′ ∧ ¬τ ∧ (t ′ = t)
∨ ¬en(τ)′ ∧ (t ′ = ∞)) ∧ (v ,now)′ 	= (v ,now)](t,v)



Real-Time and Fault-Tolerant Systems 189

Informally, each line in the definition is explained as: the volatile δ-timer t is
initially set to δ (that is, δ time units ahead of the initial value 0 of now) if τ is
enabled, and to ∞ otherwise, and then repeated in every step:

1. the timer t is reset to δ time units ahead of now in the new state if:
(a) τ becomes enabled in the new state from being disabled in the old state,

or
(b) τ is taken and it remains enabled in the new state;

2. the timer t stays unchanged if τ remains enabled but τ has not taken place
in this step;

3. the timer t is reset to ∞ if τ is disabled in the new state.

Using such a volatile timer t , the property that a τ -step cannot take place until
the time now reaches the clock time t can be defined as:

MinTime(t , τ, v) Δ= �[τ ⇒ (t ≤ now)]v

The conjunction of this formula and Volatile(t , τ, δ, v) can be used to specify
a lower bound condition; and Volatile(t , τ, δ, v) can be used also for an upper
bound when conjoined with the formula:

MaxTime(t) Δ= �[now′ ≤ t ]now

For a given real-time program PT = 〈P ,L,U 〉, let each action τ of P have a
volatile L(τ)-timer tτ and volatile U (τ)-timer Tτ . Then the conjunction:

Volatile(tτ , τ,L(τ), v ) ∧ MinTime(tτ , τ, v)

which is true when L(τ) = 0 , specifies the lower bound for action τ . A τ -step
cannot take place within L(τ) time units of when τ becomes enabled, and the
next τ step cannot occur within L(τ) time units of when τ is re-enabled. The
lower bound condition of the program is the conjunction of the lower bound
conditions for all its actions:

LB(PT ) Δ=
∧

τ∈A

(Volatile(tτ , τ,L(τ), v ) ∧ MinTime(tτ , τ, v))

Similarly, the upper bound condition of program PT is specified by the formula:

UB(PT ) Δ=
∧

τ∈A

(Volatile(Tτ , τ,U (τ), v) ∧ MaxTime(Tτ ))

where Volatile(Tτ , τ,U (τ), v )∧MaxTime(Tτ ) equals true and thus can be elim-
inated from the conjunction if U (τ) = ∞.

The time bound specification B(PT ) for the whole program PT is then the
conjunction LB(PT ) ∧ UB(PT ).

Definition 11. The real-time executions of program PT are exactly specified by
the exact specification:

Π(PT ) Δ= Π(P) ∧ RT ∧ B(PT )



190 Z. Liu and M. Joseph

Hiding the internal variables x and the set of auxiliary timers, which is denoted
by timer(PT ), gives the canonical specification of PT :

Φ(PT ) Δ= ∃ x , timer(PT ) · Π(PT )

5.3 Running Example Continued

In the untimed processor-memory interface P1 , let the processor and the memory
be synchronized by timing rather than by guarding the processor actions. Assume
that the processor periodically issues an operation every ρ units of time. To
ensure that an operation is executed by the memory before the next operation is
issued by the processor, ρ must be greater than the upper bound (or deadline) for
the memory to execute the operation. The real-time program PT

1 = 〈P1 ,L1 ,U1 〉
is described as follows:

v1
Δ={op, val , d , c} add an internal variable c

Θ1
Δ=(op ∈ {r ,w}) ∧ (d ∈ Z) ∧ ¬c the op has not been completed

RW p
1

Δ=(op′ = r) ∧ ¬c′∨ issues a read operation, or
(op′ = w) ∧ ¬c′ ∧ (val ′ ∈ Z) a write operation

Rm
1

Δ=(op = r) ∧ ¬c ∧ (val ′ = d) ∧ c′ similar to the original P1

W m
1

Δ=(op = w) ∧ ¬c ∧ (d ′ = val) ∧ c′ similar to the original P1

A1
Δ={RW p

1 ,Rm
1 ,W m

1 } actions of the program
L1 (RW p

1 )=U1 (RW p
1 ) = ρ RW p

1 ’s period
L1 (Rm

1 )=L1 (W m
1 ) = 0 memory actions’ lower bound

U1 (Rm
1 )=U1 (W m

1 ) = D1 < ρ memory actions’ upper bound
PT

1 =〈v1 , Θ1 ,A1 ,L1 ,U1 〉 real-time program

5.4 Verification and Refinement

The timed and untimed properties of programs can be specified in the same way
in TLA. For example, the bounded response property that once ϕ occurs in an
execution, ψ must occur within δ time units can be described as:

ϕ
δ
� ψ

Δ= ∀ t · �(ϕ ∧ now = t ⇒ �(ψ ∧ now ≤ t + δ))

To prove that the real-time program PT satisfies (or implements) a timing prop-
erty is to prove the implication of the property by the specification Φ(P) of the
program. For example, the real-time processor-memory interface PT

1 satisfies the
property:

∃ d · ((op = r ∧ d = v) D1
� (val = v))

which asserts that the value of the memory will be output within D1 units of
time after the processor issues a read operation. The implication:

Φ(PT
1 ) ⇒ ∃ d · ((op = r ∧ d = v) D1

� (val = v))



Real-Time and Fault-Tolerant Systems 191

can be proved by proving:

Π(PT
1 ) ⇒ (op = r ∧ d = v) D1

� (val = v)

Definition 12. The refinement relation PT
h � PT

l between the real-time pro-
grams PT

l and PT
h is defined as the implication Φ(PT

l ) ⇒ Φ(PT
h ) using a re-

finement mapping.

To verify initiality-preservation and step-simulation, convert the exact specifica-
tion:

Π(PT ) Δ= ΘP ∧ [N ]v ∧ RT ∧ B(PT )

into the form Θ ∧ [N ]z , where z equals v plus now and the timers, and Θ is
obtained from ΘP by conjoining it with the initial conditions on now and the
timers. N is an action formula.

Exercise 7. Consider the Gas Burner example in [223, 143]. This case study for-
mulates the safety requirement of a gas burner in terms of a variable Leak denot-
ing an undesirable but unavoidable state which represents the presence of unlit
gas.

For safety, gas must never leak for more than 4 seconds in any period of at
most 30 seconds. This is specified by the bounded critical duration property. To
meet the requirement Req, two design decisions are made:

Des-1 any occurrence of leak must be stopped within 4 seconds, and
Des-2 two occurrences of leaks must be separated by a period of 26 seconds in

which the burner does not leak; in other words, a Leak is stopped it may not
reoccur within 26 seconds.

1. Write TLA specifications for the above design decisions.
2. Reason within TLA that the above two design decisions are met by the timed

transition system defined below:

GB1=〈Θ1 : true
τ1 : Leak ∧ ¬Leak ′[0 , 4 ]
τ2 : ¬Leak ∧ Leak ′[26 ,∞)
〉

3. After the initial design, GB1 can be refined. For example, the transition
system GB2 in Figure 3 is a refinement of GB1 . GB2 has the following
phases:
Idle: Await heat request with no gas and no ignition. It enters Purge

within e time units on heat request. The parameter e in this ex-
ample is the system wide upper bound for reactions.

Purge: Pauses for 30 seconds and then enters Ignite1 within e time units.
Ignite1: Turns on ignition and gas and after one second exits within e to

Ignite2.



192 Z. Liu and M. Joseph

GoIdle,

Idle
HeatOn,

Purge

Out30 ,

Out1a,

Out1b,

Burn

FlOn

Ignite2 Ignite1

[0 , e]

[30 , 30 + e]

[1 , 1 + e]

[1 , 1 + e]

[0 , e]

[0 , e]

Fig. 3. A refinement of GB1

Ignite2: Monitors the flame, if it is sensed within one second Burn is en-
tered, otherwise it returns to Idle within e while turning the gas
off.

Burn: Ignition is switched off, but gas is still on. The Burn phase is
stable until heat request goes off. Gas is then turned off and Idle
is entered within e.

This refinement uses a simple error recovery: return to Idle from Ignite2.
We assume no flame failure in the Burn phase. Therefore, in this implemen-
tation, Leak can only occur in the Ignite1 and Ignite2 phases.

4. Formalize in TLA the full and canonical specification of GB2 , and decide
the constant e such that GB2 also meets the two design decisions for GB1 .

6 Combining Fault-Tolerance and Timing Properties

Fault-tolerant systems often have real-time constraints. So it is important that
the timing properties of a program are refined along with the functional and
fault-tolerant properties defined in the program specification. This section ex-
tends the transformational approach for fault-tolerance by adding time bounds
to actions. This will allow the fault-tolerant redundant actions to be specified
with time constraints.

The functional properties of faults are modelled by a set F of atomic ac-
tions specified by the action formula NF . There are no time bounds on these
actions (or, equivalently, the lower and upper bound of each fault action are re-
spectively 0 and ∞). Given a real-time program PT = 〈P ,L,U 〉, the F -affected
version of PT is defined as:

F(PT ,F ) Δ= 〈F(P ,F ),L,U 〉

where the domain of L and U is extended to A ∪ F and each action in F is
assigned time bounds of 0 and ∞.



Real-Time and Fault-Tolerant Systems 193

To achieve fault-tolerance in a real-time system, there must be a timing as-
sumption on the occurrence of faults, especially when deadlines are required to
be met. Such an assumption is usually a constraint on the frequency of occur-
rence of faults, or the minimum time for which faults cannot occur. This period
should be long enough for the recovery of the computation to take place and
for progress to be made after recovery from a fault. For a formula ψ and a
non-negative real number ε, let ψ hold continuously for ε units of time:

�εψ
Δ= ∀ t · (now = t ⇒ �(now ≤ t + ε ⇒ ψ))

A fault is modelled as an atomic action and specified as an action formula.
The timing assumption on faults F is a conjunction of assumptions, each of
the form whenever fault1 occurs, fault2 cannot occur within ε units of time. If
this assumption is denoted by TF , the exact and canonical specifications of the
F -affected version F(PT ,F ) are, respectively,

Π(F(PT ,F ))=Θ ∧ [(NP ∨ NF )]v ∧ RT ∧ B(PT ) ∧ BF ∧ TF

=Π(F(P ,F )) ∧ RT ∧ B(PT ) ∧ BF ∧ TF
Φ(F(PT ,F )) =∃ x , timer(PT ) · Π(F(PT ,F ))

Thus the F -affected version of a real-time program PT is also a real-time pro-
gram. This normal form allows the definition of fault-tolerance for real-time sys-
tems to be given in the same way as for untimed systems. A real-time program
PT is an F -tolerant implementation of a real-time property ψ if the implication
Φ(F(PT ,F )) ⇒ ψ holds. PT is an F -tolerant refinement of a real-time program
PT

h if the implication Φ(F(PT ,F )) ⇒ Φ(PT
h ) holds.

6.1 Running Example Continued

In Section 4, we showed how the untimed fault-free processor-memory interface
P1 can be implemented by the untimed version of P2 , using three faulty mem-
ories whose values may be corrupted by the set F2 of faults with assumption
BF2 . We show now how the timed version PT

1 is F2 -tolerantly refined by a timed
version of P2 .

Let the specification of the underlying untimed program P2 be changed
slightly by removing the guard condition of the processor actions:

v2={ op, val , c, d1 , d2 , d3 , f1 , f2 , f3 }
Θ2=(op ∈ {r ,w}) ∧ ¬c

(d1 = d2 = d3 ) ∧ (
3∧

i=1

(di ∈ Z))

RW p
2 =(op′ = r) ∧ ¬c′ ∨ (op′ = w) ∧ ¬c′ ∧ (val ′ ∈ Z)

Rm
2 =(op = r) ∧ ¬c ∧ c′ ∧ val ′ = vote(d1 , d2 , d3 )

W m
2 =(op = w) ∧ ¬c ∧ c′ ∧

3∧
i=1

(d ′
i = val ∧ f ′i = 0 )

NP2 =RW p
2 ∨ Rm

2 ∨ W m
2



194 Z. Liu and M. Joseph

Π(P2 )=Θ2 ∧ �[NP2 ]v2

Φ(P2 )=∃(d1 , d2 , d3 , c, f1 , f2 , f3 ) · Π(P2 )

Meeting the timing properties of PT
1 requires that the time bounds of the actions

of the implementation P2 guarantee (a) that the period for the processor to issue
an operation is still ρ and (b) that the upper bound D2 for the memory to execute
an operation to completion is not greater than D1 :

L2 (RW p
2 ) = U2 (RW p

2 ) = ρ
L2 (Rm

2 ) = L2 (W p
2 ) = 0

U2 (Rm
2 ) = U2 (W m

2 ) = D2 ≤ D1

To prove that PT
1 �F2 PT

2 under the assumption BF2 , we have to consider only
the case when D2 = D1 since simply lowering the upper bound (or raising the
lower bound) of an action is obviously a refinement. Define a refinement mapping
from the states over the variables of PT

2 ’s to the states over the internal variables
of PT

1 , including the volatile timers as follows:

d̃ Δ=vote(d1 , d2 , d3 )c̃ Δ= c
t̃RWp

1

Δ=tRWp
2

T̃RW p
1

Δ=TRWp
2

T̃Rm
1

Δ=tRm
2

T̃W m
1

Δ=TW m
2

The implication Π(PT
2 ,F2 ) ∧ BF2 ⇒ Π̃(PT

1 ) can be proved in the same way as
for the untimed fault-tolerance in Section 4.

The assumption BF2 can be relaxed to the timing assumption:

TF2

Δ=
3∧

i=1

�(fi = 1 ⇒ �ρ+D2 (fi⊕1 = 0 ∧ fi⊕2 = 0 ))

which asserts that only one of the most recently written memories may be cor-
rupted before the read operation is completed. Then PT

2 = 〈P2 ,L2 ,U2 〉 is also
an F2 -tolerant refinement of PT

1 under the fault-assumption TF2 .
The specifications of PT

1 and PT
2 demonstrate a practical fact: to achieve

fault-tolerance with timing constraints, a more powerful (or faster) machine is
often needed. The execution of the multiple assignment W m

2 on such a machine
should not be slower than the execution of the single assignment W m

1 on a
machine for an non-fault-tolerant implementation of PT

1 ; and the execution of
the multiple read operation Rm

2 with a voting function should not be slower than
the execution of the single read operation Rm

1 . Otherwise, with a machine of the
same speed, the original time bounds must have enough slack to accommodate
the redundant actions for fault-tolerance.

We can refine PT
2 further to PT

3 , where the actions of the three memories
are executed by different processes, and the voting action is done by another
process. The specification of the variables, the initial condition and the actions
of P3 are given below, for i = 1 , 2 , 3 :



Real-Time and Fault-Tolerant Systems 195

v3={ op, val , opi , vali , di , fi , ci , vi | i = 1 , 2 , 3 }
Θ3=(op ∈ {r ,w}) ∧ ¬c1 ∧ ¬c2 ∧ ¬c3∧

(op1 = op2 = op3 = op) ∧ ¬v1 ∧ ¬v2 ∧ ¬v3
RW p

3 =¬c′1 ∧ ¬c′2 ∧ ¬c′3 ∧ ((op, op1 , op2 , op3 )′ = (r , r , r , r)∨
((op, op1 , op2 , op3 )′ = (w ,w ,w ,w)) ∧ (val ′ ∈ Z))

Rmi
3 =(opi = r) ∧ ¬ci ∧ (val ′i = di) ∧ c′i ∧ vi

W mi
3 =(opi = w) ∧ ¬ci ∧ (d ′

i = val) ∧ (f ′
i = 0 ) ∧ c′i

Vote=v1 ∧ v2 ∧ v3 ∧ (val ′ = vote(val1 , val2 , val3 )∧
¬v ′

1 ∧ ¬v ′
2 ∧ ¬v ′

3
A3={RW p

3 ,Vote,Rmi
3 ,W mi

3 | i = 1 , 2 , 3 }
P3=(v3 , Θ3 ,A3 )

The newly introduced internal variables, opi , contain the operations issued to the
process i ; ci denote whether the operations issued to the process i are completed;
vi are used to synchronize the read actions and the vote action such that vote
is done only after all the reads are completed.

The timing properties of PT
2 require (a) that the time bounds of the actions in

the implementation PT
3 guarantee that the period for the processor to issue an

operation is still ρ, (b) that the upper bound Dwi for the ith memory to execute
an issued write is not greater than D2 , and (c) that the sum of the upper bound
Dri of the ith memory to execute an issued read operation and the upper bound
Dvote of the Vote action is not greater than D2 : for i = 1 , 2 , 3 .

L3 (RW p
3 ) = U3 (RW p

3 ) = ρ
L3 (Rmi

3 ) = L3 (W mi
3 ) = L3 (Vote) = 0U3 (W mi

3 ) = Dwi

U3 (Rmi
2 ) = Dri U3 (Vote) = Dvote

Dwi ≤ D2 Dri + Dvote ≤ D2

The refinement and fault-tolerance can be proved by showing the validity of the
implication:

Φ(F(PT
3 ,F2 )) ∧ BF2 ⇒ Φ(F(PT

2 ,F2 )) ∧ BF2

from the following refinement mapping when Dwi = D2 and Dri + Dvote = D2 :

c̃ Δ=c1 ∧ c2 ∧ c3

d̃i
Δ=
{

di if c1 ∧ c2 ∧ c3 ∨ ¬c1 ∧ ¬c2 ∧ ¬c3
valotherwise

T̃Rm
2

Δ=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min{TRmi

3
| i = 1 , 2 , 3 } + Dvote if

3∨
i=1

(opi = r ∧ ¬vi )

TVote if v1 ∧ v2 ∧ v3
∞ otherwise

T̃W m
2

Δ=min{TWmi
3

| i = 1 , 2 , 3 }

However, it is important to notice that it is easier to understand and prove the
F2 -refinement of PT

2 by PT
3 if this refinement is done stepwise:



196 Z. Liu and M. Joseph

1. first refine PT
2 into a program PT

31 by replacing W m
2 in P2 with the three

write operations W mi
3 and setting U (W mi ) = D2 , i = 1 , 2 , 3 ;

2. then refine PT
31 into another program PT

32 by replacing Rm
2 in P31 (which

is also in P2 ) with the three read operations Rmi
3 plus Vote and setting

U (Rmi ) + U (Vote) = D2 , i = 1 , 2 , 3 ;
3. finally, scale down the upper bounds of the new operations to get PT

3 .

7 Feasible Real-Time Scheduling as Refinement

To model the parallel execution of a program PT , we partition the actions A
of P into n sets (processes) p1 , . . . , pn . A shared state variable is one which is
used by actions in different processes, while a private state variable is used only
by the actions in one process. Two actions of P can be executed in parallel iff
they are not in the same process and do not share variables (shared variables
are accessed under mutual exclusion). In such a concurrent system, processes
communicate by executing actions which use shared variables. We assume that
each process in a concurrent program is sequential. In other words, at most one
atomic action in a process is enabled at a time, though an action of the process
may be non-deterministic as it may carry out transitions from the same state to
different states in different executions.

Let the real-time program PT be implemented on a system by assigning
its n processes to a set {1 , . . . ,m} of processors and executing them under a
scheduler. Such an implementation is correct iff it meets both the functional
requirements defined by the actions of P and the timing constraints defined
by the time bound functions L and U of PT . Rather than adding scheduling
primitives to the programming (specification) language (as in [123]), the program
and the scheduler will be modelled and specified in a single semantic model but
their correctness will be proved separately. The application of a scheduler to a
program on a given set of processors can be described as a transformation of the
program, and the schedulability of the program can be determined by reasoning
about the transformed or scheduled program.

Using transformations and separating the program from the scheduler helps
to preserve the independence of the program from scheduling decisions. The
programmer does not need to take account of the system and the scheduler until
the program is ready to be implemented. This allows the feasibility of a program
under different schedulers and the effect of a scheduler on different programs to
be investigated. Also, the feasibility of the implementation of a program can be
proved by considering a scheduling policy, rather than low-level implementation
details.

We shall first describe the functional and timing aspects of a scheduler, and
then determine how they affect the execution of the program.

7.1 Untimed Scheduling

Assume that a scheduler allocates a process of P for execution by a processor
using a submit action, and removes a process from a processor by a retrieve



Real-Time and Fault-Tolerant Systems 197

action. We shall say that a process is on a processor if the process has been
allocated to that processor.

An atomic action of a process can be executed only when the process is on a
processor and the action is enabled. Let the Boolean variable runi , 1 ≤ i ≤ n,
be true if process pi is on a processor. The effect of scheduling is represented
by a transformation G(P) in which each atomic action τ of P in the process
pi , 1 ≤ i ≤ n, is transformed by strengthening its enabling condition by the
Boolean variable runi . Let r(τ) denote the transformed action of τ in G(P).
Then:

r(τ) Δ= runi ∧ τ

Therefore, en(r(τ)) ⇔ runi ∧en(τ), and a process pi is being executed only when
it is on a processor and one of its actions is enabled.

A scheduler can be functionally described as an untimed program S whose
initial condition idle Δ= ∀ i · ¬runi guarantees that there is no process on any
processor and whose submit and retrieve actions modify the variables runi . We
use a generic description so that the scheduler can be applied to any program P
on a system with any number of processors. Program P and the set of processors
will be left as parameters, to be replaced respectively by a concrete program and
the definition of a specific system.

Given S , the scheduling of P by S on a set of processors can be described
as a transformation I(P). The initial condition of the scheduled program I(P)
is the conjunction of the initial conditions of S and P . Formally, this is simply
described by idle∧Θ. The actions of I(P) are formed by the union of the actions
of S and G(P) and their execution is interleaved.

An execution of I(P) is a state sequence σ over the union of the state variables
z of the scheduler and the variables v of the program P for which:

1. the initial state σ0 satisfies the initial conditions Θ of P and idle of S ,
2. for each step (σj , σj+1 ), one of the following conditions holds:

(a) σj+1 = σj , or
(b) σj+1 is produced from σj by an action in S , or
(c) σj+1 is produced by the execution of an action τ in a process pi whose

enabling condition and the predicate runi are both true in σj .

The set of executions of I(P) is then specified by:

Π(I(P)) = idle ∧ Θ ∧ �[NG(P) ∨ NS ](v ,z)

We assume that S does not change the state of P , that is, NS ⇒ (v ′ = v). This
gives us the compositional specification:

Π(I(P)) = Π(S ) ∧ Π(G(P))

Note that r(τ) ⇒ τ holds for each action τ of P . So does Π(G(P)) ⇒ Π(P).
Hence, Π(I(P)) implies Π(P). This shows that I(P) refines P and the trans-
formation I (and thus the scheduler S ) preserves the functional properties
of P .



198 Z. Liu and M. Joseph

7.2 Timed Scheduling

The timing properties of the executions of I(P) depend on the number of pro-
cessors and their execution speed. Assume that the hard execution time needed
for each atomic operation τ on a processor lies in a real interval [l(τ), u(τ)]. If
the execution of τ on a processor starts at time t and finishes at time t + d ,
then the total execution time for τ in the interval [t , t + d ] lies in the interval
[l(τ), u(τ)]. The functions l and u define the (persistent) time bounds of the
actions in G(P). The real-time program G(P)T Δ= 〈G(P), l , u〉, where for each
r(τ) of G(P), l(r(τ)) = l(τ) and u(r(τ)) = u(τ).

To guarantee that the implementation of PT satisfies its real-time deadlines,
the computational overhead of the submit and retrieve actions must be bounded.
Let the scheduler S have time bounds LS (τ) and US (τ) for each action τ of S
and let the real-time scheduler be ST .

Definition 13. The real-time scheduled program

I(PT ) Δ= 〈I(P),LI(P),UI(P)〉

where the functions LI(P) and UI(P) are respectively the union of the functions
LS and l , and the union of US and u.

Here, for functions p from Set1 to Set and q from Set2 to Set , where Set1 and
Set2 are disjoint, the union of p and q is the function from Set1 ∪ Set2 to Set
that equals p for elements in Set1 and q for elements in Set2 .

The definition states that the execution speed of the processors and the timing
properties of the scheduler determine the timing properties of the scheduled
program.

As the actions of the scheduler are not interrupted, the time bounds LS and
US of actions of S are volatile. However, an execution of a process action may
be pre-empted, for instance under a priority-based pre-emptive scheduler. Thus,
the time bounds l and u for the actions in G(P) should be persistent in general.
Moreover, in a concurrent program, a pre-empted action may be disabled by
the execution of the actions of other processes. When the pre-empted process is
resumed, this pre-empted (and disabled) action will not be executed and another
enabled action in this process will be selected for execution. For this reason, we
need the notion of a persistent timer.

Definition 14. A persistent δ-timer t for an action τ in process pi is defined
as follows:

Persistent(t , τ, δ, v) Δ=t = δ ∧
�[ (r(τ) ∧ t ′ = now + δ taken

∨ en(r(τ)) ∧ ¬τ ∧ t ′ = t running
∨ ¬en(τ)′ ∧ t ′ = now′ + δ disabled
∨ en(τ) ∧ ¬runi ∧ t ′ = t + (now′ − now)) pre-empted

∧((v ,now)′ 	= (v ,now))](t,v ,now)



Real-Time and Fault-Tolerant Systems 199

Informally,

1. the persistent δ-timer t is initially (that is, when now = 0 ) set to δ;
2. it stays δ time units ahead of now as long as τ is not enabled (or equivalently

speaking ¬en(τ) holds);
3. it remains unchanged during any time when τ is both enabled and run (that

is, the enabling condition en(r(τ)) holds) to record the execution time;
4. it is reset either just after a τ -step is taken or τ is disabled; and
5. it changes at the same rate as now when τ is enabled but not run (that is,

en(τ) ∧ ¬runi holds). This says that the time when a process is waiting for
the processor or the execution of τ is pre-empted should not be counted as
execution time.

Conditions (4) & (5) guarantee that timer t is persistent only when τ is pre-
empted, and if τ is pre-empted the intermediate state at the point of pre-emption
is not observable to other actions.

The conjunction of the defining formula of a persistent u(τ)-timer Tτ for
action τ and MaxTime(u(τ)):

Persistent(Tτ , τ, u(τ), v ) ∧ MaxTime(Tτ )

is the specification of the upper persistent time bound condition for action r(τ),
and this asserts that the τ -step of state transition must take place if the accu-
mulated time when τ has been both enabled and run reaches u(τ). Similarly,
the lower persistent time bound condition for action τ is specified by:

Persistent(tτ , τ, l(τ), v ) ∧ MinTime(tτ , r(τ), v )

Notice that when there is no pre-emption in the execution of the program:

�(en(r(τ)) ∧ ¬run′
i ⇒ (¬en(τ) ∨ r(τ)))

is ensured by the scheduler; the use of a persistent timer of τ in these two
formulas is equivalent to the use of a volatile timer of r(τ):

1. Persisten(t , τ, δ, v) initially sets t to δ, and keeps resetting t with now + δ
as long as ¬en(r(τ)). This is the same as in Volatile(t , r(τ), δ, v) which sets
t to ∞ and keeps it unchanged until en(r(τ)) becomes true and sets it to
now′ + δ.

2. Assume en(τ) ∧ ¬runi has been true since, say now = now0 , and t was set
by Persisten(t , τ, δ, v) to now0 + δ. From now0 , Persisten(t , τ, δ, v) increases
t at the same rate by which now increases as there cannot be a pre-emption.
This is the same as in Volatile(t , r(τ), δ, v ) where t was set to ∞ and kept
unchanged unless runi becomes true when t is set to now′ + δ.

Thus, persistent timers allow the treatment of both pre-emptive and non-pre-
emptive scheduling.



200 Z. Liu and M. Joseph

The specification of the timing condition for G(P)T is defined as

B(G(P)T )Δ=
∧

τ∈A

(Persistent(tτ , τ, l(τ), v ) ∧ MinTime(tτ , r(τ), v ))∧∧
τ∈A

(Persistent(Tτ , τ, u(τ), v ) ∧ MaxTime(Tτ ))

The exact specification of the timed scheduled program I(PT ) is

Π(I(PT ))= Π(S ) ∧ Π(G(P)) ∧ RT ∧ B(ST ) ∧ B(G(P)T )
= Π(ST ) ∧ Π(G(P)T )

The correctness of the timed scheduled program I(PT ) is determined with re-
spect to the specification of PT , which does not refer to the variables z which
are modified by the scheduler S . These variables (and those which are internal
to S ) are therefore hidden in the canonical specification

Φ(I(PT )) Δ= ∃ z · Φ(ST ) ∧ Φ(G(P)T )

We shall use this specification in the following section where we consider two
ways of applying the transformational approach to real-time scheduling.

7.3 Reasoning About Scheduled Programs

Consider the implementation of a real-time program PT using a real-time sched-
uler ST which satisfies a property ϕ. Proof that this implementation satisfies a
high-level timing property ψ, whose only free state variables are now and the
external variables of S , can be used as the initial basis from which proofs of
more detailed low level properties can later be established.

Because of the assumption that the program and the scheduler do not change
the same variables, if ST satisfies a property ϕ and ϕ ∧ Φ(G(P)T ) implies ψ,
then I(PT ) satisfies ψ. This is represented as the proof rule:

R1 .

1Φ(ST ) ⇒ ϕ
2∃ z · ϕ ∧ Φ(G(P)T ) ⇒ ψ

Φ(I(PT )) ⇒ ψ

Treating the effect of scheduling as a transformation of a program specification
allows an abstract specification of a scheduler’s policy to be used to prove the
timing properties of the implementation of a real-time program.

7.4 Feasibility: Definition and Verification

Definition 15. The timed scheduled program I(PT ) is feasible if the following
holds: Φ(I(PT )) ⇒ Φ(PT ). Therefore, if there is a refinement mapping by which
the following implication can be proved:

Π(I(PT )) ⇒ Π̃(PT )



Real-Time and Fault-Tolerant Systems 201

Notice that the correctness of a scheduler is defined with respect to its specifi-
cation (or its scheduling policy) while feasibility relates the specification of the
program PT to be scheduled to the specification of the scheduled program and
requires the time bounds of all actions of the former to be met by the later.
Assuming that Φ(ST ) ⇒ ϕ, the feasibility of I(PT ) can be proved from Rule
R1 as the implication:

∃ z · ϕ ∧ Φ(G(P)T ) ⇒ Φ(PT ) (1)

This formula can be manipulated in steps, using a refinement mapping.

Step 1. Introduce auxiliary (dummy) timers into G(P)T corresponding to the
timers of PT .

This can be understood as allowing the scheduler to have a copy of the timers
of PT = 〈P ,L,U 〉. Define a set of auxiliary variables:

dummies Δ= { hτ ,Hτ | τ ∈ A }

where hτ and Hτ are respectively defined by the formulas Volatile(hτ , τ,L(τ), v )
and Volatile(Hτ , τ,U (τ), v). Let:

D(dummies) Δ=
∧

τ∈A

Volatile(hτ , τ,L(τ), v ) ∧ Volatile(Hτ , τ,U (τ), v)

Then (1) is equivalent to:

∃ dummies, z · ϕ ∧ Φ(G(P)T ) ∧ D(dummies) ⇒ Φ(PT ) (2)

Step 2. Define the refinement mapping.

Recall that the internal variables of P are assumed to be x . A refinement map-
ping from the states over x ∪ z ∪ timer(G(P)T ) ∪ dummies to the states over
x ∪ timer(PT ) is defined as follows:

ỹ =

⎧⎨⎩
hτ if y is a timer tτ ∈ timer(PT )
Hτ if y is a timer Tτ ∈ timer(PT )
y if y ∈ x

Let TimedSched Δ= ϕ ∧ Π(G(P)T ) ∧ D(dummies). Then (2) can be proved by
proving:

TimedSched ⇒ Π̃(PT ) (3)

Step 3. Discard identical substitutions.

Recall that Π̃(PT ) = Π̃(P) ∧ R̃T ∧ B̃(PT ). Obviously, we have that R̃T = RT

and Π̃(P) = Π(P). Also Π(G(P)T ) implies Π(G(P)), which in turn implies

Π(P). Therefore, R̃T and Π̃(P) can be discarded from the right hand side of
the implication in (3).

TimedSched ⇒ B̃(PT ) (4)



202 Z. Liu and M. Joseph

Step 4. Discard the actions on timers.

B̃(PT )=
∧

τ∈A

Volatile(hτ , τ,L(τ), v ) ∧ MinTime(hτ , τ, v) ∧

Volatile(Hτ , τ,U (τ), v) ∧ MaxTime(Hτ )
=D(dummies) ∧

∧
τ∈A

(MaxTime(Hτ ) ∧ (MinTime(hτ , τ, v))

Since D(dummies) appears on the left hand side of (4), what remains to be
proved is that the following implication holds for each action τ of P .

TimedSched ⇒ MaxTime(Hτ ) ∧ MinTime(hτ , τ, v) (5)

7.5 Proof Rules for Feasibility

Implication 5 suggests that the feasibility of an implementation of a real-time
program PT can be proved using the following rule:

R2 .

1Φ(ST ) ⇒ ϕ
2TimedSched ⇒ MaxTime(Hτ ) for τ ∈ A
3TimedSched ⇒ MinTime(hτ , τ, v) for τ ∈ A

Φ(I(PT )) ⇒ Φ(PT )

Notice that both MaxTime(Hτ ) and MinTime(hτ , τ, v) contain primed state vari-
ables. Therefore, rules for proving invariant properties cannot be used directly
to establish the premises (2) and (3) in Rule R2. We provide two rules for intro-
ducing invariants.

To prove premise (2) in Rule R2, we have the following rule:

R3 .

1Φ(ST ) ⇒ ϕ
2TimedSched ⇒ �(en(τ) ⇒ Tτ ≤ Hτ ) for τ ∈ A

TimedSched ⇒ MaxTime(Hτ ) for τ ∈ A

By symmetry, for premise (3) in Rule R2:

R4 .

1Φ(ST ) ⇒ ϕ
2TimedSched ⇒ �(runi ⇒ tτ ≥ hτ ) for τ in pi

TimedSched ⇒ MinTime(hτ , τ, v) for τ ∈ A

TimedSched can be converted into a normal form as the conjunction of a safety
property and a liveness property:

∃ x · Θ ∧ �[N ]y ∧ L
where x and y are sets of variables, Θ is a state predicate, N is an action and L
is the time divergence property, ∀ t · �(now > t).

Let this formula be denoted by Ω. An invariant Q of Ω can be proved using
the rule:

R5 .

1Θ ⇒ Q Initially Q holds
2Q ∧ N ⇒ Q ′ Each step of the transition preserves Q

Ω ⇒ �Q



Real-Time and Fault-Tolerant Systems 203

7.6 Feasibility of Fault-Tolerant Real-Time Programs

The occurrence of a fault-action does not depend on the scheduler and the F -
affected scheduled program of PT by a scheduler S is modelled as F(I(PT ),F )
whose exact specification is:

Π(F(I(PT ),F )) = Π(S ) ∧ Π(F(G(P),F )) ∧ RT ∧ B(ST ) ∧ B(G(PT ))

Let TimedSched (from the previous subsection) be redefined as:

TimedSched Δ= ϕ ∧ Π(F(G(PT ),F )) ∧ D(dummies)

Definition 16. Taking the same set of dummy variables dummies and the re-
finement mapping from the previous subsection, the implementation I(PT ) is
F -tolerantly feasible if the following implication holds:

TimedSched ⇒ ˜Π(F(PT ,F ))

Then all the equations and rules in the previous section remain valid for fault-
tolerant feasibility.

Assume that a real-time program PT = 〈P ,L,U 〉 is a F -tolerant refinement
of a program PT

h for a given set F of fault-actions. Then any F -tolerant feasible
implementation of PT is a F -tolerant refinement of PT

h .
This assumes that the execution of the scheduler is not faulty, and that F -

tolerance is provided by the program to be scheduled. It is also possible for a
non-fault-tolerant program to be executed under a specially designed scheduler
so that the implementation of the faulty program is fault-tolerant [164].

For example, a scheduler can be designed to tolerate processor failures. As-
sume each process of PT keeps taking checkpoints of its local states by a trans-
formation C(PT ). We add recovery process(es) to C(PT ) by a transformation
R(C(PT )). Faults and their effects on processes are modelled as before. The im-
plementation transformation I is applied to F(R(C(PT )),F ). When a processor
fails, the scheduler must submit the recovery process to a non-failed processor.
If the processors are fail-stop, no checkpointing or recovery may be needed. The
scheduler only needs to re-schedule a process executing on a failed processor to
a non-failed processor, where that is possible. Our theory and verification tech-
niques also apply to formal reasoning about such fault-tolerant implementations.

7.7 Scheduling Open Systems

In the model of programs given so far, we have assumed that a real-time program
implements the specification of a closed system: values are supplied to the pro-
gram through the initial values of variables or by executing a nondeterministic
input operation.

In many cases, a program is linked to an external environment from which it
receives data and to which it must send responses. The appearance of the inputs
often follows a timing pattern, for example with periodic or aperiodic repetition.



204 Z. Liu and M. Joseph

Definition 17. An open system is a pair O = (E ,P) consisting of a program
P which interacts with an environment E. The set vo of variables of O is the
union of the sets x and y of local variables of P and E and the set v of interface
variables through which P and E interact.

Let program P consist of an initial predicate Θx over its local variables x and a
set of atomic actions on the program variables vp = x ∪ v . Let the environment
E consist of an initial predicate Θ over the environment variables ve = y ∪ v
and a set of atomic actions on the variables ve .

Let ν be an action formula that defines the state transitions by which P
changes the values of the interface variables. It is then required [2] that:

NP ⇒ ν ∨ (v ′ = v)andNE ⇒ ¬ν ∨ (v ′ = v)

where NP is the next-state relation of P .
As before, we define:

Π(P) Δ= Θx ∧ �[¬ν ∧ (x ′ = x ) ∨ NP ]vpandΦ(P) Δ= ∃ x .Π(P)

Π(E ) Δ= Θ ∧ �[ν ∧ (y ′ = y) ∨ NE ]ve andΦ(E ) Δ= ∃ y · Π(E )

The specification Φ(O) of an open system O = (E ,P) then defines the condition
under which the system guarantees the property Φ(P) if the environment satisfies
the assumption Φ(E ).

Φ(O) Δ= Φ(E ) ⇒ Φ(P)

The conjunction Φ(E ) ∧ Φ(P) describes the closed system consisting of P and
its environment E and is:

∃ x , y · Θ ∧ Θx ∧ �[NP ∨ NE ]vo

Program Pl refines (or implements) a program Ph in environment E iff:

(Φ(E ) ⇒ Φ(Pl )) ⇒ (Φ(E ) ⇒ Φ(Ph ))

and this reduces to:

Φ(E ) ∧ Φ(Pl ) ⇒ Φ(Ph )

The program and its environment can be treated as the real-time programs
PT = 〈P ,L,U 〉 and ET = 〈E ,Le ,Ue〉 respectively. Since time is global, it need
not be advanced by both of them. We choose to let the program advance time
and define:

Φ(ET ) Δ= ∃ y , timer(ET ) · Π(E ) ∧ B(ET )

The real-time open system OT = (ET ,PT ) is specified by

Φ(OT ) Δ= Φ(ET ) ⇒ Φ(PT )



Real-Time and Fault-Tolerant Systems 205

We would like to point out that the canonical form of an open real-time specifi-
cation given here is simpler than that in [2] but is sufficient for our purposes as
we shall not be considering the problem of composing open systems.

A real-time property ϕ of an open system OT = (ET ,PT ) states that pro-
gram PT guarantees the property ϕ under the environment assumption ET .
This requires proving the implication:

Φ(OT ) ⇒ (Φ(ET ) ⇒ ϕ)

or, equivalently,

Φ(ET ) ∧ Φ(PT ) ⇒ ϕ

In a real-time environment ET , implementation of a real-time program PT

by a scheduler ST on a set of processors can be described by transformation
I(OT ) Δ= (ET , I(PT )), in which I(PT ) is as defined in Section 4.2 for a closed
system, and z denotes the variables that may be changed by the scheduler.

The feasibility of the implementation relies on proving the refinement rela-
tion: OT � I(OT ) Notice that this refinement relation is equivalent to the
implication

Φ(I(OT )) ⇒ Φ(OT )

Equivalently this can be proved by proving:

Φ(ET ) ∧ Φ(I(PT )) ⇒ Φ(PT ) (6)

If we use this definition of schedulability for open systems in our derivation of
Rules R1–R2, we can show that these rules are also valid for open systems.

7.8 Running Example Continued

In the timed fault-tolerance processor-memory interface program PT
3 , let RW p

3
be an environment action with its lower and upper bounds (that equal to the
period) set to ρ. Partition the remaining actions into four processes:

p4 = {Vote} pi = {Rmi
3 ,W mi

3 } for i = 1 , 2 , 3
L3 (Vote) = 0 L3 (Rmi

3 ) = L3 (W mi
3 ) = 0 for i = 1 , 2 , 3

U3 (Rmi
3 ) = Dri U3 (W mi

3 ) = Dwi ≤ D2 for i = 1 , 2 , 3
U3 (Vote) = DvoteDri + Dvote ≤ D2 for i = 1 , 2 , 3

where D2 is the deadline of the memory actions in the real-time interface pro-
gram PT

2 implemented by PT
3 .

Let the memory processes be implemented on a single processor using a non-
deterministic scheduler. Ignore the details of the scheduler program: for instance,
we can assume that it randomly chooses an enabled process. If there is no



206 Z. Liu and M. Joseph

overhead in the scheduling, the scheduler can be specified as a real-time pro-
gram ST = 〈S ,L,U 〉:

z Δ={ runi | i = 1 , 2 , 3 , 4 }
Θ

Δ=idle
gi

Δ=true if an action of pi is enabled else false, i = 1 , 2 , 3 , 4

schΔ=
4∨

i=1

(gi ∧ (idle ∨ ¬gi⊕1 ∧ ¬g⊕2 ) ∧ run′
i) ∨ (

4∧
i=1

¬gi) ∧ idle′

U (sch)=0

Now assume that the computation times for the actions of the processes satisfy
the following condition:

l(Vote) = l(Rmi
3 ) = l(W mi

3 ) = 0 for i = 1 , 2 , 3
u(W m1

3 ) + u(W m2
3 ) + u(W m3

3 ) ≤ min{Dwi} for i = 1 , 2 , 3
u(Rm1

3 ) + u(Rm2
3 ) + u(Rm3

3 ) ≤ min{Dri} for i = 1 , 2 , 3
u(Vote) ≤ Dvote

Then it can be proved using the rules in Section 7.4 that the implementation of
PT

3 by the scheduler ST on the given processor is F2 -fault-tolerantly feasible.
Intuitively, the processor actions ensure that read and write tasks do not

arrive at the same time. Once a write or a read operation is issued, all the three
write or read tasks are enabled in the three processes. The scheduler selects one
process at a time to execute until all of them are executed; in total, this takes
at most the sum of the computation times of the three tasks. The Vote process
p4 can be ready only when the other processes are not ready.

Proof (sketch of F2 -tolerant feasibility). Rule 3 in Section 7.5 requires that we
prove that the following predicates are invariants of the F2 -implementation:

I i
R

Δ=opi = r ⇒ TRmi
3

≤ HRmi
3

for i = 1 , 2 , 3

I i
W

Δ=opi = w ⇒ TW mi
3

≤ HWmi
3

for i = 1 , 2 , 3

IV
Δ=v1 ∧ v2 ∧ v3 ⇒ TVote ≤ HVote

The proofs of these invariants are very similar. We present only a sketch of the
proof for I 1

R . Let ui be used for u(Rmi
3 ), Hi for HRmi

3
, and Ti for TRmi

3
, i = 1 , 2 , 3 .

In general, it may not always possible to prove an invariant Q directly from
Rule R5 in Section 7.5. Instead, we have to use this rule to prove a stronger
invariant which implies Q . To prove that I 1

R is an invariant, prove the following
invariants I1–I7 , the conjunction of which is an invariant and implies I 1

R :

I1
Δ= (

3∧
i=1

(opi = r ∧ ¬runi)) ⇒ (
3∧

i=1

(Hi = now + Dri ) ∧ (Tj = now + uj ))

Notice that:

I1 ⇒ ((
3∧

i=1

(opi = r ∧ ¬runi)) ⇒ (
∧

k �=i �=j �=k

(Hi − Ti ≥ uj + uk))) (7)



Real-Time and Fault-Tolerant Systems 207

Informally, I1 is an invariant because (a) the timers Hi and Ti are respectively
set with now + Dri and now + ui when opi = r is changed from false to true
and (b) there is no overhead in the scheduling and thus now cannot advance
before one of the three ready processes is scheduled for execution.

If after a read operation is issued, the scheduler chooses process p2 first for
execution, we have the following invariant.

I2
Δ= (

3∧
i=1

(opi = r) ∧ run2 ) ⇒ H1 − T1 ≥ u3 + T2 − now

The proof of this invariant uses invariant I1 and its implication 7 together with
the following two facts:

1. A transition from a non-
3∧

i=1

(opi = r)∧ run2 -state to a
3∧

i=1

(opi = r)∧ run2 -

state can only be a transition from a
3∧

i=1

(opi = r ∧¬runi)-state and carried

out by an scheduling action. This scheduling action does not change now
and the timers. Formally, let N1 be this action:

N1
Δ= (

3∧
i=1

(opi = r ∧ ¬runi)) ∧ run′
2

By I1 and implication (7), we have:

N1 ⇒ (T2 = now + u2 ) ∧ (now,H1 − T1 ≥ u3 + u2 )
∧unchanged(H1 ,T1 ,T2 )

Hence,

N1 ⇒ (H ′
1 − T ′

1 ≥ u3 + T ′
2 − now)

2. The amount of time for which
3∧

i=1

(opi = r) ∧ run2 has remained true up to

now is the time u2 −(T2 −now) spent on the execution of Rm2
3 that has been

added to T1 as it has been persistent. The only action which may falsify I2
is:

N2
Δ= (op1 = r) ∧ (op2 = r) ∧ (op3 = r) ∧ run2

∧(now′ > now) ∧ (T ′
1 = T1 + (now′ − now))

∧(T ′
2 = T2 ) ∧ (H ′

1 = H1 )

where we ignore the changes in other variables which are irrelevant to I2 .
Clearly I2 ∧ N2 ⇒ I ′

2 as:

H ′
1 − T ′

1=H1 − T1 − now′ + now
≥u3 + T2 − now − now′ + now
=u3 + T ′

2 − now′



208 Z. Liu and M. Joseph

Similar to I2 , we have the following invariant if the scheduler chooses p3 first
for execution:

I3
Δ= (

3∧
i=1

(opi = r) ∧ run3 ) ⇒ H1 − T1 ≥ u2 + T3 − now

If the scheduler chooses p1 for execution first, then:

I4
Δ= (

3∧
i=1

(opi = r) ∧ run1 ) ⇒ H1 − T1 ≥ u1 + u3

These four invariants consider the cases when none of the three processes has
completed the issued read operation. We have the following three invariants
about the cases when one of or both of p2 and p3 have completed the operation.

If p2 has completed the operation, we have the invariant:

I5
Δ= (op1 = r) ∧ (op2 	= r) ∧ (op3 = r) ∧ ¬run1 ⇒ H1 − T1 ≥ T3 − now

This characterizes the fact that the time spent on the whole execution of Rm2
3 and

on the partial execution of Rm3
3 has been added to T1 . The proof of this invariant

uses I2 . Similarly, if p2 has completed the operation we have the invariant:

I6
Δ= (op1 = r) ∧ (op2 = r) ∧ (op3 	= r) ∧ ¬run1 ⇒ H1 − T1 ≥ T2 − now

Finally, we have the invariant:

I7
Δ= (op1 = r) ∧ ((op2 	= r) ∨ (op3 	= r)) ⇒ H1 − T1 ≥ 0

This characterizes the fact that the time spent on the execution of one or both
of Rm2

3 and Rm3
3 has been added to T1 .

The nondeterministic scheduler can be refined to a deterministic one by assigning
priorities to the processes. For example, let process pi have a higher priority than
pj if i < j . Modify the action sch of the scheduler into sch1 such that the process
with the highest priority among the ready processes is scheduled for execution
but no pre-emption is allowed:

sch1
Δ= idle ∧ g1 ∧ run′

1
∨idle ∧ ¬g1 ∧ g2 ∧ run′

2
∨idle ∧ ¬g1 ∧ ¬g2 ∧ g3 ∧ run′

3
∨idle ∧ ¬g1 ∧ ¬g2 ∧ ¬g3 ∧ g4 ∧ run′

4

∨
4∨

i=1

(runi ∧ ¬gi ∧ idle′)

Then the modified scheduler also gives a feasible F2 -tolerant implementation of
PT

3 on the given processor, as the new action sch1 action implies the old sch.



Real-Time and Fault-Tolerant Systems 209

7.9 Fixed Priority Scheduling with Pre-emption

The techniques presented in the previous subsections can be used to produce
results similar to those obtained using scheduling theory. We demonstrate this
by proving the feasibility condition given in [40] for implementing a set of inde-
pendent tasks using fixed priority scheduling with pre-emption.

Consider an open system O = (E ,P) where program P consists of n indepen-
dent processes (or tasks) which are represented by the atomic actions τ1 , . . . , τn .
The environment E is used to represent the actions of releasing (or invoking, or
activating) the tasks periodically. In general, these actions may be clock events
or external events to which the processes need to respond. Let ρi be the period
of τi , for i = 1 , . . . ,n.

7.10 Specification of the Program

To specify the system in TLA, let invi and comi be integer variables representing
the number of invocations and completions of each task i . Then the specification
of the real-time system OT = (ET ,PT ) can be given as: for i = 1 , . . . ,n

Θ
Δ=(0 ≤ invi ≤ 1 ) ∧ (comi = 0 )

α
Δ=inv′i = invi + 1 action of E for task invocation

τi
Δ=invi > comi ∧ com′

i = comi + 1 action of P for task completion

ν
Δ=

n∨
i=1

(com′
i = comi + 1 )

L(αi)=U (αi) = ρi period of invocation
L(τi) =0 and U (τi) = Di deadline of task

A basic (functional) requirement for the system is that each invocation of a task
is completed before its next invocation, that is,

Φ(ET ) ∧ Φ(PT ) ⇒
i=n∧
i=1

�(invi ≥ comi ≥ invi − 1 )

From the rules for proving an invariant in TLA, this implication holds if Di < ρi .
It must now be shown that an implementation of the program PT on a unipro-
cessor system is feasible.

7.11 Specification of the Scheduling Policy

Let the system be implemented on a single processor using a pre-emptive, fixed-
priority scheduler; assume that there is no scheduling overhead. Let τi have a
higher priority than τj if i < j . Let gi denote the enabling condition of task τi ,
and hri assert that τi has the highest priority among the current enabled (or
ready) tasks:

gi
Δ= invi > comihri

Δ= gi ∧ ∀ j < i · ¬gj



210 Z. Liu and M. Joseph

Then the scheduler, denoted by ST = 〈S ,L,U 〉, can be specified as follows:

schi
Δ=idle ∧ hri ∧ run′

i ∨ higher task runs first
∃ j 	= i · (runj ∧ hri ∧ run′

i ∧ ¬run′
j ) higher task pre-empts lower task

NS=
n∨

i=1

schi

U (schi)=L(schi) = 0 no overhead

Specifications of various scheduling policies can be found in [169].
According to ST , at any time at most one process is running on the processor:

Valid Δ= �(i 	= j ⇒ ¬(runi ∧ runj ))

7.12 Feasibility

Let the computation time for each task τi be in the interval [0 ,Ci ], that is,
l(τi) = 0 and u(τi) = Ci . Assume ρi , Di and Ci are non-negative integers
for i = 1 , . . . ,n. The worst-case response time (or completion time) Ri for
each task τi can be defined as a recursive equation [136]. We shall instead use
the equivalent recurrence relation defined in [40]. The (n + 1 )th response time
R(n+1 )

i for process i is:

R(n+1 )
i = Ci +

i−1∑
j=1

(R(n)
i

ρj
) × Cj (8)

If R(0 )
i is initially set Ci , and:

Ri = lim
n→∞ R(n)

i

scheduling theory shows that:

the implementation of the program by the scheduler on the given pro-
cessor is feasible iff Ri ≤ Di , for i = 1 , . . . ,n.

This condition can be shown to be necessary by finding an execution in which a
task misses its deadline if the condition does not hold. However, to prove formally
that the condition is sufficient, we need to prove the following refinement.

Theorem 1. For the given program, OT = (ET ,PT ), the scheduler, ST , and
the processor

OT � I(OT )

provided Ri ≤ Di for i = 1 , . . . ,n.



Real-Time and Fault-Tolerant Systems 211

By Implication (6) in Section 7.7, this is equivalent to showing that the following
holds:

Π(ET ) ∧ Π(ST ) ∧ Π(G(PT )) ∧ D(dummies) ⇒ Π̃(PT ) (9)

where D(dummies) and refinement mapping are as defined in Section 5.1.
Before proving (9), let us discuss how the persistent timer Tτi is used to

predict the completion time of an invocation of task τi by considering its first
invocation.

As a special case, consider any time now before the completion of the first
invocation of task τi (that is, when comi = 0 and invi > 0 ). Assume all tasks
τj , j = 1 , . . . , i − 1 , with higher priorities than τi have met their deadlines so
far. Then, in the worst case, when all tasks τj use Cj units of computation time,
the time spent up to now on executing higher priority processes is:

Comp(i ,now) Δ=
i−1∑
j=1

comj × Cj +
i−1∑
j=1

(invj − comj ) × (Cj − (Tτj − now)) (10)

where Cj − (Tτj − now) is the time spent so far on the last invocation of τj .
Thus (10) becomes:

Comp(i ,now) =
i−1∑
j=1

invj × Cj −
i−1∑
j=1

(invj − comj ) × (Tτj − now) (11)

Assume δ is the time already spent on τi up to now. Then:

now = Comp(i ,now) + δ

As Tτi has been persistent during the time when tasks of higher priorities are
being executed, we have

Tτi = Comp(i ,now) + Ci

Thus, Tτi = now + (Ci − δ) predicts that the cumulative time needed to com-
plete τi after now will not exceed Ci − δ; this time may be divided into smaller
units whose sum is Tτi . For the first invocation of τi to be completed before its
deadline, Tτi should never exceed Hτi (which is always equal to Di before the
completion of τi).

Thus, we need to prove that the left hand side (or LHS) of Implication (9)
has the following predicate as an invariant:

(comi = 0 ∧ invi > comi) ⇒ Tτi ≤ Ci + Comp(i ,now)

In general, at any time before an invocation of τi is completed, Hτi −Di records
the time t0 (that is, the value of now at that time) of the current invocation of
τi : at that time Hτi was t0 +Di and it has remained unchanged as τ has not been
completed. The definition of the longest possible time, Comp(i ,now), spent on



212 Z. Liu and M. Joseph

executing tasks with priorities higher than that of τi ’s defined by Equation (11)
can be generalized as:

Comp(i ,now)Δ=
i−1∑
j=1

( invj × ρj − (Hτi − Di)
ρj

) × Cj

−
i−1∑
j=1

(invj − comj ) × (Tτj − now)

This leads to the following lemma which implies Theorem 1.

Lemma 1. LHS(9) has the following invariants: for i = 1 , . . . ,n

I1i
Δ=(comi < invi) ⇒ Tτi ≤ Ci + Comp(i ,now) + (Hτi − Di)

I2i
Δ=(comi < invi) ⇒ Comp(i ,now) ≤

i−1∑
j=1

((now − (Hτi − Di))/ρj ) × Cj

I3i
Δ=(comi < invi) ⇒ Ci + Comp(i ,now) ≤ Ri

I4i
Δ=invi − 1 ≤ comi ≤ invi

Proof (of Lemma 1). The proof follows the general routine of proving invariants
by showing that each of the I ’s holds initially and is preserved by each allowed
state transition in the program.

It is easy to check that these invariants hold for i = 1 . Assume that they hold
for some i − 1 , where i ≥ 1 . We prove they hold for i .

Take the case when Hτi = Di for the first invocation of τi , that is the execution
of the first invocation of τi . (The proof of the general case is very similar.)

For the special case, the lemma is rewritten as follows:

I1i
Δ=(comi = 0 ) ∧ (invi > 0 ) ⇒ Tτi ≤ Ci + Comp(i ,now)

I2i
Δ=(comi = 0 ) ∧ (invi > 0 ) ⇒ Comp(i ,now) ≤

i−1∑
j=1

(now/ρj ) × Cj

I3i
Δ=(comi = 0 ) ∧ (invi > 0 ) ⇒ Ci + Comp(i ,now) ≤ Ri

I4i
Δ=invi − 1 ≤ comi ≤ invi

where:

Comp(i ,now) =
i−1∑
j=1

invj × Cj −
i−1∑
j=1

(invj − comj ) × (Tτj − now)

Initially, I1i holds as Tτi = Ci . We analyze all possible state transitions allowed
by LHS (9) that may change the states of variables in Comp(i ,now).

Case 1: For j = 1 , . . . , i − 1 , let

A1j
Δ= comi = 0 ∧ inv′j = invj + 1



Real-Time and Fault-Tolerant Systems 213

In this case, I ′
1i is

com′
i = 0 ⇒ Tτi ≤ Ci + Comp(i ,now) + Cj − (Tτj − now)

It is easy to prove that LHS (9) ⇒ �(Cj − (Tτj − now > 0 )). Thus,

I1i ∧ A1j ⇒ I ′
1i

Case 2: For j = 1 , . . . , i − 1 , consider

A2j
Δ=comi = 0 ∧ com′

j = comj + 1 ∧ (T ′
τj

= now + Cj )

By the induction assumption that �(invj −1 ≤ comj ≤ invj ), we know
that I ′

1i is equal to

com′
i = 0⇒Tτi ≤ Ci +

i−1∑
j=1

invj × Cj

−
∑

i>k �=j

(invk − comk ) × (Tτk − now)

Thus, I1i ∧ A2j ⇒ I ′
1i holds.

Case 3: For j = 1 , . . . , i − 1 , define

A3j
Δ= comi = 0 ∧ (comj < invj ) ∧ runj
∧(now′ > now) ∧ T ′

τi
= Tτi + (now′ − now) ∧ ϕ

where

ϕ
Δ=
∧

i>k �=j

(comk < invk ⇔ (T ′
τk

= Tτk + (now′ − now)))

Note that (invk − comk ) = 0 iff ¬(comk < invk ) by the induction
assumption for k < i . Thus, I ′

1i becomes

comi = 0⇒ Tτi + (now′ − now)

≤Ci +
i−1∑
k=1

invk × Ck−∑
i>k �=j

(invk − comk ) × (Tτk − now) − (Tτj − now′)

This is the same as

comi = 0 ⇒ Tτi≤Ci +
i−1∑
k=1

invk × Ck−

i−1∑
k=1

(invk − comk ) × (Tτk − now)

Thus, I1i ∧ A3j ⇒ I ′
1i holds.



214 Z. Liu and M. Joseph

Case 4: Finally consider:

A4
Δ= (comi = 0 ) ∧ runi ∧ ϕ ∧ (now′ > now)

where ϕ is defined as in Case 3, except for j being taken into account.
Then, the same argument as in Case 3 leads to I ′

1i becoming:

comi = 0 ⇒ Tτi≤Ci +
i−1∑
j=1

invj × Cj−

i−1∑
j=1

(invj − comj ) × (Tτj − now)

And I1i ∧ A4 ⇒ I ′
1i holds.

These four cases prove Invariant I1i . The proof for I2i follows from the facts:

now = m × ρj iff invj ≤ (m + 1 ) and invj − comj = 1 and Tτj = now + Cj

and

(now/ρj ) ≥ invj if now = m × ρj + t0 , where 0 < t0 < ρj

To prove that I3i is an invariant, note that MaxTime(Tτi ) requires:

now′ ≤ Tτi ≤ Ci + Comp(i ,now) (12)

For any allowed transition A, assume that Ci + Comp(i ,now) ≤ Ri ∧ A. Then
by I2i and the inequation (12):

Comp(i ,now′) + Ci≤
i−1∑
j=1

(now′/ρj ) × Cj + Ci I2i of the lemma

≤
i−1∑
j=1

((Ci + Comp(i ,now))/ρj ) + Ci inequation (12)

≤
i−1∑
j=1

(Ri/ρj ) × Cj + CiRi Definition of Ri

The general cases for I1i , I2i and I3i can be proved in the same way. From the
assumption that Ri ≤ Di , these three cases together guarantee that �(Tτi ≤ Hτi )
and thus the deadline for the task is always met. This ensures I4i holds. Notice
that I4i is not used in the proof, though I4j , for j = 1 , . . . , i − 1 , are used as the
induction assumption. Therefore, we have proved the Lemma.

The proof of Theorem 1 follows Rule R3 in Section 7.4 in a straightforward way
from this Lemma.



Real-Time and Fault-Tolerant Systems 215

7.13 Discussion

The example in Section 7.9 deals with independent periodic tasks with fixed
priorities. The method in scheduling theory used for these tasks has been ex-
tended to deal with communicating tasks. For example, tasks may communicate
with each other asynchronously through a protected shared object (PSO) [40].
These tasks may be periodic or sporadic. For a scheduler with ceiling priorities,
the worst response time Ri for a task τi can be calculated by the recurrence
relation:

R(k+1 )
i = Bi + Ci +

i−1∑
j=1

(R(k)
i

ρj
) × Cj

where Bi is the worst blocking time for τi by a task of lower priority, and ρj is
minimum inter-arrival time of task τj (which is the period of τj if τj is periodic).

In the feasibility analysis of fault-tolerant real-time tasks [38], the recurrence
relation for the worst response time Ri for a task τi has been extended to deal
with fault-tolerant tasks: by re-execution of the affected task, by forward recov-
ery, by recovery blocks, by checkpointing and backward recovery. In the case
of fault-tolerance by re-execution, the response time Ri for a task τi can be
calculated by the recurrence relation:

R(k+1 )
i = Bi + Ci +

i−1∑
j=1

(R(k)
i

ρj
) × Cj + (R(k)

i

Fj
) × max{Cj 1 ≤ j ≤ i }

where Fj is the minimum time between two occurrences of faults.
The formal method for scheduling analysis presented here can be applied to

communicating, fault-tolerant tasks. This allows us to combine this work with
our previous work on fault-tolerance and real-time [159, 162, 163, 164, 165], which
formally treat re-execution, forward recovery, recovery blocks, and checkpointing
and backward recovery, and provide a means of formally dealing with real-time
program refinement, fault-tolerance and schedulability in a single and consistent
framework.

Exercise 8. A Project for Self Study: Apply the notation and techniques to the
development of the realtime mine pump system described in Section 1 (please
see [39]). Then extend the solution to deal with fault-tolerance (please see Chap-
ter 8 in [39]).

8 Related Work

There have been a number of other approaches to formalising real-time schedul-
ing. Using the Duration Calculus [262], Zhou Chaochen et al [261, 260] have also
separately specified a scheduler and a scheduled program. However, the Duration
Calculus does not at present have powerful verification tools for proving program



216 Z. Liu and M. Joseph

refinement. It would be useful to unify the theories of Linear Temporal Logics
and Duration Calculus for the specification and analysis of real-time systems.
Work in this direction is making slow progress [170, 55, 56].

The work in [173] describes a case study using a scheduling-oriented model
for real-time systems called TAM. The work of [91] extends Back’s action sys-
tems [15] with timing and priorities and uses the Z notation for specification
and refinement. The models used there appear to be more complicated than is
necessary. For example, priorities and scheduling can be defined using only sim-
ple state variables and standard actions, as we have shown here, and complex
models and structures are not needed.

Using timed CCS, [126, 127] deals with dynamic scheduling in the presence of
faults by modelling resources and schedulers as processes. This serves well as a
model but event-based process algebras tend to have a very different syntax to
most traditional programming languages; it is possible to consider extensions to
this work which make use of persistent timers and this would enable pre-emption
to be modelled. The similar approach should also be applicable to the frame-
work of CSP presented in Chapter 3 of this volume. For example, [204] deals with
physical faults and verification of fault-tolerance by using the notation of CSP.
As in our earlier work [169], these approaches use volatile time bounds (either
explicitly or implicitly) for both program verification and scheduling analysis.
When dealing with pre-emption (interruption) in real-time scheduling, the use
of volatile time bounds requires a scheduled action to be explicitly divided into
smaller actions (or steps) between whose execution pre-emption can occur. The
atomicity of the original action has to be preserved and this requires the intro-
duction of auxiliary internal variables. The feasibility of the implementation is
established by reasoning about this step-level program. The use of these devices
makes it difficult to reason about and make formal use of the methods and re-
sults from scheduling theory, especially as this does in fact make (informal) use
of the accumulated execution time of tasks.

Another approach to the verification of schedulability uses algorithms for com-
puting quantitative information of an implementation, such as the lower bound
and upper bound on the delay between two (or two sets of) states [44, 43]. The
quantitative information is then used to determine the feasibility of the imple-
mentation and to verify other timing properties using symbolic model checking
techniques [184]. There are some significant differences between that work and
what we have described:

1. The algorithms and the model-checking procedures described in [44] work
effectively with a discrete time domain and a finite-state system; in contrast,
in our analysis time is modelled by the reals and systems may have a finite
or an infinite set of states.

2. Our framework allows program development through refinement to be inte-
grated with scheduling theory so that the methods and results from the latter
can be formal interpreted, verified and used correctly. [44] uses a schedul-
ing algorithm to obtain an implementation and then tests for schedulability.
There is no verification of whether a theorem in scheduling theory is valid for



Real-Time and Fault-Tolerant Systems 217

the program model used (compare this with Section 7.9). In fact, application
of Theorem 1 and the recurrence relation 8 to the Aircraft Control System
example of [44, 43] leads directly to the same feasibility conclusion obtained
there.

3. Compared with the work in [44, 43] which concentrates on timing aspects,
this treatment deals with the much wider range of inter-related issues of
concurrency, timing, fault-tolerance and schedulability, as well as refinement
techniques for fault-tolerant and real-time programs. We also show how fault-
tolerance affects schedulability in real-time applications.

In general, model checking techniques are especially effective and necessary in
many safety-critical applications (please see Chapter 8 of this book on Model
Checking). However, their general applicability has been restricted by questions
of undecidability [9] and by complexity issues [7], especially for systems using
a continuous time domain. These problems are very much more serious when
both fault-tolerance and real-time have to be considered. Model-checking and
the more general verification methods used here are complementary and neither
can be totally replaced by the other. We recognize a role for model-checking as
a decision procedure in a proof-checker, to be applied when possible.

It is usually impossible to give an exact prediction for the occurrence of faults
in a program execution, or to achieve one hundred per cent fault-tolerance.
Therefore, fault-tolerance is often addressed with the concepts of dependability
and reliability. The occurrence of faults is associated with a probability distri-
bution and verification of fault-tolerance is thus related to the calculation of
reliability based on the probability distribution. There is no much work on for-
mal models to support effective reasoning about reliability. We believe interesting
work can be done by combining the model in this chapter with that of Chapter 4
on Probability. The idea of Unifying Theories of Programming in [117] will be
very useful for this combination.

9 Conclusions

Formal development and verification of a real-time program requires a logical
structure in which functional and timing properties of the program can be spec-
ified and reasoned about. In many practical cases, such programs are executed
under a scheduler whose actions control the program’s execution and thus its
timing properties. A program is also often executed on a failure-prone system
and thus fault-tolerance is needed. However, fault-tolerance and schedulabil-
ity affect each other and they both affect the functionality and timing of the
program. This chapter presents a framework which we believe is suitable for a
coherent understanding of the relationship between theories of concurrency, real-
time, fault-tolerance and schedulablity analysis; and for formal and systematic
development of safety and/or timing critical computer systems.

Scheduling theory provides powerful techniques for determining the timing
properties of a restricted class of real-time programs; however, it does not provide
any means of verifying functional properties. Such methods must be augmented



218 Z. Liu and M. Joseph

by more traditional program verification techniques, but these use a different
analytical framework, making it hard to relate the results in a rigorous way.
This is particularly important when mechanized verification is to be performed
and the program’s properties certified, as is necessary in many safety-critical
applications.

In a separate paper [169], we showed how the schedulability of a real-time
program could be established using techniques very similar to those used here.
An important observation that can be made about that work is that to simplify
verification it is useful to reduce the number of actions by specifying them at as
high a level as possible. However, for accurate verification of timing properties it
is necessary to have a fine level of granularity in the time bounds for each action
and each deadline: this requires specifying actions at as low a level as possible,
so that pre-emption can be precisely modelled and the timing properties related
to those obtained from scheduling theory.

We address this issue in this chapter by providing two kinds of timers: volatile
timers that record times for which actions are continuously enabled, and per-
sistent timers that sum the duration for which actions are executed. The use of
persistent timers allows the timing effects of lower-level actions, like pre-emption,
to be considered abstractly and at a higher-level. It no longer matters exactly
when an action is pre-empted: what is important is the time for which it executed
before pre-emption and the time for which it is pre-empted. Thus an action may
be pre-empted a number of times and still make use of a single timer to record
its timing properties.

The use of two kinds of timers solves a problem that has been the cause of a
major restriction in the application of formal verification methods in the valida-
tion of real-time programs. It makes it feasible to use automated verification for
such programs at the specification level, allowing timing properties to be consid-
ered well before the details of the implementation have been finalised. Naturally,
once the implementation is complete, scheduling analysis will still be required
to validate and provide independent certification of the timing properties.

The method presented in this chapter is independent of a programming lan-
guage. Also, both the program and the scheduler specifications can be refined,
with feasibility and correctness being preserved at each step. This has the great
advantage that proving feasibility does not first require the code of the program
to be developed.

There are many advantages to using a single, consistent treatment of fault-
tolerance, timing and schedulability. Not only does it allow a unified view to be
taken of the functional and non-functional properties of programs and a simple
transformational method to be used to combine these properties, it also makes
it possible to use a uniform method of verification. Verification of schedulabil-
ity within a proof framework will inevitably be more cumbersome than using
a simple schedulability test from scheduling theory. However, the use of a com-
mon framework means that during formal verification, the test for schedulability
can be defined as a theorem whose verification is not actually done within the



Real-Time and Fault-Tolerant Systems 219

proof theory but instead by invoking an oracle or decision procedure which uses
scheduling theory for rapid analysis.

The plan of our future work includes the combination of the techniques pre-
sented in this chapter with those developed in our recent work on object-oriented
and component based systems [129, 160]. We hope such a combination will lead to
a multi-view and multi-notational framework for modelling, design, analysis and
verification of real-time and fault-tolerant systems at different levels of abstrac-
tion. It will also support transformational, incremental and iterative development
[161, 258] aided with transformation and verification tools [154, 171, 241].



A Tutorial Introduction to CSP in
Unifying Theories of Programming

Ana Cavalcanti and Jim Woodcock

Department of Computer Science
University of York

York, UK

In their Unifying Theories of Programming (UTP), Hoare & He use the alphabet-
ised relational calculus to give denotational semantics to a wide variety of con-
structs taken from different programming paradigms. In this chapter, we give a
tutorial introduction to the semantics of CSP processes, as presented in Chapter
3. We start with a summarised introduction of the alphabetised relational cal-
culus and the theory of designs, which are pre-post specifications in the style of
specification statements. Afterwards, we present in detail a theory for reactive
processes. Later, we combine the theories of designs and reactive processes to
provide the model for CSP processes. Finally, we compare this new model with
the standard failures-divergences model for CSP.

In the next section, we give an overview of the UTP, and in Section 2 we
present its most general theory: the alphabetised predicates. In the following
section, we establish that this theory is a complete lattice. Section 4 restricts the
general theory to designs. Section 5 presents the theory of reactive processes;
Section 6 contains our treatment of CSP processes; and Section 7 relates our
model to Roscoe’s standard model. We summarise the work in Section 8.

1 Introduction

The book by Hoare & He [117] sets out a research programme to find a common
basis in which to explain a wide variety of programming paradigms: unifying
theories of programming (UTP). Their technique is to isolate important language
features, and give them a denotational semantics. This allows different languages
and paradigms to be compared.

The semantic model is an alphabetised version of Tarski’s relational calculus,
presented in a predicative style that is reminiscent of the schema calculus in
the Z [257] notation. Each programming construct is formalised as a relation
between an initial and an intermediate or final observation. The collection of
these relations forms a theory of the paradigm being studied, and it contains
three essential parts: an alphabet, a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the the-
ory being studied. Names are chosen for any relevant external observations of
behaviour. For instance, programming variables x , y, and z would be part of
the alphabet. Also, theories for particular programming paradigms require the
observation of extra information; some examples are a flag that says whether

, LNCS 3167, pp. 220–268, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004



A Tutorial Introduction to CSP in Unifying Theories of Programming 221

the program has started (okay); the current time (clock); the number of avail-
able resources (res); a trace of the events in the life of the program (tr); or a
flag that says whether the program is waiting for interaction with its environ-
ment (wait). The signature gives the rules for the syntax for denoting objects
of the theory. Healthiness conditions identify properties that characterise the
theory.

Each healthiness condition embodies an important fact about the computa-
tional model for the programs being studied.

Example 1 (Healthiness conditions).

1. The variable clock gives us an observation of the current time, which moves
ever onwards. The predicate B specifies this.

B =̂ clock ≤ clock ′

If we add B to the description of some activity, then the variable clock
describes the time observed immediately before the activity starts, whereas
clock ′ describes the time observed immediately after the activity ends. If we
suppose that P is a healthy program, then we must have that P ⇒ B .

2. The variable okay is used to record whether or not a program has started.
A sensible healthiness condition is that we should not observe a program’s
behaviour until it has started; such programs satisfy the following equation.

P = (okay ⇒ P)

If the program has not started, its behaviour is not restricted.

Healthiness conditions can often be expressed in terms of a function φ that makes
a program healthy. There is no point in applying φ twice, since we cannot make a
healthy program even healthier. Therefore, φ must be idempotent, and a healthy
P must be a fixed point: P = φ(P); this equation characterises the healthiness
condition. For example, we can turn the first healthiness condition above into an
equivalent equation, P = P ∧ B , and then the following function on predicates
andB =̂ λX • X ∧ B is the required idempotent.

The relations are used as a semantic model for unified languages of specifi-
cation and programming. Specifications are distinguished from programs only
by the fact that the latter use a restricted signature. As a consequence of this
restriction, programs satisfy a richer set of healthiness conditions.

Unconstrained relations are too general to handle the issue of program ter-
mination; they need to be restricted by healthiness conditions. The result is the
theory of designs, which is the basis for the study of the other programming
paradigms in [117]. Here, we present the general relational setting, and the tran-
sition to the theory of designs. Next we take a different tack, and introduce the
theory of reactive processes, which we then combine with designs to form the
theory of CSP [115, 225].



222 A. Cavalcanti and J. Woodcock

2 The Alphabetised Relational Calculus

The alphabetised relational calculus is similar to Z’s schema calculus, except that
it is untyped and rather simpler. An alphabetised predicate (P ,Q , . . . , true) is
an alphabet-predicate pair, where the predicate’s free variables are all members
of the alphabet. Relations are predicates in which the alphabet is composed
of undecorated variables (x , y, z , . . . ) and dashed variables (x ′, a′, . . . ); the
former represent initial observations, and the latter, observations made at a
later intermediate or final point.

The alphabet of an alphabetised predicate P is denoted αP , and may be di-
vided into its before-variables (inαP) and its after-variables (outαP). A homoge-
neous relation has outαP = inαP ′, where inαP ′ is the set of variables obtained
by dashing all variables in the alphabet inαP . A condition (b, c, d , . . . , true) has
an empty output alphabet.

Standard predicate calculus operators can be used to combine alphabetised
predicates. Their definitions, however, have to specify the alphabet of the com-
bined predicate. For instance, the alphabet of a conjunction is the union of
the alphabets of its components: α(P ∧ Q) = αP ∪ αQ . If a variable is men-
tioned in the alphabet of P and Q , then they are both constraining the same
variable.

A distinguishing feature of the UTP is its concern with program development,
and consequently program correctness. A significant achievement is that the
notion of program correctness is the same in every paradigm in [117]: in every
state, the behaviour of an implementation implies its specification.

If we suppose that αP = {a, b, a′, b′}, then the universal closure of P is simply
∀ a, b, a′, b′ • P , which is more concisely denoted as [P ]. The correctness of a
program P with respect to a specification S is denoted by S � P (S is refined
by P), and is defined as follows.

S � P iff [P ⇒ S ]

Example 2 (Refinement). Suppose we have the specification x ′ > x ∧ y ′ = y,
and the implementation x ′ = x + 1 ∧ y ′ = y. The implementation’s correctness
can be argued as follows.

x ′ > x ∧ y ′ = y � x ′ = x + 1 ∧ y ′ = y �
= [ x ′ = x + 1 ∧ y ′ = y ⇒ x ′ > x ∧ y ′ = y ] universal one-point rule, twice
= [ x + 1 > x ∧ y = y ] arithmetic and reflection
= true

And so, the refinement is valid.

As a first example of the definition of a programming constructor, we consider
conditionals. Hoare & He use an infix syntax for the conditional operator, and
define it as follows.



A Tutorial Introduction to CSP in Unifying Theories of Programming 223

P � b � Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ
α(P � b � Q) =̂ αP

Informally, P � b � Q means P if b else Q .
The presentation of conditional as an infix operator allows the formulation

of many laws in a helpful way. Below, we reproduce some of the laws presented
in [117].

L1 P � b � P = P idempotence

L2 P � b � Q = Q � ¬ b � P symmetry

L3 (P � b � Q) � c � R = P � b ∧ c � (Q � c � R) associativity

L4 P � b � (Q � c � R) = (P � b � Q) � c � (P � b � R)distributivity

L5 P � true � Q = P = Q � false � P unit

L6 P � b � (Q � b � R) = P � b � R unreachable-branch

L7 P � b � (P � c � Q) = P � b ∨ c � Q disjunction

L8 (P * Q) � b � (R * S ) = (P � b � R) * (Q � b � S ) interchange

In Law L8, the symbol * stands for any truth-functional operator.
For each operator, Hoare & He give a definition followed by a number of

algebraic laws as those above. These laws can be proved from the definition;
proofs omitted here can be found in [117] or [256]. We also present extra laws
that are useful in later proofs, as well as in illuminating the theory. We give
the laws presented in [117] that we reproduce here the same labels used in that
original work: L1, L2 and so on. The extra laws that we present are numbered
independently.

Since a conditional is just an abbreviation for a predicate, for reasoning, we
can use laws that combine programming and predicate calculus operators. An
example is our first law below, which states that negating a conditional negates
its operands, but not its condition.

Law 60 (not-conditional). ¬ (P � b � Q) = (¬ P � b � ¬ Q)

Proof.

¬ (P � b � Q) conditional
= ¬ ((b ∧ P) ∨ (¬ b ∧ Q)) propositional calculus
= (b ⇒ ¬ P) ∧ (¬ b ⇒ ¬ Q) propositional calculus
= (b ∧ ¬ P) ∨ (¬ b ∧ ¬ Q) conditional
= (¬ P � b � ¬ Q)

If we apply the law of symmetry to the last result, we see that negating a
conditional can be used to negate its condition, but in this case, the operands
must be both negated and reversed: ¬ (P � b � Q) = (¬ Q � ¬ b � ¬ P).
Even though it does not make sense to use negation in a program, for reasoning,
the flexibility is very convenient.



224 A. Cavalcanti and J. Woodcock

Below is an instance of Law L8 with a compound truth-functional operator.

Law 61 (conditional-and-not-conditional).

(P � b � Q) ∧ ¬ (R � b � S ) = (P ∧ ¬ R) � b � (Q ∧ ¬ S )

Proof.

(P � b � Q) ∧ ¬ (R � b � S ) Law 60
= (P � b � Q) ∧ (¬ R � b � ¬ S ) L8
= (P ∧ ¬ R) � b � (Q ∧ ¬ S ))

As a consequence of the interchange (L8) and unit (L1) laws, any boolean
operator distributes through the conditional.

Law 62 (*-conditional).

(P * (Q � b � R)) = ((P * Q) � b � (P * R))
((P � b � Q) * R) = ((P * R) � b � (Q * R))

The details of this simple proof and of others omitted in the sequel are left as
exercises. We include here only proofs for the more surprising laws or proofs that
perhaps require more elaborate arguments.

Exercise 1. Prove Law 62.

A conditional may be simplified by using a known condition.

Law 63 (known-condition).

b ∧ (P � b � Q) = (b ∧ P)
¬ b ∧ (P � b � Q) = (¬ b ∧ Q)

Two absorption laws allow a conditional’s operands to be simplified.

Law 64 (assume-if-condition). (P � b � Q) = ((b ∧ P) � b � Q)

Law 65 (assume-else-condition). (P � b � Q) = (P � b � (¬ b ∧ Q))

Sequence is modelled as relational composition. Two relations may be composed
providing the output alphabet of the first is the same as the input alphabet of
the second, except only for the use of dashes.

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0 ) ∧ Q(v0 ) if outαP = inαQ ′ = {v ′}
inα(P(v ′) ; Q(v)) =̂ inαP
outα(P(v ′) ; Q(v)) =̂ outαQ

Sequence is associative and distributes backwards through the conditional.

L1 P ; (Q ; R) = (P ; Q) ; R associativity

L2 (P � b � Q) ; R = ((P ; R) � b � (Q ; R)) left-distribution



A Tutorial Introduction to CSP in Unifying Theories of Programming 225

The definition of assignment is basically equality; we need, however, to be careful
about the alphabet. If A = {x , y, . . . , z} and αe ⊆ A, where αe is the set of free
variables of the expression e, the assignment x :=A e of expression e to variable
x changes only x ’s value.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z )
α(x :=A e) =̂ A ∪ A′

There is a degenerate form of assignment that changes no variable: it has the
following definition.

II A =̂ (v ′ = v) if A = {v}
α II A =̂ A ∪ A′

Here, v stands for a list of observational variables. We use v ′ = v to denote the
conjunction of equalities x ′ = x , for all x in v . When clear from the context, we
omit the alphabet of assignments and II .

II is the identity of sequence.

L5 P ; II αP = P = II αP ; P unit

Since sequence is defined in terms of the existential quantifier, there are two one-
point laws. We prove one of them; the proof of the other is a simple exercise.

Law 66 (left-one-point). (v ′ = e) ; P = P [e/v ]
provided αP = {v , v ′} and v ′ is not free in e.

Law 67 (right-one-point). P ; (v = e) = P [e/v ′]
provided αP = {v , v ′} and v is not free in e.

Proof.

P ; v = e sequence
= ∃ v0 • P [v0/v ′] ∧ (v = e)[v0 /v ] substitution
= ∃ v0 • P [v0/v ′] ∧ (v0 = e) predicate calculus and v not free in e
= P [v0/v ′][e/v0 ] substitution
= P [e/v ′]

Exercise 2. Prove Law L7 above.

In theories of programming, nondeterminism may arise in one of two ways: either
as the result of run-time factors, such as distributed processing; or as the under-
specification of implementation choices. Either way, nondeterminism is modelled
by choice; the semantics is simply disjunction.

P � Q =̂ P ∨ Q if αP = αQ
α(P � Q) =̂ αP

The alphabet must be the same for both arguments.



226 A. Cavalcanti and J. Woodcock

Variable blocks are split into the commands var x , which declares and intro-
duces x in scope, and end x , which removes x from scope. Their definitions are
presented below, where A is an alphabet containing x and x ′.

var x =̂ (∃ x • II A )

end x =̂ (∃ x ′ • II A )

α(var x ) =̂ A \ {x}

α( end x ) =̂ A \ {x ′}

The relation var x is not homogeneous, since it does not include x in its alphabet,
but it does include x ′; similarly, end x includes x , but not x ′.

The results below state that following a variable declaration by a program Q
makes x local in Q ; similarly, preceding a variable undeclaration by a program
Q makes x ′ local.

(var x ; Q ) = (∃ x • Q )

(Q ; end x ) = (∃ x ′ • Q )

More interestingly, we can use var x and end x to specify a variable block.

(var x ; Q ; end x ) = (∃ x , x ′ • Q )

In programs, we use var x and end x paired in this way, but the separation is
useful for reasoning.

Exercise 3. Prove the above equality.

Variable blocks introduce the possibility of writing programs and equations
like that below.

(var x ; x := 2 ∗ y ; w := 0 ; end x )
= (var x ; x := 2 ∗ y ; end x ) ; w := 0

Clearly, the assignment to w may be moved out of the scope of the declaration
of x , but what is the alphabet in each of the assignments to w? If the only
variables are w , x , and y, and A = {w , y,w ′, y ′}, then the assignment on the
right has the alphabet A; but the alphabet of the assignment on the left must
also contain x and x ′, since they are in scope. There is an explicit operator for
making alphabet modifications such as this: alphabet extension.

P+x =̂ P ∧ x ′ = x for x , x ′ 	∈ αP
α(P+x ) =̂ αP ∪ {x , x ′}

In our example, if the right-hand assignment is P =̂ w :=A 0 , then the left-hand
assignment is denoted by P+x .



A Tutorial Introduction to CSP in Unifying Theories of Programming 227

The next programming operator of interest is recursion. We define it in the
next section, where we explain that the UTP general theory of relations is a
complete lattice, a notion introduced in Chapter 0.

3 The Complete Lattice

As already explained in Chapter 0, the refinement ordering is a partial order: re-
flexive, anti-symmetric, and transitive; this also holds for refinement as defined
in the UTP. Moreover, the set of alphabetised predicates with a particular alpha-
bet A is a complete lattice under the refinement ordering. Its bottom element is
denoted ⊥A, and is the weakest predicate true; this is the program that behaves
quite arbitrarily. The top element is denoted +A, and is the strongest predicate
false; this is the program that performs miracles and implements every speci-
fication (see Chapter 0). These properties of abort and miracle are captured in
the following two laws, which hold for all P with alphabet A.

L1 ⊥A � P bottom-element

L2 P � +A top-element

The least upper bound is not defined in terms of the relational model, but by the
Law L1 below; this is because, in general, it is not possible to give such definition.
Fortunately, this law indirectly specifies the least upper bound operator; alone,
it is enough to prove Laws L1A and L1B, which are actually more useful in
proofs.

L1 P � (�S ) iff (P � X for all X in S ) unbounded-nondeterminism

L1A (� S ) � X for all X in S lower-bound

L1B if P � X for all X in S , then P � (� S ) greatest-lower-bound

These laws characterise basic properties of least upper bounds. In particular,
Law L1B is simply L1, from right to left.

A function F is monotonic if, and only if, P � Q ⇒ F (P) � F (Q). Operators
like conditional and sequence are monotonic; negation is not. There is a class
of operators that are all monotonic: the disjunctive operators. For example,
sequence is disjunctive in both arguments.

L6 (P � Q) ; R = (P ; R) � (Q ; R) sequence-�-left-distribution

L7 P ; (Q � R) = (P ; Q) � (P ; R) sequence-�-right-distribution

Exercise 4. Prove Law L6 above.

Since alphabetised relations form a complete lattice, every construction defined
solely using monotonic operators has a fixed point (see Chapter 1, Section 8).
Even more, a result by Tarski says that the set of fixed points is a complete



228 A. Cavalcanti and J. Woodcock

lattice. The extreme points in this lattice are often of interest; for example, + is
the strongest fixed point of X = X ; P , and ⊥ is the weakest.

The weakest fixed point of the function F is denoted by μF , and is simply
the greatest lower bound (the weakest) of all the fixed points of F .

μF =̂ �{X | F (X ) � X }

The strongest fixed point νF is the dual of the weakest fixed point.
Hoare & He use weakest fixed points to define recursion. They write a re-

cursive program as μX • C(X ), where C(X ) is a predicate that is constructed
using monotonic operators and the variable X . As opposed to the variables in
the alphabet, X stands for a predicate itself, and we call it the recursive vari-
able. Intuitively, occurrences of X in C stand for recursive calls to C itself. The
definition of recursion is as follows.

μX • C(X ) =̂ μF where F =̂ λ X • C(X )

The standard laws that characterise weakest fixed points are valid.

L1 μF � Y if F (Y ) � Y weakest-fixed-point

L2 F (μ F ) = μF fixed-point

Law L1 establishes that μF is weaker than any fixed point; L2 states that μF
is itself a fixed point. From a programming point of view, L2 is just the copy
rule.

The while loop is written b ∗P : while b is true, execute the program P . This
can be defined in terms of the weakest fixed point of a conditional expression.

b ∗ P =̂ μX • ( (P ; X ) � b � II )

Example 3 (Non-termination). If b always remains true, then obviously the loop
b ∗P never terminates, but what is the semantics for this? The simplest example
of such an iteration is true ∗ II , which has the semantics μX • X .

μX • X least fixed point

= �{Y | (λ X • X )(Y ) � Y } function application

= �{Y | Y � Y } reflexivity of �
= �{Y | true } property of �
= ⊥

Exercise 5. Convince yourself that true ∗ II = μX • X using the laws presented
so far.

Surprisingly, it is possible to use the result Example 3 to show that a program
may be able to recover from a non-terminating loop!



A Tutorial Introduction to CSP in Unifying Theories of Programming 229

Example 4 (Aborting loop). Suppose that the sole state variable is x and that c
is a constant.

(true ∗ II ) ; x := c Example 3
= ⊥ ; x := c ⊥
= true ; x := c assignment
= true ; x ′ = c sequence
= ∃ x0 • true ∧ x ′ = c predicate calculus
= x ′ = c assignment
= x := c

Example 4 is rather disconcerting: in ordinary programming, there is no recov-
ery from a non-terminating loop. It is the purpose of designs to overcome this
deficiency in the programming model.

4 Designs

The problem pointed out above in Section 3 can be explained as the failure of
general alphabetised predicates P to satisfy the equation below.

true ; P = true

We presented in Example 4 a program consisting of a non-terminating loop fol-
lowed by an assignment, and whose overall behaviour was to ignore the loop
and execute the assignment. This is not how programs work in practice. The
solution to this problem is to consider a subset of the alphabetised predicates
in which a particular observational variable, called okay, is used to record infor-
mation about the start and termination of programs. The above equation holds
for predicates P in this set. As an aside, note that false cannot possibly belong
to this set, since true ; false = false.

The predicates in this subset are called designs. They can be split into precond-
ition-postcondition pairs, and are a basis for unifying languages and methods like
B [3], VDM [134], Z [257], and refinement calculi [192, 17, 199]. They are similar
to the specification statements introduced in Chapter 0.

In designs, okay records that the program has started, and okay ′ that it has
terminated. In implementing a design, we may assume that the precondition
holds, but we have to fulfill the postcondition. In addition, we can rely on the
program being started, but we must ensure that it terminates. If the precondition
does not hold, or the program does not start, we are not committed to establish
the postcondition nor even to make the program terminate.

A design with precondition P and postcondition Q is written (P $ Q ). It is
defined as follows.

(P $ Q ) =̂ ( okay ∧ P ⇒ okay ′ ∧ Q )

If the program starts in a state satisfying P , then it will terminate, and on
termination Q will be true.



230 A. Cavalcanti and J. Woodcock

Example 5 (Pre-post specifications). Suppose that we have a program with state
variables x and y, and we want to specify that, providing that x is strictly pos-
itive, x must be decreased whilst y is kept constant. The design that formalises
this is

x > 0 $ x ′ < x ∧ y ′ = y

This is more or less the same in Morgan’s refinement calculus, where the speci-
fication statement below could be used.

x : [ x > 0 , x < x0 ]

Notice how the postcondition uses different conventions for distinguishing be-
tween before and after variables; also notice that the specification is prefixed
with a frame listing the variables that are permitted to change in order to sat-
isfy the postcondition.

Abort and miracle are defined as designs in the following examples. Abort has
precondition false: it is never guaranteed to terminate.

Example 6 (Abort).

false $ false design
= okay ∧ false ⇒ okay ′ ∧ false false zero for conjunction
= false ⇒ okay ′ ∧ false vacuous implication
= true vacuous implication
= false ⇒ okay ′ ∧ true false zero for conjunction
= okay ∧ false ⇒ okay ′ ∧ true design
= false $ true

Miracle has precondition true, and establishes the impossible: false.

Example 7 (Miracle).

true $ false design
= okay ∧ true ⇒ okay ′ ∧ false true unit for conjunction
= okay ⇒ false contradiction
= ¬ okay

Exercise 6. Prove that abort is refined by every other design, and that every
design is refined by miracle.

In VDM, B, and the refinement calculus, a pre-post specification may be refined
by weakening the precondition. This refinement step improves the specification,
since there are some states in which execution of the original specification leads
to abortion, but execution of the resulting specification has a well-defined be-
haviour.

A pre-post specification may also be refined by strengthening the postcon-
dition. Again, this is an improvement, since more is known about the result.



A Tutorial Introduction to CSP in Unifying Theories of Programming 231

Example 8 (Refining designs). In Example 5, the design aborts unless x > 0 ;
we can improve this by requiring it to work when x = 0 . This weakens the
precondition, since x > 0 ⇒ x ≥ 0 . The design requires that the after-value
of x should be strictly less than the before-value of x . We can strengthen this
by saying how much smaller it should be. For instance, we could require that
x ′ = x − 1 . Moreover, we can weaken the precondition and strengthen the
postcondition simultaneously. For example, the design below is a refinement of
that in Example 5.

x ≥ 0 $ (x > 0 ⇒ x ′ = 0 ) ∧ (x = 0 ⇒ x ′ = 1 )

The behaviour for x = 0 is not related to that for when x > 0 . This is an im-
provement in the sense that, within the old precondition, the new postcondition
is stronger than the old postcondition.

We saw earlier that refinement between relations is just reverse implication; since
designs are a special case of relations, it would be nice if the notion of refinement
did not change. A reassuring result is that refinement of designs in the relational
sense does amount to either weakening the precondition, or strengthening the
postcondition in the presence of the precondition as expected. This is established
by the result below.

Law 68 (refinement-of-designs).

P1 $ Q1 � P2 $ Q2 = [P1 ∧ Q2 ⇒ Q1 ] ∧ [P1 ⇒ P2 ]

Proof.

P1 $ Q1 � P2 $ Q2 �
= [ (P2 $ Q2 ) ⇒ (P1 $ Q1 ) ] definition of design, twice
= [ ( okay ∧ P2 ⇒ okay ′ ∧ Q2 ) ⇒ ( okay ∧ P1 ⇒ okay ′ ∧ Q1 ) ]

case split okay
= [ (P2 ⇒ okay ′ ∧ Q2 ) ⇒ (P1 ⇒ okay ′ ∧ Q1 ) ] case split okay ′

= [ (¬ P2 ⇒ ¬ P1 ) ∧ ( (P2 ⇒ Q2 ) ⇒ (P1 ⇒ Q1 ) ) ]
propositional calculus

= [ (P1 ⇒ P2 ) ∧ ( (P2 ⇒ Q2 ) ⇒ (P1 ⇒ Q1 ) ) ] predicate calculus
= [P1 ⇒ P2 ] ∧ [P1 ∧ Q2 ⇒ Q1 ]

Exercise 7. Use Law 68 to prove the refinements in Example 8.

Sometimes, we need to refer to the precondition in the postcondition; this is
called exporting the precondition.

Lemma 1 (export-precondition).

(P $ Q) = (P $ P ∧ Q)



232 A. Cavalcanti and J. Woodcock

Proofs of this lemma and of some our other lemmas and theorems can be found
in Appendix B. They are usually results stated, but possibly not proved in [117],
and results that we need in the proofs of our laws.

The most important result in the theory of designs, however, is that abort is
a zero for sequence. This was, after all, the whole point for the introduction of
designs. First, we introduce a lemma relating designs and abort.

Lemma 2 (design-abort). When a design has not started (¬ okay), it offers
no guarantees.

(P $ Q)[false/okay] = true

This result holds for miracle as well, because even miracle cannot help if it does
not start.

The left-zero law now follows from this lemma, since one possibility for abort
is to make okay ′ false. If this is followed by a design, then the design will attempt
to start in a state with okay false, and Lemma 2 will be relevant.

L1 true ; (P $ Q) = true left-zero

Proof.

true ; (P $ Q) sequence
= ∃ okay0 , v0 • true[okay0 , v0/okay ′, v ′] ∧ (P $ Q)[okay0 , v0/okay, v ]

predicate calculus
= ∃ okay0 • ∃ v0 • true[okay0 /okay ′][v0/v ′] ∧ (P $ Q)[okay0 /okay][v0 /v ]

sequence
= ∃ okay0 • true[okay0 /okay ′] ; (P $ Q)[okay0 /okay] case split okay0

= true[true/okay ′] ; (P $ Q)[true/okay] ∨
true[false/okay ′] ; (P $ Q)[false/okay]

substitution, design-abort

= true ; (P $ Q)[true/okay] ∨ true ; true relational calculus
= true

In this new setting, it is necessary to redefine assignment and II , as those intro-
duced previously are not designs.

(x := e) =̂ ( true $ x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z )

II D =̂ ( true $ II )

Their existing laws hold, but it is necessary to prove them again, as their defi-
nitions have changed.

L2 (v := e ; v := f (v)) = (v := f (e)) assignment-composition

L3 (v := e ; (P � b(v) � Q)) = ((v := e ; P) � b(e) � (v := e ; Q))

assignment-conditional-left-distribution

L4 ( II D ; (P $ Q)) = (P $ Q) left-unit



A Tutorial Introduction to CSP in Unifying Theories of Programming 233

Proof of L2.

v := e ; v := f (v) assignment, twice
= ( true $ v ′ = e ) ; ( true $ v ′ = f (v) ) sequence,case split okay0

= ( ( true $ v ′ = e )[true/okay ′] ; ( true $ v ′ = f (v) )[true/okay] ) ∨
¬ okay ; true design

= ( ( okay ⇒ v ′ = e ) ; ( okay ′ ∧ v ′ = f (v) ) ) ∨ ¬ okay relational calculus
= okay ⇒ ( v ′ = e ; ( okay ′ ∧ v ′ = f (v) ) ) assignment composition
= okay ⇒ okay ′ ∧ v ′ = f (e) design
= ( true $ v ′ = f (e) ) assignment
= v := f (e)

When program operators are applied to designs, the result is also a design. This
follows from the laws below, for choice, conditional, sequence, and recursion.
These are stated in [117] as theorems. We label them T1, T2, and T3, and add
a simplified version of T3, which is mentioned in [117] and we call T3′.

A choice between two designs is guaranteed to terminate when they both do;
since either of them may be chosen, either postcondition may be established.

T1 ( (P1 $ Q1 ) � (P2 $ Q2 ) ) = (P1 ∧ P2 $ Q1 ∨ Q2 )

Exercise 8. Prove Law T1.

If the choice between two designs depends on a condition b, then so do the
precondition and postcondition of the resulting design.

T2 ( (P1 $ Q1 ) � b � (P2 $ Q2 ) ) = ((P1 � b � P2 ) $ (Q1 � b � Q2 ) )

A sequence of designs (P1 $ Q1 ) and (P2 $ Q2 ) terminates when P1 holds (that
is, ¬ (¬ P1 ; true)), and Q1 is guaranteed to establish P2 (¬ (Q1 ; ¬ P2 )). On
termination, the sequence establishes the composition of the postconditions.

T3 ( (P1 $ Q1 ) ; (P2 $ Q2 ) )
= ( (¬ (¬ P1 ; true) ∧ ¬ (Q1 ; ¬ P2 )) $ (Q1 ; Q2 ) )

We have said nothing in our discussion of designs that requires a precondition
to be a simple condition rather than a relation, and this fact complicates the
statement of Law T3; if P1 actually is a condition, then ¬ (¬ P1 ; true) can be
simplified.

T3′ ( (p1 $ Q1 ) ; (P2 $ Q2 ) ) = ( (p1 ∧ ¬ (Q1 ; ¬ P2 )) $ (Q1 ; Q2 ) )

To understand the simplification, consider the following lemma.

Lemma 3 (condition-right-unit). Abort is a right-unit for conditions.

p ; true = p



234 A. Cavalcanti and J. Woodcock

A dual result is that abort is a left-unit for conditions on after-states: that is,
(true ; p′) = p′. We give two last results of this kind before we move on.

Lemma 4 (abort-condition).

true ; p = ∃ v • p

A special case of this lemma involves okay or, more generally, any boolean vari-
able used as a condition.

Lemma 5 (abort-boolean). Provided b is a boolean variable,

true ; b = true

A recursively defined design has as its body a function on designs; as such, it
can be seen as a function on pre-post pairs (X ,Y ). Moreover, since the result
of the function is itself a design, it can be written in terms of a pair of functions
F and G, one for the precondition and one for the postcondition.

As the recursive design is executed, the precondition F is required to hold
over and over again. The strongest recursive precondition so obtained has to
be satisfied, if we are to guarantee that the recursion terminates. Similarly, the
postcondition is established over and over again, in the context of the precon-
dition. The weakest result that can possibly be obtained is that which can be
guaranteed by the recursion.

T4 (μX ,Y • (F (X ,Y ) $ G(X ,Y ) ) ) = (P(Q) $ Q )
where P(Y ) = ( νX • F (X ,Y ) ) and Q = (μY • P(Y ) ⇒ G(P(Y ),Y ) )

Further intuition comes from the realisation that we want the least refined fixed
point of the pair of functions. That comes from taking the strongest precondition,
since the precondition of every refinement must be weaker, and the weakest
postcondition, since the postcondition of every refinement must be stronger.

Like the set of general alphabetised predicates, designs form a complete lattice.
We have already presented the top and the bottom (miracle and abort).

+D =̂ ( true $ false ) = ¬ okay

⊥D =̂ ( false $ true ) = true

Example 9 (Abort). All useful work is discarded once a program aborts. This is
shown in the following derivation.

x := e ; ⊥D assignment, bottom
= ( true $ x ′ = e ) ; ( false $ true ) design sequence
= true ∧ ¬ (x ′ = e ; ¬ false) $ x ′ = e ; true relational calculus
= ¬ (x ′ = e ; true) $ true relational calculus
= ¬ true $ true propositional calculus
= false $ true bottom
= ⊥D



A Tutorial Introduction to CSP in Unifying Theories of Programming 235

Abort, however, is not a right-zero for sequence, since it will not take over if it
is preceded by a miraculous program.

The greatest lower-bound and the least upper-bound are established in the fol-
lowing theorem.

Theorem 1 (meets-and-joins).

�i • (Pi $ Qi ) = (
∧

i • Pi ) $ (
∨

i • Qi )

,i • (Pi $ Qi ) = (
∨

i • Pi ) $ (
∧

i • Pi ⇒ Qi )

As with the binary choice, the choice �i • (Pi $ Qi ) over the set of designs
(Pi $ Qi ) terminates when all the designs do, and it establishes one of the
possible postconditions. The least upper-bound models a form of choice that is
conditioned by termination: only the terminating designs can be chosen. The
choice terminates if any of the designs do, and the postcondition established is
that of any of the terminating designs.

Designs are special kinds of relations, which in turn are special kinds of pred-
icates, and so they can be combined with the propositional operators. A design
can be negated, although the result is not itself a design.

Lemma 6 (not-design).

¬ (P $ Q) = (okay ∧ P ∧ (okay ′ ⇒ ¬ Q))

If the postcondition of a design promises the opposite of its precondition, then
the design is miraculous.

Law 69 (design-contradiction). (P $ ¬ P ) = (P $ false )

Proof.

P $ ¬ P export-precondition
= P $ P ∧ ¬ P propositional calculus
= P $ false

Another way of characterising the set of designs is by imposing healthiness condi-
tions on alphabetised predicates. Hoare & He identify four healthiness conditions
that they consider of interest: H1 to H4. We discuss two of them.

4.1 H1: Unpredictability

A relation P is H1-healthy if and only if P = (okay ⇒ P). This means that
observations cannot be made before the program has started. The idempotent
corresponding to this healthiness condition is defined as

H1(P) = okay ⇒ P

It is indeed an idempotent, since implication is idempotent in its first argument.



236 A. Cavalcanti and J. Woodcock

Law 70 (H1-idempotent). H1 ◦ H1 = H1

Proof.

H1 ◦ H1(P) H1

= okay ⇒ (okay ⇒ P) propositional calculus
= okay ∧ okay ⇒ P propositional calculus
= okay ⇒ P H1
= H1(P)

Example 10 (H1 relations). The following are examples of H1 relations.

1. The relation true, since (okay ⇒ true) = true; it is also the design
⊥D : abort.

2. The relation ¬ okay, since (okay ⇒ ¬ okay) = ¬ okay; it is also the design
+D : miracle.

3. The relation (okay ∧ x 	= 0 ⇒ x ′ < x ), which, when started in a state where
okay is true and x 	= 0 , ensures that the after value of x is strictly less than
its before value.

4. The design (x 	= 0 $ x ′ < x ), which, when started in a state where okay is
true and x 	= 0 , ensures termination and that the after value of x is strictly
less than its before value.

Healthiness conditions give a way of imposing structure on a subset of rela-
tions, and H1-relations have some interesting algebraic properties. First, all
H1-relations have a left zero.

Lemma 7 (H1-left-zero). Provided P is H1-healthy,

true ; P = true

All H1-relations have a left unit.

Lemma 8 (H1-left-unit). Provided P is H1-healthy,

II D ; P = P

Finally, relations that have both left units and left zeros are also H1.

Lemma 9 (left-unit-zero-H1). Provided P has a left unit and a left zero,

P = (okay ⇒ P)

These three lemmas allow us to characterise H1-relations algebraically: they are
exactly those relations that satisfy the left zero and left unit laws.

Theorem 2 (H1-healthiness).

(P = H1(P)) = ((true ; P = true) ∧ ( II D ; P = P))

We conclude this section by investigating a few more of H1’s properties. It
relates the two identities that we have seen so far.



A Tutorial Introduction to CSP in Unifying Theories of Programming 237

Law 71 ( II D-H1- II ). II D = H1( II )

Proof.

II D II D
= (true $ II ) design
= (okay ⇒ okay ′ ∧ II ) II

= (okay ⇒ okay ′ ∧ II ∧ okay ′ = okay) propositional calculus
= (okay ⇒ II ∧ okay ′ = okay) II

= (okay ⇒ II ) H1

= II

H1 tells us that, try as we might, we simply cannot make an observation of the
behaviour of a design until after it has started. A design with a rogue postcondi-
tion, such as (true $ (¬ okay ⇒ x ′ = 0 )), tries to violate H1, but it cannot. We
could simplify it by expanding the definition of a design, and then simplifying
the result with propositional calculus. It is possible to avoid this expansion by
applying H1 directly to the postcondition.

Law 72 (design-post-H1). (P $ Q) = (P $ H1(Q))

Proof.

P $ H1(Q) H1

= P $ (okay ⇒ Q) design
= okay ∧ P ⇒ okay ′ ∧ (okay ⇒ Q) propositional calculus
= okay ∧ P ⇒ okay ′ ∧ Q design
= P $ Q

We can also push the application of H1 in a postcondition through a negation.

Law 73 (design-post-not-H1). (P $ ¬ Q) = (P $ ¬ H1(Q))

Proof.

P $ ¬ H1(Q) H1

= P $ ¬ (okay ⇒ Q) propositional calculus
= P $ okay ∧ ¬ Q design
= okay ∧ P ⇒ okay ′ ∧ okay ∧ ¬ Q propositional calculus
= okay ∧ P ⇒ okay ′ ∧ ¬ Q design
= P $ ¬ Q

H1 enjoys many other properties, some of which we see later in this chapter.



238 A. Cavalcanti and J. Woodcock

4.2 H2: Termination Always Possible

The second healthiness condition is [P [false/okay ′] ⇒ P [true/okay ′] ]. This
means that if P is satisfied when okay ′ is false, it is also satisfied then okay ′ is
true. In other words, P cannot require nontermination, so that termination is
always a possibility.

Example 11 (H2 predicates).

1. The design relations abort and miracle are both H2, since they leave the
value of okay ′ completely unconstrained.

2. The relation (okay ′ ∧ (x ′ = 0 )) is H2, since it insists on termination.
3. The design (x 	= 0 $ x ′ < x ) is H2, since (a) if it is not started properly

(¬ okay), or if x = 0 , then it leaves okay ′ unconstrained; and (b) if it is
started properly (okay) and x 	= 0 , then it insists on termination.

If P is a predicate with okay ′ in its alphabet, we abbreviate P [b/okay ′] as Pb ,
for boolean value b. Thus, P is H2-healthy if and only if [P f ⇒ P t ], where f
and t are used as abbreviations for false and true.

This healthiness condition may also be described in terms of an idempotent.
For that, we define the following predicate.

Definition 1 (The idempotent J).

J =̂ (okay ⇒ okay ′) ∧ II −okay
rel

J permits a change in the value of okay, while the remaining variables stay
constant: if okay is changed, then it can be weakened, but not strengthened. We
use II −okay

rel to denote the conjunction of equalities v ′ = v for all variables v in
the alphabet, except okay.

The relationship between J and H2 (see Theorem 3) is based on an important
property called J -split. As its name suggests, it divides a relation into two parts,
but we must notice the asymmetry.

Lemma 10 (J -split). Provided okay and okay ′ are in the alphabet of P,

P ; J = P f ∨ (P t ∧ okay ′)

The healthiness condition H2 may now be expressed using J , as we show in the
following theorem, which uses J -split.

Theorem 3 (H2 equivalence). There are two equivalent ways of character-
ising H2-healthy relations.

(P = P ; J ) = [P f ⇒ P t ]

Based on this result, we use H2 to refer to the function H2(P) = P ; J .
Interestingly, J is actually an H2-healthy relation.

Lemma 11 (J is H2). J is H2-healthy.

J = H2(J )

This lemma makes it easy to show that J really is an idempotent.



A Tutorial Introduction to CSP in Unifying Theories of Programming 239

Law 74 (H2-idempotent). H2 ◦ H2 = H2

Proof.

H2 ◦ H2(P) H2
= (P ; J ) ; J associativity
= P ; (J ; J ) H2
= P ; H2(J ) J H2-healthy
= P ; J H2
= H2(P)

As we see in the next two examples, the original formulation of H2 is often
easier to use in demonstrating that a relation is H2; however, because the de-
scription based on J is an idempotent function, it has some interesting algebraic
properties. First, we prove that a relation is H2 using substitution.

Example 12 (H2-substitution).

okay ′ ∧ (x ′ = 0 ) is H2

Proof.

(okay ′ ∧ (x ′ = 0 ))f ⇒ (okay ′ ∧ (x ′ = 0 ))t substitution
= false ∧ (x ′ = 0 ) ⇒ true ∧ (x ′ = 0 ) propositional calculus
= false ⇒ (x ′ = 0 ) propositional calculus
= true

Now we prove that the same relation is H2 using J .

Example 13 (H2-J ).

okay ′ ∧ (x ′ = 0 ) is H2

Proof.

okay ′ ∧ (x ′ = 0 ) ; J J -splitting

= (okay ′ ∧ (x ′ = 0 ))f ∨ ((okay ′ ∧ (x ′ = 0 ))t ∧ okay ′) substitution
= (false ∧ (x ′ = 0 )) ∨ (true ∧ (x ′ = 0 ) ∧ okay ′) propositional calculus
= false ∨ ((x ′ = 0 ) ∧ okay ′) propositional calculus
= okay ′ ∧ (x ′ = 0 )

We said at the beginning of this section that we would characterise the space of
designs using our healthiness conditions, and we can now do this. If a relation is
both H1 and H2-healthy, then it is also a design.

Lemma 12 (H1-H2 is a design). If P is a relation that is both H1 and
H2-healthy, then it can be expressed as the design ¬ P f $ P t .



240 A. Cavalcanti and J. Woodcock

This result also holds in the other direction, as we have already illustrated in
the examples. First, we establish that designs are H2 relations.

Lemma 13 (Designs are H2). Provided P and Q do not have okay and okay ′

in their alphabets,

[ (P $ Q )f ⇒ (P $ Q )t ]

It is obvious that all designs are H1: the proof is a nice little exercise. So, we
have the following theorem.

Theorem 4. A relation with alphabet including okay and okay ′ is a design ex-
actly when it is both H1 and H2-healthy.

An important property of healthiness conditions is commutativity. For example,
H1 and H2 commute.

Law 75 (commutativity-H2-H1). H2 ◦ H1 = H1 ◦ H2

Proof.

H1 ◦ H2(P) H1, H2
= okay ⇒ P ; J propositional calculus
= ¬ okay ∨ P ; J miracle is H2
= H2(¬ okay) ∨ P ; J H2

= ¬ okay ; J ∨ P ; J relational calculus
= (¬ okay ∨ P) ; J propositional calculus
= (okay ⇒ P) ; J H1, H2
= H2 ◦ H1(P)

This means that we can apply H1 and H2 independently to make a relation
healthy. The result is a relation that is both H1 and H2-healthy, and, moreover,
it is the same no matter in which order we applied H1 and H2.

5 Reactive Processes

A reactive program interacts with its environment, which can include other pro-
grams as well as the users of the system. A reactive program’s behaviour cannot
be characterised by its final state alone; we need to record information about
interactions with the environment. Actually, many reactive programs never ter-
minate, and so do not even have a final state; their whole purpose is to interact
with the environment. Each interaction, whether it be a synchronisation or a
communication, is an event.

To model a reactive process, we use the okay variable and three extra obser-
vational variables: tr , ref , and wait , and their dashed counterparts. The finite
sequences tr and tr ′ record the events that occurred up to the moment of the ob-
servation. The sets ref and ref ′ record events that may be refused. The variables



A Tutorial Introduction to CSP in Unifying Theories of Programming 241

wait and wait ′ are boolean; wait ′ records whether the process has terminated or
is in an intermediate state awaiting further interaction with the environment.

When okay ′ is true for a design, it means that the design has reached a final
state. The same is true for a reactive process that has okay ′ true and wait ′ false.
If both okay ′ and wait ′ are true, then it means that the reactive process has
reached an intermediate state. If okay ′ is false, then it means that the process
has reached neither an intermediate nor a final state. So, the meaning of okay ′

is the same in both theories: when it is true, it indicates that a stable state has
been reached; when it is false it indicates the opposite. The difference is that the
notion of a stable state is richer for reactive processes, as it includes intermediate
states. In view of this, we change our terminology: instead of saying that a design
has aborted, we say that a process has diverged.

Of course, these comments apply to okay as well. When it is true, it means
that the process is in a stable state. This, however, may be an intermediate of
another process that is currently executing. The process only really starts when
wait is false.

In summary, there are three distinct observations that may be made of okay
and wait .

okay ∧ ¬ wait started in a stable state
okay ∧ wait not started, but in a stable state
¬ okay not started, but in an unstable state

Similarly, there are three observations that may be made of the final values of
these two variables.

okay ′ ∧ ¬ wait ′ terminated
okay ′ ∧ wait ′ in an intermediate state
¬ okay ′ in an unstable state

With these observations, it is clear that a reactive process is properly started if
it is initiated in a state with wait false; that is, if its predecessor has terminated.

We often want to refer to a predicate P [false/wait ], which we abbreviate as
Pf . Combining this with our earlier notation, P t

f describes a reactive process
P that was properly started, and has not diverged. This substitution does not
disturb healthiness conditions that do not mention wait and okay ′, such as H1.

Law 76 (H1-wait-okay ′). (H1(P))cb = H1(Pc
b )

Not every relation is a reactive process; just like designs, some healthiness condi-
tions need to be imposed. Before we investigate them, however, we give a simple
example of a reactive process.

5.1 Reactive II

A reactive process is a relation with all eight observational variables in its alpha-
bet. Perhaps the simplest example is the reactive II , which is defined as follows.



242 A. Cavalcanti and J. Woodcock

Definition 2 ( II rea).

II rea =̂ ¬ okay ∧ tr ≤ tr ′

∨
okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref

The behaviour of II rea depends on its initial state: if it was an unstable state
(¬ okay), then the first disjunct applies; otherwise, the second disjunct applies. In
the first case, the predicate tr ≤ tr ′ requires that tr is a prefix of tr ′. The trace tr
contains a record of all the events that occurred before the initial observation of
II rea ; in the final observation, the trace tr ′ must be an extension of tr : the process
cannot change history by modifying the sequence of events that have already
occurred. In the second case, the initial state was stable, and the behaviour is
the same, regardless of whether the process was started or not: all variables must
remain constant.

Alternative definitions of II rea can be formulated. For example, it can be
defined in terms of the relational II and in terms of the conditional.

Law 77 ( II rea- II rel). II rea = ¬ okay ∧ tr ≤ tr ′ ∨ II rel

Law 78 ( II rea- II rel-conditional). II rea = II rel � okay � tr ≤ tr ′

The law below states that in a stable state, II rea is just like II rel .

Law 79 (okay- II rea- II rel). okay ∧ II rea = okay ∧ II rel

As an obvious consequence, II rea is a unit for sequence in a stable state. Of
course, in general it is not an identity, since in an unstable state it guarantees
only that the trace is either left untouched or extended.

Law 80 (okay- II rea-sequence-unit). okay ∧ II rea ; P = okay ∧ P

Exercise 9. Prove Law 80.

Is II rea a design? Well, it is certainly H2-healthy.

Law 81 ( II rea-H2). II rea = H2( II rea)

Proof.

H2( II rea) J -splitting

= II rea
f ∨ ( II rea

t ∧ okay ′) II rea

= (¬ okay ∧ tr ≤ tr ′) ∨ (¬ okay ∧ tr ≤ tr ′ ∨ II rel) ∧ okay ′

propositional calculus
= (¬ okay ∧ tr ≤ tr ′) ∨ (¬ okay ∧ tr ≤ tr ′ ∧ okay ′) ∨ II rel

t ∧ okay ′

absorption
= ¬ okay ∧ tr ≤ tr ′ ∨ II rel

t ∧ okay ′ Leibniz
= ¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ II rel II rea

= II rea



A Tutorial Introduction to CSP in Unifying Theories of Programming 243

Although, being H2, II rea is half-way to being a design, it is not H1-healthy. This
is because its behaviour when okay is false is not arbitrary as H1 requires: the
restriction on the traces still applies. In fact, the healthiness condition H1 relates
the two identities in the following way.

Law 82 (H1- II rea- II rel). H1( II rea) = H1( II rel)

So II rea fails to be a design; in fact, no reactive process is a design, although as
we shall see, they can all be expressed in terms of a design. So, the theory of
reactive processes is a subtheory of the theory of relations that is distinct from
the theory of designs. The question is: which relations are reactive processes?
This answered by three healthiness conditions.

5.2 R1

Time travel is practically a weekly event in Star Trek and Doctor Who, and it
is certainly an interesting activity that has much to offer the curious mind, but
it will be outlawed by our first reactive healthiness condition, R1. This requires
that a relation cannot change the trace of events that have already occurred.
The idempotent is as follows.

R1(P) = P ∧ tr ≤ tr ′

We already saw this in the definition of II rea : if its initial observation is made in
an unstable state (okay is false), then the trace in its final observation will be an
extension of the initial trace; if the initial observation is made in a stable state,
then the trace is kept constant. We have that R1 is an idempotent because of
idempotency of conjunction.

Law 83 (R1-idempotent). R1 ◦ R1 = R1

The simplicity of R1 leads to many obvious algebraic laws. For example, it dis-
tributes through both conjunction and disjunction, and because it is defined by
conjunction, its scope may be extended over other conjunctions. As a conse-
quence of these laws, R1 distributes through the conditional and the unhealthy
effects of negation can be swiftly cured. Finally, substitution for wait and for
okay ′ both distribute through R1.

Law 84 (R1-∧). R1(P ∧ Q) = R1(P) ∧ R1(Q)

Law 85 (R1-∨). R1(P ∨ Q) = R1(P) ∨ R1(Q)

Law 86 (R1-extend-∧). R1(P) ∧ Q = R1(P ∧ Q)

Law 87 (R1-conditional). R1(P � b � Q) = R1(P) � b � R1(Q)

Law 88 (R1-negate-R1). R1(¬ R1(P)) = R1(¬ P)

Law 89 (R1-wait-okay ′). (R1(P))cb = R1(Pc
b )



244 A. Cavalcanti and J. Woodcock

Both the relational and the reactive identities are R1-healthy.

Law 90 ( II rel-R1). II rel = R1( II rel)

Exercise 10. Prove Law 90.

The fact that II rel is R1 is helpful in proving that II rea is too.

Law 91 ( II rea-R1). II rea = R1( II rea)

Proof.

R1( II rea) II rea-conditional
= R1( II rel � okay � tr ≤ tr ′) R1-conditional
= R1( II rel) � okay � R1(true) propositional calculus, R1

= R1( II rel) � okay � tr ≤ tr ′ II rel-R1
= II rel � okay � tr ≤ tr ′ II rea conditional
= II rea

By applying any of the program operators to an R1-healthy process, we get an-
other R1-healthy process. That is, R1 is closed under conjunction, disjunction,
conditional, and sequence.

Theorem 5. Provided P and Q are R1-healthy,

R1(P ∧ Q) = P ∧ Q R1-∧-closure

R1(P ∨ Q) = P ∨ Q R1-∨-closure

R1(P � b � Q) = P � b � Q R1-conditional-closure

R1(P ; Q) = P ; Q R1-sequence-closure

The distribution properties are stronger than the closure properties, and this
is clear from the fact that the proofs of R1-∧-closure, R1-∨-closure, and R1-
conditional-closure follow immediately from Laws 84, 85, and 87, respectively.
Law R1-sequence-closure is rather more interesting, since R1 does not distribute
through sequence. First we note a result from the relational calculus that relates
sequence and transitive relations.

Lemma 14 (sequence-transitive-relation). Provided � is a transitive
relation,

[ ((P ∧ x � x ′) ; (Q ∧ x � x ′)) ⇒ x � x ′ ]

This establishes that if the first program in the sequence assigns to x a value
that is related to its original value by the transitive relation �, and the second
program takes this (intermediate) value and assigns to x a value that is related
to it, then transitivity allows us to conclude that the original and final values of
x are related by �.

Exercise 11. Prove Lemma 14.

In our case, the transitive relation in which we are interested in sequence
prefixing.



A Tutorial Introduction to CSP in Unifying Theories of Programming 245

Proof of R1-sequence-closure.

P ; Q assumption: P and Q both R1

= R1(P) ; R1(Q) R1, twice
= P ∧ tr ≤ tr ′ ; Q ∧ tr ≤ tr ′ sequence-transitive-relation
= (P ∧ tr ≤ tr ′ ; Q ∧ tr ≤ tr ′) ∧ tr ≤ tr ′ R1, three times
= R1(R1(P) ; R1(Q)) assumption: P and Q both R1

= R1(P ; Q)

II rea is an R1 relation, but as we have seen it is not H1. Of course, we can make
it H1 by applying the healthiness condition, but then it is no longer R1. If we
apply R1 once again, we get back to where we started.

Law 92 ( II rea-R1-H1). II rea = R1 ◦ H1( II rea)

Proof.

R1 ◦ H1( II rea) H1- II rea- II rel

= R1 ◦ H1( II rel) H1

= R1(okay ⇒ II rel) propositional calculus
= R1(¬ okay ∨ II rel) R1-∨-distribution
= R1(¬ okay) ∨ R1( II rel) II rel-R1
= R1(¬ okay) ∨ II rel R1

= ¬ okay ∧ tr ≤ tr ′ ∨ II rel II rea

= II rea

Law 92 shows that R1 and H1 are not independent: they do not commute; but
R1 does commute with H2.

Law 93 (R1-H2-commutativity). R1 ◦ H2 = H2 ◦ R1

Proof.

H2 ◦ R1(P) R1

= H2(P ∧ tr ≤ tr ′) H2-∧-non-okay
= H2(P) ∧ tr ≤ tr ′ R1

= R1 ◦ H2(P)

The space described by applying R1 to designs is a complete lattice because R1
is monotonic. The relevance of this fact is made clear in the next section.

5.3 R2

The trace of a reactive process is an observation that is useful in describing
the behaviour of concurrency and communication in reactive systems. We do



246 A. Cavalcanti and J. Woodcock

not imagine that any programmer would want to include such a variable in a
real program; the overhead of keeping an accurate record of all events that have
occurred since a program was started would be huge, and there is no need to
keep it anyway. Rather, tr and tr ′ play similar roles to okay and okay ′: they
are devices that allow us to give an account of the behaviour of programming
language constructs.

Designs are sensitive to the initial value of okay: the design cannot be started
unless okay is true. But there is no obvious reason why a reactive process should
be sensitive to the initial value of tr ; in fact, none of the programming language
constructs that we will introduce are sensitive to its value. The only purpose
given to the trace is to provide an abstract view of program behaviour. For
these reasons, we introduce a second healthiness condition that requires reactive
processes to be insensitive to the value of tr .

There are two alternative formulations for this healthiness condition. Intu-
itively, they each establish that a process description should not rely on the
history that passed before its activation, and should restrict only the new events
to be recorded since the last observation. These are the events in tr ′ − tr .

The first formulation requires that P is not changed if tr is replaced by an
arbitrary value. Of course, if tr is changed, then a corresponding change must
be made to tr ′, otherwise all chance of R1 healthiness will be compromised.

R2a(P(tr , tr ′)) = �s • P(s , s � (tr ′ − tr))

The second formulation requires that P is not changed if the value of tr is taken
to be the empty sequence.

R2b(P(tr , tr ′)) = P(〈〉, tr ′ − tr)

R2a and R2b are different functions. To see this, compare what happens when
each function is applied to the relation tr = 〈a〉.

R2a(tr = 〈a〉)
= � s • s = 〈a〉
= true � false
= true

R2b(tr = 〈a〉)
= (tr = 〈a〉)[〈〉, tr ′ − tr/tr , tr ′]
= (〈〉 = 〈a〉)
= false

Even though they are different functions, they do have much in common. First,
every R2b-healthy relation is also R2a-healthy; that is, for every relation P ,
R2b(P) is a fixed point of R2a.

Law 94 (R2b-R2a). R2b = R2a ◦ R2b

Proof.

R2a ◦ R2b(P(tr , tr ′)) R2b

= R2a(P(〈 〉, tr ′ − tr)) R2a



A Tutorial Introduction to CSP in Unifying Theories of Programming 247

= � s • P(〈 〉, tr ′ − tr)(s , s � (tr ′ − tr)) substitution

= � s • P(〈 〉, s � (tr ′ − tr) − s) property of −
= � s • P(〈 〉, tr ′ − tr) property of �
= P(〈 〉, tr ′ − tr) R2b

= R2b(P)

Similarly, every R2a-healthy relation is also R2b-healthy; that is, for every
relation P , R2a(P) is a fixed point of R2b.

Law 95 (R2a-R2b). R2a = R2b ◦ R2a

Proof.

R2b ◦ R2a(P(tr , tr ′)) R2a

= R2b(� s • P(s , s � (tr ′ − tr))) R2b

= (� s • P(s , s � (tr ′ − tr)))(〈 〉, tr ′ − tr) substitution

= � s • P(s , s � (tr ′ − tr) − 〈 〉) property of −
= � s • P(s , s � (tr ′ − tr)) R2a
= R2a(P)

Laws 94 and 95 show us that R2a and R2b have the same image; that is, they
characterise the same set of healthy predicates. We adopt R2b as our second
healthiness condition for reactive processes, and actually refer to it as R2.

R2 = R2b

Not all properties of R2b that we prove in the sequel hold for R2a; so this is
an important point.

The healthiness condition R2 is an idempotent.

Law 96 (R2-idempotent). R2 ◦ R2 = R2

Again, the programming operators are closed with respect to R2. For the condi-
tional, we have a result for quite specific conditions. For brevity, we omit proofs.

Theorem 6. Provided P and Q are R2-healthy, and tr and tr ′ are not in the
alphabet of b,

R2(P ∧ Q) = P ∧ Q R1-∧-closure

R2(P ∨ Q) = P ∨ Q R1-∨-closure

R2(P � tr ′ = tr � Q) = P � tr ′ = tr � Q R2-conditional-closure-1

R2(P � b � Q) = P � b � Q R2-conditional-closure-2

R2(P ; Q) = P ; Q R2-sequence-closure

Conditionals whose condition involves tr or tr ′ are problematic, but as shown
above, the particular condition tr = tr ′ does not hamper distribution.



248 A. Cavalcanti and J. Woodcock

Our proof of Law R2-sequence-closure is based on a suggestion due to Chen
Yifeng. R2 does not distribute through the sequence P ; Q because it cannot
constrain the hidden value of the trace that exists between the behaviours of P
and Q . For example, we consider the sequence below.

tr ′ = tr � 〈 a 〉; last tr = a ∧ tr ≤ tr ′

It is an R2 process, and so it is not changed by an application of R2. The
second process, however, is not R2 as it relies on a particular property of the
initial value of tr ; namely, that its last element is a. If we apply R2 to it, we
get false as a result. Therefore,

R2(tr ′ = tr � 〈 a 〉); R2(last tr = a ∧ tr ≤ tr ′)

is also false.

Exercise 12. Give an algebraic proof that the sequence above is R2-healthy,
or, in other words, R2(tr ′ = tr � 〈 a 〉; last tr = a ∧ tr ≤ tr ′) is equal to
tr ′ = tr � 〈 a 〉; last tr = a ∧ tr ≤ tr ′ itself, and that

R2(tr ′ = tr � 〈 a 〉); R2(last tr = a ∧ tr ≤ tr ′) = false

The proof below for R2-sequence-closure is based on the Laws left-one-point and
right-one-point for sequences.

Proof of R2-sequence-closure.

R2(P(tr , tr ′) ; Q(tr , tr ′)) sequence, predicate calculus
= R2(P(tr , tr ′

0 ) ; Q(tr0 , tr ′) ) R2
= (P(tr , tr ′

0 ) ; Q(tr0 , tr ′) )(〈〉, tr ′ − tr) substitution
= P(〈〉, tr ′

0 ) ; Q(tr0 , tr ′ − tr) assumption: Q is R2

= P(〈〉, tr ′
0 ) ; Q(〈〉, tr ′ − tr)(tr0 , tr ′ − tr) substitution

= P(〈〉, tr ′
0 ) ; Q(〈〉, tr ′ − tr − tr0 ) sequence property

= P(〈〉, tr ′
0 ) ; Q(〈〉, tr ′ − (tr � tr0 )) substitution

= P(〈〉, tr ′
0 ) ; Q(〈〉, tr ′ − tr)[tr � tr0/tr ] left-one-point

= P(〈〉, tr ′
0 ) ; tr ′ = tr � tr0 ; Q(〈〉, tr ′ − tr) sequence property

= P(〈〉, tr ′
0 ) ; tr0 = tr ′ − tr ; Q(〈〉, tr ′ − tr) right-one-point

= P(〈〉, tr ′ − tr) ; Q(〈〉, tr ′ − tr) assumption: P and Q are R2
= P ; Q

A by-product of the above proof is the following law.

Law 97 (R2 composition). R2(P ; R2(Q)) = R2(P) ; R2(Q)

Since R2 constrains only tr and tr ′, substitution for wait and okay ′ distribute
through its application.



A Tutorial Introduction to CSP in Unifying Theories of Programming 249

Law 98 (R2-wait-okay ′). (R2(P))cb = R2(Pc
b )

If J (see Definition 1) is lifted to an alphabet containing the reactive observa-
tions, then it keeps the trace constant. It is therefore R2-healthy.

Law 99 (J -R2). J = R2(J )

R2 is independent from H1, H2, and R1: it commutes with each of them.

Law 100 (commutativity-R2-H1). R2 ◦ H1 = H1 ◦ R2

Law 101 (commutativity-R2-H2). R2 ◦ H2 = H2 ◦ R2

Proof.

R2 ◦ H2(P) H2

= R2(P ; J ) J R2
= R2(P ; R2(J )) R2 composition
= R2(P) ; R2(J ) J R2
= R2(P) ; J H2

= H2 ◦ R2(P)

Law 102 (commutativity-R2-R1). R2 ◦ R1 = R1 ◦ R2

Proof.

R2 ◦ R1(P(tr , tr ′)) R1, R2
= (P ∧ tr ≤ tr ′)(〈〉, tr ′ − tr) substitution
= P(〈〉, tr ′ − tr) ∧ 〈〉 ≤ tr ′ − tr ≤ and −
= P(〈〉, tr ′ − tr) ∧ tr ≤ tr ′ R1, R2

= R1 ◦ R2(P(tr , tr ′))

The space of relations produced by applying R2 to designs is again a complete
lattice, since R2 is also monotonic.

5.4 R3

The third healthiness condition makes relational composition behave like a pro-
gram sequence. To see its relevance, consider the process

P = okay ′ ∧ wait ′ ∧ tr ′ = tr

P forever occupies a state that is both stable and waiting for interaction with
the environment, but none ever comes, since the trace never changes. What are
we to make of the sequence P ; Q , where

Q = okay ′ ∧ ¬ wait ′ ∧ tr ′ = tr � 〈a〉

Q immediately terminates, having added an a event to the trace? The relational
composition ignores the behaviour of P .



250 A. Cavalcanti and J. Woodcock

P ; Q sequence
= ∃ okay0 ,wait0 , tr0 , ref0 •

P [okay0 ,wait0 , tr0 , ref0/okay ′,wait ′, tr ′, ref ′] ∧
Q [okay0 ,wait0 , tr0 , ref0/okay,wait , tr , ref ]

P and Q

= ∃ okay0 ,wait0 , tr0 , ref0 •
okay0 ∧ wait0 ∧ tr0 = tr ∧
okay ′ ∧ ¬ wait ′ ∧ tr ′ = tr0 � 〈a〉

predicate calculus

= ∃ ref0 • okay ′ ∧ ¬ wait ′ ∧ tr ′ = tr � 〈a〉 predicate calculus
= okay ′ ∧ ¬ wait ′ ∧ tr ′ = tr � 〈a〉 Q
= Q

We expect quite the opposite: that P ; Q = P . If P is forever waiting, then P ; Q
should be forever waiting in the same state. We formalise this requirement as a
healthiness condition, R3.

R3(P) = ( II rea � wait � P)

An R3-healthy process does not start until its predecessor has terminated. Now
we have that P ; R3(Q) = P , as we wanted.

Exercise 13. Prove that P ; R3(Q) = P , where P and Q are the processes
defined above.

The following laws characterise the behaviour of R3 processes in particular
circumstances. R3 depends on the wait observation, so substitution for that
variable cannot distribute through the healthiness condition. Instead, it serves
to simplify R3’s conditional. If true is substituted, then the result is II rea , but
with the substitution applied to that as well. On the other hand, if false is
substituted for wait in R3(P), then the result is simply P , again with the
substitution applied. Substitution for okay ′ interferes with II rea , and so does not
distribute through its application.

Law 103 (R3-wait-true). (R3(P))t = ( II rea)t

Law 104 (R3-not-wait-false). (R3(P))f = Pf

Law 105 (R3-okay ′). (R3(P))c = (( II rea)c � wait � Pc)

Closure properties are also available for R3.

Theorem 7. Provided P and Q are R3,

R3(P ∧ Q) = P ∧ Q R3-∧-closure

R3(P ∨ Q) = P ∨ Q R3-∨-closure

R3(P � c � Q) = P � c � Q R3-conditional-closure

For sequence, we actually require that one of the processes is R1 as well.



A Tutorial Introduction to CSP in Unifying Theories of Programming 251

Theorem 8. Provided P is R3, and Q is R1 and R3,

R3(P ; Q) = P ; Q R3-sequence-closure

This is not a problem because, as detailed in the next section, we actually work
with the theory characterised by all healthiness conditions.

As required, R3 is an idempotent.

Law 106 (R3-idempotent). R3 ◦ R3 = R3

Since II rea specifies behaviour for when ¬ okay holds, it should not be a big
surprise that R3 also does not commute with H1. It does commute with the
other healthiness conditions, though.

Law 107 (commutativity-R3-H2). R3 ◦ H2 = H2 ◦ R3

Law 108 (commutativity-R3-R1). R3 ◦ R1 = R1 ◦ R3

Law 109 (commutativity-R3-R2). R3 ◦ R2 = R2 ◦ R3

Moreover, if all that there is about a process that is not H1 is the fact that it
specifies the behaviour required by R1, then we have a commutativity property.
This sort of property is important because we are going to express reactive
processes as reactive designs.

Example 14 (R3-H1-non-commutativity). Why do R3 and H1 not commute?

H1 ◦ R3(P) H1, R3

= okay ⇒ ( II rea � wait � P) *-conditional
= (okay ⇒ II rea) � wait � (okay ⇒ P) H1

= H1( II rea) � wait � H1(P) II rea is not H1
	= II rea � wait � H1(P) R3

= R3 ◦ H1(P)

This derivation shows the precise reason: it is because II rea is not H1.

This last example explains the need for the weaker commutativity laws below.

Law 110 (R3-H1 sub-commutativity). H1 ◦ R3 = H1 ◦ R3 ◦ H1

Law 111 (R3-H1-R1 sub-commutativity).

R3 ◦ R1 ◦ H1 = R1 ◦ H1 ◦ R3

Just like R1 and R2, R3 is monotonic and so gives us a complete lattice when
applied to the space of designs.



252 A. Cavalcanti and J. Woodcock

5.5 R

A reactive process is a relation that includes in its alphabet okay, tr , wait , and
ref , and their dashed counterparts, and satisfies the three healthiness conditions
R1, R2, and R3. We define R as the composition of these three functions.

R =̂ R1 ◦ R2 ◦ R3

Since each of the healthiness conditions R1, R2, and R3 commute, their order
in the definition above is irrelevant.

Reactive processes have a left zero.

Law 112 (reactive-left-zero). (tr ≤ tr ′) ; P = tr ≤ tr ′

Proof. First, we expand R3(P).

R3(P)
= II rea � wait � P II rea

= ( II rel � okay � tr ≤ tr ′) � wait � P conditional
= (¬ okay ∧ wait ∧ tr ≤ tr ′) ∨ (okay ∧ wait ∧ II rel) ∨ (¬ wait ∧ P)

Now we can prove our result.

tr ≤ tr ′; P assumption: P is R3
= tr ≤ tr ′; R3(P) R3(P) expansion
= tr ≤ tr ′; ¬ okay ∧ wait ∧ tr ≤ tr ′

∨ tr ≤ tr ′; okay ∧ wait ∧ II rel

∨ tr ≤ tr ′; ¬ wait ∧ P

right-one-point, II rel

= (tr ≤ tr ′; tr ≤ tr ′) ∨ (tr ≤ tr ′) ∨ (tr ≤ tr ′; P) sequence
= (tr ≤ tr ′) ∨ (tr ≤ tr ′; ∧ P) assumption: P is R1

= (tr ≤ tr ′) ∨ (tr ≤ tr ′; ∧ P ∧ tr ≤ tr ′) sequence transitivity
= tr ≤ tr ′ ∨ ((tr ≤ tr ′; ∧ P ∧ tr ≤ tr ′) ∧ tr ≤ tr ′) absorption
= tr ≤ tr ′

Reactive processes also have a restricted identity.

Law 113 (reactive-restricted-identity).

II rea ; P = P � okay � tr ≤ tr ′

Substitution for wait cannot distribute through R, since it does not distribute
through R3; however, it does have the expected simplification properties. Fi-
nally, substitution for okay ′ does not quite distribute through R, since it inter-
feres with II rea . The following reductions hold for these substitutions.

Law 114 (R-wait-false). (R(P))f = R1 ◦ R2(Pf )



A Tutorial Introduction to CSP in Unifying Theories of Programming 253

Law 115 (R-wait-true). (R(P))t = ( II rea)t

Law 116 (R-okay ′). (R(P))c = (( II rea)c � wait � R1 ◦ R2(Pc))

The set of reactive processes is closed under the program operators.

Theorem 9. Provided P and Q are R-healthy,

R(P ∧ Q) = P ∧ Q R-∧-closure

R(P ∨ Q) = P ∨ Q R-∨-closure

R(P � tr ′ = tr � Q) = P � tr ′ = tr � Q R-conditional-closure

R(P ; Q) = P ; Q R-sequence-closure

Since R1, R2, and R3 are all monotonic, so is their composition, and so the set
of reactive processes is a complete lattice. The R-image of any complete lattice
is also a complete lattice. In particular, the R-image of the lattice of designs is
a complete lattice. This image turns out to be the set of CSP processes, as we
establish in the next section.

6 CSP Processes

A CSP process is a reactive process satisfying two other healthiness conditions.

6.1 CSP1

The first healthiness condition requires that, in case of divergence, extension of
the trace is the only property that is guaranteed.

CSP1(P) = P ∨ ¬ okay ∧ tr ≤ tr ′

It is important to observe that R1 requires that, in whatever situation, the
trace can only be increased. On the other hand, CSP1 states that, if we are in
a divergent state, ¬ okay, then there is no other guarantee.

Exercise 14. Give an example of a reactive process that is R1, but not CSP1 .

CSP1 is a combination of R1 and H1; however, like R1, CSP1 does not
commute with H1. The reason is the same: it specifies behaviour for when ¬ okay
holds. The lack of commutativity means that, when applying R1 and H1, the
order is relevant. As a matter of fact, CSP1 determines the order that should
be used, for processes that are already R1.

Law 117 (CSP1-R1-H1).

CSP1(P) = R1 ◦ H1(P) provided P is R1-healthy



254 A. Cavalcanti and J. Woodcock

As expected, CSP1 is an idempotent.

CSP1 ◦ CSP1 = CSP1

The usual closure properties hold for CSP1 processes.

Theorem 10. Provided P and Q are CSP1-healthy,

CSP1(P ∧ Q) = P ∧ Q CSP1-∧-closure

CSP1(P ∨ Q) = P ∨ Q CSP1-∨-closure

CSP1(P � c � Q) = P � c � Q CSP1-conditional-closure

CSP1(P ; Q) = P ; Q CSP1-sequence-closure

This new healthiness condition is independent from the previous ones.

Law 118 (commutativity-CSP1-R1). CSP1 ◦ R1 = R1 ◦ CSP1

Law 119 (commutativity-CSP1-R2). CSP1 ◦ R2 = R2 ◦ CSP1

Law 120 (commutativity-CSP1-R3). CSP1 ◦ R3 = R3 ◦ CSP1

A reactive process defined in terms of a design is always CSP1-healthy. This is
because the design does not restrict the behaviour when ¬ okay holds, and R
insists only that tr ≤ tr ′.

Law 121 (reactive-design-CSP1). CSP1(R(P $ Q)) = R(P $ Q)

If an R1-healthy predicate R appears in a design’s postcondition, in the scope
of another predicate that is also R1, then R is CSP1-healthy. This is because,
for R1 predicates, CSP1 amounts to the composition of H1 and R1. A similar
law applies to the negation of such a CSP1 predicate.

Law 122 (design-post-and-CSP1).

P $ (Q ∧ CSP1(R))) = (P $ Q ∧ R)
provided Q and R are R1-healthy

Law 123 (design-post-and-not-CSP1).

P $ (Q ∧ ¬ CSP1(R))) = (P $ Q ∧ ¬ R)
provided Q and R are R1-healthy

These two laws are combined in the following law that eliminates CSP1 from
the condition of a conditional.

Law 124 (design-post-conditional-CSP1).

(P $ (Q � CSP1(R) � S )) = (P $ (Q � R � S ))
provided Q, R and S are R1-healthy



A Tutorial Introduction to CSP in Unifying Theories of Programming 255

Proof.

P $ (Q � CSP1(R) � S ) conditional
= P $ (Q ∧ CSP1(R)) ∨ (S ∧ ¬ CSP1(R)) design, propositional calculus
= (P $ Q ∧ CSP1(R)) ∨ (P $ S ∧ ¬ CSP1(R))

design-post-and-CSP1, assumption: Q and R are R1-healthy
= (P $ Q ∧ R) ∨ (P $ S ∧ ¬ CSP1(R))

design-post-and-not-CSP1, assumption: S is R1-healthy
= (P $ Q ∧ R) ∨ (P $ S ∧ ¬ R) design, propositional calculus, conditional
= P $ (Q � R � S )

Substitution for wait and okay ′ distributes through CSP1 .

Law 125 (CSP1-wait-okay ′).

(CSP1(P))cb = CSP1(Pc
b ) provided P is R1-healthy

The many restrictions on these laws related to R1 healthiness are not a problem,
since CSP1 is a healthiness condition on reactive processes.

6.2 CSP2

The second healthiness condition for CSP processes, CSP2, is defined in terms
of J (which was introduced in Section 4) as follows.

CSP2(P) = P ; J

It is a direct consequence of Theorem 3 that CSP2 is a recast of H2, now with
an extended alphabet that includes okay, wait , tr , and ref . In other words, in
the theory of CSP processes, we let go of H1, but we retain H2, under another
disguise.

Idempotence and commutative properties for CSP2 follow from those for
H2. We add only that it commutes with CSP1.

Law 126 (commutativity-CSP2-CSP1).

CSP2 ◦ CSP1 = CSP1 ◦ CSP2

Closure of designs is not established considering H1 and H2 individually; we
consider H2, or CSP2 rather, below. It is not closed with respect to conjunction,
and it is not difficult to prove that P ∧ Q � CSP2(P ∧ Q), providing P and
Q are CSP2.

Theorem 11. Provided P and Q are CSP2-healthy,

CSP2(P ∨ Q) = P ∨ Q CSP2-∨-closure

CSP2(P � b � Q) = P � b � Q CSP2-conditional-closure

CSP2(P ; Q) = P ; Q CSP2-sequence-closure



256 A. Cavalcanti and J. Woodcock

Exercise 15. Prove algebraically that

P ∧ Q � CSP2(P ∧ Q)

providing P and Q are CSP2-healthy.

Substitution of true for okay ′ does not distribute through CSP2, but produces
the disjunction of two cases.

Law 127 (CSP2-converge).

(CSP2(P))t = P t ∨ P f

Proof.

(CSP2(P))t CSP2

= (P ; J )t substitution
= P ; J t J

= P ; ((okay ⇒ okay ′) ∧ II −okay
rel )t substitution

= P ; ((okay ⇒ true) ∧ II −okay
rel ) propositional calculus

= P ; II −okay
rel propositional calculus

= P ; (okay ∨ ¬ okay) ∧ II −okay
rel relational calculus

= P ; okay ∧ II −okay
rel ∨ P ; ¬ okay ∧ II −okay

rel okay-boolean, II −okay
rel

= P ; okay = true ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′

∨
P ; okay = false ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′

one-point

= P t ∨ P f

Substitution of false for okay ′ eliminates CSP2 .

Law 128 (CSP2-diverge).

(CSP2(P))f = P f

Proof.

(CSP2(P))f CSP2

= (P ; J )f substitution

= P ; J f J

= P ; ((okay ⇒ okay ′) ∧ II −okay
rel )f substitution

= P ; ((okay ⇒ false) ∧ II −okay
rel ) propositional calculus

= P ; (¬ okay ∧ II −okay
rel ) okay-boolean, II −okay

rel

= P ; (okay = false ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′) one-point

= P f



A Tutorial Introduction to CSP in Unifying Theories of Programming 257

It is trivial to prove that any reactive design is CSP2 , since CSP2 and H2
are the same. A reactive process defined in terms of a design is always CSP2-
healthy.

Law 129 (reactive-design-CSP2). CSP2(R(P $ Q)) = R(P $ Q)

A CSP process is a reactive process that is both CSP1 and CSP2-healthy. The
following theorem shows that any CSP process can be specified in terms of a
design using R.

Theorem 12. For every CSP process P, P = R(¬ P f
f $ P t

f )

Together with Laws 121 and 129, this theorem accounts for a style of specifica-
tion for CSP processes in which we use a design to give its behaviour when the
previous process has terminated and not diverged, and leave the definition of
the behaviour in the other situations for the healthiness conditions. The precon-
dition of the design characterises the conditions that guarantee that the process
does not diverge: it is not the case that, having started (wait is false), then it
diverges (okay ′ is false). The postcondition gives the behaviour when, having
started, the process does not diverge (okay ′ is true).

Figure 1 summarises the relationship between the theories of the UTP we
presented so far. In black, we have all the alphabetised predicates; in white,
we have the relations: those predicates whose alphabet include only dashed and
undashed variables. Designs and reactive processes are disjoint sets of relations.
Finally, CSP processes are reactive; moreover, they are the R-image of designs.

predicates

relations

designs CSP
reactive

processes

Fig. 1. UTP theories

Motivated by the result above, we express some constructs of CSP as reactive
designs. We show that our definitions are the same as those in [117], with a few



258 A. Cavalcanti and J. Woodcock

exceptions that we explain. Before we proceed, however, we observe that, for
CSP processes, II rea is an identity.

Law 130 ( II rea-sequence-CSP).

II rea ; P = P provided P is both CSP1 and CSP2-healthy

In spite of its name, II rea is not a true identity for reactive processes that are
not CSP.

Exercise 16. Give an example of a reactive process P for which II rea ; P 	= P .

6.3 STOP

We want the following definition for STOP .

STOP = R(true $ tr ′ = tr ∧ wait ′)

Since STOP deadlocks, it does not change the trace or terminates. Moreover,
all events can be refused; so, we leave the value of ref ′ unrestrained: any refusal
set is a valid observation.

The next law describes the effect of starting STOP properly and insisting that
it does not diverge. The result is that it leaves the trace unchanged and it waits
forever. We need to apply CSP1, since we have not ruled out the possibility of
its predecessor diverging.

Law 131 (STOP-converge). STOP t
f = CSP1(tr ′ = tr ∧ wait ′)

Proof.

STOP t
f STOP

= (R(true $ tr ′ = tr ∧ wait ′))tf R-wait -false, R1-okay ′, R2-okay ′

= R1 ◦ R2((true $ tr ′ = tr ∧ wait ′)tf ) substitution

= R1 ◦ R2((true $ tr ′ = tr ∧ wait ′)t ) design, substitution
= R1 ◦ R2(okay ⇒ tr ′ = tr ∧ wait ′) R2
= R1(okay ⇒ tr ′ = tr ∧ wait ′) H1

= R1(H1(tr ′ = tr ∧ wait ′)) R1
= R1(H1(R1(tr ′ = tr ∧ wait ′))) CSP1-R1-H1 and R1

= CSP1(tr ′ = tr ∧ wait ′)

Now we consider the behaviour if we start STOP properly, but insist that it
does diverge. Of course, STOP cannot do this, so the result is that it could not
have been started.

Law 132 (STOP-diverge). STOP f
f = R1(¬ okay)



A Tutorial Introduction to CSP in Unifying Theories of Programming 259

Proof.

STOP f
f STOP

= (R(true $ tr ′ = tr ∧ wait ′))ff R-wait -false, R1-okay ′, R2-okay ′

= R1 ◦ R2((true $ tr ′ = tr ∧ wait ′)ff ) substitution

= R1 ◦ R2((true $ tr ′ = tr ∧ wait ′)f ) design, substitution
= R1 ◦ R2(¬ okay) R2
= R1(¬ okay)

It is possible to prove the following law for STOP : it is a left zero for sequence.

Law 133 (STOP-left-zero). STOP ; P = STOP

This gives some reassurance of the validity of our definition.

6.4 SKIP

In the UTP, the definition of SKIP is as follows.

SKIP =̂ R(∃ ref • II rea)

We propose the formulation presented in the law below.

Law 134 (SKIP-reactive-design). SKIP = R(true $ tr ′ = tr ∧ ¬ wait ′)

This characterises SKIP as the program that terminates immediately without
changing the trace; the refusal set is left unspecified, as it is irrelevant after
termination.

6.5 CHAOS

The UTP definition for CHAOS is R(true). Instead of true, we use a design.

Law 135 (CHAOS-reactive-design). CHAOS = R(false $ true)

It is perhaps not surprising that CHAOS is the reactive abort.

Law 136 (CHAOS-left-zero). CHAOS ; P = CHAOS

The new characterisation of CHAOS can be used in the proof of the law above.

6.6 External Choice

For CSP processes P and Q with a common alphabet, their external choice is
defined as follows.

P � Q =̂ CSP2((P ∧ Q) � STOP � (P ∨ Q))



260 A. Cavalcanti and J. Woodcock

This says that the external choice behaves like the conjunction of P and Q if no
progress has been made (that is, if no event has been observed and termination
has not occurred). Otherwise, it behaves like their disjunction. This is an eco-
nomical definition, and we believe that its re-expression as a reactive design is
insightful. To prove the law that gives this description, we need a few lemmas,
which we present below.

In order to present external choice as a reactive design, we need to calculate
a meaningful description for the design R(¬ (P � Q)ff $ (P � Q)tf ). that is
indicated by Theorem 12. We start with the precondition, and calculate a result
for (P � Q)ff .

Lemma 15 (external-choice-diverge). Provided P and Q are R1-healthy,
(P � Q)ff = (P f

f ∨ Q f
f ) � okay � (P f

f ∧ Q f
f )

This result needs to be negated, but it remains a conditional on the value of
okay. Since it is a precondition, this conditional may be simplified.

Lemma 16 (external-choice-precondition).

(¬ (P � Q)ff $ R ) = (¬ (P f
f ∨ Q f

f ) $ R )

Now we turn our attention to the postcondition.

Lemma 17 (external-choice-converge).

(P � Q)tf =

(P ∧ Q) � STOP � (P ∨ Q)tf ∨ (P ∧ Q) � STOP � (P ∨ Q)ff

The second part of the postcondition is in contradiction with the precondition,
and when we bring the two together it can be removed. The conditional on
STOP can then be simplified.

Lemma 18 (design-external-choice-lemma).

(¬ (P � Q)ff $ (P � Q)tf ) =

((¬ P f
f ∧ Q f

f ) $ ((P t
f ∧ Q t

f ) � tr ′ = tr ∧ wait ′ � (P t
f ∨ Q t

f )))

Finally, we collect our results to give external choice as a reactive design.

Law 137 (design-external-choice).

P � Q = R((¬ P t
f ∧ ¬ Q t

f ) $ (P t
f ∧ Q t

f ) � tr ′ = tr ∧ wait ′ � (P t
f ∨ Q t

f ))

Proof.

P � Q CSP-reactive-design

= R(¬ (P � Q)ff $ (P � Q)tf ) design-external-choice-lemma

= R((¬ P f
f ∧ ¬ Q f

f ) $ (P t
f ∧ Q t

f � tr ′ = tr ∧ wait ′ � P t
f ∨ Q t

f ))



A Tutorial Introduction to CSP in Unifying Theories of Programming 261

The design in this law describes the behaviour of an external choice P � Q when
its predecessor has terminated without diverging. In this case, the external choice
does not diverge if neither P nor Q does; this is captured in the precondition.
The postcondition establishes that if there has been no activity, or rather, the
trace has not changed and the choice has not terminated, then the behaviour is
given by the conjunction of P and Q . If there has been any activity, then the
choice has been made and the behaviour is either that of P or that of Q .

Exercise 17. Write out the reactive design that corresponds to the external
choice below, where a and b are events.

R(true $ wait ′ ∧ tr ′ = tr ∧ { a } 	∈ ref ′ ∨ ¬ wait ′ ∧ tr ′ = tr � 〈 a 〉)
�

R(true $ wait ′ ∧ tr ′ = tr ∧ { b } 	∈ ref ′ ∨ ¬ wait ′ ∧ tr ′ = tr � 〈 a 〉)

Exercise 18. How can we write the process below in the notation of CSP?

R(true $ wait ′ ∧ tr ′ = tr ∧ { a } 	∈ ref ′ ∨ ¬ wait ′ ∧ tr ′ = tr � 〈 a 〉)

6.7 Extra Healthiness Conditions: CSP3 and CSP4

The healthiness conditions CSP1 and CSP2 are not strong enough to charac-
terise a UTP model containing only those relations that correspond to processes
that can be written using the CSP operators as presented, for example, in Chap-
ter 3. In principle, we need more healthiness conditions to further restrict the
subset of reactive processes of interest. As a matter of fact, however, there are
advantages to this greater flexibility. In any case, a few other healthiness condi-
tions can be very useful, if not essential. Here, we present two of these.

CSP3. This healthiness condition requires that the behaviour of a process does
not depend on the initial value of ref . In other words, it should be the case
that, when a process P starts, whatever the previous process could or could
not refuse when it finished should be irrelevant. Formally, the CSP3 health-
iness condition is ¬ wait ⇒ (P = ∃ ref • P). If the previous process diverged,
¬ okay , then CSP1 guarantees that the behaviour of P is already independent
of ref . So, the restriction imposed by CSP3 is really relevant for the situation
okay ∧ ¬ wait , as should be expected.

We can express CSP3 in terms of an idempotent defined as follows.

CSP3(P) = SKIP ; P

The following lemma establishes that this is the right idempotent.

Lemma 19. P is CSP3-healthy if, and only if, SKIP ; P = P.

Using this idempotent, we can prove that SKIP is CSP3-healthy.

Law 138 (SKIP-CSP3). CSP3(SKIP) = SKIP



262 A. Cavalcanti and J. Woodcock

With this result, it is very simple to prove that CSP3 is indeed an idempotent.

CSP3 ◦ CSP3 = CSP3

Since CSP processes are not closed with respect to conjunction, we only worry
about closure of the extra healthiness conditions with respect to the other pro-
gramming operators.

Theorem 13. Provided P and Q are CSP3-healthy,

CSP3(P ∨ Q) = P ∨ Q CSP3-∨-closure

CSP3(P � tr = tr ′ � Q) = P � tr = tr ′ � Q CSP3-conditional-closure

CSP3(P ; Q) = P ; Q CSP3-sequence-closure

CSP4. The second extra healthiness condition, CSP4, is similar to CSP3.

CSP4(P) = P ; SKIP

It requires that, on termination or divergence, the value of ref ′ is irrelevant. The
following lemma makes this clear.

Lemma 20.

P ; SKIP = (∃ ref ′ • P) ∧ okay ′ ∧ ¬ wait ′ ∨
P ∧ okay ′ ∧ wait ′ ∨
(P ∧ ¬ okay ′) ; tr ≤ tr ′

This result shows that, if P = P ; SKIP , then if P has terminated without
diverging (okay ′ ∧ ¬ wait ′), the value of ref ′ is not relevant. If P has not
terminated (okay ′ ∧ wait ′), then the value of ref ′ is as defined by P itself. Finally,
if it diverges (	 okay ′), then the only guarantee is that the trace is extended; the
value of the other variables is irrelevant.

It is easy to prove that SKIP , STOP , and CHAOS are CSP4-healthy.

Law 139 (SKIP-CSP4). CSP4(SKIP) = SKIP

Law 140 (STOP-CSP4). CSP4(STOP) = STOP

Law 141 (CHAOS-CSP4). CSP4(CHAOS ) = CHAOS

The usual closure properties also hold.

Theorem 14. Provided P and Q are CSP4-healthy,

CSP4(P ∨ Q) = P ∨ Q CSP4-∨-closure

CSP4(P � b � Q) = P � b � Q CSP4-conditional-closure

CSP4(P ; Q) = P ; Q CSP4-sequence-closure

As detailed in the next section, other healthiness conditions may be useful. We
leave this search as future work; [117] presents an additional healthiness condi-
tion that we omit here: CSP5.



A Tutorial Introduction to CSP in Unifying Theories of Programming 263

7 Failures-Divergences Model

The failures-divergences model is the definitive reference for the semantics of
CSP [225]. It is formed by a set F of pairs and a set D of traces. The pairs are
the failures of the process. A failure is formed by a trace and a set of events;
the trace s records a possible history of interaction, and the set includes the
events that the process may refuse after the interactions in the trace. This set
is the refusals of P after s . The set D of traces is the divergences of the pro-
cess. After engaging in the interactions in any of these traces, the process may
diverge.

Refinement in this model is defined as reverse containment. A process P1 is
refined by a process P2 if, and only if, the set of failures and the set of divergences
of P2 are contained or equal to those of P1 .

The simpler traces model includes only a set of traces. For a process P , the
set traces⊥(P) contains the set of all traces in which P can engage, including
those that lead to or arise from divergence.

7.1 Failures-Divergences Healthiness Conditions

A number of healthiness conditions are imposed on the failures-divergences
model. The first healthiness condition requires that the set of traces of a process
is captured in its set of failures, that this set is non-empty and prefix closed.
This is because the empty trace is a trace of every process, and every earlier
record of interaction is a possible interaction of the process.

F1 traces⊥(P) = { t | (t ,X ) ∈ F } is non-empty and prefix closed

The next healthiness condition requires that if (s ,X ) is a failure, then (s ,Y ) is
also a failure, for all subsets Y of X . This means that, if after s the process may
refuse all the events of X , then it may refuse all the events in the subsets of X .

F2 (s ,X ) ∈ F ∧ Y ⊆ X ⇒ (s ,Y ) ∈ F

Also concerning refusals, we have a healthiness condition that requires that if an
event is not possible, according to the set of traces of the process, then it must
be in the set of refusals.

F3 (s ,X ) ∈ F ∧ (∀ a : Y • s � 〈 a 〉 	∈ traces⊥(P)) ⇒ (s ,X ∪ Y ) ∈ F

The event � is used to mark termination. The following healthiness condition
requires that, just before termination, a process can refuse all interactions. The
set Σ includes all the events in which the process can engage, except � itself.

F4 s � 〈� 〉 ∈ traces⊥(P) ⇒ (s , Σ) ∈ F

The last three healthiness conditions are related to the divergences of a process.
First, if a process can diverge after engaging in the events of a trace s , then it



264 A. Cavalcanti and J. Woodcock

can diverge after engaging in the events of any extension of s . The idea is that,
conceptually, after divergence, any behaviour is possible. Even � is included in
the extended traces, and not necessarily as a final event. The set Σ∗ includes all
traces on events in Σ, and Σ∗� includes all traces on events in Σ ∪ {� }.

D1 s ∈ D ∩ Σ∗ ∧ t ∈ Σ∗� ⇒ s � t ∈ D

The next condition requires that, after divergence, all events may be refused.

D2 s ∈ D ⇒ (s ,X ) ∈ F

The final healthiness condition requires that if a trace that marks a termination
is in the set of divergences, it is because the process diverged before termination.
It would not make sense to say that a process diverged after it terminated.

D3 s � 〈� 〉 ∈ D ⇒ s ∈ D

Some of these healthiness conditions correspond to UTP healthiness conditions.
Some of them are not contemplated. They are discussed individually later on.

7.2 Failures-Divergences Model of a UTP Process

We can calculate a failures-divergences representation of a UTP process. More
precisely, we define a few functions that take a UTP predicate and return a
component of the failures-divergences model. We first define a function traces ;
it takes a UTP predicate P and returns the set of traces of the corresponding
process.

In the UTP model, the behaviour of a process is that prescribed when okay
and ¬ wait . The behaviour in the other cases is determined by the UTP health-
iness conditions, and is included in the UTP model so that sequence is
simplified: it is just relational composition. In the failures-divergences model,
this extra behaviour is not captured and is enforced in the definition of
sequence.

The value of tr records the history of events before the start of the process;
tr ′ carries this history forward. This simplifies the definition of sequence. In the
failures-divergences model, this extra behaviour is not captured. Therefore, the
traces in the set traces(P) are the sequences tr ′−tr that arise from the behaviour
of P itself.

traces(P) = { tr ′ − tr | okay ∧ ¬ wait ∧ P ∧ okay ′ }∪
{ (tr ′ − tr) � 〈� 〉 | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }

The set traces(P) only includes the traces that lead to non-divergent behaviour.
Moreover, if a trace tr ′ − tr leads to termination, ¬ wait ′, then traces(P) also
includes (tr ′ − tr) � 〈� 〉, since � is used in the failures-divergences model to
signal termination.



A Tutorial Introduction to CSP in Unifying Theories of Programming 265

Exercise 19. Calculate traces(STOP).

The traces that lead to or arise from divergent behaviour are those in the set
divergences(P) defined below.

divergences(P) = { tr ′ − tr | okay ∧ ¬ wait ∧ P ∧ ¬ okay ′ }

Exercise 20. Calculate divergences(STOP).

The set traces⊥(P) mentioned in the healthiness conditions of the failures-
divergences model includes both the divergent and non-divergent traces.

traces⊥(P) = traces(P) ∪ divergences(P)

The failures are recorded for those states that are stable (non-divergent) or final.

failures(P) =
{ ((tr ′ − tr), ref ′) | okay ∧ ¬ wait ∧ P ∧ okay ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′) | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′ ∪ {� }) | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }

For the final state, the extra trace (tr ′ − tr) � 〈� 〉 is recorded. Also, after
termination, for every refusal set ref ′, there is an extra refusal set ref ′ ∪ {� }.
This is needed because � is not part of the UTP model and is not considered in
the definition of ref ′.

Exercise 21. Calculate failures(STOP) and failures(SKIP).

The set of failures in the failures-divergences model includes failures for the
divergent traces as well.

failures⊥(P) = failures(P) ∪ { (s , ref ) | s ∈ divergences(P) }

For a divergent trace, there is a failure for each possible refusal set.
The functions failures⊥ and divergences map the UTP model to the failures-

divergences model. In studying the relationship between alternative models for
a language, it is usual to hope for an isomorphism between them. In our case,
this would amount to finding inverses for failures⊥ and divergences. Actually,
this is not possible; UTP and the failures-divergences model are not isomorphic.
This is discussed in detail below.

7.3 Relationship Between the Failures-Divergences and the UTP
Model

The UTP model contains processes that cannot be represented in the failures-
divergences model. Some of them are useful in a model for a language that has
a richer set of constructions to specify data operations. Others may need to be
ruled out by further healthiness conditions.

The failures-divergences model, for example, does not have a top element;
all divergence-free deterministic processes are maximal. In the UTP model,
R(true $ false) is the top.



266 A. Cavalcanti and J. Woodcock

Lemma 21. For every CSP process P, we have that P � R(true $ false).

The process R(true $ false) is ( II rea � wait � ¬ okay ∧ tr ≤ tr ′). Its behaviour
when okay and ¬ wait is false. As such, it is mapped to the empty set of failures
and divergences; in other words, it is mapped to STOP . Operationally, this can
make sense, but STOP does not have the same properties of R(true $ false).
In particular, it does not refine every other process.

Exercise 22. Give an algebraic proof that

R(true $ false) = ( II rea � wait � ¬ okay ∧ tr ≤ tr ′)

Exercise 23. Take advantage of the result of the previous exercise to calculate
failures⊥(R(true $ false)) and divergences(R(true $ false)).

Exercise 24. Explain why STOP does not refine every other process. Consider
both the UTP and the failures-divergences models.

In general terms, every process that behaves miraculously in any of its initial
states cannot be accurately represented using a failures-divergences model. We
do not, however, necessarily want to rule out such processes, as they can be
useful as a model for a state-rich CSP.

If we analyse the range of failures⊥ and divergences, we can see that it does
not satisfy a few of the healthiness conditions F1-4 and D1-3.

F1. The set traces⊥(P) is empty for P = R(true $ false); as discussed above,
this can be seen as an advantage. Also, traces⊥(P) is not necessarily prefix closed.
For example, the process R(true $ tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′) engages in the
events a and b and then terminates. It does not have a stable state in which a
took place, but b is yet to happen.

Exercise 25. Calculate traces(R(true $ tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′)). Prove
that R(true $ tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′) is both CSP3 and CSP4.

F2. This is also not enforced for UTP processes. It is expected to be a conse-
quence of a healthiness condition CSP5 presented in [117].

F3. Again, it is simple to provide a counterexample.

R(true $ tr ′ = tr � 〈 a 〉 ∧ ref ′ ⊆ { b } ∧ wait ′ ∨ tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′)

In this case, a is not an event that can take place again after it has already
occurred, and yet it is not being refused.

Exercise 26. Calculate the failures of the process above, and check that it is
both CSP3 and CSP4 .

F4. This holds for CSP4-healthy processes.



A Tutorial Introduction to CSP in Unifying Theories of Programming 267

Theorem 15. Provided P is CSP4-healthy,

s � 〈� 〉 ∈ traces⊥(P) ⇒ (s , Σ) ∈ failures(P)

D1. Again, CSP4 is required to ensure D1-healthy divergences.

Theorem 16. Provided P is CSP4-healthy,

s ∈ divergences(P) ∩ Σ∗ ∧ t ∈ Σ∗� ⇒ s � t ∈ divergences(P)

D2. This is enforced in the definition of failures⊥.

D3. Again, this is a simple consequence of the definition (of divergences).

Theorem 17.

s � 〈� 〉 ∈ divergences(P) ⇒ s ∈ divergences(P)

We view the definition of extra healthiness conditions on UTP processes to
ensure F1 and F3 as a challenging task.

8 Conclusions

We have presented two UTP theories of programming: one for pre-post specifica-
tions (designs), and one for reactive processes. They have been brought together
to form a theory of CSP processes. This is the starting point for the unification of
the two theories, whose logical conclusion is a theory of state-rich CSP processes.
This is the basis for the semantics of a new notation called Circus [255, 51], which
combines Z and CSP.

The theory of designs was only briefly discussed. It is the subject of a com-
panion tutorial [256], where through a series of examples, we have presented the
alphabetised relational calculus and its sub-theory of designs. In that paper, we
have presented the formalisation of four different techniques for reasoning about
program correctness.

Even though this is a tutorial introduction to part of the contents of [117], it
contains many novel laws and proofs. Notably, the recasting of external choice
as a reactive design can be illuminating. Also, the relationship with the failures-
divergences model is original.

We hope to have given a didactic and accessible account of the CSP model
in the unifying theories of programming. We have left out, however, the defini-
tion of many CSP constructs as reactive designs and the exploration of further
healthiness conditions. These are going to be the subject of further work.

In [217], UTP is also used to give a semantics to an integration of Z and
CSP, which also includes object-oriented features. In [240], the UTP is extended
with constructs to capture real-time properties as a first step towards a semantic
model for a timed version of Circus. In [83], a theory of general correctness is



268 A. Cavalcanti and J. Woodcock

characterised as an alternative to designs; instead of H1 and H2, a different
healthiness condition is adopted to restrict general relations.

Currently, we are collaborating with colleagues to extend UTP to capture
mobility, synchronicity, pointers, and object orientation. In particular, in [52] we
propose a UTP model for an object-oriented extension of Circus based on the
language and results discussed in Chapter 2; the details of that model are part of
our ongoing work. As explained in Chapter 2, this model can be used to prove the
laws proposed there. We hope to contribute to the development of a theory that
can support all the major concepts available in modern programming languages.



Using the Compliance Notation in Industry

Phil Clayton and Colin O’Halloran

Systems Assurance Group
QinetiQ Malvern Technology Centre

Malvern, UK

1 Introduction

Nancy Leveson has observed that few safety failures are due to coding er-
rors [152]; for this reason, it is claimed that verification, although desirable, is not
the most cost effective use of a limited budget. Evidence does show that safety
failures tend to arise instead from requirements or design decisions [205]; how-
ever, low-level implementation decisions can also have a large impact on higher
level decisions. For example, the removal of a defensive conditional clause from
the source code of the inertial reference system of Ariane 5 would have been
safe, except for the requirement to execute the ground-based function during
flight [88]. When assessing the safety impact of requirement and design deci-
sions there are always worries about the accuracy of the documentation and
whether some decisions have not been recorded, or left implicit.

The software source code is the most accurate and accessible record of all
implementation decisions, but it is not easily understood by a human. A means
of abstracting the source code to a level where a person, with machine support,
can sensibly make judgements about conflicting requirements is required. Ab-
straction addresses the customer’s duty of care to understand what it is they are
accepting and maintain the safety of the system during its evolution, a poten-
tially very expensive issue.

We have designed a notation for demonstrating compliance between software
and a specification [236, 207], and produced a tool to support the demonstration
of compliance [206]. One of the design objectives was to support retrospective
formalisation of the development of code from a specification. Initial laboratory
use indicated that the tool is best suited to reasoning about the safety properties
of code. Software that has been written with safety constraints in mind can be
abstracted to formally specified safety properties, which can then be reasoned
about and assessed against system-level hazards.

This chapter describes a Compliance Notation [236] for the Z notation [257]
and an Ada subset [21]; the notation has been used to perform formal refine-
ment for industrial applications. The chapter starts with an introduction to the
Compliance Notation and the tool that processes it. An extended example of a
compliance argument that contains formal refinement is given, and then expe-
riences of its use are related. The chapter then goes on to present a specialized
application of refinement using the Compliance Notation to demonstrate the
correct implementation of control laws that govern control systems. Finally, the
role of refinement within a system dependability or safety argument is presented.

, LNCS 3167, pp. 269–314, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004



270 P. Clayton and C. O’Halloran

2 A Compliance Notation and Tool

2.1 Overview

The Compliance Notation [236] is intended for use with an Ada compiler and
existing Z tools. The Ada compiler carries out static checks on the program. For
example, in order for refinement to be carried out, it is necessary to translate
Ada types to Z. The Compliance Notation translates all discrete types to Z’s
integers. As refinement is carried out, an Ada compiler will enforce the Ada
type rules on the program; this means that refinement and verification condi-
tions (VCs) need only focus on the logical correctness of the program. A Z type
checker is applied to the Z parts of the compliance argument and the Z docu-
ment. The Compliance Notation has four ingredients: the Spark [21] subset of
Ada, together with Z [257], Knuth’s literate programming technique [138], and
refinement [192, 257].

2.2 The Specification Notation Z

Z is a high-level specification language: a system can be specified without wor-
rying about details of its implementation. That is, it can be used to specify
what a system does, rather than how it does it. A mathematical specification
of a system also allows us to reason about a system, without reference to its
implementation. The main feature of the Z language is the schema. Schemas are
used to split the specification into parts, which may then be re-used. The schema
calculus then allows these parts to be composed.

The next few paragraphs explain how Z is used in the Compliance Notation.
Firstly, the specification of an Ada program is written in Z. Typically, a liter-
ate script will contain a number of Z paragraphs. When formally specifying a
fragment of an Ada program, the user will insert a specification statement in
the appropriate place. This specification statement consists of Z and will use
definitions from the Z paragraphs.

Z can be used when a specification statement is refined. Refinement introduces
programming constructs and possibly more specification statements. These new
specification statements might need to refer to some new Z paragraphs. For
example, a Z schema can be used to express the invariant of a loop. The name of
this schema (a schema reference) can then be used in a specification statement.
In the Compliance Notation, Z is also used to express the VCs that are generated
during refinement, and to express their formal proof.

Apart from the VCs in a compliance argument, the projected Z document
contains a Z translation of the Ada constants, types and functions found in the
literate script. These form the Z context of the VCs and are necessary for type
checking and proving them.

2.3 Spark

Spark [21] is a “safe subset” of Ada. Spark’s restrictions increase the chances of
writing a trustworthy program, and at the same time make the formal verification



Using the Compliance Notation in Industry 271

of programs easier. For example, it rules out those Ada programs of uncertain
meaning, which may be interpreted differently by different compilers. Without
such restrictions, a programmer could write a program thinking it has a certain
meaning, when a compiler gives it another. This restriction also helps with the
formal verification of programs easier: showing compliance between a program
and its specification is easier if the program has a precise meaning. If there were
many possible meanings then each of these possibilities would have to comply
with the specification of the program.

An example of an Ada program having more than one meaning is one con-
taining a function with a side-effect. If a function F changes a global variable A,
then an expression such as A + F (B) could give different results depending on
whether A or F (B) is evaluated first. Two different compilers might therefore
produce two different results. Functions with side-effects also cause the order of
evaluation of parameters of a subprogram to be important. If two of the parame-
ters are A and F (B), then different results will be obtained depending on which
of these parameters is evaluated first. To avoid these problems, Spark rules out
functions with side-effects.

Ambiguity can also arise through aliasing, which may be caused by the use of
access types, and so these are banned by Spark. Aliasing may also be the result
of passing actual parameters by reference, and this could give different results to
passing parameters by copying in and copying out. Spark rules out programs
that depend on the type of parameter passing.

Spark rules out programs that use dynamic memory allocation. This avoids
programs that run out of memory at run-time; the formal verification of such
programs would also be very difficult. Spark therefore rules out recursion and
discriminated record types. Access types also use dynamic memory allocation,
and this is another reason why these are ruled out.

Spark rules out both the re-declaration of identifiers already in scope and
overloading. This prevents a programmer becoming a victim of variable capture;
without this restriction, a variable different to the one intended could be up-
dated. Programs that allow redeclaration and overloading are more difficult to
verify.

2.4 Literate Programming

Literate programming [138] allows the parts of a program to be presented in a
different order to that presented to a compiler. A program can be presented in an
order more suited to human comprehension, rather than in an order convenient
to a machine. For example, it is often easier to understand a program by seeing
the overall structure, before concentrating on the individual parts.

To achieve this, literate programming uses a system of slots, known as Knuth
slots. A slot is used to denote a piece of the program; a piece that will be
described later. A slot contains a brief description in natural language of the
piece of program that will ultimately occupy the slot. So, an overall descrip-
tion of the program can be achieved before expanding on the individual
parts.



272 P. Clayton and C. O’Halloran

A slot also contains a label that is used when the slot is later expanded; it
signifies which slot is being expanded. The labels also allow the final program
to be extracted in the correct order for the compiler.

For example, a programmable logic controller (PLC) for a metal press can be
presented thus:

procedure PLC SY STEM
is

〈 Declarations 〉 (1 )
begin

〈 Initialisation 〉 (2 )
〈 Non−Terminating Loop 〉 (3 )

end PLC SY STEM ;

This description gives a good overall view of the program, without worrying
about how the non-terminating control system is actually implemented; this can
be described later.

A Knuth slot, such as (1 ) above, can be expanded to show the piece of program
that is to occupy the slot. This will usually be accompanied by a full, natural
language description of the code, rather than the brief description that is in the
slot. A program fragment that to expand a slot can itself contain further slots,
and so on. For example, expanding slot (1 ) gives:

(1 ) ≡
OPEN, CLOSE : BOOLEAN ;
TIME : INTEGER;
CLOCK : BOOLEAN ;
type STATETY PE is range 0 .. 7 ;
INIT : constant STATETY PE := 0 ;
ISOPEN : constant STATETY PE := 1 ;
RIGHT : constant STATETY PE := 2 ;
LEFT : constant STATETY PE := 3 ;
CLOSING : constant STATETY PE := 4 ;
U CLOSING: constant STATETY PE := 5 ;
OPENING : constant STATETY PE := 6 ;
WAITING : constant STATETY PE := 7 ;
STATE : STATETY PE;
LBD IN, RBD IN : BOOLEAN ;
PRESS OPEN IN, PRESS CLOSED IN,
PRESS PONR IN : BOOLEAN ;

The declarations for slot (1 ) allow the state for a metal press with two buttons (one
for opening the press and one for closing it) to be described. If the variable OPEN
is set to TRUE , then the press will open. If the variable CLOSE is set to TRUE ,
then the press will close. TIME represents a clock within the controller, while
CLOCK represents whether it is switched on. STATETYPE represents the differ-
ent states of the press. LBD IN and RBD IN are the left and right buttons; they



Using the Compliance Notation in Industry 273

are TRUE if pressed. PRESS OPEN IN , PRESS CLOSED IN and
PRESS PONR IN represent sensor values indicating that the press is fully open,
fully closed or past the point of no return respectively.

2.5 Refinement

Refinement [192, 257] is a formal relationship between a program and a formal
specification. It allows the formality present in the specification to be continued
all the way to code, and allows the task of relating an implementation to a formal
specification to be broken down into parts. To achieve its aims, refinement uses
specification statements, which are similar to Knuth slots, except this time the
slot contains a formal description of code, rather than a brief English description.
A specification statement formally describes the code required at that point.

A specification statement can be expanded (refined) into a program, which
can contain further specification statements, which can themselves be subse-
quently refined. Each refinement step may incur VCs, and the program intro-
duced complies with the specification statement provided the VCs hold. VCs can
be generated automatically and can be submitted to a theorem prover, just as
the final program can be submitted to a compiler.

Refinement is similar to literate programming: it allows the problem to be de-
composed, and the program to be presented in a different order to that presented
to a compiler; but at the same time it brings formality into the process.

In the Compliance Notation, a specification statement is used to formally
specify in Z the Ada code that is required at that point. A specification statement
can be placed wherever an Ada statement is allowed, and forms the origin for
the code that is ultimately to replace it. As an example, consider:

procedure PLUS TEN (X : in INTEGER; Y : out INTEGER)
is
begin

Δ Y [ X = 2 , Y = X + 10 ]
end PLUS TEN ;

The procedure PLUS TEN has been specified by its interface (the procedure
header) and its effect (a specification statement for its body). It is required to
output a number ten greater than its input (a postcondition) whenever the input
is equal to two (a precondition); it can of course do the same for other inputs.
Only Y is allowed to change (the frame of the specification). One solution to the
specification statement is the code Y := X + 10 , which achieves the postcondi-
tion for all inputs. Another solution is Y := 12 , which achieves the postcondition
exactly when the precondition holds; this is the minimum requirement.

An example of a refinement in the Compliance Notation for the previous
specification statement is:

� Y := X + 10 ;

The symbol “�” denotes a formal refinement that incurs a VC that the assign-
ment satisfies the specification statement it replaces.



274 P. Clayton and C. O’Halloran

2.6 A Compliance Tool

The Compliance Tool supports the use of the Compliance Notation. It performs
the following principal functions:

– Checking the syntax of a Compliance Notation script.
– Generating the Z document, including VCs, from a script.
– Extracting the Spark program from a script.

The Compliance Tool is implemented as an application of the ProofPower speci-
fication and proof tool. The tool provides all the facilities offered by ProofPower
for developing specifications and proofs in HOL and Z, and for preparing high-
quality printed output in LATEX. The tool includes some custom facilities for
working with the Compliance Notation, including a VC browser and some cus-
tomized proof procedures.

The use of the tool in the development of a compliance argument will involve
several stages, typically including the following:

– Initial preparation of literate scripts using the editing and interactive check-
ing facilities of the tool. During this stage, Z documents and Spark programs
are produced and inspected as required to assist in the development.

– Batch processing of complete literate scripts. If the conventions suggested
in the User Guide are followed, the Z documents and Spark program are
produced automatically. The tool can be used interactively if required, for
example to help diagnose errors.

– Further analysis of the Z documents. Depending on circumstances and on
the level of formality required, this might involve some or all of the follow-
ing: inspection of the documents, on paper or using a viewer; use of the VC
browser supplied with the tool; and machine checking the proof of some or
all of the VCs.

The Compliance Tool offers an extensive range of facilities to help in all three
of these activities.

Note that in the example given in 2.5, a side condition to the VC might be a
further VC

X+10 ∈ INTEGER

which ensures that a run-time error cannot occur. In this example, this would
exclude the possibility of exceeding the range of a type. The Compliance Tool
deliberately does not generate this side condition as an additional formal VC,
because other methods can be used to establish whether it holds.

A static analysis tool called Malporte is used within the Systems Assurance
Group to demonstrate absence of run-time errors. The capabilities and use of
Malporte are discussed later in the chapter (see Section 6.7), but it supports
reasoning about partial program correctness. Therefore, conditions such as loop
termination are also not enforced; however, loop termination can be proved sep-
arately using the Compliance Tool.

Another example of a compliance argument is the following procedure to swap
the values held in two variables:



Using the Compliance Notation in Industry 275

procedure SWAP (X, Y : in out INTEGER)
is

〈 Local variable 〉 (1 )
begin

〈 Swap the values of X and Y 〉 (2 )
end SWAP ;

Expanding slots (1 ) and (2 ), using the expansion symbol ≡, gives:

(1 ) ≡ TEMP : INTEGER;

and

(2 ) ≡ Δ X, Y, TEMP [ true, X = Y 0 ∧ Y = X0 ] (3 )

The above specification statement is of the form

Δ frame [ precondition, postcondition ] (label)

The postcondition states that the final value of X must equal the initial value
of Y (denoted Y0 ) and the final value of Y must equal the initial value of
X (denoted X0 ). The frame states that only X , Y and TEMP are allowed to
change. The final step of the compliance argument is a refinement of the previous
specification statement:

(3 ) �
TEMP := X ;
X := Y ;
Y := TEMP ;

The refinement of the program has now reached code.

3 Experiences of Using the Notation and Tool

Experience gained from using the Compliance Notation and the Compliance
Tool has led to four observations about how they should be used.

The first observation is that writing an abstract specification, although very
valuable, is difficult. People seem to be able to write programs that, more or
less, meet a requirement much more easily than they can write an abstract
specification. For this reason, it is easier to get people to write concrete programs
and then abstract them. If this is done the program that “more or less” meets
a requirement changes to a correct program, with a better appreciation of how
design decisions can affect a requirement.

The second observation is that concrete Ada variables and types should be
used unless an abstract type is genuinely easier to understand. Novices to Z do
tend to write specifications that look like programs, hence guidance on writing



276 P. Clayton and C. O’Halloran

Z specifications tends to encourage the use of abstract mathematical types, such
as sets and relations. Unfortunately, more experienced Z practitioners can fall
into the trap of introducing false abstraction.

For example, if a specification is written in terms of a set and operations on
sets, rather than a sequence and sequence operations, then a judgement has to
be made about whether the use of a set is very much clearer than a sequence.

Using a set is a little more abstract than using a sequence, but if the specifi-
cation is to be refined to an array, then there will be a heavier penalty in terms
of effort and cost in performing data refinement if we start from a set. If an
abstraction gives a much clearer specification, then this penalty can be worth
paying; however, experience has shown that for control system applications this
is the exception rather than the rule.

The third observation is the converse of the second, specifiers can fall into the
trap of leaving a small gap between the specification and the implementation.
In this case, the benefit gained from reading the specification rather than the
source code is outweighed by the great deal of effort and money required to
demonstrate formal refinement.

It has been observed that industrial users tend to describe the total func-
tionality of a software component rather than concentrate on critical properties.
This can be cost effective, but for certification it is often the case that only
certain critical safety properties need to be demonstrated. These safety proper-
ties can be identified using a range of hazard analysis techniques on the total
system.

Traditionally, a specification was proved to satisfy identified safety proper-
ties, and then code was refined from the specification; however, as the third
observation shows, this can lead to little extra benefit for a lot of cost.

The fourth observation is that, when applicable, safety properties should be
formally demonstrated directly from the code. It is still worth checking the speci-
fication rigorously to demonstrate that the safety properties are satisfied, in order
to reduce the economic risk of producing uncertifiable software. It is not however
cost effective to attempt relatively expensive formal proofs at the level of the
specification when the certifier wants assurance that the code is safe.

3.1 An Example

The programmable logic controller, described in Section 2.4, is used to illustrate
these observations, before we relate more experiences of the actual industrial
usage of the Compliance Notation and Tool. Recall that the declaration slot
in the overall program skeleton was expanded to a sequence of Ada declaration
statements. These Ada declarations are automatically translated into Z, enabling
the safety condition to be stated.

This specification gives necessary and sufficient conditions for when the metal
press should be open and closed. As far as the safety of the operation of the press
is concerned, this is all that needs to be demonstrated. Note that the Ada vari-
ables STATE , OPEN and CLOSE appear as Z identifiers in the schema PLC,
whereas the Ada constants INIT , OPENING, CLOSING and U CLOSING



Using the Compliance Notation in Industry 277

appear as Z constants (these constants will be automatically declared in the
extracted Z document, so that the schema type checks).

Z

PLC

STATE : STATETY PE;

OPEN, CLOSE : BOOLEAN

OPEN = TRUE ⇔ STATE ∈ {INIT, OPENING};
CLOSE = TRUE ⇔ STATE ∈ {CLOSING, U CLOSING}

The initialisations slot (2 ) in the program skeleton must establish the safety
property, and this is formalized.

(2 ) � Δ CLOSE, OPEN, STATE, T IME [ PLC ] (4 )

This states that only CLOSE , OPEN , STATE and TIME can be changed in
subsequent refinements, and that the postcondition denoted by PLC must be
established with the precondition of true. The refinement of this generates VCs
ensuring that the initialisations establish the safety condition.

(4 ) �
CLOSE := FALSE;
OPEN := TRUE;
TIME := 0 ;
STATE := INIT ;

The loop slot (3 ) in the program skeleton can be expanded, but it must always
preserve the safety condition.

(3 ) ≡
loop

Δ CLOSE, OPEN, STATE, T IME [ PLC, PLC ] (5 )
end loop;

The verification conditions that are generated for this step ensure that the safety
condition is maintained.

The issue of which actual button pushes and sensor inputs produce which
actions, can just as easily be read from the code as from some Z. The Ada
comments for each arm of the if-statement below help in this task. Even if
Z were used to specify this, it would not add extra assurance, because the Z
would exactly mirror the Ada. The task would then be to check the Z, since the
VCs produced could be automatically proved. Hence the literate script is not
complicated with Z at this point. Also a benefit of this is to reduce the number
of VCs. If each arm of the if-statement were a specification statement, then extra



278 P. Clayton and C. O’Halloran

VCs would be produced; therefore, code is introduced instead.

(5 ) � if −− reset PLC
LBD IN = FALSE and RBD IN = FALSE and
PRESS OPEN IN = TRUE and
(STATE = INIT or STATE = WAITING)

then
STATE := ISOPEN ;
OPEN := FALSE;
CLOSE := FALSE;

elsif −− left button pressed
LBD IN = TRUE and STATE = ISOPEN

then
STATE := LEFT ;
TIME := 500 ;

elsif −− right button pressed
RBD IN = TRUE and STATE = ISOPEN

then
STATE := RIGHT ;
TIME := 500 ;

elsif −− left button pressed (right button already pressed)
LBD IN = TRUE and STATE = RIGHT

then
STATE := CLOSING;
CLOSE := TRUE;

elsif −− right button pressed (left button already pressed)
RBD IN = TRUE and STATE = LEFT

then
STATE := CLOSING;
CLOSE := TRUE;

elsif −− left button released
LBD IN = FALSE and STATE = LEFT

then
STATE := ISOPEN ;

elsif −− right button released
RBD IN = FALSE and STATE = RIGHT

then
STATE := ISOPEN ;

elsif −− left button timed out
T IME = 0 and STATE = LEFT

then
STATE := WAITING;

elsif −− right button timed out
T IME = 0 and STATE = RIGHT

then
STATE := WAITING;



Using the Compliance Notation in Industry 279

elsif −− press is beyond the point of no return
PRESS PONR IN = TRUE and
STATE = CLOSING

then
STATE := U CLOSING;

elsif −− press open
PRESS OPEN IN = TRUE and
STATE = OPENING

then
STATE := WAITING;
OPEN := FALSE;

elsif −− press closed
PRESS CLOSED IN = TRUE and
STATE = U CLOSING

then
STATE := OPENING;
OPEN := TRUE;
CLOSE := FALSE;

elsif −− abort close
PRESS PONR IN = FALSE and
(LBD IN = FALSE or RBD IN = FALSE) and
STATE = CLOSING

then
STATE := OPENING;
OPEN := TRUE;
CLOSE := FALSE;

end if ;
Δ TIME [ PLC, PLC ] (6 )

This single refinement step is very convenient, but it creates fifteen VCs; fortu-
nately, they are all easily discharged by ProofPower.

Setting the clock (6) is done in a separate refinement step to reduce the number
of VCs; otherwise, the number of VCs for step (5) would be the product of the
number of paths through the two if-statements below. This way, the number of
VCs is the sum of the number of paths through the two if-statements.

(6 ) ≡ if CLOCK = TRUE
then

if T IME = 0
then

TIME := TIME;
elsif T IME > 0
then

TIME := TIME − 1 ;
end if ;

end if ;



280 P. Clayton and C. O’Halloran

Although a fragment of a compliance argument has been presented in a top-
down manner, it is actually easier to write an operational program. Think of the
operation of the metal press:

If the left button is pressed, then record this in a state variable and set
the countdown timer to 500; if the right button is pressed, then do the
analogous action; if the left button is pressed and the right button has
already been pressed then. . .

It seems more natural to think operationally, and more difficult to create a
functional specification that is significantly more abstract. Of course, this is not
universally true, but it seems to be a general rule for control systems. It is easier
to try to link the program with an abstract critical safety property identified
from a hazard analysis.

The compliance argument used translations of the Ada variables into Z; these
identifiers were used in the specification of the safety property without any loss
of clarity. Thus, false abstraction was avoided: with the consequent penalty of
data refinement, the code was shown to directly satisfy the identified critical
property; and the gap between the specification and code was large enough to
make the effort worthwhile and not completely obvious in the first place.

4 Industrial Usage of the Compliance Tool

4.1 SHOLIS

The acronym SHOLIS stands for Ship Helicopter Operating Limits Instrumenta-
tion System; it is a computer aide to the safe landing and take-off of helicopters
from ships. One of the most important functions of SHOLIS is to raise an alarm
when a helicopter is operating outside its safe envelope for take-off or landing. It
is also important that false alarms do not occur, because this would impair the
safe recovery of an airborne helicopter. Of course, SHOLIS would also become
ineffective if people lost their trust in it.

Twice a second SHOLIS does the following: it obtains environmental informa-
tion from external sensors; it checks whether the current conditions are outside
the pre-defined safety envelope; and it outputs the results by raising or removing
alarms. Safety properties are that, for each type of alarm, the output of SHOLIS
corresponds correctly to sensor inputs.

4.2 The Compliance Argument

The application software of SHOLIS amounts to approximately 25,500 non-
blank, non-comment lines of Spark. A compliance argument for about 20%
of the software was produced under an evaluation contract from the Systems
Assurance Group. The argument demonstrated that, for one of the three alarm
types, the output of SHOLIS did correspond correctly to the sensor inputs. This
20% was a coherent subset that contributed to the safety property and was



Using the Compliance Notation in Industry 281

distributed through the software; that is, it was not a segregated kernel. The
compliance argument amounted to nearly 750 pages.

The UK software engineering company Praxis produced a software require-
ments specification in Z as part of their normal software engineering practice.
The Z specification was used as a basis for all the software development, and
all the application software can be traced to elements of the software design,
which in turn can be traced to the software requirements specification. The
software requirements specification was also used as part of the system haz-
ard analysis to derive formal expressions of safety properties; that is, a par-
tial, formal specification that captures that property the software must satisfy
if it is not to contribute to a system-level hazard. No changes were made to
the SHOLIS software to facilitate the production of the compliance argument,
since the evaluation was not part of the main development project. The argu-
ment was fitted retrospectively onto the code produced by the SHOLIS devel-
opment. Praxis did not have any prior knowledge of the Compliance Notation
however they do have extensive experience of Z, Spark and the SHOLIS ap-
plication. In addition some informal training and support was given to Praxis
by SAG.

Unsurprisingly, the size of the compliance argument was determined by the
number of lines of code included and the degree of formality in the presentation.
For the largest package considered, 1,350 lines of non-blank, non-comment code,
the argument was approximately 200 pages, and the majority of the compliance
argument was formal refinement. The Z specification of the package accounts for
about 40 of the 200 pages; the refinement from specification statements to code
was almost 100 pages.

4.3 Experiences

By allowing Z specifications to be included as part of a compliance argument,
the Compliance Notation provides considerable flexibility in the style of pre-
sentation of individual specification statements. Schemas are especially use-
ful for encapsulating the detail in specification statements and maintaining
clarity.

It was found easy within the SHOLIS evaluation to vary the level of formal-
ity. The only threads of control considered within the SHOLIS software were
those that achieved the two safety properties. As a consequence, formal compli-
ance arguments were needed only for those subprograms that contributed to the
safety properties; in other areas, the presentation was informal. In fact, Praxis
were able to produce a formal argument that focused on the specific threads
of control through certain subprograms, without needing to extend the formal
treatment to the remaining threads of control. This clearly demonstrated that
the Compliance Notation is capable of providing required and varied levels of
formality.

One of the design objectives for the Compliance Notation and Tool was to
be independent of the development process. The evaluation was performed inde-
pendently of the Spark programs independently from how they were developed.



282 P. Clayton and C. O’Halloran

Praxis have found Z to be a very expressive and flexible formal notation.
Praxis found during the SHOLIS evaluation that, within a package, the Compli-
ance Notation generally made good use of Z to provide an effective way of both
specifying subprograms and performing formal refinement.

Furthermore, Spark provided by the Compliance Notation intuitive and easy
to use. There were, however, a number of issues concerning the visibility of Z and
Ada definitions that limited the kinds of Ada subprograms that could directly be
used as part of a compliance argument. Fortunately, work-arounds were found
during the evaluation and the Compliance Notation and Tool have been modified
to eliminate these problems in the present tool. The problems arose essentially
out of scaling a compliance argument up from one or two packages to a dozen
or more. Without a tool and a real example to apply it to, it is very difficult to
anticipate all the visibility issues surrounding Z and Ada.

Proving VCs provides indisputable evidence that the Ada source code is com-
pliant with its Z specification. During the SHOLIS evaluation, it was found that
ProofPower, upon which the compliance tool is built, was very effective at dis-
charging the generated VCs. No conflict was found between the style of Z used
in specification statements and the ease of proof of the subsequent verification
conditions with ProofPower.

ProofPower was also very effective at schema manipulation, and allowed ex-
actly the required amount of detail to be uncovered by selective schema expan-
sion. Generated VCs can be extremely large, but they are subsequently reduced
substantially by a single simple rewrite. For example the update of a large deeply
nested data structure gave rise to a VC of 8.5 Mbytes, but this was reduced to
a page and a half by a single rewrite application.

Figure 1 includes approximate sizes for the documentation and code produced
by the SHOLIS software development, and estimates for the corresponding as-
pects of a complete compliance argument. The estimates are based on the size
of the partial compliance argument produced for the SHOLIS evaluation.

SHOLIS development Compliance Argument
Specification 350pp. —

High-level design 50pp. 50pp.
Detailed design 550pp. 100–200pp.

Code 25.5kloc 3,500–4,000pp.

Fig. 1. Documentation size for SHOLIS

The SHOLIS project’s high-level design presents the software architecture (the
Ada package structure) and covers general software issues, such as event schedul-
ing and diagnostics. The detailed design documentation describes the state and
subprograms of each Ada package, and includes information such as precise
memory maps and justification of numerical accuracy. The detailed designs do
not contain any source code listings, formal subprogram specifications, or any
derivation or refinement of the subprograms.



Using the Compliance Notation in Industry 283

4.4 Results

A compliance argument to replace the SHOLIS software design documentation,
which contained all the SHOLIS code, would need to include the same high-level
design information; however, much of the detailed design is inherently part of a
compliance argument by its very nature of documenting the code. The detailed
design figure given for the compliance argument in Table 1 represents infor-
mation, such as precise memory maps and justification of numerical accuracy.
The code figure given for the compliance argument is based on the 750 pages
contained in the partial compliance argument.

The partial compliance argument produced during the evaluation is highly
formal, the majority of subprograms have specification statements that are for-
mally refined to code; however, only a few example proofs were carried out,
which corresponded to about 10% of the total number of pages. The sheer bulk
of the compliance documentation does raise a slight concern about how practical
it is to use. Praxis accepted that this is inevitable when considering the com-
plete behaviour of the given amount of software and the Compliance Notation
provided an effective way of structuring the volume of information.

Caution is needed when comparing the effort spent on producing the partial
SHOLIS compliance argument with the actual SHOLIS development. This is be-
cause the compliance argument was largely produced when the SHOLIS design
documentation and code was already written. In addition, the Z specification of
the SHOLIS software provided a very useful starting point for writing specifi-
cation statements for subprograms. The effort spent producing the compliance
argument was mainly casting the code into a literate script and producing con-
crete Z specifications and refinement steps; nearly 20% of the effort was spent
producing example proofs.

Given this background the effort required to produce a complete compliance
argument for SHOLIS was estimated by a simple pro rata extrapolation from
the effort for the partial compliance argument, excluding proof. The result is
that a complete argument would take a little less effort than it took to design
and write all the software, with limited testing. The resolution of the issues that
required “work-arounds” would decrease the effort to produce an argument.

5 Control Law Verification

Tools such as Simulink are being used by engineers around the world to model
and solve real problems concerning dynamical systems. Once a control system
model has been developed, an implementation of the control system can be au-
tomatically generated. This facility is very useful: both industry and government
regulators are striving for a reliable method for writing code to reduce lengthy
validation tests. In December 1998, the French civil certification agency DGAC
approved the autopilot for the Eurocopter EC 155 helicopter, which had its
software automatically generated by the CS Verilog “Scade” development envi-
ronment. The EC 155 autopilot was Level A, the most critical to flight safety.



284 P. Clayton and C. O’Halloran

Level A requires extensive testing that, even when no errors are found, is expen-
sive. Testing also does not provide the same degree of evidence of correctness of
the automatically generated code as proof does. The very high reliability claims
required for avionics systems and the role of testing have given rise to controversy
in the past and are discussed in [41, 157].

There is a significant gap between the code generated and the control law
diagram in Simulink. The diagram is understood by a control law engineer; but
once it is transformed into code, it is no longer readily understandable.

There are three possible approaches to solving this problem: follow a method
of “correct-by-construction”; demonstrate that the implementation of the au-
tocoder is correct; or demonstrate compliance between a control law represen-
tation and code generated from it, for each critical application. The correct-by-
construction approach was investigated under a contract from the UK MoD [209].
A functional specification representing the control law diagram was transformed
into code using already proven laws. This is an ambitious approach that is equiv-
alent to developing a refinement calculus for control law diagrams. It was unclear
to what degree the transformations could have been automated, but there was
potential for a very useful tool for cost effective verified code generation. Un-
fortunately, the commercial market is such that tools such as Simulink will be
more widely adopted. This is because of the extra and improved facilities that
they will provide on a regular basis in response to the market.

If the demonstration that an autocoder is correct is to be carried out to the
same level of rigour as the correct-by-construction approach, then mathematical
proof is required. This is an arduous task of the same level of difficulty as the
correct-by-construction approach. This approach also suffers from the competi-
tion from COTS tools such as Simulink.

The final approach of demonstrating compliance between an individual control
law and its implementation is at least an order of magnitude easier, but needs
to be repeated for each control law. This involves constructing a proof based
on the structure of the code and the control law diagram. The advantage of
tool-generated code is that it is generated in a consistent manner, meaning that
machine support can be developed that will ease the burden of proof, in this
limited domain, quite considerably. The main advantage of this approach is that
it can be used with a COTS tool.

5.1 Control Law Diagrams

The class of control laws considered in this section is that of PID (Proportional
Integral Derivative) controllers. A PID controller is a general purpose controller
that can be tuned to the particular system under control. A PID controller can be
used even when the differential equations governing the dynamics of the system
are unknown. In such circumstances the controller can be tuned by running the
actual system and observing the output.

Figure 2 shows how a PID controller fits into the control of a system. A PID
controller controls the value of a controlled variable by adjusting the value of a
manipulated variable. The main input to a PID controller is the current error,



Using the Compliance Notation in Industry 285

which is the difference between the demanded value of the controlled variable and
its actual value. The output of the PID controller is the value of the manipulated
variable required to reduce the error.

error
manipulated

variable
controlled
variabledemand

1

Out

PID System

 

1

In

Fig. 2. General PID controller

A PID controller consists of three parts: the proportional, integral and deriva-
tive contributions to the value of the manipulated variable. The proportional
contribution, as its name suggests, is proportional to the error input. The in-
tegral contribution is designed to remove long-term errors by forming the sum
of the errors so far. This sum continues to rise until the long-term error has
disappeared. The derivative contribution is a measure of how fast the error is
changing, and so makes the controller more responsive.

The PID controller considered here controls a Fuel Metering Valve (FMV).
The main input is the position error of the valve (the difference between the
demanded and measured position), and the output is the electric current to be
input to the valve’s motor to reduce the error. The example is taken from [209],
but with the simplification that the control law runs in a single lane.

Figure 3 shows the results of simulating the PID controller using Simulink.
Two output graphs are shown: the current input to the valve’s motor and the
position of the valve. The demanded position of the valve is 45◦, as shown. The
remaining inputs to the PID controller (the constant boxes shown) are arbitrary
for the purposes of simulation; the actual values would depend on the particular
aircraft that the engine is powering. The output graphs show that the position
of the valve does settle to the demanded value.

5.2 The Diagram

The figure in Appendix C shows the control law diagram for the PID controller,
drawn using Simulink. There are eight inputs to the control law and one output.
The inputs are lozenge shaped boxes numbered one to eight, and the output
is the lozenge shaped box on the far right of the diagram. The main input is
FMVPE, the position error of the valve. The output FMTMCD is the electric
current to be input to the valve’s motor to reduce the error.

There are ten constants on the diagram: the square-shaped boxes containing
numbers. The triangular boxes denote a multiplying operation, the gain, by



286 P. Clayton and C. O’Halloran

0 20 40 60 80 100
−10

0

10

20

30

40

50

Time offset: 0               

0 20 40 60 80 100
−50

0

50

100

Time offset: 0               

Fig. 3. Simulation results for the FMV

the number inside the box. The rectangular/square boxes containing names are
subsystem boxes. They have not been further expanded, but they could be, using
the same approach for each subsystem. The boxes containing a 1/z symbol are
unit-delay boxes: they store their input on one cycle and output it on the next.

The reason there are Add and Sub subsystem boxes, instead of standard
addition and subtraction points, is that these subsystems, if expanded, would
limit their results in order to avoid exceptional behaviour.

5.3 A Method for Compliance

The problem to be addressed is how to formally link a control law diagram with
the code generated from a tool. The answer lies in the observation that code
is generated for each control block, and then brought together according to the
signal paths, the wiring, in the diagram. To provide an argument for compliance
that is independent of the particular version of the tool, the structure of the
diagram and generated code must be used as the starting point.

1. Provide the overall structure of the compliance argument, based on the code
structure, using Knuth slots.

2. Expand any Knuth slots for constant declarations, in order to automatically
declare Z constants that will be available for use within the specification.

3. Define a Z schema for each control block.
4. Define a schema Diag that is the conjunction of all the schemas describing

blocks within the diagram.
5. Define a schema Internals sig that contains all the intermediate signals.
6. Define the procedure that implements the control law diagram with the

specification statement:
Δ STATES, OUTPUTS [ ∃ Internals sig • Diag ]

7. If necessary, perform refinement steps to complete compliance argument.



Using the Compliance Notation in Industry 287

8. If a control block is itself a subsystem, then this method can be followed
recursively, with a renaming scheme to avoid variable capture if other sub-
system control blocks are present.

9. The schema Internals sig is the collection of names and types representing
all the signals within the diagram. The conjunction of all the individual
schemas representing blocks is the mechanism that wires the blocks together
in the way represented by the diagram.

5.4 A Case Study

In this section, the method for generating a Z specification from a control law
diagram, which is then refined to code, is illustrated using the PID controller.
The code used here was not generated by the Real Time Ada Workshop tool
within Matlab, for reasons of clarity, conciseness and some minor syntactic issues.
There are more significant issues discussed in the conclusions, but the code
that was generated is not fundamentally different enough to invalidate this case
study.

The code consists of an Ada package: a specification and a body. The pack-
age specification contains a procedure PID , which is the Ada procedure that is
called for each cycle through the control law. For the purposes of this chapter,
a procedure to initialize the control law has not been considered.

Below is an overview of the Ada package body. It contains ten Knuth slots,
giving the overall structure, and containing a brief description of the Ada that
ultimately occupies that slot.

package body PID PACKAGE
is

〈 control law constants 〉 (1 )
〈 state for unit delay boxes 〉 (2 )
〈 differentiator subsystem box 〉 (3 )
〈 integrator subsystem box 〉 (4 )
〈 scale subsystem boxes 〉 (5 )
〈 limit subsystem boxes 〉 (6 )
〈 add subsystem boxes 〉 (7 )
〈 sub subsystem box 〉 (8 )
〈 upper subsystem box 〉 (9 )
〈 body of procedure pid 〉 (10 )

end PID PACKAGE;

This provides a link between the control law diagram and the code that can be
reviewed by a human. Although this is a creative step, it is considered relatively
easy, and is the step 1 in the compliance method.

Slots (1) to (9) ultimately contain Ada that is called by the body of procedure
PID in slot (10). For example slots (3) to (9) contain the Ada subprograms im-
plementing the subsystem boxes of the control law diagram; these subprograms
are called by procedure PID .



288 P. Clayton and C. O’Halloran

The following Ada constants implement the constant boxes on the control law
diagram; these are the square boxes containing numbers. This is step 2 in the
compliance method.

(1 ) ≡
DFMV GD : constant integer := 1 ;
SCFDIF : constant integer := 25 ;
DFGAIN : constant integer := 25 ;
DFMV GP : constant integer := 1 ;
SCFPRP : constant integer := 500 ;
SCFINT : constant integer := 1250 ;
ITGAIN : constant integer := 2048 ;
SCFPRF : constant integer := 500 ;
SMPIDO : constant integer := 2 ;
SDPIDO : constant integer := 1 ;

Z constants are generated by the tool when this is processed, and they are
globally available within the Z document. The following sections describe the
specification of some key blocks within the diagram, as an example of step 3 in
the compliance method.

5.5 Scale Boxes

The Ada function SCALE implements the Scale boxes. It is an Ada stub because,
as discussed earlier, the subsystem boxes on the control law diagram have been
left unexpanded.

Z

scale : Z × Z × Z → Z

(5 ) ≡
function SCALE (

INPUT : integer;
MULT : integer;
DIV ISOR : integer) return integer

Ξ [ SCALE (INPUT, MULT, DIV ISOR)
= scale (INPUT, MULT, DIV ISOR) ]

is separate;

The value returned by this Ada function is defined in terms of a Z function scale,
whose semantics are given, for completeness, in Appendix C.

In the Compliance Notation, a formal annotation is used to specify the se-
mantics of Ada functions. In this example, the annotation is the following spec-
ification statement:



Using the Compliance Notation in Industry 289

Ξ [ SCALE (INPUT, MULT, DIV ISOR)
= scale (INPUT, MULT, DIV ISOR) ]

Any non-local variables that the Ada function reads would be listed after the Ξ
symbol. In this case there are no such variables; if the Scale subsystem box was
expanded, then it would not use any state. The predicate in brackets constrains
the value returned by the Ada function, stated in terms of scale. The code in
the corresponding sub-unit that implements the scale subsystem must satisfy
this constraint. Verifying the compliance between subsystem specifications and
their implementations usually incurs VCs. It could be the case, for some control
laws, that the subsystems are trusted components and that verification of the
subsystems would, by the ALARP principle, not be cost effective.

When the compliance tool processes the above Ada stub a Z function SCALE
is generated. This Z function is an abstraction of the Ada stub and can be used
to write the following Z schema.

Z

Scale1

FMV PE, SCDIF : Z

SCALE (FMV PE, DFMV GD, SCFDIF ) = SCDIF

This is an abstraction of part of the code, targeted at the Scale1 box of the control
law diagram; in this way, parts of the Ada can be linked with parts of the control
law diagram. Thus, the Z schema boxes map to the pictorial representation of
the control law block diagram. Note that the identifier DFMVGD that appears
in the schema Scale1 is not declared within the schema. This is because it is a
constant whose Z definition was automatically generated by the Ada declaration
of constants earlier in Knuth slot (1 ). The other Scale boxes are similar.

5.6 Unit Delay Boxes

The following Ada variables implement the state required for the unit-delay
boxes. STATE1 is the Ada state required for the UnitDelay1 control-law box and
STATE2 is the Ada state required for the control law box named UnitDelay2.

(2 ) ≡
STATE1 : integer;
STATE2 : long integer;

The implementation assumes that an integer is a single length word (16 bits)
and long integer is a double length word (32 bits). The double length word is
used as an input to the integrator, whereas the single length word is used as an
input to the differentiator (see later).



290 P. Clayton and C. O’Halloran

The box UnitDelay1 stores its input SCDIF. In the Compliance Notation,
STATE10 denotes the initial value of the state at the start of the control law
cycle, and STATE1 denotes the value at the end of the cycle. The predicate in
the Z schema below states that, at the end of the control law cycle, the input to
a unit delay box, SCDIF , is held in the state.

Z

UnitDelay1

STATE1 , STATE10 : Z;

SCDIF : Z

STATE1 = SCDIF

Similarly the box UnitDelay2 holds its input LINRES .

Z

UnitDelay2

STATE2 , STATE20 : Z;

LINRES : Z

STATE2 = LINRES

5.7 Differentiator Box

The Ada function DIFFERENTIATOR implements the differentiator subsystem
box; again it is an Ada stub.

Z

differentiator : Z × Z × Z→ Z

(3 ) ≡
function DIFFERENTIATOR (

INPUT : integer;
LAST INPUT : integer;
GAIN : integer) return integer

Ξ [ DIFFERENTIATOR (INPUT, LAST INPUT, GAIN)
= differentiator (INPUT, LAST INPUT, GAIN) ]

is separate;

The differentiator computes the rate at which the error is changing (the deriva-
tive) by comparing the error input on this cycle with the previous error.



Using the Compliance Notation in Industry 291

The error input to the differentiator on this cycle is SCDIF and the previous
error is held in the state variable STATE10 of the box UnitDelay1.
Z

Differentiator

SCDIF, FMV DTM : Z

DIFFERENTIATOR (SCDIF, STATE10, DFGAIN) = FMV DTM

This is an example of an implementation feature moving up the compliance route
toward the specification and simplifying the code-to-specification mapping.

5.8 Integrator Box

The Ada function INTEGRATOR implements the integrator subsystem box; it
computes the sum of the errors (the integral) from this and the previous cycles
by adding the error input on this cycle with the previous integral. The integral
is always held as a long integer .

Z

integrator : Z × Z × Z →Z

(4 ) ≡
function INTEGRATOR (

PRV INTEGRAL : long integer;
INPUT : integer;
GAIN : integer) return long integer

Ξ [ INTEGRATOR (PRV INTEGRAL, INPUT, GAIN)
= integrator (PRV INTEGRAL, INPUT, GAIN) ]

is separate;

Z

Integrator

INTINPUT, INTRES : Z;

STATE20 : Z

INTEGRATOR (STATE20, INTINPUT, ITGAIN) = INTRES

The error input to the integrator on this cycle is INTINPUT and the previous
integral is held in the state variable STATE20 of the box UnitDelay2.



292 P. Clayton and C. O’Halloran

5.9 Complete Control Law Diagram

This subsection describes steps 4 to 7 in the compliance method. An abstraction
of the code of the Ada procedure PID is provided, which is targeted at the com-
plete control law diagram; this abstraction is formal and incurs a VC. Following
this specification statement, the code that implements it is given.

First the schemas describing the individual blocks are conjoined together using
schema inclusion.

Z

Diag

Scale1 ; Scale2 ; Scale3 ; Scale4 ;

UnitDelay1 ; UnitDelay2 ;

Differentiator; Integrator;

Add1 ; Add2 ; Add3 ; Add4 ;

Limit1 ; Limit2 ; Upper; Sub

Note that this technique of schema inclusion, which conjoins the schemas to-
gether, works because Z identifies duplicate identifiers, which is in effect joining
together the named wires in the diagram. This completes step 4 in the com-
pliance method. Step 5 can be done easily by a machine, and the result is the
following schema containing all the internal signals—the names for the internal
wires in the diagram.

Z

Internals sig

SCDIF, FMV PTM, INTINPUT : Z;

FMV FTM, SINPUT, LIMINP : Z;

LINRES, FMV DTM, INTRES : Z;

FM1MX, FM1MN, FMV ER1 : Z;

FMV ER2 , ULINRES : Z

The body of procedure PID can now be given, according to step 6 in the com-
pliance method. A specification statement is embedded in the body, just before
the keyword ‘is ’. This specification is an abstraction of the code of procedure
PID , targeted at the complete control law diagram. The specification statement
states that the code satisfies schema Diag, and changes only the state variables
STATE1 and STATE2 , and the output FMTMCD . All the internal intermedi-
ate signals within the diagram are hidden by existential quantification, leaving
only input and output signals visible, as well as the state used to record unit
delays.



Using the Compliance Notation in Industry 293

(10 ) ≡
procedure PID (

FMV PE : in integer;
DFMV GI : in integer;
FMV PV : in integer;
DFMV GF : in integer;
DFM2MN : in integer;
DFM2MX : in integer;
CFMCMX : in integer;
CFMCMN : in integer;
FMTMCD : out integer)

Δ STATE1 , STATE2 , FMTMCD [∃ Internals sig• Diag ]

is
SCDIF, FMV DTM, FMV PTM, INTINPUT,
FMV FTM, FM1MN, FM1MX, ULINRES,
FMV ER1 , FMV ER2 , SINPUT, LIMINP : integer;
INTRES, LINRES : long integer;

begin
SCDIF := SCALE (FMV PE, DFMV GD, SCFDIF );
FMV DTM := DIFFERENTIATOR (SCDIF,

STATE1 , DFGAIN);
STATE1 := SCDIF ;
FMV PTM := SCALE (FMV PE, DFMV GP, SCFPRP );
INTINPUT := SCALE (FMV PE, DFMV GI, SCFINT );
FMV FTM := SCALE (FMV PV, DFMV GF, SCFPRF );
FM1MN := ADD (DFM2MN, FMV FTM );
FM1MX := ADD (FMV FTM, DFM2MX);
INTRES := INTEGRATOR (STATE2 ,

INTINPUT, ITGAIN);
LINRES := LIMIT1 (INTRES,

65536 ∗ long integer (FM1MX),
65536 ∗ long integer (FM1MN));

STATE2 := LINRES;
ULINRES := UPPER (LINRES);
FMV ER1 := SUB (ULINRES, FMV FTM);
FMV ER2 := ADD (FMV ER1 , FMV PTM);
SINPUT := ADD (FMV DTM, FMV ER2 );
LIMINP := SCALE (SINPUT, SMPIDO, SDPIDO);
FMTMCD := LIMIT2 (LIMINP, CFMCMX, CFMCMN);

end PID;



294 P. Clayton and C. O’Halloran

This completes step 6 in the compliance method, incurring a single VC that was
discharged using ProofPower. For more complicated control laws and code, the
implicit refinement step would have to be split into a number of smaller steps,
which constitutes step 7. The initial refinement step would contain a mixture
of Ada code and further specification statements, which would then be further
refined. This would result in a number of simpler VCs being generated.

6 A System Case

DO178B is a development process advocated by agencies such as the FAA, and
can be used to produce software that is acceptable for non-life-critical applica-
tions. Level A of DO178B is intended for use in safety-related applications, but
it can be argued that in the civil domain DO178B is not used for safety-critical
systems. In this chapter, software is considered safety critical if its incorrect oper-
ation would lead to the loss of life, and there is no other mitigation possible (such
as the intervention of a pilot).

Safety-critical software is becoming more prevalent in the defence domain,
and it is only a matter of time before it enters the civil domain. Safety-critical
software requires a high degree of assurance before it can be accepted by a
responsible procurer. This has led to the definition of standards like Defence
Standard 00–55 in the UK. There are other similar standards across the world,
and they all take the same basic approach: they advocate a particular form of
software development using formal methods.

When an organisation can adopt this very stringent form of development, it
seems to lead to a highly assured product. The problem is that the development
processes in these standards are so stringent that they seem to lead to “gold
plated” developments that are disproportionately more expensive and risky from
a project management point of view.

Different organisations have broadly similar development processes, but the
details of those processes can be quite different. These differences are due to
differences in training, domain of the applications, regulatory requirements and
culture, to name just a few. The more controlled and rigorous the develop-
ment required for higher assurance, the more difficult it seems to be to adopt
widely.

6.1 The Steam Boiler

The steam-boiler problem has been fully described in [4]. It can be briefly out-
lined as a control issue, with water being removed from a boiler as steam, at a
varying but measured rate, and replaced by the action of four identical pumps. A
controller aims to hold the water level within allocated bounds N1 and N2 (see
Figure 4), and to shut the system down if there is a risk that the water level
could go outside the wider bounds M1 and M2 . There may be failures in the in-
dividual pumps, the water level measurement device and the steam measurement
device. The steam-boiler system has been simulated using the Matlab program



Using the Compliance Notation in Industry 295

pump
controls

M1

N1

N2

M2

water level

steam
measurement

Fig. 4. The steam boiler

Fig. 5. The steam-boiler simulation

Simulink. The simulation models the steam boiler and its controller as two sep-
arate entities. These are shown in Figure 5. The steam-boiler entity consists of a
simulated steam outflow and an inflow provided by the pumps. The outflow rate
has a maximum value of F units per second and a minimum of zero. The incre-
ment is a randomly chosen value between G and −G. Each pump has a pumping
capacity of P units per second when working, and zero when not working. The
level measurement device determines the water level in the boiler; it may also
be determined by reference to a previous value, together with a subsequent flow



296 P. Clayton and C. O’Halloran

history. Failure and repair of pumps and measuring devices have been simulated
using random numbers.

The steam-boiler controller entity was simulated using four functional blocks.
These are the level-decision block, the pump-activation block, the mode-identifier
block and the emergency-stop block. The steam-boiler controller is shown in
Figure 6. All outputs from the controller were subject to a delay of one second
to provide synchronous operation of the system.

Control4-6

ControlP

ControlMode

emergency S

steam

pump1 cond

pump2 cond

pump3 cond

pump4 cond

best level

water level

ControlE

water level

pump2 cond

pump3 cond

pump4 cond

steam

pump1 cond

emergency S

mode

water level

pumps in pumps go

steam best level

pumps go

pump1 cond pump1 go

pump2 cond pump2 go

pump3 cond pump3 go

pump4 cond pump4 go

1

2

3

4

6

57

6

5

4

3

2

1

Fig. 6. The steam-boiler controller

6.2 An Acceptance Argument

Goal Structuring Notation (GSN) [251] provides a diagrammatic view of the
safety case for a system, in this case for the steam boiler. One use is to supply
references to individual safety arguments, assumptions and constraints, which
can then be examined in detail for weaknesses. A second use is to make it possible
to specify a case for acceptance at successive levels, and to check for omissions
and shortcomings. For instance, the safety case in Figure 7 could be amplified to
distinguish between the verification of Ada code and of the native code targeted
at a selected microprocessor. This approach could be taken for any acceptance
property, such as security or reliability.

Figure 7 shows the top-level goal G0001 and its deconstruction into subgoals.
Each dark ellipse indicates a subgoal to be addressed by safety arguments de-
veloped outside of the methods described in this chapter. Subgoal G003 is the
one at second level that is refined in Figure 7. Subgoals G0008 and G0009 are
developed further in Figures 8 and 9. Figure 7 shows the development of subgoal



Using the Compliance Notation in Industry 297

G0008 for the software specification. Subgoal G0016 is the only subgoal in the
figure addressed by the processes of this chapter.

G0001
System is safe in use

G0002
Hardware is safe in use

G0004
Integration of H/W and

S/W is safe in use

G0005
Software engineers are

competent

G0007
Tools propertly used

G0006
Software tools are

approved

G0009
Software implementation

is OK

G0008
Software specification

is OK

G0003
Software is safe in use

Fig. 7. Breakdown of top-level goal G0001 into subgoals

6.3 Goal 0016: Identifying Safety Properties

It is relatively straightforward to identify system hazards; the difficulty comes in
propagating the system hazards down to the level where software and hardware
operate. In practice, using fault trees to link system hazards to software be-
comes intractable below a physical component, such as a Digital Engine Control
Unit (DECU). For example, a fault-tree analysis would identify that the DECU
should not shut down the engine, unless instructed by the pilot. If it were not
explicitly part of the overall DECU design, it could be quite difficult to justify
that the software would not cause an undemanded shutdown using fault trees.

The use of Failure Modes Effects Analysis could start with how possible soft-
ware faults could manifest themselves as system failures. Unfortunately, this
quickly becomes intractable for any realistic software system.

The identification of safety properties for software is crucial to limiting the
scope of evidence required to show that a system is safe enough to accept. If safety
properties cannot be identified, then the developer and customer are trapped into
demonstrating full functional correctness. Further, they still require an analysis
that the functionality is sufficient for safety. Unfortunately, it has to be recog-
nized that this is impossible where the safety property is an emergent property



298 P. Clayton and C. O’Halloran

of a complex control function. For example, another safety property of a DECU
is that it should not cause an engine to run so fast that it becomes damaged.
To separate this out from the rest of the control function would be intractable
for a complex control law. In practice, the software would have to be shown to
accurately implement the control law, and to rely on control theory evidence
and testing to accept that the DECU was safe.

Nancy Leveson’s work [153] on requirements specification for black-box be-
haviour provides one means of identifying whether software components are crit-
ical. Another complementary approach is under development within the Systems
Assurance Group at Malvern. The basic idea is to assess a system in terms of
the services provided by its components, treated like Leveson as black boxes;
they can therefore be either COTS or bespoke. It is assumed that the control
function is subject to the following non-exclusive failure modes:

– Omission failure of a service.
– Commission failure of a service.
– Early or late delivery of a service.
– Data corruption of a service output.

This approach means that lower-level failures can be abstracted away. For ex-
ample, a run-time error in software could cause: the loss of a service (omission);
the service to do something it should not do (commission); corruption of output
data; and even late or early delivery of a service.

In this approach, the exact cause of a service failure is not of interest; what is
of interest is its consequence with respect to system safety. Failure Modes and
Effects Analysis is similar in spirit, but crucially the abstraction to failures of
service means that it can be made tractable. It is still too complicated to be done
manually, but automated methods using model checking have been developed.

For the steam-boiler case study, the following contextual information is rele-
vant:

– The controller shuts system down if the water level is within 5 seconds of
boiling dry or overflowing; this is the “water-limit risk” level.

– The failure of pumps can be non-manifest (not detected by the controller).
– The water-level sensor is polled every 5 seconds.
– It takes 5 seconds to pressurize the pumps to add more water.

Model checking against the system safety property that the water must always
stay within the minimum and maximum limits produced a violation. The fol-
lowing accident scenario was returned:

– The water level fell to a point where the pumps had to be activated.
– The water level then rose and eventually the pumps were shut down.
– At this point the pumps failed silently (a non-manifest failure).
– The sensor polling of the water level was such that the level was just above

the “water-limit risk” level.
– Before the level was next sensed the boiler blew up.



Using the Compliance Notation in Industry 299

G0011
Added details OK

G0008
Software specification

is OK

G0010
S/W requirement

is OK

G0016
Safety properties

identified

G0015
Reviewed by experts

G0013
Approved by user

G0014
Reviewed by experts

G0012
Simulation model

Animation OK
G0017 G0018

Reviewed by experts

G0020
Test results reviewed

by experts

G0019
Test vectors chosen

by experts

G0021
Test results accepted

by user

Fig. 8. Breakdown of top-level goal G0008 into subgoals

This is a classic example of a phasing problem in control systems. New safety
limits for “water-level risk” were defined to remove this safety risk and the
check repeated. The analysis showed that there was only one single point of
system failure for omission type failures. This was when the software moding
function that instigates an emergency shutdown is faulty then system failure
results.

A deeper analysis revealed that there was only one pair of omission failures
that could produce a system failure. If the software functions for determining the
risk of a safety breach are both incorrect then system failure results. Of course
in practice these software functions would probably be the same, therefore this
was again a critical common mode failure. This is an important reminder that
further analysis is needed to make sure that different black box functions are not
vulnerable to a common mode failure. Interpreting the analysis also indicated
that the reliability of the sensors could largely determine whether a numeric
safety target for a system could be met.

The verification of safety properties for control systems has been described
earlier in this chapter. The next section tackles a more difficult problem, where
the safety property cannot be teased out from the overall functionality of the
control function, as in the case of over-speed of an engine controlled by a DECU.



300 P. Clayton and C. O’Halloran

6.4 Goal G0009: Software Is OK

Figure 9 shows the development of subgoal G0009 from Figure 7 for the soft-
ware implementation. The figure shows how the acceptance based verification
techniques, described later, contribute to the integrated verification activity to
create assurance. The task of accepting the software as being safe breaks down

G0009
Software is OK

G0022
Safety properties

verified

G0023
Code operation OK

G0026
Sequential

behaviour OK

G0025
Concurrent

behaviour OK

G0027
Tests OK

G0028
Exception analysis

OK

G0029
Memory

management OK

G0030
Worst case run time

analysis OK

Fig. 9. Further breakdown of goal G0009 into subgoals

into six acceptance tasks. Four of these are described later; the remaining two,
testing and memory management, are not covered in this chapter. The accep-
tance projects that the Systems Assurance Group has been involved in, have
relied on compiler evidence for the acceptance evidence for memory manage-
ment. The compilers had to be for suitable languages (such as Ada) and be
rigorously tested and established.

6.5 Goal G0026: Sequential Behaviour OK

Simulink has been used earlier as a means of validating the development of a
control system through simulation. The diagrams produced using Simulink can
also provide a specification for a software controller.

ClawZ [11] (pronounced ‘claws’) is a tool that links Simulink diagrams with
Z[257]. In particular this provides a bridge between the use of Simulink to de-
fine control law diagrams and the use of the DAZ tool [206, 207] that verifies



Using the Compliance Notation in Industry 301

refinement conjectures. ClawZ operates by translating a Simulink model into a
Z specification that captures the functionality of the Simulink model. This Z
specification can then be used in conjunction with a library of supporting defini-
tions to construct a refinement conjecture, or compliance argument, which can
then be formally verified using ProofPower. A detailed description of how the
Z is produced is described in [11], and the form of a refinement conjecture (be-
tween the Z representation of a control law diagram and its implementation in
the Spark subset [21] of Ada) was given earlier in this chapter.

Subsequent work has developed a process to automatically generate a re-
finement conjecture between the Z representation and the Ada implementation,
using a tool called RSG (Refinement Script Generator) tool. It links subsystems
of a diagram with a fragment of sequential Ada code, called the witness, which
is that part of the software that implements that subsystem. This is a manual
process that requires human intelligence; however, it is relatively simple, and
non-specialists in formal methods have been trained within a week or two to
carry out this task.

The refinement conjecture is processed by the DAZ tool, which in turn auto-
matically generates VCs that verify that the Ada code does indeed implement
the subsystem. The VCs, as before, are discharged using ProofPower.

The ClawZ, RSG, DAZ and ProofPower tools have all been used on the
Simulink description of the steam-boiler controller to verify automatically gen-
erated code. These tools have not been used as part of the development: only
after the code has been generated have they been employed as part of a software
acceptance process.

This acceptance technique has also been used on manually developed code
from another organisation. It again proved to be very effective. The errors that
were found were easily corrected.

The success of this acceptance technique for sequential code relies crucially
on the software being systematically developed. A software engineering process
of transforming a specification into code is essential. If such a development pro-
cess is not followed, then the likely outcome is that the verification will fail so
badly that it would be cheaper to re-develop the software. Without a systematic
development process then the verification is reduced to the 1970’s “guess and
verify” approach. Indeed the RSG tool essentially reflects one particular way
software can be systematically developed. Other variants of the RSG tool would
be required for significantly different, but equally valid, systematic software de-
velopment processes.

RSG—Abstracting Analysis for Simulink Specifications

The analysis of sequential code of a control system is achieved by showing that
the code is correct for a single execution cycle. The analysis starts with the
following components:

– The control law, for example the Simulink diagram shown in Figure 10.
– A program that implements the control law, as shown in Figure 11.



302 P. Clayton and C. O’Halloran

– A link between control law inputs/outputs and program inputs/outputs,
referred to as an interface, as shown in Figure 12. Note that System is a
schema that is the translation of the Simulink diagram (in Figure 10) into Z
by ClawZ. The ClawZ output is shown in Figure 13.

1

Out1

Sum

2

Gain

1Constant

1

In1

Fig. 10. ‘System’—a Simulink model

procedure Step (X : in F loat; Y : out F loat)
is

TMP : Float;
begin

TMP := X + 1 .0 ;
Y := 2 .0 ∗ TMP ;

end Step;

Fig. 11. An implementation of the Simulink model ‘System’

In a typical development of a control system, all three components will be
present. In defining the requirements, a control law is expressed in Simulink
and validated by simulation, providing the Simulink diagram. As part of the
program development, the software detailed design will map out the relation-
ship between signals in the control law and program variables, providing the
interface. The development will result in a program that implements the control
law.

A Z specification for the procedure is systematically derived from the interface
by defining the postcondition

Z

Post =̂ ∃ System • Interface

By hiding System, Post (as a predicate when written in a specification statement)
is a predicate on Ada variables that relates outputs to inputs. Allowing only the
output variables to change ensures that any implementation of this specification
computes the outputs. Therefore Frame is defined as follows:

Z

Frame =̂ Outputs



Using the Compliance Notation in Industry 303

Z

Inputs

X : FLOAT

Z

Outputs

Y : FLOAT

Z

Interface

System;

Inputs;

Outputs

In1? = X ;

Out1 ! = Y

Fig. 12. Simulink—Ada Interface

Annotating the procedure Step (see Figure 11) with this formal specification
statement gives

procedure Step (X : in F loat; Y : out F loat)
Δ Frame [ Post ]

is
TMP : Float;

begin
TMP := X + 1 .0 ;
Y := 2 .0 ∗ TMP ;

end Step;

At this stage DAZ could be used to generate VCs that, if proved, would show
compliance; however, there is a far more intuitive, though less formal, justifica-
tion that the Ada program implements Figure 10.

From the interface in Figure 12, we see that In1 corresponds to X in the
program; thus, by the wiring of the Simulink diagram, input 1 of Sum also
corresponds to X in the program. Similarly, output 1 of Constant corresponds
to 1 .0 in the program, and so does input 2 of Sum.

Since the block Sum in Simulink and the ‘+’ operator in Ada perform the
same function, we can argue that the output of Sum corresponds to TMP in



304 P. Clayton and C. O’Halloran

Z

System Constant =̂ Constant (V alue =̂ 1 e 0 )

Z

System Gain =̂ Gain I (Gain =̂ 2 e 0 )

Z

System Sum =̂ Sum P2

Z

System

In1? : U;

Constant : System Constant;

Gain : System Gain;

Sum : System Sum;

Out1 ! : U

Out1 ! = Gain.Out1 !;

Sum.In2? = Constant.Out1 !;

Sum.In1? = In1?;

Gain.In1? = Sum.Out1 !

Fig. 13. ClawZ translation of ‘System’

the program after the first statement. Then, by the wiring of the diagram again,
input 1 of Gain also corresponds to TMP before the second statement.

So we can argue that the output of Gain corresponds to Y in the program
after the second statement. As the output of Gain is connected to Out1 then
Out1 corresponds to Y at the end of the program.

For those Simulink signals mentioned in the interface (In1? and Out1 !), the
correspondences between Simulink signals and program variables satisfy the in-
terface. Therefore we can argue that the program is compliant.

In summary, for every input and output of every Simulink block, we have
found a corresponding expression at some point in the program.

Looking back at the specification statement, consider the proof requiring that
the program implies the postcondition. (Note that this is not the verification
condition that is generated.)

TMP = X +R 1 e 0 , Y = 2 e 0 ∗R TMP ?� ∃ System • Interface

These expressions in the Ada program that correspond to Simulink signals are
precisely the existential witnesses to System in the consequent; hence they are



Using the Compliance Notation in Industry 305

referred to as witnesses. The justification above can be expressed more succinctly
by annotating a program with witnesses as follows. Here the symbol ‘←−’ means
‘is witnessed by’.

{ In1? ←− X,
Sum.In1? ←− X,
Constant.Out1 ! ←− 1 .0
Sum.In2? ←− 1 .0 }

TMP := X + 1 .0 ;

{ Sum.Out1! ←− TMP,
Gain.In1? ←− TMP }

Y := 2 .0 ∗ TMP ;

{ Gain.Out1! ←− Y,
Out1! ←− Y }

Clearly, this notation cannot be checked by DAZ, as it is informal; however,
these annotations can be formalized according to a systematic process that ab-
stracts statements to specification statements, and captures these witnesses in
their pre and postconditions.

To accommodate this systematisation, witnesses are given either before or
after a statement; therefore, witnesses after the first statement are distinct from
those before the second statement. Secondly, witnesses are actually Z expressions,
where Ada variables are referred to in exactly the same way as for pre and
postconditions. We now have

{ In1? ←− X,
Sum.In1? ←− X,
Constant.Out1 ! ←− 1 e 0
Sum.In2? ←− 1 e 0 }

TMP := X + 1 .0 ;

{ Sum.Out1 ! ←− TMP }

{ Gain.In1? ←− TMP }

Y := 2 .0 ∗ TMP ;

{ Gain.Out1 ! ←− Y,
Out1 ! ←− Y }

A detailed description of the full process is beyond the scope of this chapter. In
brief, each statement is abstracted to a specification statement, where witnesses



306 P. Clayton and C. O’Halloran

given before it are captured in the precondition, and those given afterwards
are captured in the postcondition. Witnesses are accumulated working from the
top. Once all witnesses for a block’s inputs and outputs have been given, a block
predicate is introduced. In the above example, witnesses have been given for
all inputs (there are none) and outputs of Constant before the first statement.
Therefore, the precondition contains the following block predicate:

∃ Constant : System Constant • Constant.Out1 ! = 1 e 0

A block predicate is simply a predicate on Ada variables (possibly none) that
uses (the Z translation of) a Simulink block to encapsulate some functionality.
(Note that Post is itself a block predicate, just defined using schemas.)

After the first statement, witnesses have been given to all inputs/outputs of
Sum. The entire statement is abstracted to the following specification statement:

Δ TMP [
∃ Constant : System Constant • Constant.Out1 ! = 1 e 0 ,

(∃ Constant : System Constant • Constant.Out1 ! = 1 e 0 )
∧ (∃ Sum : System Sum •

Sum.In1? = A ∧
Sum.In2? = B ∧
Sum.Out1 ! = TMP ) ]

If any property of the first statement was needed later (by a block whose
witnesses where not all given yet) then the analyst should explicitly add this
property to the postcondition, even if this property could be deduced from the
block predicate.

The second statement is abstracted to

Δ Y [
(∃ Constant : System Constant • Constant.Out1 ! = 1 e 0 )
∧ (∃ Sum : System Sum

• Sum.In1? = A
∧ Sum.In2? = B
∧ Sum.Out1 ! = TMP ),

∃ System
• In1? = X
∧ Gain.In1? = TMP
∧ Gain.Out1 ! = Y
∧ Out1 ! = Y ]

The block predicate for System uses schema quantification, as there is no block
name for the entire system. Sum and Constant are not mentioned, as witnesses
need to be stated only once, and System encompasses their functionality. Note



Using the Compliance Notation in Industry 307

that the postcondition is very similar in structure to Post, and does indeed imply
Post.

There are many other aspects to this process not mentioned here. It is worth
mentioning just one though: when stepping over a statement that updates a
program variable X , any witness in the accumulated pool that refers to X can
no longer do so. Therefore a logical constant is introduced in the refinement and
substituted for occurrences of X in witnesses.

The resulting refinement, though less readable to the untrained eye, has one
very important advantage over a hand-written refinement: the VCs produced are
much more amenable to automatic proof, because there is a greater number of
smaller conjectures. This is due to the detailed matching of functionality between
the Simulink and Ada program that is easily expressed using witnesses.

This process is used by the RSG to generate refinement scripts (though its
interface for giving witnesses is more powerful than annotating the program with
every witness). The VCs produced by DAZ from refinement scripts created by
RSG are submitted to a very powerful, but highly bespoke, proof tool called
Supertac. This has two main parts: the first is tailored to the RSG and removes
the block predicate structure, leaving shorter logical and arithmetic conjectures
about ClawZ and Compliance Notation functions, which are then tackled by the
second part.

Using the RSG in conjunction with Supertac has several important advantages
over manual refinement and proof:

– De-skills analysis: reasoning is performed at a higher level without the need
to know about refinement, although a basic knowledge of Z is still required.
Consequently, the bulk of the analysis can be performed by less-skilled
people.

– Design evolution: localized changes to the control law and the program result
in localized changes to the witnesses. The same is not always true of a refine-
ment, because there is often repetition, for example, as predicates are carried
through pre and postconditions of specification statements. Therefore, a lo-
calized change to the control law and the program can require changes to
the refinement in many places and adjustments to many proofs.

– The notation is more succinct and quicker to produce—consider the effort
require to write proofs manually using a theorem prover.

– Simpler notation has less room for mistakes.
– Witnesses provide traceability from Ada back to the Simulink diagram.

6.6 Goal G0025: Concurrent Behaviour OK

The Simulink description is inherently concurrent, and so it could be imple-
mented concurrently to increase response time to retain control of a system
operating in the real world. For example, in Figure 6 the execution of the block
“Control4-6” can occur on one processor at the same time as the execution of the
block “ControlMode”. The two blocks do not communicate between each other,
although they do share common inputs. The execution of the block “ControlE”



308 P. Clayton and C. O’Halloran

cannot correctly occur until both the blocks, “Control4-6” and “ControlMode”,
have completed because “ControlE” requires outputs from both of these blocks.

The verification of the implementation of control law diagrams can easily
be split into independent verifications of sequential and concurrent behaviour.
The acceptance verification for the sequential behaviour of the steam boiler has
been described previously. The acceptance verification technique for a possible
concurrent implementation is the subject of this section.

To perform the verification, a specification is first required. A prototype tool
to automatically generate the CSP specification, based on ClawZ, has been de-
veloped. The tool translates a Simulink diagram into a description that forms
part of a CSP specification.

The specification is obtained by translating the Simulink representation into
a set of functions relating inputs to outputs. These functions are fed into a CSP
model that simulates all possible concurrent executions of subsystems within the
Simulink diagram. In terms of the diagram the model will only allow subsystems
to execute when either that subsystem’s inputs are inputs to the whole diagram
or are outputs from another subsystem that has already executed within the
model.

Many hard real-time systems employ a restricted form of concurrent execu-
tion. For the steam-boiler case study, a particular model has been adopted and
an automated verification technique developed. The particular model of execu-
tion is synchronous cyclic execution distributed over a number of processors that
communicate through shared memory.

The shared memory implements the wires between one concurrently executing
subsystem of the diagram and another. In CSP, the model of the implementation
is the parallel composition of processes representing a cyclic executive. These
processes synchronize on the tock event, capturing their synchronous execution.

The FDR refinement model checker [225] is used to verify that the distributed
scheduling is a possible behaviour of the specification. In principle, the auto-
mated verification could be extended for more sophisticated scheduling policies
and multiple clocks. This acceptance technique was trivially employed for the
steam-boiler problem, but it has also been used on a very large project.

6.7 Goal G0028: Exception Analysis

The verification, conducted under goal G0026, assumed that the Ada was free
from exceptional behaviour. This is usually addressed by programming practices
and programming languages; however, this does not guarantee that some excep-
tional behaviour has not slipped into the code. A developer can annotate the
code with numerous simple verification assertions, but this is currently limited to
the Spark subset of Ada and limits the number of developers that can perform
this task.

Alternatively Abstract Interpretation can be used to check that the software
delivered is free from exceptional behaviour [75, 252]. The Malporte tool has
been developed by the Systems Assurance Group to be a tool that can be used
during acceptance, or development.



Using the Compliance Notation in Industry 309

The aim of the Malporte tool is to identify by static analysis those states
of a program in which the rules of the coding language may be violated. For a
given test on a given program state, the analyser will come up with one of the
following conclusions:

– No exceptional or undefined behaviour is possible.
– Exceptional or undefined behaviour is possible.
– Malporte is unable to determine whether exceptional or undefined behaviour

is possible.

The tool has been designed to test statically for the following classes of run time
errors:

– Overflow and underflow.
– Divide by zero.
– Indexing beyond array bounds.
– Use of unset variables.
– Dereferencing of pointers that contain no data.
– Accessing a variable that has gone out of scope.
– Conversion of types on assignment.

After a run of the Malporte tool, the code locations should be examined where
the analyser has identified constraints on the acceptable values of variables. In
some instances, it will be found through use of reasoning, unavailable to the
analyser, that assignment of values that violate the constraints is not possible.
The analysis thus leads to three categories of constraint:

– Positive constraints, which indicate that if the program goes outside the
constrained values, an error will occur.

– False constraints, which arise due to approximations in the algorithm, so
that an error can never occur.

– Unknown constraints, where due to the complexity of the code it is uncertain
into which of the above two categories the constraint falls.

Attention is drawn to the locations of potential errors. Whilst these kinds of
errors can sometimes be picked out using run time checks, the aim is to predict
such errors statically, and hence show that such errors are not possible for any
execution conditions of the program.

The Malporte tool could have been applied to the steam-boiler system; how-
ever, the system is too simple to be of interest. For instance, there are no di-
visions, so divide-by-zero is not an issue. Also there are no arrays, pointers or
type conversions. The system would have needed to be made artificially more
complicated to be useful.

6.8 Goal G0030: Worst-Case Execution Time

Worst-Case Execution Time (WCET) analysis computes upper bounds on the
execution time of tasks in a system. In any system where computing resources



310 P. Clayton and C. O’Halloran

may prove inadequate, concern arises over the run times of individual tasks; this
concern is all the greater when safety is involved. Thus, a means of gaining an
accurate understanding of run times is essential.

Although WCET analysis can be used as an acceptance technique, it is crucial
that it is performed during development. There is no chance that hard real-
time systems can be developed and successfully delivered without some form of
WCET; however, WCET analysis is also essential for acceptance. The following
describes a generic approach for WCET analysis that supports the acceptance
process.

WCET analysis may be done at low level, taking account of hardware features
such as caching and pipelining. The work described here is at a high level and
focuses on high-level language features such as loops and subprogram calls. It
has been performed for the Systems Assurance Group by the Computer Science
Department of the University of York.

The specific feature of WCET analysis under investigation is symbolic exe-
cution. The aim is to get a tighter estimation by characterising the context in
which the code is executed. The scheme relies on the fact that not all calls of
subroutines and loops take the same time to execute. Instead of the traditional
approach by which a worst case is assessed for each subroutine or loop call and
used every time, an expression for the run time is constructed that depends on
the parameters at run time.

Traditionally, WCET tools have been confined to a single source language, a
specific compiler, a particular version of the compiler and of its switches, and
a unique board layout and configuration. A lack of portability has hindered
take-up of established WCET techniques. Under one of the Systems Assurance
Group’s research projects there has been work at the University of York aiming
to improve on this situation by devising a timing analysis scheme based on Java
Byte Code (JBC) [25]. Besides Java, many other languages, including Ada and
C, can be compiled to JBC. The JBC may be interpreted or compiled down to
native assembler/machine code.

The Java Virtual Machine (or the instructions of JBC) is stack based and has
simple address modes. All operations are performed through the operand stack.
This allows an efficient implementation of the virtual machine on processors
that have few registers and few addressing modes. There are three main types
of implementations of the virtual machine: interpreted, just-in-time compiled
and ahead-of-time compiled. Of these, only the ahead-of-time complied machine
shows the performance and predictability suitable for real-time systems.

In order to achieve predictability the source code program must be pre-
dictable (no unbounded loops), any library code must have bounded worst-case
execution times and the compiler itself must be predictable. The WCET is com-
puted by considering how long each JBC instruction takes to execute. This in
turn depends on how the virtual machine is implemented. A timing model is
required of the virtual machine for each particular target the code may run on.

The ideas expressed above are being implemented at York in a prototype tool
called Javelin [26]. It has not proved practical to use the Javelin tool on the



Using the Compliance Notation in Industry 311

steam-boiler example. The tool is being developed initially for C, with Ada to
follow, whereas the steam-boiler example uses Ada. The steam-boiler example
has a cycle time of 1 second based on the time constants of the system. It is
therefore not the kind of time-critical real-time system that would benefit from
the use of the tool. Further, the steam-boiler system has not been allocated a
processor or board configuration; however, the WCET tool is being designed so
as to be compatible with application to the steam-boiler system.

7 Experience of Acceptance Based Assurance

7.1 Background

Some of the techniques described in this chapter have been used on actual pro-
curement projects to accept systems on behalf of the UK MoD. They have all
been deployed on a current major procurement in some form or another. The
particular procurement cannot be identified, but the current experience of ac-
cepting a safety critical system is reported.

The system consists of approximately 180,000 lines of non-comment, non-
blank Ada. It is a hard real-time system distributed over six processors executing
concurrently in synchrony.

7.2 Identifying Safety Properties

The overall system hazard analysis is being used to determine lower level software
safety properties. For example, if a built-in test detects a failure, then it must
propagated to the controller so that a reversionary mode is activated. CSP has
been used to model the reversionary handling in a way related to that described
earlier. Its correctness depends upon the correct functioning of some software
functions. Hence software safety properties for these functions have been derived.

7.3 Sequential Code Verification

Most of the current verification effort has been directed towards the implemen-
tation of a complex non-linear control law. There is some verification of specific
safety properties, such as those for reversionary moding.

The specification of the control laws is estimated to be of the order of 800
pages of A4. It is hierarchical and has been transcribed from a representation
in Fortran. The transcription process includes a significant validation effort
that takes advantage of Simulink’s simulation capabilities. The specification in
Simulink is suitable for review by independent control engineers, which the pre-
vious representation was not, although it could be executed.

The implementation of the control law consists of approximately 18,000 lines
of non-blank, non-comment code, distributed over three processors interacting
concurrently. Although the control law implementation is only about 10% of the
total code, it is the most complex and least well understood. The rest of the code



312 P. Clayton and C. O’Halloran

on the remaining processors consists of: actuation software, that is deterministic
and relatively simple to test exhaustively; sensor software, again well understood
and amenable to extensive testing; and the bulk of the software of initial and
continuous built-in tests for sensors and actuators.

In addition to the Ada verification there are twenty-seven low-level assembler
routines that are called numerous times in the Ada. These amount to about
10,000 lines of assembler with floating point calculations. These assembler rou-
tines have been verified using the Malpas tool [253] against specifications derived
from the Ada verification.

About ten mismatches were found between the specification and the imple-
mentation produced from an incremental development process that has been in
action for ten years.

7.4 Concurrency Verification

There are approximately 250 scheduled elements on the three processors on
which the control laws execute. The use of the FDR refinement model checker al-
lows the verification to be completely automated as described in Section 6.6; how-
ever, the amount of concurrency permitted by the Simulink specification required
a hierarchical verification to be developed to address the state-space problems.

The hierarchical approach checks a number of subsystems in the diagram hier-
archy, hiding that part of the scheduling that does not pertain. A new subsystem
is formed from those subsystems below it in the hierarchy, and the verification
process repeated. This approach has also allowed an incremental verification
so that the process has not been held up by the incremental delivery of the
specification.

The verification check is not yet complete because the final part of the
Simulink specification has not yet been delivered. It is estimated that the to-
tal verification of the concurrency will be about four person-months. Currently
about ten mismatches have been found. These cover:

– Interactions in the code that are not in the specification.
– Over-scheduling.
– Scheduling that violates the causality in the diagram.

The first category of anomaly means that a non-local variable is written to,
and apparently used, in another procedure. The second category is when a pro-
cedure is called more times than required by the specification; this might have
no impact except for wasting execution cycles. The final category is more seri-
ous, an example of this category in terms of Figure 6 would be if the subsystem
ControlE was executed before the subsystem ControlMode. Clearly the causal-
ity implied by the diagram in Figure 6 is violated because one of the inputs to
ControlE is calculated by the subsystem ControlMode.

7.5 Exception Analysis

The Malporte tool has been used to assess all 180,000 lines of Ada. To pass all
the code through Malporte took about six weeks, requiring about two person-



Using the Compliance Notation in Industry 313

months of effort. This produced approximately 1,500 anomalies. In terms of
actual processing by Malporte, it took 25 minutes to analyse 278 files using a
266MHz Pentium 2 processor.

The analysis is pessimistic, therefore most of these anomalies could be resolved
after further information is received. For example, it is known that the type
used for variables receiving sensor information has a much greater range than
the sensor could ever supply. Restricting the range to a narrower set of values
would probably remove a great number of potential overflow anomalies reported
by Malporte. Details of the use of the Malporte tool for other procurements can
be found in [252].

7.6 Worst-Case Execution Time

A specific Worst Case Execution Time, WCET, analysis tool was developed 10
years ago by the developer of the safety critical system being currently assessed
for acceptance. The tool has been used extensively on the project and assessed,
therefore it was not considered cost effective to repeat WCET analysis.

The concurrency verification described earlier crucially relies on WCET anal-
ysis. The CSP model of the implementation assumes that scheduled procedures
complete before the end of a fixed timed segment. The end of this fixed timed
segment is represented by a synchronisation on the tock event within the CSP
model of the implementation.

8 Summary

A set of tools have been developed, as well as using existing tools, and integrated
into a framework for accepting safety critical systems. This framework, and the
tools and techniques within it, have been used for the acceptance of a significant
hard real-time safety critical system.

The WCET tool is based on a new symbolic execution algorithm that is less
pessimistic than the traditional WCET algorithm. The tool is based on Java Byte
Code and is easily characterized for different languages, compilers, processors and
configurations. WCET analysis is an essential component in gaining assurance
for future time-critical real-time systems. Many such control systems are to be
found in new and legacy military systems.

Well-defined acceptance techniques can be used to show whether contractual
conditions have been met; for example, that the safety assurance is adequate.
This should lead to developers incorporating it into their development processes.
The reason for this is that a developer will wish to ensure that it will be paid for
achieving its contractual obligations. The acceptance techniques should ideally
be designed to be independent of the development process in order for them to
be as widely applicable as possible. In practice, it has been shown that some
knowledge of the development process has to be taken into account in order to
join them up cost-effectively.

The adoption of acceptance techniques by the developer would also lead to
more effective testing and cost reductions, because there would be less re-work
due to the cycle of fixing bugs, testing and then fixing them again.



314 P. Clayton and C. O’Halloran

8.1 Relationship with Other Techniques

As part of the FORWARD project on behalf of the UK Department of Trade
and Industry, the Systems Assurance Group have investigated basic mechanisms
for assuring quality of service in ad hoc networks. These ad hoc networks are a
core component of future ubiquitous computing, environments. CSPM and its
associated model checking tool, FDR, was used to address clear-cut questions
of correctness for routing and distributed data replication respectively. In many
cases, it is not possible to guarantee that a protocol achieves its goals with
absolute logical certainty; but it can be argued that the counterexamples will
arise with negligible (or zero) probability.

As part of the FORWARD project performance characteristics were deter-
mined by calculating accurate minimum and maximum bounds on the proba-
bility of a specified condition being satisfied. The methodology makes use of
Birmingham University’s PRISM model checker [210] and a translator from a
probabilistic version of CSPM , called pCSPM [101], to PRISM developed within
FORWARD. The methodology includes guidance on how to extend possibilistic
models written in CSPMP into probabilistic models (written in pCSPM) suitable
for performance analysis. The methodology and tools were applied to part of the
GRID protocol suite.

As described in this chapter, control systems using a simple distributed cyclic
scheduling have been verified using a combination of representations in CSPM

and specification statements using Z. Subsequently the Circus language has been
used to combine concurrent and sequential verification and reported in [47]. More
sophisticated schedulers use probabilistic scheduling to maximize the efficiency
of the computing resources. Probabilistic software protocols are also used to
tolerate random faults that can occur on the computing platform and infras-
tructure. The growing pervasiveness and sophistication of computing devices
and their internet working present daunting challenges if society is to depend
upon them. These types of systems of systems require methods based on theories
and tools that combine refinement, probabilistic reasoning and concurrency. The
body of work presented in this book is a significant step in meeting this growing
challenge.



Techniques for Temporal Logic Model Checking

David Déharbe

Universidade Federal do Rio Grande do Norte
Departments de Informática e Matemática Aplicada

Natal - RN, Brazil

Model checking is a set of formal verification techniques that aim to show that
a structure representing a computational system (for instance, a protocol, or a
hardware or a software component, among others) is a model for a property that
represents a requirement for this system. Many model-checking approaches have
been proposed, depending on the formalism the property is expressed in, and
the class of structures used to represent the system under verification.

In the next section, we motivate the use of model-checking, and summarize
the research work that has been carried out in this area. In Section 2, we discuss
Kripke structures, one of the main state-transition models in the model-checking
literature. Section 3 is devoted to propositional temporal logics commonly used
in the realm of program verification: CTL*, CTL and LTL. Their expressiveness
is compared and illustrated. Section 4 provides the key components of explicit
model-checking for the temporal logic LTL, and introduces some advanced tech-
niques that are used in current implementations such as the SPIN model-checker.
Then, in Section 5, we present the decision procedure for CTL as originally pro-
posed in the seminal work of [62] and [218]. Next, in Section 6, we present how
Kripke structures can be represented and analyzed using quantified propositional
logic, and introduce Binary Decision Diagrams (BDDs), an efficient implementa-
tion of this logic; at that point we are ready to present symbolic model-checking.
We also present the symbolic model-checking features of the NuSMV model-
checker. Section 7 is devoted to so-called bounded model-checking. This tech-
nique makes it possible to verify (in general partially) LTL properties of much
larger structures than the previous approaches. We also present the bounded
model-checking features of NuSMV. Finally, in Section 8, we briefly touch upon
some of the most recent developments in formal verification of software, some
of which employ techniques that had been initially developed to enhance model
checkers.

1 Introduction

The last decades have seen computation devices getting smaller, cheaper and
requiring less power. Therefore, computers are getting more and more pervasive
in our world, and an ever increasing number of critical activities are being su-
pervised and controlled by a combination of software and hardware. Engineering
computation devices in a timely fashion, however, is a difficult and error prone
task, as witnessed by the struggle in which the software engineering commu-

, LNCS 3167, pp. 315–367, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
A. Cavalcanti, A. Sampaio, and J. Woodcock (Eds.): PSSE 2004



316 D. Déharbe

nity has been engaged to provide the tools and methodology that the software
industry needs to create robust products.

Following the tradition of other engineering disciplines, a branch of computer
science has strived to propose methods based on sound principles drawn from
mathematics: formal methods. An example of a software design methodology
based on formal methods is the B method [3]. It commends that an initial,
high-level specification of the system be developed, possibly reusing existing
specifications of components. This specification is a mathematical description of
the requirements of the system and is expressed in a suitable language (in this
case, the B notation). The specification needs to be analyzed in detail to verify
that it satisfies the requirements of the project, and that it does not contain
internal inconsistencies. Of course this analysis should have a sound basis.

Once the specification has been analyzed, it can then be refined, reflecting im-
plementation and design choices, towards a more detailed model of our intended
view of the system. Again, when a refinement is performed, it is important to
guarantee that it has preserved the initial intentions of the designers; this may
require further analysis. At some point, if the model is sufficiently detailed, it can
be mapped to a computational model, such as code in a programming language.
Of course, it is also necessary to show that this mapping does not introduce unex-
pected behaviours. In summary, specification, refinement and code synthesis all
require some kind of analysis. The point here is that, as we have a specification
language with well-defined semantics, we can use formal verification techniques,
that is, mathematical reasoning, to carry out the analysis.

Formal verification, however, is not restricted to design methodologies that
rely heavily on formal methods and refinement as suggested above. The imple-
mentation of a design can still be verified if we can map it to some mathematical
structure that can support some proof activity. For instance, formal verification
techniques have been directly applied on an industrial basis to software to detect
errors in device drivers, or to show the absence of run-time errors in flight-control
software [30]. A common trait to all these formal verification activities is that
they suppose that a mathematical structure represents (or models) a comput-
ing system, and all the verification activity is carried out on the mathematical
structure. Thus, formal verification is used to show properties of some (abstract)
model of the system instead of the system itself.

Although it is theoretically possible to carry out verification tasks by hand,
the sheer size of the problems encountered in practice makes it impossible to use
any but a computer-aided verification technique. Thus, researchers have been
busy developing a very large number of formal verification techniques address-
ing different classes of mathematical structures and specification logics. These
approaches are generally classified as either theorem provers or model checkers.
In general, the richer the mathematical structure and the more expressive the
specification logic, the harder gets the verification. For software in general, the
problem is not even decidable. So although theorem provers (like, for example,
PVS, Coq, ACL2, Simplify, Mona, and haRVey) have a much broader scope,
they may require manual intervention and considerable human expertise.



Techniques for Temporal Logic Model Checking 317

Model checking is a decision procedure to check that a given structure is a
model of a given formula. For instance, in the setting of propositional logic,
model checking amounts to the problem of deciding if a formula is satisfiable in
a given model, that is, a boolean assignment of the variables of this formula. In
the early 80s, [62] and [218] presented independently a fully-automatic model-
checking algorithm for formulas of the branching-time temporal logic CTL, and
finite-state transition systems called Kripke structures. In this seminal work, the
verification is performed as a depth-first graph traversal, of complexity linear
in both the size of the formula and in the size of the model. This algorithm
has been used to verify systems of up to several million states and transitions,
which is enough in practice only for very small systems. For example, a system
composed of four concurrent processes, each having three variables that can take
five different values, has 250 million states.

In order to provide a model-checking system of practical interest for the in-
dustry, it was therefore necessary to go beyond this initial approach. In the past
twenty years, researchers have been very active and successful to provide solu-
tions to improve the situation. Also, the temporal logic CTL (Computation Tree
Logic) and the Kripke structure computation model has some limitations, and
there has been a lot of effort towards the definition of model-checking approaches
for other models of computation, as well as other specification logics.

Automata-based specification and verification was first advocated in [249]
and further developed by several researchers including [141] and [120]. In this
approach, desired (or undesired) behaviours are described as Büchi automata,
which are automata that recognize infinite words, and are, therefore, suitable
to specify reactive systems. It has been further shown that temporal logic LTL
(Linear Time Logic) formulae can be expressed as Büchi automata [99]. This
framework was used as the basis for further developments on so-called explicit
model-checking, where the states of the Kripke structures are explicitly enumer-
ated and the state space is visited in a depth-first search. This framework was
enriched using partial-order reduction [211], state-compression techniques [119],
and bit-state hashing [118], resulting in very mature formal verification tools
such as SPIN [120].

Another major line of research has been initiated in [185], where it is proposed
to represent the state-transition graphs and the search algorithms as boolean
logic operations that can be efficiently implemented with binary decision dia-
grams (BDDs) [34]. In this approach, called symbolic model-checking, BDDs are
used to represent and operate on the characteristic functions of both sets of
transitions and sets of states of the graph. Since sets are not explicitly enumer-
ated, but represented by their characteristic functions, the size of the verified
model is not necessarily bound by the memory of the computer carrying out
the verification. This opens the possibility to verify systems that are several
orders of magnitude larger than was previously achieved. However, in practice,
BDDs do not cope efficiently with formulas with more than a few hundred vari-
ables and the exponential growth of the size of the state space to be explored



318 D. Déharbe

makes it impractical to directly apply symbolic model-checking on large or even
medium-size industrial examples.

More recently, a new symbolic model-checking approach, based on extremely
efficient satisfiability solvers for propositional logic, has yielded very interesting
results. These new techniques, known as bounded model-checking, can explore
much larger Kripke structures than BDD-based approaches, however they are
limited in the depth of the search in the state-space. They are, therefore, most
useful to detect bugs that can be exhibited in relatively short paths from some
initial state of the structure.

In this chapter, we provide an overview of the most well-known techniques
of model checking. We also compare this more traditional line of work with the
approach called refinement model-checking adopted in the tool FDR presented
in Chapter 4.

2 Kripke Structures

Among the numerous concurrency models proposed in the last 20 years [254],
Kripke structures are one of the most commonly used in the scope of temporal-
logic model-checking. Kripke structures are interleaving, nondeterministic, state-
based models suitable to represent a wide-range of practical problems, for in-
stance hardware, protocols and concurrent software.

2.1 Definitions

Informally, Kripke structures are finite-state transition systems, where the la-
belling is associated with states, instead of the more traditional labelling of
transitions.

Definition 1 (Kripke structure). Let P be a finite set of boolean propositions.
A Kripke structure over P is a quadruple M = (S ,T , I ,L) where:

– S is a set of states (when S is finite, we say that M is a finite Kripke
structure);

– T ⊆ S × S is a transition relation, such that ∀ s : S • ∃ s ′ : S • (s , s ′) ∈ T ;
– I ⊆ S is the set of initial states;
– L : S → P P is a labelling function.

The labelling function L associates each state with a set of boolean propositions
true in that state.

Example 1 (Kripke structure). In the alternating-bit protocol, the sender tags
messages with a control bit set to high and low in alternation. The receiver
acknowledges each message attaching the corresponding control bit. The sender
waits for the acknowledgement and checks that the control bit is correct before
sending another data message. If necessary, the same data is sent again.

The Kripke structure ABPsender below describes the sender component in
the alternating-bit protocol. The set of atomic propositions is P = { b, g, s ,w }.



Techniques for Temporal Logic Model Checking 319

The proposition b indicates the state of the control bit; g is set when the sender
is getting data from the user; s states that the sender is sending the message
to the transmission medium; finally, w indicates that the sender is waiting for
the acknowledgement. The data messages are not modelled in this version of
ABPsender. It is defined by the structure (SA,TA, IA,LA) where:

– the set of states is SA = { s0 , s1 , s2 , s3 , s4 , s5 };
– the transition relation is

TA = { (s0 , s0 ), (s0 , s1 ), (s1 , s2 ), (s2 , s1 ), (s2 , s3 ),
(s3 , s3 ), (s3 , s4 ), (s4 , s5 ), (s5 , s4 ), (s5 , s0 ) }

– the set of initial states is IA = { s0 , s3 };
– the labelling function is

LA = { s0 #→ {g}, s1 #→ {s}, s2 #→ {w},
s3 #→ {g, b}, s4 #→ {s , b}, s5 #→ {w , b} }

The state transition diagram of ABPsender is displayed in Figure 1.

s0
{g}

s1
{s}

s2
{w}

s3
{g, b}

s3
{g, b}

s3
{g, b}

Fig. 1. State transition diagram for Kripke structure ABPsender

Initially, the sender is in one of two states: s0 and s3 , modeling the fact that
it expects a message to be delivered (g is true) and the control bit b can be
either true (state s3 ) or false (state s0 ). For sake of conciseness, we explain the
behaviour from state s0 . The sender remains in state s0 until it gets a message
and goes to state s1 , representing the delivery of the message tagged with the
bit 0. It then goes to state s2 , modeling the situation where the sender waits
the acknowledgement. If the acknowledgement is not as expected (it may be
wrongly tagged or there might be some time-out), then the sender needs to send
the tagged message again, which is represented by the transition to state s1 .
Otherwise, the acknowledgement may come as expected, and the sender can



320 D. Déharbe

deliver a new message, with the opposite tag. This is modelled by the transition
to state s3 . The possible behaviours from s3 are the same as those from s0 , with
the tag now set to 1.

A path π in the Kripke structure M is a possibly infinite sequence of states
(s1 , s2 , . . .) such that ∀ i | i ≥ 1 • (si , si+1 ) ∈ T . The i-th element π(i) in a
path π is the i-th state of π. The set RS of states reachable from a set of states
I contains the states to which there is a path starting from a state in I :

RS={ s : S | ∃π • π(1 ) ∈ I ∧ ∃ i | i ≥ 1 • π(i) = s } (1)

We say that a state label l is reachable, if there is a reachable state labelled l .
In our example Kripke structure, all states are reachable, since the state

transition graph is connected, but many state labels are unreachable. For
instance, no reachable state is labelled { g,w }. In general, if there are p dif-
ferent propositions, there are 2 p possible state labels. In most cases, the num-
ber of reachable state labels is only a fragment of the number of possible
labels.

Exercise 1. Define a Kripke structure ABPreceiver that models a high-level
behaviour of the receiver in the alternating bit protocol. An informal description
of the receiver is that it waits for tagged messages coming from the transmission
medium. If the message has the expected tag, then it is forwarded to the upper
level client in the transmission protocol, and a tagged acknowledgement is sent
back to the transmission medium. To make the exercise simple, do not model
the message and the acknowledgement, only the different states the component
can be, much as in the same manner as the sender.

Draw a diagram of the transition graph, and identify explicitly the states,
transitions, initial states and labels of ABPreceiver.

2.2 Computation Tree

Computation trees are a special class of Kripke structures in which the tran-
sition relation is acyclic, and only branches away from the initial states. The
computation tree of a Kripke structure is obtained by an operation similar to
that of unfolding in CCS [188].

Definition 2 (Computation tree). Let P be a finite set of boolean proposi-
tions. A computation tree is a Kripke structure M = (S ,T , I ,L) over P, such
that:

– every state is reachable;
– ∀ s : S • (s , s) 	∈ T+, where T+ is the transitive closure of T;
– ∀ s , s ′, s ′′ : S • (s ′, s) ∈ T ∧ (s ′′, s) ∈ T ⇒ s ′ = s ′′.

For any Kripke structure M , it is possible to associate a computation tree M ′

such that the set of states of M ′ is isomorphic to the set of finite paths of M .

Definition 3. Let M = (S ,T , I ,L) be a Kripke structure. The computation tree
of M , denoted ct(M ), is the Kripke structure (S ′,T ′, I ′,L′) such that:



Techniques for Temporal Logic Model Checking 321

– S ′ consists of all finite paths of M that start at initial states;
– (π, π′) ∈ T ′ iff π = (s1 , . . . sn), π′ = (s1 , . . . , sn , sn+1 ) and (sn , sn+1 ) ∈ T;
– I ′ consists of all paths of M with only one (initial) state;
– For any path π = (s1 , . . . sn) of M , L′(π) = L(sn).

Example 2 (Computation tree). Figure 2 depicts the initial part of the state
transition diagram of the infinite Kripke structure ct(ABPsender). For instance,
state π9 in ct(ABPsender) corresponds to path s3 s4 s5 in ABPsender. Note
how the labelling function is preserved between the origin and destination of the
transitions in the original Kripke structure and the corresponding computation
tree.

���������	π0
{g}

��
���

��
��

��
��

�

�������	π2
{s}

��

�������	π3
{g}

�� ���
��

��
��

�������	π6
{w}

��
���

��
��

��
�������	π7
{s}

��

�������	π8
{g}

��
���

��
��

��

...
...

...
...

...

��
������π1
{g, b}

�� ������������


������π4
{s, b}

��


������π5
{g, b}

�� ���
��

��
��


������π9
{w, b}

��
���

��
��

��

������π10
{s, b}

��


������π11
{g, b}

��
���

��
��

��

...
...

...
...

...

Fig. 2. Partial state transition diagram of ct(ABPsender)

Exercise 2. Draw the initial part of the state transition diagram of the Kripke-
structure ct(ABPreceiver), which is partially presented in Figure 2.

3 Temporal Logics

Temporal logics are formal systems that were developed by logicians and philoso-
phers to describe and reason about the evolution of the truth of propositions.
In addition to the classic logical operators they include temporal operators that
make it possible to assert that a proposition may become true or will even-
tually become true. Pnueli [214] was the first to observe that temporal logics
can be used to specify and analyse programs that run continuously, such as
those in embedded software or operating systems. For instance, in a resource
scheduler, we may want to verify that all processes eventually get access to the
resource.



322 D. Déharbe

There is an impressive body of work on the use of temporal logics in computer
science in general, and in program specification and verification more specifically.
The interested reader is referred to [84] for a survey on research in this area, and
the main available results. Here, we first introduce a very simple temporal logic,
ω-regular expressions, and then focus our attention on qualitative propositional
temporal logics that have been successfully employed in the realm of model
checking: CTL* and its subsets CTL and LTL.

3.1 ω-Regular Expressions

Regular expressions are a well-known language to denote sets of words. The op-
erators are ε (empty word), . (concatenation), + (choice), ∗ (repetition). If we
consider as alphabet the set of states of a Kripke structure, a word is a sequence
of states. For instance, for ABPsender, the regular expression s0 (s1 s2 )+s3 rep-
resents all the sequences of states that initiate in s0 , go through s1 and s2 a
finite, non-null number of times, and then end in s3 . The + operator represents
non-empty repetition.

In our context, paths can be viewed as infinite words, and regular expressions
fall short of expressiveness as they only allow to represent sets of finite words.
The ω-regular expressions extend this notation with the ω operator that stands
for infinite repetition. For instance, the ω-regular expression s0 (s1 s2 )ω represents
the unique path where the ABPsender initiates in s0 and then loops infinitely
over the states s0 and s1 .

The ω-regular expressions provide constructions to express sets of paths and
provide a linear vision of behaviour. They are thus classified as a linear temporal
logic. However ω-regular expressions are a bit awkward to read and write and
do not serve well as a specification formalism.

Exercise 3. Use an ω-regular expression to denote some paths of the Kripke
structure ABPreceiver.

3.2 The Logic CTL*

Temporal logics may be classified according to various criteria. Is the time mod-
elled as a continuous or discrete quantity? Is the behaviour considered as a (pos-
sibly infinite) linear set of executions, or as a branching tree? Is the underlying
logic propositional or first-order? Are we interested in considering both the past
and the future? The combined answer to such questions determines what kind
of temporal logic is needed. Of course, computer scientists need to be pragmatic,
and having an efficient algorithmic approach to reason about such logic is also
of paramount importance.

The computation tree logic CTL* makes it possible to describe and reason
about the behaviour of Kripke structures. It has the following characteristics: the
time is discrete; the underlying logic is propositional; and it has modalities about



Techniques for Temporal Logic Model Checking 323

the future (but not about the past). Moreover, CTL* accepts both the branching
and linear views of the temporal succession of states. Finally, there are (rela-
tively) efficient algorithms for two important sublogics of CTL*, namely CTL
and LTL.

In addition to the usual logic connectives, CTL* contains two types of modal-
ities: path quantifiers and linear time operators, that can also be viewed as state
quantifiers. There are two path quantifiers, which are described below.

– E, the existential path quantifier: Eφ holds in state s if φ holds on some
path leaving s ;

– A, the universal path quantifier: Aφ holds in state s if φ holds on all paths
leaving s .

The linear time operators are as follows.

– X, on the next state: Xφ holds on path π if φ holds in the second state of π;
– F, on some future state (or eventually): Fφ holds on path π if φ holds in at

least one state of π;
– G, on all future states (or globally): Gφ holds on path π if φ holds in at all

states of π;
– U, the until operator: φUψ holds on path π if ψ holds in some state s of π

and φ holds on all states of π preceding s ;
– W, the weak until operator: φWψ holds on path π if φ holds in every state

of π up to the first state that satisfies ψ.

Syntax. The syntax of CTL* is defined as follows. Given a set of atomic propo-
sitions AP , the set of state formulae and the set of path formulae are the least
sets such that:

– if p ∈ AP then p is a state formula;
– if f and g are state formulae, then so are ¬f and f ∨ g;
– if f is a path formula, then Ef and Af are state formulae;
– if f is a state formula, then f is also a path formula;
– if f and g are path formulae, then ¬f , f ∨ g, Xf , Gf , Ff , f Ug and f Wg

are path formulae.

Semantics. The semantics of a CTL* formula over the set of atomic propositions
AP is defined in terms of an underlying Kripke structure on the same set of
atomic propositions AP . If φ is a state formula, the notation M , s |= φ represents
the fact that φ is valid in the state s of the Kripke structure M . Similarly, if ψ
is a path formula, the notation M , π |= ψ represents the fact that ψ is valid in
the path π of the Kripke structure M .

In the following, we use p to denote an arbitrary atomic proposition, φ1

and φ2 to denote state formulae, and ψ to denote path formulae. The relation
M , s |= φ is defined inductively as follows.



324 D. Déharbe

M , s |= p ⇔ p ∈ L(s)
M , s |= ¬φ1 ⇔ M , s 	|= φ1
M , s |= φ1 ∨ φ2 ⇔ M , s |= φ1 or M , s |= φ2

M , s |= Eψ ⇔ ∃π • π(1 ) = s ∧ M , π |= ψ
M , π |= φ ⇔ M , π(1 ) |= φ
M , π |= ¬ψ ⇔ M , π 	|= ψ
M , π |= ψ1 ∨ ψ2 ⇔ M , π |= ψ1 or π |= ψ2

M , π |= Xψ ⇔ M , π(1 ) |= ψ
M , π |= ψ1Uψ2 ⇔ ∃ k | k ≥ 1 • M , π(k) |= ψ2 ∧

∀ j | 1 ≤ i < k • M , π(j ) |= ψ2

The semantics of the other boolean operators (such as ∧, ⇒, ⇔) is defined as
usual. The semantics of the remaining temporal modalities is defined by the
following rules.

Aψ=¬E¬ψ

Fψ=trueUψ

Gψ=¬F¬ψ

ψ1Wψ2=(ψ1Uψ2 ) ∨ (Gψ1 )

The Logic CTL. Computation Tree Logic (CTL for short) is a subset of CTL*
that is restricted to reason about only the branching nature of program execu-
tion. Therefore, it only allows branching operators that are composed of a path
quantifier immediately followed by a state quantifier. These operators are EX,
AX, EF, AF, EG, AG, E[U], A[U], E[W], A[W]. As for CTL*, the semantics
of CTL formulae is defined with respect to the states of a Kripke structure, and
we adopt the same notation M , s |= φ to represent that the CTL formula φ is
valid in the state s of M .

Definition 4. A formula f is valid in structure M if it is valid for all initial
states:

M |= f iff ∀ s : I • M , s |= f .

Note that the full expressiveness of CTL with respect to time can be obtained
with the operators EX, EF and E[U]:

AXf =¬EX¬f A[f Ug]=¬E[¬gU¬f ∧ ¬g ] ∧ ¬EG¬g
AGf =¬EF¬f E[f Wg]=¬A[¬gU¬f ∧ ¬g ]

AFf =¬EG¬f A[f Wg]=¬E[¬gU¬f ∧ ¬g ]
EFf =E[trueUf ]

Figure 3 pictures the semantics of the four universal temporal operators (vertical
dots indicate paths where f holds infinitely).

Example 3 (CTL formulae). The following CTL formulae state properties of the
ABPsender Kripke structure:



Techniques for Temporal Logic Model Checking 325

��������—

				
		
	
�� 











��������f ��������f ��������f

��������f

����
��
�
�� ���

��
��

��������f

������
��
�

��������f

��

��������f

�� ���
��

��

��������f

��

��������f

��

��������f

��

��������f

��

��������f

��
...

...
...

...
...

��������—






�� 

�
��

��

��������. . .

������
��

�
��������. . .

��

��������f

��������f ��������f ��������f

��������f

����
��
�

�� ���
��

��

��������f

��

������ !g ��������f

����
��
�
�������� !g ������ !g ������ !g

��������f

����
��
�

�� ���
��

��

��������f

��

������ !g ��������f

����
��
�
�������� !g ������ !g ��������f

��
...

AXf AGf AFf A[f Ug ] A[f Wg ]

Fig. 3. Illustration of universal CTL operators

– AG((s ∧ ¬w ∧ ¬g) ∨ (¬s ∧ w ∧ ¬g) ∨ (¬s ∧ ¬w ∧ g)): the sender is always
getting fromthe sender, sending amessage, orwaiting for an acknowledgement.

– EG(¬s ∧ ¬w): there is an execution path of the sender such that it is never
sending or waiting.

– AG(w ∧ b ⇒ A[(w ∧ b)W((s ∧ b) ∨ (g ∧ ¬b))]): the sender keeps waiting
for an acknowledgement with the tag bit set, until it either goes to the
sending state again with the same tag or goes to get a message from the
client with the bit tag unset.

– AGEFg : the sender can always go back to a state where it can process
requests from the user.

Exercise 4. Write CTL properties that you expect ABPreceiver to satisfy. Write
CTL properties that you expect ABPreceiver not to satisfy.

The Logic LTL. Linear Temporal Logic (or LTL for short) offers a linear view-
point on the progress of the Kripke structure behaviour. LTL formulae have
the form Aφ, where φ is a path formula that does not contain further path
quantifiers, so that the only state sub-formulae are atomic propositions. It is
customary to drop the initial universal path quantification when writing LTL
formulae. So, basically, the temporal logic operators of LTL are X (also denoted
©), F (also denoted �), G (also denoted �), U (also denoted U) and W (also
denoted W); they retain their usual semantics from CTL*. For instance, the LTL
formula FGinitialized states that on all execution paths, from some point on,
the proposition initialized is always true.

Expressiveness. The expressive power of CTL and LTL cannot be directly
compared. For example, to see that CTL may express properties that cannot be
expressed in LTL, consider the formula AGEFφ: in every state, there is path
that leads to a state where φ holds. As LTL does not have path quantifiers,
one cannot express this property: indeed, the candidate formula GFφ does not
match as it express that, on every path, φ will eventually hold (see Figure 4).



326 D. Déharbe

���������	¬φ ��
��

������φ��

Fig. 4. Kripke structure where AGEFφ holds, but where GFφ does not hold

Conversely, the LTL formula FGφ has no equivalent CTL formula [60]. Indeed,
as already explained, this formula states that, on every path, there is a point
after which φ is always true. In CTL, we would use the AF operator to state
that from some point on φ is always true. However, as the argument of AF we
would use either an existential path operator or a universal path operator, and
therefore would not be asserting anything about the current path, but about
some path or all paths from a certain point in the future (see Figure 5).

����������φ ��
��

"#$%&'()¬φ ����������φ��

Fig. 5. Kripke structure where AFAGφ does not hold, but where FGφ holds

Finally, CTL* is strictly more expressive than the logics LTL and CTL, as
all LTL and CTL formulas are also CTL* formulas. Thus, combining our two
previous examples, the CTL* formula FGφ ∨ AGEFφ can be expressed neither
in LTL nor in CTL.

Comparison with Approaches Based on Process Algebra. The approach
to model checking that we describe assumes that the specification is given
in a temporal logic and the implementation is a kind of labelled transition
system (LTS). Proponents of process algebra such as CSP have a different
approach: both the specification and the implementation are expressed as
processes.

A CSP process P has an associated labelled transition system M (P) that
characterizes its operations semantics. Labelled transition systems are similar
to Kripke structures, however, their labels are carried by transitions. An LTS
M (P) has an associated set of traces T (P) (conceptually, this corresponds to
the set of paths of a Kripke structure). An implementation process Pi is correct
with respect to a specification process Ps if L(Pi) ⊆ L(Ps ). This correctness
relation is called a trace refinement relation. Other, more elaborated trace-like
semantics for CSP have been proposed and are the basis of the FDR verification
tool.

Note that while trace refinement preserves validity of LTL formulae, this is not
the case of CTL, as this logic allows existential path quantification. First, consider
the case of LTL. An LTL formula states a property that all paths must comply.



Techniques for Temporal Logic Model Checking 327

Moreover, LTL formulas do not allow to state properties about branching, as
nested path quantifiers are disallowed. Thus an LTL formula ϕ can be viewed as
a linear pattern that a path (trace) π may or may not satisfy, which is denoted by
π |= ϕ. So, basically, stating that a process Ps satisfies an LTL formula ϕ means
that ∀π ∈ T (Ps ) • π |= ϕ . Now considering that refinement restricts the set of
possible paths, it is easy to see that if Pi refines P , then ∀π ∈ T (Pi ) • π |= ϕ,
and Pi satisfies ϕ.

Now, consider the case of a CTL formula, such as AGEFφ. Consider a pro-
cess P with an LTS such as that in Figure 4; clearly, P |= AGEFφ. A possible
trace refinement Pi of P would be to remove the transition to the state labeled
with φ, and the resulting LTS would no longer be a model for our example
formula.

3.3 Property Patterns

It is a bit tricky to express correctly properties of interest in temporal logics such
as LTL and CTL. Too often, the inexperienced writer of temporal logic formulae
fails to convey the intended meaning and may be fooled by the verification
results obtained. To avoid such counterproductive errors, repositories of property
patterns have been developed [175].

We present some of the simplest (and fortunately also the most common) pat-
terns that have thus been established, showing their intended meaning and their
corresponding expression in CTL and LTL. [175] defines patterns of properties,
parameterized by some conditions which we denote φ, ψ, ψi . One can also view
phi , ψ, ψi as events, and the patterns refer to occurrences of these events. These
patterns are organized as an orthogonal combination of a hierarchy of property
and scope patterns. At the top-level, property patterns are classified as either
occurrence patterns or order patterns. Occurrence patterns are further divided
into:

absence(φ) the event φ does not occur;
universality(φ) the event φ always occur;
existence(φ) the event φ occurs at least once;
bounded existence(φ, k) the event φ has a fixed, maximum number k of oc-

currences.

Order patterns are themselves divided into:

precedence(φ,ψ) event φ occurs (strictly) before event ψ;
response(φ,ψ) after φ, then ψ necessarily occurs;
precedence chain(φ,ψ1 ,ψ2) event φ is always preceded by events ψ1 and

ψ2 (in that order);
response chain(φ,ψ1 ,ψ2 ) if ψ1 and ψ2 occur (in that order), then necessarily

φ will occur;
constrained chain(φ,ψ1 ,ψ2 ,ψ3 ) if φ occurs, then ψ1 and ψ2 occur in that

order, and ψ3 shall not occur.



328 D. Déharbe

Finally, the scope patterns are:

global(φ) φ holds globally;
before(φ, ψ) φ holds before some event ψ;
after(φ, ψ) φ holds after some event ψ;
between(φ, ψ1 ,ψ2) φ holds between two events ψ1 and ψ2 ;
until(φ, ψ1 ,ψ2 ) φ holds after event ψ1 and until ψ2 happens.

Table 1 presents the CTL and LTL expressions of the absence property pat-
terns for the different possible scopes, while Table 2 contains the CTL and LTL
formulas of the nine different property patterns for the global scope (see [175]
for a complete presentation of the patterns).

In Table 1, the first pattern state the global absence of φ; the second pattern
states the absence of φ before ψ; the third pattern states the absence of φ once
ψ has occurred; the fourth states that, between occurrences of ψ1 and ψ2 , φ
does not occur; the fifth pattern states that, once ψ1 has occurred, φ does not
occur until ψ2 occurs. Note the subtle difference between the fourth and fifth
patterns. Only the fifth pattern expresses the absence of φ when ψ1 occurs but
is not eventually followed by ψ2 .

Table 1. Absence property patterns (φ is the place-holder for the absent event)

scope logic pattern
global CTL AG¬φ

LTL �¬φ

before ψ CTL A[(¬φ ∨ AG¬ψ)Wψ]
LTL (�ψ) ⇒ (¬φU ψ)

after ψ CTL AG(ψ ⇒ AG¬φ)
LTL �(ψ ⇒ �¬φ)

between ψ1 and ψ2 CTL AG((ψ1 ∧ ¬ψ2 ) ⇒ A[(¬φ ∧ AG¬ψ2 )Wψ2 ])
LTL �((ψ1 ∧ ¬ψ2 ∧ �ψ2 ) ⇒ (¬φU ψ2 ))

after ψ1 until ψ2 CTL AG(ψ1 ∧ ¬ψ2 ⇒ A[¬φWψ2 ])
LTL �((ψ1 ∧ ¬ψ2 ⇒ (¬φW ψ2 ))

Table 2 shows the CTL and LTL patterns of properties with a global scope,
that is, holding forever, and is divided into two parts containing respectively four
occurrence and five order patterns. In the first part of the table, the first pattern
expresses global absence of φ, the second pattern expresses that φ always remains
valid, the third pattern states that φ occurs at least once, and the fourth pattern
states that φ occurs at most twice. In the second part, the fifth pattern states
that (the first occurrence of) ψ occurs before (the first occurrence of) φ, the sixth
pattern states that every occurrence of φ is eventually followed by an occurrence
of ψ, the seventh pattern states that ψ1 and ψ2 , in that order, precede the first
occurrence of φ, the eighth pattern states that ψ1 and ψ2 , in that order, follow
every occurrence of φ, and the last pattern expresses that every occurrence of



Techniques for Temporal Logic Model Checking 329

Table 2. Property patterns for the global scope(φ is the place-holder for the absent
event)

property logic pattern
absence CTL AG¬φ

LTL �¬φ

universality CTL AGφ
LTL �φ

existence CTL AFφ
LTL �φ

bounded existence CTL ¬EF(¬φ ∧ EX(φ ∧ EF(¬φ ∧ EX(φ ∧ EF(¬φ ∧ EXφ)))))
LTL ¬φ W(φ W(¬φW(φW �¬φ)))

precedence CTL A[¬φWψ]
LTL ¬φ W ψ

response CTL AG(φ ⇒ AFψ)
LTL �(φ ⇒ �ψ)

precedence chain CTL ¬E[¬φU(ψ1 ∧ ¬φ ∧ EXEFψ2 )]
LTL (�φ) ⇒ (¬φU(ψ1 ∧ ¬φ ∧ o(¬φU ψ2 ))

response chain CTL AG(φ ⇒ AF(ψ1 ∧ AXAFψ2 ))
LTL �((ψ1 ∧ ©�ψ2 ) ⇒ ©�(ψ2 ∧ �φ))

constrained chain CTL AG(φ ⇒ AF(ψ1 ∧ ¬ψ3 ∧ AXA[¬ψ3Uψ2 ]))
LTL �(φ ⇒ �(ψ1 ∧ ¬ψ3 ∧ ©(¬ψ3 U ψ2 )))

φ is eventually followed by ψ1 and ψ2 , in that order, without occurrence of ψ3

between these occurrences of ψ1 and ψ2 .
Although their expressiveness makes them good candidates to describe the

behaviour of interacting systems, these temporal logics can be considered too
low-level to be manipulated by the design engineers. Important efforts are being
carried out to provide more concise temporal notations that can then be auto-
matically mapped either to CTL or to LTL. In particular, the hardware design
community has made good progress in this direction with the property specifi-
cation language PSL [5].

Exercise 5. Identify instance of the property patterns presented in this section
that can be used to specify expected properties of the systems modeled by Kripke
structures ABPsender and ABPreceiver.

3.4 Fairness Constraints

In a transition system such as a Kripke structure, some executions may be con-
sidered as unfair. For instance, in the case of the ABPsender, the path s0 (s1 s2 )ω

corresponds to a scenario where a sent message is never acknowledged, which
would be caused by a defect in the environment of the modelled system. To verify
that the system satisfies some of its properties, however, we may need to make
some assumptions about the environment. Such assumptions are called fairness
constraints.



330 D. Déharbe

Several ways of defining fairness constraints have been proposed. One of them
is identifying a set of states that is visited infinitely often. For instance, in the
case of our example, identifying the set of states { s0 , s3 } as a fairness constraint
can be used to restrict the behaviour of interest to the paths that pass through
this set infinitely often, thus excluding from the model the paths that have
(s1 s2 )ω or (s4 s5 )ω as a suffix.

Definition 5 (Fair Kripke structure, fairness constraint). A fair Kripke
structure over P is a quadruple M = (S ,T , I ,L,F ) where (S ,T , I ,L) is a Kripke
structure and F ⊆ 2S is a set of sets of states. Each set of states f ∈ F is called
a fairness constraint. A path π is fair if, each Fi ∈ F is visited infinitely often.
Formally,

∀Fi : F • ∃ f : Fi • ∀ i • ∃ j | j > i • f = π(j ).

This type of fairness constraints is known as (generalized) Büchi acceptance
conditions.

Exercise 6. Identify reasonable fairness constraints for ABPreceiver, or argue
why no such constraints shall be imposed.

3.5 Quantitative Temporal Logic

CTL* and its derived temporal logics are based on a discrete notion of time. Each
moment corresponds to a state of the system and the next moment corresponds
to one of the possible successors of the state at the current moment. Execution
is thus a sequence of states and the structure of time is that of the natural
numbers.

As we have seen, the state quantification operators F, G and U are qualita-
tive, in the sense that they make it possible to relate the occurrence of events,
but are not quantitative, in the sense that they do not impose limits on the dis-
tance between such events. With the help of the X operators, it is possible to
put bounds on the required relationships between events (see, for example, the
bounded existence pattern in Table 2). However, the formulae are awkward and
quickly become hard to express correctly.

To overcome this difficulty, it is possible to adopt some syntactic sugaring by
adding operators annotated with temporal constraints. For instance, the logic
RT-CTL [85] contains quantitative temporal operators, such as AF≤c, stating
that some event must occur within at most c steps, where c is some positive
integer. As these new operators are syntactic sugar for combinations of the ba-
sic operators we have already seen, the traditional model-checking algorithms
presented in Sections 4 and 5 apply. It is worth noting that specific algorithms,
similar to the standard model-checking algorithms, have been proposed to han-
dle a class of operators that return quantitative information about the model,
such as the maximum delay between two events [44, 45].

Another possible model is that of dense, or continuous time, where the tempo-
ral structure is that of the (positive) real or rational numbers [8, 112]. The model
of computation is that of timed automata and is more expressive than Kripke



Techniques for Temporal Logic Model Checking 331

structure, since, in addition to scalar variables, the state may also include timers.
Timers are real (or rational)-valued variables that model the passing of time.
All timers thus evolve at the same rate. Transitions may be triggered by a timer
reaching a bound, and may also reset the value of timers to zero. Model-checking
techniques for this class of systems require completely different approaches to
that of Kripke structures, based on a data structure known as difference bound
matrices. (Refer to [23] for a tutorial on those techniques and an introduction
to their implementation in the tool UPPAAL [22].)

4 LTL Model Checking

The model-checking problem for LTL consists in, given a Kripke structure M
over a finite set of atomic propositions AP , and an LTL formula φ over AP ,
decide if M |= φ. The LTL model-checking approach is based on the following
observations [249]:

1. First, an execution path in a Kripke structure is nothing but an infinite
sequence of boolean assignments to the finite set of propositions AP . Now,
consider the set ΣAP = P AP of all such possible boolean assignments, then
a path is an infinite word over this set.

2. Second, an LTL formula φ characterizes a set of infinite words (that is, paths)
L(φ) that satisfy it.

3. Given an LTL formula φ, it is possible to build an automata A(φ) that accepts
all the words in L(φ). Such automata are called Büchi automata.

4. It is straightforward to build a Büchi automaton that accepts all the paths
of a given Kripke structure.

5. If the composition of the Büchi automata for an LTL formula A(φ) and for
a Kripke structure M has no accepting path, then M |= ¬φ.

To adopt an automata-based approach to linear temporal logic verification we
need to know, first, how to compose two existing Büchi automata such that the
resulting automaton accepts all infinite words accepted by both automata, and,
second, how to check if a Büchi automaton accepts at least one infinite word.

In the remainder of this section, we will first present Büchi automata (Sec-
tion 4.1. Then we show how to build a Büchi automaton that accepts all paths
of a given Kripke structure (Section 4.2). We then explain how to build a Büchi
automaton that accepts all paths that satisfy a given LTL formula (Section 4.3).
We will then be ready to present the automata composition operator and the
emptiness verification algorithm (Section 4.4). We conclude by presenting the
widely popular LTL model-checker SPIN (Section 4.5).

4.1 Büchi Automata

This new form of automata was first introduced and defined in [36]. The defi-
nition is similar to that of finite automata (the type of machine that recognizes
finite words), but the notion of acceptance has been modified to make it possible
to recognize sets of infinite words (that is, ω-regular expressions).



332 D. Déharbe

Definition 6 (Büchi automaton). A Büchi automaton is characterised by a
tuple A = (Σ,S ,T , I ,F ) where,

– Σ is an alphabet;
– S is a set of states;
– T : S × Σ → P S is a nondeterministic transition function;
– I ⊆ S is a set of initial states;
– F ⊆ S is a set of accepting states.

�� "#$%&'()��������q1

b
��

a

��
��������q2

a
��

b

��

Fig. 6. A simple deterministic Büchi automaton

Example 4. Figure 6 [66] presents a simple Büchi automaton over the alphabet
{ a, b }. The set of states is { q1 , q2 }, and the sets of initial and accepting states
are both { q1 }. If we consider the definition of traditional finite-state automata,
it recognizes the language denoted by the regular expression ε + (a + b)∗a,
composed by all words ending with a and the empty word.

Definition 7 (Run, accepting run, acceptance). A run of a Büchi automa-
ton A over an infinite word w = a1a2 . . . over Σ is a sequence s0 , s1 , . . . such
that s0 ∈ I and ∀ i | i ≥ 1 • si ∈ T (si−1 , ai). An accepting run over A is a run
s0 , s1 , . . . if there is some accepting state that repeats infinitely often, that is,

∃ f : F • ∀ i • ∃ j | j > i • f = sj .

The word w is said to be accepted by A if there is an accepting run of A for w.
The language of A, denoted L(A), is the set of infinite words accepted by A.

Example 5. The automaton of Figure 6 accepts, for example, the words aω (in-
finitely a), and (ab)ω (alternating a and b infinitely, starting with a). It also
accepts all words that contain an infinite number of occurrences of the symbol
a, which is denoted by the ω-regular expression (b∗a)ω .

In a Büchi automaton, the transitions are defined by a function to a set of states.
For a given pair (s , a), if T (s , a) has a null cardinality, then there is no successor
for state s and symbol a, and we say that the transition function is not total. If
the cardinality is greater than one, then there are several possible successors, and
the automaton is nondeterministic. In all these cases, the definition of acceptance
applies.

Büchi automata recognize infinite words when a run goes through the set of
accepting states; if there are more than one accepting state, we have no guarantee
that an accepting run will visit each the accepting states. However, in general,
to map a LTL formula to a Büchi automaton, we need to constrain the runs to
go through several different states. For this purpose, we introduce the following
definition.



Techniques for Temporal Logic Model Checking 333

Definition 8 (Generalized Büchi automaton). A generalized Büchi au-
tomaton is a tuple A = (Σ,S ,T , I ,F ) where Σ, S , T , I , are as in a Büchi
automaton, and F ⊆ PS is a set of sets of states. An accepting run over a gen-
eralized Büchi automaton A is a run s0 , s1 , . . ., such that each Fi ∈ F is visited
infinitely often, that is:

∀Fi ∈ F • ∃ f ∈ Fi • ∀ i • ∃ j > i • f = sj .

This more general definition does not increase the class of languages that can be
recognized. Indeed, given a generalized Büchi automaton (Σ,S ,T , I ,F ), with
F = {F1 , . . .Fn }, it is possible to construct a Büchi automaton that recognizes
the same language, namely, (Σ,S ×{ 0 , . . .n },T ′, I ×{ 0 },S ×{ n }), where the
transition relation T ′ is such that:

– ((s , x ), a, (s ′, x + 1 )) ∈ T ′ iff (s , a, s ′) ∈ T and s ′ ∈ Fx+1 ;
– ((s , x ), a, (s ′, x )) ∈ T ′ iff (s , a, s ′) ∈ T and s ′ 	∈ Fx+1 ;
– ((s ,n), a, (s ′, 0 )) ∈ T ′ iff if (s , a, s ′) ∈ T .

The equivalent Büchi automaton is in a state (s , x ) when the corresponding
generalized Büchi automaton would be in state s after having visited the first
x fairness conditions since the beginning of the execution, or since it has last
visited all fairness conditions. The second component in the state of the Büchi
automaton records the generalized fairness conditions that have already been
visited. When the (x + 1 )-th fairness condition is reached, then this index is
incremented (first rule above), otherwise it retains its old value (second rule).
Finally, when all fairness conditions have been traversed and x = n, then the
index is set to 0 (last rule). The fairness condition of the equivalent Büchi au-
tomaton is the set of states where the second component is n. Thus this con-
struction guarantees that all fairness conditions of the original generalized Büchi
automaton are visited infinitely often.

Finally, we will consider a variation of generalized Büchi automata where each
state carries a set of labels. This addition does not fundamentally change the
purpose of Büchi automata, but will prove useful to provide a procedure that
builds a Büchi automaton that accepts the paths that satisfy a LTL expression.

Definition 9 (Labeled generalized Büchi automaton). A labelled gener-
alized Büchi automaton is a triple (A,D ,L), such that A = (Σ,S ,T , I ,F ) is
a generalized Büchi automaton, D is a finite domain, and L : S → P D is a
mapping from states to sets of labels. A word x0x1 x2 . . . ∈ Dω is accepted if, and
only if, there is an accepting run s0 s1 s2 of A such that

∀ i | i ≥ 0 • xi ∈ L(si).

Specification with Büchi Automata. Büchi automata can be used to specify
properties of the dynamic behaviour of systems. In this context, an execution
run is an infinite word on the alphabet composed of the possible states of the
system. We illustrate this point with two classes of properties, namely safety



334 D. Déharbe

and liveness. Figure 7 shows two automata that specify the set of execution
paths in which p is always valid (safety), and in which p must always eventually
happen (liveness). Note how the duality between the two properties is reflected
in the automata. Indeed, some researchers advocate the use of automata-based
specification languages over logic-based notations [6, 141].

Safety (always p) Liveness (eventually p)

�� "#$%&'()��������q1

¬p
��

p

��
��������q2

true

��
�� ��������q1

p
��

¬p

��
"#$%&'()��������q2

true

��

Fig. 7. Büchi automata for specifying temporal properties

Exercise 7. Use a Büchi automaton that recognizes execution paths where the
condition p is recurring, that a condition p that occurs infinitely often (expressed
in LTL as GFp ).

4.2 From Kripke Structures to Büchi Automata

The mapping from Kripke structures to a Büchi automata is straightforward.
Let M = (S ,T , I ,L) be a Kripke structure on AP . The Büchi automata that
recognises the words that correspond to paths in M (and only those words) is
A(M ) = (P AP ,S ∪ { i }, T , { i },S ), where i 	∈ S (i is a new state), s ∈ T (i , a)
for all s ∈ I and a ∈ L(s), and s ′ ∈ T (s , a) if, and only if, (s , s ′) ∈ T and
a ∈ L(s ′).

Kriple structure Corresponding Büchi automaton

�� 
������s0
{p, q}

�� �������	s1
{p}��

���������	s2
{q}

��

��*+,-./01i

{p,q}
��"#$%&'()��������s0

{p}
�� "#$%&'()��������s1

{p,q}
��

{q}
��"#$%&'()��������s2

{p,q}

��

Fig. 8. The Büchi automaton of a Kripke structure

Example 6. An example of such correspondence is presented in Figure 8. Ob-
serve that the Büchi automaton has a corresponding state for each state of the
Kripke structure as well as an extra initial state, labeled with i . There is a
transition from the initial state of the Büchi automaton to the state represent-
ing the initial state of the Kripke structure. The other transitions of the Büchi



Techniques for Temporal Logic Model Checking 335

automaton correspond to transitions of the Kripke structure. The label of the
Büchi automaton transitions are the same as that of the Kripke structure state
associated with their target state. Observe that the transition function is not
total.

4.3 From LTL to Büchi Automata

Recall that given an LTL formula ϕ, we want to build a Büchi automaton that
recognizes all paths where ϕ is valid. The original paper on automata-based veri-
fication [249] provides an algorithm that solves this problem. Basically, it consists
in constructing and composing two automata. The states of these automata are
labelled with sets of sub-formulae of ϕ or their negation. The construction of
the first automaton guarantees the semantics of the Xoperator (so-called local
consistency), while the second automaton takes care of the Usub-formulae.

The drawback of this approach is that it always has the worst-case complexity.
Considering that the complexity of the model-checking algorithm is linear in the
size of the automaton (number of states), this approach is not practical, and
several other alternatives and improvements have been proposed [99, 87, 244, 98].

We present here the algorithm of [99]. In that work, the generation of the Büchi
automaton that accepts all paths that satisfy a given LTL formula ϕ is done by
first putting ϕ into a convenient form ϕ′, and then unfolding the state graph
of the automaton from the initial state, labelling each created state with the
sub-formulae of ϕ′ that are valid at this point and those that will be established
in the future. Once the state graph has been built, transitions are labelled and
accepting states identified.

Normalization of LTL Formulae. We introduce the V operator satisfying:

ϕVψ=¬((¬ϕ)U(¬ψ))

The LTL formula is first put into negation normal form: the boolean operators
are translated to ∨ and ∧, and all instances of the negation operator are pushed
inwards to the front of the atomic propositions. The rewriting rules are as follows,
where ϕ and ψ are LTL formulae:

¬true� false, ¬false � true,
ϕ ⇒ ψ �¬ϕ ∨ ψ, ¬Xϕ�X¬ϕ,

Fϕ� trueUϕ, Gϕ� falseVϕ,
¬(ϕUψ)� (¬ϕ)V(¬ψ), ¬(ϕV ψ)� (¬ϕ)U(¬ψ)

Exercise 8. What is the normal form of the LTL formula GFp?

Construction of the State Graph. We now present the (non-optimized)
approach of [99] to build a labelled generalized Büchi automaton (LGBA) cor-
responding to an LTL formula ϕ in negation normal form. In this approach, the



336 D. Déharbe

state-transition graph is constructed incrementally. To perform this construc-
tion, the following information is associated to each graph node N : N .id is a
unique identifier; N .todo is a set of LTL formulae that have to be established in
N ; N .lbl is a set of LTL formulae that have been established for N ; N .in is a set
of nodes that have a transition leading to N ; and N .next is a set of formulae
that have to be established for all successors of N . By convention, the special
symbol ι is a member of N .in whenever N is an initial state of the LGBA. We
also use the notation [i ,Si ,St ,Sd ,Sn ] to denote the node N such that N .id = i ,
N .in = Si , N .todo = St and N .next = Sn .

The algorithm in Figure 9 (function graph) unfolds recursively the state-
transition graph, starting from an initial node, say N0 , where formula ϕ shall
be recognized (line 03). Thus we have:

N0 .todo = {ϕ } ∧ N0 .in = { ι } ∧ N0 .lbl = ∅ ∧ N0 .next = ∅.

We now consider function unfold . It takes as argument a node N to be explored
and a set of nodes S that have already been fully explored.

If there is no more formulae that have to be established for N (established
by the test N .todo = ∅, line 08), then the algorithm tests if a node N ′ with the
same set of established formulae in the current state and in the successor states
has already been built. If this is the case, then it is basically a clone of N , and the
set of predecessors of N ′ is updated with that of N (lines 09–11). If there is no
such clone node, then the algorithm proceeds by unfolding the state-transition
graph from a new node that shall establish the formulae in N .next and that
shall contain N among its predecessors (line 13).

If the initial test (line 08) fails, the algorithm proceeds building the graph to
establish one formula ϕ taken from N .todo. The rest of the algorithm depends
on the nature of ϕ.

– If ϕ is a constant or a literal, the algorithm checks if it is compatible with
the formulae in N .lbl, to avoid contradictions (lines 19–20).

– If ϕ = Xψ, then ψ must be established in all successors of N , and therefore
is added to N .next.

– If ϕ = ψ1 ∧ ψ2 , then both ψ1 and ψ2 are added to the set of formulae that
need to be established in N , and are added to N .todo.

In these first three cases, ϕ is added to N .lbl and the algorithm proceeds recur-
sively to establish the remainder of the formulae in N .todo (lines 21–24).

If none of the three above cases apply, ϕ is a disjunction, either explicitly
or implicitly (considering that ψ1Uψ2 = ψ2 ∨ (ψ1 ∧ X(ψ1Uψ2 ), and that
ψ1 Vψ2 = ψ2 ∧ (ψ1 ∨ X(ψ1 V ψ2 )) = (ψ2 ∧ ψ1 ) ∨ (ψ2 ∧ X(ψ1 Vψ2 )). The
algorithm then creates a case-split in the graph, substituting N with two nodes
N1 and N2 , and each argument of the disjunct is added to N1 .todo and N2 .todo.

Finally, we assume the existence of a function nid that yields a new state
identifier each time it is invoked. Further, we define the functions arg1 and arg2
as follows:



Techniques for Temporal Logic Model Checking 337

01 function graph(ϕ: LTL): void
02 begin
03 unfold([nid(), { init }, ∅, { ϕ }, ∅], ∅)
04 end function graph
05
06 function unfold(N : node, S : set of node): void
07 begin
08 if N .todo = ∅ then
09 if ∃N ′ : S • N .lbl = N ′.lbl ∧ N .next = N ′.next then
10 N ′.in := N ′.in ∪ N .in;
11 return
12 else
13 unfold([nid(), {N .id }, N .next, ∅, ∅],S ∪ {N })
14 end if
15 else
16 let ϕ ∈ N .todo in
17 N .todo := N .todo − { ϕ }
18 if ϕ is a literal or a constant then
19 if ϕ = true and not (¬ϕ) ∈ N .lbl then
20 N .lbl := N .lbl ∪ { ϕ };
21 unfold(N ,S)
22 end if
23 else if ϕ = Xψ then
24 N .lbl := N .lbl ∪ { ϕ };
25 N .next := N .next ∪ { ψ };
26 unfold(N ,S)
27 else if ϕ = ψ1 ∧ ψ2 then
28 N .todo := N .todo ∪ ({ ψ1 , ψ2 } − N .lbl);
29 N .lbl := N .lbl ∪ { ϕ };
30 unfold(N ,S)
31 else (* ϕ = ψ1 ∨ ψ2 ∨ ϕ = ψ1Uψ2 ∨ ϕ = ψ1 V ψ2 *)
32 N1 := [nid(),N .in,N .todo ∪ (arg1(ψ) − N .lbl),N .lbl ∪ { ϕ }, N .next }];
33 N2 := [nid(),N .in,N .todo ∪ (arg2(ψ) − N .lbl),N .lbl ∪ { ϕ }, N .next }];
34 unfold(N1 , unfold(N2 ,S))
35 end if
36 end let
37 end if
38 end function unfold

Fig. 9. Algorithm to construct a Büchi automaton recognising words satisfying an LTL
formula [99]

arg1 (ψ1Uψ2 ) = {ψ2 }, arg2 (ψ1Uψ2 ) = {ψ1 ∧ X(ψ1Uψ2 ) },
arg1 (ψ1 Vψ2 ) = {ψ2 ∧ ψ1 }, arg2 (ψ1 Vψ2 ) = {ψ2 ∧ X(ψ1 Vψ2 ) },
arg1 (ψ1 ∨ ψ2 ) = {ψ1 }, arg2 (ψ1 ∨ ψ2 ) = {ψ2 }.

This algorithm halts and returns a set of expanded nodes from which a LGBA
is built. First, the set of states is identified to the set of nodes. A state is initial



338 D. Déharbe

if ι ∈ N .in. There is a transition from N to N ′ if N ∈ N ′.in. The domain of
the LGBA is P AP . The label of a state N are the sets that are compatible with
N .lbl. The accepting conditions are related to the sub-formulae of ϕ that have
the form ψ1Uψ2 . For each such sub-formula, there will be an acceptance set
composed of the states N such that either ψ1Uψ2 	∈ N .lbl or ψ2 ∈ N .lbl. This
guarantees that in each accepting run of the LGBA, every occurrence of a state
labelled with ψ1Uψ2 is followed by an occurrence of a state labelled with ψ2 .

Exercise 9. Apply the algorithm 9 to the LTL formula GFp.

4.4 Operations on Büchi Automata

Composition of Automata. As explained earlier on, we need a definition
for the composition of two Büchi automata, such that the resulting automaton
accepts a word w if and only if it is accepted by both automata [57].

Definition 10 (Composition of Büchi automata). Given two Büchi au-
tomata A1 = (Σ,S1 ,T1 , I1 ,F1 ) and A2 = (Σ,S2 ,T2 , I2 ,F2 ) on the same al-
phabet Σ, the composition of A1 and A2 is the Büchi automaton (Σ,S ,T , I ,F )
such that:

– S = S1 × S2 × { 0 , 1 , 2 };
– (s ′1 , s ′2 , k ′) ∈ T ((s1 , s2 , k), a) when s ′1 ∈ T1 (s1 , a) and s ′2 ∈ T2 (s2 , a), and

• if k = 0 and s ′1 ∈ F1 then k ′ = 1 ;
• if k = 1 and s ′2 ∈ F1 then k ′ = 2 ;
• if k = 2 then k ′ = 0 ;
• otherwise k ′ = k.

– I = I1 × I2 × { 0 };
– F = S1 × S2 × { 2 }.

Observe that the third state component in the resulting automaton, hereafter
called the fairness counter, tracks the acceptance conditions with respect to the
original automata. By convention and construction of the transition relation of
the composition automaton, the fairness counter is 0 when fairness conditions
of both original automata need to be met, 1 when only the fairness condition of
the second automaton remains to be met, and 2 to indicate that both fairness
conditions have been met. Since both conditions need to be met infinitely often,
when the fairness status is 2, then it is reset to 0, and the fairness condition of
the composition is 2.

Example 7. Figure 10 presents the result of the composition of two Büchi au-
tomata A1 and A2 . A1 recognizes words with an infinite number of a, while A2

recognizes words with an infinite number of b. The resulting automata recognizes
words with an infinite number of a and b.



Techniques for Temporal Logic Model Checking 339

Automaton A1 Automaton A2

�� "#$%&'()��������s1

b ��

a

��
"#$%&'()s′1

a
��

b

��
�� "#$%&'()��������s2

a ��

b

��
"#$%&'()s′2

b

��

a

��

Composition of A1 and A2

���������	(s1, s2, 0)

a
�������������

b

�������������

�������	(s1, s′
2, 1)

b

��

a

�� �������	(s′
1, s2, 0)

a
�� b

��

�������	23456789(s′
1, s2, 2)

b

����������������������� a �� �������	(s1, s′
2, 0)

a

�����������������������
b

  

Fig. 10. Composition of two Büchi automata

Verifying Emptiness in Büchi Automata. All that we need now to perform
LTL model-checking is to understand how to check that the set of accepting runs
of a Büchi automaton is empty. If it is not empty, then we would like to obtain
a counterexample, that is, an infinite sequence of transitions that goes through
the set of accepting states infinitely often.

As the set of states of the automaton is finite, any accepting run must start
from an initial state and contain a suffix that passes infinitely often through
a finite number of states: these states form a strongly connected component of
the transition graph. Furthermore, if the run is accepting, then this strongly
connected component must pass through at least one accepting state infinitely
often. In conclusion, we want to find a strongly connected component of the tran-
sition graph that is reachable from an initial state and that contains at least an
accepting state of the Büchi automaton. If there is no such component, then the
automaton accepts no run. Otherwise, it can be used to build a counterexample.

The classic algorithm to find a cycle in a graph is presented in[245]. The al-
gorithm given in Figure 11, however, is more efficient in practice for the type of
graphs that are produced in automata-based verification efforts [121], as it only
requires an overhead of two bits per state, while the classical algorithm requires
two numbers. Considering that automata arising in model checking contain bil-
lions of states, the difference of memory requirements is substantial.

The algorithm is composed of two nested depth-first traversals. We assume
that there is a unique initial state ι. If this is not the case, a new initial state
is created with transitions to the original initial states. We also assume that,
for each state, flags fo and fi are associated to the outermost and innermost
depth-first searches, respectively. Each depth-first search also maintains a stack



340 D. Déharbe

function find cycle(M : Kripke structure): void
begin

for all σ ∈ M .S do fo(σ), fi(σ) ← false, false end for;
Σo := ∅;
for all σ ∈ M .Q0 do dfso(σ) end for;
terminate(false)

end function dfso

function dfso(M : Kripke structure, σ: M .S): void
begin

fo(σ) := true;
push(Σo , σ);
for all σ′ ∈ M .T (σ) do dfso(σ

′) end for;
pop(Σo)

end function dfso

function dfsi(M : Kripke structure, σ: M .S): void
begin

fi(σ) := true;
for all σ′ ∈ M .T (σ) do

if σ′ ∈ Σo then
terminate(true)

else if ¬fi(σ′)
dfsi(σ

′); fi(σ) := false
end fi

end for
end function dfsi

Fig. 11. Nested-DFS algorithm to find one cycle in the state transition graph

of visited states, called Σo for the outermost search, and Σi for the innermost
search. The outermost depth-first search finds all states reachable from the initial
state. When a state σ is accessed, fo(σ) is set and σ is pushed on Σ0 . Note that
Σo contains (one of) the shortest path(s) leading to σ. If σ is accepting, then
the second, innermost, depth first search is started, looking for a cycle starting
from σ. Note that it is enough to find a path from σ to one of the states in Σo .
The innermost search similarly maintains flags fi and stack Σi . If the innermost
search finds a state σ′ on Σo then it halts successfully. The counterexample is
then composed of the prefix Σo from ι to σ and the cycle composed of the states
in Σi plus the states of Σo from σ′ up to σ.

4.5 The SPIN Model-Checker

SPIN [120] is a model checker for LTL that implements the approach described
in this section with several optimizations that make it one of the most powerful
and successful tools of its kind. Its first versions date back to the early eighties,
and it has been the subject of many enhancements since then.



Techniques for Temporal Logic Model Checking 341

SPIN has a quite expressive input language, named PROMELA (a Process
Meta Language), suitable to describe systems of asynchronous communicating
processes. Specifications can be expressed in LTL and automatically verified.
When a property is not satisfied, SPIN can provide a counterexample that can
be displayed as a Message Sequence Chart and interactively simulated. The
architecture of the system is presented in Figure 12.

For the less experienced user, the graphical front-end XSPIN is convenient
to interact with the tools, as it provides default values for the many options
they support. A high-level model of the system is described in PROMELA.
The compilation process highlights possible syntax errors or generates the data
structures for exploratory simulation runs. Once the designer is confident that
the most trivial bugs have been removed, he can specify intended temporal
properties in LTL. SPIN then generates optimized source code for the model
checker tailored to the structure and properties being verified.

GUI Front−End

PROMELA parser

1. Syntax error 2. Interactive
simulation

3. Verifier
generator

Optimized
model checker

(ANSI C)

Executable
verifier

Counter
examples

LTL parser
and translator

Fig. 12. Architecture of SPIN

The main focus of SPIN is on the interaction of processes. It provides
several primitives to describe communications: rendezvous, shared variables,
asynchronous message passing through channels, and combinations thereof. A
program in PROMELA is composed of process templates, introduced with the
keyword proctype, and at least one process instantiation. At run time, a process
instantiation can dynamically spawn new instantiations of existing process tem-
plates. SPIN represents each process instance with one automaton. The whole
system is composed of the interleaving of the execution of each process and is
represented itself as a composition of the individual automata of each process.
For model checking, the resulting automaton is composed with the automaton
representing the negation of the property being verified, as explained in the
previous sections.

To be able to tackle large examples, several improvements have been incorpo-
rated into SPIN. A partial-order reduction technique [211] is employed to identify



342 D. Déharbe

classes of states that can be considered equivalent with respect to the formula
being verified. Indeed, the interleaving execution of processes often results in
sequences of states that are equivalent from the viewpoint of the property being
verified. Thus instead of exploring the whole state space, SPIN only builds a
representative of each class of states.

Furthermore, SPIN adopts a so-called on-the-fly construction of the automa-
ton modelling the system being verified. In the approach described in this chap-
ter, both automata representing the PROMELA program and the (negation of
the) LTL formula would need to be built before their composition is constructed
and then checked for emptiness. The on-the-fly approach builds first the au-
tomaton representing the negation of the specification. The construction of the
automaton representing the PROMELA program is guided by the specification
automaton, following the rules of product automata construction. This technique
avoids exploring large portions of the state space of the program automaton that
have no counterpart in the specification automaton.

Two other techniques help limit the memory requirements of the verification
process. First, state-compression [119] is a technique that makes it possible to
use fewer bytes to represent each state of the automaton. The representation of
the state is basically the concatenation of the representation of each state com-
ponent: variables, process program counter, communication channel, and so on.
State-compression uses a table for each such component to store its possible val-
ues. The representation of the state can then be the concatenation of the indices
of the values of the corresponding state components in the tables. Important
reductions in memory usage are obtained when the variables only evaluate to a
subset of the possible range of values.

The second technique is bit-state hashing [118]. It sacrifices exhaustive cov-
erage of the state space, at the expense of precision in the result. A bit vector
is used to represent an estimation of the set of states. Each state is mapped to
a position of the vector. When a state is visited, the corresponding bit is set.
The state-space exploration thus checks if a state has been visited by checking if
the corresponding vector position has already been set. A hash function defines
the mapping from states to vector indices. Due to possible collisions, the state-
space exploration is incomplete in general. In order to improve the precision of
the technique, SPIN actually maintains not one, but two bit vectors, each being
addressed by independent hash functions. In addition to the bit vectors, a depth-
first traversal only has to store the stack of currently visited states. With carefully
designed hash functions, this technique achieves very high coverage rates at a
fraction of the memory necessary to represent exhaustively the state space.

Exercise 10. Access the SPIN site at http://www.spinroot.com. Download the
tool and apply it to the provided examples.

5 CTL Model-Checking

Given a Kripke structure M = (S ,T , I ,L) over a set of propositions P and a
CTL formula f , the algorithm given in [63] works by associating to each state a



Techniques for Temporal Logic Model Checking 343

label. The label of a state is the set of the sub-formulae of f that are true in that
state. The top-level algorithm recurses over the structure of the formula f and
repeatedly labels the states of M with the sub-formulae of f , starting with the
sub-formulae of length 1 (atomic propositions in P) and finishing with f itself.
Figure 13 sketches this algorithm. Once this labelling phase has completed, the
outcome of the algorithm is obtained by checking that f is in the label of each
initial state of M .

The function Emc first calls the graph labeling function with the given formula
and then checks that all initial states are labelled. The labelling function Label
recurses down the structure of the formula: the function args returns the set of
sub-formulae of a given CTL formula f . The terminal case is when the formula
is an atomic function. If the formula is a boolean function, each state is labelled
according to the previous labelling of the function arguments. Finally, to deal
with temporal operators, special-purpose labelling functions are invoked.

function Emc(M : Kripke structure, f : CTL): boolean
begin

Label(M , f );
for all s ∈ I do

if f �∈ L(s) then return false end if
end for;
return true

end function Emc

function Label(M : Kripke structure, f : CTL): void
begin

if f ∈ P then return end if;
for all fi ∈ args(f ) do Label(M , fi) end for;
case f of

when ¬f1 :
for all s ∈ S do

if f1 �∈ L(s) then L(s) := L(s) ∪ { f } end if
end for

when f1 ∧ f2 :
for all s ∈ S do

if f1 ∈ L(s) ∧ f2 ∈ L(s) then L(s) := L(s) ∪ { f } end if
end for

when EXf1 : LabelEX (M , f1 )
when EGf1 : LabelEG(M , f1 )
when E[f1Uf2 ]: LabelEU (M , f1 , f2 )

end case
end function Label

Fig. 13. Labeling algorithm for CTL formulae

The function LabelEX deals with EXf formulae and is given in Figure 14.
For each transition t = (s1 , s2 ), if s2 is labelled with f , s1 has a successor where
f is valid, and formula EXf is added to the label of the state s1 .



344 D. Déharbe

function LabelEX (M : Kripke structure, f : CTL): void
begin

for all t = (s1 , s2 ) ∈ T do
if f ∈ L(s2 ) then L(s1 ) := L(s1 ) ∪ {EXf } end if

end for
end function LabelEX

Fig. 14. Labeling algorithm for EXf formulae

Function LabelEU (see Figure 15) handles E[f Ug] formulae. They are valid
in a state if and only if there is a finite path starting in this state, where f is
always valid, except in the last state, where g is valid. First, each state already
labelled with g is also labelled with E[f Ug]. Then, the function LabelEUaux is
invoked and backtracks along the transitions while f appears in the labels of
the states. Each state found along such paths is labelled with formula E[f Ug].
To avoid infinite loops, this backtracking also stops as soon as it meets a state
already labelled with E[f Ug].

function LabelEU (M : Kripke structure, f : CTL, g : CTL): void
begin

for al s ∈ S do
if g ∈ L(s) then

L(s) := {E[f Ug ] } ∪ L(s);
for all t = (s ′, s) ∈ T do LabelEUaux(M , f , g , s ′) end do

end if
end for

end function LabelEU

function LabelEUaux(M : Kripke structure, f : CTL, g : CTL, s: state): void
begin

if f ∈ L(s) ∧ E[f Ug ] �∈ L(s) then
L(s) := L(s) ∪ {E[f Ug ] };
for all (s ′, s) ∈ T do LabelEUaux(M , f , s ′) end do

end if
end function LabelEUaux

Fig. 15. Labeling algorithm for E[f Ug ] formulae

Finally, function LabelEG handles EGf formulae (see Figure 16). They are
valid in a state s if, and only if, there is an infinite path, starting at s and where
f holds in each state. To detect such situations, it is necessary to find cycles
in the transition graph along which f is always valid. This is the role of the
auxiliary function LabelEGaux ; it has an additional parameter s , which is the
state currently visited, and returns a boolean to indicate if EGf is valid in s .
Additionally, two flags are associated with each state: checked(s) and mark(s).
The first indicates if the algorithm has already computed if EGf is valid or not



Techniques for Temporal Logic Model Checking 345

in the state; mark(s) is true if the algorithm has not yet checked if EGf holds in
the state s , and if s starts a finite path along which f always hold. The function
LabelEGaux performs a depth-first search along the transition graph as long as:

1. It does not reach a state s that has already been checked. If it does, it stops
backtracking and returns a boolean that indicates whether EGf is valid in
s or not.

2. It does not reach a state that is marked. If it does, then it has found a cycle
where f is always valid. In this case it returns true.

3. It does not reach a state s where f does not hold. If it does, then the value
returned is false. (This is implicit in this algorithm.)

4. Otherwise f is valid in s and EGf is potentially valid in s . The algorithm
then calls itself recursively and checks if EGf is valid in one of the successors
of f . As soon as one such successor is found, then the formula EGf is added
to the label set of s and the algorithm returns immediately true. If no such
successor is found, then formula EGf is not added to the label set and the
algorithm returns false.

function LabelEG(M : Kripke structure, f : CTL): void
begin

for all s ∈ S do checked(s) := false, mark(s) := false end for;
for all s ∈ S do LabelEGaux(M , f , s) end for

end function LabelEG

function LabelEGaux(M : Kripke structure, f : CTL, s: state): boolean is
begin

if ¬checked(s) then
if mark(s) then return true end if;
if f ∈ L(s) then

mark(s) := true;
for all (s, s ′) ∈ T do

if LabelEGaux(M , s ′, f ) then
L(s) := L(s) ∪ { EGf }; checked(s) := true; return true

end if;
end for;
mark(s) := false;

end if;
checked(s) := true;

end if;
return (EGf ∈ L(s))

end function LabelEGaux

Fig. 16. Labeling algorithm for EGf formulae

Example 8 (Verification of ABPsender). To illustrate the model-checking algo-
rithm, we apply it to the verification of the ABPsender (see Figure 1). More
specifically, we check that EG(¬s ∧ ¬w) is a property of ABPsender; this is
verified by the function call Emc(ABPsender,EG(¬s ∧ ¬w)).



346 D. Déharbe

The first step of the algorithm of Emc (se Figure 13) consists in labelling re-
cursively the structure with the formulae and its sub-formulae. This is done by
invoking the function Label with parameters ABPsender and EG(¬s ∧ ¬w)).
The function Label first labels the states of the graph with each one of the
sub-formulae of the specification that are valid in those states. Since these sub-
formulae are all boolean, the application of Label is trivial and yields the follow-
ing state labelling.

L(s0 )={ g,¬s ,¬w ,¬s ∧ ¬w }
L(s1 )={w ,¬s }
L(s2 )={ s ,¬w }
L(s3 )={ sg, b,¬s ,¬w ,¬s ∧ ¬w }
L(s4 )={w , b,¬s }
L(s5 )={ s , b,¬w }

Next, function Label invokes LabelEG(ABPsender,¬s ∧ ¬w) (see Figure 16).
The flags checked and mark of each state are initialized to false. Then the
function LabelEGaux is invoked on each state. We suppose that the first state
to be inspected is s0 and trace the call LabelEGaux (ABPsender,¬g ∧ ¬w , s0 ).
Since s0 is not yet checked and ¬g ∧ ¬w belongs to L(s0 ), then the mark flag of
s0 is changed to true, and for each transition leaving s0 , the function LabelEGaux
is called on the destination. If we suppose that the transition (s0 , s0 ) is chosen
first, then LabelEGaux is invoked again on state s0 , tests the flag mark , which is
now set, and returns true. The execution flow continues from the first invocation
of LabelEGaux and adds EG¬s ∧ ¬w to the set L(s0 ), sets true the checked flag,
and returns true. This operation is repeated for each state of the structure. When
LabelEG returns, the state labelling of ABPsender is:

L(s0 )={ g,¬s ,¬w ,¬s ∧ ¬w ,EG(¬s ∧ ¬w) }
L(s1 )={w ,¬s }
L(s2 )={ s ,¬w }
L(s3 )={ g, b,¬s ,¬w ,¬s ∧ ¬w ,EG(¬s ∧ ¬w) }
L(s4 )={w , b,¬s }
L(s5 )={ s , b,¬w }

The second part of Emc executes then and checks that for each initial state of
ABPsender the formula belongs to the label set, which is the case. Therefore,
we conclude that ABPsender |= EG(¬s ∧ ¬w).

To illustrate the original model-checking algorithm, a fully-functional implemen-
tation was demonstrated with a version of the complete alternating bit protocol
that had a total of 251 states, with running times taking about 10 seconds for
each formula to be verified [63]. After further optimizations, a parallel version of
the model-checking algorithm, implemented on a vector architecture, was able
to verify a Kripke structure with 131,072 states and 67,108,864 transitions, its



Techniques for Temporal Logic Model Checking 347

specification being a CTL formula with 113 sub-formulae. The time reported for
this experiment was 225 seconds.

Despite these somehow impressive sounding results, in practice, the model
checking presented above is not efficient enough to deal with industrial designs.
In concurrent systems, the size of the state space grows exponentially with the
number of components. For instance, the model of a sequential circuit with n
flip-flops is a Kripke structure with potentially 2n states: for n = 32 , the or-
der of magnitude of the number of potential states is 10 9 . This phenomenon is
known as the state space explosion, and makes it practically impossible to rep-
resent exhaustively the set of states and the set of transitions of most systems.
A significant breakthrough was achieved to address this problem by introducing
the idea of combining breadth-first traversal algorithms with a symbolic repre-
sentation of the set of states and transitions. The next section presents the main
ideas underlying symbolic model-checking of Kripke structures for the logic CTL.

Exercise 11. Apply the algorithms presented in this section to model check that
ABPsender |= AGEFg .

6 Symbolic Model-Checking

One possible way to avoid (or, at least, delay) the state space explosion is to rep-
resent sets of states and transitions by their characteristic function rather than
by enumeration. It is the purpose of Section 6.1 to explain how propositional
logic may be used as a language to define and manipulate the characteristic func-
tions. In Section 6.2, we present binary decision diagrams (BDDs), an efficient
graph-based implementation of propositional logic. Finally, Section 6.3 details
the symbolic version of the model-checking algorithms presented in the previous
section.

6.1 Kripke Structures and Propositional Logic

Representing States and Transitions. Let M = (S ,T , I ,L) be a Kripke
structure over P = { v1 , . . . , vn }. The characteristic function of a state is a
boolean function over the set of propositions P that provides a unique code for
that state. The characteristic function is a conjunction of atoms. Each atom is
either a variable vi , in case vi appears in the label of s , or the negation of vi ,
otherwise. Formally, let v denote (v1 , . . . , vn). The characteristic function of a
state s ∈ S , denoted [s ], is defined as:

[s ](v)=

⎛⎝⎛⎝ ∧
vi∈L(s)

vi

⎞⎠ ∧

⎛⎝ ∧
vi �∈L(s)

¬vi

⎞⎠⎞⎠
The definition of the characteristic function is extended to sets of states. The
characteristic function of a set of states can also be viewed as a coding for this
set. It is the conjunction of the characteristic functions of the states in the set.
Formally, it can be defined as:



348 D. Déharbe

[∅](v)=false
[{ x } ∪ X ](v)=[x ](v) ∨ [X ](v)

The characteristic function of a transition t = (s1 , s2 ) ∈ T is constructed by con-
junction of the characteristic functions of [s1 ] and [s2 ], where each atomic propo-
sition has been renamed to a fresh proposition. Formally, let P ′ = { v ′

1 , . . . v ′
n } be

a set of fresh boolean propositions. The characteristic function of the transition
i , denoted [t ], is defined as:

[t ](v,v′)=[s1 ](v) ∧ [s2 ](v′)

This definition can be extended to represent sets of transitions as for sets of
states, operating a conjunction on the characteristic functions of the individual
transitions.

Example 9 (Characteristic function). In the Kripke structure ABPsender, the
characteristic functions of the initial state s0 , of the transition (s0 , s1 ) and of
the initial states I are, respectively:

[s0 ]=g ∧ ¬s ∧ ¬w ∧ ¬b
[(s0 , s1 )]=(g ∧ ¬s ∧ ¬w ∧ ¬b) ∧ (¬g ′ ∧ s ′ ∧ ¬w ′ ∧ ¬b′)

[I ]=(g ∧ ¬s ∧ ¬w ∧ ¬b) ∨ (g ∧ ¬s ∧ ¬w ∧ b)
=(g ∧ ¬s ∧ ¬w)

[T ]= (b∨b′) ∧ ¬g ∧ ¬s ∧ w ∧ g ′ ∧ ¬s ′ ∧ w ′

∨(b ↔ b′) ∧ (g ∧ ¬s ∧ ¬w ∧ ¬w ′ ∧ (g ′∨s ′))
∨(¬g ∧ s ∧ ¬w ∧ ¬g ′ ∧ ¬s ′ ∧ w ′)
∨(¬s ∧ ¬g ′ ∧ s ′ ∧ ¬w ′ ∧ (g∨w))

Note that it is not the case that any conjunction of literals is the coding
of a state. For instance g ∧ s ∧ w ∧ b does not represent any state of the
ABPsender Kripke structure. Such codings are said to be unreachable, as no
sequence of transitions from an initial state can lead to such state. Codings
corresponding to states are said to be reachable.

To simplify the notation, in the rest of this chapter, we will identify [X ] with
X , where the definitions presented will be used to present the algorithms known
as symbolic model checking. Also, as a slight abuse of language, codings of states
and transitions are simply called states and transitions.

Exercise 12. What are the characteristic functions of the initial states and of
the transition relation of the Kripke structure ABPreceiver?

State Space Traversal. Now that we have seen how propositional logic can
be used to model sets of states and transitions, we will see how the traversal of
the state space can be expressed using classic logic and fixpoint operators.

Let M = (S ,T , I ,L) be a Kripke structure over P . The image of a set of
states X ⊆ S is the set of states that can be reached in one transition from X :

{ s ∈ S | ∃ s ′ ∈ X • (s ′, s) ∈ T }



Techniques for Temporal Logic Model Checking 349

The characteristic function of the image of X , denoted Forward(M ,X ), is:

Forward(M ,X )(v′)=∃v • X (v) ∧ T (v,v′) (2)

Conversely, the inverse image of a set of states X ⊆ S is the set of states from
which X can be reached in one transition:

{ s ∈ S | ∃ s ′ ∈ X • (s , s ′) ∈ T }

The characteristic function of the inverse image of a set of states X , denoted
Backward(M ,X ), is:

Backward(M ,X )(v)=∃v′,X (v′) ∧ T (v,v′) (3)

We now consider the case of reachable and unreachable codings. By defini-
tion, as the transition function characterizes all the transitions of the Kripke
structure, the image of a reachable state is reachable. Henceforth, the inverse
image of an unreachable state may not be reachable and is therefore necessarily
unreachable.

6.2 Binary Decision Diagrams

Binary decision diagrams (BDDs, for short) are heuristically efficient data struc-
tures to represent formulae of the propositional logic. BDDs can be viewed as
multi-rooted binary directed acyclic graphs. Each node n represents a different
boolean function ϕn . Let ϕ be such a function, and p a proposition on which ϕ
depends, ϕ〈p ← V 〉 denotes the function equal to ϕ where p has been replaced
with the boolean constant V .

There are two kinds of BDD nodes: leaf nodes and non-leaf nodes. Leaf nodes
represent constant boolean functions true and false. Non-leaf nodes represent
non-constant boolean functions. A non-leaf BDD node n representing a function
ϕn is labelled with a proposition pn and has two edges, one that points to the
formula ϕn〈pn ← true〉, and the other pointing to the formula ϕn〈pn ← false〉.
Each node thus represents a decision, or a test on the associated proposition.
Note that if ϕn did not depend on pn , both edges would point to the same BDD
node and the test, as well as the corresponding node, would be useless. To avoid
wasting space with useless nodes, the BDD construction algorithm does not build
them. Once the last of the argument propositions of a function has been tested,
the edge must point to a node representing a constant boolean function, that
is to a leaf. In a ML-like notation, the data type to represent a BDD can be
defined as:

type bdd = Leaf of boolean |
NonLeaf of (proposition * bdd * bdd);;

where boolean and proposition would be the types for booleans and proposi-
tions.



350 D. Déharbe

For instance, consider P = {a, b} and a function ϕ = a ∧ b. As ϕ depends
on both a and b, its BDD representation can either start with a test on a or a
test on b. Suppose the test is on a, and let b1 represent the corresponding BDD.
As ϕ〈a ← true〉 = b and ϕ〈a ← false〉 = false, the outgoing edges of this first
test node point, respectively, to a second BDD b2 that represents the function
b and a third BDD b3 that represents the constant function false. Constant
functions are represented by leaf nodes, so b3 is a leaf. Now let us consider BDD
b2 . It represents the function b. This function only depends on proposition b, so
the unique possible test is on proposition b: b〈b ← true〉 and b〈b ← false〉 are,
respectively, the functions true and false. We have already seen that function
false is represented by the leaf node b3 . So, one of the outgoing edges of b2
points to b3 . The other edge points to a leaf node b4 representing true. Figure 17
depicts the corresponding BDD (plain and dashed arrows indicate respectively
assignment to true and false). Using our ML-like language, the nodes would thus
be:

b3 = Leaf(false);;
b4 = Leaf(true);;
b2 = NonLeaf(b, b4, b3);;
b1 = NonLeaf(a, b2, b3);;

Observe that, in this example, we are initially faced with the choice of a propo-
sition to test against (a or b?). Had we chosen to start testing against b, the
resulting BDD construction would have been different. So, in order to facili-
tate the operations on BDDs, the BDD construction algorithm is constrained to
follow a previously established total order on the propositions.

b1

b2

b3b4

Fig. 17. Example BDD for function a ∧ b. The decision variable of b1 is a, that of b2

is b, b3 is the leaf for false and b4 is the leaf for true.

Let P be a totally ordered finite set of boolean propositions. Let f be a
boolean formula over P , bdd(f ) is the BDD representing f , and | bdd(f ) | is the
size of this BDD. The work presented in [34] showed that BDDs are a canonical
representation, in the sense that two equivalent formulae are represented with
the same BDD:

f ⇔ g iff bdd(f ) = bdd(g)



Techniques for Temporal Logic Model Checking 351

Moreover, most boolean operations can be performed efficiently with BDDs.

– bdd(¬f ) is computed in constant time O(1 );
– bdd(f ∨ g) is realised in O(| bdd(f ) | . | bdd(g) |);
– bdd(∃ x • f ) is performed in O(| bdd(f ) |2 ).

In this chapter, we will use usual boolean operators to denote the corresponding
operation on BDDs; for instance bdd(f ) ∨ bdd(g) = bdd(f ∨ g). We explain the
basic principles of the BDD representation using an example.

Figure 18 presents the BDD of the characteristic function for the reachable
states of Kripke structure ABPsender, with variable ordering g < s < w < b.
Dotted edges indicate that the formula on the target node is negated. Therefore,
the same BDD node is used to represent both a formula and its negation; it is
interpreted differently according the type of edge that is pointing to it. (The
BDD in Figure 18 represents ¬g ∨ s ∨ w as well.) In practice, this “trick” can
be performed using pointers to nodes to represent a BDD and pointer tagging
to indicate negation. With variable ordering g < g ′ < s < s ′ < w < w ′ < b < b′,
the BDD for the transition relation has 22 nodes.

g ∧ ¬s ∧ ¬w

!!

¬g ∨ s ∨ w

""���������

������ !g

1
��

0

##

������ !s

1

$$

0�� ������ !w

1

%%

0

&&
1

Fig. 18. BDD for g ∧ ¬s ∧ ¬w

[34] showed that some functions have an exponential BDD representation
for any test order, and that finding the optimum variable ordering is NP-hard.
In practice, however, heuristic methods generally achieve a good variable or-
dering, when such ordering exists. Moreover it is possible, although costly, to
modify the test order. This investment to improve the BDD size is realized
in situations were further boolean operations are going to be realized and pay
it off.

In a Kripke structure, states, transitions and sets thereof can be character-
ized with propositional logic formulae. These formulae can be represented and
manipulated via their BDD representation. BDDs proved to be an efficient data
structure to perform computations on large Kripke structures.



352 D. Déharbe

In the remainder of this chapter, we will use the following operations on BDDs:

– BddFalse and BddTrue return the BDDs for the boolean constants;
– BddAtom takes a boolean proposition p as parameter and returns the BDD

that represents p;
– BddNot takes as parameter the BDD of a boolean formula f and returns the

BDD of formula ¬f ;
– BddAnd (respectively, BddOr) take as parameters the BDDs of two boolean

formulae f and g and returns the BDD of f ∧ g (respectively, f ∨ g);
– BddImplies is a predicate that takes as parameters the BDDs of two boolean

formulae f and g and checks wether f is a logical implication of g.

These operations are used in the algorithms presented in the sequel.

Exercise 13. Consider the formula (p1 ⇔ q1 ) ∧ (p2 ⇐ q2 ). Depict the corre-
sponding BDD with variable ordering p1 , q1 , p2 , q2 . Repeat the exercise with
variable ordering p1 , p2 , q1 , q2 . Discuss the effect of variable ordering on the
BDD representation.

6.3 Algorithms

As explained in Chapter 1, a lattice is a set with a partial order on the elements
of this set, a least element ⊥, and a greatest element +. Let P be a non-empty
finite set of atomic propositions. Let M = (S ,T , I ,L) be a finite Kripke struc-
ture over P . We consider the lattice (PS ,⊆) of subsets of S with set inclusion as
the ordering. The empty set ∅ and S are, respectively, the least and the greatest
elements of this lattice. Since a subset of S can be identified with its character-
istic function, this lattice can also be interpreted as the lattice of characteristic
functions, with boolean implication as ordering, the characteristic function of
∅ as the least element, and the characteristic function of S as the greatest
element.

With this view, we regard a function τ : PS → P S as a predicate transformer.
As in Chapter 1, τ is monotonic if, and only if, P ⊆ Q implies τ(P) ⊆ τ(Q).
Also, τ is ∪-continuous (respectively, ∩-continuous) when P1 ⊆ P2 ⊆ . . . (re-
spectively, P1 ⊇ P2 ⊇ . . .) implies that τ(∪iPi) = ∪iτ(Pi ) (respectively,
τ(∩iPi) = ∩iτ(Pi )). If τ is monotonic, then τ has a least fixed point and a
greatest fixed point [246].

Moreover, since the lattice is finite and τ is monotonic, it is also ∪-continuous
and ∩-continuous, and least fixed points and greatest fixed points can be char-
acterized as follows.

μZ • τ(Z )=∩{Z | τ(Z ) = Z } = ∪iτ
i(false) (4)

νZ • τ(Z )=∪{Z | τ(Z ) = Z } = ∩iτ
i(true) (5)

In the following, we will use these definitions to characterize the set of states
satisfying a CTL formula with fixed point expressions.



Techniques for Temporal Logic Model Checking 353

Fixed Point Characterization of CTL Operators. CTL symbolic model-
checking uses the BDD representations of the characteristic functions of sets of
states and transitions. The algorithm is based on the fixed point characterization
of the different temporal operators of CTL defined in [62]:

EGf =νZ • f ∧ EXZ (6)
E[f Ug]=μZ • g ∨ (f ∧ EXZ ) (7)

It is easy to see and show that, the lattice formed by the set of states and
set inclusion is finite, and that, if Z1 ⊆ Z2 , then EXZ1 ⊆ EXZ2 . Thus, the
predicate transformer EXZ is monotonic and so are the predicate transformers
f ∧ EXZ and g ∨ (f ∧ EXZ ). Therefore, the fixed point expressions on the
right-hand side of Equations 6 and 7 are well-defined.

To see that Equation 6 is indeed correct, assume that a state s |= EGf . Then,
applying the definition of the semantics of the operator EG (see Section 3.2),
it is easy to show that s |= f and that s |= EXEGf , thus s ∈ νZ • f ∧ EXZ .
Conversely, assume that sνZ • f ∧ EXZ , then s |= f and s |= EXEGf . Hence
s |= EGf . The same type of argument applies to justify Equation 7.

The symbolic model-checking algorithm, named Smc, is shown in Figure 19;
it takes as arguments a Kripke structure M and a CTL formula f . It uses the
auxiliary routine SmcAux , which returns the characteristic function of the states
of M that satisfy f , and checks if f is valid in each initial state of M . The function
SmcAux itself relies on auxiliary functions SmcEX (see Figure 20), SmcEU (see
Figure 21) and SmcEG (see Figure 22). All of them are used to recurse over the
syntactical structure of CTL formulae, and have as arguments a Kripke structure
M and a CTL formula f , and as result the BDD of the characteristic function of
the set of M states where f is valid.

function Smc(M : Kripke structure, f : CTL): boolean
begin

return BddImplies(M .I , SmcAux(M , f ))
end function Smc
function SmcAux(M : Kripke structure, f : CTL): BDD
begin

case f of
when f is a boolean proposition: return BddAtom(f )
when f = ¬f1 : return BddNot(SmcAux(M , f1 ))
when f = f1 ∧ f2 : return BddAnd(SmcAux(M , f1 ), SmcAux(M , f2 ))
when f = EXf1 : return SmcEX (M , f1 )
when f = E[f1Uf2 ]: return SmcEU (M , f1 , f2 )
when f = EGf1 : return SmcEG(M , f1 )

end case
end function SmcAux

Fig. 19. Algorithm for symbolic model-checking CTL formulae

SmcEX (M , f ) computes the states of M where EXf is valid (Figure 20).
Recall that a state s satisfies EXf if, and only if, a successor s ′ of s satisfies f .



354 D. Déharbe

So any predecessor of a state satisfying f satisfies EXf , and any state satisfying
EXf is a predecessor of some state satisfying f . Given the set of states Sf

satisfying f , the set of states SEXf satisfying EXf is the inverse image of Sf

by the transition relation of the Kripke structure.
Thus the algorithm first computes F , the BDD for the characteristic function

of the set states of M where f is valid, and returns the inverse image of F . The
inverse image is computed with Backward , an implementation of the function
defined by Equation 3.

function SmcEX (M : Kripke structure, f : CTL): BDD
variables

F : BDD
begin

F :=SmcAux(M , f ):
return Backward(M , F )

end function SmcEX

Fig. 20. Algorithm for EXf formulae

In a similar way, SmcEU (M , f , g) computes the states of M where E[f Ug]
is valid (see Figure 21). It first computes F and G, characterising the states of
M where f and g are valid, and then iteratively computes the least fixed point
defined in Equation 7. The loop responsible to compute this least fixed point, is
initiated with the variable Q assigned BddFalse, which represents the empty set
of states (the least value of the set of states lattice), and Q ′ assigned the image
of Q by the predicate transformer. If Q ′ is different from Q , then the fixed point
has not yet been reached, and an iteration is necessary: Q takes the value of Q ′

and Q ′ is updated with the image of Q by the predicate transformer. Once Q ′

is equal to Q , then the fixed point is reached, the loop halts, and the value of Q
is returned.

SmcEG(M , f ) computes the states of M where EGf is valid (see Figure 22).
It first computes F , the BDD for the set of states of M where f is valid, and
then computes the greatest fixed point defined in Equation 6. The algorithm
is much similar to that of Figure 21, the main difference being that the initial
value of Q is BddTrue, that is, the characteristic function of the set of all possible
states (the greatest element of the set of states lattice).

Note that in these algorithms, the sets of states might contain both reachable
and unreachable states. This occurs most clearly in the SmcEG algorithm, where
Q is initially assigned BddTrue, which is the characteristic function of all possible
states, both reachable and unreachable. This also happens in the base cases of the
algorithm SmcAux , when the CTL formula is a single proposition. In that case,
the returned BDD represents a function that characterizes all the states where
that proposition is true, be they reachable or unreachable. This is not a problem,
however, as traversal of the state space is realized backwards. As discussed in
Section 6.1, the inverse image of an unreachable state is unreachable. So the



Techniques for Temporal Logic Model Checking 355

function SmcEU (M : Kripke structure, f : CTL, g : CTL): BDD
variables

Q ,Q ′,F ,G: BDD
begin

F := SmcAux(M , f );
G := SmcAux(M , g);
Q := BddFalse
Q ′ := BddOr(G, BddAnd(F , Backward(M , Q)));
while Q �= Q ′ do

Q := Q ′

Q ′ := BddOr(G, BddAnd(F , Backward(M , Q)))
end while;
return Q

end function SmcEU

Fig. 21. Algorithm for E[f Ug ] formulae

algorithms guarantee that the set of states that are returned indeed satisfy the
given CTL formula.

function SmcEG(M : Kripke structure, f : CTL): BDD
variables

Q ,Q ′,F : BDD
begin

F := SmcAux(M , f );
Q := BddTrue
Q ′ := BddAnd(F , Backward(M , Q))
while Q �= Q ′ do

Q := Q ′;
Q ′ := BddAnd(F , Backward(M , Q))

end while;
return Q ;

end function SmcEG

Fig. 22. Algorithm for EGf formulae

Example 10 (Symbolic verification of ABPsender). To illustrate the symbolic
model-checking algorithm, we apply it to the same verification considered in Ex-
ample 9: we check that EG(¬s ∧ ¬w) is satisfied by ABPsender. Now, the veri-
fication is performed by the function call Smc(ABPsender,EG(¬s ∧ ¬w)) (see
Figure 19).

Basically, most of the computation is carried out as a result of the function
call SmcEG(ABPsender,¬s ∧ ¬w) (see Figure 22). Table 3 contains a trace for
the values of Q , Backward(ABPsender,Q), Q ′ and Q = Q ′ during the different
iterations of the while statement in the fixed point computation. Actually, the
values displayed in this table are that of the boolean formulae represented by
Q and Q ′, instead of the less human-friendly BDDs. The result returned by the



356 D. Déharbe

function call is the BDD for g ∧ ¬w ∧ ¬s , which is also that of the characteristic
function for the set of initial states. Therefore, the symbolic model-checking
returns a true answer, stating that the formula EG¬s ∧ ¬w is valid in the
Kripke structure ABPsender.

Table 3. Trace of function call SmcEG(ABPsender,EG¬s ∧ ¬w)

F Q Backward(Q) Q ′ Q = Q ′

Init. ¬s ∧ ¬w true
(¬g ∧ w ∧ ¬s) ∨
(g ∧ ¬w ∧ ¬s) ∨
(¬g ∧ ¬w ∧ s)

g ∧ ¬w ∧ ¬s No

Iter. 1 ¬s ∧ ¬w g ∧ ¬w ∧ ¬s
(w ∧ ¬g ∧ ¬s) ∨
(g ∧ ¬w ∧ ¬s)

g ∧ ¬w ∧ ¬s Yes

Exercise 14. Apply the algorithms presented in this section to model check that
ABPsender |= AGEFg .

Handling Fairness in Verification. As we have seen in Section 3.4, a fairness
constraint restricts the set of paths that are considered as part of the model.
Recall that a (weak) fairness constraint κ is characterized by a set of states Sκ

that one can specify, for instance, as a temporal logic formula. In that approach,
a path is part of the model, and is said to be a fair path, if it visits infinitely
often Sκ, that is

∀ i | i ≥ 0 • ∃ j | j ≥ i • π(j ) ∈ Sκ.

In this section, we describe how to apply symbolic methods to perform model
checking of CTL formulae under fairness constraints. We first present the case of
the EG operator and then cover the remaining situations.

Model checking under fairness constraints only takes into account fair paths.
Let K = { κ1 , . . . κn } be the set of fairness constraints on a Kripke structure
M . The property EGϕ is valid of state s of M if there is a path π containing s ,
where ϕ holds from s onwards, and where each κi holds infinitely often. The set
C of states where EGϕ holds under fairness constraints K is such that:

1. ϕ holds in every state s ∈ C ;
2. for every constraint κi and state s ∈ C , there exists a non-empty path

leading to a state s ′ ∈ C where κi holds, that is:

s |=EXE[ϕUκi ∧ s ′].

We denote EGKϕ the set of states that satisfy EGϕ under the set of fairness con-
straints K, and characterize it with the following fixed-point-based expression,
from which an algorithm can be derived much in the same as we did previously:

EGKϕ=μZ • ϕ ∧
∧

κi∈K
EXE[ϕU(Z ∧ κi)]



Techniques for Temporal Logic Model Checking 357

The set of fair states, defined as FK = EGtrue, contains all those states belonging
to a path that satisfies each constraint infinitely often. Once this set has been
computed, model checking can be adapted so that only fair states are considered.
(Taking as reference function SmcAux of Figure 19, we only need to perform an
additional intersection of the set of resulting states with the set of fair states.)

Results and Extensions to Symbolic Model-Checking. Symbolic model-
checking has been used to verify a large variety of systems: hardware descrip-
tions [80], software [10], and protocols [186, 64], in particular. The size of the
Kripke structures used in these verification has been routinely much larger than
10 20 states [37].

An extremely useful feature of model checking is the possibility to compute
counterexamples (or witnesses) when a universal formula is false (when an exis-
tential formula is true) [65]. For instance, the counterexample of an AGf formula
is a path from an initial state to a state where f is not valid.

In practice, symbolic model-checking is well-suited for the verification of the
control components of a system, but it performs poorly with data parts. The rea-
son is that BDDs are ill-suited to represent arithmetic expressions or other data-
intensive operations. Practically this means that the symbolic model-checking
techniques presented in this chapter cannot be used directly to uncover bugs such
as the famous Pentium FDIV bug (FDIV being the instruction for floating-point
division in the Pentium). This bug occurred in the first generation of Pentium
processors and was uncovered in 1994. It caused some division operations to
return erroneous results by a small margin, and was due to five uninitialized
entries out of a total of 1066 in a lookup table used in the division. The proba-
bility that the result be erroneous was 1 out of 9 billions, which would make it
very unlikely (or expensive) to find the error by simple simulation and testing
methods.

An approach to verify this type of system has been to use data structures
other than BDDs to represent the data parts of the system. Word-level model-
checking [67] is an example of such an approach; it uses functions mapping
boolean vectors into integers to model the system under verification. The in-
ternal representation of these functions is a combination of two different classes
of data structures: multi-terminal binary decision diagrams (MTBDD) repre-
sent the control parts, and binary moment diagrams [35] (BMD) represent the
data parts. This technique has indeed been successful in uncovering a design
bug in the implementation of division in the floating-point unit of the Pentium
processor [67].

Another limitation of symbolic model-checking lies in the expressiveness of the
specification logic CTL. Properties asserted in CTL are of a qualitative nature;
for instance if A happens then necessarily B happens in the future. To express
quantitative properties, such as if A then necessarily B will happen between 4
and 8 time units in the future, it is necessary to nest several X operators into syn-
tactically complex and error prone formulae. One possible solution is to write a
preprocessor that converts formulae in a quantitative variant of CTL into an
equivalent CTL formula and use the standard symbolic model-checking algorithm



358 D. Déharbe

[95]. Another solution is to develop special-purpose algorithms or model repre-
sentations for this type of formula. Some tools [43, 227] have an even more pow-
erful capability of computing the lower and upper bounds of all possible intervals
between two given events. To consider also continuous-time systems it is neces-
sary to develop completely different techniques based on timed automata [8].

6.4 Using NuSMV for Symbolic Model-Checking

NuSMV [59, 58] is a good representative of the possibilities provided by the
symbolic model-checking algorithms we have described. It is a reengineering of
Carnegie Mellon University SMV, initially developed by McMillan [184], and
then extended by Edmund Clarke and his students. McMillan later developed
techniques to combine theorem proving techniques and symbolic model-checking,
and implemented them in Cadence SMV. The features that we present here are
that of NuSMV.

NuSMV (which we will call simply SMV from now on) is an open-source
symbolic model-checker for the temporal logics CTL and LTL, and incorporates
algorithms for quantitative temporal analysis. It uses the third-party BDD imple-
mentation CUDD [243]. Moreover, it also includes some bounded model-checking
techniques as presented later on in Section 7.

In the language of SMV, the user describes a design as a collection of modules
and temporal properties to be verified. Module instances may be synchronous,
in which case all instances take transitions in parallel, or asynchronous, so that
a randomly chosen instance takes a transition at each time step. The description
of a module contains a list of variables (internal and parameters) and their
data type (boolean, scalar, or fixed-length arrays), and an expression, known
as transition relation, relating the current and the next values these variables.
Intermodule communication is realised by means of shared variables.

Through a command-line interface, the user can load a design, flatten the
module hierarchy and then build the symbolic, BDD-based, representation of
the corresponding finite-state transition structure. From that point on, the user
may either use simulation (deterministic, random, or interactive) to explore the
design, or verification to check whether the properties are established or not. If
a property is violated, then a counterexample is built and provided to the user.
This counterexample can be investigated in simulation mode.

Exercise 15. Access the site of NuSMV at http://nusmv.irst.itc.it/. Down-
load the tool and apply it to the provided examples.

7 Bounded Model-Checking

With the techniques we have presented so far, BDD-based symbolic model-
checking is practically limited to models with up to a few hundred boolean
variables. This makes it unsuitable to directly verify large applications such as
complex hardware designs (in which each flip-flop is modelled as a boolean vari-
able) or even simple components of software (where a single integer variable



Techniques for Temporal Logic Model Checking 359

must be modelled as an array of 32 booleans). For this type of application, one
must resort to writing a simplified version of the design in a tool-specific lan-
guage (such as SPIN or NuSMV) for the sole purpose of verification; this is a
time-consuming, error-prone activity requiring specialized knowledge.

A lot of progress has been made in the area of propositional satisfiability (SAT)
solving. Today, state-of-the art SAT solvers can handle tens of thousands of
variables. Section 7.1 gives an overview of the approach employed in these tools.

These eye-catching results have drawn the attention of the formal verification
community which had been working hard to devise algorithmic methods that
could scale up several orders of magnitude larger than BDD-based methods. But,
SAT solvers are essentially limited to determine if a given proposition formula
is satisfiable. So, we needed to find out how the model-checking problem of
determining if a Kripke structure is a model for a temporal logic formula can be
expressed as a propositional satisfiability problem. We will present an answer to
this issue in Section 7.2, following the seminal work of [27].

7.1 Efficient SAT-Solvers

Given a propositional formula ϕ(x1 , . . . xn), a SAT-solver returns a model (that
is, a valuation of the variables x1 , . . . xn) of the formula, if it is satisfiable, or says
that it is unsatisfiable. This problem has been shown to be NP-complete, however
the method proposed by Davis, Putnam, Loveland and Logemann [79, 78] (known
as Davis-Putnam or DPLL) has generally been successful in practice.

A literal is an atomic variable, or the negation thereof. A clause is a disjunc-
tion of literals. A clause is said to be a unit if it contains one literal. DPLL is
based on the assumption that the input is given in clausal form, that is, as a
conjunction of clauses, and searches for an assignment to variables that validates
each clause. The construction of this search is based on the following two laws
of boolean algebras:

(unit resolution) xi ∧ (¬xi ∨ ϕ)=xi ∧ ϕ

(unit subsumption) xi ∧ (xi ∨ ϕ)=xi

Additionally, if xi is a variable occurring in ϕ, ϕ is satisfiable if, and only if,
either ϕ ∧ xi or ϕ ∧ ¬xi is satisfiable.

A primitive version of the DPLL algorithm is given in Figure 23. This algo-
rithm takes as input a set of clauses S , and returns a boolean to indicate if S is
satisfiable, and a set of literals constituting a model for S , in case S is satisfiable.

The function SAT uses an auxiliary function SAT ′ that basically searches a
model (a satisfying assignment of the variables) in a binary decision tree, where
each decision is a variable assignment. The function SAT ′ has a parameter m
that stores a partial model, that is the decisions already taken with respect to
the variable assignment. Function SAT ′ first realises the propagation of unit
clauses (by implementing resolution and subsumption), thus simplifying the set
of clauses and the clauses themselves.



360 D. Déharbe

When there are no more unit clauses to propagate, a variable is chosen among
the remaining clause set. The problem is then split into two subproblems, as S
is satisfiable if, and only if, one of S ∪ { l } and S ∪ {¬l } is satisfiable.

Observe that this algorithm removes from S the literals and the clauses that
have been satisfied under the current assignment m. Thus, if S is empty, no more
clauses need be satisfied and the original clause set is satisfiable; conversely,
if a clause becomes empty, then some clause cannot be satisfied (there is a
conflict) and the current value of the assignment m cannot be a model for the
original clause set. In that second situation, the algorithm backtracks and chooses
another variable assignment.

function SAT (S : set of clauses): bool, set of literals
begin

return SAT ′(S , ∅)
end function SAT

function SAT ′(S : set of clauses, m: set of literals): bool, set of literals
variables

l : literal; r : bool; m ′: set of literals;
begin

while ∃ C ∈ S • C = { l } do (* C is a unit clause *)
m := m ∪ C ;
remove from S clauses containing l ;
remove ¬l from all clauses of S where it occurs;
if S = ∅ then return (true, m)
else if ∅ ∈ S then return (false, −)
end if

end while;
l is a literal occurring in S
r ,m ′ := SAT ′(S ∪ { l }, m);
if r then return true, m ′

else
r , m ′ := SAT ′(S ∪ { ¬l }, m);
if r then return (true,m ′)
else return (false, −)
end if

end if
end function SAT ′

Fig. 23. High-level DPLL algorithm for solving propositional satisfiability

Several techniques that significantly improve on this basic algorithm have
been proposed. These techniques aim at pruning the search tree visited by SAT ′

without incurring too much penalty to maintain or compute additional infor-
mation. One first important modification to the basic algorithm, implemented
in the GRASP SAT-solver [178], keeps track of the implications performed dur-
ing propagation and, in case a conflict is found, uses this information to apply



Techniques for Temporal Logic Model Checking 361

non-chronological backtracking, that is backtracking several levels at once in the
search tree, and therefore obtaining large prunings. A second improvement is to
learn from such conflicts to infer so called conflict clauses. Adding such clauses
to the clause set S makes it possible to avoid exploring similar parts of the search
tree. To avoid or limit a blow up in the size of S , some tools associate an activity
grade to such learnt clauses, and remove them from S when this grade is below
a certain threshold.

A second point where the basic algorithm can be refined is in the choice of the
literal on which splitting occurs. If the given problem is unsatisfiable, we shall
target for a variable assignment that will quickly generate a conflict; on the
other hand, if it is satisfiable, then the choice shall try to satisfy as many clauses
as possible (to try) to come closer to find a model. Several heuristics based
on counting the occurrences of each variables in unresolved clauses have been
proposed. The drawback of these methods is that they have to update counters
associated to variables during propagation and backtracking, which incurs a
significant time penalty which may not be compensated by the reduction in the
size of the search space.

Approaches such as Variable State Independent Decaying Sum [200] (VSIDS)
avoid such problem by maintaining a grade for each literal and branching on the
literal with the largest grade. The initial grade is the number of occurrences in
the given clause set. It is incremented each time a clause containing the literal is
added, and is periodically decayed. Thus, VSIDS tends to choose variables that
belong to conflict sets, and avoids updating counters during propagation and
backtracking.

Finally, an important design decision is that of the representation for the
clause set, which needs to support efficient variable assignment and backtracking.
The classic approach consists in representing each clause as a list of literals and
to associate to each literal the list of clauses in which it appears. Moreover, each
clause maintains counters of the number of satisfied and unsatisfied literals, from
which it is straightforward to decide if a clause is satisfied, unsatisfied or is a unit.
The drawback of this approach is that the data structures need to be updated
during backtracking.

More recently, the technique watched literals [200] has been developed by the
authors of the Chaff SAT-solver. It is based on the observation that what really
matters is that, if a clause has more than one unassigned literal, then it can
be neither unsatisfiable nor a unit. Thus each clause only maintains references
to two literals that need not be altered when the algorithm backtracks. We
point the reader to [259, 174] for further discussions and experiments on modern
implementation techniques in propositional SAT-solvers.

7.2 LTL and Bounded Paths

Expressing suitably the model-checking problem as a propositional satisfiability
problem is the key to the application of efficient SAT-solvers instead of, or in
complement to, BDD-based symbolic algorithms. The bounded model-checking
approach consists in, given a specification as a temporal logic formula φ and a



362 D. Déharbe

Kripke structure model M of the design, looking for a counterexample execution
composed of a bounded number of states. We need to introduce the following
definitions to ground our discussion on bounded model-checking.

Definition 11 (Universal and existential validity of LTL). An LTL formula
ϕ is universally valid in a Kripke structure M , denoted M |= ϕ, if, for all paths
π of M , M , π |= ϕ. An LTL formula is existentially valid in M , denoted M |=e ϕ
if there is a path π such that M , π |= ϕ.

In Section 4, we have presented model-checking techniques to prove the universal
validity of LTL formulae. Clearly, we have that M |= ϕ if, and only if, M 	|=e ¬ϕ,
and checking for universal validity of ϕ amounts to show existential unsatisfi-
ability of ¬ϕ. In other words, if we can find a counterexample (that is, show
existential validity) of ¬ϕ, then the formula ϕ is not universally valid. Basically,
this is the theoretical justification of bounded model-checking. Another aspect
of bounded model-checking is related to the “bounded” adjective. The search
of the counterexample is restricted to a subset of the state-space: those states
that can be reached from the initial states in a bounded number of transitions.
Theoretically, the size of the bound can be augmented up to the diameter of
the transition graph, that is the maximum number of transitions that need to
be taken to reach any state. Determining the tightest bound to make bounded
model-checking complete is the subject of active research [68].

To illustrate this approach, assume we want to check that the invariant Gp
is satisfied by a Kripke structure M = (S ,T , I ,L) over AP . There is a coun-
terexample of length at most k + 1 , called a k -bounded counterexample if, and
only if, there is some state, reachable in at most k transitions that satisfies p.
Let vi (respectively, pi), for 0 ≤ i ≤ k , denote the valuation of the atomic
propositions in AP (respectively, p) at the i-th state of the path. The existence
of a k -bounded counterexample can thus characterized by the satisfiability of
the following (propositional) formula:

I (v0 ) ∧
(

k−1∧
j=0

T (vj ,vj+1 )

)
∧
(

k−1∨
j=0

¬pj

)

In the remainder of this section, we show how this approach can be generalized
to express the existence of a k -bounded counterexample of any LTL formula ϕ
in a Kripke structure M . We first introduce the semantics of LTL for bounded
model-checking, and we then show how to express the bounded model-checking
problem as a satisfiability problem.

LTL Semantics for Bounded Model-Checking. Bounded model-checking
decides the validity of an LTL formula with respect to bounded paths. So, given
an LTL formula ϕ, a Kripke structure M , and a positive number k (the length
of the considered path prefixes), we want to express the existence of a path π
composed initially of k −1 transitions and k states, where M , π |= ϕ. Of course,
even though we only consider a bounded number of states and transitions, path



Techniques for Temporal Logic Model Checking 363

π may be an infinite path if there exists some back loop, that is, if there is a
l ≤ k such that (π(k), π(l)) ∈ T . Actually, only such paths with back loops can
be models for formulae of the form Gψ. We need to distinguish the concepts of
loop and non-loop paths.

Definition 12 (Loop path). In a Kripke structure M , a sequence of states
π = s0 , s1 , . . . sk is a (k , l)-loop if ∀ i | 0 ≤ i ≤ k − 1 • (si , si+1 ) ∈ T and
∃ l | 0 ≤ l ≤ k • (sk , sl ) ∈ T. π is a k -loop, if there is an l , with 0 ≤ l ≤ k,
such that π is a (k , l)-loop.

In case the prefix of a path does not contain a back loop, then nothing can be
said about its infinite behaviour. In particular, it is not possible to state that it
satisfies an Gϕ formula. Based on this observation, we introduce the concept of
bounded semantics which is used to define bounded validity and bounded model-
checking. If the path has a loop, then it is an infinite path and it maintains its
usual semantics.

Definition 13 (Bounded semantics for k-loop). Let π be a k-loop in a
Kripke structure M . The LTL formula ϕ is valid with bound k on π, denoted
π |=k ϕ, if M , π |= ϕ.

If the path does not contain a back loop, we have to decide if a given LTL formula
ϕ is valid considering only k consecutive states.

Definition 14 (Bounded semantics for non k-loop). Let π be a path that
is not a k-loop in a Kripke structure M . The LTL formula ϕ is valid with bound
k on π, denoted π |=k ϕ iff M , π |=0

k ϕ, as defined by the following rules, where
p denotes an atomic proposition, and ϕ1 and ϕ2 denote LTL formulae:

π |=i
k p iff p ∈ M .L(π(i))

π |=i
k ¬p iff p 	∈ M .L(π(i))

π |=i
k ϕ1 ∧ ϕ2 iff π |=i

k ϕ1 and π |=i
k ϕ2

π |=i
k Gϕ is always false

π |=i
k Fϕ iff ∃ j | i ≤ j ≤ k • π |=j

k ϕ
π |=i

k Xϕ iff i < k ∧ π |=i+1
k ϕ

π |=i
k ϕ1Uϕ2 iff ∃ j | i ≤ j ≤ k • (π |=j

k ϕ2 ) ∧ ∀ l | i ≤ l < j • (π |=l
k ϕ1 )

π |=i
k ϕ1Wϕ2 iff ∃ j | i ≤ j ≤ k • (π |=j

k ϕ2 ) ∧ ∀ l | i ≤ l < j • (π |=l
k ϕ1 )

For the G and W operators, the definition excludes that the formula be valid
by means of an infinite path, thus the W operator has the same conditions as
the U operator (recall that ϕ1Wϕ2 is equivalent to (ϕ1Uϕ2 ) ∨ (Gϕ1 )).

We use the notation M |=k ϕ to state that there is a path π of M (with
or without back loop) such that π |=k ϕ. The following theorem states that
existential model-checking can be reduced to bounded model-checking (its proof
is in [27]).

Theorem 1. Let ϕ a normalized LTL formula, M a Kripke structure. Then,
M |=e f iff ∃ k ≥ 0 • M |=k ϕ.



364 D. Déharbe

Bounded Model-Checking as Propositional Satisfiability. We now show
how bounded model-checking can be reduced to propositional satisfiability. We
will consider only LTL formulae in normal negation form (see Section 4.3). Given
a normalized formula ϕ, a Kripke structure M and a bound k , the goal is to
construct a propositional formula that is satisfiable if and only if M |=k ϕ. To
achieve this, one needs to express the constraints that a path of length k has to
satisfy to, first, be a path of M , and, second, be a model for ϕ. These constraints
are expressed as propositional formulae on variables v0 ,...vk that represent the
value of the vectors of state variables at each step of the path. Also, each atomic
proposition p of the Kripke structure is instantiated k + 1 times: p0 , . . . pk to
represent the assignment to the corresponding proposition in the corresponding
state of the path.

We first define a formula [[M ]]k that relates variables of k consecutive states
lying on paths of a Kripke structure M . The first state must be an initial state,
thus satisfy the characteristic function I , and each pair of states (sk , sk+1 ) must
be a transition, thus satisfying the characteristic function T of the transition
relation:

[[M ]]k=I (v0 ) ∧
(

k−1∧
j=0

T (vj ,vj+1 )

)

We also define an auxiliary formulae Lk ,l that identifies the case where there is
a transition from the k -th state of a path to the l -th state: Lk ,l = T (vk ,vl).
This notation will be later useful to characterize (k , l)-loops. We also define
Lk identifying the situation where there is a transition from the k -th state of
the path to a state identified with lower indices: Lk =

∨k
l=0 Lk ,l . Again, this

definition will be later used to identify k -loops.
Furthermore, we define auxiliary formulae to state that ϕ holds on path π,

with depth k . Two sub-cases need to be considered. Firstly, the case in which π
is not a k -loop; we will write [[ϕ]]ik for the formula that states that ϕ is valid on
path π starting at the i-th position and considering up to the k -th state.

Definition 15 (LTL validity on a path without loop). Let ϕ be a normal-
ized LTL formula, k ≥ 0 and i ≥ 0 , then [[ϕ]]ik is the propositional formula
characterising the paths π without back loop such that π |=k ϕ. It is defined as
follows, where p denotes a propositional variable, pi denotes the i-th copy of p,
and ϕ1 and ϕ2 denote normalized LTL formulae:

[[p]]ik = pi

[[¬p]]ik = ¬pi

[[ϕ1 ∧ ϕ2 ]]ik = [[ϕ1 ]]ik ∧ [[ϕ2 ]]ik
[[ϕ1 ∨ ϕ2 ]]ik = [[ϕ1 ]]ik ∨ [[ϕ2 ]]ik
[[Gϕ]]ik = false
[[Fϕ]]ik =

∨k
j=i [[ϕ]]jk

[[Xϕ]]ik =
{

[[ϕ]]i+1
k if i < k

false otherwise
,



Techniques for Temporal Logic Model Checking 365

[[ϕ1Uϕ2 ]]ik =
∨k

j=i

(
[[ϕ2 ]]jk ∧

∧j−1
l=i [[ϕ1 ]]lk

)
,

[[ϕ1Wϕ2 ]]ik =
∨k

j=i

(
[[ϕ2 ]]jk ∧

∧j−1
l=i [[ϕ1 ]]lk

)
.

Secondly, we consider the case where π is a (k , l)-loop, and we write [[ϕ]]il,k for
the formula that states that ϕ is valid on the (k , l) loop π starting at the i-th
position.

Definition 16 (LTL validity on a (k , l)-loop). Let ϕ a normalized LTL for-
mula, and k ≥ l , i ≥ 0 . [[ϕ]]ik ,l is the propositional formula characterising the
(k , l)-loop π such that π |=k ϕ is defined as follows, where p denotes a proposi-
tional variable, ϕ1 and ϕ2 denote normalized LTL formulae:

[[p]]ik ,l = pi

[[¬p]]ik ,l = ¬pi

[[ϕ1 ∧ ϕ2 ]]ik ,l = [[ϕ1 ]]ik ,l ∧ [[ϕ2 ]]ik ,l

[[ϕ1 ∨ ϕ2 ]]ik ,l = [[ϕ1 ]]ik ,l ∨ [[ϕ2 ]]ik ,l

[[Gϕ]]ik ,l =
∧k

j=min(i,l) [[ϕ]]jk ,l

[[Fϕ]]ik ,l =
∨k

j=min(i,l) [[ϕ]]jk ,l

[[Xϕ]]ik ,l = [[ϕ]]succ(i)
k ,l

[[ϕ1Uϕ2 ]]ik ,l =
∧k

j=i

(
[[ϕ2 ]]jk ,l ∧

∨j−1
m=i [[ϕ1 ]]mk ,l

)
∨∨i−1

j=l

(
[[ϕ2 ]]jk ,l ∧

∧k
m=i [[ϕ1 ]]mk ,l ∧

∧j−1
m=l [[ϕ1 ]]mk ,l

).
[[ϕ1Wϕ2 ]]ik ,l =

∧k
j=min(i,l)([[ϕ1 ]]jk ,l) ∨∨k
j=i

(
[[ϕ2 ]]jk ,l ∧

∨j−1
m=i [[ϕ1 ]]mk ,l

)
∨∨i−1

j=l

(
[[ϕ2 ]]jk ,l ∧

∧k
m=i [[ϕ1 ]]mk ,l ∧

∧j−1
m=l [[ϕ1 ]]mk ,l

)
.

We have now introduced all the notations required to give the definition of
the translation of LTL bounded model-checking as a propositional satisfiability
problem.

Definition 17. Let ϕ be a normalized LTL formula, M a Kripke structure and
k ≥ 0 a bound, then M |=e

k ϕ if, and only if, the propositional formula [[M , ϕ]]k
on variables v0 , . . .vk is satisfiable, where:

[[M , ϕ]]k=[[M ]]k ∧
((

¬Lk ∧ [[ϕ]]0k
)
∨

k∨
l=0

(
Lk ,l ∧ [[ϕ]]0l,k

))

This definition states that [[M , ϕ]]k is satisfiable if and only if v0 , . . .vk are
the k + 1 first states of a path in M (that is, [[M ]]k is satisfiable), and if these

same variables form a k -loop where ϕ is established (then
∨k

l=0

(
Lk ,l ∧ [[ϕ]]0l,k

)
is satisfiable) or the variables form a non k -loop where ϕ is established (and
¬Lk ∧ [[ϕ]]0k is satisfiable).



366 D. Déharbe

8 Applications of Model Checking to Software Design

Producing software has been mainly a human activity, and is therefore prone to
error. Even the best testing and inspection practices hit the so-called verification
ceiling, and their application cannot guarantee the absence of residual defects.
On the other hand, model-checking techniques are fully automatic and guarantee
the absence of errors. They have been applied successfully to help produce correct
hardware components and protocols. This raises the question whether they can
be applied to verify software systems.

We have seen that model-checking techniques apply to finite-state systems,
and the corresponding tools have static or bounded input languages. This makes
them inconvenient to apply to the verification of software, in particular in the
case of object-based systems, which typically feature dynamic creation and de-
struction of data, as well as unbounded control flow patterns.

Thus, to reduce the gap between an actual software artifact and a tractable
analysis using the presented techniques, it is necessary to build a verification
model of the software behaviour. This model needs to be faithful with respect to
the properties of interest and needs to be amenable to existing model-checking
tools. While, it is possible to build such models manually, it is highly undesirable,
as it is a new source of errors, and the translation would need to be constantly
repeated to accompany the evolution of the implementation.

In consequence, there has been several efforts to provide (semi-)automatic
model extraction tools for a variety of model checkers and at different levels of
abstraction in the software design process, from formal specification languages,
such as CSP-OZ [92], modelling languages such as UML [113, 155, 239], to actual
programming languages such as C [19, 122, 111, 54, 69] and JAVA [71, 109, 108].
Model extraction is a combination of abstraction techniques, such as the follow-
ing:

– Program slicing consists in, given a program P , and some elements S of P ,
producing a program P ′ that includes only the elements of P that influence
directly or indirectly S [124]. Typically S consists of some of the variables
of the program that are of interest to establish some important properties.
When model checking some property φ on S , it is sufficient to consider the
slice of P with respect to φ.

– Data abstraction by abstract interpretation makes it possible to soundly
substitute rich data types with simpler ones [75]. For example, if a program
uses a vector to store a set of elements, and the only relevant information
is that some value is in the set, then the vector might be abstracted to an
enumeration type with two elements { InSet, NotInSet }.

– Predicate abstraction abstracts a program P by a boolean program PB [104].
A boolean program is a possibly non-deterministic program where all vari-
ables have the boolean data type. The variables of PB represent the control-
flow predicates of P , and the instructions of PB model the effect of the
instructions of P on these predicates. For instance, suppose P contains a
control-flow predicate x ≥ y, which is abstracted to a boolean variable v



Techniques for Temporal Logic Model Checking 367

in PB . Suppose that P contains the assignment x := x − 1 : how can it be
translated as a boolean program on v?
If v is true before the assignment (that is, x ≥ y), then, afterwards, either
v is true (in case x > y), or false (in case x = y). If v is false before the
assignment (that is, x < y), then it certainly is false afterwards, as the
modeled instruction decreases the value of x . So in the boolean program,
the counterpart of the assignment would be if v then v := { true, false },
where the expression {e1 , e2} evaluates non-deterministically to e1 or to e2 .
We have presented BDDs and SAT-solvers that are efficient techniques to
handle (finite) boolean programs.

Note that in the case of data abstraction and predicate abstraction, the ex-
tracted model might be too coarse and model checking can yield false coun-
terexamples. These counterexamples can be used to refine the abstraction, by
introducing additional, relevant details in the model [18].

Another, more recent, line of research consists in devising specification logics
and model formalisms that are more adequate to support object-based software
features, such as allocation and deallocation, evolution of the heap structure, and
multiple threads, than Kripke structure and Büchi automata. Although this line
of work seems promising, further investigation is needed to show how effective
it is, and how it can be combined with other techniques [82].

9 Conclusions

Several books have been published on the subject of model checking: [141]
presents an automata-based approach to model checking that underpins his ver-
ification tool COSPAN; [66] is a thorough overview of classic model-checking
techniques with an emphasis on CTL model-checking; [24] describes the basis
of model checking: transition systems as a model of systems, temporal logic as
language for requirements, and model checking as verification algorithms.



Elementary Probability Theory

In probability theory [105, for example], an event is a subset of some given
sample space: the event is said to have occurred if the sampled value is in that
set. We call elements of the sample space points.

A probability distribution over the sample space is a function from its events
into the closed interval [0 , 1 ], giving for each event the probability of its oc-
currence. In the general case, for technical reasons, not necessarily all subsets
of the sample space are events; but in our case we do take every subset of the
sample space to be an event, and so we can regard a probability distribution
more simply as a function from points of the sample space (rather than sub-
sets) directly to probabilities. The probability of a set of points (an event) is
then just the sum of the probabilities of the points individually; and the prob-
ability assigned to the whole sample space—that is, to all points at once—is
one.

A random variable is a function from points to reals; here, we restrict to non-
negative reals. The expected value of a random variable is defined in terms of
the probability distribution: it is the “weighted average” obtained by summing
over all points the product of the random variable’s value at the point and the
probability assigned to the point by the distribution. A fact which we use often
is that the expected value (over a distribution) of the characteristic function of
an event is just the probability that the event will occur (as determined by that
distribution).

For example, the sample space for a coin-flip is the set {H ,T}, and a proba-
bility distribution for a fair coin over that sample space might be the function
{H #→ 1/2 ,T #→ 1/2}. On the other hand, {H #→ 2/3 ,T #→ 1/3} describes a
heads-biased coin.

The function {H #→ 2 ,T #→ 3} is a random variable over our state space,
which could describe many things including, for example, how much money we
win on each occasion if H (respectively T ) should turn up: $2 (respectively $3).
The expected value of that random variable over the biased-coin distribution
gives how much on average we would win per coin-flip: it is 2 ∗ 2/3 + 3 ∗ 1/3 ,
that is $2.33 per flip. On the other hand, if we took the characteristic function
{H #→ 1 ,T #→ 0} of the set {H }—which we might write [H ]—then the ex-
pected value would be 1 ∗ 2/3 + 0 ∗ 1/3 , that is 2/3, just the probability of
getting H .

For us, programs take initial states to final distributions of state, or to sets of
distributions if the program contains nondeterminism, and our post-expectations
are random variables over the state. Thus a coin-flip program c: = H p⊕T would
take any initial state in the program’s state-space (also the sample space) to a
final distribution {H #→ p,T #→ 1−p} over that state space.



Proofs of Lemmas and Theorems in the UTP

Lemma 1 (export-precondition).

(P $ Q) = (P $ P ∧ Q)

Proof.

P $ Q [design]

= okay ∧ P ⇒ okay ′ ∧ Q [propositional calculus]

= okay ∧ P ⇒ okay ′ ∧ P ∧ Q [design]

= P $ P ∧ Q �

Lemma 2 (design-abort). When a design has not started (¬ okay), it offers
no guarantees.

(P $ Q)[false/okay] = true

Proof.

(P $ Q)[false/okay] [design]

= (okay ∧ P ⇒ okay ′ ∧ Q)[false/okay] [substitution]

= false ∧ P ⇒ okay ′ ∧ Q [propositional calculus]

= true �

Lemma 3 (condition-right-unit). Abort is a right-unit for conditions.

p ; true = p

Proof.

p ; true [sequence]

= ∃ v0 • p[v0 /v ′] ∧ true[v0/v ] [v not free in true]

= ∃ v0 • p[v0 /v ′] ∧ true [unit for conjunction]

= ∃ v0 • p[v0 /v ′] [v ′ not free in p]

= ∃ v0 • p [v0 not free in p]

= p �

Lemma 4 (abort-condition).

true ; p = ∃ v • p



370

Proof.

true ; p [sequence]

= ∃ v0 • true ∧ p[v0 /v ] [unit for conjunction]

= ∃ v0 • p[v0 /v ] [v0 not free in p, predicate calculus]

= ∃ v • p �

Lemma 5 (not-design).

¬ (P $ Q) = (okay ∧ P ∧ (okay ′ ⇒ ¬ Q))

Proof.

¬ (P $ Q) [design]

= ¬ (okay ∧ P ⇒ okay ′ ∧ Q) [propositional calculus]

= okay ∧ P ∧ (okay ′ ⇒ ¬ Q) �

Lemma 6 (H1-left-zero).

true ; P = true

Proof.

true ; P [assumption (P is H1)]

= true ; ( okay ⇒ P ) [relational calculus]

= true ; (¬ okay ∨ P ) [relational calculus]

= ( true ; ¬ okay ) ∨ ( true ; P ) [abort-boolean]

= true ∨ ( true ; P ) [disjunction-left-zero]

= true �

Lemma 7 (H1-left-unit). Suppose that P is H1-healthy.

II D ; P = P

Proof.

II D ; P [ II D]

= ( true $ II D ) ; P [design]

= ( okay ⇒ okay ′ ∧ II ) ; P [relational calculus]

= (¬ okay ; P ) ∨ ( okay ∧ P ) [condition-right-unit]

= (¬ okay ; true ; P ) ∨ ( okay ∧ P ) [assumption (P is H1), H1-left-zero]

= (¬ okay ; true ) ∨ ( okay ∧ P ) [condition-right-unit]

= ¬ okay ∨ ( okay ∧ P ) [relational calculus]

= okay ⇒ P [assumption (P is H1)]

= P �

Proofs of Lemmas and Theorems in the UTP



Proofs of Lemmas and Theorems in the UTP 371

Lemma 8 (left-unit-zero-H1). Suppose that P has a left unit and a left zero.

P = (okay ⇒ P)

Proof.

P [ assumption ( II D is left-unit)]

= II D ; P [ II D]

= ( true $ II ) ; P [design]

= ( okay ⇒ okay ′ ∧ II ) ; P [relational calculus]

= (¬ okay ; P ) ∨ ( II ; P ) [condition-right-unit]

= (¬ okay ; true ; P ) ∨ ( II ; P ) [assumption (true is left-zero)]

= ¬ okay ∨ ( II ; P ) [ II is left-unit for relations]

= ¬ okay ∨ P [propositional calculus]

= okay ⇒ P �

Lemma 9 (J -split). For all relations with okay and okay ′ in their alphabet,

P ; J = P f ∨ (P t ∧ okay ′)

Proof.

P ; J [J, with v ∈ αP \ { okay }]
= P ; (okay ⇒ okay ′) ∧ v ′ = v [propositional calculus]

= P ; (okay ⇒ okay ∧ okay ′) ∧ v ′ = v [propositional calculus]

= P ; (¬ okay ∨ okay ∧ okay ′) ∧ v ′ = v [relational calculus]

= P ; ¬ okay ∧ v ′ = v ∨ (P ; okay ∧ v ′ = v) ∧ okay ′ [right-one-point, twice]

= P f ∨ (P t ∧ okay ′) �

Theorem 1 (H2 equivalence). There are two equivalent ways of character-
ising H2-healthy relations.

(P = P ; J ) = [P f ⇒ P t ]

Proof.

(P = P ; J ) [J -split]

= (P = P f ∨ (P t ∧ okay ′)) [okay ′ split]

= (P = P f ∨ (P t ∧ okay ′))f ∧ (P = P f ∨ (P t ∧ okay ′))t [substitution]

= (P f = P f ∨ (P t ∧ false)) ∧ (P t = P f ∨ (P t ∧ true))
[propositional calculus]

= (P f = P f ) ∧ (P t = P f ∨ P t ) [reflection]

= (P t = P f ∨ P t)
[equality (mutual refinement) of programs, propositional calculus]

= [P f ⇒ P t ] �



372

Lemma 10 (J is H2). J is H2-healthy.

J = H2(J )

Proof.

H2(J ) [H2 and J -split]

= J f ∨ (J t ∧ okay ′) [J]

= (¬ okay ∧ II −okay
rel ) ∨ (okay ′ ∧ II −okay

rel ) [propositional calculus]

= (¬ okay ∨ okay ′) ∧ II −okay
rel [propositional calculus]

= (okay ⇒ okay ′) ∧ II −okay
rel [J]

= J �

Lemma 11 (H1-H2 is a design). If P is a relation that is both H1 and H2
healthy, then it can be expressed as the design ¬ P f $ P t .

Proof.

P [assumption: P is H1]

= okay ⇒ P [assumption: P is H2]

= okay ⇒ P ; J [J -splitting]

= okay ⇒ P f ∨ (P t ∧ okay ′) [propositional calculus]

= okay ∧ ¬ P f ⇒ okay ′ ∧ P t [design]

= ¬ P f $ P t �

Lemma 12 (Designs are H2). For all predicates P and Q that do not have
okay and okay ′ in their alphabets,

[ (P $ Q )f ⇒ (P $ Q )t ]

Proof.

(P $ Q )f [design]

= ( okay ∧ P ⇒ false ) [propositional calculus]

⇒ ( okay ∧ P ⇒ Q ) [design]

= (P $ Q )t �

Lemma 13 (external-choice-diverge). Provided P and Q are R1-healthy,

(P � Q)ff = (P f
f ∨ Q f

f ) � okay � (P f
f ∧ Q f

f )

Proof.

(P � Q)ff [external-choice]

Proofs of Lemmas and Theorems in the UTP



Proofs of Lemmas and Theorems in the UTP 373

= (CSP2(P ∧ Q � STOP � P ∨ Q))ff [CSP2-diverge]

= (P ∧ Q � STOP � P ∨ Q)ff [substitution]

= (P ∧ Q)ff � STOP f
f � (P ∨ Q)ff [conditional]

= (P f
f ∧ Q f

f ∧ STOP f
f ) ∨ ((P f

f ∨ Q f
f ) ∧ ¬ STOP f

f ) [STOP -diverge]

= (P f
f ∧ Q f

f ∧ R1(¬ okay)) ∨ ((P f
f ∨ Q f

f ) ∧ ¬ (R1(¬ okay)))

[assumption: P and Q are R1-healthy]

= (P f
f ∧ (R1(Q))ff ∧ R1(¬ okay)) ∨

(((R1(P))ff ∨ (R1(Q))ff ) ∧ ¬ (R1(¬ okay)))
[R1-wait , R1-okay ′, twice]

= (P f
f ∧ R1(Q f

f ) ∧ R1(¬ okay))
∨
((R1(P f

f ) ∨ R1(Q f
f )) ∧ ¬ (R1(¬ okay)))

[R1-extends-over-and, R1-disjunctive]

= (P f
f ∧ R1(Q f

f ) ∧ ¬ okay) ∨ (R1(P f
f ∨ Q f

f ) ∧ ¬ (R1(¬ okay)))

[R1-wait , R1-okay ′, R1-and-not-R1, propositional calculus]

= (P f
f ∧ (R1(Q))ff ∧ ¬ okay) ∨ R1((P f

f ∨ Q f
f ) ∧ okay)

[assumption: Q is R1-healthy, R1-extends-over-and]

= (P f
f ∧ Q f

f ∧ ¬ okay) ∨ R1(P f
f ∨ Q f

f ) ∧ okay

[R1-disjunctive, R1-wait , R1-okay ′, assumption: P and Q are R1-healthy]

= (P f
f ∧ Q f

f ∧ ¬ okay) ∨ ((P f
f ∨ Q f

f ) ∧ okay) [conditional]

= (P f
f ∨ Q f

f ) � okay � (P f
f ∧ Q f

f ) �

Lemma 14 (external-choice-precondition).

(¬ (P � Q)ff $ R ) = (¬ (P f
f ∨ Q f

f ) $ R )

Proof.

¬ (P � Q)ff $ R [design]

= okay ∧ ¬ (P � Q)ff ⇒ okay ′ ∧ R [external-choice-diverge]

= okay ∧ ¬ ((P f
f ∨ Q f

f ) � okay � (P f
f ∧ Q f

f )) ⇒ okay ′ ∧ R [not-conditional]

= okay ∧ (¬ (P f
f ∨ Q f

f ) � okay � ¬ (P f
f ∧ Q f

f )) ⇒ okay ′ ∧ R

[known-condition]

= okay ∧ ¬ (P f
f ∨ Q f

f ) ⇒ okay ′ ∧ R [design]

= ¬ (P f
f ∨ Q f

f ) $ R �

Lemma 15 (external-choice-converge).

(P � Q)tf = (P ∧ Q) � STOP � (P ∨ Q)tf
∨
(P ∧ Q) � STOP � (P ∨ Q)ff



374

Proof.

(P � Q)tf [external choice]

= (CSP2(P ∧ Q � STOP � P ∨ Q))tf [CSP2-converge]

= (P ∧ Q � STOP � P ∨ Q)tf ∨ (P ∧ Q � STOP � P ∨ Q)ff �

Lemma 16 (design-external-choice-lemma).

(¬ (P � Q)ff $ (P � Q)tf ) =
((¬ P f

f ∧ Q f
f ) $ ((P t

f ∧ Q t
f ) � tr ′ = tr ∧ wait ′ � (P t

f ∨ Q t
f )))

Proof.

¬ (P � Q)ff $ (P � Q)tf
[external-choice-diverge, design, known-condition, propositional calculus]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P � Q)tf [external-choice-converge]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P ∧ Q � STOP � P ∨ Q)tf ∨
(P ∧ Q � STOP � P ∨ Q)ff

[design, propositional calculus]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P ∧ Q � STOP � P ∨ Q)tf ∨
(¬ P f

f ∧ ¬ Q f
f ) $ (P ∧ Q � STOP � P ∨ Q)ff

[substitution]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P ∧ Q � STOP � P ∨ Q)tf ∨
(¬ P f

f ∧ ¬ Q f
f ) $ (P f

f ∧ Q f
f � STOP f

f � P f
f ∨ Q f

f )

[design, propositional calculus]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P ∧ Q � STOP � P ∨ Q)tf ∨
(¬ P f

f ∧ ¬ Q f
f ) $ false

[design-post-or]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P ∧ Q � STOP � P ∨ Q)tf ∨ false

[propositional calculus]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P ∧ Q � STOP � P ∨ Q)tf [substitution]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P t
f ∧ Q t

f � STOP t
f � P t

f ∨ Q t
f ) [STOP -converge]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P t
f ∧ Q t

f � CSP1(tr ′ = tr ∧ wait ′) � P t
f ∨ Q t

f )

[design-post-conditional-CSP1, assumption: P and Q R1-healthy]

= (¬ P f
f ∧ ¬ Q f

f ) $ (P t
f ∧ Q t

f � tr ′ = tr ∧ wait ′ � P t
f ∨ Q t

f ) �

Proofs of Lemmas and Theorems in the UTP



Library Block Specifications

The semantics of the Z functions for library blocks used in the specification of
the Ada function stubs are given here. First some auxiliary definitions are given.

min16 is the smallest signed 16-bit word (x**y is “x to the power y” with **
defined in the Z toolkit extension of the compliance tool).

max16 is the largest signed 16-bit word.

Z

min16 =̂ ∼(2 ∗∗ 15)

Z

max16 =̂ (2 ∗∗ 15) − 1

The function wrange limits its input to a signed 16-bit word.

Z

wrange : Z → Z

∀ x : Z •
(x < min16 ⇒ wrange(x) = min16) ∧
(min16 ≤ x ≤ max16 ⇒ wrange(x) = x) ∧
(max16 < x ⇒ wrange(x) = max16)

min32 is the smallest signed 32-bit longword.
Z

min32 =̂ ∼(2 ∗∗ 31)

max32 is the largest signed 32-bit longword.

Z

max32 =̂ (2 ∗∗ 31) − 1

The function lrange limits its input to a signed 32-bit longword.

Z

lrange : Z → Z

∀ x : Z •
(x < min32 ⇒ lrange(x) = min32) ∧
(min32 ≤ x ≤ max32 ⇒ lrange(x) = x) ∧
(max32 < x ⇒ lrange(x) = max32)



376

The function scale multiplies x and y and divides the result by z , limiting the
result to a word range. If the denominator is zero, the result is limited to the
smallest or largest word depending on the sign of multiplying x and y.

Z

∀ x, y, z : Z •
(z �= 0 ⇒ scale(x, y, z) = wrange((x ∗ y) intdiv z)) ∧
(z = 0 ∧ x ∗ y < 0 ⇒ scale(x, y, z) = min16) ∧
(z = 0 ∧ x ∗ y ≥ 0 ⇒ scale(x, y, z) = max16)

The function differentiator calculates the differential (rate of change) by mul-
tiplying the difference in x and y (current and previous input) by z (the gain).

Z

∀ x, y, z : Z • differentiator(x, y, z) = wrange(z ∗ (x − y))

The function integrator performs rectangular integration by adding the pre-
vious integral x to the new contribution formed from the current input y and
the gain z .

Z

∀ x, y, z : Z • integrator(x, y, z) = lrange(x + 2 ∗ z ∗ y)

Library Block Specifications



Library Block Specifications 377

S
C

D
IF

F
M

V
D

T
M

F
M

V
P

T
M

IN
T

IN
P

U
T

IN
T

R
E

S
LI

N
R

E
S

U
LI

N
R

E
S

F
M

V
F

T
M

F
M

V
E

R
1

F
M

V
E

R
2

S
IN

P
U

T
LI

M
IN

P

F
M

1M
N

F
M

1M
X

1

F
M

T
M

C
D

up
pe

r

U
pp

er

z1

U
ni

tD
el

ay
2

z1

U
ni

tD
el

ay
1

su
b

S
ub

sc
al

e

S
ca

le
5

sc
al

e

S
ca

le
4

sc
al

e

S
ca

le
3

sc
al

e

S
ca

le
2

sc
al

e

S
ca

le
1

2

S
M

P
ID

O

1

S
D

P
ID

O

50
0

S
C

F
P

R
P

50
0

S
C

F
P

R
F

12
50

S
C

F
IN

T

25

S
C

F
D

IF

lim
it2

Li
m

it2

lim
it1

Li
m

it1

in
te

gr
at

or

In
te

gr
at

or
20

48

IT
G

A
IN

di
ffe

re
nt

ia
to

r

D
iff

er
en

tia
to

r

1

D
F

M
V

G
P

1

D
F

M
V

G
D

25

D
F

G
A

IN

ad
d

A
dd

4

ad
d

A
dd

3

ad
d

A
dd

2

ad
d

A
dd

1

65
53

6

65
53

6

8

C
F

M
C

M
N

7

C
F

M
C

M
X

6

D
F

M
2M

X

5

D
F

M
2M

N

4

D
F

M
V

G
F

3

F
M

V
P

V

2

D
F

M
V

G
I

1

F
M

V
P

E

Fig. 1. General PID controller



378

References

1. M. Abadi and L. Lamport. The existence of refinement mapping. Theoretical
Computer Science, 83(2):253–284, 1991.

2. M. Abadi and L. Lamport. An old-fashioned recipe for real-time. In J. W.
de Bakker, C. Huizing, W. P. de Rover, and G. Rozenberg, editors, Real-
Time: Theory in Practice, volume 600 of Lecture Notes in Computer Science.
Springer-Verlag, 1992.

3. J-R. Abrial. The B-Book: Assigning Progams to Meanings. Cambridge University
Press, 1996.

4. J-R. Abrial, E. Börger, and H. Langmaack. Formal Methods for Industrial Ap-
plications: Specifying and Programming the Steam Boiler Control, volume 1165 of
Lecture Notes in Computer Science. Springer-Verlag, 1996.

5. Accellera. Property Specification Language Reference Manual, Version 1.1, 2004.
6. B. Alpern and F. B. Schneider. Verifying temporal properties without temporal

logic. ACM Transactions on Programming Languages and Systems, 11(1):147–167,
1989.

7. A. Alur and T. A. Henzinger. Real-time logics: complexity and expressiveness.
In 5th IEEE Symposium on Logic in Computer Science, page 390–401. IEEE
Computer Society, 1990.

8. R. Alur, C. Courcoubetis, and D. L. Dill. Model checking for real time systems.
In 5th IEEE Symposium on Logic in Computer Science, page 414–425. IEEE
Computer Society Press, 1990.

9. R. Alur and D. L. Dill. Automata for modelling real-time systems. In M. S.
Paterson, editor, ICALP 90: Automata, Languages and Programming, volume
443 of Lecture Notes in Computer Science, page 322–335. Springer-Verlag, 1990.

10. R. J. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno, D. Notkin, and
R. Reese. Model Checking Large Software Specifications. In 4th Symposium on
the Foundations of Software Engineering, page 156–166, 1996.

11. R. Arthan, P. Caseley, C. O’Halloran, and A. Smith. ClawZ: Control laws in Z.
In 3rd International Conference on Formal Engineering Methods, page 169–176.
IEEE Press, 2000.

12. N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings. Applying New
Scheduling Theory to Static Priority Pre-emptive Scheduling. Technical Report
RTRG/92/120, Department of Computer Science, University of York, 1992.

13. A. Avižienis. Fault-Tolerant Systems. IEEE Transactions on Software Engineer-
ing, C-25(12):1304–1312, 1976.

14. R. J. R. Back. Procedural Abstraction in the Refinement Calculus. Technical
report, Department of Computer Science, Åbo, Finland, 1987. Ser. A No. 55.

15. R. J. R. Back. A calculus of refinements for program derivations. Acta Informat-
ica, 25:593–624, 1988.

16. R. J. R. Back and J. Wright. Duality in Specification Languages: A Lattice-
theoretical Approach. Acta Informatica, 27(7):583 –625, 1990.

17. R. J. R. Back and J. Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

18. T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations in software
predicate abstraction. In 10th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, number 2988 in Lecture Notes in
Computer Science, page 388–403. Springer-Verlag, 2004.

Library Block Specifications



Library Block Specifications 379

19. T. Ball and S. K. Rajamani. Automatically Validating Temporal Safety Properties
of Interfaces. In SPIN 2001 Workshop on Model Checking of Software, number
2057 in Lecture Notes in Computer Science, page 103–122. Springer-Verlag, 2001.

20. A. Banerjee and D. Naumann. Representation independence, confinement and
access control. In Principles of Programming Languages, page 166–177, 2002.

21. J. Barnes. High Integrity Ada: The Spark Approach. Addison-Wesley, 1997.
22. G. Behrmann, A. David, and K. G. Larsen. A Tutorial on Uppaal. In M. Bernardo

and F. Corradini, editors, Formal Methods for the Design of Real-Time Sys-
tems: 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, number 3185 in Lecture Notes in Com-
puter Science, page 200–236. Springer-Verlag, 2004.

23. J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms, and Tools.
In Lecture Notes on Concurrency and Petri Nets, volume 3098 of Lecture Notes
in Computer Science. Springer-Verlag, 2004.

24. B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Sch-
noebelen, and P. McKenzie. Systems and Software Verification: Model-Checking
Techniques and Tools. Springer Verlag, 2001.

25. G. Bernat, A. Burns, and A. Welling. Portable worst-case execution time analysis
using Java byte code. In 6th Euromicro Conference on Real-Time Systems, 2000.

26. G. Bernat, A. Burns, and A. Wellings. JAVELIN: Worst-case execution time
analysis using an architectural neutral form. Technical report, Progress Report
on DERA Contract No. CSM/1254, 2000.

27. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In Tools and Algorithms for the Construction and Analysis of Systems, vol-
ume 1579 of Lecture Notes in Computer Science, page 193–207. Springer-Verlag,
1999.

28. R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, 1997.
29. N. S. Bjørner, Z. Manna, H. B. Sipma, and T. E. Uribe. Deductive verification of

real-time systems using STeP. In M. Bertran and T. Rus, editors, Transformation-
Based Reactive Systems Development, volume 1231 of Lecture Notes in Computer
Science, page 21–43. Springer-Verlag, 1997.

30. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Mon-
niaux, and X. Rival. A Static Analyzer for Large Safety-Critical Software. In
ACM SIGPLAN SIGSOFT Conference on Programming Language Design and
Implementation, page 196–207, 2003.

31. H. J. Boom. A Weaker Precondition for Loops. ACM Transactions on Program-
ming Languages and Systems, 4(4):668–677, 1982.

32. P. H. M. Borba, A. C. A. Sampaio, A. L. C. Cavalcanti, and M. L. Cornélio.
Algebraic Reasoning for Object-Oriented Programming. Science of Computer
Programming, 52:53–100, 2004.

33. P. H. M. Borba, A. C. A. Sampaio, and M. L. Cornélio. A Refinement Algebra for
Object-oriented Programming. In Luca Cardelli, editor, European Conference on
Object-oriented Programming 2003, volume 2743 of Lecture Notes in Computer
Science, page 457–482. Springer-Verlag, 2003.

34. R. E. Bryant. Graph-based algorithm for boolean function manipulation. IEEE
Transactions Computers, C(35):1035–1044, 1986.

35. R. E. Bryant and Y.-A. Chen. Verification of Arithmetic Circuits with Binary
Moments Diagrams. In 32nd ACM/IEEE Design Automation Conference, page
535–541, 1995.



380

36. J. R. Büchi. On a Decision Method in Restricted Second Order Arithmetic. In
E. Nagel, E. Suppes, and A. Tarski, editors, International Congress on Logic,
Method and Philosophy of Science 1960, page 1–12. Stanford University Press,
1962.

37. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic
Model Checking: 10 20 states and beyond. In 5th IEEE Symposium on Logic in
Computer Science, page 428–439. IEEE Computer Society Press, 1990.

38. A. Burns, R. Davis, and S. Punnekkat. Feasibility Analysis of Fault-Tolerant
Real-Time Task Sets. In Euromicro Workshop on Real-Time Systems, page 29–33,
1996.

39. A. Burns, J. Hooman, M. Jospeh, Z. Liu, K. Ramamritham, H. Schepers,
S. Schneider, and A. J. Wellings. Real-time systems: Specification, Verification
and analysis. Prentice Hall International, 1996.

40. A. Burns and A. Wellings. Advanced fixed priority scheduling. In M. Joseph,
editor, Real-Time Systems: Specification, Verification and Analysis, page 32–65.
Prentice Hall, 1996.

41. R. W. Butler and G. B. Finelli. The infeasibility of experimental quantification
of life-critical software reliability. IEEE Transactions on Software Engineering,
19(1):3–12, 1993.

42. C. c. Morgan and A. K. McIver. pGCL: Formal Reasoning for Random Algo-
rithms. South African Computer Journal, 22, 1999. Appears in part at [181,
Chap. 1].

43. S. Campos and E. Clarke. The Verus language: representing time efficiently
with BDDs. In AMAST Workshop on Real-Time-Systems, Concurrent and Dis-
tributed Software, volume 1231 of Lecture Notes in Computer Science, page 64–78.
Springer-Verlag, 1997.

44. S. Campos, E. Clarke, W. Marrero, M. Minea, and H. Hiraishi. Computing Quan-
titative Characteristics of Finite-State Real-Time Systems. In IEEE Real-Time
Systems Symposium, 1994.

45. S. Campos, E. Clarke, and M. Minea. Symbolic Techniques for Formally Verifying
Industrial System. Science of Computer Programming, 29(1–2):79–98, 1997.

46. F. Castor and P.H. M. Borba. A Language for Specifying Java Transformations.
In 5th Brazilian Symposium on Programming Languages, page 236–251, 2001.

47. A. L. C. Cavalcanti, P. Clayton, and C. O’Halloran. Control Law Diagrams in
Circus. In J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM 2005: Formal
Methods, volume 3582 of Lecture Notes in Computer Science, page 253 –268.
Springer-Verlag, 2005.

48. A. L. C. Cavalcanti and D. A. Naumann. A Weakest Precondition Semantics
for Refinement of Object-oriented Programs. IEEE Transactions on Software
Engineering, 26(8):713–728, 2000.

49. A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data refinement
of classes. In L. Eriksson and P. A. Lindsay, editors, FME 2002: Formal Methods
— Getting IT Right, volume 2391 of Lecture Notes in Computer Science, page
471–490. Springer-Verlag, 2002.

50. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. An Inconsistency
in Procedures, Parameters, and Substitution the Refinement Calculus. Science of
Computer Programming, 33(1):87–96, 1999.

51. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146–181, 2003.

52. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Unifying Classes
and Processes. Software and System Modelling, 4(3):277–296, 2005.

Library Block Specifications



Library Block Specifications 381

53. K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley Publishing Company, 1988.

54. H. Chen, D. Dean, and D. Wagner. Model Checking One Million Lines of C
Code. In 11th Annual Symposium on Network and Distributed System Security,
page 171–185, 2004.

55. Y. Chen and Z. Liu. From Durational Specifications to TLA Designs of Timed Au-
tomata. In 6th International Conference on Formal Engineering Methods, volume
3308 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

56. Y. Chen and Z. Liu. Integrating Temporal Logics. In E. A. Boiten, J. Derrick,
and G. Smith, editors, 4th International Conference on Integrated Formal Meth-
ods, volume 2999 of Lecture Notes in Computer Science, page 402–420. Springer-
Verlag, 2004.

57. Y. Choueka. Theories of automata on ω-tapes: a simplified approach. Journal of
Computing Systems, 8:117–141, 1974.

58. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV Version 2: An OpenSource Tool for
Symbolic Model Checking. In International Conference on Computer-Aided Ver-
ification, volume 2404 of Lecture Notes in Computer Science. Springer-Verlag,
2002.

59. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Sym-
bolic Model Verifier. In N. Halbwachs and D. Peled, editors, 11th Conference on
Computer-Aided Verification, number 1633 in Lecture Notes in Computer Science,
page 495–499. Springer-Verlag, 1999.

60. E. Clarke and I. A. Draghicescu. Expressibility results for linear-time and
branching-time logics. In REX Workshop 1988, volume 354 of Lecture Notes
in Computer Science, page 428–437. Springer-Verlag, 1989.

61. E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified approach for show-
ing language containment and equivalence between various types of ω-automata.
In A. Arnold and N. D. Jones, editors, 15th Colloquium on Trees in Algebra and
Programming, volume 431 of Lecture Notes in Computer Science. Springer-Verlag,
1990.

62. E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skele-
tons for Branching Time Temporal Logic. In Logics of Programs: Workshop,
volume 131 of Lecture Notes in Computer Science, page 52–71. Springer Verlag,
1981.

63. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programmings Languages and Systems, 8(2):244–263, 1986.

64. E. M. Clarke, O. Grumberg, H. Hirashi, S. Jha, D. Long, and K. L. McMillan.
Verification of the Future-Bus+ Cache Coherence Protocol. Formal Methods in
Systems Design, 6(2):217–232, 1995.

65. E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. Efficient generation of
counterexamples and witnesses in symbolic model checking. In 32nd ACM/IEEE
Design Automation Conference, 1995.

66. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
67. E. M. Clarke, M. Khaira, and X. Zhao. Word-Level Model Checking - Avoiding

the Pentium FDIV error. In 33rd ACM/IEEE Design Automation Conference,
page 645–648, 1996.

68. E. M. Clarke, D. Kroening, J. Ouaknine, and O. Strichman. Computational
challenges in bounded model checking. International Journal on Software Tools
for Technology Transfer, 7(2), 2005.



382

69. Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SA-
TABS: SAT-based Predicate Abstraction for ANSI-C. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 3440 of Lecture Notes in
Computer Science, page 570–574. Springer-Verlag, 2005.

70. J. Coenen and J. Hooman. Parameterized semantics for fault-tolerant real-time
systems. In J. Vytopil, editor, Formal Techniques in Real-Time and Fault Tolerant
Systems, page 51–78. Kluwer Academic Publishers, 1993.

71. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, and Robby
and H. Zheng. Bandera: extracting finite-state models from Java source code. In
International Conference on Software Engineering, page 439–448, 2000.

72. M. L. Cornélio. Object-Oriented Refactorings and Patterns as Formal Refine-
ments. PhD thesis, Centro de Informática, Universidade Federal de Pernambuco,
2004.

73. M. L. Cornélio, A. L. C. Cavalcanti, and A. C. A. Sampaio. Refactoring by
Transformation. In REFINE’2002, volume 70 of Eletronic Notes in Theoretical
Computer Science, page 641–660, 2002. Invited paper.

74. P. Cousot. Handbook of theoretical computer science, volume B, chapter Methods
and logics for proving programs, page 841–993. Elsevier Science Publishers, j. van
leeuwen edition, 1990.

75. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
4th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, page 238–252, 1977.

76. F. Cristian. A rigorous approach to fault-tolerant programming. IEEE Transac-
tions on Software Engineering, SE-11(1):23–31, 1985.

77. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1992.

78. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397, 1962.

79. M. Davis and H. Putnam. A Computing Procedure for Quantification Theory.
Journal of the ACM, 7(3):201–215, 1960.

80. D. Déharbe, S. Shankar, and E. Clarke. Model Checking VHDL with CV. In
Formal Methods in Circuit Automation Design, number 1522 in Lecture Notes in
Computer Science. Springer-Verlag, 1998.

81. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
82. D. Distefano. On model-checking the dynamics of object-based software: a foun-

dational approach. PhD thesis, University of Twente, 2003.
83. S. Dunne. Recasting Hoare and He’s Unifying Theories of Programs in the Context

of General Correctness. In A. Butterfield and C. Pahl, editors, 5th Irish Workshop
in Formal Methods, BCS Electronic Workshops in Computing, 2001.

84. E. A. Emerson. Handbook of theoretical computer science, volume B, chapter
Temporal and modal logic, page 995–1072. Elsevier Science Publishers, j. van
leeuwen edition, 1990.

85. E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative Tempo-
ral Reasoning. In 2nd International Workshop on Computer Aided Verification,
number 531 in Lecture Notes in Computer Science, page 136–145. Springer-Verlag,
1990.

86. U. Engberg, P. Grønning, and L. Lamport. Mechanical Verification of Concurrent
Systems with TLA. In G. Bochmann, editor, 4th International Conference on
Computer Aided Verification, volume 663 of Lecture Notes in Computer Science,
page 44–55. Springer-Verlag, 1992.

Library Block Specifications



Library Block Specifications 383

87. K. Etessami and G. J. Holzmann. Optimising Büchi automata. In Concurrency
Theory: 11th International Conference, volume 1877 of Lecture Notes in Computer
Science. Springer-Verlag, 2000.

88. J.-L. Fauquembergue, G. Kahn, W. Kubbat, S. Levedag, J.-L. Lions, L. Lübeck,
L. Mazzini, D. Merle, and C. O’Halloran. Ariane 5 Flight 501 Failure Report.
Technical report, Board of Inquiry, ESA, 1996.

89. Y. A. Feldman. A Decidable Propositional Dynamic Logic with Explicit Proba-
bilities. Information and Control, 63:11–38, 1984.

90. Y. A. Feldman and D. Harel. A Probabilistic Dynamic Logic. Journal of Com-
puting and System Sciences, 28:193–215, 1984.

91. C. J. Fidge and A. J. Wellings. An action-based formal model for concurrent,
real-time systems. Formal Aspects of Computing, 9(2):175–207, 1997.

92. C. Fischer and H. Wehrheim. Model-Checking CSP-OZ Specifications with FDR.
In K. Araki, A. Galloway, and K. Taguchi, editors, 1st International Conference
on Integrated Formal Methods, page 315–334. Springer-Verlag, 1999.

93. L. Fix and F. B. Schneider. Reason about programs by exploiting the environ-
ment. Technical Report TR94-1409, Department of Computer Science, Cornell
University, 1994.

94. M. Fowler. Refactoring. Addison-Wesley, 1999.
95. J. Fröβl, J. Gerlach, and T. Kropf. An efficient algorithm for real-time model

checking. In European Design and Test Conference, page 15–21, 1996.
96. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements

of Reusable Object-Oriented Software. Addison-Wesley, 1995.
97. P. H. B. Gardiner and C. C. Morgan. Data Refinement of Predicate Transformers.

Theoretical Computer Science, 87:143 –162, 1991.
98. P. Gastin and D. Oddoux. Fast LTL to Büchi Automata Translation. In Computer

Aided Verification: 13th International Conference, number 2102 in Lecture Notes
in Computer Science. Springer-Verlag, 2000.

99. R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple On-The-Fly Automatic
Verification of Linear Temporal Logic. In Chapman & Hall, editor, IFIP/WG1.6
Symposium on Protocol Specification, Testing, and Verification, page 3–18, 1995.

100. P. Gniesel and H. Koch. Static Composition of Refactorings. Science of Computer
Programming, 52:9–51, 2004.

101. M. Goldsmith and P. Whittaker. A CSP front-end for probabilistic tools. Tech-
nical report, Deliverable D14, FORWARD Project, 2005.

102. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

103. S. Gottwald. Many-valued Logic. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Stanford University, 2004.

104. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In 9th In-
ternational Conference on Computer-Aided Verification, number 1254 in Lecture
Notes in Computer Science, page 72–83. Springer-Verlag, 1997.

105. G. Grimmett and D. Welsh. Probability: an Introduction. Oxford Science Publi-
cations, 1986.

106. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logics. Foundations of Computing
Series. MIT press, 2000.

107. S. Hart, M. Sharir, and A. Pnueli. Termination of Probabilistic Concurrent Pro-
grams. ACM Transactions on Programming Languages and Systems, 5:356–380,
1983.



384

108. J. Hatcliff, M. B. Dwyer, and Robby. Bogor: An Extensible Framework for
Domain-Specific Model Checking. Newsletter of European Association of Soft-
ware Science and Technology, 2004.

109. K. Havelund and T. Pressburger. Model Checking Java Programs Using Java
PathFinder. International Journal on Software Tools for Technology Transfer,
2(4), 2000.

110. T. Henzinger, Z. Manna, and A. Pnueli. Temporal proof methodologies for timed
transition systems. Information and Computation, 112(2):273–337, 1994.

111. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software Verification
with Blast. In 10th SPIN Workshop on Model Checking Software, number 2648
in Lecture Notes in Computer Science, page 235–239. Springer-Verlag, 2003.

112. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model checking
for Real-Time Systems. Information and Computation, 111:193–244, 1994.

113. W. M. Ho, J. M. Jzquel, A. L. Guennec, and F. Pennaneac’h. UMLAUT: An
Extendible UML Transformation Framework. In 14th IEEE International Con-
ference on Automated Software Engineering, 1999.

114. C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM, 12:576–580, 1969.

115. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

116. C. A. R. Hoare et al. Laws of Programming. Communications of the ACM,
30(8):672–686, 1987.

117. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall,
1998.

118. G. J. Holzmann. An Analysis of Bit-State Hashing. In Chapman & Hall, edi-
tor, IFIP/WG1.6 Symposium on Protocol Specification, Testing, and Verification,
page 301–314, 1995.

119. G. J. Holzmann. State Compression in SPIN: Recursive Indexing and Compres-
sion Training Runs. In Third SPIN Workshop, 1997.

120. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, 1997.

121. G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. In
2nd SPIN Workshop, number 32 in DIMACS, page 23–32. Rutgers University,
1996.

122. G. J. Holzmann and M. H. Smith. Software Model Checking: Extracting veri-
fication models from source code. Software Testing Verification and Reliability,
11(2):65–79, 2001.

123. J. Hooman. Specification and Compositional Verification of Real-Time Systems,
volume 558 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

124. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1):26–60,
1990.

125. J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, Computing
Laboratory, 2002.

126. T. Janowski and M. Joseph. Dynamic scheduling in the presence of faults: speci-
fication and verification. In B. Jonsson and J. Parrow, editors, 4th International
Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems, vol-
ume 1135 of Lecture Notes in Computer Science, page 279–298. Springer-Verlag,
1996.

127. T. Janowski and M. Joseph. Dynamic scheduling and fault-tolerance: Specification
and verification. Real-Time Systems, 20(1):51–81, 2001.

Library Block Specifications



Library Block Specifications 385

128. He Jifeng and J. Bowen. Specification, Verification, and Prototyping of an Opti-
mized Compiler. Formal Aspects of Computing, 6:643–658, 1994.

129. He Jifeng, Z. Liu, X. Li, and S. Qin. A relational model of object oriented pro-
grams. In 2nd Asian Symposium on Programming Languages and Systems, volume
3302 of Lecture Notes in Computer Science. Springer-Verlag, 2004.

130. He Jifeng, Z. Liu, and S. Qin. A Relational Model for Object-Oriented Design.
Technical report, UNU-IIST, 2005.

131. He Jifeng, K. Seidel, and A. K. McIver. Probabilistic Models for the Guarded
Command Language. Science of Computer Programming, 28:171–192, 1997. Ap-
pears in part at [181, Chap. 5].

132. C. Jones. Probabilistic Nondeterminism. PhD thesis, Edinburgh University, 1990.
133. C. Jones and G. Plotkin. A Probabilistic Powerdomain of Evaluations. In 4th

IEEE Symposium on Logic in Computer Science, page 186–195. Computer Society
Press, 1989.

134. C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Inter-
national, 1986.

135. M. Joseph and A. Goswami. What’s ‘Real’ about Real-time Systems? In IEEE
Real-time Systems Symposium, page 78–85. IEEE Computer Society Press, 1988.

136. M. Joseph and P. Pandya. Finding Response Times in a Real-time System. Com-
puter Journal, 29(5):390–395, 1986.

137. R. Keller. Formal verification of parallel programs. Communication of the ACM,
19(7):371–384, 1976.

138. D. Knuth. Literate Programming. Computer Journal, 17, 1984.
139. R. Koymans. Specifying message passing and Time-critical systems with temporal

logic. PhD thesis, Eindhoven University of Technology, 1989.
140. D. Kozen. A probabilistic PDL. Journal of Computing and System Sciences,

30(2):162–178, 1985.
141. R. P. Kurshan. Computer-Aided Verification of Coordinating Processes — The

Automata-Theoretic Approach. Princeton University Press, 1995.
142. L. Lamport. What good is temporal logic. In R. W. Mason, editor, IFIP 9th

World Congress, page 657–668. North-Holland, 1983.
143. L. Lamport. Hybrid systems in TLA+. In R. L. Grossman, A. Nerode, A. P.

Ravn, and H. Rischel, editors, Hybrid Systems, volume 736 of Lecture Notes in
Computer Science, page 77–102. Springer-Verlag, 1993.

144. L. Lamport. The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872–923, 1994.

145. L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Pearson Education, Inc., 2002.

146. L. Lamport and S. Merz. Specifying and Verifying Fault-Tolerant Systems. In
H. Langmaak, W. P. de Roever, and J. Vytopil, editors, 3rd International Sym-
posium on Formal Techniques in Real-Time and Fault Tolerant Systems, volume
863 of Lecture Notes in Computer Science, page 41–76. Springer-Verlag, 1994.

147. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problems. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

148. K. G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Informa-
tion and Computation, 94(1):1–28, 1991.

149. D. Lehmann and M. O. Rabin. On the Advantages of Free Choice: a Symmetric
and Fully-Distributed Solutionto the Dining Philosophers Problem. In A. W.
Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R. Hoare, page
333–352. Prentice-Hall, 1984.



386

150. J. Lehoczky, L. Sha, and Y. Ding. The Rate-monotonic Scheduling Algo-
rithms: Exact characterisation and average case behaviour. In 10th IEEE Real-
time Systems Symposium, page 261–270. IEEE Computer Society Press, 1989.

151. K. R. M. Leino. Recursive Object Types in a Logic of Object-oriented Program-
ming. In C. Hankin, editor, 7th European Symposium on Programming, volume
1381 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

152. N. Leveson. Safeware. Addison-Wesley, 1995.
153. N. Leveson, M. Heimdahl, H. Hildreth, and J. Reese. Requirements specification

for Process-Control Systems. IEEE Transactions on Software Engineering, 20(9),
1994.

154. X. Li, Z. Liu, J. He, and Q. Long. Generating prototypes from a UML Model of
requirements. In International Conference on Distributed Computing and Internet
Technology, volume 3407 of Lecture Notes in Computer Science. Springer-Verlag,
2004.

155. J. Lilius and I. P. Paltor. vUML: A Tool for Verifying UML Models. In
14th IEEE International Conference on Automated Software Engineering, page
255–258, 1999.

156. B. O. Lira, A. L. C. Cavalcanti, and A C. A. Sampaio. Automation of a Normal
Form Reduction Strategy for Object-oriented Programming. In 5th Brazilian
Workshop on Formal Methods, page 193–208, 2002.

157. B. Littlewood and L. Strigini. Validation of Ultrahigh dependability for software-
based systems. Communications of the ACM, 36(11):69–80, 1993.

158. C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. Journal of the ACM, 20(1):40–61, 1973.

159. Z. Liu. Fault-Tolerant Programming by Transformations. PhD thesis, Department
of Computer Science, University of Warwick, 1991.

160. Z. Liu, J. He, and X. Li. rCOS: Refinement of object-oriented and component
systems. In International Symposium on Formal Methods of Component and
Object Systems, volume 2937 of Lecture Notes in Computer SCience. Springer-
Verlag, 2004.

161. Z. Liu, J. He, X. Li, and Y. Chen. A relational model for object-oriented re-
quirement analysis in UML. In International Conference on Formal Engineering
Methods, volume 2885 of Lecture Notes in Computer Science. Springer-Verlag,
2003.

162. Z. Liu and M. Joseph. Transformation of Programs for Fault-Tolerance. Formal
Aspects of Computing, 4(5):442–469, 1992.

163. Z. Liu and M. Joseph. Specifying and Verifying Recovery in Asynchronous Com-
municating Systems. In J. Vytopil, editor, Formal Techniques in Real-Time and
Fault Tolerant Systems, page 137–166. Kluwer Academic Publishers, 1993.

164. Z. Liu and M. Joseph. Stepwise Development of Fault-Tolerant Reactive Systems.
In H. Langmaack, W. P. de Roever, and J. Vytopil, editors, 3rd International Sym-
posium on Formal Techniques in Real-Time and Fault Tolerant Systems, volume
863 of Lecture Notes in Computer Science, page 529–546. Springer-Verlag, 1994.

165. Z. Liu and M. Joseph. Verification of Fault-Tolerance and Real-Time. In 26th
Annual International Symposium on Fault-Tolerant Computing, page 220–229.
IEEE Computer Society, 1996.

166. Z. Liu and M. Joseph. Formalizing Real-Time Scheduling as Program Refinement.
In M. Bertran and T. Rus, editors, Transformation-Based Reactive Systems De-
velopment, volume 1231 of Lecture Notes in Computer Science, page 294–309.
Springer-Verlag, 1997.

Library Block Specifications



Library Block Specifications 387

167. Z. Liu and M. Joseph. Specification and Verification of Fault-tolerance, Tim-
ing and Scheduling. ACM Transactions on Languages and Systems, 21(1):46–89,
1999.

168. Z. Liu and M. Joseph. Verification, Refinement and Scheduling of Real-Time
Programs. Theoretical Computer Science, 253(1), 2001.

169. Z. Liu, M. Joseph, and T. Janowski. Verification of schedulability of real-time
programs. Formal Aspects of Computing, 7(5):510–532, 1995.

170. Z. Liu, A. P. Ravn, and X. Li. Unifying Proof Methodologies of Duration calculus
and Linear Temporal Logic. Formal Aspects of Computing, 16(2), 2004.

171. Q. Long, Z. Liu, He Jifeng, and X. Li. Consistent Code Generation from UML
Models. In Australia Conference on Software Engineering. IEEE Computer Sci-
enty Press, 2005.

172. G. Lowe. Probabilities and Priorities in Timed CSP. PhD thesis, Oxford Univer-
sity Computing Laboratory, 1993.

173. G. Lowe and H. Zedan. Refinement of complex systems: A case study. Technical
Report PRG-TR-2-95, Oxford University Computing Laboratory, 1995.

174. I. Lynce and J. P. Marques-Silva. Building State-of-the-Art SAT Solvers. In
European Conference on Artificial Intelligence, page 166–170, 2002.

175. G. S. Avrunin M. B. Dwyer and J. C. Corbett. Patterns in Property Specifica-
tions for Finite-state Verification. In 21st International Conference on Software
Engineering, page 411–420, 1999.

176. Z. Manna and A. Pnueli. The temporal framework for concurrent programs.
In R. S. Boyer and J. S. Moore, editors, The Correctness Problem in Computer
Science, page 215–274. Academic Press, 1981.

177. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer-Verlag, 1991.

178. J. P. Marques-Silva and K. A. Sakallah. GRASP: A Search Algorithm for Propo-
sitional Satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

179. A. K. McIver and C. C. Morgan. Probabilistic Predicate Transformers: part 2.
Technical Report PRG-TR-5-96, Programming Research Group, 1996. Appears
revised at [181, Chap. 8].

180. A. K. McIver and C. C. Morgan. Partial Correctness for Probabilistic Demonic
Programs. Technical Report PRG-TR-35-97, Programming Research Group,
1997.

181. A. K. McIver and C. C. Morgan. Abstraction, Refinement and Proof for Prob-
abilistic Systems. Technical Monographs in Computer Science. Springer-Verlag,
2004.

182. A. K. McIver, C. C. Morgan, and T. Son Hoang. Probabilistic Termination in
B. In Formal Specification and Development in Z and B, volume 2651 of Lecture
Notes in Computer Science, page 216–239. Springer-Verlag, 2003.

183. A. K. McIver, C. C. Morgan, and E. Troubitsyna. The Probabilistic Steam
Boiler: a Case Study in Probabilistic Data Refinement. In International Refine-
ment Workshop. Springer Verlag, 1998. Also appears at [181, Chap. 4].

184. K. McMillan. Symbolic Model Checking: an approach to the state explosion prob-
lem. PhD thesis, Carnegie Mellon University, 1992. Technical Report CMU-CS-
92-131.

185. K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
186. K. L. McMillan and J. Schwalbe. Shared Memory Multi-Processing, chapter

Formal Verification of the Gigamax Cache Coherency Protocol. MIT Press,
1992.



388

187. A. Mikhajlova and E. Sekerinski. Class refinement and Interface refinement in
Object-oriented Programs. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
Industrial Benefit of Formal Methods, volume 1313 of Lecture Notes in Computer
Science, page 82–101. Springer-Verlag, 1997.

188. A. R. G. Milner. Calculus of communicating systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

189. R. Milner. Communication and concurrency. Prentice Hall, 1989.
190. M. Mislove. Nondeterminism and probabilistic choice: Obeying the laws. In

CONCUR 2000, page 350–364, 2000.
191. A. Moitra and M. Joseph. Cooperative recovery from faults in distributed pro-

grams. In R. W. Mason, editor, IFIP 9th World Congress, page 481–486. North-
Holland, 1983.

192. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
193. C. C. Morgan. Proof Rules for Probabilistic Loops. In He Jifeng, J. Cooke, and

P. Wallis, editors, BCS-FACS 7th Refinement Workshop, Workshops in Comput-
ing. Springer Verlag, 1996. http://www.springer.co.uk/ewic/workshops/7RW.

194. C. C. Morgan. The Generalised Substitution Language Extended to Probabilistic
Programs. In 2nd International B Conference, volume 1393 of Lecture Notes in
Computer Science. Springer-Verlag, 1998.

195. C. C. Morgan. Of probabilistic wp and CSP — and compositionality. In A. E.
Abdallah, C. B. Jones, and J. W. Jones, editors, 25 Years and CSP. Springer-
Verlag, 2005.

196. C. C. Morgan and A. K. McIver. Abstraction and refinement in probabilistic
systems. ACM SIGMETRICS Performance Evaluation Review, 32(4):41–47, 2005.

197. C. C. Morgan, A. K. McIver, and K. Seidel. Probabilistic Predicate Transformers.
ACM Transactions on Programming Languages and Systems, 18(3):325–353, 1996.
Also appears at [181, Chap. 5].

198. C. C. Morgan, A. K. McIver, K. Seidel, and J. W. Sanders. Refinement-Oriented
Probability for CSP. Formal Aspects of Computing, 8(6):617–647, 1996.

199. J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming
Calculus. Science of Computer Programming, 9(3):287–306, 1987.

200. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engi-
neering an efficient SAT solver. In Design Automation Conference, page 530–535,
2001.

201. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

202. J. von Neumann. Probabilistic Logics and the Synthesis of Reliable Organisms
from Unreliable Components. In C. E. Shannon and J. Macarthy, editors, In
Automata Studies, page 43–98. Princeton University Press, 1956.

203. T. Nipkow. Hoare Logics in Isabelle/HOL. In H. Schwichtenberg and
R. Steinbrüggen, editors, Proof and System-Reliability, page 341–367. Kluwer,
2002.

204. J. Nordahl. Specification and Design of Dependable Communicating Systems. PhD
thesis, Department of Computer Science, Technical University of Denmark, 1992.

205. P. Nuemann. Computer Related Risks. addison-Wesley, 1995.
206. C. O’Halloran, R. Arthan, and D. King. Using a formal specification contractually.

Formal Aspects of Computing, 9(4), 1997.
207. C. O’Halloran, C. T. Sennett, and A. Smith. Specification of the

compliance notation for Spark and Z, (3 volumes). Technical Report
DRA/CIS/CSE3/TR/94/27/1.2, DRA Malvern, 1994.

Library Block Specifications



Library Block Specifications 389

208. W. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis, University of
Illinois at Urban Champaign, 1992.

209. J. P. Kes P. Garbett, M. Shackleton, and S. Anderson. Secure synthesis of
code: a process improvement experiment. In J. M. Wing, J. C. P. Woodcock,
and J. Davies, editors, FM’99: World Congress on Formal Methods, volume 1709
of Lecture Notes in Computer Science, page 1816–1835. Springer-Verlag, 1999.

210. D. Parker, G. Norman, and M. Kwiatkowska. PRISM 2.0 Users’ Guide. Technical
Report DRA/CIS/CSE3/TR/94/27/1.2, GraphPad Software, 2004.

211. D. Peled. Combining Partial-Order Reduction with On-The-Fly Model Checking.
In 6th International Conference on Computer-Aided Verification, volume 818 of
Lecture Notes in Computer Science, page 377–390. Springer-Verlag, 1994.

212. M. Pilling, A. Burns, and K. Raymond. Formal specification and proofs of in-
heritance protocols for real-time scheduling. Software Engineering Journal, 5(5),
1990.

213. G. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, AArhus University, Computer Science Department, 1981.

214. A. Pnueli. The temporal logic of programs. In 18th IEEE Symposium on Foun-
dations in Computer Science, page 46–57, 1977.

215. A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: A survey of current trends. In J. W. de Bakker, W. P. de Roever,
and G. Rozenberg, editors, Current Trends in Concurrency, volume 224 of Lecture
Notes in Computer Science, page 510–584. Springer-Verlag, 1986.

216. A. Pnueli and E. Harel. Applications of temporal logic to the specification of
real-time systems. In M. Joseph, editor, 1st International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 331 of Lecture Notes
in Computer Science, page 84–98. Springer-Verlag, 1988.

217. S. Qin, J. S. Dong, and W. N. Chin. A Semantic Foundation for TCOZ in
Unifying Theories of Programming. In K. Araki, S. Gnesi, and D. Mandrioli,
editors, Formal Methods, volume 2805 of Lecture Notes in Computer Science,
page 321–340. Springer-Verlag, 2003.

218. J.-P. Queille and J. Sifakis. Specification and Verification of Concurrent Systems
in CESAR: an Example. Technical report, IMAG-Universite Joseph Fourier, 1981.
254.

219. M. O. Rabin. The Choice-Coordination Problem. Acta Informatica,
17(2):121–134, 1982.

220. R. Ramos, A. C. A. Sampaio, and A. Mota. A Semantics for UML-RT Active
Classes via Mapping into Circus. In IFIP Conference on Formal Methods for Open
Object-based Distributed Systems, Lecture Notes in Computer Science, page 1–16.
Springer-Verlag, 2005.

221. B. Randell. System Structure for Software Fault Tolerance. IEEE Transactions
on Software Engineering, SE-1(2):220–232, 1975.

222. B. Randell, P. A. Lee, and P. C. Treleaven. Reliability Issues in Computing
Systems Design. Computing Survey, 10(2):123–165, 1978.

223. A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying requirements
of real-time systems. IEEE Transactions on Software Engineering, 19(1):41–55,
1993.

224. D. Roberts. Practical Analysis for Refactoring. PhD thesis, University of Illinois
at Urban Champaign, 1999.

225. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.



390

226. A. W. Roscoe and C. A. R. Hoare. The Laws of occam Programming. Theoretical
Computer Science, 60(2):177–229, 1988.

227. J. Ruf and T. Kropf. Symbolic model checking for a discrete clocked temporal logic
with intervals. In Advances in Hardware Design and Verification –International
Conference on Correct Hardware and Verification Methods, page 146–163, 1997.

228. A. C. A. Sampaio. An Algebraic Approach to Compiler Design, volume 4 of
AMAST Series in Computing. World Scientific, 1997.

229. A. C. A. Sampaio, A. Mota, and R. Ramos. Class and Capsule Refinement in
UML for Real Time. In Workshop on Formal Methods, volume 95 of Electronic
Notes in Theoretical Computer Science, page 23–51, 2004.

230. A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in
Circus. In L. Eriksson and P. A. Lindsay, editors, Formal Methods — Getting IT
Right, volume 2391 of Lecture Notes in Computer Science, page 451–470. Springer-
Verlag, 2002.

231. H. Schepers and R. Gerth. A compositional proof theory for fault-tolerant real-
time systems. In 12th Symposium on Reliable Distributed Systems, page 34–43.
IEEE Computer Society Press, 1993.

232. R. D. Schlichting and F. B. Schneider. Fail-stop processors: an approach to design-
ing fault tolerant computing systems. ACM Transactions on Computer Systems,
1(3):222–238, 1983.

233. D. A. Schmidt. Denotational Semantics. A Methodology for Language Develop-
ment. Allyn and Bacon, Inc, 1986.

234. K. Seidel. Probabilistic Communicating Processes. PhD thesis, Oxford University,
1992.

235. K. Seidel, C. C. Morgan, and A. K. McIver. An Introduction to Probabilistic
Predicate Transformers. Technical Report PRG-TR-6-96, Programming Research
Group, 1996. Also appears in part at [181, Chap. 1].

236. C. T. Sennet. Demonstrating the Compliance of Ada Programs with Z Speci-
fications. In C. B. Jones, R. C. Shaw, and T. Denvir, editors, 5th Refinement
Workshop, Workshops in Computing, page 70–87. Prentice-Hall, 1992.

237. S. Seres, J. Michael Spivey, and C. A. R. Hoare. Algebra of Logic Programming.
In International Conference on Logic Programming, page 184–199, 1999.

238. M. Sharir, A. Pnueli, and S. Hart. Verification of Probabilistic Programs. Science
of Computer Programming, 13(2):292–314, 1984.

239. W. Shen, K. Compton, and J. Huggins. A toolset for supporting UML static and
dynamic model checking. In Computer Software and Applications Conference,
page 147–152, 2002.

240. A. Sherif and He Jifeng. Towards a Time Model forCircus. In International
Conference in Formal Engineering Methods, page 613–624, 2002.

241. U. Shrotri, P. Bhaduri, and R. Venkatesh. Model checking visual specification of
requirements. In International Conference on Software Engineering and Formal
Methods, page 202–209. IEEE Computer Society Press, 2003.

242. L. Silva, A. C. A. Sampaio, and E. Barros. A Constructive Approach to Hard-
ware/Software Partitioning. Formal Methods in System Design, Kluwer, 24:45–90,
2004.

243. F. Somenzi. CUDD: CU Decision Diagram Package, 1998. University of Colorado
at Boulder.

244. F. Somenzi and R. Bloem. Efficient Büchi Automata from LTL Formulae. In
12th International Conference on Computer Aided Verification, volume 1855 of
Lecture Notes in Computer Science, page 248–263. Springer-Verlag, 2000.

Library Block Specifications



Library Block Specifications 391

245. R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

246. A. Tarski. A Lattice Theoretical Fixed Point Theorem and its Applications.
Pacific Journal of Mathematics, 5, 1955.

247. R. Tix, K. Keimel, and G. Plotkin. Semantic domains for combining proba-
bility and non-determinism. Electronic Notes in Theoretical Computer Science,
129:1–104, 2005.

248. R. J. van Glabbeek, S. A. Smolka, B. Steffen, and C. Tofts. Reactive, Generative
and Stratified Models of Probabilistic Processes. In IEEE Symposium on Logic
in Computer Science, 1990.

249. M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic
Program Verification. In 1st IEEE Symposium on Logic in Computer Science,
page 322–331, 1986.

250. H. Wang. Reflections on Kurt Gödel. MIT Press, 2nd edition, 1988.
251. R. A. Weaver and T. P. Kelly. The Goal Structuring Notation - A Safety Argument

Notation. In Dependable Systems and Networks 2004 Workshop on Assurance
Cases, 2004.

252. E. V. Whiting and M. G. Hill. Safety Analysis of Hawk in Flight Monitor. In
Workshop on Program Analysis for Software Tools and Engineerin, 1999.

253. B. A. Wichmann, A. Canning, D. Clutterbuck, L. Winsborrow, N. Ward, and
D.W.R. Marsh. Industrial perspective on static analysis. Software Engineering
Journal, 1995.

254. G. Winskel and M. Nielsen. Handbook of Logic in Computer Science. Vol. 4: Se-
mantic Modelling, chapter Models for Concurrency, page 1–148. Oxford Science
Publications, 1995.

255. J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, editors, Formal Specification and
Development in Z and B, volume 2272 of Lecture Notes in Computer Science,
page 184–203. Springer-Verlag, 2002.

256. J. C. P. Woodcock and A. L. C. Cavalcanti. A Tutorial Introduction to Designs
in Unifying Theories of Programming. In E. A. Boiten, J. Derrick, and G. Smith,
editors, Integrated Formal Methods, volume 2999 of Lecture Notes in Computer
Science, page 40–66. Springer-Verlag, 2004. Invited tutorial.

257. J. C. P. Woodcock and J. Davies. Using Z — Specification, Refinement, and
Proof. Prentice-Hall, 1996.

258. J. Yang, Q. Long, Z. Liu, and X. Li. A Predicative Semantic Model for Inte-
grating UML Models. In 1st International Colloquium on Theoretical Aspects of
Computing, volume 3407 of Lecture Notes in Computer Science. Springer-Verlag,
2005.

259. L. Zhang and S. Malik. The Quest for Efficient Boolean Satisfiability Solvers. In
Computer Aided Verification: 14th International Conference, page 17–36, 2002.

260. Y. Zhang and C. C. Zhou. A formal Proof of the Deadline Driven Scheduler. In
H. Langmaak, W. P. de Roever, and J. Vytopil, editors, 3rd International Sym-
posium on Formal Techniques in Real-Time and Fault Tolerant Systems, volume
863 of Lecture Notes in Computer Science, page 756–775. Springer-Verlag, 1994.

261. C. C. Zhou, M. R. Hansen, A. P. Ravn, and H. Rischel. Duration Specifications for
Shared Processors. In J. Vytopil, editor, 2nd International Symposium on Formal
Techniques in Real-Time and Fault Tolerant Systems, volume 571 of Lecture Notes
in Computer Science. Springer-Verlag, 1992.

262. C. C. Zhou, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Information
Processing Letters, 40(5):269–276, 1991.



Author Index

Borba, Paulo 18

Cavalcanti, Ana 1, 220
Clayton, Phil 269

Déharbe, David 315
Davies, Jim 64

Joseph, Mathai 156

Liu, Zhiming 156

McIver, Annabelle 123
Morgan, Carroll 123

O’Halloran, Colin 269

Sampaio, Augusto 1, 18

Woodcock, Jim 1, 220


	Frontmatter
	Refinement:~An overview
	Transformation Laws for Sequential Object-Oriented Programming
	Using CSP
	Developing and Reasoning About Probabilistic Programs in {\itshape pGCL}
	Real-Time and Fault-Tolerant Systems
	A Tutorial Introduction to CSP in {\itshape Unifying Theories of Programming}
	Using the Compliance Notation in Industry
	Techniques for Temporal Logic Model Checking
	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




