Soft Arc Consistency Applied to Optimal
Planning

Martin Cooper, Sylvain Cussat-Blanc, Marie de Roquemaurel,
and Pierre Régnier

IRIT, 118 route de Narbonne, 31062 Toulouse cedex 9, France
{cooper, cussat, deroquemaurel, regnier}@irit.fr

Abstract. We show in this articl how the Weighted CSP framework
can be used to solve an optimisation version of numerical planning. The
WCSP finds an optimal plan in the planning graph containing all solution
plans of minimum length. Experimental trials were performed to study
the impact of soft arc consistency techniques (FDAC and EDAC) on the
efficiency of the search for an optimal plan in this graph. We conclude by
giving a possible theoretical explanation for the fact that we were able
to solve optimisation problems involving several hundred variables.

1 Introduction

In the field of planning, one of today’s challenges is the solution of numeri-
cal problems to optimality. Some numerical planners perform heuristic choices,
aiming simply to produce a good quality plan [5] while others merely compute
a posteriori the cost of the solution-plan [6]. Some planners already use CSP to
encode the planning graph [4], but never in a numerical approch to planning.
We use the WCSP [7] framework to find a minimum cost plan, allowing the
representation of strict constraints and an optimisation criterion expressed as
the aggregation of cost functions.

2 WCSP and Numerical Planning

2.1 Numerical Planning Graph

A numerical planning problem is a triple (A, I, G) such that the initial state I is
a finite set of propositional and numerical variables (or fluents) with their initial
assignments, A is a set of actions, i.e. triples (prec(a), ef fect(a), cost(a)), where
prec(a) is the set of preconditions of action a, ef fect(a) is the set of effects
of a (Adds, Deletes and Modifiers of fluents), cost(a) is the cost of applying
a. An action a is applicable in a state S iff its preconditions are satisfied. A
proposition p is satisfied in S iff p € S; a numerical condition c is satisfied in
state S iff the numerical variables of ¢ are defined in S and verify c. G is the set
of propositional and numerical goals to be satisfied. One of the most efficient and

! An extended version of this paper is available at http://www.irit.fr/recherches/
RPDMP /persos/Regnier/PLANIF /index.html

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 680-[684] 2006.
© Springer-Verlag Berlin Heidelberg 2006

Soft Arc Consistency Applied to Optimal Planning 681

influential algorithms in the field of planning is that of GRAPHPLAN [I]. We
had to adapt the construction of the planning graph in order to solve numerical
planning problems. The numerical planning graph G, is a disjunctive graph
which can be considered as a compact summary of all solution-plans up to a given
maximal length. Actions can be applied in parallel but with three restrictions
(called interference): (1) none deletes a precondition or an add-effect of another,
(2) they have no numerical variable in common and (3) for each pair of distinct
preconditions of actions at level ¢, there is at least one pair of non-interfering
actions at the level ¢ — 1 which produce them.

In GRAPHPLAN, the planning graph GG, is extended level by level until either
the extraction of a solution-plan is successful or the planning graph levels off.
Level-off occurs when the sets of actions, fluents and mutexes (mutual exclusion
constraints) are identical at levels ¢ and i+ 1. It can be shown that if no solution
has been found in a planning graph that has levelled off, then no solution exists.
The first level of the graph consists simply of fluents corresponding to the initial
state I. The next levels i > 0 are developed using the following algorithm:

1. We find all actions whose preconditions are satisfied in level i—1. To maintain
at level ¢ a fluent f present at level ¢ — 1, there is a noop action which has
f as its only precondition and its only effect.

2. Next, we have to calculate the mutual exclusion relations (or mutexes) be-
tween actions. Two actions are mutex iff one interferes with the other.

3. We can now add to the graph all the fluents produced by these level i actions.
As for the actions, we have to search for interferences between fluents: Two
fluents are mutex at a given level 7 if there is no couple of non-mutex actions
at the same level 7 that add these fluents.

4. The final step of level construction is to check if the goal is satisfied in the
current state. If this is the case, the algorithm halts and we extract a solution
plan from the graph. Otherwise, we go back to step 1.

The quality of a numerical plan can be estimated through a function known
as a plan metric. We consider only the problem of minimising a linear additive
metric, the sum of the costs of the actions in a plan P.

After having constructed the numerical planning graph, we reduce it by elimi-
nating actions which cannot possibly be part of a solution-plan, ie all actions and
fluents that do not have a path to any goal fluent. In preparation for coding the
numerical planning graph as a WCSP (see Section [Z2]), we rename the fluents
f1, f2, ... and renumber the actions 1,2,..., starting at the last level.

2.2 Coding the Planning Graph as a WCSP

Once the numerical planning graph has been constructed and reduced, we code
it as a WCSP as follows:

1. Creation of variables and domains: for each fluent (not present in the initial
state), we create a variable whose domain is the set of actions which produce
this fluent. For each fluent (not present in the goal state) we add the value
-1 to represent its non-activation.

682 M. Cooper et al.

2. Translation of mutexes between fluents: for all mutex fluents f; and f;, we
code the fact that f; et f; cannot both be activated: (f; = —1) Vv (f; = —1).

3. Translation of mutexes between actions: for all mutex actions a and b with
(respective) effects f; and f; (f; # f;), this mutual exclusion is coded by a
constraint which states that f; and f; cannot simultaneously be triggered
by the actions a and b: =((f; = a) A (f; =b)).

4. Translation of activity arcs: the activation of a fluent f; produced by an
action a implies the activation of the preconditions of this action. This is
coded by activity constraints: Vf; € prec(a), (fi = a) = (f; # —1).

5. Translation of the cost of actions: For each value a, we add a unary constraint
for f = a corresponding to the cost of the action. No-ops have cost 0.

6. Actions with multiple effects: when an action a produces several fluents f; €
ef fect(a), the cost of this action could be counted several times. To avoid
this problem, we create an intermediary fluent ™! with domain {a,—1}.
Furthermore, the action a is replaced by a false action a™ (cost 0) in the
domains of each f;. We add the activity constraint (f; = a'™) = (fi"* = a)
between the fluent f and each of the fluents f; € ef fect(a).

A limitation of our approach is that we only search for the optimal plan among
parallel plans of length L, where L is the length of a shortest parallel solution-
plan. Once this optimal plan among shortest-length plans has been discovered,
it could, of course, be used as a good lower bound in the search for an optimal
plan of any fixed length. Note, however, that the search space of all numerical
plans is, in the worst case, infinite.

2.3 Search for an Optimal Solution to the WCSP

To simplify the WCSP [7] before solving it, we can apply soft arc consistency
algorithms. Node consistency (NC) corresponds to taking the sum of minimum
unary costs at each variable as a lower bound.

Propagating all infinite costs (between unary and binary constraints) and pro-
jecting binary costs until convergence establishes (soft) arc consistency (SAC).
In order to have non-zero costs available as soon as possible during search, di-
rectional arc consistency (DAC) always chooses to send costs (via project and
extend operations) towards variables which occur earlier in the instantation or-
der. Full directional arc consistency (FDAC) [2] is the combination of directional
arc consistency and arc consistency.

FDAC has recently been extended to existential directional arc consistency
(EDAC) [3] which also performs the following operation: if for each value a in
the domain of variable X;, there exists a neighbouring variable X; such that it
is possible to increase c¢;(a) by sending costs from ¢; and ¢;;, then perform all
these operations and then establish NC at X;.

3 Experimental Trials

To test the utility of this approach, we carried out a large number of trials on
different benchmark problems from IPC (International Planning Competition)

Soft Arc Consistency Applied to Optimal Planning 683

1000 CPU Time (secs)

100

0,1 LN HE H LN

0,01 - LN HE H LN

0,001 - | T 1]

ENC mFDAC O EDAG

Fig. 1. Results of the trials using NC, FDAC and EDAC

covering diverse application areas (Blocksworld (bwt), Depots, Driverlog, Lo-
gistics, Mprime, Rover, Satellite and Zenotravel). We used the Toolbar librarylg
[3] to solve the WCSP derived from the numerical planning graph. The IPC
benchmarks are derived from real problems and are highly structured. For each
different domain, there is a series of problems of increasing difficulty, this being
a function of the number of available actions and the number of fluents in the
initial and goal states. The solution-plans for the hardest problems consist of
thousands of actions. These benchmarks can be found at the IPC websitdd.

We tested different soft arc consistency algorithms (NC, FDAC and EDAC)
on different problems from the benchmark domains. NC, FDAC or EDAC was
established at each node of the branch-and-bound search. Fig 1 compares the
performances of these three soft arc consistency algorithms in terms of CPU
time.

Firstly, comparing NC and FDAC (Figure 1), we observed that the number
of nodes visited was always less with FDAC and that, on average, FDAC visited
17 times less nodes than NC. As for CPU time, FDAC is on average 7 times
faster than NC. We can conclude that the use of FDAC significantly improves
the time to extract an optimal solution from the numerical planning graph coded
as a WCSP. Figure 1 also allows us to compare FDAC and EDAC. We found
no significant difference between the two techniques. On average, EDAC visited

2 http://carlit.toulouse.inra.fr/cgi-bin /awki.cgi/ToolBarIntro

3 wesp files are available here: http://mulcyber.toulouse.inra.fr/plugins/scmcvs/
cvsweb.php/benchs/planning/?cvsroot=toolbar

* http://ipc.icaps-conference.org/

684 M. Cooper et al.

5% less nodes but used 6% more CPU time. We can therefore conclude that
EDAC, unlike on random problems of similar density [3], does not provide an
improvement compared with FDAC on the problems tested.

The most striking result of our experimental trials is that we were able to
solve real optimal planning problems coded as WCSPs with several hundred
variables (maximum search space size about 1037%), even though previous trials
on random WCSPs had indicated a practical upper limit of about 50 variables
(search space size 10%°) [3]. The good performance of intelligent branch and
bound search on planning problems can probably be explained by the existence
of many crisp constraints and the structure of the constraint graph: the variables
can be divided into levels (corresponding to the levels of the planning graph)
and binary constraints only exist between variables at the same or adjacent
levels. If there are L levels, then at level é, i.e. after instantiating half of the
problem variables, we can already apply approximately half of the constraints.
In a random problem, when half of the variables have been instantiated, we can
only apply approximately one quarter of the constraints. We formalize this idea
in the following definition.

Definition 1. A WCSP is linearly incremental under an ordering Xi,..., X,
of its variables if, for all p € {1,...,n}, the number ¢, of constraints whose
scopes are subsets of {X1,..., X, } satisfies c, = ¢ (p+o(n)), where c is the total
number of constraints.

A random problem is not linearly incremental, since in this case ¢, = (;lp((f:ll)) //22
= O(C:;). In the optimal planning problem under consideration in this paper,
assuming for simplicity that there are the same number of variables in each
of L levels and that L, n/L are both o(n), we have, for p a multiple of n/L:

L
cp = 0(2‘7;1) = °(p+o(n)) and hence the problem is linearly incremental.

References

1. A. Blum & M. Furst, “Fast planning through planning graph analysis”, Al 90 p.281-
300 (1997).

2. M.C. Cooper, “Reduction operations in fuzzy and valued constraint satisfaction”,
Fuzzy Sets and Systems 134, p.311-342 (2003).

3. S.de Givry, F. Heras, M. Zytnicki & J. Larrosa, “Existential arc consistency: Getting
closer to full arc consistency in weighted CSPs”, IJCAT 2005 p.84-89.

4. M. Do & S. Kambhampati, “Planning as constraint satisfaction: Solving the plan-
ning graph by compiling it into CSP”, AT 132 p.151-182 (2001)

5. P. Haslum & H. Geffner, “Heuristic Planning with Time and Resources”, European
Conference on Planning (2001).

6. J. Hoffmann, “The Metric-FF Planning System: Translating “Ignoring Delete Lists”
to Numeric State Variables”, JAIR 20 p.291-341 (2003).

7. J. Larrosa & T. Schiex, “In the quest of the best form of local consistency for
Weighted CSP”, IJCAI 2003 p.239-244.

	Introduction
	WCSP and Numerical Planning
	Numerical Planning Graph
	Coding the Planning Graph as a WCSP
	Search for an Optimal Solution to the WCSP

	Experimental Trials

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

