
Differentiable Invariants

Pascal Van Hentenryck1 and Laurent Michel2

1 Brown University, Box 1910, Providence, RI 02912
2 University of Connecticut, Storrs, CT 06269-2155

Abstract. Invariants that incrementally maintain the value of expres-
sions under assignments to their variables are a natural abstraction to
build high-level local search algorithms. But their functionalities are not
sufficient to allow arbitrary expressions as constraints or objective func-
tions as in constraint programming. Differentiable invariants bridge this
expressiveness gap. A differentiable invariant maintains the value of an
expression and its variable gradients, it supports differentiation to evalu-
ate the effect of local moves. The benefits of differentiable invariants are
illustrated on a number of applications which feature complex, possibly
reified, expressions and whose models are essentially similar to their CP
counterparts. Experimental results demonstrate their practicability.

1 Introduction

Local search algorithms approach the solving of combinatorial optimization prob-
lems by moving from solutions to solutions until a feasible solution or a high-
quality solution is found. These algorithms typically maintain sophisticated data
structures to evaluate or to propagate the effect of local moves quickly. Since, in
general, the neighborhood does not vary dramatically when moving from one so-
lution to one of its neighbors, these incremental data structures may significantly
speed up local search algorithms.

Invariants were introduced in Localizer [3] to automate the tedious and
error-prone implementation of incremental data structures. An invariant declar-
atively specifies a (numerical, set, or graph) expression whose value must be
maintained incrementally under local moves. Invariants were shown to be in-
strumental in simplifying the implementation of many local search algorithms.
However, the resulting algorithms were still not expressed at a similar level of
abstraction as constraint programming (CP) approaches for the same problems.
This recognition led to the concept of differentiable objects [5,8] which have
emerged as the cornerstone of constraint-based local search (CBLS). In CBLS,
objective functions and constraints, which are differentiable objects, not only
maintain the value of an expression: they also maintain variable gradient (e.g.,
to determine how the expression value increases/decreases by changing a vari-
able) and support differentiation (e.g., to assess the effect of a local move on
the expression value). Although differentiable objects are often implemented us-
ing invariants (see [8] for some examples), it is still cumbersome, difficult, and
repetitive to derive correct invariants for a given differentiable object.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 604–619, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Differentiable Invariants 605

This paper aims at bridging the expressiveness gap between invariants and
differentiable objects by providing systematic ways of deriving differential objec-
tives and constraints. It proposes the concept of differentiable invariant that au-
tomatically lifts an arbitrarily complex expression into a differentiable objective
function. Like invariants, the resulting objective function incrementally main-
tains the value of the expression. Unlike invariants, it also maintains variable
gradients (to determine how much a variable may increase/decrease the value of
the expression) and supports the differentiability (to determine the effect of local
moves on the expression value). Moreover, since a differentiable constraint can be
seen as differentiable objective function maintaining its violations, differentiable
invariants automatically lift arbitrarily complex relations into differentiable con-
straints. The resulting differentiable constraints maintain the violations of the
relations, their variable violations (to determine how much a variable may in-
crease/decrease the violations), and support differentiability.

As a consequence, differentiable invariants bring two main benefits for CBLS.
First, expressions can now be used to state complex idiosyncratic constraints
and objectives declaratively, a functionality that have accounted for much of
the industrial success of constraint programming and that relieves programmers
from deriving specific invariants and algorithms for each possible expressions.
In other words, in the same way as CP languages perform domain reduction
on arbitrary expressions, Comet now allows arbitrary expressions and relations
as differentiable invariants, maintaining their values, their violations, and their
variable gradients, as well as supporting differentiability. Second, differentiable
invariants allow CBLS and CP models to be remarkably close since both now
feature a similar, rich language for stating constraints and objectives.

The rest of this paper illustrates the concept of differentiable invariants, de-
scribes their implementation, and reports experimental results. Sections 2–4
show how differentiable invariants are a natural vehicle for modeling the spa-
tially balanced latin square, scene allocation, and progressive party problems.
Sections 5–7 show how to implement differentiable invariants in stepwise refine-
ments, starting with their evaluations and gradients before presenting constraints
and their reification. Section 8 presents the experimental results.

2 Totally Spatially Balanced Latin Squares

The first application consists of generating spatially balanced scientific experi-
ment designs and, in particular, totally spatially balanced Latin squares [2].

The Problem: A latin square of size n is an n× n matrix in which each number
in 1..n appears exactly once in each row and column. The distance dr(v, w) of
a pair (v, w) in row r is the absolute difference of the column indices in which v
and w appear in row r. The total distance of a pair (v, w) is given by

d(v, w) =
n∑

r=1

dr(v, w).

606 P. Van Hentenryck and L. Michel

A Latin square is totally spatially balanced if

d(v, w) =
n(n + 1)

3
(1 ≤ k < l ≤ n).

Gomes et al [2] introduced this problem to the community and proposed both
local search and constraint programming solutions. Subsequently, Gomes [6] pro-
posed a streamlined local search which solves large instances rapidly by permut-
ing columns. This section only considers the local search in [2] since it raises
more interesting modeling issues (for our purposes) and motivated our initial
research on differentiable invariants.

The Model: The model uses a variable col [r, v] to denote the column of value v in
row. The (latin square) constraint that a value v appears in exactly one column
is expressed by an alldifferent constraint alldifferent (col [1, v], ..., col [n, v]). The
(latin square) constraint that all the values in a row are different is an (implicit)
hard constraint. It holds initially by assigning all rows to a permutation of 1..n
and is maintained during the search by the local moves. The constraint that
the Latin square be totally spatially balanced is soft and is transformed into an
objective function. Hence the goal is to find a latin square minimizing

O =
∑

1≤v<w≤n

(
d(v, w) − n(n + 1)

3
)2

.

Since the column constraint is a soft constraint as well, the overall problem can
then viewed as minimizing the objection function n× viol(S) + O where viol(S)
denotes the violations of the soft constraints and is weighted by n.

The Search: The local search is a tabu procedure swapping the position of two
values on the same row. The best non-tabu move is selected at each step. The
local search also uses an intensification component and a restart strategy.

The Comet Program: Figure 1 depicts the Comet statement. The declaration
of data and decision variables are in lines 1–8. The soft constraints are specified
in lines 9–11. The objective for spatial balance is in lines 12–14. The global
objective is in line 15. The search procedure is in line 17–27. The Comet program
is almost a one-to-one mapping of the informal description presented earlier
and we review some of its components now. The matrix of decision variables is
declared in line 4. All variables have a domain 1..n and each row is initialized by
a random permutation (lines 5–8). A constraint system S is declared in line 9 and
it contains all the soft constraints expressing that a value v appears atmost once
in each column. The objective function for balancing the latin square spatially
is specified in line 12. Variable OS (declared in line 12) is a sum of objectives,
one for each pair of values (v,w) to express their relative balance, i.e.,

((sum(r in R) (abs(col[r,v] - col[r,w])))-balance)^2

Differentiable Invariants 607

Such an objective is a differentiable invariant involving absolute values, a sub-
traction, a square function, and an aggregate operator. The value of the ex-
pression is maintained incrementally under changes to its variables (i.e., all the
decision variables col[r,w] and col[r,w] associated with values v and w). More-
over, the objective is differentiable and can be queried to evaluate the effect of
local moves. Finally, it also maintains gradient information to estimate how much
each variable may increase or decrease its value. Observe also that the expres-
sion involves absolutes values and a square function. The soft constraints are
transformed into an objective function in line 15, specifying the overall objective
O that combines the weighted violations of the soft constraints with the sum of
the balance objectives.

(Part of) the tabu search is depicted in lines 17–27. As long as O evaluates to
strictly positive value, the search selects the positions of the values v and w on
row r that are not tabu and whose swap produces the best value of the objec-
tive function. The call in line 22, i.e., O.getSwapDelta(col[r,v],col[r,w]),
is particularly interesting, as it queries the soft constraints and the objectives to
evaluate the candidate swap. This ability to estimate the effect of loval moves on
arbitrary expressions is one of the novel contributions of differentiable invariants.

It is useful to emphasize that Comet enables a direct and natural formula-
tion of the model. The constraints and objective functions are expressed declar-
atively. Their violations and evaluations are maintained incrementally and can
be queried to assess the impact of local moves, providing the clean separation
between model and search typically associated with CP and CBLS. The novelty
for CBLS is the ability to use complex expressions as objectives.

3 Scene Allocation

The second application is the scene allocation problem [7].

The Problem: A scene allocation consists of deciding when to shoot scenes for
a movie. Each scene involves a number of actors and each actor may appear in
a number of different scenes. All actors of a scene must be present on the day
the scene is shot and at most 5 scenes a day can be filmed. The actors have fees
representing the amount to be paid per day they spent in the studio. The goal of
the application is to minimize the production costs while satisfying the capacity
constraints on the number of scenes per day.

The Model: The local search model is essentially the same as the CP model. It
associates a variable scene[s] with every scene s to represent the day s is filmed.
The objective function uses reification to decide whether to pay an actor on
a given day. The capacity on the scenes is an (implicit) hard constraint. It is
satisfied by the initial assignment and maintained through local moves.

The Local Search: The local search is again a tabu procedure whose local moves
swaps the days allocated to two scenes. Once again, the best non-tabu swap is
selected at each step. A restarting strategy is also used.

608 P. Van Hentenryck and L. Michel

1. int n = 8;

2. range R = 1..n;

3. int balance = n*(n+1)/3;

4. var{int} col[R,R](mgr,R);

5. forall(r in R) {
6. RandomPermutation p(R);

7. forall(v in R) col[r,v] := p.get();

8. }
9. ConstraintSystem S(mgr);

10. forall(v in R)

11. S.post(alldifferent(all(r in R) col[r,v]));

12. ObjectiveSum OS(mgr);

13. forall(v in R, w in R: v < w)

14. OS.post(((sum(r in R) (abs(col[r,v] - col[r,w])))-balance)^2);

15. Objective O = n * S + OS;

16. mgr.close();

17. int tabu[R,R,R] = -1;

18. int tabuLength = 10;

19. int it = 0;

20. while (O.evaluation() > 0) {
21. selectMin(r in R,v in R, w in R: v < w && tabu[r,v,w] <= it)

22. (O.getSwapDelta(col[r,v],col[r,w])) {
23. col[r,v] :=: col[r,w];

24. tabu[r,v,w] = it + tabuLength;

25. }
26. it++;

27. }

Fig. 1. A Simple Tabu-Search Algorithm for the Balanced Latin Square Problem

The Comet Program: The Comet program is (partially) depicted in Figure 2.
For space reasons, the search procedure is omitted but is essentially the same
as in the latin square application. Lines 1–8 declare and initialize the data. In
particular, they declare the scenes, the days, the actors (line 4), the actors’ fees
(line 5), and the actors appearing in the scenes (line 6). Line 8 also specifies the
scenes in which an actor appears, which is convenient to state the constraints.

The data and decision variables are declared in lines 9–17. A decision variable
scene[s] specifies the day scene s is scheduled and the scene are allocated
randomly initially (see lines 11–12). The most interesting part of the model is
the objective function O (declared in line 14) which sums the fees of all actors
on all days (lines 15–16). Each sub-objective thus represents the fee to be paid
by an actor a on a day d. It is expressed by the differentiable expression

pay[a] * (or(s in which[a]) scene[s] == d)

which uses reification to determine whether actor a plays on day d. More pre-
cisely, if a scene s in which[a] is scheduled on day d, the disjunction holds and
is reified to 1, in which case the amount is pay[a]. Otherwise, the disjunction
does not hold and is reified to 0.

Differentiable Invariants 609

1. include "localSolver";

2. int maxScene = 19; range Scenes = 0..maxScene-1;

3. int maxDay = 5; range Days = 0..maxDay-1;

4. enum Actor = . . .;
5. int pay[Actor] = . . .;
6. set{Actor} appears[Scenes];

7. . . .
8. set{int} which[a in Actor] = setof(s in Scenes) member(a,appears[s]);

9. LocalSolver mgr();

10. var{int} scene[Scenes](mgr,Days);

11. RandomPermutation perm(Scenes);

12. forall(i in Scenes) scene[perm.get()] := i/maxDay;

13.

14. ObjectiveSum O(mgr);

15. forall(a in Actor, d in Days)

16. O.post(pay[a] * (or(s in which[a]) scene[s] == d));

Fig. 2. A Simple Tabu-Search Algorithm for the Scene Allocation Problem

What we find remarkable here is that the Comet model is almost identical to
the OPL model in [7]: the only difference (besides syntactical details) is the fact
that the cardinality constraint on the days is omitted since it holds initially and
is maintained by local moves. This similarity is possible because differentiable
invariants allows objective function to be complex reified expressions.

4 The Progressive Party Problem

Our last application is the progressive party problem which has been used several
times to illustrate constraint-based local search [5,9]. The motivation here is to
show that differentiable invariants can also be used to state constraints, providing
the equivalent for CBLS of high-order or meta-constraint in CP. The key insight
is to recognize that a constraint is nothing else but a differentiable invariant
maintaining its violations.

The Comet Program: The Comet program is (partially) depicted in Figure 3.
The search procedure can be found in earlier publications (e.g., [8]). The data is
described in lines 1–7 and the decision variables are declared and initialized in
lines 10–11. A decision variable boat[g,p] specifies the boat that group g visits
in period p. The core of the model are the constraints in line 12–18.

The novelty here is in how the model expresses that no two groups meet more
than once (in line 18). In [8], this constraint was expressed using a cardinality
operator atmost. The model above uses a meta-constraint

sum(p in Periods) (boat[i,p] == boat[j,p]) <= 1

which is the way it would probably be expressed using a traditional constraint-
programming tool such as OPL or Ilog Solver. The Comet implementation
automatically derives the constraint violations of the constraints, i.e.,

610 P. Van Hentenryck and L. Michel

1. include "LocalSolver";

2. int up = 6;

3. range Hosts = 1..13;

4. range Guests = 1..29;

5. range Periods = 1..up;

6. int cap[Hosts] = . . .;
7. int crew[Guests] = . . .;
8.

9. LocalSolver m();

10. UniformDistribution distr(Hosts);

11. var{int} boat[Guests,Periods](m,Hosts) := distr.get();

12. ConstraintSystem S(m);

13. forall(g in Guests)

14. S.post(2 * alldifferent(all(p in Periods) boat[g,p]));

15. forall(p in Periods)

16. S.post(2 * knapsack(all(g in Guests) boat[g,p],crew,cap));

17. forall(i in Guests, j in Guests : j > i)

18. S.post(sum(p in Periods) (boat[i,p] == boat[j,p]) <= 1);

Fig. 3. A Comet Model for the Progressive Party Problem

max(0,sum(p in Periods) (boat[i,p] == boat[j,p]) - 1)

which is a differentiable invariant involving, once again, reification. Note also that
the Comet implementation must automatically derive the variable violations for
these constraints, since the search procedure first selects variable with the most
violations before choosing the value decreasing the violations the most. This
highlights the benefits of differentiable invariants: they let programmers state
constraints declaratively while systematically deriving their violations, their vari-
able violations, and differentiation algorithms. How this is achieved is the topic
of the next sections.

5 Expressions as Differentiable Objective Functions

As mentioned earlier, a differentiable invariant transforms an expression into
a differentiable objective function. The syntax of the expressions used in this
paper is given in Figure 4. Differentiable invariants must thus implement, for
any such expression, the interface of objective functions depicted in 5. Method
evaluation specifies the value of the objective function, which is maintained by
invariants. Methods increase and decrease return gradient information for a
decision variable x, i.e., they estimate by how much the objective may increase
or decrease by re-assigning x. These gradients are also maintained incrementally.
Note that the ability of determining both increasing and decreasing gradients is
critical even if one is interested in minimization only. The next three methods
specify how the objective value evolve under local moves, i.e., the assignment of
a value to a variable, the swap of two variables, and the assignments of values

Differentiable Invariants 611

v ∈ N ; x, y ∈ Variable; e ∈ Expression ;
e ::= v | x | e + e | e− e | e× e | min(e, e) | max(e, e) | −e | abs(e) | e2 | (e) | c

Fig. 4. The Syntax of Expressions (Partial Description)

interface Objective {
var{int} evaluation();

var{int} increase(var{int} x);

var{int} decrease(var{int} x);

int getAssignDelta(var{int} x,int v);

int getSwapDelta(var{int} x,var{int} y);

int getAssignDelta(var{int}[] x,var[] v);

var{int}[] getVariables();

}
Fig. 5. The Objective Interface in Comet (Partial Description)

to a set of variables. The rest of this section shows how to implement these
functionalities. Aggregate operations (e.g., for summation) can be viewed as
shorthands for multiple applications of the same operators and are not discussed
here for space reasons.

Evaluations Figure 6 shows how to evaluate an expression and how to maintain
it through invariants. In the figure, Eα[e] denotes the value of expression e under
variable assignment α and ie is the invariant maintaining Eα[e]. Both Eα[e] and ie
are defined by induction on the structure of expression e. In particular, there is one
invariant associated with every sub-expression in e, which is important to imple-
ment gradients and differentiations efficiently. In this paper, a variable assignment
is a function from variables to integers. Moreover, α[x/v] denotes the assignment
behaving like α except that x is now assigned to v. This notation may be general-
ized tomultiple variables.These evaluations do not raise anydifficulty and the algo-
rithmstomaintain these invariants efficientlyarepresented in [4].Note thatmethod
evaluation in Figure 5 returns ie for the objective function associated with e.

Gradients. Many search procedures choose local moves by a two-step approach,
first selecting the variable to re-assign and then the new value. Typically, the
variable selection uses gradients, i.e., information on how much the objective
function or the violations may increase/decrease by changing the value of a vari-
able. Since such a variable selection takes place at every iteration of the local
search, such gradients are typically maintained incrementally in systems such as
Comet. The section shows how to evaluate and maintain gradients for the ex-
pressions depicted earlier. The gradients must satisfy the following inequalities:

x

↑
α
e ≥ max

v∈Dx

E
α[x/v]

[e]− E
α
[e] and

x

↓
α
e ≥ E

α
[e]− min

v∈Dx

E
α[x/v]

[e]

where Dx denotes the domain of variable x. Variable gradients thus provide
optimistic evaluations to the maximum increase/decrease of expression e by

612 P. Van Hentenryck and L. Michel

E
α
[v] = v iv ← v

E
α
[x] = α(x) ix ← x

E
α
[e1 + e2] = E

α
[e1] + E

α
[e2] ie1+e2 ← ie1 + ie2

E
α
[e1 − e2] = E

α
[e1]− E

α
[e2] ie1−e2 ← ie1 − ie2

E
α
[e1 × e2] = E

α
[e1]× E

α
[e2] ie1×e2 ← ie1 × ie2

E
α
[−e] = −E

α
[e] i−e ← −ie

E
α
[abs(e)] = abs(E

α
[e]) iabs(e) ← abs(ie)

E
α
[e2] = (E

α
[e])2 ie2 ← (ie)

2

E
α
[min(e1, e2)] = min(E

α
[e1], E

α
[e2]) imin(e1,e2) ← min(ie1 , ie2)

E
α
[max(e1, e2)] = max(E

α
[e1], E

α
[e2]) imax(e1,e2) ← max(ie1 , ie2)

Fig. 6. The Evaluation of Expressions and their Underlying Invariants

re-assigning variable x only. It is critical to use optimistic evaluations since pes-
simistic evaluations may artificially reduce the connectivity of the neighborhood.
Many of the gradients satisfy these relations at equality. However, for efficiency
reasons, it may be beneficial to approximate the right-hand sides for complex
nonlinear expressions with multiple occurrences of the same variables. In the
following, the assignment α is implicit (unless specified otherwise). Similarly,
the gradients are always taken with respect to variable x, and y denotes a vari-
able different from x. The minimum and maximum values in the domain Dx of
variable x are denoted by mx and Mx.

Figure 7 depicts the evaluations of the gradients whose definitions are mutu-
ally recursive. It is useful to review some of the rules to convey the intuition. The
increasing gradient for subtraction, i.e., ↑[e1−e2] = ↑e1+↓e2, uses the increasing
gradient on e1 and the decreasing gradient on e2. The rule for absolute value
can be written as

↑[abs(e)] = max(abs(E[e] + ↑e), abs(E[e]− ↓e))− E[abs(e)].

It indicates that there are two ways to increase the absolute value of e: increase
or decrease e. The definition captures the increase and subtracts the current
value of e. The rule for square and for min/max are similar in spirit, while the
multiplication has a more complex case analysis due to the possible signs of the
underlying expressions. Observe also the base case for variable x which returns
the difference between Mx and α(x). The decreasing gradient for absolute value

↓[abs(e)] = if E[e] ≥ 0 then min(E[e], ↓e) else min(−E[e], ↑e)

is interesting. If E[e] ≥ 0, the gradient is obtained by decreasing e but the
decrease must be bounded by E[e] since zero is the smallest possible value.
Observe that the maximum decrease of abs(e) is not necessarily obtained by the
maximum decrease of e and hence the gradient is optimistic. The case E[e] < 0
is symmetric and obtained by increasing e up to −E[e].

Differentiable Invariants 613

E[e]+ = E[e] + ↑e

E[e]− = E[e] − ↓e
↑[v] = 0
↑[y] = 0
↑[x] = Mx − α(x)
↑[e1 + e2] = ↑e1 + ↑e2

↑[e1 − e2] = ↑e1 + ↓e2

↑[−e] = ↓e
↑[abs(e)] = max(abs(E[e]+), abs(E[e]−)) − E[abs(e)]

↑[e2] = max((E[e] + ↑e)2, (E[e] − ↓e)2) − E[e2]

↑[max(e1, e2)] = max(E[e1]
+

, E[e2]
+) − E[max(e1, e2)]

↑[min(e1, e2)] = min(E[e1]
+

, E[e2]
+) − E[min(e1, e2)]

↑[e1 ∗ e2] = max(E[e1]
+ ∗ E[e2]

+
, E[e1]

+ ∗ E[e2]
−

, E[e1]
− ∗ E[e2]

+
, E[e1]

− ∗ E[e2]
−)

−E[e1 ∗ e2]

↓[v] = 0
↓[y] = 0
↓[x] = α(x) − mx

↓[e1 + e2] = ↓e1 + ↓e2

↓[e1 − e2] = ↓e1 + ↑e2

↓[−e] = ↑e
↓[abs(e)] = if E[e] ≥ 0 then min(E[e], ↓e) else min(−E[e], ↑e)
↓[e2] = E[e]2 − if E[e] ≥ 0 then (E[e] − min(E[e], ↓e))2 else (E[e] + min(−E[e], ↑e))2

↓[max(e1, e2)] = E[max(e1, e2)] − max(E[e1]
−

, E[e2]
−)

↓[min(e1, e2)] = E[min(e1, e2)] − min(E[e1]
−

, E[e2]
−)

↓[e1 ∗ e2] = E[e1 ∗ e2]−
min(E[e1]

+ ∗ E[e2]
+

, E[e1]
+ ∗ E[e2]

−
, E[e1]

− ∗ E[e2]
+

, E[e1]
− ∗ E[e2]

−)

Fig. 7. The Evaluation for the Variable Gradients

Figure 8 depicts the invariants maintaining the gradients. There is an invariant
i↑e and an invariant i↓e) associated with each expression e and each variable x
(which is implicit in the figure). These gradient invariants use both gradient
invariants on the sub-expressions and evaluation invariants. For instance, the
(increasing) gradient invariant for subtraction, i.e.,

i↑e1−e2
← i↑e1

− i↓e2

uses increasing and decreasing gradient invariants on the sub-expressions. The
gradient invariant for absolute value can be written as

i↑abs(e) ← max(abs(ie + i↑e), abs(ie − i↓e)− iabs(e)

and illustrates the use of invariants ie and iabs(e) for accessing the current value
of e and abs(e). Note that methods increase and decrease in Figure 5 returns
i↑e and i↓e for the objective function associated with e.

Differentiation Differentiable methods can be evaluated directly. Indeed, given
an expression e, a variable x, and a value v, method e.getAssignDelta(x,v)
returns Eα[x/v][e] − Eα[e] where α is the current assignment. It is too costly to

614 P. Van Hentenryck and L. Michel

i+e ← ie + i↑e
i−e ← ie − i↓e

i↑v ← 0
i↑y ← 0

i↑x ← Mx − x

i↑e1+e2
← i↑e1 + i↑e2

i↑e1−e2
← i↑e1 + i↓e2

i↑−e ← i↓e
i↑
abs(e)

← max(abs(i+e), abs(i−e))− iabs(e)

i↑
e2 ← max((i+e)2, (i−e)2)− ie2

i↑max(e1,e2) ← max(i+e1 , i+e2)− imax(e1,e2)

i↑min(e1,e2) ← min(i+e1 , i+e2)− imin(e1,e2)

i↑e1∗e2 ← max(i+e1 ∗ i+e2 , i+e1 ∗ i−e2 , i−e1 ∗ i+e2 , i−e1 ∗ i−e2)− ie1∗e2

i↓v ← 0
i↓y ← 0

i↓x ← x−mx

i↓e1+e2
← i↓e1 + i↓e2

i↓e1−e2
← i↓e1 + i↑e2

i↓−e ← i↑e
i↓
abs(e)

← if ie ≥ 0 then min(ie, i
↓
e) else min(−ie, i

↑
e)

i↓
e2 ← ie2 − if ie ≥ 0 then (ie −min(ie, i

↓
e))2 else (ie + min(−ie, i

↑
e))2

i↓max(e1,e2) ← imax(e1,e2) −max(i−e1 , i−e2)

i↓min(e1,e2) ← imin(e1,e2) −min(i−e1 , i−e2)

i↓e1∗e2 ← ie1∗e2 −min(i+e1 ∗ i+e2 , i+e1 ∗ i−e2 , i−e1 ∗ i+e2 , i−e1 ∗ i−e2)

Fig. 8. The Invariants of the Variable Gradients

maintain these evaluations incrementally for each pair (x, v) in general. How-
ever, differentiable methods may exploit the fact that variables typically occur
only in some sub-expressions and reuse the evaluations that are maintained in-
crementally. This is particularly important for aggregate operators. Consider an
expression e1 + . . . + en and assume that x appears only in e1. Then

E
α[x/v]

[e1 + . . . + en] = E
α[x/v]

[e1]− E
α
[e1]

and the differentiable method only needs to evaluate Eα[x/v][e1]. By induction,
differentiable methods then only evaluates the leaves containing the variables to
be assigned and the branches from the root to these leaves.

6 Relational Expressions as Differentiable Constraints

This section shows how relational expressions can be translated into constraints.
Recall that, in CBLS, a constraint is a differentiable object maintaining its
violations and its variable violations, and supporting differentiation. In order to

Differentiable Invariants 615

r ∈ Relation.
r ::= e = e | e ≤ e | e �= e | r ∨ r | r ∧ r | ¬r

V[e1 = e2] = abs(e1 − e2)

V[e1 ≤ e2] = max(e1 − e2, 0)

V[e1 �= e2] = 1−min(1, abs(e1 − e2))

V[r1 ∧ r2] = V[r1] + V[r2]

V[r1 ∨ r2] = min(V[r1], V[r2])

V[¬r] = 1−min(1, V[r])

Fig. 9. Constraints as Objective Functions

interface constraint {
var{int} violations();

var{int} violations(var{int} x);

int getAssignDelta(var{int} x,int v);

int getSwapDelta(var{int} x,var{int} y);

int getAssignDelta(var{int}[] x,var[] v);

var{int}[] getVariables();

}
Fig. 10. The Constraint Interface in Comet (Partial Description)

translate a relation into a constraint, the key idea is to map the relation r into
an expression V[r] denoting its violations. Once such a mapping V : Relation →
Expression is available, the constraint interface depicted in Figure 10 can be
naturally implemented. In particular,

– E
α
[V[r]] denotes the violations of r for α, incrementally maintained by i

V[r]
which is returned by method violations() of the constraint interface.

–
x

↓
α
V[r] is the variable violations of x for α, incrementally maintained by i↓

V[r]
which is returned by method violations(var{int} x).

Figure 9 depicts the syntax of relations and a mapping V for a variety of relations
and logical connectives. For instance, the violations of a relation e1 = e2 are spec-
ified by the expression V[e1 = e2] = abs(e1 − e2). The resulting expression can
then be transformed into a differentiable objective which incrementally main-
tains the constraint violations using the invariant iabs(e1−e2) and the variable
violations using the gradient invariant i↓abs(e1−e2). Observe how differentiable in-
variants preclude the need to derive specific variable violations (as in [1]), since
variable violations are directly inherited from violation expressions.

7 Reification

Since expressions and relations can be both transformed into objectives, it be-
comes natural to support reification in expressions. Reification, a fundamental

616 P. Van Hentenryck and L. Michel

E
α
[r] = δ(B

α
[r]) ir ← δ(br)

B
α
[e1 = e2] = E

α
[e1] = E

α
[e2] be1=e2 ← ie1 = ie2

B
α
[e1 ≤ e2] = E

α
[e1] ≤ E

α
[e2] be1≤e2 ← ie1 ≤ ie2

B
α
[e1 �= e2] = E

α
[e1] �= E

α
[e2] be1 �=e2 ← ie1 �= ie2

B
α
[r1 ∨ r2] = B

α
[r1] ∨ B

α
[r2] br1∨r2 ← br1 ∨ br2

B
α
[r1 ∧ r2] = B

α
[r1] ∧ B

α
[r2] br1∧r2 ← br1 ∧ br2

B
α
[¬r] = ¬B

α
[r] b¬r ← ¬br

Fig. 11. The Evaluation of Reified Constraints and their Corresponding Invariants

x

↓
α
r = let e = V[r] in δ(B

α
[r] ∧

x

↑
α
e > 0) i↓r ← δ(br ∧ i↑

V[r]
> 0)

x

↑
α
r = let e = V[r] in δ(¬B

α
[r] ∧

x

↓
α
e ≥ E

α
[e]) i↑r ← δ(¬br ∧ i↓

V[r]
≥ i

V[r])

Fig. 12. The Gradients of Reified Constraints and their Corresponding Invariants

technique in CP, was illustrated in the scene allocation and progressive party
problems, in which expressions includes arithmetic operations over relations. It
is different from, and more challenging than, the reification from differentiable
constraints to differentiable objectives which already presented in [9]. To support
reification in CBLS, it is necessary to specify how to evaluate reified expressions
and their gradients. Figure 11 depicts the extensions of Figure 6 to handle reifi-
cation in evaluations and their corresponding invariants. In the figure, Bα[e]
denotes the truth value of expression e under assignment α and be denotes the
corresponding Boolean invariant. The figure also uses the Kronecker symbol δ
to convert Boolean values into 0/1 values:

δ(b) =
{

1 if b = true;
0 otherwise.

It remains to define how to evaluate the gradients of reified constraints, which
is depicted in Figure 12. The definitions are specified generically using B and V.
The intuition is as follows: given an assignment α, changing x may decrease the
evaluation of r if r holds for α (i.e., Bα r) and changing x may violate r (i.e.,
i↑
V[r] > 0). Similarly, changing x may increase the evaluation of c if c does not

hold for α and changing x may remove all violations of c, i.e.,

x

↓
α
V[r] ≥ E

α
[V[r]].

Again, the invariants for maintaining gradients can be derived systematically
from the evaluations.

Differentiable Invariants 617

Table 1. The Overhead of Differential Invariants

n 6 7 8 9

PP(Atmost) 0.85 1.01 7.46 145.89
PP(DI) 2.18 2.46 12.46 213.29
%Overhead 256.47 243.56 67.20 46.20

It is also interesting to illustrate the expressions obtained for the reified con-
straints in the progressive party problem. These constraints are of the form

(x1 = y1) + . . . + (xp = yp) ≤ 1

where x1, . . . , xp, y1, . . . , yp are all distinct variables. The invariants maintaining
the violations are of the form

ic ← max(im, 0) im ← iδ(x1=y1) + . . . + iδ(xp=yp) − 1

The gradient for variable x1 is maintained through invariants of the form

i↓c←max(im + i↓m, 0)− ic i↓m ← δ(bx1=y1 ∧ i↑abs(x1−y1)
> 0)

Observe how differentiable invariants abstract away the complexity behind these
constraints, elegantly encompass reification, and allow constraint-based local
search to support a constraint language as rich as in traditional CP languages.

8 Experimental Evaluation

This section provides preliminary evidence of the practicability of differentiable
invariants. It studies the cost of differentiable invariants and the benefits of
gradients invariants, and gives results on the applications.

The Cost of Differentiable Invariants. Table 1 reports the cost of differentiable
invariants. It measures the time in seconds for finding solutions to the progres-
sive party problem of increasing sizes (from 6 to 9 periods) when the hosts
are boats 1–13. The table compares the Comet program with differentiable
invariants (PP(DI) shown in Figure 3) with the same program is replaced by
the cardinality operator proposed in [9]. Since there are a quadratic number of
these constraints, this is where most of the computation time is spent. Both
programs are compared using the deterministic mode of Comet so that they
execute exactly the same local moves. The results indicate that the overhead of
using differential invariants decreases as the problem size grows and goes down
to 46% for the largest instance. Differentiable invariants thus introduces a rea-
sonable overhead compared to a tailored cardinality operator. This overhead
should be largely compensated by the simplicity of expressing complex idiosyn-
cratic constraints, which frees programming from implementing special-purpose
constraints, objective functions, or combinators.

618 P. Van Hentenryck and L. Michel

Table 2. The Benefits of Gradient Invariants

n 6 7 8 9

PP(DI-G) 6.05 6.98 122.76 2777.74
PP(DI) 2.18 2.46 12.46 213.29
Speedup 2.77 2.83 9.85 13.02

Table 3. Experimental Results on Scene Allocation and Balanced Latin Squares

Bench min(S) μ(S) max(S) μ(TS) σ(S) σ(TS)

scene 334144.00 335457.38 343256.00 1.10% 0.72 0.06
balance(8) 0 0 0 0.0 13.85 14.74
balance(9) 0 0 0 0.0 61.26 51.78

The Benefits of Gradient Invariants. Table 2 reports experimental results on
the benefits on maintaining variable gradients incrementally. It compares the
results of the model in Figure 3 when the implementation incrementally updates
(PP(DI)) or evaluates (PP(DI-G)) variable gradients. The results highlight the
importance of gradient invariants as the speed-ups increase with the problem
size to reach a 13-fold improvement on the largest instance.

Other Experimental Results. For completeness, Table 3 reports the experimental
results on scene allocation and spatially balanced latin squares. The first three
columns report the min, average, and maximal values of the objective function,
the fourth column reports the average CPU time (in seconds), and the last two
columns show the standard deviation. The scene allocation program, despite its
simplicity, performs extremely well and does not need the symmetry-breaking
required in the CP solution for good performance (see [7]). The Comet program
for latin square is very competitive with the local search algorithms presented
in [2] which use a similar neighborhood (but a different search strategy which is
not specified precisely enough for reproduction).

Overall, these results show that differentiable invariants are an effective high-
level abstraction to bridge the gap between invariants and differentiable objects.
They allow programmers to express complex, idiosyncratic constraints declara-
tively, while leaving the system deriving invariants and incremental algorithms
so important in constraint-based local search.

References

1. M. Agren, P. Flener, and J. Pearson. Inferring Variable Conflicts for Local Search.
In CP’06, September 2006.

2. C. Gomes, M. Sellmann, C. van Es1, and H. van Es. The Challenge of Generating
Spatially Balanced Scientific Experiment Designs. In CP-AI-OR’04, Nice, 2004.

3. L. Michel and P. Van Hentenryck. Localizer: A Modeling Language for Local Search.
In CP’97), October 1997.

Differentiable Invariants 619

4. L. Michel and P. Van Hentenryck. Localizer. Constraints, 5:41–82, 2000.
5. L. Michel and P. Van Hentenryck. A Constraint-Based Architecture for Local Search.

In OOPSLA-02, November 2002.
6. C. Smith, C. Gomes, and C. Fernàndez. Streamlining Local Search for Spatially

Balanced Latin Squares. In IJCAI-05, Edinburgh, Scotland, July 2005.
7. P. Van Hentenryck. Constraint and Integer Programming in OPL. Informs Journal

on Computing, 14(4):345–372, 2002.
8. P. Van Hentenryck. Constraint-Based Local Search. The MIT Press, 2005.
9. P. Van Hentenryck, L. Michel, and L. Liu. Constraint-Based Combinators for Local

Search. In CP’04, October 2004.

	Introduction
	Totally Spatially Balanced Latin Squares
	Scene Allocation
	The Progressive Party Problem
	Expressions as Differentiable Objective Functions
	Relational Expressions as Differentiable Constraints
	Reification
	Experimental Evaluation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

