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Abstract. By introducing the Regular Membership Constraint, Gilles Pesant pi-
oneered the idea of basing constraints on formal languages. The paper presented
here is highly motivated by this work, taking the obvious next step, namely to
investigate constraints based on grammars higher up in the Chomsky hierarchy.
We devise an arc-consistency algorithm for context-free grammars, investigate
when logic combinations of grammar constraints are tractable, show how to ex-
ploit non-constant size grammars and reorderings of languages, and study where
the boundaries run between regular, context-free, and context-sensitive grammar
filtering.

Keywords: global constraints, regular grammar constraints, context-free gram-
mar constraints, constraint filtering.

1 Introduction

With the introduction of the regular language membership constraint [9,10,2], a new
field of study for filtering algorithms has opened. Given the great expressiveness of
formal grammars and their (at least for someone with a background in computer sci-
ence) intuitive usage, grammar constraints are extremely attractive modeling entities
that subsume many existing definitions of specialized global constraints. Moreover, Pe-
sant’s implementation [8] of the regular grammar constraint has shown that this type of
filtering can also be performed incrementally and generally so efficiently that it even
rivals custom filtering algorithms for special regular grammar constraints like Stretch
and Pattern [9,4].

In this paper, we theoretically investigate filtering problems that arise from gram-
mar constraints. We answer questions like: Can we efficiently filter context-free gram-
mar constraints? How can we achieve arc-consistency for conjunctions of regular
grammar constraints? Given that we can allow non-constant grammars and reordered
languages for the purposes of constraint filtering, what languages are suited for filter-
ing based on regular and context-free grammar constraints? Are there languages that
are suited for context-free, but not for regular grammar filtering?

Particularly, after recalling some essential basic concepts from the theory of for-
mal languages in the next section, we devise an efficient arc-consistency algorithm that
propagates context-free grammar constraints in Section 3. Then, in Section 4, we study
how logic combinations of grammar constraints can be propagated efficiently. Finally,
we investigate non-constant size grammars and reorderings of languages in Section 5.
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2 Basic Concepts

We start our work by reviewing some well-known definitions from the theory of formal
languages. For a full introduction, we refer the interested reader to [6]. All proofs that
are omitted in this paper can also be found there.

Definition 1 (Alphabet and Words). Given sets Z , Z1, and Z2, with Z1Z2 we denote
the set of all sequences or strings z = z1z2 with z1 ∈ Z1 and z2 ∈ Z2, and we call
Z1Z2 the concatenation of Z1 and Z2. Then, for all n ∈ IN we denote with Zn the set
of all sequences z = z1z2 . . . zn with zi ∈ Z for all 1 ≤ i ≤ n. We call z a word of
length n, and Z is called an alphabet or set of letters. The empty word has length 0 and
is denoted by ε. It is the only member of Z0. We denote the set of all words over the
alphabet Z by Z∗ :=

⋃
n∈IN Zn. In case that we wish to exclude the empty word, we

write Z+ :=
⋃

n≥1 Zn.

Definition 2 (Grammar). A grammar is a four-tuple G = (Σ, N, P, S0) where Σ is
the alphabet, N is a finite set of non-terminals, P ⊆ (N ∪Σ)∗N(N ∪Σ)∗ × (N ∪Σ)∗

is the set of productions, and S0 ∈ N is the start non-terminal. We will always assume
that N ∩ Σ = ∅.

Remark 1. We will use the following convention: Capital letters A, B, C, D, and E
denote non-terminals, lower case letters a, b, c, d, and e denote letters in Σ, Y and Z
denote symbols that can either be letters or non-terminals, u, v, w, x, y, and z denote
strings of letters, and α, β, and γ denote strings of letters and non-terminals. Moreover,
productions (α, β) in P can also be written as α → β.

Definition 3 (Derivation and Language)

– Given a grammar G = (Σ, N, P, S0), we write αβ1γ ⇒
G

αβ2γ iff there exists a

production β1 → β2 ∈ P . We write α1
∗⇒
G

αm iff there exists a sequence of strings

α2, . . . , αm−1 such that αi ⇒
G

αi+1 for all 1 ≤ i < m. Then, we say that αm can

be derived from α1.
– We define the language given by G to be LG := {w ∈ Σ∗ | S0

∗⇒
G

w}.

Definition 2 gives a very general form of grammars which is known to be Turing
machine equivalent. Consequently, reasoning about languages given by general gram-
mars is infeasible. For example, the word problem for grammars as defined above is
undecidable.

Definition 4 (Word Problem). Given a grammar G = (Σ, N, P, S0) and a word w ∈
Σ∗, the word problem consists in answering the question whether w ∈ LG.

Therefore, in the theory of formal languages, more restricted forms of grammars have
been defined. Noam Chomsky introduced a hierarchy of decreasingly complex sets of
languages [5]. In this hierarchy, the grammars given in Definition 2 are called Type-0
grammars. In the following, we define the Chomsky hierarchy of formal languages.
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Definition 5 (Context-Sensitive, Context-Free, and Regular Grammars)

– Given a grammar G = (Σ, N, P, S0) such that for all productions α → β ∈ P
we have that β is at least as long as α, then we say that the grammar G and the
language LG are context-sensitive. In Chomsky’s hierarchy, these grammars are
known as Type-1 grammars.

– Given a grammar G = (Σ, N, P, S0) such that P ⊆ N ×(N ∪Σ)∗, we say that the
grammar G and the language LG are context-free. In Chomsky’s hierarchy, these
grammars are known as Type-2 grammars.

– Given a grammar G = (Σ, N, P, S0) such that P ⊆ N ×(Σ∗N ∪Σ∗), we say that
G and the language LG are right-linear. In Chomsky’s hierarchy, these grammars
are known as Type-3 grammars.

Remark 2. The word problem becomes easier as the grammars become more and more
restricted: For context-sensitive grammars, the problem is already decidable, but un-
fortunately PSPACE-complete. For context-free languages, the word problem can be
answered in polynomial time. For Type-3 languages, the word problem can even be
decided in time linear in the length of the given word.

For all grammars mentioned above there exists an equivalent definition based on some
sort of automaton that accepts the respective language. As mentioned earlier, for Type-0
grammars, that automaton is the Turing machine. For context-sensitive languages it is
a Turing machine with a linearly space-bounded tape. For context-free languages, it is
the so-called push-down automaton (in essence a Turing machine with a stack rather
than a tape). And for right-linear languages, it is the finite automaton (which can be
viewed as a Turing machine with only one read-only input tape on which it cannot move
backwards). Depending on what one tries to prove about a certain class of languages, it
is convenient to be able to switch back and forth between different representations (i.e.
grammars or automata). In this work, when reasoning about context-free languages, it
will be most convenient to use the grammar representation. For right-linear languages,
however, it is often more convenient to use the representation based on finite automata:

Definition 6 (Finite Automaton). Given a finite set Σ, a finite automaton A is defined
as a tuple A = (Q, Σ, δ, q0, F ), where Q is a set of states, Σ denotes the alphabet of our
language, δ ⊆ Q×Σ×Q defines the transition function, q0 is the start state, and F is the
set of final states. A finite automaton is called deterministic iff (q, a, p1), (q, a, p2) ∈ δ
implies that p1 = p2.

Definition 7 (Accepted Language). The language defined by a finite automaton A is
the set LA := {w = (w1, . . . wn) ∈ Σ∗ | ∃ (p0, . . . , pn) ∈ Qn ∀ 1 ≤ i ≤ n :
(pi−1, wi, pi) ∈ δ and p0 = q0, pn ∈ F}. LA is called a regular language.

Lemma 1. For every right-linear grammar G there exists a finite automaton A such
that LA = LG, and vice versa.

Consequently, we can use the terms right-linear and regular synonymously.
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3 Context-Free Grammar Constraints

Within constraint programming it would be convenient to use formal languages to de-
scribe certain features that we would like our solutions to exhibit. It is worth noting here
that any constraint and conjunction of constraints really defines a formal language by it-
self when we view the instantiations of variables X1, . . . , Xn with domains D1, . . . , Dn

as forming a word in D1D2 . . .Dn. Conversely, if we want a solution to belong to a cer-
tain formal language in this view, then we need appropriate constraints and constraint
filtering algorithms that will allow us to express and solve such constraint programs
efficiently. We formalize the idea by defining grammar constraints.

Definition 8 (Grammar Constraint). For a given grammar G = (Σ, N, P, S0) and
variables X1, . . . , Xn with domains D1 := D(X1), . . . , Dn := D(Xn) ⊆ Σ, we say
that GrammarG(X1, . . . , Xn) is true for an instantiation X1 ← w1, . . . , Xn ← wn

iff it holds that w = w1 . . . wn ∈ LG ∩ D1 × · · · × Dn.

Gilles Pesant pioneered the idea to exploit formal grammars for constraint program-
ming by considering regular languages [9,10]. Based on the review of our knowledge
of formal languages in the previous section, we can now ask whether we can also de-
velop efficient filtering algorithms for grammar constraints of higher-orders. Clearly,
for Type-0 grammars, this is not possible, since the word problem is already undecid-
able. For context-sensitive languages, the word problem is PSPACE complete, which
means that even checking the corresponding grammar constraint is computationally
intractable.

However, for context-free languages deciding whether a given word belongs to the
language can be done in polynomial time. Context-free grammar constraints come in
particularly handy when we need to look for a recursive sequence of nested objects.
Consider for instance the puzzle of forming a mathematical term based on two occur-
rences of the numbers 3 and 8, operators +, -, *, /, and brackets (, ), such that the term
evaluates to 24. The generalized problem is NP-hard, but when formulating the prob-
lem as a constraint program, with the help of a context-free grammar constraint we can
easily express the syntactic correctness of the term formed. Or, closer to the real-world,
consider the task of organizing a group of workers into a number of teams of unspeci-
fied size, each team with one team leader and one project manager who is the head of
all team leaders. This organizational structure can be captured easily by a combination
of an AllDifferent and a context-free grammar constraint. Therefore, in this section we
will develop an algorithm that propagates context-free grammar constraints.

3.1 Parsing Context-Free Grammars

One of the most famous algorithms for parsing context-free grammars is the algorithm
by Cocke, Younger, and Kasami (CYK). It takes as input a word w ∈ Σn and a context-
free grammar G = (Σ, N, P, S0) in some special form and decides in time O(n3|P |)
whether it holds that w ∈ LG. The algorithm is based on the dynamic programming
principle. In order to keep the recursion equation under control, the algorithm needs to
assume that all productions are length-bounded on the right-hand side.
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Definition 9 (Chomsky Normal Form). A context-free grammar G = (Σ, N, P, S0)
is said to be in Chomsky Normal Form iff for all productions A → α ∈ P we have that
α ∈ Σ1 ∪ N2.

Lemma 2. Every context free grammar G such that ε /∈ LG can be transformed into a
grammar H such that LG = LH and H is in Chomsky Normal Form.

The proof of this lemma is given in [6]. It is important to note that the proof is construc-
tive but that the resulting grammar H may be exponential in size of G, which is really
due to the necessity to remove all productions A → ε. When we view the grammar
size as constant (i.e. if the size of the grammar is independent of the word-length as
it is commonly assumed in the theory of formal languages), then this is not an issue.
As a matter of fact, in most references one will simply read that CYK could solve the
word problem for any context-free language in cubic time. For now, let us assume that
indeed all grammars given can be treated as having constant-size, and that our asymp-
totic analysis only takes into account the increasing word lengths. We will come back
to this point later in Section 4 when we discuss logic combinations of grammar con-
straints, and in Section 5 when we discuss the possibility of non-constant grammars and
reorderings.

Now, given a word w ∈ Σn, let us denote the sub-sequence wiwi+1 . . . wi+j−1
by wij . Based on a grammar G = (Σ, N, P, S0) in Chomsky Normal Form, CYK
determines iteratively the set of all non-terminals from where we can derive wij , i.e.
Sij := {A ∈ N | A

∗⇒
G

wij} for all 1 ≤ i ≤ n and 1 ≤ j ≤ n − i. It is easy to initialize

the sets Si1 just based on wi and all productions A → wi ∈ P . Then, for j from 2 to n
and i from 1 to n − j + 1, we have that

Sij =
j−1⋃

k=1

{A | A → BC ∈ P with B ∈ Sik and C ∈ Si+k,j−k}. (1)

Then, w ∈ LG iff S0 ∈ S1n. From the recursion equation it is simple to derive that
CYK can be implemented to run in time O(n3|P |) = O(n3) when we treat the size of
the grammar as a constant.

3.2 Example

Assume we are given the following context-free, normal-form grammar G = ({], [},-
{A, B, C, S0}, {S0 → AC, S0 → S0S0, S0 → BC, B → AS0, A → [ , C → ] }, S0)
that gives the language LG of all correctly bracketed expressions (like, for example,
“[[][]]” or “[][[]]”). Given the word “[][[]]”, CYK first sets S11 = S31 = S41 = {A},
and S21 = S51 = S61 = {C}. Then it determines the non-terminals from which we
can derive sub-sequences of length 2: S12 = S42 = {S0} and S22 = S32 = S52 =
∅. The only other non-empty sets that CYK finds in iterations regarding longer sub-
sequences are S34 = {S0} and S16 = {S0}. Consequently, since S0 ∈ S16, CYK
decides (correctly) that [][[]] ∈ LG.
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1. We run the dynamic program based on recursion equation 1 with initial sets Si1 := {A | A →
v ∈ P, v ∈ Di}.

2. We define the directed graph Q = (V, E) with node set V := {vijA | A ∈ Sij} and arc
set E := E1 ∪ E2 with E1 := {(vijA, vikB) | ∃ C ∈ Si+k,j−k : A → BC ∈ P} and
E2 := {(vijA, vi+k,j−k,C) | ∃ B ∈ Sik : A → BC ∈ P} (see Figure 1).

3. Now, we remove all nodes and arcs from Q that cannot be reached from v1nS0 and denote the
resulting graph by Q′ := (V ′, E′).

4. We define S′
ij := {A | vijA ∈ V ′} ⊆ Sij , and set D′

i := {v | ∃ A ∈ S′
i1 : A → v ∈ P}.

Algorithm 1 CFCG Filtering Algorithm

3.3 Context-Free Grammar Filtering

We denote a given grammar constraint GrammarG(X1, . . . , Xn) over a context-free
grammar G in Chomsky Normal Form by CFGCG(X1, . . . , Xn). Obviously, we can
use CYK to determine whether CFGCG(X1, . . . , Xn) is satisfied for a full instantia-
tion of the variables, i.e. we could use the parser for generate-and-test purposes. In the
following, we show how we can augment CYK to a filtering algorithm that achieves
generalized arc-consistency for CFGC.

First, we observe that we can check the satisfiability of the constraint by making just
a very minor adjustment to CYK. Given the domains of the variables, we can decide
whether there exists a word w ∈ D1 . . . Dn such that w ∈ LG simply by adding all non-
terminals A to Si1 for which there exists a production A → v ∈ P with v ∈ Di. From
the correctness of CYK it follows trivially that the constraint is satisfiable iff S0 ∈ S1n.
The runtime of this algorithm is the same as that for CYK.

As usual, whenever we have a polynomial-time algorithm that can decide the satis-
fiability of a constraint, we know already that achieving arc-consistency is also com-
putationally tractable. A brute force approach could simply probe values by setting
Di := {v}, for every 1 ≤ i ≤ n and every v ∈ Di, and checking whether the constraint
is still satisfiable or not. This method would result in a runtime in O(n4D|P |), where
D ≤ |Σ| is the size of the largest domain Di.

We will now show that we can achieve a much improved filtering time. The core
idea is once more to exploit Mike Trick’s method of filtering dynamic programs [11].
Roughly speaking, when applied to our CYK-constraint checker, Trick’s method simply
reverses the recursion process after it has assured that the constraint is satisfiable so as
to see which non-terminals in the sets Si1 can actually be used in the derivation of any
word w ∈ LG ∩ (D1 . . . Dn). The methodology is formalized in Algorithm 1.

Lemma 3. In Algorithm 1:

1. It holds that A ∈ Sij iff there exists a word wi . . . wi+j−1 ∈ Di . . . Di+j−1 such
that A

∗⇒
G

wi . . . wi+j−1.

2. It holds that B ∈ S′
ik iff there exists a word w ∈ LG ∩ (D1 . . . Dn) such that

S0
∗⇒
G

w1 . . . wi−1 B wi+k . . . wn.

Proof. 1. We induce over j. For j = 1, the claim holds by definition of Si1. Now
assume j > 1 and that the claim is true for all Sik with 1 ≤ k < j. Now, by

.
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definition of Sij , A ∈ Sij iff there exists a 1 ≤ k < j and a production A →
BC ∈ P such that B ∈ Sik and C ∈ Si+k,j−k . Thus, A ∈ Sij iff there exist wik ∈
Di . . . Di+k−1 and wi+k,j−k ∈ Di+k . . .Di+j−1 such that A

∗⇒
G

wikwi+k,j−k .

2. We induce over k, starting with k = n and decreasing to k = 1. For k = n,
S′

1k = S′
1n ⊆ {S0}, and it is trivially true that S0

∗⇒
G

S0. Now let us as-

sume the claim holds for all S′
ij with k < j ≤ n. Choose any B ∈ S′

ik.
According to the definition of S′

ik there exists a path from v1nS0 to vikB . Let
(vijA, vikB) ∈ E1 be the last arc on any one such path (the case when the last
arc is in E2 follows analogously). By the definition of E1 there exists a production
A → BC ∈ P with C ∈ Si+k,j−k . By induction hypothesis, we know that there
exists a word w ∈ LG ∩ (D1 . . . Dn) such that S0

∗⇒
G

w1 . . . wi−1 A wi+j . . . wn.

Thus, S0
∗⇒
G

w1 . . . wi−1 BC wi+j . . . wn. And therefore, with (1) and C ∈

Si+k,j−k , there exists a word wi+k . . . wi+j−1 ∈ Di+k . . . Di+j−1 such that S0
∗⇒
G

w1 . . . wi−1 B wi+k . . . wi+j−1 wi+j . . . wn. Since we can also apply (1) to non-
terminal B, we have proven the claim.

�

Theorem 1. Algorithm 1 achieves generalized arc-consistency for the CFGC.

Proof. We show that v /∈ D′
i iff for all words w = w1 . . . wn ∈ LG ∩ (D1 . . . Dn) it

holds that v �= wi.

⇒ (Correctness) Let v /∈ D′
i and w = w1 . . . wn ∈ LG ∩ (D1 . . . Dn). Due to

w ∈ LG there must exist a derivation S0
∗⇒
G

w1 . . . wi−1 A wi+1 . . . wn ⇒
G

w1 . . . wi−1wiwi+1 . . . wn for some A ∈ N with A → wi ∈ P . According to
Lemma 3, A ∈ S′

i1, and thus wi ∈ D′
i, which implies v �= wi as v /∈ D′

i.
⇐ (Effectiveness) Now let v ∈ D′

i ⊆ Di. According to the definition of D′
i, there

exists some A ∈ S′
i1 with A → v ∈ P . With Lemma 3 we know that then there

exists a word w ∈ LG ∩ (D1 . . . Dn) such that S0
∗⇒
G

w1 . . . wi−1 A wi+1 . . . wn.

Thus, it holds that S0
∗⇒
G

w1 . . . wi−1 v wi+1 . . . wn ∈ LG ∩ (D1 . . .Dn).
�

We now have a filtering algorithm that achieves generalized arc-consistency for context-
free grammar constraints. Since the computational effort is dominated by carrying out
the recursion equation, Algorithm 1 runs asymptotically in the same time as CYK. In
essence, this implies that checking one complete assignment via CYK is as costly as
performing full arc-consistency filtering for CFGC. Clearly, achieving arc-consistency
for a grammar constraint is at least as hard as parsing. Now, there exist faster parsing
algorithms for context-free grammars. For example, the fastest known algorithm was
developed by Valiant and parses context-free grammars in time O(n2.8). While this
is only moderately faster than the O(n3) that CYK requires, there also exist special
purpose parsers for non-ambiguous context-free grammars (i.e. grammars where each
word in the language has exactly one parse tree) that run in O(n2). Now, it is known
that there exist inherently ambiguous context-free languages, so these parsers lack some
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Fig. 1. Context-Free Filtering: Assume we are given the context-free grammar from section 3.2
again. A rectangle with coordinates (i, j) contains one node vijA for each non-terminal A in
the set Sij . All arcs are considered to be directed from top to bottom. The left picture shows
the situation after step (2). S0 is in S14, therefore the constraint is satisfiable. The right picture
illustrates the shrunken graph with sets S′

ij after all parts have been removed that cannot be
reached from node v14S0 . We see that the value ’]’ will be removed from D1 and ’[’ from D4.
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Fig. 2. We show how the algorithm works when the initial domain of X3 is D3 = {[}. The left
picture shows sets Sij and the right the sets S′

ij . We see that the constraint filtering algorithm
determines the only word in LG ∩ D1 . . . D4 is “[][]”.

generality. However, in case that a user specifies a grammar that is non-ambiguous it
would actually be nice to have a filtering algorithm that runs in quadratic rather than
cubic time. It is a matter of further research to find out whether grammar constraint
propagation can be done faster for non-ambiguous context-free grammars.

4 Logic Combinations of Grammar Constraints

We define regular grammar constraints analogously to CFGC, but as in [10] we base
it on automata rather than right-linear grammars:

Definition 10 (Regular Grammar Constraint). Given a finite automaton A and a
right-linear grammar G with LA = LG, we set

RGCA(X1, . . . , Xn) := GrammarG(X1, . . . , Xn).
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Efficient arc-consistency algorithms for RGCs have been developed in [9,10]. Now
equipped with efficient filtering algorithms for regular and context-free grammar con-
straints, in the spirit of [7,1,3] we focus on certain questions that arise when a problem
is modeled by logic combinations of these constraints. An important aspect when in-
vestigating logical combinations of grammar constraints is under what operations the
given class of languages is closed. For example, when given a conjunction of regu-
lar grammar constraints, the question arises whether the conjunction of the constraints
could not be expressed as one global RGC. This question can be answered affirma-
tively since the class of regular languages is known to be closed under intersection. In
the following we summarize some relevant, well-known results for formal languages
(see for instance [6]).

Lemma 4. For every regular language LA1 based on the finite automaton A1 there
exists a deterministic finite automaton A2 such that LA1 = LA2 .

Proof. When Q1 = {q0, . . . , qn−1}, we set A2 := (Q2, Σ, δ2, q2
0 , F

2) with Q2 := 2Q1
,

q2
0 = {q1

0}, δ2 := {(P, a, R) | R = {r ∈ Q1 | ∃ p ∈ P : (p, a, r) ∈ δ1}}, and
F 2 := {P ⊆ Q1 | ∃ p ∈ P ∩ F 1}. With this construction, it is easy to see that
LA1 = LA2 . �

We note that the proof above gives a construction that can change the properties of the
language representation, just like we had noted it earlier for context-free grammars that
we had transformed into Chomsky Normal Form first before we could apply CYK for
parsing and filtering. And just like we were faced with an exponential blow-up of the
representation when bringing context-free grammars into normal-form, we see the same
again when transforming a non-deterministic finite automaton of a regular language into
a deterministic one.

Theorem 2. Regular languages are closed under the following operations:

– Union
– Intersection
– Complement

Proof. Given two regular languages LA1 and LA2 with respective finite automata A1 =
(Q1, Σ, δ1, q1

0 , F
1) and A2 = (Q2, Σ, δ2, q2

0 , F
2), without loss of generality, we may

assume that the sets Q1 and Q2 are disjoint and do not contain symbol q3
0 .

– We define Q3 := Q1 ∪ Q2 ∪ {q3
0}, δ3 := δ1 ∪ δ2 ∪ {(q3

0 , a, q) | (q1
0 , a, q) ∈

δ1 or (q2
0 , a, q) ∈ δ2)}, and F 3 := F 1 ∪ F 2. Then, it is straight-forward to see that

the automaton A3 := (Q3, Σ, δ3, q3
0 , F

3) defines LA1 ∪ LA2 .
– We define Q3 := Q1 × Q2, δ3 := {((q1, q2), a, (p1, p2) | ∃(q1, a, p1) ∈ δ1,-

(q2, a, p2)∈δ2}, and F 3 :=F 1×F 2. The automaton A3 :=(Q3, Σ, δ3, (q1
0 , q2

0), F 3)
defines LA1 ∩ LA2 .

– According to Lemma 4, we may assume that A1 is a deterministic automaton. Then,
(Q1, Σ, δ1, q1

0 , Q
1 \ F 1) defines LC

A1 . �
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The results above suggest that any logic combination (disjunction, conjunction, and
negation) of RGCs can be expressed as one global RGC. While this is true in principle,
from a computational point of view, the size of the resulting automaton needs to be taken
into account. In terms of disjunctions of RGCs, all that we need to observe is that the
algorithm developed in [9] actually works with non-deterministic automata as well. In
the following, denote by m an upper bound on the number of states in all automata
involved, and denote the size of the alphabet Σ by D. We obtain our first result for
disjunctions of regular grammar constraints:

Lemma 5. Given RGCs R1, . . . , Rk, all over variables X1, . . . , Xn in that order, we
can achieve arc-consistency for the global constraint

∨
i Ri in time O((km+k)nD) =

O(nDk) for automata with constant state-size m.

If all that we need to consider are disjunctions of RGCs, then the result above is sub-
sumed by the well known technique of achieving arc-consistency for disjunctive con-
straints which simply consists in removing, for each variable domain, the intersection of
all values removed by the individual constraints. However, when considering conjunc-
tions over disjunctions the result above is interesting as it allows us to treat a disjunctive
constraint over RGCs as one new RGC of slightly larger size.

Now, regarding conjunctions of RGCs, we find the following result:

Lemma 6. Given RGCs R1, . . . , Rk, all over variables X1, . . . , Xn in that order, we
can achieve arc-consistency for the global constraint

∧
i Ri in time O(nDmk).

Finally, for the complement of a regular constraint, we have:

Lemma 7. Given an RGC R based on a deterministic automaton, we can achieve arc-
consistency for the constraint ¬R in time O(nDm) = O(nD) for an automaton with
constant state-size.

Proof. Lemmas 5- 7 are an immediate consequence of the results in [9] and the con-
structive proof of Theorem 2. �

Note that the lemma above only covers RGCs for which we know a deterministic finite
automaton. However, when negating a disjunction of regular grammar constraints, the
automaton to be negated is non-deterministic. Fortunately, this problem can be entirely
avoided: When the initial automata associated with the elementary constraints of a logic
combination of regular grammar constraints are deterministic, we can apply the rule of
DeMorgan so as to only have to apply negations to the original constraints rather than
the non-deterministic disjunctions or conjunctions thereof. With this method, we have:

Corollary 1. For any logic combination (disjunction, conjunction, and negation) of
deterministic RGCs R1, . . . , Rk, all over variables X1, . . . , Xn in that order, we can
achieve generalized arc-consistency in time O(nDmk).

Regarding logic combinations of context-free grammar constraints, unfortunately we
find that this class of languages is not closed under intersection and complement, and
the mere disjunction of context-free grammar constraints is not interesting given the
standard methods for handling disjunctions. We do know, however, that context-free
languages are closed under intersection with regular languages. It is a subject of further
research to assess how big the resulting grammars can become.
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Fig. 3. Regular grammar filtering for {anbn}. The left figure shows a linear-size automaton, the
right an automaton that accepts a reordering of the language.

5 Limits of the Expressiveness of Grammar Constraints

So far we have been very careful to mention explicitly how the size of the state-space of
a given automaton or how the size of the set of non-terminals of a grammar influences
the running time of our filtering algorithms. From the theory of formal languages’ view-
point, this is rather unusual, since here the interest lies purely in the asymptotic runtime
with respect to the word-length. For the purposes of constraint programming, however,
a grammar may very well be generated on the fly and may depend on the word-length,
whenever this can be done efficiently. This fact makes grammar constraints even more
expressive and powerful tools from the modeling perspective. Consider for instance the
context-free language L = {anbn} that is well-known not to be regular. Note that,
within a constraint program, the length of the word is known — simply by consider-
ing the number of variables that define the scope of the grammar constraint. Now, by
allowing the automaton to have 2n + 1 states, we can express that the first n variables
shall take the value a and the second n variables shall take the value b by means of a
regular grammar constraint. Of course, larger automata also result in more time that is
needed for propagation. However, as long as the grammar is polynomially bounded in
the word-length, we can still guarantee a polynomial filtering time.

The second modification that we can safely allow is the reordering of variables. In
the example above, assume the first n variables are X1, . . . , Xn and the second n vari-
ables are Y1, . . . , Yn. Then, instead of building an automaton with 2n + 1 states that
is linked to (X1, . . . , Xn, Y1, . . . , Yn), we could also build an automaton with just two
states and link it to (X1, Y1, X2, Y2, . . . , Xn, Yn) (see Figure 3). The same ideas can
also be applied to {anbncn} which is not even context-free but context-sensitive. The
one thing that we really need to be careful about is that, when we want to exploit our
earlier results on the combination of grammar constraints, we need to make sure that
the ordering requirements specified in the respective theorems are met (see for instance
Lemmas 5 and 6).

While these ideas can be exploited to model some required properties of solutions by
means of grammar constraints, they make the theoretical analysis of which properties
can or cannot be modeled by those constraints rather difficult. Where do the boundaries
run between languages that are suited for regular or context-free grammar filtering? The
introductory example, as uninteresting as it is from a filtering point of view, showed al-
ready that the theoretical tools that have been developed to assess that a certain language
cannot be expressed by a grammar on a lower level in the Chomsky hierarchy fail. The
well-known pumping lemmas for regular and context-free grammars for instance rely
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on the fact that grammars be constant in size. As soon as we allow reordering and/or
non-constant size grammars, they do not apply anymore.

To be more formal: what we really need to consider for propagation purposes is not
an entire infinite set of words that form a language, but just a slice of words of a given
length. I.e., given a language L what we need to consider is just L|n := L ∩ Σn. Since
L|n is a finite set, it really is a regular language. In that regard, our previous finding that
{anbn} for fixed n can be modeled as regular language is not surprising. The interesting
aspect is that we can model {anbn} by a regular grammar of size linear in n, or even
of constant size when reordering the variables appropriately.

Definition 11 (Suitedness for Grammar Filtering). Given a language L over the al-
phabet Σ, we say that L is suited for regular (or context-free) grammar filtering iff
there exist constants k, n ∈ IN such that there exists a permutation σ : {1, . . . , n} →
{1, . . . , n} and a finite automaton A (or normal-form context-free grammar G) such
that both σ and A (G) can be constructed in time O(nk) with σ(L|n) = σ(L ∩ Σn) :=
{wσ(1) . . . wσ(n) | w1 . . . wn ∈ L} = LA (σ(L|n) = LG).

Remark 3. Note that the previous definition implies that the size of the automaton
(grammar) constructed is in O(nk). Note further that, if the given language is regu-
lar (context-free), then it is also suited for regular (context-free) grammar filtering.

Now, we have the terminology at hand to express that some properties cannot be mod-
eled efficiently by regular or context-free grammar constraints. We start out by proving
the following useful Lemma:

Lemma 8. Denote with N = {S0, . . . , Sr} a set of non-terminal symbols and G =
(Σ, N, P, S0) a context-free grammar in Chomsky-Normal-Form. Then, for every word
w ∈ LG of length n, there must exist t, u, v ∈ Σ∗ and a non-terminal symbol Si ∈ N
such that S0

∗⇒
G

tSiv, Si
∗⇒
G

u, w = tuv, and n/4 ≤ |u| ≤ n/2.

Proof. Since w ∈ LG, there exists a derivation S0
∗⇒
G

w in G. We set h1 := 0. Assume

the first production used in the derivation of w is Sh1 → Sk1Sk2 for some 0 ≤ k1, k2 ≤
r. Then, there exist words u1, u2 ∈ Σ∗ such that w = u1u2, Sk1

∗⇒
G

u1, and Sk2

∗⇒
G

u2.

Now, either u1 or u2 fall into the length interval claimed by the lemma, or one of
them is longer than n/2. In the first case, we are done, the respective non-terminal has
the claimed properties. Otherwise, if |u1| < |u2| we set h2 := k2, else h2 := k1.
Now, we repeat the argument that we just made for Sh1 for the non-terminal Sh2 that
derives to the longer subsequence of w. At some point, we are bound to hit a production
Shm → SkmSkm+1 where Shm still derives to a subsequence of length greater than
n/2, but both Skm , Skm+1 derive to subsequences that are at most n/2 letters long. The
longer of the two is bound to have length greater than n/4, and the respective non-
terminal has the desired properties. �
Now consider the language

LAllDiff := {w ∈ IN∗ | ∀ 1 ≤ k ≤ |w| : ∃ 1 ≤ i ≤ |w| : wi = k}.

Since the word problem for LAllDiff can be decided in linear space, LAllDiff is (at most)
context-sensitive.
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Theorem 3. LAllDiff is not suited for context-free grammar filtering.

Proof. We observe that reordering the variables linked to the constraint has no effect on
the language itself, i.e. we have that σ(LAllDiff|n) = LAllDiff|n for all permutations σ.
Now assume that, for all n ∈ IN, we can construct a normal-form context-free grammar
G = ({1, . . . , n}, {S0, . . . , Sr}, P, S0) that generates LAllDiff|n. We will show that the
minimum size for G is exponential in n. Due to Lemma 8, for every word w ∈ LAllDiff|n
there exist t, u, v ∈ {1, . . . , n}∗ and a non-terminal symbol Si such that S0

∗⇒
G

tSiv,

Si
∗⇒
G

u, w = tuv, and n/4 ≤ |u| ≤ n/2. Now, let us count for how many words non-

terminal Si can be used in the derivation. Since from Si we can derive u, all terminal
symbols that are in u must appear in one block in any word that can use Si for its
derivation. This means that there can be at most (n − |u|)(n − |u|)!(|u|)! ≤ 3n

4 (n
2 !)2

such words. Consequently, since there exist n! many words in the language, the number
of non-terminals is bounded from below by

r ≥ n!
3n
4 (n

2 !)2
=

4(n − 1)!
3(n

2 !)2
≈ 4

√
2

3
√

π

2n

n3/2 ∈ ω(1.5n).

�

Now, the interesting question arises whether there exist languages at all that are fit for
context-free, but not for regular grammar filtering? If this wasn’t the case, then the
algorithm developed in Section 3 would be utterly useless. What makes the analysis
of suitedness so complicated is the fact that the modeler has the freedom to change
the ordering of variables that are linked to the grammar constraint — which essentially
allows him or her to change the language almost ad gusto. We have seen an example
for this earlier where we proposed that anbn could be modeled as (ab)n.

Theorem 4. The set of languages that are suited for context-free grammar filtering is
a strict superset of the set of languages that are suited for regular grammar filtering.

Proof. Consider the language L = {wwR#vvR | v, w ∈ {0, 1}∗} ⊆ {0, 1, #}∗
(where xR denotes the reverse of a word x). Obviously, L is context-free with the gram-
mar ({0, 1, #}, {S0, S1}, {S0 → S1#S1, S1 → 0S10, S1 → 1S11, S1 → ε}, S0).
Consequently L is suited for context-free grammar filtering.

Note that, when the position 2k+1 of the sole occurrence of the letter # is fixed, for
every position i containing a letter 0 or 1, there exists a partner position pk(i) so that
both corresponding variables are forced to take the same value. Crucial to our following
analysis is the fact that, in every word x ∈ L of length |x| = n = 2l + 1, every even
(odd) position is linked in this way exactly with every odd (even) position for some
placement of #. Formally, we have that {pk(i) | 0 ≤ k ≤ l} = {1, 3, 5, . . . , n}
({pk(i) | 0 ≤ k ≤ l} = {2, 4, 6, . . . , 2l}) when i is even (odd).

Now, assume that, for every odd n = 2l + 1, there exists a finite automaton that ac-
cepts some reordering of L ∩ {0, 1, #}n under variable permutation σ : {1, . . . , n} →
{1, . . . , n}. For a given position 2k + 1 of # (in the original ordering), by distkσ :=∑

i=1,3,...,2l+1 |σ(i) − σ(pk(i))| we denote the total distance of the pairs after the re-
ordering through σ. Then, the average total distance after reordering through σ is
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1
l+1

∑
0≤k≤l distkσ = 1

l+1

∑
0≤k≤l

∑
i=1,3,...,2l+1 |σ(i) − σ(pk(i))|

= 1
l+1

∑
i=1,3,...,2l+1

∑
0≤k≤l |σ(i) − σ(pk(i))|.

Now, since we know that every odd i has l even partners, even for an ordering σ that
places all partner positions in the immediate neighborhood of i, we have that

∑

0≤k≤l

|σ(i) − σ(pk(i))| ≥ 2
∑

s=1,...,�l/2�
s = (�l/2� + 1)�l/2�.

Thus, for sufficiently large l, the average total distance under σ is

1
l+1

∑
0≤k≤l distkσ ≥ 1

l+1

∑
i=1,3,...,2l+1(�l/2� + 1)�l/2�

≥ l
l+1 (�l/2� + 1)�l/2�

≥ l2/8.

Consequently, for any given reordering σ, there must exist a position 2k + 1 for the
letter # such that the total distance of all pairs of linked positions is at least the average,
which in turn is greater or equal to l2/8. Therefore, since the maximum distance is 2l,
there must exist at least l/16 pairs that are at least l/8 positions apart after reordering
through σ. It follows that there exists an 1 ≤ r ≤ n such that there are at least l/128
positions i ≤ r such that pk(i) > r. Consequently, after reading r inputs, the finite
automaton that accepts the reordering of L ∩ {0, 1, #}n needs to be able to reach at
least 2l/128 different states. It is therefore not polynomial in size. It follows: L is not
suited for regular grammar filtering. �

As a final remark, it is interesting that {wwR#vvR}|2l+1 =
⋃l

k=1{wwR#vvR | -
|w| = k, |v| = l − k}, and {wwR#vvR | |w| = k, |v| = l − k} is actually suited
for regular grammar filtering when each of the sets is reordered appropriately. Now,
Lemma 5 cannot be applied, since the different constraints use different reorderings
of the variables. However, we could apply standard disjunctive constraint filtering. Ul-
timately, context-free grammar filtering only appears to become unavoidable for unre-
stricted concatenations of non-regular grammars such as {w1w

R
1 #w2w

R
2 # . . . wkwR

k },
or our example grammar that generates correctly bracketed expressions, or the language
of syntactically correct mathematical expressions, to name just a few.

6 Conclusions

We investigated the idea of basing constraints on formal languages. Particularly, we de-
vised an efficient arc-consistency algorithm for grammar constraints based on context-
free grammars in Chomsky Normal Form. We studied logic combinations of grammar
constraints and showed where the boundaries run between regular, context-free, and
context-sensitive grammar constraints when allowing non-constant grammars and re-
orderings of variables. Our hope is that grammar constraints can serve as powerful
modeling entities for constraint programming in the future, and that our theory can help
to better understand and tackle the computational problems that arise in the context of
grammar constraint filtering.
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