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Abstract. We introduce the SomeDifferent constraint as a general-
ization of AllDifferent. SomeDifferent requires that values assigned
to some pairs of variables will be different. It has many practical ap-
plications. For example, in workforce management, it may enforce the
requirement that the same worker is not assigned to two jobs which are
overlapping in time. Propagation of the constraint for hyper-arc consis-
tency is NP hard. We present a propagation algorithm with worst case
time complexity O(n3βn) where n is the number of variables and β ≈ 3.5
(ignoring a trivial dependence on the representation of the domains). We
also elaborate on several heuristics which greatly reduce the algorithm’s
running time in practice. We provide experimental results, obtained on a
real-world workforce management problem and on synthetic data, which
demonstrate the feasibility of our approach.

1 Introduction

In this paper we consider a generalization of the well known AllDifferent con-
straint. The AllDifferent constraint requires that the variables in its scope be
assigned different values. It is a fundamental primitive in constraint program-
ming (CP), naturally modeling many classical constraint satisfaction problems
(CSP), such as the n-queen problem, air traffic management [2,9], rostering
problems [18], and many more. Although a single AllDifferent constraint on n
variables is semantically equivalent to n(n − 1)/2 binary NotEqual constraints,
in the context of maintain-arc-consistency algorithms it is vastly more powerful
in pruning the search space and reducing the number of backtracks. It also sim-
plifies and compacts the modeling of complex problems. It has thus attracted a
great deal of attention in the CP literature (see [19] for a survey).

Despite its usefulness, the AllDifferent constraint is too restrictive in many
applications. Often we only desire that certain pairs of variables assume differ-
ent values, and do not care about other pairs. A simple example of this is the
following workforce management problem [21]. We are given a set of jobs, a set
of workers, and a list specifying which jobs can be done by which workers. In
addition, the jobs may be specified to start and end at different times, or require
only partial availability of a worker. Consequently, some pairs of jobs may be
assigned to the same worker while others may not. A simple way to model the
problem is to let each job correspond to a variable, and let the domain of each
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variable be the set of workers qualified to do the job. Then one can add a binary
NotEqual constraint for every two jobs which overlap in their time of execu-
tion and require together more than 100% availability. Additional constraints
can then be added according to the detailed specification of the problem. While
semantically correct, this model suffers from the same disadvantages of model-
ing an AllDifferent problem by multiple NotEqual constraints. On the other
hand, the AllDifferent constraint is inappropriate here because in general, the
same worker can be assigned to two jobs.

While workforce management is a CP application of prime, and growing,
importance (especially in light of the current trends towards globalization and
strategic outsourcing), it is not the only problem in which the above situation
arises. Some further examples include: circuit design, in which any two macros on
a chip may or may not overlap, depending on their internal structure; university
exam scheduling, in which the time-slot of any two exams may or may not be the
same, depending on the number of students taking both exams; and computer-
farm job scheduling, in which, depending on the types of any two jobs, the same
machine may or may not process them simultaneously.

All of this calls for a generalization of AllDifferent in which some, but
not all, pairs of variables require distinct values. We call this generaliza-
tion SomeDifferent. Formally, the SomeDifferent constraint is defined over
a set of variables X = {x1, . . . , xn} with domains D = {D1, . . . , Dn}, and
an underlying graph G = (X, E). The tuples allowed by the constraint are:
SomeDifferent(X, D, G) = {(a1, . . . , an) : ai ∈ Di ∧ ai �= aj for all (i, j) ∈
E(G)}. The special case in which G is a clique is the familiar AllDifferent
constraint. Another special case that has received some attention is the case of
two AllDifferent constraints sharing some of their variables [1].

Our focus in this paper is on hyper-arc consistency propagation for the
SomeDifferent constraint. Since most CSP algorithms use arc-consistency prop-
agation as a subroutine (see, e.g., [7]), it is important to develop specialized
propagation algorithms for specific constraint types—algorithms that are able
to exploit the concrete structure of these constraints. For example, the
AllDifferent constraint admits a polynomial-time hyper-arc consistency prop-
agation algorithm based on its bipartite graph structure [14]. In contrast, and
despite the similarity between SomeDifferent and AllDifferent, there is little
hope for such an algorithm for the SomeDifferent constraint, as the hyper-
arc consistency propagation problem for SomeDifferent contains the NP hard
problem of graph 3-colorability as a special case.

The NP hardness of the propagation problem accommodates two approaches.
One is to aim for relaxed or approximated propagation. This approach has
been taken previously in the context of other NP Hard propagation prob-
lems [15,16,17]. The second approach is to tackle the problem heuristically. In
this paper we combine a theoretically grounded exact algorithm (with exponen-
tial worst case running time) with several heuristics that greatly speed it up in
practice.
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Our results. We introduce an exact propagation algorithm for hyper-arc consis-
tency of the SomeDifferent constraint. The algorithm has time complexity of
O(n3βn), with β ≈ 3.5, and depends on the domain sizes only for the unavoid-
able deletion operations. We have implemented the algorithm (with multiple
additional heuristics) and tested it on two kinds of data:

– IBM’s workforce management instances.
– Synthetic data generated through a random graph model.

In both cases the implementation performed well, much better than expected
from the theoretical bounds. It also compared favorably (though not in all cases)
with the approach of modeling the problem by NotEqual constraints.

Organization of this paper. The remainder of the paper is organized as follows. In
Section 2 we describe a graph theoretical approach to the problem of propagating
the SomeDifferent constraint for hyper-arc consistency. In Section 3 we present
our algorithm and its worst-case analysis. In Section 4 we discuss a few practical
heuristic improvements. In Section 5 we report experimental results. In Section 6
we conclude and discuss future work.

2 A Graph-Theoretical Approach

The problem of propagation of SomeDifferent for hyper-arc consistency can
be formulated as the following graph coloring problem. The input is a graph
G = (V, E), where each vertex u is endowed with a finite set of colors Du. The
vertices correspond to variables; the sets of colors correspond to the domains of
the respective variables; the graph edges correspond to pairs of variables that
may not be assigned the same value, as mandated by the constraint. A valid
coloring of the graph is an assignment c : V → ⋃

u∈V Du of colors to vertices
such that: (1) each vertex u is assigned a color c(u) ∈ Du; and, (2) no two
adjacent vertices are assigned the same color. If a valid coloring exists, we say
the graph is colorable.1 Valid colorings correspond to assignments respecting the
SomeDifferent constraint. We view a coloring of the graph as a collection of
individual point colorings, where by point coloring we mean a coloring of a single
vertex by one of the colors. We denote the point coloring of vertex u by color c by
the ordered pair (u, c). We say that (u, c) is extensible if it can be extended into a
valid coloring of the entire graph (i.e., if there exists a valid coloring of the entire
graph in which u is colored by c). The problem corresponding to propagation
of SomeDifferent for hyper-arc consistency is: given the graph and color sets,
prune the color sets such that: (1) every extensible point coloring in the original
graph remains in the pruned graph; and (2) every point coloring in the pruned
graph is extensible. (We view the color sets as part of the graph. Thus we speak
of the “pruned graph” despite the fact that it is actually the color sets that are
pruned, not the graph itself.) This problem is NP hard, as even the problem
1 We emphasize that we do not refer here to the usual terminology of graph coloring,

but rather to coloring from domains.
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of determining whether the graph is colorable contains the NP hard problem of
3-colorability as the special case in which all color sets are identical and contain
three colors.

The solution to the above pruning problem is of course unique. It consists of
pruning all point colorings that are non-extensible with respect to the original
graph. Thus the problem reduces to identifying the non-extensible point colorings
and eliminating them. The direct approach to this is to test each point coloring
(u, c) for extensibility by applying it (i.e., conceptually coloring u by c, deleting
c from the color sets of the neighbors of u, and deleting u from the graph) and
testing whether the remaining graph is colorable. Thus the number of colorability
testings is

∑
u |Du|, and the time complexity of each is generally exponential in

the total number of colors available. This can be prohibitively costly when the
color sets are large, even if the number of vertices is small. Fortunately, it is
possible to do better in such cases. Let us denote D(U) =

⋃
u∈U Du for any

U ⊆ V . Following the terminology of [13], we make the following definition.

Definition 1. We say that a set of nodes U is a failure set if |D(U)| < |U |,
in which case we also say that the subgraph induced by U is a failure subgraph.
Note that the empty set is not a failure set.

The key observation on which our algorithm is based is contained in Lemma 2
below, whose proof requires the next lemma.

Lemma 1. If the graph contains no failure sets, then it is colorable.

Proof. This is a straightforward application of Hall’s Theorem (see, e.g., Refer-
ence [20], Chapter 3.1):

Let H = (L, R, F ) be a bipartite graph, and for every subset U ⊆ L, let
N(U) = {v ∈ R | ∃u ∈ U, uv ∈ F}. If |N(U)| ≥ |U | for all U ⊆ L, then
F admits a matching that saturates L, i.e., a matching in which every
vertex in L is matched.

We apply Hall’s theorem by defining the following bipartite graph H = (L, R, F ):
L = V ; R = D(V ); and F = {uc |u ∈ L ∧ c ∈ Du}. The condition that no subset
of V is a failure set translates into the condition of Hall’s Theorem for H , and
therefore a matching saturating L exists. This matching defines a coloring of G
in which each vertex is assigned a color from its corresponding color set, and no
color is shared by two vertices. Such a coloring is necessarily valid. 
�
Lemma 2. The graph is colorable if and only if each of its failure subgraphs is
colorable.

Proof. Clearly, if the graph is colorable, then so is every failure subgraph. Con-
versely, if the graph is not colorable, then by Lemma 1 it contains a failure
subset. Let U ⊆ V be a maximal failure set, i.e., U is a failure set and is not
a proper subset of any other failure set. If U = V we are done. Otherwise, let
D1 = D(U) and D2 = D(V ) \ D1 = D(V \ U) \ D1. Consider the subgraph
induced by V \ U with its color sets restricted to the colors in D2 (i.e., with
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each color set Dv (v ∈ V \ U) replaced by Dv \ D1). Neither this graph, nor
any of its induced subgraphs may be failure subgraphs, for had any subset of
V \ U been a failure set with respect to D2, then so would its union with U be
(with respect to D1 ∪ D2, i.e., when the original color sets for the vertices in
V \ U are reinstated), contradicting the maximality of U . Thus, by Lemma 1,
the subgraph induced by V \U is colorable using only colors from D2. It follows
that the subgraph induced by U is not colorable. (Otherwise the entire graph
would be colorable, since the coloring of U would only use colors from D1 and
so could coexist with the coloring of V \U that uses only colors from D2). Thus,
the non-colorability of the graph implies the existence of a failure subgraph that
is non-colorable, which completes the proof. 
�

3 The Algorithm

Testing whether a point coloring (u, c) is extensible can be carried out by remov-
ing c from the color sets of u’s neighbors and deleting u (thus effectively coloring
u by c), and checking whether the resulting graph is colorable. Lemma 2 implies
that it is sufficient to check whether some induced subgraph of the resulting
graph is colorable. This seems to buy us very little, if anything, since we now
replace the checking of a single graph with the checking of many (albeit smaller)
subgraphs. (And, of course, we must still do this for each of the

∑
u |Du| point

colorings.) However, we can realize significant savings by turning the tables and
enumerating subsets of vertices rather than point assignments. More specifically,
we enumerate the non-empty proper subsets of V , and test point colorings only
for those that are failure sets. As we shall see shortly, this reduces the number
of colorability checkings to at most n22n, where n is the number of vertices.

Postponing to later the discussion of how to check whether a subgraph is
colorable, we now present the pruning algorithm.

1. For each ∅ � U � V :
2. If |D(U)| ≤ |U |:
3. For each c ∈ D(U) and v ∈ V \ U such that c ∈ Dv:
4. Check whether the subgraph induced by U is

colorable with c removed from the color sets of the
neighbors of v. If not, report (v, c) as non-extensible.

5. Prune the point colorings reported as non-extensible.
6. Check whether the pruned graph contains a vertex with an empty

color set. If so, announce that the graph is not colorable.

Note that as the algorithm stands, the same point coloring may be reported
multiple times. We address this issue in Section 4.

3.1 Correctness of the Algorithm

We now argue that the algorithm correctly identifies the non-extensible point col-
oring when the graph is colorable, and announces that the graph is not colorable
when it is not.
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Proposition 1. If the graph is colorable, the algorithm reports all non-extensible
point colorings, and only them.

Proof. A point coloring is reported by the algorithm as non-extensible only if
applying it renders some subgraph (and hence the entire graph) non-colorable.
Thus all point colorings reported by the algorithm are indeed non-extensible.
Conversely, to see that all non-extensible point colorings are reported, consider
any such point coloring (v, c). Coloring v by c effectively removes c from the
color sets of v’s neighbors, and the resulting graph (in which v is also removed)
is non-colorable (since (v, c) is non-extensible). By Lemma 2, this graph contains
a subgraph induced by some failure set U that is not colorable. But originally
this subgraph was colorable, since the original graph is colorable. This is only
possible if c ∈ D(U). Additionally, because U is a failure set with c removed,
it must be the case that |D(U)| ≤ |U | before c is removed. Thus, when the
algorithm considers U it will report (v, c) as non-extensible. 
�
Proposition 2. If the graph is non-colorable, the algorithm detects this.

Proof. If the graph is non-colorable, then by Lemma 2 it contains a non-colorable
subgraph induced by some failure set U . If U is a singleton U = {v}, then Dv = ∅,
and we are done. Otherwise, U must contain at least one vertex v such that
Dv ⊆ D(U \ {v}), for otherwise U would not be a failure set (and furthermore,
the subgraph induced by it would be colorable). Thus, |D(U \ {v} | = |D(U)| ≤
|U \ {v} |, so when the algorithm considers U \ {v} it will enter the inner loop
and report all the point colorings involving v as non-extensible. 
�

3.2 Checking Whether a Subgraph is Colorable

We are left with the problem of testing whether a given subgraph is colorable.
We do this by reducing the colorability problem to a chromatic number compu-
tation. The chromatic number of a given graph G, denoted χ(G), is the minimum
number of colors required for coloring G’s vertices such that no two neighbors re-
ceive the same color. In the terms of our coloring framework, we are considering
here the special case in which all color sets are identical. The chromatic number
of the graph is the minimum size of the color set for which a valid coloring still
exists. Computing the chromatic number of a graph is known to be NP hard.

We use the following construction. To test the colorability of the subgraph
induced by U , extend this subgraph as follows. Let r = |D(U)|. Add r new
vertices, each corresponding to one of the colors in D(U), and connect every
pair of these by an edge (i.e., form a clique). Then add an edge between each
vertex v ∈ U and each new vertex that corresponds to a color that is not in Dv.
Let G′ be the resulting graph.

Claim. The subgraph induced by U is colorable if and only if χ(G′) = r.

Proof. If the subgraph induced by U is colorable, then we already have a col-
oring of the vertices in U by at most r colors. We can extend this coloring to



474 Y. Richter, A. Freund, and Y. Naveh

G′ by coloring each of the new vertices by the color (from D(U)) to which it
corresponds. It is easy to see that in so doing, no two neighbors in G′ receive
the same color. Thus χ(G′) ≤ r and as G′ contains a clique of size r, χ(G′) = r
Conversely, if χ(G′) = r, then there exists a coloring of the vertices in G′, us-
ing r colors, such that no two neighbors receive the same color. Note that the
new vertices all have different colors since they are all adjacent to each other.
Without loss of generality, assume that the colors are D(U) and that each of
the new vertices is given the color it corresponds to. (Otherwise, simply rename
the colors.) Now consider a vertex v ∈ U . For each of the colors c ∈ D(U) \ Dv

the new vertex corresponding to c is adjacent to v and is colored by c. Thus v
cannot be colored by any of these colors, and is therefore colored by a color in
its color set Dv. Thus the restriction of the coloring to the subgraph induced by
U is valid. 
�

Therefore, to test whether the subgraph induced by U is colorable we construct
the extended graph G′ and compute its chromatic number. Computing the chro-
matic number of a graph is a well researched problem, and a host of algorithms
were developed for it and related problems (e.g., [3,4,5,6,8,10,11]). Some of these
algorithms (e.g., DSATUR [5]) are heuristic—searching for a good, though not
necessarily optimal, coloring of the vertices. By appropriately modifying them
and properly setting their parameters (e.g., backtracking versions of DSATUR)
they can be forced to find an optimal coloring, and hence also the chromatic
number of the graph. In contrast, there are other algorithms, so called exact
algorithms, that are designed specifically to find an optimal coloring (and the
chromatic number) while attempting to minimize the worst case running time
(e.g., [4,6,8,11]). These algorithms are based on enumerating (maximal) indepen-
dent sets of vertices. Their time complexity is O(ak), where a is some constant
(usually between 2 and 3) and k is the number of vertices in the graph. The
algorithms differ from one another by the various divide-and-conquer techniques
they employ to reduce the running time or the memory consumption. The worst
case running times of the heuristic algorithms are of course exponential too, but
with higher exponent bases.

An important observation regarding the complexity of computing the chro-
matic number of G′ is that the number of vertices it contains is |U |+ |D(U)| ≤
2|U |, since we only perform the computation for sets U such that |D(U)| ≤ |U |.
Thus for an O(αk) algorithm, the actual time complexity bound is O

(
(α2)|U|).

While little can be said analytically with respect to the heuristic algorithms,
the exact algorithms are open to improvement due to their reliance on inde-
pendent sets and the fact that the new vertices in G′ form a clique. This can
be demonstrated, e.g., on Lawler’s algorithm [11], whose running time (in con-
junction with Eppstein’s maximal independent set enumeration algorithm [8])
is O(2.443k). The proof of the following proposition is omitted due to lack of
space.

Proposition 3. A suitably modified version of Lawler’s algorithm runs on G′

in O(|U | · 2.443|U|), rather than O
(
(2.4432)|U|).
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3.3 Complexity Analysis

The time complexity of the algorithm is determined by the loops. The outer
loop iterates 2n − 2 times (n is the number of vertices). For each subset U
with |D(U)| ≤ |U |, the inner loop is iterated at most |D(U)| · |V \ U | ≤
|U | · |V \ U | ≤ n2/4 times. Thus the total number of chromatic-number com-
putations is at most 1

4n22n. Letting O(nαn) denote the time complexity of the
chromatic-number algorithm used, we get a time bound of O(n32nαn) on the
work involved in chromatic-number computations. This bound can be tightened
to O(n3(α+1)n) by observing that the chromatic-number algorithm is called at
most n2

(
n
k

)
times with a subgraph of size k, and so the total time is bounded by

O
(
n2

∑n
k=1

(
n
k

)
kαk

)
= O(n3(α + 1)n).

In addition to the chromatic number computations, there is some work in-
volved in manipulating color sets—specifically, evaluating |D(U)| ≤ |U | for each
subset U , determining which vertices have colors from D(U) in their color sets,
and deleting colors from color sets. The time complexity of these operations
will depend on the way the color sets are represented (e.g., by explicit lists,
number ranges, bit masks, etc.), but, under reasonable assumptions, will not
exceed O(n3) time in the worst case (and in practice will be much better) for
each iteration of the outer loop. There is an additional, unavoidable, depen-
dence on the domain sizes of vertices not in U , which is incurred when the
algorithm considers and deletes point colorings. This dependence is logarith-
mic at worst, using a straightforward implementation. Such unavoidable depen-
dences notwithstanding, the worst case total running time of the algorithm is
O(n32n + n3(α + 1)n) = O(n3(α + 1)n).

4 Practical Improvements

There are a number of heuristics which when added to the algorithm greatly
enhance its practicality. We list some of them next.

Connected components and superfluous edges. The two sources of ex-
ponentiality are the enumeration of subsets and the chromatic number compu-
tations (which are exponential in the number of vertices). It is fairly obvious
that if the graph is not connected, the algorithm can be run on each connected
component separately without affecting its correctness. Also, if an edge has two
endpoints with disjoint color sets, then it can be dropped without affecting the
semantics of the graph. We can therefore delete any such edges, decompose
the resultant graph into connected components and run the algorithm on each
separately. Doing so yields a speedup that is (potentially) exponential in the
difference between the graph size and the connected component size (e.g., if the
graph contains 200 nodes and consists of twenty components of size 10 each,
then the potential speedup is β200/(20 · β10) = 1

20 · β190).
A refinement of this heuristic is based on the observation that a failure sub-

graph is non-colorable if and only if it contains a non-colorable connected failure
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subgraph of itself. Thus it is sufficient to enumerate only subsets that induce
connected subgraphs (although we do not know how to do so efficiently).

Enumeration order. A further reduction in running time comes from the sim-
ple observation that if a subset U satisfies D(U) ≥ n, then so do all of U ’s
supersets, and so they need not be considered at all. A simple way to exploit
this is to enumerate the subsets by constructing them incrementally, using the
following recursive procedure. Fix an order on the vertices v1, . . . , vn, and call
the procedure below with i = 0, U = ∅.

Procedure Enumerate(i, U)
1. If i = n, process the subgraph induced by U .
2. Else:
3. Enumerate(i + 1, U).
4. If |D(U ∪ {vi+1})| ≤ n, Enumerate(i + 1, U ∪ {vi+1}).

This procedure is sensitive to the order of vertices; it makes sense to sort
them by decreasing size of color set. A further improvement is to perform a
preprocessing step in which all vertices u such that |Du| ≥ n are removed from
the list.

Early pruning of point colorings. It is not difficult to verify that the correct-
ness of the algorithm is preserved if instead of just reporting each non-extensible
point coloring it finds, it also immediately deletes it (so that the subsequent
computation applies to the partially pruned graph). The advantage here is that
we avoid having to consider over and over again point assignments that have al-
ready been reported as non-extensible. This eliminates the problem of the same
point assignment being reported multiple times, and, more importantly, it also
eliminates the superfluous chromatic-number computation performed each time
the point coloring is unnecessarily considered. In addition, the algorithm can
immediately halt (and report that the original graph is not colorable) if the
color set of some vertex becomes empty. The downside of this heuristic is that
the sets D(U) grow smaller as the algorithm progresses, thus causing more sub-
sets U to pass the |D(U)| ≤ |U | test and trigger unnecessary chromatic number
computations. Of course, in this case it is an easy matter to eat the cake and
have it too. We simply compute |D(U)| with respect to the original graph, and
do everything else on the (partially) pruned graph.

We remark that this last heuristic is especially powerful in conjunction with
the Enumerate procedure above, because that procedure considers (to some
extent) subsets before it considers their supersets. This allows the algorithm to
detect, and prune, point assignments using small subsets, and so avoid chromatic-
number computations on larger subgraphs. This phenomenon could be enhanced
by enumerating the subsets in order of increasing size (i.e., first all singletons,
then all pairs, then all triplets, etc.) but then it would not be easy to avoid
enumerating subsets with |D(U)| > n. A hybrid approach might work best.

Speeding the chromatic number computation. In our algorithm we are
really only interested in knowing whether the chromatic number of the extended
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graph G′ is r, and not in finding its actual value. Thus we can preprocess G′ as
follows: as long as G′ contains a vertex whose degree is less than r, delete this
vertex. (The process is iterative: deleting a vertex decreases the degree of its
neighbors, possibly causing them to be deleted too, etc.) The rationale is that
deleting a vertex cannot increase the chromatic number of the graph, and, on the
other hand, if after deleting the vertex the graph can be colored with r colors,
then this coloring can be extended to the vertex by giving it a color different
from the (at most r − 1) colors given to its neighbors.

Redundant chromatic number computations. It is only necessary to per-
form a chromatic-number computation on failure subgraphs. Although a (non-
failure) set U such that |D(U)| = |U | must pass into the inner loop, it is quite
possible that for a given point assignment (v, c), v ∈ V \U , c ∈ D(U), the color
c appears in the color set of some vertex in U that is not adjacent to v. In such
a case, applying the point coloring does not decrease |D(U)| and does not turn
U into a failure set, thus obviating the chromatic-number computation.

5 Experimental Results

We created a prototype implementation of our algorithm, incorporating most of
the improvements mentioned in the previous section. The code was created by
adapting and extending pre-existing generic CP code implementing the MAC-3
algorithms, and was not optimized for the needs of our algorithm. For chromatic-
number computations, we used Michael Trick’s implementation of an exact ver-
sion of the DSATUR algorithm (available, as of July 5, 2006, at !http:// www .
cs . sunysb . edu / algorith / implement / trick / distrib / trick.c!). We evaluated
the code’s performance on a Linux machine powered by a 3.6 GHz Intel Pentium
4 processor.

We performed two sets of performance testings: one using real workforce man-
agement data, and the other using synthetically generated data. Next we describe
the data on which we ran the algorithm, and following that, the results we ob-
tained.

Workforce management data. The real data we used originated in an instance
of a workforce management (WM) problem in a certain department in IBM,
the likes of which are routinely handled by that department. We were given a
file containing 377 job descriptions. Each job description consisted of the dates
during which the job was to be performed and the list of people qualified to per-
form it. The total number of people was 1111. In our model of the problem, jobs
correspond to vertices, people correspond to colors, and pairs of jobs overlapping
in time correspond to graph edges.

By running our algorithm on randomly selected subsets of jobs we discovered
that subsets of more than 50 jobs were almost always unsatisfiable because there
were quite a few instances of pairs of jobs overlapping in time that could only be
performed by a single person—the same person. The algorithm would detect this
almost instantly. In order to stress the algorithm and test its limits in a more
meaningful manner, we artificially deleted the offending jobs (leaving one of each

!
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pair). We ended up with 312 jobs. We tested the algorithm on random subsets
of these jobs, in sizes ranging from 20 to 300 jobs, at increments of ten. For
each subset size n = 20, 30, . . . , 300, we selected (uniformly and independently)
ten subsets of n jobs and ran the algorithm on each subset. In total, we ran the
algorithm on 290 instances.

Synthetic data. In addition to the WM data on which we evaluated our algo-
rithm, we also tested it on randomly generated graphs. The random process by
which the graphs were generated was controlled by four parameters: n, the num-
ber of vertices; p, the edge creation probability; m, the total number of colors;
and k, the maximum color-set size. Each random graph was generated as follows
(all random choices were made independently and uniformly). A set of n vertices
was created. For each (unordered) pair of vertices, an edge was added between
them with probability p. Then, for every vertex v a random number kv was
chosen in the range 1, 2, . . . , k, and then kv colors were randomly chosen from
the common pool of m colors. The values we used for the parameters were: n
ranged from 20 to 100 at increments of 10; p was either 0.1, 0.3, or 0.6; m = 300
throughout; and k was either 10 or 20. For each set of parameters we generated
ten graphs and ran the algorithm on them. In total, we ran the algorithm on
540 instances.

Results. We carried out two types of performance measurement, both on the
same data sets. The first type is the absolute performance of a single call to the
SomeDifferent propagator. The second type of measurement was comparative:
we compared the running time of a CSP solver on two models, one consisting
of a single SomeDifferent constraint, and the second consisting of the equiva-
lent set of NotEqual constraints. In addition to the running time measurements
we also collected various statistics concerning the input instances and the algo-
rithm’s run-time behavior. This extra data helped us understand the variation
in the algorithm’s performance. We used a CSP solver implementing MAC-3
and breaking arc-consistency by instantiating a random variable with a random
value [12].

Figure 1 shows the running times of the propagator on the WM data instances.
We see that the running time follows a slowly increasing curve from about 4msec
(for 20 vertices) to about 100msec (for 300 vertices), but in the range 140–240
vertices, roughly half of the instances have increased running times, up to a
factor of about 3 relative to the curve. Examination of these instances revealed
that they entailed significantly more chromatic number computations than the
other instances, which explains the increased running times.

We remark that up to 110 vertices nearly all instances were satisfiable, starting
at 120 the percentage of unsatisfiable instances increased rapidly, and from 150 on-
ward nearly all instances were unsatisfiable. It is interesting to note that the run-
ning times do not display a markedly different behavior in these different ranges.

In summary, despite the algorithm’s worst case exponential complexity, it
seems to perform well on the real-life instances we tested. The main contribut-
ing factor to this is the fact that the graphs decomposed into relatively small
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Fig. 1. Running time of the SomeDifferent propagator on WM data instances. Some
of the instances shown were satisfiable, while others were unsatisfiable.

connected components. An earlier version that did not implement the connected
components heuristic performed less well by several orders of magnitude.

Table 1. Running time (msec.) of the propagator on randomly generated graphs

n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80 n = 90 n = 100

k = 10

p = 0.1 3.26 3.59 4.00 4.08 6.84 4.40 7.63 12.4 18.3
p = 0.3 3.27 3.64 4.93 9.39 345 13037 170416 471631 606915
p = 0.6 3.26 5.40 42.8 625 7065 121147 574879 607262 608733

k = 20

p = 0.1 3.30 4.23 4.14 8.06 28.5 90.7 591 3954 13939
p = 0.3 3.31 5.27 12.5 42.1 167 1442 5453 29478 186453
p = 0.6 3.92 6.20 14.2 57.8 309 1398 6549 38196 270353

Table 1 shows the running times, in milliseconds, on the randomly generated
graphs, all of which were satisfiable. The time shown in each table entry is the
average over the ten instances. We see that for small graphs the algorithm’s
performance is similar to its performance on the WM data instances. However,
as the graphs become larger, the running time increases steeply. The reason for
this is the well known phenomenon whereby graphs generated by the random
process we have described contain with high probability a “giant” connected
component (i.e., one that comprises nearly all vertices), rendering the connected
components heuristic powerless. All the same, the algorithm was able to handle
graphs containing 100 vertices in approximately 10 minutes—well below what
its worst case complexity would suggest.

We also see a significant difference between the cases p = 0.1 and p ∈
{0.3, 0.6}. At p = 0.1, the giant component effect had not set in in full force
and the connected components were fairly small, whereas at p ∈ {0.3, 0.6} the
phenomenon was manifest and the giant component accounted for more than
90% of the graph.



480 Y. Richter, A. Freund, and Y. Naveh

There is also a noticeable difference between the cases k = 10 and k = 20.
There are two contradictory effects at play here. A small value of k increases the
likelihood of edges becoming superfluous due to their endpoints having disjoint
color sets, thus mitigating the giant component effect. But at the same time, it
reduces the color set sizes, thus diminishing the effectiveness of the enumeration
order heuristic and forcing the algorithm to spend more time enumerating sets.
Indeed, we have observed that in large connected components the algorithm
spends most of its time enumerating sets that do not pass the |D(U)| ≤ |U | test;
the chromatic number computations tend to be few and involve small subgraphs,
and therefore do not contribute much to the running time. For p = 0.1 the graph
is sparse enough so that the giant component effect is indeed canceled out by the
emergence of superfluous edges, whereas for p ∈ {0.3, 0.6}, the small decrease
in component size due to superfluous edges is outweighed by the effect of the
smaller color sets.

We now turn to a comparison of the SomeDifferent and NotEqualmodels. We
measured the time it took the solver to solve the CSP (or prove it unsatisfiable).
When using NotEqual constraints, the backtrack limit was set to 10000. (The
SomeDifferent model is backtrack free.)

0
0.5

1
1.5

2
2.5

3

0 50 100 150 200 250 300

T
im

e
(sec.)

Graph size (vertices)

Running time

���������������������
���������
����������
����������
����������
�����

�

����
�

�

��������
��

��

����

�

�

�
���
�
�

�

��

��

�
�

�

�

�

�
��

�

�

�

��

�

��

��

�

�

������

�

�

�

�����

�

��

�

������

�

���������

�

�����������������������������������������
����
�
��������
�
��
����
�
����������������

�
�������������������������������������������������������

0.1

1

10

100

1000

10000

0 50 100 150 200 250 300

S
p
eed

u
p

fa
cto

r

Graph size (vertices)

Speedup

�

��
������������������

�
����

�

���
�
���������

�

�
�

�����

�

�����
����
����
�
�
�

�

�
�
���

�

�����
����

�

�
�

���
�

�

�������

�

�

�

��

��

�

�

�

���

�

�

�

��

�

��

��

�

�

�

�

���
�

�

�

�

�

�

�
�
�

�

��

�

�

�
�
���

�

���

�

�

�
��
�

�

��

�

�

�

�
�

�

�

�

�

�

�
��

�

��

��

�
�

�

�

�
�
���

��

�

�

��

�

��

�

��

���
�

�

�

��

�

�
�

�

�
�

��

�

��

�

�

����
�
��

�

�

�����
��

�

�
�
������

�

����

�

�
��
���������
�
����������������������������

Fig. 2. Running time of the CSP solver on the SomeDifferent model, and speedup
factor relative to NotEqual, on WM data instances

The graph on the left of Figure 2 shows the running times on the WM data
instances using the SomeDifferentmodel. The graph on the right shows (in log-
scale) the corresponding speedup factors relative to the NotEqual model. We see
that the running times follow two curves. The rising curve represents the satis-
fiable instances, where the SomeDifferent propagator is called multiple times.
The flat curve represents the unsatisfiable instances, where the unsatisfiability
is established in a single SomeDifferent propagation. The speedup factors are
grouped (on the logarithmic scale) roughly into three bands. The top band (con-
sisting of 75 instances with speedup factors around 5000) represents instances
that caused the solver to hit the backtrack limit. The middle band represents a
mixture of 104 large instances identified as unsatisfiable and 42 small instances
which the solver was able to satisfy, as well as 6 satisfiable instances on which
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the solver hit the backtrack limit. The lower band represents the remaining 63
instances, which are of intermediate size (60–160 vertices), and which were satis-
fied by the solver with a very small number of backtracks (nearly always 0). For
these instances the NotEqual model was superior to the SomeDifferent model;
the slowdown factors were around 2 (the maximum slowdown factor was 2.35).

Upon a closer examination of the data we observed that in nearly all cases
(in all three bands) the NotEqual model either hit the backtrack limit or solved
the CSP with no backtracks at all. For most cases in which the solver proved
unsatisfiability, this was a result of the instances containing several vertices with
singleton color sets which immediately forced inconsistency. The satisfiable cases
had singleton color sets too, which definitely helped the solver. In contrast, our
SomeDifferent propagator does not benefit from singleton color sets in any ob-
vious manner. Adding a preprocessing stage (essentially, a NotEqual propagation
stage) to handle them can obviously improve its performance.

In summary, our WM data instances seem biased in favor of the
NotEqual model, due to the presence of singleton color sets. Nonetheless, the
SomeDifferent approach still outperformed the NotEqual approach in the cases
requiring backtracking. In virtually all of these cases, the NotEqualmodel hit the
limit, whereas the SomeDifferentmodel performed quite well. Adding a prepro-
cessing stage to our algorithm would make it as good as NotEqual propagation
in the easy cases too.

On the random graph instances the variations in the speedup factors did not
display easily understandable patterns. Generally speaking, the speedup factor
started in the range 40–100 for 20 vertices, and declined roughly linearly to 1 at
40 or 50 vertices (depending on the k and p) parameters. For larger instances the
speedup became slowdown, which grew to a maximum in the range 4000–6000
for the largest instances. Here too, all instances were satisfied in the NotEqual
model with no backtracks. This demonstrates again that the main source of
hardness for our algorithm, primarily the graph’s connectivity, has little effect
on the NotEqual approach.

6 Conclusion and Future Work

We have introduced the SomeDifferent constraint, which generalizes the famil-
iar AllDifferent constraint in that it requires that only some pairs of variables
take on different values. We have developed a hyper-arc consistency propaga-
tion algorithm for the SomeDifferent constraint. The problem is NP hard, and
our algorithm’s worst-case time complexity is exponential in the number of vari-
ables, but is largely independent of the domain sizes. We have also suggested
and implemented some heuristics to improve the algorithm’s running time in
practice. We have offered empirical evidence suggesting that our algorithm is
indeed practical.

Future work. The results we have obtained are encouraging, but clearly more ex-
perimentation with real data, preferably from a variety of application domains,
is required in order to establish the usefulness of our approach. Also, we have
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already identified some areas for improvement, namely, adding a preprocessing
stage to handle singleton color sets, and improving the set enumeration algo-
rithm. A different, and important, research direction is to devise approximation
techniques for unsatisfiable instances. A natural problem with practical impor-
tance is to remove as small (or cheap) a subset of vertices as possible in order
to make the instance satisfiable.

Acknowledgments. We are grateful to Dan Connors and Donna Gresh for
analyzing the raw workforce management data, extracting the parts pertinent
to our work, and bringing them into a form we could use in our experiments.
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