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Preface

The 12th International Conference on the Principles and Practice of Constraint
Programming (CP 2006) was held in Nantes, France, September 24–29, 2006. In-
formation about the conference can be found on the Web at http://www.sciences.
univ-nantes.fr/cp06/. Information about past conferences in the series can be
found at http://www.cs.ualberta.ca/˜ai/cp/.

The CP conference series is the premier international conference on con-
straint programming and is held annually. The conference is concerned with all
aspects of computing with constraints, including: algorithms, applications, envi-
ronments, languages, models and systems. This series of conferences was created
to bring together researchers from different disciplines, interested in high-level
modeling as well as sound and efficient resolution of complex optimization and
satisfaction problems. Based on this interdisciplinary culture, the CP series of
conferences is widely open to different communities of researchers interested
in constraint satisfaction, SAT, mathematical programming, problem modeling,
system design and implementation, etc.

This year, we received 142 submissions. All of the submitted papers received
at least three reviews and were discussed in much detail during an online Pro-
gram Committee meeting. As a result, the Program Committee chose to publish
42 full papers and 21 short papers in the proceedings (the selection rate for this
year is 0.30 for full papers and 0.46 for all accepted contributions). Following
the standard format for CP, the full papers were presented at the conference
in two parallel tracks and the short papers were presented as posters during a
dedicated session. This year, one paper was selected by a subcommittee of the
Program Committee to receive a best paper award. The subcommittee was com-
posed of Francesca Rossi, Mark Wallace and myself. To illustrate the variety of
the topics addressed in the conference, as well as the industrial impact of con-
straint programming, the conference program also included four invited talks by
Shabbir Ahmed, Giuseppe F. Italiano, Jean-Pierre Merlet and Helmut Simonis.
An additional invited talk was given by the recipient of the second “Award for
Research Excellence in Constraint Programming” given by the Association for
Constraint Programming during the conference. Finally, the core of the technical
program included three excellent tutorials: “Soft Constraint Solving” by Javier
Larrosa and Thomas Schiex, “Constraint Satisfaction for Stimuli Generation for
Hardware Verification” by Yehuda Naveh and “Constraint-Based Local Search
in Comet” by Laurent Michel and Pascal Van Hentenryck.

Many other scientific contributions made the program of CP 2006 a rich mix
of tradition and innovation. CP 2006 continued the tradition of the CP doctoral
program, in which PhD students presented their work, listened to tutorials on
career and ethical issues, and discussed their work with senior researchers via
a mentoring scheme. As usual, the Doctoral Program was a big success with
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the participation of 38 young researchers. Also traditional and very important
to demonstrate the practical impact of the field was the systems demonstration
session. Finally, the CP series are now well known for their first day of satellite
workshops, mixing well-established meetings and new scientific events dedicated
to the most recent evolutions of CP. We had ten workshops this year, each with
their own proceedings, and the second solver competition was also organized
during this workshop day.

CP 2006 also hosted for the first time two important events, addressing crucial
aspects of our field: practical impact and future orientations of CP. The first
event, dedicated to CP systems, was CPTools’06, the first international day on
constraint programming tools, organized by Laurent Michel, Christian Schulte
and Pascal Van Hentenryck. One of the main reasons of the success of CP is
the ability of CP systems to address both expressiveness and efficiency issues.
This successful meeting was the perfect place for researchers and practitioners
to exchange on all aspects of system design and usability. The second forum,
organized by Lucas Bordeaux, Barry O’Sullivan and Pascal Van Hentenryck,
was a half-day plenary workshop called “The Next Ten Years of Constraint
Programming.” This event was an important occasion to share ideas on the
future of our discipline during exciting and lively discussion and debates.

On behalf of the CP community, I would like to take this opportunity to
warmly thank the many people who participated by their hard work and constant
commitment to the organization of CP 2006.

My first and warmest thanks are for Narendra Jussien, General Co-chair
of CP 2006, who did an amazing job on the organization front. It was a real
pleasure to work with him on this project. The different organization chairs
were particularly efficient, professional and friendly. Barry O’Sullivan, Workshop
and Tutorial Chair, helped us all along the process and was instrumental in
many aspects of the organization. I want to thank him here warmly for his
efficiency and his patience. Thank you very much to Zeynep Kiziltan and Brahim
Hnich, the Doctoral Program Chairs, for their efficiency and reactivity on this
difficult task. Laurent Michel was Chair for poster and demo presentations and
took care of these important aspects of the conference in a very smooth way.
Many thanks to him. Christian Schulte and Mikael Lagerkvist, Publicity Chairs,
had the crucial mission of advertising the conference. I thank them here very
much for their friendly and competent participation. It was a great pleasure
to work with the CP 2006 Program Committee on the scientific program. The
commitment and reactivity of its members as well as the amazing amount of
work they invested in reviewing and discussing the submitted papers was truly
impressive and I would like to thank them all for their hard work. Thank you
to Francesca Rossi and Mark Wallace for their help on the Best Paper Award
Committee. Locally, nothing could have been done without the commitment
and hard work of the Local Organizing Committee members. Let me warmly
thank here Charlotte, Christophe, Christophe, Frédéric, Guillaume, Hadrien,
Jean-Marie, Marco, Philippe, Romuald, Sophie, Thierry, Thomas and Xavier.
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The final thanks go to the institutions that helped sponsor the conference and
particularly to support the doctoral program and to bring in invited speakers.
These institutions and companies are: the Région des pays de la Loire, Nantes
Métropole, ILOG, the École des Mines de Nantes, the Association for Constraint
Programming, the Cork Constraint Computation Center, the Intelligent Infor-
mation Systems Institute, the Laboratoire d’Informatique de Nantes Atlantique,
the Université de Nantes, the Conseil Général de Loire Atlantique and the As-
sociation Française pour la Programmation par Contraintes.

September 2006 Frédéric Benhamou
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École des Mines de Nantes
Ilog
Intelligent Information System Institute, Cornell Univ.
Laboratoire d’Informatique de Nantes-Atlantique
Nantes Métropole
Région Pays de la Loire
Université de Nantes
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Various applications in reliability and risk management give rise to optimiza-
tion problems where certain constraints involve stochastic parameters and are
required to be satisfied with a pre-specified probability threshold. In this talk
we address such probabilistically constrained linear programs involving stochas-
tic right-hand-sides. These problems involve non-convex feasible sets, and are
extremely difficult to optimize.

In the first part of the talk, we reveal monotonicity properties inherent in
the problem, and exploit these to develop a global optimization algorithm. The
proposed approach is a branch-and-bound algorithm that searches for a global
optimal solution by successively partitioning the non-convex feasible region and
by using bounds on the objective function to fathom inferior partition elements.
This basic algorithm is enhanced by domain reduction and cutting plane strate-
gies to reduce the size of the partition elements and hence tighten bounds. The
algorithm, which requires solving deterministic linear programming subprob-
lems, is proved to converge to a global optimal solution.

In the second part of the talk, we address probabilistically constrained linear
programs under discrete distribution of the right-hand-side parameters. These
problems can be reformulated as mixed integer linear programs. We perform a
detailed polyhedral study of the convex hull of the set of feasible solutions of
such problems, and develop families of strong valid inequalities. In the case of
a single probabilistic constraint, these inequalities suffice to describe the convex
hull of the feasible set. In the general case, the inequalities, when used within
a branch-and-cut scheme, serve to significantly improve relaxation bounds, and
expedite convergence.

The first part of the talk is based on joint work Myun-Seok Cheon and Faiz
Al-Khayyal, and the second part of the talk is based on joint work with James
Luedtke and George Nemhauser.
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Abstract. Constraint Programming is a powerful programming para-
digm with a great impact on a number of important areas such as logic
programming [45], concurrent programming [42], artificial intelligence [12],
and combinatorial optimization [46]. We believe that constraint program-
ming is also a rich source ofmany challenging algorithmic problems, and co-
operations between the constraint programming and the algorithms com-
munities could be beneficial to both areas.

1 Introduction

Given a set of variables X , and a set of constraints C forbidding some partial
assignments of variables, the NP-hard Constraint Satisfaction Problem (CSP) is
to find an assignment of all the variables which satisfies all the constraints [37].

One of the most common ways to solve CSPs is via backtracking: given a
partial assignment of variables, extend it by instantiating some other variable in
a way compatible with the previous assignments. If this is not possible, backtrack
and try a different partial assignment. This standard approach can be improved
in several ways:

• (improved search) instead of backtracking to the previously instantiated
variable, one can backtrack to the variable generating the conflict (backjump-
ing), and try to avoid such conflict later (backchecking and backmarking).

• (domain filtering) consistency properties which feasible assignments need
to satisfy can be used to filter out part of the values in the domains, thus
reducing the search space. This can be done in a preprocessing step, or during
the search, both for specific and for arbitrary sets of constraints.

� This work has been partially supported by the Sixth Framework Programme of
the EU under Contract Number 507613 (Network of Excellence “EuroNGI: Design-
ing and Engineering of the Next Generation Internet”) and by MIUR, the Italian
Ministry of Education, University and Research, under Project ALGO-NEXT (“Al-
gorithms for the Next Generation Internet and Web: Methodologies, Design and
Experiments”).

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 2–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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• (variables/values ordering) The order in which variables and values are
considered during the search can heavily affect the time needed to find a
solution. There are several heuristics to find a convenient, static or dynamic,
ordering of variables and values (fail-first, succeed-first, most-constrained,
etc.).

In this paper we focus on the last two strategies, and we show how algorithmic
techniques can be helpful. In Section 3 we will describe two polynomial-time
filtering algorithms. The first one, which is based on matching, can be used
for filtering of the well-known alldifferent constraint. The second one uses
techniques from dynamic algorithms to speed up the filtering based on inverse-
consistency, a consistency property which can be applied to arbitrary sets of
binary constraints.

In Section 4 we will present an exact (exponential-time) algorithm to solve
any CSP asymptotically faster than with trivial enumeration. As we will see,
the improved running time is heavily based on the way variables and values are
instantiated. However, in this case the approach is not heuristic: the running
time is guaranteed on any instance.

2 Preliminaries

Let X = {x1, x2, . . . , xn} be a set of n variables. Given x ∈ X , by D(x) we denote
the domain of x. From now on we will assume that each domain is discrete and
finite.

An assignment of a variable x ∈ X is a pair (x, a), with a ∈ D(x), whose
meaning is that x is assigned value a. A constraint C is a set of assignments of
different variables:

C = {(xi(1), a1), (xi(2), a2) . . . (xi(h), ah)}.

ConstraintC is said to be satisfied by an assignment of the variables if there exists
one variable xi(j) such that xi(j) �= aj , and it is said to be violated otherwise.

Remark 1. For ease of presentation, in this paper we use the explicit represen-
tation of constraints above. However, implicit representations are more common
in practice.

Given X and a set C of constraints, the Constraint Satisfaction Problem (CSP)
is to find an assignment of values to variables (solution) such that all the con-
straints are satisfied. We only mention that there are two relevant variants of
this problem:

• list all the solutions;
• find the best solution according to some objective function.

Some of the techniques we are going to describe partially extend to such cases.
A (d, p)-CSP is a CSP where each domain contains at most d values, and each

constraint involves at most p variables. Without loss of generality, we can con-
sider (d, 2)-CSPs only (also called binary CSPs), as the following simple lemma
shows.
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Lemma 1. Each (d, p)-CSP instance can be transformed into an equivalent
(max{d, p}, 2)-CSP instance in polynomial time.

Proof. Duplicate the variables X and add a variable c for each constraint C =
{(xi(1), a1), (xi(2), a2), . . . , (xi(h), ah)}, h ≤ p. The domain of c is

D(c) = {(xi(1) �= a1), (xi(2) �= a2), . . . , (xi(h) �= ah)}.

Intuitively, assigning the value (xi(j) �= aj) to c means that constraint C is
satisfied thanks to the fact that xi(j) �= aj . For each such c we also add h
constraints C1, C2, . . . , Ch of the following form:

Cj = {(c, (xi(j) �= aj)), (xi(j) , aj)}.

The intuitive explanation of Cj is that it cannot happen that xi(j) = aj and,
at the same time, constraint C is satisfied thanks to the fact that xi(j) �= aj . It
is not hard to see that the new problem is satisfiable if and only if the original
problem is. �

Remark 2. Dealing with non-binary constraints directly, without passing
through their binary equivalent, might be convenient in some applications [44].

It is also worth to mention that there is a nice duality between variables and
constraints.

Lemma 2. Each (d, p)-CSP on n variables and m constraints can be trans-
formed in polynomial-time into an equivalent (p, d)-CSP on m variables and n
constraints.

Proof. For each constraint C = {(xi(1), a1), (xi(2), a2) . . . (xi(h), ah)}, h ≤ p,
create a variable c of domain:

D(c) = {(xi(1) �= a1), (xi(2) �= a2), . . . , (xi(h) �= ah)}.

The interpretation of c is as in Lemma 1. Now consider any variable x of the
original problem. If there exists a ∈ D(x) such that the assignment (x, a) does
not conflict with any constraint, do not add any constraint for x. Note that in
such case, if there is a solution, there is a solution with x = a. Otherwise, for
each i ∈ D(x) = {1, 2, . . . , d(x)}, take a variable ci such that (x �= i) ∈ D(ci).
Add the constraint

X = {(c1, (x �= 1)), (c2, (x �= 2)), . . . , (cd(x), (x �= d(x)))}.

The intuitive explanation of X is that x must take some value in its domain.
It is not hard to see that the original problem is satisfiable if and only if the
original problem is. �
Note that each (d, 2)-CSP can be represented via a consistency graph which
has a node for each possible assignment (x, a) and an edge between each pair
of compatible assignments (anti-edges correspond to constraints or to multiple
assignments of the same variable). Any solution corresponds to an n-clique in
such graph (see Figure 1).
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Fig. 1. Example of consistency-graph. A solution is given by the assignments
{(x, 2), (y, 2), (z, 1), (w, 2)}. The assignment (x, 1) is arc consistent, while it is not path-
inverse consistent.

3 Polynomial Algorithms and Domain Filtering

An assignment (x, a) is consistent if it belongs to some solution, and inconsis-
tent otherwise. Deciding whether an assignment is inconsistent is an NP-hard
problem (otherwise one could solve CSP in polynomial time [37]). However, it is
sometimes possible to filter out (part of the) inconsistent assignments efficiently.
In this section we give two examples of how algorithmic techniques can be used
in the filtering process. In Section 3.1 we discuss the filtering of the well-known
(non-binary) alldifferent constraint, which makes use of matching algorithms.
In Section 3.2 we consider the filtering based on �-inverse-consistent, suitable for
any set of binary constraints, and we present a faster algorithm employing stan-
dard techniques from dynamic algorithms.

3.1 Alldifferent Filtering Via Matching

In this paper we focus on binary constraints. However, there are families of non-
binary constraints which appear very frequently in the applications. So it makes
sense to design faster and more accurate filtering algorithms for them.

A relevant example is the alldifferent constraint, which requires that a set
of variables take values different from each other. The alldifferent constraint
is very powerful. For example with only 3 such constraints on a proper set of
variables one can naturally model the well-known n-queens problem: place n
queens on a n × n chessboard such that no two queens threaten each other (a
queen threatens any other queen on the same row, column, diagonal and anti-
diagonal).

The alldifferent constraint has the great advantage that the consistency of
the assignments can be decided in polynomial time, with the following procedure
by Regin [40]. Consider the bipartite graph B, which has the variables on the left
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side, the values on the right side, and one edge between x and a for each possible
assignment (x, a). Without loss of generality, let us assume the values available
are at least as many as the variables (otherwise the problem has trivially no
solution). Then any feasible solution to the original problem corresponds to a
perfect bipartite matching in B, that is a matching where all the variables are
matched. Luckily, we do not need to compute explicitly all the perfect bipartite
matchings to determine whether a given assignment (x, a) belongs to any one
of them. In fact, let M be any perfect bipartite matching. Such matching can
be computed in time O(m′√n′), where n′ is the number of nodes and m′ the
number of edges of B [29]. Let us direct all the edges in M from right to left,
and all the other edges from left to right. Then an edge (x, a) /∈ M belongs to
some other perfect matching M ′ if and only if

• (x, a) belongs to an oriented cycle or
• it belongs to an even-length oriented path, starting in a free node on the

right side.

We can check the two properties above for all the edges in linear time O(n′+m′).
Altogether, we can find the subset of consistent assignments in time O(m′√n′).

In many applications the variables range over intervals. If such intervals are
very large, the approach above becomes unpractical. However, there is a conve-
nient alternative in such case: computing the largest subinterval for each variable
such that both endpoints correspond to consistent assignments (narrowing of the
intervals). Puget [38] observed that the bipartite graph B corresponding to the
alldifferent constraint is convex if the variables range over intervals. Thus one
can compute a perfect bipartite matching in O(n log n) time via the matching
algorithm by Glover [25] for convex bipartite graphs. Puget use this observa-
tion to narrow the alldifferent constraint within the same time bound. Later
Mehlhorn and Thiel [34] described an algorithm which takes linear time plus the
time to sort the intervals endpoints. Their algorithm makes use of the union-find
data structure by Gabow and Tarjan [24]. This improves on the result by Puget
in all the cases where sorting can be done in linear time.

3.2 Inverse Consistency and Decremental Clique Problem

Most of the filtering techniques designed for arbitrary binary constraints are
based on some kind of local consistency property P , which all the consistent as-
signments need to satisfy. Enforcing P-consistency is a typical dynamic process:
an assignment (x, a) which is initially P-consistent may become inconsistent be-
cause of the removal of some other assignment (y, b). Thus the same (x, a) might
be checked several times. Using the information gathered during the previous
consistency-checks can speed up the following checks. This is typically what
happens in dynamic algorithms, and so it makes sense trying to apply the tech-
niques developed in that area to speed up the filtering process (for references on
dynamic algorithms, see e.g. [13]).

Maybe the simplest and most studied local consistency property is arc-
consistency [33].Anassignment (x, a) is arc-consistent if, for every other variable y,
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there is at least one assignment (y, b) compatible with (x, a). The assignment (y, b)
is a support for (x, a) on variable y. Clearly, if an assignment is not arc-consistent, it
cannot be consistent (unless x is the unique variable). Arc-consistency can be nat-
urally generalized. An assignment (x, a) is path-inverse consistent [17] if it is arc-
consistent and, for every two other distinct variables y and z, there are assignments
(y, b) and (z, c) which are mutually compatible and compatible with (x, a). We say
that {(y, b), (z, c)} is a support for (x, a) on {y, z}The �-inverse consistency [17] is
the natural generalization of arc-consistency (� = 2) and path-inverse consistency
(� = 3) to arbitrary (fixed) values of � ≤ n.

There is a long series of papers on arc-consistency [3,4,5,33,35]. The cur-
rently fastest algorithm has running time O(e d 2), where e denotes the num-
ber of distinct pairs of variables involved in some constraint. For long time the
fastest known �-inverse-consistency-based filtering algorithm, for � ≥ 3, was the
O(e n �−2d �) algorithm by Debruyne [10].

Remark 3. The quantity e n�−2, corresponding to the number of distinct subsets
of � pairwise constrained variables, can be replaced by the tighter e�/2, given by
a combinatorial lemma by Erdős [19].

The algorithm in [10] is based on a rather simple dynamic strategy to check
whether an assignment is �-inverse consistent. Roughly, the idea is to sort the
candidate supports of any assignment (x, a) on any subset of other (�−1) distinct
variables in an arbitrary way, and then follow such order while searching for
supports for (x, a). Moreover, the last supports found are maintained: this way,
if a support for (x, a) is deleted and a new one is needed, the already discarded
candidates are not reconsidered any more.

The algorithm in [10] was conjectured to be asymptotically the fastest pos-
sible. In this section we review an asymptotically faster algorithm for � ≥ 3
[27], based on standard techniques from dynamic algorithms. For the sake of
simplicity, let us consider the case of path-inverse-consistency (� = 3). The same
approach extends to larger values of �. Consider any triple of pairwise constrained
variables {x, y, z}, and let Gx,y,z be the graph whose nodes are the assignments
of x, y and z, and whose edges are the pairs of compatible assignments (i.e.
Gx,y,z is the restriction of the consistency graph to variables x, y, and z). Any
assignment (x, a) is path-inverse-consistent with respect to variables y and z if
and only if (x, a) belongs to at least one triangle of Gx,y,z. More precisely, the
number of supports for (x, a) on {y, z} is exactly the number of triangles of
Gx,y,z which contain (x, a).

Thus a natural approach to enforce path-inverse-consistency is to count all
the supports for (x, a) on {y, z} initially, and then update the count each time a
support is deleted. If we scan all the candidate supports, the initial counting costs
O(d 3). Since there can be at most O(d) deletions, and listing all the triangles
that contain a given deleted value costs O(d 2), the overall cost of this approach
is O(d 3). Since the graphs Gx,y,z are O(e1.5), this approach has cost O(e1.5d 3),
the same as with Debruyne’s algorithm.

We next show how to speed up both the initial counting and the later updating
by using fast matrix multiplication and lazy updating, two techniques which
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are widely used in dynamic algorithms [14,15]. By A we denote the adjacency
matrix of G. Given an assignment i = (x, a), the number of triangles in which
i is contained is t(i) = (1/2)A3[i, i]. Hence, as first observed by Itai and Rodeh
[31], the quantities t(i)’s can be computed in time O(dω), where ω < 2.376 is
fast square matrix multiplication exponent [8].

It remains to show how to maintain the counting under deletion of nodes. We
use the following idea. In time O(dω) we can also compute for each edge {i, j},
the number t(i, j) of triangles which contain {i, j}. The number of triangles
t(i) containing i is one half times the sum of the t(i, j)’s over all the edges {i, j}
incident to i. Now suppose we remove a neighbor j of i. Then, in order to update
t(i), it is sufficient to subtract t(i, j). Suppose that we later remove another
neighbor k of i. This time subtracting t(i, k) is not correct any more, since we
could subtract the triangle {i, j, k} twice. However, we can subtract t(i, k) and
then add one if {i, j, k} is a triangle. This argument can be generalized. Suppose
we already deleted a subset of nodes D, and now we wish to delete a neighbor
j of i. Then, in order to update t(i), we first subtract t(i, j) and then we add
one for each k ∈ D such that {i, j, k} is a triangle. This costs O(|D|) for each
update. Altogether maintaining the counting costs O(d|D|) per deletion of node.

When |D| becomes too large, say |D| ≥ d ε for some ε ∈ (0, 1), this approach
is not convenient any more. However in that case we can update all the t(i, j)’s,
and empty D. In order to update the t(i, j)’s, we need to compute all the 2-length
paths passing through a node in D. This costs O(dωε+2(1−ε)), that is the time
to multiply a d× d ε matrix by a d ε × d, where the multiplication is performed
by decomposing the rectangular matrices in square pieces, and using square ma-
trix multiplication. Since we perform such update every d ε deletions, the amor-
tized cost per deletion is O(d 2+ε(ω−3)). Balancing the terms O(d 2+ε(ω−3)) and
O(d 1+ε), one obtains an overall O(d 1+1/(4−ω)) = O(d 1.616) amortized cost per
deletion. Using more sophisticated rectangular matrix multiplication algorithms
[30] the running time can be reduced to O(d 2.575). This leads to the following
result.

Theorem 1. Path-inverse consistency can be enforced in time O(e1.5d 2.575).

Remark 4. Depending on the size and density of the matrices involved, it might
be convenient in practice to use matrix-multiplication algorithms different from
the fastest asymptotic ones.

Another important consistency property is max-restricted path consistency. The
same basic approach as above allows one to reduce the time to enforce max-
restricted path consistency from O(e1.5d 3) [11] to O(e1.5d 2.575) [26].

4 Exact Algorithms in Variables/Values Ordering

The classical approach to solve (exactly) NP-hard problems is via heuristics.
Although heuristics are very useful in practice, they suffer from few drawbacks.
First, they do not guarantee worst-case running times (better than the trivial
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bounds). For example, the worst-case running time to solve a (d, 2)-CSP instance
on n variables is (implicitly) assumed to be Ω(dn), that is the time bound
achieved with exhaustive search. This can be problematic in critical applica-
tions, where the worst-case running time matters. Moreover, since the relative
performance of heuristics can be assessed only empirically, it is often difficult to
compare different heuristic approaches for the same problem.

A potential way to overcome those limits is offered by the design of exact
algorithms, an area which attracted growing interest in the last decade. The
aim of exact algorithms is to solve NP-hard problems in the minimum possible
(exponential) worst-case running time. Exact algorithms have several merits:

• The measure of performance is theoretically well-defined: comparing different
algorithms is easy.

• The running time is guaranteed on any input, not only on inputs tested
experimentally.

• A reduction of the base of the exponential running time, say, from O(2n) to
O(2 0.9 n), increases the size of the instances solvable within a given amount
of time by a constant multiplicative factor; running a given exponential algo-
rithm on a faster computer can enlarge the mentioned size only by a constant
additive factor.

• The design and analysis of exact algorithms leads to a deeper insight in
NP-hard problems, with a positive long-term impact on the applications.

There are exact algorithms faster than trivial approaches for a number of prob-
lems such as: TSP [18,28], maximum independent set [1,22,41], minimum dom-
inating set [20], coloring [2,7], satisfiability [6,9], maximum cut [47], feedback
vertex set [39], Steiner tree [16,36], treewidth [23], and many others. For more
references, see e.g. [21,32,43,48,49].

To show the potentialities of exact algorithms, we will describe an exact
deterministic algorithm which solves any (d, 2)-CSP on n variables in time
O((1 + �d/3�1.3645)n), thus breaking the Ω(dn) barrier given by trivial enu-
meration.

In order to achieve such running time, we first describe a faster algorithm to
solve (3, 2)-CSPs, and we later show how to use it to speed up the solution of
arbitrary (d, 2)-CSPs. Note that (3, 2)-CSP is an interesting problem in its own,
since it includes as special cases important problems like 3-coloring and 3-SAT
via Lemma 2.

We need the following two observations.

Lemma 3. (reduction) [2] Consider a variable x of a (d, 2)-CSP such that
|D(x)| ≤ 2. Then there is a polynomial-time computable equivalent (d, 2)-CSP
with one less variable.

Proof. If D(x) = {a}, it is sufficient to remove variable x, and each value
conflicting with (x, a) in the domains of the other variables. So, let us assume
D(x) = {a, b}. In such case remove x and add the following set of constraints:
for every (y, a′) conflicting with (x, a) and for every (z, b′) conflicting with (x, b),
y �= z, add the constraint {(y, a′), (z, b′)}. In fact, setting y = a′ and z = b′ would



10 F. Grandoni and G.F. Italiano

rule out any possible assignment for x. On the other direction, any solution to the
new problem can be extended to a solution for the original problem by assigning
either value a or b to x. �

Lemma 4. (domination) Consider any (d, 2)-CSP. Let a, b ∈ D(x), for some
variable x, and let A and B be the set of assignments of other variables conflicting
with (x, a) and (x, b), respectively. If A ⊆ B, then an equivalent CSP is obtained
by removing b from D(x).

Proof. Suppose there is a solution where x = b. Then, by switching x to a, the
solution remains feasible. �

Remark 5. The two properties above cannot be applied if the aim is to compute
all the solutions, or the best solution according to some objective function.

We are now ready to describe our improved algorithm for (3, 2)-CSP, which
consists of the following steps.

1. (filtering) Exhaustively apply arc-consistency and domination to reduce
the domains.

2. (base) If there a variable with an empty domain, return no. Otherwise, if
there is at most one variable, return yes.

3. (reduction) If there is a domain D(x) of cardinality at most 2, remove
variable x according to Lemma 3, and branch one the problem obtained.

4. (branch 1) If there is a constraint {(x, a), (y, b)}, where (y, b) is not involved
in other constraints, branch by either selecting a (i.e., restricting D(x) to {a})
or discarding a (i.e., removing a from D(x)).

5. (branch 2) Otherwise, take a pair (x, a) involved in constraints with the
maximum possible number of distinct variables. Branch by either selecting
or discarding a.

By branching on a set of subproblems, we mean solve them recursively, and
return yes if and only if the answer of any one of the subproblems is yes.

Lemma 5. The algorithm above solves any (3, 2)-CSP instance in worst-case
time O(1.466n).

Proof. We define an instance ground if the algorithm solves it without branching
on two subproblems (hence in polynomial-time). By P (X , C) we denote the total
number of ground instances solved to solve a given (3, 2)-CSP instance (X , C).
Let P (n) be the maximum of P (X , C) over all the instances on n variables. We
will show that P (n) ≤ 1.4656n. The claim follows by observing that generating
each subproblem costs only polynomial time, excluding the cost of the recursive
calls, and the total number of subproblems generated is within a polynomial
from P (n). Hence the total running time is O(1.4656n nO(1)) = O(1.466n).

We proceed by induction on n. Trivially, P (0) = P (1) = 1 satisfy the claim.
Now assume the claim is true up to (n − 1) ≥ 1 variables, and consider any
instance (X , C) on n ≥ 2 variables. We distinguish different cases, depending on
the step where the algorithm branches:
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(base). We do not generate any subproblem

P (X , C) ≤ 1 ≤ 1.4656n.

(reduction). We generate exactly one subproblem with one less variable:

P (X , C) ≤ P (n− 1) ≤ 1.4656n−1 ≤ 1.4656n.

(branch 1). In both subproblems variable x is removed by Step 3. When we
select a, we remove b from D(y) by arc-consistency, and hence variable y by Step
3. When we discard a, we remove a value c ∈ D(x) \ {b} by dominance, being c
dominated by b. So also in that case y is later removed by Step 3. Altogether

P (X , C) ≤ P (n− 2) + P (n− 2) ≤ 2 · 1.4656n−2 ≤ 1.4656n.

(branch 2). By basically the same arguments as above, if (x, a) is involved
in constraints with at least two other variables y and z, when we branch by
discarding a, we remove at least variable x, while when we branch by selecting
a, we remove at least variables x, y and z. Hence

P (X , C) ≤ 1.4656n−1 + 1.4656n−3 ≤ 1.4656n.

Otherwise, by Steps 1 and 4, and by a simple case analysis, there must be
a set of 6 constraints involving x and y of the following form: {(x, a), (y, b′)},
{(x, a), (y, c′)}, {(x, b), (y, b′)}, {(x, c), (y, c′)}, {(x, b), (y, a′)}, and {(x, c),
(y, a′)}. When we select a, we remove variable x, values b′ and c′ from D(y)
by arc-consistency, and later variable y by Step 3. When we discard a, we re-
move variable x, value a′ by dominance, and later variable y by Step 3. Thus

P (X , C) ≤ 2 · 1.4656n−2 ≤ 1.4656n.

The claim follows. �
By using similar, but more sophisticated, arguments, Beigel and Eppstein showed
that any (3, 2)-CSP on n variables can be solved in worst-case time O(1.36443n)
[2].

Consider now the following algorithm to solve any (d, 2)-CSP, which can be
interpreted as a derandomization of a result in [2]. For each variable x, partition
D(x) in 
d/3� subsets of cardinality at most 3, and branch by restricting the
domain of x to each one of the mentioned subsets. When all the domains are re-
stricted in that way, solve the instance obtained with the mentioned O(1.36443n)
algorithm for (3, 2)-CSP. Return yes if and only if one of the subproblems gen-
erated is feasible.

Theorem 2. Any (d, 2)-CSP, d ≥ 3, can be solved in O(αn) worst-case time,
where α = α(d) = min{
d/3�1.3645, 1 + �d/3�1.3645}.



12 F. Grandoni and G.F. Italiano

Proof. For the sake of simplicity, assume all the domains have size d. This can be
achieved by adding dummy variables. Consider the algorithm above. Its running
time is trivially

O(
d/3�n 1.36443nnO(1)) = O(
d/3�n 1.3645n).

When d is not a multiple of 3 a better time bound is achieved by observing that
the partition of each D(x) contains �d/3� sub-domains of size 3, and one sub-
domain of size d (mod 3) ∈ {1, 2}. Hence the algorithm generates

(
n
i

)
problems

containing i domains of cardinality at most 2, and n− i domains of cardinality
3. The variables corresponding to the i small domains can be removed without
branching. Hence the running time is

O(
∑

i

(
n

i

)
�d/3�n−i1.36443n−inO(1)) = O((1 + �d/3�1.3645)n).

�
Remark 6. A different algorithm is obtained by partitioning the domains in sub-
domains of size 2 instead of 3, and then branching as in the algorithm above.
Since each subproblem created can be solved in polynomial time, the overall
running time is O(
d/2�nnO(1)). This improves on the previous result for d = 4
and d = 10.
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Robotics is a field in which numerous linear and non linear problems are occur-
ing. The unknowns of these problems have a physical meaning and roboticians
are usually interested only in solutions within restricted bounds. Furthermore
dealing with uncertainties is unavoidable as any robot is a controlled mechan-
ical system with manufacturing and control errors. Hence interval analysis is a
tool of choice for solving many problems in robotics and managing uncertainties
while providing certified answers (the reliability of the result is very often a crit-
ical aspect, for example in medical robotics). In this talk we will exemplify how
interval anlysis may be used to efficently solve systems of equations appearing
in the geometrical modeling of robots, to check the regularity of parametrized
interval matrices that is required for singularity analysis and to design robots
so that their performances will meet pre-defined requirements whatever are the
manufacturing errors of the real robot within reasonable ranges.
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Abstract. In this paper we give an overview of applications of Con-
straint Programming for IP (Internet Protocol) data networks, and dis-
cuss the problem of Resilience Analysis in more detail. In this problem
we try to predict the loading of a network in different failure scenarios,
without knowing end-to-end flow values throughout the network; the in-
ference is based only on observed link traffic values. The related problem
of Traffic Flow Analysis aims to derive a traffic matrix from the observed
link traffic data. This is a severely under-constrained problem, we can
show that the obtained flow values vary widely in different, feasible solu-
tions. Experimental results indicate that using the same data much more
accurate, bounded results can be obtained for Resilience Analysis.

1 Introduction

In this paper we discuss the use of Constraint Programming (CP) for IP (In-
ternet Protocol) data network applications. The bulk of constraint applications
for networks [40] are in the context of data networks, covering either traditional,
connection oriented networks or packet-switched, routed networks like the Inter-
net. The survey [40] classifies them into a number of different groups:

– The first real-world constraint application in this domain was a problem of
application placement for the Italian Inter banking network [6], a problem
very closely related to the warehouse location problem [45,32].

– In many networks, the task of path placement is to define the route on which a
demand will be sent through the network. This is a fundamental networking
problem, for which many competing CP methods have been proposed. The
models fall into three main sub-classes, link-based models [33, 34, 35, 27, 11,
12, 22], path-based models [5, 18, 25, 26] and node-based models [37].

– One possible extension is the use of multiple paths for demands, where the
secondary path is only active when the primary connection has failed [50].

– Another possible extension is to add a time dimension, where traffic demands
have given start and end times, and demands compete for network bandwidth
if they overlap in time. This application is called Bandwidth on Demand
[23, 28, 43, 7, 37].

– In the previous problems, the network structure and capacity was fixed. The
problem of Network Design deals with defining connectivity and finding the
right link capacity to satisfy a projected set of demands [24, 5, 9, 10, 41].

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 16–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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– IP (Internet Protocol) networks usually do not use explicit routes for
traffic demands. Instead, packets are routed based on a distributed shortest
path algorithm. Metric optimization deals with choosing metric weights to
influence the routing in the network and to optimize the network utiliza-
tion [1, 2, 16].

– Secondary paths and routing algorithms provide some methods to maintain
network communications in case of element failure. The idea of Bandwidth
Protection offers an alternative, purely local mechanism for improving net-
work resilience [49, 48].

The spread of wireless networks has led to a whole new class of problems, two
examples of the use of CP are shown in [19, 38].

2 Flow Analysis and Resilience Analysis

Most of the problems described above assume that there is a well-defined set
of demands, the Traffic Matrix. We know who wants to use the network for
connections between specific points and how much bandwidth they require. For
IP based networks this assumption is, surprisingly, not valid. In an operational,
routed network there is no (simple) way of collecting data about end-to-end
traffic flows, we don’t know who is talking to whom and how much bandwidth
the customers use. The only information we can collect is the overall traffic on
each link e of the network traf(e) and the external traffic entering extin(i) and
leaving extout(j) at nodes i and j of the network. We can try to reconstruct
a traffic matrix from these measurements, this is an active research area called
traffic flow analysis.

2.1 Related Work

Most of the related work is concerned with the identification of the traffic matrix
for all PE (provider edge router) to PE or PoP (Point of presence) to PoP
flows. [21] discuss use cases for this flow analysis and compare different means
of collecting this data. We will concentrate on methods which deduce the traffic
matrix indirectly, without collecting flow data throughout the network. There
are two main directions this work is taking, the tomography method and the
gravity approach.

The tomography approach, pioneered by Vardi [47], is based on a model where
the traffic matrix is deduced from the link traffic. As this problem is under-
constrained, a series of observations are used, assuming that the measurements
are independent and reflect the same traffic matrix. A stochastic algorithm is
used to find the most likely traffic matrix which fits the available data. Slightly
different models and assumptions are used in [46, 44, 3, 8], a survey is given
in [4]. The work in [20] that uses a linear model to calculate a traffic matrix
from the link data observations is the one most closely related to the model
presented here. The use of lower and upper bounds for the flow analysis was
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suggested in [36]. An important requirement for the tomography approach is the
need for a routing model, which understands how traffic is flowing through the
network.

An alternative approach is the gravity model [31], which is based on the traffic
data of the external links only. Based on the assumption that the flow between
two customers is proportional to the product of their input and output traffic
values, we find a traffic matrix which is consistent with all external measure-
ments, but not necessarily with the link loads inside the network. The underly-
ing assumption that customers talk to each other with equal likelihood can be
justified for large ISPs (Internet service provider) with a consistent user base,
but are harder to maintain for enterprise networks or ISPs offering mainly VPN
(virtual private network) connections, where we already know that certain cus-
tomers only talk to a subset of all customers. The gravity model originates in
social sciences, where it is used for example to predict traffic flows in public
transport systems. The data requirements for a gravity model are much more
restricted than for the tomography method, it neither needs a routing model
nor traffic data from the interior of the network. But for the same reason it is
inherently less accurate than the tomography approach.

[54] propose a combination of the gravity based approach and the tomog-
raphy approach, which they validate on parts of the ATT network. For a large
tier-1 service provider the assumptions of the gravity model seem valid, if you
distinguish between end-user connections and peering and up-link lines.

As described in [30], the traffic matrix can be defined at different levels of
network abstractions. Typical variants are customer to customer flows, edge to
edge flows, flows between core routers or aggregated flows, for example between
PoPs. Different levels of abstraction are useful for different use cases, e.g. edge-
to-edge flows for traffic engineering, PoP to PoP flows for capacity planning. In
the context of resilience analysis, we will use edge to edge flows.

[17] deals with the problem of directly collecting flow data from the net-
work and propose two methods which concentrate on large flows only. It shows
that the current implementation of netflow has significant scaling problems in a
large network. [14,15] deal with the problem of sampling of traffic flows and the
resulting inaccuracies.

2.2 Flow Analysis Model

A model for the traffic flow analysis is shown below. We describe the network
as a directed graph G = (N,E) with nodes N and directed edges E. We use
non-negative flow variables Fij to denote the traffic flow from node i to node
j in the network. The [0, 1] constants re

ij define the routing in the network,
they indicate what fraction of the flow between nodes i and j is routed over
edge e.

∀i, j ∈ N : min
{Fij}

/ max
{Fij}

Fij (1)
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st.

∀e ∈ E :
∑

i,j∈N

re
ijFij = traf(e) (2)

∀i ∈ N :
∑
j∈N

Fij = extin(i) (3)

∀j ∈ N :
∑
i∈N

Fij = extout(j) (4)

Fij ≥ 0

For every flow, we try to find a lower and an upper bound as the result of an
optimization run with the objective (1). We know that the sum of all flows routed
over an edge is equal to the observed traffic on the edge (2), and that the sum
of all flows starting (3) or ending (4) in a node must be equal to the observed
external traffic.

2.3 Data

For an evaluation of the model, we use 6 networks from the Rocketfuel project
[29] and one other network topology (dexa) of a global enterprise network. The
networks range from 51 to 315 routers, and also have quite different connectivity.
Table 1 compares the major parameters of the network. Lines are bi-directional
connections between routers, PoPs (Points of presence) indicate places where all
routers for an area are co-located. Connections inside a PoP often are LAN (local
area network) type, whereas connections between PoPs typically are WAN (wide
area network) type and are more expensive. All networks are nearly real-life, the

Table 1. Test networks

Network Routers PoPs Lines Lines/Router
dexa 51 24 59 1.15
as1221 108 57 153 1.41
as1239 315 44 972 3.08
as1755 87 23 161 1.85
as3257 161 49 328 2.03
as3967 79 22 147 1.86
as6461 141 22 374 2.65

topology of the Rocketfuel networks is deduced from data collected remotely
off the actual ISP networks, the dexa network is an operational network. For
the dexa network, we also have actual link speeds and IGP (interior gateway
protocol) metric values, while the metric values for the Rocketfuel networks are
derived from traceroute information and no link speed is available (we assume
the same speed for all link for simplicity). While we can clearly distinguish P
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(core) and PE (edge) routers in the dexa network, we can only do so heuristically
in the other networks.

For the dexa network, we use the actual customer VPN structure, for all other
networks we generate VPNs of different sizes randomly. We then generate for all
networks random traffic flows between the VPN end points, and calculate from
these simulated flows sij the expected traffic load at each interface. These traffic
loads are consistent with each other and are generated using the same routing
model that is used in the analysis part.

2.4 Traffic Flow Analysis Results

The basic problem with the model above is that it is very under-constrained. We
have |N|2 flow variables Fij , but only |E| + 2|N| constraints. Results from [39]
shown below indicate that the values for the flows can vary in a very wide
interval, with no clear preference for any particular value. It is therefore unclear
how to use the results for answering further questions about the network, for
example how the traffic will change in case of an element failure.

In table 2 we present the sum of all lower bounds as a percentage of the sum
of the simulated flow values (100 ∗

∑
i,j min Fij∑

i,j sij
), as well as the sum of all upper

bounds as a percentage of the sum of the simulated flows (100 ∗
∑

i,j max Fij∑
i,j sij

). A
value of 100% would be the optimal result. We also show the number of objective
functions and the total time (in seconds) to run the test.

Table 2. TFA results

Network Low/Simul High/Simul Obj Time
dexa 0 2310.65 1190 11
as1221 0.09 8398.64 11556 1318
as1239 n/a n/a n/a n/a
as1755 0.15 6255.31 7482 699
as3257 0.04 12260.03 25760 12389
as3967 0.1 5387.10 6162 500
as6461 0.28 8688.39 19740 8676

We could not obtain a result for network AS1239, but we estimate, based on
a partial result, that a complete analysis would take more than 5 days.

All results are obtained on Linux PCs running ECLiPSe 5.6, using CPLEX
6.5 as the linear solver.

The lower bound tells us how much of the traffic in the network we can asso-
ciate with specific flows between routers, i.e. we know where the traffic originates
and where it ends. The upper bound indicates how uncertain we are about the
exact source and destination. If the number is very high, then many flows may
be the cause of the traffic, and we lack the ability to differentiate between them.
In this particular setting, the results are unimpressive. The lower bounds are
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very close to zero, and the upper bounds over-estimate the simulated flows by a
factor from 23 to 122! This means that we can not pin any traffic on particular
flows and most of the traffic may have been caused by lots of flows between quite
different routers.

Aggregating the flows for a PoP to PoP analysis improves the results, but not
significantly. Table 3 considers flows between pairs of PoPs, which is the sum of
all flows between all routers in either PoP. We can note two points:

Table 3. PoP TFA results

Network Low/Simul High/Simul Obj Time
dexa 0 1068.37 557 5
as1221 0.24 2964.93 3205 424
as1239 0.63 1401.72 1931 101359
as1755 0.66 1263.28 526 103
as3257 0.30 2028.73 2378 2052
as3967 0.1 1209.37 483 90
as6461 1.47 951.41 481 768

– The results are significantly better than for the router to router flow analysis,
but not nearly good enough to identify the flows. The lower bounds are
still very nearly zero, and the upper bounds overestimate the flows in total
between 10 and 30 times.

– The run time is much reduced, since there are far fewer objectives to calcu-
late, but per objective the runtime did slightly increase.

2.5 Resilience Analysis Model

The idea behind resilience analysis is to avoid the generation of the interme-
diate traffic matrix, and to pose questions about the network behavior directly
in the initial model. For example, we may be interested in understanding the
traffic in the network under an element failure and resulting re-routing. The
routing in the normal network operation is denoted with re

ij , the routing af-
ter the element failure is given by re

ij . The model for resilience analysis below
uses the flow variables Fij only internally, without trying to deduce particular
values.

∀e ∈ E : min
{Fij}

/ max
{Fij}

∑
i,j∈N

re
ijFij (5)

st.

∀e ∈ E :
∑

i,j∈N

re
ijFij = traf(e) (6)
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∀i ∈ N :
∑
j∈N

Fij = extin(i) (7)

∀j ∈ N :
∑
i∈N

Fij = extout(j) (8)

Fij ≥ 0

The objective function (5) now tries to find a value the predicted traffic on each
edge in the network under the failure scenario, and finds bounds by running
minimization and maximization optimization queries. The constraints (6, 7 and
8) are the same as for the traffic flow analysis.

2.6 Resilience Analysis Results

Results on the resilience analysis are a lot more encouraging as shown in table 4.
The entry Low/Simul is calculated as

(100 ∗
∑

e∈E min
∑

i,j∈N re
ij ∗ Fij∑

e∈E

∑
i,j∈N re

ij ∗ sij

)

the value High/Simul is

(100 ∗
∑

kl∈E max
∑

i,j∈N rkl
ij ∗ Fij∑

kl∈E
∑

i,j∈N rkl
ij ∗ sij

)

We also report the number of objective functions (Obj), the total time (Time)
and the number of failure cases (Cases) considered. We identify between 68 and
96% of the simulated traffic volume in the lower bound, and the sum of the
upper bounds over-estimates the simulated traffic by a maximum of 9%.

Table 4. Resilience Analysis

Network Low/Simul High/Simul Obj Time Cases
dexa 68.91 108.25 3503 57 59
as1221 85.75 102.60 14191 2869 153
as1239 92.53 102.64 4499 44205 10
as1755 92.82 105.39 8409 1815 161
as3257 93.69 103.15 31093 39934 328
as3967 91.60 108.79 9090 1635 141
as6461 96.51 103.44 24808 20840 374

Note that we did not run all failure cases on the largest network due to time
limitations.

To check if the results are typical, we repeated the experiments with one
hundred randomly generated data sets for the four smallest networks. In table 5
we show the average value and its standard deviation for both lower bounds and
upper bounds. Results are quite consistent and confirm our initial values.
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Table 5. Average results (100 runs) for resilience analysis

Network Lower bound/Simul Upper bound/Simul
Average Stdev Average Stdev

dexa 91.50 0.14 108.28 0.16
as1755 88.65 0.11 106.08 0.056
as3967 94.08 0.073 106.88 0.091
as1221 87.34 0.10 102.05 0.025

2.7 Adding Information

One basic limit of the flow analysis is that we have too few constraints for
too many variables. We now add a new data source to the problem, which will
provide us with many additional constraints. In MPLS networks [13], we can
not only use interface traffic counters, but also use counters on each LSP (label
switched path) [42]. For each output interface, we get a counter for each LSP
routed through the interface leading to a destination router. This counter will
give us the sum of all flows to the destination which have been forwarded through
the router, but it does not contain the flow that starts in the router. The MIB
(management information base) also defines LSP counters on all input interfaces,
but these counters are not meaningful on Cisco routers in current IOS versions.

We can define the LSP counters formally with the following definition.

Definition 1. The constant vj
e is the (consistent) LSP counter volume on the

directed link e from node k to node l for all flows with destination node j which
are forwarded on the link. The counter does not include the flow that originates
in node k.

This naturally leads to the next constraint, which links a sum of flow variables
to the counter value.

Constraint 1. The constraint states that the sum of all flows through a link
towards a destination is equal to the LSP counter for that destination on the
link.

∀ j ∈ N, e = (kl) ∈ E :
∑

i∈N,i�=k

re
ij ∗ Fij = vj

e

The exact number of non-trivial constraints of this form depends on the topol-
ogy, but usually is O(n2). This means that the problem is much more tightly
constrained, and the results of the flow analysis should improve dramatically.

Table 6 shows the results of the experiments for traffic flow analysis. The lower
bounds now range from 10 to 30 % of the simulated flows, the upper bounds
range between 2.5 and 10 times the simulated flows. This is much better than
before (see table 2), but still quite disappointing. The run times decreased a lot
as well, adding more constraints helped the problem solving.

We also repeated the experiments for the PoP flow analysis. Table 7 shows
the result. For some networks (dexa and AS1755) the results are nearly usable,
but in general they are still not good enough to identify the flow values.
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Table 6. TFA results with LSP counters

Network Low/Simul High/Simul Obj Time
dexa 30.35 249.71 1190 7
as1221 9.94 685.37 11556 885
as1239 10.74 1151.03 98910 72461
as1755 25.29 269.30 7482 397
as3257 23.77 425.67 25760 5121
as3967 24.47 300.17 6162 275
as6461 19.43 477.44 19740 2683

Table 7. PoP TFA results with LSP counters

Network Low/Simul High/Simul Obj Time
dexa 60.62 145.85 557 3
as1221 28.49 499.16 3205 271
as1239 33.36 211.84 1931 2569
as1755 50.33 169.37 526 46
as3257 36.82 249.16 2378 640
as3967 40.72 182.97 483 36
as6461 34.05 210.93 481 136

If we add LSP counter constraints to the model, then the results for resilience
analysis are even more impressive. The lower bounds in table 8 reach 97 to 99.44
% of the simulated values, and the sum of the upper bounds is 101.33 % of the
simulated values in the worst case. Also note that again the execution times
decrease when we add the LSP counter constraints to the model, by more than
a factor of 10 for the largest network.

Table 8. Resilience Analysis with LSP counters

Network Low/Simul High/Simul Obj Time Cases
dexa 97.76 101.33 3503 36 59
as1221 98.15 100.69 14191 1840 153
as1239 99.37 100.38 4499 3974 10
as1755 99.28 100.66 8409 964 161
as3257 99.41 100.44 31093 13381 328
as3967 98.88 101.00 9090 819 147
as6461 99.44 100.52 24808 8006 374

Again we check the results for the 4 smallest networks by generating one
hundred data sets and recording average percentage and standard deviation for
the sums of the lower bounds and the sums of the upper bounds compared to the
simulated link traffic values in all single-node failure cases as shown in table 9.
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Table 9. Average results (100 runs) for resilience analysis with LSP counters

Network Lower bound/Simul Upper bound/Simul
Average Stdev Average Stdev

dexa 99.60 0.029 100.33 0.025
as1755 99.31 0.016 100.63 0.015
as3967 99.41 0.014 100.61 0.014
as1221 98.10 0.025 100.57 0.010

The results indicate that the resilience analysis with LSP counters is able
to predict the link load in the network very accurately. In a similar way, other
information can be added, for example partial netflow results for selected routers,
bounds obtained from specific applications or from the VPN structure. In each
case, the added information adds constraints to the problem, tightening the
bounds obtained from the model. Since we obtain both lower and upper bounds,
we can also easily decide how much additional data is required. Once the bounds
are close enough, we can stop adding more information, thereby reducing the
data collection overhead.

2.8 Discussion

In the presentation above, we have oversimplified the use of the actual traffic
measurements. The models as shown only work if a consistent snapshot of all
values can be collected. In practice, this poses significant problems. If the data
are not collected for exactly the same time periods, then inconsistencies may
occur. There are further problems caused by queues in the routers and bugs in
implementing data collection facilities in devices of multiple vendors. The data
collection process itself uses unreliable communications (UDP) so that some
measurements may be lost due to dropped packets. One approach to overcoming
these issues is the use of a separate error correction model, which tries to correct
values before feeding them into the models above. Another, shown in [52,51,53]
deals with the problem by integrating incomplete and inconsistent data into the
constraint solving process.
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Abstract. We introduce a constraint-based framework for studying in-
finite qualitative simulations concerned with contingencies such as time,
space, shape, size, abstracted into a finite set of qualitative relations. To
define the simulations we combine constraints that formalize the back-
ground knowledge concerned with qualitative reasoning with appropriate
inter-state constraints that are formulated using linear temporal logic.

We implemented this approach in a constraint programming system
(ECLiPSe) by drawing on the ideas from bounded model checking. The
implementation became realistic only after several rounds of optimiza-
tions and experimentation with various heuristics.

The resulting system allows us to test and modify the problem spec-
ifications in a straightforward way and to combine various knowledge
aspects. To demonstrate the expressiveness and simplicity of this ap-
proach we discuss in detail two examples: a navigation problem and a
simulation of juggling.

1 Introduction

1.1 Background

Qualitative reasoning was introduced in AI to abstract from numeric quan-
tities, such as the precise time of an event, or the location or trajectory of an
object in space, and to reason instead on the level of appropriate abstractions.
Two different forms of qualitative reasoning were studied. The first one is con-
cerned with reasoning about continuous change in physical systems, monitoring
streams of observations and simulating behaviours, to name a few applications.
The main techniques used are qualitative differential equations, constraint prop-
agation and discrete state graphs. For a thorough introduction see [15].

The second form of qualitative reasoning focuses on the study of contingen-
cies such as time, space, shape, size, directions, through an abstraction of the
quantitative information into a finite set of qualitative relations. One then relies
on complete knowledge about the interrelationship between these qualitative re-
lations. This approach is exemplified by temporal reasoning due to [1], spatial
reasoning introduced in [10] and [19], reasoning about cardinal directions (such
as North, Northwest); see, e.g., [17], etc.
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In this paper we study the second form of qualitative reasoning. Our aim is to
show how infinite qualitative simulations can be naturally formalized by means
of temporal logic and constraint satisfaction problems. Our approach allows us to
use generic constraint programming systems rather than specialized qualitative
reasoning systems. By a qualitative simulation we mean a reasoning about
possible evolutions in time of models capturing qualitative information. One
assumes that time is discrete and that only changes adhering to some desired
format occur at each stage. Qualitative simulation in the first framework is
discussed in [16], while qualitative spatial simulation is considered in [9].

1.2 Approach

In the traditional constraint-based approach to qualitative reasoning the qualita-
tive relations (for example overlap) are represented as constraints over variables
with infinite domains (for example closed subsets of R2) and path-consistency
is used as the constraint propagation; see, e.g., [11].

In our approach we represent qualitative relations as variables. This allows us
to trade path-consistency for hyper-arc consistency which is directly available in
most constraint programming systems, and to combine in a simple way various
theories constituting the background knowledge. In turn, the domain specific
knowledge about simulations is formulated using the linear temporal logic. These
temporal formulas are subsequently translated into constraints.

Standard techniques of constraint programming combined with techniques
from bounded model checking can then be used to generate simulations. To
support this claim, we implemented this approach in the constraint programming
system ECLiPSe . However, this approach became realistic only after fine-tuning
of the translation of temporal formulas to constraints and a judicious choice of
branching strategy and constraint propagation. To show its usefulness we discuss
in detail two case studies. In each of them the solutions were successfully found
by our implementation, though for different problems different heuristic had to
be used.

The program is easy to use and to interact with. In fact, in some of the case
studies we found by analyzing the generated solutions that the specifications were
incomplete. In each case, thanks to the fact that the domain specific knowledge is
formulated using temporal logic formulas, we could add the missing specifications
in a straightforward way.

1.3 Structure of the Paper

In Section 2 we discuss examples of qualitative reasoning and in Section 3 explain
our formalization of the qualitative reasoning by means of constraints. Next, in
Section 4 we deal with qualitative simulations by introducing inter-state con-
straints which connect different stages of simulation and determine which sce-
narios are allowed. These constraints are defined using linear temporal logic.
Their semantics is defined employing the concept of a cyclic path borrowed from
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the bounded model checking approach (see [5]) for testing validity of temporal
formulas.

In Section 5 we explain how the inter-state constraints are translated to con-
straints of the underlying background knowledge. Next, in Section 6 we discuss
technical issues pertaining to our implementation that generates infinite quali-
tative simulations. In the subsequent two sections we report on our case studies.
Finally, in Section 9 we discuss the related work.

2 Qualitative Reasoning: Setup and Examples

As already said, in qualitative reasoning, one abstracts from the numeric quan-
tities and reasons instead on the level of their abstractions. These abstractions
are provided in the form of a finite set of qualitative relations, which should
be contrasted with the infinite set of possibilities available at the numeric level.
After determining the ‘background knowledge’ about these qualitative relations
we can derive conclusions on an abstract level that would be difficult to achieve
on the numeric level. The following three examples illustrate the matters.

Example 1 (Region Connection Calculus). The qualitative spatial reasoning with
topology introduced in [19] and [10] is concerned with the following set of qual-
itative relations:

RCC8 := {disjoint,meet, overlap, equal, covers, contains, covered-by, inside}.

The objects under consideration are here spatial regions, and each region pair is
in precisely one RCC8 relation; see Fig. 1.

a

b

disjoint

a

b

meet

a

b
overlap

a

equal

b

a b

covered-by

a b

covers

a b

inside

a b

contains

Fig. 1. The eight RCC8 relations

The background knowledge in this
case is the set of possible relation
triples pertaining to triples of re-
gions. For example, the relation triple
〈meet,meet,meet〉 is possible since
there exist three regions pairwise
touching each other. In contrast, the
triple 〈inside, inside, disjoint〉 is im-
possible since for any three regions
A,B,C, if A is inside B and B is
inside C, then A cannot be disjoint with C. The set of possible triples is called
the composition table; it is presented in the above two papers. In total, the
table lists 193 relation triples.

Example 2 (Cardinal Directions). Qualitative reasoning dealing with relative di-
rectional information about point objects can be formalized using the set of
cardinal directions

Dir := {N,NE,E, SE, S, SW,W,NW, EQ},
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that consists of the wind rose directions together with the identity relation de-
noted by EQ; see [12]. The composition table for this form of qualitative reasoning
is provided in [17].

Example 3 (Relative Size). Qualitative reasoning about relative size of objects
is captured by the relations in the set

Size := {<,=, >}.

The corresponding composition table is given in [13].

Other examples of qualitative reasoning deal with shape, directional infor-
mation about regions or cyclic ordering of orientations. In some of them the
qualitative relations are non-binary and the background knowledge is more com-
plex than the composition table. To simplify the exposition we assume in the
following binary qualitative relations.

3 Formalization of Qualitative Reasoning

In what follows we follow the standard terminology of constraint programming.
So by a constraint on a sequence x1, . . . , xm of variables with respective do-
mains dom(x1), . . . , dom(xm) we mean a subset of dom(x1) × · · · × dom(xm).
A constraint satisfaction problem (CSP) consists of a finite sequence of
variables X with respective domains and a finite set of constraints, each on a
subsequence of X . A solution to a CSP is an assignment of values to its variables
from their domains that satisfies all constraints.

We study here CSPs with finite domains and solve them using a top-down
search interleaved with constraint propagation. In our implementation we use
a heuristics-controlled domain partitioning as the branching strategy and
hyper-arc consistency of [18] as the constraint propagation.

We formalize the qualitative reasoning within the CSP framework as follows.
We assume a finite set of objects O, a finite set of binary qualitative relations Q
and a ternary relation CT representing the composition table. Each qualitative
relation between objects is modelled as a constraint variable the domain of which
is a subset of Q. We stipulate such a relation variable for each ordered pair of
objects and organize these variables in an array Rel which we call a qualitative
array .

For each triple a, b, c of elements of O we have then a ternary constraint comp
on the corresponding variables:

comp(Rel [a, b], Rel [b, c], Rel [a, c]) :=
CT ∩ (dom(Rel [a, b])× dom(Rel [b, c])× dom(Rel [a, c])).

To assume internal integrity of this approach we also adopt for each ordered
pair a, b of elements of O, the binary constraint conv(Rel [a, b], Rel [b, a]) that
represents the converse relation table, and postulate that Rel [a, a] = equal for
all a ∈ O.

We call these constraints integrity constraints.
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4 Specifying Simulations Using Temporal Logic

In our framework we assume a conceptual neighbourhood between the qual-
itative relations. This is a binary relation neighbour between the elements
of the relation set Q describing which atomic changes in the qualitative re-
lations are admissible. So only ‘smooth’ transitions are allowed. For exam-
ple, in the case of the Region Connection Calculus from Example 1, the
relation between two regions can change from disjoint to overlap only indi-
rectly via meet. The neighbourhood relation for RCC8 has 22 elements such
as 〈disjoint,meet〉, 〈meet,meet〉, 〈meet, overlap〉 and their converses and is shown
in Fig. 2.

disjoint meet overlap

equal

covered-by

covers

inside

contains

Fig. 2. The RCC8 neighbourhood rela-
tion

We assume here that objects can
change size during the simulation. If we
wish to disallow this possibility, then the
pairs 〈equal, covered-by〉, 〈equal, covers〉,
〈equal, inside〉, 〈equal, contains〉 and their
converses should be excluded from the
conceptual neighbourhood relation.

In what follows we represent each stage
t of a simulation by a CSP Pt uniquely de-
termined by a qualitative array Qt and its
integrity constraints. Here t is a variable
ranging over the set of natural numbers
that represents discrete time. Instead of
Qt[a, b] we also write Q[a, b, t], as in fact we deal with a ternary array.

The stages are linked by inter-state constraints that determine which sce-
narios are allowed. The inter-state constraints always include constraints stipu-
lating that the atomic changes respect the conceptual neighbourhood relation.
Other inter-state constraints are problem dependent.

A qualitative simulation corresponds then to a CSP consisting of stages all of
which satisfy the integrity constraints and the problem dependent constraints,
and such that the inter-state constraints are satisfied. To describe the inter-state
constraints we use atomic formulas of the form

Q[a, b] ∈ R, Q[a, b] /∈ R, Q[a, b] = q, Q[a, b] �= q,

where R ⊆ Q and q ∈ Q. As the latter three forms reduce to the first one, we
deal with the first form only.

We employ a propositional linear temporal logic with four temporal opera-
tors, (eventually), (next time), (from now on) and U (until), and with
the usual connectives. We use bounded quantification as abbreviations, e.g.,
φ(o1) ∨ . . . ∨ φ(ok) abbreviates to ∃A ∈ {o1, . . . , ok}. φ(A).

Given a finite set of temporal formulas formalizing the inter-state constraints
we wish then to exhibit a simulation in the form of an infinite sequence of ‘atomic’
transitions which satisfies these formulas and respects the integrity constraints.
In the Section 5 we explain how each temporal formula is translated into a
sequence of constraints.
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Q1 Q2

. . .

Q�

. . .

Qk

Fig. 3. A (k − �)-loop

Paths and loops. We now proceed by explaining the meaning of a temporal
formula φ with respect to an arbitrary infinite sequence of qualitative arrays,

π := Q1, Q2, . . . ,

that we call a path . Our goal is to implement this semantics, so we proceed in
two stages:

– First we provide a definition with respect to an arbitrary path.
– Then we limit our attention to specific types of paths, which are unfoldings

of a loop.

In effect, we use here the approach employed in bounded model checking; see [5].
Additionally, to implement this approach in a simple way, we use a recursive
definition of meaning of the temporal operators instead of the inductive one.

We write |=π φ to express that φ holds along the path π. We say then that π
satisfies φ. Given π := Q1, Q2, . . . we denote by πi the subpath Qi, Qi+1, . . ..
Hence π1 = π. The semantics is defined in the standard way, with the exception
that the atomic formulas refer to qualitative arrays. The semantics of connec-
tives is defined independently of the temporal aspect of the formula. For other
formulas we proceed by recursion as follows:

|=πi Q[a, b] ∈ R if Q[a, b, i] ∈ R;
|=πi φ if |=πi+1 φ;
|=π φ if |=π φ and |=π φ;
|=π φ if |=π φ or |=π φ;
|=π χ U φ if |=π φ or |=π χ ∧ (χ U φ).

Next, we limit our attention to paths that are loops. Following [5] we call a
path π := Q1, Q2, . . . a (k − �)-loop if

π = u · v∗ with u := Q1, . . . , Q�−1 and v := Q�, . . . , Qk;

see Fig. 3. By a general result, see [5], for every temporal formula φ if a path
exists that satisfies it, then a loop path exists that satisfies φ. This is exploited
by our algorithm. Given a finite set of temporal formulas Φ it tries to find a path
π := Q1, Q2, . . . consisting of qualitative arrays that satisfies all formulas in Φ,
by repeatedly trying to construct an infinite (k− �)-loop. Each such (k− �)-loop
can be finitely represented using k qualitative arrays. The algorithm is discussed
in Section 6.



Infinite Qualitative Simulations by Means of Constraint Programming 35

5 Temporal Formulas as Constraints

A temporal formula restricts the sequence of qualitative arrays at consecutive
stages (time instances). We now show how to translate these formulas to con-
straints in a generic target constraint language. The translation is based on un-
ravelling the temporal operators into primitive Boolean constraints and primitive
constraints accessing the qualitative arrays. Furthermore, we discuss a variation
of this translation that retains more structure of the formula, using non-Boolean
array constraints.

We assume that the target constraint language has primitive Boolean con-
straints and reified versions of simple comparison and arithmetic constraints.
(Recall that a reified constraint generalizes its base constraint by associating
with it a Boolean variable reflecting its truth.)

Paths with and without loops. Both finite and infinite paths can be accommo-
dated within one constraint model. To this end, we view a finite sequence of
qualitative arrays together with their integrity constraints as a single CSP. The
sequence Q1, . . . , Qk can represent both

an infinite path π = (Q1, . . . , Q�−1) · (Q�, . . . , Qk)∗, for some � � 1 and k � �,

or a finite path π = Q1, . . . , Qk.

To distinguish between these cases, we interpret � as a constraint variable. We
define � = k+1 to mean that there is no loop, so we have dom(�) = {1, . . . , k+1}.
A new placeholder array Qk+1 is appended to the sequence of qualitative arrays,
without integrity constraints except the neighbourhood constraints connecting
it to Qk. Finally, possible looping is realized by conditional equality constraints

(� = j) → (Qj = Qk+1)

for all j ∈ {1, . . . , k}. Here Qp = Qq is an equality between qualitative arrays,
i.e., the conjunction of equalities between the corresponding array elements.

Translation into constraints. We denote by cons(φ, i) ≡ b the sequence of con-
straints representing the fact that formula φ has the truth value b on the path
πi. The translation of a formula φ on Q1, . . . , Qk is initiated with cons(φ, 1) ≡ 1.

We define the constraint translation inductively as follows.

Atomic formulas:

cons(true, i) ≡ b translates to b = 1;
cons(Q[a1, a2] ∈ R, i) ≡ b translates to Q[a1, a2, i] = q, (q ∈ R) ≡ b.

Connectives:

cons(¬φ, i) ≡ b translates to (¬b′) ≡ b, cons(φ, i) ≡ b′;

other connectives are translated analogously.
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Formula φ: The next-time operator takes potential loops into account.

cons( φ, i) ≡ b translates to

if i < k then
cons(φ, i + 1) ≡ b;

if i = k then
� = k + 1 → b = 0,
� � k → b =

∧
j∈{1,...,k} (� = j → cons(φ, j)) .

Formula φ: We translate φ by unravelling its recursive definition φ∨ φ.
It suffices to do so a finite number nunravel of steps beyond the current state,
namely the number of steps to reach the loop, max(0, �− i), plus the length
of the loop, k − �. A subsequent unravelling step is unneeded as it would
reach an already visited state. We find

nunravel = k −min(�, i).

This equation is a simplification in that � is assumed constant. For a variable
�, we ‘pessimistically’ replace � here by the least value in its domain, min(�).

Formulas φ and φ U ψ: These formulas are processed analogously to φ.

The result of translating a formula is a set of primitive reified Boolean con-
straints and accesses to the qualitative arrays at certain times.

Translation using array constraints. Unravelling the temporal operators leads
to a creation of several identical copies of subformulas. In the case of the tem-
poral operator where the subformulas in essence are connected disjunctively, we
can do better by translating differently. The idea is to push disjunctive informa-
tion inside the variable domains. We use array constraints, which treat array
lookups such as x = A[y1, . . . , yn] as a constraint on the variables x, y1, . . . , yn

and the (possibly variable) elements of the array A. Array constraints generalize
the classic element constraint.

Since we introduce new constraint variables when translating φ using array
constraints, one needs to be careful when φ occurs in the scope of a negation.
Constraint variables are implicitly existentially quantified, therefore negation
cannot be implemented by a simple inversion of truth values. We address this
difficulty by first transforming a formula into a negation normal form, using the
standard equivalences of propositional and temporal logic.

The constraint translations using array constraints (where different from
above) follow. The crucial difference to the unravelling translation is that here i
is a constraint variable.

Formula φ: A fresh variable j ranging over state indices is introduced, mark-
ing the state at which φ is examined. The first possible state is the current
position or the loop start, whichever is earlier. Both � and i are constraint
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variables, therefore their least possible values min(�), min(i), respectively,
are considered.

cons( φ, i) ≡ b translates to new j with dom(j) = {1, . . . , k},
min(min(�),min(i)) � j,

cons(φ, j) ≡ b.

Formula φ: This case is equivalent to the previous translation of φ, but
we now need to treat i as a variable. So both “if . . . then” and → are now
implemented by Boolean constraints.

6 Implementation

Given a qualitative simulation problem formalized by means of integrity con-
straints and inter-state constraints formulated as temporal formulas, our pro-
gram generates a solution if one exists or reports a failure. During its execution
a sequence of CSPs is repeatedly constructed, starting with a single CSP that is
repeatedly step-wise extended. The number of steps that need to be considered
to conclude failure depends on the temporal formulas and is finite [5]. The se-
quence of CSPs can be viewed as a single finite CSP consisting of finite domain
variables and constraints of a standard type and thus is each time solvable by
generic constraint programming systems. The top-down search is implemented
by means of a regular backtrack search algorithm based on a variable domain
splitting and combined with constraint propagation.

The variable domain splitting is controlled by domain-specific heuristics if
available. We make use of the specialized reasoning techniques due to [20] for
RCC8 and due to [17] for the cardinal directions. In these studies maximal
tractable subclasses of the respective calculi are identified and corresponding
polynomial decision procedures for non-temporal qualitative problems are dis-
cussed. In our terminology, if the domain of each relation variable in a qualita-
tive array belongs to a certain class, then a certain sequence of domain split-
tings intertwined with constraint propagation finds a solving instantiation of the
variables without backtracking if one exists. However, here we deal with a more
complex set-up: sequences of qualitative arrays together with arbitrary temporal
constraints connecting them. These techniques can then still serve as heuristics.
We use them in our implementation to split the variable domains in such a
way that one of the subdomains belongs to a maximal tractable subclass of the
respective calculus.

We implemented the algorithm and both translations of temporal formulas to
constraints in the ECLiPSe constraint programming system [22]. The resulting
program is about 2000 lines of code. We used as constraint propagation hyper-
arc consistency algorithms directly available in ECLiPSe in its fd and propia
libraries and for array constraints through the implementation discussed in [6].
In the translations of the temporal formulas, following the insight from bounded
model checking, redundancy in the resulting generation of constraints is reduced
by sharing subformulas.
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7 Case Study 1: Navigation

Consider a ship and three buoys forming a triangle. The problem is to generate
a cyclic route of the ship around the buoys. We reason qualitatively with the
cardinal directions of Example 2.
– First, we postulate that all objects occupy different positions:

∀a, b ∈ O. a �= b → Q[a, b] �= EQ.

– Without loss of generality we assume that the buoy positions are given by

Q[buoya, buoyc] = NW, Q[buoya, buoyb] = SW, Q[buoyb, buoyc] = NW

and assume that the initial position of the ship is south of buoy c:

Q[ship, buoyc] = S.

– To ensure that the ship follows the required path around the buoys we stip-
ulate: (

Q[ship, buoyc] = S → (Q[ship, buoya] = W ∧
(Q[ship, buoyb] = N ∧

(Q[ship, buoyc] = E ∧
(Q[ship, buoyc] = S ))))

)
.

In this way we enforce an infinite circling of the ship around the buoys.

a

b

c

123
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6

7 8 9

10

11

12

13

Fig. 4. Navigation path

When fed with the above constraints our
program generated the infinite path formed
by the cycle through thirteen positions de-
picted in Fig. 4. The positions required to be
visited are marked by bold circles. Each of
them can be reached from the previous one
through an atomic change in one or more
qualitative relations between the ship and
the buoys. One hour running time was not
enough to succeed with the generic first-fail
heuristic, but it took only 20 s to find the cy-
cle using the Dir-specific heuristic. The array
constraint translation reduced this slightly
to 15 s.

The cycle found is a shortest cycle sat-
isfying the specifications. Note that other,
longer cycles exist as well. For example, when starting in position 1 the ship can
first move to an ‘intermediate’ position between positions 1 and 2, characterized
by:

Q[ship, buoyc] = SW, Q[ship, buoya] = SE, Q[ship, buoyb] = SE.

We also examined a variant of this problem in which two ships are required
to circle around the buoys while remaining in the N or NW relation w.r.t. each
other. In this case the shortest cycle consisted of fifteen positions.



Infinite Qualitative Simulations by Means of Constraint Programming 39

8 Case Study 2: Simulating of Juggling

Next, we consider a qualitative formalization of juggling. We view it as a pro-
cess having an initialization phase followed by a proper juggling phase which is
repeated. As such it fits well our qualitative simulation framework.

We consider two kinds of objects: the hands and the balls. For the sake of
simplicity, we only distinguish the qualitative relations ‘together’, between a
ball and a hand that holds it or between two touching balls, and ‘apart’. This
allows us to view the juggling domain as an instance of an existing topological
framework: we identify ‘together’ and ‘apart’ with the relations meet and disjoint
of the RCC8 calculus.

In our concrete study, we assume a single juggler (with two hands) and three
balls. We aim to recreate the three-ball-cascade, see [14, p. 8]. So we have five
objects:

O := Hands ∪ Balls ,
Hands := {left-hand, right-hand},
Balls := { balli | i ∈ {1, 2, 3} }.

The constraints are as follows.

– We only represent the relations of being ‘together’ or ‘apart’:

∀x, y ∈ O. (x �= y → Q[x, y] ∈ {meet, disjoint}).

– The hands are always apart:

Q[left-hand, right-hand] = disjoint.

– A ball is never in both hands at the same time:

∀b ∈ Balls . ¬ (Q[left-hand, b] = meet ∧ Q[right-hand, b] = meet) .

– From some state onwards, at any time instance at most one ball is in any
hand:

(∀b ∈ Balls . ∀h ∈ Hands . Q[b, h] = meet →
∀b2 ∈ Balls . b �= b2 → ∀h2 ∈ Hands . Q[b2, h2] = disjoint).

– Two balls touch if and only if they are in the same hand:

(∀b1, b2 ∈ Balls . b1 �= b2 →
(Q[b1, b2] = meet ↔ ∃h ∈ Hands . (Q[h, b1] = meet ∧ Q[h, b2] = meet))).

– A ball thrown from one hand remains in the air until it lands in the other
hand:

(∀b ∈ Balls . ∀h1, h2 ∈ Hands . h1 �= h2 ∧Q[h1, b] = meet →
Q[h1, b] = meet U (Q[h1, b] = disjoint ∧ Q[h2, b] = disjoint ∧

(Q[h1, b] = disjoint U Q[h2, b] = meet))).
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– A ball in the air will land before any other ball that is currently in a hand,

(∀h1, h2 ∈ Hands . ∀b1, b2 ∈ Balls . Q[h1, b1] = disjoint ∧Q[h2, b2] = meet →
Q[h2, b2] = meet U ((∀h ∈ Hands . Q[h, b2] = disjoint)

U (∃h ∈ Hands . Q[h, b1] = meet))).

– No two balls are thrown at the same time:

(∀b1, b2 ∈ Balls . b1 �= b2 → ∀h1, h2 ∈ Hands .
¬(Q[b1, h1] = meet ∧ Q[b1, h1] = disjoint ∧

Q[b2, h2] = meet ∧ Q[b2, h2] = disjoint)).

– A hand can interact with only one ball at a time:

∀h ∈ Hands . ∀b1 ∈ Balls .
(Q[h, b1] = meet ∧ Q[h, b1] = disjoint ∨
Q[h, b1] = disjoint ∧ Q[h, b1] = meet) →

∀b2 ∈ Balls . b1 �= b2 →
(Q[h, b2] = meet → Q[h, b2] = meet) ∧
(Q[h, b2] = disjoint → Q[h, b2] = disjoint).

Initially balls 1 and 2 are in the left hand, while ball 3 is in the right hand:

Q[left-hand, ball1]=meet, Q[left-hand, ball2]=meet, Q[right-hand, ball3]=meet.

Note that the constraints enforce that the juggling continues forever. Our
program finds an infinite simulation in the form of a path [1..2][3..8]∗; see Fig. 5.
The running time was roughly 100 s using the generic first-fail heuristic; the
RCC8-specific heuristic, resulting in 43min, was not useful.

We stress the fact that the complete specification of this problem is not
straightforward. In fact, the interaction with our program revealed that the
initial specification was incomplete. This led us to the introduction of the last
constraint.

State 1 State 2 State 3 State 4 State 5 State 6 State 7 State 8
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Fig. 5. Simulation of Juggling
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Aspect Integration: Adding Cardinal Directions

The compositional nature of the ‘relations as variables’ approach makes it easy
to integrate several spatial aspects (e.g., topology and size, direction, shape etc.)
in one model. For the non-temporal case, we argued in [7] that the background
knowledge on linking different aspects can be viewed as just another integrity
constraint. Here we show that also qualitative simulation and aspect integration
combine easily, by extending the juggling example with the cardinal directions.

As the subject of this paper is modelling and solving, not the actual inter-
aspect background knowledge, we only explain the integration of the three rela-
tions meet, disjoint, equal with the cardinal directions Dir. We simply add

link(Q[a, b], QDir[a, b]) := (Q[a, b] = equal)↔ (QDir[a, b] = EQ)

as the aspect linking constraint. It refers to the two respective qualitative arrays
and is stated for all spatial objects a, b. We add the following domain-specific
requirements to our specification of juggling:

QDir[left-hand, right-hand] = W;

∀b ∈ Balls . ∀h ∈ Hands . Q[b, h] = meet → QDir[b, h] = N;

∀b ∈ Balls . Q[b, left-hand] = disjoint ∧Q[b, right-hand] = disjoint→
QDir[b, left-hand] �= N ∧QDir[b, right-hand] �= N.

We state thus that a ball in a hand is ‘above’ that hand, and that a ball is not
thrown straight upwards.

This simple augmentation of the juggling domain with directions yields the
same first simulation as in the single-aspect case, but now with the RCC8 and
Dir components. The ball/hand relation just alternates between N and NW (or
NE).

We emphasize that it was straightforward to extend our implementation to
achieve the integration of two aspects. The constraint propagation for the link
constraints is achieved by the same generic hyper-arc consistency algorithm used
for the single-aspect integrity constraints. This is in contrast to the ‘relations
as constraints’ approach which requires new aspect integration algorithms; see,
e.g., the bipath-consistency algorithm of [13].

9 Conclusions

Related Work. The most common approach to qualitative simulation is the
one discussed in [15, Chapter 5]. For a recent overview see [16]. It is based on a
qualitative differential equation model (QDE) in which one abstracts from the
usual differential equations by reasoning about a finite set of symbolic values
(called landmark values). The resulting algorithm, called QSIM, constructs the
tree of possible evolutions by repeatedly constructing the successor states. Dur-
ing this process CSPs are generated and solved. This approach is best suited to
simulate the evolution of physical systems.
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Our approach is inspired by the qualitative spatial simulation studied in [9],
the main features of which are captured by the composition table and the neigh-
bourhood relation discussed in Example 1. The distinction between the integrity
and inter-state constraints is introduced there; however, the latter only link con-
secutive states in the simulation. As a result, our case studies are beyond their
reach. Our experience with our program moreover suggests that the algorithm
of [9] may not be a realistic basis for an efficient qualitative reasoning system.

To our knowledge the ‘(qualitative) relations as variables’ approach to mod-
elling qualitative reasoning was first used in [21], to deal with the qualitative
temporal reasoning due to [1]. In [20] this approach is used in an argument to
establish the quality of a generator of random scenarios, whilst the main part of
this paper uses the customary ‘relations as constraints’ approach. In [2, pages
30-33] we applied the ‘relations as variables’ approach to model a qualitative
spatial reasoning problem. In [7] we used it to deal in a simple way with aspect
integration and in [3] to study qualitative planning problems.

In [8] various semantics for a programming language that combines temporal
logic operators with constraint logic programming are studied. Finally, in the
TLPlan system of [4] temporal logic is used to support the construction of
control rules that guide plan search. The planning system is based on an incre-
mental forward-search, so the temporal formulas are unfolded one step at a time,
in contrast to the translation into constraints in our constraint-based system.

Summary. We introduced a constraint-based framework for describing infi-
nite qualitative simulations. Simulations are formalized by means of inter-state
constraints that are defined using linear temporal logic. This results in a high
degree of expressiveness. These constraints are translated into a generic tar-
get constraint language. The qualitative relations are represented as domains of
constraint variables. This makes the considered CSPs finite, allows one to use
hyper-arc consistency as constraint propagation, and to integrate various knowl-
edge aspects in a straightforward way by simply adding linking constraints.

We implemented this approach in a generic constraint programming system,
ECLiPSe , using techniques from bounded model checking and by experimenting
with various heuristics. The resulting system is conceptually simple and easy to
use and allows for a straightforward modification of the problem specifications.
We substantiated these claims by means of two detailed case studies.
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Abstract. The Stochastic CSP (SCSP) is a framework recently intro-
duced by Walsh to capture combinatorial decision problems that involve
uncertainty and probabilities. The SCSP extends the classical CSP by
including both decision variables, that an agent can set, and stochastic
variables that follow a probability distribution and can model uncer-
tain events beyond the agent’s control. So far, two approaches to solving
SCSPs have been proposed; backtracking-based procedures that extend
standard methods from CSPs, and scenario-based methods that solve
SCSPs by reducing them to a sequence of CSPs. In this paper we further
investigate the former approach. We first identify and correct a flaw in
the forward checking (FC) procedure proposed by Walsh. We also extend
FC to better take advantage of probabilities and thus achieve stronger
pruning. Then we define arc consistency for SCSPs and introduce an arc
consistency algorithm that can handle constraints of any arity.

1 Introduction

Representation and reasoning with uncertainty is an important issue in con-
straint programming since uncertainty is inherent in many real combinatorial
problems. To model such problems, many extensions of the classical CSP have
been proposed (see [9] for a detailed review). The Stochastic CSP (SCSP) is a
framework that can be used to model combinatorial decision problems involv-
ing uncertainty and probabilities recently introduced by Walsh [10]. The SCSP
extends the classical CSP by including both decision variables, that an agent
can set, and stochastic variables that follow a probability distribution and can
model uncertain events beyond the agent’s control. The SCSP framework is in-
spired by the stochastic satisfiability problem [6] and combines some of the best
features of traditional constraint satisfaction, stochastic integer programming,
and stochastic satisfiability.

The expressional power of the SCSP can help us model situations where there
are probabilistic estimations about various uncertain actions and events, such
as stock market prices, user preferences, product demands, weather conditions,
etc. For example, in industrial planning and scheduling, we need to cope with
uncertainty in future product demands. As a second example, interactive config-
uration requires us to anticipate variability in the users’ preferences. As a final
example, when investing in the stock market, we must deal with uncertainty in
the future price of stocks.
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SCSPs have recently been introduced and only a few solution methods have
been proposed. In the initial paper, Walsh described a chronological backtracking
and a forward checking procedure for binary problems [10]. These are extensions
of the corresponding algorithms for CSPs that explore the space of policies in a
SCSP. Alternatively, scenario-based methods, which solve a SCSP by reducing
it to a sequence of CSPs, were introduced in [7]. This approach carries certain
advantages compared to algorithms that operate on the space of policies. Most
significantly, it can exploit existing advanced CSP solvers, without requiring
the implementation of (potentially complicated) specialized search and propaga-
tion techniques. As a consequence, this approach is not limited to binary prob-
lems. However, the number of scenarios in a SCSP grows exponentially with
the number of stages in the problem. Therefore, the scenario-based approach
may not be applicable in problems with many stochastic variables and many
stages.

In this paper we develop algorithms for SCSPs following the initially proposed
approach based on the exploration of the policy space. We first identify and cor-
rect a flaw in the forward checking (FC) procedure proposed by Walsh. We also
extend FC to take better advantage of probabilities and thus achieve stronger
pruning. Then we define arc consistency (AC) for SCSPs and introduce an AC
algorithm that can handle constraints of any arity. This allows us to implement
a MAC algorithm that can operate on non-binary problems. Finally, we present
some preliminary experimental results.

2 Stochastic Constraint Satisfaction

In this section we review the necessary definitions on SCSPs given in [10] and
[7]. A stochastic constraint satisfaction problem (SCSP) is a 6-tuple< X,S,D,
P,C,Θ > where X is a sequence of n variables, S is the subset of X which are
stochastic variables, D is a mapping from X to domains, P is a mapping from
S to probability distributions for the domains of the stochastic variables, C is a
set of e constraints over X , and Θ is a mapping from constraints to threshold
probabilities in the interval [0, 1]. Each constraint is defined by a subset of the
variables in X and an, extensionally or intensionally specified, relation giving the
allowed tuples of values for the variables in the constraint. A hard constraint,
which must be always satisfied, has an associated threshold 1, while a “chance
constraint” ci, which may only be satisfied in some of the possible worlds, is
associated with a threshold θi ∈ [0, 1]. This means that the constraint must be
satisfied in at least a fraction θi of the worlds.

For the purposes of this paper, we will follow [10] and assume that the problem
consists only of a single global chance constraint which is the conjunction of all
constraints in the problem. This global constraint must be satisfied in at least a
fraction θ of the possible worlds. We will also assume that the stochastic variables
are independent (as in [10]). This assumption limits the applicability of the SCSP
framework but it can be lifted, as in other frameworks for uncertainty handling,
such as fuzzy and possibilistic CSPs [4].
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We will sometimes denote decision variables by xdi and stochastic variables
by xsi. Accordingly, the sets of decision and stochastic variables in the problem
will be denoted by Xd and Xs respectively. The domain of a variable xi will be
denoted by D(xi), and the variables that participate in a constraint ci will be
denoted by var(ci). We assume that in each constraint ci the variables in var(ci)
are sorted according to their order in X .

The backtracking algorithms of [10] explore the space of policies in a SCSP. A
policy is a tree with nodes labelled with value assignments to variables, starting
with the values of the first variable in X labelling the children of the root, and
ending with the values of the last variable in X labelling the leaves. A variable
whose next variable in X is a decision one corresponds to a node with a single
child, while a variable whose next variable in X is a stochastic one corresponds
to a node that has one child for every possible value of the following stochastic
variable. Leaf nodes take value 1 if the assignment of values to variables along
the path to the root satisfies all the constraints and 0 otherwise. Each path
to a leaf node in a policy represents a different possible scenario (set of values
for the stochastic variables) and the values given to decision variables in this
scenario. Each scenario has an associated probability; if xsi is the i-th stochastic
variable in a path to the root, vi is the value given to xsi in this scenario, and
prob(xsi ← vi) is the probability that xsi = vi, then the probability of this
scenario is:

∏
i prob(xsi ← vi).

The satisfaction of a policy is the sum of the leaf values weighted by their
probabilities. A policy satisfies the constraints iff its satisfaction is at least θ. In
this case we say that the policy is satisfying. A SCSP is satisfiable iff it has a
satisfying policy. The optimal satisfaction of a SCSP is the maximum satisfaction
of all policies. Given a SCSP, two basic reasoning tasks are to determine if the
satisfaction is at least θ and to determine the maximum satisfaction.

The simplest possible SCSP is a one-stage SCSP in which all of the decision
variables are set before the stochastic variables. This models situations in which
we must act now, trying to plan our actions in such a way that the constraints
are satisfied (as much as possible) for whatever outcome of the later uncertain
events. Alternatively, we may demand that the stochastic variables are set before
the decision variables. A one stage SCSP is satisfiable iff there exist values for
the decision variables so that, given random values for the stochastic variables,
the constraints are satisfied in at least the given fraction of worlds. In a two
stage SCSP, there are two sets (blocks) of decision variables, Xd1 and Xd2, and
two sets of stochastic variables, Xs1 and Xs2. The aim is to find values for the
variables in Xd1, so that given random values for Xs1, we can find values for
Xd2, so that given random values for Xs2, the constraints are satisfied in at
least the given fraction of worlds. An m stage SCSP is defined in an analogous
way to one and two stage SCSPs.

SCSPs are closely related to quantified CSPs (QCSPs). A QCSP can be viewed
as a SCSP where existential and universal variables correspond to decision and
stochastic variables, respectively. In such a SCSP, all values of the stochastic
variables have equal probability and the satisfaction threshold is 1.
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3 Forward Checking

Forward Checking for SCSPs was introduced in [10] as an extension of the cor-
responding algorithm for CSPs. We first review this algorithm and show that it
suffers from a flaw. We then show how this flaw can be corrected and how FC
can be enhanced to achieve stronger pruning.

Figure 1 depicts the FC procedure of [10]. FC instantiates the variables in the
order they appear in X . On meeting a decision variable, FC tries each value in
its domain in turn. The maximum value is returned to the previous recursive
call. On meeting a stochastic variable, FC tries each value in turn, and returns
the sum of all the answers to the subproblems weighted by the probabilities of
their occurrence. On instantiating a decision or stochastic variable, FC checks
forward and prunes values from the domains of future variables which break
constraints. If the instantiation of a decision or stochastic variable breaks a con-
straint, the algorithm returns 0. If all variables are instantiated without breaking
any constraint, FC returns 1.

Procedure FC(i, θl, θh) function check(xi ← vj , θl)
if i > n then return 1 for k := i + 1 to n
θ := 0 dwo := true
for each vj ∈ D(xi) for each vl ∈ D(xk)

if prune(i, j) = 0 then if prune(k, l) = 0 then
if check(xi ← vj , θl) then if inconsistent(xi ← vj , xk ← vl) then

if xi ∈ Xs then prune(k, l) := i
p := prob(xi ← vj) if xk ∈ Xs then
qi := qi − p qk := qk - prob(xk ← vl)
θ:=θ+p×FC(i+1,(θl-θ-qi)/p,(θh-θ)/p) if qk < θl then return false
restore(i) else dwo := false
if θ + qi < θl then return θ if dwo then return false
if θ > θh then return θ return true

else
θ := max(θ, FC(i + 1, max(θ, θl), θh))
restore(i)
if θ > θh then return θ

else restore(i)
return θ

Fig. 1. The FC algorithm of [10]

InFigure 1, a 2-dimensional array prune(i, j) is used to record the depth atwhich
the value vj ∈ D(xi) is removed by forward checking. Each stochastic variable
xsi has an upper bound, qi, on the probability that the values left in D(xsi) can
contribute to a solution. This is initially set to 1. The upper and lower bounds, θh

and θl are used to prune search. By setting θl = θh = θ, we can determine if the
optimal satisfaction is at least θ. By setting θl = 0 and θh = 1, we can determine
the optimal satisfaction.
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The calculation of these bounds in recursive calls is done as follows. Suppose
that the current assignment to a stochastic variable returns a satisfaction of θ0.
We can ignore other values for this variable if θ + p× θ0 ≥ θh. That is, if θ0≥(θh-
θ)/p. This gives the upper bound in the recursive call to FC on a stochastic
variable. Alternatively, we cannot hope to satisfy the constraints adequately if
θ + p× θ0+qi ≤ θl as qi is the maximum that the remaining values can contribute
to the satisfaction. That is, if θ0≤(θl-θ-qi)/p. This gives the lower bound in the
recursive call to FC on a stochastic variable. Finally, suppose that the current
assignment to a decision variable returns a satisfaction of θ. If this is more
than θl, then any other values must exceed θ to be part of a better policy.
Hence, we can replace the lower bound in the recursive call to FC on a decision
variable by max(θ, θl). Procedure restore, which is not shown, is called when a
tried assignment is rejected and when a backtrack occurs, to restore values that
have been removed from future variables and reset the value of qi for stochastic
variables.

Checking forwards fails if any variable has a domain wipeout (dwo), or (cru-
cially) if a stochastic variable has so many values removed that we cannot hope
to satisfy the constraints. When forward checking removes some value vj from
xsi, FC reduces qi by prob(xsi ← vj), the probability that xsi takes the value
vj . This reduction on qi is undone on backtracking. If FC ever reduces qi to less
than θl, it backtracks as it is impossible to set xsi and satisfy the constraints
adequately.

3.1 A Flaw in FC

As the next example shows, this last claim can be problematic. When the current
variable is a stochastic one, there are cases where, even if qi is reduced to less
than θl, the algorithm should continue going forward instead of backtracking
because the satisfaction of the future subproblem may contribute to the total
satisfaction. The example considers the case where we look for the maximum
satisfaction.

Example 1. Consider a problem consisting of one decision variable xd1 and
two stochastic variables xs2, xs3, all with {0, 1} domains. The probabilities
of the values are shown in Figure 2a where the search tree for the problem
is depicted. There is a constraint between xd1 and xs2 disallowing the tuple
<xd1 ← 0, xs2 ← 1>. There is also a constraint between xs2 and xs3 disal-
lowing the tuple <xs2 ← 1, xs3 ← 0>. Assume that we seek the maximum
satisfaction of the problem. That is, initially θl = 0 and θh = 1.

FC will first instantiate xd1 to 0 and forward check this assignment. As a
result, value 1 of xs2 will be deleted and the dashed nodes will be pruned.
Then the algorithm will explore the non-pruned subtree below xd1 ← 0 and
eventually will backtrack to xd1. At this point θ will be 0.5 (i.e. the satisfaction
of the explored subtree). Now when FC moves forward to instantiate xs2, θl will
be set to max(θl,θ)=max(0,0.5)=0.5. The subtree below xs2 ← 0, weighted by
prob(xs2 ← 0), gives 0.5 satisfaction. When assigning 1 to xs2, check will return



Algorithms for Stochastic CSPs 49

false because value 0 of xs3 will be removed and the remaining probability in
the domain of xs3 will be 0.4<θl. Therefore, FC will backtrack and terminate,
incorrectly returning 0.5 as the maximum satisfaction. Clearly, the maximum
satisfaction, which is achieved by the policy depicted with bold edges, is 0.7.

xs2

xs3

0 1

0 110

0.5 0.5

0.6 0.4 0.6 0.4

0 1

0 110

0.5 0.5

0.6 0.4 0.6 0.4

xd 1 0 1

a)

xs2

xs3

0 1

0 110

0.2 0.8

0.8 0.2 0.8 0.2

0 1

0 110

0.2 0.8

0.8 0.2 0.8 0.2

xd 1 0 1

b)

Fig. 2. Search trees of Examples 1 and 2

Function check correctly returns a failure when the current variable is a de-
cision one and for some future stochastic variable xsi forward checking reduces
qi below θl. In this case, there is not point in exploring the subtree below the
current assignment. However, when the current variable is a stochastic one and
for some future stochastic variable, qi falls below θl, it is not certain that the
currently explored policy cannot yield satisfaction greater than the threshold.
What we need is a way to determine if the maximum satisfaction offered by the
current stochastic variable is enough to lift the total satisfaction over the lower
satisfaction bound or not. Therefore, we need to take into account the following
quantities: 1) the already computed satisfaction of the previously assigned values
of the current variable, 2) the maximum satisfaction of the subtree below the
current assignment, 3) the sum of the probabilities of the following values of the
current variable (i.e. the maximum satisfaction that they can contribute). If the
sum of these quantities is lower than θl then the current assignment can be safely
rejected. Otherwise, we must continue expanding it. This idea is formulated in
more detail further below, after we describe a simple way to enhance the pruning
power of FC.

3.2 Improving FC

We can save search effort by performing stronger pruning inside function check.
When making forward checks and removing values from future stochastic vari-
ables, the FC algorithm of [10] exploits only a “local” view of the future problem.
But as values are removed from future stochastic variables, the maximum pos-
sible satisfaction of the current assignment is reduced. FC fails to exploit this
because it considers value removals from any future stochastic variable as “inde-
pendent” of value removals from other future stochastic variables. However, it is
possible that enough values are removed from a number of stochastic variables so
that the maximum possible satisfaction of the current assignment cannot exceed
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θl. The maximum possible satisfaction of an assignment vj to the current vari-
able xi is equal to

∏n
s=i+1

∑|D(xs)|
t=1 prob(xs ← vt) (weighted by the probability

of xi ← vj if xi is stochastic), where only values that have not been pruned
are considered. In words, we sum the probabilities of the remaining values for
all future stochastic variables and multiply the sums. Before explaining how we
can exploit this, we present an example that demonstrates the savings in search
effort that can be achieved through such reasoning.

Example 2. Consider a problem consisting of one decision variable xd1 and
two stochastic variables xs2, xs3, all with {0, 1} domains. The probabilities
of the values are shown in Figure 2b where the search tree of the problem
is depicted. There is a constraint between xd1 and xs2 disallowing the tu-
ples <xd1 ← 0, xs2 ← 0> and <xd1 ← 1, xs2 ← 0>. There is also a con-
straint between xd1 and xs3 disallowing the tuples <xd1 ← 0, xs3 ← 1> and
<xd1 ← 1, xs3 ← 1>. Assume that we are looking for the maximum satisfaction.

FC will first instantiate xd1 to 0 and forward check this assignment. As a re-
sult, values 0 and 1 will be removed from the D(xs2) and D(xs3) respectively.
Since q2 and q3 do not fall below θl, the algorithm will continue to make the
instantiations xs2 ← 1 and xs3 ← 0. After backtracking to xd1, the current sat-
isfaction θ for xd1 will be 0.64. Now FC will instantiate xd1 to 1, forward check
the assignment, remove values 0 and 1 from the domains of xs2 and xs3, and
proceed to instantiate the stochastic variables. Similarly as before, the satisfac-
tion of assignment xd1 ← 1 will be 0.64. Therefore, FC will return the maximum
satisfaction among the values of xd1, which is 0.64. To find this, FC needs to visit
six nodes in the search tree (the gray nodes in Figure 2b).

Consider again the point when after the satisfaction of assignment xd1 ← 0
has been computed, the algorithm instantiates xd1 to 1. Forward checking re-
moves values 0 and 1 from D(xs2) and D(xs3) respectively, and as a result the
maximum possible satisfaction of assignment xd1 ← 1 is equal to prob(xs2 ←
1)×prob(xs3 ← 0) = 0.64. This is not greater than the satisfaction of assign-
ment xd1 ← 0, and therefore, the algorithm need not proceed to instantiate the
stochastic variables. Since there is no other value in D(xd1), we can determine
that the satisfaction of the problem is 0.64. In this way, the problem is solved
visiting four instead of six nodes.

Figure 3 depicts the improved check function of FC. The identified flaw is cor-
rected in lines 10-13 where we differentiate between the case where the current
variable is a stochastic one and the case where it is a decision one. In both cases
we first compute ζi; the maximum satisfaction that the current assignment can
yield. This is computed as the product of the sums of probabilities of the values
that are left in the domains of the future stochastic variables. In this way we
get a better estimation of the maximum satisfaction that the current assignment
can provide and the efficiency of the algorithm, compared to the version given in
[10], is improved. Note that ζi is computed each time FC has filtered the domain
of a future variable. Alternatively, we can compute it once after FC has finished
with all future variables. In this case we can save repeating some computations
but may perform redundant consistency checks.
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function check(xi ← vj , qi, θl, θ)
1: qi := qi - prob(xi ← vj)
2: for k := i + 1 to n
3: dwo := true
4: for each vl ∈ D(xk)
5: if prune(k, l) = 0 then
6: if inconsistent(xi ← vj , xk ← vl) then
7: prune(k, l) := i
8: if xk ∈ Xs then
9: ζi :=

∏n
s=i+1

∑|D(xs)|
t=1 prob(xs ← vt)

10: if xi ∈ Xs then
11: if ζi × prob(xi ← vj) + θ + qi < θl then return false
12: else
13: if ζi < θl then return false
14: else dwo := false
15: if dwo then return false
16: return true

Fig. 3. The improved check function of FC

If the current variable is a decision one and ζi falls below θl then we return false
as is is not possible to extend the current assignment in a way that the threshold
is satisfied. If the current variable is a stochastic one then we multiply ζi with
the probability of the current assignment, add the satisfaction (θ) yielded by
previously tried assignments to the current variable, add the sum of probabilities
(qi) of the remaining values for the current variable, and compare the resulting
quantity with θl. If it is lower then we return fail because we know that there is
no way to extend the current assignment, so that the threshold is satisfied, even
if the current assignment and the remaining assignments to the current variable
yield the maximum possible satisfaction.

4 Arc Consistency

Arc consistency (AC) is an important concept in CSPs since it is the basis of
constraint propagation in most CSP solvers. In this section we first define AC for
SCSPs and then describe an AC algorithm for SCSPs that can handle constraints
of any arity. We show that, apart from the case of domain wipeout, failure can
also be determined when enough values are removed from stochastic variables.
We also introduce a specialized pruning rule that can be used to remove values
from certain decision variables.

Before defining AC, we give a definition of consistency for values of decision
variables. To do this, we adjust the corresponding definitions for QCSPs given
in [2,3]. Intuitively, a value v ∈ D(xdi) is inconsistent if the assignment xdi ← v
cannot participate in any satisfying policy.

Definition 1. A value v ∈ D(xdi) is consistent iff there is a satisfying policy,
in which one scenario at least, includes the assignment xi ← v.
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Given the above definition, determining the consistency of a value involves find-
ing all solutions (satisfying policies) to a SCSP. The definition of AC and the
development of relevant filtering algorithms can hopefully help us perform prun-
ing by local reasoning. We first give some necessary notation. Given a SCSP
A =< X,S,D, P,C,Θ > we denote by Acj the SCSP in which only one con-
straint cj ∈ C is considered, i.e. the SCSP < X,S,D, P, cj , θj >. τ [xi] gives the
value that variable xi takes in tuple τ . A tuple of assignments τ is valid if none of
the values in τ has been removed from the domain of the corresponding variable.
A tuple τ of a constraint cj supports a value v ∈ xi iff τ [xi] = v, τ is valid, and
τ is allowed by cj .

Definition 2. A value v ∈ D(xdi) is arc consistent iff, for every constraint
cj ∈ C, v is consistent in Acj . A value v ∈ D(xsi) is arc consistent iff, for every
constraint cj ∈ C, there is a tuple that supports it. A SCSP is arc consistent iff
all values of all variables are arc consistent.

Note that we differentiate between decision and stochastic variables. The defini-
tion of AC for values of decision variables subsumes the classical AC definition
(which is used for values of stochastic variables). The above definition covers
the general case where they may be multiple chance constraints. But in the
problems considered here, where there is only a single global chance constraint,
determining if a given SCSP is AC is a task just as hard as solving it. This is
analogous to achieving AC in a classical CSP where all constraints are combined
in a conjunction.

In the following we describe an algorithm that is not complete (i.e. it does not
compute the AC-closure of a given SCSP) but can achieve pruning of some arc
inconsistent values through local reasoning, and therefore in some cases detect
arc inconsistency. In addition, the algorithm can determine failure if the maxi-
mum possible satisfaction falls below θl because of deletions from the domains
of stochastic variables. The AC algorithm we use as basis is GAC2001/3.1 [1].
This is a coarse-grained (G)AC algorithm that does not require complicated data
structures, while it achieves an optimal worst-case time complexity in its binary
version. In addition to these features, GAC2001/3.1 facilitates the implementa-
tion of a specialized pruning rule that can remove arc inconsistent values from
certain decision variables through local reasoning. The motivation for this rule
is demonstrated in the following example.

Example 3. Consider a problem consisting of two decision variables xd1 and xd2

and two stochastic variables xs3, xs4, all with {0, 1} domains. The probabilities
of the values are shown in Figure 4 where the search tree of the problem is
depicted. There is a ternary constraint c1 with var(c1) = {xd2, xs3, xs4} which
disallows tuples <xd2 ← 0, xs3 ← 0, xs4 ← 0> and <xd2 ← 0, xs3 ← 1, xs3 ←
1>. Assume that we are trying to determine if the satisfaction is at least 0.6.

It is easy to see that any policy which includes assignment xd2 ← 0 can-
not achieve more than 0.5 satisfaction since assigning 0 to xd2 leaves {xs3 ←
0, xs4 ← 1} and {xs3 ← 1, xs4 ← 0} as the only possible sets of assignments for
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Fig. 4. Search tree of Example 3

variables xs3 and xs4, and these together yield 0.5 satisfaction. Therefore, we
can safely prune the search tree by deleting value 0 of xd2 prior to search.

We can generalize the idea illustrated in the example to the case where we reach a
block of consecutive decision variables during search. Then if we identify certain
values of these variables that, if assigned, result in policies which cannot yield
satisfaction more than the current lower bound θl, then we know that these values
are arc inconsistent and can thus prune them. We have incorporated this idea in
the AC algorithm described below. Similar reasoning can be applied on decision
variables further down in the variable sequence (i.e. not in the current block).
However, identifying arc inconsistent values for such variables is an expensive
process since it requires search.

Our algorithm for arc consistency in SCSPs is shown in Figure 5. Before
explaining the algorithm we give some necessary notation and definitions.

– We assume that the tuples in each constraint are ordered according to the
lexicographic ordering. In the while loop of line 26, NIL denotes that all
tuples in a constraint have been searched.

– As in GAC2001/3.1, Last((xi, v), cj) is the most recently discovered tuple
in cj that supports value v ∈ D(xi), where xi ∈ var(cj). Initially, each
Last((xi, v), cj) is set to 0. c var denotes the currently instantiated variable.
If the algorithm is used for preprocessing, c var is 0.

– When we say that “variable xi belongs to the current stage in X” we mean
that c var is a decision variable and xi belongs to the same block of variables
as c var. In case Stochastic AC is used for preprocessing, we say “variable
xi belongs to the first stage in X” meaning that the first block of variables
in X is composed of decision variables and xi belongs to this block.

– θ(xi,v),cj
holds the maximum satisfaction that can be achieved by the possible

assignments of the stochastic variables after decision variable xi in var(cj)
if value v is given to xi. This is calculated by summing the probabilities of
the tuples that support xi ← v in cj . In this context, the probability of a
tuple τ =<. . . , xi ← v, . . .> is the product of the probabilities of the values
that the stochastic variables after xi take in τ .

Stochastic AC uses a queue (or stack) of variable-constraint pairs. Essentially
it operates in a similar way to GAC2001/3.1 with additional fail detection and
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function Stochastic AC(c var, θl)
1: Q ← {xi, cj |cj ∈ C, xi ∈ var(cj)}
2: if c var = 0 then
3: for each (xi, cj)|xi ∈ var(cj), xi ∈ Xd and ∃xm ∈ Xs, m > i and xm ∈ var(cj)
4: for each v ∈ D(xi)
5: θ(xi,v),cj

← 0
6: for τ=Last((xi, v), cj) to last tuple in cj

7: if τ [xi] = v and τ is valid and τ is allowed by cj then
8: θτ ←

Q|var(cj)|
s=xi+1 prob(xs ← τ [xs])

9: θ(xi,v),cj
← θ(xi,v),cj

+ θτ

10: if xi belongs to the first stage in X and θ(xi,v),cj
< θl then

11: remove v from D(xi)
12: if D(xi) is wiped out then return false
13: while Q not empty do
14: select and remove a pair (xi, cj) from Q

15: fail ← false
16: if Revise(xi, cj , c var, θl,fail)
17: if fail=true or a domain is wiped out then return false
18: Q ← Q ∩ {(xk, cm|cm ∈ C, xi, xk ∈ var(cm), m �= j, i �= k}
19: return true

function Revise(xi, cj , c var, θl,fail)
20: DELETION ← FALSE
21: for each value v ∈ D(xi)
22: if Last((xi, v), cj) is not valid then
23: if xi ∈ Xd and ∃xm ∈ Xs, m > i and xm ∈ var(cj) then
24: θ(xi,v),cj

← θ(xi,v),cj
− θLast((xi,v),cj)

25: τ ← next tuple in the lexicographic ordering
26: while τ �= NIL

27: if τ [xi] = v and τ is allowed by cj then
28: if τ is valid then break
29: else if xi ∈ Xd and ∃xm ∈ Xs, m > i and xm ∈ var(cj) then
30: θ(xi,v),cj

← θ(xi,v),cj
− θτ

31: τ ← next tuple in the lexicographic ordering
32: if xi, c var ∈ Xd and xi belongs to the current stage in X and θ(xi,v),cj

< θl then
33: remove v from D(xi)
34: DELETION ← TRUE
35: else if τ �= NIL then
36: Last((xi, v), cj) ← τ

37: else
38: remove v from D(xi)
39: if xi ∈ Xs

40: ζi :=
Qn

s=c var+1

P|D(xs)|
t=1 prob(xs ← vt)

41: if ζi < θl then
42: fail ← true
43: return true
44: DELETION ← TRUE
45: return DELETION

Fig. 5. An arc consistency algorithm for stochastic CSPs



Algorithms for Stochastic CSPs 55

pruning operations to account for the stochastic nature of the problem. Initially,
all variable-constraint pairs (xi, cj), where xi ∈ var(cj), are inserted in Q. Then,
a preprocessing step, which implements the pruning rule described above, takes
place (lines 2-12). For every decision variable xi and any constraint cj where
xi participates, such that the constraint includes stochastic variables after xi in
vars(cj) (this is tested in line 3), we iterate through the available values in D(xi).
For each such value v we compute the maximum satisfaction θ(xi,v),cj

that the
stochastic variables after xi in vars(cj) can yield, under the assumption that xi

is given value v. This is computed as the sum of satisfaction for all sub-tuples
that support xi ← v in cj . The satisfaction of a sub-tuple is simply the product
of probabilities for the values of the stochastic variables after xi ← v in the
tuple (line 8). In case xi belongs to the first stage in the problem and θ(xi,v),cj

is less than θl then we know that the assignment xi ← v cannot be part of a
policy with satisfaction greater than θl and therefore v is removed from D(xi).
If no domain wipeout is detected then the algorithm proceeds with the main
propagation phase.

During this phase pairs (xi, cj) are removed from Q and function Revise is
called to look for supports for the values of xi in cj . For each value v ∈ D(xi)
we first check if Last((xi, v), cj) is still valid. If it is we proceed with the next
value. Otherwise we search cj ’s tuples until one that supports v is found or
there are no more tuples (lines 25-31). In the former case, Last((xi, v), cj) is
updated accordingly (line 36). In the latter case, v is removed from D(xi) (line
38). If xi is a decision variable then θ(xi,v),cj

is reduced while the search for a
support in cj proceeds. This is done as follows: Whenever a tuple τ that was
previously a support for xi ← v in cj but is no longer one (because it is no
longer valid) is encountered, θ(xi,v),cj

is reduced by θτ (lines 24,30). As in the
preprocessing phase, θτ is computed as the product of probabilities for the values
of the stochastic variables after xi ← v in τ . If θ(xi,v),cj

falls below θl, the current
variable is a decision one and xi belongs to the same stage as it, then v is removed
from D(xi) (lines 32,33).

If a value of a stochastic variable is removed then we check if the remaining
values in the domains of the future stochastic variables can contribute enough to
the satisfaction of the problem so that the lower bound is met. This is done in a
way similar to the improved function check of FC. That is, by comparing quantity∏n

s=c var+1

∑|D(xs)|
t=1 prob(xs ← vt) to θl. If it is lower then the algorithm returns

failure as the threshold cannot be met. If this occurs during search then the
currently explored policy should be abandoned and a new one should be tried.

The Pruning Rule for Binary Constraints. Pruning of decision variables
that belong to the current decision stage can be made stronger when dealing with
binary constraints. For each binary constraint cj , where var(cj) = {xdi, xsl},
and each value v ∈ D(xdi), we can calculate the maximum possible satisfaction
of assignment xdi ← v on constraint cj as θ(xdi,v),xsl

=
∑|D(xsl)|

t=Last((xdi,v),xsl)
, s.t.

t and v are compatible. In this case Last((xdi, v), xsl) is the most recently dis-
covered value in D(xsl) that supports v. Therefore, the maximum satisfaction
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of assignment xdi ← v is the product of θ(xdi,v),xsl
for all constraints cj , where

var(cj) = {xdi, xsl} and xsl is after xdi in the variable sequence. By compar-
ing this quantity with θl (lines 10 and 32), we can exploit the probabilities of
future stochastic variables in a more “global” way, as in the enhancement of FC
described in Section 3, and thus stronger pruning can be achieved.

Note that a similar, but more involved, enhancement is possible for non-
binary constraints but in that case we have to be careful about future stochastic
variables that appear in multiple constraints involving xdi. When calculating
the maximum possible satisfaction we have to make sure that the probabilities
of the values of each such stochastic variable are taken into account only once.
When dealing with binary constraints no such issue arises, assuming that each
stochastic variable can participate in at most one constraint with xdi.

We now analyze the time complexity of algorithm Stochastic AC. We assume
that the maximum domain size is D and the maximum constraint arity is k.

Proposition 1. The worst-case time complexity of Stochastic AC is
O(enk2Dk+1).

Proof. The preprocessing phase of lines 2-12 is executed for decision variables.
For every constraint cj that includes a decision variable xi and at least one later
stochastic variable, we go through all values in D(xi). For each such value v,
we iterate through the, at most, Dk−1 tuples that include assignment xi ← v.
Assuming that the calculation of the product of probabilities requires O(k) oper-
ations, the complexity of the preprocessing phase is O(eDkDk−1k)=O(ek2Dk).

In the main propagation phase there are at most kD calls to Revise for any
constraint cj , one for every deletion of a value from the k variables in var(cj). In
the body of Revise (called for xi ∈ var(cj)) there is a cost of O(kDk−1) to search
for supporting tuples for the values of xi (see [1] for details). The complexity of
the pruning rule for decision variables is constant. The failure detection process
of lines 35-39 costs O(nD) in the worst case. Therefore, the asymptotic cost of
one call to Revise is O(kDk−1nD)=O(nkDk). Since there can be kD calls to
Revise for each of the e constraints, and the use of Last((xi, v), cj) ensures that
in all calls the search for support for v ∈ D(xi) on cj will never check a tuple
more than once, the complexity of Stochastic AC is O(enk2Dk+1) ��
Since the preprocessing phase alone costs O(ek2Dk), we may want to be selective
in the constraints on which the pruning rule is applied, based on properties such
as arity and domain size of the variables involved.

The space complexity of the algorithm is determined by the data structures
required to store Last((xi, v), cj) and θ(xi,v),cj

. Both need O(ekD) space, so this
is the space complexity of Stochastic AC. However, this may rise to O(enkD)
when Stochastic AC is maintained during search and no advanced mechanism
is used to restore the Last((xi, v), cj) and θ(xi,v),cj

structures upon failed in-
stantiations and backtracks. This may be too expensive in large problems but
it is always possible to reduce the memory requirements by dropping structures
Last((xi, v), cj) and θ(xi,v),cj

and reverting to a (G)AC-3-type of processing.
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5 Experiments

We ran some preliminary experiments on randomly generated binary SCSPs. The
best algorithm was the improved version of FC coupled with AC preprocessing.
AC appears to be advantageous when used for preprocessing, but MAC is slower
than FC on these problems. To generate random SCSPs we used a model with
four parameters: the number of variables n, the uniform domain size d, the
constraint density p (as a fraction of the total possible constraints), and the
constraint tightness q (as a fraction of the total possible allowed tuples). The
probabilities of the values for the stochastic variables were randomly distributed.
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Fig. 6. AC+FC on random problems

Figure 6 demonstrates average results (over 50 instances) from SCSPs where
n = 20, d = 3, p = 0.1, and q is varying from 0.1 to 0.9 in steps of 0.1. We show
the cpu time (in seconds) and node visits required by FC with AC preprocessing
to find the maximum satisfaction. The curve entitled “1-stage” corresponds to
one-stage problems where 10 decision variables are followed by 10 stochastic
ones, while the curve entitled “alternating” corresponds to problems where there
is an alternation of decision and stochastic variables in the sequence. As we can
see, both types of problems give similar results. When there are few allowed
combinations of values per constraint, problems are easy as the algorithm quickly
determines that most policies are not satisfying. When there are many allowed
combinations of values per constraint, problems are much harder since there are
many satisfying policies, and as a result, a larger part of the search tree must
be searched to find the maximum satisfaction.

6 Conclusion and Future Work

We developed algorithms for SCSPs based on the exploration of the policy space.
We first identified and corrected a flaw in the FC procedure proposed by Walsh.
We also extended FC to better take advantage of probabilities and thus achieve
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stronger pruning. Then we defined AC for SCSPs and introduced an AC algo-
rithm that can handle constraints of any arity. We ran some preliminary exper-
iments, but further experimentation is necessary to evaluate the practical value
for the proposed algorithms.

In the future we intend to further enhance the backtracking algorithms pre-
sented here, both in terms of efficiency (e.g. by adding capabilities such as back-
jumping), and in terms of applicability (e.g. by extending them to deal with
multiple chance constraints, joint probabilities for stochastic variables and opti-
mization problems). Also we plan to investigate alternative approaches to solving
stochastic CSPs. In particular, techniques adapted from stochastic programming
[8] and on-line optimization [5]. Some techniques of this kind have been already
successfully developed in [7].
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1 École des Mines de Nantes, LINA FRE CNRS 2729, FR-44307 Nantes, France
{Nicolas.Beldiceanu, Sophie.Demassey, Thierry.Petit}@emn.fr

2 SICS, P.O. Box 1263, SE-164 29 Kista, Sweden
Mats.Carlsson@sics.se

Abstract. This article presents a generic filtering scheme, based on the graph de-
scription of global constraints. This description is defined by a network of binary
constraints and a list of elementary graph properties: each solution of the global
constraint corresponds to a subgraph of the initial network, retaining only the sat-
isfied binary constraints, and which fulfills all the graph properties. The graph-
based filtering identifies the arcs of the network that belong or not to the solution
subgraphs. The objective is to build, besides a catalog of global constraints, also
a list of systematic filtering rules based on a limited set of graph properties. We
illustrate this principle on some common graph properties and provide computa-
tional experiments of the effective filtering on the group constraint.

1 Introduction

The global constraint catalog [3] provides the description of hundreds of global con-
straints in terms of graph properties: The solutions of a global constraint are identified
to the subgraphs of one initial digraph sharing several graph properties. Existing graph
properties use a small set of graph parameters such as the number of vertices, or arcs,
or the number of connected components(cc).The most common graph parameters were
considered in [6]. It showed how to estimate, from the initial digraph, the lower and
upper values of a parameter in the possible solution subgraphs. Those bounds supply
necessary conditions of feasibility for almost any global constraint.

This article goes one step further by introducing systematic filtering rules for those
global constraints. The initial digraph describing a global constraint is indeed a network
of constraints on pairs of variables. To each complete instantiation of the variables cor-
responds a final subgraph obtained by removing from the initial digraph all the arcs (i.e.,
the binary constraints) that are not satisfied. Since solution(s) of the global constraint
correspond to final subgraphs fulfilling a given set of graph properties, filtering consists
in identifying and dropping elements of the initial digraph that do not belong to such
subgraphs, or to force those elements that belong to any solution subgraphs.

A first way to achieve this identification might be to use shaving [11]. That is, fix the
status of an arc or a vertex, and check if it leads to a contradiction. Since this is very
costly in practice, we present in this article another way to proceed. The filtering rules
proposed thereafter apply whenever a graph parameter is set to one of its bounds.

Last, the global constraints can be partitioned wrt. the class that their associated final
digraphs belongs to. Taking into account a given graph class leads to a better estimation
of the graph parameter bounds and then a more effective filtering.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 59–74, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The article is organized as follows: Section 2 recalls the graph-based description of
global constraints and introduces a corresponding reformulation. Section 3 sets up a
list of notations in order to formalize the systematic graph-based filtering. Section 4
presents the filtering rules related to the bounds of some graph parameters. Section 5
shows how the graph-based filtering relates to existing ad-hoc filtering for some global
constraints. Section 6 illustrates how refining the filtering according to a given graph
class and provides computational results on the group constraint, which belongs to the
path with loops graph class.

2 Graph-Based Description of Global Constraints

2.1 Graph-Based Description

Let C(V1, . . . , Vp, x1, . . . , xn) be a global constraint with domain variables1 V1, . . . ,
Vp, and domain or set variables2 x1, . . . , xn. When it exists, a graph-based description
of C is given by one (or several) network(s) GR = (X,ER) of binary constraints over
X = {x1, . . . , xn} in association with a set GPR = {Pl opl Vl | l = 1, . . . , p} of
graph properties and, optionally, a graph class cR, where:

– The constraints defining the digraph GR = (X,ER) share the same semantic (typ-
ically it is an equality, an inequality or a disequality). Let xjRxk denote the so-
called arc constraint between the ordered pair of variables (xj , xk) ∈ ER (or the
unary constraint if j = k).

– Pl opl Vl expresses a graph property comparing the value of a graph parameter
Pl to the value of variable Vl. The comparison operator opl is either ≥, ≤, =, or
�=. Among the most usual graph parameters Pl, let NARC denote the number of
arcs of a graph, NVERTEX the number of vertices, NCC the number of cc,
MIN NCC and MAX NCC the numbers of vertices of the smallest and the
largest cc respectively.

– cR corresponds to recurring graph classes that show up for different global con-
straints. For example, we consider graphs in the classes acyclic, symmetric,
bipartite.

GR is called the initial digraph. When all variables x are instantiated, the subgraph
of GR, obtained by removing all arcs corresponding to unsatisfied constraints xjRxk

as well as all vertices becoming isolated, is called a final digraph (associated to the
instantiation) and is denoted by Gf = (Xf , Ef ).

The relation between C and its graph-based description is stated as follows:

Definition 1. A complete assignment of variables V1, . . . , Vp, x1, . . . , xn is a solution
of C iff the final digraph associated to the assignment of x1, . . . , xn, satisfies all graph
properties Pl opl Vl in GPR and belongs to the graph class cR.

1 A domain variable D is a variable ranging over a finite set of integers dom(D). min(D) and
max(D) respectively denote the minimum and maximum values in dom(D).

2 A set variable S is a variable that will be assigned to a finite set of integer values. Its domain
is specified by its lower bound S, and its upper bound S, and contains all sets that contain S
and are contained in S.
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Example 1. Consider the proper forest(NTREE, VER) constraint introduced in [5].
It receives a domain variable NTREE and a digraph G described by a collection of n
vertices VER: each vertex is labelled by an integer between 1 and n and is represented
by a set variable whose lower and upper bounds are the sets of the labels of respectively
its mandatory neighbors and its mandatory or potential neighbors in G. This constraint
partitions the vertices of G into a set of vertex-disjoint proper trees (i.e., trees with at
least two vertices each).

Part (A) of Figure 1 illustrates such a digraph G, where solid arrows depict manda-
tory arcs and dashed arrows depict potential arcs. Part (B) of the figure shows a pos-
sible solution on this digraph with three proper trees. In the graph-based descrip-
tion of proper forest, the initial digraph corresponds exactly to G and has no
loop. Any final digraph Gf contains all the mandatory arcs of G and belongs to the
symmetric graph class.3 Moreover Gf has to fulfill the following graph properties:
NVERTEX = n (since it is a vertex partitioning problem, Gf contains all the ver-
tices of G), NARC = 2 · (n− NTREE) (2 since Gf is symmetric, and n− NTREE since
we have NTREE acyclic connected digraphs) and NCC = NTREE.
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Fig. 1. (A) A digraph and (B) a solution with three proper trees for the proper forest constraint

2.2 Graph-Based Reformulation

According to Definition 1, any global constraint C(V1, . . . , Vp, x1, . . . , xn) holding a
graph-based description can be reformulated as follows:

Proposition 1. Define additional variables attached to each constraint network GR =
(X,ER): to each vertex xj and to each arc ejk of GR correspond 0-1 variables respec-
tively denoted vertex j and arcjk . Vertex and Arc denote these sets of variables. Last,
let Gf denote the subgraph of GR, whose vertices and arcs correspond to the variables
vertex j and arcjk set to 1. Then constraint C holds iff the following constraints hold:

arcjk = 1 ⇔ xjRxk, ∀ejk ∈ ER (1)

vertex j = min(1,
∑
{k | ejk∈ER} arcjk +

∑
{k | ekj∈ER} arckj), ∀xj ∈ X (2)

ctrPl
(Vertex ,Arc, Pl), ∀(Pl opl Vl) ∈ GPR (3)

Constraint (3) is satisfied when Pl is equal to the value of the corresponding parameter Pl in Gf .

Pl op Vl, ∀(Pl opl Vl) ∈ GPR (4)

ctr cR(Vertex ,Arc) (5)

Graph-class constraint (5) is satisfied if Gf belongs to the graph class cR.

3 A digraph is symmetric iff, if there is an arc from u to v, there is also an arc from v to u.
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Example 2. Consider again the proper forest constraint previously introduced.
Since its final digraph is symmetric and does not contain isolated vertices, the graph-
class constraint (5) is the conjunction of the following constraints: arcjk = arckj for
each arc ejk and vertex j = min(1, 2 ·

∑
{k | ejk∈ER}arcjk) for each vertex xj in GR.

Filtering domains of variables V and x according to C can be achieved by enforcing
alternatively, and for each constraint network GR, the five sets of constraints of this re-
formulation. Enforcing constraints (1), (2), (4) and (5) is mostly trivial since these con-
straints are elementary arithmetic constraints. The generic graph-based filtering mainly
lies then on maintaining consistency according to constraints (3), from the arc and
vertex variables to the bounds of the graph parameter variables Pl, and conversely.
In [6] it was presented, for some usual graph parameters, how to estimate their minimal
(Pl) and maximal (Pl) values in the final digraphs Gf , given the current state of the arcs
and vertices of GR. Section 4 shows how in turn, the status of some arcs and vertices
can be determined according to a graph parameter variable when it is set to one of its
extreme values (i.e. dom(Pl) = {Pl} or dom(Pl) = {Pl}).

Hence, the approach relies on identifying the possible final digraphs in GR that min-
imize or maximize a given graph parameter. Any final digraph contains (resp. does not
contain) the arcs and vertices corresponding to arc and vertex variables fixed to 1 (resp.
to 0). Since it has no isolated vertices, we assume that the normalization constraints (2)
are enforced before estimating a graph parameter. Section 6 shows how refining this
estimation when the final digraphs must belong to a given graph class, by also first
enforcing constraints (5).

Since the proposed reformulation allows to model a lot of global constraints for
which enforcing AC is known to be impossible (e.g. nvalue) we cannot expect to get
AC in general. Even with a complete characterization of all feasible values of a graph
parameter and of all corresponding unfeasible arcs (arcs that do not belong to final
digraphs satisfying a parameter value), we cannot enforce AC in general because of
the inter-dependency of constraints (1) : the arc variables are not independent of each
other.

3 Notations for a Systematic Filtering

As for the graph-based description of any global constraint, we aim at providing a cat-
alog of generic filtering rules related to the bounds of graph parameters. In order to
formalize this, we first need to introduce a number of notations.

Let GR be an initial digraph associated to the graph-based description of a global
constraint. The current domains of variables arc and vertex of the reformulation cor-
respond to a unique partitioning of the arc and vertex sets of GR, denoted as follows:

Notation 1. A vertex xj or an arc ejk of GR is either true (T ), false (F ), or undeter-
mined (U ) whether the corresponding variable vertex j or arcjk is fixed to 1, fixed to 0
or yet unfixed (with domain {0, 1}). This leads to the partitioning of the vertex set of GR
into XT ∪̇XF ∪̇XU and to the partitioning of the edge set of GR into ET ∪̇EF ∪̇EU .
For two distinct elements Q and R in {T, U, F}, let XQR denote the vertex subset
XQ ∪̇XR, and EQR denote the arc subset EQ ∪̇ ER.
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Once the normalization constraints are enforced, subgraph (XT , ET ) is well defined
and is included in any final digraph. (XTU , ETU ) is also a subgraph of GR, called the
intermediate digraph, and any final digraph is derived from this by turning each U -arc
and U -vertex into T or F .4 We aim at identifying the final digraphs in which a graph
parameter P reaches its lower value P or its upper value P . An estimated bound is
said to be sharp if for any intermediate digraph, there exists at least one final digraph
where the parameter takes this value. To estimate these bounds, we deal with different
digraphs derived from the intermediate digraph:

Notation 2. For any subsets Q, R and S of {T, U, F}, XQ and XS are vertex subsets
and ER is an arc subset of the initial digraph, and:

– XQ,R (resp. XQ,¬R) denotes the set of vertices in XQ that are extremities of at
least one arc (resp. no arc) in ER.

– XQ,R,S (resp. XQ,R,¬S) denotes the set of vertices in XQ,R that are linked to at
least one vertex (resp. to no vertex) in XS by an arc in ER.

– XQ,¬R,S (resp. XQ,¬R,¬S) denotes the set of vertices in XQ,¬R that are linked to
at least one vertex (resp. to no vertex) in XS by an arc in ETU .

– ER,Q is the set of arcs in ER that are incident on at least one vertex in XQ.
– ER,Q,S is the set of arcs in ER that are incident on one vertex in XQ and on one

vertex in XS .

Notation 3. Given a digraph G and subsets X of vertices and E of arcs:

–
−→
G(X , E) denotes the induced subgraph of G containing all vertices in X and all
arcs of E having their two extremities in X .

–
←→
G (X , E) denotes the corresponding undirected graph: to one edge (u, v) corre-

sponds at least one arc (or loop) (u, v) or (v, u) in
−→
G(X , E).

– cc(G) denotes the set of cc of G and cc[cond](G) denotes the subset of cc that
satisfy a given condition cond .

Notation 4.
←→
G rem denotes the (undirected) induced subgraph of

←→
G (XTU , EU ) ob-

tained by removing all vertices present in cc[|ET |≥1](
−→
G (XT , ET )) and then by remov-

ing all vertices becoming isolated in the remaining undirected graph.

Last, we recall some graph theoretic terms:

Definition 2. – A matching of an undirected graph G is a subset of edges, excluding
loops, such that no two edges have a vertex in common. A maximum matching is
a matching of maximum cardinality. μ(G) denotes the cardinality of a maximum
matching of G. If loops are allowed in the matching then it is called a l-matching
and the maximum cardinality of an l-matching in G is denoted by μl(G).

– Given a bipartite graph G((Y, Z), E), a hitting set of G((Y, Z), E) is a subset Z ′

of Z such that for any vertex y ∈ Y there exists an edge in E connecting y to a
vertex in Z ′. h(G) denotes the cardinality of a minimum hitting set of G.

4 In the context of CP(Graph) [9], these two digraphs respectively correspond to the lower and
upper bounds of a graph variable. Note that, as a consequence, our approach can easily be
adapted to providing a generic filtering for CP(Graph).



64 N. Beldiceanu et al.

4 Filtering from Bounds of Graph Parameters

This section illustrates on the examples of NVERTEX and NCC, how to filter
according to a graph-parameter constraint ctrPl

(Vertex ,Arc, Pl) (Constraint (3) of
Proposition 1). Table 1 first recalls the generic formula to estimate the bounds of these
two parameters according to the current instantiation of Vertex and Arc. These results
were previously given in [6]. All these bounds are sharp. Then we present a reverse fil-
tering when dom(P ) = {P} or dom(P ) = {P}. The next rules allow to determine the
status of U -vertices and U -arcs of the intermediate digraph whenever any final digraph
must contain exactly the minimal or the maximal number of vertices or of cc.

Table 1. Bounds of the different graph parameters

Graph parameters Bound Graph parameters Bound

NVERTEX |XT | + h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) NCC |cc[|XT |≥1](

−→
G(XT U , ETU ))|

NVERTEX |XT U | NCC |cc[|ET |≥1](
−→
G(XT , ET ))| + μl(

←→
G rem)

4.1 Filtering from NVERTEX

NVERTEX is equal to the current number of T -vertices, |XT |, plus the minimum
number of U -vertices that should be turned into T -vertices to avoid isolated T -vertices.
This estimation is based on the computation of the cardinality of a minimum hitting set.

Theorem 1. If dom(NVERTEX) = {NVERTEX} then

1. Any U -vertex in XU,¬T,¬T is turned into an F -vertex.
2. Any U -vertex in XU,¬T,T that does not belong to any minimum hitting set of

←→
G

((XT,¬T,¬T , XU,¬T,T ), EU,T ) is turned into an F -vertex (notably if it is not linked
to any vertex in XT,¬T,¬T ).

3. Any U -vertex in XU,¬T,T that belongs to all minimum hitting sets of
←→
G

((XT,¬T,¬T , XU,¬T,T ), EU,T ) is turned into a T -vertex.
4. For all edges e = (u, v) such that u ∈ XT,¬T,¬T and v ∈ XU,¬T,T , if all minimum

hitting sets are such that v is the only vertex that can be associated with u, and if a
unique arc corresponds to e in

−→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T ), then this arc can

be turned into a T -arc.

Example 3. Part (A) of Figure 2 illustrates Theorem 1 according to the hypothesis that
the final digraph should not contain more than 7 vertices.5 The U -vertices 1 and 10 are
turned into F -vertices according to Item 1. Since they do not belong to any minimum
hitting set, the U -vertices 4, 5 and 12 are turned into F -vertices according to Item 2.
Since the U -vertex 9 belongs to all minimum hitting sets, it is turned into a T -vertex
according to Item 3. Last, the U -arc (8, 9) is turned into a T -arc according to Item 4.

Part (B) depicts the corresponding graph
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T ) used for

computing the cardinality of a minimum hitting set (represented by thick lines).
5 As in Figure 1, solid arrows/circles depict T -arcs/vertices and dashed arrows/circles depict
U -arcs/vertices in the intermediate digraph.
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Fig. 2. Filtering according to NVERTEX: Illustration of Theorems 1 (A, B) and 2 (C)

Since Theorem 1 involves computing the cardinality of a minimum hitting set, which is
exponential, we provide a weaker form of Theorem 1.

Corollary 1. If dom(NVERTEX) = {|XT |} then any U -vertex is turned into a
F -vertex.

4.2 Filtering from NVERTEX

NVERTEX corresponds to final digraphs derived
←→
G (XTU , ETU ) by turning all

U -vertices into T .

Theorem 2. If dom(NVERTEX) = {NVERTEX} then any U -vertex of
←→
G (XTU , ETU ) is turned into a T -vertex.

Example 4. Part (C) of Figure 2 illustrates Theorem 2 according to the hypothesis that
the final digraph should contain at least 5 vertices. Theorem 2 turns all U -vertices into
T -vertices.

4.3 Filtering from NCC

The minimal number of cc in any final digraph is equal to the number of cc in the
intermediate digraph that contain at least one T -vertex.

Theorem 3. If dom(NCC) = {NCC} then

1. Any U -arc or U -vertex of any cc in |cc[|XT |=0](
−→
G (XTU , ETU ))| is turned into an

F -arc or an F -vertex.
2. Any U -vertex that is an articulation point of

←→
G (XTU , ETU ) such that its removal

disconnects two T -vertices6 is turned into a T -vertex.
3. For any edge e of

←→
G (XTU , ETU ) that is a bridge such that its removal disconnects

two T -vertices, if a unique U -arc in
−→
G(XTU , ETU ) corresponds to e then this

U -arc is turned into a T -arc.

6 The two T -vertices do not belong any more to the same cc.



66 N. Beldiceanu et al.

1 2 3 4

5 6 7 8 9

F:1

T:3

T:3 F:1

F:1

F:1

T:2 T:2

4

7 8 965

1 2 3
NCC=1

(A) (B)

Fig. 3. Filtering according to NCC: Illustration of Theorem 3

Example 5. Part (A) of Figure 3 illustrates Theorem 3 according to the hypothe-
sis that the final digraph should contain no more than one cc. Part (B) represents
the undirected graph

←→
G (XTU , ETU ), where grey vertices correspond to articulation

points and thick lines correspond to bridges. Since
−→
G(XTU , ETU ) contains one sin-

gle cc involving T -vertices, the precondition of Theorem 3 holds and we get the
following filtering: Since the cc of

−→
G(XTU , ETU ) with vertices {4, 9} belongs to

cc[|XT |=0](
−→
G (XTU , ETU )), then, from Item 1, U -vertices 4 and 9 as well as U -arcs

(4, 4) and (9, 4) are respectively turned into F -vertices and F -arcs. From Item 2, the

two U -vertices 7 and 8, which are articulation points of
←→
G (XTU , ETU ) belonging

to an elementary chain between two T -vertices (3 and 6), are turned into T -vertices.
From Item 3, among the 3 bridges of

←→
G (XTU , ETU ) belonging to an elementary chain

between two T -vertices (3 and 6), (3, 8) and (7, 6) are turned into T -arcs since their

respective counterparts (8, 3) and (6, 7) do not belong to
−→
G(XTU , ETU ).

4.4 Filtering from NCC

NCC is equal to the current number of cc of
−→
G(XT , ET ) containing at least one

T -arc (that is, |cc[|ET |≥1](
−→
G (XT , ET ))|) plus the cardinality of a maximum matching

μl(
←→
G rem), which is the maximum possible number of new cc that could be present in a

final digraph stemming from
−→
G(XTU , ETU ), in addition to |cc[|ET |≥1](

−→
G (XT , ET ))|.

Then all U -arcs (and U -vertices) that may reduce the number of cc if they would belong
to the final digraph have to be turned into F -arcs (and F -vertices).

Theorem 4. If dom(NCC) = {NCC} then

1. Any U -arc of
−→
G(XT , ETU ) joining two T -vertices belonging to two distinct cc in

cc[|ET |≥1](
−→
G(XT , ET )) is turned into an F -arc.

2. For any edge in
←→
G rem that does not belong to any maximum l-matching of

←→
G rem ,

the corresponding U -arc(s) are turned into F -arcs.
3. Any U -arc e = (u, v) such that u belongs to a cc in cc[|ET |≥1](

−→
G(XT , ET )) and v

is saturated in every maximum l-matchings of
←→
G rem is turned into an F -arc.

4. Any U -vertex of
←→
G rem belonging to all maximum l-matchings of

←→
G rem is turned

into a T -vertex.
5. For all edges e belonging to all maximum l-matchings of

←→
G rem , if a unique U -arc

in
−→
G(XTU , EU ) corresponds to e then this arc is turned into a T -arc.



Graph Properties Based Filtering 67

78 9

10 11

12 13
F:1

F:2

F:2

T:5

F:3

F:3 F:2

T:5
T:4

T:4

1

2

3 4

5

6

78 9

10 11

12 13

NCC=6

(A) (B)

Fig. 4. Filtering according to NCC: Illustration of Theorem 4

6. Any U -vertex of
←→
G rem that does not belong to any maximum l-matching of

←→
G rem

is turned into an F -vertex.

Example 6. Part (A) of Figure 4 illustrates Theorem 4 according to the hypothesis
that the final digraph should contain at least 6 cc. cc[|ET |≥1](

−→
G (XT , ET )) consists

of the following two cc, respectively corresponding to the sets of vertices {2, 3} and

{4, 5, 6}. Part (B) illustrates the corresponding undirected graph
←→
G rem , where thick

lines correspond to a maximum l-matching of cardinality 4, and grey vertices are ver-
tices that are saturated in all maximum l-matchings. Since the precondition NCC =
|cc[|ET |≥1](

−→
G(XT , ET ))| + μl(

←→
G rem) = 6 of Theorem 4 holds, Items 1, 2 and 3 re-

spectively turn the U -arcs of {(4, 3)}, of {(9, 7), (9, 10), (10, 9)} and of {(4, 8), (7, 5)}
into F -arcs. Item 4 turns the U -vertices {8, 13} into T -vertices. Finally, Item 5 turns
the U -arcs {(7, 8), (9, 9)} into T -arcs.

4.5 Complexity Results

Table 2 provides complexity results for the triggering conditions as well as for each
item of the theorems that were previously introduced. Most of these items correspond

Table 2. Complexity of each theorem. m and n respectively denote the number of arcs and the
number of vertices in the intermediate digraph.

Theorem Parts Complexity Graph Related Problems
Theorem 1
• Triggering NP-hard [10] cardinality of a minimum hitting set
• Item 1 O(m) iterating through the arcs
• Items 2,4 NP-hard ? identifying vertices that do not belong to any minimum hitting set
• Item 3 NP-hard ? identifying vertices that belong to every minimum hitting set

Corollary 1
• Triggering O(n) iterating through the vertices
• Item 1 O(n) iterating through the vertices

Theorem 2
• Triggering O(n) iterating through the vertices
• Item 1 O(n) iterating through the vertices

Theorem 3
• Triggering O(n) iterating through the vertices
• Item 1 O(m) iterating through the arcs
• Items 2,3 O(m) depth first search

Theorem 4
• Triggering O(m

√
n) maximum cardinality matching [12]

• Item 1 O(m) computing the cc
• Items 2,5,6 O(m · n) identifying edges that do not belong to any maximum cardinality matching [14]
• Items 3,4 O(m) identifying vertices that are saturated in every maximum cardinality matching [5]
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directly to an existing graph problem that we mention in the third column of the ta-
ble. The complexity stated for each item of a theorem assumes that the corresponding
triggering condition was already computed: for instance, assuming that a maximum car-
dinality matching was already computed, identifying vertices that are saturated in every
maximum cardinality matching is linear in the number of edges of the graph [5].

5 Relating to Ad-Hoc Filtering

At this point one may wonder whether our generic graph-based filtering is not too the-
oretical in order to have any practical interest. We show that we can obtain rational
reconstructions of several ad-hoc algorithms that were constructed for specific global
constraints. For this purpose, we consider the proper forest constraint introduced in
Example 1. A specialized filtering algorithm was recently proposed in [5].7 It is made
up from the following steps:

1. Renormalize
−→
G(XTU , ETU ) according to the fact that the final digraph has to be symmetric.

2. Check the feasibility of the proper forest constraint:
(a) The intermediate digraph has no isolated vertex.
(b) There is no cycle made up from T -arcs.
(c) NTREE has at least one value in [MINTREE, MAXTREE] where MINTREE is the number of

cc of the intermediate digraph and MAXTREE is the number of cc of
−→
G(XT , ET ) plus the

cardinality of a maximum cardinality matching in the subgraph induced by the vertices
that are not linked to any T -vertices.

3. Every U -arc that would create a cycle of T -vertices, is turned into an F -arc.
4. The minimum and maximum values of NTREE are respectively adjusted to MINTREE and

MAXTREE.
5. When NTREE is fixed to MINTREE all U -arcs corresponding to bridges of

−→
G(XTU , ETU ) are

turned into T -arcs.
6. When NTREE is fixed to MAXTREE each U -arc (u, v) satisfying one of the following condi-

tions is turned into an F -arc:
(a) Both u and v belong to two distinct cc of

−→
G(XT , ET ) involving more than one vertex.

(b) (u, v) does not belong to any maximum matching in the subgraph induced by the ver-
tices that are not extremities of any T -arc.

(c) u is the extremity of a T -arc and v is saturated in every maximum matching in the
subgraph induced by the vertices that are not linked to any T -vertices.

7. Every U -arc involving a source or a sink is turned into a T -arc.

By considering the generic graph-based reformulation of Proposition 1 on the graph
property NTREE = NCC we retrieve almost all the steps of the previous algorithm
(except steps 2(b) and 3, which come from the invariant NARC = 2 · (n −NCC)
linking the two graph parameters NARC and NCC):

– Item 1 corresponds to posting the graph-class constraints (5) (in the context of
proper forest, the final digraph has to be symmetric).

– Item 2(a) corresponds to posting the normalization constraints (2).

7 In [1] we retrieve the filtering algorithm of the among constraint proposed by Bessière et al.
in [7].
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– Item 2(c) corresponds to checking the graph property constraint NCC=NTREE (4).
MINTREE and MAXTREE respectively correspond to the general lower and upper
bounds of NCC given in Table 1 and deduced from constraint (3).

– Item 4 is the propagation induced by the graph property constraint (4).
– Item 5 and Item 6 correspond to the propagation of constraint (3) on the graph

parameter NCC: Item 5 is the specialization of Theorem 3, namely its third item
(since the first two items of Theorem 3 are irrelevant because

−→
G(XTU , ETU ) does

not contain any U -vertex). Item 6 corresponds to Theorem 4.
– Item 7 corresponds to the propagation of graph-class constraint (5), which avoids

creating isolated vertices in the symmetric graph (see Example 2).

6 Specializing the Filtering According to Graph Classes

Quite often the final digraph of a global constraint has a regular structure inherited
from the initial digraph or stemming from some property of the arc constraint. This
translates as extra elementary constraints, the graph-class constraints (5), in the graph-
based reformulation of the global constraint. Enforcing these constraints before eval-
uating the graph parameter bounds in the intermediate digraph allows to refine the
bound formula of Table 1 and the bound-based filtering (Section 4), both in terms of
sharpness and of algorithmic complexity. This section illustrates this principle on the
path with loops graph class for the four graph parameters NVERTEX, NCC,
MIN NCC, and MAX NCC. The filtering is then experimentally evaluated on the
example of the group constraint, which belongs to the path with loops graph class
and which involves these four parameters in its graph-based description.

6.1 The path with loops Graph Class

The path with loops graph class groups together global constraints with the fol-
lowing graph-based description:

– The initial digraph uses the PATH and the LOOP arc generators. It consists of
a sequence of vertices X = {x1, . . . , xn} with one arc (xj , xj+1) ∈ ER, j ∈
{1, . . . , n− 1}, for each pair of consecutive vertices, and one loop (xj , xj) ∈ ER,
j ∈ {1, . . . , n}, on each vertex (see Part (A) of Figure 5).

– In any final digraph, each remaining vertex has its loop and two consecutive vertices
remain linked by an arc (see Part (B) of Figure 5). These conditions correspond to
the following graph-class constraints in the reformulation of Proposition 1:

vertex j = arcj,j (6) min(vertex j , vertex j+1) = arcj,j+1 (7)

Among the global constraints belonging to the path with loops graph class, the
catalog mentions for example group [8] and stretch [13]. Such constraints enforce
sequences of variables to satisfy given patterns.

Example 7. Consider the group (NGROUP, MIN SIZE, MAX SIZE, MIN DIST,
MAX DIST, NVAL, VARIABLES, VALUES) constraint, where the first six parameters
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are domain variables, while VARIABLES is a sequence of n domain variables and
VALUES a finite set of integers.

Let xi, xi+1, . . . , xj (1 ≤ i ≤ j ≤ n) be consecutive variables of the sequence
VARIABLES such that all the following conditions simultaneously apply: (1) all vari-
ables xi, . . . , xj take their value in the set of values VALUES, (2) either i = 1, or xi−1

does not take a value in VALUES, (3) either j = n, or xj+1 does not take a value in
VALUES. We call such a set of variables a group. The constraint group is fulfilled if
all the following conditions hold: (i) there are exactly NGROUP groups of variables, (ii)
MIN SIZE and MAX SIZE are the number of variables of the smallest and largest groups,
(iii) MIN DIST and MAX DIST are the minimum and maximum number of variables be-
tween two consecutive groups or between one border and one group, (iv) NVAL is the
number of variables taking their value in the set VALUES.

For instance, group(2, 2, 4, 1, 2, 6, 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉, {1, 2, 3}) holds since the
sequence 〈0, 0, 1, 3, 0, 2, 2, 2, 3〉 contains 2 groups 〈1, 3〉 and 〈2, 2, 2, 3〉 of nonzero val-
ues of size 2 and 4, 2 groups 〈0, 0〉 and 〈0〉 of zeros, and 6 nonzero values. The graph-
based description of the group constraint uses two graph constraints which respec-
tively mention the graph properties NCC = NGROUP, MIN NCC = MIN SIZE,
MAX NCC = MAX SIZE, NVERTEX = NVAL and MIN NCC = MIN DIST,
MAX NCC = MAX DIST. Figure 5 depicts the initial digraph as well as the two final
digraphs associated to the two graph constraints of the example given for the group
constraint.

1 3 2 2 2 3

(A)

(B)

(C)

00 1 3 0 2 2 2 3

0 0 0

Fig. 5. Initial (A) and final digraphs (B,C) of group

6.2 Bounds and Filtering for the path with loops Graph Class

The path with loops properties highlight well the interest of specializing the pa-
rameter bound formula and the filtering rules. Firstly, in this context, the path struc-
ture of the considered digraphs naturally makes the different algorithms polynomial.
The status of vertices and arcs can be determined and fixed during filtering in linear
time by just following the path from vertex x1 to vertex xn. Secondly, some general
bounds are not sharp anymore in this context because of the additional graph-class
constraints. Refining those bounds then leads to a more accurate filtering. Consider
for example bound NVERTEX = |XTU |. In the general case, there exists a final
digraph with a number of vertices equal to |XTU | because all U -vertices in the interme-
diate digraph can be turned into T -vertices. Since constraints (7) forbid two U -vertices
linked by an F -arc to both be turned into T -vertices, bound NVERTEX can be re-
fined in the path with loops context to |XTU | −

∑
i∈cc(

−→
G(XU ,EF ))

� |vertex(i)|
2 �.

This means that in any subpaths made of U -vertices and F -arcs, only one vertex out of
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Table 3. Bounds of the graph parameters in the context of path with loops

Graph parameters Bound

NVERTEX |XT |

NVERTEX |XT U | − ∑
i∈cc(

−→
G(XU ,EF ))

� |vertex(i)|
2 �

NCC |cc[|XT |≥1](
−→
G(XT U , ET U ))|

NCC |cc(
−→
G(XT , ET ))|+∑

i∈cc[|XU,U,T |=0](
−→
G(XU ,EUF ))

� |vertex(i)|
2 �+

∑
i∈cc[|XU,U,T |=1](

−→
G(XU ,EUF ))

� |vertex(i)|
2 �+

∑
i∈cc[|XU,U,T |=2](

−→
G(XU ,EUF ))

(� |vertex(i)|
2 � − 1)

MIN NCC
if |XT | = 0 0

if |XT | ≥ 1 ∧ |XU,U,¬T | ≥ 1 1
if |XT | ≥ 1 ∧ |XU,U,¬T | = 0 min

i∈cc(
−→
G(XT ,ET ))

|vertex(i)|

MIN NCC
if |XT | ≥ 1 min

i∈cc[|XT |≥1](
−→
G(XT U ,ETU ))

|vertex(i)| − ε

if |XT | = 0 max
i∈cc(

−→
G(XT U ,ET U ))

|vertex(i)|

MAX NCC max
i∈cc(

−→
G(XT ,ET ))

|vertex(i)|

MAX NCC max
i∈cc(

−→
G(XT U ,ET U ))

|vertex(i)|

two may belong to a final digraph maximizing NVERTEX. Lastly, the graph-class
constraints allow to simplify some bounds that are sharp both in the general and the
path with loops contexts. For example, general bound NVERTEX = |XT | +
h(
←→
G ((XT,¬T,¬T , XU,¬T,T ), EU,T )) remains sharp for the path with loops graph

class. Yet here, XT,¬T,¬T is empty since constraints (6) enforce each T -vertex to be
an extremity of at least one T -arc (its loop). Hence, the formula can be simplified to
NVERTEX = |XT | by removing the term involving the computation of the cardinal
of a minimum hitting set. The same arguments hold for the three other graph parameters
involved in the description of the group constraint.

Table 38 summarizes the bounds of these graph parameters in the
path with loops graph class. Note that all these bounds can be evaluated in
O(n) time by iterating once through the n vertices of the initial digraph. Furthermore
all the bounds are sharp when considering the graph-class constraints. As in the general
case, they are derived by considering those final digraphs that minimize or maximize
the corresponding graph parameter. Again identifying U -arcs and U -vertices belonging
or not to these digraphs yields filtering rules that apply to the intermediate digraph
when a given bound has to be reached.

For example, any final digraph Gf having exactly NVERTEX vertices can
be defined from the intermediate digraph as follows: (i) any U -vertex in XU,¬F

8 By convention in these formulas, a maximum value over the empty set is zero. In the formula
for MIN NCC, ε = 1 if there exist two adjacent (linked by an F -arc) cc of minimum size
in cc[|XT |≥1](

−→
G(XTU , ETU )), ε = 0 otherwise.



72 N. Beldiceanu et al.

NVERTEX=8

(A)

(B) 1 3 52 7 8 9 10 11 12

1 3 4 5 62 7 8 9 10 11 12

Fig. 6. Initial (A) and final digraphs (B) when filtering from dom(NVERTEX) = 8

belongs to Gf , and (ii) if a cc C of
−→
G (XU , EF ) has an odd number of vertices

xp+1, xp+2, . . . , xp+|vertex(C)|, then only vertices xp+2·i−1 (i ∈ [1, 
 |vertex(C)|
2 �])

in C belong to Gf . Hence, filtering when condition dom(NVERTEX) =
{NVERTEX} holds consists in turning the pre-cited U -vertices of the intermediate
digraph to T -vertices and all other vertices in a cc C to F -vertices.

Example 8. Figure 6 illustrates filtering according to the hypothesis that the final di-
graph should contain 8 vertices. The two cc of

−→
G (XU , EF ) respectively correspond

to the vertex sets {3, 4, 5, 6, 7} and {9, 10, 11, 12}. The bound NVERTEX is then
equal to 12−� 5

2�−�
4
2� = 8. On one hand, since the first cc contains an odd number of

vertices, then vertices 3, 5, 7 are turned into T -vertices and vertices 4, 6 are turned into
F -vertices. On the other hand, since the second cc contains an even number of vertices
nothing can be deduced about their status. Finally all vertices of XU,¬F = {1, 2, 8} are
turned into T -vertices.

We derived similar filtering rules corresponding to the bounds of Table 3. Details can
be found in [1]. Note that they can be implemented in O(m) by iterating once through
the m variables of the initial digraph.

6.3 Performance

In order to evaluate the effectiveness of graph-based filtering, we performed two ex-
periments, generating random instances of the group constraint. VARIABLES was
chosen as a sequence of n domain variables ranging over [0, 1], and VALUES as the
singleton set {1}. A constraint instance was generated by setting the initial domain of
each domain variable to a randomly chosen interval. Furthermore, with 10% probabil-
ity, each variable in VARIABLES was randomly fixed. The experiments compare the
effect of graph-based filtering with the approach of constructing an automaton for each
graph characteristic and by reformulating that automaton as a conjunction of constraints
as described in [2]. We call this approach automata-based filtering. For both methods,
graph invariants, providing auxiliary constraints [4], were also posted.

In the first experiment, we computed the number of labeling choices made during
search for all solutions for n = 10. In the second experiment, we computed the num-
ber of labeling choices made during search for the first solution for n = 20. We chose
to count labeling choices as opposed to measuring runtime, as a fair runtime compar-
ison would require a more polished implementation of graph-based filtering than we
currently have. Note however that all filtering rules run in O(n) time. The results are
presented in two scatter plots in Figure 7. Each point represents a random instance, its
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Fig. 7. Scatter plots of random instances. Left: comparing labeling choices for finding all solu-
tions. Right: comparing labeling choices for finding the first solution.

X (resp. Y) coordinate corresponding to automata-based (resp. graph-based) filtering.
Feasible and infeasible instances are distinguished in the plots.

From these experiments, we observe that most of the time, but not always, the graph-
based method dominates the automata-based one. One would expect domination, as the
graph method reasons about arc variables in addition to vertex variables. The graph
method is currently limited by our approach to only apply the filtering when a graph
parameter reaches one of its bounds. We observe no significant difference between the
patterns for feasible vs. infeasible instances.

7 Conclusion

This article provided a first generic filtering scheme stemming from lower and upper
bounds for common graph parameters used in the graph-based reformulation of global
constraints. Moreover, it shows how we could retrieve most parts of an existing spe-
cialized filtering algorithm solely from the graph-based description. Our experiments
on the example of the path with loops graph class point to an enhancement of the
approach: filtering before a graph parameter reaches one of its bounds.
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Abstract. A wide range of counting and occurrence constraints can be
specified with just two global primitives: the Range constraint, which
computes the range of values used by a sequence of variables, and the
Roots constraint, which computes the variables mapping onto a set of
values. We focus here on the Roots constraint. We show that prop-
agating the Roots constraint completely is intractable. We therefore
propose a decomposition which can be used to propagate the constraint
in linear time. Interestingly, for all uses of the Roots constraint we have
met, this decomposition does not destroy the global nature of the con-
straint as we still prune all possible values. In addition, even when the
Roots constraint is intractable to propagate completely, we can enforce
bound consistency in linear time simply by enforcing bound consistency
on the decomposition. Finally, we show that specifying counting and oc-
currence constraints using Roots is effective and efficient in practice on
two benchmark problems from CSPLib.

1 Introduction

Global constraints on the occurrence of particular values (occurrence constraints)
or on the number of values or variables satisfying some condition (counting
constraints) occur in many real world problems. They are especially useful in
problems involving resources. For instance, if values represent resources, we may
wish to count the number of occurrences of the different values used. Many global
constraints proposed in the past are counting and occurrence constraints (see,
for example, [13,3,14,1,4]). Bessiere et al. showed [5] that many such constraints
can be specified with two new global constraints, Roots and Range, together
with some simple elementary constraints like subset and set cardinality.

As we show here, specifying a global constraint using Roots and Range is
also in many cases a way to provide an efficient propagator. There are three pos-
sible situations. In the first, we do not lose the “global” nature of our counting
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or occurrence constraint by specifying it with Roots and Range. The global
nature of the Roots and Range constraint is enough to capture the global
nature of the given counting or occurrence constraint, and propagation is not
hindered. In the second situation, completely propagating the counting or oc-
currence constraint is NP-hard. We must accept some loss of globality if we are
to make propagation tractable. Using Roots and Range is then one means to
propagate the counting or occurrence constraint partially. In the third situation,
the global constraint can be propagated completely in polynomial time but us-
ing Roots and Range hinders propagation. In this case, we need to develop a
specialized propagation algorithm.

In [7], we focused on the Range constraint. This paper therefore concen-
trates on the Roots constraint. We prove that it is intractable to propagate
the Roots constraint completely. We therefore propose a decomposition of the
Roots constraint that can propagate it partially in linear time. This decompo-
sition does not destroy the global nature of the Roots constraint as in many
situations met in practice, it prunes all possible values. This decomposition can
also easily be incorporated into a new constraint toolkit. We show experimen-
tally the efficiency of using the Roots constraint on two real world problems
from CSPLib. The rest of the paper is organised as follows. Section 2 gives the
formal background. Section 3 gives many examples of counting and occurrence
constraints that can be specified using the Roots constraint. In Section 4, we
give a complete theoretical analysis of the Roots constraint and our decomposi-
tion of it. In Section 5, we discuss implementation details. Experimental results
are presented in Section 6. Finally, we end with conclusions.

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for subsets of variables. We use capitals for variables (e.g. X , Y and S),
and lower case for values (e.g. v and w). We write D(X) for the domain of a
variable X . For totally ordered domains, we write min(X) and max(X) for the
minimum and maximum values. A solution is an assignment of values to the
variables satisfying the constraints. A variable is ground when it is assigned a
value. We consider both integer and set variables. A set variable S is represented
by its lower bound lb(S) which contains the definite elements and an upper bound
ub(S) which also contains the potential elements.

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C, a bound support on C is a tuple that assigns to
each integer variable a value between its minimum and maximum, and to each
set variable a set between its lower and upper bounds which satisfies C. A bound
support in which each integer variable is assigned a value in its domain is called
a hybrid support. If C involves only integer variables, a hybrid support is a sup-
port. A constraint C is bound consistent (BC ) iff for each integer variable Xi,
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its minimum and maximum values belong to a bound support, and for each set
variable Sj , the values in ub(Sj) belong to Sj in at least one bound support and
the values in lb(Sj) belong to Sj in all bound supports. A constraint C is hybrid
consistent (HC ) iff for each integer variable Xi, every value in D(Xi) belongs
to a hybrid support, and for each set variable Sj , the values in ub(Sj) belong to
Sj in at least one hybrid support, and the values in lb(Sj) belong to Sj in all
hybrid supports. A constraint C involving only integer variables is generalized
arc consistent (GAC ) iff for each variable Xi, every value in D(Xi) belongs to
a support. If all variables in C are integer variables, hybrid consistency reduces
to generalized arc-consistency, and if all variables in C are set variables, hybrid
consistency reduces to bound consistency.

To illustrate these concepts, consider the constraint C(X1, X2, S) that holds
iff the set variable S is assigned exactly the values used by the integer variables
X1 and X2. Let D(X1) = {1, 3}, D(X2) = {2, 4}, lb(S) = {2} and ub(S) =
{1, 2, 3, 4}. BC does not remove any value since all domains are already bound
consistent. On the other hand, HC removes 4 from D(X2) and from ub(S) as
there does not exist any tuple satisfying C in which X2 does not take value 2.
Note that as BC deals with bounds, value 2 was considered as possible for X1.

3 Counting and Occurrence Constraints

Counting constraints limit the number of values or variables satisfying some con-
dition (e.g. the global cardinality constraint [14] counts the number of variables
using particular values). Occurrence constraints limit the occurrence of partic-
ular values (e.g. the all different constraint [13] ensures no value occurs twice).
We previously showed [5] that many counting and occurrence constraints can be
decomposed into two new global constraints, Range and Roots, together with
simple non-global constraints over integer variables (like X ≤ m) and simple
non-global constraints over set variables (like S1 ⊆ S2 or |S| = k). We focus here
on the Roots constraint. Given a sequence of variables X1 to Xn, the Roots
constraint holds iff a set variable S is the set of indices of variables which map
to a value belonging to a second set variable, T .

Roots([X1, . . . , Xn], S, T ) iff S = {i | Xi ∈ T }

Note that elements in T may not be used by any integer variable Xi. For example,
Roots([1, 3, 1, 2, 3], S, T ) is satisfied by S = {1, 3} and T = {1}, S = {4} and
T = {2, 7}, or S = {2, 4, 5} and T = {2, 3, 8}. We now list some of the uses of
the Roots constraint for specifying other more complex global constraints.

3.1 Among Constraint

The Among constraint was introduced in CHIP to model resource allocation
problems like car sequencing [3]. It counts the number of variables using values
from a given set. Among([X1, . . . , Xn], [d1, . . . , dm], N) holds iff N = |{i | Xi ∈
{d1, . . . , dm}}|. It can be decomposed using a Roots constraint:
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Among([X1, . . . , Xn], [d1, . . . , dm], N) iff
Roots([X1, . . . , Xn], S, {d1, . . . , dm}) ∧ |S| = N

GAC on Among is equivalent to HC on this decomposition [5]. As we show later,
since the third argument of Roots is ground, we can achieve HC on the Roots
constraint in linear time. We note that Roots is more than a set version of
Among. With Among, we just count the number of variables using particular
values. However, with Roots, we collect the set of variables using particular
values. As we see later, having this set and not just its cardinality permits us to
specify global constraints like Common which go beyond what can be expressed
with Among.

3.2 Count Constraint

The Count constraint [2] is closely related to the Among constraint. The Count
constraint permits us to constrain the number of variables using a particular value.
More precisely, Count([X1, . . . , Xn], d, op,N) where op ∈ {≤,≥, <,>,=, �=}
holds iff |{i |Xi = d}| op N . The AtMost and AtLeast constraints are instances
of Count where op ∈ {≤,≥}. The Count constraint can be decomposed into a
Roots constraint:

Count([X1, . . . , Xn], d, op,N) iff
Roots([X1, . . . , Xn], S, {d}) & |S| op N

This decomposition does not hinder propagation and, as we will show later, it
takes linear time to enforce HC on such an instance of the Roots constraint.

3.3 Domain Constraint

We may wish to channel between a variable and a sequence of 0/1 variables repre-
senting the possible values taken by the variable. The Domain(X, [X1, . . . , Xm])
constraint introduced in [12] ensures X = i iff Xi = 1. This can be decomposed
into a Roots constraint:

Domain(X, [X1, . . . , Xm]) iff
Roots([X1, . . . , Xm], S, {1}) & |S| = 1 & X ∈ S

Enforcing HC on this specification again takes linear time and it is equivalent
to enforcing GAC on the original global Domain constraint.

3.4 LinkSet2Booleans Constraint

We may also wish to channel between a set variable and a sequence of 0/1 vari-
ables representing the characteristic function of this set. The global constraint
LinkSet2Booleans(S, [X1, . . . , Xm]) introduced in [2] ensures i ∈ S iff Xi = 1.
This can also be decomposed into a Roots constraint:

LinkSet2Booleans(S, [X1, . . . , Xm]) iff
Roots([X1, . . . , Xm], S, {1})
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Enforcing HC (or BC) on this specification again takes linear time and it is
equivalent to enforcing HC (or BC) on the original global LinkSet2Booleans
constraint.

3.5 Gcc Constraint

The global cardinality constraint [14] constrains the number of times values are
used. We consider a generalization in which the number of occurrences of a value
is an integer variable. That is, Gcc([X1, . . . , Xn], [d1, . . . , dm], [O1, . . . , Om])
holds iff |{i | Xi = dj}| = Oj for all j. Such a Gcc constraint can be decomposed
into a set of Roots constraints:

Gcc([X1, . . . , Xn], [d1, . . . , dm], [O1, . . . , Om]) iff
∀j . Roots([X1, . . . , Xn], Sj , {dj}) & |Sj | = Oj

Enforcing GAC on such a generalized Gcc constraint is NP-hard, but we can
enforce GAC on the Xi and BC on the Oj in polynomial time using a specialized
algorithm [11]. This is more than is achieved in general by enforcing HC on the
specification using Roots [5].

3.6 Common Constraint

A generalization of the Among and AllDifferent constraints introduced in [2]
is the Common constraint. Common(N,M, [X1, . . . , Xn], [Y1, . . . , Ym]) ensures
N = |{i | Xi = Yj}| and M = |{j | Xi = Yj}|. That is, N variables in X1, . . . , Xn

take values in common with Y1, . . . , Ym and M variables in Y1, . . . , Ym take
values in common with X1, . . . , Xn. We cannot expect to enforce GAC on such
a constraint in general as it is NP-hard to do so [5]. One way to propagate a
Common constraint is to decompose it into Range and Roots constraints:

Common(N,M, [X1, . . . , Xn], [Y1, . . . , Ym]) iff
Range([Y1, . . . , Ym], {1, . . . ,m}, T ) &
Roots([X1, . . . , Xn], S, T ) & |S| = N &
Range([X1, . . . , Xn], {1, . . . , n}, V ) &
Roots([Y1, . . . , Ym], U, V ) & |U | = M

where the Range constraint holds iff a set variable T equals the set of values
used by those variables, X1 to Xn whose index is in the set S.

Range([X1, . . . , Xn], S, T ) iff T = {Xi | i ∈ S}

Enforcing HC on this specification of the Common constraint again takes linear
time. As no specialized propagation algorithm has yet been proposed for the
Common constraint, Roots and Range provide a simple and promising means
to propagate the constraint.
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4 The Roots Constraint

We now give a thorough theoretical analysis of the Roots constraint. In Section
4.1, we provide a proof for the first time of the claim made in [5] that enforcing
HC on Roots is NP-hard in general. Section 4.2 presents a decomposition of
the Roots constraint that permits us to propagate the Roots constraint par-
tially in linear time. Section 4.3 shows that in many cases this decomposition
does not destroy the global nature of the Roots constraint as enforcing HC on
the decomposition achieves HC on the Roots constraint. Finally, Section 4.4
shows that we can obtain BC on the Roots constraint by enforcing BC on its
decomposition.

4.1 Complete Propagation

Unfortunately, propagating the Roots constraint completely is intractable in
general. Whilst we made this claim in [5], a proof has not yet been published.
For this reason, we give one here.

Theorem 1. Enforcing HC on the Roots constraint is NP-hard.

Proof. We transform 3Sat into the problem of the existence of a solution for
Roots. Finding a hybrid support is thus NP-hard. Hence enforcing HC on
Roots is NP-hard. Let ϕ = {c1, . . . , cm} be a 3CNF on the Boolean vari-
ables x1, . . . , xn. We build the constraint Roots([X1, . . . , Xn+m], S, T ) as fol-
lows. Each Boolean variable xi is represented by the variable Xi with domain
D(Xi) = {i,−i}. Each clause cp = xi ∨ ¬xj ∨ xk is represented by the vari-
able Xn+p with domain D(Xn+p) = {i,−j, k}. We build S and T in such a
way that it is impossible for both the index i of a Boolean variable xi and its
complement −i to belong to T . We set lb(T ) = ∅ and ub(T ) =

⋃n
i=1{i,−i}, and

lb(S) = ub(S) = {n + 1, . . . , n + m}. An interpretation M on the Boolean vari-
ables x1, . . . , xn is a model of ϕ iff the tuple τ in which τ [Xi] = i iff M [xi] = 0
can be extended to a solution of Roots. (This extension puts in T value i iff
M [xi] = 1 and assigns Xn+p with the value corresponding to the literal satisfy-
ing cp in M .) ��
We thus have to look for a lesser level of consistency for Roots or for partic-
ular cases on which HC is polynomial. We will show that bound consistency is
tractable and that, under conditions often met in practice (e.g. one of the last
two arguments of Roots is ground), enforcing HC is also.

4.2 A Decomposition of Roots

To show that Roots can be propagated tractably, we will give a straightfor-
ward decomposition into ternary constraints that can be propagated in linear
time. This decomposition does not destroy the global nature of the Roots con-
straint since enforcing HC on the decomposition will, in many cases, achieve
HC on the original Roots constraint, and since in all cases, enforcing BC
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on the decomposition achieves BC on the original Roots constraint. Given
Roots([X1, . . . , Xn], S, T ), we decompose it into the implications:

i ∈ S → Xi ∈ T

Xi ∈ T → i ∈ S

where i ∈ [1..n]. We have to be careful how we implement such a decomposition
in a constraint solver. First, some solvers will not achieve HC on such constraints
(see Sec 5 for more details). Second, we need an efficient algorithm to be able to
propagate the decomposition in linear time. As we explain in more detail in Sec
5, a constraint solver could easily take quadratic time if it is not incremental.

We first show that this decomposition prevents us from propagating the
Roots constraint completely. However, this is to be expected as propagating
Roots completely is NP-hard and this decomposition is linear to propagate. In
addition, as we later show, in many circumstances met in practice, the decom-
position does not in fact hinder propagation.

Theorem 2. HC on Roots([X1, . . . , Xn], S, T ) is strictly stronger than HC on
i ∈ S → Xi ∈ T , and Xi ∈ T → i ∈ S for all i ∈ [1..n].

Proof. Consider X1 ∈ {1, 2}, X2 ∈ {3, 4}, X3 ∈ {1, 3}, X4 ∈ {2, 3}, lb(S) =
ub(S) = {3, 4}, lb(T ) = ∅, and ub(T ) = {1, 2, 3, 4}. The decomposition is HC.
However, enforcing HC on Roots will prune 3 from D(X2). ��
In fact, enforcing HC on the decompostion achieves a level of consistency between
BC and HC on the original Roots constraint. In the next section, we identify
exactly when it achieves HC on Roots.

4.3 Some Special Cases

Many of the counting and occurrence constraints do not use the Roots con-
straint in its more general form, but have some restrictions on the variables S,
T or Xi’s. For example, it is often the case that T or S are ground. We select
four important cases that cover many of these uses of Roots and show that
enforcing HC on Roots is then tractable.

C1. ∀i ∈ lb(S), D(Xi) ⊆ lb(T )
C2. ∀i /∈ ub(S), D(Xi) ∩ ub(T ) = ∅
C3. X1 . . . Xn are ground
C4. T is ground

We will show that in any of these cases, we can achieve HC on Roots simply
by propagating the decomposition.

Theorem 3. If one of the conditions C1 to C4 holds, then enforcing HC on
i ∈ S → Xi ∈ T , and Xi ∈ T → i ∈ S for all i ∈ [1..n] achieves HC on
Roots([X1, . . . , Xn], S, T ).

Proof. Soundness. Immediate.
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Completeness. We observe that if the Roots constraint is unsatisfiable then
enforing HC on the decomposition will also fail. We assume therefore that the
Roots constraint is satisfiable. We have to prove that, for any Xi, all the values
in D(Xi) belong to a solution of Roots, and that the bounds on S and T
are as tight as possible. Our proof will exploit the following properties that are
guaranteed to hold when we have enforced HC on the decomposition.

P1 if D(Xi) ⊆ lb(T ) then i ∈ lb(S)
P2 if D(Xi) ∩ ub(T ) = ∅ then i /∈ ub(S)
P3 if i ∈ lb(S) then D(Xi) ⊆ ub(T )
P4 if i /∈ ub(S) then D(Xi) ∩ lb(T ) = ∅
P5 if D(Xi) = {v} and i ∈ lb(S) then v ∈ lb(T )
P6 if D(Xi) = {v} and i /∈ ub(S) then v /∈ ub(T )
P7 if i is added to lb(S) by the constraint Xi ∈ T → i ∈ S then D(Xi) ⊆ lb(T )
P8 if i is deleted from ub(S) by the constraint i ∈ S → Xi ∈ T then D(Xi) ∩

ub(T ) = ∅

Let us prove that lb(T ) is tight. Suppose the tuple τ is a solution of the Roots
constraint. Let v �∈ lb(T ) and v ∈ τ [T ]. We show that there exists a solution with
v �∈ τ [T ]. (Remark that this case is irrelevant to condition C4.) We remove v
from τ [T ]. For each i �∈ lb(S) such that τ [Xi] = v we remove i from τ [S]. With
C1 we are sure that none of the i in lb(S) have τ [Xi] = v, thanks to property P7
and the fact that v �∈ lb(T ). With C3 we are sure that none of the i in lb(S) have
τ [Xi] = v, thanks to property P5 and the fact that v �∈ lb(T ). There remains to
check C2. For each i ∈ lb(S), we know that ∃v′ �= v, v′ ∈ D(Xi) ∩ ub(T ), thanks
to properties P3 and P5. We set Xi to v′ in τ , we add v′ to τ [T ] and add all
k with τ [Xk] = v′ to τ [S]. We are sure that k ∈ ub(S) because v′ ∈ ub(T ) plus
condition C2 and property P8.

Completeness on ub(T ), lb(S), ub(S) and Xi’s are shown with similar proofs.
Let v ∈ ub(T )\τ [T ]. (Again C4 is irrelevant.) We show that there exists a solution
with v ∈ τ [T ]. Add v to τ [T ] and for each i ∈ ub(S), if τ [Xi] = v, put i in τ [S].
C2 is solved thanks to property P8 and the fact that v ∈ ub(T ). C3 is solved
thanks to property P6 and the fact that v ∈ ub(T ). There remains to check C1.
For each i �∈ ub(S) and τ [Xi] = v, we know that ∃v′ �= v, v′ ∈ D(Xi) \ lb(T )
(thanks to properties P4 and P6). We set Xi to v′ in τ and remove v′ from τ [T ].
Each k with τ [Xk] = v′ is removed from τ [S], and this is possible because we
are in condition C1, v′ �∈ lb(T ), and thanks to property P7.

Let v ∈ D(Xi) and τ [Xi] = v′, v′ �= v. (C3 is irrelevant.) Assign v to Xi in
τ . If both v and v′ or none of them are in τ [T ], we are done. There remain two
cases. First, if v ∈ τ [T ] and v′ �∈ τ [T ], the two alternatives to satisfy Roots are
to add i in τ [S] or to remove v from τ [T ]. If i ∈ ub(S), we add i to τ [S] and we
are done. If i �∈ ub(S), we know that v �∈ lb(T ) thanks to property P4. So, v is
removed from τ [T ] and we are sure that the Xj ’s can be updated consistently
for the same reason as in the proof of lb(T ). Second, if v �∈ τ [T ] and v′ ∈ τ [T ],
the two alternatives to satisfy Roots are to remove i from τ [S] or to add v to
τ [T ]. If i /∈ lb(S), we remove i from τ [S] and we are done. If i ∈ lb(S), we know
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that v ∈ ub(T ) thanks to property P3. So, v is added to τ [T ] and we are sure
that the Xj ’s can be updated consistently for the same reason as in the proof of
ub(T ) \ τ [T ].

Let i �∈ lb(S) and i ∈ τ [S]. We show that there exists a solution with i �∈ τ [S].
We remove i from τ [S]. Thanks to property P1, we know that D(Xi) �⊆ lb(T ).
So, we set Xi to a value v′ ∈ D(Xi) \ lb(T ). With C4 we are done because we
are sure v′ �∈ τ [T ]. With conditions C1, C2, and C3, if v′ ∈ τ [T ], we remove
it from τ [T ] and we are sure that the Xj ’s can be updated consistently for the
same reason as in the proof of lb(T ).

Let i ∈ ub(S) \ τ [S]. We show that there exists a solution with i ∈ τ [S]. We
add i to τ [S]. Thanks to property P2, we know that D(Xi) ∩ ub(T ) �= ∅. So, we
set Xi to a value v′ ∈ D(Xi) ∩ ub(T ). With condition C4 we are done because
we are sure v′ ∈ τ [T ]. With conditions C1, C2, and C3, if v′ �∈ τ [T ], we add it
to τ [T ] and we are sure that the Xj ’s can be updated consistently for the same
reason as in the proof of ub(T ) \ τ [T ]. ��

4.4 Bound Consistency

In addition to being able to enforce HC on Roots in some special cases, enforcing
HC on the decomposition always enforces a level of consistency at least as strong
as BC. In fact, in any situation (even those where enforcing HC in intractable),
enforcing BC on the decomposition enforces BC on the Roots constraint.

Theorem 4. Enforcing BC on i ∈ S → Xi ∈ T , and Xi ∈ T → i ∈ S for all
i ∈ [1..n] achieves BC on Roots([X1, . . . , Xn], S, T ).

Proof. Soundness. Immediate.
Completeness. The proof follows the same structure as that in Theorem 3. We
relax the properties P1–P4 into properties P1’–P4’.

P1’ if [min(Xi),max(Xi)] ⊆ lb(T ) then i ∈ lb(S)
P2’ if [min(Xi),max(Xi)] ∩ ub(T ) = ∅ then i �∈ ub(S)
P3’ if i ∈ lb(S) then the bounds of Xi are included in ub(T )
P4’ if i /∈ ub(S) then the bounds of Xi are outside lb(T )

Let us prove that lb(T ) and ub(T ) are tight. Let o be the total ordering on
D =

⋃
i D(Xi) ∪ ub(T ). Build the tuples σ and τ as follows: For each v ∈ lb(T ):

put v in σ[T ] and τ [T ]. For each v ∈ ub(T ) \ lb(T ), following o, do: put v in σ[T ]
or τ [T ] alternately. For each i ∈ lb(S), P3’ guarantees that both min(Xi) and
max(Xi) are in ub(T ). By construction of σ[T ] (and τ [T ]) with alternation of
values, if min(Xi) �= max(Xi), we are sure that there exists a value in σ[T ] (in
τ [T ]) between min(Xi) and max(Xi). In the case |D(Xi)| = 1, P5 guarantees
that the only value is in σ[T ] (in τ [T ]). Thus, we assign Xi in σ (in τ) with such
a value in σ[T ] (in τ [T ]). For each i /∈ ub(S), we assign Xi in σ with a value in
[min(Xi), max(Xi)] \ σ[T ] (the same for τ). We know that such a value exists
with the same reasoning as for i ∈ lb(S) on alternation of values, and thanks to
P4’ and P6. We complete σ and τ by building σ[S] and τ [S] consistently with
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the assignments of Xi and T . The resulting tuples satisfy Roots. From this we
deduce that lb(T ) and ub(T ) are BC as all values in ub(T ) \ lb(T ) are either in
σ or in τ , but not both.

We show that the Xi are BC. Take any Xi and its lower bound min(Xi). If
i ∈ lb(S) we know that min(Xi) is in T either in σ or in τ thanks to P3’ and
by construction of σ and τ . We assign min(Xi) to Xi in the relevant tuple. This
remains a solution of Roots. If i /∈ ub(S), we know that min(Xi) is outside
T either in σ or in τ thanks to P4’ and by construction of σ and τ . We assign
min(Xi) to Xi in the relevant tuple. This remains a solution of Roots. If i ∈
ub(S) \ lb(S), assign Xi to min(Xi) in σ. If min(Xi) /∈ σ[T ], remove i from σ[S]
else add i to σ[S]. The tuple obtained is a solution of Roots using the lower
bound of Xi. By the same reasoning, we show that the upper bound of Xi is BC
also, and therefore, all Xi’s are BC.

We prove that lb(S) and ub(S) are BC with similar proofs. Let us show that
ub(S) is BC. Take any Xi with i ∈ ub(S) and i /∈ σ[S]. Since Xi was assigned
any value from [min(Xi),max(Xi)] when σ was built, and since we know that
[min(Xi),max(Xi)] ∩ ub(T ) �= ∅ thanks to P2’, we can modify σ by assigning
Xi a value in ub(T ), putting the value in T if not already there, and adding i
into S. The tuple obtained satisfies Roots. So ub(S) is BC.

There remains to show that lb(S) is BC. Thanks to P1’, we know that val-
ues i ∈ ub(S) \ lb(S) are such that [min(Xi),max(Xi)] \ lb(T ) �= ∅. Take
v ∈ [min(Xi),max(Xi)] \ lb(T ). Thus, either σ or τ is such that v /∈ T . Take the
corresponding tuple, assign Xi to v and remove i from S. The modified tuple is
still a solution of Roots and lb(S) is BC. ��

5 Implementation Details

This decomposition of the Roots constraint can be implemented in many solvers
using disjunctions of membership constraints: or(member(i, S), notmember
(Xi, T )) and or(notmember(i, S), member(Xi, T )). However, this requires a lit-
tle care. Unfortunately, some existing solvers (like Ilog Solver) may not achieve
HC on such disjunctions of primitives. For instance, the negated membership
constraint notmember(Xi, T ) is activated only if Xi is instantiated with a value
of T (whereas it should be as soon as D(Xi) ⊆ lb(T )). We have to ensure that
the solver wakes up when it should to ensure we achieve HC. As we explain in
the complexity proof, we also have to be careful that the solver doesn’t wake
up too often or we will lose the optimal O(nd) time complexity which can be
achieved.

Theorem 5. It is possible to enforce HC (or BC) on the decomposition of
Roots([X1, . . . , Xn], S, T ) in O(nd) time, where d = max(∀i.|D(Xi)|, |ub(T )|).

Proof. The decomposition of Roots is composed of 2n constraints. To obtain an
overall complexity in O(nd), the total amount of work spent propagating each
of these constraints must be in O(d).
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First, it is necessary that each of the 2n constraints of the decomposition is
not called for propagation more than d times. Since S can be modified up to n
times (n can be larger than d) it is important that not all constraints are called
for propagation at each change in lb(S) or ub(S). By implementing ’propagating
events’ as described in [10,15], we can ensure that when a value i is added to
lb(S) or removed from ub(S), constraints j ∈ S → Xj ∈ T and Xj ∈ T → j ∈ S,
j �= i, are not called for propagation.

Second, we show that enforcing HC on contraint i ∈ S → Xi ∈ T in O(d).
Testing the precondition (does i belong to lb(S)?) is constant time. If true,
removing from D(Xi) all values not in ub(T ) is in O(d) and updating lb(T ) (if
|D(Xi)| = 1) is constant time. Testing that the postcondidtion is false (is D(Xi)
disjoint from ub(T )?) is in O(d). If false, updating ub(S) is constant time. Thus
HC on i ∈ S → Xi ∈ T is in O(d). Enforcing HC on Xi ∈ T → i ∈ S is in O(d)
as well because testing the precondition (D(Xi) ⊆ lb(T )?) is in O(d), updating
lb(S) is constant time, testing that the postcondition is false (i /∈ ub(S)?) is
constant time, and removing from D(Xi) all values in lb(T ) is in O(d) and
updating ub(T ) (if |D(Xi)| = 1) is constant time.

When T is modified, all constraints are potentially concerned. Since T can
be modified up to d times, we can have d calls of the propagation in O(d)
for each of the 2n constraints. It is thus important that the propagation of
the 2n constraints is incremental to avoid an O(nd2) overall complexity. An
algorithm for i ∈ S → Xi ∈ T is incremental if the complexity of calling the
propagation of the constraint i ∈ S → Xi ∈ T up to d times (once for each
change in T or D(Xi)) is the same as propagating the constraint once. This
can be achieved by an AC2001-like algorithm that stores the last value found in
D(Xi)∩ub(T ), which is a witness that the postcondition can be true. (Similarly,
the last value found in D(Xi) \ lb(T ) is a witness that the precondition of the
constraint Xi ∈ T → i ∈ S can be false.) Finally, each time lb(T ) (resp. ub(T ))
is modified, D(Xi) must be updated for each i outside ub(S) (resp. inside lb(S)).
If the propagation mechanism of the solver provides the values that have been
added to lb(T ) or removed from ub(T ) to the propagator of the 2n constraints
(as described in [16]), updating a given D(Xi) has a total complexity in O(d)
for the d possible changes in T . The proof that BC can also be enforced in linear
time follows a similar argument. ��

6 Experimental Results

We now demonstrate that specifying global counting and occurrence constraints
using Roots is effective and efficient in practice using two benchmark problems.

6.1 Balanced Academic Curriculum Problem

We implemented in Ilog Solver the constraint model of the Balanced Academic
Curriculum Problem (BACP) (prob030 in CSPLib) proposed in [9] and compared
it against a model using Roots. In this problem, we need to design a balanced
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Variables Encoding
curriculum: CURMATRIX[1..#courses][1..#periods] in {0, 1}
academic load: LOAD[1..#periods] in [a..b]

Constraints Encoding
exactly one period per course ∀i ∈ [1..#courses]∑#periods

j=1 CURMATRIX[i][j] = 1

academic load ∀j ∈ [1..#periods]

LOAD[j] =
∑#courses

i=1 (CURMATRIX[i][j] * credit[i])

prerequisites ∀(i ≺ j) ∈ prerequisites, ∀k ∈ [1..#periods]∑k−1
r=1 (CURMATRIX[i][r]) ≥CURMATRIX[i][k]

number of courses ∀j ∈ [1..#periods]

c ≤
∑#courses

i=1 CURMATRIX[i][j] ≤ d

Fig. 1. Boolean model

Variables Encoding
curriculum: CURRICULUM[1..#courses] in [1..#periods]

CURMATRIX[1..#courses][1..#periods] in {0, 1}
academic load: LOAD[1..#periods] in [a..b]

Constraints Encoding
channeling ∀i ∈ [1..#courses]

CURMATRIX[i][CURRICULUM[i]] = 1

academic load ∀j ∈ [1..#periods]

LOAD[j] =
∑#courses

i=1 (CURMATRIX[i][j] * credit[i])

prerequisites ∀(i ≺ j) ∈ prerequisites
CURRICULUM[i] <CURRICULUM[j]

number of courses Gcc([c..d], ..[c..d],{1, 2, ..#periods},CURRICULUM)

Fig. 2. Primal-dual model

academic curriculum by assigning periods to courses so that the academic load
of each period is balanced, i.e., as similar as possible. The goal is to assign a
period to every course so that the constraints on the minimum and maximum
academic load for each period, the minimum and maximum number of courses for
each period, and the prerequisite relationships are satisfied. An optimal balanced
curriculum minimises the maximum academic load for all periods.

We used two models from [9] (Figures 1 and 2) and compared them against a
model using Roots (Figure 3). In the Roots model, the curriculum is encoded
with integer variables mapping courses to periods, as in the primal-dual model
of Figure 2. However, instead of using a Gcc constraint to restrict the number
of courses per periods, we use the Roots constraint to link these variables to set
variables standing for periods. We then restrict the number of courses per periods
with cardinality constraints on these sets. The constants a, b, c, d correspond
respectively to the minimum and maximum academic load, and the minimum
and maximum number of courses per period. The array credit[1..#courses] map
courses to their academic credits. We added to all models the implied constraint∑#periods

j=1 (LOAD[j]) =
∑#courses

i=1 (credit[i]).
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Variables Encoding
curriculum: CURRICULUM[1..#courses] in [1..#periods]

CURSET[1..#periods] ⊆ {1..#courses}
academic load: LOAD[1..#periods] in [a..b]

Constraints Encoding
channeling ∀j ∈ [1..#periods]

Roots(CURRICULUM,CURSET[j], {j})

academic load ∀j ∈ [1..#periods]

LOAD[j] =
∑#courses

i=1 ((i ∈CURSET[j]) * credit[i])

prerequisites ∀(i ≺ j) ∈ prerequisites
CURRICULUM[i] <CURRICULUM[j]

number of courses ∀j ∈ [1..#periods]
c ≤ |CURSET[j]| ≤ d

Fig. 3. Roots model

Table 1. Balanced Academic Curriculum Problem

Boolean model Prima-dual model Roots model
Size #fails time (s) max load #fails time (s) max load #fails time (s) max load
8 413,418 18.44 17(*) 294 0.04 17(*) 75 0.09 17(*)
10 - - 14(*) 170 0.02 14(*) 121 0.15 14(*)
12 1251 0.05 17(*) 255 0.05 17(*) 194 0.51 17(*)
16 - - - 429 0.15 17(*) 263 1.58 17(*)
20 - - - 410 0.21 19 406 3.18 19
20 - - - 701 0.41 18 510 13.12 18

We report in Table 1 the number of fails, cpu time for finding the best solution
and the maximum academic load on 6 different instances. The 3 first instances,
involving 8, 10 and 12 periods, are those solved in [9]. The 3 next instances were
created by simply duplicating and renaming courses. The number of periods
and courses are doubled, and for each prerequisite relation (i ≺ j) in the initial
instance, we add (i ≺ j′) and (i′ ≺ j′) where i′ and j′ are the duplicated courses
for respectively i and j.

When the maximum academic load is followed by a star (*), it means that
this is optimal and is proved so with a few more backtracks. The time cutoff was
set to 300 seconds. An entry marked as “-” means no answer was obtained by
the cut-off time. We observe that the model using Roots is the most efficient
in terms of size of the search tree by a small margin. However the most efficient
model in cpu time is the primal-dual model which uses the highly optimized
Gcc constraint. Both clearly dominate the simple Boolean model despite the
fact that this model only has linear constraints.

6.2 Mystery Shopper Problem

We used a model for the Mystery Shopper problem [8] due to Helmut Simonis
that appears in CSPLib (prob004). We used the same problem instances as
in [5] but perform a more thorough and extensive analysis. We partition the
constraints of this problem into three groups:
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Table 2. Mystery Shopper, branching on the integer variable with minimum domain

Alld-Gcc-Sum Alld-Gcc-Roots Alld-Roots-Roots
Size #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved
10 6 0.01 9/10 6 0.01 9/10 7 0.03 9/10
15 6,566 0.76 29/52 6,468 1.38 29/52 10,749 19.47 28/52
20 98,497 14.52 21/35 2,425 0.83 20/35 2,429 7.30 20/35
25 317 0.13 13/20 317 0.20 13/20 285 1.37 11/20
30 93,461 26.09 7/10 93,461 43.89 7/10 7,239 42.00 5/10
35 52,435 16.33 22/56 23,094 14.25 21/56 13 1.10 18/56

Table 3. Mystery Shopper, branching on set variables when possible

Alld-Gcc-Sum Alld-Gcc-Roots Alld-Roots-Roots
Size #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved
10 6 0.01 9/10 4247 0.83 3/10 318 0.38 10/10
15 6566 0.76 29/52 17210 4.31 16/52 102 0.25 52/52
20 98497 14.52 21/35 150473 49.95 7/35 930 2.95 32/35
25 317 0.13 13/20 265219 124.49 2/20 2334 11.17 19/20
30 93461 26.09 7/10 37 0.08 1/10 6766 39.63 9/10
35 52435 16.33 22/56 1216 0.53 4/56 4798 35.60 49/56

Temporal and geographical: All visits for any week are made by different
shoppers. Similarly, a particular area cannot be visited more than once by
the same shopper.

Shopper: Each shopper makes exactly the required number of visits.
Saleslady: A saleslady must be visited by some shoppers from at least 2 differ-

ent groups (the shoppers are partitioned into groups).

Whilst the first group of constraints can be modelled by using AllDiffer-
ent constraints [13], the second can be modelled by Gcc [14] and the third by
Among constraints [3]. We experimented with several models using Ilog Solver
where these constraints are either implemented as their Ilog Solver primitives
(respectively, IloAllDiff, IloDistribute, and a decomposition using IloSum
on Boolean variables) or as their decompositions with Roots. Note that the
Boolean decomposition of the Among constraint maintains GAC [6]. Due to
space limitation, we report results for just the following models: Alld-Gcc-Sum
(only Ilog Solver primitives), Alld-Gcc-Roots (Among encoded as Roots),
and Alld-Roots-Roots (Among and Gcc encoded as Roots). Among en-
coded as Roots uses the decomposition presented in Section 3.1 and Gcc uses
the decomposition presented in Section 3.5. All instances solved in the exper-
iments use a time limit of 5 minutes. The cpu time reported for a method
on a class of problems is averaged on the instances solved (#solved) by the
method.

When branching on the integer variables (Table 2), the Alld-Gcc-Sum model
tends to perform better than the other models (bold numbers). However, we
obtain the best results by branching on the set variables introduced for modelling
with Roots (see Table 3). By encoding the second and the third groups of
constraints using Roots (the Alld-Roots-Roots model) and branching on the
set variables, we are able to solve more instances. These results are primarily due
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to the better branching strategy. However, such a strategy would not be easily
implementable without Roots since the extra set variables are part of it.

7 Conclusion

We have presented a comprehensive study of Roots, a global constraint that
can specify many other global constraints, such as occurrence and counting con-
straints. We proved that propagating completely the Roots constraint is in-
tractable in general. We therefore proposed a decomposition to propagate it
partially. This decomposition achieves hybrid consistency on the global Roots
constraint under some simple conditions often met in practice. In addition, en-
forcing bound consistency on the decomposition achieves bound consistency on
the global Roots constraint whatever conditions hold. Our experiments show
that this is practical method to implement many global constraints. We hope
that by presenting these results, developers of the many different constraint
toolkits will be encouraged to include the Roots constraint into their solvers.
In our future work, we intend to consider other classes of global constraints
(e.g. sequencing constraints) and to identify the primitives needed to specify
and propagate these.
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Abstract. We have proposed and implemented the language CoJava,
which offers both the advantages of simulation-like process modeling in
Java, and the capabilities of true decision optimization. By design, the
syntax of CoJava is identical to the programming language Java, ex-
tended with special constructs to (1) make a nondeterministic choice of
a numeric value, (2) assert a constraint, and (3) designate a program vari-
able as the objective to be optimized. A sequence of specific selections
in nondeterministic choice statements corresponds to an execution path.
We define an optimal execution path as one that (1) satisfies the range
conditions in the choice statements, (2) satisfies the assert-constraint
statements, and (3) produces the optimal value in a designated program
variable, among all execution paths that satisfy (1) and (2). The seman-
tics of a CoJava program amounts to first finding an optimal execution
path, and then procedurally executing it. To find an optimal execution
path, the implemented CoJava compiler reduces the problem to a stan-
dard optimization formulation, and then solves it on an external solver.
Then, the CoJava program is run as a Java program, where the choice
statements select the found optimal values, and the assert and optimiza-
tion statements are ignored. We illustrate the usage and semantics of
CoJava using a simple supply-chain example, in which elastic demand,
a manufacturer and a supplier are modeled as Java classes.

1 Introduction

Both numeric simulation and constraint-based optimization are successfully ap-
plied in wide variety of domains. This paper is concerned with developing a
unified object-oriented (OO) language supporting both simulation modeling and
decision optimization.

The Problem: Simulation vs. Optimization Models

In decision optimization problems one often needs to model a real-world process,
such as a supply chain, an interaction of physical devices, a chemical process, or
activities of a robot. However, describing a process using traditional operations
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research (OR) modeling, with decision variables, constraints, and objective func-
tions, is quite a challenging task for non-OR professionals, even for those with
general computer science and programming skills.

The reason for that challenge is that the elements of an OR model are abstract
constraints, which have only an indirect connection to elements of a real-world
process. For example, one equation may combine elements from several real-
world devices. Also, the notions of order and timing of events are usually not
explicit in OR models, which puts additional burden on the modeler. Further-
more, the execution of the optimization is typically a black box for the modeler,
with no clear connection to the flow of the real world process. This makes de-
bugging of an optimization model a challenging task. If the optimization fails
there is no clear explanation for the failure. Finally, OR models typically lack
the modularity of modern OO languages, so they tend to become difficult to
maintain over time (like “spaghetti code”).

By contrast, simulations are generally well understood by software developers.
The elements of a simulation are state variables and state-transitions, which have
a clear one-to-one correspondence with elements of a real-world process. Every
quantity from the real-world process is represented by a single state variable,
so there is little room for confusion. Real-world time and sequence of events
correspond to time and sequence in the running simulation in an obvious way.
Also, the “cause and effect” progression of the simulation is easy to follow. If
the simulation fails, the exact time and place of the failure is reported. Finally,
simulation modelers can practice modern OO software engineering. Complex
building blocks can be modeled using simpler building blocks, and so on. In fact,
modern OO languages have been derived from early simulation systems.

While simulation offers numerous advantages in ease of modeling and de-
bugging, OR modeling has one major advantage. If modeled correctly using a
manageable constraint domain such as LP or MILP, an optimization problem
can be solved efficiently using existing solvers with sophisticated optimization
algorithms. By contrast, no such solvers exist for simulation models. Typically,
simulations are optimized by choosing parameters manually. An optimization
layer can be added by running a simulation multiple times, with possible heuris-
tics. However, such a search cannot compete with performance of solvers on
manageable constraint domains.

Contributions

We have proposed and implemented the language CoJava, which offers both the
advantages of simulation-like process modeling in Java, and the capabilities of
true decision optimization.

By design, the syntax of CoJava is identical to the programming language
Java, extended with special constructs to (1) make a nondeterministic choice of
a numeric value that satisfies a range condition, (2) assert a constraint, and (3)
designate a program variable as the objective to be optimized.

A sequence of specific selections in nondeterministic choice statements cor-
responds to an execution path. We define a feasible execution path as one that
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satisfies (1) the range conditions in the choice statements, and (2) the assert-
constraint statements. An optimal execution path is a feasible path that produces
the optimal value in a designated program variable, among all feasible execution
paths. The semantics of a CoJava program amounts to first finding an optimal
execution path, and then procedurally executing it.

To optimize a process, such as a supply chain example (Figures 1 and 2)
discussed in the next section, each real-world device or facility is modeled, tested
and debugged in pure Java as a class of objects with private state and public
methods which change the state. A process is described as a method of a separate
Java class, which invokes methods of the model objects passing nondeterministic
choices for arguments, and which designates an optimization objective.

For model developers, it appears as if the program has simply followed a single
execution path which coincidentally produces the optimal objective value. Since
CoJava builds on software developers’ existing skills, the learning curve for them
is minimal. For OR professionals, CoJava enables development of decision models
in the most natural way, which preserves the one-to-one correspondence with the
components of a real-world process. Moreover, it provides OR modelers with the
powerful OO language features, and permits complex models to be organized
into self-contained business objects and processes, which reduces development
time and allows easy extensibility.

To be able to find an optimal execution path for a CoJava program, we have
developed a reduction to a standard constraint optimization formulation. Con-
straint variables represent values on program variables that can be created at any
state of a nondeterministic execution. Constraints encode transitions, triggered
by CoJava statements, from one program state to the next, and also capture
conditions in the assert statements.

The reduction and the implementation are made under three simple restric-
tions, explained later in the paper. Namely, that (1) Boolean exit conditions in
loops can not involve nondeterministic values, (2) recursive method calls cannot
be made from a nondeterministic conditional statement, and (3) an objective
parameter requested to be optimized cannot appear in a nondeterministic con-
ditional statement.

The restrictions ensure that the length of any execution path (in terms of
the number of program states it goes through), and thus a number of values
generated, are not dependent on nondeterministic choices. The restrictions also
ensure that any nondeterministic choice statements, and Boolean conditions
on nondeterministic values in assert statements have a unique corresponding
objective parameter, which needs to be optimized.

We have developed a CoJava constraint compiler, and integrated it, loosely,
with the Eclipse IDE. The compiler is based on the reduction of the problem of
finding an optimal execution path to a standard constraint optimization formu-
lation. The CoJava compiler operates by first translating the CoJava program
into a very similar Java program in which the primitive numeric operators and
data types are replaced by symbolic constraint operators and data types. This
intermediate Java program functions as a constraint generator. This program is
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compiled and executed to produce a standard optimization problem formulation
(in AMPL in the current implementation). The standard optimization formula-
tion is then submitted to and solved by an external optimization solver. Finally,
the original CoJava program, being a compilable Java program, is run deter-
ministically using the Java compiler, with the choice method re-implemented to
select optimal values returned by the solver. The current

Under the restrictions on the use of nondeterministic values, the reduction
to the standard optimization formulation is guaranteed to always work and be
correct. However, the resulting formulation may be beyond the constraint do-
main handled by the available external solver. Thus, similar to OR modeling, a
CoJava developer needs to be aware to only use arithmetic expressions that can
be handled by the solver used. For example, if an MILP solver is used, a CoJava
program can only use arithmetic expressions that are linear in nondeterminis-
tic values (but arbitrarily complex in deterministic values). Or if a non-linear
solver such as MINUS or SNOPT is used, a CoJava program can use non-linear
arithmetic expressions, but no nondeterministic conditional statements.

Related Work

CoJava addresses the goals of constraint modeling and object oriented simu-
lation. Object oriented simulation has traditionally been approached through
procedural object oriented languages, such as Smalltalk [1] and Java [2]. These
languages start with a syntax for variable assignment and add support for mod-
ular organization of procedures. There are many specialized object oriented sim-
ulation languages such as Simula [3] and ModSim [4], and there are simulation
environments layered on top of existing object oriented languages such as Silk [5]
and JWarp [6]. These languages allow complex models to be constructed and
maintained effectively, but lack support for systematic optimization.

Constraint modeling has traditionally been approached through specialized
constraint modeling languages, such as AMPL [7] and GAMS [8]. These lan-
guages start with a syntax for equations and layer additional support for or-
ganizing equations and other constraints. They enable systematic optimization,
but they require explicit definition and maintenance of equations and other con-
straints.

Constraint programming (CP) languages, such as OPL [9], CLP [10], Claire
[11], Oz [12], ECLiPSe [13], ILOG SOLVER [14] allow developers to specify
strategies for solving optimization problems. In [15], an imperative program-
ming language is extended with CP-like search semantics. Certain CP languages
provide support for object oriented modeling as well. However, the focus of CP
is on solving optimization problems, while modeling such problems remains sim-
ilar to AMPL-like modeling languages. CP languages do provide the notion of
(non-deterministic) choice points, which are used in the specification of a search
strategy. The nondeterministic choice method in CoJava is used for a different
purpose, namely to indicate that the compiler has the flexibility to choose a par-
ticular value in order to minimize or maximize a program variable which appears
later in the program.
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In recent years, there has been considerable interest in languages that combine
constraints with object oriented programming. These languages are motivated
by the need for modular construction of optimizable models. Languages such as
Cob [16] and Siri [17] add object oriented modeling constructs, such as inher-
itance and encapsulation, to an equational syntax. These languages provide a
very clean representation for steady-state optimization problems, but they do
not model state changes in the direct way that procedural languages do.

Other languages combine constraints with object oriented procedures in a
”hybrid” fashion, maintaining program states and constraints side by side. Some
languages and systems such as ILOG Solver [14,18], Choco [19], Gecode [20] and
CCUBE [21] add explicit constraint objects to an OO language. Other languages
such as ThingLab [22] and Kaleidoscope [23] impose both state changes and
constraints on the same object attributes. These languages provide separate
procedure execution semantics and constraint solving semantics which interact
during program execution.

The languages most closely related to CoJava are those that translate procedu-
ral algorithms into declarative constraints. These languages unify procedural and
constraint semantics, such that the same program statements determine both in-
terpretations. The language Modelica [24] supports unified models, which can de-
fine both simulation and optimization problems. Modelica models are translated
into equations, which may in turn be solved by an optimizer or sorted and com-
piled into an efficient sequential procedure. Within pure functions (functions with-
out side effects), Modelica can also translate procedural algorithms into constraint
equations. Within these functions, Modelica gains the advantage of specifying con-
straints using familiar procedural operations and flow of control. However, Model-
ica is fundamentally an equational language, and it supports procedural algorithms
only within this limited context.

By contrast, CoJava has a thoroughly procedural object oriented syntax and
semantics, (which is in fact identical to that of Java). CoJava presents the de-
veloper with no visible boundary between procedures and constraints. Familiar
procedural operations and flow of control can be used uniformly throughout an
entire model, or even throughout an entire software system. Our philosophy is
to minimize the learning curve for developers, and to minimize the ”impedance
mismatch” between procedures and constraints, by conforming to a single well
understood syntax and semantics. CoJava gives developers the flexibility to move
model components freely back and forth between procedural algorithms and
declarative optimization models. We believe this capability is unique to CoJava.

2 Syntax and Semantics of CoJava

Syntax: CoJava is Extended Java, Which Is Compilable Java

By design, the syntax of CoJava is identical to that of the Java programming
language, extended with one special library class, and a few restrictions on how
its methods can interact with the rest of the program. More specifically, CoJava
adds the following special class to Java:
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public class Nd {
public double choice(double min, double max) {...}
public double checkMinObjective(double objective) {...}
public double checkMaxObjective(double objective) {...}

}

We describe CoJava’s semantics, which is procedural execution of an optimal
execution path, in this section. A CoJava program can also be run as a regular
Java program, in which the methods of the class Nd operate as follows. The
method choice(min,max) returns a single specific value between min and max,
inclusive. The user can use her own implementation of the choice method, or use
the default CoJava implementation (which is currently a random selection using
uniform distribution).

The methods checkMinObjective and checkMaxObjective, in the regular
Java execution, do nothing but output the value of the parameter objective. A
CoJava program can also use the Java command assert(booleanCondition)
with the standard procedural semantics, namely the program will report an error
if the booleanCondition is not satisfied. We start with an example.

Example

Figures 1 and 2 show the source code for a simple CoJava program, composed of
four classes: ExampleSupplyChain, Demand, Manufacturer, and Supplier. The
class ExampleSupplyChain encodes a simulation procedure which uses the three
other classes. We first explain the program as purely a Java program, and then
explain its optimal execution path semantics.

Class Demand models consumer demand resulting from the chosen prices.
Class Manufacturer models the manufacturing process, and computes the quan-
tity of materials required, and the manufacturing costs, given the quantities of
product consumed. Class Supplier models the cost of the required materials,
and offers a discount for larger quantities. All of these results are computed in
constructor methods in order to keep the example concise.

The remaining class, ExampleSupplyChain, calls procedures of the other
classes in sequence to simulate a complete production process. First, prices for
the two products are chosen. Then the consumer demand, manufacturing costs,
and supply costs are computed. Then revenue from consumers is tallied, and
production costs are subtracted, to compute total profit. Finally, total profit is
designated as the ”objective” for this procedure. If we ran the program as a sim-
ple Java program, on each run prices for the two products would be randomly
selected, which would result in different total profit. For example, we might run
the program three times, and see the following output:

price_0: 124.69 price_1: 181.46 profit: 181381.83
price_0: 179.40 price_1: 131.72 profit: 61274.39
price_0: 121.82 price_1: 194.85 profit: -49093.00
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package example;

import cojava.Nd;

public class ExampleSupplyChain

{

public static void main(String[] args)

{

double[] prices = new double[2];

prices[0] = Nd.choice(100, 200);

prices[1] = Nd.choice(105, 205);

Demand demand = new Demand(prices);

Manufacturer manufacturer = new Manufacturer(demand.quantities);

Supplier supplier = new Supplier(manufacturer.materials);

double revenue = 0;

for (int i = 0; i < 2; i = i + 1) {

revenue += demand.revenues[i];

}

double cost = manufacturer.cost + supplier.cost;

double profit = revenue - cost;

Nd.checkMaxObjective(profit);

/* ... printing statements omitted here ... */

}

}

Fig. 1. Simple Supply Chain Class

Now let us see how the same program, interpreted as a CoJava program,
represents an optimization problem. Above, we ran the program three times,
and exhibited three different execution paths for the program. Given its two
nondeterministic-choices, this program defines multiple execution paths. The
semantics of a CoJava program amounts to first finding an optimal execution
path, i.e., the one that would result in the maximal profit, and then procedurally
executing it. In this example, an optimal execution path corresponds to the
choice of prices 200.0 and 185.0, which would result in a profit of 401555.00.
When we compile and run this program using the CoJava constraint compiler,
and produce the correct CoJava execution path, we get the following:

price_0: 200.0 price_1: 185.0 profit: 401555.00

Restrictions on the Nondeterministic (Nd) Class Methods

Certain restrictions on how the methods choice(...), checkObjective, and
the command assert interact with the rest of CoJava program are imposed to
make the optimization semantics well-defined and computable.

More specifically, the purpose of the restrictions is to control the size of the
set of values that are computed during any execution path of the program. As
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class Demand

{

public double[] quantities = {0, 0};

public double[] revenues = {0, 0};

final double[] pLow = {100, 105};

final double[] pMid = {150, 185};

final double[] pHigh = {200, 205};

final double[] qLow = {4000, 6000};

final double[] qHigh = {1000, 1800};

public Demand(double[] prices)

{

for (int i = 0; i < 2; i = i + 1)

{

assert(prices[i] >= pLow[i]);

assert(prices[i] <= pHigh[i]);

quantities[i] = qHigh[i];

revenues[i] = prices[i] * qHigh[i];

if (prices[i] <= pMid[i]) {

quantities[i] = qLow[i];

revenues[i] = prices[i] * qLow[i];}}

}

}

class Manufacturer

{

public double[] materials = {0, 0};

public double cost = 0;

final double[] reqs0 = {2.3, 2.1};

final double[] reqs1 = {3.5, 0.6};

final double[] costs = {25.3, 42.5};

public Manufacturer(double[] products)

{

for (int i = 0; i < 2; i = i + 1) {

materials[i] = reqs0[i] * products[0] + reqs1[i] * products[1];

cost = cost + costs[i] * materials[i];}

}

}

class Supplier

{

public double cost = 0;

inal double[] unitCosts = {3.0, 14.3};

final double discount = 0.5;

public Supplier(double[] materials)

{

for (int i = 0; i < 2; i = i + 1) {cost = cost + materials[i] * unitCosts[i];}

if (cost > 2000) {cost = 2000 + (cost - 2000) * 0.5;}

}

}

Fig. 2. Classes for Demand, Manufacturer, Supplier

long as the program computes a predictable number of values, we can identify a
correspondence between values across all program paths.

To formulate the restrictions, we use the notion of nondeterministic values,
or ND-values for short, which we define recursively as follows.
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– The output of a choice method is a ND-value
– A variable is a ND-value, if it appears on the left-hand side of an assignment

with a ND-value on the right-hand side.
– A variable is a ND-value, if it appears on the left-hand side of an assignment

that appears in the THEN or ELSE part of a conditional statement, where
the Boolean condition is a ND-value.

– The result of an arithmetic or Boolean operation on one or more ND-values
is a ND-value.

We also say that a conditional statement is ND, if its Boolean condition is
ND. A LOOP statement is ND, if its exit Boolean condition is ND. A method
call is ND, if it is done from within a ND conditional statement. We also say
that a variable, expression, conditional statement etc. are deterministic to mean
the negation of being nondeterministic.

The following simple restrictions are imposed in order to make the number of
values computed by the program independent of the nondeterministic choices,
and associate at most one checkObjective method call with each choice call
and assert statement.

– No ND loops
– No ND recursive method calls
– No ND calls for checkObjective.

The first restriction controls the number of iterations of each loop. As long as
the loop’s exit conditions are deterministic, the loop will continue for a deter-
ministic number of iterations. If a loop executed a nondeterministic number of
iterations, it would compute a nondeterministic number of values.

The second restriction controls the depth of recursive calls. By prohibiting
recursive calls within nondeterministic conditionals, we prevent the depth of
recursion from depending on nondeterministic choices. We do allow arbitrary
non-recursive method calls, whether or not they are deterministic, and also re-
cursive method calls as long as they are deterministic. Note that the conditions
above are sufficient, but not necessary, to control the number of states in the
program. More flexible conditions are subject for further work.

The third restriction, namely that no checkObjective is called from a ND
conditional statement, makes sure that per given input to the program, (1)
all checkObjective method calls have a total ordering, which is determinis-
tic, and (2) that every execution path that goes through a specific choice
or assert statement will deterministically “continue” to a unique “nearest”
checkObjective call (if there is any). In this case, we say that such a choice
or assert statement is in the scope of that nearest checkObjective call.

We are now ready to define optimization semantics in a general way.

CoJava Semantics

A sequence of specific selections in nondeterministic choice statements corre-
sponds to an execution path. We define a feasible execution path as one that
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satisfies (1) the range conditions in the choice statements, and (2) the assert-
constraint statements. An optimal execution path is a feasible path that produces
the optimal value in a designated program variable, among all feasible execution
paths.

Case 1: Single checkObjective Call, as Last Program Statement. We
assume here that all the restrictions outlined are satisfied. Given a CoJava pro-
gram P , input I, and the checkObjective(v) statement S as the last program
statement, we denote by EP the set of all feasible execution paths e, i.e., exe-
cution paths that reach S. For a particular feasible execution path e ∈ EP , we
denote by v(e) the value of the program variable v at the statement S.

An optimal execution path is a solution to the following optimization problem
OP :

Optimize v(e) s.t. e ∈ EP

where Optimize stands for Minimize in the case of checkMinObjective and for
Maximize in the case of checkMaxObjective.

Note that a solution to this problem may not be unique, as more than one
feasible execution path e ∈ EP may have the minimal/maximal v(e). An optimal
execution path e defines the values for each execution of a choice method.

An execution of the program P according to CoJava semantics is a regular
procedural execution where the values returned by each choice statement are
those corresponding to an optimal execution path e.

Case 2: No checkObjective in the program. In this case, consider a satis-
faction problem SP : Find e ∈ EP , where EP is the set of all feasible execution
paths, i.e., those that reach a special NOOP method (which does nothing) at the
end of the program.

An execution of the program P according to CoJava semantics is a regular
procedural execution where the values returned by each choice statement are
those corresponding to a feasible execution path e.

Case 3: One or More checkObjective Calls According to Restrictions.
We do not discuss this general case in detail in this paper, nor was it imple-
mented. Here we only provide a general idea. Because of the restrictions, (1) all
checkObjective method calls have a total ordering, which is deterministic, and
(2) every execution path that goes through a specific choice or assert state-
ment will deterministically “continue” to a unique “nearest” checkObjective
call (if there is any). In this case, we say that such a choice or assert statement
is in the scope of that nearest checkObjective call.

The idea here, is to consider an execution as split into sections, in the order
of checkObjective calls, each with the choice and assert statements in its
scope, and apply Case 1 on all but the last section, and Case 2 on the last.
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3 Reduction to Standard Constraint Optimization
Formulation

The semantics of CoJava was precisely defined in the previous section. A CoJava
program behaves exactly like the corresponding Java program invoked with an
optimal assignment to its nondeterministic-choice inputs. While this definition
is correct, it begs the question of how such an assignment can be identified.

This section describes how a CoJava program can be reduced to a set of
constraints, decision variables, and an objective function (in other words, to
a conventional optimization problem). The set of constraints is a declarative
description of the set of legal execution paths of the Java program. Every consis-
tent assignment of decision variables defines one legal execution path of the Java
program. The assignment producing the optimal value of the objective function
corresponds to the optimal nondeterministic-choice input to the program.

If the resulting optimization problem can be solved, the optimal execution
path can be identified, and the CoJava program can be correctly executed. How-
ever, the decision problem may not be solvable by any existing optimization al-
gorithm. In practice, only relatively simple CoJava programs using a restricted
set of numeric operators can be optimized and correctly executed.

Intuitively, a CoJava program is reduced to constraints by encoding with
constraint variables the states of program execution, and by encoding with con-
straints the valid transitions from one program state to the next state. To il-
lustrate the reduction, the following subsection shows the constraint encoding
for the supply chain example. The final subsection defines the reduction to con-
straints more precisely.

Constraints for the Supply Chain Example

Initial program state is encoded by a constraint store CS containing the empty
conjunction of constraints, i.e., TRUE. Assignments with the choice method
on the right hand side are encoded as range constraints, within which a nonde-
terministic choice can be made. Thus, after the first two assignments, the new
program state is represented by the constraint variables price1 and price2, which
represent the values in the program variables prices[0] and prices[1] after
the assignments. The constraints:

100.0 ≤ price1 ≤ 200.0
105.0 ≤ price2 ≤ 205.0

are added to the constraint store CS.
Next, the three object constructor procedures are invoked. In these proce-

dures, several instance variables are assigned, and these create several constraints
and constraint variables. These variables and constraints are omitted to keep this
example concise.

Next, an initial value is assigned to the program variable revenue. The con-
straint revenue1 = 0 is added to the constraint store CS.
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Next, the loop executes exactly two iterations. On each iteration, a new con-
straint and new constraint variable are introduced. The constraints:

revenue2 = revenue1 + demand2

revenue3 = revenue2 + demand4

are added to the constraint store CS. Note: the constraint variables demand2

and demand4 represent values defined within the constructor calls, which are
omitted from this example presentation.

Similarly, the last two assignments introduce two more constraints. The con-
straint store CS now contains:

CS =
price1 >= 100.0 ∧ price1 <= 200.0∧
price2 >= 105.0 ∧ price2 <= 205.0∧
revenue1 = 0∧
revenue2 = revenue1 + demand2∧
revenue3 = revenue2 + demand4∧
profit1 = revenue3 − cost∧
revenues2 = ... ∧ revenue4 = ... ∧ cost = ...

Finally, the checkMaxObjective(profit) statement is encoded as the deci-
sion optimization problem:

Maximize profit1 s.t. CS

In fact, if we ran this problem using an LP solver, we would get the answer
price1 = 200, price2 = 185, profit1 = 401555.00.

Reduction Procedure

In this subsection we briefly describe how a decision optimization problem in
terms of constraint variables, constraints and an objective function is formu-
lated, so that it would be equivalent to the optimization problem in the opti-
mization semantics of CoJava. To do that, we conceptually describe a modified
Java program that generates symbolic constraints, to be used in the optimization
problem.

First, we introduce symbolic expression types, for arithmetic numeric and
Boolean types. This is done by implementing the symbExpression class. This
class has methods which are their arithmetic counterparts: add, subtract, mul-
tiply etc., that construct more complex arithmetic symbolic expressions from
simpler ones.

Similarly, symbolic atomic constraints correspond to inequalities or equations
between two symbolic arithmetic expressions. Symbolic constraints are either
atomic, or constructed using Boolean operators of simpler symbolic constraints
in the standard fashion.
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The Java code of the CoJava program is modified as follows. All numeric
and Boolean types are replaced with their symbolic counterparts, and so are the
operators. Some program statements extend CS (i.e., conjuncts it with additional
constraints). Initially, constraint store CS is empty. Then:

– For an assignment statement of the form v = AE, where AE is an arithmetic
expression, a new constraint variable vnew is generated for the program vari-
able v, a symbolic arithmetic expression symb(AE) is created for the RHS
AE, and the constraint vnew = symb(AE ) is added to the constraint store
CS. Also, a program variable v is converted to the type symbExpression in
the modified program.

– A conditional statement of the form

if C { S1 } else { S2 }

where C is a nondeterministic (ND) Boolean condition, and S1 and S2 are
statements, is first replaced with two conditional statements

if C { S1 }; if not C { S2 }

– For a conditional statement of the form if C { S } , including those gener-
ated from if ... else ... statement, the following constraints are added
to CS:

symb(C ) −→ Constraints(S )
¬symb(C ) −→ Equalities

where Constraints(S) stand for the constraints that would be generated for
the statement S if it was executed unconditionally, and Equalities is the set
of equality constraints of the form vnew = vold, where vnew is the newest con-
straint variable vnew generated for a program variable v in Constraints(S),
and vold is the last constraint variable for v before the conditional statement.
The implication constraint is then emulated using binary variables and linear
constraints; we omit the precise description due to lack of space.

– For an assignment v = choice(min,max), a constraint min ≤ vnew ≤ max
is generated and added to CS

– For an assert(C) statement a constraint symb(C) is generated and added
to CS

For Case 1 of optimization semantics, where checkObjective(objective) is
the last statement of the program, the optimization problem constructed is:

Optimize objectivecurrent s.t.CS

where Optimize stands for Minimize in the case of checkMinObjective and
Maximize in the case of checkMaxObjective, and objectivecurrent is the most
recent constraint variable for the program variable objective.
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4 Overview of Implementation

We have developed a constraint compiler for the the CoJava language. The
constraint compiler translates a nondeterministic simulation procedure into an
equivalent decision problem. The input is a program in the CoJava (our restricted
version of Java). The resulting decision problem consists of a set of equations
and inequalities in the mathematical modeling language AMPL.

The overall flow of the constraint compiler is as follows: First, a simulation
procedure is made nondeterministic by initializing it with values from the non-
deterministic choice library, and designating its output as an objective value.
This requires no change to the procedure itself, only to its parameters and return
value. Next, the procedure is transformed to create a constraint generator proce-
dure. This involves uniformly converting all of its numeric data types to symbolic
expression data types. Next, the constraint generator is compiled and executed
(using a standard java compiler). The result generated by this procedure is a set
of symbolic expression data structures, represent the nondeterministic output of
the simulation procedure. Finally, these symbolic expressions are translated into
a standard constraint programming language such as AMPL.

Send nondeterministic choices for parameters

Substitute symbolic types for numeric types

Simulation procedure in Java

Nondeterministic simulation procedure

Constraint generator procedure

Execute the transformed procedure

Symbolic expression structure

Translate expression structure to AMPL

Optimization problem in AMPL

Fig. 3. Diagram of the Constraint Compiler

5 Conclusions and Future Work

We presented a unified language with complementing procedural and optimiza-
tion semantics. Interesting questions remain for future research. This includes:
(1) how to generalize CoJava to serve as a general computational paradigm; (2)
how to extend it with intelligent debugging capability (including testing whether
generated constraints fall into specific classes supported by external solvers); (3)
how to add CP facilities and extend underlying constraint solvers, and (4) ex-
perimenting with using CoJava on diverse optimization applications. Finally, we
would like to thank anonymous reviewers for their insightful suggestions and
Garrett Kaminski for his helpful comments.
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Abstract. Classical constraint satisfaction is concerned with the fea-
sibility of satisfying a collection of constraints. The extension of this
framework to include optimisation is now also being investigated and a
theory of so-called soft constraints is being developed. In this extended
framework, tuples of values allowed by constraints are given desirability
weightings, or costs, and the goal is to find the most desirable (or least
cost) assignment.

The complexity of any optimisation problem depends critically on the
type of function which has to be minimized. For soft constraint problems
this function is a sum of cost functions chosen from some fixed set of
available cost functions, known as a valued constraint language. We show
in this paper that when the costs are rational numbers or infinite the
complexity of a soft constraint problem is determined by certain algebraic
properties of the valued constraint language, which we call feasibility
polymorphisms and fractional polymorphisms.

As an immediate application of these results, we show that the exis-
tence of a non-trivial fractional polymorphism is a necessary condition for
the tractability of a valued constraint language with rational or infinite
costs over any finite domain (assuming P �= NP).

1 Introduction

Classical constraint satisfaction is concerned with the feasibility of satisfying a
collection of constraints. The extension of this framework to include optimisation
is now also being investigated and a theory of so-called soft constraints is being
developed.

Several alternative mathematical frameworks for soft constraints have been
proposed in the literature, including the very general frameworks of ‘semi-ring
based constraints’ and ‘valued constraints’ [2]. For simplicity, we shall adopt the
valued constraint framework here. In this framework, every tuple of values al-
lowed by a constraint has an associated cost, and the goal is to find an assignment
with minimal total cost.
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The general constraint satisfaction problem (CSP) is NP-hard, and so is un-
likely to have a polynomial-time algorithm. However, there has been much suc-
cess in finding tractable fragments of the CSP by restricting the types of relation
allowed in the constraints. A set of allowed relations has been called a constraint
language. For some constraint languages the associated constraint satisfaction
problems with constraints chosen from that language are solvable in polynomial-
time, whilst for other constraint languages this class of problems is NP-hard [21];
these are referred to as tractable languages and NP-hard languages, respectively.
Dichotomy theorems, which classify each possible constraint language as either
tractable or NP-hard, have been established for constraint languages over 2-
element domains [29], and 3-element domains [3]. Considerable progress has also
been made in the search for a complete characterisation of the complexity of
constraint languages over finite domains of arbitrary size [4, 14, 19, 21].

The general valued constraint problem (VCSP) is also NP-hard, but again
we can try to identify tractable fragments by restricting the types of allowed
cost functions that can be used to define the valued constraints. A set of al-
lowed cost functions has been called a valued constraint language. Much less is
known about the complexity of the optimisation problems associated with dif-
ferent valued constraint languages, although some results have been obtained
for certain special cases. In particular, a complete characterisation of complexity
has been obtained for valued constraint languages over a 2-element domain with
real-valued or infinite costs [6]. This result generalizes a number of earlier results
for particular optimisation problems such as Max-Sat [11, 12].

One class of cost functions has been extensively studied: the so-called sub-
modular functions. The problem of minimizing a real-valued submodular ob-
jective function occurs in many diverse application areas, including statistical
physics [1], the design of electrical networks [25], and operations research [5,33,
27]. One of the first problems to be recognized as a case of submodular func-
tion minimisation was the Max-Flow/Min-Cut problem [13]. Another class
of examples arises in pure mathematics: the rank function of a matroid is always
a submodular function [15]. Recently, several polynomial-time algorithms have
been proposed for submodular function minimisation [17, 18, 30], although the
complexity of the best of these general algorithms is O(n5 min{lognM,n2 logn})
where M is an upper bound on the values taken by the function to be mini-
mized [18]. More practical cubic time algorithms have been developed for many
special cases [9, 24, 26], including the Max-Flow/Min-Cut problem [13], the
minimization of a symmetric submodular function [28], the minimization of a
{0, 1}-valued submodular function over a 2-element domain [12] and the min-
imization of any sum of binary submodular functions over an arbitrary finite
domain [8].

The results of [12] show that submodularity is essentially the only property
giving rise to tractable {0, 1}-valued constraint languages over a 2-element do-
main (see [6]). Jonsson et al. [23] recently generalized this result to 3-element
domains. However, for languages allowing more general costs, or defined over
larger finite domains, very little is known about the possible tractable cases.
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In the classical CSP framework it has been shown that the complexity of any
constraint language over any finite domain is determined by certain algebraic
properties known as polymorphisms [19,21]. This result has reduced the problem
of the identification of tractable constraint languages to that of the identification
of suitable sets of polymorphisms. In other words, it has been shown to be enough
to study just those constraint languages which are characterised by having a
given set of polymorphisms. This both reduces the number of different languages
to be studied and allows the application of results from universal algebra to the
study of the complexity of constraint languages.

To analyse the complexity of valued constraint languages in the VCSP frame-
work we recently introduced a more general algebraic property known as a mul-
timorphism [6,7,10]. Using this algebraic property we have shown that there are
precisely eight maximal tractable valued constraint languages over a 2-element
domain with real-valued or infinite costs, and each of these is characterised by
having a particular form of multimorphism [6]. Furthermore, we have shown
that many known maximal tractable valued constraint languages over larger fi-
nite domains are precisely characterised by a single multimorphism and that key
NP-hard examples have (essentially) no multimorphisms [7].

In this paper we slightly generalise the notion of a multimorphism to that of
a fractional polymorphism. We are then able to show that fractional polymor-
phisms, together with the polymorphisms of the underlying feasibility relations
(which we call feasibility polymorphims), characterise the complexity of any val-
ued constraint language, Γ , with non-negative rational or infinite costs over any
finite domain. Specifically we show that:

– the class of all cost functions having the same fractional polymorphisms and
feasibility polymorphisms as Γ corresponds precisely to the closure of Γ by
three natural extension operators (one of which is expressibility);

– the extended class containing Γ together with all cost functions obtained
using these three extension operators has the same complexity as Γ (up to
polynomial-time reduction).

This very general result has the immediate corollary that a finite-valued rational
cost function is expressible over a valued constraint language if and only if it has
all the fractional polymorphisms of that language.

The applications of these results to the search for tractable valued constraint
languages are very similar to the applications of polymorphisms to the search
for tractable constraint languages in the classical CSP. First, we need only con-
sider valued constraint languages defined by these algebraic properties. This will
greatly simplify the search for a characterisation of all tractable valued constraint
languages. Secondly, by showing that there exists an NP-hard valued constraint
language with only finite rational costs we show that any tractable valued con-
straint language with finite rational or infinite costs must have a non-trivial
fractional polymorphism.

Hence the results of this paper provide a powerful new set of tools in the
search for a polynomial-time/NP-hard dichotomy for finite-domain optimisation
problems defined by valued constraints.
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2 Valued Constraint Problems

In the valued constraint framework each constraint has an associated function
which assigns a cost to each possible assignment of values and these costs are
chosen from some valuation structure, satisfying the following definition.

Definition 1. A valuation structure, Ω, is a totally ordered set, with a min-
imum and a maximum element (denoted 0 and ∞), together with a commuta-
tive, associative binary aggregation operator (denoted ⊕), such that for all
α, β, γ ∈ Ω, α⊕ 0 = α and α⊕ γ ≥ β ⊕ γ whenever α ≥ β.

Definition 2. An instance of the valued constraint satisfaction problem,
VCSP, is a 4-tuple P = 〈V,D,C,Ω〉 where:

– V is a finite set of variables;
– D is a finite set of possible values;
– Ω is a valuation structure representing possible costs;
– C is a set of constraints. Each element of C is a pair c = 〈σ, φ〉 where σ

is a tuple of variables called the scope of c, and φ is a mapping from D|σ|

to Ω, called the cost function of c.

Definition 3. For any VCSP instance P = 〈V,D,C,Ω〉, an assignment for
P is a mapping s : V → D. The cost of an assignment s, denoted CostP (s), is
given by the aggregation of the costs for the restrictions of s onto each constraint
scope, that is,

CostP (s) def=
⊕

〈〈v1,v2,...,vm〉,φ〉∈C

φ(s(v1), s(v2), . . . , s(vm)).

A solution to P is an assignment with minimal cost, and the question is to find
a solution.

Definition 4. A valued constraint language is any set Γ of cost functions
from some fixed finite domain D to some fixed valuation structure Ω.

We define VCSP(Γ ) to be the set of all VCSP instances in which all cost
functions belong to Γ .

The complexity of a valued constraint language Γ will be identified with the
complexity of the associated VCSP(Γ ).

Definition 5. A valued constraint language Γ is called tractable if, for every fi-
nite subset Γf ⊆ Γ , there exists an algorithm solving any instance P∈VCSP(Γf )
in time at most p(|P|), for some polynomial p.

Conversely, Γ is called NP-hard if there is some finite subset Γf ⊆ Γ for
which VCSP(Γf ) is NP-hard.

For the remainder of this paper we will focus for concreteness on the valuation
structure containing the non-negative rational numbers (Q+) together with infin-
ity (∞), with the standard addition operation, + (extended so that a+∞ = ∞,
for all a). This valuation structure will be denoted Q+. It is sufficiently general
to encode many standard optimisation problems (for examples, see [7, 10]).
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3 Extending a Valued Constraint Language

We now define three ways to extend a valued constraint language. In Section 5
we will show that applying these three extensions does not alter the complexity
of a valued constraint language.

What is more, in Section 6 we will give a simple algebraic characterisation of
the languages obtained by applying all three extensions.

The first extension makes use of a natural equivalence relation on cost func-
tions.

Definition 6. Two cost functions φ and φ′ are said to be cost-equivalent if
one is obtained from the other by adding a constant cost and scaling by some
constant factor. In other words, φ and φ′ are cost-equivalent if they have the
same arity r and there exist positive integers, a, b, and a finite constant c, such
that

∀x ∈ Dr, a φ′(x) = b φ(x) + c.

For any valued constraint language Γ the language consisting of all cost functions
which are cost-equivalent to some member of Γ will be denoted Γ≡.

The next extension adds in those cost functions which are expressible over Γ .

Definition 7. For any VCSP instance P = 〈V,D,C,Ω〉, and any list L =
〈v1, . . . , vr〉 of variables of P, the projection of P onto L, denoted πL(P), is
the r-ary cost function defined as follows:

πL(P)(x1, . . . , xr)
def= min

{s:V→D | 〈s(v1),...,s(vr)〉=〈x1,...,xr〉}
CostP (s)

We say that a cost function φ is expressible over a constraint language Γ if
there exists a VCSP instance P ∈ VCSP(Γ ) and a list L of variables of P such
that πL(P) = φ. We call the pair 〈P , L〉 a gadget for expressing φ over Γ .

For any valued constraint language Γ the language consisting of all cost func-
tions expressible over Γ will be denoted exp(Γ ).

Example 1. In this example we show that Γ is always a subset of exp(Γ ).
Let Γ be a valued constraint language over a domain D with costs in Ω.

Choose any γ ∈ Γ . Let the arity of γ be r and define V = {x1, . . . , xr}. The pair
〈〈V,D, {〈〈x1, . . . , xr〉, γ〉}, Ω〉, 〈x1, . . . , xr〉〉 is a gadget for expressing γ over Γ .

The final extension adds cost functions obtained using a feasibility operator.

Definition 8. For any cost function φ, with arity r, we denote by Feas(φ) the
r-ary cost function defined by

Feas(φ)(x1, x2, . . . , xr)
def=

{
∞ if φ(x1, x2, . . . , xr) = ∞
0 if φ(x1, x2, . . . , xr) <∞.

For any valued constraint language Γ the language {Feas(φ) | φ ∈ Γ} will be
denoted Feas(Γ ).
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4 Polymorphisms and Fractional Polymorphisms

For classical constraint satisfaction problems it has been shown that the com-
plexity of a constraint language is characterised by certain algebraic properties
of the relations in that language, known as polymorphisms [4,19,21]. This result
was obtained by showing that the expressive power of a constraint language is
determined by the polymorphisms of that language.

Polymorphisms are defined for relations rather than cost functions, but we
will now define an analogous notion which can be applied to arbitrary valued
constraint languages.

Definition 9. For any r-ary cost function φ, we say that f : Dk → D is a k-ary
feasibility polymorphism of φ if, for all x1, . . . , xr ∈ Dk,

Feas(φ)(f(x1), . . . , f(xr)) ≤
k∑

i=1

Feas(φ)(x1[i], . . . , xr [i]).

For any valued constraint language Γ , we will say that f is a feasibility polymor-
phism of Γ if f is a feasibility polymorphism of every cost function in Γ . The
set of all feasibility polymorphisms of Γ will be denoted Pol(Γ ), and the finite
subset containing all k-ary feasibility polymorphisms will be denoted Polk(Γ ).

Theorem 1. For any valued constraint language Γ , and any cost function φ,
Feas(φ) ∈ exp(Feas(Γ )) if and only if Pol(Γ ) ⊆ Pol({φ})

Proof. Follows immediately from the corresponding result for classical constraint
languages (see, for example, Corollary 1 of [22]).

To obtain a more precise result about the expressive power of arbitrary valued
constraint languages we need to generalize the definition of a polymorphism.

Definition 10. A k-ary weighted function F on a set D is a set of the form
{〈w1, f1〉, . . . , 〈wn, fn〉} where each wi is a positive integer, and each fi is a
distinct function from Dk to D.

For any r-ary cost function φ, we say that a k-ary weighted function F is a
k-ary fractional polymorphism of φ if, for all x1, . . . , xr ∈ Dk,

k
n∑

i=1

wiφ(fi(x1), . . . , fi(xr)) ≤
(

n∑
i=1

wi

)
·
(

k∑
i=1

φ(x1[i], . . . , xr[i])

)
.

For any valued constraint language Γ , we will say that f is a fractional polymor-
phism of Γ if f is a fractional polymorphism of every cost function in Γ . The
set of all fractional polymorphisms of Γ will be denoted fPol(Γ ).

In earlier papers we introduced the notion of a multimorphism [6, 7, 10]. A mul-
timorphism is precisely a k-ary fractional polymorphism where the sum of the
weights wi is exactly k.
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Example 2. Consider the unary fractional polymorphism given by {〈1, c〉} for
some constant c ∈ D (seen as a unary function). An r-ary cost function φ has
this unary fractional polymorphism when, for all x1, . . . , xr ∈ D,

φ(c, . . . , c) ≤ φ(x1, . . . , xr)

Hence, if all cost functions φ ∈ Γ have this fractional polymorphism then we
can solve any instance of VCSP(Γ ) trivially, by assigning the value c to each
variable. In fact, it was shown in [7, 10] that the class of all cost functions with
this simple fractional polymorphism is a maximal tractable class.

Example 3. An r-ary cost function φ on an ordered set D has the binary frac-
tional polymorphism {〈1,min〉, 〈1,max〉} when, for all x1, . . . , xr ∈ D2,

φ(min(x1[1], x1[2]), . . . ,min(xr [1], xr[2]))
+ φ(max(x1[1], x1[2]), . . . ,max(xr [1], xr[2]))

≤ φ(x1[1], . . . , xr [1]) + φ(x1[2], . . . , xr[2]) .

Hence, the fractional polymorphism {〈1,min〉, 〈1,max〉} exactly captures the
notion of submodularity [15] which we can thus define as follows.

Definition 11. A cost function (over an ordered domain) is submodular if
and only if it has the fractional polymorphism {〈1,min〉, 〈1,max〉}.

Recall from the Introduction that submodular function minimization is a central
problem in discrete optimization. The notion of a fractional polymorphism allows
us to capture the property of submodularity by using a particular weighted
function. It also allows us to generalize to many other properties by considering
different weighted functions.

5 Extensions Preserve Tractability

In this section we will show that the three extensions defined in Section 3 all
preserve the tractability or NP-hardness of a valued constraint language.

Theorem 2. For any valued constraint language Γ , we have:

1. Γ≡ is tractable if and only if Γ is tractable, and Γ≡ is NP-hard if and only
if Γ is NP-hard.

2. exp(Γ ) is tractable if and only if Γ is tractable, and exp(Γ ) is NP-hard if
and only if Γ is NP-hard.

3. Γ ∪ Feas(Γ ) is tractable if and only if Γ is tractable, and Γ ∪ Feas(Γ ) is
NP-hard if and only if Γ is NP-hard.

Proof. For part (1), by Definition 5, it is sufficient to show that for any finite
subset Γ ′ of Γ≡ there exists a polynomial-time reduction from VCSP(Γ ′) to
VCSP(Γ ′′), where Γ ′′ is a finite subset of Γ .
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Let Γ ′ be a finite subset of Γ≡ and let P ′ be any instance of VCSP(Γ ′). By
Definition 6, any cost function φ′ ∈ Γ≡ is cost-equivalent to some cost function
φ ∈ Γ . Hence we can replace each of the constraints 〈σ, φ′〉 in P ′ with a new
constraint 〈σ, φ〉, where φ ∈ Γ and aφ′ = bφ + c for some positive integers a, b
and some (positive or negative) constant c, to obtain an instance P of VCSP(Γ ).
The constant c is added to the cost of all assignments and so does not affect the
choice of solution. The effect of the scale factors a and b can be simulated by
taking b copies of the new constraint in P and a copies of all other constraints
in P . The values of a, b are constants determined by the finite set Γ ′, so this
construction can be carried out in polynomial time in the size of P ′.

For part (2), by Definition 5, it is sufficient to show that for any finite sub-
set Γ ′ of exp(Γ ) there exists a polynomial-time reduction from VCSP(Γ ′) to
VCSP(Γ ′′), where Γ ′′ is a finite subset of Γ .

Let Γ ′ be a finite subset of exp(Γ ) and let P ′ be any instance of VCSP(Γ ′).
By Definition 7, any cost function φ′ ∈ exp(Γ ) can be constructed by using some
gadget 〈Pφ′ , L〉 where Pφ′ is an instance of VCSP(Γ ). Hence we can simply re-
place each constraint in P ′ which has a cost function φ′ not already in Γ with the
corresponding gadget to obtain an instance P of VCSP(Γ ) which is equivalent
to P ′. The maximum size of any of the gadgets used is a constant determined
by the finite set Γ ′, so this construction can be carried out in polynomial time
in the size of P ′.

For part (3), by Definition 5, it is sufficient to show that for any finite subset
Γ ′ of Γ ∪ Feas(Γ ) there exists a polynomial-time reduction from VCSP(Γ ′) to
VCSP(Γ ′′), where Γ ′′ is a finite subset of Γ .

Let Γ ′ be a finite subset of Γ∪Feas(Γ ) and let P ′ be any instance of VCSP(Γ ′).
By Definition 8, any cost function φ′ ∈ Feas(Γ ) is obtained from some cost
function φ ∈ Γ by setting all finite values to 0. Now assume that P ′ has k
constraints with cost functions in Feas(Γ ). If we replace each of these constraints
〈σ, φ′〉 with a new constraint 〈σ, φ〉, where φ ∈ Γ and Feas(φ) = φ′, then we
obtain an instance P of VCSP(Γ ).

Let M be the maximum finite value taken by any cost function in the finite
set Γ ′, and let m be the minimum difference between any two distinct finite
values taken on by cost functions in Γ ′. The cost of any assignment for P differs
by at most kM from the cost of the same assignment for P ′. Hence if we also
replace all the remaining constraints 〈σ, φ〉 of P ′ with 
Mk

m + 1� copies of 〈σ, φ〉,
then we obtain an instance of VCSP(Γ ) with the same solutions as P ′. Since M
and m are constants determined by the finite set Γ ′, this construction can be
carried out in polynomial time in the size of P ′.
We can now combine all three extensions to obtain the following result.
Definition 12. For any valued constraint language, Γ , we define the closure
of Γ , denoted Γ̂ , as follows:

Γ̂
def= (exp(Γ ∪ Feas(Γ )))≡.

Corollary 1. A valued constraint language Γ is tractable if and only if Γ̂ is
tractable; similarly, Γ is NP-hard if and only if Γ̂ is NP-hard.



An Algebraic Characterisation of Complexity for Valued Constraints 115

6 Characterising Γ̂

The main result of this paper is the following theorem, which characterises the
extended language Γ̂ in terms of the feasibility polymorphisms and fractional
polymorphisms of Γ .

Theorem 3. For any valued constraint language Γ with costs in Q+, and any
cost function φ taking values in Q+, φ ∈ Γ̂ if and only if Pol(Γ ) ⊆ Pol({φ}) and
fPol(Γ ) ⊆ fPol({φ}).
The following result is an immediate consequence of Corollary 1 and Theorem 3.

Corollary 2. The tractability or NP-hardness of a valued constraint language
Γ with costs in Q+ is determined by its feasibility polymorphisms and fractional
polymorphisms.

We also observe that when the cost functions in Γ take finite rational values
only, the tractability or NP-hardness is determined by the fractional polymor-
phisms alone. Conversely, when Γ = Feas(Γ ) the tractability or NP-hardness is
determined by the feasibility polymorphisms alone.

We will prove Theorem 3 in two halves. First we show, in Proposition 1, that
the feasibility polymorphisms and fractional polymorphisms of Γ are preserved
by all members of Γ̂ . Then we show, in Theorem 4, that every cost function with
all the feasibility polymorphisms and fractional polymorphisms of Γ is in fact a
member of Γ̂ .

Proposition 1. If Γ is any valued constraint language then Pol(Γ ) = Pol(Γ̂ )
and fPol(Γ ) = fPol(Γ̂ ).

Proof. This follows immediately from the fact that feasibility polymorphisms
and fractional polymorphisms are preserved by aggregating cost functions, pro-
jecting onto subsets of variables, adding constants, scaling by a natural number,
and applying the feasibility operator.

To see this note that if φ1 and φ2 both satisfy the inequality in Definition 9,
then so does any extension of φ1 and φ2 obtained by adding dummy arguments.
So also does φ1 ⊕ φ2 (by the monotonicity of the ⊕ operation). So also does the
projection of each φi onto any list of arguments. Hence if Γ has the feasibility
polymorphism f , then so does any cost function expressible over Γ . Furthermore
adding a constant to φ preserves this inequality, and scaling by a natural number
also preserves the inequality. Finally replacing φi with Feas(φi) also preserves
this inequality.

Similar remarks apply to the inequality in Definition 10.

To establish Theorem 4 below we will use the following result, which is a variant
of the well-known Farkas’ Lemma used in linear programming [27, 31].

Lemma 1 (Farkas 1894). Let S and T be finite sets of indices, where T is the
disjoint union of two subsets, T≥ and T=. For all i ∈ S, and all j ∈ T , let ai,j

and bj be rational numbers. Exactly one of the following holds:
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– Either there exists a set of non-negative rational numbers {xi | i ∈ S} and a
rational number C such that

for each j ∈ T≥,
∑
i∈S

ai,j xi ≥ bj + C, and,

for each j ∈ T=,
∑
i∈S

ai,j xi = bj + C.

– Or else there exists a set of integers {yj | j ∈ T } such that
∑

j∈T yj = 0 and:

for each j ∈ T≥, yj ≥ 0,

for each i ∈ S,
∑
j∈T

yj ai,j ≤ 0, and

∑
j∈T

yj bj > 0.

Such a set is called a certificate of unsolvability.

The proof of Theorem 4 also uses a number of constructions related to the notion
of an indicator problem, as introduced in [20, 22].

Definition 13. A k-matching of a valued constraint language Γ is defined to
be a pair 〈M,γ〉 where

– γ is a cost function in Γ with arity r, and
– M is a k × r matrix of elements of D such that γ has a finite value when

applied to any of the k rows.

Definition 14. A k-weighting, X, of a valued constraint language Γ is defined
to be a mapping from the set of all k-matchings of Γ to the non-negative integers.

Note that a k-weighting of Γ can be seen as associating a multiplicity (possibly
zero) with each k-matching.

Definition 15. Given a finite valued constraint language Γ over a finite set D
and a k-weighting, X, of Γ , we define the X-weighted indicator problem
over Γ , denoted IP(Γ,X), as follows:

– The set of variables of IP(Γ,X) is the set Dk consisting of all k-tuples of
elements from D.

– The domain of IP(Γ,X) is the domain D of Γ .
– The constraints of IP(Γ,X) are defined as follows. Note that any list of r

variables, v1, . . . , vr, can be seen as (the columns of) a k × r matrix. For
every list S of variables, if 〈S, γ〉 is a k-matching of Γ , then IP(Γ,X) has
the constraint 〈S,Feas(γ)〉 and X(〈S, γ〉) copies of the constraint 〈S, γ〉.

Theorem 4. Let Γ be a finite valued constraint language over a finite set D
with costs in Q+, and let φ : Dr → Q+ be any cost function such that Pol(Γ ) ⊆
Pol({φ}).

Either φ ∈ Γ̂ , or else there is some fractional polymorphism of Γ which is not
a fractional polymorphism of φ.
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Proof. The idea of the proof is as follows. We will attempt to construct a
weighted indicator problem to express a cost function φ′ which is cost-equivalent
to φ. If this succeeds, then we have shown that φ ∈ Γ̂ , since every weighted in-
dicator problem for Γ is an instance of VCSP(exp(Γ ∪ Feas(Γ ))).

On the other hand, if this fails then we will show that we must have an unsat-
isfiable collection of equations and inequations. We will then use Lemma 1, to get
a certificate of insolvability. This certificate will give us the required fractional
polymorphism of Γ that is not a fractional polymorphism of φ.

We now give the details of the proof. Let k be the number of r-tuples for
which the value of φ is finite and fix an arbitrary order, 〈x1, . . . , xk〉, for these
tuples. This list of tuples can be viewed as (the rows of) a matrix with k rows
and r columns, which we will call Sφ.

Note that (the columns of) Sφ can be viewed as a list 〈s1, . . . , sr〉 of k-tuples,
and hence as a list of variables of an indicator problem. We will now try to find
some k-weighting X of Γ so that the X-weighted indicator problem IP(Γ,X)
can be used to express a cost function φ′ which is cost-equivalent to φ. More
precisely, we will seek to find a k-weighting X such that 〈IP(Γ,X), Sφ〉 is a
gadget for expressing such a φ′.

The variables of IP(Γ,X) are the possible k-tuples over D, so each assignment
to these variables can be viewed as a function f : Dk → D. Whatever k-weighting
X we choose, the set of assignments for IP(Γ,X) which have infinite cost is the
same as for the classical indicator problem for Feas(Γ ) of order k, as defined
in [20, 22]. Hence, by Theorem 1 of [22], every assignment for IP(Γ,X) which
has a finite cost corresponds to a feasibility polymorphism of Γ . Since we are
assuming that φ has all of the feasibility polymorphisms of Γ , it follows that
〈IP(Γ,X), Sφ〉 is a gadget for some r-ary cost function which is finite-valued
exactly when φ is finite-valued.

Now consider any f : Dk → D ∈ Polk(Γ ). By Definition 9, we know that, for
any k-matching 〈S, γ〉 of Γ , we must have γ(f(S)) <∞, where f(S) denotes the
tuple of values obtained by applying f to each column of S. Since φ has all the
feasibility polymorphisms of Γ , we also have that φ(f(Sφ)) <∞.

We now define a finite system of inequalities and equations, with finite coeffi-
cients, which together specify the required properties for an unknown constant
C and k-weighting X , to ensure that 〈IP(Γ,X), Sφ〉 is a gadget for φ + C.

For each f ∈ Polk(Γ ),∑
γ∈Γ

∑
{all k-matchings 〈S, γ〉}

X(〈S, γ〉) γ(f(S)) ≥ φ(f(Sφ)) + C. (1)

For each projection e ∈ Polk(Γ ),∑
γ∈Γ

∑
{all k-matchings 〈S, γ〉}

X(〈S, γ〉) γ(e(S)) = φ(e(Sφ)) + C. (2)

We claim that if a non-negative rational solution X to this system of inequalities
and equations exists, then 〈IP(Γ,X), Sφ〉 is a gadget for the cost function φ+C.
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To see this, note that the set of inequalities imply that the value of the projection
of IP(Γ,X) onto the list of variables Sφ must be at least as great as the value
of φ + C, for all possible assignments. Furthermore, from the set of equations,
and the choice of Sφ, it follows that whenever φ + C is finite, the value of the
projection of IP(Γ,X) onto the list of variables Sφ must be the same as φ+C.

By applying a suitable scale factor to the solution obtained, we can choose
an integer-valued X such that 〈IP(Γ,X), Sφ〉 is a gadget for some cost function
which is cost-equivalent to φ.

On the other hand, if this system of equations and inequalities has no solution,
then we appeal to Lemma 1, to get a certificate of insolvability. That is, in this
case we know that there exists a set of integers {yf | f ∈ Polk(Γ )}, such that∑

f∈Polk(Γ ) yf = 0, yf ≥ 0 when f is not a projection, and:

for each k-matching 〈S, γ〉 of Γ ,
∑

f∈Polk(Γ )

yf γ(f(S)) ≤ 0, and (3)

∑
f∈Polk(Γ )

yf φ(f(Sφ)) > 0 (4)

Let m = min{yf | f is a projection }. Since
∑

f∈Polk(Γ ) yf = 0, we know that
m < 0.

Define a set of integers {zf | f ∈ Polk(Γ )} as follows:

zf =
{
yf −m if f is a projection
yf otherwise

Now we have that each zf ≥ 0, and that
∑

f∈Polk(Γ ) zf = k|m|.
Let E be the set of all k-ary projections. It follows (rewriting Equation 3)

that for any k-matching 〈S, γ〉 of Γ

|m|
∑
e∈E

γ(e(S)) ≥
∑

f∈Polk(Γ )

zf γ(f(S))

Moreover, if S is any k × r matrix for which 〈S, γ〉 is not a k-matching of Γ ,
then

∑
e∈E γ(e(S)) = ∞. Hence, for any set of k-tuples x1, . . . , xr we get that⎛⎝ ∑

f∈Polk(Γ )

zf

⎞⎠ ·( k∑
i=1

γ(x1[i], . . . , xr[i])

)
≥ k

∑
f∈Polk(Γ )

zf γ(f(x1), . . . , f(xr))

which precisely states that the k-ary weighted function {〈zf , f〉 | f ∈ Polk(Γ )}
is a fractional polymorphism of Γ .

On the other hand, rewriting Equation 4 in the same way gives:⎛⎝ ∑
f∈Polk(Γ )

zf

⎞⎠ ·( k∑
i=1

φ(s1[i], . . . , sr[i])

)
< k

∑
f∈Polk(Γ )

zf φ(f(s1), . . . , f(sr))

where s1, . . . , sr are the columns of Sφ. This provides a witness that the weighted
function {〈zf , f〉 | f ∈ Polk(Γ )} is not a fractional polymorphism of φ.
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7 A Necessary Condition for Tractability

In this section, we exhibit a well-known (finite-valued) intractable cost function
φ�= and use it to establish a necessary condition for a valued constraint language
to be tractable.

Definition 16. Define the binary cost function φ�= : D2 → Q+ as follows:

φ�=(x, y) def=
{

1 if x = y
0 otherwise

The cost function φ�=(x, y) penalizes the assignment of the same value to its two
arguments.

Lemma 2. For any set D with |D| ≥ 2, VCSP({φ�=}) is NP-hard.

Proof. For |D| = 2, this follows immediately from the fact that the version of
Max-Sat consisting of only XOR constraints is NP-hard [11].

For |D| ≥ 3, a polynomial-time algorithm to solve VCSP({φ�=}) would imme-
diately provide a polynomial-time algorithm to determine whether a graph has
a |D|-colouring, which is a well-known NP-complete problem [16].

Definition 17. A k-ary fractional projection is a k-ary weighted function
{〈n, π1〉, . . . , 〈n, πk〉} where n is a constant and each πi is the projection that
returns its ith argument.

Lemma 3. For any cost function φ, fPol({φ}) contains all fractional projec-
tions.

Proof. Consider the inequality in Definition 10 defining a fractional polymor-
phism. All fractional projections satisfy this inequality (with equality), so they
are all fractional polymorphisms of any cost function φ.

Theorem 5. If all fractional polymorphisms of a valued constraint language Γ
are fractional projections, then Γ is NP-hard.

Proof. Suppose that every fractional polymorphism of Γ is a fractional projec-
tion. By Lemma 3, we have that fPol(Γ ) ⊆ fPol({φ�=}).

Since Feas(φ�=) is the cost function whose costs are all zero, it follows that φ�=
has all possible feasibility polymorphisms. Hence Pol(Γ ) ⊆ Pol({φ�=}).

By Theorem 3, we have φ�= ∈ Γ̂ , so by Lemma 2, Γ̂ is NP-hard. Hence, by
Corollary 1, it follows that Γ is also NP-hard.

Hence, assuming that P �= NP, we have that any tractable valued constraint
language must have some fractional polymorphism which is not a fractional
projection.
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8 Conclusion

We have shown that the complexity of any valued constraint language with
rational-valued or infinite costs is determined by certain algebraic properties of
the cost functions, which we have identified as feasibility polymorphisms and
fractional polymorphisms.

When the cost functions can only take on the values zero or infinity, the opti-
misation problem VCSP collapses to the classical constraint satisfaction problem,
CSP. In previous papers we have shown that the existence of a non-trivial poly-
morphism is a necessary condition for tractability in this case [19,21]. This result
sparked considerable activity in the search for and characterization of tractable
constraint languages [3, 4, 21]. We hope that the results in this paper will pro-
vide a similar impetus for the characterization of tractable valued constraint
languages using algebraic methods.

Of course there are still many open questions concerning the complexity of
valued constraint satisfaction problems. In particular, it will be interesting to
see how far these results can be extended to other valuation structures, and to
more general frameworks, such as the semiring-based framework.
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Abstract. The constraint satisfaction problem is in general NP-hard.
As such, our aim is to identify tractable classes of constraint satisfac-
tion problem instances (CSPs). Tractable classes of CSPs are normally
described by limiting either the structure or the language of the CSPs.
Structural decomposition methods identify CSPs whose reduction to the
acyclic class is bound by a polynomial. These structural decompositions
have been a very useful way to identify large tractable classes.

However, these decomposition techniques have not yet been applied
to relational tractability results. In this paper we introduce the notion
of a typed guarded decomposition as a way to generalize the structural
decompositions. We develop a no-promise algorithm which derives large
new tractable classes of CSPs that are not describable as purely struc-
tural nor purely relational classes.

1 Introduction

The constraint satisfaction problem is in general NP-hard. As such, we aim to
identify tractable classes of constraint satisfaction problem instances (CSPs). We
call a class of CSPs tractable if there exists a uniform polynomial time algorithm
for identifying and solving the instances of the class. These two restrictions
for tractable classes allow us to consider tractability as corresponding to the
existence of a good solution method.

Tractable classes of CSPs are normally described by limiting either the struc-
ture of the CSPs (the interaction of their constraints) or the language of the CSPs
(the types of constraint relation that are allowed). A basic tractable structural
class is those CSPs whose structure is acyclic [1]. This class has been extended by
considering CSPs whose structure is “nearly acyclic” in that there is a tractable
reduction to an acyclic CSP [7]. Unfortunately, these structural decomposition
techniques have not yet made use of relational tractability results.

The framework of guarded decomposition is a natural way to express all known
structural decompositions. Bounded width acyclic guarded decompositions are
tractably solvable, but it is thought that they are intractable to identify. To
overcome this limitation, Chen and Dalmau [2] consider a no-promise algorithm
for the class of CSPs whose structure has a bounded width acyclic guarded
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decomposition. In this paper, we use the no-promise approach to solve a class of
CSPs that generalize the guarded decompositions.

This paper presents new and exciting results on hybrid tractability. Unfortu-
nately, due to the limitations of a conference paper, the presentation is neces-
sarily terse. A full version with longer descriptions and proofs will appear in a
journal presently.

Our new notion of typed guarded decomposition allows us to distinguish the
underlying separation structure from the components themselves. We then de-
velop a no-promise algorithm which derives large new tractable classes of CSPs
that are not describable as purely structural nor purely relational classes. These
preliminary but very exciting results demonstrate that there is a future in hybrid
tractability research and, in particular, generalized decompositions.

Outline of the Paper. In Sect. 2 we provide the necessary background and
definitions needed throughout the paper. In Sect. 3 we develop the framework
of typed guarded decompositions. We consider how these might be used to solve
CSPs in Sect. 4. We draw conclusions in Sect. 5.

2 Definitions

Definition 1. A Constraint Satisfaction Problem instance (CSP), P , is
a triple, 〈V,D,C〉 where;

– V is a set of variables,
– D is any set, called the domain of the instance, and
– C is a set of constraints.

Each constraint c ∈ C is a pair 〈σ, ρ〉 where σ is a subset of variables from
V , called the constraint scope, and ρ is a set of functions from σ to D,
called the constraint relation. Each function in ρ represents one allowed
assignment to the variables in σ. We call |σ| the arity of the constraint.

A solution to P is a function φ : V → D such that, for each 〈σ, ρ〉 in C, the
restriction of φ to σ, denoted φ|σ, is in ρ. We say that two CSPs are solution
equivalent if they have the same set of solutions.

We define the join of a pair of constraints 〈σ1, ρ1〉 and 〈σ2, ρ2〉 to be the
constraint

〈
σ1 ∪ σ2,

{
f : σ1 ∪ σ2 → D | f|σ1 ∈ ρ1 ∧ f|σ2 ∈ ρ2

}〉
. The projection

of 〈σ, ρ〉 onto a set of variables X is the constraint
〈
σ ∩X,

{
f|σ∩X | f ∈ ρ

}〉
.

Informally, we may describe V as a set of questions that need to be answered.
The domain D is the set of all possible answers that can be given to any of these
questions. A constraint is a rationality condition that limits the answers that
may be simultaneously assigned to some group of questions. A solution is then
a satisfactory set of answers to all of the questions.

It is often very convenient to use an alternative representation of a constraint.
For this we will assume (without loss of generality) that the variables of any CSP
are indexed (as {v1, . . . , vn}) and use the index order as a natural order for sets
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of variables. We then represent a constraint c = 〈σ, ρ〉 as a pair 〈s,R〉 where s
is a list comprising the variables of σ ordered by increasing index and R is the
|σ|-ary relation {f(s) | f ∈ ρ}. We call R the defining relation of c.

Definition 2. For any CSP 〈V,D,C〉 and set of constraints Y ⊆ C we define
the component of P with respect to Y to be the CSP with variables

⋃
〈σ,ρ〉∈Y σ,

domain
⋃
〈σ,ρ〉∈Y

(⋃
f∈ρ {f (v) | v ∈ σ}

)
, and constraints Y .

In this paper we will be concerned with both the complexity of solving the
components of a CSP and the way in which components interact.

2.1 The Complexity of Constraint Satisfaction

In this paper, we normally consider problems whose instances are CSPs.

Definition 3. The decision problem for a set S of CSPs is:
Instance: A CSP P in S
Question: Does P have a solution?

Definition 4. The search problem for a set S of CSPs is:
Instance: A CSP P in S
Question: What assignment (if any) is a solution for P?

We call a problem P tractable if there exists a uniform polynomial time algorithm
for answering the question of P for all instances of P . We call P intractable if
it is NP-hard [5] to answer. The decision problem for the set of all CSPs is
intractable [15]. We therefore concentrate our efforts on sets of CSPs for which
the decision (or search) problem is tractable. This highlights an extra condition
on classes of CSPs: can we tell whether some general CSP is in the class? This
notion gives rise to the identification problem for sets of CSPs.

Definition 5. The identification problem for a set S of CSPs is:
Instance: A CSP P
Question: Is P in S?

We call a set S of CSPs tractably identifiable if the identification problem for S
is tractable. We call S tractably solvable if the search problem for S is tractable.
S is tractable if it is both tractably identifiable and tractably solvable, otherwise
it is intractable.

For certain classes of CSPs the identification problem is intractable. In this
case, it might appear as if we are left without a useful solution algorithm. How-
ever, Chen and Dalmau [2] have developed a framework for considering problems
that combine identification and solution, the so called no-promise problem.

Definition 6. The no-promise problem for a set S of CSPs is:
Instance: A CSP P
Question: If P ∈ S does P have a solution?
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For an instance outside of S an algorithm solving the no-promise problem may
decline to decide if the instance is satisfiable or not.

Typically, a no-promise algorithm is much less efficient than an algorithm
which specifically identifies, then solves, the instances of a tractable class. This
means that tractably identifiable classes are still of great importance.

2.2 Tractable Classes

There are many tractable classes of CSPs. Many of these can be described by
limiting either the interaction of the constraints or else the types of constraint
relation that we allow.

Definition 7. A hypergraph H is a pair 〈V,E〉 where V is a set of vertices
and E is a collection of subsets of V , called the hyperedges of H.

The structure of a CSP P , denoted σ(P ), is the hypergraph whose vertices
are the variables of P and whose hyperedges are the scopes of the constraints of
P . For a hypergraph H we denote by Ψ (H) the set of CSPs whose structure is H.
A class S of CSPs is called structural if it is defined by limiting the structure
of the instances in S.

A basic tractable structural class is those instances whose structure is acyclic [1].
However, this class has been extended by considering instances whose structure
is “nearly acyclic” in the sense that there is a tractable reduction to an acyclic
instance [7]. These reductions give rise to sets of CSPs whose reduction to the
acyclic class is bound by a polynomial. Such classes have been well-studied and
have made the use of tractable structural classes applicable to real-world exam-
ples. We will consider a framework for describing these reductions, or structural
decompositions, in Sect. 2.3.

Definition 8. A constraint language over a domain D is a set of relations
over D. The language of a CSP P , denoted ρ(P ), is the constraint language
formed by the set of defining relations of the constraints of P . The language of a
set of instances is the union of the languages of the instances. For any constraint
language Γ we will refer to the set of instances with language contained in Γ as
CSP (Γ ). A class S of CSPs is called relational if it is defined by limiting the
language of the instances in S.

A constraint language is called tractable if the set of instances defined over
this language is tractably solvable. There are many known tractable constraint
languages [12,14,13,11].

Definition 9. Let D be a finite ordered domain. A relation ρ over D, with
arity r, is called max-closed [14] if for every t1 and t2 in ρ we have that
〈max(t1[1], t2[1]), . . . ,max(t1[r], t2[r])〉 is also in ρ.

We call a CSP max-closed if its language is max-closed. It has been shown [14]
that the max-closed constraint language is tractable.
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Definition 10. We call a CSP P = 〈V,D,C〉 pairwise consistent [16,10] if
for every 〈σ1, ρ1〉 , 〈σ2, ρ2〉 ∈ C we have that πσ1∩σ2 〈σ1, ρ1〉 = πσ1∩σ2 〈σ2, ρ2〉.

Pairwise consistency can be achieved in polynomial time [10] and is sufficient to
decide some sets of CSPs.

Example 1. Solving max-closed CSPs
Let P be a max-closed CSP. We establish pairwise consistency by successively
choosing constraints c1 = 〈σ1, ρ1〉 and c2 = 〈σ2, ρ2〉 from P and replacing c1
with the projection onto σ1 of the join of c1 and c2. Since no assignment not in
the join of c1 and c2 can extend to a solution of P this can remove no solutions.
Eventually this process must terminate since the domain is finite.

If there is now a constraint with empty constraint relation then there is no
solution to P . Otherwise, we are guaranteed a solution which can be found by
choosing, independently for each variable, the largest value consistent with all
constraints.

There is an analogous set of min-closed CSPs with a similar solution algorithm
(choose the smallest remaining value after pairwise consistency).

2.3 Guarded Decompositions

First we need to define a guarded decomposition.

Definition 11. [3] A guarded block of a hypergraph H is a pair 〈λ, χ〉 where
the guard, λ, is a set of hyperedges of H, and the block, χ, is a subset of the
vertices of the guard.

For any CSP, P , and any guarded block 〈λ, χ〉 of σ(P ), the constraint gen-
erated by P on 〈λ, χ〉 is the constraint 〈χ, ρ〉, where ρ is the projection onto χ
of the join of all the constraints of P whose scopes are elements of λ.

A set of guarded blocks Ξ of a hypergraph H is called a guarded decomposi-
tion of H if for every CSP P = 〈V,D,C〉 in Ψ (H), the instance P ′ = 〈V,D,C′〉,
where C′ is the set of constraints generated by P on the members of Ξ, is solution
equivalent to P .

A guarded block 〈λ, χ〉 of a hypergraph H covers a hyperedge e of H if e is
contained in χ. A set of guarded blocks Ξ of a hypergraph H is called a guarded
cover for H if each hyperedge of H is covered by some guarded block of Ξ. A
set of guarded blocks Ξ of a hypergraph H is called a complete guarded cover
for H if each hyperedge e of H occurs in the guard of some guarded block of Ξ
which covers e.

It has been shown that a set of guarded blocks Ξ of a hypergraph H is a guarded
decomposition ofH if and only if it is a complete guarded cover [3]. It has also been
shown that all useful structural decompositions, such as cycle-cutsets [4], hinges [9],
hypertrees [6], etc., may be represented as guarded decompositions by imposing
certain restrictions on the guarded blocks [3]. As such, the guarded decomposition
is a highly useful framework for discussing structural decompositions.
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A set of guarded blocks is acyclic if the set of blocks of these guarded blocks
is an acyclic set of hyperedges over their set of vertices (the union of the blocks).
All structural decompositions aim to tractably identify a set of CSPs for which
there exists a polynomial time reduction into the set of acyclic CSPs. For guarded
decompositions this reduction is tractable when we have a uniform bound on the
number of hyperedges in any guarded block.

Definition 12. The width of a set of guarded blocks is the maximum number
of hyperedges in any of its guards.

Definition 13. A join tree of an acyclic set of guarded blocks D is any tree
J = 〈D, E〉 where the following connectivity condition holds:

– For every pair of guarded blocks 〈λ1, χ1〉 and 〈λ2, χ2〉 in D we have that
χ1 ∩ χ2 is contained in the block of every guarded block that exists on the
unique path between 〈λ1, χ1〉 and 〈λ2, χ2〉 in J .

Assume we have a CSP P together with a width k acyclic guarded decomposition,
D, of σ(P ). Firstly, we generate a join tree J of D and label each node with the
constraint generated by P onto that guarded block. The set of constraints of the
labels of J defines an acyclic CSP that is solution equivalent to P (it is the CSP
generated by P on D). We therefore solve P by finding a solution to this derived
CSP using J . We apply pairwise consistency between the labels of the nodes of
J and solve by assigning from any chosen root to the leaves. The connectivity
condition ensures that we cannot conflict anywhere during the search whilst the
pairwise consistency is sufficient to completely propagate partial solutions. The
algorithm runs in polynomial time when k is bounded.

The No-Promise Algorithm for Guarded Decompositions. Chen and
Dalmau [2] developed an algorithm for solving the decision problem for the
set of instances with bounded width acyclic guarded decompositions. This algo-
rithm correctly decides any instance whose structure has a bounded width acyclic
guarded decomposition, without requiring that this guarded decomposition ac-
tually be generated (although we are promised that it exists). The algorithm,
called the projective k-consistency algorithm, works by joining all k-sets of con-
straints and then performing pairwise consistency on the new set of constraints.
It has been shown that the original instance is satisfiable if and only if, after the
pairwise consistency has been performed, no new constraint relation has become
empty (Theorem 20 of [2]).

Intuitively, since we are only performing consistency operations, we must pre-
serve solutions during this algorithm (solutions cannot be removed by consis-
tency techniques). The initial joining of the k-sets of constraints ensures that all
possible guarded blocks in the successful guarded decomposition will have been
utilized to generate new constraints. The pairwise consistency then ensures that
the join tree of this guarded decomposition will be made consistent. The result
follows immediately.
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Chen and Dalmau then proceed to develop this algorithm into a no-promise al-
gorithm using a controller algorithm. This controller repeatedly runs the projec-
tive k-consistency algorithm, then tries to find a compatible value for a particular
variable. It re-runs the projective k-consistency algorithm after each assignment.
If no compatible value can be found for the chosen variable then the algorithm
returns ‘I don’t know’. The algorithm is shown to correctly solve all CSPs whose
structure has an acyclic guarded decomposition of width at most k (Theorem 21
of [2]) and may, with luck, solve some other instances.

3 Generalizing Structural Decompositions

The limitation for decomposition techniques in that only easy to solve com-
ponents can be used. For the structural decompositions this of course implies
bounded size (resp. width) components (resp. guarded blocks). These are then
“put together” in an easy to solve way, namely they form an acyclic structure.

We might have more power if we separate our concerns between the interaction
of the components and the components themselves. The remainder of this paper
is a framework for developing this separation of concerns.

Perhaps the most important part of the decomposition is the way in which
the guarded blocks interact, that is, the intersection of the blocks. In the case
of structural decompositions this is always an acyclic structure. If we are to
allow arbitrary sized guarded blocks then we need some way to talk about their
interaction.

Definition 14. Let D be an acyclic guarded decomposition of a hypergraph H =
〈V,E〉 and let 〈λ, χ〉 be a guarded block from D. A set of hyperedges ε ⊆ E is called
a separating edge set for 〈λ, χ〉 in D if, for all 〈λ2, χ2〉 in D, 〈λ2, χ2〉 �= 〈λ, χ〉,
we have that χ ∩ χ2 ⊆

⋃
ε. We define the intersection vertices of 〈λ, χ〉 with

respect to D to be the set of vertices given by
⋃
〈λ2,χ2〉∈D,〈λ2,χ2〉�=〈λ,χ〉 (χ ∩ χ2).

When there exists a separating edge set for 〈λ, χ〉 in D with size at most k we
say that 〈λ, χ〉 is k-separated in D. We call D k-separated if every guarded
block in D is k-separated in D.

For a guarded block 〈λ, χ〉 of D and a separating edge set ε for 〈λ, χ〉 in D we
define the guarded block 〈ε,X〉 to be a separator for 〈λ, χ〉 in D, where X is the
intersection vertices of 〈λ, χ〉 in D. When no smaller separating edge set exists
we call the separator minimal. If ε has size at most k we call the separator a
k-separator. We define a separation structure of D to be a set of minimal
separators for the guarded blocks of D.

When the width of a separation structure is at most k (so that all separators are
k-separators) we may call this a k-separation structure. A separation structure
is a set of guarded blocks. We have the following useful result.

Proposition 1. A guarded decomposition is acyclic if and only if its separation
structure is acyclic.

Proof. Omitted for brevity.
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In the remainder of this paper we will consider classes of CSPs for which there
exists an acyclic k-separation structure. These classes will use this acyclic k-
separation structure to pass constraint information between their components.

Definition 15. A type, τ , is a polynomial time solution algorithm for some set
of CSPs denoted by Sτ . The input to a type is a CSP in Sτ and the output is
either ‘yes’, together with a solution to this CSP, or else ‘no’.

The existence of a type τ for a set of CSPs Sτ provides a witness that Sτ is
tractably solvable. We will use these types to generate hybrid tractability results
which depend not only on the structure of the instances but also on the types
of the components.

Example 2. The max-closed type
Recall the method used to solve the max-closed CSPs given in Ex. 1. This method
gives rise to the max-closed type, which firstly performs pairwise consistency
on the input CSP and then chooses the largest remaining domain value at each
variable. As required, the max-closed type runs in polynomial time (in particular
on the max-closed CSPs) and is a solution algorithm for the max-closed CSPs.

Since we are aiming for a solution algorithm which acts independently for each
separated component we need to reconsider what it means for a guarded block
to provide cover. The cover must now be provided on a per constraint basis,
rather than on a per scope basis.

In the case of guarded decompositions we have that a set of guarded blocks
D of a hypergraph H decomposes a CSP P if σ(P ) = H and D is a complete
guarded cover of H . In the purely structural case we are allowed to join all con-
straints over common scopes. Then we require only a single guarded block to
cover each scope. Now that we are concerned with the components of a CSP
and the algorithms (types) that solve these components we require that each
constraint itself is in need of cover by some guarded block. The following defi-
nitions formalize this idea for guarded decompositions. It is clear that for each
constraint to be covered by the block of some guarded block we require that
the set of guarded blocks is itself a guarded decomposition (a complete guarded
cover).

Definition 16. Let P = 〈V,D,C〉 be a CSP, D be a guarded decomposition of
σ(P ) and μ be a mapping from C to (non-empty) subsets of D. We say that D
decomposes P with respect to μ if;

– for every c in C we have that the scope of c is;
• in the guard of every guarded block in μ(c), and
• in the block of at least one guarded block in μ(c), and

– for every guarded block β in D we have that for every hyperedge e in its guard
there exists at least one constraint c in C whose scope is e and for which β
is contained in μ(c).
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We call such a μ a decomposition function for P with respect to D. For a
guarded block 〈λ, χ〉 of σ(P ) we define the constraint generated by P on 〈λ, χ〉
with respect to μ to be the constraint 〈χ, ρ〉 where ρ is the relation found by
projecting onto χ the join of all those constraints c for which μ(c) contains 〈λ, χ〉.

Define Pμ to be the CSP 〈V,D,C′〉 where C′ is the set of constraints generated
by P on the guarded blocks of D with respect to μ.

Proposition 2. Let P = 〈V,D,C〉 be a CSP, D be a guarded decomposition of
σ(P ) and μ be a decomposition function for P with respect to D. The CSP Pμ

is solution equivalent to P .

Proof. Since Pμ is generated only by joining and projecting constraints from P
we find that any solution to P is also a solution to Pμ.

Next, consider any solution s to Pμ. By definition of μ and the construction
of Pμ we have that each constraint c from P must have been joined to form some
constraint in Pμ that covers c. As such, the restriction of s onto the scope of any
constraint of P must be allowed by this constraint.

When we are only concerned with structure, as is the case with guarded decom-
positions, we may use a decomposition function which maps each constraint to
the set of all guarded blocks whose guards contain its scope.

3.1 Typed Guarded Decompositions

In this section we complete our framework by defining the typed guarded decom-
position. These decompositions will allow us to define new tractably solvable sets
of CSPs that are not definable either by limiting only their structure or limiting
only their language. In this sense, they provide new hybrid tractability results.

Definition 17. A typed guarded decomposition of a hypergraph H is a pair
〈T ,D〉 where D is a guarded decomposition of H and T is a function mapping
each guarded block of D to a type. We call D the associated guarded de-
composition of 〈T ,D〉. For a particular guarded block β of D we call T (β) its
associated type.

Typed guarded decompositions place further restrictions of the set of CSPs which
they decompose.

Definition 18. Let P = 〈V,D,C〉 be a CSP, 〈T ,D〉 a typed guarded decom-
position of σ(P ) and μ a decomposition function for P with respect to D. For
any guarded block β of D we define the component of P induced by β with
respect to μ to be the CSP derived from the set of all constraints c in C for
which μ(c) contains β.

We say that 〈T ,D〉 decomposes P with respect to μ if, for every guarded
block β in D, we have that the component of P induced by β with respect to μ is
an instance of ST (β).

Pμ is defined as before and so the solution equivalence to P holds (by Proposi-
tion 2). In addition, typed guarded decompositions give us the restriction that
the components induced by a CSP and decomposition function on the guarded
blocks must be solvable by specified algorithms (the associated types).
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4 Solving CSPs Using Typed Guarded Decompositions

In this section we consider a certain format for typed guarded decompositions
that will allow us to develop an extension of the guarded decompositions of
bounded width, the acyclic k-separated typed guarded decomposition.

Definition 19. We call a typed guarded decomposition acyclic if its associated
guarded decomposition is acyclic.

A typed guarded decomposition 〈T ,D〉 is called k-separated if D is itself
k-separated. Similarly, we define a separation structure for 〈T ,D〉 to be a
separation structure of D.

By Proposition 1 we know that a typed guarded decomposition is acyclic if
and only if its separation structure is acyclic. We will use Proposition 1 in the
sections that follow to demonstrate classes of acyclic k-separated typed guarded
decompositions whose instances may be solved in polynomial time.

Example 3. Acyclic k-separated max and min-closed components
Consider the set of CSPs whose instances are an acyclic k-separated combination
of max-closed and min-closed components. This set of CSPs is not tractable for
any structural reason, since the components can be arbitrarily large. Nor is it
tractable for any relational reason, since the union of the max-closed and min-
closed constraint languages is not tractable. However, the instances of Ex. 3 are
naturally described using acyclic k-separated typed guarded decompositions as
described in this paper.

In Sect. 4.1 we demonstrate a sufficient condition on the acyclic k-separated
typed guarded decompositions so that the decomposable CSPs may be solved in
polynomial time, but only when we are also provided with the decomposition and
the decomposition function as part of the input. Then, in Sect. 4.2, we show that
a polynomial time algorithm exists that can solve the no-promise problem for the
acyclic k-separated typed guarded decompositions. Once more, we require more
restrictive conditions on the decompositions. We provide sufficient conditions
for the solution to be polynomial. In particular, we show that the no-promise
problem for the set of CSPs of Ex. 3 is tractable for bounded k.

4.1 A Simple Requirement for Polynomial Time Solution

In order to solve the components induced by the decomposable CSPs of the
acyclic k-separated typed guarded decompositions (using their associated types)
we will require that certain constant constraints can be added into the input
CSP and maintain the property that the types are solution algorithms.

Definition 20. A constant constraint is a constraint that only allows a single
assignment.

Definition 21. For a constant k, consider the problem Ak whose instances are
triples 〈P, 〈T ,D〉 , μ〉 where;
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– P is a CSP,
– 〈T ,D〉 is an acyclic k-separated typed guarded decomposition of σ(P ), and
– μ is a decomposition function for P with respect to D such that 〈T ,D〉 de-

composes P with respect to μ.

For an instance of Ak the question is: What is a solution to P?

Example 4. Solving CSPs using acyclic k-separated typed guarded de-
compositions
Let 〈P, 〈T ,D〉 , μ〉 be an instance of Ak for some constant k. We solve this in-
stance by finding a solution (if one exists) for P . We do this as follows.

1. Generate a k-separator for each guarded block of D. At the same time,
generate a mapping κ from the identified k-separators to the set of guarded
blocks in D which have derived that k-separator.

(By Prop. 1 the found k-separation structure is acyclic.)
2. Generate a join tree J of the k-separation structure. Label each node with

the constraint generated by P on that node (k-separator).
(There is as yet no guarantee that the solutions to the separation structure

will propagate into the components of P induced by the guarded blocks with
respect to μ.)

3. For each k-separator β take each allowed assignment to the label of β in J
(the generated constraint) and generate a constant constraint on the block
of β (which are the intersection variables for each guarded block in κ(β)).

Then, for each guarded block α in κ(β), pass the CSP formed by the
constant constraint, together with the set of constraints which μ maps to α,
into T (α). If it returns that no solution exists, remove this assignment from
the constraint generated on β (the label of β in J). Otherwise, if all appli-
cations of the types (with respect to their components and this constant)
succeed, this assignment is kept.

(At this point, the labels of the k-separators in the join tree directly cap-
ture the possible assignments that are acceptable for both this k-separator
and its components.)

4. Apply pairwise consistency to the join tree.
– If any constraint relation is wiped out then return ‘no’.
– Otherwise P does have a solution. Firstly, generate a solution on the k-

separators. Then, to extend this solution, re-run the types on the compo-
nents (as in Step 3) using the projected partial solution as an additional
constant. Return ‘yes’.
(By definition of this partial solution, these constants must extend to
the components.)

However, this algorithm raises one necessary condition. We require that the types
are polynomial time solution algorithms for their respective components of the
CSP. This is certainly true of the set of constraints that μ maps to a given
guarded block, but in this algorithm we are also required to add an additional
constant constraint. The following is a sufficient condition for this algorithm to
work.
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Definition 22. Let 〈P, 〈T ,D〉 , μ〉 be an instance of Ak (for some k).
We say that P is good if for every guarded block β in D we have that the

component of P induced by β with respect to μ, together with any constant con-
straint on the intersection vertices of β, is an instance of Sτ (that is, polynomial
time solvable by τ).

It is possible to verify that the algorithm of Ex. 4 runs in polynomial time (in
the size of the CSP P ). As such, it allows us to prove the following theorem.

Theorem 1. For a constant k the set of instances of Ak that are good is tractably
solvable.

Proof. Omitted for brevity.

Theorem 1 demonstrates that the search problem for the set of good instances
from Ak is tractable (for bounded k). However, it is quite likely that determining
whether an appropriate typed acyclic k-separated guarded decomposition and
decomposition function exists for a given CSP is hard. Fortunately, there is an
algorithm we can use that solves the no-promise problem for a large subset of
these instances.

4.2 A No-Promise Algorithm for Acyclic k-Separated Typed
Guarded Decompositions

In previous work [8] the authors identified a property of sets of CSPs that make
them more amenable to being used as components for use in typed guarded
decompositions. If a tractable set S of CSPs remains tractable after we are
allowed to add any number of constant constraints into any instance of S then
we call S constant additive tractable. Solution algorithms to such useful tractable
sets of CSPs can often be used as types for typed guarded decompositions.

Classes such as that of Ex. 3 naturally generalize the bounded interaction
constant additive tractable classes identified previously by the authors [8]. For
these restricted classes, identification was shown to be tractable. For the more
general classes of this paper identification may well be hard. For this reason, a
no-promise algorithm for our new decompositions is useful.

Definition 23. A type τ is called a no-promise type if the following properties
hold:

1. τ terminates on any input CSP, not just those in Sτ , and is polynomial time
for any input.

2. τ allows all constant constraints to be added to the input whilst still being a
polynomial time solution algorithm. This implies that Sτ is constant additive
tractable.

3. τ preserves solutions, so that if τ replies ‘no’ then there really is no satisfying
assignment to the input CSP (including any constants).

4. τ is monotonic (with respect to inclusion). By this we mean that, for any
CSP P = 〈V,D,C〉, if τ(P ) replies ‘no’ then, for every P ′ = 〈V ′, D′, C′〉
with V ′ ⊇ V , D′ ⊇ D and C′ ⊇ C we have that τ(P ′) also replies ‘no’.
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These properties might seem like a harsh requirement to place on types. However,
many solution algorithms for tractable sets of CSPs have these properties. In
particular, when a solution algorithm is based on a consistency procedure, such
as pairwise consistency, these properties are (almost) certainly satisfied. For
example, the max-closed type of Ex. 2 satisfies all of the required properties (as
does the analogous min-closed type).

These properties for no-promise types are sufficient to allow us to derive a
no-promise algorithm for the acyclic k-separated typed guarded decompositions
over a pre-specified set of no-promise types.

Definition 24. Let T be a set of no-promise types. We define a T -guarded
decomposition to be a typed guarded decomposition whose types are all in T .

Example 5. A no-promise algorithm for acyclic k-separated T -guarded
decompositions

Let P = 〈V,D,C〉 be a CSP and T be a finite set of no-promise types. This
algorithm takes P as input and returns ‘yes’ (together with a solution), ‘no’
or ‘unsure’. It only returns ‘unsure’ if P is not decomposable by any acyclic
k-separated T -guarded decomposition.

For any set C of constraints we define a k-join constraint over C to be the
join of any k constraints from C.

1. Generate a binary CSP P ′ = 〈V ′, D′, C′〉 where:
– V ′ are all possible k-join constraints over C.
– D′ is the set of all allowed assignments from the constraint relations of

the k-join constraints.
– There is a binary constraint in C′ for every pair of variables (k-joins)

which allows a pair of domain values (assignments to k-joins) exactly
when;
• The two assignments are allowed by the respective k-join constraints

and also do not conflict with each other (that is, they do not assign
more than one value in D to each variable in V ), and

• The application (in turn) of every type in T to P , together with
the two constant constraints generated by this pair of assignments,
returns ‘yes’ (for all types in T ).

2. Perform pairwise consistency on P ′.
3. If any constraint relation in C′ is wiped out then return ‘no’.
4. Let W be an empty partial solution to P ′. Repeat the following until W is

a solution to P ′ (that is, has assigned all variables in V ′):
– Choose any unassigned variable in V ′ and find a consistent value for it

in the following way:
• Add any value (assignment to the respective k-join constraint over C)

still remaining in its unary projection as a unary constant constraint
in P ′.

• Remove (and remember) pairs of assignments from the constraint
relations of C′ that are found to be inconsistent with any type from
T , when run on P together with the constant constraints generated
by both this pair of assignments and all assignments in W .
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• Perform pairwise consistency on the modified P ′. If a constraint re-
lation is wiped out then try another value for this variable (by rolling
back the removed assignments and replacing the constant constraint)
until a consistent value is found.

– If a consistent value is found add this assignment to W .
– If no consistent value for the current variable exists then return ‘unsure’.

5. Finally, if this backtrack-free search manages to successfully find a solution
to P ′ then;
– generate a solution for P by taking the assignments to V from the k-join

assignments defined by W , and
– return ‘yes’.

Whilst the algorithm of Ex. 5 is non-trivial, it can be verified to run in polynomial
time in the size of the input CSP (for bounded k and finite T ).

Theorem 2. Let k be a constant and T be a finite set of no-promise types. The
no-promise problem for the set of all CSPs that are decomposable by some acyclic
k-separated T -guarded decomposition is tractable.

Proof. Omitted for brevity.

Theorem 2 provides a direct reason why the no-promise problem for the class of
Ex. 3 (for bounded k) is tractable, since the set containing the max-closed type
and min-closed type (both of which are no-promise types) is finite.

5 Conclusion

In this paper, we have seen that by modifying our view of decomposition we
open up the idea of different ways to solve instances containing limited inter-
action between (tractable) components. We have developed a framework, the
typed guarded decomposition, which we hope will provide a foundation to study
these generalized decompositions. It seems that the key to generalizing decom-
position methods is in identifying classes for which only a polynomial amount
of propagation is necessary.

Unfortunately, we cannot yet say anything about the tractability of the iden-
tification problem for useful typed guarded decompositions. However, we have
seen that we can derive an algorithm that solves the no-promise problem for large
classes of typed guarded decompositions. We are at least able to solve decompos-
able instances even if we cannot tractably identify to which class they belong.
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Abstract. Constraint Satisfaction Problems and Propositional Satisfi-
ability, are frameworks widely used to represent and solve combinato-
rial problems. A concept of primary importance in both frameworks is
that of constraint propagation. In this paper we study and compare the
amount of propagation that can be achieved, using various methods,
when translating a problem from one framework into another. Our re-
sults complement, extend, and tie together recent similar studies. We
provide insight as to which translation is preferable, with respect to the
strength of propagation in the original problem and the encodings.

1 Introduction

CSPs and SAT are closely related frameworks that are widely used to represent
and solve combinatorial problems. It is well known that there exist several ways
to translate a problem expressed in one framework into the other framework (for
example [2,14]).

One of the most important concepts in CSP and SAT is the concept of con-
straint propagation. Solvers in both frameworks utilize propagation algorithms
both prior to and during search to prune the search space and save search effort.
Recently there have been several studies exploring and comparing the amount of
propagation that can be achieved in each framework using standard techniques,
such as arc consistency (in CSPs) and unit propagation (in SAT), under vari-
ous encodings from one framework to another [3,4,9,14]. A general lesson learned
from these studies is that the choice of encoding is very important when compar-
ing propagation methods in different frameworks. For example, arc consistency
in a binary CSP is equivalent to unit propagation in the support encoding of the
CSP into SAT [9,10]. On the other hand, arc consistency is stronger than unit
propagation under the direct encoding [14].

Apart from the variety of ways to translate problems from one framework into
another, a second source of complexity (and confusion) when comparing propa-
gation techniques in different frameworks is the large number of such techniques
that have been proposed. So far, the comparisons between propagation methods
in CSPs and SAT have only considered standard techniques like arc consistency
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and forward checking, on one hand, and unit propagation on the other hand.
Although these techniques remain at the core of most CSP and SAT solvers re-
spectively, other stronger propagation methods are also attracting considerable
interest in both communities in recent years. For example, some SAT solvers
(e.g. kcnfs, march dl, Dew Satz, 2CLS+EQ) employ strong reasoning techniques
such as failed literal detection and variants of binary resolution [1,6,11]. Also,
strong consistencies such as singleton and inverse consistencies are beginning to
emerge as possible alternatives to arc consistency in CSPs [5,8].

In this paper we make a detailed theoretical investigation of the relationships
between strong propagation techniques in CSPs and SAT. We consider various
encodings of SAT into CSP and binary CSPs into SAT. In some cases we prove
that, under certain encodings, there is a direct correspondence between a prop-
agation method for CSPs and another one for SAT. For example, failed literal
detection applied to a SAT problem achieves the same pruning as singleton arc
consistency applied to the literal encoding of the problem into a CSP. In other
cases, where no direct correspondence can be established, we identify conditions
that must hold so that certain consistencies can achieve pruning in a SAT or CSP
encoding, and/or place bounds in the pruning achieved by a propagation tech-
nique in one framework in terms of the other framework. For example, we show
that failed literal detection applied to the direct encoding of a CSP is strictly
stronger than restricted path consistency and strictly weaker than singleton arc
consistency applied to the original CSP. Finally, we introduce new propagation
techniques for SAT that capture the pruning achieved by certain CSP consis-
tencies. For example, we introduce subset resolution; a form of resolution that
captures the pruning achieved by arc consistency in the dual encoding of a SAT
problem into a CSP.

Our results provide insight and better understanding of propagation in CSPs
and SAT and complement recent similar studies. Also, we give indications as to
when encoding a problem is beneficial and which encoding should be preferred,
with respect to the strength of propagation in the original problem and the
encodings. Note that, due to space restrictions, we only give some of the proofs
(or sketches of proofs) for our theoretical results.

2 Preliminaries

A CSP, P , is defined as a triple (X, D, C), where: X = {x1, . . . , xn} is a finite
set of n variables, D = {D(x1), . . . , D(xn)} is a set of domains, and C is a set of
constraints. Each constraint C ∈ C is defined over a set of variables {xj1 , . . . , xjk

}
and specifies the allowed combinations of values for these variables.

A binary constraint C on variables {xi, xj} is Arc Consistent (AC) iff ∀a ∈
D(xi) ∃ b ∈ D(xj) such that the assignments (xi, a) and (xj , b) are compatible. In
this case we say that b is a support for a on constraint C. A non-binary constraint
is Generalized Arc Consistent (GAC) iff for every variable in the constraint and
each one of its values there exist compatible values in all other variables involved
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in the constraint. A CSP is (G)AC iff all constraints are (G)AC and there are
no empty domains.

Several consistencies have been defined for binary CSPs. Most can be de-
scribed as specializations of (i, j)-consistency. A problem is (i, j)-consistent iff
it has non-empty domains and any consistent instantiation of i variables can
be extended to a consistent instantiation involving j additional variables [7].
Under this definition, a problem is AC iff it is (1, 1)-consistent. A problem is
path-consistent (PC) iff it is (2, 1)-consistent. A problem is path inverse consis-
tent (PIC) iff it is (1, 2)-consistent. In addition, a number of consistencies that
cannot be described as (i, j)-consistencies have been defined. A problem P is
singleton arc consistent (SAC) iff it has non-empty domains and for any instan-
tiation (x, a) of a variable x, the resulting subproblem, denoted by P(x,a), can be
made AC. A problem is restricted path consistent (RPC) iff any pair of instan-
tiations (x, a), (y, b) of variables x and y, such that (y, b) is the only support of
(x, a) on the constraint between x and y, can be consistently extended to any
third variable.

Following [5], we call a consistency property A stronger than B iff in any
problem in which A holds then B holds, and strictly stronger iff it is stronger
and there is at least one problem in which B holds but A does not. We call a
local consistency property A incomparable with B iff A is not stronger than B
nor vice versa. Finally, we call a local consistency property A equivalent to B iff
A is stronger than B and vice versa.

A propositional theory T is a set (conjunction) of CNF clauses of the form
l1 ∨ l2 ∨ . . .∨ ln, where each li, 1 ≤ i ≤ n, is a literal, ie. an atom or its negation.
A clause can be alternatively denoted as {l1, l2, . . . , ln}. Finally the notation
x1x2 . . . xnL denotes the clause {x1} ∪ {x2} ∪ . . . ∪ {xn} ∪ L. If c is a clause,
at(c) denotes the set of atoms of c. We assume that the reader is familiar with
the basics of propositional satisfiability.

The most common propagation method used in SAT algorithms is Unit Prop-
agation (UP) that repeatedly applies unit resolution (UR) to the clauses of the
input theory. Among stronger propagation methods, one of the earliest is the
Failed Literal Detection rule [6] denoted as FL rule or simply FL. Given a literal
l in T , s.t. {¬l} �∈ T and {l} �∈ T , the FL rule assigns the value true (false) to l
iff UP (T ∪ {¬l}) (UP (T ∪ {l})) derives the empty clause. We call FL-prop the
propagation scheme that repeatedly applies the FL rule until no more variable
values can be inferred or the empty clause is derived.

Another class of methods that are employed in state-of-the-art SAT solvers
and preprocessing algorithms is binary resolution, in its general or various re-
stricted forms. Binary resolution resolves two clauses of the form xy and ¬xZ
and generates the clause yZ. A restricted form of binary resolution, called Bin-
Res, has been introduced in [1], that requires that both resolvents are binary.
The application of BinRes as a propagation method, denoted by BinRes-prop,
consists of repeatedly adding to the theory all new binary and unit clauses pro-
duced by resolving pairs of binary clauses and performing UP on any unit clauses
that appear until nothing new is produced (or a contradiction is achieved). Note
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that BinRes-prop is a weaker propagation method than FL-prop [1]. Another re-
stricted form of binary resolution is Krom-subsumption resolution (KromS) [13]
that takes as input two clauses of the form xy and ¬xyZ and generates the clause
yZ. Note that yZ subsumes ¬xyZ, therefore ¬xyZ can be deleted. Generalized
Subsumption resolution (GSubs) takes two clauses xY and ¬xY Z and generates
Y Z. The propagation methods derived by repeatedly applying KromS or GSubs
are denoted by KromS-prop and GSubs-prop respectively.

3 Encodings

From CSP to SAT We restrict our study to binary CSPs. Many ways to translate
a binary CSP into SAT have been proposed [10,14,9,12]. We focus on two of the
most widely studied ones; the direct and the support encodings.

Direct Encoding: In the direct encoding a propositional variable xia is in-
troduced for each value a of a CSP variable xi. For each xi ∈ X , there is an
at-least-one clause xi1 ∨ . . . ∨ xid to ensure that xi takes a value. We optionally
add at-most-one clauses that ensure that each CSP variable takes at most one
value: for each i, a, b with a �= b, we add ¬xia∨¬xib. Finally, for each constraint C
on variables {xi, xj} and for each a, b, s.t. tuple <(xi, a), (xj , b)> is not allowed,
we add ¬xia ∨ ¬xjb.

Support Encoding: The support encoding also introduces a propositional
variable xia for each value a of a CSP variable xi. We also have all the at-least-
one clauses and (optionally) the at-most-one clauses. To capture the constraints,
there are clauses that express the supports that values have in the constraints.
For each binary constraint C on variables {xi, xj} and for each a ∈ D(xi), we
add xjb1 ∨ . . . ∨ xjbs ∨ ¬xia, where xjb1 , . . . , xjbs are the propositional variables
that correspond to the s supporting values that a has in D(xj).

From SAT to CSP The following three are standard ways to translate a SAT
instance into a CSP.

Literal Encoding: In the literal encoding of a SAT problem T a variable vi

is introduced for each clause ci in T . D(vi) consists of those literals that satisfy
ci. A binary constraint is posted between two variables vi and vj iff clause ci

contains a literal l whose complement is contained in clause cj . This constraint
rules out incompatible assignments for the two variables (e.g. (vi, l) and (vj ,¬l)).

Dual Encoding: In the dual encoding of a SAT problem T a dual variable vi is
introduced for each clause ci in T . D(vi) consists of those tuples of truth values
that satisfy ci. A binary constraint is posted between any two dual variables
which correspond to clauses that share propositional variables. Such a constraint
ensures that shared propositional variables take the same values in the tuples of
both dual variables, if they appear with the same sign in the original clauses,
and complementary values if they appear with opposite signs.

Non-Binary Encoding: In the non-binary encoding of a SAT problem T
there is 0-1 variable for each propositional variable. A non-binary constraint
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is posted between variables that occur together in a clause. This constraint
disallows the tuples that fail to satisfy the clause.

4 Encoding SAT as CSP

4.1 Literal Encoding

We denote by L(T ) the translation of a propositional theory T under the literal
encoding. From [3,14] we know that there is a direct correspondence between
UP and AC. We now study stronger consistency levels.

From [5] we know that PIC and RPC are stronger than AC for general CSP
problems. Below we provide a characterization of the cases where these consis-
tency methods lead to domain reductions in the literal encoding of a proposi-
tional theory.

Proposition 1. Value l in the domain of a variable in the literal encoding L(T )
of a propositional theory T is not PIC iff T either contains the unit clause ¬l or
the unit clauses m and ¬m or the clauses m and ¬l ∨¬m or the clauses ¬l ∨m
and ¬l ∨ ¬m.

Proof. The ”if” part is straightforward. We will prove the ”only if” part. Assume
that the value l from the domain of variable vi, corresponding to the clause ci in
T , is not PIC because it can not be extended to the variables vj and vk. If the
value l has no support in any of the variables vj or vk, T must contain the unit
clause {¬l}. Assume now that this is not the case. Suppose that the domain of
variable vj contains only the value m (ie. corresponds to a unit clause in T ). If
the pair of values l and m can not be extended to variable vk, it must be the case
that the domain of vk is either {¬m}, or {¬l}, or {¬l,¬m}. Consider the case
now where the domain of vj contains more than one value. Furthermore, assume
that it does not contain the value ¬l. Then, l can form a consistent triple of
values involving variables vi, vj and vk. Therefore, for l to be not PIC, vj must
contain the value ¬l. Moreover, if vj has more than two values in its domain
(including ¬l) the value assignment of l to vi can be extended to the other two
variables. Therefore, vj must have exactly two values in its domain, one of which
is ¬l, ie., it is of the form {¬l,m}. Since the values l and m cannot be extended
to vk, we conclude that the domain of vk is of the form {¬l,¬m}. ��
A similar result holds for RPC. The proof is similar to the above.

Proposition 2. Value l in the domain of a variable in the literal encoding L(T )
of a propositional theory T is not RPC iff T either contains the unit clause ¬l or
the unit clauses m and ¬m or the clauses m and ¬l ∨¬m or the clauses ¬l ∨m
and ¬l ∨ ¬m.

From the above analysis we conclude that on the literal encoding of a SAT
problem, PIC collapses down to RPC. Note that in general binary CSPs with
more than 3 variables, PIC is strictly stronger than RPC [5]. These results also
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imply that BinRes-prop applied to T is at least as strong as enforcing PIC (and
therefore RPC) on L(T ):

Proposition 3. If enforcing PIC on the literal encoding L(T ) of a propositional
theory T deletes the value l form the domain of a variable of L(T ) then BinRes-
prop in T generates the unit clause ¬l or determines that T is unsatisfiable.

Proof. Inductively on the values l1, l2, . . . , ln deleted by PIC enforcement.
Base case: From proposition 1 follows that if l1 is not PIC, BinRes either derives
¬l1 or determines that T is unsatisfiable (in the case where T containsm and ¬m).
Inductive Hypothesis: Assume that the proposition holds for all deletions li,
1 ≤ i < k < n. That is, if PIC on L(T ) deletes the values {l1, l2, . . . , lk−1},
BinRes-prop on T derives the unit clauses {¬l1,¬l2, . . . ,¬lk−1}.
Inductive Step: Assume that lk is not PIC in L(T ). By analysis of the cases of
proposition 1 we conclude that BinRes-prop either generates ¬lk, or determines
that T is unsatisfiable.
Assume that lk is PIC in L(T ), but is not PIC in the problem resulting after the
deletion of the values {l1, l2, . . . , lk−1}. There are two cases.
First, there is a variable vj such that all the supports of value lk have been
deleted from the domain of vj by PIC. The domain of variable vj is either
{¬lk, l′1, l′2, . . . , l′n} or {l′1, l′2, . . . , l′n}, and {l′1, l′2, . . . , l′n} ⊆ {l1, l2, . . . , lk−1}. From
the inductive hypothesis follows that BinRes-prop entails the unit clauses ¬l′1,
¬l′2, . . . , ¬l′n. Then, BinRes-prop, either derives the unit clause ¬lk, or determines
that T is unsatisfiable.

Assume now that lk has support in domain of vj after the deletions {l1, l2, . . . ,
lk−1} performed by PIC. This means that cj , the clause of T that correspond
to vj , is of the form A ∪ D ∪ R, where A ⊆ {¬lk}, D ⊆ {l1, l2, . . . , lk−1},
R = cj − (A ∪ D), with |R| > 0. Assume that R = {m}. If m has no support
in the initial domain of variable vk, then this domain must be {¬m}. Then,
BinRes-prop, either derives the unit clause ¬lk, if A = {¬lk}, or determines that
T is unsatisfiable, if A = ∅.
Assume now that |R| > 1, and let R = {m1,m2, . . . ,mn}, with n ≥ 2. Observe
that all elements of R are supports for lk in vj . Suppose now that lk is not PIC
because none of the pairs of values (lk,mf ), 1 ≤ f ≤ n, can be extended to a
consistent triple involving a value from some variable vg. Let the domain of vg

be of the form B ∪ S where B ⊆ {¬l}. Note that any value of S is support for
some value mf , 1 ≤ f ≤ n. Since lk is not PIC after the deletions of values
{l1, l2, . . . , lk−1}, we conclude that S ⊆ {l1, l2, . . . , lk−1}. From the inductive hy-
pothesis we know that BinRes-prop entails the unit clauses ¬l1, ¬l2, . . . ,¬lk−1.
Therefore, BinRes-prop will generate, using the clause that corresponds to vari-
able vg, either the unit clause ¬lk or the empty clause. ��
The following example shows that BinRes-prop is strictly stronger than PIC.

Example 1. Consider the propositional theory T = {l1∨ l2,¬l1∨ l3,¬l2∨ l3,¬l3∨
l4}. BinRes derives the unit clause l3, but enforcing PIC on L(T ) does not lead
to any domain reductions.
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Not surprisingly, we can exploit the direct correspondence between AC and UP
shown in [14] to prove that FL-prop on T is equivalent to enforcing SAC in L(T ).
The proof proceeds by induction on the number of deletions performed by SAC
and the number of assignments made by FL.

Proposition 4. Enforcing SAC on the literal encoding L(T ) of a propositional
T deletes value l from the domains of all variables of L(T ) iff FL-prop on T
assigns false to l.

4.2 Dual Encoding

We denote by D(T ) the translation of a propositional theory T under the dual
encoding. From [14] we know that AC applied to the dual encoding can achieve
more propagation than UP in the original SAT instance.

As we will show, AC on the dual encoding can achieve a very strong level
of consistency that cannot be captured by known propagation methods in the
original SAT problem. For instance, the following example demonstrates that
FL on T and AC on D(T ) are incomparable.

Example 2. Consider the theory T = {l1 ∨ l4,¬l1 ∨ l2,¬l1 ∨ l3,¬l2 ∨ ¬l3}. Note
that FL will assign the value F to l1. The problem D(T ) is AC, therefore no
domain reduction is performed by AC.
Consider now the theory T that contains all possible clauses in three variables,
ie., l1∨ l2∨ l3, l1∨ l2∨¬l3, . . . ,¬l1∨¬l2∨¬l3. AC on D(T ) will lead to a domain
wipeout, whereas FL does not lead to any simplifications.

It is not difficult to show that FL on T is weaker than SAC on D(T ).

Proposition 5. If FL assigns true to literal l of a propositional theory T , then
all variable values of D(T ) that correspond to valuations that assign false to l
are not SAC.

To precisely identify the propagation achieved by AC on the dual encoding,
we first provide two characterizations of propositional theories that are not AC
under the dual encoding. The first is a general characterization based on the
form of the propositional theory T , whereas the second describes the form of the
values that are not AC.

Proposition 6. A value in the domain of a variable xi of D(T ) that corresponds
to the clause ci in T is not AC iff T contains a clause cj such that at(cj) ⊆ at(ci)
and there exists l such that l ∈ cj and ¬l ∈ ci.

Let xi be a variable in the dual encoding D(T ) of a propositional theory T ,
that corresponds to a clause ci of T defined on the set of atoms at(ci) =
{a1, a2, . . . , an}. We assume an order on the set of elements of at(ci) which,
if not otherwise stated, corresponds to the order of appearance of the atoms
in ci. We denote this by at(ci) = (a1, a2, . . . , an). We use this order to refer to
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the values of variable xi of D(T ) as follows. A value in the domain of xi is a
tuple v = (v1, v2, . . . , vn), where vi ∈ {T, F} denotes the value of atom ai, with
1 ≤ i ≤ n. Alternatively a value for variable xi is a tuple v = (l1, l2, . . . , ln),
where li = ai if ai is assigned true in v and li = ¬ai if ai is assigned false in v.

Proposition 7. Value v = (l1, l2, . . . , ln) in the domain of variable xi in the
dual encoding D(T ) of a propositional theory T is not AC iff T contains a clause
cj = l′1 ∨ l′2 ∨ . . . ∨ l′m such that for each l′k, 1 ≤ k ≤ m it holds that l′k = ¬lp for
some 1 ≤ p ≤ n.

Note that the above results are valid for a CSP D(T ) that is the dual encoding
of a propositional theory T . Enforcing AC on D(T ) may lead to a sequence of
domain reductions, leading to a CSP that does not necessarily correspond to the
dual encoding of an associated simplification of theory T .

We now introduce subset resolution, a form of resolution that is stronger
than GSubs, and is intended to capture the domain reductions performed when
enforcing AC.

Definition 1. Subset resolution resolves two clauses ci and cj of a theory T iff
T contains a clause c such that at(ci) ⊆ at(c) and at(cj) ⊆ at(c).

We denote by SubRes-prop the propagation algorithm obtained by repeatedly
applying subset resolution. The following result shows that SubRes-prop is at
least as strong as enforcing AC.

Proposition 8. Let xi be a variable in the dual encoding D(T ) of a propositional
theory T that corresponds to clause ci of T such that at(ci) = (a1, a2, . . . , an).
If enforcing AC deletes the value v = (l1, l2, . . . , ln) from the domain of variable
xi, then either T contains or SubRes-prop generates the clause l′1 ∨ l′2 ∨ . . . ∨ l′m
such that for each l′k, 1 ≤ k ≤ m it holds that l′k = ¬lp for some 1 ≤ p ≤ n.

Proof. By induction on the sequence of values v1, v2, . . . , vf deleted by the AC
enforcing algorithm.
Base Case: Follows from Proposition 7.
Inductive Hypothesis: Assume that the proposition holds for all vi ,1 ≤ i < k < f .
Inductive Step: Assume that the AC enforcing algorithm, after deleting the values
v1, v2, . . . , vk−1, deletes the value vk from the domain of variable xi of D(T )
because it has no support in the domain of variable xj , that corresponds to
clause cj in T . The case where the original domain of xj contained no support
for vk is covered by Proposition 7. Consider now the case where value vk has the
supports S = {s1, s2, . . . , sr} in the original domain xj , but these supports are
deleted by AC. Define A = at(ci) ∩ at(cj). Consider first the case where A = ∅.
Then, S coincides with the domain of xj , ie. it contains all possible valuations on
at(cj), except the valuation that falsifies cj . The fact that vk has no support in
xj means that the domain of xj is empty. Therefore, the AC enforcing algorithm
must have been terminated, which contradicts the assumption that it deletes vk.
Hence, this situation can never arise.
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Consider now the case where A �= ∅, and let vA
k be the projection of value

vk on the atoms of A, defined as vA
k = (l1, l2, . . . , lm). The set S contains all

possible valuations on the set of atoms at(cj) that assign the same values as vk to
the variables of A, except the valuation that falsifies cj . Since the AC enforcing
algorithm deletes value vk, all the supports of vk in the domain of variable xj (ie.
the elements of S) must have been deleted by the algorithm, and therefore belong
to the set of values v1, v2, . . . , vk−1. From the inductive hypothesis we know that
SubRes-prop derives a set of clauses R = {c′1, c′2, . . . , c′q}, q ≤ r, that satisfy the
properties stated in the proposition. Therefore, for each possible assignment on
the atoms of at(cj) that assigns the same value as vk on the atoms of A, the set
R∪{cj} contains a clause c′ such that the assignment is not a model of c′. Hence,
R ∪ {cj} has no models where all the atoms of A are assigned the same values
as in vk. Therefore, R∪ {cj} |= ¬l1 ∨¬l2 ∨ . . .∨¬lm. Since for each clause cR of
R ∪ {cj} it holds that at(cR) ⊆ at(cj), SubRes-prop is able to derive, from the
set of clauses R∪{cj}, a prime implicant that subsumes ¬l1∨¬l2∨ . . .∨¬lm. ��
The next result is the reciprocal of the previous proposition and both together
imply that enforcing AC on D(T ) is equivalent to SubRes-prop in T .

Proposition 9. Given a propositional theory T , if SubRes-prop on T derives a
clause l1∨l2∨. . .∨lm, then enforcing AC on D(T ) deletes all values (l′1, l′2, . . . , l′n)
from the domains of the variables of D(T ) such that for each li, 1 ≤ i ≤ m there
is some l′j, 1 ≤ j ≤ n, such that l′j = ¬li.
Proof. By induction on the the set of clauses S = {c1, c2, . . . , ck} defined induc-
tively as follows: ci ∈ S if ci ∈ T or ci is the subset resolvent of two clauses
ca, cb ∈ S.
Base Case: The proposition follows for all clauses of T from proposition 7.
Inductive Step: Let c = c1 ∪ c2 be the clause that is generated by subset resolu-
tion from the clauses c′1 = {l}∪ c1 and c′2 = {¬l}∪ c2. Our inductive hypothesis
is that the proposition holds for clauses c′1 and c′2. Let c1 = {l11, l12, . . . , l1x} and
c2 = {l21, l22, . . . , l2y}. Since c′1 and c′2 are resolved by subset resolution, it must hold
that T contains a clause cg such that at(c′1) ⊆ at(cg) and at(c′2) ⊆ at(cg). Let xg

be the corresponding variable of D(T ). From the inductive hypothesis we know
that enforcing AC deletes all values of xg with projection (¬l,¬l11,¬l12, . . . ,¬l1x)
and (l,¬l21,¬l22, . . . ,¬l2y) on at(c′1) and at(c′2) respectively. Therefore, xg can not
contain a value in its domain with projection1 (¬l11 ,¬l12, . . .¬l1x,¬l21,¬l22, . . . ,¬l2y)
(no value at all if c1 = c2 = ∅). Moreover, no domain of the other variables can
include a value with projection (¬l11,¬l12, . . . ,¬l1x,¬l21,¬l22, . . . ,¬l2y) on the set
at(c′1) ∪ at(c′2), as it has no support in the domain of xg. ��
Having introduced a new resolution technique to that is equivalent to AC on the
dual encoding, we can also define similar methods that capture even higher con-
sistency levels. We now introduce extended subset resolution, a slightly extended
form of subset resolution, that is intended to capture the domain reductions per-
formed by PIC on the dual encoding. Note that if c = {l1, l2, . . . , ln} is a clause,
c = {¬l1,¬l2, . . . ,¬ln}.
1 To facilitate the discussion we assume that c1 ∩ c2 = ∅.
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Definition 2. Extended Subset resolution (ESR) resolves two clauses ci and cj

of a theory T if either T contains a clause c such that at(ci) ⊆ at(c) and at(cj) ⊆
at(c) or ci∩cj = {l} and T contains a clause c such that at(ci)−at({l}) ⊆ at(c)
and at(cj)− at({l}) ⊆ at(c).

We now characterize the cases where PIC performs domain reductions.

Proposition 10. Value v = (l1, l2, . . . , ln) in the domain of a variable x of the
dual encoding D(T ) of a theory T is not PIC iff T either contains a clause
l′1∨ l′2∨ . . .∨ l′m or a pair of clauses l′1∨ l′2∨ . . . l′a∨ l′ and l′a+1∨ l′a+2∨ . . . l′m∨¬l′
such that for each l′i, 1 ≤ i ≤ m there is some lj, 1 ≤ j ≤ n, such that l′i = ¬lj.

Based on the above, the following result shows the relation between the clauses
generated by the propagation algorithm ESR-prop that repeatedly applies ESR
on T , and the domain reductions performed by a PIC enforcing algorithm on
D(T ). The proof proceeds in a similar fashion as the proof of Proposition 9.

Proposition 11. If ESR-prop on a propositional theory T derives a clause l1 ∨
l2 ∨ . . . ∨ ln, then enforcing PIC on D(T ) deletes all values (l′1, l

′
2, . . . , l

′
m) from

the domains of the variables of D(T ) such that for each li, 1 ≤ i ≤ n there is
some l′j, 1 ≤ j ≤ m, such that l′j = ¬li.

4.3 Non-binary Encoding

We denote by N(T ) the translation of a propositional theory T under the non-
binary encoding. Note that in N(T ) all clauses of T involving the same set of
variables are encoded together in one constraint. From [14] we know that under
the non-binary encoding, GAC is stronger than UP. We first show thatif the
propositional theory T does not contain clauses that are on the same variables,
GAC on N(T ) can do no more pruning than UP on T . The proof uses induction
in the number of deletions performed by GAC.

Proposition 12. Let T be a propositional theory that does not contain two
clauses ci and cj such that at(ci) = at(cj), and let x be a variable in T . If
GAC deletes the value a from D(x) in N(T ) then UP assigns the value ¬a to x
in T .

If the above restriction does not hold then GAC enforced on N(T ) can achieve
a high level of consistency. The following example shows that FL-prop, BinRes-
prop, and KromS-prop are all incomparable to enforcing GAC.

Example 3. Let T be the theory containing all possible clauses in three variables:
l1 ∨ l2 ∨ l3, l1 ∨ l2 ∨ ¬l3, . . . ,¬l1 ∨ ¬l2 ∨ ¬l3. FL-prop, BinRes-prop and KromS-
prop on this theory do not lead to any simplifications, whereas GAC on N(T )
shows that the problem is not solvable. Note that GSubs-prop applied to T also
determines insolubility.

Now consider the theory l1∨l4,¬l1∨l2,¬l1∨l3,¬l2∨¬l3. FL-prop and BinRes-
prop determine that l1 must be assigned false, whereas GAC leads to no reduc-
tions. Finally, consider the theory l1 ∨ l2 ∨ l3,¬l1 ∨ l2,¬l2 ∨ l3. KromS-prop
determines that l3 must be assigned true, whereas GAC leads to no reductions.
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To put an upper bound in the pruning power of GAC, we first characterize the
cases where a value is not GAC in N(T ).

Proposition 13. Value 0 (1) of a variable xi in the non-binary encoding N(T )
of a propositional theory T is not GAC iff T contains either the unit clause xi

(¬xi) or all possible clauses in variables xi, x1, . . . , xk (k ≥ 1) that include literal
xi (¬xi).

Using the above proposition, we can prove that GSubs-prop applied to T is
strictly stronger than enforcing GAC on N(T ).

Proposition 14. Let T be a propositional theory. If enforcing GAC deletes the
value 0 (1) from the domain of a variable in N(T ) then GSubs-prop assigns the
value 1 (0) to the corresponding variable in T .

Proof. Suppose GAC makes a sequence of value deletions (x1, a1), (x2, a2), . . . ,
(xj , aj). The proof uses induction on j.
Base Case: The first value a1 ∈ x1 will be deleted because it has no support in
some constraint C in N(T ). From Proposition 13 we know that either T con-
tains the unit clause x1, if a1 = 0 (¬x1 if a1 = 1), or all possible clauses in the
variables of the constraint that include literal x1, if a1 = 0, and ¬x1 if a1 = 1.
In both cases, if we apply GSubs-prop on the clauses, we will entail x1 (¬x1).
Inductive Hypothesis: We assume that for any 1 ≤ m < j the proposition holds.
Inductive Step: Consider the final deletion of value aj from D(xj). This value
is deleted because it has no supporting tuple in some constraint C on variables
xj , y1, . . . , yk, which corresponds to one or more clauses on the corresponding
propositional variables in T . This means that for each tuple τ that supported
value aj, at least one of the values in τ has been deleted from a variable among
y1, . . . , yk. According to the hypothesis, for every such deletion, the correspond-
ing propositional variable was set to the opposite value by GSubs-prop, and the
associated literals were set to false in all the associated clauses. Now consider
the subset yl, . . . , ym of y1, . . . , yk which consists of the variables that have not
been set. Assume that the (reduced) clauses associated with constraint C do not
contain all possible combinations of literals for variables yl, . . . , ym. Then C will
contain at least one supporting tuple for aj which contradicts the fact that aj is
deleted. Therefore, the clauses associated with constraint C contain all possible
combinations of literals for variables yl, . . . , ym. If we apply GSubs-prop on these
clauses, we will entail xj , if aj = 0, and ¬xj if aj = 1. ��
From the above proposition and the last problem in Example 3, it follows that
GSubs-prop is strictly stronger than enforcing GAC.

5 Encoding CSP as SAT

5.1 Direct Encoding

We denote by Di(P ) the translation of a CSP P into SAT under the direct
encoding. From [14] we know that AC enforced on a CSP P can achieve more
pruning than UP applied to Di(P ).
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The following example demonstrates that FL-prop is incomparable to PIC
while BinRes-prop is incomparable to AC, RPC, and PIC.

Example 4. Consider a CSP with four variables x1, x2, x3, x4, all with {0, 1}
domains, and constraints x1 = x2, x2 = x3, x3 = x4 and x4 �= x1. This problem
is AC, RPC, and PIC. However, by setting x10 or x11 to true in the direct
encoding, UP generates the empty clause. Therefore, FL-prop sets both x10

and x11 to false and determines that the problem is unsatisfiable. Accordingly,
BinRes-prop generates the unit clauses ¬x10 and ¬x11 and therefore determines
unsatisfiability.

Now consider a CSP with three variables x1, x2, x3, all with {0, 1, 2, 3} domain,
and three constraints. Assume that values 0 and 1 (2 and 3) of x1 are supported
by 0 and 1 (2 and 3) in D(x2) and D(x3), and that values 0 and 1 (2 and
3) of D(x2) are supported by 2 and 3 (0 and 1) in D(x3). FL-prop on the
direct encoding of the problem does not generate the empty clause by setting
any propositional variable to true or false. Therefore is does not achieve any
inference. However, the problem is not PIC.

Finally, consider a CSP with two variables x1 and x2, both with three values
in their domains, where one of the values in D(x1) has no support in D(x2). AC
(and all stronger CSP consistencies) will delete this value. However, BinRes-prop
cannot resolve any clauses and therefore infers nothing.

We now show that if a value in a CSP is not RPC then the FL rule will set the
corresponding variable to false in Di(P ).

Proposition 15. If a value a ∈ D(xi) of a CSP P is not RPC then the FL rule
assigns xia to false when applied to Di(P ).

Proof. Assume that value a ∈ D(xi) of a CSP P is not RPC. This means that
(xi, a) has a single support (say b ∈ D(xj)) in the constraint between xi and
xj and the assignments (xi, a) and (xj , b) cannot be consistently extended to
some third variable xl. That is, there is no value in D(xl) that supports both
(xi, a) and (xj , b). Now consider the direct encoding of the problem and assume
that FL sets xia to true. UP will immediately set each xjb′ , where b′ ∈ D(xj)
and b′ �= b, to false, and as a result xjb will be set to true. UP will then set all
propositional variables corresponding to the values in D(xl) to false. Therefore,
an empty clause is generated and as a result xia will be set to false. ��
A corollary of the above proposition is that FL sets the corresponding proposi-
tional variable to false for any value of the original CSP that is not AC. The first
problem in Example 4 together with Proposition 15 can help prove that FL-prop
is strictly stronger than RPC and AC. The complete proof involves induction
in the number of deletions performed by the algorithms. We now state that if
FL-prop makes an inference in Di(P ) then SAC also makes the corresponding
inference in P .

Proposition 16. If FL-prop sets a propositional variable xia to false in the
direct encoding of a CSP P then SAC deletes value a from D(xi) in P . If FL-
prop sets xia to true then SAC deletes all values in D(xi) apart from a.
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Now consider the second problem in Example 4. This problem is not SAC, but
FL-prop applied to its direct encoding infers nothing. This, together with the
above proposition, prove that SAC is strictly stronger than FL-prop, and there-
fore also BinRes-prop.

We now show that GSubs applied to Di(P ) can do no more work than Unit
Resolution.

Proposition 17. Given a CSP P , GSubs applied to Di(P ) draws an inference
iff only Unit Resolution does.

Proof. It suffices to show that GSubs can only be applied to pairs of clauses of
the form x, ¬xY . Consider two clauses of the form xY , ¬xY C. First assume that
both clauses are non-binary. In this case both clauses are necessarily at-least-one
clauses. But if x is present in one of the clauses, ¬x cannot be present in the
other, since the two clauses encode domains of different variables. Now assume
that at least one of the clauses is of the form xy. There are three cases depending
on what kind of clause xy is. If xy is a conflict clause then ¬x can only be found
in an at-least-one clause. However, literal y cannot be present in this clause. If xy
is an at-most-one clause then ¬x can again only be found in the corresponding
at-least-one clause. However, this clause will contain ¬y and not y. Finally, if xy
is an at-least-one clause then ¬x and y cannot occur together in any conflict or
at-most-one clause. Hence, in all cases GSubs cannot be applied. ��

5.2 Support Encoding

We denote by Sup(P ) the translation of a CSP P into SAT under the support
encoding. From [10,9] we know that AC applied to a CSP P is equivalent to UP
applied to Sup(P ). We now elaborate on the relationship between FL-prop and
SAC.

Proposition 18. FL-prop sets a propositional variable xia to false in the sup-
port encoding of a CSP P iff value SAC deletes value a ∈ D(xi) in P . FL-prop
sets xia to true iff SAC deletes all values in D(xi) apart from a.

The proof is rather simple and proceeds by induction in the number of assign-
ments made by FL-prop and the number of value deletions performed by SAC,
exploiting the equivalence between AC and UP.

It is easy to see that BinRes-prop is strictly stronger than AC. Consider a
problem with three variables x,y,z, each with domain {0, 1} and constraints
x = y, x = z and y �= z. This problem is AC, but BinRes-prop applied to its
support encoding shows that it is inconsistent. This example, coupled with the
fact that BinRes-prop subsumes UP (which is equivalent to AC), proves that
BinRes-prop is strictly stronger than AC.

The following example demonstrates that BinRes-prop is incomparable to
RPC, and PIC.

Example 5. Consider the first problem in Example 4. This problem is AC, RPC,
and PIC. However, BinRes-prop generates the unit clauses ¬x10 and ¬x11 and
therefore determines unsatisfiability.
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Now consider a CSP with three variables x1, x2, x3, all with {0, 1, 2, 3} domain,
and three constraints. Assume that value 0 of x1 is supported by 0 in D(x2) and
0,1 in D(x3), and that value 0 of D(x2) is supported by 2,3 in D(x3). All other
values have at least two supports in any constraint. The problem is not RPC
(or PIC), but BinRes-prop applied to the support encoding does not detect the
inconsistency.

As in the direct encoding, GSubs applied to Sup(P ) can do no more work than
Unit Resolution. The proof proceeds by case analysis and is similar to the proof
of Proposition 17.

Proposition 19. Given a CSP P , GSubs applied to Sup(P ) draws an inference
iff only Unit Resolution does.

6 Conclusion

In this paper we presented theoretical results concerning the relative propagation
power of various local consistency methods for CSP and SAT. More specifically,
we studied AC, PIC, RPC and SAC for CSP, and FL, BinRes, KromS and
GSubs for SAT. The results we obtained complement and tie together recent
similar studies [3,9,14].

As it may be expected, in cases where AC is equivalent to Unit Propagation,
SAC is equivalent to Failed Literal Detection. Under both translations of CSP to
SAT we consider, FL can achieve a level of consistency that is higher than RPC
in the original problem. Among the less powerful methods, that are nevertheless
stronger than AC, BinRes arises as an appealing method that can achieve a rel-
ative high level of local consistency. Indeed, BinRes is stronger than PIC under
the literal encoding, and stronger than AC under the support encoding. General-
ized subsumption resolution finally achieves an intermediate level of consistency
between GAC in N(T ) and AC in D(T ).

Comparing among different encodings, in the case of translating a SAT to CSP,
the dual encoding appears to achieve the highest level of local consistency among
the different approaches studied. Indeed, AC in the dual encoding corresponds
to subset resolution, a method that is stronger than generalized subsumption
resolution. Although the cost of applying such a local consistency method in its
general form may be prohibitive, restricted versions (eg. restricting the number
of literals in the clauses considered) of the method may have some practical
value. The non-binary encoding appears weaker than the dual, and enforcing
GAC on the translated problem can achieve better propagation than UP only
if the original theory contains clauses on the same variables. Finally, under the
literal encoding, techniques that have been used in SAT and CSP are roughly
equivalent, with the exception of BinRes which achieves a level of consistency
between PIC and SAC. When translating from CSP to SAT, the direct encoding
appears to be rather weak. Indeed, strong resolution methods such as generalized
subsumption resolution are weaker than AC in the original problem. The support
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encoding appears to behave better propagation-wise, as already suggested in [9].
A general conclusion that can been drawn from our analysis is that translating
a CSP to SAT can be beneficial only if the support encoding is used, coupled
with a propagation method that is at least as strong as BinRes.

An extended version of this paper contains a more detailed study of propa-
gation in CSP and SAT, including CSP consistency methods such as Neighbor
Inverse Consistency and SAT techniques such as Hyper-resolution. In the future
we intend to extend our study to cover encodings of non-binary constraints into
SAT, and also consider the relationship between learning techniques in CSP and
SAT under the various encodings. Finally, but very importantly, an empirical
evaluation of the different encodings and propagation methods is required.
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Abstract. The paper introduces the MST (G, T, W ) constraint, which is spec-
ified on two graph variables G and T and a vector W of scalar variables. The
constraint is satisfied if T is a minimum spanning tree of G, where the edge
weights are specified by the entries of W . We develop algorithms that filter the
domains of all variables to bound consistency.

1 Introduction

Complex constraints and variable types simplify the modelling task while providing
the constraint solver with a better view of the structure of the CSP. The recently intro-
duced CP(Graph) framework [4] allows the programmer to define graph variables, i.e.,
variables whose assigned values are graphs. The usefulness of graph variables depends
on the existence of filtering algorithms for constraints defined on them. That is, a con-
straint solver that supports graph variables ideally supports a collection of constraints
that describe fundamental graph properties.

In this paper we introduce the MST (G, T,W ) constraint, which is specified on two
graph variables G and T and a vector W of scalar variables. The constraint is satisfied
if T is a minimum spanning tree (MST) of G (i.e., the minimum-weight connected
subgraph that contains all nodes of G), where the positive weights of the edges in G
(and hence also in T ) are specified by the entries of W .

Finding the MST of a graph takes almost-linear time, but several interesting variants
of the MST problem, such as minimum k-spanning tree [8] (finding a minimum-weight
tree that spans any set of k nodes) and Steiner tree [10] (finding a minimum-weight
tree that spans a given set of nodes) are known to be NP-hard. Such problems can be
modelled by a combination of MST and other constraints.

In other applications, there is uncertainty in the input, e.g., when the exact weight
of an edge is not known, but can be assumed to belong to a given interval of values. In
the widely-studied MST sensitivity analysis problem, we are given a fixed graph g with
fixed weights and an MST t of g. We need to determine, for each edge, the amount by
which its weight can be changed without violating t = MST (g). The robust spanning
tree problem [1] addresses uncertainty from a different point of view. Its input is a graph
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with a set of possible edge weights for every edge. A scenario is a selection of a weight
for each of the edges. For a spanning tree t and a scenario s, the regret of t for s is
the difference between the weight of t and the weight of the MST of the graph under
scenario s. The output is a spanning tree that minimizes that worst-case regret.

Finally, in inverse parametric optimization problems [7] we are interested in finding
parameters of an optimization problem, given its solution. For instance, our MST con-
straint allows us to receive a tree and determine which graphs have this tree as their
MST.

Our results are summarized in the table below. We look at various restrictions of the
MST constraint, and develop a bound consistency algorithm for each of them. Let n
andm be, respectively, the number of nodes and edges in the upper bound of the domain
of G (and hence also of T ). Let Sort(m) be the time it takes to sort m edge-weights and
α the slow-growing inverse-Ackerman function. As the table indicates, our algorithm
computes bound consistency for the most general case in cubic time but whenever the
domain of one of the variable is fixed, bound consistency can be computed in almost-
linear time. The table indicates in which section of the paper each case is handled.

Fixed Edge-Weights Non-Fixed Edge-Weights
Fixed Graph Non-Fixed Graph Fixed Graph Non-Fixed Graph

Fixed MST verification O(m + n) O(mα(m, n)) O(mα(m, n))
Tree O(m + n)

[11] [Section 4.1] [Section 5.1] [Section 5.2]

Non-Fixed O(Sort(m)+ O(Sort(m)+ O(Sort(m)+ O(mn(m + log n))
Tree mα(m,n)) mα(m, n)) mα(m, n))

[Section 4.2] [Section 4.3] [Section 5.3] [Section 5.4]

Related Work. Filtering algorithms have been developed for several constraints on
graphs, such as Sellmann’s shorter paths constraints [14], unweighted forest constraints
(directed [2] and undirected [13]) and the Weight-Bounded Spanning-Tree constraint
[5], WBST (G, T,W, I), which specifies that T is a spanning tree of G of weight at
most I , where W is again a vector of edge weights. Although WBST is semantically
close to MST , the structure of the solution set is different and the bound consistency
algorithms that we have developed are very different from the ones described in this pa-
per. Perhaps the most obvious difference between the two constraints is that for WBST ,
in the most general case (when all three variables are not fixed) it is NP-hard to decide
whether a solution exists (and hence also to filter the constraint to bound consistency).
For MST , it is possible to do this in polynomial time. From the application point of
view, WBST is a cost-based filtering constraint (i.e., an optimization constraint) and it
can be used in conjunction with the MST constraint to get more pruning.

In [1], I. Aron and P. Van Hentenryck addressed the robust spanning tree problem
with interval data. They describe an algorithm that partially solves a special case of the



154 G. Dooms and I. Katriel

filtering problem that we address in this paper. More precisely, for the case in which the
graph is fixed, they show how to detect which edges must be removed from the upper
bound of the tree domain. Finally, our filtering algorithms apply techniques that were
previously used in King’s MST verification algorithm [11] and Eppstein’s algorithm for
computing the k smallest spanning trees [6] of a graph.

Roadmap. The rest of the paper is structured as follows. Section 2 contains some
preliminaries, definitions and conventions used throughout the paper. In Section 3 we
describe a preprocessing step and invariants that are maintained during execution of
the algorithms described in subsequent sections. Sections 4 and 5 form the core of
the paper and describe the bound consistency algorithms for increasingly complicated
cases.

2 Preliminaries and Notation

2.1 Set and Graph Variables

The domain D(x) of a set variable x is specified by two sets of elements: The set of
elements that must belong to the set assigned to x (which we call the lower bound of
the domain of x and denote by D(x)) and the set of elements that may belong to this
set (the upper bound of the domain of x, denoted D(x)). The domain itself has a lattice
structure corresponding to the partial order defined by set inclusion. In other words, for
a set variable x with domain D(x) = [D(x), D(x)], the value v(x) that is assigned to
x in any solution must be a set such that D(x) ⊆ v(x) ⊆ D(x).

A graph variable can be modelled as two set variables V and E with an inherent
constraint specifying that E ⊆ V × V . Alternatively, the domain D(G) of a graph
variable G can be specified by two graphs: A lower bound graph D(G) and an upper
bound graph D(G), such that the domain is the set of all subgraphs of the upper bound
which are supergraphs of the lower bound. We will assume the latter because it is more
convenient when describing filtering algorithms.

2.2 Assumptions and Conventions

The constraint considered in this paper is defined on graph variables as well as scalar
variables. The latter represent weights and are assigned numbers. We will assume that
the domain of each scalar variable is an interval, represented by its endpoints. The num-
ber of entries in the vector W is equal to the number of edges in G. We will abstractly
refer to W [e] as the entry that contains the weight of edge e, ignoring implementation
details. We also allow those intervals to be filtered to an empty interval when the cor-
responding edge does not belong to any solution, ignoring the fact that some constraint
systems do not allow empty domains.

When the cardinality of the domain of a variable is exactly 1, we say that the variable
is fixed. We will denote fixed variables by lowercase letters and non-fixed variables by
capital letters.
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2.3 Bound Consistency

For a constraint that is defined on variables whose domains are intervals, specified by
their endpoints, computing bound consistency amounts to shrinking the variable do-
mains as much as possible without losing any solutions. If the domain is an interval
from a total order (which is the case for the entries of W ), the bound consistent domain
is specified simply by the smallest and the largest value that the variable can assume in
a solution.

On the other hand, when the domain is an interval of a partial order (which is the case
with a graph variable), the lower bound is the intersection of all values that the variable
can assume and the upper bound is the union of all such values. Note that the domain
endpoints might not be values that the variable can assume in a solution. Since a bound
consistency algorithm may only remove elements from a variable domain but never
add new ones, filtering the domain of a graph variable to bound consistency amounts
identifying which of the nodes and edges in its upper bound graph must belong to the
graph in all solutions (and placing them in the lower bound graph) as well as which
nodes and edges may not belong to the graph in any solution (and removing them from
the upper bound graph).

3 Side Constraints and Invariants

Throughout the paper, we will assume that the following filtering tasks have been per-
formed in a preprocessing step: First, the algorithm applies the bound consistency algo-
rithms described in [4,5] for the constraints Nodes(G) = Nodes(T ), Subgraph(T,G)
(which specifies that T is a subgraph of G) and Tree(T ) (which specifies that T is con-
nected and acyclic). Filtering for theTree(T ) constraint removes fromD(T ) arcs whose
endnodes belong to the same connected component ofD(T ), and enforces that T is con-
nected: If there are two nodes in D(T ) that do not belong to the same connected com-
ponent of D(T ) then the constraint has no solution. Otherwise, any bridge or cut-node
in D(T ) whose removal disconnects two nodes from D(T ) is placed in D(T ).

Note that the conjunction of Subgraph(T,G) and Tree(T ) enforces Connected(G)
and that we may assume that bound consistency for Subgraph(T,G) is maintained
dynamically at no asymptotic cost, as described in [5].

Finally, since D(T ) is contained in the MST in any solution, we reduce the problem
to the case in which D(T ) is initially empty, as follows. We contract all edges of D(T )
in g and obtain the graph g′. For any MST t′ of g′, the edge-set t′∪D(T ) is a minimum-
weight spanning tree of g that contains D(T ).

4 Fixed Edge Weights

In this section we assume that the edge weights are fixed. That is, the domain of W
contains exactly one vector. We separately handle each of the three subcases where at
least one other variable is not fixed.
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4.1 Non-fixed Graph and Fixed Tree

We first tackle the simple case MST (G, t, w), where dom(G) = [D(G), D(G)] is not
fixed while the minimum spanning tree and the edge weights are.

After applying the filtering described in Section 3 for Subgraph(T,G) and node-set
equality, it remains to enforce that t is an MST of the value assigned to G. This means
that we need to remove from D(G) any edge (u, v) which is not in t and which is
lighter than all edges on the path p in t between u and v; by the cycle property, the
heaviest edge on the cycle p ∪ {(u, v)} (which is in t), cannot belong to any MST, so
the cycle must not be in G. The only way to exclude the cycle is to remove (u, v) from
D(G). This can be done as follows in linear time: For each edge e = (u, v) in D(G)\ t,
compute the maximum edge weight w∗ of an edge on the path from u to v in t using
King’s algorithm [11], which receives a weighted tree and, in linear time, constructs
a data structure that supports constant-time queries of the form ”which is the heaviest
edge on the tree path between u and v?” If w(e) < w∗, e may not belong to G. If it is
in D(G) the constraint has no solution. Otherwise, remove it from D(G).

4.2 Fixed Graph and Non-fixed Tree

We turn to the case MST (g, T, w) where the variables G and W of the constraint are
fixed. The tree T is constrained to be a minimum spanning tree of the given graph g and
the bound-consistency problem amounts to finding the union and the intersection of all
MSTs of g.

Analysis of g to filter D(T ). We now describe a variant of Kruskal’s algorithm [12]
that constructs an MST of g while partitioning its edge-set into the sets M andatory(g),
Possible(g) and Forbidden(g), defined as follows.

Definition 1. Let g be a connected graph. The sets M andatory(g), Possible(g) and
Forbidden(g) contain, respectively, the edges that belong to all, some or none of the
MSTs of g.

For an unconnected graph g whose maximal connected components are g1, . . . , gk,
we extend this definition to be the union of the respective set for each maximal connected
component of g. Formally,

M andatory(g) = ∪k
i=1M andatory(gi),

Possible(g) = ∪k
i=1Possible(gi),

Forbidden(g) = ∪k
i=1Forbidden(gi),

As in Kruskal’s original version, the algorithm begins with a set of n singleton nodes
and grows a forest by repeatedly inserting a minimum weight edge that does not create
a cycle. The difference is that instead of considering one edge at a time, in each iteration
we extract from the queue all edges of minimal weight, determine which of them are
mandatory, possible or forbidden, and only then attempt to insert them into the forest.
Let tk be the forest constructed by using edges of weight less than k and let Ek be the
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set of edges of weight k. Let (u, v) ∈ Ek and let C(u) and C(v) be the connected
components in tk of u and v, respectively. If C(u) = C(v), then by the cycle property
(u, v) does not belong to any MST of g (i.e., (u, v) ∈ Forbidden(g)). If C(u) �= C(v)
and (u, v) is a bridge in tk ∪Ek , then by the cut property (u, v) belongs to all MSTs of
g (i.e., (u, v) ∈ M andatory(g)).

The running time of this algorithm is O(Sort(m) + mα(m,n)) where Sort(m) is
the time required to sort the edges by weight and α is the inverse-Ackerman upper
bound of the union-find data structure [16] that represents the trees of the forest. When
a batch of edges is extracted from the queue we need to perform a bridge computation
in the graph composed of these edges to distinguish between possible and mandatory
edges. Bridge detection takes time which is linear in the number of edges [15] and each
edge of g participates in one bridge computation.

Filtering the Domain of T . We are now ready to use the results of the analysis of g
to filter the domain of T . This entails the following steps: (1) For each mandatory edge
e ∈ M andatory(g), if e /∈ D(T ) then there is no solution. Otherwise, place e in D(T ).
(2) For each forbidden edge e ∈ Forbidden(g), if e ∈ D(T ) then there is no solution.
Otherwise, remove e from D(T ).

Since M andatory(g) and Forbidden(g) are disjoint, the two steps have no effect
on each other, so they may be applied in any order, and it suffices to apply each of them
only once. But could we achieve more filtering by repeating the whole algorithm again,
from the preprocessing step through the analysis of g to the filtering steps? We will now
show that we cannot.

Let e be an edge that was placed in D(T ) in the first filtering step. Then e ∈
M andatory(g), which means that it belongs to all MSTs of g. Let t1 and t2 be the
two trees that e merges together when it is inserted into the forest by our variant of
Kruskal’s algorithm on g. Then the edges that were extracted from the queue before e
do not contain an edge between t1 and t2, because in that case e would have been placed
in either Possible(g) or Forbidden(g). This means that if e is in D(T ) from the start,
all edges lighter than e would be classified as before. Clearly, the edges heavier than e
see the same partition of the graph into trees whether e is in D(T ) or not. Since e is
mandatory, the edges that have the same weight as e do not belong to a path between
e’s endpoints that uses only edges with weight at most equal to that of e. Hence, placing
e in D(T ) cannot change their classification.

Now, let e be an edge that was removed from D(T ) in the second filtering step. Then
e ∈ Forbidden(g), which means that it does not belong to any MST of g. Then its
removal from D(T ) does not have any effect on the classification of other edges as
Forbidden, Possible or M andatory.

We do not need to apply the filtering steps of Section 3. The nodes of T are fixed
so we cannot detect new cut nodes. Clearly an impossible edge does not disconnect
D(T ) (otherwise it would be mandatory by definition). We show that the pruning of
D(T ) cannot creates new bridges then these bridges are already in M andatory(g).
We consider an impossible edge e is removed and creates a bridge in D(T ). As it is
impossible, its endpoints are connected by a path composed of edges lighter than e.
Then when the bridge e′ of weight k was processed, the edge e was not in the graph gk,
and e′ was a bridge in gk. Hence it was classified as mandatory.
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In conclusion, if we apply the algorithm again, the analysis of g would classify all
edges in the same way as before. In other words, applying the algorithm again will not
result in more filtering.

4.3 Non-fixed Graph and Tree

We now turn to the case MST (G, T,w), in which both the graph and the tree are not
fixed (but the edge weights are). Recall that we begin by applying the preprocessing
step described in Section 3.

Analyzing D(G) to filter D(T ). The main complication compared to the fixed-graph
case is in the analysis of the set of graphs described by D(G) in order to filter D(T ).
We extend the definition of the sets M andatory, Possible and Forbidden for a set of
graphs as follows:

Definition 2. For a set S of graphs, the set M andatory(S) contains the edges that
belong to every MST of any connected graph in S, the set Forbidden(S) contains the
edges that do not belong to any MST of a connected graph in S and the set Possible(S)
contains all other edges in the union of the graphs in S.

We need to identify the sets M andatory(D(G)) and Forbidden(D(G)). We will show
that it suffices to analyze the two bounds of the graph domain, namely the graphs D(G)
and D(G).

Lemma 1 (Downgrade lemma). The addition of an edge to a graph can only down-
grade the state of the other edges of this graph. Here, downgrading means staying
the same or going from ”mandatory” to ”possible” to ”forbidden”. Formally: Let
g+ = g ∪ {e = (u, v)} where e /∈ g and let k = w(e). Then:

∀a ∈ g :
(
a ∈ M andatory(g+) ⇒ a ∈ M andatory(g)

)
∧(

a ∈ Possible(g+)⇒ a ∈ M andatory(g) ∪ Possible(g)
)

Proof. We compare the classification of the edges obtained by running the algorithm of
Section 4.2 twice in parallel, one copy called A running on the graph g and one copy
called A+ running on g+. Clearly, as long as the edge e is not popped from the queue,
the edges are classified in the same way in both graphs.

If e is an impossible edge of g+, then the edges popped after it will still be classified
in the same way in both graphs. Otherwise, it can affect the fate of the edges that are
popped at the same time or later:

Case 1. If u and v belong to trees that are also merged by another edge e′ with weight
equal to that of e, then both e and e′ are classified in g+ as possible, while in g the edge
e′ was classified as either possible or mandatory (depending on whether it was the only
path connecting these trees in the batch). After this, the partition of the nodes of the
graphs into trees is the same for g and g+, and the algorithms classify the remaining
edges in the same way.
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Case 2. Otherwise, A leaves u and v in different trees while A+ merges the two trees.
At some point, both algorithms see a batch whose insertion connects u and v in g. These
edges will be classified by A as either possible (if there is more than one) or mandatory
(if there is only one). On the other hand, A+ will classify them as impossible because
their endpoints already belong to the same tree. In all other steps, both algorithms clas-
sify the edges in the same way. ��

Note that the addition of a node of degree 1 and its incident edge to a graph does not
change the status of the other edges in the graph. This edge just becomes mandatory.

We now show how to identify the sets Forbidden(D(G)) and M andatory(D(G)).
The set Possible(D(G)) consists of the remaining edges in D(G). Recall that the set
Forbidden(D(G)) is the union of the forbidden edges of each maximal connected
component of D(G).

Theorem 1. The set Forbidden(D(G)) of edges that do not belong to any MST of a
connected graph in D(G) is

Forbidden(D(G)) = Forbidden(D(G)).

Proof. A direct consequence of the downgrade lemma. ��

We now turn to computing the M andatory set. The following lemma states that the
mandatory edges belong to the mandatory set of D(G). Note that this does not follow
from the definition of M andatory(G), because if D(G) is not connected, it does not
belong to D(G).

Lemma 2. The set of edges that belong to all MSTs of all connected graphs in D(G)
is contained in the set of mandatory edges for D(G), i.e.,

M andatory(D(G)) ⊆ M andatory(D(G)).

Proof. If D(G) is empty, M andatory(D(G)) = ∅. Otherwise, there are two cases: If
D(G) is a connected graph, then it belongs to D(G) and the lemma holds by definition.
Otherwise, we may assume that D(G) is connected. This follows from the pruning rules
of the connected constraint in the preprocessing step: Otherwise either the constraint has
no solution or D(G) is empty or we can remove all but one connected component of
D(G). Let D(G)′ be the graph obtained from D(G) by contracting every connected
component of D(G).

Let g be a minimal connected graph in D(G), i.e., a graph in D(G) such that the
removal of any node or edge from g results in a graph which is either not connected or
not in D(G). Then g consists of the union of D(G) with a set t′ of additional nodes
and edges in D(G) \ D(G). The set of mandatory edges of g, then, is the union of
M andatory(D(G)) and the mandatory edges in t′.

Since we assume that the preprocessing step was performed, we know that every
edge in D(G) \ D(G) is excluded from at least one connected graph in D(G): Oth-
erwise, it is a bridge in D(G) that connects two mandatory nodes and was not in-
cluded into D(G) in the preprocessing step, a contradiction. We get that the inter-
section of the mandatory sets over all minimal connected graphs in D(G) is equal to
M andatory(D(G)).
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Since every connected graph in D(G) is a supergraph of at least one minimal con-
nected graph of D(G), we get by the downgrade lemma that the mandatory set for any
graph is contained in the mandatory set for some minimal graph. This concludes the
proof. ��

Theorem 2. The set M andatory(D(G)) of edges that belong to all MSTs of graphs in
D(G) is:

M andatory(D(G)) = M andatory(D(G)) ∩M andatory(D(G))

Proof. If an edge is present in all MSTs of all connected graphs inD(G) then it is present
in all MSTs of D(G) and all MSTs of the minimal connected graphs of D(G). Hence,
by lemma 2, M andatory(D(G)) ∩M andatory(D(G)) ⊇ M andatory(D(G)). As-
sume that there exists an edge e in M andatory(D(G)) ∩M andatory(D(G)) which
is not in M andatory(D(G)). Then there is a graph g ∈ D(G) such that e is not in
M andatory(g). Since g ⊂ D(G), we can obtain D(G) by a series of edge insertions.
One of these insertions turned e from a non-mandatory edge into a mandatory one, in
contradiction to the downgrade lemma. ��

Example 1. Assume that the domain ofG is the graph shown in Figure 1, where the solid
edges are in D(G) and the dashed edge is in D(G) \D(G). Then M andatory(D(G))
contains the edges weighted 1 and 2, while the edge of weight 3 is forbidden. On the
other hand, M andatory(D(G)) contains the edges weighted 2 and 3, because the edge
of weight 1 is not in D(G). Hence, only the edge of weight 2 is mandatory in all graphs
of D(G).

Fig. 1. The domain of G in Example 1

Filtering the Domains of G and T . Using the results of the previous sections, we
derive a simple algorithm to filter the domains of T and G to bound consistency.

As before, we begin by applying the preprocessing step of Section 3. We then pro-
ceed as follows.

Step 1: We filter D(T ) according to M andatory(D(G)) and Forbidden(D(G)) as
in Section 4.2. By Theorems 1 and 2, we have these two sets if we know Forbidden
(D(G)), M andatory(D(G)) and M andatory(D(G)). The latter can be computed by
applying the algorithm described in Section 4.2 to both bounds of D(G). Once these
sets have been computed, we use them as in Section 4.2 to filter D(T ).

Step 2: To filter D(G), we need to identify edges that cannot be in G because otherwise
T would not be the minimum spanning tree of G. An edge (u, v) has this property iff
on every path P in D(T ) between u and v there is an edge which is heavier than (u, v).
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Example 2. To illustrate this condition, assume that the domain of T is as described in
Figure 2 and that D(G) contains the edge (u, v) with weight 2. Although u and v are
not connected in D(T ), any path from u to v in a tree in D(T ) contains an edge which
is heavier than (u, v), so (u, v) must not be in G. On the other hand, if the weight of the
edge (x, y) is 1, then (u, v) can be in G if (x, y) ∈ T .

Fig. 2. The domain of T in Example 2. Edges of D(T ) and solid and those of D(T ) \ D(T ) are
dashed.

To find these edges, we apply a modified version of the algorithm of Section 4.2 to
D(G): We reverse the contraction of the edges of D(T ) and create a sorted list of all
edges of D(G), including those of D(T ). As before, we begin with a graph H that
contains the nodes of D(G) as singletons and at each step we extract from the queue
the batch B of all minimum-weight edges. We first insert the edges of B ∩ D(T ) into
H and contract each of them by merging the connected components that its endpoints
belong to. Then, we remove from D(G) every edge in B \ D(T ) that connects two
different connected components of H ; If any of these edges are in G, then at least one
of them must belong to the MST of G. But they cannot be in T , so we must make sure
that they are not in G either.

After applying Step 2, we need to apply Step 1 again. However, we show that after
doing so we have reached a fixpoint. We first show that the second application of the
first step does not change D(T ). Since the second step depends only on D(T ), we are
done if we use the D(G) computed by the second step to update D(T ).

Consider the impact of the removal of a non-tree edge e (i.e., an edge which is not in
D(T )) from D(G) during Step 1. The set Forbidden is not affected because it depends
only on D(G). Assume that the removal of e causes the insertion of an edge e′ into
D(G). Then e′ was a bridge in D(G)\ {e}. But since e /∈ D(T ), e′ is a bridge in D(T )
so it already was in D(T ), and hence also in D(G), a contradiction. This proves that
we have reached a fixed-point.

5 Handling Non-fixed Weights

We now turn to the case where the edge weights are not fixed, i.e., the domain of each
entry in W is an interval of numbers, specified by its endpoints. Once again, we begin
with simple cases where some of the variables are fixed and gradually build up to the
most general case.
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5.1 Fixed Graph and Tree

When the graph and tree are fixed (MST (g, t,W )), the filtering task is to compute the
minimum and maximum weight that each edge can have such that t is an MST of g. 1

A non-tree edge (u, v) must not be lighter than any edge on the path in t between u
and v. We can apply King’s algorithm to t, while assuming that each tree edge has
the minimum possible weight. Then, if the data structure returns the edge e′ for the
query e = (u, v), we filter the domain of the weight of e, denoted W [e], by setting
D(W [e])← D(W [e]) ∩ [D(W [e′]),∞].

For a tree edge e, let t1(e) and t2(e) be the two trees obtained by removing e from
t. Then e must not be heavier than any other edge in g that connects a node from t1(e)
and a node from t2(e). Let r(e) be the minimum weight edge between t1(e) and t2(e)
in the graph g \ e. Assuming that every non-tree edge has the maximal possible weight,
we can find the r(e)’s for all tree edges within a total of O(mα(m,n)) time [6,17].
Then, for every e ∈ t we set D(W [e])← D(W [e]) ∩ [−∞, D(W [r(e)])].

Now, if there is an entryW [e] in the weights vector with D(W [e]) = ∅, the constraint
has no solution.

5.2 Fixed Tree and Non-fixed Graph

When the graph is not fixed but the tree is, the node-set of the graph is determined by
the tree. After filtering D(G) to equate the node-sets and to contain all edges of t, we
have that the endpoints of all non-tree edges, i.e., edges of D(G) \ t, belong to t.

We apply the filtering step of the previous section to the weights of the non-tree
edges. If this results in D(W [e]) = ∅ for some edge e, there are now two options: If
e ∈ D(G) \D(G) we remove e from D(G), and if e ∈ D(G) then the constraint has
no solution.

Next, we filter the weights of tree edges by applying the algorithm of the previous
section on D(G). That is, for each tree edge e we find the weight of the lightest edge
r(e) in D(G) that connects t1(e) and t2(e), and shrink D(W [e]) as before. To see why
it suffices to consider D(G), note that an edge e′ in D(G) \D(G) is excluded from at
least one graph in D(G), and in this graph, of course, e may be heavier than e′.

5.3 Fixed Graph and Non-fixed Tree

In Section 4.2, we handled the same problem with fixed weights by a variant of
Kruskal’s algorithm that required sorting the edges by weight. Since one weight in-
terval can now overlap another, there is no longer a total order of the edge weights. We
will show how to adapt the Kruskal-based algorithm to this case.

Phase 1: First, the algorithm considers edges in g. Instead of a list of edge-weights, we
create a list of the endpoints of these edges’ domains. We sort them in non-decreasing

1 This problem is tightly related to the MST sensitivity analysis problem, where we are given a
graph with fixed edge weights and its MST and need to determine, for each edge, the amount
by which its weight can be perturbed without changing the property that the tree is an MST of
the graph.
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order, breaking ties in favor of lower bounds. Now, D(W [e]) or D(W [e]) is between
D(W [e′]) and D(W [e′]) in the list if and only if D(W [e]) ∩D(W [e′]) �= ∅.

We then sweep over this list and examine each domain endpoint in turn. We say that
an edge e is unreached before D(W [e]) was processed, open if D(W [e]) was already
processed but D(W [e]) was not, and closed after D(W [e]) was processed. We maintain
a graph H which is initially a set of n singleton nodes. In addition, we maintain a
union-find data structure UF that represents the connected components of the subgraph
H ′ of H that contains only closed edges. Initially, the union-find data structure also
has n singletons. During the sweep, when processing D(W [e]) where e = (u, v), we
mark e as open. If Find(UF , u) = Find(UF , v), we place e in the forbidden set.
Otherwise, we insert it into H . When processing D(W [e]) where e = (u, v), we mark
e as closed. If e is a bridge in H , we place it in the mandatory set Finally, we perform
Union(UF , u, v).

After the sweep, all edges of the mandatory set are included in D(T ) and all of the
impossible edges are removed from D(T ). Naturally, if this violates D(T ) ⊆ D(T ),
the constraint is inconsistent.

Phase 2: Next, the algorithm filters the weights of all edges. For a non-tree edge e, i.e.,
an edge e ∈ g \D(T ), the weight must be high enough so that e does not belong to any
MST of g. In other words, the weight of e must be higher than the maximum weight
of an edge on the tree path connecting its endpoints. In Section 4.1 we mentioned that
King’s algorithm can find the desired threshold when the tree is fixed. But how do
we find the MST in D(T ) that minimizes the weight of the heaviest edge on the path
between u and v? Clearly, the desired weight is the lower bound of the domain of this
edge’s weight. The following lemma implies that it suffices to find any MST in D(T )
(while assuming that each edge has the minimum possible weight), and apply King’s
algorithm to this MST.

Lemma 3. Let g be a graph with a fixed weight w(e) for each edge e and let t1 and t2
be two MSTs of g. Let u and v be two nodes in g, let p1 be the path between u and v in
t1 and let p2 be the path between u and v in t2. Then

max
e∈p1

w(e) = max
e∈p2

w(e)

Proof. Consider the symmetric difference p1 ⊕ p2 of the two paths. It consists of a
collection of simple cycles, each of which consists of a subpath of p1 and a subpath
of p2. Let c be one of these cycles. By the cycle property, any MST of g excludes a
maximum weight edge from c (see Figure 3). Hence, there are at least two maximum
edge weights c, one in c∩ p1 and one in c∩ p2. Since this is true for every cycle, we get
that the maximum weights on each of the paths must be equal. ��

For an edge e ∈ D(T ), i.e., an edge which belongs to all MSTs, the weight must
not be so high that there is a cycle in g on which this is the heaviest edge. In other
words, we need to find an MST t of g that contains D(T ) and which maximizes the
minimum weight of a non-tree edge re that together with t forms a cycle that contains
e. In Section 5.1 we mentioned that the desired threshold for all tree edges can be found
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Fig. 3. Illustration of the proof of lemma 3. A cycle and its p1 and p2 subpaths, the maximum
weight edges excluded from each MST.

in O(mα(m,n)) time when the tree is fixed. Once again, we show that it suffices to
apply the same algorithm to one of the MSTs in D(T ). Clearly, the desired weight is
the upper bound of the domain of an edge weight. Furthermore, reducing the weight of
any edge in g can only decrease the value of w(re). The following lemma implies that
it suffices to find any MST of g that contains D(T ) (while assuming that each edge has
the maximum possible weight), and use this MST to compute the thresholds for all tree
edges.

Lemma 4. Let g be a graph with a fixed weight w(e) for each edge e and let t1 and t2
be two MSTs of g. Let e be an edge in t1 ∩ t2, let r1 be the minimum weight edge that
together with t1 closes a cycle that contains e and let r2 be the minimum weight edge
that together with t2 closes a cycle that contains e. Then

w(r1) = w(r2)

Proof. It is known (see, e.g., Lemma 3 in [6]) that each of t1∪{r1}\{e} and t2∪{r2}\
{e} is an MST of g\{e}. Since all MSTs of a graph have equal weight, w(r1) = w(r2).

��
The time complexity of the algorithm described in this section is O(Sort(m)) to sort
the endpoints of the domains of the edge weights and O(mα(m,n)) for the modi-
fied Kruskal algorithm, incremental connectivity [16] and bridge computation [18], two
MST computations and filtering of the edge weights.

5.4 General Case: Non-fixed Graph and Non-fixed Tree

We now turn to the most general case, in which all variables are not fixed. In the case of
the WBST constraint, we were able to find efficient bound consistency algorithms for
special cases, but the most general case is NP-hard. In contrast, we will show that the
MST constraint is not NP-hard in its most general form. The naı̈ve bound consistency
algorithm that we sketch in this section has a running time of O(mn(m+log n)), which
cannot be considered practical. We leave it as an open problem to find a more efficient
method to approach the general case.

As before, we apply the filtering steps that follow from equality of the node-sets, in-
clusion of T in G and the connectedness of G and T . The main complication compared
to the cases considered in the previous sections is in filtering the domains of the edge
weights, because now the node-sets of the graph and the tree are not fixed. Again, we
need to filter the lower bound weight of non-tree edges and the upper bound weight of
tree edges.
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Filtering the weights of non-tree edges. An edge e = (u, v) in D(G) \ D(T ) cannot
belong to the tree and therefore it must not be lighter than the maximum weight edge
on the tree path from u to v. Let t be a tree and let t(u, v) be the maximum weight edge
on the path in t between u and v. We need to determine the minimum possible value
of t(u, v) over all trees in D(T ). Clearly, this weight would be a lower bound of the
domain of some edge weight.

We set edge weights of all edge in D(T ) to their lower bounds and contract the
edges of D(T ). In the remaining graph, we need to find a simple path from u to v
that minimizes the maximum weight of an edge along it. This can be done in O(m +
n logn) time by a dynamic programming approach that uses a variation of Djikstra’s
shortest-paths algorithm [3], where the sum of edge weights is replaced by a maximum
computation. Since this computation needs to be repeated m times, once for every non-
tree edge, the total time is O(m(m + n logn)).

Filtering the weights of tree edges. A tree edge e must not be heavier than any non-
tree edge that connects two nodes u and v such that e is on the tree path between u
and v. To find the maximum possible weight of an edge (u, v) ∈ D(T ), we will show
how to check, for each edge (x, y) ∈ D(G) \D(T ), whether there is a tree t ∈ D(T )
that contains (u, v), such that (x, y) is the minimum weight edge connecting the two
components of t \ {(u, v)}.

LetE′ = (D(T )\{(u, v)})∪{e|e ∈ D(G)∩D(T )∧w(e) < w(x, y)}. If texists, then
each edge ofE′ is either in t or connects nodes that belong to the same connected compo-
nent of t\{(u, v)}. So we compute connected components ofG′ = (Nodes(D(G)), E′).
If x and y are in the same component, there is no such t. Otherwise, contract each con-
nected component and merge the component of u with the component of v. Let G′′ be
the resulting graph. For a node w ∈ G′, we will refer to the node of G′′ that represents
the connected component of w by CC (w). We will say that a node in G′′ is mandatory
if it represents a component in G′ that contains at least one node from D(T ).

Insert into G′′ all the edges of D(T ) which are not heavier than (x, y). It remains to
determine whether we can make a tree that spans CC (x), CC (y), CC (u) = CC (v)
and all the mandatory nodes of G′′, such that CC (u) is on the path from CC (x) to
CC (y). To do this, root G′′ at the CC (u) and find its dominators (in linear time) [9].
If CC (x) and CC (y) have a common dominator, such a tree does not exist. Otherwise,
find two disjoint paths, one from CC (u) to CC (x) and one from CC (u) to CC (y).
Then add edges to the tree to make it span all mandatory nodes.

This test takes linear time, and needs to be repeated at most m times for every edge
in D(T ), i.e., O(mn) times. The total running time is therefore O(m2n).

6 Conclusion

We have shown that it is possible to compute bound consistency for the MST constraint
in polynomial time. For the special cases in which at least one of the variables is fixed,
we found linear or almost-linear time algorithms. For the most general case, our up-
per bound is cubic and relies on a brute-force algorithm. It remains open whether the
techniques we used for the simpler cases can be generalized to an efficient solution for
MST in its most general form.
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Abstract. Algorithm selection, algorithm portfolios, and randomized restarts,
can profit from a probabilistic model of algorithm run-time, to be estimated from
data gathered by solving a set of experiments. Censored sampling offers a prin-
cipled way of reducing this initial training time. We study the trade-off between
training time and model precision by varying the censoring threshold, and ana-
lyzing the consequent impact on the performance of an optimal restart strategy,
based on an estimated model of runtime distribution.

We present experiments with a SAT solver on a graph-coloring benchmark.
Due to the “heavy-tailed” runtime distribution, a modest censoring can already
reduce training time by a few orders of magnitudes. The nature of the optimiza-
tion process underlying the restart strategy renders its performance surprisingly
robust, also to more aggressive censoring.

1 Introduction

The interest in algorithm performance modeling is twofold. An accurate model can pro-
vide useful insights for analyzing algorithm behavior [1]; it can as well be used to au-
tomate selection [2], or, more generally, allocation of computational resources among
different algorithms. In the context of computational performance analysis of solvers
for constraint satisfaction, an interest has been recently growing around the existence,
in some structured domains, of a second phase transition, in the under-constrained re-
gion [3], where, for some problems, the run-time distribution exhibits “heavy tails”, i.e.,
is Pareto for both very large and very small values of time [4]. In this case, the prob-
ability mass of the algorithm’s runtime distribution can effectively be shifted towards
lower time values, by simply running multiple copies of the same algorithm in parallel
(algorithm portfolios [5]), or by repeatedly restarting a single algorithm, each time with
a different initialization or random seed [6], as this allows to avoid the “unlucky” long
runs, and profit from the very short ones.

Both strategies can be rendered more efficient if a model of run-time distribution
(RTD) is available for the algorithm/problem combination at hand.1 In the context of

1 In the following, for the sake of readability, we will often refer to the RTD of a problem in-
stance, meaning the RTD of different runs of the randomized algorithm of interest on that
instance; and the RTD of a problem set, meaning the RTD of different runs of the random-
ized algorithm of interest, each run on a different instance, uniform randomly picked without
replacement from the set.
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c© Springer-Verlag Berlin Heidelberg 2006
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algorithm portfolios, models can be used to allocate resources to different competing
algorithms, or to evaluate the optimal number of components for a homogeneous port-
folio [7]. In the case of restarts, it has been shown that the knowledge of the RTD allows
to determine an optimal strategy, based on a constant cutoff [6].

What makes these approaches problematic is the huge computation time required,
not for training the model, but for gathering the training data itself, as one might need
to solve a large number of problems, in order to obtain a reliable sample of run-time
values. One way of countering this is offered by censored sampling, a technique com-
monly used for lifetime distribution estimation (see, e.g., [8]), which allows to bound
the duration of each training experiment, and still exploit the information conveyed by
runs that reach the censoring threshold.

This obviously has a cost, to be paid in terms of the precision of the obtained model.
This cost can in principle be measured according to traditional statistical goodness-of-
fit tests, but if the sole purpose of the model is to set up a portfolio, or a restart strategy,
in order to gain on future performance, then the only quantity of practical interest is the
loss in performance induced by the censored sampling.

The main objective of this work is to analyze this trade-off between training time and
efficiency, in the case of optimal restarts. To this aim we present experiments with a ran-
domized version [4] of a well known complete SAT solver [9], on a benchmark of graph
coloring problems from SATLIB [10], on which heavy-tailed behavior can be observed.

In the following, after some additional references (Sect. 2), censored sampling
(Sect. 3) and restart strategies (Sect. 4) are briefly introduced, followed by a description
(Sect. 5) and discussion (Sect. 6) of experimental results.

2 Previous Work

As an extensive review of the literature on modeling run-time distribution is beyond the
scope of this paper, we will limit to a few examples. The behavior of complete SAT
solvers on solvable and unsolvable instances near phase transition have been shown to
be approximable by Weibull and lognormal distributions respectively [11]. Heavy-tailed
behavior is observed for backtracking search on structured underconstrained problems
in [3,4], but also in many other problem domains, such as computer networks [12].
Interesting hypothesis on the mechanism behind it are explored in [1]. The performance
of local search SAT solvers is analyzed in [13,14], and modeled in [15] using a mixture
of exponential distributions.

The literature on algorithm portfolios [5,7], anytime algorithms [16,17], and restart
strategies [18,6,19,20,12] provides many examples of the application of performance
modeling to resource allocation. In [21] we presented a dynamic approach, in which a
conditional model of performance is updated and progressively exploited during train-
ing. See also [22] for more references.

3 Censored Sampling

Consider a “Las-Vegas” algorithm [6] running k times on instances of a family of
problems, on which we believe that the algorithm will display a similar behavior. Be
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T = {t1, t2, ..., tk} the set of outcomes of the experiments. In order to model the prob-
ability density function (pdf) of solution time t, we can choose a parametric function
g(t|θ), with parameter θ, and then express the likelihood of T given θ, as

L(T |θ) =
k∏

i=1

L(ti|θ) =
k∏

i=1

g(ti|θ) (1)

We can then search the value of θ that maximizes (1), or, in a Bayesian approach, intro-
duce a prior p(θ) on the parameter, and maximize the posterior p(θ|T ) ∝ L(T |θ)p(θ).

Type I censored sampling (see, e.g., [8]) consists in stopping experimental runs that
exceed a cutoff time tc, and replacing the corresponding multiplicative term in (1) with

Lc(tc|θ) =
∫ ∞

tc

g(τ |θ)dτ = [1−G(tc|θ)] (2)

where G(t|θ) =
∫ t

0
g(τ |θ)dτ is the conditional cumulative distribution function (CDF)

corresponding to g. This allows to limit the computational cost of running the exper-
iments, while exploiting the information carried by unsuccessful runs. In Type II cen-
sored sampling, k experiments are run in parallel, and stopped after a desired num-
ber u of uncensored samples is obtained. In this way the fraction of censored samples
c = (k − u)/k is set in advance, while the censoring threshold tc for the remaining
k − u runs is determined by the outcome of the experiments, as the ending time of the
u-th fastest experiment.

4 Optimal Restart Strategies

A restart strategy consists in executing a sequence of runs of a randomized algorithm,
in order to solve a same problem instance, stopping each run k after a time T (k) if no
solution is found, and restarting the algorithm with a different random seed; it can be
operationally defined by a function T : N → R+ producing the sequence of thresholds
T (k) employed. Luby et. al [6] proved that the optimal restart strategy is uniform, i. e.,
one in which a constant T (k) = T is used to bound each run. They show that, in
this case, the expected value of the total run-time tT , i. e., the sum of runtimes of the
successful run, and all previous unsuccessful runs, can be evaluated as

E(tT ) =
T −

∫ T

0 F (τ)dτ

F (T )
(3)

where F (t) is the cumulative distribution function (CDF) of the run-time t for an un-
bounded run of the algorithm, i. e., a function quantifying the probability that the prob-
lem is solved before time t. If such distribution is known, an optimal cutoff time T ∗ can
be evaluated minimizing (3). Otherwise, they suggest a universal non-uniform restart
strategy U , with cutoff sequence {1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, ...},2 proving

2 The sequence is composed of powers of 2: when 2j−1 is used twice, 2j is the next. More
precisely, k = 1, 2, ..., T (k) := 2j−1 if k = 2j − 1; T (k) := T (k − 2j−1 + 1) if 2j−1 ≤
k < 2j − 1.
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that its computational performance tU is, with high probability, within a logarithmic
factor worse than the expected total run-time E(tT ∗) of the optimal strategy.

5 Experiments

A model F̂ of the RTD on a set of problems can be obtained from censored and uncensored
runtime samples; the performance of the corresponding sub-optimal uniform strategy T̂ ,
evaluated minimizing (3) with F̂ in place of the real F , will depend on the precision of
the estimated F̂ , which will in turn depend on the number of samples used to estimate it,
and the amount of censoring. If we fix the number of samples, and vary the fraction of
censored samples, we expect to observe a trade-off between the time spent running the
training experiments, from whose outcomes F̂ is estimated, and the performance of the
corresponding T̂ . It is precisely this trade-off that we intend to analyze here.3

In order to do so, we set up a simple learning scheme. Given a set of problems,
and a randomized solver s, we first randomly pick a subset of n problems. For each
problem, we start r runs of the algorithm s, differing only for the random seed, for a
total of k = nr parallel runs. We control the duration of these “training” experiments
with Type II censored sampling (see Sect 3), fixing a censoring fraction c ∈ [0, 1) in
advance: as the first �(1 − c)k� runs terminate, we stop also the remaining 
ck� runs.
The gathered runtime samples are then used to train a model F̂ of the RTD, from which
a uniform strategy T̂ is evaluated, by minimizing (3) numerically. The performance of
T̂ is then tested on the remaining problems of the set. Varying c, we can measure the
corresponding variations in training time, and in the performance of T̂ on the test set.

The experiments were conducted using Satz-Rand [4], a version of Satz [9] in which
random noise influences the choice of the branching variable. Satz is a modified ver-
sion of the complete DPLL procedure, in which the choice of the variable on which
to branch next follows an heuristic ordering, based on first and second level unit prop-
agation. Satz-Rand differs in that, after the list is formed, the next variable to branch
on is randomly picked among the top h fraction of the list. We present results with
the heuristic starting from the most constrained variables, as suggested also in [9], and
noise parameter set to 0.4.

The benchmark used (obtained from SATLIB [10]) consists of different sets of SAT-
encoded “morphed” graph-coloring problems [23] (100 vertices, 400 edges, 5 colors,
resulting in 500 variables and 3100 clauses when encoded as a CNF3 SAT problem):
each graph is composed of the set of common edges among two random graphs, plus
fractions p ∈ [0, 1] and 1− p of the remaining edges for each graph, chosen as to form
regular ring lattices. Each of the 9 problem sets contains 100 instances, generated with
a logarithmic grid of 9 different values for the parameter p, from 20 to 2−8, to which
we henceforth refer with labels 0, ..., 8. This benchmark is particularly interesting, as
the parameter p controls the amount of structure in the problem, and the heavy-tailed
behavior of Satz-Rand varies accordingly on the different sets.

3 Note that a given problem set might contain instances which follow sensibly different RTDs: in
this case, the obtained model would capture the overall behavior of the algorithm on the set, and
the corresponding restart strategy would be suboptimal for each single instance. We ignore this
issue here, as we are only interested in comparing among different F̂ , and not with the real F .
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For each problem set, we repeated the simple scheme described above, running r =
20 copies of Satz-Rand on each of n = 50 randomly picked training instances, and
evaluating T̂ on the remaining 50. The process was repeated for 10 different levels of
the censored fraction c during training, from c = 0 to c = 0.9. For practical reasons,
experiments with c = 0 were actually run with a very high censoring threshold4 (106):
only a few runs of Satz-Rand exceeded this value.

As for the model, we tried different alternatives, including Weibull,5 lognormal, and
the novel double and right-hand Pareto lognormal, introduced in [24] to model heavy
tailed distributions. The double Pareto-lognormal distribution (DPLN) describes the
distribution of the product of two independent random variables, one with lognormal
distribution, one with Double Pareto distribution, whose pdf can be written as γtβ−1

for t < 1 (left tail), and γt−α−1 for t > 1, γ = αβ/(α + β). The advantage of DPLN
is that it can adapt to both lognormal and heavy tailed distributions. We also tested
various mixtures of two distributions, with pdf of the form f(t|θ) = wf1(t|θ1) + (1 −
w)f2(t|θ2), with parameter θ = (w, θ1, θ2), w ∈ [0, 1].

The models were trained by maximum likelihood, as described in Sect. 3. To com-
pare with a non-parametric approach, we repeated the experiments using the Kaplan-
Meier estimator [25], which can also account for censored samples. Among the para-
metric models, we obtained the best results with a mixture including one lognormal
and either one double-Pareto lognormal, or only the heavy-tailed component, the Dou-
ble Pareto distribution described above.

We present the results for this latter mixture, and for the Kaplan-Meier estimator.
All quantities reported are upper 95% confidence bounds obtained from results of 10
runs. In Figg. 1, 2, right column, we present the tradeoff between training cost, labeled
train, and restart performances on the test set, for the two models, respectively la-
beled logndp and kme, at different values of the censoring fraction c. We also plot the
cost of the universal strategy, labeled U , on the test set (the performance on the train-
ing set is similar, as both are composed of 50 randomly picked problem instances). For
the test time, we can appreciate some degradation of performance only for very heavy
censoring (c = 0.8, 0.9), for which the advantage in training time is negligible anyway.
Note that this does not mean that the accuracy of the model is unaffected: to highlight
this apparent contradiction, we also plotted, in left column, the value of a χ2 statistic
of the parametric model logndp.6 While for the uncensored estimate this is near or
below the 95% acceptance threshold (indicated by the white bars in the plot), the value
of the χ2 test degrades rapidly even for low values of c.

4 As we are also conducting experiments with parallel portfolios of heterogeneous algorithms,
and thus we need a common measure of time, we modified the original code of Satz-Rand
adding a counter, that is incremented at every loop in the code. The resulting time measure was
consistent with the number of backtracks. All runtimes reported are in millions of loop cycles.

5 It is interesting to see that the Weibull distribution, reported in [11] as having a good fit on
satisfiable problems near the sat-unsat phase transition, has instead a very poor fit in this case.

6 Measured as in [11], dividing the uncensored data into m bins (on a logarithmic scale), and
comparing the number of samples oi in each bin to the one ei predicted by the fitted distri-
bution, according to the formula χ2 =

∑
i[(oi − ei)/ei]2. A high value indicates a poor fit:

the model passes the test with confidence α if χ2 is lower than the 1 − α quantile of the χ2

distribution with m − k degrees of freedom, k being the number of parameters in the model.
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In Fig. 3 to 6 we display, on the top row, the average of the resulting censoring
threshold tc, for different censoring fractions c. This, along with the training cost, allows
to appreciate the tail behavior of Satz-Rand on the different problem set. On problem set
1, most runtimes have a similar value, and the remaining few are very large. tc is greatly
reduced by a modest c = 0.1, but further censoring does not decrease it much: the same
obviously applies to training cost. On problem set 8, runtime values are spread along
two orders of magnitude. Increasing c has a more gradual impact on tc, and on training
cost. This situation varies gradually for intermediate problem sets. Problem 0 is less
interesting, as all runs of Satz-Rand end in a similar time, and heavy tailed behavior
is not observed. The resulting plots are similar to problem 1, without the heavy tail
effects. In the second row, we display the CDF F̂ estimated by dplogn, on a single
run, for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with a better
approximation of the real F of the set, the empirical Kaplan-Meier CDF evaluated on
200 uncensored runs for each problem (labeled real). To further investigate the tail
behavior of Satz-Rand RTD, in the third row we display the log-log plot of its survival
function 1 − F (x), where a Pareto tail (∝ t−α) is displayed as a straight line. In both
cases, one can visually appreciate the degradation of the model, induced by censored
sampling, especially for values of t larger than tc, which are not seen by the model. So
why the performance of the restart strategy is not affected? The fourth row of Figg. 3
to 6 seems to suggest an answer. It plots the expected cost (3) of a uniform restart
strategy, against the restart threshold T , evaluated using dplogn at different levels of
censoring. The comparison term real is the actual performance of a restart strategy
T , evaluated a-posteriori on the same run: averaging this on multiple runs, one would
obtain an estimate of the real E(tT ) for the problem set. We can see that the estimated
and real cost differ greatly, but have a similar minimum: this allows T̂ to be efficient
also with a poor F̂ , obtained from a heavily censored runtime sample.

Fig. 7 plots the CDF F̂ obtained with the non-parametric Kaplan-Meier estimator.
This simple model proved similar in performance to dplogn, also in the few cases
where this latter failed to converge (see again Figg. 1, 2).

For what concerns the universal restart strategy U , its performance on the test set is
consistently worse. Its advantage on the training set was predictable, as in our simple
scheme 20 copies of Satz-Rand are run in parallel on each training problem, and obvi-
ously decreases with c: on sets 7, 8, training cost is actually lower for c = 0.8, 0.9. We
expect to further reduce training cost, again with a low impact on test performance, by
simply running less parallel copies.

6 Discussion

There is only an apparent contradiction between the rapid degradation of the model,
following the increase in censored data, and the stability of the performance of the
estimated optimal restart strategy. Traditional statistical tests are in fact intended to
measure the fit of a pdf along the whole spectrum of possible values. The formula for
the restart performance (3) is instead based on the cumulative distribution function,
which is the integral of the pdf; and on its further integration up to T , which is usually
small. This means that the actual shape of a large portion of the distribution is irrelevant,
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Fig. 1. Problems 1 to 4. Left: the trade-off between training cost (train) and test performances
of the parametric mixture lognormal-double Pareto (logndp), and the non-parametric Kaplan-
Meier estimator (kme), for different censoring fractions c. U labels the performance tU of the
universal strategy on the test set. Right: log10 of the χ2 statistics for logndp (black), compared
to log10 of the acceptance threshold (white).
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Fig. 2. Problems 5 to 8. Left: the trade-off between training cost (train) and test performances
of the parametric mixture lognormal-double Pareto (logndp), and the non-parametric Kaplan-
Meier estimator (kme), for different censoring fractions c. U labels the performance tU of the
universal strategy on the test set. Right: log10 of the χ2 statistics for logndp (black), compared
to log10 of the acceptance threshold (white).
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Fig. 3. Problems 1 (left column) and 2 (right column). From top to bottom: average censoring
threshold tc for different fractions of censoring; CDF; tail of the survival function; estimated
expected cost of restart for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with
real cost, evaluated a posteriori. Last three rows refer to a single run. Note the similar minima in
last row.
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Fig. 4. Problems 3 (left column) and 4 (right column).From top to bottom: average censoring
threshold tc for different fractions of censoring; CDF; tail of the survival function; estimated
expected cost of restart for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with
real cost, evaluated a posteriori. Last three rows refer to a single run. Note the similar minima in
last row.
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Fig. 5. Problems 5 (left column) and 6 (right column). From top to bottom: average censoring
threshold tc for different fractions of censoring; CDF; tail of the survival function; estimated
expected cost of restart for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with
real cost, evaluated a posteriori. Last three rows refer to a single run. Note the similar minima in
last row.
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Fig. 6. Problems 7 (left column) and 8 (right column). From top to bottom: average censoring
threshold tc for different fractions of censoring; CDF; tail of the survival function; estimated
expected cost of restart for different censoring levels (c = 0.1, c = 0.5, c = 0.9), compared with
real cost, evaluated a posteriori. Last three rows refer to a single run. Note the similar minima in
last row.
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Fig. 7. Problems 1 to 8, Kaplan-Meier estimator
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as long as its mass does not vary; while for values lower than T , the integration involved
in the CDF acts as a “denoising” filter, making (3) more robust to loss of fit of the model.

From a more practical point of view, our experiments show that even a sub-optimal
restart strategy can have a relevant advantage over the universal. This advantage can
be obtained for an additional training effort, which can be greatly reduced by censored
sampling. On a larger test set, this initial training effort would pay off quite rapidly.
Note also that there is no reason to stop the training process, as it is relatively cheap
compared to problem solving, and each restart can also be interpreted as a censored
sample.

We expect analogous results with any heavy-tailed randomized algorithm. This mo-
tivates us to further investigate methods to merge training and exploitation of models of
algorithm performance, as in [22]. Current research is aimed at a companion analysis
of the effect of censoring in the case of algorithm portfolios, and the combination of
universal and estimated optimal restart strategies, the latter based on censored and un-
censored samples gathered on a sequence of problems, the former limiting cost in the
initial phase, when the model is still unreliable, in a life-long learning fashion.
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Abstract. Efficient constraint propagation is crucial to any constraint
solver. We show that watched literals, already a great success in the sat-
isfiability community, can be used to provide highly efficient implemen-
tations of constraint propagators. We describe three important aspects
of watched literals as we apply them to constraints, and how they are
implemented in the Minion constraint solver. We show three successful
applications of to constraint propagators: the sum of Boolean variables;
GAC for the ‘element’ constraint; and GAC for the ‘table’ constraint.

1 Introduction

Efficient constraint propagation is the bedrock of any implementation of con-
straint programming. We show that watched literals can be used to provide
faster implementations of constraint propagators. Watched literals are one of the
main reasons for the dramatic improvements seen in SAT solvers in this decade
[12]. They allow the key progagation algorithm, unit propagation, to run much
faster than previous implementations. Used as triggers to fire constraint prop-
agations, watched literals have three features different to triggers as normally
used. Watched literals only cause propagation when a given variable-value pair
is deleted; their triggering conditions can be changed dynamically during search;
and they remain stable on backtracking so do not use memory for restoration.
These features can be used separately, and we report on doing so.

We first identify what we consider to be the two key benefits of watched
literals: the reduction of work when no propagation is possible, and the reduc-
tion in work on backtracking. We detail the three aspects of watched literals
mentioned above. Then we report implementations of three different constraints
using watched literals. The first is a slight generalisation of the SAT clause,
and so it is no surprise that this allows us to improve the speed of propagating
SAT clauses in a constraint solver. In fact, our results show that SAT clauses
propagate almost as fast as in a state-of-the-art SAT solver. Next, we show that
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watched literals are ideally suited to implementing generalised arc consistency
(GAC) for the ‘Element’ constraint. Using classical triggers, it is hard to achieve
GAC efficiently. Our third example is to implement GAC for the ‘Table’ con-
straint, i.e. an arbitrary constraint specified by an explicit list of allowed tuples,
based on GAC-2001/3.1 [4]. By using watched literals, we automatically convert
this from being a constraint-based to a support-based algorithm. Furthermore,
by the nature of watched literals, we do not need to restore the state of support
data structures on backtracking.

We report on how we provide the infrastructure to allow watched literals to
work in a practical constraint solver. All our implementation and experimenta-
tion is based on the Minion constraint solver [7]. Minion’s design principles
are to reduce user choice to allow greater optimisation; and to maintain a low
memory profile, especially for state information that needs to be restored on
backtracking. We have shown that this does lead to exceptionally fast runtimes
[7]. Thus, the run-time improvements we report here are compared to the state
of the art. Watched literals have been incorporated into Minion. Since Minion
is open source, our implementations are available for use and research.1

2 Motivation and Terminology

Conventionally, constraints are triggered by a particular variable’s domain being
changed in one of three ways: by being assigned, by having any value in its
domain removed, or by having either its lower or upper bound removed. We call
these kinds of triggers classical. A watched literal can trigger on the removal
of any given variable-value pair in the problem. We use the word “literal” for a
variable-value pair. This is completely consistent with its usage in SAT, where
a literal is a variable together with a polarity. A literal trigger is one which
causes its constraint to act when the given value is removed from that variable.
Literal triggers can be found in the cc(FD) language, in which constraints can be
attached directly to individual domain elements [9]. We use the word ‘literal’ is
to avoid a clash with the classical ‘domain trigger’, which will fire when any value
of its variable is removed. After a watched literal is triggered, its constraint can
move the trigger to another literal, delete it, or add a new watched literal. We
say that a dynamic trigger is one which can be moved in this fashion. Dynamic
triggers are a valid concept on non-literal triggers. We can have dynamic triggers
which fire on domain removal, bounds removal, or variable assignment, and these
are implemented in Minion. By contrast, a static trigger is one whose firing
conditions are guaranteed to remain fixed during the lifetime of a constraint.2

Watched literals have to remain valid on backtracking, so that we can avoid
storing their state information in backtrackable memory. A trigger with this
property is a backtrack-stable trigger, or just ‘stable trigger’ for short.3 We

1 http://minion.sourceforge.net. We used revision 138 in this paper.
2 Under this definition a classical bounds trigger is static although the exact domain

removals that trigger it will change.
3 We thank Steve Linton for suggesting this name.
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explain this concept in more detail below. For brevity and to emphasise the
historical linkage with the SAT concept, we say that a watched trigger is a
dynamic and backtrack-stable one. Thus a watched literal is just a dynamic,
stable, literal trigger.

It might be helpful to think of a dynamic trigger being a generalisation of a
classical bounds trigger. A bounds trigger fires, say, on the value 2, but after it
propagates it will fire on the new lower bound, perhaps 7. For a dynamic trigger,
the constraint itself decides where the new trigger will be, rather than being fixed
at the new lower bound. It can move the trigger to another value of the same
variable, to any value of any other variable in the constraint. It can move some
or all dynamic triggers associated with a constraint to different places. It can
even add or delete dynamic triggers.

We see the key advantage of watched literals and dynamic triggers as the
flexibility it gives constraint propagators to avoid unnecessary work. In many
situations where a constraint cannot propagate, it causes no work at all. To
enable this, each constraint using dynamic triggers must provide what we call
the propagation guarantee: that its intended level of consistency is satisfied
unless at least one of its dynamic triggers fires. For a watched literal, when a
domain value is deleted, we only need to wake up constraints which are watching
that literal (i.e. that value of its variable.) The advantage extends to, for example,
dynamic assignment triggers. A constraint on ten variables may be able to set
up dynamic assignment triggers on just two of them: this constraint will cause
no work when of the other eight are assigned.

Watched triggers (but not dynamic triggers) have another significant advan-
tage because they are backtrack-stable. This lets us reduce memory management
overheads greatly. Conventionally, on backtracking, we ensure that the state of
all propagators are exactly as they were when we left that node going forwards,
necessitating some data structures and maintenance to support this.4 Backtrack-
stability lets us lift this restriction. It is enough to ensure that when we backtrack,
all constraints are in a state which lets them provide the propagation guarantee.
It is perfectly acceptable for a constraint’s set of watched triggers to be com-
pletely different on returning to a node to the set when we left the node, as long
as both sets provide the propagation guarantee in that search state. The ideal
way to achieve this is for constraints to define sets of watched triggers which do
not need to be changed on backtracking, i.e. backtrack-stable triggers. Where
we can do this perfectly, the constraint needs put nothing into backtrackable
memory. This means that no copying is done on backtracking, so once again we
have reduced the cost associated with the constraint to zero.

Defining backtrack-stable triggers can require nonintuitive thinking, but some
general rules apply and we will see examples in the detailed descriptions to
follow. Many cases are simple, because the notion of support monotonic in many
constraints: i.e. if a set of values supports some literal, they still support it as
we restore values to domains on backtracking. However, more subtle cases arise,

4 This is not always true. For example, Régin describes how versions of the MAC
algorithms can be modified to avoid state restoration upon backtracking [13].
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as in GAC for the table constraint in Section 5. When we fail to find support
for a value and so the constraint forces its deletion, the natural thing to do is
to remove the watch on the literal. This is correct for dynamic triggers but not
for watched triggers. When we backtrack, the value we have just deleted will be
restored to its domain, as will the literal whose deletion caused its removal. If
we delete the trigger, we will lose the propagation guarantee on backtracking.
Instead, we leave the watched literal in place.

There is one general disadvantage that should be mentioned with watched
triggers, although not with dynamic triggers. Because triggers may move ar-
bitrarily between leaving a node and returning to it, it is often not possible
to use a propagation algorithm which is optimal in the worst case in terms of
propagation work performed down a single branch. An example is our variant of
GAC-2001/3.1 below. This has to be set against the great potential for efficiency
gains we have outlined, so we do not think this will often be a major disadvan-
tage. The same problem arises in SAT but watched literals are very widely used,
and we will see experimentally that our non-optimal watched version of GAC
outperforms an optimal but unwatched one.

3 Watched Literals for Sum of Booleans

The first constraint we consider is the sum of an array of Boolean variables B
being greater than or equal to a constant value c. Where c = 1, this is just a SAT
clause and our method is exactly the standard use of watched literals in SAT
[12]. As such it serves as a good introduction to watched literals for constraint
programming. Our approach is only novel in being incorporated in a constraint
solver: watched literals for the (more general) weighted sum of a Boolean array
was reported by Chai and Kuehlmann [5].

We watch c + 1 different literals in the domain of c + 1 different variables in
B. In each case we watch the value 1. If, at initialisation, we can find only c
such literals we immediately set them all to be 1, and if we cannot find even
that many we fail: in neither case is any more work on this constraint required.
In general, the watched literals are B[i1] = 1, B[i2] = 1, . . . , B[ic+1] = 1. The
watched literals, on their own, more than satisfy the constraint, so all other
literals could be set to 0 without any propagation happening.

When one of the values being watched is removed, we have some B[ij ] = 0. In
this case, we have to find a new value i′j so that B[i′j ] still has 1 in its domain and
is not one of the other k literals currently being watched. In the worst case, we
have to scan each unwatched variable in the array to see if it has 1 in its domain.
If we find such a literal, we simply stop watching B[ij ] = 1 and start watching
B[i′j ] = 1: we call this moving the watch from one literal to the other. From the
propagation guarantee, we cannot propagate until one of these literals is deleted.
On backtracking, we can only make the constraint looser by enlarging domains,
so the watched literals are backtrack-stable. The more interesting case is if we
cannot find any other literal to watch. In this case, we know there are at most c
literals with 1 in their domain, and all must be set to 1 to satisfy the constraint.
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GAC Propagator for Sum of Booleans
∑

B[1..n] ≥ c

OneRemovedFromWatchedVar(i)
Triggered by DomainRemovalOf B[i] = 1

A01 j := Last

A02 repeat j := j + 1 mod n − c − 1
A03 until (j = Last) or (1 ∈ Domain(B[UnWatched[j]])
A04 if (j �= Last) then // We found a new literal to watch, so update data structures

A04.1 MoveWatchFrom B[i] = 1 To B[UnWatched[j]] = 1;
A04.2 UnWatched[j] := i; Last := j
A05 else // No new literal found to watch, so at most c 1’s possible in B

A05.1 foreach k such that WATCHED[B[k] = 1]
A05.2 if(k �= i) then AssignVariable(B[k] = 1)

Fig. 1. Propagator for the Boolean Sum constraint. UnWatched is an array of integers.
Its values are all different and represent the set of unwatched literals: in general it will
not remain sorted during search. Last points to the array element in UnWatched that
was set to be watched the last time we updated this constraint. Neither UnWatched nor
Last needs to be restored on backtracking: therefore both reside in non-backtrackable
memory. AssignVariable sets a variable to a value and triggers necessary propagations
while MoveWatchFromTo updates the watched literal store.

So we can immediately set all of them to be 1. This will either cause immediate
failure (if another one of the watched literals can no longer be 1) or guarantees
to satisfy the constraint. However, we continue to watch all the c + 1 literals
we were watching previously. All watched literals are now set and will cause no
propagation, so there is no cost in leaving them in place. Pseudocode for this
is shown in Fig. 1. As mentioned above, it is essential to leave the watches in
place so that they will be correct on backtracking. In the cases studied in this
paper it is always correct to leave watches in place when a constraint is either
satisfied or unsatisfied. The last time the constraint was fired, the propagation
guarantee held and the set of watched triggers were backtrack-stable. Therefore,
if we backtrack past the current point in search, we return to a state where we
know a set of backtrack-stable triggers satisfied the propagation guarantee.

Our first set of experiments are on SAT problems. These are encoded into a
constraint problem with a Boolean variable for each SAT variable and a Boolean
sum greater than 1 for each clause. In no way can Minion compete with spe-
cialist SAT solvers because it does not have specialised heuristics or techniques
such as nogood learning. However, these experiments demonstrate the value of
incorporating watched literals into a constraint solver for this kind of constraint.
We compare Minion using its sum-≥ constraint using classical triggers against
our new implementation using watched literals. For reference we also compare
these against the same model encoded into ILOG Solver 5.3 (a more recent ver-
sion was not available to us) and a state-of-the-art SAT solver, MiniSAT [6]. We
ran on two sets of SAT benchmarks from SATLib [10], uniformly unsatisfiable
random instances with 150 variables, and the QG benchmark set. Results are
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Table 1. Experiments with Random SAT instances (mean of 100) and QG SAT in-
stances. Bold indicates which of the three constraint solvers searched most nodes per
second – nodes searched in each case were identical. Italics in the Solver column indicate
timeouts after 1 hour. The number of SAT variables in QGi.n is n3.

Classical Watched ILOG Solver 5.3 MiniSat
Problem Time(s) Nodes Nds./s Time(s) Nds./s Time(s) Nds./s Time(s) Decisions Dec./s
Random 96.20 621,798.1 63,360 100.0 62,180 462.9 13,225 0.0858 3,577.1 41,614
QG1.7 8.13 58 7 7.83 7 2.77 21 0.14 121 864
QG1.8 628.47 188,270 300 101.89 1,848 3604 .09 27 0.75 7,951 10,601
QG2.7 8.16 32 4 7.89 4 2.20 14 0.125 54 432
QG2.8 1,137.31 340,747 300 165.16 2,063 3604 .09 25 10.328 48,933 4,737
QG3.8 1.08 150 139 1.06 141 0.36 415 0.046 283 6,152
QG3.9 18.42 82,404 4,474 14.09 5,847 107.63 766 6.703 55,003 8,205
QG4.8 1.06 909 855 1.03 882 0.92 987 0.078 1,003 12,859
QG4.9 1.56 461 295 1.52 304 0.94 491 0.046 28 608
QG5.9 2.83 187 66 2.75 68 1.30 143 0.62 26 419
QG5.10 5.44 1,453 267 4.63 314 10.84 134 0.093 74 795
QG5.11 6.77 506 75 6.20 82 7.97 63 0.14 79 564
QG5.12 269.84 139,581 517 76.33 1,829 2132.67 65 0.296 1,440 4,864
QG5.13 4,847.28 1,798,176 371 1,125.83 1,597 3602 .88 48 6.156 30,776 4,999
QG6.9 2.19 28 13 2.13 13 0.53 51 0.046 16 348
QG6.10 3.53 313 89 3.33 94 2.05 153 0.109 458 4,202
QG6.11 7.58 2,522 333 5.66 446 21.03 120 0.296 2,632 8,892
QG6.12 50.09 26,847 536 20.95 1,281 358.88 75 4.484 22,519 5,022
QG7.9 2.19 8 4 2.14 4 0.50 14 0.046 8 174
QG7.10 3.81 816 214 3.47 235 4.58 178 0.093 124 1,333
QG7.11 16.64 11,616 698 8.16 1,424 104.94 111 0.187 1,866 9,979
QG7.12 277.41 159,907 576 70.53 2,267 2370.37 68 0.593 5,731 9,664
QG7.13 786.55 312,108 397 180.66 1,728 3602 .19 52 0.265 1,307 4,932

shown in Table 1. We ran experiments on a variety of machines for this paper,
but any comparison between methods on an identical instance were run on a sin-
gle machine for consistency to enable valid comparisons. Our SAT experiments
were run under Windows (XP SP2), with a Pentium 4 3GHz and 2GB of RAM,
compilation being done using g++ 3.4.4 under cygwin.

On random instances, watched literals are a slight overhead, presumably be-
cause all clauses have only 3 literals. Both versions of Minion outperform Solver
on random instances. MiniSAT easily outperforms both versions of Minion. Al-
though Minion does search more nodes per second than MiniSAT, its very small
runtimes may make these figures unduly affected by setup times. For the struc-
tured QG benchmarks, we see that in all cases the watched literal propagator
outperforms the classical version by up to 6 times in run time. ILOG Solver
does outperform Minion on a number of instances, but only on easy instances:
we suspect that this is because of Minion’s larger initialisation costs. Minion
searches faster on all instances where either solver takes even 10 seconds. On
hard instances Minion can search many times faster than Solver, up to 82 times
in the case of QG2.8. Minion is again outclassed easily by MiniSAT. However, on
instances where it takes 10 seconds, Minion, is never as much as 6 times slower
than MiniSAT in terms of decisions per second. Certainly Minion is not a com-
petitive SAT solver. However, the efficiency with which it propagates clauses does
suggest that it is ideally suited for solving hybrid instances containing significant
numbers of SAT clauses together with more expressive constraints.
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4 Element Constraint

The “Element” constraint is a great addition to the expressivity of a constraint
language. It allows one to use an integer variable for the index of an array [8].
Suppose that A is an array of n integer variables and that Index and Result are
two more integer variables. The Element constraint is that A[Index] = Result.
Although the constraint is implemented in constraint toolkits such as ILOG
Solver, Gecode [14], and Choco [11], we are not aware of a literature on how
to propagate it. This may be because, using classical triggers, some aspects of
Element are hard to propagate efficiently enough to repay the overheads.5 In
contrast, using watched literals, establishing and maintaining GAC is straight-
forward to implement and efficient. In particular, where little propagation occurs
little overhead is incurred. We start by establishing the exact definition of GAC:

Theorem 1. The domains of variables in an Element constraint are Generalised
Arc Consistent if and only if all of the following hold:

Dom(Index) = {i} =⇒ Dom(A[i]) ⊆ Dom(Result) (1)
i ∈ Dom(Index) =⇒ Dom(A[i]) ∩Dom(Result) �= ∅ (2)

Dom(Result) ⊆
⋃

i∈Dom(Index)

Dom(A[i]) (3)

Proof: (If) Suppose all the conditions hold. By (2) there is a value to support
each value of Index. If Dom(Index) is a singleton then (1) and (3) show that
Dom(A[Index]) = Dom(Result), and any value of one variable is supported by
the same value of the other. If |Dom(Index)| > 1, every value for each A[i] is
unconstrained since it is supported if Index �= i. Also, (3) ensures that each value
j of Result is supported by a pair Index = i, A[i] = j. (Only If) Suppose the
domains of Index, Result, and each A[i], are GAC. If Dom(Index) = {i} then
certainly any value in Dom(A[i]) must be in Dom(Result). If i ∈ Dom(Index)
then there must be at least one value in the domain of both Dom(A[i]) and
Dom(Result). Finally, for any value v ∈ Dom(Result) there must be an index
i ∈ Dom(Index) such that v ∈ Dom(A[i]). QED

This proof shows the close link between the conditions and the support for
each value of each variable in the constraint. We make this explicit, by describing
support for each value of A[i], Index and Result. Notice that each kind of
support involves at most two other variables, instead of a tuple involving all
variables in the constraint. There are three cases, corresponding exactly to (1),
(2) and (3) above.

Support for A[i] = j: either |Dom(Index)| > 1 or j ∈ Dom(Result).
Support for Index = i: any j such that j ∈ Dom(A[i]) and j ∈ Dom(Result).
Support for Result = j: any i such that i ∈ Dom(Index) and j ∈ Dom(A[i]).

We now describe how we proceed if the support is lost, i.e. when values are
removed which were supporting a variable-value pair in one of the cases above.
5 Choco and Gecode achieve GAC on Element, but we believe Solver 5.3 does not.
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1. There are two cases where we might have lost support for A[i] = j. The
support in either case is independent of i, depending only on the values of
Index or Result respectively.

(a) If Index is assigned to i (i.e. its domain is the singleton {i}) then we
have to remove all values from Dom(A[i]) not in the domain of Result.
This can be achieved by a classical trigger on the assignment of Index.

(b) If a value j is removed from the domain of Result, and Index has already
been assigned to i, then we remove j from the domain of Dom(A[i]).
There are a number of ways to achieve this: in our pseudocode and
implementation we use a classical domain reduction trigger on Result.

2. If the value j is removed from either Dom(A[i]) or Dom(Result), we try to
find another value j′ in the domain of both. If we succeed, this is the new
support for Index = i. If not, then we remove i from the domain of Index.
We implement this by watching the literals A[i] = j and Result = j. If we
find j′ then we move the watched literals to be on A[i] = j′ and Result = j′.
If we do not find a new support, we leave the watched literals in place, so
that they will be correct when j returns to the domain on backtracking.

3. If the value i is removed from Dom(Index), or j is removed from Dom(A[i]),
we try to find another pair of values i′, j′ with i ∈ Dom(Index) and j ∈
Dom(A[i]). These will be the new support for Result = j, or else we insist
that Result �= j. We implement this by watching Index = i and A[i] = j,
moving these to Index = i′ A[i′] = j′ if possible. If not, we again leave the
watches in place.

We find this development very natural. We started from the definition of domains
being GAC, moved to what is needed to support each value of each domain, and
finally showed how new supports could be sought when old supports are lost.
This last stage can be implemented in Minion. Pseudocode for this implemen-
tation is in Fig. 2, where the four constituent functions correspond exactly with
the four cases above. We have not discussed initialisation because it is a straight-
forward variant on the pseudocode of Fig. 2. Finding the initial watched values
is essentially the same as finding new ones from old, and values are removed if
we cannot find initial supports for them.

We have not compared our approach empirically with existing classical im-
plementations, but we argue that watched literals have the potential to be much
faster. For each i in Dom(Index) we are watching two things, and for each j
in Dom(Result) we are watching two things. If the array is size 500 and each
domain is of size 100, we therefore have 1,200 literals to watch in addition to
the conventional triggers on Index and Result. Yet in total in A[i], Index, and
Result, there are 500,600 domain elements, so we watch less than 0.25% of all
domain elements. This argument also shows why it is important that we do not
need to restore trigger data on backtracking when using watched literals. If we
did have to, we would have to restore the values of 1,200 triggers on backtrack-
ing, an overhead which would outweigh the benefits we have gained. The only
genuine efficiency loss compared to conventional methods happens when we fail
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GAC for Element Constraint: A[Index] = Result

SupportLostForArrayValue-a(i)
Triggered by AssignmentOf Index = i

// Remove from domain of A[Index] any values not in domain of Result

A01 foreach k in the current domain of A[i]
A01.1 if k �∈ Domain(Result) then
A01.2 RemoveFromDomain(A[i],k)

SupportLostForArrayValue-b()
Triggered by AnyDomainRemovalOf Result

// If Index is assigned to i then Dom(A[i]) ⊆ Dom(Result)

B01 if VariableIsAssigned(Index) then
B02 foreach k in the current domain of A[i]
B02.1 if k �∈ Domain(Result) then
B02.2 RemoveFromDomain(A[i],k)

SupportLostForIndexValue(i, j)
Triggered by RemovalOf A[i] = j or RemovalOf Result = j

// Previously we supported Index = i because j ∈ Domain(A[i]) ∩Domain(Result)

// Now we must find a replacement for j or insist that Index �= i

C01 foreach k in the current domain of A[i]
//See caption for details of how we step through domains

C02 if k in the current domain of Result then
C02.1 MoveWatchFrom A[i] = j To A[i] = k;
C02.2 MoveWatchFrom Result = j To Result = k;
C03.3 return // We are finished, leave function

C04 endforeach // We failed to find a new support so Index �= i

C05 RemoveFromDomain(Index,i)

SupportLostForResultValue(i, j)
Triggered by RemovalOf Index = i or RemovalOf A[i] = j
// Previously we supported Result = j because i ∈ Domain(Index) and j ∈ Domain(A[i])

// Now we must find a replacement pair for (i, j) or insist that Result �= j

D01 foreach k in the current domain of Index
D02 if j in the current domain of A[k] then
D02.1 MoveWatchFrom A[i] = j To A[k] = j;
D02.2 MoveWatchFrom Index = i To Index = k;
D03.3 return
D04 endforeach // We failed to find a new support so Result �= j

D05 RemoveFromDomain(Result,j)

Fig. 2. Propagator for the Element constraint. Note that we mix types of triggers
freely. The first function triggers when a variable is assigned, and the second triggers
on a domain removal. The final two functions both trigger when one of two literals
being watched is removed. At line C01 search the domain starting from j, and looping
back to j if we reach the end of the domain. A similar approach is taken at D01.
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to find new support, for example in line C01 in Fig. 2. We have to search the
whole domain instead of just the remaining part of the domain.

To compare with our watched literal implementation, we wrote two other
propagators using classical triggers. Both are triggered any time any literal is
removed from a variable, and are told the literal removed. One of these accom-
plishes GAC, by looking at all literals which could have lost support by the
removal of this literal, and checking if support for them still exists.6 This has
the advantage of being very space efficient, using no memory which must be
backtracked at all, at the cost of extra computation at each node. The second,
non-GAC implementation, checks only each time any variable is assigned, and
performs only those checks which are possible in O(1) time.

Langford’s Problem is problem 24 in CSPLib: L(k, n) requires finding a list
of length k ∗ n, which contains k sets of the numbers 1 to n, such that for all
m ∈ {1, 2, . . . , n} there is a gap of size m between adjacent occurrences of m.
For example, 41312432 is a solution to L(4, 2). We modelled L(2, n) in Minion
using two vectors of variables, V and P , each of size 2n. Each variable in V
has domain {1, 2, . . . , n}, and V represents the result. For each i ∈ {1, 2, . . .}
the 2ith and 2i + 1st variables in P are the first and second positions of i in V .
Each variable in P has domain {0, 1, . . . , 2n− 1}, indexing matrices from 0. We
write =elem to distinguish the usage of the element constraint from indexing of
a vector by a constant. Where i ranges from 1 to n, the constraints are:

V [P [2 ∗ i]] =elem i

V [P [2 ∗ i + 1]] =elem i

P [2 ∗ i] = i + P [2 ∗ i + 1]

We found all solutions to Langford’s problem up to n = 8 using this model.
Experiments for increasing values of n were performed for our three propagators
for element presented in this paper. These were run under Mac OS X (10.4.6)
running on a 1.2Ghz PowerPC G4 with 768MB RAM compiled with g++ 4.0.1.
Results are presented in Table 2. Performing GAC on the element constraints
improves solving time by an order of magnitude. The watched GAC propagator
is over twice as fast as the non-watched GAC propagator, and in terms of nodes
searched per second is only slightly slower than the non-GAC propagator. We
also performed experiments on constraint encodings of Quasigroup construction
problems, shown in Table 3. Experiments were performed under Windows as
described earlier, and under Linux (Fedora Core 4) with a Pentium 4 3.4 GHz
dual processor with 8GB RAM, with compilation by g++ 4.0.2. On QG3, GAC
performs no additional propagation, but remarkably our GAC algorithm using
watched literals is faster than the non-GAC algorithm. We suggest this is because
of the benefit of watched literals avoiding unnecessary work. On QG7, we get
significant search reductions, but here speed per node is greatly reduced by the
extra work and the overheads are not repaid. In both cases the watched literal
GAC propagator is much faster than the classical version.

6 This approach is similar to the GAC algorithm in Choco, as seen in its source code.
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Table 2. Comparison of propagators in Minion on Langford’s problem

Non-GAC Classical-GAC Watched-GAC
Solutions Time(s) Nodes Nodes/s Time(s) Nodes Time(s) Nodes Nodes/s

L(4,2) 2 <0.1 378 - <0.1 46 <0.1 46 -
L(5,2) 0 0.1 6,956 - <0.1 694 <0.1 694 -
L(6,2) 0 2.3 169,275 73,000 0.6 15,388 0.3 15,388 59,000
L(7,2) 52 76.8 4,912,580 64,000 16.7 413,573 7.5 413,573 55,000
L(8,2) 300 3,276.9 176,320,552 54,000 635.7 13,471,366 267.2 13,471,366 50,000

Table 3. Propagators in Minion on Quasigroup Existence Problems. (QG3.10 was not
solved in an hour by any propagator.) QG3 ran under Windows, QG7 under Linux.

Non-GAC Classical-GAC Watched-GAC
Problem Time(s) Nodes Nodes/s Time(s) Nodes Time(s) Nodes Nodes/s
QG3.6 0.016 51 - 0.031 51 0.031 31 -
QG3.7 0.031 11 - 0.047 11 0.016 11 -
QG3.8 7.031 105,414 14,992 43.453 105414 6.453 105,414 16,335
QG3.9 0.047 26 - 0.141 26 0.031 26 -
QG3.11 0.078 132 - 0.375 132 0.078 132 -
QG7.7 <0.1 844 - 0.03 311 0.02 311 -
QG7.8 0.08 12,450 155,625 0.5 4,628 0.33 4,628 14,024
QG7.9 <0.1 233 - 0.02 83 0.01 83 -
QG7.10 205.56 31,383,717 152,674 840.33 3,408,114 329.8 3,408,114 10,333.9

5 Watched-GAC for the Table Constraint

The ‘Table constraint’ provides generalised arc consistency for any user-defined
constraint, given by a list of acceptable tuples of the variables involved in the
constraint. This can be very useful where critical parts of a problem have no
natural expression in primitive constraints, but which need to be propagated
effectively. The table constraint can be implemented using any GAC algorithm,
provided it is suitably adapted to work correctly in a backtracking environment.
We base our algorithm on GAC-2001/3.1 [4].

This section shows the third significant benefit of using watched literals. We
have already seen it greatly speed up propagation of SAT-like constraints and
enable the simple and efficient implementation of GAC for the element con-
straint. Here, we show that we can convert an easy-to-implement but coarse-
grained GAC algorithm into a fine-grained algorithm where the required data
structure maintenance is provided entirely by an already-implemented central
infrastructure. GAC-2001/3.1 was presented as a coarse-grained algorithm, i.e.
it is a constraint-oriented propagation algorithm [4]. By using watched literals,
we convert it into a fine-grained algorithm, i.e. “the deletion of a value in the do-
main of a variable will be propagated only to the affected values in the domains
of other variables” [4]. The watched literal infrastructure provides the services
to make this happen automatically, so we need only minimal adaptations to a
non-watched version of the algorithm. This is enormously much more straight-
forward than the complicated data structures which need to be implemented
to enable classical fine-grained GAC algorithms such as AC-6, AC-7, or GAC-
Schema [3,2,1] to work correctly and efficiently on backtracking. The penalty is
that our version of GAC-2001/3.1 is no longer time-optimal in the worst case.
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GAC Propagators for Table Constraint 〈X1, X2, . . . , Xn〉 ∈ Table

Global Variables: tupleList, Last

Setup(inputTupleList, V ars)
A01 tupleList = inputTupleList
A02 foreach v ∈ vars
A02.1 foreach i ∈ Dom(v)
A02.1.1 Last(v, i) = tupleList[0]
A02.1.2 if Supported(Last(v, i))
A02.1.2.1 Last(v, i) = FindNextSupportingTuple(v, i, τ )
A02.2 if Last(v, i) �= nil
A02.2.1 RemoveFromDomain(v, i)
A02.3 else
A02.3.1 foreach v′ ∈ vars
A02.3.1.1 AttachNewTriggerTo(v′, Last(v′, i))

SupportingTupleLost(i, j)
B00 Triggered by DomainRemovalOf some Xk = l in Last(Xi, j)

// Xi = j was supported by the tuple Last(Xi, j)

// We must find new supporting tuple, or set Xi �= j

B01 τ = FindNextSupportingTuple(i, j, Last(Xi, j));
B02 if τ �= nil
B02.1 then
B02.2 for k = 1 to n
B02.2.1 MoveWatchFrom Last(Xi, j)[k] To τ [k]
B02.3 Last(Xi, j) = τ
B02.4 else // We failed to find a new support so Xi �= j

B02.5 RemoveFromDomain(Xi,j)

FindNextSupportingTuple(i, j, τ )
C01 if(check = τ + 1; check < sizeof(TupleList); check = check + 1)
C02.1 if(Supported(tupleList[check]))
C02.1.1 return tupleList[check]
C03 if(check = 0; check < τ ; check = check + 1)
C04.1 if(Supported(tupleList[check]))
C04.1.1 return tupleList[check]
C05 return nil

Fig. 3. Propagator for the Table constraint. We write τ [k] for the variable-value pair
at position k in the tuple.

Pseudocode for Watched-GAC is given in Figure 3. Each literal is associated
with a set of triggers. These are initially attached to the literals which provide
the first support for the literal that can be found. During search, if any of these
literals are deleted, the trigger is activated, and either a new support is found, or
if no support can be found the literal is deleted. As with earlier examples, there
is no need to backtrack these supports. If a new support is found, that support
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Table 4. Comparison of propagators for the table constraint in Minion on the Prime
Queen Attacking problem. For size 7, the problem was not solved to optimality in
reasonable time. The time given is to reach the same sub-optimal value.

Dynamic Watched
Problem Time(s) Nodes Nodes/s Time(s) Nodes/s
4 0.21 3,373 16,062 0.1 33,730
5 0.17 954 5,612 0.07 13,629
6 69.94 268,113 3,833 21.01 12,761
7 7,146.25 10,354,130 1,449 4637.11 2,233

will also be valid after backtracking. If a new support cannot be found, then we
leave the triggers where they are. When search backtracks past this search node,
the deleted literal will be restored, as will the literals in the old support. They
must have all been present at the end of the previous node, else they would have
been moved then.

This does introduce one problem when compared with GAC 2001. In GAC
2001, the tuple supporting each literal at a node is restored when backtracking
to that node. This allows every tuple to be checked at most once down any
branch. The watched implementation of GAC-2001 does not have this property,
because the supporting tuple can change when search continues beneath a node,
and it is not restored on backtracking. Therefore when checking for support, it is
necessary to scan through all tuples. The current implementation always begin
searching from the current support, which means that at any particular node
each possible tuple will be checked at most twice, as after one pass through the
tuples there must be no support, which may require one more pass through to
prove. Also, this behaviour could be repeated at several nodes down a branch.
We also implemented GAC for the table constraint using dynamic (i.e. non-
watched) triggers. We no longer have to loop in searching for support, therefore
we retain optimality down a branch, but the penalty is the overhead of storing
dynamic triggers and support information in backtrackable memory.

The prime queen attacking problem (number 29 at www.csplib.org) is to put a
queen and the numbers 1, ... n2 on the cells of an an n×n chess board such that
any number i is reachable via a knight’s move from the cell containing i−1. The
number of primes not attacked by the queen should be minimised (the queen
does not attack its own cell). To model this problem, we use a vector V of n2

variables, each with domain 0..(n2−1) to indicate the cell to which each value is
assigned. To constrain consecutive values to be placed a knight’s move apart, we
use a binary table constraint between each adjacent pair of elements of V . We
also introduce a variable to represent the cell to which the queen is assigned, also
with domain 0..(n2 − 1). For each prime value between 2 and n2, we introduce
a 0/1 variable. A ternary table constraint ensures that this 0/1 variable is set
to 1 iff the queen is attacking the corresponding value. We maximise the sum of
these 0/1 variables. Experiments, shown in Table 4, for the table constraint were
performed under Linux as described earlier. They show that the watched table
constraint is faster than the dynamic one: i.e. the overhead of additional search
are less than the overhead of restoring dynamic data structures. The limited
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range of experiments, and the lack of comparison against other techniques, means
that we cannot draw extensive conclusions. We do conclude that watched literals
provide a realistic and relatively straightforward way to implement GAC-table.

6 Implementing Watched Literals in Minion

We report briefly on our infrastructure for watched literals in Minion. This
infrastructure is used by each of the propagators in this paper and is available
for future propagators to be implemented. Since the intention is to use watched
literals to make propagation and search faster in practical constraint solvers, it
is important that implementation is done in a space and time-efficient manner.
Our implementation respects two primary goals. These are that the maintenance
of watched literals requires constant space after initialisation, and that key data
access and update operations are fast. The key operations are finding the location
of literals being watched when a value is removed, and changing which literals are
being watched. We also provide infrastructure for non-stable dynamic triggers:
it is almost identical except that triggers are stored in backtrackable memory.

In Minion, watched literals can be created and destroyed at any time, but
each constraint has to declare at initialisation the maximum number of watched
literals it will need at any one time. Each watched trigger is associated with a
variable and constraint and also with a unique identifier within its constraint,
while a watched literal also stores the value being watched. The constraint is
responsible for maintaining any other information it needs for the trigger. For
example the table constraint requires the current supporting tuple associated
with a watched literal: this is stored in an array indexed by the trigger identifier.

A watched trigger consists of four values. These are: the identifier of the
trigger; a pointer to the constraint associated with this trigger; and two pointers
which are used to splice the trigger in and out of doubly linked lists. Once search
begins, no trigger is ever moved or copied to another place in memory. Instead
the pointers are used to change which list the trigger is in. Every literal in the
CSP has a doubly linked list which contains the list of watches currently attached
to it. Note that this requires O(nd) space if we have n variables each of domain
size d. Each variable also has a list for watched triggers for domain, bounds,
and assignment triggers. When a literal is deleted, the solver moves through
this list, triggering each constraint in turn. Thus, no work is done for these
literals with no watches currently associated with them, unlike in a traditional
solver where each constraint the literal is in would have to be notified. This
is one of the key features behind watched literals. When a constraint moves a
watched trigger t, in the general case we execute t.next.prev = t.prev and
t.prev.next = t.next. Thus a watched trigger movement is achieved in O(1),
and the space used by the trigger is free to be reused for its new location, with its
pointers updated accordingly. Constraints are free to move their watched literals
from watching one literal to a different one. This needs to be a fast operation,
so we need random access to their location in the list associated with a variable
value pair. This again is achieved by a pointer.
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There are further complications. (We plan to report more details at the Minion
website, minion.sourceforge.net.) Constraints can leave triggers on variable-value
pairs which have been removed, so we cannot just assume the trigger list will
be emptied. Second, while a list of triggers is being processed, constraints may
delete or move some of the triggers on it, or even move other triggers from other
literals onto this list. This complicates the process of propagating all constraints
attached to a literal, as the obvious methods have problems when triggers are
removed from the list while the constraints are being triggered. While we raise
the issue as an important implementation issue, we do not discuss our solution
in detail as being of too low a level to be of general interest.

Our infrastructure for dynamic and watched triggers makes it possible to
adapt Minion to add constraints dynamically, although this has not yet been
implemented. A new constraint set up with dynamic triggers will automatically
be retracted on backtracking past it, while a constraint using watched triggers
will persist for the rest of search. This would enable techniques such as learning
nogoods during search, a technique that has proved vital in SAT.

7 Further Work and Conclusions

We have demonstrated the utility of watched literals in constraint solving. In
particular, we have shown how three propagators, Sum of Booleans, Element,
and Table can benefit from their use. It is important to emphasise, however,
that watched literals do not render classical propagation triggering mechanisms
useless. Classical triggers have a lower overhead than watched literals and so are
more efficient when their use is appropriate. Many are still used in Minion.

A natural and important piece of future work is to explore the integration of
nogood learning into Minion. Learning is also a crucial component of a modern
SAT solver, and there is every reason to believe that it can also be of great ben-
efit to constraint solving. Minion’s ability to manage large numbers of nogoods
efficiently is clearly a substantial advantage in pursuing this goal.
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Abstract. We propose a branch and prune algorithm that is able to
compute inner and outer approximations of the solution set of an exis-
tentially quantified constraint where existential parameters are shared
between several equations. While other techniques that handle such con-
straints need some preliminary formal simplification of the problem or
only work on simpler special cases, our algorithm is the first pure numer-
ical algorithm that can approximate the solution set of such constraints
in the general case. Hence this new algorithm allows computing inner
approximations that were out of reach until today.

1 Introduction

Many problems in computer science amount to characterizing an inner and an
outer approximation of a set defined by nonlinear constraints where quantifiers
may be involved. We address here the case where existential quantifiers are in-
volved (which actually corresponds to the projection of a manifold defined by
equalities). When these constraints are polynomial, symbolic methods have been
shown to be able to solve the problem (see e.g., [1]). However, these techniques
are restricted to very small systems. When the constraints are defined by inequal-
ities, interval methods make it possible to characterize the solution set (see e.g.,
[2]). When equality constraints are involved, the problem is much more difficult
and no general method seems to be available to compute an inner approximation
of a set defined by nonlinear equalities. Some works were already proposed to
deal with some specific subclasses of these problems: [3, 4] are restricted to linear
systems, [5] is restricted to cases where the different constraints do not share any
existentially quantified parameters and [6] is more general but still suffers from
strong restrictions.

The paper is dedicated to the approximation of the graph of an existentially
quantified constraint c(x1, · · · , xnx) defined by(
∃y1 ∈ y1

)
· · ·

(
∃yny ∈ yny

)(
f1(x1, · · · , xnx , y1, · · · , yny) = 0 ∧ · · · ∧ fm(x1, · · · , xnx , y1, · · · , yny) = 0

)
,
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where yk for k ∈ [1..ny] are some bounded and nonempty intervals. Using vec-
torial notations, this constraint is written cf,y(x) and defined by

cf,y(x) ⇐⇒
(
∃y ∈ y

)(
f(x, y) = 0

)
, (1)

where x ∈ IRnx and y ∈ IRny and y is a bounded and nonempty box of dimension
ny and f : IRnx × IRny −→ IRm. The graph of cf,y is denoted by Σ(f,y) :=
{x ∈ IRnx | cf,y(x)}. It is likely to have a non-zero volume if ny ≥ m, i.e. if there
are at least as many existentially quantified variables as equations. Therefore,
both inner and outer approximations are relevant. Many practical problems can
be formulated as the characterization of such a set. Let us quote two of them:

– Control. Most dynamical systems can be described by the following state
equation ẋ(t) = f

(
x(t), u(t)

)
∧ g

(
x(t), y(t), u(t)

)
= 0. where the vector u is

the input vector, x is the state vector and y is the output vector. The feasible
output set O is the set of all ȳ such that one can find a control u such that
g(t) converges to ȳ. As proved in [7], O satisfies

O = {ȳ | ∃ū, ∃x̄, f(x̄, ū) = 0 ∧ g(x̄, ȳ, ū) = 0} , (2)

and its characterization is therefore an instance of the problem we propose
to solve.

– Robotic. The geometric model of a robot can often be described by the
relation f(u, x) = 0, where u is the articulation vector and x is the coordinate
vector of the tool (see e.g., [8]). For serial robots, the relation becomes x =
g(u) and for parallel robots, it is u = g(x). However for more general robots,
neither u nor x can be isolated in the relation. The workspace W of the robot
is defined by

W = {x | ∃u ∈ u, f(x, u) = 0} , (3)

where u is the box of all feasible configuration vectors for the robot. Charac-
terizing the workspace of a general robot can thus be cast into is a projection-
equality problem.

2 Interval Analysis

The modern interval analysis was born in the 60’s with [9]. Since, it has been
widely developed and is today one central tool in the resolution of constraints act-
ing over continuous domains (see [10] and extensive references). We now present
the main concepts of interval analysis that will be used in the sequel.

Intervals are denoted by boldface symbols. The set of intervals is denoted by
IR and contains, by convention, the empty set. The union between intervals is
not an interval in general. The join between intervals (also called interval hull) is
introduced to correct this bad behavior of the union. Let E be a set of intervals.
The join of E, denoted by ∨E, is the smallest interval that contains each interval
of E. When E contains only two elements, i.e. E = {x,y}, the join of E is also
denoted by x ∨ y.
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The elementary functions are extended to intervals in the following way: let ◦ ∈
{+,−,×, /} then x◦y = {x ◦ y | x ∈ x, y ∈ y}. Due to the monotony properties of
these simple functions, formal expressions for the interval arithmetic are available.
E.g. [a, b] + [c, d] = [a + c, b + d]. Also, continuous one variable functions f(x) are
extended to intervals using the same definition: f(x) = {f(x) | x ∈ x}, which is an
interval because f is continuous. When one represents numbers using finite preci-
sion, the previous operations cannot be computed in general. The outer rounding
is then used so as to keep valid the interpretations. For example, [1, 2]+ [2, 3] could
be equal to [2.999, 5.001] when rounded with a three decimal accuracy.

When one considers more complicated functions that are compounded of ele-
mentary functions, he will compute the interval evaluation of the function: this
consists of replacing all real operations by their interval counterpart. A very
basic result from interval analysis proves that the interval evaluation computes
intervals that contain the range of the function. For example, x × (y − x) ⊇
{x(y − x) | x ∈ x, y ∈ y}.

This will be useful to use some vectorial notations. The variables x1, . . . , xn are
denoted by the vector x = (x1, . . . , xn). The domains of the variablesx1, . . . , xn are
then denoted by then-dimensional boxx = (x1, . . . ,xn), meaning that the domain
of xk is xk. It will also be useful to denote the vector (x1, . . . , xnx , y1, . . . , yny) by
(x, y) and therefore the box (x1, . . . ,xnx ,y1, . . . ,yny) by (x,y).

3 General Description of the Algorithm

In the sequel, we consider two initial boxes xInit ∈ IRnx and yInit ∈ IRny , both
bounded and nonempty. The inner and outer approximations of Σ(f,yInit) ∩
xInit will be studied. The algorithm is decomposed into three phases:

1. We compute a set of boxes F (called boundary Free boxes) that are proved
not to intersect the boundary of Σ(f,yInit) (Section 4). The remaining boxes
(called Weak boundary boxes) are put in the list W .

2. We classify the boundary free boxes into outer and inner boxes (Section 5).
Unknown boxes can appear here but this is very unlikely.

3. We focus on the weak boundary boxes and classify them into inner boxes or
unknown boxes (Section 6).

This is summarized in Algorithm 1 which is built from functions that are
described in the next sections.

4 Computation of Boundary Free Boxes

The first phase consists of computing two finite sets of boxes F and W (all
subsets of xInit) such that:

1. ∪(F ∪W) = xInit and the boxes of F ∪W do not overlap except perhaps
over their boundaries;

2. Each box of F does not intersect xInit ∩∂Σ(f,yInit) (these boxes are called
boundary free boxes); therefore, xInit ∩ ∂Σ(f,yInit) is included in ∪W.
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Algorithm 1. Approximate(f,xInit,yInit, ε)
Input: f (from IRnx × IRny to IRm), xInit ∈ IRnx , yInit ∈ IRny , ε ∈ IR+

Output: (I, O, U) (triplet of finite sets of boxes in IRnx)
(F , W) = BoundaryFreeBoxes(f,xInit,yInit, ε);1

(I′, O, W ′) = ClassifyBoundaryFreeBoxes(f, F ,yInit, ε);2

(I′′, U) = ClassifyWeakBoundaryBoxes(f, W ∪ W ′,yInit, ε);3

I = I′ ∪ I′′;4

return (I, O, U);5

Algorithm 2. BoundaryFreeBoxes(f,xInit, yInit, ε)
Input: f (from IRnx × IRny to IRm), xInit ∈ IRnx , yInit ∈ IRny , ε ∈ IR+

Output: (F , W) (couple of finite sets of boxes in IRnx )
U ← BranchAndPrune( (xInit,yInit), C, ε) where C is given by (6);1

(F , W) ← Projection(xInit, U);2

return (F , W);3

The boxes from F will be classified into inner or outer boxes in Section 5 while
the boxes from W will be classified into inner or unknown boxes in Section 6.

Algorithm 2 computes the wanted sets of boxes. The two functions that are
used in Algorithm 2 are described in the rest of the section. First of all, Subsec-
tion 4.1 presents the basic test that will be used to characterize boundary free
boxes. The computations performed at Line 1 are described in Subsection 4.2
while the computations performed at Line 2 are described in Subsection 4.3.

4.1 Basic Test

Our algorithm is based on the study of the relative position of boxes w.r.t.
the boundary of Σ(f,yInit). The following theorem will play a key role in this
approach.

Theorem 1. Let f : IRnx × IRny −→ IRm be a continuously differentiable func-
tion and x̃ ∈ IRnx be an arbitrary vector and y ∈ IRny bounded and nonempty.
For x ∈ IRnx and y ∈ IRny define the matrix Mf,y(x, y) in the following way:

(
Mf,y(x, y)

)
ij

:=

{
∂fi

∂yj
(x, y) if yj ∈ int yj

0 otherwise.
(4)

Then x̃ ∈ ∂Σ(f,y) implies(
∃y ∈ y

)(
f(x̃, y) = 0 ∧ rankMf,y(x̃, y) < m

)
. (5)

Proof. Provided in Appendix A.1.

Theorem 1 is a generalization of Equation (6) in [11]. Theorem 1 is more effi-
cient in a constraint framework: it can deal with bounded domains directly. The
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Fig. 1.

technique proposed in [11] needs a change of variables that introduces sin and
cos functions, hence leading to less efficient computations.

Example 1. Consider a function f : IR×IR −→ IR whose implicit graph f(x, y) =
0 is plotted on Figure 1. The graph is restricted to IR × y so its projection on
the x-axis equals Σ(f,y). We displayed the vectors a, b, c, d and e which satisfy
the condition rankMf,y(x, y) < 1: first, in the case of a vector (x, y) ∈ {a, b, d},
we have ∂f

∂y (x, y) = 0 and therefore rankMf,y(x, y) = 0. Second, in the case of
a vector (x, y) ∈ {c, e}, the component y is on the boundary of y and therefore
Mf,y(x, y) is set to zero by definition and finally rankMf,y(x, y) = 0. As one
can see on Figure 1, the boundary of Σ(f,y) is included in the projection of
{a, b, c, d, e}.

Definition 1. With the notations introduced in Theorem 1, vectors (x, y) ∈
IRnx × IRny that satisfy f(x, y) = 0 and rankMf,y(x, y) < m are called singular
vectors of f in y (or simply singular vectors as no confusion is possible here).
Then, the weak boundary of Σ(f,y) is defined as the projection of the set of
singular vectors into the x-space.

With these definitions, Theorem 1 is simply stated saying that the boundary of
Σ(f,y) is included inside its weak boundary. In Example 1, the singular vectors
are {a, b, c, d, e}. The projection of these vectors is the weak boundary of Σ(f,y),
and it actually contains ∂Σ(f,y).

The computation of boundary free boxes F is done in two steps: a branch and
prune algorithm is used to construct an outer approximation of the set of singular
vectors (Subsection 4.2), and then this set is projected in order to provide a
rigorous outer approximation of the weak boundary of Σ(f,y) (Subsection 4.3).

4.2 Outer Approximation of the Set of Singular Vectors

An outer approximation of the set of singular vectors is computed using a ba-
sic branch and prune algorithm. This algorithm is described in Algorithm 3.
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Algorithm 3. BranchAndPrune(u, C, ε)
Input: u ∈ IRn , C (finite set of n-ary constraints) , ε ∈ IR+

Output: U ⊆ IRn

L ← {u};1

while L �= ∅ do2

ũ ← Extract(L);3

if ||wid ũ|| ≥ ε then4

foreach c ∈ C do5

ũ ← Prune(ũ, c(u));6

end7

if ũ �= ∅ then8

L ← L ∪ Bisect(ũ);9

end10

else11

U ← U ∪ {ũ};12

end13

end14

return U ;15

The function prune
(
ũ, c(u)

)
is often called a contractor and returns a new box

ũ′ ⊆ ũ such that
(
∀u ∈ u

)(
c(u) ⇒ u ∈ u′

)
. This algorithm is well known and

∪BranchAndPrune
(
(xInit,yInit), C, ε

)
, where

C = { f(x, y) = 0 , rankMf,yInit(x, y) < m }, (6)

is obviously an outer approximation of the set of singular vectors of f in
(xInit,yInit).

Usually, the function extract(L) extracts the box that has the largest ||wid ũ||.
This presents the advantage that the search is performed uniformly in the search
space. Extracting the box that has the smallest ||wid ũ|| leads to a deep-first
algorithm. This latter algorithm is well suited for a quick search of one approx-
imate solution and will be used in Section 5. The function bisect must bisect
fairly, meaning that each component is regularly bisected. A widely used bi-
section strategy is to bisect the largest component of the box, hence ensuring
convergence.

Remaining is to describe the contractors that will be used for each of the two
involved constraints. The contractor prune

(
(x,y), f(x, y) = 0

)
can be imple-

mented using the usual constraint satisfaction techniques (cf. [10, 12, 13]). The
contractor prune

(
(x,y), rankMf,y(x, y) < m

)
is implemented using the interval

Gauss elimination algorithm (cf. [14]). First, we need an interval evaluation of
Mf,y(x, y). For x,y, ỹ ∈ IRn, y ⊆ ỹ, let us define Mf,ỹ(x,y) in the following
way: (

Mf,ỹ(x,y)
)

ij
:=

{ ∂fi
∂yj

(x,y) if yj ⊆ int ỹj

0 otherwise,
(7)
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Algorithm 4. Projection(x,U , ε)
Input: x ∈ IRnx , U (finite set of boxes in IRnx × IRny ), ε ∈ IR+

Output: (F , W) (couple of finite sets of boxes in IRnx )
L ← {x};1

while L �= ∅ do2

x̃ ← Extract(L);3

if ||wid x̃|| ≥ ε then4

if
(∀(x̃′, ỹ′) ∈ U)(x̃ ∩ x̃′ = ∅) then5

F ← F ∪ {x̃};6

else7

L ← L ∪ Bisect(x̃);8

end9

else10

W ← W ∪ {x̃};11

end12

end13

return (F , W);14

where ∂fi
∂yj

(x,y) is an interval evaluation of ∂fi

∂yj
(x, y). With this definition, we

obviously have Mf,ỹ(x, y) ∈ Mf,ỹ(x,y) for all (x, y) ∈ (x,y). We can therefore
define

prune
(
(x,y), rankMf,ỹ(x, y) < m

)
:=
{
∅ if GaussElim

(
Mf,ỹ(x,y)

)
(x,y) otherwise,

where the function GaussElim(M) returns true if and only if the interval Gauss
elimination algorithm succeeds in proving that M has full rank.

4.3 Projection in the x-Space

Algorithm 4 computes the sets of boxes F (boundary free boxes) and W (weak
boundary boxes) using the outer approximation U of the singular vectors com-
puted in the previous subsection. We can display two points:

– Line 6: a box x̃ is put in F only if
(
∀(x̃′, ỹ′) ∈ U

)(
x̃ ∩ x̃′ = ∅

)
. Because

∪U is an outer approximation of the set of singular vectors of Σ(f,yInit),
this proves that x̃ does not contain any projection of some singular vectors.
Hence, x̃ does not intersect the weak boundary of Σ(f,yInit) and finally
does not intersect ∂Σ(f,yInit) neither.

– A box x̃ is either put in F (Line 6) or in W (Line 8) or bisected (Line 11).
Therefore, we have ∪(F ∪W) = x̃, and hence ∂Σ(f,yInit) ⊆ (∪W).

The efficiency of Algorithm 4 can be drastically improved by keeping track of the
tests performed at Line 5 in order to avoid useless comparisons, but the details
are not presented here.
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5 Classification of Boundary Free Boxes

In this section, we consider a finite set of boundary free boxes F , i.e. boxes that
are proved not to intersect ∂Σ(f,yInit). We aim to classify these boxes x into
inner boxes, i.e. x ⊆ Σ(f,yInit), and outer boxes, i.e. x ∩Σ(f,yInit) = ∅.

As x ∈ F does not intersect the boundary of Σ(f,yInit), we can study a sim-
pler problem focusing on one arbitrary vector inside the box x. This is formalized
by Proposition 1.

Proposition 1. Let x ∈ IRn and E be a closed subset of IRn such that x∩∂E =
∅. Then x ∩ E �= ∅ =⇒ x ⊆ E, or equivalently x �⊆ E =⇒ x ∩ E = ∅.

Proof. Provided in Appendix A.2.

This proposition has two interesting consequences. First, given a box x ∈ F ,
we can now focus on one arbitrary vector inside x. The problem will now be to
decide if

(
∃y ∈ yInit

)(
f(midx, y) = 0

)
is true or not, instead of having to decide

if
(
∀x ∈ x

)(
∃y ∈ yInit

)(
f(x, y) = 0

)
is true or not. Second, when a box x is

proved to be inside or outside Σ(f,yInit), the same property holds for all boxes
x′ ∈ F such that x ∩ x′ �= ∅. This last remark is able to strongly accelerate the
computations but it is not explicitly described in Algorithm 5.

The next proposition is an existence test that allows to check the existence
of a solution to the system of equations g(y) = 0. In our context it will be used
with g(y) = f(midx, y). This existence test is new, and should be compared to
the usual existence tests (e.g. Moore-Kioustelidis). Proposition 2 presents two
advantages over the usual existence tests: first it does not need any precondi-
tioning. Second, it can be applied to under-constrained systems of equations. We
use it here for these two reasons.

Proposition 2. Let g : IRn −→ IRm be a continuously differentiable function
and y ∈ IRn be a bounded nonempty box. Consider a box z such that 0 ∈ z and
g−1(z) ∩ y �= ∅.1 Suppose that

{(y, z) ∈ (y, z) | g(y) = z ∧ rankMg,y(y) < m} = ∅, (8)

where (
Mg,y(y)

)
ij

:=

{
∂gi

∂yj
(y) if yj ∈ int yj

0 otherwise.

Then there exists y ∈ y such that g(y) = 0.

Proof. Provided in Appendix A.2.

Being given a box x in addition to the initial box yInit, we define a set of
constraints that correspond to the statement of Proposition 2:

C = { f(midx, y) = z , rankMf,yInit(y) < m }. (9)

1 The box z := 0 ∨ g(ỹ), where ỹ ∈ y is an approximate solution of g(y) = 0, is both
efficient and easy to compute.
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Algorithm 5. ClassifyBoundaryFreeBoxes(f, F , y, ε)
Input: f (from IRnx × IRny to IRm), F (finite sets of boxes in

IRnx), y ∈ IRny , ε ∈ IR+

Output: (I, O, U) (triplet of finite sets of boxes in IRnx)
while F �= ∅ do1

x ← Extract(F);2

Com. L ← BranchAndPrune(y , {f(mid x, y) = 0} , ε);3

Com. if L = ∅ then4

O = O ∪ {x};5

else6

y = Extract(L);7

Com. z ← 0 ∨ f(midx, midy);8

L′ ← BranchAndPrune( (y, z) , C , ε);9

if L′ = ∅ then10

I = I ∪ {x};11

else12

U = U ∪ {x};13

end14

end15

end16

return (I, O, U);17

We can now propose Algorithm 5 that classifies boundary free boxes into inner
boxes and outer boxes (and possibly unknown boxes). Lines preceded by ”Com.”
are commented bellow:

– Line 3: the branch and prune algorithm must either prove the emptiness or
provide one approximate solution; therefore, it is modified to a deep-first
search algorithm.

– Line 4: if L is empty then the branch and prune algorithm has proved midx /∈
Σ(f,yInit). Because x is supposed to be a boundary free box, Proposition 1
then proves that x ∩Σ(f,yInit) = ∅.

– Line 8: f(midx,midy) is computed using interval arithmetic and therefore
leads to an interval that rigorously contains the image of (midx,midy). The
interval vector z is the join (or interval hull) of the latter interval vector and
0, and it therefore contains both 0 and the image of (midx,midy). Hence, z
is a good interval vector to use in Proposition 2.

6 Classification of Weak Boundary Boxes

We consider a box x that was not proved to be a boundary free box. The idea is
to consider a stronger problem Σ(f,yInit′) with yInit′ ⊆ yInit. Then, the weak
boundary of Σ(f,yInit′) is certainly different from the one of Σ(f,yInit), and
the box x is hopefully a boundary free box for the new problem. So, we will
use the algorithms presented in the previous sections to handle the new problem
Σ(f,yInit′).
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Fig. 2.

Let us illustrate this technique with an example. Consider the quantified con-
straint represented on Figure 1. The left-hand side graphic of Figure 2 displays
the unknown boxes generated at Line 1 of Algorithm 2. These boxes contain the
singular vectors of Σ(f,yInit). The projection of these boxes forms the weak
boundary. The right-hand side graphic focuses on one box x̃ among the weak
boundary box. The four boxes of the right hand side graphic are obtained using
the branch and prune algorithm to prune the constraint f(x, y) = 0 with x ∈ x̃
and y ∈ yInit. We can now easily pick up a box yInit′ where no singularity oc-
curs, and the algorithms presented in the previous section are likely to succeed
in proving that it is an inner box.

In practice, however, the difference between singular boxes and nonsingular
boxes is not as clearly identified as on Figure 2. Although finding an efficient
heuristic to compute a new initial box yInit′ is one important forthcoming work,
the experimentations presented in the next section show that this simple heuris-
tic is already useful.

The process described in this section leads to a function

ClassifyWeakBoundaryBoxes(f,W ,yInit, ε)

that returns a couple (I,U). The set of boxes I contains the boxes that where
proved to be inside Σ(f,yInit′) ⊆ Σ(f,y). The set of boxes U contains the boxes
we were not able to prove anything about.

7 Experimentations

The application of the algorithm to three examples is now presented. No com-
parison is provided as our algorithm is the first numerical algorithm that is able
to compute the inner approximations proposed in this section. Formal quanti-
fier elimination (cf. [1]) can be applied to the first two examples. The results
obtained by our algorithm are similar to the one obtained by formal quantifier
elimination.
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Fig. 3.

7.1 Well-Constrained Academic Problem

The first problem is defined by

f(x, y) =
(
x2

1 + x2
2 + y2

1 + y2
2 − 1

x1 + x2 + y1 + y2

)
; xInit =

(
[−1, 1]
[−1, 1]

)
; yInit =

(
[−0.7, 0.7]
[−0.8, 0.8]

)
.

The pavings plotted in the left hand side graphic of Figure 3 are obtained
after one minute using a precision ε = 0.01. Inner boxes are in gray (light gray
for boundary free boxes and dark gray for weak boundary boxes that have been
proved to be inner boxes) and unknown boxes are in black. The algorithm be-
haves very well with this example and provides a good inner approximation.

7.2 Under-Constrained Academic Problem

The second problem is defined by

f(x, y) =
(

x2
1 + x2

2 + y2
1 + y2

2 + y2
3 − 1

x1 + x2 + y1 + y2 + y3

)
; xInit =

(
[−1, 1]
[−1, 1]

)
; yInit =

⎛⎝ [−0.7, 0.7]
[−0.8, 0.8]

[−2, 2]

⎞⎠ .

The pavings plotted in right hand side graphic of Figure 3 are obtained after
15 minutes using a precision ε = 0.02. The heuristic presented in Section 6 for
the classification of weak boundary boxes is clearly not efficient for this example:
it is missing some parts of the weak boundary while 99% of the computations are
spent working on the weak boundary. This will have to be investigated; however,
the algorithm presents a good behavior for the computation and classification of
boundary free boxes.

7.3 Speed Diagram of a Sailboat

The third problem was proposed in [5]. It is defined by

f(v, θ, δr, δs) =
(

αs(V cos(θ + δs) − v sin δs) sin δs − αrv sin2 δr − αfv
(l − rs cos δs)αs(V cos(θ + δs) − v sin δs) − rrαrv sin δr cos δr

)
,
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Fig. 4.

where the following values are chosen for parameters: αs = 500, αr = 300, αf =
60, V = 10, rs = 1, rr = 2, and l = 1. The initial domains are Dom(v) = [0, 20],
Dom(θ) = [−π, π], Dom(δr) = [−π/2, π/2] and Dom(δr) = [−π/2, π/2]. The graph to
be approximated is therefore{

(v, θ) ∈ ([0, 20], [−π, π]) | (∃δr ∈ [−π

2
,
π

2
]
)(∃δs ∈ [−π

2
,
π

2
]
)(

f(v, θ, δr, δs) = 0
)}

.

This set corresponds to the speed v and angle θ w.r.t. the wind that can be
reached for some command δr and δs in their domains. An inner approximation
was computed in [5] after a specific formal simplification of the problem. The
pavings plotted in Figure 4 are obtained after 10 minutes using a precision
ε = 0.01. We obtain the same results as in [5] but without any preliminary
formal simplification. Our algorithm is slower, but it works in a 4 dimensional
space (while the simplification used in [5] decreases the dimension by one), and
it was not yet optimized.

8 Conclusion

We have presented the first numerical algorithm that is able to compute an inner
approximation (and obviously an outer approximation) of the graph of an exis-
tentially quantified constraint with an arbitrary number of equality constraints.
Although some previous works were dedicated to the inner approximation of such
constraints in some special cases, the algorithm we proposed can be applied for
arbitrary numbers of equalities and existentially quantified parameters.

The idea consisting of using a branch and prune algorithm to approximate
the boundary of the constraint graph instead of the constraint graph itself seems
to be new. Not only does it allow simplification of the problem to be solved, but
it should also make the algorithm accumulate on this boundary and therefore
lead to efficient computations. Timings on presented examples are reasonable
but not yet good. However, no optimization has been done in order to present
the concepts clearly. We expect some strong efficiency improvements in the next
implementations of the algorithm. Finally, one advantage of the proposed method
is that it relies only on a simple standard branch and prune algorithm. Therefore,
any future improvement for pruning operators will be useful for our algorithm.
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Convergence of the algorithm remains to be studied. This convergence strongly
depends on the heuristic used to deal with weak boundary boxes. Actually, the
simple heuristic proposed in Section 6 showed is usefulness but can be certainly
improved. In particular, experimentations showed it was not very efficient for
under-constrained problems. Therefore, a heuristic that makes the algorithm
convergent will have to be found.
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A Proofs

A.1 Proof of Theorem 1

Lemma 1. Let f : IRnx × IRny −→ IRm be a continuous function and y ∈ IRny

be bounded and nonempty. Then Σ(f,y) is closed in IRnx .

Proof. Consider a sequence xn ∈ Σ(f,y) that converges to x̃. We have to prove
x̃ ∈ Σ(f,y). As xn ∈ Σ(f,y), there exists yn ∈ y such that f(xn, yn) = 0. As y is
bounded, theBolzano-Weierstrass theoremproves that the sequence yn has at least
one accumulation point in y. Let us denote one of these accumulation points ỹ. We
can pick up a subsequence yπ(n) that converges to ỹ. The sequence xπ(n) obviously
converges to x̃. Therefore, limn→∞ f(xπ(n), yπ(n)) = f(x̃, ỹ) = 0. We proved that
there exists ỹ ∈ y such that f(x̃, ỹ) = 0 and hence x̃ ∈ Σ(f,y). ��

Lemma 2. Let y ∈ IRn. If y ∈ ∂y then there exists i ∈ [1..n] such that yi ∈ ∂yi.

Proof. We prove the contrapose. Suppose for all i ∈ [1..n] we have yi ∈ int yi.
That is, for all i ∈ [1..n] we have inf yi < yi < supyi. This proves y ∈ int y. ��

Proof of Theorem 1. We prove the contrapositive of the statement. There are
only two possible cases:

(
∀y ∈ y

)(
f(x̃, y) �= 0

)
or
(
∃y ∈ y

)(
f(x̃, y) = 0

)
. Let us

consider both cases. In the first case, we have x̃ /∈ Σ(f,y), and because Σ(f,y) is
closed in IRnx by Lemma 1, we have x̃ /∈ ∂Σ(f,y). The second case relies on the
implicit function theorem. Consider ỹ ∈ y such that f(x̃, ỹ) = 0. By hypothesis,
we have rankMf,y(x̃, ỹ) = m (which implies ny ≥ m). Therefore, there exists
a set of indices E := {e1, · · · , em} such that detM �= 0 where M ∈ IRm×m is
defined by Mij :=

(
Mf,y(x̃, ỹ)

)
iej

.

Claim: ỹE ∈ int yE . The claim is proved by contradiction. Suppose that ỹE ∈
∂yE , therefore by Lemma 2 there exists ej ∈ E such that ỹej ∈ ∂yej . Then
by definition of Mf,y(x̃, ỹ) we have Mij = 0 for all i ∈ [1..n]. Therefore M is
singular which is absurd because detM �= 0 by hypothesis.

Now define g : IRnx×IRm −→ IRm by g(x, yE) = f(x, y) where y[1..n]\E is fixed
to ỹ[1..n]\E . With this definition, we have ∂gi

∂yej
(x̃, ỹE) = Mij . As M is nonsingular,

we can apply the implicit function theorem that proves the existence of

(i) some open sets X ⊆ IRnx and Y ⊆ IRm that contain respectively x̃ and ỹE ;
(ii) a continuously differentiable function φ : X −→ Y such that φ(x̃) = ỹE ;
(iii) yE = φ(x) implies g(x, yE) = 0 for any x ∈ X.

Now define Y′ = Y ∩ (int yE) which is open because it is the intersection of two
open sets. As ỹE ∈ int yE and ỹE ∈ Y we have ỹE ∈ Y′. As φ is continuous the
preimage X′ := φ−1(Y′) is also open. Furthermore x̃ ∈ X′ because ỹE ∈ Y′ and
φ(x̃) = ỹE .

For all x ∈ X′ define y ∈ y by yE := φ(x) and y[1..n]\E = ỹ[1..n]\E . Using
(iii), we have g(x, yE) = 0 which implies f(x, y) = 0 by definition of g. We have
therefore proved X′ ⊆ Σ(f,y) which eventually proves that x̃ ∈ int Σ(f,y).
Therefore x̃ /∈ ∂Σ(f,y).
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A.2 Proofs of Proposition 1 and Proposition 2

Lemma 3. Let E be closed in IRn and x ∈ int E and x′ /∈ E. Any continuous
path connecting x to x′ intersects ∂E.

Proof. Cf. [15]. ��

Proof of Proposition 1. It is sufficient to prove that the box x is either inside or
outside of E. This is proved by contradiction: let us suppose that x is neither
inside nor outside, i.e. there exist x, x′ ∈ x such that x ∈ E and x′ /∈ E. As x does
not intersect ∂E, we have x ∈ intE. Furthermore, x being path-connected, there
exists a path w that is contained in x and which connects x and x′. Applying
Lemma 3, we prove that w intersects ∂E, and therefore that x intersects ∂E,
which is eventually absurd because we supposed x ∩ ∂E = ∅.

Proof of Proposition 2. We define h(z, y) := g(y)− z and by definition we have
Σ(h,y) =

{
z ∈ IRm |

(
∃y ∈ y

)(
h(z, y) = 0

)}
. We will prove that z ⊆ Σ(h,y),

which will conclude the proof because by hypothesis 0 ∈ z and by definition
of h, h(0, y) = 0 =⇒ g(y) = 0. As g−1(z) ∩ y �= ∅, there exists ỹ ∈ y
such that g(ỹ) ∈ z. We have g(ỹ) ∈ Σ(h,y) because h(g(ỹ), ỹ) = 0 by def-
inition of h. As g(ỹ) ∈ z by hypothesis, we have z ∩ Σ(h,y) �= ∅. There-
fore, thanks to Proposition 1, we just have to prove that z ∩ ∂Σ(h,y) = ∅.
By definition of h and Mg,y(y) and Mh,y(z, y), the condition (8) is equivalent
to {(y, z) ∈ (y, z) | h(z, y) = 0 ∧ rankMh,y(z, y) < m} = ∅. As a direct conse-
quence we obtain{

z ∈ z |
(
∃y ∈ y

)(
h(z, y) = 0 ∧ rankMh,y(z, y) < m

)}
= ∅.

Finally, this condition validates the hypothesis of Theorem 1 which proves that
z ∩ ∂Σ(h,y) = ∅, hence concluding the proof.
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Abstract. Machine learning can be used to build models that predict the run-
time of search algorithms for hard combinatorial problems. Such empirical hard-
ness models have previously been studied for complete, deterministic search algo-
rithms. In this work, we demonstrate that such models can also make surprisingly
accurate predictions of the run-time distributions of incomplete and randomized
search methods, such as stochastic local search algorithms. We also show for the
first time how information about an algorithm’s parameter settings can be incor-
porated into a model, and how such models can be used to automatically adjust
the algorithm’s parameters on a per-instance basis in order to optimize its perfor-
mance. Empirical results for Novelty+ and SAPS on structured and unstructured
SAT instances show very good predictive performance and significant speedups
of our automatically determined parameter settings when compared to the default
and best fixed distribution-specific parameter settings.

1 Introduction

The last decade has seen a dramatic rise in our ability to solve combinatorial optimiza-
tion problems in many practical applications. High-performance heuristic algorithms
increasingly exploit problem instance structure. Thus, knowledge about the relation-
ship between this structure and algorithm behavior forms an important basis for the
development and successful application of such algorithms. This has inspired a large
amount of research on methods for extracting and acting upon such information. These
range from search space analysis to automated algorithm selection and tuning methods.

An increasing number of studies explore the use of machine learning techniques in
this context [15,18,6,8]. One recent approach uses linear basis function regression to
obtain models of the time an algorithm will require to solve a given problem instance
[19,21]. These so-called empirical hardness models can be used to obtain insights into
the factors responsible for an algorithm’s performance, or to induce distributions of
problem instances that are challenging for a given algorithm. They can also be leveraged
to select among several different algorithms for solving a given problem instance.

In this paper, we extend on this work in three significant ways. First, past work on
empirical hardness models has focused exclusively on complete, deterministic algo-
rithms [19,21]. Our first goal is to show that the same methods can be used to predict
sufficient statistics of the run-time distributions (RTDs) of incomplete, randomized al-
gorithms, and in particular of stochastic local search (SLS) algorithms for SAT. This is

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 213–228, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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important because SLS algorithms are among the best existing techniques for solving a
wide range of hard combinatorial problems, including hard subclasses of SAT [14].

The behavior of many randomized heuristic algorithms is controlled by parameters
with continuous or large discrete domains. This holds in particular for most state-of-
the-art SLS algorithms. For example, the performance of WalkSAT algorithms such
as Novelty [20] or Novelty+ [12] depends critically on the setting of a noise parameter
whose optimal value is known to depend on the given SAT instance [13]. Understanding
the relationship between parameter settings and the run-time behavior of an algorithm
is of substantial interest for both scientific and pragmatic reasons, as it can expose
weaknesses of a given search algorithm and help to avoid the detrimental impact of
poor parameter settings. Thus, our second goal is to extend empirical hardness models
to include algorithm parameters in addition to features of the given problem instance.

Finally, hardness models could also be used to automatically determine good param-
eter settings. Thus, an algorithm’s performance could be optimized for each problem
instance without any human intervention or significant overhead. Our final goal is to
explore the potential of such an approach for automatic per-instance parameter tuning.

In what follows, we show that we have achieved all three of our goals by reporting
the results of experiments with SLS algorithms for SAT. (We note however, that our
approach is by no means limited to SLS algorithms or SAT, though the features we
use were created with some domain knowledge. In experimental work it is obviously
necessary to choose some specific domain. We have chosen to study the SAT problem
because it is the prototypical and best-studied NP-complete problem and there exists
a great variety of SAT benchmark instances and solvers.) Specifically, we considered
two high-performance SLS algorithms for SAT, Novelty+ [12] and SAPS [17], and sev-
eral widely-studied structured and unstructured instance distributions. In Section 2, we
show how to build models that predict the sufficient statistics of RTDs for randomized
algorithms. Empirical results demonstrate that we can predict the median run-time for
our test distributions with surprising accuracy (we achieve correlation coefficients be-
tween predicted and actual run-time of up to 0.995), and that based on this statistic we
can also predict the complete exponential RTDs Novelty+ and SAPS exhibit. Section 3
describes how empirical hardness models can be extended to incorporate algorithm
parameters; empirical results still demonstrate good performance for this harder task
(correlation coefficients reach up to 0.98). Section 4 shows that these models can be
leveraged to perform automatic per-instance parameter tuning that results in significant
reductions of the algorithm’s run-time compared to using default settings (speedups of
up to two orders of magnitude) or even the best fixed parameter values for the given
instance distribution (speedups of up to an order of magnitude). Section 5 describes
how Bayesian techniques can be leveraged when predicting run-time for test distribu-
tions that differ from the one used for training of the empirical hardness model. Finally,
Section 6 concludes the paper and points out future work.

2 Run-Time Prediction: Randomized Algorithms

Previous work [19,21] has shown that it is possible to predict the run-time of deter-
ministic tree-search algorithms for combinatorial problems using supervised machine
learning techniques. In this section, we demonstrate that similar techniques are able
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to predict the run-time of algorithms which are both randomized and incomplete. We
support our arguments by presenting the results of experiments involving two powerful
local search algorithms for SAT.

2.1 Prediction of Sufficient Statistics for Run-Time Distributions

It has been shown in the literature that high-performance randomized local search al-
gorithms tend to exhibit exponential run-time distributions [14], meaning that the run-
times of two runs that differ only in their random seeds can easily vary by an order
of magnitude. Even more extreme variability in run-time has been observed for ran-
domized complete search algorithms [11]. Due to this inherent algorithm randomness,
we have to predict a probability distribution over the amount of time an algorithm will
take to solve the problem. For many randomized algorithms such run-time distributions
closely resemble standard parametric distributions such as exponential or Weibull (see,
e.g., [14]). These parametric distributions are completely specified by certain sufficient
statistics. For example, an exponential distribution can be specified by its median. It
follows that by predicting such sufficient statistics, a prediction for the entire run-time
distribution for an unseen instance is obtained.

Note that for randomized algorithms, the error in a model’s predictions can be di-
vided into two components: the extent to which the model fails to describe the data, and
the inherent noise in the employed summary statistics due to randomness of the algo-
rithm. This latter component may be reduced by measuring the statistics over a larger
number of runs per instance. As we will see in Figures 1(a) and 1(b), while empirical
hardness models of SLS algorithms are able to predict the run-times of single runs rea-
sonably well, their predictions of median run-times over a larger set of runs are much
more accurate.

Our approach for run-time prediction of randomized incomplete algorithms largely
follows the basis function regression approach of [19,21].1 While an extension of our
work to randomized tree search algorithms should be straight-forward, experiments in
this paper are restricted to incomplete local search algorithms.

In order to predict the run-time of an algorithmA on a distributionD of instances, we
draw an i.i.d. sample of N instances fromD. For each instance sn in this training set,A
is run some constant number of times and an empirical fit rn of the sufficient statistics
of interest is recorded. Note that rn is a 1×M vector if there are M sufficient statistics
of interest. We also compute a set of k = 43 instance features xn = [xn,1, . . . , xn,k] for
each instance. This set is a subset of the features used in [21], including basic statistics,
graph-based features, local search probes, and DPLL-based measures.2 We restricted

1 In previous preliminary and unpublished experiments for the winner determination problem,
we examined other techniques such as support vector machine regression, multivariate adap-
tive regression splines and lasso regression; none improved predictive performance signifi-
cantly. More recent experiments (see Section 5) suggest that Gaussian process regression can
increase performance, especially when the amount of training data is small. However, this
method has complexity cubic in the number of data points, complicating its practical use.

2 Information on precisely which features we used, as well as the rest of our ex-
perimental data and Matlab code, is available online at http://www.cs.ubc.ca/
labs/beta/Projects/Empirical-Hardness-Models/
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the subset of features because some features from [21] timed out for large instances—
the computation of all our 43 features took only about 2 seconds per instance.

Given this data for all the training instances, a function f(x) is fitted that, from
the features xn of an instance sn, approximates the sufficient statistics rn of A’s run-
time distribution on this instance. Since linear functions of these raw features may
not be expressive enough, we construct a richer set of basis functions which can in-
clude arbitrarily complex functions of all features xn of an instance sn, or simply
the raw features themselves. These basis functions typically contain a number of el-
ements which are either unpredictive or highly correlated. Predictive performance can
thus be improved (especially in terms of robustness) by applying some form of fea-
ture selection that identifies a small subset of D important features; as explained later,
here we use forward selection with a designated validation set to select up to D = 40
features. We denote the reduced set of D basis functions for instance sn as φn =
φ(xn) = [φ1(xn), . . . , φD(xn)]. We then use ridge regression to fit the D ×M ma-
trix of free parameters w of a linear function fw(xn) = φ(xn)�w, that is, we com-
pute w = (δI + Φ�Φ)−1Φ�r, where δ is a small regularization constant (set to
10−2 in our experiments), Φ is the N × D design matrix Φ = [φ�1 , . . . ,φ

�
N ]�, and

r = [r1
�, . . . , rN

�]�. Given a new, unseen instance sN+1, a prediction of the M
sufficient statistics can be obtained by computing the instance features xN+1 and eval-
uating fw(xN+1) = φ(xN+1)�w. One advantage of the simplicity of ridge regression
is a low computational complexity of Θ(max{D3, D2N,DNM}) for training and of
Θ(DM) for prediction for an unseen test instance.

2.2 Experimental Setup and Empirical Results for Predicting Median Run-Time

We performed experiments for the prediction of run-time distributions for two SLS
algorithms, SAPS and Novelty+. Because previous studies [12,17,14] have shown that
these algorithms tend to have approximately exponential run-time distributions, the suf-
ficient statistics rn for each instance sn reduce to the empirical median run-time of a
fixed number of runs. In this section we fix SAPS parameters to their default values
〈α, ρ, Psmooth〉 = 〈1.3, 0.8, 0.05〉. For Novelty+, we use its default parameter setting
〈noise, wp〉 = 〈0.5, 0.01〉 for unstructured instances. On structured instances Novelty+

is known to perform better with lower noise settings, and indeed with noise=0.5 the ma-
jority of runs did not finish within an hour of CPU time. Thus, we chose 〈noise, wp〉 =
〈0.1, 0.01〉 which solved all structured instances in 15 minutes of CPU time. We con-
sider models that incorporate multiple parameter settings in the next section.

In our experiments, we used six widely-studied SAT benchmark distributions, half
consisting of unstructured instances and half of structured instances. The first two dis-
tributions we studied each consisted of 20,000 uniform-random 3-SAT instances with
400 variables; the first (CV-var) varied the clauses-to-variables ratio between 3.26 and
5.26, while the second (CV-fixed) fixed c/v = 4.26. These distributions were previ-
ously studied in [21], facilitating a comparison of our results with past work. Our third
unstructured distribution (SAT04) consisted of 3,000 random unstructured instances
generated with the two generators used for the 2004 SAT solver competition (with
identical parameters) and was employed to evaluate our automated parameter tuning
procedure on a competition benchmark.
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Table 1. Evaluation of learned models on test data. N is the number of instances for which
the algorithm’s median runtime is ≤ 900 CPU seconds (only those instances are used and split
50:25:25 into training, validation, and test sets). Columns for correlation coefficient and RMSE
indicate values using only raw features as basis functions, and then using raw features and their
pairwise products. SAPS was always run with its default parameter settings 〈α, ρ〉 = 〈1.3, 0.8〉.
For Novelty+, we used noise=0.5 for unstructured and noise=0.1 for structured instances.

Unstructured instances
Dataset N Algorithm Runs Corrcoeff RMSE
CV-var 9952 SAPS 1 0.903/0.911 0.37/0.35
CV-var 9952 SAPS 10 0.960/0.968 0.23/0.20
CV-var 9952 SAPS 100 0.967/0.977 0.21/0.17
CV-var 9952 SAPS 1000 0.968/0.978 0.20/0.17
CV-var 9952 Novelty+ 10 0.947/0.952 0.25/0.23

CV-fixed 10125 SAPS 10 0.765/0.781 0.46/0.44
CV-fixed 10125 Novelty+ 10 0.586/0.603 0.61/0.60
SAT04 1457 SAPS 10 0.933/0.938 0.52/0.50
SAT04 1426 Novelty+ 10 0.934/0.938 0.58/0.56

Structured instances
Dataset N Algorithm Runs Corrcoeff RMSE
QWH 7793 SAPS 10 0.988/0.995 0.33/0.21
QWH 8049 Novelty+ 10 0.988/0.992 0.22/0.18
QCP 14716 SAPS 10 0.995/0.997 0.17/0.15
QCP 15263 Novelty+ 10 0.993/0.994 0.12/0.11

SW-GCP 4287 SAPS 10 0.890/0.892 0.45/0.45
SW-GCP 5573 Novelty+ 10 0.690/0.691 0.23/0.23

Our first two structured distributions are different variants of quasigroup completion
problems. The first one (QCP) consisted of 30,626 quasigroup completion instances,
while the second one (QWH) contained 9,601 instances of the quasigroup comple-
tion problem for quasigroups with randomly punched holes) [10]. Both distributions
were created with the generator lsencode by Carla Gomes. The ratio of unassigned
cells varied from 25% to 75%. We chose quasigroup completion problems as a repre-
sentative of structured problems because this domain allows the systematic study of a
large instance set with a wide spread in hardness, and because the structure of the un-
derlying Latin squares is similar to the one found in applications such as scheduling,
time-tabling, experimental design, and error correcting codes [10]. Our last structured
distribution (SW-GCP) contained 20,000 instances of graph coloring based on small
world graphs that were created with the generator sw.lsp by Toby Walsh [9].

As is standard in the study of SLS algorithms, all distributions were filtered to contain
only satisfiable instances, leading to 9,952, 10,125, 1,470, 17,989, 9,601, and 11,182 in-
stances for CV-var, CV-fixed, SAT04, QCP, QWH, and SW-GCP, respectively. To limit
computational time we only used instances that were solved in a single SAPS run of one
hour. This further reduced the sets to 9,952, 10,125, 1,469, 15,263, 8,049, and 5,573 in-
stances for CV-var, CV-fixed, SAT04, QCP, QWH, and SW-GCP, respectively.

We then randomly split each instance set 50:25:25 into training, validation, and test
sets; all experimental results are based on the test set and were stable with respect to
reshuffling. We chose the 43 raw features and the constant 1 as our basis functions,
and also included pairwise multiplicative combinations of all raw features. We then
performed forward selection to select up to 40 features, stopping when the error on the
validation set first began to grow. Experiments were run on a cluster of 50 dual 3.2GHz
Intel Xeon PCs with 2MB cache and 2GB RAM, running SuSE Linux 9.1.

Overall, our experiments show that we can consistently predict median run-time with
surprising accuracy. Results for all our benchmark distributions are summarized in Ta-
ble 1. Note that a correlation coefficient (CC) of 1 indicates perfect prediction while 0
indicates random noise; a root mean squared error (RMSE) of 0 means perfect prediction
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(a) 1 Novelty+ run on CV-var.
CC=0.878, RMSE=0.37
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(b) 100 Novelty+ runs on CV-
var. CC=0.962, RMSE=0.21
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(c) 100 SAPS runs on CV-fixed.
CC=0.800, RMSE=0.42

Fig. 1. Correlation between observed and predicted run-times/medians of run-times of SAPS and
Novelty+ on unstructured instances. The basis functions were raw features and their pairwise
products. The three red vertical dashed lines in these and all other scatter plots in this paper
denote the 10%, 50%, and 90% quantiles of the data. For example, this means that 40% of the
data points lie between the left and the middle vertical lines.
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(a) 10 SAPS runs on QWH
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(b) 10 SAPS runs on SW-GCP
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(c) 10 Novelty+ runs on QCP

Fig. 2. Correlation between observed and predicted run-times/medians of run-times of SAPS and
Novelty+ on SAT04 and QWH. The basis functions were raw features and their pairwise prod-
ucts. For RMSEs and correlations coefficients, see Table 1.

while 1 roughly means average misprediction by one order of magnitude. Also note that
the predictive qualities for Novelty+ and SAPS are qualitatively similar.

Figure 1(a) shows a scatterplot of predicted vs. actual run-time for Novelty+ on CV-
var, where the model is trained and evaluated on a single run per instance. Most of the
data points are located in the very left of this plot, which we visualize by plotting the
10%, 50% and 90% quantiles of the data (the three red dashed lines). While a strong
trend is evident in Figure 1(a), there is significant error in the predictions. Figure 1(b)
shows the same algorithm on the same dataset, but now predicting the median of an
empirical run-time distribution based on 100 runs. The error for the leftmost 90% of the
data points is substantially reduced, leading to an almost halved RMSE when compared
to predictions for a single run. It is also noteworthy that these run-time predictions are
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more accurate than the predictions for the deterministic algorithms kcnfs, satz, and ok-
solver (compare against Figure 5(left) in [21]). While this is already true for predictions
based on single runs it is much more pronounced when predicting median run-time.
This same effect holds true for predicting median run-time of SAPS, and for different
distributions. Figure 1(c) also shows much better predictions than we observed for de-
terministic tree search algorithms on CV-fix (compare this plot against Figure 7(left)
in [21]). We believe that two factors contribute to this effect. First, we see deterministic
algorithms as comparable to randomized algorithms with a fixed seed. Obviously, the
single run-time of such an algorithm on a particular instance is less informative about
its underlying run-time distribution (were it randomized) than the sufficient statistics of
multiple runs. Second, one of the main reasons to introduce randomness in search is
to achieve diversification. This allows the heuristic to recover from making a bad de-
cision by exploring a new part of the search space, and hence reduces the variance of
run-times across very similar instances. Because deterministic solvers do not include
such diversification mechanisms, they can exhibit strikingly different run-times on very
similar instances. (This observation is the basis of the literature on heavy-tailed run-
time distributions in complete search, see e.g. [11].) For example, consider modifying
a SAT instance by randomly shuffling the names of its variables. One would expect a
properly randomized algorithm to have essentially the same run-time distributions for
both instances; however, a deterministic solver could exhibit very different runtimes on
the two instances [5]. Because empirical hardness models must give similar predictions
for instances with similar feature values, the model for the deterministic solver could
be expected to exhibit higher error in this case.

Figure 2 visualizes our predictive quality for structured data sets. Performance for
both QWH and QCP, as shown in Figures 2(a) and 2(c), was very good with correla-
tion coefficients between predicted and actual median run-time of up to 0.995. Note,
however, that the hardest instance in Figure 2(c) was predicted to be much easier than
it actually is. This is because the instance was exceptionally hard: over an order of
magnitude harder than the hardest instance in the training set. The last structured data
set, SW-GCP, is the hardest distribution for prediction we have encountered thus far
(unpublished data shows RMSEs of around 1.0 when predicting the run-time of deter-
ministic algorithms on SW-GCP). As shown in Figure 2(b), the predictions for SAPS
are surprisingly good; predictive quality for Novelty+ (see Table 1) is also much higher
than what we have seen for deterministic algorithms.

We now look at which features are most important to our models; this is not straight-
forward since the features are highly correlated. Following [19,21], we build subset mod-
els of increasing size until the RMSE and correlation coefficient are comparable to the
ones for the full model with 40 basis functions. Table 2 reports the results for SAPS on
CV-fix and Novelty+ on QCP and for each of these also gives the performance of the
best model with a single basis function. Overall, we observe that the most important fea-
tures for predicting run-time distributions of our SLS algorithms are the same ones that
were observed to be important for predicting run-times of deterministic algorithms in
[21]. Also similar to observations from [21], we found that very few features are needed
to build run-time models of instances that are all satisfiable. While [21] studied only
uniform-random data, we found in our experiments that this is true for both unstructured
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Table 2. Feature importance in small subset models for predicting median run-time of 10 runs.
The cost of omission for a feature specifies how much worse validation set predictions are without
it, normalized to 100 for the top feature. The RMSE and Corrcoeff columns compare predictive
quality on the test set to that of full 40-feature models.

# Basis function Cost of omission Corrcoeff RMSE
SAPS on CV-fix

1. saps BestSolution CoeffVariance× saps BestStep CoeffVariance 100 0.744/0.785 0.47/0.44
1. saps BestSolution CoeffVariance× saps AvgImproveToBest Mean 100
2. saps BestStep CoeffVariance× saps FirstLMRatio Mean 45
3. gsat BestSolution CoeffVariance× lobjois mean depth over vars 37 0.758/0.785 0.46/0.44
4. saps AvgImproveToBest CoeffVariance 15
5. saps BestCV Mean× gsat BestStep Mean 11

Novelty+ on QCP
1. VG mean× gsat BestStep Mean 100 0.966/0.994 0.29/0.11
1. saps AvgImproveToBest CoeffVariance× gsat BestSolution Mean 100
2. vars clauses ratio × lobjois mean depth over vars 68
3. VG mean× gsat BestStep Mean 12 0.991/0.994 0.13/0.11
4. TRINARY PLUS× lobjois log num nodes over vars 7
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(b) Easy QCP instance (q0.25)
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(c) Hard QCP instance (q0.75)

Fig. 3. Predicted versus actual empirical RTDs for SAPS on two QCP instances. 10 runs were
used for learning median run-time and in (a), 1000 runs for the empirical RTDs in (b) and (c).

and structured instances and for both algorithms we studied. Small models for CV-var
(both for SAPS and Novelty+) almost exclusively use local search features (almost all
of them based on short SAPS trajectories). The structured domain QCP employs a mix
of local search probes (based on both SAPS and GSAT), constraint-graph-based features
(e.g., VG mean) and in the case of Novelty+ also some DPLL-based features, such as
the estimate of the search tree size (lobjois mean depth over vars). In some cases (e.g.,
models of SAPS on CV-var), and when we record relatively few runs per instance, a
single feature can be sufficient for predicting single run-times with virtually the same
accuracy as the full model.

To illustrate that based on the median we can fairly accurately predict entire run-time
distributions for the SLS algorithms studied here, we show the predicted and empirically
measured RTDs for SAPS on two QCP instances in Figure 3. The two instances corre-
spond to the 0.25 and 0.75 quantiles of the distribution of actual median hardness for
SAPS on the entire QCP instance set; they correspond to the red crosses in Figure 3(a),
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Table 3. Parameter configurations employed in our experiments

Algorithm Fixed parameters Default parameters Used parameter configurations
Novelty+ wp = 0.01 noise = 0.5% noise ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

SAPS
Psmooth = 0.05, 〈α, ρ〉 = 〈1.3, 0.8〉 All combinations of α ∈ {1.2, 1.3, 1.4}

wp = 0.01 and ρ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

which shows the tight correlation between actual and predicted run-times. Consistent
with previous results by Hoos et al. (see, e.g., Chapters 4 and 6 of [14]), the RTD for
the q0.75 instance is closely approximated by an exponential distribution, which our ap-
proach almost perfectly fits (see Figure 3(c)). The RTDs for easier instances are known
to typically exhibit smaller variance; therefore, an approximation with an exponential
distribution is less accurate (see Figure 3(b)). We plan to predict sufficient statistics for
the more general distributions needed to characterize such RTDs, such as Weibull and
generalized exponential distributions, in the future.

3 Run-Time Prediction: Parametric Algorithms

The behavior of most high-performance SLS algorithms is controlled by one or more
parameters. It is well known that these parameters often have a substantial effect on
the algorithm’s performance (see, e.g., [14]). In the previous section, we showed that
quite accurate empirical hardness models can be constructed when these parameters are
held constant. In practice, however, we also want to be able to model an algorithm’s
behavior when these parameter values are changed. In this section, we demonstrate that
it is possible to incorporate parameters into empirical hardness models for randomized,
incomplete algorithms. Our techniques should also carry over to both deterministic and
complete parametric algorithms (in the case of deterministic algorithms using single
run-times instead of sufficient statistics of RTDs).

Our approach is to learn a function g(x, c) that takes as inputs both the features xn

of an instance sn and the parameter configuration c of an algorithm A, and that ap-
proximates sufficient statistics of A’s RTD when run on instance sn with parameter
configuration c. In the training phase, for each training instance sn we runA some con-
stant number of times with a set of parameter configurations cn = {cn,1, . . . , cn,kn},
and collect fits of the sufficient statistics rn = [r�n,1, . . . , r

�
n,kn

]� of the corresponding
empirical run-time distributions. We also compute sn’s features xn. The key change
from the approach in Section 2.1 is that now the parameters that were used to generate
an 〈instance,run-time〉 pair are effectively treated as additional features of that train-
ing example. We define a new set of basis functions φ(xn, cn,j) = [φ1(xn, cn,j), . . . ,
φD(xn, cn,j)] whose domain now consists of the cross product of features and parame-
ter configurations. For each instance sn and parameter configuration cn,j , we will have a
row in the design matrix Φ that contains φ(xn, cn,j)�—that is, the design matrix now
contains kn rows for training instance sn. The target vector r = [r�1 , . . . , r�N ]� just
stacks all the sufficient statistics on top of each other. We learn the function gw(x, c) =
φ(x, c)�w by applying ridge regression as in Section 2.1.

Our experiments in this section concentrate on predicting median run-time of SAPS
since that is the more challenging problem. SAPS has three interdependent, continuous
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Fig. 4. Left: Predictions for SAPS on QWH with 30 parameter settings. Middle: Data points
for 5 instances from SAPS on SAT04, different symbol for each instance. Right: Predicted run-
time vs. median SAPS run-time over 1000 runs for 30 parameter settings on the median SAT04
instance, the one marked with blue diamonds in the middle figure.

parameters, as compared to Novelty+ which has only one interesting parameter. (Both
algorithms have an additional parameter,wp, which is typically set to a default value that
results in uniformly good performance.) This difference notwithstanding, we observed
qualitatively similar results with Novelty+. Note that the approach outlined above al-
lows one to use different parameter settings for each training instance. How to pick these
settings for training in the most informative way is an interesting experimental design
question which invites the use of active learning techniques; we plan to tackle it in fu-
ture work. In this study, we used the parameter combinations defined in Table 3. We fixed
Psmooth = 0.05 for SAPS since its effect is highly correlated with that of ρ.

As basis functions, we used multiplicative combinations of the raw instance fea-
tures xn and a 2nd-order expansion of all non-fixed (continuous) parameter settings.
For K raw features (K = 43 in our experiments), this meant 3K basis functions for
Novelty+, and 6K for SAPS, respectively. As before we applied forward selection to
select up to 40 features, stopping when the error on the validation set first began to grow.
For each data set reported here, we randomly picked 1000 instances to be split 50:50
for training and validation. We ran one run per instance and parameter configuration
yielding 30,000 data points for SAPS and 6,000 for Novelty+. (Training on the median
of more runs would likely have improved the results.) For the test set, we used an ad-
ditional 100 distinct instances and computed the median of 10 runs for each parameter
setting.

In Figure 4(left), we show predicted vs. actual SAPS run-time for the QWH dataset
and the 30 〈α, ρ〉 combinations in Table 3. This may be compared to Figure 2(a), which
shows the same algorithm on the same dataset for fixed parameter values. (Note, how-
ever, that Figure 2(a) was trained on more runs and using more powerful basis functions
for the instance features.) We observe that our model still achieves good performance,
yielding correlation coefficient/RMSE of 0.98/0.41, as compared to 0.988/0.33 for the
fixed-parameter setting (using raw features as basis functions).

Figure 4(middle) shows predicted vs. actual SAPS median run-time for five instances
from SAT04, namely the easiest and hardest instance, and the 0.25, 0.5, and 0.75 quan-
tiles. Runs corresponding to the same instance are plotted using the same symbol. Note
that run-time variation due to the instance is often greater than variation due to parame-
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Table 4. Results for automated parameter tuning. For each instance set and algorithm, we give
the correlation between actual and predicted run-time for all instances, RMSE, the correlation for
all data points of an instance (mean ± stddev), and the best fixed a posteriori parameter setting on
the test set. We also give the average speedup over the best possible parameter setting per instance
(sbpi, always ≤ 1), over the worst possible setting per instance (swpi, always ≥ 1), the default
(sdef ), and the best fixed setting. For example, on Mixed, Novelty+ is on average 9.52 times
faster than its best data-set specific fixed parameter setting (sfixed). All experiments use second
order expansions of the parameters (combined with the instance features). Bold face indicates
speedups of the automated parameter setting over the default and best fixed parameter settings.

Set Algo Gross corr RMSE Corr per inst. best fixed a posteriori sbpi swpi sdef sfixed

SAT04 Nov 0.90 0.76 0.84 ± 0.29 0.5 0.65 193.19 0.88 0.88
QWH Nov 0.98 0.52 0.76 ± 0.43 0.1 0.85 683.04 257.96 0.94
Mixed Nov 0.95 0.77 0.80 ± 0.35 0.2 0.71 350.12 14.49 9.52
SAT04 SAPS 0.91 0.60 0.63 ± 0.29 〈1.3, 0〉 0.43 15.95 2.66 0.96
QWH SAPS 0.98 0.41 0.43 ± 0.39 〈1.2, 0〉 0.67 5.88 2.39 1.02
Mixed SAPS 0.95 0.61 0.47 ± 0.38 〈1.3, 0〉 0.48 8.53 2.22 0.97

ter settings. However, harder instances tend to be more sensitive to variation in the algo-
rithm’s parameters than easier ones – this indicates the importance of parameter tuning,
especially for hard instances. The average correlation coefficient for the 30 points per
instance is 0.63; for the 6 points per instance in Novelty+ it is 0.84, much higher.

Figure 4(right) shows SAPS run-time predictions for the median instance of our
SAT04 test set at each of its 30 〈α, ρ〉 combinations; these are compared to the actual
median SAPS run-times on this instance. We observe that the learned model predicts
the actual run-times fairly well, despite the fact that the relationship between run-time
and the two parameters is complex. In the experiment the figure is based on feature
selection chose 40 features; thus, the model learned a 40-dimensional surface and the
figure shows that its projection onto the 2-dimensional parameter space at the current
instance features qualitatively captures the shape of the actual parameter-dependent run-
time for this instance.

4 Automated Parameter Tuning

Our results, as suggested by Figure 4 indicate that our methods are able to predict
per-instance and per-parameter run-times with reasonable accuracy. We can thus hope
that they would also be able to predict which parameter settings result in the lowest
run-time for a given instance. This would allow us to use a learned model to automat-
ically tune the parameter values of an SLS algorithm on a per-instance basis by simply
picking the parameter configuration out of the ones we consider (see Table 3) that is
predicted to yield the lowest run-time. Note that our approach for parameter tuning is
orthogonal to that of reactive search approaches such as Adaptive Novelty+ [13] and
RSAPS [17].

In this section we investigate this approach. We now focus on the Novelty+ algo-
rithm, because we observed SAPS’s performance around 〈α, ρ〉 = 〈1.3, 0.1〉 to be very



224 F. Hutter et al.

−6 −4 −2 0 2
−6

−4

−2

0

2

Log runtime[s], best/worst noise

Lo
g 

ru
nt

im
e[

s]
, a

ut
om

at
ic

 n
oi

se

(a) Automatic vs. best & worst

−6 −4 −2 0 2
−6

−4

−2

0

2

Log runtime[s], random noise
Lo

g 
ru

nt
im

e[
s]

, a
ut

om
at

ic
 n

oi
se

(b) Automatic vs. random

−6 −4 −2 0 2
−6

−4

−2

0

2

Log runtime[s], best fixed a posteriori noise

Lo
g 

ru
nt

im
e[

s]
, a

ut
om

at
ic

 n
oi

se

(c) Automatic vs. best fixed

Fig. 5. (a) Performance of automated parameter setting for Novelty+ on data set Mixed, com-
pared to the best (dots) and worst (crosses) per-instance parameter setting (out of the 6 parameter
settings we employed). (b) Compared to independent random noise values for each instance. (c)
Speedup of Novelty+ over the best fixed a posteriori parameter setting for Mixed.

close to optimal across many different instance distributions.3 SAPS thus offers little
possibility for performance improvement through per-instance parameter tuning (Ta-
ble 4 quantifies this). Novelty+, on the other hand, exhibits substantial variation in the
best parameter setting from one instance distribution to another, making it a good al-
gorithm for the evaluation of our approach.4 We used the same test and training data
as in the previous section; thus, Table 4 summarizes the experiments both from the
previous section and from this section. However, in this section we also created a new
instance distribution “Mixed”, which is the union of the QWH and SAT04 distributions.
This mix enables a large gain for automated parameter tuning (when compared to the
best fixed parameter setting) since Novelty+ performs best with high noise settings on
unstructured instances and low settings on structured instances.

Figure 5(a) shows the performance of our automatic parameter-tuning algorithm on
test data from Mixed, as compared to upper and lower bounds on its possible performance.
We observe that the run-time with automatic parameter setting is close to the optimal
setting and far better than the worst one, with an increasing margin for harder instances.
Figure 5(b) provides a comparison of our method against a uniform random picking of
parameter combinations from the six considered Novelty+ configurations (see Table 3).
Figure 5(c) compares our automatic tuning against the best fixed parameter setting (this
was determined in an a posteriori fashion as the setting with the best performance on the
test set out of the ones we considered, see Table 3). This setting is often the best that can
be hoped for in practice. (A common approach for tuning parameters is to perform a set of
experiments, to identify the parameter setting which achieves the lowest overall run-time,

3 This is true even though it has been demonstrated that for each SAPS parameter there exist
instances for which a statistically significant improvement can be obtained over the default
setting 〈α, ρ〉 = 〈1.3, 0.8〉 (defined in [17]) by tuning that parameter [25]. We note that the
setting 〈α, ρ〉 = 〈1.3, 0.1〉 differs from the default studied by [25], raising the question of
whether the cited result would also hold for this setting.

4 Indeed, the large potential gains for tuning WalkSAT’s noise parameter on a per-instance basis
have been exploited before [22].
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and then to fix the parameters to this setting.) Figure 5(c), in conjunction with Table 4,
shows that our techniques can dramatically outperform this form of parameter tuning:
Novelty+ almost achieves an average speedup of an order of magnitude on Mixed as
compared to the best fixed parameter setting on that set. SAPS improves upon its default
setting by more than a factor of two for all three distributions. Considering that ourmethod
is fully automatic and very general, these are very promising results.

Related Work on Automated Parameter Tuning
The task of configuring an algorithm’s parameters for high and robust performance
has been widely recognized as a tedious and time-consuming task that requires well-
developed engineering skills. Automating this task is a very promising and active area
of research. There exists a large number of approaches to find the best configuration
for a given problem distribution [3,24,1]. All these techniques aim to find a parameter
setting that optimizes some scoring function which averages over all instances from the
given input distribution. If the instances are sufficiently homogeneous, this approach
can perform quite well. However, if the problem instances to be solved come from
heterogeneous distributions or even from completely unrelated application areas, the
best parameter configuration may differ vastly from instance to instance. In such cases
it is advisable to apply an approach like ours that can choose the best parameter setting
for each run contingent on the characteristics of the current instance to be solved. This
per-instance parameter tuning is more powerful but less general than tuning on a per-
distribution basis in that it requires the existence of a set of discriminative instance
features. However, we believe it to be not too difficult to engineer a good set of instance
features if one is familiar with the general problem domain.

The only other approach for parameter tuning on a per-instance basis we are aware
of is the Auto-WalkSAT framework [22]. This approach is based on empirical findings
showing that the optimal parameter setting of WalkSAT algorithms tends to be about
0.1 above the one that minimizes the invariance ratio [20]. Auto-WalkSAT chooses re-
markably good noise settings on a variety of instances, but for domains where the above
relationship between invariance ratio and optimal noise setting does not hold (such as
logistics problems), it performs poorly [22]. Furthermore, its approach is limited to SAT
and in particular to tuning the (single) noise parameter of the WalkSAT framework. In
contrast, our automated parameter tuning approach applies to arbitrary parametric al-
gorithms and all domains for which good features can be engineered.

Finally, reactive search algorithms [2], such as Adaptive Novelty+[13] or RSAPS
[17] adaptively modify their search strategy during a search. (Complete reactive search
algorithms include [18,6].) Many reactive approaches still have one or more parameters
whose settings remain fixed throughout the search; in these cases the automated con-
figuration techniques we presented here should be applicable to tune these parameters.
While a reactive approach is in principle more powerful than ours (it can utilize dif-
ferent search strategies in different parts of the space), it is also less general since the
implementation is typically tightly coupled to a specific algorithm. Ultimately, we aim
to generalize our approach to allow for modifying parameters during the search—this
requires that the features evaluated during search are very cheap to compute. We also
see reinforcement learning as very promising in this context [18].
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(a) Bayesian linear regression

−6 −4 −2 0
−6

−4

−2

0

2

4

Actual log10 runtime [seconds]

Pr
ed

ict
ed

 lo
g1

0 r
un

tim
e [

se
co

nd
s]

(b) GP with squared exponential kernel

Fig. 6. Predictions and their uncertainty of Novelty+ median run-time of 10 runs: Bayesian linear
regression and Gaussian Process with squared exponential kernel, trained on QWH and tested
on QCP. The run-time predictions of these approaches are Gaussian probability distributions for
every instance. The red dots specify the predictive mean and the black bars the standard deviation.

5 Uncertainty Estimates Through Bayesian Regression

So far, research in empirical hardness models has focused on the case where the targeted
application domain is known a priori and training instances from this domain are avail-
able. In practice, however, an algorithm may have to solve problem instances that are
significantly different from the ones encountered during training. Empirical hardness
models may perform poorly in such cases. This is because the statistical foundations
upon which their machine learning approach is built rely upon the test set being drawn
from the same distribution as the training set. Bayesian approaches may be more appro-
priate in such scenarios since they explicitly model the uncertainty associated with their
predictions. Roughly, they provide an automatic measure of how similar the basis func-
tions for a particular test instance are to those for the training instances, and associate
higher uncertainty with relatively dissimilar instances. We implemented two Bayesian
methods: (a) sequential Bayesian linear regression (BLR) [4], a technique which yields
mean predictions equivalent to ridge regression but also offers estimates of uncertainty;
and (b) Gaussian Process Regression (GPR) [23] with a squared exponential kernel. We
detail BLR and the potential applications of a Bayesian approach to run-time prediction
in an accompanying technical report [16]. Since GPR scales cubically in the number of
data points, we trained it on a subset of 1000 data points (but used all 9601 data points
for BLR). Even so, GPR took roughly 1000 times longer to train.

We evaluated both our methods on two different problems. The first problem is to
train and validate on our QWH data-set and test on our QCP data-set. While these dis-
tributions are not identical, our intuition was that they share enough structure to allow
models trained on one to make good predictions on the other. The second problem was
much harder: we trained on data-set SAT04 and tested on a very diverse test set con-
taining instances from ten qualitatively different distributions from SATLIB. Figure 6
shows predictions and their uncertainty (± one stddev) for both methods on the first
problem. The two distributions are similar enough to yield very good predictions for
both approaches. While BLR was overconfident on this data set, the uncertainty es-
timates of GPR make more sense: they are very small for accurately predicted data
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points and large for mispredicted ones. Both models achieved similar predictive accu-
racy (CC/RMSE 0.953/0.50 for BLR; 0.953/0.51 for GPR). For the second problem
(space restrictions prevent a figure), BLR showed massive mispredictions (several tens
of orders of magnitude) but associated very high uncertainty with the mispredicted in-
stances, reflecting their dissimilarity with the training set. GPR showed more reasonable
predictions, and also did a good job in indicating high uncertainty about instances for
which predictive quality was low. Based on these preliminary results, we view Gaussian
process regression as particularly promising and plan to study its application to run-time
prediction in more detail. However, we note that its scaling behavior somewhat limits
its usefulness in practice.

6 Conclusion and Future Work

In this work, we have demonstrated that empirical hardness models obtained from linear
basis function regression can be extended to make surprisingly accurate predictions of
the run-time of randomized, incomplete algorithms such as Novelty+ and SAPS. Based
on a prediction of sufficient statistics for run-time distributions (RTDs), we showed very
good predictions of the entire empirical RTDs for unseen test instances. We have also
demonstrated for the first time that empirical hardness models can model the effect of
algorithm parameter settings on run-time, and that these models can be used as a basis
for automated per-instance parameter tuning. In our experiments, this tuning never hurt
and sometimes resulted in substantial and completely automatic performance improve-
ments, as compared to default or optimized fixed parameter settings.

There are several natural ways in which this work can be extended. First, we are
currently studying Bayesian methods for run-time prediction in more detail. Further,
it should be straight-forward to apply our approach to randomized systematic search
methods and we plan to do this in future work. We also plan to study the extent to which
our results generalize to problems other than SAT and in particular to optimization
problems. Finally, we would like to apply active learning approaches [7] in order to
probe the parameter space in the most informative way in order to reduce training time.
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Abstract. In recent years, dynamic local search (DLS) clause weighting
algorithms have emerged as the local search state-of-the-art for solving
propositional satisfiability problems. However, most DLS algorithms re-
quire the tuning of domain dependent parameters before their perfor-
mance becomes competitive. If manual parameter tuning is impractical
then various mechanisms have been developed that can automatically
adjust a parameter value during the search. To date, the most effec-
tive adaptive clause weighting algorithm is RSAPS. However, RSAPS is
unable to convincingly outperform the best non-weighting adaptive al-
gorithm AdaptNovelty+, even though manually tuned clause weighting
algorithms can routinely outperform the Novelty+ heuristic on which
AdaptNovelty+ is based.

In this study we introduce R+DDFW+, an enhanced version of the
DDFW clause weighting algorithm developed in 2005, that not only adapts
the total amount of weight according to the degree of stagnation in the
search, but also incorporates the latest resolution-based preprocessing ap-
proach used by the winner of the 2005 SAT competition (R+
AdaptNovelty+). In an empirical study we show R+DDFW+ improves on
DDFW and outperforms the other leading adaptive (R+Adapt-Novelty+,
R+RSAPS) and non-adaptive (R+G2WSAT) local search solv-ers over a
range of random and structured benchmark problems.

1 Introduction

Since the development of the Breakout heuristic [1], clause weighting dynamic lo-
cal search (DLS) algorithms for SAT have been intensively investigated, and con-
tinually improved [2,3]. However, the performance of these algorithms remained
inferior to their non-weighting counterparts (e.g. [4]), until the more recent devel-
opment of weight smoothing heuristics [5,6,7,8]). Such algorithms now represent
the state-of-the-art for stochastic local search (SLS) methods on SAT problems.
Interestingly, the most successful DLS algorithms (i.e. DLM [5], SAPS [7] and
PAWS [8]) have converged on the same underlying weighting strategy: increasing
weights on false clauses in a local minimum, then periodically reducing weights
according to a problem specific parameter setting. DLM mainly differs from

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 229–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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PAWS by incorporating a plateau searching heuristic and PAWS mainly differs
from SAPS by performing additive rather than multiplicative weight updates.

However, a key weakness of these approaches is that their performance de-
pends on problem specific parameter tuning. This issue was partly addressed in
the development of a reactive version of SAPS (RSAPS [7]) which used a similar
adaptive noise mechanism to that used in AdaptNovelty+ [9]. Nevertheless, as
the 2005 International SAT competition (SAT2005) has shown, DLS algorithms,
including RSAPS, have not proved competitive with the best SLS techniques
when they are constrained to use fixed parameter values. This is explained by
the sensitivity of the control parameters and by the lack of a sufficiently effective
adaptive mechanism to adjust these parameters to specific problem instances.

In 2005, a new approach to clause weighting was developed, known as Divide
and Distribute Fixed Weight (DDFW) [10]. DDFW’s approach is to redistribute
weight from satisfied to unsatisfied clauses in each local minimum, unifying the
increase and decrease phases of weight control into a single action. This means
there is no requirement for a problem specific parameter to decide when weight is
to be reduced. In addition, DDFW only alters weights on those clauses that are
false in a local minimum and an equal number of satisfied clauses. This makes
it more efficient than earlier weight smoothing algorithms that also performed
smoothing at each local minimum, but did so by adjusting weight on all the
clauses in the problem (e.g. SDF [11]). However, DDFW still has a parameter
(Winit) whose setting can effect performance by varying the amount of weight
that is initially given to each clause. In the earlier empirical evaluation of DDFW
this initial weight was fixed. However, the existence of such a parameter implies
that DDFW could benefit from an adaptive mechanism to vary the amount of
weight that is distributed according to the dynamic search conditions.

Also in 2005, it was shown that the performance of various SLS techniques
can be significantly improved by the addition of a resolution-based preprocessing
phase [12]. This work initially produced the winning algorithm in the SAT2005
satisfiable random problem category, R+AdaptNovelty+. However, in the subse-
quent paper [12], the largest performance gains were obtained for clause weight-
ing algorithms solving structured problem instances. Here R+AdaptNovelty+

was convincingly outperformed by a R+RSAPS and a tuned version of R+PAWS
on a range of quasigroup existence problems and standard structured SAT
benchmarks.

The question we address in the current paper is which SLS SAT algorithm
should be preferred in situations where parameter tuning is impractical and we
have no other information that could guide us in choosing a particular approach.
As this is exactly the situation we would expect to find in many real world appli-
cations, we take the relevance and importance of this question to be self evident.
While the initial work on DDFW [10] showed that a fixed parameter version was
able to outperform AdaptNovelty+ and RSAPS on a range of random and struc-
tured SAT benchmarks, the question still remains whether the performance of
DDFW can be further improved by incorporating a similar adaptive mechanism
to that used by AdaptNovelty+ and RSAPS to control the Winit parameter.
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It also remains unanswered whether such an adaptive version of DDFW could
derive enough benefit from resolution-based preprocessing to outperform the ex-
isting resolution-based versions of R+AdaptNovelty+ or R+RSAPS. In addi-
tion, in SAT2005 a new SLS algorithm was introduced, G2WSAT [13], which
went on to win the silver medal in the random category of the competition.
This algorithm has subsequently been improved and it too has yet incorporate
a resolution-based preprocessor.

As a result of these considerations, our specific aim in the remainder of the
paper is to introduce an adaptive resolution-incorporating version of DDFW
(called R+DDFW+) and to compare it with the three other most promising
general purpose SLS SAT solvers, namely R+AdaptNovelty+, R+RSAPS and
an enhanced R+G2WSAT. On the basis of an empirical study that covers a range
of problems from SAT2005, the quasigroup existence domain and the SATLIB
benchmark library, we conclude that R+DDFW+ has the best overall perfor-
mance of these methods, and that it derives significant benefits from its new
adaptive mechanism.

2 Clause Weighting for SAT

Clause weighting local search algorithms for SAT follow the basic procedure
of repeatedly flipping single literals that produce the greatest reduction in the
sum of false clause weights. Typically, all literals are randomly initialized, and
all clauses are given a fixed initial weight. The search then continues until no
further cost reduction is possible, at which point the weight on all unsatisfied
clauses is increased, and the search is resumed, punctuated with periodic weight
reductions.

Existing clause weighting algorithms differ primarily in the schemes used to
control the clause weights, and in the definition of the points where weight should
be adjusted. Multiplicative methods, such as SAPS, generally adjust weights
when no further improving moves are available in the local neighbourhood. This
can be when all possible flips lead to a worse cost, or when no flip will improve
cost, but some flips will lead to equal cost solutions. As multiplicative real-valued
weights have much finer granularity, the presence of equal cost flips is much more
unlikely than for an additive approach (such as DLM or PAWS), where weight is
adjusted in integer units. This means that additive approaches frequently have
the choice between adjusting weight when no improving move is available, or
taking an equal cost (flat) move.

Despite these differences, the three most well-known clause weighting algo-
rithms (DLM [5], SAPS [7] and PAWS [8]) share a similar structure in the
way that weights are updated:1 Firstly, a point is reached where no further im-
provement in cost appears likely. The precise definition of this point depends
1 Additionally, a fourth clause weighting algorithm, GLSSAT [14], uses a similar weight

update scheme, additively increasing weights on the least weighted unsatisfied clauses
and multiplicatively reducing weights whenever the weight on any one clause exceeds
a predefined threshold.
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on the algorithm, with DLM expending the greatest effort in searching plateau
areas of equal cost moves, and SAPS expending the least by only accepting
cost improving moves. Then all three methods converge on increasing weights
on the currently false clauses (DLM and PAWS by adding one to each clause
and SAPS by multiplying the clause weight by a problem specific parameter
α > 1). Each method continues this cycle of searching and increasing weight,
until, after a certain number of weight increases, clause weights are reduced
(DLM and PAWS by subtracting one from all clauses with weight > 1 and
SAPS by multiplying all clause weights by a problem specific parameter ρ < 1).
SAPS is further distinguished by reducing weights probabilistically (according
to a parameter Psmooth), whereas DLM and PAWS reduce weights after a fixed
number of increases (again controlled by parameter). PAWS is mainly distin-
guished from DLM in being less likely to take equal cost or flat moves. DLM
will take up to θ1 consecutive flat moves, unless all available flat moves have
already been used in the last θ2 moves. PAWS does away with these parame-
ters, taking flat moves with a fixed probability of 15%, otherwise it will increase
weight.

However, as we have stressed in the introduction, the performance of these
clause weighting algorithms remains very sensitive to the settings of their prob-
lem specific parameters (this has been shown in detail in [15]). While this sensi-
tivity is also a problem for the non-weighting algorithms of the WalkSAT family,
it has been somewhat counteracted by the use of heuristics that adapt parameter
settings during the course of the search. The most successful of these algorithms,
AdaptNovelty+, works by adapting a noise parameter that controls whether
a move is selected randomly or deterministically [9]. In simplified terms, the
likelihood of making a random choice is increased the longer the search con-
tinues without achieving an improvement in the objective function. A similar
scheme was added to SAPS, producing reactive SAPS or RSAPS [7]. How-
ever, adapting SAPS was not as successful as adapting Novelty, for, while a
tuned SAPS generally produces better performance than a tuned Novelty+,
RSAPS has not been able to reach the consistent performance AdaptNovelty+

in the recent SAT competitions. One reason for this may be that SAPS requires
the setting of three parameters to achieve its best performance, while RSAPS
only adapts one of these parameters. Similarly, DLM requires the setting of
at least three parameters before producing its best performance. In contrast,
PAWS (like Novelty) only requires the tuning of a single parameter, but to date
no successful heuristic has been discovered that can automatically adapt this
value.

More recently, work has concentrated on learning empirical hardness models
in order to predict the best parameter settings for SAPS [16]. This approach
requires a set of training instances that are repeatedly solved by SAPS using
different parameter settings. After this training phase, parameter settings can
be generated for previously unseen instances taken from the same problem class.
Results from this work are encouraging and could be generally applied to other
local search algorithms. However, the weakness is that training is required on a
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representative test set before good predictions can be produced. It remains to be
seen whether a general model can be devised that can predict good parameter
settings for the SAT domain as a whole. In the meantime, if we are limited
to solving problems from an undisclosed problem distribution and if manual
parameter tuning is ruled out of court, then the best available clause weighting
algorithm is probably RSAPS (discounting DDFW for the moment).

3 Divide and Distribute Fixed Weights

DDFW introduces two ideas into the area of clause weighting algorithms for
SAT. Firstly, it evenly distributes a fixed quantity of weight across all clauses
at the start of the search, and then escapes local minima by transferring weight
from satisfied to unsatisfied clauses. The other existing state-of-the-art clause
weighting algorithms have all divided the weighting process into two distinct
steps: i) increasing weights on false clauses in local minima and ii) decreasing
or normalising weights on all clauses after a series of increases, so that weight
growth does not spiral out of control. DDFW combines this process into a sin-
gle step of weight transfer, thereby dispensing with the need to decide when
to reduce or normalise weight. In this respect, DDFW is similar to the pre-
decessors of SAPS (SDF [6] and ESG [11]), which both adjust and normalise
the weight distribution in each local minimum. Because these methods adjust
weight across all clauses, they are considerably less efficient than SAPS, which
normalises weight after visiting a series of local minima.2 DDFW escapes the
inefficiencies of SDF and ESG by only transferring weights between pairs of
clauses, rather than normalising weight on all clauses. This transfer involves
selecting a single satisfied clause for each currently unsatisfied clause in a lo-
cal minimum, reducing the weight on the satisfied clause by an integer amount
and adding that amount to the weight on the unsatisfied clause. Hence DDFW
retains the additive (integer) weighting approach of DLM and PAWS, and com-
bines this with an efficient method of weight redistribution, i.e. one that keeps
all weight reasonably normalised without repeatedly adjusting weights on all
clauses.

DDFW’s weight transfer approach also bears similarities to the operations
research subgradient optimisation techniques discussed in [11]. In these ap-
proaches, Lagrangian multipliers, analogous to the clause weights used in SAT,
are associated with problem constraints, and are adjusted in local minima so that
multipliers on unsatisfied constraints are increased and multipliers on satisfied
constraints are reduced. This symmetrical treatment of satisfied and unsatisfied
constraints is mirrored in DDFW, but not in the other SAT clause weighting
approaches (which increase weights and then adjust). However, DDFW differs
from subgradient optimisation in that weight is only transferred between pairs
of clauses and not across the board, meaning less computation is required.

2 Increasing weight on false clauses in a local minimum is efficient because only a small
proportion of the total clauses will be false at any one time.
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Algorithm 1. DDFW+(F)
1: randomly instantiate each literal in F ;
2: set the weight wa of each clause ca ∈ F to two;
3: set the minimum m to the number of false clauses cf ∈ F ;
4: set counter i to zero and boolean b to false;
5: while solution is not found and not timeout do
6: calculate the list L of literals causing the greatest reduction in weighted cost Δw when

flipped;
7: if (Δw < 0) or (Δw = 0 and probability ≤ 15%) then
8: randomly flip a literal in L;
9: if number of false clauses < m then

10: set counter i to zero and minimum m to the number of false clauses;
11: else
12: increment counter i by one;
13: if i ≥ number of literals in F then
14: set counter i to zero;
15: if b is false then
16: increase the weight wa of each clause ca ∈ F by one;
17: set boolean b to true;
18: else
19: set the weight ws of each satisfied clause cs ∈ F to two;
20: set the weight wf of each false clause cf ∈ F to three;
21: set boolean b to false;
22: end if
23: end if
24: end if
25: else
26: for each false clause cf ∈ F do
27: select a satisfied same sign neighbouring clause cn with maximum weight wn;
28: if wn < 2 then
29: randomly select a clause cn with weight wn ≥ 2;
30: end if
31: if wn > 2 then
32: transfer a weight of two from cn to cf ;
33: else
34: transfer a weight of one from cn to cf ;
35: end if
36: end for
37: end if
38: end while

3.1 Exploiting Neighbourhood Structure

The second and more original idea developed in DDFW, is the exploitation
of neighbourhood relationships between clauses when deciding which pairs of
clauses will exchange weight.

We term clause ci to be a neighbour of clause cj , if there exists at least one
literal lim ∈ ci and a second literal ljn ∈ cj such that lim = ljn. Furthermore, we
term ci to be a same sign neighbour of cj if the sign of any lim ∈ ci is equal to the
sign of any ljn ∈ cj where lim = ljn. From this it follows that each literal lim ∈ ci

will have a set of same sign neighbouring clauses Clim . Now, if ci is false, this
implies all literals lim ∈ ci evaluate to false. Hence flipping any lim will cause it
to become true in ci, and also to become true in all the same sign neighbouring
clauses of lim, i.e. Clim . Therefore, flipping lim will help all the clauses in Clim ,
i.e. it will increase the number of true literals, thereby increasing the overall
level of satisfaction for those clauses. Conversely, lim has a corresponding set of
opposite sign clauses that would be damaged when lim is flipped.
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The reasoning behind the DDFW neighbourhood weighting heuristic proceeds
as follows: if a clause ci is false in a local minimum, it needs extra weight in order
to encourage the search to satisfy it. If we are to pick a neighbouring clause cj

that will donate weight to ci, we should pick the clause that is most able to pay.
Hence, the clause should firstly already be satisfied. Secondly, it should be a
same sign neighbour of ci, as when ci is eventually satisfied by flipping lim, this
will also raise the level of satisfaction of lim’s same sign neighbours. However,
taking weight from cj only increases the chance that cj will be helped when ci

is satisfied, i.e. not all literals in ci are necessarily shared as same sign literals in
cj , and a non-shared literal may be subsequently flipped to satisfy ci. The third
criteria is that the donating clause should also have the largest store of weight
within the set of satisfied same sign neighbours of ci

The intuition behind the DDFW heuristic is that clauses that share same sign
literals should form alliances, because a flip that benefits one of these clauses
will always benefit some other member(s) of the group. Hence, clauses that are
connected in this way will form groups that tend towards keeping each other
satisfied. However, these groups are not closed, as each clause will have clauses
within its own group that are connected by other literals to other groups. Weight
is therefore able to move between groups as necessary, rather than being uni-
formly smoothed (as in existing methods).

3.2 Adapting DDFW

The new feature introduced in this study is the development of an adaptive mech-
anism that alters the total amount of weight that DDFW distributes according
to the degree of stagnation in the search. This DDFW+ heuristic is detailed in
lines 9-24 of Algorithm 1. Previously DDFW would have initialised the weight
of each clause to Winit (which was fixed at 8 in [10]). Now this initialisation
value is set at two in line 2 of Algorithm 1, but can be altered during the search
as follows: if the search executes a consecutive series of i flips without reducing
the total number of false clauses, where i is equal to the number of literals in
the problem, then the amount of weight on each clause is increased by one in
the first instance. However, if after increasing weights, the search enters another
consecutive series of i flips without improvement, then it will reset the weight
on each satisfied clause back to two and on each false clause back to three. The
search then continues to follow each increase with a reset and each reset with an
increase. In this way a long period of stagnation will produce oscillating phases
of weight increase and reduction, such that the total weight can never exceed 3
times the total number of clauses ca ∈ F plus the total number of false clauses
cf ∈ F .

The reasoning behind this adaptive heuristic is based on our observation that
manually adjusting DDFW’s original parameterWinit has a noticeable effect run-
time performance, and that on several problems the default value of eight was not
optimal. This is illustrated in Figure 1, which shows that on problem (a)Winit = 8
is near optimal whereas on problem (b) Winit = 2 is the better choice (if we con-
sider the underlying trend). We conjectured that we could circumvent the need to
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Fig. 1. Flip performance of DDFW for various settings of the Winit parameter

initialise the clauses with more weight at the start of the search by allowing con-
text sensitive weight increases during the search. Hence we developed a stagnation
measure, much like the measures used in AdaptNovelty and RSAPS, that injects
extra weight when no cost improvement occurs and made the frequency of this in-
jection depend on the size of the problem. The unusual feature of the DDFW+

heuristic is that the search will only effect one increase after which, if stagnation
is observed again, the weights are reset. This reset mechanism was adopted after
a series of empirical trials that tested various combinations of weight increase and
decrease phases. Our main difficulty was to keep the weight growth within bounds
and we could find no decrease scheme that worked well across a wide range of prob-
lems without requiring a further problem dependent parameter (which would ob-
viously defeat the purpose of the study). We therefore settled on a simple reset
strategy that places a strict limit on weight growth and avoids adding an additional
parameter.

4 Resolution Based Preprocessing

As discussed in the introduction, significant performance benefits have been
gained by preprocessing a problem using resolution before starting a search. This
result is already well-known in the complete search community, where Satz [17]
uses a restricted resolution procedure, adding resolvents of length ≤ 3, as a pre-
processor before running the complete backtrack search. The same procedure
has now been added to AdaptNovelty+, PAWS, RSAPS and WalkSAT [12], and
there is empirical evidence to suggest that clause weighting algorithms in par-
ticular benefit from this approach when solving structured real-world problems.

Resolution itself is a rule of inference widely used in automated deduction
[18,19,20]. In the present study, as in [12], we implement the Satz resolution
process (see Algorithm 2) as follows: when two clauses of a CNF formula have
the property that some variable xi occurs positively in one and negatively in the
other, the resolvent of the clauses is a disjunction of all the literals occurring
in the clauses except xi and xi. For example, the clause (x2 ∨ x3 ∨ x4) is the
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Algorithm 2. ComputeResolvents(F)
1: for each clause c1 of length ≤ 3 in F do
2: for each literal l of c1 do
3: for each clause c2 of length ≤ 3 in F s.t. l̄ ∈ c2 do
4: Compute resolvent r = (c1\{l}) ∪ (c2\{l̄});
5: if r is empty then
6: return ”unsatisfiable”;
7: else
8: if r is of length ≤ 3 then
9: F := F ∪ {r};

10: end if
11: end if
12: end for
13: end for
14: end for

resolvent for the clauses (x1 ∨ x2 ∨ x3) and (x1 ∨ x2 ∨ x4) and is added to the
clause set. The new clauses, provided they are of length ≤ 3, can in turn be used
to produce other resolvents. The process is repeated until saturation. Duplicate
and subsumed clauses are deleted, as are tautologies and any duplicate literals
in a clause. It is worth noting that this resolution phase takes polynomial time.

5 Experimental Evaluation

As the resolution process is encapsulated in a preprocessing phase, it can be
added to an existing SAT solver as a separate module, leaving the original
solver unaltered. In our experimental study we added this preprocessing phase
(as defined in Algorithm 2) to DDFW, DDFW+, RSAPS, AdaptNovelty+ and
G2WSAT, producing R+DDFW, R+DDFW+, R+RSAPS, R+AdaptNovelty+

and R+G2-WSAT. Of these algorithms, R+RSAPS and R+AdaptNovelty+ have
already been entered into SAT2005 and reported in [12].3 However, R+DDFW,
R+DDFW+ and R+G2WSAT are new algorithms whose performance has yet
to be reported.4 We chose to compare DDFW with R+AdaptNovelty+ and
R+G2WSAT because these two algorithms were the gold and silver medal win-
ners in the SAT2005 satisfiable random category competition and achieved the
best overall local search results in terms of the number of problems solved. We
chose R+RSAPS because it was the best performing clause weighting algorithm
in the competition. Together, therefore, these three algorithms can lay claim
to being the state-of-the-art for general purpose local search SAT solving when
manual parameter tuning is disallowed.

To evaluate the relative performance of these algorithms we divided our em-
pirical study into four areas: firstly, we attempted to reproduce a reduced prob-
lem set similar to that used in the random category of the SAT competition
3 AdaptNovelty+ and RSAPS are available as part of the UBCSAT solver from

http://www.satlib.org/ubcsat/
4 G2WSAT is available at http://www.laria.u-picardie.fr/%7Ecli/g2wsat2005.c. This

latest version is described by the authors as generally more than 50% faster than
the version entered in SAT2005.
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(as this is the domain where local search techniques have dominated). To do
this we selected the 50 satisfiable k3 problems from the SAT2004 competition
benchmark. Secondly, we obtained the 10 SATLIB quasigroup existence prob-
lems used in [12]. These problems are relevant because they exhibit a balance
between randomness and structure, while also producing clause sets to which
resolution can be applied effectively. Thirdly, we obtained the structured prob-
lem set used to originally evaluate SAPS [7]. These problems have been widely
used to evaluate clause weighting algorithms (e.g. in [8]) and contain a represen-
tative cross-section taken from the DIMACS and SATLIB libraries. In this set
we also included 4 of the well-known DIMACS 16-bit parity learning problems.
Finally, we used the 16 ferry planning problems from the SAT2005 competition
that our local search techniques were able to solve. This was to give an indication
of relative performance on the SAT2005 industrial problems.

Overall, the problem set is designed to show how R+DDFW+ compares in
absolute terms to the other algorithms and to examine the relative effect of the
adaptive mechanism on differing problem classes. For this reason we also include
the results for R+DDFW (i.e. without the adaptive mechanism). All experiments
were performed on a Dell machine with 3.1GHz CPU and 1GB memory, except
for the quasigroup problems which were run on a Sun supercomputer with 8 ×
Sun Fire V880 servers, each with 8 × UltraSPARC-III 900MHz CPU and 8GB
memory per node. Cut-offs for the various algorithms were set as follows: first
R+DDFW was given 10 trials on each problem with a flip cut-off of 1,000,000.
If it was unable to solve any trial then the cut-off was raised to 10,000,000, and
then in steps of 10,000,000 until at least one solution was found. R+DDFW was
then allowed 100 trials at the given flip cut-off for all instances except the ferry
problems, where it was limited to 10 trials. The total time allowed for R+DDFW
on each set of 10 or 100 trials was then recorded and all other algorithms were
given this as a time cut-off on each problem. The following results detail the mean
time in seconds (including the resolution preprocessing step), mean flips and the
success rate for these cut-offs (results in bold indicate the best performance for
a particular problem).

5.1 SAT Competition Problem Results

The results in Figure 2a graph the performance of R+DDFW+, R+DDFW,
R+AdaptNovelty+ and R+G2WSAT after applying resolution on the 50 k3
problems from the SAT2004 competition (as R+RSAPS had very poor per-
formance on the random instances it has been omitted from the figure and
the following discussion). The graph shows the cumulative percentage of prob-
lems solved against runtime, assuming that each instance is solved in parallel
(for example, in Figure 2a after 5 seconds approximately 71% of the 50 × 100
trials for R+DDFW will have terminated). Here R+DDFW+ and R+DDFW
were the only solvers that could reach a 100% success rate over all trials. Al-
though R+G2WSAT was competitive and could solve the easier problems faster
than R+DDFW, it was unable to match R+DDFW as problem difficulty in-
creased. Overall the graph shows that R+DDFW+ has the superior perfor-
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Fig. 2. Results for the SAT2004 random problems and SAT2005 industrial problems

mance across the range of problem sizes, clearly dominating R+DDFW and
thereby demonstrating that the new adaptive heuristic can positively affect run-
time performance. Figure 2a also shows that R+G2WSAT generally dominates
R+AdaptNovelty+, although R+AdaptNovelty+ does match R+G2WSAT’s suc-
cess rate over the whole problem set.

The results for the SAT2005 industrial ferry problems are shown in Figure 2b
and in Table 1 (as R+G2WSAT and R+AdaptNovelty+ were only able to solve
29% and 9% of the ferry instances respectively, they have been removed from
the graphical analysis). Looking at Figure 2b we can see that R+RSAPS, after
performing poorly on the random problems, is now able to dominate R+DDFW
across the range of the ferry problems, but cannot quite reach R+DDFW+’s
97.5% success rate. However, Table 1 shows that R+RSAPS is able to solve 10 of
the 16 ferry problems faster than either DDFW variant, and that R+DDFW+’s
superior success rate is largely based on instance ferry4001. We must there-
fore conclude that there is little to choose between R+RSAPS and R+DDFW+

on these problems. Nevertheless, R+DDFW+ does more clearly outperform
R+DDFW and again demonstrates that the adaptive heuristic can make no-
ticeable improvements.

5.2 Quasigroup Problem Results

Table 2 shows the performance of the solvers on the quasigroup problems. Here
we can see that R+DDFW and R+DDFW+ clearly emerge as the two best
solvers, sharing the best results for each instance and both achieving an overall
success rate of 100%. Comparing between the two DDFW methods, for the first
time it becomes unclear whether the adaptive heuristic has made any difference,
as, for most instances the results are comparable. However R+DDFW+ does
exhibit noticeably better performance on instance qg1-08, whereas R+DDFW
shows equally strong performance on qg7-13. We should therefore conclude that
the adaptive mechanism does not change the overall performance of DDFW on
this problem set, although it can make a difference, either positively or nega-
tively, on individual instances.
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Table 1. Results for the SAT2005 industrial ferry planning problems

R+DDFW+ R+DDFW R+AdaptNovelty+ G2WSAT R+RSAPS

Problems Time Flips % Time Flips % Time Flips % Time Flips % Time Flips %

ferry3994 3.48 2,073,195 100 1.1 786,967 100 n/a n/a 0 n/a n/a 0 0.6 530,501 100

ferry3995 1.54 933,726 100 0.6 458,302 100 n/a n/a 0 n/a n/a 0 0.1 89,730 100

ferry3996 0.0 7,903 100 0.0 13,942 100 3.9 8,204,511 20 0.1 275,547 100 0.0 7,741 100

ferry3997 10.3 8,238,690 60 10.3 5,055,539 90 n/a n/a 0 n/a n/a 0 9.2 6,742,006 50

ferry3998 0.0 6,526 100 0.0 8,586 100 2.1 3,344,936 100 0.1 180,334 100 0.0 5,070 100

ferry3999 9.81 5,312,170 100 3.2 1,908,547 100 n/a n/a 0 n/a n/a 0 0.6 304,680 100

ferry4000 0.0 31,774 100 0.0 19,280 100 n/a n/a 0 1.8 2,442,300 80 0.0 12,771 100

ferry4001 63.1 24,392,288 100 99.4 40,117,368 90 n/a n/a 0 n/a n/a 0 90.0 54,061,467 80

ferry4002 0.0 9,637 100 0.0 20,336 100 4.8 7,535,284 30 2.1 1,958,552 90 0.0 3,852 100

ferry4003 21.2 10,395,968 100 21.2 7,773,439 50 n/a n/a 0 n/a n/a 0 7.2 2,884,301 100

ferry4004 0.0 30,348 100 0.1 40,547 100 n/a n/a 0 2.4 2,437,826 50 0.0 20,394 100

ferry4006 0.0 14,640 100 0.0 17,697 100 n/a n/a 0 4.9 2,616,491 20 0.0 9,160 100

ferry4008 0.0 33,192 100 0.1 51,796 100 n/a n/a 0 3.2 2,655,066 20 0.1 42,938 100

ferry4009 0.0 23,163 100 0.1 24,015 100 n/a n/a 0 n/a n/a 0 0.1 17,612 100

ferry3992 0.1 60,525 100 0.2 102,413 100 n/a n/a 0 n/a n/a 0 0.2 92,346 100

ferry3993 0.0 26,878 100 0.1 43,595 100 n/a n/a 0 7.2 3,399,169 10 0.2 54,742 100

Table 2. Results for Quasigroup SATLIB problems

R+DDFW+ R+DDFW R+AdaptNovelty+ R+G2WSAT R+RSAPS

Problems Time Flips % Time Flips % Time Flips % Time Flips % Time Flips %

qg1-07 0.0 4,388 100 0.1 11,375 100 0.2 14,840 100 0.1 9,600 100 0.1 4,901 100

qg1-08 10.2 352,276 100 21.8 601,271 100 33.8 1,076,689 100 28.8 2,818,904 100 64.6 2,153,008 99

qg2-07 0.0 2,361 100 0.0 2,035 100 0.1 9,094 100 0.1 5,073 100 0.1 2,478 100

qg2-08 57.5 1,556,545 100 60.0 1,346,438 100 77.1 1,906,196 20 79.8 4,569,088 50 71.5 1,879,019 70

qg3-08 0.1 16,867 100 0.1 21,986 100 0.6 78,849 100 0.1 24,534 100 0.2 11,049 100

qg4-09 0.2 25,311 100 0.2 26,123 100 1.5 169,169 100 0.7 142,619 100 1.2 54,920 100

qg5-11 0.2 7,303 100 0.2 6,797 100 2.3 131,924 100 0.4 29,992 100 0.6 11,014 100

qg6-09 0.0 478 100 0.0 466 100 0.0 3,644 100 0.0 686 100 0.6 11,753 100

qg7-09 0.0 292 100 0.0 299 100 0.0 698 100 0.0 412 100 0.0 295 100

qg7-13 9.3 229,258 100 3.2 122,091 100 16.3 5,351,459 56 n/a n/a 0 24.9 373,456 10

5.3 Structured Problem Results

Table 3 shows the results for the structured problems taken from the original
SAPS problem set [7] and the parity learning problems taken from the original
PAWS study [8]. This set comprises of two blocks world planning (bw) prob-
lems, two logistics planning instances, two flat graph coloring problems (flat),
two all-interval-series problems (ais) and four 16-bit parity learning problems
(par16*). The results confirm our earlier observation from the random problem
results that G2WSAT does not scale as well as DDFW. In this case R+G2WSAT
is the best algorithm on the smaller ais, logistics and flat problems, but is out-
performed by R+DDFW on each of the larger instances of these problems. In
addition, R+RSAPS has stronger performance than R+DDFW on the ais and
par16 problems.

However, the situation changes if we consider the performance of R+DDFW+.
In comparison to R+DDFW, R+DDFW+ is better on the ais10, both logistics
and all par16 problems, whereas R+DDFW is only better on the ais12 and
flat200 problems (the two methods perform identically on the bw problems be-
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Table 3. Results for structured problems from the SAPS and PAWS original studies,
(the = symbol means that R+DDFW+ behaves identically to R+DDFW on these
problems)

R+DDFW+ R+DDFW R+AdaptNovelty+ R+G2WSAT R+RSAPS

Problems Time Flips % Time Flips % Time Flips % Time Flips % Time Flips %

ais10 0.0 298,650 100 0.5 498,911 100 1.4 1,214,321 100 0.0 112,044100 0.0 25,459 100

ais12 5.0 4,036,866 100 2.3 1,934,170 100 10.1 7,328,426 51 2.4 1,854,652 100 0.2 187,743100

logistics-c 0.0 242,540 100 0.3 414,645 100 0.0 26,696 100 0.0 23,623100 0.0 5,364 100

logistics-d 0.1 16,708100 0.1 25,869 100 0.1 109,650 100 0.5 350,711 100 0.1 20,918 100

flat200-m 0.3 262,905 100 0.2 161,902 100 0.2 351,563 100 0.1 150,588100 0.4 362,786 100

flat200-h 3.2 2,814,221 100 1.01,014,878100 3.6 8,166,964 36 2.4 5,535,185 100 3.5 3,517,562 94

bw large.c = =100 0.6 145,607100 6.7 5,660,460 67 n/a n/a 0 21.3 4,258,483 91

bw large.d = =100 1.4 184,874100 13.4 7,974,818 38 n/a n/a 0 n/a n/a 0

par16-1 4.33,828,086100 7.1 5,229,852 50 7.415,608,349 15 n/a n/a 0 7.4 1,164,862 80

par16-2 23.221,670,517 100 27.920,542,514 60 36.854,634,563 10 n/a n/a 0 16.017,581,843100

par16-3 7.77,146,517100 24.417,959,087 70 32.750,828,991 40 31.826,133,070 30 16.0 18,890,265 100

par16-4 2.92,699,444100 11.412,800,152 100 26.841,099,634 50 26.551,205,540 60 8.1 9,445,556 100

cause the large number of literals mean the adaptive mechanism is not used).
These results show that the R+DDFW+ adaptive mechanism has again pro-
duced noticeable performance benefits, and has improved the overall behaviour
of R+DDFW on this problem set. In addition, if we take a simple count of the
number of problems on which R+DDFW+ dominates we can see that it is also
the best of the five algorithms considered.

6 Analysis and Conclusions

Overall we can conclude that the addition of an adaptive mechanism has im-
proved the performance of DDFW over the entire range of the problem sets we
have considered. The strongest dominance was observed on the random 3-SAT
and parity problems (shown in Figure 2a and Table 3 respectively). On the other
problems R+DDFW+ improved over R+DDFW on 10 of the 16 ferry problems
(in Table 1), 6 of the 10 quasigroup problems (in Table 2) and stays neutral on
the remaining real-world problems (in Table 3).

We can further conclude that R+DDFW (i.e. even without the adaptive mech-
anism) has the better overall performance in comparison to AdaptNovelty+,
G2WSAT and R+RSAPS. If we first look at R+G2WSAT, while it performed
well on the smaller random problems, it could not match R+DDFW on the larger
more difficult random problems. In the other categories R+G2WSAT was less
competitive, again showing promise on the smaller structured problems in Ta-
ble 3, but failing to scale up as well as R+DDFW on the more difficult problems.
Interestingly, G2WSAT performed strongly on the quasigroup problems when no
resolution was performed, but was uncompetitive after resolution (these results
are not reported in the current paper). This confirms the findings in [12] that
suggest clause weighting algorithms can gain more advantage from resolution
than non-weighting algorithms. In addition, R+G2WSAT was uniformly worse
than R+DDFW on the ferry problems.
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Turning our attention to R+RSAPS, this algorithm showed slightly bet-
ter performance than R+DDFW on the structured and ferry problems, dom-
inating on 10 of the 16 ferry problems and on all the parity problems, with
R+DDFW showing the better performance on the remaining 6 ferry problems
and on the other larger structured problems. However, R+RSAPS was outper-
formed by R+DDFW+ on the parity problems, was uniformly worse on the
random problems and was uncompetitive with R+DDFW on the quasigroup
problems, thereby failing to show the same robust performance as R+DDFW
and R+DDFW+ across the whole range of problem sets. Our third comparison
algorithm, R+AdaptNovelty+, also had the worst overall performance, being
unable to achieve outright dominance on any of the problems considered.

In a further unpublished study (not reported here) we investigated the effect
of the preprocessing resolution step on the performance of each algorithm. This
showed that resolution has little effect on the random problem instances but
has a positive effect on the quasigroup instances, with the effect being more
pronounced for R+DDFW and less pronounced for R+G2WSAT. For the real
world instances, resolution was also generally helpful for the ferry, ais, logistics
and parity problems but had little or no effect on the bw and flat problems.

In conclusion, we have introduced and integrated a new adaptive mechanism
into the DDFW algorithm. This mechanism is unusual in that it oscillates be-
tween increasing and resetting clause weights, timing these changes according
to a stagnation measure defined by the number of problem literals. While the
increase mechanism increments the existing weight profile, the reset mechanism
eliminates the profile entirely, returning the weights to their initial state. We con-
jecture that this dramatic and discontinuous change in the weighted cost surface
increases diversity by allowing the search to explore new trajectories. The reset
mechanism also ensures that the amount of weight added to a problem is strictly
controlled without requiring an additional weight decrease parameter.

In order to evaluate the new adaptive algorithm, R+DDFW+, we also incor-
porated the latest resolution-based preprocessing technique used by the winning
algorithm in the SAT2005 competition. In a broad ranging empirical study we
have shown that integrating our new adaptive mechanism into DDFW can signif-
icantly enhance its overall performance. We have also shown that R+DDFW+

has the best overall performance across a range of representative structured
and random problem instances in comparison to three of the best SLS solvers
currently available. The results suggest that R+DDFW+ should be the SLS al-
gorithm of choice in situations where the characteristics of a problem domain are
not known in advance and manual parameter tuning is not practical. In future
work it would be worthwhile to experiment with other resolution techniques to
see if further performance benefits can be obtained.
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Abstract. Since electromagnetic waves are strongly attenuated inside
the water, the satellite based global positioning system (GPS) cannot be
used by submarine robots except at the surface of the water. This paper
shows that the localization problem in deep water can often be cast into
a continuous constraints satisfaction problem where interval constraints
propagation algorithms are particularly efficient. The efficiency of the
resulting propagation methods is illustrated on the localization of a sub-
marine robot, named Redermor. The experiments have been collected
by the GESMA (Groupe d’Etude Sous-Marine de l’Atlantique) in the
Douarnenez bay, in Brittany.

1 Introduction

This paper deals with the simultaneous localization and map building problem
(SLAM) in a submarine context (see [1] for the general SLAM problem). The
SLAM problem asks if it is possible for an autonomous robot to move in an
unknown environment and build a map of this environment while simultaneously
using this map to compute its location.

In this paper, we will show that the SLAM problem can be seen as a continuous
constraints satisfaction problem (CCSP) (see e.g., [2], [3], [4], [5] for notions
related CCSP and applications). Then, we will propose to use a basic constraints
propagation algorithm (2B-consistency) to solve the CCSP. The efficiency of the
approach will be illustrated on an experiment where an actual underwater vehicle
is involved. In this problem, we will try to find an envelope for the trajectory of
the robot and to compute sets which contain some detected objects.

Many ideas presented here can be found in [6] and [7] where interval analy-
sis has already been used in the context of SLAM for wheeled robots. But the
approach is here made more efficient by the addition of constraints propagation
techniques, that have never been used in this context. Note that there exist many
other robotics applications where interval constraints propagation methods have
been successful (see e.g., [8] for the calibration of robots, [9], [10] for state esti-
mation, [11], [12] for control of robots, [13] for topology analysis of configuration
spaces, . . . ).

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 244–255, 2006.
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The paper is organized as follows. The robot to be considered will first be
presented in Section 2. Then, in Section 3, a brief description of the available
sensors will be given. By taking into account the state equations of the robot
and the interpretation of the sensors, Section 4 will provide the constraints that
will make it possible to cast our SLAM problem into a CCSP. The efficiency of
our approach will be illustrated on an actual expriment in Section 5.1. Section
6 will then conclude the paper.

2 Robot

The robot to be considered in our application (see Figure 2.1) is an autonomous
underwater vehicle (AUV), named Redermor (means greyhound of the sea, in
the Breton language). This robot, developed by the GESMA (Groupe d’Etude
Sous-Marine de l’Atlantique), has a length of 6 m, a diameter of 1 m and a
weight of 3800 Kg. It has powerful propulsion and control system able to provide
hovering capabilities. The main purpose of the Redermor is to evaluate improved
navigation by the use of sonar information. It is equipped with a KLEIN 5400
side scan sonar which makes it possible to localize objects such as rocks or
mines. It also encloses other sophisticated sensors such as a Lock-Doppler to
estimate its speed and a gyrocompass to get its three Euler angles (i.e., its
orientation).

3 Measurements

3.1 Sensors

The robot is equipped with the following sensors

– A GPS (Global Positioning System). A constellation of 24 satellites broad-
casts precise timing signals by radio to GPS receivers, allowing them to
accurately determine their location (longitude, latitude and altitude) in any
weather, day or night, anywhere on the surface of the Earth. However, since
electromagnetic waves (here around 1.2 MHz), do not propagate through the
water, this sensor is operational only when the robot is at the surface of the
ocean, but not when it is inside the water. During our two-hours experiment,
using the GPS, the robot is only able to measure the location where it is
dropped and the location where it comes back to the surface. Thus, we know
that at time t0 = 6000 s, the robot has been dropped approximately around
the position

�0= (�0x, �
0
y) = (−4.458227931o, 48.212920614o) , (1)

where �0x is the west/east longitude and �0y is the south/north latitude. The
error related to this position is less than 2.5 meters. When the robot returns
to the surface, at time tf = 11999.4 sec, its position is approximately (i.e.,
again with an error less than 2.5 meters) given by

�f= (�f
x, �

f
y) = (−4.454660760o, 48.219129760o) . (2)
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Fig. 2.1. The autonomous underwater vehicle, Redermor, built by the GESMA
(Groupe d’Etude Sous-Marine de l’Atlantique)

– A sonar (KLEIN 5400 side scan sonar). During its mission, the robot detects
objects using a sonar located starboard (i.e. on its right-hand side). This
sonar emits ultrasonic waves to build images such as that represented on
Figure 3.1. This image, also called a waterfall, is about 75m large for more
than 10 km high (corresponding to the length covered by the robot during
its mission). After the mission, a scrolling of the waterfall is performed by
a human operator which is then able to perform an estimation r̃(t) of the
distance r(t) from the robot to an object detected at time t. Recall that
the positions of the objects are assumed to be unknown. From the width of
the black vertical band on the left of the picture (called the water column),
we are also able to compute an estimation ã(t) of the altitude a(t) of the
robot (distance between the robot and the bottom). Figure 3.1 is related
to the detection of the 5th object in the case of the mission made by the
robot. The associated ping is represented by the thin white rectangle. Up
to now, the detection of an object and the matching between objects are
performed manually, from a scrolling of the waterfall, once the robot has
accomplished its mission. But we are planning to develop an automatic and
reliable procedure for this task.



Localization of an Underwater Robot 247

Fig. 3.1. The sonar image makes it possible to detect an object, to compute the dis-
tance r between the object and the robot, and the altitude a of the robot

Table 3.1. Measurements related to the objects detected by the sonar

i 0 1 2 3 4 5 6 7 8 9 10 11
τ (i) 7054 7092 7374 7748 9038 9688 10024 10817 11172 11232 11279 11688
σ(i) 1 2 1 0 1 5 4 3 3 4 5 1
r̃(i) 52.42 12.47 54.40 52.68 27.73 26.98 37.90 36.71 37.37 31.03 33.51 15.05

– A Loch-Doppler. This sensor makes it possible to compute the speed of
the robot vr and returns it in the robot frame. The Lock-Doppler emits
ultrasonic waves which are reflected on the bottom of the ocean. Since the
bottom is immobile, this sensor is able to compute an estimation of its speed
using the Doppler effect. When the frequency of the waves is around 300 kHz,
then the actual speed is known to satisfy

vr ∈ ṽr + 0.004 ∗ [−1, 1] .ṽr + 0.004 ∗ [−1, 1]. (3)

where ṽr denotes the three dimensional speed vector returned by the sensor.
The Loch-Doppler is also able to provide the altitude a of the robot with an
error less than 10cm.

– A Gyrocompass (Octans III from IXSEA). This sensor uses the Sagnac
effect and the rotation of the earth to compute the three Euler angles (the
roll φ, the pitch θ, and the head ψ) of the robot with a high accuracy. If we
denote by φ̃, θ̃, ψ̃, the angles returned by our gyrocompass, then the actual
Euler angles for our robot should satisfy⎛⎝ φ

θ
ψ

⎞⎠ ∈

⎛⎝ φ̃

θ̃

ψ̃

⎞⎠+

⎛⎝1.75× 10−4. [−1, 1]
1.75× 10−4. [−1, 1]
5.27× 10−3. [−1, 1]

⎞⎠ . (4)
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– A barometer is used to compute the depth of the robot (i.e., the distance
between the robot and the surface of the ocean). If d̃ is the depth collected
by the sensor, then the actual depth pz(t) of the robot satisfies pz(t) ∈
[−1.5, 1.5] + d̃.[0.98, 1.02]. The interval [−1.5, 1.5] may change depending on
the strength of waves and tides.

3.2 Measurements

For each time t ∈ T def= {6000.0, 6000.1, 6000.2, . . . , 11999.4}, the vector of mea-
surements

ũ(t) =
(
φ̃(t), θ̃(t), ψ̃(t), ṽx

r (t), ṽy
r (t), ṽz

r (t), ã(t), d̃(t)
)
, (5)

is collected. Using the characteristics of the sensors, it is possible to get a box
[u(t)] which contains the actual value for the vector

u(t) = (φ(t), θ(t), ψ(t), vx
r (t), vy

r (t), vz
r (t), a(t), pz(t)) , (6)

for each t ∈ T .
Moreover, six objects have been detected manually from the sonar waterfall

(i.e. the sonar image) collected by the robot. Table 3.1, provides (i) the number i
of the ping where an object has been detected starboard, (ii) the corresponding
time τ(i), (iii) the number σ(i) of the detected object, and (iv) a measure r̃(i) of
the distance between the robot and the object. The actual distance r(i) between
the robot and the object for the ith ping is supposed to satisfy the relation

r(i) ∈ [r̃(i)− 1, r̃(i) + 1]. (7)

4 Constraints

Around the zone covered by the robot, let us build the frame (O,
−→
i ,
−→
j ,
−→
k ) where

O is the location of the robot at time t0 = 6000s, the vector
−→
i indicates the

north,
−→
j indicates the east and

−→
k is oriented toward the center of the earth.

Denote by p = (px, py, pz) the coordinates of the robot expressed in the frame
(O,
−→
i ,
−→
j ,
−→
k ). From the latitude and the longitude, given by the GPS, we can

deduce the two first coordinates of the robot using the following relation:(
px

py

)
= 111120 ∗

(
0 1

cos
(
�y ∗ π

180

)
0

)(
�x − �0x
�y − �0y

)
. (8)

Moreover, the robot motion can be described by the following differential equa-
tion (also called state equation)

ṗ(t) = R(φ(t), θ(t), ψ(t)).vr(t), (9)

where

R(φ, θ, ψ) =

⎛⎝ cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎞⎠⎛⎝ cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞⎠⎛⎝1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

⎞⎠
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AUVfog

Fig. 4.1. The Redermor for different configurations (ψ, θ, φ)

sonarLateral

Fig. 4.2. The distance from the robot to the detected object can be obtained using a
lateral sonar

and vr represents the speed of the robot measured by the Loch-Doppler sensor
(see Equation (3)). Figure 4.1 gives an illustration of the meaning of the angles
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ψ, θ, φ. From the right to the left, we have (ψ, θ, φ) equal to (0, 0, 0), (1, 0, 0),
(0, 1, 0) and (0, 0, 1).

The state equation (9) can be interpreted as a constraint between the five
functions ṗ(.), φ(.), θ(.), ψ(.) and vr(.). Although this type of constraints could
be handled inside a constraint propagation formalism [14,15], for simplicity, we
shall approximate this constraint between functions by a constraint between
variables by resorting to a discretrization. This operation makes it possible to
cast our problem into a classical CSP over continuous domains, but it removes
the compleness of our approach. Since the sampling time is given by δ = 0.1s,
an Euler discretization of the state equation (9) yields

p(t + 0.1) = p(t) + 0.1 ∗R(φ(t), θ(t), ψ(t)).vr(t). (10)

When the ith object is detected at time t = τ(i) (see Table 3.1), it is located
starboard of the robot and on a plane which is perpendicular to the robot axis
(see Figure 4.2). The associated constraints are

⎧⎨⎩
(i) ||m(σ(i)) − p(t)|| = r(i)
(ii) RT(φ(t), θ(t), ψ(t)). (m(σ(i)t)− p(t)) ∈ [0, 0]× [0,∞]× [0,∞]
(iii) mz(σ(i)) − pz(t)− a(t) ∈ [−0.5, 0.5]

(11)

where, m(σ(i)) represents the location of the ith object and RT(φ, θ, ψ). (m− p)
represents the vector m−p expressed in the robot frame. In the constraint (ii), the
first interval [0, 0] means that the vector m − p is perpendicular to the main axis
of the robot, the second interval [0,∞] indicates that the object is starboard and
the third interval [0,∞] indicated that the object is deeper than the robot itself.
If we assume that the bottom of the ocean is flat, then we should have mz(σ(i)) =
pz(t) + a(t) (i.e., the depth mz of the object lying on the bottom is equal to the
altitudea of the robot plus the depthpz of the robot).The constraint (iii) translates
this relation with a small uncertainty represented by the interval [−0.5, 0.5]. This
assumption is true if the slope of the (almost flat) bottom is limited to 0.5

75 = 0.7%,
which is true in the bottom the Douarnenez bay.

5 Results

5.1 Constraints Satisfaction Problem

Our SLAM problem can be cast into the following constraints satisfaction
problem.
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t ∈ {6000.0, 6000.1, 6000.2, . . . , 11999.4}, i ∈ {0, 1, . . . , 11},(
px(t)
py(t)

)
= 111120.

(
0 1

cos
(
�y(t) ∗ π

180

)
0

)(
�x(t)− �0x
�y(t)− �0y

)
,

p(t) = (px(t), py(t), pz(t)),

Rψ(t) =

⎛⎝ cosψ(t) − sinψ(t) 0
sinψ(t) cosψ(t) 0

0 0 1

⎞⎠ , Rθ(t) =

⎛⎝ cos θ(t) 0 sin θ(t)
0 1 0

− sin θ(t) 0 cos θ(t)

⎞⎠ ,

Rϕ(t) =

⎛⎝1 0 0
0 cosϕ(t) − sinϕ(t)
0 sinϕ(t) cosϕ(t)

⎞⎠ , R(t) = Rψ(t)Rθ(t)Rϕ(t),

p(t + 0.1) = p(t) + 0.1 ∗R(t).vr(t),

||m(σ(i)) − p(τ(i))|| = r(i),

RT(τ(i)) (m(σ(i))− p(τ(i))) ∈ [0, 0]× [0,∞]× [0,∞],

mz(σ(i))− pz(τ(i)) − a(τ(i)) ∈ [−0.5, 0.5]

These constraints involve more than 300 000 variables (if a scalar decomposition
of the vectors in performed). The sensors (GPS, sonar, . . . ) make it possible to
get some accurate domains for the variables φ(t), θ(t), ψ(t), vr(t), a(t), pz(t),
�x(6000), �y(6000), �x(11999.4), �y(11999.4). The other variables �x(6000.1), . . . ,
�x(11999.3), �y(6000.1),. . . , �y(11999.3), px(6000), . . . , px(11999.4), py(6000), . . . ,
py(11999.4), m(0), . . . ,m(5) are unknown and the domains for their components
should initially be instantiated to [−∞,∞].

A constraints propagation procedure could thus be thought to contract all
domains of our CCSP. Since we want to get accurate results, a scalar decom-
position of the matrix constraints involved in our CSP is not recommended.
Instead, we have developed efficient contraction algorithms associated to all our
matrix constraints, such as A = B ∗C, ||v|| = r, . . . . An illustration is given by
the following example.

Example: To contract the constraint R(t) = Rψ(t)Rθ(t)Rϕ(t) involved in our
CSP, we can take into account the fact that the matrices are all rotation matrices
(i.e., their inverse is equal to their transpose). From this constraint, we can built
other matrix constraints, as follows

R(t) = Rψ(t)Rθ(t)Rϕ(t)⇔ R(t)RT
ϕ(t) = Rψ(t)Rθ(t)

⇔ R(t)RT
ϕ(t)RT

θ (t) = Rψ(t)⇔ . . . .
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From all these generated redundant constraints; one can built contractors by
decomposing them into scalar constraints and by using a hull consistency pro-
cedure. The resulting procedure constitutes an efficient contractor for the con-
straint R(t) = Rψ(t)Rθ(t)Rϕ(t).

5.2 Propagation

The results obtained by an elementary constraints propagation algorithm (sim-
ilar to hull consistency) are illustrated by Figure 5.1. Subfigure (a) represents
a punctual estimation of the trajectory of the robot. This estimation has been
obtained by integrating the state equations (9) from the initial point (repre-
sented on lower part). We have also represented the 6 objects that have been
dropped manually at the bottom of the ocean during the experiments. Note that
we are not supposed to know the location of these six object. When we dropped
them, we measured their location, but we used this information only to check
the consistency of results obtained by the propagation. Subfigure (b) represents
an envelope of the trajectory obtained using an interval integration, from a small
initial box, obtained by the GPS at the beginning of the mission. In Subfigure (c)
a final GPS point has also been considered and a forward-backward propagation
has been performed up to equilibrium. In Figure (d) the constraints involving the
object have been considered for the propagation. The envelope is now thinner
and enveloping boxes containing the objects have also been obtained (see Sub-
figure (e)). We have checked that the actual positions for the objects (that have
been measured independently during the experiments) all belong to the associ-
ated box, painted black. In Subfigure (f), a zooming perspective of the trajectory
and the enveloping boxes for the detected objects have been represented. The
computing time to get all these envelopes is less than one minute with a Pentium
III. About ten forward-backward interval propagations have been performed to
get the steady box of the CCSP. The C++ code associated with this example
as well as a windows executable program can be downloaded at

http://www.ensieta.fr/e3i2/Jaulin/redermorcp06.zip

In the case where the position of the objects is approximately known, the
SLAM problem translates into a state estimation problem. The structure of the
CSP becomes a tree [9] and it is possible to get the global consistency with only
one forward and one backward propagation. The envelope for the trajectory
becomes very thin and a short computation time is needed. The capabilities of
interval propagation methods for state estimation in a bounded error context
have already been demonstrated in several applications (see e.g., [16], [17], [8]
[9]). For the SLAM problem, the graph of the CSP is not a tree anymore. Of
course, the number of cycles of the graph is rather limited, and a large part of
the graph is made with one huge tree resulting from the state space equations.
Because of these cycles, the global consistency cannot be reached without any
bissection. Now, the number of variables of our CSP is huge and we should
give up the idea of reaching the global consistency via bissections. On the other
hand, redundant constraints can easily be obtained by adding other sensors
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Fig. 5.1. Results obtained by our constraints propagation method

or by handling the existing constraints, in a symbolic way. Adding redundant
constraints could thus be a realistic way to control the accuracy of an interval
contraints propagation method for the SLAM problem.
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6 Conclusion

In this paper, we have shown that interval constraints propagation could be ap-
plied to solve SLAM problems. The efficiency of the approach has been demon-
strated on an experiment made with an actual underwater robot (the Reder-
mor). The experiment lasted two hours and involved thousands of data. if all
assumptions on the bounds of the sensors, on the flat bottom, on the model of
the robot, . . . are satisfied, then their exists always at least one solution of the
CSP: that corresponding to the actual trajectory of the robot. Thus their is no
need to prove the existence of a solution. Since the CSP has more variables than
equations, the solution set contains generally a continuum of points.

When outliers occur during the experiment, our approach is not reliable any-
more and one should take care about any false interpretation of the results.
Consider now three different situation that should be known by any user of our
approach for SLAM.

Situation 1. The solution set is empty and an empty set is returned by the
propagation procedure. Our approach detects that their exists at least one outlier
but it is not able to return any estimation of the trajectory and the positions
of the objects. It is also not able to detect which sensor is responsible for the
failure.

Situation 2. The solution set is empty but nonempty thin intervals for the
variables are returned by the propagation. Our approach is not efficient enough
to detect that outliers exist and we can wronly interpret that an accurate and
guaranteed estimation of the trajectory of the robot has been done. Other more
efficient algorithms could be able to prove that no solution exists which would
lead us to the situation 1.

Situation 3. The solution set is not empty but it does not contain the actual
trajectory of the robot. No method could be able to prove that outliers occur.
Again, our approach could lead us to the false conclusion that a guaranteed
estimation of the trajectory of the robot has been done, whereas, the robot
might be somewhere else.

Now, for our experiment made on the Redermor, it is clear that outliers might
be present. We have observed that when we corrupt some data volontarily (to
create ouliers), the propagation method usually returns rapidly that no solution
exists for our set of constraints. For our experiment with the data collected, we
did not obtain an empty set. The only thing that we can conclude is that no
outlier has been detected. The constraints propagation method can thus be seen
a tool to validate (or unvalidate) reliability on models and sensor bounds.
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Abstract. We study a family of problems, called Maximum Solution,
where the objective is to maximise a linear goal function over the feasible
integer assignments to a set of variables subject to a set of constraints.
This problem is closely related to Integer Linear Programming.
When the domain is Boolean (i.e. restricted to {0, 1}), the maximum
solution problem is identical to the well-studied Max Ones problem,
and the approximability is completely understood for all restrictions on
the underlying constraints. We continue this line of research by consid-
ering domains containing more than two elements. We present two main
results: a complete classification for the approximability of all maximal
constraint languages, and a complete classification of the approximability
of the problem when the set of allowed constraints contains all permuta-
tion constraints. Our results are proved by using algebraic results from
clone theory and the results indicates that this approach is very useful
for classifying the approximability of certain optimisation problems.

1 Introduction

Combinatorial optimisation problems can often be formulated as integer linear
programs (here after abbreviated as ILP). In its most general form the aim in
a ILP is to assign integers to a set of variables such that a set of linear in-
equalities are satisfied and a linear goal function is maximised or minimised. In
this general form of the problem it is NP-hard to find feasible solutions [12]. It
is well-known that restricted versions of the general ILP problem still has the
ability to express many real-world optimisation problems. One such restriction
is to only consider solutions consisting of 0 and 1, i.e., the domain is {0, 1}. This
problem, commonly called Maximum 0-1 Programming, is still very hard, in
fact it is NPO-complete [17]. It is also well-known that if certain restrictions are
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imposed on the constraint matrix, then the corresponding ILP becomes compu-
tationally easier. Two examples are totally unimodular constraint matrices [23]
and matrices containing at most two non-zero entries per row [13].

In this paper, we study a variant of the ILP problem where we allow arbitrary
finite sets of relations as our constraints. Since the set of allowed relations is finite,
it follows that the arity of constraints is bounded (which is not the case for ILP).
Our goal is to classify the complexity of obtaining approximate solutions to this
problem for all different sets of allowed constraints. We approach this problem
from the constraint satisfaction angle. A wide range of combinatorial problems
can be viewed as ‘constraint satisfaction problems’ (CSPs), in which the aim is
to find an assignment of values to a set of variables subject to certain constraints.
Typical examples include the satisfiability problem, graph colourability problems
and many others.

Let us now formally define the problem that we will study: Let D ⊂ N (the
domain) be a finite set. The set of all n-tuples of elements from D is denoted by
Dn. Any subset of Dn is called an n-ary relation on D. The set of all finitary
relations over D is denoted by RD. A constraint language over a finite set, D,
is a finite set Γ ⊆ RD. Constraint languages are the way in which we specify
restrictions on our problems. The constraint satisfaction problem over the con-
straint language Γ , denoted Csp(Γ ), is defined to be the decision problem with
instance (V,D,C), where

– V is a set of variables,
– D is a finite set of values (sometimes called a domain), and
– C is a set of constraints {C1, . . . , Cq}, in which each constraint Ci is a pair

(si, �i) where si is a list of variables of length mi, called the constraint
scope, and �i is an mi-ary relation over the set D, belonging to Γ , called the
constraint relation.

The question is whether there exists a solution to (V,D,C) or not, that is, a
function from V to D such that, for each constraint in C, the image of the
constraint scope is a member of the constraint relation.

The optimisation problem that we are going to study, Weighted Maximum
Solution, can then be defined as follows: Weighted Maximum Solution
over the constraint language Γ , denoted W-Max Sol(Γ ), is defined to be the
optimisation problem with

Instance: Tuple (V,D,C,w), where D is a finite subset of N, (V,D,C) is a
Csp(Γ ) instance, and w : V → N is a weight function.

Solution: An assignment f : V → D to the variables such that all constraints
are satisfied.

Measure:
∑

v∈V

w(v) · f(v)

The problem W-Max Sol should not be confused with the Max Csp problem
where the objective is to maximise the number of satisfied constraints.

W-Max Sol restricted to Boolean domains is known as Weighted Max
Ones and the approximability of (Weighted) Max Ones is completely un-
derstood for all constraint languages [20]: For any Boolean constraint language Γ ,
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W-Max Sol(Γ ) is either in PO or is APX-complete or poly-APX-complete
or finding a solution of non-zero value is NP-hard or finding any solution is
NP-hard. The exact borderlines between the different cases are given in [20].

While the approximability of W-Max Sol is well-understood for the Boolean
domain, this is not the case for larger domains. For larger domains we are aware of
two results: the first one is a tight (in)approximability result for linear equations
over Zp [21] and the second result is for so-called monotone constraints [13]. In
this paper we show how the algebraic approach for CSPs [5,15] can be used to
study the approximability of W-Max Sol. The algebraic approach has been
very successful: it has, for instance, made it possible to design new efficient
algorithms and to clarify the borderline between tractability and intractability
in many important cases. In particular, the complexity of the CSP problem over
three element domains is now completely understood [2]. By using this approach
we are able to present the following two main results:

Result 1. We completely characterise the approximability of maximal constraint
languages; a constraint language Γ is maximal if, for any r �∈ Γ , Γ ∪{r} has the
ability to express (in a sense to be formally defined later on) every relation in
RD. Such languages have attracted much attention lately [3,6]. Our results shows
that if Γ is maximal, then W-Max Sol(Γ ) is either tractable, APX-complete,
poly-APX-complete, finding any solution with non-zero measure is NP-hard,
or CSP(Γ ) is not tractable. The different cases can also be efficiently recognised
given an arbitrary maximal constraint language.

Result 2. We completely characterise the approximability of W-Max Sol(Γ )
when Γ contains all permutation constraints. Such languages are known as ho-
mogenous languages and Dalmau [10] has determined the complexity of CSP(Γ )
for all such languages. We show that W-Max Sol(Γ ) is either tractable, APX-
complete, poly-APX-complete, or CSP(Γ ) is not tractable.

When proving Result 1, we identified a new large tractable class of W-
Max Sol(Γ ): generalised max-closed constraints. This class (which may be of
independent interest) significantly extend some of the tractable classes of Max
Ones that were identified by Khanna et al.

The paper is structured as follows: Section 2 contains some basics on approx-
imability and the algebraic approach to CSPs and Section 3 identifies certain
hard constraint languages. Section 4 contains some tractability results, Section 5
contains Result 1, and Section 6 contains Result 2. Section 7 contains some
final remarks. All the proofs omitted due to space limitations can be found in
the technical report version of the paper [19].

2 Preliminaries

In this section we state some preliminaries which we will need throughout the
paper. For a relation R with arity a we will sometimes write R(x1, . . . , xa) with
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the meaning (x1, . . . , xa) ∈ R. Furthermore, the constraint ((x1, . . . , xa), R) will
sometimes be written as R(x1, . . . , xa). The intended meaning will be clear from
the context.

2.1 Approximability, Reductions, and Completeness

A combinatorial optimisation problem is defined over a set of instances (ad-
missible input data); each instance I has a finite set sol(I) of feasible solu-
tions associated with it. The objective is, given an instance I, to find a fea-
sible solution of optimum value with respect to some measure function m :
sol(I) → N. The optimal value is the largest one for maximisation problems
and the smallest one for minimisation problems. A combinatorial optimisation
problem is said to be an NPO problem if its instances and solutions can be
recognised in polynomial time, the solutions are polynomially bounded in the
input size, and the objective function can be computed in polynomial time (see,
e.g., [1]).

We say that a solution s ∈ sol(I) to an instance I of an NPO problem Π is r-
approximate if it satisfies max

{
m(s)

opt(I) ,
opt(I)
m(s)

}
≤ r, where opt(I) is the optimal

value for a solution to I. An approximation algorithm for an NPO problem Π
has performance ratio R(n) if, given any instance I of Π with |I| = n, it outputs
an R(n)-approximate solution.

Let PO denote the class of NPO problems that can be solved (to optimal-
ity) in polynomial time. An NPO problem Π is in the class APX if there
is a polynomial-time approximation algorithm for Π whose performance ratio
is bounded by a constant. Similarly, Π is in the class poly-APX if there is
a polynomial-time approximation algorithm for Π whose performance ratio is
bounded by a polynomial in the size of the input.

Completeness in APX and poly-APX is defined using an appropriate reduc-
tion, called AP -reduction [9,20]: An NPO problem Π1 is said to be AP -reducible
to an NPO problem Π2 if two polynomial-time computable functions F and G
and a constant α exist such that (1) for any instance I of Π1, F (I) is an instance
of Π2; (2) for any instance I of Π1, and any feasible solution s′ of F (I), G(I, s′)
is a feasible solution of I; and (3) for any instance I of Π1, and any r ≥ 1, if s′

is an r-approximate solution of F (I) then G(I, s′) is an (1 + (r − 1)α + o(1))-
approximate solution of I where the o(1)-notation is with respect to |I|. An
NPO problem Π is APX-hard (poly-APX-hard) if every problem in APX
(poly-APX) is AP -reducible to it. If, in addition, Π is in APX (poly-APX),
then Π is called APX-complete (poly-APX-complete).It is a well-known fact
(see, e.g., Section 8.2.1 in [1]) that AP -reductions compose.

We will sometime use another kind of reductions known as S-reductions. They
are defined as follows: An NPO problem Π1 is said to be S-reducible to an NPO
problem Π2 if two polynomial-time computable functions F and G exist such
that (1) given any instance I of Π1, algorithm F produces an instance I ′ = F (I)
of Π2, such that the measure of an optimal solution for I ′, opt(I ′), is exactly
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opt(I); and (2) given I ′ = F (I), and any solution s′ to I ′, algorithm G produces
a solution s to I such that m(G(s′)) = m′(s′).

Obviously, the existence of an S-reduction from Π1 to Π2 implies the existence
of an AP -reduction from Π1 to Π2. The reason why we need S-reductions is that
AP -reductions do not (generally) preserve membership in PO [20].

2.2 Algebraic Approach to CSPs

An operation on a finite set D (the domain) is an arbitrary function f : Dk → D.
Any operation on D can be extended in a standard way to an operation on tu-
ples over D, as follows: Let f be a k-ary operation on D and let R be an n-ary
relation over D. For any collection of k tuples, t1, t2, . . . , tk ∈ R, the n-tuple
f(t1, t2, . . . , tk) is defined as follows: f(t1, t2, . . . , tk) = (f(t1[1], t2[1], . . . , tk[1]),
f(t1[2], t2[2], . . . , tk[2]), . . . , f(t1[n], t2[n], . . . , tk[n])), where tj [i] is the i-th com-
ponent in tuple tj . A technique that has proved to be useful in determining the
computational complexity of Csp(Γ ) is that of investigating whether Γ is in-
variant under certain families of operations [15].

Let �i ∈ Γ . If f is an operation such that for all t1, t2, . . . , tk ∈ �i, it holds
that f(t1, t2, . . . , tk) ∈ �i, then we say that �i is invariant (or, in other words,
closed) under f . If all constraint relations in Γ are invariant under f then Γ
is invariant under f . An operation f such that Γ is invariant under f is called
a polymorphism of Γ . The set of all polymorphisms of Γ is denoted Pol(Γ ).
Given a set of operations F , the set of all relations that is invariant under all
the operations in F is denoted Inv(F ).

We continue by defining a closure operation 〈·〉 on sets of relations: for any
set Γ ⊆ RD the set 〈Γ 〉 consists of all relations that can be expressed using
relations from Γ ∪ {=D} (=D is the equality relation on D), conjunction, and
existential quantification. Intuitively, constraints using relations from 〈Γ 〉 are
exactly those which can be simulated by constraints using relations from Γ .
The sets of relations of the form 〈Γ 〉 are referred to as relational clones, or
co-clones. An alternative characterisation of relational clones is the following
[22]: for every set Γ ⊆ RD, 〈Γ 〉 = Inv(Pol(Γ )). The next theorem states that
when we are studying the approximability of W-Max Sol(Γ ) it is sufficient to
consider constraint languages that are relational clones.

Theorem 1. Let Γ be a finite constraint language and Γ ′ ⊆ 〈Γ 〉 finite. Then
W-Max Sol(Γ ′) is S-reducible to W-Max Sol(Γ ).

We will use a number of operations in the sequel: An operation f over D is said to
be a constant operation if f is unary and f(a) = c for all a ∈ D and some c ∈ D; a
majority operation if f is ternary and f(a, a, b) = f(a, b, a) = f(b, a, a) = a for all
a, b ∈ D; a binary commutative idempotent operation if f is binary, f(a, a) = a
for all a ∈ D, and f(a, b) = f(b, a) for all a, b ∈ D; and an affine operation if f is
ternary and f(a, b, c) = a−b+c for all a, b, c ∈ Dwhere + and− are the operations
of an Abelian group (D,+,−).
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3 Hardness and General Containment Results

In this section we prove some general containment results in APX and poly-
APX for W-Max Sol(Γ ). We also prove APX-completeness and poly-APX-
completeness for W-Max Sol(Γ ) for some particular constraint languages Γ .
Most of our hardness results in subsequent sections are based on these results.

We begin by making the following easy but interesting observation: we know
from the classification of W-Max Sol(Γ ) over the Boolean domain {0, 1} that
there exist many constraint languages Γ for which W-Max Sol(Γ ) is poly-
APX-complete. However, if 0 is not in the domain, then W-Max Sol(Γ ) is
always in APX: it is proved in [8] that if Csp(Γ ) is in P, then we can also
find a solution in polynomial time, and it is clear that this solution is a max(D)

min(D) -
approximate solution.

Proposition 2. If Csp(Γ ) is in P and 0 /∈ D, then W-Max Sol(Γ ) is in
APX.

Next we present a general containment result in poly-APX for W-Max Sol(Γ ).
The proof is similar to the proof of the corresponding result for the Boolean do-
main in [20, Lemma 6.2], so we omit the proof.

Lemma 3. Let Γ c = {Γ ∪ {{(d1)}, . . . , {(dn)}}, where D = {d1, . . . , dn}. If
Csp(Γ c) is in P, then W-Max Sol(Γ ) is in poly-APX.

As for the hardness results, we begin by proving the APX-completeness and
poly-APX-completeness of particular constraint languages that will be very
useful in subsequent sections. The hardness parts of the proof consists of reduc-
tions from the APX-complete problem Independent Set restricted to degree-
3 graphs and the poly-APX-complete problem (unrestricted) Independent
Set, respectively.

Lemma 4. Let a, b ∈ D such that 0 < a < b. If r = {(a, a), (a, b), (b, a)}, then
W-Max Sol({r}) is APX-complete. If r′ = {(0, 0), (0, a), (a, 0)}, then W-Max
Sol({r′}) is poly-APX-complete.

4 Tractable Constraint Languages

In this section, we present some tractability results that will be needed in the se-
quel. These classes are injective constraint languages and generalised max-closed
constraint languages. The tractability result for injective constraints follows from
Cohen et al. [7, Sec. 4.4] but we present a simple proof for increased readabil-
ity. The tractability result for generalised max-closed constraints is new and its
proof constitutes the main part of this section.

To the best of our knowledge these two classes subsumes all the known
tractable classes of constraint languages presented in the literature for this prob-
lem. In particular, they can be seen as substantial and nontrivial generalisations
of the tractable classes known for the corresponding (Weighted) Max Ones
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problem over the Boolean domain. There are only three tractable classes of con-
straint languages over the Boolean domain, namely width-2 affine, 1-valid, and
weakly positive [20]. Width-2 affine constraint languages are examples of injec-
tive constraint languages and the classes of 1-valid and weakly positive constraint
languages are examples of generalised max-closed constraint languages.

Definition 5. A relation, R ∈ RD, is called injective if there exists a subset
D′ ⊆ D and an injective function π : D′ → D such that R = {(x, π(x)) | x ∈ D′}.

It is important to note that the function π is not assumed to be total on D. Let
ID denote the set of all injective relations on the domain D and let ΓD

I = 〈ID〉.
To see that W-Max Sol(ΓD

I ) is in PO, it is sufficient to prove that W-
Max Sol(ID) is in PO by Theorem 1. Given an instance of W-Max Sol(ID),
consider the graph having the variables as vertices and edges between the ver-
tices/variables occurring together in the same constraint. Each connected com-
ponent of this graph represents an independent subproblem that can be solved in
isolation. If a value is assigned to a variable/vertex, all vertices/variables in the
same component will be forced to take a value by propagating this assignment.
Hence, each connected component have at most |D| different solutions that can
be easily enumerated and an optimum one can be found in polynomial time.

Now, we consider generalised max-closed constraint languages. The gener-
alised max-closed constraint languages are a significant and non-trivial generali-
sation of the 1-valid and weakly positive constraint languages which were defined
and proved to be tractable for Max Ones in [20].

Definition 6. A constraint language Γ over a domain D ⊂ N is generalised
max-closed if and only if there exists a binary operation f ∈ Pol(Γ ) such that
f satisfies the following conditions; for all a, b ∈ D such that a < b it holds that
f(a, b) > a, f(b, a) > a, and for all a ∈ D it holds that f(a, a) ≥ a.

The following example will clarify the definition above.

Example 7. In this example the domain, D, is {0, 1, 2, 3}. As an example of a
generalised max-closed relation consider R = {(0, 0), (1, 0), (0, 2), (1, 2)}. R is
invariant under max and is therefore generalised max-closed as max satisfies
the properties of functions which are polymorphisms of generalised max-closed
relations. A subset of the relations invariant under max are called monotone
relations and has been studied by Hochbaum and Naor in [13]. Now consider the
relation Q defined as Q = {(0, 1), (1, 0), (2, 1), (2, 2), (2, 3)}. Q is not invariant
under max because

max((0, 1), (1, 0)) = (max(0, 1),max(1, 0)) = (1, 1) /∈ Q.

However, if we let the commutative and idempotent function f : D2 → D be
defined as f(0, 1) = 2, f(0, 2) = 2, f(0, 3) = 3, f(1, 2) = 2, f(1, 3) = 2 and
f(2, 3) = 3 then Q is invariant under f . Furthermore, from the definition of
generalised max-closed constraints, it is easy to verify that Inv(f) consists of
generalised max-closed relations.
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The tractability of generalised max-closed constraint languages crucially de-
pends on the following lemma.

Lemma 8. If Γ is generalised max-closed, then all relations R = {(d11, d12, . . . ,
d1m), . . . , (dt1, dt2, . . . , dtm)} in Γ have the property that the tuple tmax = (max{
d11, . . . , dt1}, . . . ,max{d1m, . . . , dtm}) is in R, too.

Proof. Assume that there is a relation R in Γ such that the tuple tmax = (max{
d11, . . . , dt1}, . . . ,max{d1m, . . . , dtm}) is not in R. Define the distance between
two tuples to be the number of coordinates where they disagree (i.e. the Ham-
ming distance). Let a be a tuple in R with minimal distance from tmax. By the
assumption that tmax is not in R, we know that the distance between a and tmax

is at least 1. Let T be the set of tuples b such that b is in R, and b and tmax

agree on at least one coordinate where tmax and a disagrees. We can see that T
is non-empty.

Let I denote the set of coordinates where a agrees with tmax. Order the
tuples in T by extending the ordering on D to tuples over D componentwise,
but only taking the coordinates in I into account (when comparing b and b′),
i.e., b = (d1, . . . , dm) < (d′1, . . . , d′m) = b′ if and only if di ≤ d′i for all i ∈ I
and dj < dj for some j ∈ I. We say that a tuple t (in T ) is maximal if there
exists no other tuple t′ (in T ) such that t < t′. Thus T contains (at least) one
maximal tuple m under this ordering. Note that a and m disagree in at least
one coordinate k ∈ I where a agrees with tmax, otherwise we get a contradiction
with the fact that a is of minimal distance from tmax.

Remember that since Γ is generalised max-closed there exists an operation
f ∈ Pol(Γ ) such that for all a, b ∈ D, a < b it holds that f(a, b) > a and
f(b, a) > a. Furthermore, for all a ∈ D it holds that f(a, a) ≥ a. Now, we apply
f componentwise to a and m, and let x = f(a,m). Note that since m[k] < a[k],
we get that x[k] > m[k]. Now consider the tuple:

f(f(f(. . . f(x,m), . . . ,m),m),m)︸ ︷︷ ︸
f applied |D| times

= x∗.

It is easy to realise that x∗ agrees with m in all coordinates where m agrees
with tmax, so x∗ is in T . Moreover x∗[i] ≥ m[i] for all i ∈ I, and x∗[k] > m[k],
so x∗ cannot be in T since this would contradict the maximality of m. We
get a contradiction because x∗ cannot be both out of T and in T . Hence our
assumption was wrong and tmax is in R. ��

Now we can use the same approach as was used in [16] to prove that the max-
closed constraint languages are a tractable class for CSP. Namely, given an in-
stance of W-Max Sol(Γ ) where Γ is generalised max-closed, first establish
a form of consistency called pair-wise consistency. If it results in any empty
constraints, then the instance has no solutions. Otherwise, assigning to each
variable the largest value allowed to it by any constraint results in a solution to
the instance. This follows from the fact that the set of underlying relations in
the resulting pair-wise consistent instance is still generalised max-closed. This
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solution is obviously an optimum one and since pair-wise consistency can be
established in polynomial time the problem is in PO.

Theorem 9. If Γ is generalised max-closed, then W-Max Sol(Γ ) is in PO.

5 Result 1: Maximal Constraint Languages

A maximal constraint language Γ is a constraint language such that 〈Γ 〉 ⊂ RD,
and if r /∈ 〈Γ 〉, then 〈Γ ∪ {r}〉 = RD. That is, the maximal constraint languages
are the largest constraint languages that are not able to express all finitary
relations over D. Recently a complete classification for the complexity of the
Csp(Γ ) problem for all maximal constraint languages was completed [3,6].

Theorem 10 ([3,6]). Let Γ be a maximal constraint language on an arbitrary
finite domain D. Then, Csp(Γ ) is in P if 〈Γ 〉 = Inv({f}) where f is a constant
operation, a majority operation, a binary commutative idempotent operation, or
an affine operation. Otherwise, Csp(Γ ) is NP-complete.

In this section, we classify the approximability of W-Max Sol(Γ ) for all maxi-
mal constraint languages Γ .

Theorem 11. Let 〈Γ 〉 = Inv({f}) be a maximal constraint language on an
arbitrary finite domain D.

1) If Γ is generalised-max-closed or an injective constraint language, then W-
Max Sol(〈Γ 〉) is in PO.
2) Else if f is an affine operation, a constant operation different from the
constant 0 operation, or a binary commutative idempotent operation satisfying
f(0, b) > 0 for all b ∈ D \ {0} (assuming 0 ∈ D); or if 0 /∈ D and f is a bi-
nary commutative idempotent operation or a majority operation, then W-Max
Sol(Γ ) is APX-complete.
3) Else if f is a binary commutative idempotent operation or a majority opera-
tion, then W-Max Sol(Γ ) is poly-APX-complete.
4) Else if f is the constant 0 operation, then finding a solution with non-zero
measure is NP-hard.
5) Otherwise, finding a feasible solution is NP-hard.

The proof of the preceding theorem consists of a careful analysis of the ap-
proximability of W-Max Sol(Γ ) for all constraint languages Γ = Inv({f}),
where f is of one of the types of operations in Theorem 10. The approximability
classifications when f is a majority operation or a constant operation are fairly
straightforward, so we concentrate on the results for the remaining two cases
(i.e., when f is affine or a binary idempotent commutative operation).

5.1 Binary Commutative Idempotent Operations

The approximability of W-Max Sol(Inv({f})) when f is a binary idempo-
tent commutative operation and Inv({f}) is a maximal constraint language is
determined in the following lemma.
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Lemma 12. Let f be a binary idempotent commutative operation on D such
that Inv({f}) is a maximal constraint language.

– If f = p+1
2 (x + y), where + is the operation of an Abelian group of prime

order p = |D|, then W-Max Sol(Inv({f})) is APX-complete;
– else if there exist a, b ∈ D such that a < b and f(a, b) ≤ a, let a be the

minimal such element (according to <), then
• W-Max Sol(Inv({f})) is poly-APX-complete if a = 0, and
• APX-complete if a > 0.

– Otherwise, W-Max Sol(Inv({f})) is in PO.

The proof of Lemma 12 crucially depends on the following result from universal
algebra due to Szczepara [24].

Lemma 13 ([24]). Let f be a binary operation such that Inv({f}) is a maximal
constraint language. Then f can be supposed either

1. to be the operation f = p+1
2 (x + y), where + is the operation of an Abelian

group of prime order p = |D|, or
2. to satisfy f(f(x, y), y) = y and f(x, f(x, . . . f︸ ︷︷ ︸

n times

(x, y) . . . )) = y, or

3. to satisfy f(f(x, y), y) = f(x, y) and f(x, f(x, y)) = y, or
4. to satisfy f(f(x, y), y) = f(x, y) and

f(x, f(x, . . . f︸ ︷︷ ︸
n+1 times

(x, y) . . . )) = f(x, f(x, . . . f︸ ︷︷ ︸
n times

(x, y) . . . )).

A bird’s eye view of the proof of Lemma 12 is this: For every binary idempotent
commutative operation f of the four types in Lemma 13 we investigate the
approximability of W-Max Sol(Inv({f})). If f is of type 1, then it can be
proved that W-Max Sol(Inv({f})) is APX-complete using similar methods
as those in Section 5.2 below, so we concentrate on the remaining three types.
If f is of type 2, 3, or 4, but Inv({f}) is not generalised max-closed, then we
prove that there exist a, b ∈ D, such that a < b and f acts as the min function
on {a, b}. If the minimal a such that f acts as the min function on {a, b} is
0, then W-Max Sol(Inv({f})) is poly-APX-complete. If the minimal such
a is greater than 0, then W-Max Sol(Inv({f})) is APX-complete. The only
remaining case is when Inv({f}) is generalised max-closed, which is in PO by
Theorem 9.

Lemma 14. Let f be a binary commutative idempotent operation such that

– f satisfies condition 2, 3, or 4 from Lemma 13, and
– Inv({f}) is not generalised max-closed (as defined in Definition 6).

Then there exist two elements a < b in D such that f(b, a) = f(a, b) = f(a, a) =
a and f(b, b) = b (i.e., f acts as the min-function on the set {a, b}).
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Proof. Given that f is binary commutative idempotent and that Inv({f}) is not
generalised max-closed, it follows immediately from the definition of generalised
max-closed constraints (Definition 6) that there exist two elements a < b in D
such that f(a, b) ≤ a. If f(a, b) = a, then f acts as the min-function on {a, b}
and we are done. Hence, we can assume that f(a, b) < a.

– If f satisfies condition 3 or 4 in Lemma 13, then f(f(x, y), y) = f(x, y)
for all x, y ∈ D. In particular, f(f(a, b), b) = f(a, b). Hence, f acts as the
min-function on the set {f(a, b), b}.

– If f satisfies condition 2 in Lemma 13, then f(f(x, y), y) = y for all x, y in
D. If there exist c, d in D such that d < f(c, d), then f(f(c, d), d) = d and
f acts as the min-function on {f(c, d), d}. Otherwise, it holds for all x, y in
D that f(x, y) ≤ x and f(x, y) ≤ y. Let a be the minimal (least) element in
D (according to <) and let b be the second least element, then f acts as the
min-function on {a, b}. ��

Lemma 15. Let f be a binary commutative idempotent operation such that
Inv({f}) is not generalised max-closed and f satisfies condition 2, 3, or 4 from
Lemma 13. Let a be the minimal element in D such that f(a, b) = min(a, b) = a
and a < b for some b ∈ D (such elements a and b are known to exist from
Lemma 14). Then, W-Max Sol(Inv({f})) is poly-APX-complete if a = 0
and APX-complete if 0 < a.

Proof. We know that f acts as the min-function on the set {a, b}. This implies
that the relation r = {(a, a), (b, a), (a, b)} is in Inv({f}). We will consider three
cases

1. 0 �∈ D. Then, W-Max Sol(Inv({f}) is in APX by Proposition 2 and the
problem is APX-complete by Lemma 4.

2. 0 ∈ D, and a = 0. Then, W-Max Sol(Inv({f}) is poly-APX-complete by
Lemma 4.

3. 0 ∈ D and a > 0. We will show that W-Max Sol(Inv({f}) is APX-
complete in this case.

First, we prove that the unary relation u = D \ {0} is in Inv({f}). Assume that
f(c, d) = 0 for some c < d. If f satisfies condition 3 or 4 from Lemma 13, then
f(f(c, d), d) = f(c, d) = 0 and hence f acts as the min-function on {f(c, d), d}.
Note that, f(c, d) < a which contradicts that a is the minimal such element.
Now, if f satisfies condition 2 from Lemma 13 (i.e., f(f(x, y), y) = y for all x, y
in D), and if there exists an e, 0 < e, such that f(e, 0) > 0, then f acts as
the min-function on {f(e, 0), 0} contradicting that a > 0 is the minimal such
element. Thus, f must act as the min-function on {0, x} for every x ∈ D, again
contradicting that a > 0 is the minimal element such that f acts as the min-
function on {a, y} for any y ∈ D. So, our assumption was wrong and f(c, d) > 0
for all c, d ∈ D \ {0}. This implies that u = D \ {0} is in Inv({f}).

Let I = (V,D,C,w) be an arbitrary instance of W-Max Sol(Inv({f}).
Define V ′ ⊆ V such that V ′ = {v ∈ V | M(v) = 0 for every model M of I}.
We see that V ′ can be computed in polynomial time: a variable v is in V ′
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if and only if the Csp instance (V,D,C ∪ {((v), u)}) is not satisfiable. Define
M : V → D such that M(v) = maxD if v ∈ V \ V ′ and M(v) = 0, otherwise.
Now, opt(I) ≤

∑
v∈V \V ′ w(v)M(v).

Given two assignments A,B : V → D, we define the assignment f(A,B)
such that f(A,B)(v) = f(A(v), B(v)). We note that if A and B are models
of I, then f(A,B) is a model of I: indeed, arbitrarily choose one constraint
((x1, . . . , xk), r) ∈ C. Then, (A(x1), . . . , A(xk)) ∈ r and (B(x1), . . . , B(xk)) ∈ r
which implies that (f(A(x1), B(x1)), . . . , f(A(xk), B(xk))) ∈ r, too.

Let M1, . . . ,Mm be an enumeration of all models of I and define

M+ = f(M1, f(M2, f(M3 . . . f(Mm−1,Mm) . . .))).

By the choice of V ′ and the fact that f(c, d) = 0 if and only if c = d = 0, we
see that the model M+ has the following property: M+(v) = 0 if and only if
v ∈ V ′. Let p denote the second least element in D and define M ′ : V → D
such that M ′(v) = p if v ∈ V \ V ′ and M ′(v) = 0, otherwise. Now, opt(I) ≥∑

v∈V \V ′ w(v)M ′(v) = S. Thus, by finding a model M ′′ with measure ≥ S,
we have approximated I within (maxD)/p and W-Max Sol(Inv({f}) is in
APX. To find such a model, we consider the instance I ′′ = (V,D,C′, w), where
C′ = C ∪ {((v), u) | v ∈ V \ V ′}. This instance has feasible solutions (since M+

is a model) and any solution has measure ≥ S, furthermore a concrete solution
can be found in polynomial time by the result in [8]. ��

5.2 Affine Constraints

We begin by showing that the class of constraints invariant under an affine
operation give rise to APX-hard W-Max Sol-problems. We will denote the
affine operation on the group G with aG.

Theorem 16. W-Max Sol(Inv({aG})) is APX-hard for every affine opera-
tion aG.

This theorem is proved with two reductions, the first one from Max-k-Cut
which is APX-complete [1], to Max Sol Eqn (see [21] for definition). In the
second reduction we reduce Max Sol Eqn to W-Max Sol(Inv({aG})).

We will now prove that constraint languages that are invariant under an affine
operation give rise to problems which are in APX. It has been proved that a
relation which is invariant under an affine operation is a coset of a subgroup of
some Abelian group [15]. We will give a randomised approximation algorithm
for the more general problem when the relations are cosets of subgroups of a
general finite group. Our algorithm is based on the algorithm for the decision
variant of this problem by Feder and Vardi [11].

We start with a technical lemma which states that the intersection of two
cosets is either empty or a coset.

Lemma 17. Let aA and bB (a, b ∈ H) be two cosets of H. Then, aA ∩ bB is
either empty or a coset of C = A ∩B with representative c ∈ H.
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We can now prove our approximability results for affine closed constraints.

Theorem 18. W-Max Sol(Γ ) is in APX if every relation in Γ is a coset of
some subgroup of Gk for some finite group G and integer k.

Proof. Let I = (V,D,C,w) be an arbitrary instance with V = {v1, . . . , vn}.
Feasible solutions to our problem can be seen as certain elements in H = Gn.
Each constraint Ci ∈ C defines a coset aiJi of H with representative ai ∈ H , for
some subgroup Ji of H . The set of solutions to the problem is the intersection
of all those cosets. Thus, S =

⋂|C|
i=1 aiJi denotes the set of all solutions.

Let H ′ = J1 ∩ J2 ∩ . . . ∩ Ji for 1 ≤ i ≤ |C|. By Lemma 17, we see that
S = xH ′ where x is one solution and H ′ is a subgroup of H . The solution x can
be computed in polynomial time by the algorithm in [11, Theorem 33], and a set
of generators for the subgroup H ′ can also be computed in polynomial time [14,
Theorem II.12]. Given a set of generators for H ′, we can uniformly at random
pick an element h from H ′ in polynomial time [14]. The element xh is then a
solution to I which is picked uniformly at random from S.

Let Vi denote the random variable which corresponds to the value which
will be assigned to vi by the algorithm above. It is clear that each Vi will be
uniformly distributed over some subset of G. Let A denote the set of indices
such that for every i ∈ A, Pr [Vi = ci] = 1 for some ci ∈ G. That is, A contains
the indices of the variables Vi which are constant in every feasible solution. Let
B contain the indices for the variables which are not constant in every solution,
i.e., B = [n] \ A.

Let S∗ =
∑

i∈B w(vi)maxG +
∑

i∈A w(vi)ci and note that S∗ ≥ opt. Fur-
thermore, let

Emin = min
X⊆G,|X|>1

1
|X |

∑
x∈X

x

and note that maxG > Emin > 0.
The expected value of a solution produced by the algorithm can now be esti-

mated as

E

[
n∑

i=1

w(vi)Vi

]
=
∑
i∈A

w(vi)E [Vi] +
∑
i∈B

w(vi)E [Vi]

≥
∑
i∈A

w(vi)ci + Emin

∑
i∈B

w(vi) ≥
Emin

maxG
S∗ ≥ Emin

maxG
opt.

As Emin/maxG > 0 we have a randomised approximation algorithm with a
constant expected performance ratio. ��

6 Result 2: Homogeneous Constraint Languages

Dalmau completely classified the complexity of CSP(Γ ) when Γ is a homoge-
neous constraint language [10]. A constraint language Γ over D is homogeneous
if every permutation relation R = {(x, π(x)) | x ∈ D} (where π is a permutation
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π : D → D) is contained in the language. Let Q denote the set of all permuta-
tion relations on D. The following theorem (together with Dalmau’s classification
for CSP(Γ )) gives a complete classification for the approximability of W-Max
Sol(Γ ) when Q ⊆ Γ .

Theorem 19. Assume that Q ⊆ Γ and that CSP(Γ ) is in P. If Γ ⊆ ΓD
I (where

ΓD
I is the class of injective relations from Definition 5), then W-Max Sol(Γ )

is in PO. Otherwise, if 0 /∈ D or Γ is invariant under an affine operation,
then W-Max Sol(Γ ) is APX-complete. Otherwise, W-Max Sol(Γ ) is poly-
APX-complete.

The proof of this theorem makes heavy use of the structure of homogeneous
algebras and is given in the technical report version of this paper [19].

As a direct consequence of the preceding theorem we get that the class of
injective relations is a maximal tractable class for W-Max Sol(Γ ). That is,
if we add a single relation which is not an injective relation to the class of all
injective relations, then the problem is no longer in PO (unless P = NP).

7 Conclusions

We view this paper as a first step towards a better understanding of the approx-
imability of non-Boolean W-Max Sol. The ultimate long-term goal for this
research is, of course, to completely classify the approximability for all finite
constraint languages. However, we expect this to be somewhat difficult since
not even a complete classification for the corresponding decision problem Csp is
known. A more manageable task would be to completely classify W-Max Sol
for constraint languages over small domains (say, of size 3 or 4). For size 3, this
has already been accomplished for Csp [4] and Max Csp [18].

It is known from [20] that the approximability of the weighted and unweighted
versions of (W)-Max Sol coincide for all Boolean constraint languages. We re-
mark that the same result holds for all constraint languages considered in this pa-
per (i.e., maximal constraint languages and homogeneous constraint languages).
This can be readily verified by observing that the AP -reduction from W-Max
Sol to Max Sol in the proof of Lemma 3.11 in [20] easily generalises to arbi-
trary finite domains and that our tractability proofs are given for the weighted
version of the problem. Note that since AP -reductions do not in general preserve
membership in PO it is still an open problem whether W-Max Sol(Γ ) is in
PO if and only if Max Sol(Γ ) is in PO for arbitrary constraint languages Γ .
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Abstract. The French nuclear park comprises 58 nuclear reactors dis-
tributed through the national territory on 19 geographical sites. They
must be repeatedly stopped, for refueling and maintenance. The schedul-
ing of these outages has to comply with various constraints, regarding
safety, maintenance logistic, and plant operation, whilst it must con-
tribute to the producer profit maximization. This industrial problem
appears to be a hard combinatorial problem that conventional meth-
ods used up to now by Electricité de France (mainly based on Mixed
Integer Programming) fail to solve properly. We present in this pa-
per a new approach for modeling and solving this problem, combin-
ing Constraint Programming (CP) and Local Search. CP is used to
find solutions to the outage scheduling problem, while Local Search is
used to improve solutions with respect to a heuristic cost criterion. It
leads to find solutions as good as with the conventional approaches, but
taking into account all the constraints and in very reduced computing
time.

1 Introduction

For modeling and solving optimization problems, Constraint Programming (CP)
[2] has been proved to be a very flexible approach. The user states the problem as
a set of decision variables and constraints, and express the enumeration strategy
which will be adopted to solve the problem then the system find a valuation
of the variables satisfying the constraints. The resulting program can be easily
adapted to changing requirements, since constraints can be added in incremental
way to a system without changing its overall architecture. And, the strategy used
to enumerate a solution can be easily modified. This allows to include specific
information or knowledge resulting from the expertise inside the enumeration
strategy.
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Hence, CP can be applied to express in a very flexible way real-world prob-
lems and, using a good enumeration strategy, it can leads to find a good first
solution. However, in most cases, it cannot be used to solve problem of big size
to optimality. For such problems, Local Search methods [1] give, in general, very
good practical results. They are repair methods which can give near-optimal
solutions in reasonable computing time.

Local search methods are based on a simple and general idea. They start
from an initial solution which can be randomly generated and try to improve it.
To do this, they first define a neighborhood which is a restricted search space
around the current solution. It is a subset of the overall solution space (e.g., the
solutions which can be obtained by modifying the value of just one variable in
the current solution). Then, they select the optimal solution contained in the
defined neighborhood. If the selected solution is different from the current one,
the process is iterated by considering it as the new current solution. Otherwise,
we say that a local optimum has been reached. There are several techniques to
escape from local optima [3,5,6].

In attempt to gain both efficiency of Local Search and the flexibility of con-
straint programming, recent research has started addressing the combination of
these two techniques [4,7,8,9,10,11].

Our aim in this paper is to show that combining CP with Local Search con-
stitutes a powerful approach to model and solve a real world problem. It consists
of the scheduling of outages of the Nuclear Power Plants (NPP) of the French
utility for electricity supply, Electricté de France (EDF). This is a core problem,
critical for the whole optimization chain of EDF production, as nuclear energy
forms the main part of it. Namely, NPP unavailability during periods of high
demand can result in drastic loss, because costly conventional production means
have to be triggered as a substitute, e.g. fuel, coal or gas plants.

Outages scheduling appears to be a hard combinatorial problem. Up to now,
it has been addressed by means of classic Operations Research methods, mostly
based on Mixed Integer Programming. Two decision-aid tools based on these
approaches are currently used monthly by EDF operational staff to compute
outage schedules. Because these systems are suffering from severe limitations,
we initiated a couple of years ago a fundamental research in order to study the
contribution of Constraint Programming and Local Search methods for mod-
eling and solving this problem. This led us to design a new approach, taking
advantages of both techniques. This paper describes this innovative approach
and discusses its benefits. It is organized as follows : Section 2 provides with
an informal description of the problem to be solved. Section 3 briefly presents
the current modelisation and resolution techniques used, in order to furnish a
precise estimation of the problem complexity and to point out the limitations
of the current approaches. It also serves to introduce some notation used in the
following of the paper. Section 4 is devoted to the presentation of the proposed
alternative approach. Section 5 presents the entire process to solve completely
the problem. We discuss our experimental results and present our future work
in the section 6.



When CP and Local Search Solve the Scheduling Problem 273

2 Problem Overview

The French Electricity board (Électricité de France, EDF) disposes from 58 nu-
clear power plants (NPP) distributed on 19 geographical sites. Their production
management has to comply with various constraints, regarding safety, mainte-
nance logistic, and plant operation, whilst it must contribute to the producer
profit maximization. In particular, NPP must be repeatedly stopped, for refu-
eling and maintenance. Thus, NPP operation consists of a succession of cycles
(see Fig 1), each of them composed by the sequence of a production campaign
and an outage.

Fig. 1. Reactor cycle

The whole problem consists of two dependent sub-problems :

1. NPP outage scheduling. It consists of finding out a planning of outage
dates, on a horizon of 5 years, for the 58 nuclear reactors. The schedule must
satisfy some constraints designated in the following as placement constraints.
They are of two types : intra-site placement constraints and inter-site place-
ment constraints. The former relate outages of plants located on a single site.
Mainly, they consist of minimal space or maximal covering tolerated between
couple of outages. The latter constraints are resource limitation constraints
which relate outages of plants located on different sites. For example, at each
step, the number of stopped plants on the whole park must be limited to
a given bound. In addition to the intra-site and inter-site placement con-
straints, individual outages can have unary constraints such as earliest or
latest start dates.

2. Production planning problem. It consists of finding out an optimal pro-
duction plan, i.e. a quantity of energy to produce by each plant at each
step of time (week). The production plan must respect the ”local production
constraints”. During the production campaign, the power of a NPP is lim-
ited to an upper-bound. The plant is allowed to produce under this bound,
but this ability to modulate production is constrained by an upper-bound
called Maximal Modulation. After each refueling, the NPP stores a certain
amount of energy for the next cycle. If this energy has not been exhausted



274 M.O.I. Khemmoudj, M. Porcheron, and H. Bennaceur

before the subsequent outage, the plant is said to stop with anticipation.
Anticipation is constrained by an upper-bound Amax. On the contrary, if
this energy has been consumed before the next outage, the plant is said to
stop with prolongation, and it can continue to produce up to a fuel stock
lower-bound called Maximal Prolongation. During this possible prolongation
stage, the plant must follow a specific decreasing production profile and it
is not allowed to modulate. During each outage, the plant core is restocked
for the next campaign with respect to a specific refueling law. In addition,
at each step of the studied period NPP and conventional plant production
must fulfill a given demand. This is the only coupling production constraint.

The economic criterion to minimize is the global cost of nuclear fuel con-
sumed during operations, augmented with the production cost of the conven-
tional plants.

3 Current Resolution Framework

To solve the problem described above two complementary approaches, both
based on Mixed Integer Programming (MIP), have been implemented and are
currently used by the EDF operational staff.

Following are the major notations, constants and decision variables used in
these frameworks.

– Notations
• 〈i, k〉 : k-the outage of NPP i;

– Constants
• & : number of weeks of the study period (horizon length);
• m : number of nuclear power plants (58);
• ni : number of expected outages of NPP i (namely about 5);
• tki : the earliest start time of the outage 〈i, k〉;
• t

k
i : the latest start time of the outage 〈i, k〉;

• dk
i : outage 〈i, k〉 duration;

• Lk
i : nuclear fuel restocked during the outage 〈i, k〉.

– Decision variables
• ak

i (t), i = 1...m; t = tki ...t
k
i : boolean variables which takes the value 1 iff,

the k-the outage of plant i begins at week t, 0 otherwise;
• ui(t), i = 1...m; t = 1...& : real variables denoting the production of NPP
i at week t;

• v(t), t = 1...& : real variables denoting the production of the conventional
plants at week t (non-nuclear productions);

• fi : remaining stock fuel of the NPP i at the end of the study period.

The intra-site placement constraints are modelled as follows. For each outage
couple (〈i, k〉, 〈j, l〉) the constraints below are stated.

ak
i (t) +

tl
j∑

t′=t

(1− rikjl
(t, t′)).al

j(t
′) ≤ 1, t = tki ...t

k
i (1)
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al
j(t) +

tk
i∑

t′=t

(1− rikjl
(t′, t)).ak

i (t′) ≤ 1, t = tlj ...t
l
j (2)

where rikjl
is the relation specifying the binary constraint relating the outage

couple (〈i, k〉, 〈j, l〉).
Constraints above mean that if one of the outages 〈i, k〉 or 〈j, l〉 begins at

time t, the other outage must not begin at any time t′ such that ¬rikjl
(t, t′).

Since, there is no restriction on the relation which specifies the constraint, the
formulation can be employed to express any binary constraint. In our case, the
general form of the relations is :

rikjl
(t, t′) =

⎧⎨⎩
1 if t + dk

i − ej
i + φikjl

(t, t′).oj
i ≤ t′

∨ t′ + dl
j − ej

i + φikjl
(t, t′).oj

i ≤ t
0 otherwise

where ej
i is the maximum covering allowed between outages of plants i and j. When

it is negative, we say that it is a required minimum spacing. This maximum cover-
ing (or minimum spacing) must be augmented by oj

i if there is a so-called specific
period overlapped by the two intervals [t, t + dk

i − 1] and [t′, t′ + dl
j − 1]. Namely,

there is a given set of specific periods {[s1, s1], ..., [sp, sp]} and the quantity φikjl
is

equal to 1 if there exists q (1 ≤ q ≤ p) such that [t, t + dk
i − 1] ∩ [sq, sq] �= ∅ and

[t′, t′ + dl
j − 1] ∩ [sq, sq] �= ∅. Otherwise, φikjl

(t, t′) is null.
The inter-site placement constraints,which are resources limitation constraints,

are classically formulated as follow:

∑
〈i,k〉

t∑
t′=max(tk

i ,t−ρq
ik+1)

ak
i (t′).Rq

ik ≤ δq q = 1...M ; t = 1...&. (3)

where,

– M : number of different necessary resources for refueling and maintenance
operations;

– δq : the amount of the resource q, (q = 1...M);
– Rq

ik : the amount of resource q used during the outage < i, k > (0 if the
resource is not used);

– ρq
ik : the time during which the resource q is used since the outage < i, k >

beginning. It can be greater than the duration dk
i of the outage 〈i, k〉. This

is the case for example when the resource is a tool which requires a decon-
tamination after its use.

As an illustration of local production constraints, we present below the mod-
elisation of the constraint enforcing production of a given NPP to be null during
outages and to be limited to an upper bound during campaigns.

ui(t) ≤ Ei, ∀(i, t) : 1 ≤ t ≤ &

ui(t) ≤
(

1−
t∑

t′=max(tk
i ,t−dk

i +1)

ak
i (t′)

)
·Ei, ∀(i, k, t) : tki ≤ t ≤ t

k
i

(4)
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where Ei stands for the weekly maximal energy producible by the NPP i. It is
worth noting that this type of constraints relates outage scheduling and produc-
tion planning sub-problems.

Demand satisfaction constraints take the following form :

m∑
i=1

ui(t) + v(t) = Demt, t = 1...&. (5)

where Demt is the demand to be satisfied at week t.
Constraints (5) mean that at each step of the scheduling period, the nuclear

and conventional production must fulfill the given demand.
After some approximations have been performed, the objective function to

minimize takes the following form:[ �∑
t=1

m∑
i=1

ci(t).Lk
i .a

k
i (t)−

m∑
i=1

ci(&).fi

]
+

[ �∑
t=1

g(v(t))

]
(6)

with the following data :

– Lk
i : the amount of nuclear fuel restocked during the k-the outage of plant i;

– ci(t) : the nuclear fuel unitary cost at week t;
– g : production cost function of the non-nuclear plants. It is a convex increas-

ing piecewise linear function (Fig 2);

–
�∑

t=1

m∑
i=1

ci(t).Lk
i .a

k
i (t)−

m∑
i=1

ci(&).fi : cost of the nuclear fuel consumed during

the study period;

–
�∑

t=1
g(v(t)) : production cost of the non-nuclear plants. The form of function

g is illustrated on the following plot. It is important to notice its convex
character which will be exploited in the following.

Fig. 2. Production cost function of the non-nuclear plants

Within this framework, and after some simplifications have been performed,
the problem comprises about 5000 boolean variables, 20000 real variables, and
15000 constraints.
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To face such a complexity, a first approach based on decomposition tech-
niques has been developed. It consists of separating the global problem into
sub-problems, each one dealing with a particular site, while a coordination mod-
ule ensures the satisfaction of the coupling constraint on demand. The evident
and major drawback of this method is that the placement constraints which re-
late NPP of different sites are not taken into account. In addition, in order to
maintain an acceptable computing time, the search space of outage schedule is
not completely explored and solutions found are thus only locally optimal.

A second approach tackling frontally the entire problem has been worked out
allowing coupling inter-site placement constraints to be satisfied. But, despite
the use of intensive MIP acceleration methods, it stills find in an acceptable
computing time only solutions on a sub-part of the search space.

4 An Alternative Approach

The limitations of both approaches introduced above were the incentive for
the work presented here. Basically, the intention was to investigate the capa-
bilities of Constraint Programming together with Local Search techniques to
contribute to problem solving with both following objectives : increasing the
quality of the solutions found without relaxing any placement constraint. In ad-
dition to these two objectives, we are interested by a flexible tool offering the
possibility to separate the sub-problem of outage scheduling from that of pro-
duction planning. The current section describes this approach. We first show
that Constraint Programming can be used to find an outage schedule for which
there is a realizable production plan. Then we show that Constraint Program-
ming can be combined with Local Search to improve the quality of the solution
found.

4.1 Using CP to Solve the Outage Scheduling Sub-problem

Modeling. The CP modeling of the outage scheduling sub-problem introduces
for each outage 〈i, k〉 a finite domain variable Tik. The lower and upper bounds of
each variable Tik are respectively tki and t

k
i . The intra-site placement constraints

are stated by using the generic global constraint cumulative [12]. For each plant
couple (i, j) belonging to same geographical site the cumulative constraint below
is stated :

cumulative(LTij, LDij , l1 ni+nj , 1) (7)

– LTij is the variable collection {Tik, Tjl : k = 1...ni, l = 1...nj};
– LDij is the constant collection {dk

i − ej
i , d

l
j − ej

i : k = 1...ni, l = 1...nj};
– l1 ni+nj is a collection of ni + nj constants all equal to 1.

Constraints (7) above expresses a part of the relation rij introduced section 3.
The complementary part is handled by exploiting the conditional propagation
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technique1. Namely, for each outage couple (〈i, k〉 , 〈j, l〉) and each specific period
[sq, sq] the conditional constraint below is stated.

(Tik ≤ sq ∧ Tik + dk
i − 1 ≥ sq ∧ Tjl ≤ sq ∧ Tjl + dl

j − 1 ≥ sq)
⇒ cumulative([Tik, Tjl], [dk

i − ej
i + oj

i , d
l
j − ej

i + oj
i ], [1, 1], 1)

(8)

Like the intra-site placement constraints, the inter-site placement constraints
are modeled by the cumulative global constraint. For resource q (q = 1...M) we
state :

cumulative(LTq, LDq, LRq, δq) (9)

where :

– LTq = {Tik : Rq
ik > 0, i = 1...q, k = 1...ni};

– LDq = {ρq
ik : Rq

ik > 0, i = 1...q, k = 1...ni};
– LRq = {Rq

ik : Rq
ik > 0, i = 1...q, k = 1...ni};

We will design by CSP (T ) the set of all outage schedules satisfying the place-
ment constraint (7-9), where T is the vector of the start time dates of the outages
(T = (Tik)i=1...m,k=1...ni).

Search. The heuristic search for outage schedule consists of firstly assigning
the variable with the smallest upper bound. Thus, the outages of each plant
i (i = 1...m) are considered in the order 〈i, 1〉, 〈i, 2〉, ..., 〈i, ni〉. If there is two
variables Tik and Tjl(i �= j) with the same upper bound, we first consider the
most-constrained one. The value ordering heuristic is based on the expertise of
NPP operators and consists of minimizing the number of outages in winters
(periods of keen demand).

Propagation of local production constraints. The outage schedule must be
determined in such a way that there is a production plan satisfying all the local
production constraints. These ones are thus integrated in the search process.

At the root of the search process, we calculate for each NPP the earliest and
latest dates for the start of the first outage. This is done by exploiting the local
production constraints and taking into account the fuel stock levels.

More precisely, let Lni1 the current stock fuel level at the beginning of the
study period for each plant i (i = 1...m). The maximal amount of energy which
can be produced before the outage < i, 1 > is then Lni1 + Prmaxi1, where
Prmaxi1 is the Maximal Prolongation introduced section 2.

Secondly, the maximal length l1 of the period during which the plant can
modulate is equal to 
Lni1+Modmax

Ei
�, where Ei is the maximal power of NPP i

and Modmax is the upper bound limiting modulation as introduced section 2.
Thirdly, we use the mandatory decreasing production profile introduced section
2 to compute the maximal length l2 of the prolongation period. Finally, the

1 A conditional constraint p ⇒ q enforces the consequent q once the antecedent p is
verified.
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maximal length l̄ = l1 + l2 of the production campaign is used to reduce the
upper bound of Ti1 (Ti1 ≤ l̄).

An analogue reasoning is used to compute a lower bound l for Ti1 using the
Maximal Anticipation introduced section 2.

Each time a variable Tik has been bound, an interval can be computed for
the stock level reached at the end of the current campaign and the stock level at
the beginning of the next campaign can be consequently constrained by means
of the refueling law.

The same process is then repeated to calculate upper and lower bounds for
the variable Tik+1 and so on.

We will denote by FindSolution() the function which performs this search
mechanism.

4.2 Combining CP and Local Search to Improve Solutions

Experiments carried out on real data showed that the search process presented
above finds solutions satisfying all the placement and local production con-
straints in reduced computing time(1 to 2 seconds). We then developed a Local
Search approach to find outage schedules minimizing a heuristic criterion based
on demand satisfaction cost.

Strategy. Basically, the idea is to compute a target NPP outage schedule which
minimizes the cost of the conventional plant production.

First, note that because we know the number of outages on the study period
and their durations, it is possible to estimate the unavailability rate of the nuclear
park, due to outages. Once completed with some other kinds of unavailability
(random faults, power decreasing laws, ...), the unavailability rate (μ) enables us
to estimate the maximal nuclear energy (NE) producible by the whole nuclear
park on the study period : NE = &.(1−μ)

∑n
i=1 Ei where

∑m
i=1 Ei is the weekly

maximal energy producible by the NPP park.
Because the nuclear energy is insufficient to satisfy demand on the study

period, we have to apply a certain complementary non-nuclear production (CE)

in order to fulfil demand : CE =
�∑

t=1
Demt − NE =

�∑
t=1

v(t). The price to pay

on the whole study period for this non-nuclear production is
�∑

t=1
g(v(t)).

As a consequence of the convex character of the production cost function g

(see Fig. 2) we have
�∑

t=1
g(v(t)) ≥

�∑
t=1

g(CE
� ). This demonstrates that in absence

of any constraint, the best command strategy consists of applying a command
that leave with always the same non-nuclear complementary production (CE

� )
to reach the demand. Note that this merely means that the marginal cost stays
the same all along the studied period.

The quantity CE
� is used to compute a weekly target production for the nuclear

park, TNE : TNE = (TNEt)t=1...� = (Demt − CE
� )t=1...�.
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We then search for an outage schedule such that the weekly availability of the
nuclear park is sufficient to produce at each week t the quantity TNEt.

To be able to produce quantity TNEt at the step time t, the number of
stopped NPP should not exceed a certain limit lt initialized as follows :

lt =

⌈
n(

m∑
i=1

Ei − TNEt)/
m∑

i=1

Ei

⌉
.

Heuristic cost modeling. The vector l = (lt)t=1...� is exploited to construct
an heuristic criterion used to guide the search for a good outage schedule. More
precisely, we search for an outage schedule satisfying as possible the fixed unavail-
ability limits (lt, t = 1...&). For each fixed vector l = (lt)t=1...� of unavailability
limits, the following constraints are added to the system.

ϕt(T ) ≤ Lt + ηt, t = 1...& (10)

where,

– T : vector of the start time dates of the outages (T = (Tik)i=1...m,k=1...ni);
– ϕt(T ) = |{〈i, k〉 : Tik ≤ t < Tik +dk

i }| : number of stopped plants at the step
time t;

– Lt : finite domain variable whose upper bound is equal to lt;
– ηt: finite domain variable.

Constraints (10) above mean that at each week t the nuclear park unavailability
must be less or equal to the fixed limit lt. Otherwise, the additional unavailability
ηt will be considered as constraint violation cost. They are modelled by the
cumulative global constraint.

The heuristic cost criterion introduced above takes thus the following form :

Cost = η. l1 =
�∑

t=1

ηt. (11)

We will denote the obtained optimization problem as follows :

CSOP (l, Cost)

⎧⎪⎪⎨⎪⎪⎩
Cost = η. l1 =

�∑
t=1

ηt

ϕ(T ) ≤ L + η
CSP (T )

(12)

Local search. To find an outage schedule minimizing the heuristic cost criterion
introduced above, we use a Local Search approach based on very simple noising
technique [3]. More precisely, it exploits the following observations :

1. If additional constraints are added to the problem (12), the search space will
be reduced and the problem can become easier to solve ;

2. If we consider another objective (for example by noising the vector of unavail-
ability limits), the good solutions can be different from the ones currently
obtained.
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The former observation is used to construct neighborhoods in which good
solutions can be computed by standard CP, the latter is used to escape from
local optima.

The optimization process begins by posting the constraints system (12) and
storing the obtained search state, then the first solution is searched by the Find-
Solution() function.

Let v = (vik)i=1...m,k=1...ni represents the current solution vector and c its
cost (the current lower bound of Cost). In order to improve this solution, a
repair method performing local moves takes place.

A local move consists of changing the start time date of some outages of
a single NPP. Let j be this plant. After restoring the stored search state, the
constraints {Tik = vik, ∀〈i, k〉 : i �= j} are added to the system (12). We obtain
the following system, defining a neighborhood:

N(j, v, c)
{
CSOP (l, Cost)
Tik = vik, ∀〈i, k〉 : i �= j

(13)

System (13) is then solved to optimality with a branch and bound search.
If a solution v′ of cost c′ < c is found, it is considered as the new current
solution (v ← v′, c ← c′). The process is iterated by considering another plant
j′ and solving the new neighborhood N(j′, v, c) and so on until a local optimum
is found. Note that when we solve the neighborhood sub-problems the local
production constraints are taken into account. We denote by Repair(v, c) the
function performing these local moves starting from an initial solution. The
obtained local optimum and its cost are then saved : v∗ ← v, c∗ ← c.

Obviously, the current local optimum depends on the vector of unavailability
limits l. Indeed, if the vector l were initialized differently, the local optimum
found by Repair(v, c) could be different from the current one. Thus, in order to
escape from the current local optimum we post the constraints Lt ≤ lt − 1, 1 ≤
t ≤ &. The objective is now to find outage schedule satisfying as possible the new
unavailability limits l− l1 . We denote CSOP (l− l1 , Cost) the obtained problem.
It has the same set of solutions that of CSOP (l, Cost). Since the objective is
noised, the Repair(v, c) method can now performs locals moves and produces
a local optimum v for CSOP (l − l1 , Cost).

We dispose now from two solution : the vector v∗ which is a local optimal
for CSOP (l, Cost) and the vector v which is a local optimum for CSOP (l −
l1 , Cost). The constraints posted over L are then deleted and the repair method
Repair(v, c) is restarted again. The vector v becomes a new local optimum for
CSOP (l, Cost). If its cost c is less than that of v∗ (c < c∗), it is considered as
the best solution encountered : v∗ ← v, c∗ ← c. The process is iterated until a
stop criterion is reached. The chosen stop criterion is the number of time that
the objective is noised without improving the current best solution.

5 Putting It All Together

Our approach finds outage schedules leading to satisfy the demand at lower cost.
It does not determine a production plan. That is done by an existing module
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named ”PLAFIGE”. It is the coordination module used by the decomposition
based approach presented in the section 3. It is worth noting that

The following OSOPAN2 procedure sums up the entire resolution process:

OSOPAN

1. %Problem stating
post(CSOP (L, Cost));

2. %Outage schedule searching
– (v, c) ← FindSolution();
– Repair(v, c)
– v∗ ← v, c∗ ← c, Stop ← N
– while(Stop ≥ 1)

• post(L ≤ l − l1 )
• Repair(v, c)
• delete(L ≤ l − l1 )
• Repair(v, c)
• if(c < c∗) then v∗ ← v, c∗ ← c, Stop ← N

else Stop ← Stop − 1
3. %Production plan searching

u ← PLAFIGE(v∗)

The architecture of the obtained tool (OSOPAN) consists of three separated
components. In the first one, the problem is stated. The second component serves
to determine, relatively to a heuristic cost criterion a good outage schedule. At this
stage, all the start time dates of the outages are fixed and the remainder variables
are continuous. Taking into account the fixed outage schedule, the third compo-
nent, named ”PLAFIGE” and based on linear programming techniques, deter-
mines an optimal production plan. This leads to evaluate in a precise way the qual-
ity of the outage schedule and produces interesting marginal costs currently used
by EDF operational staff to perform local moves in order to improve solutions.

This architecture allows to focus on the second component performing Local
Search. Indeed, our local search is very simple and can be improved. In par-
ticular, local moves can be based on marginal costs provided by the module
”PLAFIGE”.

6 Results and Perspectives

The approach described in this paper has been entirely implemented3 and tested
against the tools currently used by operational staff to compute NPP outage
schedules. Let us call CM1 and CM2 the two MIP based resolution methods
implemented in these tools and outlined section 3.
2 Outil pour la Satisfaction et l’Optimisation du Problème des Arrêts Nucléaires.
3 We have used the CHIP C++ library [12].
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First of all, solutions found by our new approach are comparable to the cost
(6) defined section 3. This justifies the heuristic cost criterion we stated, and
the Local Search procedure we use to optimize it. But in addition, we have the
following major valuable benefits :

– Computing time is similar to the one exhibited by CM1, namely about 5
mn for a five years long study period, but with all the placement constraints
satisfied.

– Computing time is much better that the one exhibited by CM2 to find com-
parable solutions.

– Declarativity of the resolution process is drastically improved. Firstly, new
placement constraints can be easily added. This is a typical benefits of CP
approach. In addition, and more fondamentally the heuristic cost criterion
used by Local Search can be sophisticated without altering the overall ar-
chitecture.

As an illustration of the latter benefit above, current works consists of using
the precise tool based on Linear Programming (PLAFIGE) to estimate the
cost of the solutions in terms of distance to an optimal production plan rather
than to the target nuclear park availability vector which proceeds from it. This
should improve quality of the solutions, with respect to the criterion (6).
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Abstract. In this paper, we propose a new algorithm to establish Gen-
eralized Arc Consistency (GAC) on positive table constraints, i.e. con-
straints defined in extension by a set of allowed tuples. Our algorithm
visits the lists of valid and allowed tuples in an alternative fashion when
looking for a support (i.e. a tuple that is both allowed and valid). It is
then able to jump over sequences of valid tuples containing no allowed
tuple and over sequences of allowed tuples containing no valid tuple.
Our approach, that can be easily grafted to any generic GAC algorithm,
admits on some instances a behaviour quadratic in the arity of the con-
straints whereas classical approaches, i.e. approaches that focus on either
valid or allowed tuples, admit an exponential behaviour. We show the
effectiveness of this approach, both theoretically and experimentally.

1 Introduction

Arc Consistency (AC) plays a central role in Constraint Programming (CP). It
is an essential component of the Maintaining Arc Consistency (MAC) algorithm,
which is commonly used to solve instances of the Constraint Satisfaction Problem
(CSP). It is also at the heart of a stronger consistency called Singleton Arc
Consistency (SAC), which has recently attracted a lot of attention (e.g., [1,7]).

A CSP instance is arc consistent iff there is no variable value pair which
violates any of the binary constraints. Many algorithms for establishing AC
have been proposed. They can be classified into two categories coarse-grain and
fine-grain. The former one consists of algorithms (e.g. AC3 [10], AC2001/3.1
[4]), which reason about arcs, i.e. pairs composed of a constraint and a variable,
to infer inconsistent values. The latter one contains algorithms whose reasoning
is based on values (e.g. AC7 [2]). The algorithms from both classes share a
characteristic of being generic since they can be applied to any kind of constraints
(i.e. constraints defined by a predicate or a list of tuples).

In many applications, non-binary constraints naturally arise. For such con-
straints, AC is then said to be Generalized (GAC). Although GAC extensions
of the generic algorithms mentioned above exist, it is not always relevant to
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use them since specific approaches to establish GAC by exploiting the seman-
tics/structure of the constraints can be far more efficient.

In this paper, we propose a new algorithm to establish GAC on positive table
constraints. A table constraint is a constraint which is defined in extension by a
set of tuples. A tuple represents a combination of values for constraint variables
that is allowed in case of positive table constraint and disallowed in case of
negative table constraint. Table constraints are commonly used in configuration
applications or applications related to databases.

The approach that we propose is a refinement of two generic approaches,
which we call in this work GAC-valid and GAC-allowed. GAC-valid iterates over
valid tuples (i.e. tuples that can be built from the current domains of constraint
variables) in order to find supports. A tuple is called a support iff it is valid and
allowed. GAC-allowed iterates over allowed tuples (i.e. combinations of values
which are allowed by a constraint) in order to find supports. Roughly speaking,
GAC-valid and GAC-allowed correspond respectively to GAC-schema-predicate
and GAC-schema-allowed presented in [3].

We use the following example to illustrate the potential drawbacks of both
schemas with respect to positive table constraints. Let us consider a constraint C
involving r variables, X1, ..., Xr, such that the domain of each variable is initially
{0, 1, 2}. Let us assume (see Figure 1.a) that there are exactly 2r−1 tuples allowed
by C (all tuples allowed by C correspond to the binary representation of all values
between 0 and 2r−1 − 2 in addition to the tuple (2, 2, ..., 2, 2)).

(0,0,...,0,0) (0,1,...,1,1)

(0,0,...,0,1) (0,1,...,1,2)

(0,0,...,1,0) (0,1,...,2,1)

... ...

(0,1,...,1,0) (0,2,...,2,2)

(2,2,...,2,2)

(a) (b)

Fig. 1. A list of allowed tuples (a) and a list of valid tuples (b)

Assume that, due to propagation caused by other constraints, domains of all
variables have been reduced to {1, 2} except for variable X1 whose domain has
been reduced to {0}. After this propagation, there are exactly 2r−1 valid tuples
(see Figure 1.b) that can be built for C.

Let us consider that we have to check first if (X1,0) is consistent with C.
The time complexity of determining that (X1,0) violates C when one uses GAC-
valid is Ω(2r−1). Indeed, to prove it, we need to consider 2r−1 valid tuples.
GAC-allowed has also time complexity Ω(2r−1) since it has to consider 2r−1− 1
allowed tuples to prove that (X1,0) violates C.

The behaviour of both schemas does not seem satisfactory as it is immediate
that (X1,0) violates C. The solution that we propose is to alternate the visits
to both lists of valid and allowed tuples. The idea is to jump over sequences of
valid tuples containing no allowed tuple and over sequences of allowed tuples
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containing no valid tuple. Let us consider our example, which checks if (X1,0)
violates C. The first task to be performed is to compute, in O(r), the first valid
tuple t = (0, 1, ..., 1, 1). Afterwards, the first allowed tuple t′ greater than or equal
to t is searched for. This task involves, using a dichotomic search, log2(2r−1)
comparisons of tuples, which is O(r2) as comparing two tuples is O(r). As no
such tuple exists for (X1,0), (X1,0) is proven to violate C.

We can observe that our approach is able to skip a number of tuples that
grows exponentially with the arity of the constraints, but in a different manner
of that proposed in [9]. This related work, exploiting some ideas introduced
in [8,12], proposed a refinement of GAC-schema-allowed [3] that iterates over
allowed tuples while skipping irrelevant ones by exploiting the current domains
of variables.

2 Preliminaries

A Constraint Network (CN) P is a pair (X ,C ) where X is a finite set of vari-
ables and C a finite set of constraints. Each variable X ∈ X has an associated
domain, denoted dom(X), which contains the set of values allowed for X . Each
constraint C ∈ C involves a subset of variables of X , called the scope of C and
denoted by vars(C), and has an associated relation, denoted rel(C), which con-
tains the set of tuples allowed for the variables of its scope. We will respectively
denote the number of variables and constraints of a CN by n and e. The arity
of a constraint corresponds to the size of its scope. A solution to a CN is an as-
signment of values to all the variables such that all the constraints are satisfied.
A CN is said to be satisfiable iff it admits at least one solution. The Constraint
Satisfaction Problem (CSP) is the NP-complete task of determining whether a
given CN is satisfiable. A CSP instance is then defined by a CN, and solving it
involves either finding one (or more) solution or determining its unsatisfiability.

A CSP instance can be solved by modifying the network using inference or
search methods. Usually, domains of variables are reduced by removing inconsis-
tent values, i.e. values that cannot occur in any solution. The initial domain of
a variable X will be denoted dominit(X) whereas the current domain of X will
be simply denoted dom(X). For each r-ary constraint C such that vars(C) =
{X1, . . . , Xr}, we have: rel(C) ⊆

∏r
i=1 dom

init(Xi) where
∏

denotes the Carte-
sian product. Also, for any element t = (a1, . . . , ar), called r-tuple or more simply
tuple, of

∏r
i=1 dom

init(Xi), t[Xi] (and also t[i]) denotes the value ai. We can now
introduce the notion of support.

Definition 1. Let C be a r-ary constraint such that vars(C) = {X1, . . . , Xr},
a r-tuple t of

∏r
i=1 dom

init(Xi) is allowed by C iff t ∈ rel(C), valid wrt C iff
∀Xi ∈ vars(C), t[Xi] ∈ dom(Xi), and a support in C iff it is allowed and valid.

A tuple t is a support of (Xi, a) in C when t is a support in C such that t[Xi] = a.
Note that a solution guarantees the existence of a support in each constraint.
In addition, assuming a total order on variables, tuples can be lexicographically
ordered. Two r-tuples t and t′ are such that t ≺ t′ iff ∃i ∈ 1..r | t[i] < t′[i]∧∀j ∈
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1..i−1, t[j] = t′[j]. The ith variable of the scope of a constraint C will be denoted
by var(C, i). To simplify the presentation of some algorithms, we introduce one
special symbol & such that any tuple t verifies t ≺ &.

It is possible to filter domains by considering some properties of constraint
networks. Generalized Arc Consistency (GAC) remains the most important: it
guarantees the existence of a support for each value in each constraint. Estab-
lishing GAC on a CN involves removing all generalized arc inconsistent values.

Definition 2. Let P = (X ,C ) be a CN. A pair (X,a), with X ∈ X and
a ∈ dom(X), is Generalized Arc Consistent (GAC) iff ∀C ∈ C |X ∈ vars(C),
there exists a support of (X, a) in C. P is GAC iff ∀X ∈ X , dom(X) �= ∅ and
∀a ∈ dom(X), (X, a) is GAC.

3 Representing Finite Domains

Before presenting different approaches to establish GAC on positive table con-
straints, we need to introduce a precise description (in the general context of a
backtracking search) of domains representation. Indeed, this is partly required
for our complexity analysis given later.

To solve a CSP instance, a depth-first search algorithm with backtracking
can be applied, where at each step of the search, a decision (most of the time, a
variable assignment) is performed followed by a filtering process called constraint
propagation. It is then necessary to keep track of values removed during search,
as upon backtracking, they have to be restored. In fact, for each removed value
a, we need to record the level at which a has been removed. This mechanism
is called trailing and is used in most current CP systems [13]. Considering a
constant denoted NO whose value is −1, to represent the current state of a
domain (which is initially composed of d values) during search, we introduce the
following structures:

– value is an array of size d which contains the set of values
– absent is an array of size d which indicates which values are removed from

the domain. More precisely, absent[i] = NO indicates that value[i] belongs
to the current domain and absent[i] = k (≥ 0) indicates that value[i] has
been removed at level k of search.

– next is an array of size d which allows to link (from first to last) all values
of the current domain. When absent[i] = NO, next[i] gives the index j > i
of the next value in the current domain (we have absent[j] = NO and
∀k ∈ i + 1..j − 1, absent[k] �= NO), or NO if value[i] is the last value.

– prev is an array of size d which allows to link (from last to first) all values
of the current domain. When absent[i] = NO, prev[i] gives the index j < i
of the previous value in the current domain (we have absent[j] = NO and
∀k ∈ j + 1..i− 1, absent[k] �= NO), or NO if value[i] is the first value.

– prevAbsent is an array of size d which allows to link all values that do not
belong to the current domain. When absent[i] �= NO, prevAbsent[i] gives
the index j of the value removed during search just before value[i], or NO
if value[i] is the first removed element.
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Algorithm 1. removeValue(index : int, level : int)
1: absent[index] ← level
2: prevAbsent[index] ← lastAbsent
3: lastAbsent ← index
4: if prev[index] = NO then first ← next[index]
5: else next[prev[index]] ← next[index]
6: if next[index] = NO then last ← prev[index]
7: else prev[next[index]] ← prev[index]

Algorithm 2. reduceTo(index : int, level : int)
1: current ← first
2: while current �= NO do
3: if current �= index then removeValue(current, level)
4: current ← next[current]
5: end while

We also need three variables denoted first, last and lastAbsent which respec-
tively indicate the indices of the first value, the last value and the last removed
value. Using first and last variables in conjunction with next and prev arrays,
we obtain a behaviour similar to a doubly-linked list. Using lastAbsent and
prevAbsent, we obtain a behaviour similar to a stack (last-in first-out struc-
ture). The initialisation of these structures (not described in this paper, due to
lack of space) is rather straightforward.

Then, one can wonder how to get the position (index) of a given value. In
fact, in the context of establishing GAC wrt positive table constraints, it is
never necessary as we can always reason about the indices of values. In a more
general context, one can introduce a hash map which allows, under reasonable
assumptions, to obtain the index of a given value in constant time. For more
information, see Section 4 in [6] and implementation details in [2]. From now on,
to simplify the presentation of algorithms and without any loss of generality, we
will assume that values and indices match, i.e. ∀i ∈ 1..d, value[i] = i.

When a value is removed by propagation, the function removeV alue (see
Algorithm 1) is called. It just updates the stack of removed values (lines 1 to 3)
and the doubly-linked list of present elements (lines 4 to 7). When an assignment
is performed during search, the function reduceTo (see Algorithm 2) is called.
It involves removing all values different from the given one. When the solver
backtracks up to level k, the function restoreUpto (see Algorithm 4) is called.
It adds values, which have been removed at a level greater than or equal to k,
back to the domain. Indeed, for such elements, the function addV alue is called.
Hence, the stack is updated (lines 1 and 2) as well as the doubly-linked list
(lines 3 to 6). Here, it is interesting to note that as removals are managed using
a last-in first-out structure (stack), we automatically obtain correct indexes at
prev[index] and next[index] when a value is restored. Indeed, they are never
overwritten once value[index] is removed.
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Algorithm 3. addValue(index : int)
1: absent[index] ← NO
2: lastAbsent ← prevAbsent[index]
3: if prev[index] = NO then first ← index
4: else next[prev[index]] ← index
5: if next[index] = NO then last ← index
6: else prev[next[index]] ← index

Algorithm 4. restoreUpto(level : int)
1: current ← lastAbsent
2: while current �= NO ∧ absent[current] ≥ level do
3: addValue(current)
4: current ← prevAbsent[current]
5: end while

The space complexity of this representation is θ(|dom(X)|) for any variable
X , which is optimal. The time complexity of all elementary operations (deter-
mining if a value is present, getting next value, previous value, etc.) is O(1). As
a consequence, the time complexity of removeV alue and addV alue is O(1).

4 Establishing Generalized Arc Consistency

To establish generalized arc consistency on a given constraint network, one can
use a coarse-grained algorithm such as GAC3 [11] or GAC2001 [4]. To simplify
and without any loss of generality for what follows, we only present GAC3. We
first introduce the general schema (to be compared with the fine-grained one
introduced in [3]) of the algorithm and then describe a general implementation.

4.1 GAC3

To establish generalized arc consistency on a given CN involving any kind of
constraints, the coarse-grained GAC algorithm (Algorithm 5) can be called. It
returns true when the given CN can be made GAC. Initially, all pairs (C,X),
called arcs, are put in a set Q. Once Q has been initialized, each arc is revised
in turn (line 4), and when a revision is effective (at least, one value has been
removed), the set Q has to be updated (line 6). A revision is performed by
a call to the function revise specific to the chosen coarse-grained GAC algo-
rithm, and entails removing values that have become inconsistent with respect
to C. This function returns true when the revision is effective. The algorithm is
stopped when a domain wipe-out occurs (line 5) or the set Q becomes empty.
For GAC3 [10,11], each revision is performed by a call to the function revise
depicted in Algorithm 6. This function iteratively calls the function seekSupport
which determines from scratch whether or not there exists a support of (X, a)
in C.
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Algorithm 5. GAC (P = (X ,C ) : Constraint Network): Boolean
1: Q ← {(C, X) | C ∈ C ∧ X ∈ vars(C)}
2: while Q �= ∅ do
3: pick and delete (C, X) from Q
4: if revise(C,X) then
5: if dom(X) = ∅ then return false
6: Q ← Q ∪ {(C′, Y ) | C′ ∈ C , {X, Y } ⊆ vars(C′), C′ �= C, Y �= X}
7: return true

Algorithm 6. revise(C : Constraint, X : Variable) : Boolean
1: nbElements ← | dom(X) |
2: for each a ∈ dom(X) do
3: if seekSupport(C,X, a) = � then remove a from dom(X)
4: return nbElements �= |dom(X) |

4.2 GAC3-Valid

We naturally assume that it is always possible to check that a given tuple is
allowed by a constraint. Hence, a general approach (called GAC3-valid) to im-
plement seekSupport is to iterate the set of valid tuples until an allowed one is
found. This approach is the coarse-grained correspondence of the general schema
described in [3]. It can be used to deal with any kind of constraints.

In order to find a support, valid tuples are then considered. We will denote
valid(C,X, a) the set of valid tuples involving (X ,a) built from C. We have
valid(C,X, a) = {t ∈

∏
Y ∈vars(C) dom(Y ) | t[X ] = a}. To iterate valid tuples,

we introduce two functions called setF irstV alid and setNextV alid. But first,
remember that we assume a total order on the scope of each constraint such that
tuples can be ordered using a lexicographic order ≺. Also, for each domain, one
can exploit a linked list (see Section 3) of present elements using the variable
first and the array next. The call setF irstV alid(C,X, a) (see Algorithm 7)
returns the smallest valid tuple t built from C such that t[X ] = a. Its time
complexity is θ(r) where r is the arity of the constraint C. Indeed, to build t, it
suffices to get the first element of all domains associated with variables (except
X) involved in C. The call setNextV alid(C,X, a, t) (see Algorithm 8) returns
either the smallest valid tuple t′ built from C such that t ≺ t′ and t′[X ] = a,
or & if it does not exist. Its worst-case time complexity is O(r). It is important
to remark that setNextV alid is always called here with a parameter t being a
valid tuple. Remember also that we assume to simplify (and without any loss of
generality) that values and indices (of values) match. Hence, t[Y ] at lines 2 and
4 of Algorithm 8 can be understood as representing the index of a value.

As an illustration, consider a ternary constraint C involving variables X ,
Y and Z. We have var(C, 1) = X , var(C, 2) = Y and var(C, 3) = Z. If
dom(X) = {1, 4, 5}, dom(Y ) = {2, 4} and dom(Z) = {1, 2}, then we obtain:
setF irstV alid(C, Y, 4) = (1, 4, 1), setNextV alid(C, Y, 4, (1, 4, 1)) = (1, 4, 2) and
setNextV alid(C, Y, 4, (1, 4, 2)) = (4, 4, 1).
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Algorithm 7. setFirstValid(C, X, a) : Tuple
1: t[X] ← a
2: for each variable Y ∈ vars(C) such that Y �= X do t[Y ] ← dom(Y ).first
3: return t

Algorithm 8. setNextValid(C, X, a, t) : Tuple
1: for each Y = var(C, i) | Y �= X with i ranging from |vars(C)| down-to 1 do
2: if dom(Y ).next[t[Y ]] = NO then t[Y ] ← dom(Y ).first
3: else
4: t[Y ] ← dom(Y ).next[t[Y ]]
5: return t
6: return �

Looking at function seekSupport-valid (see Algorithm 9) which implements
seekSupport, we remark that a constraint check corresponds to determining if
t ∈ rel(C). It can be implemented in different ways (by evaluating a Boolean
expression, querying a database, looking for a tuple in a list, etc.). The proof of
the following proposition is immediate as in the worst-case, each valid tuple has
to be checked.

Proposition 1. The worst-case time complexity of seekSupport-valid(C,X, a)
is O(V.K) where V = |valid(C,X, a)| and K is the worst-case time complexity
of performing a constraint check.

5 Establishing GAC on Positive Table Constraints

In this section, we first discuss about positive table constraints. Then, we present
two classical algorithms to establish GAC on positive table constraints that
respectively involve iterating lists of valid tuples and lists of allowed tuples.
Finally, we introduce an original algorithm that involves visiting, in turn, both
lists, looking for a valid tuple, then for an allowed tuple, and so on. It can allow
skipping a number of valid tuples and a number of allowed tuples that grows
exponentially with the arity of the constraints.

5.1 Positive Table Constraints

A positive table constraint is a constraint given in extension and defined by a set
of allowed tuples. Such constraints arise in practice in configuration problems,
and more generally, in problems whose data come from databases. The set of
allowed tuples associated with any constraint C is a table denoted allowed(C).
The worst-case space complexity to record this set is O(r.|allowed(C)|) where r
denotes the arity of C and |allowed(C)| the size of the table (i.e. the number of
allowed tuples).

Most of the time, we are interested in the list of allowed tuples involving
a pair (X ,a). We will denote this list allowed(C,X, a). It is then interesting
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Algorithm 9. seekSupport-valid(C, X, a) : Tuple
1: t ← setFirstV alid(C, X, a)
2: while t �= � do
3: if t ∈ rel(C) then return t
4: t ← setNextV alid(C, X, a, t)
5: return �

to introduce an array of pointers to such supports for any pair (X ,a). Each
support being referenced exactly r times, the space complexity of these new ar-
rays is O(r.|allowed(C)|). So, the overall worst-case space complexity remains
O(r.|allowed(C)|). Assuming that each list is ordered (according to the lexico-
graphic order of referenced tuples), the worst-case time complexity of checking
that a tuple t involving (X ,a) is allowed is O(r.log(|allowed(C,X, a)|)).

An alternative is to introduce a hash map to “directly” access allowed tuples
(proposed in [3] wrt negative table constraints). The worst-case space complexity
remains O(r.|allowed(C)|. Besides, if the hash function is O(r) and disperses
the elements properly, the worst-case time complexity of performing a constraint
check is only O(r). For our experimentation, we will not consider this alternative.

5.2 GAC3-Valid

This approach involves iterating the set of valid tuples until an allowed one is
found. It has been presented at subsection 4.2. Here, we simply describe the
way a constraint check is performed. In fact, the test t ∈ rel(C) at line 3 of
Algorithm 9 corresponds to t ∈ allowed(C,X, a). As mentioned above, it is
O(r.log(|allowed(C,X, a)|)).

Proposition 2. For a r-ary positive table constraint C, the worst-case time
complexity of seekSupport-valid(C,X, a) is O(V.r.log(S)) where we have V =
|valid(C,X, a)| and S = |allowed(C,X, a)|.

Corollary 1. If one uses a hash map with a hash function in O(r) that has
dispersed properly allowed tuples, the worst-case time complexity of calling seek-
Support-valid(C,X, a) is O(V.r).

5.3 GAC3-Allowed

This second approach involves iterating allowed tuples until a valid one is found.
This approach, called GAC3-allowed, can be seen as the coarse-grained corre-
spondence of GAC-scheme-allowed proposed in [3]. In order to find a support,
allowed tuples are then considered. To do this, we introduce two functions de-
noted setF irstAllowed and setNextAllowed. setF irstAllowed(C,X, a) returns
the smallest support t of C such that t[X ] = a while setNextAllowed(C,X, a, t)
returns either the smallest support t′ of C such that t ≺ t′ and t′[X ] = a, or & if
it does not exist. Considering that we have an ordered list for allowed(C,X, a)
and a position of tuple t, which is not explicitly used in setNextAllowed, the
time complexity of any such call is O(1).
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Algorithm 10. seekSupport-allowed(C, X, a) : Tuple
1: t ← setFirstAllowed(C,X, a)
2: while t �= � do
3: if seekInvalidPosition(C, t) = NO then return t
4: t ← setNextAllowed(C,X, a, t)
5: return �

Algorithm 11. seekInvalidPosition(C,t) : int
1: for each variable Y = var(C, i) with i ranging from 1 to |vars(C)| do
2: if t[Y] /∈ dom(Y) then return i
3: return NO

Looking at function seekSupport-allowed (see Algorithm 10) which imple-
ments seekSupport, we remark that a validity check is performed for each al-
lowed tuple until a support is found. It just involves determining if all values of
the given tuple belong to current domains. The function seekInvalidPosition
(see Algorithm 11) returns NO if the given tuple is valid and the position of
the first invalid value, otherwise. The application of this position will be shown
later. The worst-case time complexity of calling seekInvalidPosition is O(r).

Proposition 3. For a r-ary positive table constraint C, the worst-case time
complexity of seekSupport-allowed(C,X, a) is O(S.r) with S= |allowed(C,X, a)|

5.4 GAC3-Valid+Allowed

The original approach that we propose now involves visiting both lists of valid
and allowed tuples. The idea is to jump over sequences of valid tuples containing
no allowed tuple and over sequences of allowed tuples containing no valid tuple.
It is described in Algorithm 12. At each execution of the while loop body, a valid
tuple is considered (initially, the first one is computed). The call binarySearch
at line 3 performs a dichotomic search which returns the smallest allowed tuple t′

of C such that t ' t′ and t′[X ] = a. If t′ = &, no support can be found anymore
(line 4). Otherwise, t′ corresponds to an allowed tuple whose validity must be
checked (line 5). If seekInvalidPosition(C, t′) returns NO, it means that t′ is
also valid, and so, it can be returned (line 6) since it is a support. If t′ is not
valid, we have to execute setNextV alid (line 7) to compute the smallest valid
tuple t built from C such that t′ ≺ t and t[X ] = a (or & if it does not exist).
This function, described by Algorithm 13, is different from the one described
by Algorithm 8 as the tuple given as parameter is not valid. First (lines 1 and
2), any variable Y whose position in C is strictly greater than limit must be
given in t the first valid value in dom(Y ). Then, to find a tuple strictly greater
than t, we have to iteratively (lines 6 and 7 of Algorithm 13) look for the next
(index of) value following t[Y ] where Y is the first encountered variable such that
t[Y ] < dom(Y ).last. In our implementation, we know that if t[Y ] ∈ dom(Y ) then
dom[Y ].next[t[Y ]] gives the smallest value of dom(Y ) greater than t[Y ], but we
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Algorithm 12. seekSupport-valid+allowed(C, X, a) : Tuple
1: t ← setFirstV alid(C, X, a)
2: while t �= � do
3: t′ ← binarySearch(allowed(C,X, a), t)
4: if t′ = � then return �
5: j ← seekInvalidPosition(C, t′)
6: if j = NO then return t′

7: t ← setNextV alid(C, X, a, t′, j)
8: return �

Algorithm 13. setNextValid(C, X, a, t, limit) : Tuple
1: for each Y = var(C, i) | Y �= X with i ranging from limit+1 to |vars(C)| do
2: t[Y ] ← dom(Y ).first
3: for each Y = var(C, i) | Y �= X with i ranging from limit down-to 1 do
4: if t[Y ] ≥ dom(Y ).last then t[Y ] ← dom(Y ).first
5: else
6: t[Y ] ← dom(Y ).next[t[Y ]]
7: while dom(Y ).absent[t[Y ]] �= NO do t[Y ] ← dom(Y ).next[t[Y ]]
8: return t
9: return �

also know (the proof is omitted) that if t[Y ] /∈ dom(Y ) then dom[Y ].next[t[Y ]]
gives a value less than or equal to the smallest value of dom(Y ) greater than
t[Y ]. If setNextV alid returns &, it means that it was not possible to find a valid
tuple greater than t′.

As an illustration, consider a 5-ary constraint C involving variables V , W ,
X , Y and Z. We have var(C, 1) = V , var(C, 2) = W etc. Let us assume that
we have dom(V ) = {1, 3}, dom(W ) = {3, 4}, dom(X) = {1, 4, 5}, dom(Y ) =
{2, 4} and dom(Z) = {1, 2}. Then, calling seekInvalidPosition(C, (3, 4, 4, 2, 2))
returns NO. Calling seekInvalidPosition(C, (3, 4, 6, 2, 2)) returns 3 (the posi-
tion of X) and setNextV alid(C, Y, 2, (3, 4, 6, 2, 2), 3) returns & since it is not
possible to find a valid tuple strictly greater than (3, 4, 6, ∗, ∗). Finally, calling
seekInvalidPosition(C, (3, 3, 6, 2, 3)) returns 3 (the position of X) and calling
setNextV alid(C, Y, 2, (3, 3, 6, 2, 2), 3) returns (3, 4, 1, 2, 1).

Proposition 4. For a r-ary positive table constraint C, the worst-case time
complexity of seekSupport-valid+allowed(C,X, a) is O(N.(d+ r.log(S))) where
N is the number of sequences of valid tuples containing no support, d is the
greatest domain size and S = |allowed(C,X, a)|.

Proof. The worst-case time complexity of binarySearch is O(r.log(S)) with S =
|allowed(C,X, a)|. The worst-case time complexity of seekInvalidPosition is
O(r).Theoverallworst-case timecomplexityofsetNextV alid isO(r+d).Theover-
allworst-case timecomplexity for oneexecutionof loopbody is thenO(d+r.log(S)).
Let us prove now that N bounds the number of turns of the main loop. In fact, if
it was not the case, it would mean that there will be two turns involving the same
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sequence of valid tuples containing no support. It is not possible as, following the
algorithm, it would imply that a support belongs to this sequence. ��

Observation 1 There exist r-ary positive table constraints such that, for some
current domains of variables, applying GAC3-valid+allowed is O(r2) whereas
applying GAC3-valid or GAC3-allowed is O(2r−1).

Let us consider the example of the introduction. Applying GAC is equivalent
to call seekSupport(C,X1, 0) since, after removing (X1,0), we obtain a domain
wipe-out. As shown in the introduction, calling seekSupport-valid+allowed for
(C,X1, 0) is O(r2) while calling seekSupport-valid or seekSupport-allowed is
O(2r−1). Note that, here, we have N = 1.

Related Work. The algorithm that we propose is closely related to the approach
introduced in [9] which skips irrelevant allowed tuples based on a reasoning about
lower bounds derived from information about valid tuples. More precisely, when
looking for a support of (X ,a), the principle in [9] is to jump (by exploiting cur-
rent domains) from an allowed tuple t (which is not valid) to a tuple lb which is a
lower bound of the smallest valid tuple t′ such that t ≺ t′ and no support of (X ,a)
strictly less than t′ exists. Then, an allowed tuple involving (X ,a) and greater than
lb is computed using a function nextIn (and if this allowed tuple is not valid, one
restarts this two-step procedure). One drawback of this approach is that the com-
puted lower bound lb does not necessarily involve (X ,a). This can be remedied by
an additional data structure which multiplies the space complexity of the GAC-
scheme by a factor d [9], or by using a more complex procedure [8].

6 Experiments

To compare the different approaches presented in this paper, we have imple-
mented the three schemas GAC-valid, GAC-allowed and GAC-valid+allowed
in Abscon. We have made our experiments with MGAC2001, that is to say,
the algorithm that maintains GAC20011 during search. Performances have been
measured in terms of the CPU time in seconds (cpu) and the number of tuples
visited by MGAC (when looking for supports) during search.

First, we have tested the instances used as benchmarks for the first com-
petition of CSP solvers (see http://cpai.ucc.ie/05/Benchmarks.html). Of
course, we have only selected instances involving positive table constraints. Ta-
ble 1 gives the results (obtained on a PC Pentium IV 2.4GHz 512MB under
Linux when running MGAC2001 with dom/wdeg [5] as variable ordering heuris-
tic) on some representative2 structured instances (the maximum constraint ar-
ity is given between brackets). MGAC2001-valid+allowed makes it possible to
greatly reduce the number of visited tuples, and the effect seems to be magni-
fied with constraint arity increase. However, the reduction of cpu time is limited
1 It is immediate to exploit for GAC2001 the different schemas presented wrt GAC3.
2 Note that we obtained similar results for all other instances of the series tsp, Golomb,

geo and series.
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Table 1. Results obtained for some instances of the first competition of CSP solvers.
GAC2001 is maintained during search according to 3 different schemas.

Instances allowed valid valid + allowed
geo-1-sat cpu 488 449 461

(r = 2) visits 1344M 459M 419M
geo-12-unsat cpu 822 765 778

(r = 2) visits 2195M 749M 684M
tsp-20-901 cpu 22.0 33.6 20.1

(r = 3) visits 151M 226M 21M
tsp-25-163 cpu 352 479 317

(r = 3) visits 2457M 3174M 314M
Golomb-10-sat cpu 39.3 37.9 37.6

(r = 3) visits 91M 69M 39M
Golomb-10-unsat cpu 465 455 449

(r = 3) visits 1045M 807M 478M
series-13 cpu 65.3 65.0 66.4

(r = 3) visits 122M 118M 80M
series-14 cpu 282 291 294

(r = 3) visits 543M 529M 354M
renault cpu 0.07 12.5 0.06

(r = 10) visits 286K 42M 5, 437

Table 2. Results obtained for series of 10 random instances (see [9] for similar series).
GAC2001 is maintained during search according to 3 different schemas.

Instances allowed valid valid+allowed

〈14-24-2-8-0.5〉 cpu 0.07 0.03 0.03
visits 113K 777 446

〈14-24-2-16-0.5〉 cpu 6.5 0.7 0.6
visits 15M 90589 52768

〈14-24-2-24-0.5〉 cpu 1782 114 91
visits 5604M 13M 7312K

〈20-40-2-2-0.02〉 cpu 0.16 0.04 0.02
visits 377K 3474 136

〈20-40-2-4-0.02〉 cpu 15.5 1.9 0.2
visits 40M 287K 16226

〈20-40-2-6-0.02〉 cpu 2218 408 45
visits 5951M 64M 3446K

〈6-10-10-6-0.1〉 cpu 0.60 0.05 0.03
visits 2071K 7016 1368

〈6-10-10-8-0.1〉 cpu 3.9 0.3 0.1
visits 13M 62396 11744

〈6-10-10-10-0.1〉 cpu 2413 174 45
visits 8400M 42M 6894K

since moving from a valid tuple to an allowed one has a cost in O(r.log(S)).
Nevertheless, one can remark the robustness of our approach and the very bad
behaviour of GAC-valid on the renault instance. Indeed, there is a gap of more
than two orders of magnitude between this schema and the two other ones.

Next, we have reproduced instances similar to the ones presented in [9]. These
random instances belong to classes of the form 〈k, n, d, e, t〉 where k, n, d, e, t
denote the arity of the constraints, number of variables, uniform domain size,
number of constraints and the constraint tightness, respectively. The first series
include instances involving 24 Boolean variables and constraints of arity 14 and
tightness 0.5 (exactly 213 allowed tuples). The second series include instances
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Table 3. Results obtained for series of 10 random instances. GAC2001 is maintained
during search according to 3 different schemas.

Instances allowed valid valid + allowed

〈6-20-6-32-0.55〉 cpu 6.9 0.6 0.8
visits 133M 394K 333K

〈6-20-6-36-0.55〉 cpu 93.3 8.6 11.4
visits 1832M 5683K 4574K

〈6-20-8-22-0.75〉 cpu 21.2 1.2 1.5
visits 401M 871K 657K

〈6-20-8-24-0.75〉 cpu 375 21.8 25.2
visits 7119M 16M 11M

〈6-20-10-13-0.95〉 cpu 101 18.2 11.3
visits 1754M 20M 7078K

〈6-20-10-14-0.95〉 cpu 312 77.8 50.5
visits 5728M 82M 33M

〈6-20-20-5-0.99〉 cpu 0.03 287 0.06
visits 194K 739M 80K

〈6-20-20-10-0.99〉 cpu 0.02 257 0.05
visits 160K 673M 64K

involving 40 Boolean variables and constraints of arity 20 and tightness ≈ 0.02
(exactly 30, 000 allowed tuples). The third series include instances involving 10
variables with domains of size 10 and constraints of arity 6 and tightness 0.1 (ex-
actly 100, 000 allowed tuples). Table 2 shows the results that we have obtained
by performing an experimentation in a context roughly similar to [9]: we used
a PC Pentium III 600Mhz, running MGAC2001 with dom as variable order-
ing heuristic. Clearly, GAC-valid+allowed is the best approach, outperforming
GAC-valid by about one order of magnitude and GAC-allowed by about two
orders of magnitude. Surprisingly, it appears that GAC-allowed is beaten by
GAC-valid. In fact, it can be explained by the fact that, during inference or/and
search, the number of valid tuples becomes smaller than the number of allowed
tuples), which favours GAC-valid. Finally, one should note that we obtain with
Abscon running times of same order than [9].

Finally, we have generated instances involving variables whose domains con-
tain 6, 8, 10 and 20 values, and constraints of arity 6 and of tightness equal to
0.55, 0.75, 0.95 and ≈ 0.99 (exactly 640 allowed tuples). Table 3 gives the results
for these new series obtained on a P.IV 2.4GHz when running MGAC2001 with
dom/wdeg. Not surprisingly, when the tightness is low (i.e. the number of allowed
tuples is high), GAC-allowed is penalized (here, by one order of magnitude) and
when the tightness is high, GAC-valid is penalized (here, by more than two
orders of magnitude). GAC-valid+allowed remains robust at both extremes.

7 Conclusion

In this paper, we have introduced a new algorithm to establish GAC on positive
table constraints. Its principle is to avoid considering irrelevant tuples (when a
support is looked for) by jumping over sequences of valid tuples containing no
allowed tuple and over sequences of allowed tuples containing no valid tuple. We
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have shown that the new schema (GAC-valid+allowed) admits on some instances
a behaviour quadratic in the arity of the constraints whereas classical schemas
(GAC-valid and GAC-allowed) admit an exponential behaviour.

On the practical side, the results that we have obtained demonstrate the
robustness of GAC-valid+allowed. In fact, they are comparable to the ones ob-
tained with a GAC-allowed+valid scheme [9] which allows to skip irrelevant
allowed tuples from a reasoning about lower bounds on valid tuples. On the
one hand, we believe that our model is simpler, and, importantly, can be easily
grafted to any generic GAC algorithm. On the other hand, as the two approaches
are different, it should be worthwhile combining them. Indeed, it is possible to
conceive a scenario where GAC-allowed+valid would allow skipping tuples vis-
ited by GAC-valid+allowed through the use of lower bounds. The reverse is also
true since we can consider the illustration given in the introduction while as-
suming that lower bounds (e.g. last pointers of AC2001) are useless (e.g. not
initialized). Devising such a hybrid approach is one perspective of this work.
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Abstract. This paper describes a complete and efficient solution to the stochastic
allocation and scheduling for Multi-Processor System-on-Chip (MPSoC). Given
a conditional task graph characterizing a target application and a target architec-
ture with alternative memory and computation resources, we compute an alloca-
tion and schedule minimizing the expected value of communication cost, being
the communication resources one of the major bottlenecks in modern MPSoCs.
Our approach is based on the Logic Based Benders decomposition where the
stochastic allocation is solved through an Integer Programming solver, while the
scheduling problem with conditional activities is faced with Constraint Program-
ming. The two solvers interact through no-goods. The original contributions of
the approach appear both in the allocation and in the scheduling part. For the
first, we propose an exact analytic formulation of the stochastic objective func-
tion based on the task graph analysis, while for the scheduling part we extend
the timetable constraint for conditional activities. Experimental results show the
effectiveness of the approach.

1 Introduction

The increasing levels of system integration in Multi-Processor Systems on Chips (MP-
SoCs) emphasize the need for new design flows for efficient mapping of multi-task
applications onto hardware platforms. The problem of allocating and scheduling con-
ditional, precedence-constrained tasks on processors in a distributed realtime system
is NP-hard. As such, it has been traditionally tackled by means of heuristics, which
provide only approximate or near-optimal solutions, see for example [1], [2], [3].

In a typical embedded system design scenario, the platform always runs the same
application. Thus, extensive analysis and optimization can be performed at design time.
This paper proposes a complete decomposition approach to the allocation and schedul-
ing of a conditional multi-task application on a multi-processor system-on-chip (MP-
SoCs) [4]. The target application is pre-characterized and abstracted as a Conditional
Task Graph (CTG). The task graph is annotated with computation time, amount of com-
munication, storage requirements. However, not all tasks will run on the target platform:
in fact, the application contains conditional branches (like if-then-else control struc-
tures). Therefore, after an accurate application profiling step, we have a probability dis-
tribution on each conditional branch that intuitively gives the probability of choosing
that branch during execution.

This paper proposes a non trivial extension to [5] that used Logic Based Benders
decomposition [6] for resource assignment and scheduling in MPSoCs. In that paper,

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 299–313, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



300 M. Lombardi and M. Milano

however, task graphs did not contain conditional activities. Allocation and scheduling
were therefore deterministic. The introduction of stochastic elements complicates the
problem.

We propose two main contributions: the first concerns the allocation component.
The objective function we consider depends on the allocation variables. Clearly, hav-
ing conditional tasks, the exact value of the communication cost cannot be computed.
Therefore our objective function is the expected value of the communication cost. We
propose here to identify an analytic approximation of this value. The approximation
is based on the Conditional Task Graph analysis for identifying two data structures:
the activation set of a node and the coexistence set of two nodes. The approximation
turns out to be exact and polynomial. The second contribution concerns scheduling.
We propose an extension of the time-table constraint for cumulative resources, taking
into account conditional activities. The propagation is polynomial if the task graph sat-
isfies a condition called Control Flow Uniqueness which is quite common in many
conditional task graphs for system design. Its deterministic version [7] is available
in ILOG Scheduler. The use of the so called optional activities (what we call condi-
tional tasks) has been taken into account in [8] for filtering purposes into the prece-
dence graph, originally introduced by Laborie in [9]. To the best of our knowledge,
only disjunctive constraints have been defined in presence of conditional activities
in [10].

In the system design community, this problem is extremely important and many re-
searchers have worked extensively on it, mainly with incomplete approaches: for in-
stance in [1] a genetic algorithm is devised on the basis of a conditional scheduling table
whose (exponential number of) columns represent the combination of conditions in the
CTG and whose rows are the starting times of activities that appear in the scenario. The
number of columns is indeed reasonable in real applications. The same structure is used
in [10], which is the only approach that uses Constraint Programming for modelling the
allocation and scheduling problem. Indeed the solving algorithm used is complete only
for small task graphs (up to 10 activities).

Besides related literature for similar problems, the Operations Research community
has extensively studied stochastic optimization in general. The main approaches are:
sampling [11] consisting in approximating the expected value with its average value
over a given sample; the l-shaped method [12] which faces two phase problems and is
based on Benders Decomposition [13]. The master problem is a deterministic problem
for computing the first phase decision variables. The subproblem is a stochastic problem
that assigns the second phase decision variables minimizing the average value of the
objective function. A different method is based on the branch and bound extended for
dealing with stochastic variables, [14].

The CP community has recently faced stochastic problems: in [15] stochastic con-
straint programming is formally introduced and the concept of solution is replaced with
the one of policy. In the same paper, two algorithms have been proposed based on
backtrack search. This work has been extended in [16] where an algorithm based on
the concept of scenarios is proposed. In particular, the paper shows how to reduce the
number of scenarios, maintaining a good expressiveness.
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This paper is organized as follows: in section 2 we present the architecture and the
target application considered. In section 3 we present the allocation and scheduling
models used. Experimental results are shown in section 4.

2 Problem Description

2.1 The Architecture

Multi Processor Systems on Chips (MPSoCs) are multi core architectures developed on
a single chip. They are finding widespread application in embedded systems (such as
cellular phones, automotive control engines, etc.). Once deployed in field, these devices
always run the same application, in a well-characterized context. It is therefore possible
to spend a large amount of time for finding an optimal allocation and scheduling off-
line and then deploy it on the field, instead of using on-line, dynamic (sub-optimal)
schedulers [17,18].
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Fig. 1. Single chip multi-processor architecture

The multi-processor system we consider consists of a pre-defined number of dis-
tributed Processing Elements (PE) as depicted in Figure 1. All nodes are assumed to
be homogeneous and composed by a processing core and by a low-access-cost local
scratchpad memory. Data storage onto the scratchpad memory is directly managed by
the application, and not automatically in hardware as it is the case for processor caches.

The scratchpad memory is of limited size, therefore data in excess must be stored
externally in a remote on-chip memory, accessible via the bus. The bus for state-of-
the-art MPSoCs is a shared communication resource, and serialization of bus access
requests of the processors (the bus masters) is carried out by a centralized arbitration
mechanism. The bus is re-arbitrated on a transaction basis (e.g., after single read/write
transfers, or bursts of accesses of pre-defined length), based on several policies (fixed
priority, round-robin, latency-driven, etc.). Modeling bus allocation at such a fine gran-
ularity would make the problem overly complex, therefore a more abstract additive bus
model was devised, explained and validated in [5] where each task can simultaneously
access the bus requiring a portion of the overall bandwidth. The communication re-
source in most cases ends up to be the most congested resource. Communication cost
is therefore critical for determining overall system performance, and will be minimized
in our task allocation framework.
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2.2 The Target Application

The target application to be executed on top of the hardware platform is the input to
our algorithm. It is represented as a Conditional Task Graph (CTG). A CTG is a triple
〈T,A,C〉, where T is the set of nodes modeling generic tasks (e.g. elementary oper-
ations, subprograms, ...), A the set of arcs modeling precedence constraints (e.g. due
to data communication), and C is a set of conditions, each one associated to an arc,
modeling what should be true in order to choose that branch during execution (e.g. the
condition of a if-then-else construct). A node with more than one outgoing arc is said
to be a branch if all arcs are conditional, a fork if all arcs are not conditional; mixed
nodes are not allowed. A node with more than one ingoing arc is an or-node if all arcs
are mutually exclusive, it is instead an and-node if all arcs are not mutually exclusive;
again, mixed nodes are not allowed.

Since the truth or the falsity of conditions is not known in advance, the model is
stochastic. In particular, we can associate to each branch a stochastic variable B with
probability space 〈C,A, p〉, where C is the set of possible branch exit conditions c, A
the set of events (one for each condition) and p the branch probability distribution (in
particular p(c) is the probability that condition c is true).

We can associate to each node and arc an activation function, expressed as a composi-
tion of conditions by means of the logical operators∧ and∨. We call it fi(X(ω)), where
X is the stochastic variable associated to the composite experiment B0 ×B1 × ...×Bb

(b = number of branches) and ω ∈ D(B0)×D(B1)× ...×D(Bb) (i.e. ω is a scenario).
Computation, storage and communication requirements are annotated onto the

graph. In detail, the worst case execution time (WCET) is specified for each node/task
and plays a critical role whenever application real time constraints (expressed here in
terms of deadlines) are to be met.

Each node/task also has three kinds of associated memory requirements: Program
Data: storage locations are required for computation data and for processor instruc-
tions; Internal State; Communication queues: the task needs queues to transmit and
receive messages to/from other tasks, eventually mapped on different processors. Each
of these memory requirement can be allocated either locally in the scratchpad memory
or remotely in the on-chip memory.

Finally, the communication to be minimized counts two contributions: one related
to single tasks, once computation data and internal state are physically allocated to
the scratchpad or remote memory, and obviously depending on the size of such data;
the second related to pairs of communicating tasks in the task graph, depending on the
amount of data the two tasks should exchange.

3 Model Definition

As already presented and motivated in [5], the problem we are facing can be split into
the resource allocation master problem and the scheduling sub-problem.

3.1 Allocation Problem Model

With regards to the platform described in section 2.1, the allocation problem can be
stated as the one of assigning processing elements to tasks and storage devices to their
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memory requirements. First, we state the stochastic allocation model, then we show how
this model can be transformed into a deterministic model through the use of existence
and co-existence probabilities of tasks. To compute these probabilities, we propose two
polynomial time algorithms exploiting the CTG structure.

Stochastic integer linear model. Suppose n is the number of tasks, p the number
of processors, and na the number of arcs. We introduce for each task and each PE a
variable Tij such that Tij = 1 iff task i is assigned to processor j. We also define
variables Mij such that Mij = 1 iff task i allocates its program data locally, Mij = 0
otherwise. Similarly we introduce variables Sij for task i internal state requirements
and Crj for arc r communication queue. X is the stochastic variable associated to the
scenario ω. The allocation model, where the objective function is the minimization of
bus traffic expected value, is defined as follows:

min z = E(busTraffic(M,S,C,X(ω)))

s.t.

p−1∑
j=0

Tij = 1 ∀i = 0, .., n− 1 (1)

Sij ≤ Tij ∀i = 0, .., n− 1, j = 0, .., p− 1 (2)

Mij ≤ Tij ∀i = 0, .., n− 1, j = 0, .., p− 1 (3)

Crj ≤ Tij ∀arcr = (ti, tk), r = 0, .., na − 1, j = 0, .., p− 1 (4)

Crj ≤ Tkj ∀arcr = (ti, tk), r = 0, .., na − 1, j = 0, .., p− 1 (5)
n−1∑
i=0

[siSij + miMij ] +
na−1∑
r=0

crCrj ≤ Capj ∀j = 0, .., p− 1 (6)

Constraints (1) force each task to be assigned to a single processor. Constraints (2)
and (3) state that program data and internal state can be locally allocated on the PE j
only if task i runs on it. Constraints (4) and (5) enforce that the communication queue
of arc r can be locally allocated only if both the source and the destination tasks run on
processor j. Finally, constraints (6) ensure that the sum of locally allocated internal state
(si), program data (mi) and communication (cr) memory cannot exceed the scratchpad
device capacity (Capj). All tasks have to be considered here, regardless they execute
or not at runtime, since a scratchpad memory is, by definition, statically allocated. In
addition, some symmetries breaking constraints have been added to the model.

The bus traffic expression is composed by two contributions: one depending on sin-
gle tasks and one due to the communication between pairs of tasks.

busTraffic =
∑n−1

i=0 taskBusTraffici +
∑

arcr=(ti,tk) commBusTrafficr

where

taskBusTraffici = fi(X(ω))
[
mi(1 −

∑p−1
j=0 Mij) + si(1−

∑p−1
j=0 Sij)

]
commBusTrafficr = fi(X(ω))fk(X(ω))

[
cr(1−

∑p−1
j=0 Crj)

]
In the taskBusTraffic expression, if task i executes (thus fi(X(ω)) = 1), then (1 −∑p−1
j=0 Mij) is 1 iff the task i program data is remotely allocated. The same holds for
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the internal state. In the commBusTraffic expression we have a contribution if both the
source and the destination task execute (fi(X(ω)) = fk(X(ω)) = 1) and the queue is
remotely allocated (1−

∑p−1
j=0 Crj = 1).

Transformation in a deterministic model. In most cases, the minimization of a
stochastic functional, such as the expected value, is a very complex operation (even
more than exponential), since it often requires to repeatedly solve a deterministic sub-
problem [12]. The cost of such a procedure is not affordable for hardware design pur-
poses since the deterministic subproblem is by itself NP-hard. One of the main con-
tributions of this paper is the way to reduce the bus traffic expected value to a
deterministic expression. Since all tasks have to be assigned before running the ap-
plication, the allocation is a stochastic one phase problem: thus, for a given task-PE
assignment, the expected value depends only on the stochastic variables. Intuitively,
if we properly weight the bus traffic contributions according to task probabilities we
should be able to get an analytic expression for the expected value.

Now, since both the expected value operator and the bus traffic expression are linear,
the objective function can be decomposed into task related and arc related blocks:

E(busTraffic) =
n−1∑
i=0

E(taskBusTraffici) +
∑

arcr=(ti,tk)

E(commBusTrafficr)

Since for a given allocation the objective function depends only on the stochastic
variables, the contributions of decision variables are constants: we call them KTi =[
mi(1−

∑p−1
j=0 Mij) + si(1−

∑p−1
j=0 Sij)

]
, and KCr =

[
cr(1−

∑p−1
j=0 Crj)

]
. Let us

call p(ω) the probability of scenario ω.
The expected value of each contribution to the objective function is a weighted sum

on all scenarios. Weights are scenario probabilities.

E(taskBusTraffici) =
∑
ω∈Ω

p(ω)fi(X(ω))KTi = KTi

∑
ω∈Ωi

p(ω)

E(commBusTrafficr) =
∑
ω∈Ω

p(ω)fi(X(ω))fk(X(ω))KCr = KCr

∑
ω∈Ωi∩Ωk

p(ω)

where r is the index of arc (ti, tj) and Ωi = {ω | task i executes} is the set of all
scenarios where task i executes. Now every stochastic dependence is removed and the
expected value is reduced to a deterministic expression. Note that

∑
ω∈Ωi

p(ω) is sim-
ply the existence probability of node/task i while

∑
ω∈Ωi∩Ωk

p(ω) is the coexistence
probability of nodes i and k. To apply the transformation we need both those proba-
bilities; moreover, to achieve an effective overall complexity reduction, they have to
be computed in a reasonable time. We developed two polynomial cost algorithms to
compute these probabilities.

Existence and co-existence probabilities. All developed algorithms are based on three
types of data structures derived from the CTG. In Figure 2A we show an example of a
CTG on the left and the related data structures:
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Fig. 2. A: An example of the three data structures; B: a sample execution of A1

– the activation set of a node n (AS(n)). It is computed by traversing all paths from
the starting node to n and collecting the conditions on the paths.

– a binary c×c exclusion matrix (EM) where c is the number of conditions.EMij = 1
iff ci and cj are mutually exclusive (i.e. they originate at the same branch)

– a binary c × c sequence matrix (SM). SMij = 1 iff ci and cj are both needed to
activate some node in the CTG.

All these data structures can be extracted from the graph in polynomial time. Once
they are available, we can determine the existence probability of a node or an arc using
algorithm A1, which has O(c3) complexity representing sets as bit vectors; in the algo-
rithm the notation SMi stands for the set of conditions “sequenced” with a given one
(SMi = {cj |SMij = 1}); the same holds for EMi.

algorithm: Activation set probability (A1) – probability of a node or an arc

1. let S be the input set for this iteration; initially S = AS(n)
2. find a condition ch ∈ S such that (EMh \ {ch}) ∩ S �= ∅
3. if such a condition doesn’t exist return p =

∏
c∈S p(c)

4. otherwise, set B = EMh ∩ S
5. compute set C = S ∩

⋂
ci∈B SMi

6. compute set R =
⋂

ci∈B(S \ SMi)

7. set p = 0
8. for each condition ci ∈ B:

8.1. set p = p + A1((S ∩ SMi) \ (C ∪ R))
9. set p = p ∗ A1(C) ∗ A1(R)

10. return p

2: find a group of exclusive conditions in S
and choose one of them

4: get all conditions in S originating from
the chosen branch (“Branch” set)

5: get conditions “in sequence” with all
branch outcomes (“Common” set)

6: get conditions not “in sequence” with any
of the branch outcomes (“Rest” set)

8.1: for each branch outcome, get the condi-
tions “in sequence” and compute proba-
bility

9: multiply computed value for the probabil-
ity of “Common” and “Rest” set

end

Algorithm A1 works recursively partitioning the activation set of the target node: let
us follow the algorithm on the example in figure 2B. We have to compute the probabil-
ity of node n, while activation set is AS(n) = {a,b, not b, not c, d}. The
algorithm looks for a group of mutually exclusive conditions (the B set), see b and not
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b in AS(n). If there is no such condition the probability of the activation set S is the
product of the probabilities of its elements (step 3). If there is are at least two exclusive
conditions, the algorithm then builds a “common” (C) and a “rest” (R) set: the first
contains conditions cj such that SMij = 1 ∀ci ∈ B, the second conditions ch such
that SMih = 0 ∀ci ∈ B. In the example C = {a} and R = ∅. Finally A1 builds
for each found branch condition a set containing the sequenced conditions (S ∩SMi at
step 8.1), and chains b and not c and not b and d in figure 2. A1 is then recursively
called on all these sets. The probabilities of sets corresponding to mutually exclusive
conditions are summed (step 8.1), the ones of C and R are multiplied (step 9).

algorithm: Coexistence set determination (A2)

1. if ASi = ∅ then CS = ASj ; the same if ASj = ∅
2. otherwise, if there are still not processed conditions in ASi,

let ch be the first of them:

2.1. compute set S = ASi ∩ SMh

2.2. compute the exclusion set EX(S)
2.3. compute set:

C = ASj ∩
⋃

ck∈ASj∩EX(S) SMk

2.4. compute set:
R = ASj ∩

⋃
ck∈ASj \C SMk

2.5. set D = C \R (conditions to delete)
2.6. if ASj is not a subset of D:

2.6.1. set CS(ASi, ASj) =
CS(ASi, ASj) ∪ S ∪ (ASj \D)

1: If one of the input set is ∅, then the coex-
istence set is simply the other activation
set

2.1: Select conditions “in sequence” with the
chosen one; they individuate a group of
backward paths

2.3: Find in ASj conditions excluded by the
selected forward paths (ASj ∩EX(S));
all conditions “in sequence” with those
are canditates to be deleted (i.e. ex-
cluded from the feasible forward paths)

2.4: Consider not candidate conditions in
ASj : all conditions “in sequence” with
them must not be deleted

2.6: If ASj has not been completely deleted,
add to CS all conditions in backward and
forward paths

end

Given a set of nodes, we can determine a kind of common activation set (coexistence
set (CS)) using algorithm A2, whose inputs are two AS (ASi, ASj ) and whose com-
plexity is again O(c3). The notation EX(S) stands for the exclusion set, i.e. the set of
conditions surely excluded by those in S; it can be computed in O(c2).

Suppose we have the activation sets of two nodes ni and nj : then A2 works trying to
find all paths from ni to a source (backward paths) and from the source to nj (forward
paths). The algorithm starts building a group of backward paths; it does it by choosing
a condition (for instance condition a in 1 figure 3) and finding all other conditions

sequenced with it (set S in 2 figure 3).
Then the algorithm finds the exclusion set (EX(S)) of set S and intersects it with

AS(nj). In 3 figure 3 the only condition in the intersection is not a (crossed arc):
conditions in the intersection and those sequenced with them are called “candidates
conditions” (set C in 3 figure 3). These conditions will be removed from AS(nj),
unless they are sequenced with one or more non-candidate conditions, i.e., they belong
to the set R (for instance condition f is in sequence with not b and is not removed
from AS(nj) in 4 , figure 3). The conditions not removed from AS(nj) identify a
set of forward paths we are interested in. The algorithm goes on until all conditions
in AS(ni) are processed. If there is no path from ni to nj (i.e. the coexistence set is
empty) the two nodes are mutually exclusive.
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Fig. 3. Coexistence set computation

The probability of a coexistence set can be computed once again by means of A1:
thus, with A1 and A2 we are able to compute the existence probability of a single node
and the coexistence probability of a group of nodes or arcs. Since the algorithms com-
plexities are polynomial, the reduction of the bus traffic to a deterministic expression
can be done in polynomial time.

3.2 Scheduling Model

The scheduling subproblem has been solved by means of Constraint Programming.
Since the objective function depends only on the allocation of tasks and memory re-
quirements, scheduling is just a feasibility problem. Therefore we decided to provide
a unique worst case schedule, forcing each task to execute after all its predecessors in
any scenario. Tasks using the same resources can overlap if they are on alternative paths
(under two mutually exclusive conditions).

Tasks have a five phases behavior: they read all communication queues (INPUT),
eventually read their internal state (RS), execute (EXEC), write their states (WS) and
finally write all the communications queues (OUTPUT). Each task is modeled as a
group of not breakable activities; the adopted schema and precedence relations vary
with the type of the corresponding node (or/and, branch/fork). For the lack of space we
do not explain these relations here, but they can be found in [21].

Each activity duration is an input parameter and can vary depending on the allocation
of internal state and program data. The processing elements are unary resources: we
modeled them defining a simple disjunctive constraint proposed in [10].

The bus, as in [5], is modeled as a cumulative resource, according with the so called
“additive model”, which allows an error less than 10% until bandwidth usage is under
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Fig. 4. Activity bus view

60% of the real capacity. Computing the bus usage in presence of alternative activities
is not trivial, since the bus usage varies in a not linear way and every activity can have
its own bus view (see fig 4).

Suppose for instance we have the five tasks of figure 4; activities T1, T2, T3 have al-
ready been scheduled: the bus usage for each of them is reported between round brack-
ets, while all the mutual exclusion relations are showed on the right. Let’s consider
activity T4, which is not mutually exclusive with any of the scheduled tasks. As long as
only T1 is present, the bus usage is 1. It becomes 1 + 2 = 3 when also activity T3 starts,
but when both T1, T2 and T3 execute the bus usage remains 3, since T2 and T3 are
alternative. Thus the bus usage at a given time is always the maximum among all the
combinations of not alternative running tasks. Furthermore, let’s consider activity T5:
since it is mutually exclusive with all tasks but T2, it only sees the bus usage due to that
task. Therefore the bus view at a given time depends on the activity we are considering.

We modeled the bus creating a new global timetable constraint for cumulative re-
sources and conditional tasks in the not preemptive case. The global constraint keeps
a list of all known entry and exit points of activities: given an activity A, if lst(A) ≤
eet(A) then the entry point of A is lst(A) and eet(A) is its exit point (where lst stands
for latest start time and so on).

Let A be the target activity: A3 scans the interval [est(A), f inish) checking the
bus usage at all entry points (as long as good = true). If it finds an entry point with
not enough bandwidth left it starts to scan all exit points (good = false) in order to
determine a new possible starting time for activity A. If such an instant is found its value
is stored (lastGoodT ime) and the finish line is updated (step 4.2.2.2), then A3 restarts
to scan other entry points, and so on. When the finish line is reached the algorithm
updates est(A) or fails. A3 has O(a(c + b)) complexity, where a is the number of
activities, b the one of branches, c the number of conditions. The algorithm can be
easily extended to update also let(A): we tried to do it, but the added filtering is not
enough to justify the increased propagation time.

A3 is able to compute the bandwidth usage seen from each activity in O(b + c) by
taking advantage of a particular data structure we introduced, named Branch Fork Graph
(BFG). For lack of space we suggest the reader look at [21]. The BFG makes it possible
to compute bus usage in a very efficient way, by making direct use of the graph structure:
if we only took into account the exclusion relations it would be an NP-hard problem.

To have a polynomial time algorithm however the graph should satisfy a particular
condition (called “Control Flow Uniqueness”) which states that each “and” node must
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have a main ingoing arc, whose activation implies the activation of the other ingoing
arcs. This is not a very restrictive condition since it is satisfied by every graph resulting
from the natural parsing of programs written in a language such C++ or Java.

algorithm: Propagation of the cumulative resource constraint with alternative activities (A3)

1. time = est(a), finish = eet(a)
2. latestGoodT ime = time
3. good = true
4. While ¬ [(good = false ∧ time > lst(a)) ∨ (good = true ∧ time >= finish)]:

4.1. if busreq(a) + usedBandwith > busBandwidth:
4.1.1. time = next exit point
4.1.2. good = false

4.2. else:
4.2.1. time = next entry point
4.2.2. if good = false:

4.2.2.1. lastGoodT ime = time
4.2.2.2. finish = max(finish, time + mindur(a))
4.2.2.3. good = true

5. if good = true: est(a) = lastGoodT ime
6. else: fail

end

3.3 Benders Cuts and Subproblem Relaxation

Each time the master problem solution is not feasible for the scheduling subproblem a
cut is generated which forbids that solution. Moreover, all solutions obtained by per-
mutation of PEs are forbidden, too.

Unfortunately, this kind of cut, although sufficient, is weak; this is why we decided
to introduce another cut type, generated as follows: (1) solve to feasibility a single
machine scheduling model with only one PE and tasks running on it; (2) if there is no
solution the tasks considered cannot be allocated to any other PE.

The cut is very effective, but we need to solve an NP-hard problem to generate it;
however, in practice, the problem can be quickly solved.

With the objective to limit iteration number (which strongly influences the solution
method efficiency) we also inserted in the master problem a relaxation of the subprob-
lem. This forbids the allocator to store in a single processor a set of non mutually ex-
clusive tasks whose duration exceeds the time limit, and to assign memory devices in
such a way that the total length of a track is greater than the deadline.

4 Experimental Results

We implemented all exposed algorithms in C++, using the state of the art solvers ILOG
Cplex 9.0 (for ILP) and ILOG Solver 6.0 and Scheduler 6.0 (for CP). We tested all
instances on a Pentium IV pc with 512MB RAM. The time limit for the solution process
was 30 minutes.

We tested the method on two set of instances: the first ones are characterized by
means of a synthetic benchmark; peculiar input data of this problem (such as the branch
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Table 1. Results of the tests on the first group of instances (slightly structured)

acts PEs inst. inf. time init master sub nogood it A/S/I
10-12 2 6 0 0.0337 0.0208 0.0075 0.0027 0.0027 1.1667 0/0/0
13-15 2 8 1 0.5251 0.1600 0.0076 0.0040 0.0020 1.1250 0/0/0
16-18 2-3 12 0 0.1091 0.0922 0.0089 0.0067 0.0013 1.0833 0/0/0
19-21 2-3 14 1 0.1216 0.0791 0.0279 0.0079 0.0046 1.2143 0/0/0
22-24 2-3 23 4 0.2336 0.1520 0.0259 0.0061 0.0081 1.1739 0/0/0
25-27 2-3 16 3 1.7849 0.0319 1.7285 0.0108 0.0088 1.3125 0/0/0
28-30 2-3 13 2 0.3331 0.0284 0.0770 0.1900 0.0338 1.6667 0/1/0
31-33 3-4 4 2 0.3008 0.2303 0.0510 0.0040 0.0000 1.0000 0/0/0
34-36 3-4 13 4 0.6840 0.0204 0.4245 0.0132 0.0108 1.2308 0/0/0
37-39 3-4 7 0 1.5670 0.0399 1.2010 0.1384 0.1877 4.4286 0/0/0
40-42 3-4 6 3 2.9162 0.0182 0.5857 2.2267 0.0390 1.6667 0/0/0
43-45 3-4 6 1 5.3670 0.2757 4.8200 0.0630 0.2005 4.1667 0/0/0
46-48 4-5 11 0 3.2719 0.0508 0.6913 2.4616 0.0683 2.0000 1/2/0
49-51 4-5 11 1 1.9950 0.1840 1.7900 0.0071 0.0087 1.1111 1/1/0
52-54 5-6 6 0 8.0000 1.3398 1.5743 4.8788 0.2073 2.7500 1/1/0
55-67 6 8 0 2.2810 0.8333 1.4377 0.0100 0.0000 1.0000 1/4/0

probabilities) were estimated via a profiling step. Instances of this first group are only
slightly structured, i.e. they have very short tracks and quite often contain singleton
nodes: therefore we decided to generate a second group of instances, completely struc-
tured (one head, one tail, long tracks)1.

The results of the tests on the first group are summarized in table 1. Instances are
grouped according to the number of activities (acts); beside this, the table reports also
the number of processing elements (PEs), the number of instances in the group (inst.),
the instances which were proven to be infeasible (inf.), the mean overall time (in sec-
onds), the mean time to analyze the graph (init), to solve the master and the subproblem,
to generate the no-good cuts and the mean number of iterations (it). The solution times
are of the same order of the deterministic case (scheduling of Task Graphs), which is a
very good result, since we are working on conditional task graphs and thus dealing with
a stochastic problem.

For a limited number of instances the overall solving time was exceptionally high:
the last column in the table shows the number of instances for which this happened,
mainly due to the master problem (A), the scheduling problem (S) or the number of
iterations (I). The solution time of these instances was not counted in the mean; in
general it was greater than than thirty minutes.

Although this extremely high solution time occurs with increasing frequency as the
number of activities grows, it seems it is not completely determinated by that parameter:
sometimes even a very small change of the deadline or of some branch probability
makes the computation time explode.

We guess that in some cases, when the scheduler is the cause of inefficiency, this
happens because of search heuristic: for some input graph topologies and parame-
ter configurations the heuristic does not make the right choices and the solution time

1 All instances are available at http://www-lia.deis.unibo.it/Staff/MichelaMilano/tests.zip
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Table 2. Result of the tests on the second group of instances (completely structured)

acts PEs inst. inf. time init master sub nogood it A/S/I
20-29 2 7 2 0.5227 0.0200 0.0134 0.0090 0.0021 8.8571 0/0/0
30-39 2-3 6 0 1.7625 0.0283 1.2655 0.2057 0.2630 5.8333 0/0/0
40-49 3 3 0 0.4380 0.0313 0.3493 0.0573 0.0000 1.0000 0/0/0
50-59 3-4 7 0 1.1403 0.0310 0.6070 0.2708 0.2315 3.6667 0/0/1
60-69 4-5 4 0 10.1598 0.0385 6.8718 1.2798 1.9698 18.0000 0/0/0
70-79 4-5 4 0 88.9650 0.0428 88.6645 0.2578 0.0000 1.0000 0/0/0
80-90 4-6 7 0 202.4655 0.0755 184.0177 6.5008 11.8715 28.6667 0/0/1

Table 3. Number of iterations without and with scheduling relaxation based cuts

mean time to gen. a cut
basic case: 0.0074
with relaxation based cuts (RBC): 0.0499

number of iterations excution time
deadline basic case with RBC basic case with RBC result
8557573 2 3 1.18 0.609 opt. found
625918 1 1 0.771 0.765 opt. found
590846 1 1 0.562 0.592 opt. found
473108 19 6 6.169 1.186 opt. found
464512 190 14 201.124 9.032 opt. found
454268 195 24 331.449 10.189 opt. found
444444 78 15 60.747 6.144 opt. found
433330 9 4 4.396 1.657 opt. found
430835 5 3 3.347 1.046 opt. found
430490 5 3 3.896 1.703 opt. found
427251 3 2 2.153 0.188 inf.

dramatically grows. Perhaps this could be avoided by randomizing the solution method
and by using restart strategies [19].

The results of the second group of instances (completely structured) are reported
in table 2. In this case the higher number of arcs (and thus of precedence constraints)
reduces the time windows and makes the scheduling problem much more stable: no in-
stance solution time exploded due to the scheduling problem. On the other hand the in-
creased number of arcs makes the allocation more complex and the scheduling problem
approximation less strict, thus increasing the number of iterations and their duration. In
two cases we go beyond the time limit.

We also ran a set of tests to verify the effectiveness of the cuts we proposed in section
3.3 with respect to the basic cuts removing only the solution just found: table 3 reports
results for a 34 activities instance repeatedly solved with a decreasing deadline values,
until the problem becomes infeasible. The iteration number greatly reduces. Also, de-
spite the mean time to generate a cut grows by a factor of ten, the overall solving time
per instance is definitely advantageous with the tighter cuts.

Finally, to estimate the quality of the chosen objective function (bus traffic expected
value), we tested it against an easier, heuristic technique of deterministic reduction.
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Table 4. Comparison with heuristic deterministic reduction

quality improvement
instance activities scenarios mean min max

1 53 10 4.72% -0.88% 13.08%
2 57 10 2.59% -0.11% 8.82%
3 54 24 12.65% -0.72% 39.22%

The chosen heuristic simply optimizes bus traffic for the scenario when each branch is
assigned the most likely outcome; despite its simplicity, this is a particularly relevant
technique, since it is widely used in modern compilers ([20]).

We ran tests on three instances: we solved them with our method and the heuris-
tic one (obtaining two different allocations) and we computed the bus traffic for each
scenario with both the allocations. The results are shown in table 4, where for each in-
stance are reported the mean, minimum and maximum quality improvement against the
heuristic method. Note that on the average our method always improves the heuristic
solution; moreover, our solution seems to be never much worse then the other, while it
is often considerably better.

5 Conclusion and Future Works

We have proposed a stochastic method for planning and scheduling in the stochastic
case. The method proposed has two main contributions: the first is a polynomial trans-
formation of a stochastic problem into a deterministic one based on the conditional task
graph analysis. Second, the implementation of two constraints for unary and cumulative
resources in presence of conditional activities. We believe the results obtained are ex-
tremely encouraging. In fact, computation times are comparable with the deterministic
version of the same instances. We still have much work to do: first we have to solve
the extremely hard instances possibly through randomization; second we have to take
into account other aspects where stochasticity could come into play, like task duration
which could not be known in advance. Third, we have to validate these results on a real
simulation platform to have some feedback on the model.

Acknowledgement. This work has been partially supported by MIUR under the COFIN
2005 project Mapping di applicazioni multi-task basate su Programmazione a vincoli e
intera.
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Abstract. In previous work, a new approach called Open CSP (OCSP)
was defined as a way of integrate information gathering and problem
solving. Instead of collecting all variable values before CSP resolution
starts, OCSP asks for values dynamically as required by the solving
process, starting from possibly empty domains. This strategy permits
to handle unbounded domains keeping completeness. However, current
OCSP algorithms show a poor performance. For instance, the FO-Search
algorithm uses a Backtracking and needs to solve the new problem from
scratch every time a new value is acquired. In this paper we improve the
original algorithm for the OCSP model. Our contribution is two-fold: we
incorporate local consistency and we avoid solving subproblems already
explored in previous steps. Moreover, these two contributions guarantee
the completeness of the algorithm and they do not increase the number
of values needed for finding a solution. We provide experimental results
than confirm a significant speed-up on the original approach.

1 Problem-Solving in Open Environments

The increasing desire to automate problem-solving for scenarios that are dis-
tributed over a network of agents can be addressed with existing tools, first
collecting all the options and constraints in an information gathering phase, and
second solving the resulting problem using a centralized constraint solver. This
conventional approach of collecting values from all servers and then running
a CSP solver has been implemented in many distributed information systems
[2,1,3]. However, it is very inefficient because it asks for more values than the
strictly needed to find a solution, and it does not work with unbounded number
of values.

In the real world, choices (values) and constraints are collected from different
sources. With the increasing use of the Internet, those classical CSP problems
could be defined in an open-world environment. Imagine you want to configure a
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PC using web data sources. Querying all the possible PC parts in all data sources
on the web is just not feasible. We are interested in querying the minimum
amount of information until finding a solution. Since the classical CSP approach
(querying all values before search starts) is not applicable here, the new Open
CSP approach [6] was proposed. Solving an Open CSP implies obtaining values
for the variables, one by one. If the collected information does not allow to solve
the problem, new values are requested. The process stops when a solution is
found.

Although there are several models which in principle are suitable for open
environments such as the Iterative CSP model [14] and the Dynamic CSP model
[15], our model deals with a different problem. These approaches assume bounded
domains while Open CSP assumes unbounded domains (domains with a possibly
unlimited number of values). The ability to handle unbounded domains poses
an interesting challenge when designing algorithms. For this reason, we do not
include experiments comparing these approaches. See [5] for a detailed relation
among these models.

Several algorithms for solving Open CSPs were proposed in [6]. These algo-
rithms have a poor performance due to the lack of local consistency and that to
the fact they solve from scratch a problem every time new values are acquired.
Local consistency allows CSP algorithms to be very powerful, thus in this paper
we present a new algorithm called FCO-Search that uses local consistency. We
also show how the Factoring Out Failure strategy [4] can be used to avoid solving
a problem from scratch.

This paper is organized as follows: firstly a brief description of the Open CSP
model is given, followed by an explanation of the FO-Search algorithm. In the
next sections we discuss how to improve this algorithm by incorporating local
consistency and by avoiding to solve from scratch every instance of the OCSP.
Then, we describe the FCO-Search algorithm which incorporates the mentioned
improvements and finally the benefits of our approach are shown.

2 Open Constraint Satisfaction Problems

In Figure 1 we show the important elements of an open setting. The problem-
solving process is modeled abstractly as the solution of a CSP. The choices that
make up domains and permitted tuples of the CSP are distributed throughout
an unbounded network of information servers IS1, IS2, ..., and accessed through
a mediator [7]. For the purpose of this paper, we assume that this technology
allows the CSP solver to obtain additional domain values:

– Using the more(xi, . . . , (xi, xj), . . .) message, it can request the mediator to
gather more values for these variables. In this paper we assume that this
method returns just one new value every time it is called.

– Using options(xi, . . . , ) and options((xi, xj), . . .) messages, the mediator in-
forms the CSP solver of additional domain values or constraint tuples found
in the network.
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Fig. 1. Elements of an open constraint satisfaction problem

– When there are no more values to be found, the mediator returns nomore
(xi, . . .).

Formally, an Open CSP(OCSP) [6] is a possibly infinite sequence 〈CSP(0),
CSP(1), . . .〉 of CSP instances. An instance CSP(i) is the tuple 〈X,D(i), C(i)〉
where,

– X = {x1, x2, ..., xn} is a set of n variables.
– D(i) = {D1(i), D2(i), ..., Dn(i)} is the set of domains for CSP(i) where vari-

able vk takes values in Dk(i). Initially domains are empty, Dk(0) = ∅, and
they grow monotonically with i, Dk(i) ⊆ Dk(i + 1) for all k.

– C(i) = {c1(i), c2(i), . . . , cr(i)} is a set of r constraints. A constraint c(i)
involves a sequence of variables var(c(i)) = 〈vp, . . . , vq〉 denominated its
scope. The extension of c(i) is the relation rel(c(i)) defined on var(c(i)),
formed by the permitted value tuples on the constraint scope. Initially, rela-
tions are empty, rel(ck(0)) = ∅, and they grow monotonically, rel(ck(i)) ⊆
rel(ck(i + 1)) for all k.

A solution is a set of value assignments involving all variables such that for
some i, each value belongs to the corresponding domain in D(i) and all value
combinations are allowed by the constraints C(i) of CSP (i). Solving an OCSP
requires an integration of search and information gathering. It starts from a state
where all domains are empty, and the first action is to find values that fill the
domains and allow the search to start. As long as the available information does
not include enough values to make the CSP solvable, the problem solver initiates
further information gathering requests to obtain additional values. The process
stops as soon as a solution is found. Thus, with this OCSP model, we are solving
a satisfiability problem, but also we are interested in optimizing the number of
queries needed to find a solution.

The definition of an OCSP assumes that all constraints are binary. For exper-
imentation, we assume that only variable domains change over time. We made
these assumptions for the simplicity of the algorithms. They are not strong re-
strictions because using the hidden variable encoding method explained in
[12,13], any problem whose constraints are non binary or that are incrementally
discovered could be turned into a variable which has as values the tuples allowed
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x1= 1,2 x3 = 5,6

x2 = 3,4

x1’={(1,4,5), 
(2,3,5),(2,4,6)}

CSP1 CSP2

C1: x1 < x3

C2: x1 + x2 = x3

C1’: R11
x1= 1,2 x3 = 5,6

x2 = 3,4

C1: x1 < x3

C2’: R22

C3’: R33

Fig. 2. Hidden variable encoding of a non-binary CSP

by the constraints. These new variables are linked to variables involved in the
original problem by new binary constraints that enforce equality between the
variable values and the corresponding elements of the tuple. Figure 2 shows an
example of the hidden variable encoding for a non binary CSP.

3 The FO-Search Algorithm

The idea behind the FO-Search algorithm is that new values have to be gathered
only when the current instance CSP (i) has no solution. In that case, it usually
contains a subproblem that already has no solution, and CSP (i) could be made
solvable only by creating a solution to that subproblem. Information gathering
thus should focus on the variables of this subproblem.

An Unsolvable Subproblem of size k is a set of variables S = {xs1, xs2, . . . , xsk}
such that there is no value assignment xs1 ∈ Ds1, . . . , xsk ∈ Dsk (where Dsi

represents a domain) that satisfies all constraints between these variables. If
any subset S′ ⊂ S is solvable, we call this set of variables Minimal Unsolvable
Subproblem.

Note that any strategy that does not assure the selection of a variable that
belongs to a Minimal Unsolvable Subproblem may lead us to an incomplete al-
gorithm. Actually, this is the key point of working with unbounded domains.
Think for example about an strategy of selecting the most constrained variable.
This variable is not forced to belong to a Minimal Unsolvable Subproblem, thus,
adding new values to this variable may loop infinitely without solving the un-
solvable subproblems that made inconsistent the instance. Although it seems
difficult to choose a correct variable, the following result provides a method to
identify a variable that belongs to a Minimal Unsolvable Subproblem.

Proposition 1. Let a CSP be explored by a failed backtrack search algorithm
(BT) with static variable ordering (x1, ..., xn), and let xk be the deepest node
reached in the search with inconsistency detected at xk. Then xk, called the failed
variable, is part of every unsolvable subproblem of the CSP involving variables
in the set {x1..xk}.

Using this result (proved in [6]), a failed CSP search allows us to identify the
failed variable, for which an additional value should be collected. When there are
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no additional values for this variable, the mediator returns a nomore message,
and other variables are then considered.

The resulting algorithm FO-search (failure-driven open search) is shown
in Algorithm 1. It makes the assumption that variables are ordered by the

Algorithm 1. The FO-search algorithm
1: procedure FO-search(X(i),D(i),C(i))
2: i ← 1, k ← 1
3: repeat {backtrack search}
4: if exhausted(di) then {backtrack}
5: reset − values(di), i ← i− 1
6: else
7: k ← max(k, i), xi ← nextvalue(di)
8: if consistent({x1..xi}) then {extend assignment}
9: i ← i + 1

10: end if
11: if i > n then
12: return {x1, ..., xn} as a solution
13: end if
14: end if
15: until i = 0
16: if ek = CLOSED then
17: if (∀i ∈ 1..k − 1)ek = CLOSED then
18: return failure
19: end if
20: else
21: nv ← more(xk)
22: if nv = nomore(xk) then
23: ek ← CLOSED
24: end if
25: dk ← nv ∪ dk

26: end if
27: reorder variables so that xk becomes x1 (relative order of others remains the same)

28: FO-search(X(i),D(i),C(i)) {search again}

index i, and uses the array E = {e1, .., en} to indicate whether the domain
for the corresponding variable is completely known (CLOSED). The algorithm
assumes that no constraint propagation is used, although the chronological back-
tracking can be replaced with backjumping techniques (jumping directly to the
last constraint violation) to make it more efficient.

In [6] it is shown that if the current instance CSP (i) contains a minimal
unsolvable subproblem, the FO-Search algorithm (algorithm 1) is complete even
in the presence of unbounded domains. The main drawbacks of the algorithm
are: (i) it does not use local consistency (ii) every instance CSP (i) is solved from
scratch. In next sections we will study how the FO-Search algorithm could be
improved with these suitable properties.

4 Local Consistency for OCSPs

Given an unsolvable CSP instance and a static ordering of its variables o =
x1, . . . , xn, the failed variable along the ordering o is the deepest variable in
the search tree developed by BT that detects inconsistency, following the order-
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ing o . Different variable orderings may identify different failed variables, all
being equally acceptable.

As shown in previous section, the unbounded domains of the OCSP model
could lead us to incomplete algorithms if we do not choose the correct variable.
The interest for finding a failed variable xk of an unsolvable problem in the OCSP
context is clear: xk belongs to a minimal unsolvable subproblem, for which more
values are required in order to make it solvable (otherwise the whole problem
will continue being unsolvable). Variable xk is the natural candidate to get more
values, to extend this minimal unsolvable subproblem.

Local consistency has been shown to be essential in constraint satisfaction to
increase the solving performance. We think that local consistency should plays
a similar role in OCSP. With this aim, we explore how the popular Forward
Checking (FC) algorithm [11] can be used in the OCSP context.

In order to identify a failed variable when having local consistency in OCSPs,
we provide the next proposition.

Proposition 2. Let an unsolvable CSP be explored by a FC algorithm with
static variable ordering o = (x1, ..., xn), and let xk be the deepest variable in
the search tree for which an empty domain was detected. Then there exists an
ordering for which xk is the failed variable in the BT algorithm.

Proof. Let us build the search tree that BT will traverse following the static
ordering o. We know that BT will not visit any branch below xk level (otherwise,
BT will find as consistent an assignment that FC detected as inconsistent). BT
may fail before xk level at some branches, but it will not go below that level in
any branch. It may happen:

1. There is at least one branch for which BT reaches xk level.
2. In all branches, BT fails before reaching xk level.

If 1, xk is the failed variable for o. If 2, however, xk is not the failed variable
for o since BT never reaches it in any branch. Assuming that xj is the deep-
est inconsistent variable found by BT along the ordering o, we construct the
ordering o′ that is equal to o but where xj and xk exchange places. Along this
new ordering o′, BT finds xk as the failed variable. To see this, it is enough to
realize that FC never instantiates more than x1, . . . , xj−1 variables (otherwise
FC would have instantiated an inconsistent assignment, something impossible
[10]) and instantiating these variables is enough to detect inconsistency on xk.
BT following ordering o′ will find xk as the failed variable. Therefore, there is
an ordering for which xk is the failed variable. �

It is important to point that this failed variable could be different from the failed
variable obtained in Proposition 1. Therefore, we cannot assure that this failed
variable is part of every unsolvable subproblem of the CSP involving variables
in the set {x1..xk}.
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Using proposition 2, we are able to identify a failed variable even when having
local consistency. This property will be useful to create a complete algorithm
which uses local consistency for solving OCSP.

5 Using Factoring Out Failure in OCSPs

Beside local consistency, we can improve the FO-Search algorithm avoiding to
re-explore the search space already explored. To achieve this, two solutions could
be performed:

– Reuse the no-goods found in the earlier search. This no-good recording
method is explained in [8,9]. It seems that this is the most obvious solu-
tion, but is not practical because new acquired values may invalidate the
no-goods inferred in previous searches.

– Using the technique of decomposing a CSP into subproblems proposed by
Freuder and Hubbe [4] called Factoring Out Failure.

The decomposition process and the algorithm called Factoring Out Failure are
described in [4]. The algorithm extracts unsolvable subproblems from a CSP, thus
limiting search effort to smaller andpossible solvable subproblems. This idea seems
to apply well to OCSP: we can decompose the new instanceCSP (i) obtained after
collecting new values, into the old problem just searched CSP (i − 1) (which is
known to be unsolvable) and a new one based on the values just obtained. This
extraction method is shown in Algorithm 2. We have to be careful here, because
limiting search to the new found values may cause incompleteness of the algorithm
for solving the OCSP.

Algorithm 2. The Extract procedure
procedure Extract (CSP (i− 1), CSP (i), decomposition)
begin
repeat

Pick a variable, xk ∈ CSP (i) whose domain does not match in CSP (i− 1).
Divide CSP (i) into two subproblems CSP1 and CSP2 that differ only in that the domain of
xk matches the first subproblem CSP1 while the remaining values of xk matches the second
subproblem CSP2.
CSP (i) ← CSP1; decomposition ← decomposition ∪ CSP2
Apply Extract to the updated problem CSP (i) and decomposition with the same subproblem
CSP (i− 1).

until CSP (i) = CSP (i− 1)
return decomposition;

end Extract

To obtain a complete algorithm, we study the relation between the failed
variables of two consecutive instances CSP (i− 1) and CSP (i).

Let be CSP (i) = CSP (i− 1) ∪ CSPnv where:

CSPnv =< X,D′
nv, C(i) >=

{
D′

nv(xk) = D(xk) ∪ nv xk failed variable in CSP (i− 1)
D′

nv(xi) = D(xi) ∀xi �= xk

(1)
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Let say we have solved instance CSP (i−1) with variable order x0, . . . , xk, . . . ,
xn. Assume that it was found unsolvable with xk as failed variable. Thus, fol-
lowing the FCO-Search algorithm, instance CSP (i) will be solved with variable
order xk, x0, . . . , xj , . . . , xk−1, . . . , xn. Let say that problem CSPnv was solved
using the same variable order xk, x0, . . . , xj , . . . , xk−1, . . . , xn, and it was found
unsolvable with xj as failed variable. Comparing both failed variables, xk and
xj , we can identify one of these situations:

– The depth level of variable xj in CSPnv is greater than or equal to the
depth level of variable xk in CSP (i− 1). Note that solving instance CSP (i)
with variable order xk, x0, . . . , xj , . . . , xk−1, . . . , xn has as possible candi-
dates for failed variable the set {x0, . . . , xk−1} where xk−1 is the deepest
variable. Also note that the depth level of variable xk−1 in the variable or-
der xk, x0, . . . , xj , . . . , xk−1, . . . , xn is the same as xk in the variable order
x0, . . . , xk, . . . , xn used for solving instance CSP (i − 1). Thus, we can con-
clude that xj is the failed variable of instance CSP (i), because it is deeper
that the deepest possible candidate xk−1 which has the same depth level
that xk in instance CSP (i − 1). Note that in this situation, we just need
to solve CSPnv in order to know the failed variable of instance CSP (i) or
found a possible solution.

– The depth level of variable xj in CSPnv is lower than the depth level of
variable xk in instance CSP (i− 1). As before, solving instance CSP (i) has
as possible candidates for failed variable the set {x0, . . . , xk−1} where xk−1 is
the deepest variable. In this case, the set of failed variables is {x0, . . . , xk−1}
∪ {xj}. Therefore, we have to solve CSP (i) from scratch with the new
variable ordering xk, x0, . . . , xj , . . . , xk−1, . . . , xn to know which is the failed
variable.

CSP(i-1) CSP(i)

Fig. 3. An Open graph coloring example

Figures 3 and 4 show an example of solving instance CSP (i) using the Factor-
ing Out Failure algorithm. Figure 3 (left) shows an unsolvable instance CSP (i−
1) of a graph coloring OCSP with variable ordering {x1, x2, x3, x4, x0}. In the
example, x0 is the failed variable, thus following the FO-Search algorithm we
collect a new value x0 = b obtaining the instance CSP (i) as shown in Figure
3(right) with a new variable ordering {x0, x1, x2, x3, x4}. The FO-Search algo-
rithm will solve again from scratch instance CSP (i) although we know that
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Fig. 4. An example of instance CSP (i) decomposition

instance CSP (i−1) is an unsolvable subset of CSP (i). Before solve CSP (i), we
can use the Algorithm 2 to extract the known unsolvable subproblem CSP (i−1)
and then focusing on solving the decomposition subproblem obtained 1 (for more
details of the Factoring Out Failure method, please refer to [4]). When we extract
the subproblem CSP (i− 1) from problem CSP (i) we obtain a new subproblem
(called DECOMPOSITION in figure 4) which is smaller and probably easy to
solve than instance CSP (i).

6 The FCO-Search Algorithm

Based on the previous FO-Search algorithm, we developed a new algorithm with
the same properties (new values have to be gathered only when the current
instance is unsolvable) but including local consistency and using the Factoring
Out Failure decomposition. We call the obtained algorithm FCO-Search.

The FCSearch function, implements the classical FC algorithm. In line 7, it
assigns a new value to variable xi and starts the propagation (lines 8-14). Lines
15-17 check if there is a variable xj which domain was exhausted by the previous
assignment of variable xi, recording the deepest variable with empty domain. It
returns either a solution or a failed variable if instance CSP (i) is unsolvable.

The initial call of the FCO-Search (Algorithm 3) isFCO−Search(CSP (0), x0)
where CSP (0) is the initial instance and x0 is the first variable in the variable or-
der given by this initial instance. The FCO-Search algorithm has two parameters:
< X(i), D(i), C(i) > as instance CSP (i) and x′k as the failed variable of instance
CSP (i − 1). In line 2 we use the Extract procedure to extract the unsolvable in-
stanceCSP (i−1) from instance CSP (i). From this decomposition, we obtain the
subproblem < Xd, Dd, Cd > which is solved by the FCSearch function in line 3. If
there is no solution, then it compares in line 7 if the failed variable xk of problem
CSP (i) is deeper than the previous failed variablex′k of instanceCSP (i−1). When
this condition is true, we know that xk is the failed variable of instance CSP (i).
Otherwise we need to solve CSP (i − 1) to calculate the new failed variable (line
8). Once the new failed variable is calculated, we call the function more in line 15

1 Problem CSP (i) differs from problem CSP (i − 1) only in the new queried value.
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1: function FCSearch(X,D,C)
2: i ← 1, k ← 1
3: repeat {main loop}
4: if exhausted(di) then
5: i ← i− 1
6: else
7: xi ← nextvalue(di)
8: for all xj ∈ (xi+1, . . . , xn) do
9: for all a ∈ dj do

10: if ¬consistent(x1, . . . , xi, xi+1, . . . , xn) then
11: dj ← dj − a
12: end if
13: end for
14: end for
15: if {∃xj ∈ (xi+1, . . . , xn) | exhausted(dj)} then {backtrack}
16: reset each xj ∈ (xi+1, . . . , xn) to value before xi was set
17: k ← max(k, j), i ← i− 1
18: else
19: i ← i + 1
20: end if
21: if i > n then
22: return {x1, ..., xn} as a solution
23: end if
24: end if
25: until i = 0
26: return xk as failed variable

27: end FCSearch

and a new value is added. Line 21 reorders variables so that xk becomes the first
variable and the relative order of other variables remains the same. Finally line 22
calls recursively algorithm FCO-Search with instance CSP (i) and with the new
failed variable.

Proposition 3. Algorithm FCO-Search is complete.

Proof. We know that the FO-Search algorithm is complete [6], where search is
performed by BT. We will show that the FCO-Search algorithm, where BT is
replaced by FC, is also complete. Let xk be the failed variable found by FC, and
xj the failed variable found by BT, both along the ordering o. Either (i) xj = xk

or (ii) xj appears before xk in o. In (i) the FCO-Search algorithm behaves like
FO-search, so it is obviously complete. Then, let us assume (ii). In this case,
there is an ordering o′ equal to o but with xj and xk exchanging places. Along
o′ BT would have found xk as failed variable. We show that FCO-Search with
ordering o behaves like FO-Search with ordering o′. First, both algorithms ask
for one more value for xk and put it as the first variable, forming the ordering
xk, x1, . . . , xj−1, xj+1, . . . , xj , . . . , xn. We know that the subset xk, x1, . . . , xj−1

formed a unsatisfiable subproblem in the previous iteration, but we do not know
if the new value of xk has made it solvable. If it is solvable, then the algorithm
will continue looking for the next unsatisfiable subproblem (if any). If not, FCO-
Search will find a new failed variable xp in the sequence xk, x1, . . . , xj−1 using
the FC algorithm. Obviously, xp appears before or it is equal to xj−1. Since BT
found a consistent instantiation from x1 until xj−1, in this subset BT cannot find
a constraint that will stop search before reaching xp. So BT would find the same
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Algorithm 3. The FCO-Search algorithm
1: procedure FCO-Search(< X(i), D(i), C(i) >, x′

k)
2: < Xd, Dd, Cd >= Extract(< X(i), D(i), C(i) >, < X(i− 1), D(i− 1), C(i− 1) >, ∅)
3: if solution(FCSearch(Xd, Dd, Cd)) then
4: return {x1, ..., xn} as a solution
5: end if
6: xk = returned xk by the FCSearch function
7: if x′

k > xk then
8: xk = FCSearch(X(i− 1), D(i− 1), C(i− 1))
9: end if

10: if ek = CLOSED then
11: if (∀i ∈ 1..k − 1)ek = CLOSED then
12: return failure
13: end if
14: else
15: nv ← more(xk)
16: if nv = nomore(xk) then
17: ek ← CLOSED
18: end if
19: dk ← nv ∪ dk

20: end if
21: reorder variables so that xk becomes x1 (relative order of others remains the same)
22: FCO-Search(X(i), D(i), C(i), xk)

23: end FCO-Search

failed variable as FC. Therefore, FCO-Search will behave exactly as FO-search,
until finding a solution for that unsatisfiable subproblem.

In both cases (i) and (ii), FCO-search behaves like FO-search with ordering
(i) o, or (ii) o′. Since FO-Search is complete, FCO-Search is complete. �

7 Experiments

We compared the performance of the new FCO-Search algorithm against the
FO-Search algorithm 2 on solvable random OCSPs. We performed several ex-
periments.

As a first experiment, we compared the performance of the algorithms until
a solution is found when density and tightness change. At this point we want
to emphasize that our experimental results are done with finite domain random
classes (following the B random model) in order to allow researches to reproduce
the experiments. For this experiment we generated 1000 random OCSPs with
7 variables and with a domain size of 10 values. Figures 5 (a)(b) compare the
number of checks needed to find a solution for the OCSP when (a) density = 0.2
(b) density = 0.8 and tightness moves from 0.1 to 0.8. In Figure 5 (c) density
= 0.8 but tightness moves from 0.1 to 0.6 due to the difficulty of generating
solvable problems when tightness > 0.6 .

Figure 5 shows an important improvement of the FCO-Search algorithm over
the FO-Search in any case. Combining local consistency and avoid solving from
scratch the same problem reduces dramatically the number of constraint checks

2 The FCO-Search algorithm is compared against the backtracking version of the
FO-Search without backjumping.
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Fig. 5. Comparison of the number of checks when tightness increases. Top: (a) when
density = 0.2, (b) when density = 0.5. Bottom: (c) when density = 0.8.

for hard problems producing a substantial improvement in the performance of
the proposed algorithm.

In the second experiment, we compared the algorithms in two aspects: the
number of accesses to information sources and the number of constraint checks
until a solution for the OCSP is found 3. We generated 100000 random OCSPs
with between 5 to 17 variables and a domain size of 10 values, forcing the graph
to be solvable and at least connected and at most complete with random density
and tightness.

Figure 6(a) shows the number of checks against the number of variables,
studying the performance of the algorithms when increasing the number of vari-
ables. The benefits are very important (it is ”likely” to get at least an order of
magnitude for bigger instances) because the FCO-Search algorithm incorporates
local consistency and avoids redoing the same solving process every time a new
value is added (as explained in previous section).

Figure 6(a) compares the number of queries against the number of variables.
In this figure, we include the Classical CSP approach which decouples informa-
tion gathering and problem solving. This approach first queries all values for
all variables and then solves the problem. We decided to include it because it

3 These constraint checks are not hidden in the FCO-Search algorithm.
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Fig. 6. (a) Comparison of the number of checks vs the number of variables when
domain size = 10 (b) Comparison of the number of values queried vs the number
of variables when domain size = 10

establishes an upper bound for the performance of the algorithms. As mentioned
before, it could be possible that both algorithms FO-Search and FCO-Search do
not select the same failed variable in every instance CSP (i), so the number of
queried values could vary. Empirical results show that the number of queries
is nearly the same for both algorithms, having a slightly better performance
the FO-Search algorithm. As explained before, this is due to the property that
the FO-Search algorithm finds a failed variable xk which participates in all un-
solvable subproblems {x1, . . . , xk}, while the FCO-Search algorithm just finds a
component that may does not have this property. Thus, the selected variable by
the FO-Search algorithm gets a new value that could solve several unsolvable
subproblems at the same time, while the selected variable by the FCO-Search
can not assure this property. Despite this difference, empirical results show that
both algorithms have a similar performance.
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tightness increases

The benefits of our new approach come from a combination of applying local
consistency and avoid solving instances from scratch. We are interested in the
influence of these improvements separately. Figure 7 compares the number of
checks when the FCO-Search algorithm uses the Factoring out Failure method
and when it does not use it. For this particular experiment, we generated 1000
random OCSPs with 7 variables with domain size 10 and with a density =
0.5. In figure 8, we studied the percentage of instances solved from scratch for
every random OCSP. For these instances, solving the obtained decomposition
subproblem is not enough for finding the next failed variable. As expected, figure
8 shows that when problems become harder, around 60% of instances are solved
from scratch. For these hard problems, if we compare Figure 7 and Figure 8, we
can see that local consistency bring us more benefits, although the contribution
of the Factoring out Failure method is also significant.

8 Conclusions

The performance of algorithms for solving OCSPs is very poor because they
neither use local consistency nor avoid solving subproblems already explored
in previous step. We have studied how we can incorporate local consistency
while keeping the completeness of the algorithm by finding a failed variable. We
also have shown how we can use the idea of the Factoring out Failure method
proposed by Freuder [4] to avoid redoing the previous work. Based on these two
techniques, we have developed a new algorithm called FCO-Search for solving
OCSPs. The results described in last section show a significant speed-up in
the number of checks compared with the previous FO-Search algorithm while
the number of queried values remains nearly the same, even when the problem
becomes hard to solve.

As future work, we are studying how to incorporate dynamic variable ordering
into our algorithm. This new improvement poses a new challenge when calculat-
ing the failed variable, but we suspect it will provide a promising improvement
for OCSPs solvers.
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Abstract. Inspired by AND/OR search spaces for graphical models recently in-
troduced, we propose to augment Ordered Decision Diagrams with AND nodes,
in order to capture function decomposition structure. This yields AND/OR multi-
valued decision diagram (AOMDD) which compiles a constraint network into a
canonical form that supports polynomial time queries such as solution counting,
solution enumeration or equivalence of constraint networks. We provide a compi-
lation algorithm based on Variable Elimination for assembling an AOMDD for a
constraint network starting from the AOMDDs for its constraints. The algorithm
uses the APPLY operator which combines two AOMDDs by a given operation.
This guarantees the complexity upper bound for the compilation time and the size
of the AOMDD to be exponential in the treewidth of the constraint graph, rather
than pathwidth as is known for ordered binary decision diagrams (OBDDs).

1 Introduction

The work presented in this paper is based on two existing frameworks: (1) AND/OR
search spaces for graphical models and (2) decision diagrams (DD). AND/OR search
spaces [1,2,3] have proven to be a unifying framework for various classes of search
algorithms for graphical models. The main characteristic is the exploitation of inde-
pendencies between variables during search, which can provide exponential speedups
over traditional search methods that can be viewed as traversing an OR structure. The
AND nodes capture problem decomposition into independent subproblems, and the
OR nodes represent branching according to variable values. Backjumping schemes for
constraint satisfaction and satisfiability can be shown to explore the AND/OR space au-
tomatically if only one solution is sought. However, for counting and other enumeration
tasks a deliberate exploration of the AND/OR space is beneficial [4].

Decision diagrams are widely used in many areas of research, especially in software
and hardware verification [5,6]. A BDD represents a Boolean function by a directed
acyclic graph with two sink nodes (labeled 0 and 1), and every internal node is labeled
with a variable and has exactly two children: low for 0 and high for 1. If isomorphic
nodes were not merged, on one extreme we would have the full search tree, also called
Shannon tree, which is the usual full tree explored by backtracking algorithm. The tree
can be ordered if we impose that variables be encountered in the same order along ev-
ery branch. It can then be compressed by merging isomorphic nodes (i.e., with the same
label and identical children), and by eliminating redundant nodes (i.e., whose low and
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high children are identical). The result is the celebrated reduced ordered binary deci-
sion diagram, or OBDD for short, introduced by Bryant [7]. However, the underlying
structure is OR, because the initial Shannon tree is an OR tree. If AND/OR search trees
are reduced by node merging and redundant nodes elimination we get a compact search
graph that can be viewed as a BDD representation augmented with AND nodes.

In this paper we combine the two ideas, in order to create a decision diagram that has
an AND/OR structure, thus exploiting problem decomposition. As a detail, the number
of values is also increased from two to any constant, but this is less significant for the
algorithms. Our proposal is closely related to two earlier research lines within the BDD
literature. The first is the work on Disjoint Support Decompositions (DSD) investigated
within the area of design automation [8], that were proposed recently as enhancements
for BDDs aimed at exploiting function decomposition [9]. The second is the work on
BDDs trees [10]. Another related proposal is the recent work by Fargier and Vilarem
[11] on compiling CSPs into tree-driven automata.

A decision diagram offers a compilation of a problem. It typically requires an ex-
tended offline effort in order to be able to support polynomial (in its size) or constant
time online queries. In the context of constraint networks, it could be used to repre-
sent the whole set of solutions, to give the solutions count or solution enumeration and
to test satisfiability or equivalence of constraint networks. The benefit of moving from
OR structure to AND/OR is a lower complexity of the algorithms and size of the com-
piled structure. It typically moves from being bounded exponentially in pathwidth pw∗,
which is characteristic to chain decompositions or linear structures, to being exponen-
tially bounded in treewidth w∗, which is characteristic of tree structures (it always holds
that w∗ ≤ pw∗ and pw∗ ≤ w∗ · logn).

Our contribution consists of: (1) we formally describe the AND/OR multi-valued
decision diagram (AOMDD) and prove that it is a canonical representation of a con-
straint network; (2) we describe the APPLY operator that combines two AOMDDs by an
operation and prove its complexity to be linear in the output. We show that the output
of apply is bounded by the product of the sizes of the inputs. (3) we give a schedul-
ing of building the AOMDD of a constraint network starting with the AOMDDs of its
constraints. It is based on an ordering of variables, which gives rise to a pseudo tree (or
bucket tree) according to the execution of Variable Elimination algorithm. This gives
the complexity guarantees in terms of the induced width along that ordering (equal to
the treewidth of the corresponding decomposition).

The structure of the paper is as follows: Sect. 2 provides preliminary definitions, a
description of Variable Elimination and AND/OR search spaces; Sect. 3 describes the
AOMDD, its graphical representation and properties, and demonstrates its compilation
by Variable Elimination; Sect. 5 presents the APPLY operation; Sect. 6 discusses exten-
sions to probabilistic models; Sect. 7 presents related work and Sect. 8 concludes.

2 Preliminaries

A constraint network and its associated graph are defined in the usual way:

Definition 1 (constraint network). A constraint network is a 3-tupleR = 〈X,D,C〉,
where: X = {X1, . . . , Xn} is a set of variables; D = {D1, . . . , Dn} is the set of
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their finite domains of values, with cardinalities ki = |Di| and k = maxn
i=1 ki ; C =

{C1, . . . , Cr} is a set of constraints over subsets of X. Each constraint is defined as
C = (Si, Ri), where Si is the set of variables on which the constraint is defined, called
its scope, and Ri is the relation defined on Si.

Definition 2 (constraint graph). The constraint graph of a constraint network is an
undirected graph, G = (X, E), that has variables as its vertices and an edge connect-
ing any two variables that appear in the scope (set of arguments) of the same constraint.

A pseudo tree resembles the tree rearrangements introduced in [12]:

Definition 3 (pseudo tree). A pseudo tree of a graph G = (X, E) is a rooted tree T
having the same set of nodes X, such that every arc in E is a backarc in T (i.e., it
connects nodes on the same path from root).

Definition 4 (induced graph, induced width, treewidth, pathwidth). An ordered
graph is a pair (G, d), where G is an undirected graph, and d = (X1, ..., Xn) is an
ordering of the nodes. The width of a node in an ordered graph is the number of neigh-
bors that precede it in the ordering. The width of an ordering d, denoted w(d), is the
maximum width over all nodes. The induced width of an ordered graph, w∗(d), is the
width of the induced ordered graph obtained as follows: for each node, from last to first
in d, its preceding neighbors are connected in a clique. The induced width of a graph,
w∗, is the minimal induced width over all orderings. The induced width is also equal
to the treewidth of a graph. The pathwidth pw∗ of a graph is the treewidth over the
restricted class of orderings that correspond to chain decompositions.

2.1 Variable Elimination (VE)

Variable elimination (VE) [13,14] is a well known algorithm for inference in graphical
models. We will describe it using the terminology from [14]. Consider a constraint net-
work R = 〈X,D,C〉 and an ordering d = (X1, X2, . . . , Xn). The ordering d dictates
an elimination order for VE, from last to first. Each constraints from C is placed in the
bucket of its latest variable in d. Buckets are processed from Xn to X1 by eliminating
the bucket variable (the constraints residing in the bucket are joined together, and the
bucket variable is projected out) and placing the resulting constraint (also called mes-
sage) in the bucket of its latest variable in d. After its execution, VE renders the network
backtrack free, and a solution can be produced by assigning variables along d. VE can
also produce the solutions count if marginalization is done by summation (rather than
projection) and join is substituted with multiplication.

VE also constructs a bucket tree, by linking the bucket of each Xi to the destination
bucket of its message (called the parent bucket). A node in the bucket tree typically has
a bucket variable, a collection of constraints, and a scope (the union of the scopes of
its constraints). If the nodes of the bucket tree are replaced by their respective bucket
variables, it is easy to see that we obtain a pseudo tree.

Example 1. Figure 1a shows a network with four constraints. Figure1b shows the exe-
cution of Variable Elimination along d = (A,B,E,C,D). The buckets are processed
from D to A 1. Figure 1c shows the bucket tree. The pseudo tree is given in Fig. 2a.

1 This representation reverses the top down bucket processing described in earlier papers.
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Fig. 1. Execution of Variable Elimination

2.2 AND/OR Search for Constraint Problems

The AND/OR search space is a recently introduced [1,2,3] unifying framework for
advanced algorithmic schemes for graphical models. Its main virtue consists in exploit-
ing independencies between variables during search, which can provide exponential
speedups over traditional search methods oblivious to problem structure.

Definition 5 (AND/OR search tree of a constraint network). Given a constraint net-
work R = 〈X,D,C〉, its constraint graph G and a pseudo tree T of G, the associated
AND/OR search tree has alternating levels of OR and AND nodes. The OR nodes are
labeled Xi and correspond to variables. The AND nodes are labeled 〈Xi, xi〉 and cor-
respond to value assignments. The structure of the AND/OR search tree is based on T .
The root is an OR node labeled with the root of T . The children of an OR node Xi are
AND nodes labeled with assignments 〈Xi, xi〉 that are consistent with the assignments
along the path from the root. The children of an AND node 〈Xi, xi〉 are OR nodes la-
beled with the children of variable Xi in the pseudo tree T . The leaves of AND nodes
are labeled with “1”. There is a one to one correspondence between solution subtrees
of the AND/OR search graph and solutions of the constraint network [1].

The AND/OR search tree can be traversed by a depth first search algorithm, thus using
linear space. It was already shown [12,15,16,1] that:

Theorem 1. Given a constraint network R and a pseudo tree T of depth m, the size
of the AND/OR search tree based on T is O(n km), where k bounds the domains of
variables. A constraint network of treewidth w∗ has a pseudo tree of depth at most
w∗ logn, therefore it has an AND/OR search tree of size O(n kw∗ log n).

The AND/OR search tree may contain nodes that root identical conditioned subprob-
lems. These nodes are said to be unifiable. When unifiable nodes are merged, the search
space becomes a graph. Its size becomes smaller at the expense of using additional
memory by the search algorithm. The depth first search algorithm can therefore be
modified to cache previously computed results, and retrieve them when the same nodes
are encountered again. The notion of unifiable nodes is defined formally next.

Definition 6 (isomorphism, minimal AND/OR graph). Two AND/OR search graphs
G and G′ are isomorphic if there exists a one to one mapping σ from the vertices of G
to the vertices of G′ such that for any vertex v, if σ(v) = v′, then v and v′ root identical
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Fig. 2. AND/OR search space

subgraphs relative to σ. The minimal AND/OR graph is such that all the isomorphic
subgraphs are merged. Isomorphic nodes are also called unifiable.

Some unifiable nodes can be identified based on their contexts. We can define graph
based contexts for both OR nodes and AND nodes, just by expressing the set of ancestor
variables in T that completely determine a conditioned subproblem. However, it can be
shown that using caching based on OR contexts makes caching based on AND contexts
redundant and vice versa, so we will only use OR caching. Any value assignment to the
context of X separates the subproblem below X from the rest of the network.

Definition 7 (OR context). Given a pseudo tree T of an AND/OR search space,
context(X) = [X1 . . . Xp] is the set of ancestors of X in T , ordered descendingly,
that are connected in the primal graph to X or to descendants of X .

Definition 8. The context minimal AND/OR graph is obtained from the AND/OR
search tree by merging all the context unifiable OR nodes.

It was already shown that [15,1]:

Theorem 2. Given a constraint networkR, its primal graphG and a pseudo tree T , the
size of the context minimal AND/OR search graph based on T is O(n kw∗

T (G)), where
w∗T (G) is the induced width of G over the depth first traversal of T , and k bounds the
domain size.

Example 2. Figure 2 shows AND/OR search spaces for the constraint network from
Fig. 1, assuming universal relations (no constraints) and binary valued variables. When
constraints are tighter, some of the paths in these graphs do not exists. Figure 2a shows
the pseudo tree derived from ordering d = (A,B,E,C,D), having the same structure
as the bucket tree for this ordering. The (OR) context of each node appears in square
brackets, and the dotted arcs are backarcs. Notice that the context of a node is identical
to the message scope from its bucket in Fig. 1. Figure 2b shows the AND/OR search
tree, and 2c shows the context minimal AND/OR graph.

3 AND/OR Multi-valued Decision Diagrams (AOMDDs)

The context minimal AND/OR graph, described in section 2.2 offers an effective way
of identifying unifiable nodes during the execution of the search algorithm. However,
merging based on context is not complete, i.e. there may still be unifiable nodes in
the search graph that do not have identical contexts. Moreover, some of the nodes in
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the context minimal AND/OR graph may be redundant, for example when the set of
solutions rooted at variable Xi is not dependant on the specific value assigned to Xi

(this situation is not detectable based on context).
As overviewed earlier, in [1] we defined the complete minimal AND/OR graph which

is an AND/OR graph whose all unifiable nodes are merged and we also proved canonic-
ity [4]. Here we propose to augment the minimal AND/OR search graph with removing
redundant variables as is common in OBDD representation as well as adopt some nota-
tional conventions common in this community. This yields a data structure that we call
AND/OR BDDs, that exploits decomposition by using AND nodes. We present this
extension over multi-valued variables yielding AND/OR MDD or AOMDD.

3.1 AND/OR Relation Graphs and Canonical AND/OR Decision Diagrams

We first define the AND/OR constraint function graph, which is an AND/OR data struc-
ture that defines a relation relative to a tree structure over a set of variables.

Definition 9 (AND/OR constraint function graph). Given a set of variables X =
{X1, ..., Xn}, domain of values {D1, ..., Dn} and a tree T over X as its nodes, an
AND/OR constraint function graph G is a rooted, directed, labeled acyclic graph, hav-
ing alternating levels of OR and AND nodes and two special terminal nodes labeled
“0” and “1”. The OR nodes are labeled by variables from X and the AND nodes are
labeled by value assignments from respective the domains. There are arcs from nodes
to their child nodes defined as follows:

– A nonterminal OR vertex v is labeled as l(v) = Xi, Xi ∈ X and any of its child
AND nodes u is labeled l(u) = 〈Xi, xi〉, when xi is a value of Xi. An OR node can
also have a single child node which is the terminal “0” node.

– An AND node u labeled l(u) = 〈Xi, xi〉 has OR child nodes. If an OR child node
w of AND node u, is labeled l(w) = Y , then Y must be a descendant of X in T .
If any two variables Z and Y label two OR child nodes of u where l(u) = 〈X,x〉,
then Z and Y must be on different paths from X down to the leaves in T . An AND
node u can also have as a single child node the special node “1”.

The AND/OR constraint function graph defines a relation over the set of variables that
are mentioned in T which can be obtained from the set of all solution subtrees of G.
A solution subtree of G contains its root node and if it contains an OR node, then it
must contain one of its child nodes, and if it contains an AND node, it must contain
all its child nodes. Its only leaf nodes are labeled “1”. A solution tree defines a partial
assignment that includes all the assignment labeling AND nodes in the solution tree.
We say that this partial assignment is generated by G.

Definition 10 (the relation defined by a constraint function graph). Given an
AND/OR constraint function graph G over variables X = {X1, ..., Xn} having domain
of values {D1, ..., Dn} and a tree T , the relation rel(G) includes all and only full
assignments that extend partial assignments generated by G.

Similar to the case of OBDDs, AND/OR constraint function graphs can be reduced into
canonical form by removing isomorphism and redundancy. The notion of isomorphism
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was defined earlier for AND/OR graphs. In order to capture the notion of redundancy,
it is useful to group every OR node together with its AND children into a meta-node.
The underlying graph is still an AND/OR graph.

Definition 11 (meta-node). A nonterminal meta-node v in an AND/OR search graph
consists of an OR node labeled var(v) = Xi and its ki AND children labeled 〈Xi, xi1〉,
. . . , 〈Xi, xiki

〉 that correspond to its value assignments. We will sometimes abbreviate
〈Xi, xij 〉, by xij . Each AND node labeled xij points to a list of child meta-nodes,
u.childrenj . Examples of meta-nodes appear in Fig. 4.

A variable is considered redundant with respect to the partial assignment of its par-
ents, if assigning it any specific value does not change the value of any possible full
assignment. Formally:

Definition 12 (redundant vertex). Given an AND/OR constraint function graph G, a
node v is redundant if for all u1 and u2 which are AND child nodes of v, u1 and u2

have the same child meta nodes.

If we want to remove a redundant vertex v from an AND/OR constraint function graph
G, then we make all of its parent AND nodes v1, point directly to the common set of its
grandchild meta nodes and the meta-node of v is removed from the graph. Finally we
define AOMDD:

Definition 13 (AOMDD). An AND/OR multi-valued decision diagram (AOMDD) is
an AND/OR constraint function graph that: (1) contains no redundant vertex and (2) it
contains no isomorphic subgraphs.

Analogously to OBDDs we can show that AOMDDs are a canonical representation of
constraint networks, with respect to a given pseudo tree. Thus, AOMDDs can be used
as a compiled representation of a constraint network.

Theorem 3 (AOMDDs are canonical). Given a constraint network, whose constraint
set is C, having a constraint graph G and given a pseudo tree T of G, there is a unique
(up to isomorphism) reduced AND/OR constraint function graph of C based on T , and
any other constraint function graph of C based on T has more vertices.

4 Using Variable Elimination to Generate AOMDDs

In this section we propose to use a VE type algorithm to guide the compilation of a set
of constraints into an AOMDD. Let’s look at an example first.

Example 3. Consider the network defined by X = {A,B, . . . , H}, DA = . . . =
DH = {0, 1} and the constraints (⊕ denotes XOR): C1 = F ∨ H , C2 = A ∨ ¬H ,
C3 = A ⊕ B ⊕ G, C4 = F ∨ G, C5 = B ∨ F , C6 = A ∨ E, C7 = C ∨ E,
C8 = C ⊕D, C9 = B ∨ C. The constraint graph is shown in Figure 3a. Consider the
ordering d = (A,B,C,D,E, F,G,H). The pseudo tree (or bucket tree) induced by d
is given in Fig. 3b. Figure 4 shows the execution of VE with AOMDDs along order-
ing d. Initially, the constraints C1 through C9 are represented as AOMDDs and placed
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Fig. 3. (a) Constraint graph for C = {C1, . . . , C9}, where C1 = F ∨ H , C2 = A ∨ ¬H ,
C3 = A ⊕ B ⊕ G, C4 = F ∨ G, C5 = B ∨ F , C6 = A ∨ E, C7 = C ∨ E, C8 = C ⊕ D,
C9 = B ∨ C; (b) Pseudo tree (bucket tree) for ordering d = (A, B, C, D, E, F, G, H)
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Fig. 4. Execution of VE with AOMDDs

in the bucket of their latest variable in d. Each original constraint is represented by
an AOMDD based on a chain. For bi-valued variables, they are OBDDs, for multiple-
valued they are MDDs. Note that we depict meta-nodes: one OR node and its two AND
children, that appear inside each gray node. The dotted edge corresponds to the 0 value
(the low edge in OBDDs), the solid edge to the 1 value (the high edge). We have some
redundancy in our notation, keeping both AND value nodes and arc-types (doted arcs
from “0” and solid arcs from “1”).

The VE scheduling is used to process the buckets in reverse order of d. A bucket is
processed by joining all the AOMDDs inside it, using the apply operator. However, the
step of eliminating the bucket variable will be omitted because we want to generate the
full AOMDD. In our example, the messages m1 = C1  ! C2 and m2 = C3  ! C4
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Fig. 5. (a) The final AOMDD; (b) The OBDD corresponding to d

are still based on chains, so they are still OBDDs. Note that they still contain the vari-
ables H and G, which have not been eliminated. However, the message m3 = C5  !
m1  ! m2 is not an OBDD anymore. We can see that it follows the structure of the
pseudo tree, where F has two children, G and H . Some of the nodes corresponding to
F have two outgoing edges for value 1.

The processing continues in the same manner The final output of the algorithm,
which coincides with m7, is shown in Figure 5a. The OBDD based on the same ordering
d is shown in Fig. 5b. Notice that the AOMDD has 18 nonterminal nodes and 47 edges,
while the OBDD has 27 nonterminal nodes and 54 edges.

4.1 Algorithm VE-AOMDD

Given an ordering d there is a unique pseudo tree Td (or bucket tree) corresponding to it
Each constraint Ci is compiled into an AOMDD that is compatible with T and placed
into the appropriate bucket. The buckets are processed from last variable to first as usual.
Each bucket contains AOMDDs that are either initial constraints or AOMDDs received
from previously processed buckets. The scope of all the variables that are mentioned in
a bucket include relevant variables, i.e. the ones whose buckets were not yet processed
(note that they are identical to the OR context), and superfluous variables, the ones
whose buckets had been proceessed. The number of relevant variables is bounded by
the induced width (because so is the OR context). It is easy to see that all the AOMDDs
in a bucket only have in common variables which are relevant, and which reside on the
top chain portion of the bucket pseudo tree. The superfluous variables appear in disjoint
branches of the bucket pseudo tree.

Consequently combining any two AOMDDs in a bucket amounts to using the regular
MDD (OBDD) apply operator on their respective common parts that are simple MDDs.
The rest of the branches can be attached at the end of the combine operation. Thus,
the complexity of processing a bucket of AOMDDs is like the complexity of pair-wise
MDD apply over constraints restricted to scopes bounded by the induced width.

Proposition 1. The complexity of processing a bucket by VE-AOMDD is exponential
in the number of relevant variables, therefore it is exponential in the induced width.
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In summary, to create the compiled AOMDD, we can use only regular MDD apply
operators on the common (separator) portion in each bucket. In the next section how-
ever we will define a more general AOMDD apply operator that can combine any two
AOMDDs whose pseudo trees are compatible (to be defined). This can be useful when
the two input AOMDDs are created completely independently and we want to still ex-
ploit their given structure.

5 The AOMDD APPLY Operation

We will now describe how to combine two general AOMDDs. We focus on combination
by join, as usual in constraint processing, but other operations can be equally easily
applied. The apply operator takes as an input two AOMDDs representing constraints
C1 and C2 and returns an AOMDD representing C1  ! C2, respectively.

In traditional OBDDs the combining apply operator assumes that the two input OB-
DDs have compatible variable ordering. Likewise, in order to combine two AOMDDs,
we assume that their backbone pseudo trees are compatible. Namely, there should be a
pseudo tree in which both can be embedded. In general a pseudo tree induces a strict
partial order between the variables where a parent node always precedes its child nodes.

Definition 14 (compatible pseudo tree). A strict partial order d1 = (X,<1) over a
set X is consistent with a partial order d2 = (Y,<2) over a set Y , if for all x1, x2 ∈
X ∩ Y and x1 <2 x2 then x1 <1 x2. Two partial orders d1 and d2 are compatible iff
there exists a partial order d that is consistent with both. Two pseudo trees are compat-
ible iff the partial orders induced via the parent-child relationship, are compatible.

For simplicity, we focus on a more restricted notion of compatibility, which is sufficient
when using a VE like schedule for the apply operator to combine the input AOMDDs.
It is easy to extend this operator to the more general notion of compatibility.

Definition 15 (strictly compatible pseudo trees). A pseudo tree T1 having the set of
nodes X1 can be embedded in a pseudo tree T having the set of nodes X if X1 ⊆ X
and T1 can be obtained from T by deleting each node in X \ X1 and connecting its
parent to each of its descendents. Two pseudo trees T1 and T2 are compatible if there
exists T such that both T1 and T2 can be embedded in T .

Algorithm 1, called APPLY, takes as input two AOMDDs for two constraints f and g
defined along strictly compatible pseudo trees, and a common target pseudo tree T . We
will start by describing the intuition behind the algorithm. An AOMDD along a pseudo
tree can be regarded as a union of regular MDDs, each restricted to a full path from
root to a leaf in the pseudo tree. Let πT be a path in T . Based on the definition of
strictly compatible pseudo trees, πT has a corresponding path in Tf and Tg , which are
the pseudo trees for f and g. The MDDs from f and g corresponding to πTf

and πTg can
be combined using the regular MDD apply. This process can be repeated for every path
πT . The resulting MDDs, one for each path in T need to be synchronized by another
MDD apply on their common parts (on the intersection of the paths). The algorithm we
propose does all this processing at once, in a depth first search traversal over the inputs.
Based on our construction it is clear that the complexity of AOMDD-apply is governed
by the complexity of MDD-apply.
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Algorithm 1. APPLY(v1; w1, . . . , wm)

input : AOMDDs f with nodes vi and g with nodes wj , based on compatible pseudo
trees T1, T2 that can be embedded in T .
var(v1) is an ancestor of all var(w1), . . . , var(wm) in T .
var(wi) and var(wj) are not in ancestor-descendant relation in T .

output : AOMDD v1 � (w1 ∧ . . . ∧ wm), based on T .
if H1(v1, w1, . . . , wm) �= null then return H1(v1, w1, . . . , wm); // is in cache1

if (any of v1, w1, . . . , wm is 0) then return 02

if (v1 = 1) then return 13

if (m = 0) then return v1 // nothing to join4

create new nonterminal meta-node u5

var(u) ← var(v1) (call it Xi, with domain Di = {x1, . . . , xki} )6

for j ← 1 to ki do7

u.childrenj ← φ // children of the j-th AND node of u8

if ( (m = 1) and (var(v1) = var(w1) = Xi) ) then9

temp Children ← w1.childrenj10

else11

temp Children ← {w1, . . . , wm}12

group nodes from v1.childrenj ∪ tempChildren in several {v1; w1, . . . , wr}13

for each {v1; w1, . . . , wr} do14

y ← APPLY(v1; w1, . . . , wr)15

if (y = 0) then16

u.childrenj ← 0; break17

else18

u.childrenj ← u.childrenj ∪ {y}19

if (u.children1 = . . . = u.childrenki ) then // redundancy20

return u.children121

if (H2(var(u), u.children1, . . . , u.childrenki) �= null) then // isomorphism22

return H2(var(u), u.children1, . . . , u.childrenki)23

Let H1(v1, w1, . . . , wm) = u // add u to H124

Let H2(var(u), u.children1, . . . , u.childrenki ) = u // add u to H225

return u26

Theorem 4. Let π1, ...πl be the set of path in T enumerated from left to right and let Gi
f

and Gi
g be the OBDDs restricted to path πi, then the size of the output of AOBDD-apply

is bounded by
∑

i |Gi
f | · |Gi

g| ≤ n ·maxi|Gi
f | · |Gi

g|. The time complexity is also bounded
by
∑

i |Gi
f | · |Gi

g| ≤ n ·maxi|Gi
f | · |Gi

g|.

Algorithm APPLY takes as input one node from f and a list of nodes from g. Ini-
tially, the node from f is the root of f , and the list of nodes from g is in fact just
one node, the root of g. The list of nodes from g always has a special property: there
is no node in it that can be the ancestor in T of another (we refer to the variable of
the meta-node). Therefore, the list w1, . . . , wm from g expresses a decomposition with
respect to T , so all those nodes appear on different branches. We will employ the usual
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techniques from OBDDs to make the operation efficient. First, since join can be viewed
as multiplication, if one of the arguments is 0, then we can safely return 0. Second, a
hash table H1 is used to store the nodes that have already been processed, based on the
nodes (v1, w1, . . . , wr). Therefore, we never need to make multiple recursive calls on
the same arguments. Third, a hash table H2 is used to detect isomorphic nodes. If at the
end of the recursion, before returning a value, we discover that a meta-node with the
same variable and the same children had already been created, then we don’t need to
store it and we simply return the existing node. And fourth, if at the end of the recursion
we discover we created a redundant node (all children are the same), then we don’t store
it, and return instead one of its identical lists of children.

Note that v1 is always an ancestor of all w1, . . . , wm in T . We consider a variable
in T to be an ancestor of itself. A few self explaining checks are performed in lines
1-4. Line 2 is specific for multiplication, and needs to be changed for other operations.
The algorithm creates a new meta-node u, whose variable is var(v1) = Xi - recall that
var(v1) is highest (closest to root) in T among v1, w1, . . . , wm. Then, for each possible
value of Xi, line 7, it starts building its list of children.

One of the important steps happens in line 13. There are two lists of meta-nodes,
one from each original AOMDD f and g, and we will refer only to their variables, as
they appear in T . Each of these lists has the important property mentioned above, that
its nodes are not ancestors of each other. The union of the two lists is grouped into
maximal sets of nodes, such that the highest node in each set is an ancestor of all the
others. It follows that the root node in each set belongs to one of the original AOMDD,
say v1 is from f , and the others, say w1, . . . , wr are from g. As an example, suppose
T is the pseudo tree from Fig. 3b, and the two lists are {C,G,H} from f and {E,F}
from g. The grouping from line 13 will create {C;E} and {F ;G,H}. Sometimes, it
may be the case that a newly created group contains only one node. This means there is
nothing more to join in recursive calls, so the algorithm will return, via line 4, the single
node. From there on, only one of the input AOMDDs is traversed, and this is important
for the complexity of APPLY, discussed below.

5.1 Complexity of APPLY

Given AOMDDs f and g, based on compatible pseudo trees T1 and T2 and the common
pseudo tree T , we define the intersection pseudo tree T∩ as being obtained from T by
marking all the subtrees whose nodes belong to either T1 or T2 but not to both, and
removing them simultaneously (not recursively). The part of AOMDD f corresponding
to the variables in T∩ is denoted by Gf∩ .

Proposition 2. The time complexity of APPLY and the size of the output are O(|Gf∩| ∗
|Gg∩|+ |Gf |+ |Gg|).

Proof (sketch). The proof that APPLY makes an effortO(|Gf∩|∗|Gg∩|) when combining
nodes from f∩ and g∩ is identical to the proof that OBDDs have complexity of the order
of the product of the inputs. For the parts of f and g that don’t belong to Gf∩ and Gg∩,
APPLY generates recursive calls that have only one argument, v1, effectively calling for
a simple traversal of just one of the inputs.
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6 Compiling Any Probabilistic Model to AOMDD

As we showed in the past, the notion of AND/OR graphs is applicable to any graphical
models, such as probabilistic networks, cost networks and influence diagrams. Indeed,
the compiled canonical forms of minimal AND/OR graphs are well defined and were
already introduced [1,4]. Therefore all the ideas we introduced in this paper can be gen-
eralized, yielding a canonical representation in the style of AOMDD (i.e., by removing
redundant variables), which we can term weighted AOMDDs. In particular, weighted
AOMDD can be compiled using Variable Elimination schedule that exploits an apply
operator in each bucket, very similar to the way we carried this task here. The apply
operator by itself, combining two weighted AOMDDS should have the same flavor.
Compiling graphical models into weighted AOMDDs also extends the work of [17],
which defines decision diagrams for the computation of semiring valuations, from lin-
ear variable ordering into tree-based partial ordering.

7 Related Work

There are various lines of related research. The formal verification literature, beginning
with [7] contains a very large number of papers dedicated to the study of BDDs. How-
ever, BDDs are in fact OR structures (the underlying pseudo tree is a chain) and do
not take advantage of the problem decomposition in an explicit way. The complexity
bounds for OBDDs are based on pathwidth rather than treewidth.

As noted earlier, the work on Disjoint Support Decomposition (DSD) is related to
AND/OR BDDs in various ways [9]. The main common aspect is that both approaches
show how structure decomposition can be exploited in a BDD-like representation. DSD
is focused on Boolean functions and can exploit more refined structural information
that is inherent to Boolean functions. In contrast, AND/OR BDDs assumes only the
structure conveyed in the constraint graph, they are therefore more broadly applicable
to any constraint expression and also to graphical models in general. They allow a
simpler and higher level exposition that yields graph-based bounds on the overall size
of the generated AOMDD. The full relationship between these two formalisms should
be studied further.

McMillan introduced the BDD trees [10], along with the operations for combin-
ing them. For circuits of bounded tree width, BDD trees have linear upper space bound
O(|g|2w22w

), where |g| is the size of the circuit g (typically linear in the number of vari-
ables) and w is the treewidth. This bound hides some very large constants to claim the
linear dependence on |g|when w is bounded. However, McMillan maintains that when
the input function is a CNF expression BDD-trees have the same bounds as AND/OR
BDDs, namely they are exponential in the treewidth only.

Darwiche has done much research on compilation, using insights from the AI com-
munity. The AND/OR structure restricted to propositional theories is very similar to
deterministic decomposable negation normal form (d-DNNF) [18]. More recently, in
[19], the trace of the DPLL algorithm is used to generate an OBDD, and compared with
the bottom up approach of combining the OBDDs of the input function according to
some schedule (as is typical in formal verification). The structures that are investigated
are still OR. The idea can nevertheless be extended to AND/OR search. We could run
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the depth first AND/OR search with caching, generating the context minimal AND/OR
graph, which can then be processed bottom up by layers to be reduced even further by
eliminating isomorphic subgraphs and redundant nodes.

McAllester [20] introduced the case factor diagrams (CFD) which subsume Markov
random fields of bounded tree width and probabilistic context free grammars (PCFG).
CFDs are very much related to the AND/OR graphs. The CFDs target the minimal rep-
resentation, by exploiting decomposition (similar to AND nodes) but also by exploiting
context sensitive information and allowing dynamic ordering of variables based on con-
text. CFDs do not eliminate the redundant nodes, and part of the cause is that they use
zero suppression. There is no claim about CFDs being a canonical form, and also there
is no description of how to combine two CFDs.

More recently, independently and in parallel to our work on AND/OR graphs [1,2],
Fargier and Vilarem [11] proposed the compilation of CSPs into tree-driven automata,
which have many similarities to our work. In particular, the compiled tree-automata
proposed there is essentially the same as what we propose here. Their main focus is the
transition from linear automata to tree automata (similar to that from OR to AND/OR),
and the possible savings for tree-structured networks and hyper-trees of constraints due
to decomposition. Their compilation approach is guided by a tree-decomposition while
ours is guided by a variable-elimination based algorithms. And, it is well known that
Variable Elimination and cluster-tree decomposition are in principle, the same [21].

We see that our work using AND/OR search graphs has a unifying quality that helps
make connections among seemingly different compilation approaches.

8 Conclusion

We propose the AND/OR multi-valued decision diagram (AOMDD), which emerges
from the study of AND/OR search for graphical models [1,2,3] and ordered binary
decision diagrams (OBDDs) [7]. This data-structure can be used to compile any set of
relations over multi-valued variables as well as any CNF Boolean expression.

The approach we take in this paper may seem to go against the current trend in
model checking, which moves away from BDD-based algorithms into CSP/SAT based
approaches. However, constraint processing algorithms that are search-based and com-
piled data-structures such as BDDs differ primarily by their choices of time vs memory.
When we move from regular OR search space to an AND/OR search space the spectrum
of algorithms available is improved for all time vs memory decisions. We believe that
the AND/OR search space clarifies the available choices and helps guide the user into
making an informed selection of the algorithm that would fit best the particular query
asked, the specific input function and the available computational resources.

In summary, the contribution of our work is: (1) We formally describe the AOMDD
and prove that it is a canonical representation of a constraint network; (2) We describe
the APPLY operator that combines two AOMDDs by an operation and give its com-
plexity bounded by the product of the sizes of the inputs; (3) We give a scheduling of
building the AOMDD of a constraint network starting with the AOMDDs of its con-
straints. It is based on an ordering of variables, which gives rise to a pseudo tree (or
bucket tree) according to the execution of Variable Elimination algorithm. This gives
the complexity guarantees in terms of the induced width along the ordering (equal to
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the treewidth of the corresponding decomposition); 4) We show how AOMDDs relate to
various earlier and recent works, providing a unifying perspective for all these methods.
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Abstract. Distributed computing is increasingly important at a time
when the doubling of the number of transistors on a processor every 18
months no longer translates in a doubling of speed but instead a dou-
bling of the number of cores. Unfortunately, it also places significant con-
ceptual and implementation burden on programmers. This paper aims
at addressing this challenge for constraint-based local search (CBLS),
whose search procedures typically exhibit inherent parallelism stemming
from multistart, restart, or population-based techniques whose benefits
have been demonstrated both experimentally and theoretically. The pa-
per presents abstractions that allows distributed CBLS programs to be
close to their sequential and parallel counterparts, keeping the concep-
tual and implementation overhead of distributed computing minimal. A
preliminary implementation in Comet exhibits significant speed-ups in
constraint satisfaction and optimization applications. The implementa-
tion also scales well with the number of machines. Of particular interest is
the observation that generic abstractions of CBLS and CP, such as mod-
els and solutions, and advanced control structures such as events and
closures, play a fundamental role to keep the distance between sequen-
tial and distributed CBLS programs small. As a result, the abstractions
directly apply to CP programs using multistarts or restarts procedures.

1 Introduction

Moore’s law [13], i.e., the prediction that the number of transistors per square
inch on integrated circuits would double every 18 months used to translate into
a doubling of speed. While it marches on, these additional transistors are now
devoted to doubling the number of cores and gave rise to commodity multipro-
cessors. As a result, parallel and distributed computing now offer reasonably
cheap alternatives to speed up computationally intense applications. However,
parallel and distributed computing also places significant conceptual and im-
plementation burden on programmers. The computational model adds another
dimension in conceptual complexity (i.e., the need to handle multiple threads of
executions) and programming abstractions are often expressed at a lower level
of abstraction than their sequential counterparts. This has slowed the use of
distributed computing, even for applications that exhibit natural parallelism as
is typically the case in constraint satisfaction and optimization.

The parallelism exhibited in constraint satisfaction and optimization is of-
ten coarse-grained, requires minimal synchronization and coordination, and may
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originate from restart, multistart, and population techniques, whose benefits
have been demonstrated both experimentally and theoretically (e.g., [10, 6, 16,
7, 9]). Indeed, task durations are far more uniform and predictable than those
associated to search nodes produced by traditional CP solvers. Yet very few im-
plementations actually exploit this inherent potential: it suffices to look over the
experimental results published in constraint programming conferences to realize
this. The main reason is the absence of high-level abstractions for distributed
computing that makes distributed programs substantially different from their se-
quential counterparts, even for applications that should be naturally amenable
to distributed implementations.

This paper originates as an attempt to address this challenge for constraint-
based local search (CBLS) and constraint programming (CP) applications which
use multistart, restart, or population-based techniques. It presents abstractions
that allows distributed CBLS or CP programs to be close to their sequential and
parallel counterparts, keeping the conceptual and implementation overhead of
distributed computing minimal. The abstractions naturally generalize their par-
allel counterparts [12] to a distributed setting: they include distributed loops, in-
terruptions, and model pools, as well as shared objects. The resulting distributed
programs closely resemble their parallel counterparts which are themselves close
to the sequential implementations.

A preliminary implementation of the abstractions in Comet (using, among
others, sockets, forks, and TCP) exhibits significant speedups on constraint sat-
isfaction (e.g., Golomb rulers) and optimization (e.g., graph coloring) applica-
tions when parallelizing effective sequential programs. The implementation is
shown to scale well with the number of machines, even when the pool of ma-
chines is heterogeneous (e.g., the machines have different processor frequencies
and cache sizes). Together with the simplicity of the resulting CBLS programs,
these results indicate that the distributed abstractions offer significant benefits
for practitioners at a time when the need for large-scale constraint satisfaction
and optimization or fast response time is steadily increasing.

It is also important to emphasize that the abstractions result from the synergy
between recent modeling abstractions from CBLS and CP, such as the concepts of
models and solutions [11,8], the novel distributed abstractions presented herein,
and advanced control structures such as events and closures [19].

The rest of the paper is organized as follows. Section 2 presents the novel
abstractions. Section 3 introduces two language extensions, processes and shared
objects, that are fundamental in implementing the abstractions. Section 4
sketches the implementation. Section 5 discusses related work, while Section
6 reports the experimental results and concludes the paper.

2 Distributed Constraint-Based Local Search

This section reviews the distributed abstractions of Comet. The main theme is
to show that the distance between sequential and distributed Comet programs is
small, making distributed computing far more accessible for CBLS than existing
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1. ThreadPool tp(3);

2. SolutionPool S();

3. parall<tp>(i in 1..nbStarts) {
4. WarehouseLocation location();

5. location.state();

6. S.add(location.search());

7. }
8. tp.close();

9. cout << S.getBest().getValue();

0. string[] macs = ["m1","m2","m3"];

1. MachinePool tp(macs);

2. shared{SolutionPool} S();

3. parall<tp>(i in 1..nbStarts) {
4. WarehouseLocation location();

5. location.state();

6. S.add(location.search());

7. }
8. tp.close();

9. cout << S.getBest().getValue();

Fig. 1. From Parallel to Distributed Multistart Constraint-Based Local Search

libraries such as PVM and MPI. To demonstrate this significant benefit, the
paper contrasts the parallel and distributed applications in Comet, since the
parallel abstractions designed for shared memory multi-processors were shown
to allow a small distance between sequential and parallel code [12].

Parallel Iterations. The main parallel and distributed abstraction of Comet is
the concept of parallel loops. Figure 1 depicts how to move from a parallel to
a distributed implementation of a mutistart CBLS for warehouse location. The
CBLS for warehouse location was described in [18]: it is organized here as a
model providing methods to state its constraints and objectives, and to search
for a (near-optimal) solution. The left part of the figure depicts the parallel
implementation, while the right part of the figure exhibits the distributed version.

The parallel implementation declares a thread pool consisting of 3 threads
(line 1) and a solution pool to collect the solutions of multiple runs (line 2).
The parallel loop is shown in line 3: it is the equivalent of a for-loop but it
uses the thread pool to dispatch the iterations of the body to the threads in
the pool. The body creates the warehouse model, states its constraints and
objectives, searches for a solution, and adds the solution to the solution pool.
The various iterations are synchronized in line 8, which then closes the thread
pool. The objective value of the best found solution is displayed in line 9.

The distributed implementation is almost identical to the parallel implemen-
tation. Instead of thread pools, it uses a machine pool specifying which ma-
chines to use for the parallel loop (line 0–1, where the names of the machines
are “m1”,“m2”, and “m3”). The solution pool is now shared, meaning that pro-
cesses on the different machines may access it in a synchronized and distributed
fashion. The rest of the code is identical to the parallel code, although the loop
iterations will now execute on machines “m1”,“m2”, and “m3”.

The simplicity of the implementation is partly due to the advanced control
structures of Comet and partly to optimization concepts such as models and
solutions. These concepts are recent innovations in CBLS [11] and CP [8] and are
fundamental in that they allow for a clean separation between the specificities of
the models and parallel and distributed abstractions. Note also that the ware-
house model could be implemented as a CBLS algorithm or a randomized branch
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1. Boolean found(false);

2. parall<p>(i in 1..nbStarts) {
3. ProgressiveParty pp();

4. pp.state();

5. Solution s = pp.search();

6. found := (s.getValue() == 0);

7. } until found;

1. Boolean found(false);

2. parever<p> {
3. ProgressiveParty pp();

4. pp.state();

5. Solution s = pp.search();

6. found := (s.getValue() == 0);

7. } until found;

Fig. 2. Distributed Interruptions of Constraint-Based Local Search

1. WarehouseLocationFactory f();

2. ModelPool mp(3,f);

3. SolutionPool S();

4. parall<mp>(i in 1..nbStarts)

5. S.add(mp.search());

6. mp.close();

0. string[] macs = ["m1","m2","m3"];

1. WarehouseLocationFactory f();

2. DistrModelPool mp(macs,f);

3. shared{SolutionPool} S();

4. parall<mp>(i in 1..nbStarts)

5. S.add(mp.search());

6. mp.close();

Fig. 3. From Parallel to Distributed Model Pools

and bound algorithm with a computation limit. The distributed abstractions are
independent of the underlying optimization technology.

Interruptions. In constraint satisfaction, the goal consists in finding a feasible
solution. Random restarts or multiple random searches have been shown to be
a fundamental ingredient of CBLS and CP algorithms [10, 6]. Such algorithms
are inherently parallel but an implementation must stop as soon as a solution
has been found. Figure 2 depicts part of the code for a parallel and a distributed
multistart algorithm for the progressive party problem.

Consider first the distributed implementation depicted in the left part of the
figure. Line 1 declares a Boolean that specifies whether a solution was found and
the parallel loop now terminates as soon as the Boolean becomes true (line 6)
or when the fixed number of iterations is exhausted. The code (line 1–6) exe-
cutes with either a thread or a machine pool. In the distributed implementation,
different machines execute the model and are interrupted as soon as a feasible
solution is found on another machine. Observe once again how easy it is to move
from a parallel to a distributed implementation: it suffices to replace a thread
pool by a machine pool. Consider now the right part of Figure 2. Here the code
uses the parever instruction which iterates its body until a solution is found.
Once again, the code is identical for the parallel and distributed implementation.

It is important to emphasize that the constraint satisfaction was not modi-
fied at all to be amenable to a distributed implementation or to allow for in-
terruptions. This clean separation of concerns is one of the main advantages
of the distributed abstractions presented herein. They naturally leverage se-
quential models and automate tedious aspects of distributed computing. Once
again, the progressive party implementation can be either a CBLS algorithm or a
randomized constraint program with a computation limit.
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1. interface Model {
2. void state();

3. Solution search();

4. Solution search(Solution s);

5. Solution search(Solution s1,Solution s2);

6. Solution search(Solution[] s);

7. }
8. interface ModelFactory { Model create(); }

Fig. 4. The Model and Model Factory Interfaces

1. found := false;

2. while (!found) {
3. Solution op[k in RP] = pop[k];

4. parall<mp>(k in RP) {
5. select(i in RP, j in RP: i != j) {
6. pop[k] = mp.search(op[i],op[j]);

7. if (pop[k].getValue() == 0)

8. found := true;

9. } until found;

10. }

Fig. 5. The Core of the Distributed Implementation for Finding Golomb Rulers

Model Pools. One of the limitations of thread and machine pools is the necessity
of creating and stating models multiple times. The concept of model pool was
introduced in [12] to remedy this limitation by leveraging the concept of models
and it naturally generalizes to a distributed setting. A model pool receives, as
parameters, a factory to create models and the number of models to create for
parallel execution. When a solution is required, the model pool retrieves, or waits
for, an idle model and searches for a solution inside a new thread. Distributed
model pools simply receive the names of the machines instead of the number of
models. They also retrieve an idle model and search for a solution on one of the
idle machines.

Figure 3 illustrates model pools on the warehouse location problem again.
Consider first the left part of the figure that describes the parallel implementa-
tion. The Comet code first declares a factory to create the warehouse location
models (line 1), a model pool (line 2), and a solution pool (line 3). The parallel
loop simply asks the model pool for solutions (method mp.search()) and stores
them in the solution pool. Consider now the right part of the figure: it is almost
identical but uses distributed model pools.

For completeness, Figure 4 specifies the interface for models and model fac-
tories. A model provides methods to state its constraints and objectives and
to search for solutions. The search for solutions may receive zero, one, or more
solutions as starting points, allowing for a variety of search algorithms. A model
factory simply creates models, which may or may not use different search proce-
dures. Once again, the concept of models and solutions, fundamental abstractions
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in CBLS and CP, are critical in moving naturally from a sequential to a dis-
tributed implementation.

Finally, Figure 5 depicts the core of an evolutionary CBLS for finding Golomb
rulers. The algorithm, used in our experimental results, integrates many of
the abstractions just presented: parallel loops, interruptions, and model pools.
The figure depicts the part of the Comet program searching for a Golomb whose
length is smaller than a given number. In the full program, this core is embedded
in an outer loop that searches for rulers of smaller and smaller lengths. The core
of the algorithm maintain a population pop of (infeasible) rulers and generates
new generations of the population until a solution is found (lines 4–9). To gen-
erate a new ruler, the algorithm selects two individuals in the population (line
5), crosses them, and applies a CBLS minimizing the number of violations to
generate a new ruler (line 6). The distributed implementation uses a distributed
model pool and generates the new population in parallel on different machines.
Each such distributed computation is interrupted as soon as a feasible ruler is
found, i.e., a ruler with no violations (lines 7–8). Observe once again the sim-
plicity of the distributed implementation that closely resembles its sequential
counterpart and is almost identical to the parallel implementation, since it only
replaces model pools by distributed model pools.

3 Enabling Technology

To support the abstractions presented above, only two language extensions are
required: processes and shared objects. This section briefly reviews them.

Processes. Comet features a process construct to fork a new process on a
specific machine. For instance, the code

1. Queens q(1024);

2. SolutionPool S();

3. process("bohr") {
4. S.add(q.search());

5. }
forks a new Comet process on machine bohr to find a solution to the 1024-queens
problem. When a Comet process is created, it is initialized with a copy of its
parent’s runtime. The child process starts executing the body of the process
instruction, while the parent continues in sequence. There is an implicit rendez-
vous when the parent is about to terminate. Observe that, since the child has its
own copy of the runtime, operations performed in the child are only visible on
its own runtime and do not affect the parent’s objects and data structures. In
particular, in the above code, the solution to the queens problem is only available
in the child, the parent’s model and its solution pool S being left unchanged.

Shared Annotations. The second abstraction was already mentioned earlier. To
allow distributed algorithms to communicate naturally, Comet features the con-
cept of shared objects that are visible across processes. Consider the code.
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1. Queens q(1024);

2. shared{SolutionPool} S();

3. process("bohr") {
4. S.add(q.search());

5. }
The solution pool S is now a shared object that lives in the runtime of the
parent but is visible in the runtime of the child. As a result, when line 4 is
executed, the solution is added into the parent’s pool. The child in fact does not
have a solution pool, simply a reference to the parent’s pool since the object
is shared. Shared objects allow processes to communicate naturally by (remote)
method invocations very much like systems such as CORBA and MPI. The linguistic
overhead in Comet is really minimal however, keeping the distance between
sequential and distributed programs small.

It is important to connect shared objects and process creation. When a pro-
cess is created, the parent’s runtime is cloned, except for shared objects that are
replaced by proxy objects with the same interface. These proxy objects encapsu-
late a remote reference to the original object and transform method invocations
into remote method invocations using traditional serialization techniques.

Events on shared objects are also supported. A child process may subscribe
to events of shared objects and be notified when these events occur. This func-
tionality, which is highly convenient for implementing interruptions, allows this
fundamental control abstraction of Comet [19] to be used transparently across
threads and processes.

4 Implementation

This section sketches the implementation of the distributed abstractions which
consists of three parts:

1. source to source transformations of the Comet programs to replace parallel
loops by traditional loops, closures, and barriers;

2. machine and model pools which receive closures in input and creates pro-
cesses to execute them on remote machines;

3. processes and shared objects which are now integral parts of the Comet
runtime system.

4.1 Source to Source Transformation

The first step of the implementation consists of replacing parallel loops by se-
quential loops and barriers. This step is parameterized by the pool and thus
identical in the parallel and distributed implementations. It is illustrated in Fig-
ure 6 for warehouse location. The left of the figure shows the original Comet
program, while the right part depicts the transformed program. The transformed
program declares a shared barrier (line 1) to synchronize the loop executions.
The barrier is initialized to zero, incremented for each iteration (line 3), and
decremented when an iteration is completed (line 8). The barrier is used in
line 12 to ensure that the main thread continues in sequence only when all the
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1. parall<mp>(i in 1..nbStarts) {

2. WarehouseLocation location();

3. location.state();

4. S.add(location.search());

5. }

6. mp.close();

1. ZeroWait b(0);

2. forall(i in 1..nbStarts) {
3. b.incr();

4. closure C {
5. WarehouseLocation location();

6. location.state();

7. S.add(location.search());

8. b.decr();

9. }
10. mp.submit(C);

11. }
12. b.wait();

13. mp.close();

Fig. 6. Source to Source Transformation for Parallel Loops

iterations are completed. The parallel loop is replaced by a sequential loop (line
2), which creates a closure C which is then submitted to the pool. The thread
executing the code thus simply forwards the closures, one for each iteration, to
the pool where the parallel or distributed execution takes place.

Figure 7 generalizes the implementation to support interruptions. It shows
the source to source transformation for the progressive party problem, the only
differences being in line 5–8. The transformation creates an event-handler that
calls method terminate on the pool whenever the Boolean found changes value
(and becomes true), interrupting all the threads or processes in the pool. In
addition, the pool now tests whether the Boolean is false before executing the
body of the iteration. Once again, this transformation is valid for all parallel
pools. This genericity is possible because all pools must implements the same
ParallelPool interface depicted in Figure 8.

4.2 Machine and Distributed Model Pools

As mentioned earlier, the main thread only dispatches the closures, one for each
iteration of the loop, to the parallel pool. It is thus the role of the parallel pools
to execute these closures in parallel or in a distributed fashion. Figure 9 depicts
the implementation of the machine pool.

Machine Pools. The machine pool uses two producer/consumer buffers: one for
the machines and one for the closures to execute (line 2). It uses a Boolean
cont to determine if the pool should continue execution (line 2), and an object
interrupt to handle interruption (line 3). The closures are produced by the
execution of the parallel loop as shown in the source to source transformation.
The resulting code (see Figure 6) calls method submit which produces a closure.

The core of the machine pool is in its constructor (lines 4–22). It creates the
buffers (line 6–7), the interrupt handler (line 8), and produces all the machines
in line 9. Observe that the machine buffer is shared, since upon termination
processes must release their host and thus must access the buffer macs remotely.
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1. parall<mp>(i in 1..nbStarts) {

2. ProgressiveParty pp();

3. pp.state();

4. Solution s = pp.search();

5. found := (s.getValue() == 0);

6. } until found;

7. mp.close();

1. ZeroWait b(0);

2. forall(i in 1..nbStarts) {
3. b.incr();

4. closure C {
5. when found@changes()

6. mp.terminate();

7. in {
8. if (!found) {
9. ProgressiveParty pp();

10. pp.state();

11. Solution s = pp.search();

12. found:=(s.getValue()==0);

13. }
14. }
15. b.decr();

16. }
17. mp.submit(C);

18. }
19. b.wait();

19. mp.close();

Fig. 7. Source to Source Transformation for Parallel Loops with Interruptions

1. interface ParallelPool {
2. void submit(Closure c);

3. void terminate();

4. void close();

5. int getSize();

6. }

Fig. 8. ParallelPool interface

The distributed computing code lies in line 10–21. It creates a thread respon-
sible for dispatching closures to the various machines as long as the machine pool
must execute. The essence of the implementation is in lines 12–19 that are exe-
cuted at each iteration. First, the implementation consumes a machine or waits
until such a machine is available (i.e., the buffer macs contains an available host)
(line 12). Once a machine is obtained, the implementation consumes a closure to
execute or waits for a closure to become available (line 13). If the machine or the
closure are null, then the model pool has terminated and execution completes.
Otherwise, the implementation creates a process on the available machine, which
executes the closure (line 17) and then returns the machine to the buffer. The
closure execution may be interrupted, which happens if the closure calls method
terminate (see line 6 in the right part of Figure 7). The break implementation
was discussed in [12] and uses events with either exceptions or continuations.
Finally, the Interrupt class is depicted in lines 27-31 and simply encapsulates
an event. When method terminate on the machine pool is called, the event
raised is notified and the closure call in line 17 is interrupted.



Distributed Constraint-Based Local Search 353

1. class MachinePool {
2. StringBuffer macs;ClosureBuffer closures;Boolean cont;

3. Interrupt interrupt;

4. MachinePool(string[] mac) {
5. cont = new Boolean(true);

6. closures = new ClosureBuffer(mac.rng().sz());

7. macs = new shared{StringBuffer}(mac.rng().sz());
8. interrupt = new shared{Interrupt}();
9. forall(i in mac.rng()) macs.produce(mac[i]);

10. thread {
11. while (cont) {
12. string m = macs.consume();

13. Closure v = closures.consume();

14. if (m != null && v!=null)

15. process(m) {
16. break when interrupt@raised()

17. call(v);

18. macs.produce(m);

19. }
20. }
21. }
22. }
23. void submit(Closure v) { closures.produce(v); }
24. void close() {cont := false;macs.terminate();closures.terminate();}
25. void terminate() { interrupt.raise(); close(); }
26. }
27. class Interrupt {
28. Event raised();

29. Interrupt() {}
30. void raise() { notify raised();}
31 }

Fig. 9. The Machine Pool Implementation

It is interesting to trace the steps involved in executing the progressive party
code in Figure 7. First, observe that the closure v in line 13 consists of the body of
the loop and resides in the parent process. When the child is created, it inherits
a copy of that closure and executes it locally. It thus creates the progressive
party object (line 9), states the constraints (line 10), and searches for a solution
on the remote machine (line 11). Second, if the search finds a solution (line 12),
it assigns the Boolean to true. This Boolean also resides in the parent and was
copied into the child. Since it is not shared, only the child copy is affected. The
code in line 6 of the right-hand side Figure 7 executes and calls terminate on
the machine pool to raise an exception caught in line 16 of the other processes
interrupting their execution of line 17 in Figure 9. This is possible as interrupt
is shared and all processes subscribe to its raised event.

Distributed Model Pools. Distributed model pools are modeled after model pools.
The implementation creates one process per machine and associates a unique
model to it. The process then becomes a server, waiting for service requests.
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4.3 The Runtime System

It remains to discuss how to implement the extensions to the runtime system.

Distributed Forks Comet processes have the same semantics as traditional fork
system calls available in any modern operating system: they simply add the
ability to spawn the child on a different host. The Comet implementation uses
a small daemon process on all the machines allowed to host Comet processes.
The daemon listens on a TCP port for process requests. When the Comet
virtual machine creates a process, it contacts the daemon on the target machine.
In response, the daemon forks itself and loads the Comet executable in the
new child which uses the dynamic TCP port number for further exchanges.
The parent then ships its runtime data structures (including the stack and the
heap) to the child over the TCP connection, using traditional serialization and
de-serialization. The runtime data structures are re-created at the exact same
virtual memory addresses on the child process. The final step consists of replacing
the shared objects by proxies. Each proxy then holds a reference to the network
connection and the address of the parent process.

Shared Objects. Method invocation on shared objects is completely transparent.
It is the role of the proxy to contact the owner process, serialize the arguments,
and de-serialize the results. Shared objects may be used as arguments and are
replaced by a proxy. The remaining parameters must be serializable, which is
the case for fundamental abstractions such as solutions. On the receiver side, the
remote method invocation is de-serialized. Since it contains the actual address
of the receiver, the implementation performs a standard method dispatch on
the de-serialized arguments. Since this receiver is shared, it is also a monitor,
automatically synchronizing remote and local invocations.

Remote Events. Events can be handled with the same techniques. Since events
are managed through a publish-subscribe model [19], a subscription on a remote
object results in a message to the true receiver to notify the subscriber. When
the event takes place, the remote object remotely publishes the event, inducing
the subscriber to execute its closure locally.

5 Related Work

This section briefly reviews other initiatives in distributed computing.

Languages. Oz is a concurrent language that supports parallel and distributed
computing. In [17], it has been used to implement a distributed search engine that
implements a protocol and a search node distribution strategy for distributed
DFS. Like Comet, it argues in favor of a strong separation of search from
concurrency and distribution. In contrast to Comet, search spaces are not dis-
tributable structures and the communication protocol relies on a combination of
search path and recomputation to ship search nodes to workers.
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openMP [3, 2] is a preprocessor for parallel loops in C and Fortran. The
parallel abstractions of Comet and openMP share the same motivations as both
type of systems aim at making parallel computing widely accessible by reducing
the distance between sequential and parallel code. However, as discussed in [12],
the parallel abstractions of Comet are simpler and richer, primarily because of
its advanced control abstractions. This paper goes one step further: it shows that
the abstractions naturally generalize to distributed computing, opening a new
realm of possibilities. FORTRESS [1] is a new language aimed at supporting
high performance applications. To our knowledge, it is at the specification stage.

Libraries. Libraries for distributed computing focuses on various forms of mes-
sage passing. The actual implementations can be realized at different levels of
abstraction: sockets or messaging. Sockets are very low-level and are best viewed
as an implementation technology. MPI and PVM impose a significant burden for
optimization software that must be explicitly reorganized to match the client-
server architecture. Parallel Solver [14] is a domain-specific solution to parallelize
the exploration of complete search tree but it focuses on SMP systems only.

Object Models. DCOM and CORBA introduce an object model for distributed com-
puting where remote method calls are performed transparently. However, both
impose significant burden on programmers as discussed in [15]. Applications
must be redesigned to fit a client-server model, object interfaces must be spec-
ified in a separate language (IDL) to generate proxies, and programmers are
exposed to low-level threading and memory management issues. All these limi-
tations are addressed by Comet’s abstractions for distributed CBLS.

Distributed CSPs. distributed CSPs are formalized and the first distributed
asynchronous backtracking search algorithm is introduced in [20]. DiCSPs take
a fundamentally different approach as the set of variables and constraints are
themselves distributed and is more directly related to agent-based searching.

6 Experimental Results

The Benchmarks. The benchmarks consist of a multistart version of the tabu-
search algorithm for graph-coloring from [4] and the hybrid evolutionary al-
gorithm for Golomb rulers mentioned earlier [5]. The coloring algorithm is an
optimization application minimizing the number of colors. It was evaluated on
the benchmarks R250.5 (250 vertices, 50% density and best coloring=65) and
R250.1c (250 vertices, 90% density and best coloring=64). Note that these prob-
lems have 250 variables and thousands of constraints, which makes them inter-
esting since distributed implementations must copy the entire address space for
each process. The Comet program for Golomb rulers is particularly interesting.
At each iteration, it generates a new population of rulers, unless it finds a feasi-
ble ruler in which case the computation terminates. There is significant variance
in how fast a feasible ruler is found (within and across generations) and hence it
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Names Proc. Cache Freq. bogoMIPS T(R250.1c) T(R250.5)
m1 P4 1M 3.0 5898 95.2 96.33
m2 P4 1M 2.8 5570 109.7
m3 P4 512K 2.4 4771 194.3 150.59
m4 Xeon 512K 2.4 4784 202.6
m5 P4 512K 2.4 4757 210.4
m6 P4 512K 2.0 3932 248.6

Fig. 10. Specifications of the Machines

is interesting to assess the performance of the distributed implementation. The
program was run until the optimum (of length 72) was found.

The Machines. The benchmarks were executed on an heterogeneous pool of ma-
chines all running Debian Linux. The machines differ, not only in their clock
frequencies but also in the type of processors and the size of their caches. The
features of the machines are depicted in Figure 10 which specifies the proces-
sor type, the cache size, the clock frequency, the bogoMIPS speed estimate of
Linux, and the time to execute R250.1c and R250.5 in deterministic mode. The
boldfaced times for coloring on machine m3 are used as reference in Figure 11.
As can be seen, there are significant speed differences between the machines.
The results use prefixes of the worst-case ordering for Comet: m1,m2, ...,
m6; for instance, on four machines, the pool consists of machines m1,...,m4.
Since the machines are increasingly slower and the sequential times are given on
the fastest machine, the speed-ups are negatively affected by the heterogeneity.
Nevertheless, they also show the flexibility of the abstractions.

B N mS μS σS μT Sm3−6 Sm3

R250.1c 1 64 64.50 0.50 193.16 1.11 1
2 64 64.30 0.46 103.32 2.07 1.87
3 64 64.40 0.49 76.95 2.78 2.51
4 64 64.40 0.49 62.69 3.41 3.08

B N μT Sm1 Sm3

R250.5 m1 100.36 0.95 1.50
m1-2 52.09 1.84 2.89
m1-3 42.33 2.27 3.55
m1-4 38.33 2.51 3.92
m1-5 37.47 2.57 4.01
m1-6 28.74 3.35 5.23

Fig. 11. Results on Graph Coloring (Heterogeneous mix of machines)

The Graph Coloring Results. Figure 11 depicts the results on graph coloring.
Each line reports the average and deviation for 50 runs. The left part of the
figure gives the results for the most homegeneous set of machines (m3-m6) on
problem R250.1c. It reports the best coloring found (ms), the average coloring
(μs), and the standard deviation on the quality. It then reports the executing
times in seconds (μT ), and the speed-ups with respect to the average speed
Sm3−6 and with respect to the best machine in the experiments Sm3. Observe
that, on the first three (roughly similar) machines, the speedups are about 2.78
and 2.51. With four machines, they are about 3.41 and to 3.08, which is still
excellent especially with the last machine being slower. The right part of the
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N S∗ μT σT Sm3 N S∗ μT σT Sm3

m3 72 42.30 40.21
1 72 66.51 56.22 0.64 3 72 19.85 19.06 2.13
2 72 31.30 23.24 1.35 4 72 11.02 6.95 3.84

Fig. 12. Results on Golomb Ruler (Homogeneous mix of machines)

figure depicts the benchmarks for R250.5 using all the machines. It reports the
average times in seconds, as well as the speedups with respect to m1 (the fastest
machine) and m3 (about the average machine). Observe first the speedup of
1.84 on the fastest two machines (wrt m1) which indicates that the distributed
implementation does not lose much compared to the parallel implementation
in [12] despite having to copy the runtime data structures. Compared to the
average machine m3, the results are quite impressive giving a 5.23 speedups
with 6 machines. Even compared to the fast m1, the results remain convincing.

The Golomb Results. Figure 12 depicts the same results on finding Golomb
rulers using the homogeneous set of machines m3 − 6. The table reports the
CPU time μT , its standard deviation σT , and the speedups with respect to the
best machine in the set. Once again, the speedups are quite impressive. Moreover,
the distributed implementation has a very interesting side-effect: it dramatically
reduces the standard deviation on the execution times. This comes from the
ability to interrupt the search, once a feasible solution has been found and, of
course, the concurrent exploration from multiple startpoints.

7 Conclusion

The paper presented abstractions that allows distributed CBLS programs to be
close to their sequential and parallel counterparts, keeping the conceptual and
implementation overhead of distributed computing minimal. The new abstrac-
tions strongly rely on generic abstractions of CBLS and CP, such as models and
solutions, and advanced control structures such as events and closures. A pre-
liminary implementation in Comet exhibits significant speed-ups in constraint
satisfaction and optimization applications. The implementation also seem to
scale well with the number of machines, although more extensive eperimental
evaluations are necessary. Overall, the simplicity of the abstractions and the re-
sulting distributed CBLS, together with the excellent performance behavior of
our implementation, indicates that distributed computing should become much
more mainstream in years to come.
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Abstract. This paper presents high-level abstractions for nondetermin-
istic search in C++ which provide the counterpart to advanced features
found in recent constraint languages. The abstractions have several ben-
efits: they explicitly highlight the nondeterministic nature of the code,
provide a natural iterative style, simplify debugging, and are efficiently
implementable using macros and continuations. Their efficiency is
demonstrated by comparing their performance with the C++ library
Gecode, both for programming search procedures and search engines.

1 Introduction

The ability to specify search procedures has been a fundamental asset of con-
straint programming languages since their inception (e.g., [1,3,13]) and a dif-
ferentiator compared to earlier tools such as Alice [7] and MIP systems where
search was hard-coded in the solver. Indeed, by programming the search, users
may define problem-specific branching procedures and heuristics, exploit uncon-
ventional search strategies, break symmetries dynamically, and specify termina-
tion criteria for the problem at hand. The last two decades have also witnessed
significant progress in this area (e.g., [6,8,9,12,14,15]): Modern constraint pro-
gramming languages enable programmers to specify both the search tree and the
search strategy, provide high-level nondeterministic abstractions with dynamic
filtering and ordering, and support hybrid and heuristic search.

The embedding of constraint programming in mainstream languages such as
C++ has also been a fundamental step in its acceptance, especially in indus-
try. With constraint programming libraries, practitioners may use familiar lan-
guages and environments, which also simplifies the integration of a constraint
programming solution within a larger application. Ilog Solver [10] is the pio-
neering system in this respect: it showed how the nondeterministic abstractions
of constraint logic programming (e.g., goals, disjunction, and conjunction) can
be naturally mapped into C++ objects. To specify a search procedure, users thus
define C++ objects called goals, and combine them with logical connectives such
as or and and. In recent years, constraint programming libraries have been en-
hanced to accommodate search strategies [9,4] (originally proposed in Oz [12])
and high-level nondeterministic abstractions [8] (originally from OPL [14]).

However these libraries, while widely successful, still have two inconveniences
as far as specifying search procedures. On the one hand, they impose a recur-
sive style for search procedures, which contrasts with the more familiar itera-
tive constructs of OPL as indicated in [2]. Second, these libraries may obscure
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the natural nondeterministic structure of the program and may produce some
non-trivial interleaving of C++ code and library functions. This complicates the
debugging process which alternates between library and user code.

This paper is an attempt to mirror, in constraint programming libraries, the
high-level nondeterministic abstractions of modern constraint programming lan-
guages. The paper shows that it is indeed possible and practical to design a
search component in C++ that

– promotes an iterative programming style that expresses both sequential com-
position and nondeterminism naturally;

– simplifies the debugging process, since the C++ stack now reflects the full
control flow of the application;

– is as efficient as existing libraries.

The technical idea underlying the paper is to map the nondeterministic abstrac-
tions of Comet [15] into C++ using macros and continuations. Obviously, since
continuations are not primitive in C++, it is necessary to show how they can be
implemented directly in the language itself. The implementation differs signifi-
cantly from the OPL implementation in which the abstractions are implemented
using Ilog Solver facilities.

The rest of the paper is organized as follows. Section 2 presents the nonde-
terministic abstractions and their benefits. Section 3 shows how to implement
continuations in C++. Section 4 shows how to use macros and continuations to im-
plement the nondeterministic abstractions. Section 5 presents the experimental
results which shows that the nondeterministic abstractions can be implemented
efficiently and compare well with the search implementation of Gecode.

2 The Search Abstractions

This section describes the search abstractions in C++. Section 2.1 starts by de-
scribing the nondeterministic abstractions used to define the search tree to ex-
plore. These abstractions are parameterized by a search controller that specifies
how to explore the search tree. Search controllers are briefly discussed in Section
2.2 and are presented in depth in [15].

2.1 Nondeterministic Abstractions

The nondeterministic abstractions are mostly modelled after OPL [14].

Static Choices. The try construct creates a binary search node representing the
choice between two alternatives. The snippet
0. TRY(sc)

1. cout << "yes" <<endl;

2. OR(sc)

3. cout << "no" <<endl;

4. ENDTRY(sc)
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0. TRYALL(<sc>, <param>, <low>, <high>, <condition>, <ordering>)

1. [<Statement>]*

2. ENDTRYALL(<sc>)

Fig. 1. The Syntax of the TRYALL Construct

nondeterministically produces two lines of output: the first choice displays yes,
while the second one displays no. When the search controller sc implements
a depth-first strategy, the instruction first executes the first choice, while the
second choice is executed upon backtracking.

Note that TRY, OR, and ENDTRY are not extensions to C++: they are simply
macros that encapsulate the instructions to create a search node, to implement
backtracking, and to close the search node. The above code thus executes on
standard C++ compilers.

Dynamic Choices. The TRYALL construct iterates over a range of values, filter-
ing and ordering the candidate values dynamically. Figure 1 depicts the general
syntax of the construct. The first parameter <sc> is the search controller. The
<param> argument is the local variable used to store the selected value. Param-
eters <low> and <high> define the range of values, while <condition> holds
for those values to consider in the range. Finally, the expression <ordering>
specifies the order in which to try values. For instance, the snippet

0. TRYALL(sc, p, 0, 5, (p%2)==0, -p)

1. cout << "p = "<< p << endl;

2. ENDTRYALL(sc)

nondeterministically produces three lines of output: p=4, p=2, and p=0. The
instruction binds the parameter p to values 0 through 5 in increasing order of
-p and skips those violating the condition (p%2)==0.

Encapsulated Search. The EXPLOREALL construct implements an encapsulated
search that initializes the search controller and produces all solutions to its body.
Figure 2 illustrates an encapsulated search for implementing a simple labeling
procedure. The body of the encapsulated search (lines 2–9) iterates over the
values 0..2 (line 2) and nondeterministically assigns x[i] to 0 or 1 (lines 3–7).
Once all the elements in array x are labeled, the array is displayed in line 9.
The right part of Figure 2 depicts the output of the encapsulated search for a
depth-first search controller. Other similar constructs implement encapsulated
search to find one solution or to find a solution optimizing an objective function.

It is important to emphasize some benefits of the nondeterministic abstractions.
First, the code freely interleaves nondeterministic abstractions and arbitrary C++
code: it does not require the definition of classes, objects, or goals. Second, the non-
deterministic structure of the program is clearly apparent, simplifying debugging
with traditional support from software environments. In particular, C++ debug-
gers can be used on these nondeterministic programs, enabling users to follow the
control flow of their programs at a high level of abstraction.
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0. int x[3] = -1, -1, -1;

1. EXPLOREALL(sc)

2. for(int i=0; i<3 ; i++) {
3. TRY(sc)

4. x[i] = 0;

5. OR(sc)

6. x[i] = 1;

7. ENDTRY(sc)

8. }
9. cout << x[0]<<’,’<<x[1]<<’,’<<x[2]<<endl;

10. ENDEXPLOREALL(sc)

0,0,0

0,0,1

0,1,0

0,1,1

1,0,0

1,0,1

1,1,0

1,1,1

Fig. 2. An Example of Encapsulated Search

0. EXPLOREALL(dfs)

1. for(int q = 0; q < N-1; q++)

2. if (queen[q]->getSize()>1) {
3. TRYALL(dfs, p, 0, N-1, queen[q]->hasValue(p),p)

4. dfs->label(v,p);

5. ENDTRYALL(dfs);

6. }
7. ENDEXPLOREALL(dfs);

Fig. 3. A Search Procedure with a Static Variable Ordering

Ordered Iterations. Since they are implemented as macros, the nondeterministic
abstractions can be naturally interleaved with C++ code. Figure 3 illustrates a
simple search procedure for the n-queens problems. In the figure, the variable-
ordering is static, while the value-ordering assigns first the smallest values in the
domain. When the variable ordering is dynamic, it is useful to introduce a FORALL
abstraction to avoid tedious bookkeeping by programmers. Figure 4 depicts a
search procedure where the first-fail principle is used for variable selection (line
1) and where values close to the middle of the board are tried first (line 2). Apart
from the syntax which is less elegant, this search procedure is at the same level
of expressiveness as the equivalent search procedures in OPL [14].

2.2 Search Controllers

The nondeterministic abstractions define the search tree to explore by creating
search nodes as the program executes. They are parameterized by a search con-
troller specifying how to explore this tree. Figure 5 shows part of the interface of
search controllers. The primary methods of this interface are addNode and fail,
both of which are pure and virtual. The addNode method adds a search node to
the controller, while method fail is called upon encountering a failure.

Figure 6 shows a specialization of the SearchController for depth-first
search. The addNode and fail methods use a stack of search nodes. Method
addNode pushes a node on the stack, while method fail pops a search node



High-Level Nondeterministic Abstractions in C++ 363

0. EXPLOREALL(dfs)

1. FORALL(q,0,N-1,queen[q]->getSize()>1,queen[q]->getSize())

2. TRYALL(dfs, p, 0, N-1,queen[q]->hasValue(p),abs(mid-p)){
3. dfs->label(v,p);

4. ENDTRYALL(dfs);

5. ENDFORALL;

6. ENDEXPLOREALL(dfs);

Fig. 4. A Search Procedure with a Dynamic Variable Ordering

0. class SearchController {
1. protected:

2. SearchNode explore;

3. public:

4. SearchController() {}
5. virtual void explore(SearchNode n) { explore = n; }
6. virtual void fail() = 0;

7. virtual void addNode(SearchNode n) = 0;

8. ...

9. }

Fig. 5. The Interface of Search Controller (Partial Description)

from the stack and executes it. Observe that, when programmers uses prede-
fined search controllers, they never need to manipulate search nodes or even
know that they exist: It is the role of the nondeterministic abstractions to create
the search nodes and to apply the appropriate methods on the search controllers.

3 Search Nodes as C++ Continuations

As in Comet [15], the nondeterministic abstractions are implemented using
continuations. Since C++ does not support continuations natively, this section de-
scribes how to implement continuations in the languages itself. Recall that a con-
tinuation captures the current state of computation, i.e., the program counter,
the stack, and the registers (but not the heap). Once captured, the continuation
can be executed at a later time. Figure 7 illustrates continuations on a simple
example: The C++ program is shown on the left of the figure and its output is
shown on the right. The program computes, using continuations, the factorial
of 5, 4, ..., 0. It captures a continuation in line 6 and calls fact with the cur-
rent value of i (5). After printing the result (line 7), the program tests whether
the i’s value is not smaller than 1. In this case, i’s value is decremented and
the continuation is executed. The execution then restarts in line 7, computes the
factorial of 4, and iterates the process again.

We now show how to implement continuations in C++ using setjmp and
longjmp. The interface of a continuation is specified in Figure 8. Its main meth-
ods are restore (to restore the stack of the continuation) and execute to execute
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0. class DFS : public SearchController {
1. Stack<SearchNode> stack;

2. void addNode(SearchNode n) { stack.push(n); }
3. void fail() {
4. if ( stack.empty()) explore->execute();

5. else stack.pop()->execute(); }
6. }

Fig. 6. The Implementation of a Depth-First Search Controller (Partial Description)

0. int fact(int n){
1. if (n==0) return 1; return n*fact(n-1);

2. }
3. int main(int argc, char*argv[]){
4. initContinuations(&argc);

5. int* i = new int(5);

6. Continuation* c = captureContinuation();

7. cout <<"fact("<<*i<<")="<<fact(*i)<<endl;

8. if(*i >=1){ (*i)--; c->execute(); }
9. return 0;

10. }

fact(5)=120

fact(4)=24

fact(3)=6

fact(2)=2

fact(1)=1

fact(0)=1

Fig. 7. A Simple Example Illustrating Continuations in C++

the continuation. Its instance variables are used to save the buffer target used
by longjmp, the stack, and the number of times the continuation has been called
( calls). The constructor in lines 8–12 saves the C++ stack. Note the definition
of search nodes in line 19: Search nodes are simply pointers to continuations.

Figure 9 depicts the core of the implementation. Function initContinuation
stores the base of the stack (i.e., the address of argc) in static variable baseStack.
A correct value for baseStack is critical to save and restore continuations.

Function captureContinuation (line 2–11) captures a continuation. Line 5
creates an instance of class Continuation using, as arguments, the address of
k and the size baseStack-(char*)&k to be able to save the stack. Line 6 uses
the C++ instruction setjmp to save the program counter and the registers into
the field target of the continuation. After execution of line 6, the continua-
tion has been captured and line 7 is either executed just after the capture (in
which case jmpval is 0) or after a call to longjmp on target (in which case
jmpval is the continuation passed to longjmp). In the second case, function
captureContinuation must restore the stack (line 8) before returning the con-
tinuation in line 9.

Method restore is depicted in lines 11–14. It restores the stack in line 12 and
increments instance variable calls to specify that the continuation has been
called one more time. This last operation is important to implement the non-
deterministic abstractions. Finally, method execute simply performs a longjmp
on instance variable target, passing the continuation itself. The effect is to
restart the execution in line 7 of captureContinuation after having assigned
jmpval to the continuation, inducing the stack restoration in line 8.
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0. class Continuation {
1. jmp buf target; // instruction to return to. used by long jmp

3. int length; // size of captured stack

4. void* start; // location to restore the stack

5. char* data; // copy of the stack

6. int calls; // number of calls to this continuation

7. public:

8. Continuation(int len,void* start) {
9. length = len; start = start;

10. data = new char[len];

11. memcpy( data, start, length);

12. }
13. ~Continuation();

14. void restore();

15. void execute();

16. const int nbCalls() const {return calls;}
17. friend Continuation* captureContinuation();

18. };
19. typedef SearchNode Continuation*;

Fig. 8. The Interface of Continuations

Continuations only use standard C functions and are thus portable to all
architectures with a correct implementations of these functions. In absence of
setjmp and longjmp, captureContinuation and execute can be implemented
using getContext and setContext, or in assembly. Our implementation based
on setjmp/longjmp has been successfully tested on three different hardware
platforms (Intel x86, PowerPC, and UltraSparc) and four operating systems
(Linux, Windows XP, Solaris, and OSX). The only platform where it fails is Ita-
nium because of its implementation of setjmp and longjmp does not conform to
the specifications: it does not allow several longjmp calls for the same setjump.

It is important to note that the implementation of Ilog Solver [5] also uses
setjmp and longjmp [11]. The novelty here is to save the stack before calling
setjmp and restoring the stack after calling longjmp. The benefits are twofold.
On the one hand, it enables the implementation of high-level nondeterministic
abstractions such as tryall in C++. On the other hand, it enables continuations
to be called at any time during the execution even if the stack has fundamentally
changed. As a result, continuations provide a sound basis for complex search
procedures jumping from node to node arbitrarily in the search tree.

Finally, it is worth emphasizing that the nondeterministic abstractions can be
used across function/method calls. They can also be encapsulated in methods
to provide generic search procedures for various problem classes.

4 Implementation

It remains to show how to implement the nondeterministic abstractions in terms
of continuations. As mentioned earlier, the nondeterministic abstractions are
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0. static char* baseStack = 0;

1. void initContinuations(int* base) { baseStack = (char*) base; }
2. Continuation* captureContinuation() {
3. Continuation* jmpval;

4. Continuation* k;

5. k = new Continuation(baseStack-(char*)&k,&k);

6. jmpval = (Continuation*) setjmp(k-> target);

7. if (jmpval != 0)

8. jmpval->restore();

9. return k;

10. }
11. void Continuation::restore() {
12. memcpy( start, data, length);

13. ++ calls;

14. }
15. void Continuation::execute() { longjmp( target,(int)this); }

Fig. 9. Functions to create and use Continuations

implemented as macros that capture and call continuations and apply methods
of the search controller. Recall that the use of macro expansions does not interfere
with the debugger. Breakpoints placed within the body of the search procedure
behave as expected. Also, since a macro is expanded to a single line of code,
line-by-line stepping skips over the macro, while single stepping enters the body
of the macro definition.

Static Choices. The statement
TRY(sc) 〈 A 〉 OR(sc) 〈 B 〉 ENDTRY(sc)

is rewritten as
0. Continuation* cont = captureContinuation();

1. if(cont->nbCalls() == 0) {
2. sc->addNode(cont);

3. 〈 A 〉
4. } else {
5. 〈 B 〉
6. }
where lines 1–2 are produced by the macro TRY(sc), line 4 is from the macro
OR(sc), and lines 6 is from ENDTRY(sc). The resulting code can be explained as
follows. Line 0 captures a continuation. It then tests whether the continuation
has not yet been called (line 1), which is always the case the first time the
TRY instruction is executed. As a result, lines 2–3 are executed: line 2 adds
the continuation (or search node) in the search controller while line 3 executes
the instructions A. When the continuation is called, execution comes back to
line 1 but the number of calls to the continuation is not zero. As a result, the
instructions B in line 5 are executed. Observe that the exploration strategy is
left to the controller: the above implementation does not prescribe a depth-first
strategy and the continuation can be called at any time during the computation
to execute line 5.
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Encapsulated Search. The EXPLOREALL is an encapsulated search exploring the
search tree specified by its body. The code

EXPLOREALL(sc) 〈 A 〉 ENDEXPLOREALL(sc)

is rewritten as:
0. Continuation *cont = captureContinuation();

1. if(cont->nbCalls()==0) {
2. sc->explore(cont);

3. 〈A 〉
4. sc->fail();

5. }
where lines 0–2 are produced by EXPLOREALL(sc) and lines 4–6 are generated by
ENDEXPLOREALL(sc). The key implementation idea is to create a continuation
cont representing what to do when the search tree defined by A is fully explored.
The test in line 2 holds for the first execution of EXPLOREALL, in which case lines
2–4 are executed. They tell the search controller to start an encapsulated search,
execute A, and fail (line 4). The failure makes sure that the search tree defined
by A is fully explored. When this is the case, the continuation cont is executed,
leading to the execution of line 6 which terminates the encapsulated search.

Dynamic Choices. Consider now the TRYALL abstraction. The presentation is in
stepwise refinements, starting first with a version with no filtering and ordering
and adding these features one at a time. The code

TRYALL4(sc, p, low, high) 〈 A 〉 ENDTRYALL4(sc)

is rewritten as

0. int p=(low);

1. int* curIndex = new int(p);

2. Continuation *cont = captureContinuation();

3. if (*curIndex <= (high) ){
4. p=(*curIndex);

5. ++(*curIndex);

6. (sc)->addNode(cont);

7. 〈 A 〉
8. } else {
9. delete curIndex;

10. sc->fail();

11. }
where lines 0–6 are generated by TRYALL4(sc, p, low, high) and lines 8–
11 by ENDTRYALL4(sc). There are two features to emphasize here. First, p is
declared as a local variable in line 0 and can then be used naturally in A. Sec-
ond, curIndex holds an integer representing the current index in low..high.
curIndex is allocated on the heap since otherwise its value would be restored
to low when the continuation is called. The rest of the TRYALL implementation
then follows the TRY implementation. The continuation is captured in line 2. As
long as the current index is within the range (line 3), a call to the continuation
(or the first call to TRYALL) assigns the current index to p (line 4), increments
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0. int p=low;

1. int* curIndex = new int(p);

2. Continuation* cont = captureContinuation();

3. bool found=false;

4. while ((*curIndex) <= (high)) {
5. p=(*curIndex)++;

6. if (cond) { found=true; break; }
7. }
8. if (found){
9. sc->addNode(cont);

10. 〈 A 〉
11. } else {
12. delete curIndex;

13. sc->fail();

14. }

Fig. 10. The TRYALL Implementation with Filtering

the index for subsequent iterations (line 5), adds the continuation to the search
controller to allow additional iterations (line 6), and executes A (line 7). When
all values in the range are explored, the implementation releases the space taken
by curIndex (line 9) and fails (line 10).

Figure 10 shows how to generalize the implementation when values in the
range are filtered as in
TRYALL5(sc, p, low, high, cond) 〈 A 〉 ENDTRYALL5(sc)

The main novelty in Figure 10 is the addition of a loop (lines 4–6) to find the
first element in the range satisfying the condition cond.

Finally, Figure 11 depicts the implementation of the TRYALL abstraction with
filtering and ordering, i.e.,
TRYALL(sc, p, low, high, cond, ordering) 〈 A 〉 ENDTRYALL(sc)

The key idea is to replace curIndex by an array of Booleans that keep track of
which values have been tried already. The array is allocated on the heap in line
2 and initialized in line 3. The continuation is captured in line 4 and the rest of
the code depicts the treatment performed for all successive calls to the TRYALL
instruction. Lines 7–8 search for the available element in the range satisfying
condition cond and minimizing expression ordering. If such an element exists
(line 13), the continuation is added to the controller, array avail is updated,
and the instructions A are executed. Otherwise, all elements have been tried,
which means that array avail can be released and the TRYALL must fail.

Iterations with Ordering. The implementation of the FORALL instruction is sim-
pler since it does not create search nodes: it simply iterates over the range and
selects the value satisfying the condition and minimizing the ordering expression.
Figure 12 describes the implementation of the code
FORALL(sc, p, low, high, cond, ordering) 〈 A 〉 ENDFORALL(sc)

Unlike TRYALL, the array avail must be allocated on the C++ stack (line 2).
Indeed, the available values must be restored on backtracking, which is achieved
automatically by continuations when the array is allocated on the C++ stack.
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0. int p = 0;

1. int l = (low); int h = (high);

2. bool* avail = new bool[h-l+1];

3. for(int i=0; i < h-l+1; i++) avail[i]=true;

4. Continuation *cont = captureContinuation();

5. bool found=false;

6. int bestEval = INT MAX;

7. for(int k=l; k <= h; k++)

8. if( (bestEval > (ordering)) && avail[k-l] && (cond)) {
9. found = true;

10. bestEval = (ordering);

11. p = k;

12. }
13. if (found) {
14. avail[p-l]=false;

15. sc->addNode(cont);

16. 〈 A 〉
17. } else {
18. delete[] avail;

19. sc->fail();

20. }

Fig. 11. The Implementation of the TRYALL Abtraction with Filtering and Ordering

5 Experimental Results

This section presents the experimental results demonstrating the efficiency of
the implementation. It first shows that the cost of using continuations is not
prohibitive. Then, it demonstrates that the abstractions are comparable in effi-
ciency to the search procedures of existing constraint libraries. The CPU Times
are given on a Pentium IV 2.0 GHz running Linux 2.6.11.

On the Efficiency of Continuations. One possible source of inefficiency for the
nondeterministic abstractions is the overhead of capturing and restoring contin-
uations. To quantify this cost, we use a simple backtrack search for the queens
problem and we compare a search procedure written in C++ (and thus with
a recursive style) with a search procedure using the nondeterministic abstrac-
tions (and thus with an iterative style). Figures 13 and 14 depict the two search
procedures and their common attack function. Table 1 shows the runtime of
the recursive (R) and nondeterministic (N) search procedures and the percent-
age increase in CPU time. The results show that the percentage increase in
CPU time decreases as the problem size grows and goes down to 54% for the
32-queens problem. These results are noteworthy, since they use a mainstream,
non-garbage collected, highly efficient language. Moreover, these programs do
not involve any constraint propagation and do not need to save and restore the
states of domain variables and constraints. As such, these tests represents the
pure cost of the abstractions compared to the hand-coded implementation.
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0. int p = 0;

1. int l = (low); int h = (high);

2. bool* avail = (bool*) alloca(h-l+1);

3. for(int i=0; i < h-l+1; i++) avail[i]=true;

4. while(true) {
5. bool found=false;

6. int bestEval = INT MAX;

7. for(int k=l; k <= h; k++)

8. if( (bestEval > (ordering)) && avail[k-l] && (cond)) {
9. found = true;

10. bestEval = (ordering);

11. p = k;

12. }
13. if (found) {
14. avail[p-l]=false;

15. 〈 A 〉
16. } else break;

17. }

Fig. 12. The Implementation of the FORALL Abtraction with Filtering and Ordering

Table 1. The Pure Cost of the Nondeterministic Abstractions

n 16 18 20 22 24 26 28 30 32
R .007 .028 .152 1.486 .405 .443 3.748 78.900 133.86
N .014 .063 .308 2.878 .731 .762 6.175 125.64 205.82
(N − R)/R 1.00 1.25 1.026 0.937 0.805 0.720 0.648 0.592 0.538

Comparison with an Existing Library. We now compare the efficiency of the
nondeterministic abstractions with an existing C++ constraint programming li-
brary: Gecode [4]. Figure 15 shows the partial Gecode model used for the
queens problem. The depth-first search in Gecode has a copy distance parame-
ter specifying the number of branchings to perform using recomputation before
cloning the search space. A value of 1 (meaning no recomputation) was used in
the experiments as that tends to give the best performance for the queens prob-
lem. Observe the call to the built-in search procedure in line 11: It has a static
left-to-right ordering and starts first with the smallest values. We compare the
performance of Gecode with a similar statement using a constraint program-
ming library using trailing and the search procedure depicted in Figure 3 and
the search controller (partially) described in Figure 16. Both implementations
use exactly the same search procedure: it is built-in in the case of Gecode but
uses our high-level nondeterministic abstractions in our case. Note also that the
search controller now calls the CP manager to push and pop choices (in addi-
tion to search nodes) to implement trailing. Table 3 depicts the computational
results: they indicate that the program with the nondeterministic abstractions
is slightly more efficient than Gecode. These results tend to demonstrate the
practicability of our approach, since the queens problem has little propagation
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bool attack(int* queen,int n,int i,int v){
for(int k=0; k < i; k++) {

if( queen[k] == v )return true;

if( queen[k]+k == v+i)return true;

if( queen[k]-k == v-i)return true;

}
return false;

}
bool search(int* queen,int n,int i){
if(i >= n) return true;

for(int v = 0; v < n; v++){
if (attack(queen,n,i,v)) continue;

queen[i]=v;

if (search(queen,n,i+1)) return true;

}
return false;

}
search(queens,N,0);

Fig. 13. The Recursive Version of the Simple Backtrack Search

for(int q=0;q<N;q++){
TRYALL4(sc, v, 0, N-1, !attack(queen,N,q,v))

queen[q]=v;

ENDTRYALL4(sc);

}

Fig. 14. The Nondeterministic Version of the Simple Backtrack Search

compared with realistic constraint programs and hence the cost of the abstrac-
tions will be even more negligible on more complex applications.

Programming Search Engines. The previous comparison used two different solvers
and the difference in efficiency may partially be attributed to their respective effi-
ciency. To overcome this limitation, our last experiment only uses Gecode as the
underlying solver. It compares the built-in implementation of depth-first search in
Gecode with an implementation using our nondeterministic abstractions. Recall
that Gecode manipulates computation spaces representing the search tree. The
following C++ code

0. EXPLORE(gecode)

1. while (gecode->needBranching()) {
2. int alt = gecode->getNbAlternatives();

3. TRYALL4(gecode, a, 0, alt-1)

4. gecode->tryCommit(a);

5. ENDTRYALL4(gecode);

6. }
7. ENDEXPLORE(gecode);
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0. class Queens : public Example {
1. IntVarArray q; // Position of queens on boards

2. public: // The actual problem

3. Queens(const Options& opt) : q(this,opt.size,0,opt.size-1) {
4. const int n = q.size();

5. for (int i = 0; i<n; i++)

6. for (int j = i+1; j<n; j++) {
7. post(this, q[i] != q[j]);

8. post(this, q[i]+i != q[j]+j);

9. post(this, q[i]-i != q[j]-j);

10. }
11. branch(this, q, BVAR NONE, BVAL MIN);

12. }
13. }
14. Example::run<Queens,DFS>(opt);

Fig. 15. The Gecode Model for the Queens Problem

0. class CPDFS : public SearchController {
1. Stack<SearchNode> stack;

2. CPManager* mgr;

3. public:

4. . . .
5. void addNode(SearchNode n) {
6. nodes->push(n);

7. mgr.pushChoice(f)

8. }
9. void fail() {
10. mgr->popChoice();

11. if ( stack.empty()) explore->execute();

12. else stack.pop()->execute();

13. }
14. }

Fig. 16. A Depth-First Search Controller for a CP Library with Trailing

Table 2. Performance Comparison (in Seconds) with Gecode on the Queens Problem

n 16 18 20 22 24 26 28 30 32
Gecode .06 .20 .98 7.83 2.08 2.08 16.34 301.27 507.08
ND .05 .18 .92 7.56 1.93 1.83 14.96 294.20 498.37

is an implementation of depth-first search for Gecode that uses our nondeter-
ministic abstraction. The code iterates branching until the tree is fully explored
(line 1). To branch, the code retrieves the number of alternatives (line 2) and per-
forms a TRYALL to try each alternative (line 4). The code uses a gecode controller
to clone and restore the spaces appropriately (which is not shown for space rea-
sons). Note also the combination of a C++ while instruction with TRYALL.



High-Level Nondeterministic Abstractions in C++ 373

Table 3. Performance Comparison in Seconds on Gecode Only

n 16 18 20 22 24 26 28 30 32
Gecode .06 .20 .98 7.83 2.08 2.08 16.34 301.27 507.08
ND + Gecode 0.05 .19 .97 7.55 2.02 1.96 16.28 292.80 495.69

Table 2 depicts the computational results. This evaluation has the merit of
comparing the search procedures with exactly the same constraint solver and the
search procedure coded by the designer of the library. Once again, the nondeter-
ministic abstractions are slightly more efficient than the builtin implementation
of Gecode, although they perform exactly the same number of clones, failures,
and propagation calls. The results thus indicate that the nondeterministic ab-
stractions are not only expressive and natural; they are also very efficient.

6 Conclusion

This paper showed how to use macros and continuations in C++ to support the
high-level nondeterministic abstractions found in recent constraint languages.
The resulting design has several benefits. The abstractions promote an iterative
style for search procedures, simplify debugging since the C++ stack now reflects
directly the control flow of the program, and allow for natural implementations
of search strategies. The implementation, which uses setjmp/longjmp, is shown
to compare well with the C++ library Gecode.
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Abstract. An important issue for temporal planners is the ability to
handle temporal uncertainty. Recent papers have addressed the question
of how to tell whether a temporal network is Dynamically Controllable,
i.e., whether the temporal requirements are feasible in the light of uncer-
tain durations of some processes. Previous work has presented an O(N5)
algorithm for testing this property. Here, we introduce a new analysis of
temporal cycles that leads to an O(N4) algorithm.

1 Introduction

Many Constraint-Based Planning systems (e.g. [1]) use Simple Temporal Net-
works (STNs) to test the consistency of partial plans encountered during the
search process. These systems produce flexible plans where every solution to the
final Simple Temporal Network provides an acceptable schedule. The flexibility
is useful because it provides scope to respond to unanticipated contingencies
during execution, for example where some activity takes longer than expected.
However, since the uncertainty is not modelled, there is no guarantee that the
flexibility will be sufficient to manage a particular contingency.

Many applications, however, involve a specific type of temporal uncertainty
where the duration of certain processes or the timing of exogenous events is not
under the control of the agent using the plan. In these cases, the values for the
variables that are under the agent’s control may need to be chosen so that they do
not constrain uncontrollable events whose outcomes are still in the future. This
is the controllability problem. By formalizing this notion of temporal uncertainty,
it is possible to provide guarantees about the sufficiency of the flexibility.

In [2], several notions of controllability are defined, including Dynamic Con-
trollability (DC). Roughly speaking, a network is dynamically controllable if
there is a strategy for satisfying the constraints that depends only on knowing
the outcomes of past uncontrollable events.

In [3] an algorithm is presented that determines DC and runs in polyno-
mial time under the assumption that the maximum size of links in the STN is
bounded. Thus, the algorithm is pseudo-polynomial like arc-consistency, rather
than being a strongly polynomial algorithm such as, for example, the Bellman-
Ford algorithm [4] for determining consistency of a distance graph. What makes
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the latter algorithm strongly polynomial is the Bellman-Ford cutoff, which re-
stricts the number of iterations based on the number of nodes in the network.
The first strongly polynomial algorithm for DC is presented in [5]. This intro-
duces an algorithm with an O(N3) inner-loop and an outer loop with an O(N2)
cutoff. Thus, the entire algorithm runs in O(N5) time. The paper also simplifies
the mathematical formulation of the reduction rules.

In this paper, we further simplify the mathematical formulation and introduce
a structural characterization of DC in terms of the absence of a particular type
of negative cycle. This is analogous to the result characterizing consistency of
ordinary STNs in terms of the absence of negative cycles in the distance graph.
This leads to a reformulated algorithm for DC with an O(N3) inner-loop and an
O(N) cutoff for the outer loop. Thus, the entire algorithm runs in O(N4) time.

2 Background

This background section defines the types of controllability, and outlines the
previous DC algorithms, essentially following [3,5].

A Simple Temporal Network (STN) [6] is a graph in which the edges are anno-
tated with upper and lower numerical bounds. The nodes in the graph represent
temporal events or timepoints, while the edges correspond to constraints on the
durations between the events. Each STN is associated with a distance graph de-
rived from the upper and lower bound constraints. An STN is consistent if and
only if the distance graph does not contain a negative cycle. This can be deter-
mined by a single-source shortest path propagation such as in the Bellman-Ford
algorithm [4] (faster than Floyd-Warshall for sparse graphs, which are common
in practical problems). To avoid confusion with edges in the distance graph, we
will refer to edges in the STN as links.

A Simple Temporal Network With Uncertainty (STNU) is similar to an STN
except the links are divided into two classes, requirement links and contingent
links. Requirement links are temporal constraints that the agent must satisfy,
like the links in an ordinary STN. Contingent links may be thought of as repre-
senting causal processes of uncertain duration, or periods from a reference time
to exogenous events; their finish timepoints, called contingent timepoints, are
controlled by Nature, subject to the limits imposed by the bounds on the con-
tingent links. All other timepoints, called executable timepoints, are controlled
by the agent, whose goal is to satisfy the bounds on the requirement links. We
assume the durations of contingent links vary independently, so a control proce-
dure must consider every combination of such durations. Each contingent link is
required to have positive (finite) upper and lower bounds, with the lower bound
strictly less than the upper. Without loss of generality, we assume contingent
links do not share finish points. (If desired, they can be constrained to simul-
taneity by [0, 0] requirement links. It is also known that networks with coincident
contingent finishing points cannot be DC.)

Choosing one of the allowed durations for each contingent link may be thought
of as reducing the STNU to an ordinary STN. Thus, an STNU determines a
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family of STNs corresponding to the different allowed durations; these are called
projections of the STNU.

Given an STNU with N as the set of nodes, a schedule T is a mapping

T : N → )

where T (x) is called the time of timepoint x. A schedule is consistent if it satisfies
all the link constraints. The prehistory of a timepoint x with respect to a schedule
T , denoted by T {≺ x}, specifies the durations of all contingent links that finish
prior to x.

An execution strategy S is a mapping

S : P → T

where P is the set of projections and T is the set of schedules. An execution
strategy S is viable if S(p), henceforth written Sp, is consistent with p for each
projection p.

We are now ready to define the various types of controllability, following [7].
An STNU is Weakly Controllable if there is a viable execution strategy. This

is equivalent to saying that every projection is consistent.
An STNU is Strongly Controllable if there is a viable execution strategy S

such that
Sp1(x) = Sp2(x)

for each executable timepoint x and projections p1 and p2. In Strong Controlla-
bility, a “conformant” strategy (i.e., a fixed assignment of times to the executable
timepoints) works for all the projections.

An STNU is Dynamically Controllable if there is a viable execution strategy
S such that

Sp1{≺ x} = Sp2{≺ x}⇒ Sp1(x) = Sp2(x)

for each executable timepoint x and projections p1 and p2. Thus, a Dynamic
execution strategy assigns a time to each executable timepoint that may depend
on the outcomes of contingent links in the past, but not on those in the fu-
ture (or present). This corresponds to requiring that only information available
from observation may be used in determining the schedule. We will use dynamic
strategy in the following for a (viable) Dynamic execution strategy.

It is easy to see from the definitions that Strong Controllability implies Dy-
namic Controllability, which in turn implies Weak Controllability. In this paper,
we are primarily concerned with Dynamic Controllability.

2.1 Previous Algorithms

It was shown in [3] that determining Dynamic Controllability is tractable, and
an algorithm was presented that ran in pseudo-polynomial time. We will refer
to this as the classic algorithm.

The classic algorithm involves repeated checking of a special consistency prop-
erty called pseudo-controllability. An STNU is pseudo-controllable if it is consis-
tent in the STN sense and none of the contingent links are squeezed, where a
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contingent link is squeezed if the other constraints imply a strictly tighter lower
bound or upper bound for the link. The pseudo-controllability property is tested
by computing the AllPairs Shortest Path graph using Johnson’s Algorithm [4].
If the network passes the test, the algorithm then analyzes triangles of links and
possibly tightens some constraints in a way that has been shown not to change
the status of the network as DC or non-DC, but makes explicit all limitations
to the execution strategies due to the presence of contingent links.

Some of the tightenings involve a novel temporal constraint called a wait.
Given a contingent link AB and another link AC, the <B, t> annotation on
AC indicates that execution of the timepoint C is not allowed to proceed until
after either B has occurred or t units of time have elapsed since A occurred.
Thus, a wait is a ternary constraint involving A, B, and C. It may be viewed as
a lower bound of t on AC that can be discarded if B occurs first. Note that the
annotation resembles a binary constraint on AC.

In order to describe the tightenings, the notation A
[x,y]
=⇒ B (or B

[x,y]⇐= A)
indicates a contingent link with bounds [x, y] between A and B. We use the

similar notation of A
[x,y]−→ B (or B

[x,y]←− A) for ordinary links.
We can summarize the tightenings, called reductions, used in the classic algo-

rithm as follows.

(Precedes Reduction) If u ≥ 0, y′ = y − v, x′ = x− u,

A
[x,y]
=⇒ B

[u,v]←− C adds A
[y′,x′]−→ C

(Unordered Reduction) If u < 0, v ≥ 0, y′ = y − v,

A
[x,y]
=⇒ B

[u,v]←− C adds A
<B, y′>−→ C

(Simple Regression) If y′ = y − v,

A
<B, y>−→ C

[u,v]←− D adds A
<B, y′>−→ D

(Contingent Regression) If y ≥ 0, B �= C,

A
<B, y>−→ C

[u,v]⇐= D adds A
<B, y − u>−→ D

(“Unconditional” Reduction) If u ≤ x,

B
[x,y]⇐= A

<B, u>−→ C adds A
[u,∞]−→ C

(General Reduction) If u > x,

B
[x,y]⇐= A

<B, u>−→ C adds A
[x,∞]−→ C

The tightenings involve new links that are added when the given pattern is
satisfied unless tighter links already exist. The extensive motivation for these
in [3] cannot be repeated here due to lack of space. However, some examples
may help to give the basic idea.
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Example 1. A
[1,2]
=⇒ B

[1,1]←− C. Here we must schedule C exactly one time unit be-
fore B without knowing when B will occur. This requirement cannot be achieved
in practical terms, although the network is initially consistent in the STN sense.
The Precedes Reduction makes the inconsistency explicit. Contrast this with

A
[1,2]
=⇒ B

[1,1]−→ C, where B can be observed before executing C, so no addition is
needed.
Example 2. A

[1,2]
=⇒ B

[1,2]←− C. Note that the CB constraint implies C precedes B.
This means the agent must decide on a timing for C before information about
the timing of B is available, and must do it in a way that the CB constraint
is satisfied no matter when B occurs. The only way to accomplish this given
our ignorance of B is to constrain C relative to A in such a way that the CB
constraint becomes redundant. The Precedes Reduction does this by constraining
C to happen simultaneously with A.

Example 3. A
[1,3]
=⇒ B

[−1,1]←− C. Here we cannot safely execute C before B until
time 2 after A (otherwise, if B occurs at 3, the [-1,1] constraint would be vio-
lated). After that, we can execute C prior to B if we wish, because we know B will
finish within one more time unit. Thus, we place a <B, 2> constraint on AC.

2.2 Labelled Distance Graph and Cutoff Algorithm

We now review the developments in [5], which re-expresses the reductions in a
more mathematically concise form.

An ordinary STN has an alternative representation as a distance graph, in

which a link A
[x,y]−→ B is replaced by two edges A

y−→ B and A −x←− B, where the
y and −x annotations are called weights. Edges with a weight of ∞ are omitted.
The distance graph may be viewed as an STN in which there are only upper
bounds. This allows shortest path methods to be used to determine consistency,
since an STN is consistent if and only if the distance graph does not contain a
cycle with negative total distance [6].

Similarly, there is an analogous alternative representation for an STNU called
the labelled distance graph [5]. This is actually a multigraph (which allows multi-
ple edges between two nodes), but we refer to it as a graph for simplicity. In the

labelled distance graph, each requirement link A
[x,y]−→ B is replaced by two edges

A
y−→ B and A −x←− B, just as in an STN. For a contingent link A

[x,y]
=⇒ B, we

have the same two edges A
y−→ B and A −x←− B, but we also have two additional

edges of the form A b:x−→ B and A
B:−y←− B. These are called labelled edges because

of the additional “b:” and “B:” annotations indicating the contingent timepoint
B with which they are associated. Note especially the reversal in the roles of x
and y in the labelled edges. We refer to A

B:−y←− B and A b:x−→ B as upper-case and
lower-case edges, respectively. Observe that the upper-case labelled weight B:-y
gives the value the edge would have in a projection where the contingent link
takes on its maximum value, whereas the lower-case labelled weight corresponds
to the contingent link minimum value.
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There is also a representation for a A
<B, t>−→ C wait constraint in the labelled

distance graph. This corresponds to a single edge A B:−t←− C. Note the analogy to
a lower bound. This weight is consistent with the lower bound that would occur
in a projection where the contingent link has its maximum value.

We can now represent the tightenings in terms of the labelled distance graph.
The first four categories of tightening from the classic algorithm are replaced by
what is essentially a single reduction with different flavors. These are:

(Upper-Case Reduction)

A B:x←− C
y←− D adds A

B:(x+y)←− D

(Lower-Case Reduction) If x ≤ 0,

A x←− C
c:y←− D adds A

x+y←− D

(Cross-Case Reduction) If x ≤ 0, B �= C,

A B:x←− C
c:y←− D adds A

B:(x+y)←− D

(No-Case Reduction)
A x←− C

y←− D adds A
x+y←− D

In place of the Unconditional and General Reductions, we will have a single
reduction:

(Label Removal Reduction) If z ≥ −x,

B b:x←− A B:z←− C adds A z←− C

It is shown in [5] that the new reductions are sanctioned by the old ones. For
example, Upper-Case Reduction follows from a combination of Unordered
Reduction and Simple Regression.

We emphasize that the Cross-Case Reduction does not apply when the
upper and lower labels come from the same contingent link. (This case
violates the B �= C precondition.) This restriction is crucial; otherwise, the upper-
case and lower-case edges of any contingent link could self-interact, immediately
producing an inconsistency.

With this reformulation, the “Case” (first four) reductions can all be seen as
forms of composition of edges, with the labels being used to modulate when those
compositions are allowed to occur. In light of this, the reduced distance of a path
in the labelled distance graph is defined to be the sum of edge weights in the
path, ignoring any labels. Thus, the reductions preserve the reduced distance.

Observe that upper-case labels can apply to new edges as a result of reductions
(but the targets of the edges do not change and always point to the start node of
the contingent link), whereas the lower-case edges are fixed, i.e., the reductions
do not produce new ones.

The approach in [5] also modifies the test that is applied before each iter-
ation. Instead of testing for the complex property of pseudo-controllability, it
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checks for ordinary consistency of the AllMax projection, which is defined to
be the projection where all the contingent links take on their maximum values.
(Similarly, the AllMin projection is where all the contingent links take on their
minimum values.) Observe that the distance graph of the AllMax projection can
be obtained from the labelled distance graph by (1) deleting all lower-case edges,
and (2) removing the labels from all upper-case edges.

Suppose we now take the classic algorithm for Dynamic Controllability, and
modify it by replacing the old reductions/regressions with the new, and replacing
the pseudo-controllability test with the AllMax consistency test. This modified
algorithm correctly determines DC, and furthermore, if the network is DC, qui-
escence is reached after at most O(N2) iterations of the outer loop [5]. Thus,
the algorithm can be halted at this cutoff bound. We will refer to this as the
Quadratic-Cutoff algorithm.

The algorithm can be summarized as follows.

Boolean procedure determineDC()
loop from 1 to Cutoff Bound do
if AllMax projection inconsistent

return false;
Perform applicable Reductions;
if no reductions were applicable

return true;
end loop;
return false;

end procedure

The overall algorithm runs in O(N5) time. A more precise O(N3K2) bound is
given [5] in terms of K, the number of contingent links. Note that K ≤ N since
the end-points of contingent links are restricted to be distinct. At most KN new
(upper-case) labelled edges are added to the multigraph by the reductions.

2.3 Implicit Precondition

The original derivations [3] of the reductions are in terms of a triangular network,
which assumes three distinct nodes. Thus, the Precedes reduction has an implicit
precondition, B �= C, which is not explicitly stated in [5]. Although the results
there are not affected by this omission, we point out for completeness that the
precondition is essential for the Precedes reduction. It can easily be seen, for

example, that the network A
[2,4]
=⇒ B

[0,0]−→ B has a dynamic strategy (just execute
A at time 0), and hence is DC. However, without the precondition, an application
of the Precedes reduction would produce an inconsistency. Similar remarks apply
to the Lower-Case reduction (which is derived from the Precedes reduction)
where there is an implicit A �= C precondition.

Instead of adding this precondition explicitly, we will make a different modi-
fication to the Dynamic Controllability formulation that makes it unnecessary,
and has other advantages. Recall that a dynamic strategy may depend on the
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past, but not on the future or present. We will change this so that it may de-
pend on the past or present. This essentially assumes that observations can be
acted upon instantaneously instead of requiring an infinitesimal amount of time.
This change is NOT essential to the results in this paper; they could be derived
without it. However, the mathematics works out more cleanly with the change.
It is also more consistent with the approach used in the dispatchability [8] work.

The effect of this change is that the Lower-Case and Cross-Case reduc-
tions must be modified to read as follows (note the x ≤ 0 is changed to x < 0):

(Lower-Case Reduction) If x < 0,

A x←− C
c:y←− D adds A

x+y←− D

(Cross-Case Reduction) If x < 0, B �= C,

A B:x←− C
c:y←− D adds A

B:(x+y)←− D

We will assume in the remainder of this paper that the Lower-Case and
Cross-Case reductions have been modified in this way. The Upper-Case and
No-Case reductions do not require modification.

3 Structural Characterization

We now proceed to introduce a new analysis of Dynamic Controllability that
leads to a faster algorithm.

3.1 Normal Form STNU

In this subsection, we introduce a new way of simplifying the STNU formulation.
First, we recall that in the definition of an STNU [3], the bounds on a contingent

link A
[x,y]
=⇒B are required to satisfy 0 < x < y < ∞. An analysis of the proof of

correctness in [3] shows that the strict 0 < x inequality was only needed because
of a weakness of the pseudo-controllability test in detecting a deadlock involving
a cycle of waits, and the resulting use of the General Reduction for this purpose.
In [5], the pseudo-controllability test is replaced by a test of the consistency of
the AllMax projection. This can detect a cycle of waits even when contingent
links are allowed to have lower bounds of zero. Thus, we can relax the contingent
link bound requirement to 0 ≤ x < y < ∞.

This provides an opportunity to recognize that we can restrict our attention to
a simpler subclass of STNUs without loss of generality. We will say an STNU is
in normal form if the lower bound of every contingent link is zero. Now consider

a general STNU Γ and any contingent link A
[x,y]
=⇒B in Γ where x > 0. Suppose

we create a new STNU Γ ′ where the A
[x,y]
=⇒B contingent link is replaced by

A
[x,x]−→ C

[0,y−x]
=⇒ B, where C is a new controllable timepoint. It is not difficult

to see that any dynamic strategy for Γ can be easily mapped into a dynamic
strategy for Γ ′ (just execute C at x units after A) and vice versa (just drop C).
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Thus, Γ is DC if and only if Γ ′ is DC. The replacement process can be repeated
until every contingent link with a non-zero lower-bound has been eliminated.
Thus, for any STNU, there is a normal form STNU that is equivalent in terms
of the existence of a dynamic strategy. We will assume in our subsequent analysis
that the STNUs are in normal form.

Note that the Label Removal reduction assumes a simpler form in a normal
form STNU as follows. (This facilitates our subsequent proofs.)

(Label Removal) If z ≥ 0,

A B:z←− C adds A z←− C

It is also worth commenting that with the normal form assumption, the c:x
notation could be “recycled” to mean a c:0 edge followed by a path of ordi-
nary edges of length x. This would allow the Lower-Case and Cross-Case
reductions to be rewritten as follows.

(Lower-Case Composition)

A x←− E
c:y←− D adds A

c:(x+y)←− D

(Lower Label Removal) If z < 0,

A c:z←− D adds A z←− D

(Cross-Case Composition) If B �= C,

A B:x←− E
c:y←− D adds

{
A

B:(x+y)←− D if (x + y) < 0

A
c:(x+y)←− D if (x + y) ≥ 0

We will not pursue this notation change here, but it is interesting to note the
essential symmetry between lower-case and upper-case behavior.

3.2 Path Transformations

An ordinary STN is consistent if and only if its distance graph does not contain
a negative cycle. It is tempting to suppose that Dynamic Controllability might
be characterized by the absence of cycles of negative reduced distance in the
labelled distance graph. However, this is not true in general. For example, the

STNU consisting of the single contingent link A
[0,4]
=⇒B is DC, but its distance

graph contains the cycle A b:0−→ B B:−4−→ A, which has negative reduced distance.
Nevertheless, as we will see, there is indeed a characterization of DC in terms
of negative cycles, but it involves a subclass of such cycles. In order to describe
this, we require additional concepts involving a notion of path transformation.

Consider a path P that contains a subpath Q between two points A and
B and suppose Q matches the left side of a reduction. Note that applying the
reduction to Q yields a new edge e between A to B. Now consider the path P ′
obtained from P by replacing Q by e. For convenience, we will abuse language
slightly and say P is transformed into P ′ by the reduction. (The original path
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P is of course still in the network.) Note that P ′ has the same reduced distance
as P since the reductions preserve reduced distance.

Definition 1. A path is reducible if it can be transformed into a single edge
by a sequence of reductions. A path is semi-reducible if it can be transformed
into a path without lower-case edges by a sequence of reductions.

The second property is more useful for characterizing Dynamic Controllability.
Recall that tests of the consistency of the AllMax projection are used to filter
non-DC networks in the Quadratic Cutoff algorithm. Note also that the AllMax
projection includes edge weights derived from both ordinary edges and upper-
case edges, but not from lower-case edges. We may view the reductions as grad-
ually tightening the network by transforming reduced distance in the labelled
distance graph into ordinary distance in the AllMax projection. The significant
events in this process are the transformations of paths with lower-case edges into
paths without lower-case edges. We have the following theorem. (To simplify its
statement, we will informally say an STNU has a negative cycle if its labelled
distance graph contains a cyclic path with negative reduced distance.)

Theorem 1. An STNU is Dynamically Controllable if and only if it does not
have a semi-reducible negative cycle.

Proof. If an STNU is not DC, then there is some sequence of reductions that
produces a negative cycle in the AllMax projection, i.e., a lower-case-free neg-
ative cycle in the labelled distance graph. If we now unwind that sequence of
reductions (applying the reverse transformations to the negative cycle), we arrive
at a preimage or precursor cycle in the original labelled distance graph. Since
the reductions preserve reduced distance, this is negative and semi-reducible.

Conversely, if there is a semi-reducible negative cycle, then clearly there is a
sequence of reductions that produces an inconsistency in the AllMax projection.
Thus, the STNU is not DC. ��

Observe that the cycle A b:0−→ B B:−4−→ A in our earlier example is not semi-
reducible since no reductions are applicable. (The Cross-Case reduction does
not apply since the b and B labels are from the same contingent link.)

We now look for ways of identifying semi-reducible paths. The following no-
tation will be useful. Consider a specific path P in the labelled distance graph
of an STNU. We will write e < e′ in P if e is an earlier edge than e′ in P . If
A and B are nodes in the path, we will write DP(A, B) for the reduced distance
from A to B in P . We denote the start and end nodes of an edge e by start(e)
and end(e), respectively.

Definition 2. Suppose e is a lower-case edge in P and e′ is some other
edge such that e < e′ in P . The edge e′ is a drop edge for e in P if
DP(end(e), end(e′)) < 0. The edge e′ is a moat edge for e in P if it is a drop
edge and there is no other drop edge e′′ such that e′′ < e′ in P . In this case,
we call the subpath of P from end(e) to end(e′) the extension of e in P .
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Thus, a moat edge is a closest drop edge. (The metaphor is of a moat in front
of a castle.) Note that a moat edge must be negative, hence not lower-case.

The extension subpath turns out to have a very useful property. We will say
a path P has the prefix/postfix property if every nonempty proper prefix of P
has non-negative reduced distance and every nonempty proper postfix of P has
negative reduced distance. We will also refer to such a path as a prefix/postfix
path. Observe that the extension subpath of a lower-case edge always has the
prefix/postfix property. (Otherwise there would be a closer drop edge than the
moat edge.) The following lemma will be useful.

Lemma 1 (Nesting Lemma). If two prefix/postfix paths have a non-empty
intersection, then one of the paths is contained in the other.

Proof. The intersection subpath is a postfix of one path and a prefix of the other.
It cannot be proper in both cases; otherwise it would be both non-negative and
negative, which is a contradiction. Thus, it must be equal to one of the paths,
which must then be a subpath of the other. ��

The significance of an extension subpath, as we will see, is that it can eventually
be used to “reduce away” the lower-case edge from the path. However, there is
an exceptional case where we will show this cannot occur. Suppose e is a lower-
case edge in a path and e′ is a moat edge for e. We will say e′ is unusable if e′ is
the upper-case edge from the same contingent link as e. This prepares the way
for the following fundamental theorem.

Theorem 2. A path P is semi-reducible if and only if every lower-case edge
in P has a usable moat edge in P .

Proof. First, suppose P is semi-reducible. Let e be any lower-case edge in P .
Then there must be some sequence of transformations on P that eliminates e,
i.e., e must eventually participate in a lower-case or cross-case reduction with
some edge e′ of weight w < 0 that is derived by a sequence of transformations on
P . If we unwind this sequence, we can identify a precursor subpath Q of P
that will eventually be transformed to e′. Let e′′ be the final edge of Q . Since
the reductions preserve reduced distance, it follows that DP(end(e), end(e′′)) =
w < 0. Thus, e′′ is a drop edge for e and hence e must have a moat edge e′′′.

Next, suppose the moat edge is not usable, i.e., e′′′ is the upper-case edge
that comes from the same contingent link as e. Note that every postfix of the
extension (proper or non-proper) of e is negative. It is not hard to see that this
rules out any “clearing” of the upper-case label from Q via the label removal
reduction (as modified for a normal form STNU). This implies e′ will also have
that label. But this prevents application of the cross-case reduction to eliminate
e, which is a contradiction. It follows that every lower-case edge in P has a
usable moat edge.

Conversely, suppose that every lower-case edge in P has a usable moat edge
in P . Consider the extension subpaths corresponding to all the lower-case edges
in P . By the Nesting Lemma, these are either nested or disjoint, i.e., they fall
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into nested groups. We will say an extension is innermost if it is not contained in
another extension. It is enough to show that we can transform P to eliminate
the lower-case edges that determine the innermost extensions (which cannot
contain any further lower-case edges); the result will then follow by induction
since the other extensions will become innermost after the lower-case edges of
the extensions nested within them have been eliminated.

Now consider any innermost extension E of a lower-case edge e. Since all the
proper prefixes of E are non-negative, it follows that any upper-case labels in
the interior of E can be “cleared” by applying no-case, upper-case and label
removal reductions in a left-to-right manner. The only possible upper-case edge
remaining will be the moat edge e′. Since this is usable, either e′ is an ordinary
edge, or e′ is an upper-case edge from a different contingent link than e. Thus,
E will eventually reduce to an e′′ that is either an ordinary edge or an upper-
case edge from a different contingent link than e. Since E has negative reduced
distance, the e′′ can then participate in a reduction that eliminates e. ��

We can make two important observations from the converse part of the proof of
theorem 2. First, the nesting property allows us to place a left-paren before each
lower-case edge and a matching right paren after each corresponding moat edge;
we call this the parenthesization of the path. The second observation is that there
is a standard way of performing the transformations, using the parenthesization,
that is guaranteed to eliminate the lower-case edges from a semi-reducible path.
We call this the canonical elimination.

3.3 Complexity of Negative Cycles

Our next task is to analyze the complexity of semi-reducible negative cycles. In
the case of an ordinary STN, if it has any negative cycle, then it must have a
simple (without any repetitions) negative cycle. This allows the Bellman-Ford
algorithm to limit the extent of its propagation. Unfortunately, a similar result
does not hold for semi-reducible negative cycles in an STNU. The problem is
that (if it is non-simple) there is no guarantee that one of its component cycles
will also be both negative and semi-reducible, as seen in the following example.
The compound cycle

B B:−2−→ A b:0−→ B 1−→ D D:−3−→ C d:0−→ D 3−→ B B:−2−→ A b:0−→ B −2−→ E 4−→ B ,

which is semi-reducible and negative, can be broken into two component cycles
B B:−2−→ A b:0−→ B 1−→ D D:−3−→ C d:0−→ D 3−→ B and B B:−2−→ A b:0−→ B −2−→ E 4−→ B .
However, the first is negative but not semi-reducible, while the second is semi-
reducible but not negative. (Note that the CD edge in the first cycle has its moat
edge BE in the second cycle.)

The good news is that there are nevertheless some simplifications that we
can apply to a semi-reducible negative cycle, and they do lead to a faster DC
checking algorithm. We require some additional concepts.

Definition 3. A lower-case edge e in a semi-reducible path has a breach if its
extension contains the upper-case edge from the same contingent link as e.
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Definition 4. A repetition of a lower-case edge e in a semi-reducible path is
nested if the extension from one occurrence contains the other.

Note that by the Nesting Lemma, the extensions from a repetition (such as AB
in the example) must be disjoint (as in the example) if they are not nested.

Theorem 3. If an STNU has any semi-reducible negative cycle, then it has a
breach-free semi-reducible negative cycle in which there are no nested repetitions.

Proof. First, we will show that breaches can be eliminated. Consider any outer-
most extension E associated with a lower-case edge e and its moat edge e′ and
suppose it has a breach edge e′′. Then e′′ �= e′. (Otherwise the moat edge would
not be usable.) Thus, DP(end(e), end(e′′)) ≥ 0 by the prefix/postfix property,
and so DP(start(e), end(e′′)) ≥ 0. Since e and e′′ are the lower-case and upper-
case edges of the same contingent link, start(e)=end(e′′). Now observe that if we
tighten the cycle by deleting the portion between start(e) and end(e′′), we will
not affect the moat edges of any remaining lower-case edges. (Since E does not
lie inside any other extension.)

Now suppose by induction that we have eliminated breaches in all extensions
that contain a given extension E . We can apply the same breach elimination
process as before. This may tighten some extension E ′ containing E such
that the former moat edge for E ′ is no longer the closest drop edge. However,
since E ′ has no breaches, the new moat edge will still be usable. Thus, we can
eliminate the breach from E , while preserving the property that every lower-
case edge has a usable moat edge. By induction, we can eliminate all breaches
while preserving this property. This leads to a new tighter (thus, still negative)
cycle in which every lower-case edge still has a usable moat edge. Thus, it is still
semi-reducible by theorem 2.

Next suppose we have a breach-free semi-reducible negative cycle P , and
consider a nested repetition, i.e., lower-case edges e1 and e2 with associated
extensions E1 and E2, respectively, such that E1 contains E2, and e1 = e2. By
the prefix/postfix property, DP(start(e1), start(e2)) ≥ 0. In this case, we can
tighten the cycle by deleting the subpath between start(e1) and start(e2). Since
the cycle is breach-free, every lower-case edge still has a usable moat edge (by a
similar argument as previously). Thus, the cycle is still semi-reducible. ��

The significance of theorem 3 is that if there are no nested repetitions, then the
depth of nesting of the extensions cannot be greater than K, where K is the
number of contingent links. We now fashion a DC checking algorithm that takes
advantage of this. The idea is that each iteration of a propagation phase will
decrement the depth of nesting by eliminating the innermost extensions. Thus,
at most K iterations will be required to detect some semi-reducible negative
cycle if an STNU is not DC. The propagation phase essentially simulates the
canonical elimination mentioned earlier: we propagate forward from each lower-
case edge over breach-free and lower-case-free paths looking for moat edges. For
each one we find, we add a new edge constraint corresponding to the reduction
of the lower-case edge and extension to a single edge.

The algorithm can be summarized as follows.
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Boolean procedure fastDCcheck()
loop from 1 to K do
if AllMax projection inconsistent return false;
loop for each lower-case edge e do
Propagate forward from end(e) over allowed paths
loop for each moat edge e’ found do

add reduced edge constraint from start(e) to end(e’)
end loop;

end loop;
end loop;
if AllMax projection inconsistent return false;
return true;

end procedure

We now estimate the complexity of this algorithm. For this, we let N be the
number of nodes, E be the number of edges, and K be the number of contingent
links. First, we observe that we need only propagate over the shortest paths
among the allowed paths. (The only consequence will be possible earlier discovery
of tighter reduced edges.) Second, a Bellman-Ford propagation that determines
consistency of the AllMax projection can be used to provide a potential function
as in Johnson’s algorithm [4]. Thus, the shortest path propagations from the
lower-case edges can use the O(E + N log N) Dijkstra algorithm. The overall
cost of the algorithm is then O(K(EN +K(E +N log N))) = O(KEN +K2E +
K2N log N). At most KN new labelled edges are added to the multigraph by
the reduction rules [3]. Using K ≤ N , we thus have E ≤ O(N2), and the overall
complexity simplifies to O(N4), compared to the previous O(N5) algorithm.

The initial filtering of networks with coincident contingent nodes can be done
in O(E) time, and the normalization process at worst doubles the number of
nodes, so these preprocessing steps do not alter the O(N4) complexity. Note
that DC checking is at least as complex as STN consistency checking, which has
an O(N3) algorithm.

4 Execution

It should be pointed out that fastDCcheck merely determines the status of an
STNU. It does not provide a network suitable for the execution algorithm de-
scribed in [3]. However, once DC has been confirmed, it is an easier matter to
prepare the network for execution. Due to space limitations, we can only outline
the approach without providing detailed proofs.

Successful execution requires that no contingent link bounds are squeezed due
to propagation when a timepoint is executed or a contingent link finishes. To
ensure that contingent link upper-bounds are not squeezed, we see from [3] that
the key requirement is that waits need to be regressed along both ordinary and
lower-case edges as far as they will go. This means that a regressWaits algorithm
analogous to fastDCcheck that works backwards from upper-case edges (using
Upper and Cross Case reductions), adds new waits and ordinary edges (the
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latter using Label Removal), and uses an AllMin propagation in each iteration to
construct the potential function, can be used to regress the waits. An argument
that is symmetrically related to the drop/moat edge analysis can be used to
show that quiescence is reached within K iterations.

Once the waits have been regressed, we need to ensure that contingent link
lower-bounds are also not squeezed. For this, we observe that propagations dur-
ing execution are only along ordinary edges. (The waits merely introduce delays.)
Thus, we need to ensure that paths that begin with lower-case edges and con-
tinue with ordinary edges are transformed to bypass the lower-case edges via the
Lower Case reduction. This can be achieved by applying a modified fastDCcheck
algorithm where the “allowed” paths are restricted to ordinary edges. With that
restriction, the proof methods of this paper can be adapted to show that quies-
cence is reached within K iterations. It can also be shown that the edges added
in this step will not disturb the quiescence of the wait regression.

Both of these post-processing steps run in similar time to fastDCcheck. Thus,
the combined algorithm is still O(N4).

5 Conclusion

We have reformulated Dynamic Controllability testing in a way that provides
mathematically simpler operations, characterized DC in terms of the absence of
a certain type of negative cycle, and used that to obtain a linear cutoff leading
to an O(N4) algorithm. Previously, only an O(N5) algorithm was known.

Acknowledgement. We thank Nicola Muscettola for discussions that con-
tributed to these results.
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Abstract. Inter-block backtracking (IBB) computes all the solutions of
sparse systems of non-linear equations over the reals. This algorithm, in-
troduced in 1998 by Bliek et al., handles a system of equations previously
decomposed into a set of (small) k×k sub-systems, called blocks. Partial
solutions are computed in the different blocks and combined together to
obtain the set of global solutions.

When solutions inside blocks are computed with interval-based tech-
niques, IBB can be viewed as a new interval-based algorithm for solv-
ing decomposed equation systems. Previous implementations used Ilog
Solver and its IlcInterval library. The fact that this interval-based
solver was more or less a black box implied several strong limitations.

The new results described in this paper come from the integration of
IBB with the interval-based library developed by the second author. This
new library allows IBB to become reliable (no solution is lost) while still
gaining several orders of magnitude w.r.t. solving the whole system. We
compare several variants of IBB on a sample of benchmarks, which allows
us to better understand the behavior of IBB. The main conclusion is that
the use of an interval Newton operator inside blocks has the most posi-
tive impact on the robustness and performance of IBB. This modifies the
influence of other features, such as intelligent backtracking and filtering
strategies.

Keywords: intervals, decomposition, solving sparse systems.

1 Introduction

Interval techniques are promising methods to compute all the solutions of a
system of non-linear constraints over the reals. They are general-purpose and
become more and more efficient. They have an increasing impact in several
domains such as robotics [21] and robust control [12]. However, it is acknowledged
that systems with hundreds (sometimes tens) non-linear constraints cannot be
tackled in practice.

In several applications made of non linear constraints, systems are sufficiently
sparse to be decomposed by equational or geometric techniques. CAD, scene
reconstruction with geometric constraints [23], molecular biology and robotics
represent such promising application fields. Different techniques can be used
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to decompose such systems into k × k blocks. Equational decomposition tech-
niques work on the constraint graph made of variables and equations [2,15]. The
simplest equational decomposition method computes a maximum matching of
the constraint graph. The strongly connected components (i.e., the cycles) yield
the different blocks, and a kind of triangular form is obtained for the system.
When equations model geometric constraints, more sophisticated geometric de-
composition techniques generally produce smaller blocks. They work directly on
a geometric view of the entities and use a rigidity property [13,10,15].

Once the decomposition has been obtained, the different blocks must be solved
in sequence. An original approach of this type has been introduced in 1998 [2] and
improved in 2003 [14]. Inter-Block Backtracking (IBB) follows the partial order
between blocks yielded by the decomposition, and calls a solver to compute the
solutions in every block. IBB combines the obtained partial solutions to build
the solutions of the problem.

Contributions

The new results described in this paper come from the integration of IBB with
our own interval-based library.
– This new library allows IBB to become reliable (no solution is lost) while

still gaining several orders of magnitude w.r.t. solving the whole system.
– An extensive comparison on a sample of CSPs allows us to better understand

the behavior of IBB and its interaction with interval analysis.
– The use of an interval Newton operator inside blocks has the most positive

impact on the robustness and performance of IBB. Interval Newton modifies
the influence of other features, such as intelligent backtracking and filtering
on the whole system (inter-block interval filtering – IBF).

2 Assumptions

We assume that the systems have a finite set of solutions. This condition also
holds on every sub-system (block), which allows IBB to combine together a finite
set of partial solutions. Usually, to produce a finite set of solutions, a system
must contain as many equations as variables. In practice, the problems that can
be decomposed are under-constrained and have more variables than equations.
However, in existing applications, the problem is made square by assigning an
initial value to a subset of variables called input parameters. The values of input
parameters may be given by the user (e.g., in robotics, the degrees of freedom,
determined during the design of the robot, serve to pilot it), read on a sketch,
or are given by a preliminary process (e.g., in scene reconstruction [23]).

3 Description of IBB

IBB works on a Directed Acyclic Graph of blocks (in short DAG) produced
by any decomposition technique. A block i is a sub-system containing equations
and variables. Some variables in i, called input variables (or parameters),
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are replaced by values when the block is solved. The other variables are called
(output) variables. There exists an arc from a block i to a block j iff an
equation in j involves at least one input variable assigned to a “value” in i.
The block i is called parent of j. The DAG implies a partial order in the solving
process.

3.1 Example

To illustrate the principle of IBB, we take the 2D mechanical configuration ex-
ample introduced in [2] (see Fig. 1). Various points (white circles) are connected
with rigid rods (lines). Rods impose a distance constraint between two points.
Point h (black circle) is attached to the rod 〈g, i〉. The distance from h to i is
one third of the distance from g to i. Finally, point d is constrained to slide on
the specified line. The problem is to find a feasible configuration of the points so
that all constraints are satisfied. An equational decomposition method produces
the DAG shown in Fig. 1-right. Points a, c and j constitute the input parameters
(see Section 2).
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Fig. 1. Didactic problem and its DAG

3.2 Description of IBB[BT]

The algorithm IBB[BT] is a simple version of IBB based on a chronological
backtracking (BT). It uses several arrays:

– solutions[i,j] is the jth solution of block i.
– #sols[i] is the number of solutions in block i.
– solIndex[i] is the index of the current solution in block i (between 0 and

#sols[i] −1).
– assignment[v] is the current value assigned to variable v.

Respecting the order of the DAG, IBB[BT] follows one of the induced total or-
ders, yielded by the list blocks. The blocks are solved one by one. The procedure
BlockSolve computes the solutions of blocks[i]. It stores them in solutions
and computes #sols[i], the number of solutions in block i. The found solutions
are assigned to block i in a combinatorial way. (The procedure assignBlock
instantiates the variables in the block: it updates assignment with the values
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given by solutions [i, solIndex[i] ].) The process continues recursively in
the next block i + 1 until a solution for the last block is found: the values in
assignment are then stored by the procedure storeTotalSolution. Of course,
when a block has no (more) solution, one has to backtrack, i.e., the next solution
of block i− 1 is chosen, if any.

The reader should notice a significant difference between IBB[BT] and the
chronological backtracking schema used in finite CSPs. The domains of variables
in a CSP are static, whereas the set of solutions of a given block may change
every time it is solved. Indeed, the system of equations itself may change from a
call to another because the input variables, i.e., the parameters of the equation
system, may change. This explains the use of the variable recompute set to true
when the algorithm goes to a block downstream.

Algorithm IBB[BT] (blocks: a list of blocks, #blocks: the number of blocks)
i ← 1
recompute ← true
while i ≥ 1 do

if recompute then
BlockSolve (blocks, i, solutions, #sols)
solIndex[i] ← 0

end
if solIndex[i] ≥ #sols[i] /* all solutions of block i have been explored */ then

i ← i− 1
recompute ← false

else
/* solutions [i, solIndex[i] ] is assigned to block i */
assignBlock (i, solIndex[i], solutions, assignment)
solIndex[i] ← solIndex[i] +1
if (i == #blocks) /* total solution found */ then

storeTotalSolution (assignment)

else
i ← i + 1
recompute ← true

end
end

end
end.

Let us emphasize this point on the didactic example. IBB[BT] follows one
total order, e.g., block 1, then 2, 3, 4, and finally 5. Calling BlockSolve on
block 1 yields two solutions for xb. When one replaces xb by one of its two values
in the equations of subsequent blocks (2 and 3), these equations have a different
coefficient xb. Block 2 must thus be solved twice, and with different equations,
in case of backtracking, one for each value of xb.

3.3 BlockSolve with Interval-Based Techniques

IBB can be used with any type of solver able to compute all the solutions of a
system of equations (over the real numbers). In a long term, we intend to use
IBB for solving systems of geometric constraints in CAD applications. In such
applications, certain blocks will be solved by interval techniques while others,
corresponding to theorems of geometry, will be solved by parametric hard-coded
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procedures obtained (off-line) by symbolic computation. In this paper, we con-
sider only interval-based solving techniques, and thus view IBB as an interval-
based algorithm for solving decomposed systems of equations.

We present here a brief introduction of the most common operators used to
solve a system of equations. The underlying principles have been developed in
interval analysis and in constraint programming communities.

The whole system of equations, as well as the different blocks in the decom-
position, are viewed as numeric CSPs.

Definition 1. A numeric CSP P = (X,C,B) contains a set of constraints C
and a set X of n variables. Every variable xi ∈ X can take a real value in the
interval xi (B = x1× ...×xn). A solution of P is an assignment of the variables
in V such that all the constraints in C are satisfied.

The n-set of intervals B can be represented by an n-dimensional parallelepiped
called box. Because real numbers cannot be represented in computer architec-
tures, the bounds of xi are floating-point numbers. A solving process reduces the
initial box until a very small box is obtained. Such a box is called an atomic
box in this paper. In theory, an interval could be composed by two consecutive
floats in the end. In practice, the process is interrupted when all the intervals
have a width less than w1, where w1 is a user-defined parameter. It is worth-
while noting that an atomic box does not necessarily contain a solution. Indeed,
evaluating an equation with interval arithmetic may prove that the equation has
no solution (when the image of the corresponding box does not contain 0), but
cannot assert that there exists a solution in the box. However, several operators
from interval analysis can often certify that there exists a solution inside an
atomic box.

Our interval-based solver uses interval-based operators to handle the blocks
(BlockSolve). In the most sophisticated variant of IBB, the following three steps
are iteratively performed. The process stops when an atomic box of size less than
w1 is obtained.

1. Bisection: One variable is chosen and its domain is split into two inter-
vals (the box is split along one of its dimensions). This yields two smaller
sub-CSPs which are handled in sequence. This makes the solving process
combinatorial.

2. Filtering/propagation: Local information is used on constraints handled in-
dividually to reduce the current box. If the current box becomes empty, the
corresponding branch (with no solution) in the search tree is cut [19,9,17].

3. Interval analysis/unicity test: Such operators use the first and/or second
derivatives of equations. They produce a “global” filtering on the current
box. If additional conditions are fulfilled, they may ensure that a unique
solution exists inside the box, thus avoiding further bisection steps.

Filtering/Propagation

Propagation is performed by an AC3-like fix-point algorithm. Several types of
filtering operators reduce the bounds of intervals (no gap is created in the cur-
rent box). The 2B-consistency (also known as Hull-consistency - HC) and the
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Box-consistency [9] algorithms both consider one constraint at a time (like
AC3) and reduce the bounds of the implied variables. Box-consistency uses
an iterative process to reduce the bounds while 2B-consistency uses projec-
tion functions. The more expensive job performed by Box-consistency may
pay when the equations contain several occurrences of a same variable. This
is not the case with our benchmarks mostly made of equations modeling dis-
tances between 2D or 3D points, and of other geometric constraints. Hence,
Box-consistency has been discarded. The 3B-consistency [19] algorithm uses
2B-consistency as sub-routine and a refutation principle (shaving; similar to
the Singleton Arc Consistency [5] in finite domains CSPs) to reduce the bounds
of every variable iteratively. On the tested benchmarks our experiments have
led us to use the 2B-consistency operator (and sometimes 3B-consistency)
combined with an interval Newton.

Interval Analysis

We have implemented in our library two operators: the Krawczyck operator and
the interval Newton (I-Newton) operator [22]. Both use an iterative numerical
process, based on the first derivatives of equations, and extended to intervals.
Without detailing these algorithms, it is worth understanding the output of
I-Newton. Applied to a box B0, I-Newton provides three possible answers:

1. When the jacobian matrix is not strongly regular, the process is immediatly
interrupted and B0 is not reduced [22]. This necessarily occurs when B0

contains several solutions. Otherwise, different iterations modifies the current
box Bi to Bi+1.

2. When Bi+1 exceeds Bi in at least one dimension, Bi+1 is intersected with Bi

before the next iteration. No existence or unicity property can be guaranteed.
3. When the box Bi+1 is included or equal to Bi, then Bi+1 is guaranteed to

contain a unique solution (existence and unicity test).

In the last case, when a unique solution has been detected, the convergence
onto an atomic box of width w1 in the subsequent iterations is very fast, i.e.,
quadratic. Moreover, the width of the obtained atomic box is often very small
(even less than w1), which highlights the significant reduction obtained in the
last iteration (see Section 7.2).

Interval Techniques and Block Solving

Let us stress a characteristic of the equation systems corresponding to blocks
when they are solved by interval-based techniques: the equations contain coef-
ficients that are not scalar but (small) intervals. Indeed, the solutions obtained
in a given block are atomic boxes and become parameters in subsequent blocks.
For example, the two possible values for xb in block 1 are replaced by atomic
boxes in block 2. This characterictic has several consequences.

The precision sometimes decreases as long as blocks are solved in sequence. A
simple example is the a 1×1 block x2 = p where the parameter p is [0, 10−10]. Due
to interval arithmetics, solving the block yields a coarser interval [−10−5, 10−5]
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for x. Of course, these pathological cases related to the proximity to 0, occur
occasionnally and, as discussed above, interval analysis renders the problem more
seldom by sometimes producing tiny atomic boxes.

The second consequence is that it has no sense to talk about a unique solution
when the parameters are not scalar and can thus take an infinite set of possible
real values. Fortunately, the unicity test of I-Newton still holds. Generalizing
the unicity test to non scalar parameters has the following meaning: if one takes
any scalar real value in the interval of every parameter, it is ensured that exactly
one point inside the atomic box found is a solution. Of course, this point changes
according to the chosen scalar values. Although this proposition has not been
published (to our knowledge), this is straightforward to extend the “scalar” proof
to systems in which the parameters are intervals.

Remark. In the old version using the IlcInterval library of Ilog Solver, the
unicity test was closely associated to the Box-consistency. It made difficult to
understand why mixing Box and 2B was fruitful. An interesting consequence of
the integration of our interval-based solver in IBB is that we now know that it
was not due to the Box-consistency itself, but related to the unicity test that
avoids bisection steps in the bottom of the search tree, and to the use of the
centered form of the equations that produces additional pruning.

4 Variants of IBB

Since 1998, several variants of IBB have been tested [2,14]. In particular, sophis-
ticated versions have been designed to exploit the partial order between blocks.
Indeed, IBB[BT] uses only the total order between blocks and forgets the actual
dependencies between them. Figure 1-right shows an example. Suppose block 5
had no solution. Chronological backtracking would go back to block 4, find a
different solution for it, and solve block 5 again. Clearly, the same failure will be
encountered again in block 5.

It is explained in [2] that the Conflict-based Backjumping and Dynamic back-
tracking schemes cannot be used to take into account the structure given by the
DAG. Therefore, an intelligent backtracking, called IBB[GPB], was introduced,
based on the partial order backtracking [20,2]. In 2003, we have also proposed
a simpler variant IBB[GBJ] [14] based on the Graph-based BackJumping (GBJ)
proposed by Dechter [6].

4.1 The Recompute Condition

In addition to intelligent backtracking schemes mentioned above, there is an
even simpler way to exploit the partial order yielded by the DAG of blocks: the
recompute condition. This condition states that it is useless to recompute the
solutions of a block with BlockSolve if the parent variables have not changed.
In that case, IBB can reuse the solutions computed the last time the block has
been handled. In other words, when handling the next block i + 1, the variable
recompute is not always set to true. This condition has been implemented in
IBB[GBJ] and in IBB[BT]. In the latter case, the variant is named IBB[BT+].
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Let us illustrate how IBB[BT+] works on the didactic example. Suppose that
the first solution of block 3 has been selected, and that the solving of block 4 has
led to no solution. IBB[BT+] then backtracks on block 3 and the second position
of point f is selected. When IBB[BT+] goes down again to block 4, that block
should normally be recomputed from scratch due to the modification of f . But
xf and yf are not implied in equations of block 4, so that the two solutions of
block 4, which had been previously computed, can be reused. It is easy to avoid
this useless computation by using the DAG: when IBB goes down to block 4, it
checks that the parent variables xe and ye have not changed.

4.2 Inter-block Filtering (IBF)

Inter-block filtering (in short IBF) can be incorporated into any variant of IBB
using an interval-based solver. The principle of IBF is the following. Instead of
limiting the filtering process to the current block i, we have extended the scope
of filtering to all the variables. More precisely, before solving a block i, one forms
a subsystem extracted from the friend blocks F ′i of block i:

1. take the set Fi = {i...#blocks} containing the blocks not yet “instantiated”,
2. keep in F ′i only the blocks in Fi that are connected to i in the DAG1.

IBF is integrated into IBB in the following way. When a bisection is applied
in a given block i, the filtering operators described above, i.e., 2B and I-Newton,
are first called inside the block. Second, IBF is launched on friend blocks of i.

To illustrate IBF, let us consider the DAG of the didactic example. When
block 1 is solved, all the other blocks are considered by IBF since they are
all connected to block 1. Any interval reduction in block 1 can thus possibly
perform a reduction for any variable of the system. When block 2 is solved, a
reduction has potentially an influence on blocks 3, 4, 5 for the same reasons.
(Notice that block 3 is a friend block of block 2 that is not downstream to block
2 in the DAG.) When block 3 is solved, a reduction can have an influence only
on block 5. Indeed, once blocks 1 and 2 have been removed (because they are
“instantiated”), block 3 and 4 do not belong anymore to the same connected
component. Hence, no propagation can reach block 4 since the parent variables
of block 5, which belong to block 2, have an interval of width at most w1 and
thus cannot be reduced further.

IBF implements only a local filtering on the friend blocks, e.g., 2B-consis-
tency on the tested benchmarks. It turns out that I-Newton is counterproductive
in IBF. First, it is expensive to compute the jacobian matrix of the whole system.
More significantly, it is likely that I-Newton does not prune at all the search space
(except when handling the last block) because it always falls in the singular case.
As a rule of thumb, if the domain of one variable x in the last block contains
two solutions, then the whole system will contain at least two solutions until x
is bisected. This prevents I-Newton from pruning the search space.

1 The orientation of the DAG is forgotten at this step, that is, the arcs of the DAG are
transformed into non-directed edges, so that the filtering can also be applied on
friend blocks that are not directly linked to block i.
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The experiments confirm that it is always fruitful to perform a sophisticated
filtering process inside blocks, whereas IBF (on the whole system) produces
sometimes, but not always, additional gains in performance.

4.3 Mixing IBF and the Recompute Condition

Incorporating IBF into IBB[BT] is straightforward. This is not the case for the
other variants of IBB. Reference [14] gives guidelines for the integration of IBF
into IBB[GBJ]. More generally, IBF adds in a sense some edges between blocks.
It renders the system less sparse and complexifies the recomputation condition.
Indeed, when IBF is launched, the parent blocks of a given block i are not the
only exterior cause of interval reductions inside i. The friend blocks of i have an
influence as well and must be taken into account.

For this reason, when IBF is performed, the recompute condition is more often
true. Since the causes of interval reductions are more numerous, it is more seldom
the case that all of them have not changed. This will explain for instance why
the gain in performance of IBB[BT+] relatively to IBB[BT] is more significant
than the gain of IBB[BT+,IBF] relatively to IBB[BT,IBF].

4.4 Two Implementations of IBB

A simple variant of IBB, called BB, is directly implemented in our interval-based
solver. BB handles the entire system of equations as a numeric CSP, and uses
a bisection heuristics based on blocks. The heuristics can only choose the next
variable to be split inside the current block i. The specific variable inside the
block i is chosen with a standard round robin strategy. Since a total solution is
computed with a depth-first search in a standard interval-based solving, the re-
compute condition cannot be incorporated. Subsystems corresponding to blocks
must be created to prune inside the blocks. Filtering on the whole system im-
plements IBF in a simple way and produces the BB[BT,IBF] version. Otherwise
we get the simple BB[BT] version.

It appears that BB is not robust against the multiple solutions problem
that often occurs in practice. With interval solving, multiple solutions occur
when several atomic boxes are close to each other: only one of them contains a
solution and the others are not discarded by filtering. Even when the number
of multiple solutions is small, BB explodes because of the multiplicative effect
of the blocks (the multiple partial solutions are combined together). In order
that this problem occurs more rarely, one can reduce the precision (i.e., enlarge
w1) or mix several filtering techniques together. The use of interval analysis
operators like I-Newton is also a right way to fix most of the pathological cases
(see experiments).

Our second implementation, called IBB, does not explode because it takes the
union of the multiple solutions (i.e., the hull of the solutions). IBB considers the
different blocks separetely, so that all the solutions of a block can be computed
before solving the next one. This allows IBB to merge multiple solutions to-
gether. This implementation is completely independent from the interval-based
solver and allows more freedom in the creation of new variants (those with the
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prefix IBB in their name). Intelligent backtracking schemes and the recompute
condition can be incorporated. However, as compared to BB, a slight overcost is
sometimes caused by the explicit management of the friend blocks. Note that
the previous implementations of IBB might lose some solutions because only one
of the multiple partial solutions inside blocks was selected (i.e., no hull was per-
formed) and might lead to a failure in the end when the selected atomic box did
not contain a solution.

5 New Contributions

The integration of our interval-based solver underlies three types of improve-
ments of IBB. As previously mentioned, using a white box allows us to better
understand what happens. Second, IBB is now reliable. The multiple solutions
problem has been handled and an ancient midpoint heuristics is now aban-
doned. This heuristics replaced every parameter, i.e., input variable, of a block
by a floating-point number in the “middle” of its interval. This heuristics was
necessary because the IlcInterval library previously used did not allow the
use of interval coefficients. Our new solver accepts non scalar coefficients so that
no solution is lost anymore, making thus IBB reliable. The midpoint heuristics
would however allow the management of sharper boxes, but the gain in running
time would be less than 5% in our benchmarks. The price of reliability is not so
high!

Finally, as shown in the experiments reported below, the most significant
impact on IBB is due to the integration of an interval Newton inside the blocks.
I-Newton has a good power of filtering, can often reach the finest precision (which
is of great interest due to the multiplicative effect of the blocks) and often certifies
the solutions. Hence, the combinatorial explosion due to multiple solutions has
been drastically limited. Moreover, the use of I-Newton alters the comparison
between variants. In particular, in the previous versions, we concluded that IBF
was counterproductive, whereas it is not always true today. Also, the interest of
intelligent backtracking algorithms is clearly put into question, which confirms
the intuition shared by the constraint programming community that a better
filtering removes backtracks (and backjumps). Moreover, since I-Newton has a
good filtering power, obtaining an atomic box requires less bisections. Hence,
the number of calls to IBF is reduced in the same proportion.

6 Benchmarks

Exhaustive experiments have been performed on 10 benchmarks made of ge-
ometric constraints. They compare different variants of IBB and show a clear
improvement w.r.t. solving the whole system.

Some benchmarks are artificial problems, mostly made of quadratic distance
constraints. Mechanism and Tangent have been found in [16] and [3]. Chair is a
realistic assembly made of 178 equations induced by a large variety of geometric
constraints: distances, angles, incidences, parallelisms, orthogonalities.

The DAGs of blocks for the benchmarks have been obtained either with an
equational method (abbrev. equ.) or with a geometric one (abbrev. geo.). Ponts
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Ponts
(Sierpinski2)

StarTangent
Mechanism

Fig. 2. 2D benchmarks: general view

Chair

Tetra Hour−glass

Fig. 3. 3D benchmarks: general view

and Tangent have been decomposed by both techniques. A problem defined
with a domain of width 100 is generally similar to assigning ]−∞,+∞[ to every
variable. The intervals in Mechanism and Sierp3 have been selected around a
given solution in order to limit the total number of solutions. In particular, the
equation system corresponding to Sierp3 would have about 240 solutions, so
that the initial domains are limited to a width 1. Sierp3 is the fractal Sierpinski
at level 3, that is, 3 Sierpinski at level 2 (i.e., Ponts) put together. The time

Table 1. Details on the benchmarks. Type of decomposition method (Dec.); number
of equations (Size); Size of blocks: NxK means N blocks of size K; Interval widths of
variables (Dom.); number of solutions (#sols); bisection precision, i.e., domain width
under which bisection does not split intervals (w1).

GCSP Dim. Dec. Size Size of blocks Dom. #sols w1

Mechanism 2D equ. 98 98 = 1x10, 2x4, 27x2, 26x1 10 448 5.10−6

Sierp3 geo. 124 124 = 44x2, 36x1 1 198 10−8

PontsE equ. 30 30 = 1x14, 6x2, 4x1 100 128 10−8

PontsG geo. 38 38 = 13x2, 12x1 100 128 10−8

TangentE equ. 28 28 = 1x4, 10x2, 4x1 100 128 10−8

TangentG geo. 42 42 = 2x4, 11x2, 12x1 100 128 10−8

Star equ. 46 46 = 3x6, 3x4, 8x2 100 128 10−8

Chair 3D equ. 178 178 = 1x15,1x13,1x9,5x8,3x6,2x4,14x3,1x2,31x1 100 8 5.10−7

Tetra equ. 30 30 = 1x9, 4x3, 1x2, 7x1 100 256 10−8

Hourglass equ. 29 29 = 1x10, 1x4, 1x3, 10x1 100 8 10−8
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spent for the equational and geometric decompositions is always negligible, i.e.,
a few milliseconds for all the benchmarks.

7 Experiments

We have applied several variants of IBB on the benchmarks described above.
All the tests have been conducted using the interval-based library implemented
in C++ by the second author [4]. The hull consistency (i.e., 2B-consistency)
is implemented with the famous HC4 that builds a syntactic tree for every con-
straint [1,17]. A “width” parameter w2 equal to 10−4 has been chosen: a con-
straint is not pushed in the propagation queue if the projection on its variables
has reduced the corresponding intervals less than w2. I-Newton is run when
the largest interval in the current box is less than 10−2. Two atomic boxes are
merged iff a unique solution has not been certified inside both and the boxes are
sufficiently close to each other, that is, for every variable, there is a distance dist
less than 10−2 between the two boxes (10−4 for the benchmark Star). Most of
the reported CPU times have been obtained on a Pentium IV 3 Ghz.

7.1 Interest of System Decomposition

The first results show the drastic improvement due to IBB as compared to four
interval-based solvers tuned to obtain the best results on the benchmarks. All
the solvers use a round-robin splitting strategy. Ilog Solver [11] uses a filtering
process mixing 2B-consistency and Box-consistency. The relatively bad CPU
times simply show that the IlcInterval library has not been improved for
several years. They have been obtained on a Pentium IV 2.2 Ghz.

Table 2. Interest of IBB. The columns in the left report the times (in seconds) spent
by three interval-based solvers to handle the systems globally. Home corresponds to
our own library. The column Best IBB reports the best time obtained by IBB. Gains
of 1, 2, 3 or 4 orders of magnitude are highlighted by the column Home/(Best IBB).
The last column reports the size of the obtained atomic boxes. The obtained precision
is often good (as compared to the specified parameter w1 – see Table 1) thanks to the
use of I-Newton. An entry XXX means that the solver is not able to isolate solutions.

GCSP Home RealPaver Ilog Solver Best IBB Home/(Best IBB) Precision
Mechanism 85 256 > 4000 1.37 62 2.10−5

Sierp3 1426 > 4000 > 4000 1.18 1208 4.10−11

Chair > 4000 > 4000 > 128 equations 0.5 > 8000 10−7

Tetra 461 98∗ > 4000 0.92 501 2.10−14

PontsE 10.3 9.5 103 0.97 10 7.10−14

PontsG 5.6 15.7 294 0.31 18 10−13

Hourglass 15.3 12.6∗ 247 0.4 38 10−13

TangentE 58 25.9∗ 191 0.1 580 5.10−14

TangentG 2710 2380 XXX 0.09 30000 4.10−14

Star 2381 237∗ 1451 0.08 30000 2.10−11
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RealPaver [7,8] and our library use a HC4+Newton filtering and obtain in this
case comparable performances. RealPaver uses HC4+Newton+weak3B on several
benchmarks (entries with a ∗) and obtains better results. This highlights the in-
terest of the weak 3B-consistency [7]. Our library uses a HC4+Newton+3B filtering
on Hourglass.

We have also applied the Quad operator [18] that is sometimes very efficient to
solve polynomial equations. This operator appears to be very slow on the tested
benchmarks.

7.2 Main Results

Tables 3, 4 and 5 report the main results we have obtained on several variants
of IBB. Table 3 first shows that the different variants obtain similar CPU time
results provided that HC4+Newton filtering is used. The conclusion is different
otherwise, as shown in Table 4.

– BT+ vs BT: BT+ always reduces the number of bisections and the num-
ber of recomputed blocks. The reason why BB[BT,IBF] is better in time than

Table 3. Variants of IBB with HC4 + I-Newton filtering. Every entry contains three
values: (top) the CPU time for obtaining all the solutions (in hundredths of second);
(middle) the total number of bisections performed by the interval solver; (bottom) the
total number of times BlockSolve is called.

1 2 3 4 5 6
GCSP IBB[BT] BB[BT] IBB[BT+] IBB[BT,IBF] BB[BT,IBF] IBB[BT+,IBF]

137 188 132 176 243 172
Mechanism 6186 6186 6101 6164 6808 6142

1635 1635 1496 1629 1629 1570
284 228 177 269 118 234

Sierp3 19455 19455 9537 2874 2874 2136
21045 21045 11564 3671 3671 3035

50 51 18 107 86 76
Chair 3814 3814 1176 3806 3806 2329

344 344 97 344 344 148
100 125 92 136 137 123

Tetra 3936 3936 3391 3942 3942 3397
235 235 99 235 235 99
98 97 97 121 122 120

PontsE 3091 3091 3046 3072 3072 3031
131 131 86 115 115 74
117 96 83 50 31 51

PontsG 8415 8415 5524 1303 1303 1303
9283 9283 6825 1011 1011 1011

40 41 40 43 45 42
Hourglass 995 995 995 994 994 994

19 19 15 19 19 19
11 10 10 19 16 19

TangentE 186 186 172 186 186 186
427 427 405 427 427 427
11 13 9 20 17 20

TangentG 402 402 83 402 402 402
411 411 238 411 411 396
28 25 17 18 18 8

Star 1420 1420 584 479 479 90
457 457 324 251 251 31
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IBB[BT+,IBF] on Sierp3 and PontsG is the more costly management of friend
blocks in the IBB implementation (see Section 4.4).

– IBB implementation vs BB: Table 4 clearly shows the combinatorial explosion
of BB involved by the multiple solution problem. The use of I-Newton limits
this problem, except for Mechanism (see Table 3, columns 4 and 5). However, it
is important to explain that the problem needed also to be fixed by manually
selecting an adequate value for the parameter w1. In particular, BB undergoes a
combinatorial explosion on Chair and Mechanism when the precision is higher
(i.e., when w1 is smaller). On the contrary, the IBB implementation automatically
adjusts w1 in every block according to the width of the largest input variable
(parameter) interval. This confirms that the IBB implementation is rarely worse
in time than the BB one, is more robust and it can add the recompute condition.

– Moderate interest of IBF: Table 4 shows that IBF is not useful when only
HC4 is used to prune inside blocks. As explained at the end of Section 5, when
I-Newton is also called to prune inside blocks, IBF becomes sometimes useful:
three instances benefit from the inter-block filtering (see Table 3). Moreover, IBF
avoids using sophisticated backtracking schemas, as shown in the last table.

– No Interest of intelligent backtracking: Table 5 reports the only two benchmarks
for which backjumps actually occur with an intelligent backtracking. It shows
that the gain obtained by an intelligent backtracking (IBB[GBJ], IBB[GPB]) is
compensated by a gain in filtering with IBF. The number of backjumps is dras-
tically reduced by the use of IBF (6 → 0 on Star; 2974 → 135 on Sierp3). The
times obtained with IBF are better than or equal to those obtained with intelligent

Table 4. Variants of IBB with HC4 filtering. The last column highlights the rather bad
precision obtained.

GCSP IBB[BT] BB[BT] IBB[BT+] IBB[BT,IBF] BB[BT,IBF] IBB[BT+,IBF] Precision
281 277 361 890 354

Mechanism 52870 XXX 52711 40696 40696 40650 7.10−4

1635 1496 1629 1629 1570
326 201 306 260

Sierp3 116490 XXX 64538 15594 XXX 12228 7.10−6

21045 11564 3671 3035

50 104 17 110 82
Chair 4408 1385 4316 XXX 2468 7.10−6

344 97 344 148
347 336 506 484

Tetra 47406 XXX 42420 28140 XXX 24666 6.10−6

235 101 235 100
843 839 1379 1365

PontsE 96522 XXX 95949 66033 XXX 65630 3.10−7

131 86 115 74
117 134 69 70

PontsG 8415 XXX 51750 7910 XXX 7910 7.10−7

9283 9283 1011 1011
130 879 132 221 465 220

Hourglass 12308 12308 11599 22007 11599 4.10−7

19 15 19 39 19
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Table 5. No interest of intelligent backtracking

1 2 3 4 5 6 7 8
GCSP IBB[BT] IBB[BT+] IBB[GBJ] IBB[GPB] BB[BT,IBF] IBB[BT,IBF] IBB[BT+,IBF] IBB[GBJ,IBF]

284 177 134 118 269 234 230
Sierp3 19455 9537 6357 > 64 blocks 2874 2874 2136 2088

21045 11564 7690 3671 3671 3035 2867
BJ=2974 BJ=135

28 17 15 8 18 18 8 8
Star 1420 584 536 182 479 479 90 90

457 324 277 64 251 251 31 31
BJ=6 BJ=0

backtracking schemas. Only a marginal gain is obtained by IBB[GBJ,IBF] w.r.t.
IBB[BT+,IBF] for Sierp3.

Remarks

IBB can often certify solutions of a decomposed system. A straightforward induc-
tion ensures that a solution is certified iff all the corresponding partial solutions
are certified in every block. Only solutions of Mechanism and Chair have not
been certified.

8 Conclusion

IBB[BT+] is often the best tested version of IBB. It is fast, simple to implement
and robust (IBB implementation). Its variant IBB[BT+,IBF] can advantageously
replace a sophisticated backtracking schema in case some backjumps occur.

Anyway, the three tables above clearly show that the main impact on robust-
ness and performance is due to the mix of local filtering and interval analysis
operators inside blocks. To complement the analysis reported in Section 5, a
clear indication is the good behavior of simple versions of IBB, i.e., IBB[BT] and
BB[BT,IBF], when such filtering operators are used (see Table 3). Tables 4 and
5 show that the influence of IBF or intelligent backtracking is less significant.

Apart from minor improvements, IBB is now mature enough to be used in
CAD applications. Promising research directions are the computation of sharper
jacobian matrices (because, in CAD, the constraints belong to a specific class)
and the design of solving algorithms for equations with non scalar coefficients.
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Abstract. We extend the common depth-first backtrack search for con-
straint satisfaction problems with randomized variable and value selec-
tion. The resulting methods are applied to real-world instances of the
tail assignment problem, a certain kind of airline planning problem. We
analyze the performance impact of these extensions and, in order to ex-
ploit the improvements, add restarts to the search procedure. Finally
computational results of the complete approach are discussed.

1 Introduction

Constraint programming has received increasing attention in a multitude of ar-
eas and applications and has successfully been incorporated into a number of
commercial systems.

Among other things it has been deployed in planning for transportation:
Grönkvist [7] uses constraint programming to solve the tail assignment prob-
lem, an airline planning variant. Gabteni and Grönkvist [3] combine this with
techniques from integer programming, in order to obtain a complete solver and
optimizer, which is currently in use at a number of medium-sized airlines.

In Gabteni and Grönkvist’s work, special constraints that internally employ
the pricing routine of a column generation integer programming solver are used
to tackle arising computational issues. In this paper, however, we set out to take
an orthogonal approach, which is not dependent on column generation but rather
relies on pure constraint programming techniques. Furthermore, in contrast to
the usage of specialized propagation algorithms, our approach is generic at heart,
hence it is more easily adaptable to problems other than tail assignment.

Recently Gomes et al. [5] have made considerable progress in exploiting the
benefits of randomization in backtrack search for constraint programming, they
also applied their findings to a number of more or less artificially constructed
problem instances.

We pursue this randomized approach with the tail assignment problem, for
which we have access to a number of real-world instances. We show how this
helps in overcoming the performance bottlenecks mentioned in [3,7].
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Our contribution is as follows: We review and present a number of new generic
randomized schemes for variable and value selection for backtrack search. We dis-
cuss how these techniques enhance performance for the tail assignment problem.
Finally, we explain how different restart strategies can systematically make use
of the improvements. We then demonstrate that this does in fact work very well
for practical purposes in real-life problem instances.

We introduce the tail assignment problem in the general context of airline
planning in Sect. 2 and give a formulation as a constraint programming prob-
lem. Section 3 describes the randomized extensions to the backtrack search pro-
cedure and gives some first computational results. In Sect. 4 we present restart
techniques as a way to exploit the benefits of randomization and discuss the
respective performance results on our real-world instances. Section 5 concludes
and outlines future research directions.

2 Problem Description

The process of airline planning is commonly divided into several isolated steps:
During timetable creation a schedule of flights (referred to as legs) is assembled
for a certain time interval. Given such an airline timetable, fleet assignment
usually means determining which type of aircraft will cover which timetable entry
while maximizing revenue. The aircraft routing process then assigns individual
aircraft to the elements of the schedule for each fleet (or subfleet), mainly with
focus on maintenance feasibility. This, in turn, is followed by crew rostering,
which selects the required personnel for each flight leg.

In practice all these steps will be subject to a number of operational con-
straints (aircraft range limitations, noise level restrictions at certain airports
etc.) and optimization criteria, for example minimizing the resulting costs or
keeping the aircraft deployment as evenly distributed as possible.

Since airline planning has received widespread attention in a multitude of
respects, there is a lot of related work. For lack of space we refer to Grönkvist
[8] for a comprehensive overview and limit ourselves to two references here:

Gopalan and Talluri [6] give a general survey of several of the common prob-
lems and methods and Barnhart et al., for instance, discuss combined fleet as-
signment / aircraft routing in [2].

2.1 The Tail Assignment Problem

The problem of tail assignment denotes the process of assigning aircraft (iden-
tified by their tail number) to each leg of a given airline timetable. As a result
one obtains a route for each aircraft, consisting of a sequence of legs. Hence
tail assignment essentially combines fleet assignment and aircraft routing as de-
scribe before. There are several practical, operational advantages inherent to this
approach, for details we refer to Gabteni and Grönkvist [3].

In their work they make use of a combined solution approach, employing
techniques from both integer programming (in particular column generation)
and constraint programming.
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The motivation for this is that constraint programming usually finds a feasible
but not necessarily optimal solution rather quickly, whereas column generation
converges slowly but ensures optimality. We will henceforth focus on the con-
straint programming component.

2.2 A Constraint Programming Model

We now formulate the tail assignment problem as a constraint satisfaction prob-
lem (CSP). First we note that, instead of flight legs and aircraft, we will speak
of activities and vehicles, which is more general and allows us for example to
include scheduled maintenance into the problem. We then start by defining the
following:

F = {f1, . . . , fn} , the set of all activities.
T = {t1, . . . , tm} , the set of all vehicles.

We will think of each activity as a node in an activity network : Initially
each vehicle is assigned a unique start activity. Each activity will eventually be
connected to the two activities pre- and succeeding it. Thus each vehicle’s route
becomes a path through the network. In fact, since we will connect a route’s end
activity to its start activity, we obtain exactly m cycles, one for each vehicle.

Now, to capture this within a CSP, we introduce a number of variables: For
all f ∈ F we have successorf with domain D(successorf ) ⊆ F initially con-
taining all activities possibly succeeding activity f . Equivalently, for all f ∈ F ,
we have vehiclef with domain D(vehiclef ) ⊆ T initially containing all the
vehicles that are in principle allowed to operate activity f .

Note that with the proper initial domains we cover a lot of the problem al-
ready. For example we can be sure that only legally allowed connections between
activities will be selected in the final solution. Moreover we can implement a
preassigned activity (like maintenance for a specific vehicle) by initializing the
respective vehicle variable with an unary domain.

Also observe that any solution to the tail assignment problem can be repre-
sented by a complete assignment to either all successor or vehicle variables –
we can construct any vehicle’s route by following the successor links from its
start activity, or we can group all activities by their vehicle value and order
those groups chronologically to obtain the routes.

To obtain stronger propagation behavior later on we also introduce a third
group of variables, similar to the successor variables: For all f ∈ F we have
predecessorf with domain D(predecessorf ) ⊆ F initially containing all ac-
tivities possibly preceding activity f .

Introducing constraints to our model, we first note that we want all routes
to be disjoint – for instance two different activities should not have the same
succeeding activity. Hence, as a first constraint, we add a global alldifferent
over all successor variables.

Moreover, since the successor and predecessor are conceptually inverse to
each other, we add a global constraint inverse(successor,predecessor) to
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our model, which is in practice implemented by means of the respective number
of binary constraints and defined likewise:

∀ i, j : fi ∈ D(successorj) ⇐⇒ fj ∈ D(predecessori) .

This also implicitly ensures disjointness with respect to the predecessor vari-
ables, hence we need not add an alldifferent constraint over those.

Finally, to obtain a connection with the vehicle variables, we define another
global constraint, which we call tunneling. It observes all variable domains and,
each time a variable gets instantiated, posts other constraints according to the
following rules (where element(a, B, c) requires the value of Ba to be equal to c):

vehiclef == t ⇒ POST element(successorf , vehicle, t)
POST element(predecessorf , vehicle, t)

successorf == f ′ ⇒ POST vehiclef = vehiclef ′

predecessorf == f ′ ⇒ POST vehiclef = vehiclef ′

These constraints already suffice to model a basic version of the tail assign-
ment problem as described above, with slightly relaxed maintenance constraints.
Still we will in practice add a number of constraints to improve propagation and
thus computational performance: For example we can add alldifferent con-
straints over vehicle variables of activities that overlap in time (for certain
cleverly picked times).

When solving this CSP we will only branch on the successor variables, mean-
ing only these are instantiated during search. We do this because successor
modifications are propagated well thanks to the consistency algorithm of the
alldifferent constraint imposed on them.

2.3 Remarks

The CSP modeled above is essentially what Gabteni and Grönkvist [3] refer to
as CSP-TASrelax – “relax” since it does not cover some of the more complicated
maintenance constraints. Still this model is used in the final integrated solution
presented in [3].

What is of interest to us, however, is that for this model Gabteni and Grönkvist
[3] report problems with excessive thrashing for problem instances containing sev-
eral different types of aircraft (and thus more flight restrictions inherent in the
initial vehicle variable domains). Thrashing means that the search procedure
spends large amounts of time in subtrees that do not contain a solution, which
results in a lot of backtracking taking place and consequently very long search
times.

Gabteni and Grönkvist [3] try to resolve this by extending the model and in-
troducing additional constraints, for which they implement strong propagation
algorithms that perform elaborate book-keeping of reachable activities and sub-
routes and thereby are able to rule out certain parts of the search tree in advance.
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It is worth noting that these propagation algorithms make use of the pricing rou-
tine of a column generation system from the area of integer programming. The
resulting extended model is then referred to as CSP-TAS.

However, with the results of Gomes et al. [5] in mind, we take a different and,
as we believe, more general approach to reduce thrashing, modifying the back-
track search procedure itself while leaving the model CSP-TASrelax unchanged.
Our solution also supersedes the use of elements from integer programming,
which are often not readily available for a CSP but require additional effort.

On another note we should point out that, although in principle tail assign-
ment depicts an optimization problem, in this paper we neglect the aspect of
solution quality and focus on finding any one solution. Experience shows that
computing any solution is often sufficient, especially if it can be achieved quickly.
Moreover, even in situations where one wants a close-to-optimal solution, finding
any feasible solution is useful as a starting point for improvement heuristics and
as a proof that a solution exists.

3 Randomizing Backtrack Search

Standard backtrack search for constraint programming interleaves search with
constraint propagation: The constraints are propagated, one search step is per-
formed, the constraints are propagated and so on. In case of a failure, when the
CSP becomes inconsistent, i. e. impossible to solve, we rollback one or several
search steps and retry.

Our focus is on the search step: Generally one starts with choosing the next
variable to branch on; after that one of the values from the variable’s domain is
selected, to which the variable is then instantiated. Both these choices will be
covered separately. A number of ideas have already been introduced by Gomes
et al. [4,5]; we will briefly review their findings and adapt the concept to our
problem by introducing enhanced randomized selection schemes.

3.1 Variable Selection

There exist several common, nonrandomized heuristics for finding the most
promising variable to branch on: For example we pick the variable with the
smallest domain size. We will call this scheme min-size, it is sometimes also
known as fail-first.

Alternatively we choose the variable with the smallest degree, where the de-
gree of a variable is the number of constraints related to it; this heuristic will
be referred to as min-degree. Grönkvist [7] uses min-size, yet we performed our
tests with both heuristics.

In case of ties, for instance when two or more variables have the same min-
imal domain size, these heuristics make a deterministic choice, for example by
lexicographical order of the variables. This already suggests a straightforward
approach to randomize the algorithm: When we encouter ties we pick one of the
candidates at random (uniformly distributed).
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With sophisticated heuristics it can happen that only one or very few variables
are in fact assigned the optimal heuristic value, meaning that the random tie-
breaking will have little or no effect after all. To alleviate this, Gomes et al.
suggest a less restrictive selection process, where the random choice is made
between all optimal variables and those whose heuristic value is within an H %
range of the optimum.

For our problem, however, we found that the said situation rarely occurs, and
in fact the less restrictive H % rule had a negative effect on search performance.

Instead we tried another similar but more general variable selection scheme:
For a certain base b ∈ R, we choose any currently unassigned variable x with
a probability proportional to the value b−s(x), where s(x) is the current size of
the variable’s domain. Observe that for increasing values of b we will gradually
approach the min-size scheme with random tie-breaking as described above.

3.2 Value Selection

Once we have determined which variable to branch on, the simplest way of
adding randomization for the value selection is to just pick a value at random
(again uniformly distributed), which is also suggested by Gomes et al. [4]. This
already works quite well, yet for the problem at hand we developed something
more specific.

As a nonrandomized value ordering heuristic for the tail assignment problem,
Grönkvist [7] suggests to choose the successor activities by increasing connection
time (recall that we only branch on the successor variables). Hence in our model
we order the activities by increasing start time, so that obtaining the shortest
possible connection time is equivalent to selecting the smallest value first.

We then take this idea as an inspiration for the following randomized value se-
lection scheme: Assuming a current domain size of n possible values, we pick the
smallest value (representing the shortest possible connection time) with proba-
bility p ∈ (0, 1), the second smallest with probability p ·q, the third smallest with
probability p · q2 and so on, for a q > 0; in general, we choose the i-th smallest
with probability p · qi−1.

Having this idea in mind, we note the following: Given n and either p or q,
we can compute q or p, respectively. To do so we take the sum over all elements’
probabilities, which has to be 1 for a valid probability distribution. The resulting
equation can then be solved for either p or q:

1 != p + pq + pq2 + . . . + pqn−1 = p

n−1∑
i=0

qi = p · 1− qn

1− q

Obviously, if we set q = 1 we obtain the uniform distribution again. With
q ∈ (0, 1) we assign the highest probability to the smallest value in the domain,
whereas p > 1 gives preference to the hightest value. Trying different values, we
eventually settled with q = 0.3 and computed p accordingly each time.

Also note that for n → ∞ we obtain q → (p−1) and thus a standard geometric
distribution. For this reason we will refer to this scheme as the “geometric”
distribution in general, even though we have in practice only finite values of n.
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3.3 Notes on Randomness

As usual the terms “randomness” and “at random” may be a bit misleading
– in fact, for our random choices we use the output of a linear congruential
random number generator [9], which is purely deterministic at heart. Thus, for
any given random seed (the initial configuration of the generator), the sequence
of numbers produced is always the same and we can only try to create the illusion
of randomness from an external point of view. That’s why these numbers are
often referred to as pseudorandom numbers.

It has been shown, for instance by Bach [1] and Mulmuley [11], that pseu-
dorandomness still works very well in practice and that the said theoretical
shortcoming does not considerably impair the algorithm’s performance.

Now it is clear that, for a given problem instance, each run of the random-
ized backtrack search algorithm is solely dependent on the random seed1. For
a certain seed the search will always explore the search space in the same way
– in particular the same solution will be produced and an identical number of
backtracks will be required.

With this in mind it is understandable why this concept is sometimes also
referred to as “deterministic randomness”. From a commercial point of view,
however, this is actually a welcome and sometimes even necessary property,
since it enables unproblematic reproduction of results, for instance for debugging
purposes.

3.4 Computational Results

For our performance tests we obtained several real-world instances of the tail
assignment problem from Carmen Systems, varying in size and complexity:

– 1D17V: 17 vehicles (only one type), 191 activities over one day.
– 1W17V: 17 vehicles (only one type), 727 activities over one week.
– 1D30V: 30 vehicles (three different types), 129 activities over one day.
– 3D74V: 74 vehicles (nine different types), 780 activities over three days.

In the first two instances, 1D17V and 1W17V, all aircraft are of the same type,
therefore there are almost no operational constraints as to which vehicle may
and may not operate a flight. The two instances 1D30V and 3D74V, however, com-
prise several different types of aircraft and hence exhibit numerous operational
constraints.

All practical tests were performed using the Gecode constraint programming
environment [15]. The package’s C++ source code is freely available, hence it was
rather easy for us to implement our custom propagators and add randomization
to the search engine.

We first tried to solve all instances with the nonrandomized backtrack search,
using different variable selection heuristics and the smallest-value-first value se-
lection heuristic . The results are shown in Table 1. As expected, given the results
1 Note that the nonrandomized run can be identified with a specific randomized run

resulting from a suitable random seed.
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Table 1. Backtracks before finding a solution using nonrandomized search

1D17V 1W17V 1D30V 3D74V

min-size 8 1 > 1000000 5
min-degree 14 1 > 1000000 > 1000000

from Gabteni and Grönkvist [3], the two instances involving just one vehicle type
can be solved rather easily, with only a few backtracks. The more constrained
instances, however, exhibit more problematic runtime behavior: We aborted the
search after running without result for several hours on a 2 GHz CPU. In the
light of our further results, we regard the short run using the min-size heuristic
on the 3D74V instance as a “lucky shot”.

To assess the impact of the randomized extensions specified above, we intro-
duce a random variable X denoting the number of backtracks needed by the
randomized backtrack search instance to find a solution. We are then interested
in the probability of finding a solution within a certain number of backtracks x,
formally P (X ≤ x).

In Fig. 1 we plot this probability for all four problem instances, using the
geometric value distribution and both min-size or min-degree with random tie-
breaking. For each curve we performed 1.000 independent runs, with different
random seeds.

Consistent with the previous findings, the two less constrained instances show
a rather satisfactory search cost distribution, with 1W17V approaching 100% at
around 10 backtracks only; at this point 1D17V is around 60% successful, it
reaches 100% after a few thousand backtracks – although the respective CP
model has fewer variables, the instances’s connection structure appears to be
more complex.

However, the situation is not as good for the distributions arising from the
more constrained instances: For 1D30V with the randomized min-degree heuristic
we get close to 50% after only 10 backtracks, but from then on the probability
does not increase notably; with min-size the success rate is slightly lower.

The biggest and most constrained instance, 3D74V, can be solved within 20
backtracks in roughly 40% of the runs, using the randomized min-size heuristic.
The success ratio then slowly increases towards 45% as we allow more backtracks.
The randomized min-degree performs considerably worse, with slightly more
than 20% success after 20 backtracks, subseqeuently increasing towards 25%
with more backtracks.

In a next step we applied the inversely exponential scheme described pre-
viously, where each unassigned variable x is selected with probability propor-
tional to b−s(x) (s(x) being the current domain size of x). We tested this for
b ∈ {e, 2.0, 2.5, 3.0, 3.5, 10.0} with 1D30V and 3D74V and compared it to the best
solutions from Fig. 1. The results are given in Figs. 2(a) and 2(b), respectively.

For the 1D30V instance the inversely exponential scheme can partly outper-
form min-degree with randomized tie-breaking. Applied to the 3D74V instance,
however, it is clearly inferior to min-size with randomized tie-breaking, only as
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b grows does the success ratio get close (since, as noted earlier, for increasing b
we approach the randomized min-size again).

All in all we think that the min-size heuristic with randomized tie-breaking is
the best choice. Although it does not produce the best search cost distributions
in some cases, its performance is never far from the respective optimum.

3.5 Analysis of Results

We have noticed before that the two instances with only one vehicle type involved
can be solved rather easily by the nonrandomized backtrack search already. This
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is also confirmed by the cost distribution for the randomized search and thus not
very surprising. The other two instances, however, seem considerably harder.

This behavior can be explained by the presence of critically constrained vari-
ables in these instances (and the related concept of backdoors [13,14]): Once this
subset of critical variables has been fixed, the remaining problem is potentially
a lot easier and everything else more or less matches up automatically.

Therefore, if the randomized heuristic picks these variables right at the start
and “good” values are assigned, a solution will probably be found within a few
backtracks. On the other hand, if we start out with noncritical variables or assign
“bad” values, the algorithm will explore large portions of the search space to no
avail. The former represents the left-hand tail of the distribution, whereas the
latter results in the long, rather flat remaining distribution.

4 Restarts

As we saw in Sect. 3, for the more constrained instances the randomized search
can quite easily “get stuck” in the right-hand side of the distribution, so that
it will take a lot of backtracks to reach a solution. On the other hand we also
observed (via the left-hand tail of the distribution) a nonnegligible probability
of finding a solution very quickly, with only a few backtracks.

Naturally we want to exploit this fact; a straightforward way to achieve that
is the introduction of restarts into the search procedure: We explore the search
tree until a certain number of backtracks has been necessary (the cutoff value),
at which point we assume that we have descended into one of the “bad” subtrees.
Thus we abort and restart the search from the initial configuration – this time
hoping to make better randomized choices along the way.

4.1 Restart Strategies

The crucial question is then how many backtracks we allow before restarting. A
number of such restart strategies have previously been proposed.

Gomes et al. [4] propose a fixed cutoff value, meaning we restart the search
every c ∈ N backtracks; they call this the rapid randomized restart strategy. In
their work the optimal cutoff value is determined by a trial-and-error process.

If one has more detailled knowledge about the specific search cost distribution
of a problem, one can mostly avoid the trial-and-error approach – however, this
knowledge is not always available. Moreover the optimal cutoff value potentially
needs to be redetermined for every problem, which does not make this approach
very general.

Therefore Walsh [12] suggests a strategy of randomization and geometric
restarts, where the cutoff value is increased geometrically after each restart by
a constant factor r > 1. This is obviously less sensitive to the underlying distri-
bution and is reported to work well by Walsh [12] and Gomes et al. [4].

An alternative general approach is the universal strategy introduced by Luby
et al. [10]. They show that the expected number of backtracks for this strategy is
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only a logarithmic factor away from what you can expect from an optimal strat-
egy. The sequence of cutoff values begins with 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,. . . , it
can be computed via the following recursion:

ci =
{

2k−1, if i = 2k − 1 ,
ci−2k−1+1, if 2k−1 ≤ i < 2k − 1 .

4.2 Computational Results

We henceforth focus on the two instances 1D30V and 3D74V, as their constrained-
ness and the resulting randomized search cost distribution (cf. Sect. 3.4) predes-
tines them for the introduction of restarts.

We solved each of the two instances with different cutoff values (i. e. the
constant cutoff value or the initial value in case of the geometric and universal
strategy). For each configuration we ran several hundred iterations with differing
random seeds and computed the arithmetic mean of the number of backtracks
required to find a feasible solution.

The resulting graphs for the constant cutoff and the universal strategy are
given in Fig. 3(a), where the x-axis value is used as a constant multiplier for the
universal strategy. For the geometrically increasing cutoff we varied the factor
r ∈ {1.1, 1.2, 1.3}, the plots of the respective averages are shown in Fig. 3(b).

4.3 Analysis of Results

To begin with, we note that the introduction of restarts does exactly what it was
intended to do, averting the long tails of the randomized search cost distributions
observed in Sect. 3.4. For most configurations a couple of dozen total backtracks
suffices to find a solution.

Looking at the left-hand side of the distributions in Fig. 1, it was to be
expected that the constant cutoff strategy can deal only poorly (or not at all)
with low cutoff values – the chance of a very short run is too small, especially
for the 3D74V instance. Both other restart strategies, with the cutoff increasing
over time, can handle these low initial values considerably better, since they will
eventually allow a sufficiently high cutoff anyway.

On the other hand, just as noted by Luby et al. in [10], a constant cutoff
permits exploiting well-fitting cutoff values more effectively than via the other
strategies. This is because, above a certain threshold, increasing the cutoff does
not result in a considerably higher probability of finding a solution (cf. the long,
almost horizontal tail of the distributions in Fig. 1).

But as we pointed out before, setting an optimal or close-to-optimal cut-
off requires knowledge about an instance’s search cost distribution, which is
mostly not available and may be computationally expensive to obtain. This is
the strength of the variable strategies, where the geometric one seems to hold a
slight advantage over the universal one, despite the theoretical logarithmic up-
per bound on the latter’s performance (cf. Sect. 4.1) – the universal strategy’s
intermediate fallbacks to low values do not fit the distributions at hand.



Randomization in Constraint Programming for Airline Planning 417

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0  5  10  15  20  25  30  35

A
ve

ra
ge

 n
um

be
r 

of
 b

ac
kt

ra
ck

s 
un

til
 s

ol
ut

io
n 

is
 fo

un
d

Cutoff value

1D30V const
1D30V  univ 
3D74V const
3D74V  univ 

(a) Constant and universal cutoff strategy

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0  5  10  15  20  25  30  35

A
ve

ra
ge

 n
um

be
r 

of
 b

ac
kt

ra
ck

s 
un

til
 s

ol
ut

io
n 

is
 fo

un
d

Initial cutoff value

1D30V r=1.1
1D30V r=1.2
1D30V r=1.3
3D74V r=1.1
3D74V r=1.2
3D74V r=1.3

(b) Geometric cutoff strategy

Fig. 3. Average number of backtracks after applying restarts to the search procedure

4.4 Search Completeness

One issue with the randomized extensions as described above is that we sacri-
fice search completeness: Although the random number generator used for the
random choices will most probably be in a different state after each restart,
one might still end up making the same decisions as before, thereby exploring
the same parts of the search space over and over again. Hence, although the
probability is evidently low, it is in theory possible to search indefinitely, either
missing an existing solution or not establishing the problem’s infeasibility.

In principle, with the geometric and universal restart strategy one will even-
tually have a sufficiently high cutoff value, so that the whole search space will be
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explored before restarting and completeness is implicitly ensured. But in prac-
tice, given the exponential size of the search space, this will take far too long –
also it does not apply to the constant cutoff value strategy.

Therefore we extended the randomized search with a special tree datastructure
for the search history, where all visited search tree nodes and “dead ends” (where
a backtrack was required) are recorded, thus making sure that the search will
not descend into a previously failed subtree.

However, while completeness is a nice theoretic property to attain, we found
that in practice it didn’t result in enough of a difference to justify the additional
processing time and memory consumption, especially since all our instances were
known in advance to have at least one solution.

A comparison for the 3D74V instance, using both the constant cutoff and uni-
versal strategy, is plotted in Fig. 4. In some cases the average number of back-
tracks increases with the introduction of the book-keeping, in some it decreases
slightly – probably the differences are partly also due to statistical variations in
the relatively low number of runs we performed for each cutoff value.

5 Conclusion and Outlook

Real-world instances of the tail assignment problem impose serious performance
problems on standard backtrack search algorithms. Previously this has been
solved by the introduction of specialized constraints, that internally make use of
the pricing routine of a column generation system.

As an alternative to this we have demonstrated how the use of randomization
and restarts can greatly improve the performance of such search algorithms when
run on tail assignment instances, reducing the required number of backtracks by
several orders of magnitude.
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In particular we have shown that with suitable but still generic randomized
extensions to the backtrack search procedure we can obtain a substantial proba-
bility of finding a solution within just a few backtracks, which we related to the
concept of critically constrained variables and backdoors. However, depending
on the random choices throughout the search process, we still encounter a lot of
very longs runs as well.

Therefore we added restarts to the search engine, which, as we noted, has
proven rewarding for other authors before [5,12]. The intention in mind is to
exploit the presence of relatively short runs, at the same time avoiding to “get
stuck” in the long tail of the search cost distribution. The presented results
confirm that this idea works very well for practical purposes.

We have also argued that the randomness is kept “controllable”, thereby en-
suring reproducibility, which is an important consideration for a potential de-
ployment in a commercial system.

So far we have not been able to experiment with a number of really big problem
instances, spanning over a month and comprising well above 2000 activities.
This was due to memory limitations on the machines we had at our disposal,
in connection with the underlying concept of the Gecode environment, which
employs copying and recomputation rather than the potentially more memory-
efficient trailing. However, based on our results we believe that these instances
would profit from our approach as well.

To summarize, we feel that randomization and restarts are an effective yet gen-
eral way to combat computational hardness in constraint satisfaction problems.
Consequently, as Gomes et al. note [4], this concept is already being deployed in
a number of production systems.

In fact, given that our findings show great potential, the possibility of ex-
tending the current Carmen Systems tail assignment optimizer accordingly will
be investigated further. In this respect it will certainly be interesting to explore
how well randomization and restarts interact with the aforementioned special-
ized constraints currently used in the system.
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Abstract. In this paper, we investigate how an IA network can be effectively en-
coded into the SAT domain. We propose two basic approaches to modelling an IA
network as a CSP: one represents the relations between intervals as variables and
the other represents the relations between end-points of intervals as variables. By
combining these two approaches with three different SAT encoding schemes, we
produced six encoding schemes for converting IA to SAT. These encodings were
empirically studied using randomly generated IA problems of sizes ranging from
20 to 100 nodes. A general conclusion we draw from these experimental results
is that encoding IA into SAT produces better results than existing approaches.
Further, we observe that the phase transition region maps directly from the IA
encoding to each SAT encoding, but, surprisingly, the location of the hard region
varies according to the encoding scheme. Our results also show a fixed perfor-
mance ranking order over the various encoding schemes.

1 Introduction

Representing and reasoning about time dependent information (i.e., temporal reason-
ing), is a central research issue in computer science and artificial intelligence. The basic
tasks include the design and development of efficient reasoning methods for finding sce-
narios that are consistent with the given information, and effectively answering queries.
Often, such information is incomplete and uncertain. One of the most expressive for-
malisms used to represent such qualitative temporal information is the Interval Algebra
(IA) proposed by Allen [1].

While IA is an expressively rich framework, the reasoning problem is computation-
ally intractable [21]. Existing reasoning techniques are generally based on the
backtracking approach (proposed by Ladkin and Reinefeld [10]), which uses path con-
sistency as forward checking. Although this approach has been further improved [13,20],
it and its variants still rely on path consistency checking at each step to prune the search
space. This native IA approach has the advantage of being fairly compact, but is dis-
advantaged by the overhead of continually ensuring path-consistency. Additionally, the
native IA representation of variables and constraints means that state-of-the-art local
search and systematic search heuristics cannot be easily transferred to the temporal
domain.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 421–436, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In practice, existing native IA backtracking approaches are only able to find consis-
tent solutions for relatively small general IA instances [18,17]. On the other hand, recent
research has shown that modelling and solving hard combinatorial problems (including
planning problems) as SAT instances can produce significant performance benefits over
solving problems in their original form [9,8,15]. This motivated us to undertake this
study.

In this paper we investigate whether the representation of IA problems using spe-
cialised models that require specialised algorithms is necessary in the general case.
Given that the development of such approaches takes considerable effort, we would
expect significant performance benefits to result. To answer this question, we look at
expressing IA as a CNF formula using six different SAT encoding schemes. This en-
ables us to apply a range of SAT solvers and to compare the performance of these with
the existing native IA approaches. To the best of our knowledge, there is no explicit and
thorough work on formulating temporal problems as SAT instances. Nebel and Bürckert
[14] pointed out that qualitative temporal instances can be translated to SAT instances
but that such a translation causes an exponential blowup in problem size. Hence, no
further investigation was provided in their work.1

The remainder of the paper is structured as follows: next we review the basic defini-
tions of IA. Then in Section 3 we introduce two models for transforming IA instances
into CSP instances. Using these methods, combined with three CSP-to-SAT encodings,
six IA-to-SAT encodings are presented in Section 4. Sections 5-7 present an empirical
study to investigate the hardness distribution of these SAT encodings and evaluate their
performance relative to each other, and in comparison to existing approaches. Finally,
Section 8 presents the conclusion and discusses future research directions.

2 Interval Algebra

Interval Algebra [1] is the most commonly used formalism to represent temporal in-
terval events. It consists of a set of 13 atomic relations between two time intervals:
I = {eq, b, bi,m,mi, o, oi, d, di, s, si, f, fi} (see Table 1). Indefinite information be-
tween two time intervals can be expressed as a subset of I (e.g. a disjunction of atomic
relations). For example, the statement “Event A can happen either before or after event
B” can be expressed as A{b, bi}B. Hence there are a total of 2|I| = 8,192 possible
relations between pairs of temporal intervals.

Let R1 and R2 be two IA relations. Then the four operators of IA: union (∪), inter-
section (∩), inversion (−1), and composition (◦), can be defined as follows:

∀ A,B : A(R1 ∪R2)B ↔ (AR1B ∨AR2B)
∀ A,B : A(R1 ∩R2)B ↔ (AR1B ∧AR2B)

∀ A,B : A(R−1
1 )B ↔ BR1A

∀ A,B : A(R1 ◦R2)B ↔ ∃ C : (AR1C ∧ CR2B).

1 Recent independent work [6] has proposed representing IA as SAT, but the authors do not
specify the transformation in detail, and do not provide an adequate empirical evaluation.
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Table 1. The 13 IA atomic relations. Note that the endpoint relations A− < A+ and B− < B+

have been omitted.

Atomic relation Symbol Meaning Endpoint relations

A before B b A�� B�� A− < B−, A− < B+

B after A bi A+ < B−, A+ < B+

A meets B m A� � B� � A− < B−, A− < B+

B met by A mi A+ = B−, A+ < B+

A overlaps B o A� � A− < B−, A− < B+

B overlapped by A oi B
� �

A+ > B−, A+ < B+

A during B d A� � A− > B−, A− < B+

B includes A di B
� �

A+ > B−, A+ < B+

A starts B s A� � A− = B−, A− < B+

B started by A si B
� �

A+ > B−, A+ < B+

A finishes B f A� � A− > B−, A− < B+

B finished by A fi B
� �

A+ > B−, A+ = B+

A equals B eq A� � A− = B−, A− < B+

B
� �

A+ > B−, A+ = B+

Hence, the intersection and union of any two temporal relations (R1, R2) are simply
the standard set-theoretic intersection and union of the two sets of atomic relations
describing R1 and R2, respectively. The inversion of a temporal relation R is the union
of the inversion of each atomic relation ri ∈ R. The composition of any pair of temporal
relations (R1, R2) is the union of all results of the composition operation on each pair of
atomic relations (r1i, r2j), where r1i ∈ R1 and r2j ∈ R2. The full composition results
of these IA atomic relations can be found in [1].

An IA network can be represented as a constraint graph or a constraint network
where the vertices represent interval events and the arcs are labelled with the possible
interval relations between a pair of intervals [13]. Usually, such a constraint graph for
n interval events is described by an n× n matrix M , where each entry Mij is the label
of the arc between the ith and jth intervals. An IA scenario is a singleton IA network
where each arc (constraint) is labelled with exactly one atomic relation.

An IA network with n intervals is globally consistent iff it is strongly n-consistent
[11]. Hence, the ISAT problem of determining the satisfiability of a given IA network
becomes the problem of determining whether that network is globally consistent [1,13].
ISAT is the fundamental reasoning task in the temporal reasoning community because
all other interesting reasoning problems can be reduced to it in polynomial time [7] and
it is one of the most important tasks in practical applications [20].

It is worth noting that enforcing path consistency [11,3] is enough to ensure global
consistency for the maximal tractable subclasses of IA, including singleton networks
[13]. Allen [1] proposed a path consistency method for an IA network M that repeat-
edly computes the following triangle operation:Mij ←Mij∩Mik◦Mkj for all triplets
of vertices (i, j, k) until no further change occurs or until Mij = ∅. These operations
remove all the atomic relations that cause an inconsistency between any triple (i, j, k)
of intervals. The resulting network is a path consistent IA network. If Mij = ∅, then
the original IA network is path inconsistent. More sophisticated path consistency algo-
rithms have been applied to IA networks that run in O(n3) time [19,13].
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3 Reformulation of IA into CSP

A common approach to encode combinatorial problems into SAT is to divide the task
into two steps: (i) modelling the original problem as a CSP; and (ii) mapping the new
CSP into SAT. In the next two subsections, we propose two transformation methods to
model IA networks as CSPs such that these CSPs can be feasibly translated into SAT.
We then discuss three SAT encoding schemes to map the CSP formulations into SAT,
producing six different approaches to encode IA networks into SAT. 2

3.1 The Interval-Based CSP Formulation

A straightforward method to formulate IA networks as CSPs is to represent each arc
as a CSP variable. We then limit the domain of each variable to the set of permissible
IA atomic relations for that arc, rather than the set of all subsets of I used in existing
IA approaches. This allows us to reduce the domain size of each variable from 213 to a
maximum of 13 values. Thus an instantiation of an interval-based CSP maps each vari-
able (arc) to exactly one atomic relation in its domain. In other words, an instantiation
of this new CSP model is actually a singleton network of the original IA network.

Lemma 1. Let Θ be a singleton IA network with 3 intervals I1, I2, and I3. Then Θ is
consistent iff r13 ∈ r12 ◦ r23 where rij is an arc between any two Ii and Ij intervals.

Proof. Trivial as there is exactly one mapping of a singleton network onto the time line.

Theorem 1. Let Θ be a singleton IA network with n intervals and rij be the label of
the arc between Ii and Ij . Then Θ is consistent iff for any triple (i < k < j) of vertices,
rij ∈ rik ◦ rkj .

Proof. (⇒) This direction is trivial as Θ is also path consistent.
(⇐) As rij ∈ rik ◦ rkj holds for all triplets (i < k < j) of vertices, Θ is path

consistent by Lemma 1. In addition, Θ is singleton. Hence, Θ is globally consistent.

Based on the results of Theorem 1, an interval-based CSP representation of a given IA
network is defined as follows:

Definition 1. Given an IA network M with n intervals, I1, . . . , In; the corresponding
interval-based CSP is (X ,D, C), where
X = {Xij | i, j ∈ [1..n], i < j}; each variable Xij represents a relation between two
intervals Ii and Ij ;
D = {Dij }, each Dij is a set of domain values for Xij , and Dij = Mij the set of
relations between interval Ii and Ij; and
C consists of the following constraints:∧

x∈Dik,y∈Dkj

Xik = x ∧Xkj = y =⇒ Xij ∈ D′
ij (1)

where i < k < j and D′
ij = Dij ∩ (x ◦ y).

2 In practice, IA networks can be directly encoded into SAT formulae without being reformu-
lated as CSPs. However, for the sake of clarity we first transform IA into two different CSP
formulations and then to SAT.
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Theorem 2. Let Θ be an IA network and Φ be the corresponding interval-based CSP
defined by Definition 1. Then Θ is globally consistent or satisfiable iff Φ is satisfiable.

Proof. We first rewrite the constraint (1) into two equivalent clauses∧
x∈Dik,y∈Dkj

Xik = x ∧Xkj = y =⇒ Xij ∈ Dij (2)

∧
x∈Dik,y∈Dkj

Xik = x ∧Xkj = y =⇒ Xij ∈ x ◦ y (3)

(⇒) Let Θ′ be a consistent scenario of Θ. As Θ′ is a singleton network, Θ′ is also
an instantiation of Φ by Definition 1. Hence clause (2) is satisfied. In addition, as Θ′

is globally consistent, clause (3) is also satisfied by Theorem 1. Hence Θ′ satisfies all
constraints of Φ. As a result, Φ is satisfiable.

(⇐) Let Φ′ be an instantiation of Φ such that it satisfies all constraints of Φ (i.e.
clauses (2) and (3) are satisfied). We construct a singleton network Θ′ by labelling each
arc (i, j) of Θ′ with the atomic relation (value) Φ′(i, j). As Φ′ satisfies clause (2), Θ′

is a singleton network of Θ. In addition, as Φ′ satisfies clause (3), we have Θ′(i, j) ∈
Θ′(i, k) ◦ Θ′(k, j) for all triples (i < k < j) of vertices. Applying Theorem 1, Θ′ is
globally consistent. As a result, Θ is satisfiable.

Example. For the sake of clarity, we use the IA network in Figure 1(a) as a running
example to illustrate the transformation of IA networks into CSPs and SAT encod-
ings. The example represents the following scenario: “Anne usually reads her paper
(I1) before or during her breakfast (I3). In addition, she always drinks a cup of cof-
fee (I2) during her breakfast. This morning, she started reading her paper before her
coffee was served and finished reading before drinking the last of her coffee”. The cor-
responding interval-based CSP of this IA network is shown in Figure 1(b), having 3
variables, which represent the temporal relations between each pair of actions. These
variables and their corresponding domains are described using the same order in X and
D. Note that as {o} ◦ {d} = {o, d, s}, the constraint between I1, I2 and I3 further re-
stricts the domain of X13 to {d} instead of its original {b, d}, i.e. Anne could not have
read her paper before breakfast if she was still reading it while drinking coffee during
breakfast.

�I1

�I2

�I3

�
�

���{o}
�

�
���

{d}

�{b, d}

X = { X12, X13, X23 }
D = { {o}, {b, d}, {d} }
C = { (X12 = o ∧ X23 = d =⇒ X13 = d) }

(a) IA network (b) interval-based CSP

Fig. 1. An interval-based CSP representation of the running example
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3.2 The Point-Based CSP Formulation

Vilain and Kautz [21] proposed the Point Algebra (PA) to model qualitative information
between time points. PA consists of a set of 3 atomic relations P = {<,=, >} and 4
operators defined in a similar manner to IA. In addition, the concepts of consistency
discussed above for IA networks are also applicable to PA networks. Again, we use
an n × n matrix P to represent a PA network with n points where Pij is the relation
between two points i and j.

As mentioned in Section 2, IA atomic relations can be uniquely expressed in terms of
their endpoint relations. However, representing non-atomic IA relations is more com-
plex, as not all IA relations can be translated into point relations. For example, the
following combination of point relations

(A− �= B−) ∧ (A− < B+) ∧ (A+ �= B−) ∧ (A+ < B+)

represents not only A{b, d}B but also A{b, d, o}B. This means that PA can only cover
2% of IA [13].

Using the CSP formalism, we can prevent the instantiation of such undesired IA rela-
tions by simply introducing new constraints into the CSP model. Let μ(r) = (vss, vse,
ves, vee) be the PA representation of an IA atomic relation r between two intervals A
and B, where vse, for example, is the corresponding PA relation between two endpoints
A− and B+. We then define the point-based CSP model of an IA network as follows:

Definition 2. Given an IA network M with n intervals and its corresponding PA net-
work P (with 2n points, P1,...,P2n), the point-based CSP of M is (X ,D, C), where
X = {Xij | i, j ∈ [1..2n], i < j}; each variable Xij represents a relation between two
points Pi and Pj of P ;
D = {Dij}, each Dij is the set of domain values for Xij and Dij = Pij the set of
point relations between Pi and Pj; and
C consists of the following constraints:∧

x∈Dik,y∈Dkj

Xik = x ∧Xkj = y =⇒ Xij ∈ D′
ij (4)

∧
r/∈Mlm

(Xl−m− , Xl−m+ , Xl+m− , Xl+m+) �= μ(r) (5)

where i < k < j, D′
ij = Dij ∩ (x ◦ y), and Xl∗m∗ is the CSP variable representing the

relation between one endpoint of interval l and one endpoint of interval m.

Theorem 3. Let Ω be a singleton PA network with n points and rij be the label of the
arc between two points Ii and Ij . Then Ω is consistent iff for any triple (i < k < j) of
vertices, rij ∈ rik ◦ rkj .

As Theorem 3 is similar to Theorem 1, we can construct its proof in a similar way to
the proof of Theorem 1.

Theorem 4. Let Θ be an IA network and Ψ be the corresponding point-based CSP
defined by Definition 2. Then Θ is globally consistent or satisfiable iff Ψ is satisfiable.
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Proof. (⇒) Let Θ′ be a consistent scenario of Θ. As Θ′ is a singleton network, its corre-
sponding point-based CSP Ψ ′, defined by Definition 2, is an instantiation of Ψ . Hence,
Ψ ′ satisfies all constraints (5). In addition, as Θ′ is globally consistent, Ψ ′ satisfies all
constraints (4) due to Theorem 3. As a result, Ψ is satisfiable.

(⇐) Let Ψ ′ be an instantiation of Ψ such that all constraints (4) and (5) are satisfied.
Let μ−1(Xl−m− , Xl−m+ , Xl+m− , Xl+m+) = r be the inversion of μ(r), such that it
maps the combination of the PA atomic relations of four endpoints (Xl−m− , Xl−m+ ,
Xl+m− , Xl+m+) to the IA atomic relation r between two intervals l and m. As every
variable Xl∗m∗ of Ψ ′ is instantiated with exactly one atomic relation, μ−1(Xl−m− ,
Xl−m+ , Xl+m− , Xl+m+) maps to exactly one interval relation.

We construct a singleton IA network Θ′ from Ψ ′ by labelling each arc (l,m) with the
corresponding IA atomic relation μ−1(Xl−m− , Xl−m+ , Xl+m− , Xl+m+). As Ψ ′ satis-
fies all constraints (5), Θ′ is a scenario of Θ. In addition,Θ′ is globally consistent by the
application of Theorem 3 as Ψ ′ satisfies all constraints (4). As a result, Θ is satisfiable.

Example. Figure 2 shows a point-based CSP corresponding to the original IA network
from Figure 1(a), including a partial PA graph to assist in understanding the point-
based CSP translation. In this graph (Figure 2(a)), each interval Ii has been replaced by
its endpoints Ii− (the start point) and Ii+ (the finish point) and all temporal relations
between pairs of intervals have been replaced by corresponding relations between their
endpoints. These endpoint relations are the CSP variables in the new model, which are
in turn instantiated with PA atomic relations. For example, the expression X1−1+ = <
means that the arc between the endpoints I1− and I1+ must be instantiated with the
value <, thereby expressing the underlying PA constraint I1− < I1+ . The power we
obtain from this CSP model is that we can disallow unwanted interpretations that cannot
be eliminated from a simple PA network. For example, in Figure 2(a) the PA graph is
not a correct alternative representation of the original IA network as it allows interval I1
to overlap (o) with interval I3. In the CSP formalism we can disallow this overlapping
relation using the third constraint in Figure 2(b): (X1−3− �= <) ∧ (X1−3+ �= <) ∧
(X1+3− �= >) ∧ (X1+3+ �= <). It should further be noted that the order of domains in
D is preserved exactly with respect to their corresponding variables in X and that all
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�I1+

�I2− �I2+

�I3−

�I3+

�
{<}

�{<}
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{<}

�
{<, >}
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�

���{>}
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�
�

�
�
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�

���

{>}

X = { X
1−1+

, X
2−2+

, X
3−3+

,

X
1−2− , X

1−2+
, X

1+2− , X
1+2+

,

X1−3− , X1−3+ , X1+3− , X1+3+ ,

X
2−3− , X

2−3+
, X

2+3− , X
2+3+

}

D = { {<}, {<}, {<},
{<}, {<}, {>}, {<},

{<, >}, {<}, {<, >}, {<},

{>}, {<}, {>}, {<} }

C = { (X1−1+= < ∧ X1+3−= < ⇒ X1−3−= <),
(X

1+2−= > ∧ X
2−3−= > ⇒ X

1+3−= >),
(X1−3−�= < ∧ X1−3+ �= < ∧

X1+3−�= > ∧ X1+3+ �= <) }

(a) PA network (b) point-based CSP

Fig. 2. A point-based CSP representation of the running example
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constraints of type (4) that do not further restrict the domain values of a variable have
been omitted.

4 Reformulation of IA into SAT

In this section, we describe three different schemes to encode the interval-based or
point-based non-binary CSP formulations (as described in the previous section) into
SAT, resulting in six different ways of encoding IA into SAT. First, we describe the one-
dimensional (1D) support scheme that naturally translates IA CSPs into CNF formulae.
We then present extensions of the direct and log encoding schemes [8,22].

4.1 The SAT 1-D Support Encoding

Using either interval-based or point-based CSP formulations, an IA network can be en-
coded as a SAT instance, in which each Boolean variable xr

ij represents an assignment
of a domain value r to a CSP variable Xij . The Boolean variable xr

ij is true iff the value
r is assigned to the CSP variable Xij . For each CSP variable Xij having a domain of
values Dij , two sets of at-least-one (ALO) and at-most-one (AMO) clauses are used to
ensure that there is exactly one domain value v ∈ Dij assigned to Xij at any time:

ALO :
∨

v∈Dij

xv
ij (6)

AMO :
∧

u,v∈Dij

¬xu
ij ∨ ¬xv

ij (7)

It is common practice to encode a general CSP into a SAT formula without the AMO
clauses, thereby allowing CSP variables to be instantiated with more than one value
[22]. A CSP solution can then be extracted by taking any single SAT-assigned value for
each CSP variable. However, our two CSP formulation methods strongly depend on the
fact that each CSP variable can only be instantiated with exactly one value at any time.
This maintains the completeness of our reformulation methods (see the proofs above).
A counter-example is shown in Figure 3. I1 is before I4 because I1 is during I2 and I2
is before I4. In addition, as I1 overlaps I3 and I3 starts I4, I1 overlaps I4. As a result,
I1 is either before or overlaps I4. However, neither of the scenarios obtained from this
network is consistent. Hence, the AMO clauses cannot be removed from our translation.

�I1

�I2 �I4

�I3

�
{d}

�
{s}

�{o}

�{b}

�
�

�
�

�
���

{b}
{o} X12 = d ∧ X24 = b ⇒ X14 = b

X13 = o ∧ X34 = s ⇒ X14 = o

Fig. 3. A counter-example of removing AMO clauses
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A natural way to encode the consistency constraints, i.e. constraints (1) and (4)
above, is to add the following support (SUP) clauses:

SUP :
∧

u∈Dik,v∈Dkj

¬xu
ik ∨ ¬xv

kj ∨ xw1
ij ∨ . . . ∨ xwm

ij (8)

where D′
ij = Dij∩(u◦v) = {w1, . . . , wm}. Note that we use the IA composition table

for the interval-based reduction method and the PA composition table for the point-
based reduction method.

The constraints (5) in a point-based CSP are translated into a SAT formula using the
following forbidden (FOR) clauses:

FOR :
∧

r/∈Mlm

¬xu
l−m− ∨ ¬xv

l−m+ ∨ ¬xy
l+m− ∨ ¬xz

l+m+ (9)

where u, v, y, z are PA atomic relations and μ(r) = (u, v, y, z). For example, given
that the PA representation of Xl{o}Xm is μ(o) = (<,<,>,<), the corresponding
forbidden clause is ¬x<

l−m− ∨ ¬x<
l−m+ ∨ ¬x>

l+m− ∨ ¬x<
l+m+ .

We refer to this method as the 1-D support encoding scheme because it encodes
the support values of the original problem. In Gent’s support encoding scheme [5], the
support clauses are necessary for both implication directions of the CSP constraints.
However, in our scheme, only one SUP clause is needed for each triple of intervals
(i < k < j), and not for all permutation orders of this triple.

ALO: (xo
12) (xb

13 ∨ xd
13) (xd

23)
AMO: (¬xb

13 ∨ ¬xd
13)

SUP: (¬xo
12 ∨ ¬xd

23 ∨ xd
13)

Fig. 4. An interval-based 1-D support encoding of the running example

ALO: (x<
1−1+) (x<

2−2+) (x<
3+3+ )

(x<
1−2− ) (x<

1−2+) (x>
1+2− ) (x<

1+2+ )
(x<

1−3− ∨ x>
1−3− ) (x<

1−3+) (x<
1+3− ∨ x>

1+3− ) (x<
1+3+ )

(x>
2−3− ) (x<

2−3+) (x>
2+3− ) (x<

2+3+ )
AMO: (¬x<

1−3− ∨ ¬x>
1−3− ) (¬x<

1+3− ∨ ¬x>
1+3−)

SUP: (¬x<
1−1+ ∨ ¬x<

1+3− ∨ x<
1−3−) (¬x>

1+2− ∨ ¬x>
2−3− ∨ x>

1+3−)
FOR: (¬x<

1−3− ∨ ¬x<
1−3+ ∨ ¬x>

1+3− ∨ ¬x<
1+3+)

Fig. 5. A point-based 1-D support encoding of the running example

4.2 The SAT Direct Encoding

Another way of representing CSP constraints as SAT clauses is to encode the conflict
values between any pair of CSP variables [8,22]. This direct encoding scheme for IA
networks can be derived from our 1-D support encoding scheme by replacing the SUP
clauses with conflict (CON) clauses. If we represent SUP clauses between a triple of
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intervals (i < k < j) as a 3D array of allowable values for the CSP variable Xij given
the values of Xik and Xkj , then the corresponding CON clauses are defined as:

CON :
∧

u∈Dik,v∈Dkj ,w∈D′′
ij

¬xu
ik ∨ ¬xv

kj ∨ ¬xw
ij (10)

where D′′
ij = Dij − (u ◦ v).

The multivalued encoding [15] is a variation of the direct encoding, where all AMO
clauses are omitted. As discussed earlier, we did not consider such an encoding because
in our IA transformations the AMO clauses play a necessary role.

ALO: (xo
12) (xb

13 ∨ xd
13) (xd

23)
AMO: (¬xb

13 ∨ ¬xd
13)

CON: (¬xo
12 ∨ ¬xd

23 ∨ ¬xb
13)

Fig. 6. An interval-based direct encoding of the running example

ALO: (x<
1−1+) (x<

2−2+ ) (x<
3+3+ )

(x<
1−2−) (x<

1−2+ ) (x>
1+2− ) (x<

1+2+)
(x<

1−3− ∨ x>
1−3−) (x<

1−3+ ) (x<
1+3− ∨ x>

1+3− ) (x<
1+3+)

(x>
2−3−) (x<

2−3+ ) (x>
2+3− ) (x<

2+3+)
AMO: (¬x<

1−3− ∨ ¬x>
1−3− ) (¬x<

1+3− ∨ ¬x>
1+3− )

CON: (¬x<
1−1+ ∨ ¬x<

1+3− ∨ ¬x>
1−3−) (¬x>

1+2− ∨ ¬x>
2−3− ∨ ¬x<

1+3− )
FOR: (¬x<

1−3− ∨ ¬x<
1−3+ ∨ ¬x>

1+3− ∨ ¬x<
1+3+)

Fig. 7. A point-based direct encoding of the running example

4.3 The SAT Log Encoding

A compact version of the direct encoding is the log encoding [8,22]. Here, a Boolean
variable xl

i is true iff the corresponding CSP variableXi is assigned a value in which the
l-th bit of that value is 1. We can linearly derive log encoded IA instances from direct
encoded IA instances by replacing each Boolean variable in the direct encoding with
its bitwise representation. As a single instantiation of the underlying CSP variable is
enforced by the bitwise representation, ALO and AMO clauses are omitted. However,
extra prohibited (PRO) clauses are added (if necessary) to prevent undesired bitwise
representations from being instantiated. For example, if the domain of variable X has
three values then we have to add the clause ¬x0

3 ∨¬x1
3 to prevent the fourth value from

assigning to X . Another way to handle redundant bitwise representations is to treat
them as equivalent to a valid representation. However, this binary encoding [4] tends
to generate exponentially more conflict clauses than the log encoding and hence is not
considered in this study.

PRO: (¬x1
12) (¬x1

23)
CONl: (x1

12 ∨ x1
23 ∨ x1

13)

Fig. 8. An interval-based log encoding of the running example
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PRO: (¬x1
1−1+) (¬x1

2−2+) (¬x1
3+3+)

(¬x1
1−2−) (¬x1

1−2+) (¬x1
1+2− ) (¬x1

1+2+)
(¬x1

1−3+) (¬x1
1+3+)

(¬x1
2−3−) (¬x1

2−3+) (¬x1
2+3− ) (¬x1

2+3+)
CONl: (x1

1−1+ ∨ x1
1+3− ∨ ¬x1

1−3− ) (x1
1+2− ∨ x1

2−3− ∨ x1
1+3−)

FOR: (x1
1−3− ∨ x1

1−3+ ∨ ¬x1
1+3− ∨ x1

1+3+)

Fig. 9. A point-based log encoding of the running example

5 The Phase Transition of SAT-Encoded IA Instances

As our SAT translations were theoretically proved sound and complete, we expected
that the following properties would also be true for our SAT-encoded IA instances:

i) The phase transition of SAT-encoded instances happens at the same critical value
of the average degree parameter d as for the original IA instances; and

ii) The performance of SAT solvers on SAT-encoded instances is proportionally sim-
ilar to the performance of temporal backtracking algorithms on the original IA in-
stances.

To verify these properties, we conducted a similar experiment to that reported in
Nebel’s study [13]. We generated an extensive benchmark test set of A(n, d, 6.5) IA
instances by varying the average degree d from 1 to 20 (in steps of 0.5 from 8 to 11 and
in steps of 1 otherwise) and n from 20 to 50 (in steps of 5).3 We generated 500 instances
for each n/d data point to obtain a set of 23 × 7 × 500 = 80, 500 test instances. We
then ran two variants of Nebel’s backtracking algorithm [13], NBTI and NBTH, on
these instances and zChaff [12] on the corresponding SAT-encoded instances. NBTI
instantiates each arc with an atomic relation in I, whereas NBTH assigns a relation
in the set H of ORD-Horn relations to each arc. The other heuristics used in Nebel’s
backtracking algorithm were set to default and all solvers were timed out after one hour.

As expected, the probability of satisfiability for our SAT-encoded instances was the
same as the probability of satisfiability for the original IA instances, regardless of the
SAT translation method. This is illustrated in Figure 10 which shows that the phase tran-
sition happens around d = 9.5 for s = 6.5 regardless of instance size or representation.
These results are consistent with the earlier work of Nebel [13].

However, the performance of zChaff on our six different SAT encodings was rela-
tively significantly different from the performance of NBTI and NBTH on the native
IA representations. As graphed in Figure 10, the median runtime of NBTI and NBTH
both peaked where the phase transition happens, i.e. d = 9.5. In contrast, the runtime
peaks of zChaff on the SAT instances were shifted away from the phase transition. The
graphs in the middle row of Figure 10 show that the median CPU time of zChaff on
the point-based 1-D support, direct and log instances peaked around d = 9, 8 and 6,
respectively. In addition, the CPU time of zChaff on instances surrounding these peaks
was relatively similar, regardless of which SAT encoding scheme was used.

3 These instances were generated by Nebel’s generator, which is available at ftp://ftp.informatik.
uni-freiburg.de/documents/papers/ki/allen-csp-solving.programs.tar.gz
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Fig. 10. The phase transition and hardness distribution of NBTI and NBTH on the native
A(n, d, 6.5) IA instances and zChaff on the corresponding SAT-encoded instances (500 instances
per data point)

This result is further supported when we take into account the performance of zChaff
on the interval-based SAT instances. The graphs in the bottom row of Figure 10 show
the median CPU time of zChaff on the corresponding interval-based 1-D support, direct
and log instances. Here we can see that the runtime peaks of zChaff are shifted away
from the phase transition in exactly the same way as they were on the point-based SAT
instances, regardless of which SAT encoding scheme was used. In fact, the CPU time
of zChaff on the interval-based direct and log instances peaked at the same points as
their corresponding point-based instances, i.e. at d = 8 and 6, respectively. The only
exception is the runtime of zChaff on the interval-based 1-D support instances which
peaked at d = 8, i.e. even further away than for the point-based 1-D support instances.

These results are quite surprising and contrast with the results of previous studies
on the phase transition behaviour of IA networks [13] and random problems [2,16].
Intuitively, the further left we move from the phase transition, the more solutions an
instance has and, as a consequence, the easier this instance should be to solve. How-
ever, this conjecture is not true for our SAT encoding schemes. The empirical results
clearly show that the hard region, where instances take significantly more time to solve,
does not always happen around the phase transition. In contrast, the representation or
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encoding of the problem instance plays an important role in determining where the hard
region will occur.

6 An Empirical Comparison Among SAT Encodings

The graphs in Figure 10 provide strong supporting evidence for the following conjec-
tures:

i) A point-based formulation produces better results than an interval-based formula-
tion, regardless of how IA instances are generated (in terms of the number of nodes
n, the average degree d or the average label size s) or the SAT encoding employed.

ii) The 1-D support encoding scheme produces the best results, followed by the direct
and log encoding schemes, regardless of how IA instances are generated (in terms
of the number of nodes n, the average degree d or the average label size s) or the
formulation method employed.

iii) Among the six encoding schemes considered, the point-based 1-D support encod-
ing is the most suitable for translating IA instances into SAT formulae.

The superior performance of the 1-D support encoding can be partly explained by
the significantly smaller number of clauses generated (on average about ten times less
than for direct or log encoded instances). However, it should be noted that the search
space (i.e. the number of variables) of 1-D support and direct encoded instances are the
same, whereas the search space of log encoded instances is O(n× (|s| − log|s|)) times
smaller [8]. A further possible reason for the superiority of the 1-D support encoding
(suggested by Gent [5]) is the reduced bias to falsify clauses, i.e. the numbers of positive
and negative literals in the support encoding are more balanced than in a direct encoding
and hence this may prevent the search from resetting variables to false shortly after they
are set to true.

7 Empirical Evaluation of SAT Versus Existing Approaches

The final question to address in this study is how our SAT approach compares to the
existing state-of-the-art specialised approaches. We generated another benchmark test
set of A(n, d, 6.5) IA instances by varying the average degree d from 1 to 20 (in steps
of 0.5 from 8 to 11 and in steps of 2 otherwise) across nine values of n varied from 60
to 100 (in steps of 5). We generated 100 instances for each n/d data point to obtain a
set of 16 × 9 × 100 = 14, 400 test instances. This test set allowed us to take a closer
look at the performance of different approaches around the phase transition while still
providing a general view across the entire distribution. We then ran NBTH on these
instances and zChaff on the corresponding point-based 1-D support SAT instances. All
solvers were timed out after one hour for n < 80 and four hours for n ≥ 80.

As shown in Figure 11, the mean CPU time of zChaff was significantly better than
the mean CPU time of NBTH (around 4.35 times at n = 100). In addition, when the test
instances became bigger (e.g. n ≥ 80), the time curves of NBTH were exponentially
increased while the time curves of zChaff remained nearly linear. These observations
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led us to conjecture that zChaff performs better than NBTH on hard instances and that
its performance scales better as the size of the test instances grows. A more thorough
analysis of the results produced further evidence to support this conjecture: with a one
hour time limit, zChaff was unable to solve 32 of the entire benchmark set of 14, 400
instances, while 323 instances remained unsolved for NBTH (see Figure 11). When the
time limit was raised to four hours, only 2 instances remained unsolvable for zChaff
in comparison with 103 for NBTH. This means that the performance of zChaff scaled
51.5 times better than NBTH on these extremely hard instances.
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Fig. 11. The CPU time and the probability of failure of zChaff on the point-based 1-D support
instances and NBTH on the native IA instances

8 Summary

In summary, we have proposed six different methods to formulate IA networks into SAT
formulae and provided the theoretical proofs of completeness of these transformation
techniques. Although our empirical results confirmed that the phase transition of IA
networks mapped directly into these SAT encodings, they also showed that the hard
regions of these problems were surprisingly shifted away from the phase transition areas
after transformation into SAT. Evaluating the effects of these SAT encodings, we found
that the point-based 1-D support scheme is the best among the six IA-to-SAT schemes
examined. Our results also revealed that zChaff combined with our point-based 1-D
support scheme could solve IA instances significantly faster than existing IA solvers
working on the equivalent native IA networks.

In future work we anticipate that the performance of our SAT-based approach can
be further improved by exploiting the special structure of IA problems in a manner
analogous to the work on TSAT [17]. The possibility also opens up of integrating our
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approach to temporal reasoning into other well known real world problems such as
planning. Given the success of SAT solvers in many real world domains, our work
promises to expand the reach of temporal reasoning approaches for IA to encompass
larger and more practical problems.
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Abstract. In the last decades, the Satisfiability and Constraint Satis-
faction Problem frameworks were extended to integrate aspects such as
uncertainties, partial observabilities, or uncontrollabilities. The resulting
formalisms, including Quantified Boolean Formulas (QBF), Quantified
CSP (QCSP), Stochastic SAT (SSAT), or Stochastic CSP (SCSP), still
rely on networks of local functions defining specific graphical models, but
they involve queries defined by sequences of distinct elimination oper-
ators (∃ and ∀ for QBF and QCSP, max and + for SSAT and SCSP)
preventing variables from being considered in an arbitrary order when
the problem is solved (be it by tree search or by variable elimination).

In this paper, we show that it is possible to take advantage of the
actual structure of such multi-operator queries to bring to light new
ordering freedoms. This leads to an improved constrained induced-width
and doing so to possible exponential gains in complexity. This analysis is
performed in a generic semiring-based algebraic framework that makes
it applicable to various formalisms. It is related with the quantifier tree
approach recently proposed for QBF but it is much more general and
gives theoretical bases to observed experimental gains.

1 Introduction

Searching for a solution to a Constraint Satisfaction Problem (CSP [1]) is equiv-
alent to searching for an assignment of the problem variables maximizing the
quantity given by the constraints conjunction, i.e. to eliminating variables using
max.1 As max is the only elimination operator involved in such a mono-operator
query, variables can be considered in any order. The situation is similar with the
Satisfiability problem (SAT) but not with Quantified CSP (QCSP [2]) or Quanti-
fied Boolean Formulas (QBF), where min (equivalent to ∀) and max (equivalent

1 Eliminating variables in a set S′ with an operator ⊕ from a function ϕ defined on
the set dom(S) of assignments of a set of variables S means computing the function
⊕S′ ϕ defined by (⊕S′ ϕ)(A) = ⊕A′∈dom(S′) ϕ(A.A′) for all assignments A of S − S′.
⊕S′ ϕ synthesizes the information given by ϕ if we disregard variables in S′.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 437–452, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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to ∃) operators can alternate, or with Stochastic SAT (SSAT [3]) or Stochastic
CSP (SCSP [4]), involving max and + operators: these frameworks define multi-
operator queries for which the order in which variables can be considered is not
free.

To overcome this difficulty, variables are usually considered in an order com-
patible with the sequence of eliminations (if this sequence is “∀x1, x2 ∃x3” for
a QCSP, then x1 and x2 are considered after x3 in a variable elimination algo-
rithm). This suffices to obtain the correct result but does not take advantage
of all the actual structural features of multi-operator queries. For example, as
shown by the quantifier trees approach [5] recently introduced for QBF, analyz-
ing hidden structures of “flat” prenex normal form QBF can lead to important
gains in terms of solving time.

After the introduction of some notations, we define a generic systematic ap-
proach for analyzing the actual macrostructure of multi-operator queries by
transforming them into a tree of mono-operator ones (Section 3). Being de-
fined in a generic algebraic framework, this approach extends and generalizes
the all quantifier tree proposal [5]. It is applicable to multiple formalisms, in-
cluding QCSP, SSAT, or SCSP. Its efficiency, experienced on QBF with quantifier
trees, is interpreted theoretically in terms of a parameter called the constrained
induced-width. Last, we define on the built macrostructure a generic variable
elimination (VE) algorithm exploiting cluster tree decompositions [6] (Section 4).

2 Background Notations and Definitions

The domain of values of a variable x is denoted dom(x). By extension, the domain
of a set of variables S is dom(S) =

∏
x∈S dom(x). A scoped function ϕ on S is a

function dom(S) → E. S is called the scope of ϕ and is denoted sc(ϕ).
In order to reason about scoped functions, we need to combine and synthesize

the information they express: e.g., to answer a QCSP ∀x1, x2 ∃x3(ϕx1,x3∧ϕx2,x3),
we need to aggregate local constraints using ∧ and to synthesize the result using
∃ on x3 and ∀ on x1, x2. The operator used to aggregate scoped functions is
called a combination operator and is denoted ⊗. The multiple operators used
to synthesize information are called elimination operators and are denoted ⊕.
More precisely, the algebraic structure we consider, defining elimination and
combination operators, is a Multi Commutative Semiring (MCS).

Definition 1. (E,⊕,⊗) is a commutative semiring iff E is a set such that ⊕
and ⊗ are binary associative, commutative operators on E, ⊕ has an identity
0⊕ ∈ E (x⊕0⊕ = x), ⊗ has an identity 1⊗ ∈ E (x⊗1⊗ = x), and ⊗ distributes
over ⊕ (x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z)).2

(E, {⊕i, i ∈ I},⊗) is a Multi Commutative Semiring (MCS) iff for all i ∈ I,
(E,⊕i,⊗) is a commutative semiring.

2 Compared to other definitions of commutative semirings, 0⊕ is not assumed to be an
annihilator for ⊗, so that e.g. (N ∪ {∞}, max, +) is seen as a commutative semiring.
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Table 1 shows MCS examples and frameworks in which they are used. There
exist many other examples, such as (E, {∩,∪},∩).

Table 1. Examples of MCS (t stands for true and f for false)

E {⊕i, i ∈ I} ⊗ Frameworks
R+ ∪ {∞} {max, +} × SSAT [3], SCSP [4], Bayesian networks [7]
R+ ∪ {∞} {min, max, +} × Extended-SSAT [3]
N ∪ {∞} {min, max} + MDPs based on kappa-rankings [8]

[0, 1] {min, max} min possibilistic optimistic MDPs [9]
{t, f} {∧, ∨} (i.e. {∀, ∃}) ∧ QBF, QCSP [2]

Definition 2. A graphical model on a MCS (E, {⊕i, i ∈ I},⊗) is a pair (V, Φ)
where V is a finite set of finite domain variables and Φ is a finite multiset of
scoped functions taking values in E and whose scopes are included in V .

A CSP is a graphical model (V, Φ) where Φ contains constraints on V . We intro-
duce operator-variables sequences and queries to reason about graphical models.

Definition 3. Let ' be a partial order on V . The set of linearizations of ',
denoted lin('), is the set of total orders '′ on V satisfying (x ' y) → (x '′ y).
Definition 4. Let (E, {⊕i, i ∈ I},⊗) be a MCS. A sequence of operator-variables
on a set of variables V is defined by SOV = op1S1

· op2S2
· . . . · oppSp

, where
{S1, S2, . . . , Sp} is a partition of V and opj ∈ {⊕i, i ∈ I} for all j ∈ {1, . . . , p}. The
partial order 'SOV induced by SOV is given by S1 ≺SOV S2 ≺SOV . . . ≺SOV Sp

(it forces variables in Sj to be eliminated before variables in Si whenever i < j).
An elimination order o : xo1 ≺ xo2 ≺ . . . ≺ xoq on V is a total order on V .
It is compatible with SOV iff o ∈ lin('SOV ). If op(x) corresponds to the elimi-
nation operator of x in SOV , SOV (o) denotes the sequence of operator-variables
op(xo1)xo1

· op(xo2)xo2
· . . . · op(xoq )

xoq
.

For the MCS (R+ ∪ {∞}, {min,max,+},×), a sequence of operator-variables
on V = {x1, x2, x3, x4, x5} is e.g. SOV = minx1,x2

∑
x3,x4

maxx5 . The partial
order it induces satisfies {x1, x2} ≺SOV {x3, x4} ≺SOV x5. The elimination
order o : x1 ≺ x2 ≺ x4 ≺ x3 ≺ x5 is compatible with SOV (and SOV (o) =
minx1 minx2

∑
x4

∑
x3

minx5), whereas o′ : x4 ≺ x2 ≺ x1 ≺ x3 ≺ x5 is not.

Definition 5. Given a MCS (E, {⊕i, i ∈ I},⊗), a query is a pair Q=(SOV,N )
where N = (V, Φ) is a graphical model and SOV is a sequence of operator-
variables on V . The answer to a query is Ans(Q) = SOV (⊗ϕ∈Φ ϕ).

All the elimination operators considered here being commutative and associative,
every elimination order compatible with 'SOV can be used to answer a query,
i.e. for every o ∈ lin('SOV ), Ans(Q) = SOV (o) (⊗ϕ∈Φ ϕ).

The definition of the answer to a query covers various decision problems raised
in many formalisms. Among the multi-operator ones, one can cite:
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1. Quantified Boolean Formulas in conjunctive prenex normal form and Quan-
tified CSPs [2], looking like ∀x1, x2∃x3∀x4 (ϕx1,x3,x4 ∧ ϕx2,x4);

2. Stochastic Satisfaction problems (SSAT and Extended-SSAT [3]) and some
queries on Stochastic CSPs [4] looking like maxd1,d2

∑
s1

maxd3(
∏

ϕ∈Φ ϕ),
where Φ contains both constraints and conditional probability distributions;

3. some types of finite horizon Markov Decision Processes (MDPs [10]), on
which queries look like maxd1 ⊕s1 . . .maxdn ⊕sn(⊗ϕ∈Φ ϕ), where (⊕,⊗)
equals (+,×) (MDPs optimizing an expected satisfaction), (max,min) (opti-
mistic possibilistic MDPs [9]), or (max,+) (MDPs based on kappa-rankings
[8]).

It also covers queries in other frameworks like Bayesian Networks (BN [7]), or
in yet unpublished frameworks such as quantified VCSPs (i.e. VCSPs [11] using
an alternation of min and max operations on a combination of soft constraints)
or semiring CSPs [11] with multiple elimination operators.

As only one combination operator is involved in the definition of the answer
to a query, formalisms such as influence diagrams [12], classical probabilistic
MDPs [10], or pessimistic possibilistic MDPs [9] are not basically covered but
can be if transformed using so-called “potentials” [13]. However, in these cases,
more direct efficient approaches can be proposed. See [14] for further details.

3 Macrostructuring a Multi-operator Query

Analyzing the macrostructure of queries means bringing to light the actual con-
straints on the elimination order and the possible decompositions. We first give
a parameter, the constrained induced-width, for quantifying the complexity of a
VE algorithm on multi-operator queries and then show how this complexity can
be decreased. This leads us to define a systematic method for structuring an
unstructured multi-operator query into a tree of mono-operator ones.

3.1 Constrained Induced-Width

A parameter defining an upper bound on the theoretical complexity of standard
VE algorithms on mono-operator queries is the induced-width [15]. In the multi-
operator case however, there are constraints on the elimination order because
the alternating elimination operators do not generally commute. The complex-
ity can then be quantified using the constrained induced-width [16,17] as defined
below.

Definition 6. Let G = (VG, HG) be a hypergraph3 and let ' be a partial or-
der on VG. The constrained induced-width wG(') of G with constraints on the
elimination order given by ' (“x ≺ y” stands for “y must be eliminated before
x”) is defined by wG(') = mino∈lin(�) wG(o), wG(o) being the induced-width of

3 VG is a set of variables and HG is a set of hyperedges on VG, i.e. a subset of 2VG .
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G for the elimination order o (i.e. the size of the largest hyperedge created when
eliminating variables in the order given by o).4

The basic hypergraph associated with a graphical model N = (V, Φ) is G =
(V, {sc(ϕ) |ϕ ∈ Φ}) and the constraints on the elimination order imposed by a
query Q = (SOV,N ) can be described by 'SOV (cf Definition 4). An upper
bound on the theoretical complexity of a VE algorithm for answering a query
is then O(|Φ| · d1+wG(�SOV )), d being the maximum domain size (for all the
complexity results of the paper, we assume that operations like a ⊗ b or a ⊕ b
take a bounded time). Since a linear variation of the constrained induced width
yields an exponential variation of the complexity, it is worth working on the two
parameters it depends on: the partial order 'SOV and the hypergraph G.

Weakening Constraints on the Elimination Order. is known to be useless
in contexts like Maximum A Posteriori hypothesis [17], where there is only one
alternation of max and sum marginalizations. But it can decrease the constrained
induced-width as soon as there are more than two levels of alternation.

Indeed, assume that a Stochastic CSP query is equivalent to computing
maxx1,...,xq

∑
y maxxq+1

(
ϕy × ϕy,x1 ×

∏
i∈{1,...,q}ϕxi,xq+1

)
(this may occur if ϕy

is a probability distribution on y, the other ϕS model constraints, and the value of
y is observed only before making decision xq+1). If one uses G = (VG, HG), with
VG = {x1, . . . , xq+1, y} and HG = {{y}, {y, x1}} ∪ {{xi, xq+1}, i ∈ {1, . . . , q}},
together with '1='SOV ({x1, . . . , xq} ≺1 y ≺1 xq+1), the constrained induced-
width is wG('1) = q, because xq+1 is then necessarily eliminated first (elimi-
nating xq+1 from G creates the hyperedge {x1, . . . , xq} of size q).

However, the scopes of the functions involved enable us to write the quantity to
compute as maxx1

((∑
y ϕy × ϕy,x1

)
×
(
maxx2,...,xq+1

(∏
i∈{1,...,q} ϕxi,xq+1

)))
.

This rewriting shows that the only constraint on the elimination order is that x1

must be eliminated before y. This constraint, modeled by '2 defined by x1 ≺2 y,
gives wG('2) = 1 (e.g. with the elimination order x1 ≺ xq+1 ≺ x2 ≺ x3 ≺ . . . ≺
xq ≺ y). Hence, the complexity decreases from O((q+2) ·d1+q) to O((q+2) ·d2)
(there is a q + 2 factor because there are q + 2 scoped functions).

This example shows that defining constraints on the elimination order from
the sequence of operator-variables only is uselessly strong and may be exponen-
tially suboptimal compared to a method considering the scopes of the functions
involved. It is also obvious that weakening constraints on the elimination order
can only decrease the constrained induced-width: if G = (VG, HG) is a hyper-
graph and if '1, '2 are two partial orders on VG such that (x '2 y)→ (x '1 y)
('2 is weaker than '1), then wG('1) ≥ wG('2).

Working on the Hypergraph. There may exist decompositions enabling to
use more than just the distributivity of ⊗ over ⊕.
4 To be more formal, we should speak of the induced-width of the primal graph of G

(the graph containing an edge {x, y} iff there exists h ∈ HG s.t. {x, y} ⊂ h) since
the usual definition of the induced-width holds on graphs (and not on hypergraphs).
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Indeed, let us consider the QCSP ∃x1 . . .∃xq∀y
(
ϕx1,y ∧ . . . ∧ ϕxq,y

)
. Using

G1 = ({x1, . . . , xq, y}, {{xi, y}, i ∈ {1, . . . , q}}) and '1 defined by {x1, . . . , xq}≺
1y gives wG1('1) = q (because y is then necessarily eliminated first). How-
ever, it is possible to duplicate y and write ∃x1 . . .∃xq∀y

(
ϕx1,y ∧ . . . ∧ ϕxq,y

)
=

∃x1, . . . ,∃xq

(
(∀y1ϕx1,y1) ∧ . . . ∧

(
∀yqϕxq,yq

))
. The complexity is then given by

G2 = ({x1, . . . , xq, y1, . . . , yq}, {{xi, yi}, i ∈ {1, . . . , q}}) and '2 defined by xi ≺2

yi, leading to the constrained induced-width wG2('2) = 1. Therefore, duplicat-
ing y decreases the theoretical complexity from O(q · dq+1) to O(q · d2).

Proposition 1 shows that such a duplication mechanism can be used only in
one specific case, applicable for eliminations with ∀ on QBF, QCSP, or with min
on possibilistic optimistic MDPs. Proposition 2 proves that duplicating is always
better than not duplicating.

Proposition 1. Let (E, {⊕i, i ∈ I},⊗) be a MCS and let ⊕ ∈ {⊕i, i ∈ I}. Then,
(⊕x (ϕ1 ⊗ ϕ2) = (⊕x ϕ1)⊗ (⊕x ϕ2) for all scoped functions ϕ1, ϕ2)↔ (⊕=⊗).

Proof. If ⊕ = ⊗, then ⊕x (ϕ1 ⊕ ϕ2) = (⊕x ϕ1) ⊕ (⊕x ϕ2) by commutativity and asso-
ciativity of ⊕. Conversely, assume that for all scoped functions ϕ1, ϕ2, ⊕x (ϕ1 ⊗ ϕ2) =
(⊕x ϕ1) ⊗ (⊕x ϕ2). As (E, {⊕i, i ∈ I}, ⊗) is a MCS, ⊗ has an identity 1⊗ and ⊕ has
an identity 0⊕. Let us consider a boolean variable x and two scoped functions ϕ1, ϕ2

of scope x, s.t. ϕ1((x, t)) = a, ϕ1((x, f)) = ϕ2((x, t)) = 1⊗, ϕ2((x, f)) = b. Then,
the initial assumption implies that (a ⊗ 1⊗) ⊕ (1⊗ ⊗ b) = (a ⊕ 1⊗) ⊗ (1⊗ ⊕ b), i.e.
a ⊕ b = (a ⊕ 1⊗) ⊗ (1⊗ ⊕ b). Taking a = b = 0⊕ gives 0⊕ = 1⊗. Consequently, for all
a, b ∈ E, a ⊕ b = (a ⊕ 1⊗) ⊗ (1⊗ ⊕ b) = (a ⊕ 0⊕) ⊗ (0⊕ ⊕ b) = a ⊗ b, i.e. ⊕ = ⊗. ��

Note that ⊕ = ⊗ implies that ⊕ is idempotent: indeed, given the properties of
a MCS, “⊕ = ⊗” implies that a⊕ a = a⊗ (1⊗ ⊕ 1⊗) = a⊗ (1⊗ ⊕ 0⊕) = a.

Proposition 2. Let (E, {⊕i, i ∈ I},⊗) be a MCS and let ⊕ ∈ {⊕i, i ∈ I}. Let
ϕx,Sj be a scoped function of scope {x} ∪ Sj for all j ∈ {1, . . . ,m}. The direct
computation of ψ = ⊕x(ϕx,S1 ⊗ · · · ⊗ ϕx,Sm) always requires more operations
than the one of (⊕xϕx,S1)⊗ · · · ⊗ (⊕xϕx,Sm). Moreover, the direct computation
of ψ results in a time complexity O(m · d1+|S1∪...∪Sm|), whereas the one of the
m quantities in the set

{
⊕xϕx,Sj | j ∈ {1, . . . ,m}

}
is O(m · d1+maxj∈{1,...,m} |Sj|).

Proof. It can be shown that computing directly ⊕x(ϕx,S1 ⊗ · · · ⊗ ϕx,Sm) requires n1 =
|dom(S1∪. . .∪Sm)|(m|dom(x)|−1) = O(md1+|S1∪...∪Sm|) operations. Directly comput-
ing the quantities in

{⊕xϕx,Sj |j ∈ {1, . . . , m}} requires n2 = (
∑

j∈{1,...,m} |dom(Sj)|) ·
(|dom(x)| −1) = O(m·d1+maxj∈{1,...,m} |Sj|) operations. Directly computing (⊕xϕx,S1)⊗
· · · ⊗ (⊕xϕx,Sm) therefore requires n3 = n2 + |dom(S1 ∪ . . . ∪ Sm)|(m − 1) opera-
tions. The result follows from n1 − n3 = (|dom(x)| − 1)(m|dom(S1 ∪ . . . ∪ Sm)| −∑

j∈{1,...,m} |dom(Sj)|) ≥ 0. ��

3.2 Towards a Tree of Mono-operator Queries

The constrained induced-width can be decreased and exponential gains in com-
plexity obtained thanks to an accurate multi-operators query analysis. The latter
corresponds to determining the actual constraints on the elimination order and
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the possible additional decompositions using duplication. To systematize it, we
introduce rewriting rules transforming an initial unstructured multi-operator
query into a tree of mono-operator ones

The basic elements used for such a transformation are computation nodes.

Definition 7. A computation node n on a MCS (E, {⊕i, i ∈ I},⊗) is:

– either a scoped function ϕ ( atomic computation node); the value of n is then
val(n) = ϕ and its scope is sc(n) = sc(ϕ);

– or a pair (SOV,N) s.t. SOV is a sequence of operator-variables on a set of
variables S and N is a set of computation nodes; the value of n is then
val(n) = SOV (⊗n′∈N val(n′)), the set of variables it eliminates is Ve(n) =
S, its scope is sc(n) = (∪n′∈N sc(n′)) − Ve(n), and the set of its sons is
Sons(n) = N .

We extend the previous definitions to sets of computation nodes N by val(N) =
⊗n′∈Nval(n′), sc(N) = ∪n′∈Nsc(n′), and, if all nodes in N are non-atomic,
then Ve(N) = ∪n′∈NVe(n′) and Sons(N) = ∪n′∈NSons(n′). Moreover, for all
⊕ ∈ {⊕i, i ∈ I}, we define the set of nodes in N performing eliminations with
⊕ by N [⊕] = {n ∈ N |n = (⊕S , N

′)}.
For example, if N = {(minx,y, N1), (

∑
z, N2), (mint, N3)}, then N [min] =

{(minx,y, N1), (mint, N3)} and N [+] = {(
∑

z, N2)}. Informally, a computation
node (SOV,N) specifies a sequence of eliminations on the combination of its
sons and can be seen as the root of a tree of computation nodes. It can be repre-
sented as in Figure 1. Given a set of computation nodes N , we define N+x (resp.
N−x) as the set of nodes of N whose scope contains x (resp. does not contain
x): N+x = {n ∈ N |x ∈ sc(n)} (resp. N−x = {n ∈ N |x /∈ sc(n)}).

SOV ϕ1 ϕ2 ϕk

nln2n1

Fig. 1. A computation node (SOV, N). Note that atomic sons (in N∩Φ = {ϕ1, . . . , ϕk})
and non-atomic ones (in N − Φ = {n1, . . . , nl}) are distinguished.

The value of computation nodes can easily be linked to the answer to a query.
Indeed, given a query Q = (SOV, (V, Φ)) defined on a MCS (E, {⊕i, i ∈ I},⊗),
Ans(Q) = val(n0) where n0 = (SOV,Φ). The problem consists in rewriting n0

so as to exhibit the query structure. To do so, we consider each variable from
the right to the left of SOV , using an elimination order o compatible with SOV
(cf Definition 4), and simulate the decomposition induced by the elimination of
the |V | variables from the right to the left of SOV (o). More precisely, we start
from the initial Computation Nodes Tree (CNT):

CNT0(Q, o) = (SOV (o), Φ)
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In the example in Figure 2, this initial CNT corresponds to the first node. For all
k ∈ {0, . . . , |V |−1}, the macrostructure at step k+1, denoted CNTk+1(Q, o), is
obtained from CNTk(Q, o) by considering the rightmost remaining elimination
and by applying two types of rewriting rules:

1. A decomposition rule DR, using the distributivity of the elimination oper-
ators over ⊗ (so that when eliminating a variable x, only scoped functions
with x in their scopes are considered) together with possible duplications.
Note that DR implements both types of decompositions.

DR (sov.⊕x, N) �
{

(sov,N−x ∪ {(⊕x, {n}) |n ∈ N+x}) if ⊕ = ⊗
(sov,N−x ∪ {(⊕x, N

+x)}) otherwise

In Figure 2, DR transforms the initial structure CNT0(Q, o) = (minx1 maxx2

maxx3 minx4 maxx5 , {ϕx3,x4 , ϕx1,x4 , ϕx1,x5 , ϕx2,x5 , ϕx3,x5}) to CNT1(Q, o) =
(minx1 maxx2 maxx3 minx4 , {ϕx3,x4 ,ϕx1,x4 , (maxx5 , {ϕx1,x5, ϕx2,x5 , ϕx3,x5})})
(case ⊕ �= ⊗). Eliminating x4 using min = ⊗ then transforms CNT1(Q, o)
to CNT2(Q, o) = (minx1 maxx2 maxx3 , {(minx4 , {ϕx3,x4}), (minx4 , {ϕx1,x4}),
(maxx5 , {ϕx1,x5 , ϕx2,x5 , ϕx3,x5})}).

2. A recomposition rule RR which aims at revealing freedoms in the elimination
order for the nodes created by DR.

RR (⊕x, N) �
(
⊕x∪Ve(N [⊕]), (N −N [⊕]) ∪ Sons(N [⊕])

)
In Figure 2, RR transforms the computation node (minx1 maxx2 , {(minx4 ,
{ϕx1,x4}), (maxx3 , {(minx4 , {ϕx3,x4}), (maxx5 , {ϕx1,x5 , ϕx2,x5 , ϕx3,x5})})})
into CNT3(Q, o) = (minx1 maxx2 , {(minx4 , {ϕx1,x4}), (maxx3,x5, {(minx4 ,
{ϕx3,x4}),ϕx1,x5, ϕx2,x5 , ϕx3,x5})}), because the structure shows that although
x3 ≺SOV x5, there is actually no need to eliminate x5 before x3. RR can-
not make one miss a better variable ordering, since what is recomposed will
always be decomposable again (using the techniques of Section 4).

More formally, for rewriting rule RR : n1 � n2, let us denote n2 = RR(n1).
Then, for all k ∈ {0, . . . , |V |−1}, CNTk+1(Q, o) = rewrite(CNTk(Q, o)), where

rewrite((sov · ⊕x, N)) =
{

(sov,N−x ∪ {RR((⊕x, {n})), n ∈ N+x}) if ⊕ = ⊗
(sov,N−x ∪ {RR((⊕x, N

+x))}) otherwise

This means that when eliminating variable x, we decompose the computations
(using duplication if ⊕ = ⊗), and recompose the created nodes in order to
reveal freedoms in the elimination order. At each step, a non-duplicated variable
appears once in the tree and a duplicated one appears at most once in each
branch of the tree. The final computation nodes tree, denoted CNT (Q, o), is

CNT (Q, o) = CNT|V |(Q, o) = rewrite|V |(CNT0(Q, o))

3.3 Some Good Properties of the Macrostructure Obtained

The Soundness of the Created Macrostructure. is provided by Proposi-
tions 3 and 4, which show that the rewriting process preserves nodes value.
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CNT1(Q, o)

CNT5(Q, o)

CNT3(Q, o)

CNT0(Q, o)

CNT2(Q, o)

ϕx2,x5maxx5 ϕx1,x5

ϕx3,x5ϕx2,x5maxx5

ϕx3,x4minx4

minx4ϕx1,x5 ϕx3,x4

minx1 maxx2 maxx3 minx4 maxx5

ϕx3,x4minx4

ϕx3,x5ϕx2,x5maxx3,x5 ϕx1,x5
minx4 ϕx1,x4

minx1 maxx2

minx1 maxx2 maxx3

ϕx2,x5ϕx1,x5

ϕx3,x4minx1 maxx2 maxx3 minx4

maxx5 ϕx3,x5

ϕx3,x4 ϕx2,x5ϕx1,x5ϕx1,x4 ϕx3,x5

maxx3

ϕx3,x5

maxx2,x3,x5 ϕx2,x5

ϕx3,x4minx4

minx1 minx1,x4 ϕx1,x4

ϕx3,x5ϕx1,x5

minx4 ϕx1,x4

minx4 ϕx1,x4

minx1 maxx2

ϕx1,x4

DR,x5

DR,x3

DR,x4

+DR,x1

+RR,x2

RR,x3

+RR,x1

DR,x2

Fig. 2. Application of the rewriting rules on a QCSP example: minx1 maxx2,x3

minx4 maxx5(ϕx3,x4 ∧ ϕx1,x4 ∧ ϕx1,x5 ∧ ϕx2,x5 ∧ ϕx3,x5), with the elimination order
o : x1 ≺ x2 ≺ x3 ≺ x4 ≺ x5

Proposition 3. Let Q = (SOV,N ) be a query and let o ∈ lin('SOV ). Then,
val(CNTk+1(Q, o)) = val(CNTk(Q, o)) for all k ∈ {0, . . . , |V | − 1}.

Proof. We use four lemmas.

Lemma 1. Rewriting rule DR : n1 � n2 is sound, i.e. val(n1) = val(n2) holds.

Proof of Lemma 1. As ⊗ distributes over ⊕, val((sov·⊕x, N))=sov ·⊕x (⊗n∈Nval(n)) =
sov((⊗n∈N−xval(n))⊗⊕x(⊗n∈N+xval(n))) (eq1). If ⊕ = ⊗, Proposition 1 implies that
⊕x (⊗n∈N+xval(n)) = ⊗n∈N+x (⊕xval(n)) = val({(⊕x, {n}) | n ∈ N+x}). Therefore,
using (eq1), val ((sov · ⊕x, N)) equals val

(
(sov, N−x ∪ {(⊕x, n) | n ∈ N+x})). Other-

wise (⊕ �= ⊗), one can just write ⊕x (⊗n∈N+xval(n)) = val
(
(⊕x, N+x)

)
. This means

that (eq1) can be written as val ((sov · ⊕x, N)) = val
(
(sov,N−x ∪ {(⊕x, N+x)})).

Lemma 2. Let RR′ : (⊕S, N1∪{(⊕S′ , N2)}) � (⊕S∪S′ , N1∪N2). If S′ ∩(S∪sc(N1)) =
∅ and N1 ∩ N2 = ∅, then RR′ is a sound rewriting rule.

Proof of Lemma 2. Given that ⊗ distributes over ⊕ and S′ ∩ sc(N1) = ∅, one can
write val((⊕S, N1 ∪ {(⊕S′ , N2)})) = ⊕S ((⊗n∈N1val(n)) ⊗ ⊕S′ (⊗n∈N1val(n))) = ⊕S ·
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⊕S′ ((⊗n∈N1val(n)) ⊗ (⊗n∈N1val(n))). As N1 ∩ N2 = ∅ and S ∩ S′ = ∅, the latter
quantity also equals ⊕S∪S′ (⊗n∈N1∪N2val(n)), i.e. val((⊕S∪S′, N1 ∪ N2)).

Lemma 3. ∀k ∈ {0, . . . , |V |}∀n = (sov, N) ∈ CNTk(Q, o), if ⊕ �= ⊗, then for all
n′ ∈ N [⊕], Ve(n′) ∩ (Ve((N − {n′})[⊕]) ∪ sc(N − {n′})) = ∅.

Proof of Lemma 3. The property holds for k = 0 since CNT0(Q,o) = (SOV, Φ) and
Φ[⊕] = ∅. If it holds at step k, it can be shown to hold at k+1 (the main point being that
DR splits the nodes with x in their scopes and the ones not having x in their scopes)

Lemma 4. RR is a sound rewriting rule.

Proof of Lemma 4. If the variable eliminated uses ⊕ �= ⊗ as an operator, then, thanks
to Lemma 3 and the fact that all computation nodes are distinct, and since variable x
considered at step k satisfies x /∈ Ve(N [⊕]), it is possible to recursively apply Lemma 2
to nodes in N [⊕], because the two conditions looking like S′ ∩ (S ∪sc(N1)) and N1 ∩N2

then always hold. This shows that RR is sound when ⊕ �= ⊗. If ⊕ = ⊗, then the nodes
to recompose look like (⊕x, {(⊕S, N ′)}). As S ∩ {x} = ∅, Lemma 3 entails that RR is
sound.

As both DR and RR are sound, Proposition 3 holds. ��

Proposition 4. Let Q=(SOV,N ) be a query. Then, val(CNT (Q, o))=Ans(Q)
for all o ∈ lin('SOV ).

Proof. Follows from Proposition 3 and from val(CNT0(Q,o)) = Ans(Q). ��

Independence with Regard to the Linearization of �SOV . Proposition 5
shows that the final tree of computation nodes is independent from the arbitrary
elimination order o compatible with SOV chosen at the beginning. In this sense,
the structure obtained is a unique fixed point which can be denoted simply by
CNT (Q).

Proposition 5. Let Q = (SOV,N ) be a query. Then, for all o, o′ ∈ lin('SOV ),
CNT (Q, o) = CNT (Q, o′)

Sketch of the proof. (a) It can be shown that for all ⊕ ∈ {⊕i, i ∈ I}, if CNT = (sov ·
⊕x · ⊕y, N) and CNT ′ = (sov · ⊕y · ⊕x, N), then rewrite2(CNT ) = rewrite2(CNT ′).
(b) Given an elimination order o ∈ lin(�SOV ), any elimination order o′ ∈ lin(�SOV )
can be obtained from o by successive permutations of adjacent eliminations. (a) and (b)
entail that CNT (Q, o) = CNT (Q, o′). ��

3.4 Comparison with an Unstructured Approach

Building the macrostructure of a query can induce exponential gains in theoret-
ical complexity, as shown in Section 3.1. Stronger results can be stated, proving
that the structured approach is always as least as good as existing approaches
in terms of constrained induced-width.

Let us define the width wn of a node n = (⊕S , N) as the induced width of
the hypergraph G = (sc(N), {sc(n′), n′ ∈ N) for the elimination of the variables
in S (i.e. the minimum size, among all elimination orders of S, of the largest
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hyperedge created when eliminating variables in S from G). The induced-width
of a tree of computation nodes CNT is wCNT = maxn∈CNT wn. One can say
that 1 + wCNT is the maximum number of variables to consider simultaneously
when using an optimal elimination order in a VE algorithm. Theorem 1 shows
that the macrostructuration of a query can only decrease the induced-width.

Theorem 1. Let Q = (SOV, (V, Φ)) be a query and G = (V, {sc(ϕ), ϕ ∈ Φ}).
Then, wCNT (Q) ≤ wG('SOV ).

Sketch of the proof. Let o∗ be an elimination order s.t. wG(�SOV ) = wG(o∗). The idea
is to apply the rewriting rules on CNT0(Q,o∗). Let Hk denote the set of hyperedges in
the hypergraph Gk obtained after the k first eliminations in o∗. More precisely, G0 = G
and, if Gk = (Vk, Hk) and x is eliminated, then Gk+1 = (Vk−{x}, (Hk−H+x

k )∪{hk+1}),
where hk+1 = ∪

h∈H+x
k

h − {x} is the hyperedge created from step k to k + 1. It can be
proved that for all k ∈ {0, . . . , |V | − 1}, if CNTk(Q,o∗) = (sov · ⊕x, N), then for all
n ∈ N , there exists h ∈ Hk s.t. sc(n) ⊂ sc(h). This property easily holds at step 0, and
if it holds at step k, then sc((⊕x, N+x)) ⊂ sc(hk+1). Moreover, if duplication is used,
then for all n ∈ N+x, sc((⊕x, {n})) ⊂ sc(hk+1). Rewriting rule RR can be shown to be
always advantageous in terms of induced-width. This entails the required result. ��

For the QCSP example in Figure 2, wCNT (Q) = 1, whereas the initial con-
strained induced-width is wG('SOV ) = 3 (and without duplication, wCNT (Q)

would equal 2): the complexity decreases from O(|Φ| · d4) to O(|Φ| · d2).
More important gaps between wCNT (Q) and wG('SOV ) can be observed on

larger problems. More precisely, we performed experiments on instances of the
QBF library (only a limited number are reported here). The results are shown in
Table 2. In order to compute induced-widths and constrained induced-widths, we
use usual junction tree construction techniques with the so-called min-fill heuris-
tic. The results show that there can be no gain in analyzing the macrostructure
of queries, as is the case for instances of the “robot” problem (which involve
only 3 alternations of elimination operators), but that as soon as the number of
alternation increases, revealing freedoms in the elimination order can be greatly
beneficial. Note that these results provide a theoretical explanation to the ex-
perimental gains observed when using quantifier trees on QBF [5].

Theorem 1 shows that working directly on the structure obtained can be
a good option, because it can decrease the induced-width. However, given an
existing solver, an alternative approach is to see the macrostructuration of a
query only as a useful preprocessing step revealing freedoms in the elimination
order, thanks to Proposition 6.

Proposition 6. Let Q = (SOV, (V, Φ)) be a query. Assume that duplication
is not used. CNT (Q) induces a partial order 'CNT (Q) on V , defined by “if
((⊕S1 , N ∪ {(⊕′S2

, N ′)}) ∈ CNT (Q)), then for all x ∈ S1 ∩ sc(N ′), x ≺CNT (Q)

S2. Then, for all o ∈ lin('CNT (Q)), SOV (o) (⊗ϕ∈Φ ϕ) = Ans(Q). Moreover,
'CNT (Q) is weaker than 'SOV .

Sketch of the proof. The idea is that if o ∈ lin(�CNT (Q)), it is possible to do the
inverse operations of RR and DR, considering first smallest variables in o. These
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Table 2. Comparison between w = wCNT (Q) and w′ = wG(�SOV ) on some instances
of the QBF library (nbv, nbc, nba denote respectively the number of variables, the
number of clauses, and the number of elimination operator alternations of an instance)

Problem instance w w′ nbv,nbc,nba Problem instance w w′ nbv,nbc,nba
adder-2-sat 12 24 332, 113, 5 k-branch-n-1 22 43 133, 314, 7
adder-4-sat 28 101 726, 534, 5 k-branch-n-2 39 103 294, 793, 9
adder-8-sat 60 411 1970, 2300, 5 k-branch-n-3 54 185 515, 1506, 11
adder-10-sat 76 644 2820, 3645, 5 k-branch-n-4 70 296 803, 2565, 13
adder-12-sat 92 929 3822, 5298, 5 k-branch-n-5 89 427 1149, 3874, 15

robots-1-5-2-1.6 2213 2213 6916, 23176, 3 k-branch-n-6 107 582 1557, 5505, 17
robots-1-5-2-1.7 1461 1461 7904, 26810, 3 k-branch-n-7 131 761 2027, 7482, 19
robots-1-5-2-1.8 3933 3933 8892, 30444, 3 k-branch-n-8 146 973 2568, 10117, 21
robots-1-5-2-1.9 1788 1788 9880, 34078, 3 k-branch-n-9 166 1201 3163, 12930, 23

inverse operations are naturally sound and lead to the structure (SOV (o), Φ), which
proves that SOV (o) (⊗ϕ∈Φ ϕ) = Ans(Q).

If o ∈ lin(�SOV ) and x �o y, then, for all n = (⊕S1 , N ∪{(⊕′
S2 , N ′)}) ∈ CNT (Q) =

CNT (Q,o), it is impossible that y ∈ S1 and x ∈ S2 (because y is considered before x
during the rewriting process). As this holds for all x, y such that x �o y, this entails that
¬(y �CNT (Q) x). (x �o y) → ¬(y �CNT (Q) x) can also be written (y �CNT (Q) x) →
(y ≺o x), which implies that o ∈ lin(CNT (Q)). Therefore, lin(�SOV ) ⊂ lin(CNT (Q)),
i.e. �CNT (Q) is weaker than �SOV ��

3.5 Complexity Results

The macrostructure is usable only if its computation is tractable. Based on the
algorithm in Figure 3, implementing the macrostructuration of a query, Propo-
sition 7 gives an upper bound on the complexity, showing that rewriting a query
as a tree of mono-operator computation nodes is easy.

In the algorithm in Figure 3, the root node of the tree of computation nodes is
rewritten. With each node n = (opS , N) are associated an operator op(n) = op,
a set of sons Sons(n) = N modeled as a list, and a set of variables eliminated
Ve(n) = S modeled as a list too. The scope of n is modeled using a table
of |V | booleans. As long as the sequence of operator-variables is not empty, the
rightmost remaining elimination is considered. The pseudo-code just implements
the rewrite function, which dissociates the cases ⊕ �= ⊗ and ⊕ = ⊗.

Proposition 7. The time and space complexity of the algorithm in Figure 3 are
O(|V |2 · |Φ|) and O(|V | · |Φ|) respectively (if Φ �= ∅ and V �= ∅).

Proof. At each rewriting step and for each son n′ of the root node, tests like “x ∈ sc(n′)”
and operations like “sc(n) ← sc(n) ∪ sc(n′)” or “sc(n′) ← sc(n′) − {x}” are O(|V |),
since a scope is represented as a table of size |V |. Operations like “Sons(root) ←
Sons(root) − {n′}”, “Sons(root) ← Sons(root) ∪ {n}”, “Ve(n) ← Ve(n) ∪ Ve(n′)”
(with Ve(n) ∩ Ve(n′) = ∅), or “Ve(n) ← Ve(n) ∪ {x}” are O(1), since Ve and Sons are
represented as lists. Therefore, the operations performed for each rewriting step and for
each son of the root are O(|V |). As at each step, |Sons(root)| ≤ |Φ|, and as there are
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begin
root ← newNode(∅, ∅, Φ, ∅)
while (SOV = SOV ′ · ⊕x) do

SOV ← SOV ′

if ⊕ �= ⊗ then
n ← newNode(⊕, {x}, ∅, ∅)
foreach n′ ∈ Sons(root) s.t. x ∈ sc(n′) do

sc(n) ← sc(n) ∪ sc(n′)
Sons(root) ← Sons(root) − {n′}
if op(n′) = ⊕ then

Ve(n) ← Ve(n) ∪ Ve(n′)
Sons(n) ← Sons(n) ∪ Sons(n′)

else Sons(n) ← Sons(n) ∪ {n′}

sc(n) ← sc(n) − {x}
Sons(root) ← Sons(root) ∪ {n}

else
foreach n′ ∈ Sons(root) s.t. x ∈ sc(n′) do

if op(n′) = ⊕ then
Ve(n′) ← Ve(n′) ∪ {x}
sc(n′) ← sc(n′) − {x}

else
n ← newNode(⊕, {x}, {n′}, sc(n′) − {x})
Sons(root) ← (Sons(root) − {n′}) ∪ {n}

return (root)
end

Fig. 3. MacroStruct(SOV, (V, Φ)) (instruction newNode(op, Ve, Sons, sc) creates a
computation node n = (opVe , Sons) and sets sc(n) to sc

|V | rewriting steps, the algorithm is time O(|V |2 · |Φ|). As for the space complexity,
given that only the scopes of the root sons are used, we need a space O(|V | · |Φ|) for the
scopes. As it can be shown that the number of nodes in the tree of computation nodes
is always O(|V |+ |Φ|), recording op(n) and Sons(n) for all nodes n is O(|V |+ |Φ|) too.
Last, recording Ve(n) for all nodes n is O(|V | · |Φ|) because the sum of the number of
variables eliminated in each node is lesser than |V | · |Φ| (the worst case occurs when all
variables are duplicated). Hence, the overall space complexity is O(|V | · |Φ|). ��

4 Decomposing Computation Nodes

4.1 From Computation Nodes to Multi-operator Cluster Trees

Once the macrostructure is built (in the form of a tree of mono-operator com-
putation nodes), we use freedoms in the elimination order so as to minimize the
induced-width. As (E,⊕,⊗) is a commutative semiring for every⊕ ∈ {⊕i, i ∈ I},
this can be achieved by decomposing each mono-operator computation node into
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a cluster tree using usual cluster tree construction techniques. This cluster tree is
obtained by considering for each computation node n = (opS , N) the hypergraph
G(n) = (∪n∈Nsc(n), {sc(n), n ∈ N}) associated with it.

The structure obtained then contains both a macrostructure given by the
computation nodes and an internal cluster tree structure given by each of their
decompositions. It is then sufficient to choose a root in the cluster tree decompo-
sition [6] of each computation node to obtain a so-called multi-operator cluster
tree as in Figure 4 (corresponding to an Extended-SSAT [3] problem).

Definition 8. A Multi-operator Cluster Tree (MCTree) on a MCS (E, {⊕i, i ∈
I},⊗) is a tree where every vertex c (called a cluster) is labeled with four ele-
ments: a set of variables V (c), a set of scoped functions Φ(c) taking values in E, a
set of son clusters Sons(c), and an elimination operator ⊕(c) ∈ {⊕i, i ∈ I}. The

value of a cluster c is val(c) = ⊕(c)
V (c)−V (pa(c))

((
⊗

ϕ∈Φ(c)
ϕ

)
⊗
(

⊗
s∈Sons(c)

val(s)
))

.

It follows from the construction process that if r is the root node of the MCTree
associated with a query Q, val(r) = Ans(Q).

4.2 A Generic Variable Elimination Algorithm on MCTrees

To define a generic VE algorithm on a MCTree, it suffices to say that as soon
as a cluster c has received val(s) from all its children s ∈ Sons(c), it computes

CNT (Q)

each computation node
tree decomposition of

MCTree :

ϕx6,x7

ϕx4,x7

ϕx2,x5

P
x7,x8 ϕx7,x8

ϕx3,x4

ϕx2,x10

ϕx5,x8

ϕx1,x4

X

x6,x7,x8

max
x9

ϕx4,x9

ϕx3,x4

minx5

P
x6
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ϕx2,x5
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ϕx2,x12
ϕx10,x11

P
x10,x12

ϕx10,x12
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ϕx1,x3
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P
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minx4
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Fig. 4. Example of a MCTree obtained from CNT (Q). Note that a cluster c is repre-
sented by 1) the set V (c)− V (pa(c)) of variables it eliminates, its elimination operator
op(c), and the set of function Φ(c) associated with it, all these elements being put in a
pointwise box; 2) the set of its sons, pointing to it in the structure.
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its own value val(c) = ⊕(c)V (pa(c))−V (c)

((
⊗ϕ∈Φ(c) ϕ

)
⊗
(
⊗s∈Sons(c) val(s)

))
and

sends it to pa(c), its parent in the MCTree. The value of the root cluster then
equals the answer to the query.

5 Conclusion

Solving multi-operator queries using only the sequence of elimination to define
constraints on the elimination order is easy but does not take advantage of the
actual structure of such queries. Performing a preprocessing finer analysis taking
into account both the function scopes and operator properties can reveal extra
freedoms in the elimination order as well as decompositions using more than just
the distributivity of the combination operator over the elimination operators.
This analysis transforms an initial unstructured multi-operator query into a tree
of mono-operator computation nodes. The obtained macrostructure is always as
least as good as the unstructured query in terms of induced-width, which can
induce exponential gains in complexity. It is then possible to define a generic
VE algorithm on Multi-operator Cluster Trees (MCTrees) by building a cluster-
tree decomposition of each mono-operator computation node. Performing such a
work using generic algebraic operators makes it applicable to various frameworks
(QBF, QCSP, SCSP, SSAT, BN, MDPs).

Other algorithms than VE could be designed on MCTrees, such as a tree search
enhanced by branch and bound techniques, e.g. in an AND/OR search [18] or a
backtrack bounded by tree decomposition (BTD-like [19]) scheme. Ideas from the
game theory field like the alpha-beta algorithm [20] can also be considered. This
work was partially conducted within the EU IP COGNIRON (“The Cognitive
Companion”) funded by the European Commission Division FP6-IST Future
and Emerging Technologies under Contract FP6-002020.
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Abstract. Symmetries are one of the difficulties constraint program-
ming users have to deal with. One way to get rid of symmetries is to add
lex constraints. However, it can adversely affect the efficiency of a tree
search method if the lex constraints remove the solution that would have
been found at the first place. We propose to use an alternative filtering
algorithm which does not exclude the first solution. We present both a
theoretical analysis and some experimental evidence that it is as efficient
as lex constraints. We also show that its efficiency does not depend much
on the variable ordering used in the tree search. Last, we show that it
can prune more nodes than the SBDS method.

1 Introduction

Symmetries are mappings of a Constraint Satisfaction Problem (CSP) onto itself
that preserve its structure as well as its solutions. If a CSP has some symmetry,
then all symmetrical variants of every dead end encountered during the search
may be explored before a solution can be found. Even if the problem is easy
to solve, all symmetrical variants of a solution are also solutions, and listing all
of them may just be impossible in practice. Breaking symmetry methods try to
cure these issues.

Adding symmetry breaking constraints is one of the oldest ways of break-
ing variable symmetries for constraint satisfaction problems (CSPs)[12]. For in-
stance, it is shown in [3] that all variable symmetries could be broken by adding
one lexicographical ordering constraint per symmetry.

Adding lexicographic constraints can be quite efficient for breaking symme-
tries. It can also be quite inefficient when the symmetry breaking constraints
remove the solution that would have been found first by the search procedure.
There is a complex interaction between the order used in the search and the
order used in stating the lex constraints [19].

Other symmetry breaking methods such as SBDD[5][4][7][14], SBDS [1][8][6],
and GE-tree [17] do not interfere with the order used during search. These meth-
ods modify the search in order to avoid the exploration of nodes that are sym-
metrical to already explored nodes. We will denote them as SBDX.

Various experiments, e.g. [13][15][16], have shown that adding lex constraints
is often much more efficient than SBDX. However, it is also known that adding
constraint can be much less efficient when the interaction with the search order
is not good.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 453–467, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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We explore in this paper a middle ground between lex constraints and SBDX
methods. After some definitions in Sect. 2, we revisit lex constraints and lex
leader solutions in Sect. 3. Then, we introduce dynamic lex leader solutions
in Sect. 4. We show that the first solution found in any search tree is a dy-
namic lex leader solution. Section 5 presents an effective filtering algorithm for
removing all solutions that are not dynamic lex leader solutions. Section 6 pro-
vides some experimental evidence that it can be more effective than SBDS.
These experiments also show it is as effective as using lex constraints when
a good search order is used, and much better when the search order is mod-
ified. Section 7 summarizes our findings and discusses some future research
areas.

2 Notations

We denote the set of integers ranging from 0 to n− 1 by In.
A constraint satisfaction problem P (CSP) with n variables is a triple P =

(V ,D, C) where V is a finite set of variables (vi)i∈In , D a finite set of finite
sets dom(vi)i∈In , and every constraint in C is a subset of the cross product⊗

i∈In dom(vi). The set dom(vi) is called the domain of the variable vi. Without
loss of generality, we can assume that dom(vi) ⊆ Ik for some k.

The order in which variables appear in a (partial) assignment or in a solution
is meaningful in the context of this paper. A literal is an equality (vj = aj) where
aj ∈ dom(vj). An assignment is a sequence of literals such that the sequence of
the variables in it is a permutation of the sequence of the variable vi. A partial
assignment is a sub sequence of an assignment.

A solution to (V ,D, C) is an assignment that is consistent with every member
of C.

The symmetries we consider are permutations, i.e. one to one mappings (bi-
jections) from a finite set onto itself. Let Sn be the set of all permutations of
the set In. The image of i by the permutation σ is denoted iσ. A permutation
σ ∈ Sn is fully described by the vector [0σ, 1σ, . . . , (n−1)σ]. The product of two
permutations σ and θ is defined by i(σθ) = (iσ)θ.

A symmetry is a bijection from literals to literals that map solutions to solu-
tions. Our definition is similar to the semantic symmetries of [2].

Given a permutation σ of In, we define a variable permutation on (partial)
assignments as follows :

((vi = ai)i∈In)σ = (viσ = ai)i∈In

Such permutation is called a variable symmetry if it maps solutions to solutions.
Given a permutation θ of Ik, we define a value permutation on (partial)

assignments as follows :

((vi = ai)i∈In)θ = (vi = (ai)θ)i∈In

Such permutation is called a value symmetry if it maps solutions to solutions.



Dynamic Lex Constraints 455

The symmetries of a CSP form a mathematical group. The variable symme-
tries of a CSP form a sub group of its group of symmetries. The value symmetries
of a CSP form a sub group of its group of symmetries.

3 Lex Leader Solutions

A very powerful symmetry breaking method has been proposed in [3]. The idea
is to use a lexicographic order to compare solutions. Given two finite sequences
X = (x0, x1, . . . , xn−1) and Y = (y0, y1, . . . , yn−1), we say that X is lex smaller
than Y (denoted X ' Y ) if, and only if :

∀k ∈ In, (x0 = y0 ∧ . . . ∧ xk−1 = yk−1) ⇒ xk ≤ yk (1)

Let us consider a solution (vi = ai)i∈In of the CSP. Let us consider the set of
all solutions that are symmetric to it. These solutions are (vi = ai)σ

i∈In where
σ ranges over the group of symmetries of the CSP. Among all these solutions,
there is one that is lexicographically smaller than the others. This solution S
satisfies the constraint :

∀σ ∈ G, S ' Sσ (2)

The above has been widely used for variable symmetries. We have shown in
[16] that any combination of variable and value symmetries could also be broken
with a combination of lex constraints and element constraints.

4 Dynamic Lex Leader Solutions

The lex constraints use a fixed variable ordering. Let us define a new lexico-
graphic comparison that uses the order in which variables are selected in the
search tree. In order to do so, let us formalize tree search.

A variable is selected at each non leaf node. Then, one branch is created for
every value in the domain of this variable. We identify a node with the variable
assignments that are true at the node. Variables are listed in the order in which
they have been assigned during search.

Constraints can prune the tree : some nodes are inconsistent. These nodes have
no children. Solutions are leaves of the search tree that are not inconsistent.

Some constraint propagation algorithm may be applied at every node. It may
result in some assignment of variables. For reasons that will become clear later,
we introduce a sequence of child node, one for each assignment.

Let us look at a simple CSP with four variables :

v0 ∈ I3, v1 ∈ I3, v2 ∈ I3, v3 ∈ I6, AllDifferent(v1, v2, v3), v3 = v1 + v2 (3)

A possible search tree for this CSP is given in Fig. 1. We have used a dynamic
order. For instance, the second variable to be selected is v2 in the leftmost
branch, and it is v1 in the rightmost branch. The leftmost leaf corresponds to
the solution :

(v0 = 0, v2 = 1, v3 = 3, v1 = 2) (4)
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The rightmost leaf corresponds to the solution :

(v0 = 2, v1 = 1, v2 = 0, v3 = 1) (5)

Note that the variables appear in a different order in these two solutions.

v3=1

Root

v0=0

v2=1

v3=3

v2=2

v1=1

v3=3

v0=1 v0=2

v1=0 v1=2

v2=2

v3=2 v2=0

v3=2v1=2

v1=0 v1=1

v3=1

v2=1

v2=0

Fig. 1. A tree search

At the node v0 = 0, v2 = 1, constraint propagation assigns 2 to v2 and 3 to
v3. This is modeled by creating a sequence of two child nodes for that node. The
order in which these extra nodes are created is arbitrary.

Given SX = (xi = ai)i∈In and SY = (yi = bi)i∈In , then we say that SX is
dyn smaller than SY if and only if (a0, a1, . . . , an−1) ' (b0, b1, . . . , bn−1). It is
denoted SX 'd SY .

For instance, the solution (4) is dyn smaller than the solution (5) because
(0, 1, 3, 2) ' (2, 1, 0, 1)

Let us state our first result :

Lemma 1. Given two distinct solutions SX and SY , then either SX 'd SY
or SY 'd SX, but not both of them.

Proof. We are given two distinct solutions SX = (xi = ai)i∈In and SY =
(yi = bi)i∈In such that SX is reached before SY . Let A = (z0 = c0, z1 =
c1, . . . , zk−1 = ck−1) be their deepest common ancestor (or maximal common
partial assignment). Then, by definition, we have xj = zj = yj for all j < k,
and aj = cj = bj. Let zk be the variable selected for branching at node A. Then
xk = zk = yk. The values assigned to zk in SX is ak, and the value assigned to
zk in SY is bk. These values are different since A is the deepest common ancestor
of SX and SY . Therefore, either a ≤ b or b ≤ a, but not both of them. The
former means SX 'd SY , while the latter means SY 'd SX . ��

We can now state our first theoretical result.

Theorem 2. The relation 'd is a total order relation.

Proof. Lemma 1 implies that 'd is a total relation. We need to prove that it is
an order, i.e. we need to prove that it is reflexive, antisymmetric, and transitive.
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Note first that ' is an order relation.
'd is reflexive, because S 'd S is trivially true.
Let us prove 'd is antisymmetric. We are given two solutions SX = (xi =

ai)i∈In and SY = (yi = bi)i∈In . Suppose that SX 'd SY and SY 'd SX . By
lemma 1, only one of these can be true if SX and SY are distinct. Therefore,
SX and SY must be equals. ��

Let us prove 'd is transitive. We are given three solutions SX = (xi = ai)i∈In ,
SY = (yi = bi)i∈In and SZ = (zi = ci)i∈In such that SX 'd SY and SY 'd

SZ.
Then, we have (a0, a1, . . . , an−1) ' (b0, b1, . . . , bn−1) and (b0, b1, . . . , bn−1) '
(c0, c1, . . . , cn−1).
Since ' is transitive, we have (a0, a1, . . . , an−1) ' (c0, c1, . . . , cn−1), i.e. SX 'd

SZ. ��

Given a solution S, let us look at the set of all solutions that are symmetrical
to it. This set is called the orbit of S :

orbit(S) = {Sσ | σ ∈ G} where G is the group of symmetries of the CSP.

Since ' is a total order relation, there is a unique element in the orbit of S
which is dyn smaller than all the others. By definition, this element is equal to
S if, and only if, S satisfies the following constraint :

∀σ ∈ G, S 'd Sσ (6)

In such case, we say that S is a dynamic lex leader solution.
In other words, adding constraints (6) keeps only one solution in every orbit :

the dynamic lex leader solution.
The constraint (6) is somewhat similar to (2). However, in (2), a static variable

ordering is used in the ' constraints. In (6), the order used is the one of the tree
search, which can be dynamic.

We have made no hypothesis on how the search tree was traversed until now.
Let us assume from now on that it is explored in a depth first search manner. Let
us assume further that values for any given variable are explored in an increasing
manner. For instance, the tree of Fig. 2. would be explored from left to right under
these assumptions. Then, solutions are generated in the order defined by 'd :

Lemma 3. Let us assume that the tree is explored in a depth first search manner
and that values are explored in an increasing order. Then a solution SX is found
before a solution SY if, and only if, SX 'd SY .

Proof. We are given two distinct solutions SX = (xi = ai)i∈In and SY =
(yi = bi)i∈In . Let A = (z0 = c0, z1 = c1, . . . , zk−1 = ck−1) be their deepest
common ancestor. Then, by definition, we have xj = zj = yj for all j < k, and
aj = cj = bj . Let zk be the variable selected for branching at node A. Then
xk = zk = yk. The values assigned to zk in SX is ak, and the value assigned
to zk in SY is bk. Then ak < bk since the values are tried in increasing order.
Therefore, SX 'd SY . ��
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It has an extremely interesting consequence : the first solution reached by the
tree search is a dynamic lex leader solution :

Theorem 4. Let us assume that the tree is explored in a depth first search man-
ner and that values are explored in an increasing order. Then, the first solution
found in each solution orbit is a dynamic lex leader solution.

Proof. Let S be the first solution found in a given orbit. If S is not a dynamic
lex leader solution, then, there exists S′ in the orbit of S such that S′ 'd S.
Then, by Lemma 3, S′ must be reached before S. ��

Theorem 4 basically says that adding the constraint (6) will not interfere with
the search. Indeed, this constraint will not remove the first solution found by
the search in each orbit.

5 Filtering Dynamic Lex Constraints

In order to generate only dynamic lex leader constraints, one can check the
consistency of the constraint (6) at each leaf of the search tree.

We can do better by developing a propagation algorithm for this constraint.
Let us assume first that all symmetries are the composition of a variable sym-
metry and a value symmetry. We have shown in [16] that the effect of such
symmetries could be modeled using permutations and element constraints.

5.1 Representation of Symmetry Effect

An element constraint has the following form :

y = A[x]

where A = [a0, a1, . . . , ak−1] is an array of integers, x and y are variables. The
above element constraint is equivalent to :

y = ax ∧ x ∈ Ik

i.e. it says that y is the x-th element of the array A. We will only consider
injective element constraints, where the values appearing in the array A are pair
wise distincts. In this case, the operational semantics of the element constraint
is defined by the logical equivalence :

∀i ∈ Ik, (x = i) ≡ (y = ai)

For the sake of clarity, we extend the element constraint to sequences of vari-
ables. If X = (vi)i∈In is a finite sequence of variables, then we define A[X ] as
the application of an element constraint to each element of the sequence :

A[X ] = (A[vi])i∈In
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Element constraints can be used to describe applications of finite functions.
For instance,

y = 3x ∧ x ∈ I4

is equivalently expressed through the following element constraint :

y = A[x] ∧A = [1, 3, 9, 27]

Element constraint can also be used to represent the effect of value symme-
tries. Indeed, let θ be a value permutation corresponding to a value symmetry.
By definition, any assignment of a value a to a variable x is transformed into
the assignment of aθ to x :

(x = a)θ = (x = aθ)

Let us consider xθ. The permutation θ is represented by the array Aθ =
[0θ, 1θ, . . . , (k−1)θ]. It defines a finite function that maps a to aθ. The application
of this function to x can be expressed by Aθ[x]. Therefore, xθ = Aθ[x]. We have
represented the effect of the value symmetry by an element constraint.

More generally, if (a0, a1, . . . , an−1) is the sequence of values taken by the
variables V = (v0, v1, . . . , vn−1), then ((a0)θ, (a1)θ, . . . , (an−1)θ) is the sequence
of values taken by the variables Aθ[V ]. Therefore, Sθ = Aθ[S] for all solutions S.

Let us consider now the case where any symmetry is the composition σθ of
a variable permutation σ and a value permutation θ. The variable permutation
σ is defined by a permutation of In. The value permutation is defined by a
permutation of Ik.

If (a0, a1, . . . , an−1) is the sequence of values taken by the variables V =
(v0, v1, . . . , vn−1), then ((a0σ )θ, (a1σ)θ, . . . , (a(n−1)σ)θ) is the sequence of values
taken by the variables Aθ[Vσ]. Therefore, Sσθ = Aθ[Sσ] for all solutions S.

If S is a dynamic lex leader solution, then S must satisfy S 'd Sσθ, after (6).
Therefore, S must satisfy :

S 'd Aθ[Sσ] (7)

5.2 A Forward Checking Algorithm

We want to filter the constraint (7) for a given variable symmetry σ and a value
symmetry θ.

Let us look at a given node N in the search tree. It corresponds to a partial
assignment N = (vi0 = a0, vi1 = a1, . . . , vik−1 = ak−1). Let us rename vij into
xj . Then, the partial assignment is N = (x0 = a0, x1 = a1, . . . , xk−1 = ak−1).
Let us consider a dynamic lex leader solution S that extends N . It is of the
form S = (x0 = a0, x1 = a1, . . . , xn−1 = an−1). The right hand side of (7)
is Aθ[Sσ] = (x0σ = Aθ[a0σ ], x1σ = Aθ[a1σ ], . . . , x(n−1)σ = Aθ[a(n−1)σ ]). Then
constraint (7) is equivalent to :

(a0, a1, . . . , an−1) ' (Aθ[a0σ ], Aθ[a1σ ], . . . , Aθ[a(n−1)σ ]) (8)
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Using (1), this constraint is equivalent to the conjunction of the constraints :

a0 ≤ Aθ[a0σ ]
a0 = Aθ[a0σ ] ⇒ a1 ≤ Aθ[a1σ ]

...
(a0 = Aθ[a0σ ] ∧ . . . ∧ ai−1 = Aθ[a(i−1)σ ]) ⇒ ai ≤ Aθ[aiσ ]

...
(a0 = Aθ[a0σ ] ∧ . . . ∧ an−1 = Aθ[a(n−1)σ ]) ⇒ an ≤ Aθ[anσ ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9)

At the node N , we only know the values (a0, a1, . . . , ak−1). Indeed, the values
ai for i > k correspond to variables not fixed at that node yet. Similarly, we only
know the values aiσ when iσ < k. Let K be the first i such that iσ ≥ k or i ≥ k :

(∀i ∈ IK , iσ < k) ∧ Kσ ≥ k (10)

Then, we can use the first K constraints in (9). We simply have to check if
each of the first K implications is true or not. If not, then we prune the current
node.

The above is, in fact, a forward checking algorithm for the constraint (7).

5.3 A Stronger Filtering Algorithm

We can do better that forward checking if we know which variable xk is selected
for branching at node N , when N is not a leaf of the search tree. Then, we can
use one extra constraint from (9). It is the constraint :

(a0 = Aθ[a0σ ] ∧ . . . ∧ aK−1 = Aθ[a(K−1)σ ]) ⇒ aK ≤ Aθ[aKσ ] (11)

However, we do not know yet the value of aK (if K = k) or the value of aKσ

(if Kσ ≥ k). Therefore, we need to state a conditional constraint on the variables
xK and xKσ

(a0 = Aθ[a0σ ] ∧ . . . ∧ aK−1 = Aθ[a(K−1)σ ]) ⇒ xK ≤ Aθ[xKσ ] (12)

Adding (12) results in more filtering than the forward checking algorithm
proposed above. Note that, in fact, we enforce the following K + 1 conditional
constraints :

∀j ∈ IK+1, (a0 = Aθ[a0σ ] ∧ . . . ∧ aj−1 = Aθ[a(j−1)σ ]) ⇒ xj ≤ Aθ[xjσ ] (13)

Enforcing these constraints can be done in a time linear in the number of
variables. Indeed, it is sufficient to scan both sequences (x0, x1, . . . , xk) and
(Aθ[x0σ ], Aθ[x1σ ], . . . , Aθ[xkσ ]) in increasing order as long as corresponding en-
tries are fixed to equal values. It is also easy to get an incremental version of the
algorithm.

Let us look at the tree search given in Fig. 2 for the CSP (3). This CSP has two
variable symmetries : the identity, and the permutation σ that swaps v1 and v2.
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Let us consider the node corresponding to v0 = 0. The variable selected at
this node is v2. Then, (13) is :

v0 ≤ Aid[v0σ ]
0 = Aid[0σ] ⇒ v2 ≤ Aid[v2σ ]

Since the value symmetry is the identity id, these constraints can be simplified
into :

v0 ≤ v0σ

0 = 0σ ⇒ v2 ≤ v2σ

Since σ is the permutation [0, 2, 1, 3], it can be simplified into :

v0 ≤ v0

0 = 0 ⇒ v2 ≤ v1

i.e.

v2 ≤ v1

This constraint would prune immediately the node (v0 = 0, v2 = 2). Indeed, v1

must be at least 2, which implies v1 = 2. This is inconsistent with the AllDifferent
constraint.

More generally, stating our dynamic lex leader constraint would prune the
tree search into the one shown in Fig. 2. There are only 3 solutions left, the
dynamic lex leader ones.

More generally, stating our dynamic lex leader constraint would prune the
tree search into the one shown in Fig. 3. There are only 3 solutions left, the
dynamic lex leader ones.

v1=2

Root

v0=0

v2=1

v3=3

v2=2

v0=1 v0=2

v1=0 v1=2

v3=2 v3=1

v2=2

v1=0 v1=1

v2=1

Fig. 2. A tree search with dynamic lex leader constraints

This method requires L×M constraints when there are L variables symmetries
and M value symmetries. This method will not scale well with the number of
value symmetries. The next section describes a way to cope with a large number
of value symmetries.
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5.4 A Global Constraint

We can filter all the above constraints for a given σ, regardless of the number
of value symmetries θ, as follows. We reuse previous notations. Given a node
N = (x0 = a0, x1 = a1, . . . , xk−1 = ak−1), K such as (10), then we want to
enforce the constraints (13) for a given variable symmetry σ :

∀j ∈ IK+1, ∀θ, (a0 = Aθ[a0σ ]∧ . . .∧ aj−1 = Aθ[a(j−1)σ ]) ⇒ xj ≤ Aθ[xjσ ] (14)

For a given j, if the left hand side is not true, then, nothing can be done. If
the left hand side is true, then, θ is such that :

∀i ∈ Ij , ai = Aθ[(aiσ )] (15)

Let Gσ
Σ be the set of value symmetries that satisfies (15). Then, for any of

these θ, we have to enforce the right hand side :

∀θ ∈ Gσ
Σ , vj ≤ Aθ[vjσ ] (16)

Let aj be the minimum value in the domain of vj . Let b be a value in the
domain of vjσ in state Σ. If there exists θ ∈ Gσ

Σ such that aj > Aθ[b], then b
should be removed from the domain of vjσ .

Therefore, in order to enforce (16), it is necessary to remove all the values b
from the domain of vjσ such that aj > Aθ[b] :

∀b ∃θ ∈ Gσ
Σ , aj > Aθ[b] → vjσ �= b (17)

Second, let bj be the maximum value of the expression Aθ[vjσ ] for θ ∈ Gσ
Σ .

Then vj ≤ bj, i.e :
vj ≤ max(θ ∈ Gσ

Σ)(Aθ[vjσ ]) (18)

In order to implement our method, one needs to compute the value symmetries
that satisfy (15) efficiently. It can be done in polynomial using computational
group theory algorithms (see [18] for instance).

A simple implementation is possible when any value permutation is a value
symmetry. In this case, it is easy to compute Gσ

Σ from (15). Indeed, (15) is of
the form :

Aθ[b0] = c0, . . . , Aθ[bj−1] = cj−1 (19)

Let C be the set of the ci that appear in (19), and let B be the set of the
bi that appears in (19). Then, the set of value symmetries θ that are consistent
with (19) are :

∀i ∈ Ij , Aθ[bi] = ci

∀b ∈ In − B, Aθ[b] ∈ In − C (20)

Then, (17) becomes :

∀i ∈ Ij , aj > ci → vjσ �= bi

∀b ∈ In − B, aj > min(In − C) → vjσ �= b
(21)
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Similarly, the computation of right hand side of (18) becomes straightforward.
It is worth looking at the case where σ is the identity. In this case, the above

reasoning can be simplified. First of all, Gid
Σ is now the set of value symmetries

θ such that :
∀i ∈ Ij , ai = Aθ[ai]

It is called the point wise stabilizer of (a0, a1, . . . , ak−1). This set is denoted
G(a0,a1,...,ak−1). Then, condition (17) becomes simpler. We only have to remove
from the domain of vj all the values b such that there exists θ in G(a0,a1,...,aj−1)

such that b > bθ. It is exactly the definition of the GE-tree method of [17].
The above algorithm is similar to the global constraint described in [16]. the

main difference is that we use a dynamic variable ordering here, whereas [16]
uses a static ordering.

6 Experimental Results

We have implemented the filtering algorithm described in section 5.3. We have
compared it to both lex constraints and SBDS. All experiments were run with
ILOG Solver 6.3 [9] on a 1.4 GHz Dell D800 laptop running Windows XP.

The first experiment uses graceful graph coloring. A graph with m edges is
graceful if there exists a labeling f of its vertices such that :

– 0 ≤ f(i) ≤ m for each vertex i,
– the set of values f(i) are all different,
– the set of values abs(f(i)− f(j)) for every edge (i, j) are all different. They

are a permutation of (1, 2, . . . , m).

A straightforward translation into a CSP exists where there is a variable xi for
each vertex i. These are hard CSPs introduced in [10]. They have been used as
test bed for symmetry breaking methods, see for instance [11][19][16]. A more
efficient CSP model for graceful graphs has recently been introduced in [20].
In this model, any symmetry of the graph induces a value symmetry. Together
with this model, a clever search strategy is proposed. It is shown in [20] that
this search strategy clashes with lex constraints when they are used for breaking
symmetries. For this reason, symmetries are broken using SBDS in [20].

We present in Table 1. and Table 2. results for various graceful graph problems.
We give the number of symmetries for each graph. We compare 4 methods : no
symmetry breaking, static lex constraints, SBDS, and dynamic lex constraints.
We use the implementation of [8] for SBDS. Since all experiments use the same
version of ILOG Solver and since they are run on the same computer we believe
the comparison is fair. For each method we report the number of solutions found,
the number of backtracks, and the time needed to solve the problem. Table
1. present results for finding all solutions (or prove there are none when the
problem is unsatisfiable). Table 2. presents results for finding one solution when
the problem is satifiable.
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Table 1. Results for computing all solutions for graceful graphs

Graph SYM No sym break static lex SBDS dynamic lex
SOL BT sec. SOL BT sec. SOL BT sec. SOL BT sec.

K3×P2 24 96 336 0.30 4 20 0.02 4 16 0.02 4 14 0.01
K4×P2 96 1440 14640 18.7 15 260 0.43 15 166 0.3 15 151 0.27
K5×P2 480 480 337360 2267 1 1789 10.3 1 828 5.51 1 725 5.18
K6×P2 2880 0 6751 121.6 0 1839 43.2 0 1559 40.5
K7×P2 20160 0 18950 786 0 2437 149.4 0 1986 139.4

Table 2. Results for computing one solution for graceful graphs

Graph SYM No sym break static lex SBDS dynamic lex
BT sec. BT sec. BT sec. BT sec.

K3×P2 24 0 0 6 0.01 5 0.01 5 0.01
K4×P2 96 16 0.08 14 0.06 12 0.05 12 0.05
K5×P2 480 2941 19.1 557 3.19 428 2.79 392 2.77

These results show a significant increase of efficiency from no symmetry break-
ing to static lex constraints, SBDS, and dynamic lex constraints. They also show
that all three symmetry breaking methods improve the search for one solution.

We have performed a second set of experiments to test our claim, which is that
dynamic lex constraints are less sensitive to the order used in search than static
lex constraints. In order to test this, we compared the performance of static lex
constraints and dynamic lex constraints with various variable order for search :

– SAME : A static order corresponding to the order used in the static lex
constraints.

– FF : A fail first principle (selecting the variable with the smallest domain)
where ties are broken with the order used in the static lex constraints.

– INV : A static order corresponding to the inverse of the order used in the
static lex constraints.

– INVFF : A fail first principle where ties are broken with the inverse of the
order used in the static lex constraints.

We expect a good performance of static lex constraint for SAME and FF
orders, and we expect a bad performance for INV and INVFF. We also expect
dynamic lex constraints to be much better for INV and INVFF.

We use a simple CSP taken from [7] :

A3 + B3 + C3 + D3 = E3 + G3 + H3

There are 144 symmetries corresponding to the 24 permutations of A, B, C, D
times the 6 permutations of E, F, G.

Results of the experiments are given in Table 3. and Table 4. The last two
columns give the ratio of static lex constraints over synmaic lex constraints for
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Table 3. Results for finding all solutions of A3 + B3 + C3 + D3 = E3 + G3 + H3

Order SOL static lex dynamic lex static/dynamic
BT time BT time BT time

SAME 265 208,264 4.90 208,264 6.32 1 0.8
FF 265 208,264 5.02 208,264 6.39 1 0.8
INV 265 1,240,819 63.0 212,930 7.14 6.3 8.8

INVFF 265 1,031,711 58.5 212,930 7.25 4.8 8.1

Table 4. Results for finding one solution of A3 + B3 + C3 + D3 = E3 + G3 + H3

Order SOL static lex dynamic lex static/dynamic
BT time BT time BT time

SAME 1 989 0.08 989 0.08 1 1
FF 1 989 0.08 989 0.08 1 1
INV 1 414,886 19.6 1,318 0.11 315 178

INVFF 1 301,865 17.5 1,318 0.12 229 146

the number of backtracks a and the number of fails . A value above 1 means
that the performance is better for dynamic lex constraints.

These results show that :

– The performance of dynamic lex constraints does not depend much on the
search order, whereas they vary enormously for static lex constraints;

– the performance of dynamic lex constraint is in the same ballpark than the
performance of static lex constraints when the search order is good for static
lex constraints (SAME and FF);

– the performance of dynamic lex constraints is much better when the order
is not good for static lex constraint (INV and INVFF);

– the difference between static and dynamic lex constraints is much more im-
portant when we search for one solution than when we search for all solutions.

7 Conclusions and Future Research

We have provided a new definition for symmetry breaking in term of dynamic
lex leader solutions. These solutions are similar to the lex leader solutions of
[3], except that the ordering used is the variable ordering used during search.
We have shown that the first solution in any tree search is a dynamic lex leader
solution. It means that filtering out solutions which are not dynamic lex leader
solutions will not slow down search. We have described simple, yet efficient,
algorithms for this filtering. These algorithms are similar to the ones presented
in [16], except that we use a dynamic ordering for variables here. Preliminary
experimental results show that dynamic lex constraints filtering can be stronger
and more efficient than SBDS. They also show that dynamic lex constraints can
be as efficient as static lex constraints when the variable order used in the search
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is the same as the one used in lex constraints. Last, they show that dynamic lex
constraints can be much more efficient than static lex constraints when variable
orders clash.

Even if these result are encouraging, there is much room for improvement.
Indeed, the algorithm described in section 5.3 requires to state one constraint
per symmetry of the problem. It is not tractable for problems where the number
of symmetries is very large. One possible way to solve this issue is to implement
the global constraint described in section 5.4. We are confident it can be done,
since we have developed a similar global constraints when the order of variables
is fixed [16]. In such case, the number of symmetry breaking constraint no longer
depends on the number of value symmetries. It remains to be seen if we can state
less constraints than the number of variable symmetries. It would be interesting
to see if we can combine our work for instance with the one of [13].
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Abstract. We introduce the SomeDifferent constraint as a general-
ization of AllDifferent. SomeDifferent requires that values assigned
to some pairs of variables will be different. It has many practical ap-
plications. For example, in workforce management, it may enforce the
requirement that the same worker is not assigned to two jobs which are
overlapping in time. Propagation of the constraint for hyper-arc consis-
tency is NP hard. We present a propagation algorithm with worst case
time complexity O(n3βn) where n is the number of variables and β ≈ 3.5
(ignoring a trivial dependence on the representation of the domains). We
also elaborate on several heuristics which greatly reduce the algorithm’s
running time in practice. We provide experimental results, obtained on a
real-world workforce management problem and on synthetic data, which
demonstrate the feasibility of our approach.

1 Introduction

In this paper we consider a generalization of the well known AllDifferent con-
straint. The AllDifferent constraint requires that the variables in its scope be
assigned different values. It is a fundamental primitive in constraint program-
ming (CP), naturally modeling many classical constraint satisfaction problems
(CSP), such as the n-queen problem, air traffic management [2,9], rostering
problems [18], and many more. Although a single AllDifferent constraint on n
variables is semantically equivalent to n(n− 1)/2 binary NotEqual constraints,
in the context of maintain-arc-consistency algorithms it is vastly more powerful
in pruning the search space and reducing the number of backtracks. It also sim-
plifies and compacts the modeling of complex problems. It has thus attracted a
great deal of attention in the CP literature (see [19] for a survey).

Despite its usefulness, the AllDifferent constraint is too restrictive in many
applications. Often we only desire that certain pairs of variables assume differ-
ent values, and do not care about other pairs. A simple example of this is the
following workforce management problem [21]. We are given a set of jobs, a set
of workers, and a list specifying which jobs can be done by which workers. In
addition, the jobs may be specified to start and end at different times, or require
only partial availability of a worker. Consequently, some pairs of jobs may be
assigned to the same worker while others may not. A simple way to model the
problem is to let each job correspond to a variable, and let the domain of each
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variable be the set of workers qualified to do the job. Then one can add a binary
NotEqual constraint for every two jobs which overlap in their time of execu-
tion and require together more than 100% availability. Additional constraints
can then be added according to the detailed specification of the problem. While
semantically correct, this model suffers from the same disadvantages of model-
ing an AllDifferent problem by multiple NotEqual constraints. On the other
hand, the AllDifferent constraint is inappropriate here because in general, the
same worker can be assigned to two jobs.

While workforce management is a CP application of prime, and growing,
importance (especially in light of the current trends towards globalization and
strategic outsourcing), it is not the only problem in which the above situation
arises. Some further examples include: circuit design, in which any two macros on
a chip may or may not overlap, depending on their internal structure; university
exam scheduling, in which the time-slot of any two exams may or may not be the
same, depending on the number of students taking both exams; and computer-
farm job scheduling, in which, depending on the types of any two jobs, the same
machine may or may not process them simultaneously.

All of this calls for a generalization of AllDifferent in which some, but
not all, pairs of variables require distinct values. We call this generaliza-
tion SomeDifferent. Formally, the SomeDifferent constraint is defined over
a set of variables X = {x1, . . . , xn} with domains D = {D1, . . . , Dn}, and
an underlying graph G = (X, E). The tuples allowed by the constraint are:
SomeDifferent(X, D, G) = {(a1, . . . , an) : ai ∈ Di ∧ ai �= aj for all (i, j) ∈
E(G)}. The special case in which G is a clique is the familiar AllDifferent
constraint. Another special case that has received some attention is the case of
two AllDifferent constraints sharing some of their variables [1].

Our focus in this paper is on hyper-arc consistency propagation for the
SomeDifferent constraint. Since most CSP algorithms use arc-consistency prop-
agation as a subroutine (see, e.g., [7]), it is important to develop specialized
propagation algorithms for specific constraint types—algorithms that are able
to exploit the concrete structure of these constraints. For example, the
AllDifferent constraint admits a polynomial-time hyper-arc consistency prop-
agation algorithm based on its bipartite graph structure [14]. In contrast, and
despite the similarity between SomeDifferent and AllDifferent, there is little
hope for such an algorithm for the SomeDifferent constraint, as the hyper-
arc consistency propagation problem for SomeDifferent contains the NP hard
problem of graph 3-colorability as a special case.

The NP hardness of the propagation problem accommodates two approaches.
One is to aim for relaxed or approximated propagation. This approach has
been taken previously in the context of other NP Hard propagation prob-
lems [15,16,17]. The second approach is to tackle the problem heuristically. In
this paper we combine a theoretically grounded exact algorithm (with exponen-
tial worst case running time) with several heuristics that greatly speed it up in
practice.
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Our results. We introduce an exact propagation algorithm for hyper-arc consis-
tency of the SomeDifferent constraint. The algorithm has time complexity of
O(n3βn), with β ≈ 3.5, and depends on the domain sizes only for the unavoid-
able deletion operations. We have implemented the algorithm (with multiple
additional heuristics) and tested it on two kinds of data:

– IBM’s workforce management instances.
– Synthetic data generated through a random graph model.

In both cases the implementation performed well, much better than expected
from the theoretical bounds. It also compared favorably (though not in all cases)
with the approach of modeling the problem by NotEqual constraints.

Organization of this paper. The remainder of the paper is organized as follows. In
Section 2 we describe a graph theoretical approach to the problem of propagating
the SomeDifferent constraint for hyper-arc consistency. In Section 3 we present
our algorithm and its worst-case analysis. In Section 4 we discuss a few practical
heuristic improvements. In Section 5 we report experimental results. In Section 6
we conclude and discuss future work.

2 A Graph-Theoretical Approach

The problem of propagation of SomeDifferent for hyper-arc consistency can
be formulated as the following graph coloring problem. The input is a graph
G = (V, E), where each vertex u is endowed with a finite set of colors Du. The
vertices correspond to variables; the sets of colors correspond to the domains of
the respective variables; the graph edges correspond to pairs of variables that
may not be assigned the same value, as mandated by the constraint. A valid
coloring of the graph is an assignment c : V →

⋃
u∈V Du of colors to vertices

such that: (1) each vertex u is assigned a color c(u) ∈ Du; and, (2) no two
adjacent vertices are assigned the same color. If a valid coloring exists, we say
the graph is colorable.1 Valid colorings correspond to assignments respecting the
SomeDifferent constraint. We view a coloring of the graph as a collection of
individual point colorings, where by point coloring we mean a coloring of a single
vertex by one of the colors. We denote the point coloring of vertex u by color c by
the ordered pair (u, c). We say that (u, c) is extensible if it can be extended into a
valid coloring of the entire graph (i.e., if there exists a valid coloring of the entire
graph in which u is colored by c). The problem corresponding to propagation
of SomeDifferent for hyper-arc consistency is: given the graph and color sets,
prune the color sets such that: (1) every extensible point coloring in the original
graph remains in the pruned graph; and (2) every point coloring in the pruned
graph is extensible. (We view the color sets as part of the graph. Thus we speak
of the “pruned graph” despite the fact that it is actually the color sets that are
pruned, not the graph itself.) This problem is NP hard, as even the problem
1 We emphasize that we do not refer here to the usual terminology of graph coloring,

but rather to coloring from domains.
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of determining whether the graph is colorable contains the NP hard problem of
3-colorability as the special case in which all color sets are identical and contain
three colors.

The solution to the above pruning problem is of course unique. It consists of
pruning all point colorings that are non-extensible with respect to the original
graph. Thus the problem reduces to identifying the non-extensible point colorings
and eliminating them. The direct approach to this is to test each point coloring
(u, c) for extensibility by applying it (i.e., conceptually coloring u by c, deleting
c from the color sets of the neighbors of u, and deleting u from the graph) and
testing whether the remaining graph is colorable. Thus the number of colorability
testings is

∑
u |Du|, and the time complexity of each is generally exponential in

the total number of colors available. This can be prohibitively costly when the
color sets are large, even if the number of vertices is small. Fortunately, it is
possible to do better in such cases. Let us denote D(U) =

⋃
u∈U Du for any

U ⊆ V . Following the terminology of [13], we make the following definition.

Definition 1. We say that a set of nodes U is a failure set if |D(U)| < |U |,
in which case we also say that the subgraph induced by U is a failure subgraph.
Note that the empty set is not a failure set.

The key observation on which our algorithm is based is contained in Lemma 2
below, whose proof requires the next lemma.

Lemma 1. If the graph contains no failure sets, then it is colorable.

Proof. This is a straightforward application of Hall’s Theorem (see, e.g., Refer-
ence [20], Chapter 3.1):

Let H = (L, R, F ) be a bipartite graph, and for every subset U ⊆ L, let
N(U) = {v ∈ R | ∃u ∈ U, uv ∈ F}. If |N(U)| ≥ |U | for all U ⊆ L, then
F admits a matching that saturates L, i.e., a matching in which every
vertex in L is matched.

We apply Hall’s theorem by defining the following bipartite graph H = (L, R, F ):
L = V ; R = D(V ); and F = {uc |u ∈ L ∧ c ∈ Du}. The condition that no subset
of V is a failure set translates into the condition of Hall’s Theorem for H , and
therefore a matching saturating L exists. This matching defines a coloring of G
in which each vertex is assigned a color from its corresponding color set, and no
color is shared by two vertices. Such a coloring is necessarily valid. ��

Lemma 2. The graph is colorable if and only if each of its failure subgraphs is
colorable.

Proof. Clearly, if the graph is colorable, then so is every failure subgraph. Con-
versely, if the graph is not colorable, then by Lemma 1 it contains a failure
subset. Let U ⊆ V be a maximal failure set, i.e., U is a failure set and is not
a proper subset of any other failure set. If U = V we are done. Otherwise, let
D1 = D(U) and D2 = D(V ) \ D1 = D(V \ U) \ D1. Consider the subgraph
induced by V \ U with its color sets restricted to the colors in D2 (i.e., with
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each color set Dv (v ∈ V \ U) replaced by Dv \ D1). Neither this graph, nor
any of its induced subgraphs may be failure subgraphs, for had any subset of
V \ U been a failure set with respect to D2, then so would its union with U be
(with respect to D1 ∪ D2, i.e., when the original color sets for the vertices in
V \ U are reinstated), contradicting the maximality of U . Thus, by Lemma 1,
the subgraph induced by V \U is colorable using only colors from D2. It follows
that the subgraph induced by U is not colorable. (Otherwise the entire graph
would be colorable, since the coloring of U would only use colors from D1 and
so could coexist with the coloring of V \U that uses only colors from D2). Thus,
the non-colorability of the graph implies the existence of a failure subgraph that
is non-colorable, which completes the proof. ��

3 The Algorithm

Testing whether a point coloring (u, c) is extensible can be carried out by remov-
ing c from the color sets of u’s neighbors and deleting u (thus effectively coloring
u by c), and checking whether the resulting graph is colorable. Lemma 2 implies
that it is sufficient to check whether some induced subgraph of the resulting
graph is colorable. This seems to buy us very little, if anything, since we now
replace the checking of a single graph with the checking of many (albeit smaller)
subgraphs. (And, of course, we must still do this for each of the

∑
u |Du| point

colorings.) However, we can realize significant savings by turning the tables and
enumerating subsets of vertices rather than point assignments. More specifically,
we enumerate the non-empty proper subsets of V , and test point colorings only
for those that are failure sets. As we shall see shortly, this reduces the number
of colorability checkings to at most n22n, where n is the number of vertices.

Postponing to later the discussion of how to check whether a subgraph is
colorable, we now present the pruning algorithm.

1. For each ∅ � U � V :
2. If |D(U)| ≤ |U |:
3. For each c ∈ D(U) and v ∈ V \ U such that c ∈ Dv:
4. Check whether the subgraph induced by U is

colorable with c removed from the color sets of the
neighbors of v. If not, report (v, c) as non-extensible.

5. Prune the point colorings reported as non-extensible.
6. Check whether the pruned graph contains a vertex with an empty

color set. If so, announce that the graph is not colorable.

Note that as the algorithm stands, the same point coloring may be reported
multiple times. We address this issue in Section 4.

3.1 Correctness of the Algorithm

We now argue that the algorithm correctly identifies the non-extensible point col-
oring when the graph is colorable, and announces that the graph is not colorable
when it is not.
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Proposition 1. If the graph is colorable, the algorithm reports all non-extensible
point colorings, and only them.

Proof. A point coloring is reported by the algorithm as non-extensible only if
applying it renders some subgraph (and hence the entire graph) non-colorable.
Thus all point colorings reported by the algorithm are indeed non-extensible.
Conversely, to see that all non-extensible point colorings are reported, consider
any such point coloring (v, c). Coloring v by c effectively removes c from the
color sets of v’s neighbors, and the resulting graph (in which v is also removed)
is non-colorable (since (v, c) is non-extensible). By Lemma 2, this graph contains
a subgraph induced by some failure set U that is not colorable. But originally
this subgraph was colorable, since the original graph is colorable. This is only
possible if c ∈ D(U). Additionally, because U is a failure set with c removed,
it must be the case that |D(U)| ≤ |U | before c is removed. Thus, when the
algorithm considers U it will report (v, c) as non-extensible. ��

Proposition 2. If the graph is non-colorable, the algorithm detects this.

Proof. If the graph is non-colorable, then by Lemma 2 it contains a non-colorable
subgraph induced by some failure set U . If U is a singleton U = {v}, then Dv = ∅,
and we are done. Otherwise, U must contain at least one vertex v such that
Dv ⊆ D(U \ {v}), for otherwise U would not be a failure set (and furthermore,
the subgraph induced by it would be colorable). Thus, |D(U \ {v} | = |D(U)| ≤
|U \ {v} |, so when the algorithm considers U \ {v} it will enter the inner loop
and report all the point colorings involving v as non-extensible. ��

3.2 Checking Whether a Subgraph is Colorable

We are left with the problem of testing whether a given subgraph is colorable.
We do this by reducing the colorability problem to a chromatic number compu-
tation. The chromatic number of a given graph G, denoted χ(G), is the minimum
number of colors required for coloring G’s vertices such that no two neighbors re-
ceive the same color. In the terms of our coloring framework, we are considering
here the special case in which all color sets are identical. The chromatic number
of the graph is the minimum size of the color set for which a valid coloring still
exists. Computing the chromatic number of a graph is known to be NP hard.

We use the following construction. To test the colorability of the subgraph
induced by U , extend this subgraph as follows. Let r = |D(U)|. Add r new
vertices, each corresponding to one of the colors in D(U), and connect every
pair of these by an edge (i.e., form a clique). Then add an edge between each
vertex v ∈ U and each new vertex that corresponds to a color that is not in Dv.
Let G′ be the resulting graph.

Claim. The subgraph induced by U is colorable if and only if χ(G′) = r.

Proof. If the subgraph induced by U is colorable, then we already have a col-
oring of the vertices in U by at most r colors. We can extend this coloring to
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G′ by coloring each of the new vertices by the color (from D(U)) to which it
corresponds. It is easy to see that in so doing, no two neighbors in G′ receive
the same color. Thus χ(G′) ≤ r and as G′ contains a clique of size r, χ(G′) = r
Conversely, if χ(G′) = r, then there exists a coloring of the vertices in G′, us-
ing r colors, such that no two neighbors receive the same color. Note that the
new vertices all have different colors since they are all adjacent to each other.
Without loss of generality, assume that the colors are D(U) and that each of
the new vertices is given the color it corresponds to. (Otherwise, simply rename
the colors.) Now consider a vertex v ∈ U . For each of the colors c ∈ D(U) \Dv

the new vertex corresponding to c is adjacent to v and is colored by c. Thus v
cannot be colored by any of these colors, and is therefore colored by a color in
its color set Dv. Thus the restriction of the coloring to the subgraph induced by
U is valid. ��

Therefore, to test whether the subgraph induced by U is colorable we construct
the extended graph G′ and compute its chromatic number. Computing the chro-
matic number of a graph is a well researched problem, and a host of algorithms
were developed for it and related problems (e.g., [3,4,5,6,8,10,11]). Some of these
algorithms (e.g., DSATUR [5]) are heuristic—searching for a good, though not
necessarily optimal, coloring of the vertices. By appropriately modifying them
and properly setting their parameters (e.g., backtracking versions of DSATUR)
they can be forced to find an optimal coloring, and hence also the chromatic
number of the graph. In contrast, there are other algorithms, so called exact
algorithms, that are designed specifically to find an optimal coloring (and the
chromatic number) while attempting to minimize the worst case running time
(e.g., [4,6,8,11]). These algorithms are based on enumerating (maximal) indepen-
dent sets of vertices. Their time complexity is O(ak), where a is some constant
(usually between 2 and 3) and k is the number of vertices in the graph. The
algorithms differ from one another by the various divide-and-conquer techniques
they employ to reduce the running time or the memory consumption. The worst
case running times of the heuristic algorithms are of course exponential too, but
with higher exponent bases.

An important observation regarding the complexity of computing the chro-
matic number of G′ is that the number of vertices it contains is |U |+ |D(U)| ≤
2|U |, since we only perform the computation for sets U such that |D(U)| ≤ |U |.
Thus for an O(αk) algorithm, the actual time complexity bound is O

(
(α2)|U|

)
.

While little can be said analytically with respect to the heuristic algorithms,
the exact algorithms are open to improvement due to their reliance on inde-
pendent sets and the fact that the new vertices in G′ form a clique. This can
be demonstrated, e.g., on Lawler’s algorithm [11], whose running time (in con-
junction with Eppstein’s maximal independent set enumeration algorithm [8])
is O(2.443k). The proof of the following proposition is omitted due to lack of
space.

Proposition 3. A suitably modified version of Lawler’s algorithm runs on G′

in O(|U | · 2.443|U|), rather than O
(
(2.4432)|U|

)
.
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3.3 Complexity Analysis

The time complexity of the algorithm is determined by the loops. The outer
loop iterates 2n − 2 times (n is the number of vertices). For each subset U
with |D(U)| ≤ |U |, the inner loop is iterated at most |D(U)| · |V \ U | ≤
|U | · |V \ U | ≤ n2/4 times. Thus the total number of chromatic-number com-
putations is at most 1

4n22n. Letting O(nαn) denote the time complexity of the
chromatic-number algorithm used, we get a time bound of O(n32nαn) on the
work involved in chromatic-number computations. This bound can be tightened
to O(n3(α+1)n) by observing that the chromatic-number algorithm is called at
most n2

(
n
k

)
times with a subgraph of size k, and so the total time is bounded by

O
(
n2
∑n

k=1

(
n
k

)
kαk

)
= O(n3(α + 1)n).

In addition to the chromatic number computations, there is some work in-
volved in manipulating color sets—specifically, evaluating |D(U)| ≤ |U | for each
subset U , determining which vertices have colors from D(U) in their color sets,
and deleting colors from color sets. The time complexity of these operations
will depend on the way the color sets are represented (e.g., by explicit lists,
number ranges, bit masks, etc.), but, under reasonable assumptions, will not
exceed O(n3) time in the worst case (and in practice will be much better) for
each iteration of the outer loop. There is an additional, unavoidable, depen-
dence on the domain sizes of vertices not in U , which is incurred when the
algorithm considers and deletes point colorings. This dependence is logarith-
mic at worst, using a straightforward implementation. Such unavoidable depen-
dences notwithstanding, the worst case total running time of the algorithm is
O(n32n + n3(α + 1)n) = O(n3(α + 1)n).

4 Practical Improvements

There are a number of heuristics which when added to the algorithm greatly
enhance its practicality. We list some of them next.

Connected components and superfluous edges. The two sources of ex-
ponentiality are the enumeration of subsets and the chromatic number compu-
tations (which are exponential in the number of vertices). It is fairly obvious
that if the graph is not connected, the algorithm can be run on each connected
component separately without affecting its correctness. Also, if an edge has two
endpoints with disjoint color sets, then it can be dropped without affecting the
semantics of the graph. We can therefore delete any such edges, decompose
the resultant graph into connected components and run the algorithm on each
separately. Doing so yields a speedup that is (potentially) exponential in the
difference between the graph size and the connected component size (e.g., if the
graph contains 200 nodes and consists of twenty components of size 10 each,
then the potential speedup is β200/(20 · β10) = 1

20 · β190).
A refinement of this heuristic is based on the observation that a failure sub-

graph is non-colorable if and only if it contains a non-colorable connected failure
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subgraph of itself. Thus it is sufficient to enumerate only subsets that induce
connected subgraphs (although we do not know how to do so efficiently).

Enumeration order. A further reduction in running time comes from the sim-
ple observation that if a subset U satisfies D(U) ≥ n, then so do all of U ’s
supersets, and so they need not be considered at all. A simple way to exploit
this is to enumerate the subsets by constructing them incrementally, using the
following recursive procedure. Fix an order on the vertices v1, . . . , vn, and call
the procedure below with i = 0, U = ∅.

Procedure Enumerate(i, U)
1. If i = n, process the subgraph induced by U .
2. Else:
3. Enumerate(i + 1, U).
4. If |D(U ∪ {vi+1})| ≤ n, Enumerate(i + 1, U ∪ {vi+1}).

This procedure is sensitive to the order of vertices; it makes sense to sort
them by decreasing size of color set. A further improvement is to perform a
preprocessing step in which all vertices u such that |Du| ≥ n are removed from
the list.

Early pruning of point colorings. It is not difficult to verify that the correct-
ness of the algorithm is preserved if instead of just reporting each non-extensible
point coloring it finds, it also immediately deletes it (so that the subsequent
computation applies to the partially pruned graph). The advantage here is that
we avoid having to consider over and over again point assignments that have al-
ready been reported as non-extensible. This eliminates the problem of the same
point assignment being reported multiple times, and, more importantly, it also
eliminates the superfluous chromatic-number computation performed each time
the point coloring is unnecessarily considered. In addition, the algorithm can
immediately halt (and report that the original graph is not colorable) if the
color set of some vertex becomes empty. The downside of this heuristic is that
the sets D(U) grow smaller as the algorithm progresses, thus causing more sub-
sets U to pass the |D(U)| ≤ |U | test and trigger unnecessary chromatic number
computations. Of course, in this case it is an easy matter to eat the cake and
have it too. We simply compute |D(U)| with respect to the original graph, and
do everything else on the (partially) pruned graph.

We remark that this last heuristic is especially powerful in conjunction with
the Enumerate procedure above, because that procedure considers (to some
extent) subsets before it considers their supersets. This allows the algorithm to
detect, and prune, point assignments using small subsets, and so avoid chromatic-
number computations on larger subgraphs. This phenomenon could be enhanced
by enumerating the subsets in order of increasing size (i.e., first all singletons,
then all pairs, then all triplets, etc.) but then it would not be easy to avoid
enumerating subsets with |D(U)| > n. A hybrid approach might work best.

Speeding the chromatic number computation. In our algorithm we are
really only interested in knowing whether the chromatic number of the extended
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graph G′ is r, and not in finding its actual value. Thus we can preprocess G′ as
follows: as long as G′ contains a vertex whose degree is less than r, delete this
vertex. (The process is iterative: deleting a vertex decreases the degree of its
neighbors, possibly causing them to be deleted too, etc.) The rationale is that
deleting a vertex cannot increase the chromatic number of the graph, and, on the
other hand, if after deleting the vertex the graph can be colored with r colors,
then this coloring can be extended to the vertex by giving it a color different
from the (at most r − 1) colors given to its neighbors.

Redundant chromatic number computations. It is only necessary to per-
form a chromatic-number computation on failure subgraphs. Although a (non-
failure) set U such that |D(U)| = |U | must pass into the inner loop, it is quite
possible that for a given point assignment (v, c), v ∈ V \U , c ∈ D(U), the color
c appears in the color set of some vertex in U that is not adjacent to v. In such
a case, applying the point coloring does not decrease |D(U)| and does not turn
U into a failure set, thus obviating the chromatic-number computation.

5 Experimental Results

We created a prototype implementation of our algorithm, incorporating most of
the improvements mentioned in the previous section. The code was created by
adapting and extending pre-existing generic CP code implementing the MAC-3
algorithms, and was not optimized for the needs of our algorithm. For chromatic-
number computations, we used Michael Trick’s implementation of an exact ver-
sion of the DSATUR algorithm (available, as of July 5, 2006, at !http:// www .
cs . sunysb . edu / algorith / implement / trick / distrib / trick.c!). We evaluated
the code’s performance on a Linux machine powered by a 3.6 GHz Intel Pentium
4 processor.

We performed two sets of performance testings: one using real workforce man-
agement data, and the other using synthetically generated data. Next we describe
the data on which we ran the algorithm, and following that, the results we ob-
tained.

Workforce management data. The real data we used originated in an instance
of a workforce management (WM) problem in a certain department in IBM,
the likes of which are routinely handled by that department. We were given a
file containing 377 job descriptions. Each job description consisted of the dates
during which the job was to be performed and the list of people qualified to per-
form it. The total number of people was 1111. In our model of the problem, jobs
correspond to vertices, people correspond to colors, and pairs of jobs overlapping
in time correspond to graph edges.

By running our algorithm on randomly selected subsets of jobs we discovered
that subsets of more than 50 jobs were almost always unsatisfiable because there
were quite a few instances of pairs of jobs overlapping in time that could only be
performed by a single person—the same person. The algorithm would detect this
almost instantly. In order to stress the algorithm and test its limits in a more
meaningful manner, we artificially deleted the offending jobs (leaving one of each
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pair). We ended up with 312 jobs. We tested the algorithm on random subsets
of these jobs, in sizes ranging from 20 to 300 jobs, at increments of ten. For
each subset size n = 20, 30, . . . , 300, we selected (uniformly and independently)
ten subsets of n jobs and ran the algorithm on each subset. In total, we ran the
algorithm on 290 instances.

Synthetic data. In addition to the WM data on which we evaluated our algo-
rithm, we also tested it on randomly generated graphs. The random process by
which the graphs were generated was controlled by four parameters: n, the num-
ber of vertices; p, the edge creation probability; m, the total number of colors;
and k, the maximum color-set size. Each random graph was generated as follows
(all random choices were made independently and uniformly). A set of n vertices
was created. For each (unordered) pair of vertices, an edge was added between
them with probability p. Then, for every vertex v a random number kv was
chosen in the range 1, 2, . . . , k, and then kv colors were randomly chosen from
the common pool of m colors. The values we used for the parameters were: n
ranged from 20 to 100 at increments of 10; p was either 0.1, 0.3, or 0.6; m = 300
throughout; and k was either 10 or 20. For each set of parameters we generated
ten graphs and ran the algorithm on them. In total, we ran the algorithm on
540 instances.

Results. We carried out two types of performance measurement, both on the
same data sets. The first type is the absolute performance of a single call to the
SomeDifferent propagator. The second type of measurement was comparative:
we compared the running time of a CSP solver on two models, one consisting
of a single SomeDifferent constraint, and the second consisting of the equiva-
lent set of NotEqual constraints. In addition to the running time measurements
we also collected various statistics concerning the input instances and the algo-
rithm’s run-time behavior. This extra data helped us understand the variation
in the algorithm’s performance. We used a CSP solver implementing MAC-3
and breaking arc-consistency by instantiating a random variable with a random
value [12].

Figure 1 shows the running times of the propagator on the WM data instances.
We see that the running time follows a slowly increasing curve from about 4msec
(for 20 vertices) to about 100msec (for 300 vertices), but in the range 140–240
vertices, roughly half of the instances have increased running times, up to a
factor of about 3 relative to the curve. Examination of these instances revealed
that they entailed significantly more chromatic number computations than the
other instances, which explains the increased running times.

We remark that up to 110 vertices nearly all instances were satisfiable, starting
at 120 the percentage of unsatisfiable instances increased rapidly, and from 150 on-
ward nearly all instances were unsatisfiable. It is interesting to note that the run-
ning times do not display a markedly different behavior in these different ranges.

In summary, despite the algorithm’s worst case exponential complexity, it
seems to perform well on the real-life instances we tested. The main contribut-
ing factor to this is the fact that the graphs decomposed into relatively small
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Fig. 1. Running time of the SomeDifferent propagator on WM data instances. Some
of the instances shown were satisfiable, while others were unsatisfiable.

connected components. An earlier version that did not implement the connected
components heuristic performed less well by several orders of magnitude.

Table 1. Running time (msec.) of the propagator on randomly generated graphs

n = 20 n = 30 n = 40 n = 50 n = 60 n = 70 n = 80 n = 90 n = 100
k = 10

p = 0.1 3.26 3.59 4.00 4.08 6.84 4.40 7.63 12.4 18.3
p = 0.3 3.27 3.64 4.93 9.39 345 13037 170416 471631 606915
p = 0.6 3.26 5.40 42.8 625 7065 121147 574879 607262 608733

k = 20
p = 0.1 3.30 4.23 4.14 8.06 28.5 90.7 591 3954 13939
p = 0.3 3.31 5.27 12.5 42.1 167 1442 5453 29478 186453
p = 0.6 3.92 6.20 14.2 57.8 309 1398 6549 38196 270353

Table 1 shows the running times, in milliseconds, on the randomly generated
graphs, all of which were satisfiable. The time shown in each table entry is the
average over the ten instances. We see that for small graphs the algorithm’s
performance is similar to its performance on the WM data instances. However,
as the graphs become larger, the running time increases steeply. The reason for
this is the well known phenomenon whereby graphs generated by the random
process we have described contain with high probability a “giant” connected
component (i.e., one that comprises nearly all vertices), rendering the connected
components heuristic powerless. All the same, the algorithm was able to handle
graphs containing 100 vertices in approximately 10 minutes—well below what
its worst case complexity would suggest.

We also see a significant difference between the cases p = 0.1 and p ∈
{0.3, 0.6}. At p = 0.1, the giant component effect had not set in in full force
and the connected components were fairly small, whereas at p ∈ {0.3, 0.6} the
phenomenon was manifest and the giant component accounted for more than
90% of the graph.
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There is also a noticeable difference between the cases k = 10 and k = 20.
There are two contradictory effects at play here. A small value of k increases the
likelihood of edges becoming superfluous due to their endpoints having disjoint
color sets, thus mitigating the giant component effect. But at the same time, it
reduces the color set sizes, thus diminishing the effectiveness of the enumeration
order heuristic and forcing the algorithm to spend more time enumerating sets.
Indeed, we have observed that in large connected components the algorithm
spends most of its time enumerating sets that do not pass the |D(U)| ≤ |U | test;
the chromatic number computations tend to be few and involve small subgraphs,
and therefore do not contribute much to the running time. For p = 0.1 the graph
is sparse enough so that the giant component effect is indeed canceled out by the
emergence of superfluous edges, whereas for p ∈ {0.3, 0.6}, the small decrease
in component size due to superfluous edges is outweighed by the effect of the
smaller color sets.

We now turn to a comparison of the SomeDifferent and NotEqualmodels. We
measured the time it took the solver to solve the CSP (or prove it unsatisfiable).
When using NotEqual constraints, the backtrack limit was set to 10000. (The
SomeDifferent model is backtrack free.)
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Fig. 2. Running time of the CSP solver on the SomeDifferent model, and speedup
factor relative to NotEqual, on WM data instances

The graph on the left of Figure 2 shows the running times on the WM data
instances using the SomeDifferentmodel. The graph on the right shows (in log-
scale) the corresponding speedup factors relative to the NotEqual model. We see
that the running times follow two curves. The rising curve represents the satis-
fiable instances, where the SomeDifferent propagator is called multiple times.
The flat curve represents the unsatisfiable instances, where the unsatisfiability
is established in a single SomeDifferent propagation. The speedup factors are
grouped (on the logarithmic scale) roughly into three bands. The top band (con-
sisting of 75 instances with speedup factors around 5000) represents instances
that caused the solver to hit the backtrack limit. The middle band represents a
mixture of 104 large instances identified as unsatisfiable and 42 small instances
which the solver was able to satisfy, as well as 6 satisfiable instances on which
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the solver hit the backtrack limit. The lower band represents the remaining 63
instances, which are of intermediate size (60–160 vertices), and which were satis-
fied by the solver with a very small number of backtracks (nearly always 0). For
these instances the NotEqual model was superior to the SomeDifferent model;
the slowdown factors were around 2 (the maximum slowdown factor was 2.35).

Upon a closer examination of the data we observed that in nearly all cases
(in all three bands) the NotEqual model either hit the backtrack limit or solved
the CSP with no backtracks at all. For most cases in which the solver proved
unsatisfiability, this was a result of the instances containing several vertices with
singleton color sets which immediately forced inconsistency. The satisfiable cases
had singleton color sets too, which definitely helped the solver. In contrast, our
SomeDifferent propagator does not benefit from singleton color sets in any ob-
vious manner. Adding a preprocessing stage (essentially, a NotEqual propagation
stage) to handle them can obviously improve its performance.

In summary, our WM data instances seem biased in favor of the
NotEqual model, due to the presence of singleton color sets. Nonetheless, the
SomeDifferent approach still outperformed the NotEqual approach in the cases
requiring backtracking. In virtually all of these cases, the NotEqualmodel hit the
limit, whereas the SomeDifferentmodel performed quite well. Adding a prepro-
cessing stage to our algorithm would make it as good as NotEqual propagation
in the easy cases too.

On the random graph instances the variations in the speedup factors did not
display easily understandable patterns. Generally speaking, the speedup factor
started in the range 40–100 for 20 vertices, and declined roughly linearly to 1 at
40 or 50 vertices (depending on the k and p) parameters. For larger instances the
speedup became slowdown, which grew to a maximum in the range 4000–6000
for the largest instances. Here too, all instances were satisfied in the NotEqual
model with no backtracks. This demonstrates again that the main source of
hardness for our algorithm, primarily the graph’s connectivity, has little effect
on the NotEqual approach.

6 Conclusion and Future Work

We have introduced the SomeDifferent constraint, which generalizes the famil-
iar AllDifferent constraint in that it requires that only some pairs of variables
take on different values. We have developed a hyper-arc consistency propaga-
tion algorithm for the SomeDifferent constraint. The problem is NP hard, and
our algorithm’s worst-case time complexity is exponential in the number of vari-
ables, but is largely independent of the domain sizes. We have also suggested
and implemented some heuristics to improve the algorithm’s running time in
practice. We have offered empirical evidence suggesting that our algorithm is
indeed practical.

Future work. The results we have obtained are encouraging, but clearly more ex-
perimentation with real data, preferably from a variety of application domains,
is required in order to establish the usefulness of our approach. Also, we have
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already identified some areas for improvement, namely, adding a preprocessing
stage to handle singleton color sets, and improving the set enumeration algo-
rithm. A different, and important, research direction is to devise approximation
techniques for unsatisfiable instances. A natural problem with practical impor-
tance is to remove as small (or cheap) a subset of vertices as possible in order
to make the instance satisfiable.

Acknowledgments. We are grateful to Dan Connors and Donna Gresh for
analyzing the raw workforce management data, extracting the parts pertinent
to our work, and bringing them into a form we could use in our experiments.
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Abstract. Many important combinatorial optimization problems can
be expressed as constraint satisfaction problems with soft constraints.
When problems are too difficult to be solved exactly, approximation
methods become the best option. Mini-bucket Elimination (MBE) is a
well known approximation method for combinatorial optimization prob-
lems. It has a control parameter z that allow us to trade time and space
for accuracy. In practice, it is the space and not the time that limits
the execution with high values of z. In this paper we introduce a new
propagation phase that MBE should execute at each bucket. The pur-
pose of this propagation is to jointly process as much information as
possible. As a consequence, the undesirable lose of accuracy caused by
MBE when splitting functions into different mini-buckets is minimized.
We demonstrate our approach in scheduling, combinatorial auction and
max-clique problems, where the resulting algorithm MBEp gives impor-
tant percentage increments of the lower bound (typically 50% and up to
1566%) with only doubling the cpu time.

1 Introduction

It is well recognized that many important problems belong to the class of combi-
natorial optimization problems. In general, combinatorial optimization problems
are NP-hard. Therefore, they cannot be solved efficiently with current technolo-
gies. Then, the only thing that we can possibly do is to find near-optimal so-
lutions. In that context, it is also desirable to have a quality measure of the
solution. One way to achieve this goal is to provide a lower and an upper bound
of the optimum. The smaller the gap, the closer we are to the true optimum.

Typically, best results are obtained developing ad-hoc techniques for the in-
stances of interest. However, this requires a lot of work, including the time to
learn specific domain peculiarities. An alternative, is to used generic techniques.
Although they may not give so accurate results, it may be enough in some appli-
cations. Besides, they may provide the starting reference point to evaluate new
ad-hoc techniques.

Mini-bucket Elimination (MBE) [1] is one of the most popular bounding tech-
niques. Assuming minimization problems, MBE provides a lower bound of the
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optimum and can be combined with local search which provide upper bounds 1.
MBE is very general, since it can be applied to any problem that falls into the cat-
egory of graphical models. Graphical models include very important optimization
frameworks such as soft constraint satisfaction problems [2], Max-SAT, bayesian
networks [3], etc. These frameworks have important applications in fields such
as routing [4], bioinformatics [5], scheduling [6] or probabilistic reasoning [7]. The
good performance of MBE in different contexts has been widely proved [1,8,7].

Interestingly, MBE has a parameter z which allow us to trade time and space
for accuracy. With current computers, it is the space and not the time what
bounds the maximum value of z that can be used in practice. In our previous
work [9], we introduced a set of improvements on the way MBE handles mem-
ory. As a result, MBE became orders of magnitude more efficient. Thus, higher
values of z can be used which, in turn, yields significantly better bounds. In this
paper we continue improving the practical applicability of MBE. In particular,
we introduce a new propagation phase that MBE must execute at each bucket.
Mini-buckets are structured into a tree and costs are moved along branches from
the leaves to the root. As a result, the root mini-bucket accumulates costs that
will be processed together, while classical MBE would have processed them inde-
pendently. Note that the new propagation phase does not increase the complexity
with respect classical MBE.

Our experiments on scheduling, combinatorial auctions and maxclique show
that the addition of this propagation phase increases the quality of the lower
bound provided by MBE quite significatively. Although the increase depends on
the benchmark, the typical percentage is 50%. However, for some instances, the
propagation phase gives a dramatic percentage increment up to 1566%.

2 Preliminaries

2.1 Soft CSP

Let X = (x1, . . . , xn) be an ordered set of variables and D = (D1, . . . , Dn) an
ordered set of domains, where Di is the finite set of potential values for xi.
The assignment (i.e, instantiation) of variable xi with a ∈ Di is noted (xi ←
a). A tuple t is an ordered set of assignments to different variables (xi1 ←
ai1 , . . . , xik

← aik
). The scope of t, noted var(t), is the set of variables that it

assigns. The arity of t is |var(t)|. The projection of t over Y ⊆ var(t), noted t[Y ],
is a sub-tuple of t containing only the instantiation of variables in Y . Let t and
s be two tuples having the same instantiations to the common variables. Their
join, noted t · s, is a new tuple which contains the assignments of both t and
s. Projecting a tuple t over the empty set t[∅] produces the empty tuple λ. We
say that a tuple t is a complete instantiation when var(t) = X . In the following,
abusing notation, when we write ∀t∈Y we will mean ∀t s.t. var(t)=Y .

Let A be an ordered set of values, called valuations, and + a conmutative and
associative binary operation + : A×A→ A such that exists an identity element
1 In the original description MBE also provides an upper bound, but in this paper we

will disregard this feature.
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0 (namely, ∀a ∈ A, a + 0 = a), and satisfies monotonicity (namely, ∀a, b, b ∈ A,
if a ≥ b then (a + b ≥ b + c)).
F = {f1, . . . , fr} is a set of functions. Each function fj is defined over a subset

of variables var(fj) ⊆ X and returns values of A (namely, if var(t) = var(fj)
then fj(t) ∈ A). For convenience, we allow to evaluate fj(t) when var(t) ⊃
var(fj), being equivalent to fj(t[var(fj)]). In this paper we assume functions
explicitly stored as tables.

A soft CSP is a triplet (X ,D,F) where each function f ∈ F specifies how good
is each different partial assignment of var(f). The sum + is used to aggregate
values from different functions. The global quality of an assignment is the sum
of values given by all the functions. The usual task of interest is to find the best
complete assignment X in terms of A. Different soft CSP frameworks differ in
the semantics of A. Well-known frameworks include probabilistic CSPs, weighted
CSPs, fuzzy CSPs, etc [2].

A soft CSP framework is fair [10] if for any pair of valuations α, β ∈ A, with
α ≤ β, there exists a maximum difference of β and α. This unique maximum
difference of β and α is denoted by β−α. This property ensures the equivalence
of the problem when the two operations + and − are applied. In [10] it is
shown that the most important soft constraint frameworks are fair. Although
our approach can be used in any fair soft constraint framework, for the sake of
simplicity, we will focus on weighted CSPs. In weighted CSPs (WCSPs) A is the
set of natural numbers, + and − are the usual sum and subtraction. Thus, the
set of soft constraints define the following objective function to be minimized,

F (X) =
r∑

i=1

fi(X)

2.2 Operations over Functions

– The sum of two functions f and g denoted (f + g) is a new function with
scope var(f) ∪ var(g) which returns for each tuple t ∈ var(f) ∪ var(g) the
sum of costs of f and g,

(f + g)(t) = f(t) + g(t)

– Let f and g be two functions such that var(g) ⊆ var(f) and ∀t ∈ var(f),
f(t) ≥ g(t). Their subtraction, noted f − g is a new function with scope
var(f) defined as,

(f − g)(t) = f(t)− g(t)

for all tuple t ∈ var(f).
– The elimination of variable xi from f , denoted f ↓ xi, is a new function

with scope var(f) − {xi} which returns for each tuple t the minimum cost
extension of t to xi,

(f ↓ xi)(t) = min
a∈Di

{f(t · (xi ← a))}
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function BE(X , D, F)
1. for each i = n..1 do
2. B := {f ∈ F | xi ∈ var(f)}
3. g := (

∑
f∈B f) ↓ xi;

4. F := (F ∪ {g}) − B;
5. endfor
6. return(F);
endfunction

Fig. 1. Bucket Elimination. Given a WCSP (X ,D, F), the algorithm returns F con-
taining a constant function with the optimal cost.

where t · (xi ← a) means the extension of t so as to include the assignment of
a to xi. Observe that when f is a unary function (i.e., arity one), eliminating
the only variable in its scope produces a constant.

– The projection of function f over Y ⊂ var(f), denoted f [Y ], is a new function
with scope Y which returns for each tuple t the minimum cost extension of
t to var(f),

(f [Y ])(t) = min
t′∈var(f) s.t. t′=t·t′′

f(t′)

Observe that variable elimination and projection are related with the follow-
ing property,

(f ↓ xi) = f [var(f)− {xi}]

2.3 Bucket and Mini-bucket Elimination

Bucket elimination (BE, Figure 1 )[11,12] is a well-known algorithm for weighted
CSPs. It uses an arbitrary variable ordering o that we assume, without loss of
generality, lexicographical (i.e, o = (x1, x2, . . . , xn)). The algorithm eliminates
variables one by one, from last to first, according to o. The elimination of variable
xi is done as follows: F is the set of current functions. The algorithm computes
the so called bucket of xi, noted B, which contains all cost functions in F having
xi in their scope (line 2). Next, BE computes a new function g by summing
all functions in B and subsequently eliminating xi (line 3). Then, F is updated
by removing the functions in B and adding g (line 4). The new F does not
contain xi (all functions mentioning xi were removed) but preserves the value of
the optimal cost. The elimination of the last variable produces an empty-scope
function (i.e., a constant) which is the optimal cost of the problem. The time and
space complexity of BE is exponential in a structural parameter called induced
width. In practice, it is the space and not the time what makes the algorithm
unfeasible in many instances.

Mini-bucket elimination (MBE) [1] is an approximation of BE that can be used
to bound the optimum when the problem is too difficult to be solved exactly.
Given a control parameter z, MBE partitions buckets into smaller subsets called
mini-buckets such that their join arity is bounded by z + 1. Each mini-bucket
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is processed independently. Consequently, the output of MBE is a lower bound
of the true optimum. The pseudo-code of MBE is the result of replacing lines 3
and 4 in the algorithm of Figure 1 by,

3. {P1, . . . ,Pk} := Partition(B);
3b. for each j = 1..k do gj := (

∑
f∈Pj

f) ↓ xi;
4. F := (F ∪ {g1, . . . , gk})− B;

The time and space complexity of MBE is O(dz+1) and O(dz), respectively.
Parameter z allow us to trade time and space for accuracy, because greater values
of z increment the number of functions that can be included in each mini-bucket.
Therefore, the bounds will be presumably tighter. MBE constitutes a powerful
yet extremely general mechanism for lower bound computation.

3 Equivalence-Preserving Transformations in Fair
Frameworks

We say that two WCSPs are equivalent if they have the same optimum. There
are several transformations that preserve the equivalence. For instance, if we take
any pair of cost functions f, g ∈ F from a WCSP (X ,D,F) and replace them
by their sum f + g, the result is an equivalent problem. The replacement of B
by g performed by BE (Figure 1) is another example of equivalence-preserving
transformation. Very recently, a new kind of WCSP transformation has been
used in the context of soft local consistency [13,14]. The general idea is to move
costs from one cost function to another. More precisely, costs are subtracted from
one cost function and added to another. Formally, let f and h be two arbitrary
functions. The movement of costs from f to g is done sequentially in three steps:

h := f [var(f) ∩ var(g)]
f := f − h
g := g + h

In words, function h contains costs in f that can be captured in terms of the
common variables with g. Hence, they can be kept either in h or in f . Then,
this costs are moved from f to g. The time complexity of this operation is
O(dmax{|var(f)|,|var(g)|}). The space complexity is the size of h stored as a table,
O(d|var(h)|}), which is negligible in comparison with the larger function f .

Example 1. Consider the functions on Figure 2 (a). They are defined over boolean
domains and given as a table of costs. Let function h represents the costs that
can be moved from function f to function g. Observe that, as f and g only share
variable xi, then h = f [xi], where h(false) = 2 and h(true) = 4. Figure 2 (b),
shows the result of moving the costs from f to g. Observe that costs of tuples t
such that var(t) = {xi, xj , xk} are preserved.
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Fig. 2. Example of functions

4 Mini Buckets with Propagation

In this Section we introduce a refinement of MBE. It consists on performing a
movement of costs in each bucket before processing it. We incorporate the con-
cept of equivalence-preserving transformation into MBE, but only at the bucket
level. The idea is to move costs between minibuckets aiming at a propagation
effect. We pursue the accumulation of as much information as possible in one of
the mini-buckets.

The following example illustrates and motivates the idea. Suppose that MBE
is processing a bucket containing two functions f and g, each one forming a mini-
bucket. Variable xi is the one to be eliminated. Standard MBE would process
independently each minibucket, eliminating variable xi in each function. It is
precisely this independent elimination of xi from each mini-bucket where the
lower bound of MBE may lose accuracy. Ideally (i.e, in BE), f and g should be
added and their information should travel together along the different buckets.
However, in MBE their information is split into two pieces for complexity reasons.
What we propose is to transfer costs from f to g (or conversely) before processing
the mini-buckets. The purpose is to put as much information as possible in the
same mini-bucket, so that all this information is jointly processed as BE would
do. Consequently, the pernicious effect of splitting the bucket into mini-buckets
will presumably be minimized. Figure 2 depicts a numerical illustration. Consider
functions f and g from Figure 2 (a). If variable xi is eliminated independently, we
obtain the functions in Figure 2 (c). If the problem contains no more functions,
the final lower bound will be 3. Consider now the functions in Figure 2 (b) where
costs have been moved from f to g. If variable xi is eliminated independently,
we obtain the functions in Figure 2 (d), with which the lower bound is 5.

The previous example was limited to two mini-buckets containing one function
each. Nevertheless, the idea can be easily generalized to arbitrary mini-bucket
arrangements. At each bucket B, we construct a propagation tree T = (V,E)
where nodes are associated with mini-buckets and edges represent movement of
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function MBEp(z)
1. for each i = n..1 do
2. B := {f ∈ F | xi ∈ var(f)};
3. {P1, . . . , Pk} := Partition(B, z);
4. for each j = 1..k do gj :=

∑
f∈Pj

f ;
5. (V, E) := PropTree({g1, . . . , gk});
6. Propagation((V, E));
7. for each j = 1..k do gj := gj ↓ xi;
8. F := (F ∪ {g1, . . . , gk}) − B;
9. endfor
10. return(g1);
endfunction
procedure Propagation((V, E))
11. repeat
12. select a node j s.t it has received the messages from all its children;
13. hj := gj [var(gj) ∩ var(gparent(j))];
14. gj := gj − hj ;
15. gparent(j) := gparent(j) + hj ;
16. until root has received all messages from its children;
endprocedure

Fig. 3. Mini-Bucket Elimination with Propagation (preliminary version). Given a
WCSP (X , D, F), the algorithm returns a zero-arity function g1 with a lower bound of
the optimum cost.

costs along branches from the leaves to the root. Each node waits until receiving
costs from all its children. Then, it sends costs to its parent. This flow of costs
accumulates and propagates costs towards the root.

The refinement of MBE that incorporates this idea is called MBEp. In Figure
3 we describe a preliminary version. A more efficient version regarding space will
be discussed in the next subsection. MBEp and MBE are very similar and, in
the following, we discuss the main differences. After partitioning the bucket into
mini-buckets (line 3), MBEp computes the sum of all the functions in each mini-
bucket (line 4). Next, it constructs a propagation tree T = (V,E) with one node
j associated to each function gj. Then, costs are propagated (lines 6, 11-16).
Finally, variable xi is eliminated from each mini-bucket (line 7) and resulting
functions are added to the problem in replacement of the bucket (line 8).

Procedure Propagation is also depicted in Figure 3. Let j be an arbitrary
node of the propagation tree such that has received costs from all its children.
It must send costs to its parent parent(j). First, it computes in function hj

the costs that can be sent from j to its parent (line 13). Then, function hj is
subtracted from gj and summed to gparent(j) (lines 14 and 15). The propagation
phase terminates when the root receives costs from all its children.

4.1 Improving the Space Complexity

Observe that the previous implementation of MBEp (Figure 3) computes in
two steps (lines 4 and 7), what plain MBE computes in one step. Consequently,
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MBEp stores functions with arity up to z + 1 while MBE only stores functions
with arity up to z. Therefore, the previous description of MBEp has a space
complexity slightly higher than MBE, given the same value of z. In the following,
we show how the complexity of MBEp can be made similar to the complexity
of MBE. First, we extend the concept of movement of costs to deal with sets of
functions. Let F and G be two sets of costs functions. Let var(F ) = ∪f∈F var(f),
var(G) = ∪g∈Gvar(g) and Y = var(F ) ∩ var(G). The movement of costs from
F to G is done sequentially in three steps:

h := (
∑

f∈F f)[Y ]
F := F ∪ {−h}
G := G ∪ {h}

where −h means that costs contained in h are to be subtracted instead of
summed, when evaluating costs of tuples on F . Observe that the first step can
be efficiently implemented as,

∀t∈Y , h(t) := min(t′∈var(F ) s.t. t′=t·t′′){
∑

f∈F f(t′)}

This implementation avoids computing the sum of all the functions in F . The
time complexity of the operation is O(d|var(F )|). The space complexity is O(d|Y |).

Figure 4 depicts the new version of MBEp. The difference with the previ-
ous version is that functions in mini-buckets do not need to be summed before
the propagation phase (line 4 is omitted). Procedure Propagation moves costs
between mini-buckets preserving the set of original functions. Line 7, sums the
functions in the mini-buckets and eliminates variable xi in one step, as plain
MBE would do.

Observe that the time complexity of line 13 is O(dz+1), because |var(Pj)| ≤
z + 1 (by definition of mini-bucket). The space complexity is O(dz) because
|var(h)| ≤ z (note that var(Pj) �= var(Pparent(j)) because otherwise they would
have been merged into one mini-bucket). The previous observation leads to the
following result.

Theorem 1. The time and space complexity of MBEp is O(dz+1) and O(dz),
respectively, where d is the largest domain size and z is the value of the control
parameter.

4.2 Computation of the Propagation Tree

In our preliminary experiments we observed that the success of the propagation
phase of MBEp greatly depends on the flow of information, which is captured in
the propagation tree. In the following we discuss two ideas that heuristically lead
to good propagation trees. Then, we will propose a simple method to construct
good propagation trees.

For the first observation, consider MBE with z = 1 in a problem with four
binary functions f1(x1, x2), f2(x2, x3), f3(x2, x4), f4(x3, x4). Variable x4 is the
first to be eliminated. Its bucket contains f3 and f4. Each function forms a mini-
bucket. MBEp must decide whether to move costs from f3 to f4 or conversely.
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function MBEp(z)
1. for each i = n..1 do
2. B := {f ∈ F | xi ∈ var(f)};
3. {P1, . . . , Pk} := Partition(B, z);
5. (V, E) := PropTree({P1, . . . , Pk});
6. Propagation((V, E));
7. for each j = 1..k do gj := ((

∑
f∈Pj

f) − hj) ↓ xi;
8. F := (F ∪ {g1, . . . , gk}) − B;
9. endfor
10. return(g1);
endfunction
procedure Propagation((V, E))
11. repeat
12. select a node j s.t it has received the messages from all its children;
13. hj := (

∑
f∈Pj

f)[var(Pj) ∩ var(Pparent(j))];
14. Pj := Pj ∪ {−hj};
15. Pparent(j) := Pparent(j) ∪ {hj};
16. until root has received all messages from its children;
endprocedure

Fig. 4. Mini-Bucket Elimination with Propagation. Given a WCSP (X , D, F), the al-
gorithm returns a zero-arity function g1 with a lower bound of the optimum cost.

Observe that after the elimination of x4, f4 will go to the bucket of x3 where it
will be summed with f2. Then, they will go to the bucket of x2. However, f3 will
jump directly to the bucket of x2. For this reason, it seems more appropriate
to move costs from f3 to f4. In f4 the costs go to a higher mini-bucket, so
they have more chances to propagate useful information. One way to formalize
this observation is the following: We associate to each mini-bucket Pj a binary
number Nj = bnbn−1 . . . b1 where bi = 1 iff xi ∈ Pj . We say that mini-bucket
Pj is smaller than Pk (noted Pj < Pk) if Nj < Nk. In our propagation trees
parents will always be larger than their children.

For the second observation, consider three functions f(x7, x6, x5, x4),
g(x7, x3, x2, x1), h(x7, x6, x5, x1). Observe that f shares 1 variable with g and
3 with h. The number of common variables determines the arity of the func-
tion that is used as a bridge in the cost transfer. The narrower the bridge, the
less information that can be captured. Therefore, it seems better to move costs
between f and h than between f and g.

In accordance with the two previous observations, we construct the propaga-
tion tree as follows: the parent of mini-bucket Pu will be mini-bucket Pw such
that Pu < Pw and they share a maximum number of variables. This strategy
combines the two criteria discussed above.

5 Experimental Results

We have tested our approach in three different domains. The purpose of the
experiments is to evaluate the effectiveness of the propagation phase and the
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impact of the propagation tree on that propagation. To that end, we compare
the lower bound obtained with three algorithms: standard MBE, MBE with
bucket propagation using as a propagation tree a chain of mini-buckets randomly
ordered (i.e., MBEp

r ), and MBE with bucket propagation using a propagation
tree heuristically built as explained in Section 4.2 (i.e., MBEp

h). For each domain,
we execute those three algorithms with different values of the control parameter
z in order to analyze its effect (the highest value of z reported is the highest
feasible value given the available memory). In all our experiments, the order of
variable elimination is established with the min-fill heuristic. All the experiments
are executed in a Pentium IV running Linux with 2Gb of memory and 3 GHz.

5.1 Scheduling

For our first experiment, we consider the scheduling of an earth observation
satellite. We experiment with instances from Spot5 satellite [15]. These instances
have unary, binary and ternary cost functions, and domains of size 2 and 4. Some
instances include in their original formulation an additional capacity constraint
that we discard on this benchmark.

Figure 5 shows the results. The first column identifies the instance. The second
column indicates the value of the control parameter z with which the algorithms
are executed. Columns third and fourth report the lower bound obtained and
the execution time for standard MBE, respectively. Columns fifth and sixth
indicates for MBEp

r the percentage increment of the lower bound measured as
((LbMBEp

r
− LbMBE)/LbMBE) ∗ 100 and the execution time. Columns seventh

and eighth reports the same information for MBEp
h.

The first thing to be observed is that the results obtained with MBEp
r does

not follow a clear tendency. MBEp
r increases and decreases the lower bound

obtained with standard MBE almost the same times. However, MBEp
h increases

the lower bound obtained with MBE for all the instances. Moreover, when both
MBEp

r and MBEp
h increase the lower bound, MBEp

h is always clearly superior.
Therefore, it is clear that an adequate propagation tree impacts on the bounds
obtained.

Regarding MBEp
h, it increases up to 139% the lower bound with respect

MBE (e.g. instance 408). The mean increment is 54%, 38%, and 28% when the
value of the control parameter z is 10, 15, and 20, respectively. Note that the
effect of the propagation is higher for lower values of z because, as we increase
the value of z, the number of functions in each mini-bucket increases and the
number of mini-buckets decreases. Therefore, the propagated information also
decreases and the effect of the propagation is diminished. Moreover, the lower
bounds obtained with MBEp

h and z set to 10 outperforms the ones obtained
with MBE and z set to 20 in almost all the instances, which means that the
time and space required for obtaining a bound of a given quality is decreased.

Regarding cpu time, MBEp
h is from 2 to 3 times slower than MBE. The reason

is that cost functions are evaluated twice: the first one during the propagation
phase for establishing the costs to be moved, and the second one during the
regular process of variable elimination. However, it is important to note that it
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Instance z MBE(z) MBEp
r (z) MBEp

h(z)
Lb. Time(sec.) % Time(sec.) % Time(sec.)

20 184247 827.63 1.6 1628.93 29.8 1706.6
1506 15 163301 25.43 -5.5 51.48 30.6 51.39

10 153274 1.33 -13.7 2.65 21.5 2.64
20 184084 691.08 16.8 1469.36 58.6 1574.26

1401 15 170082 20.82 4.7 47.35 45.8 46.92
10 155075 1.02 -10.3 2.13 53.5 2.17
20 181184 814.55 7.1 1702.82 59.6 1919.48

1403 15 162170 27.82 7.3 55.94 57.3 56.9
10 146155 1.3 10.9 2.58 60.2 2.6
20 191258 1197.06 0.5 2537.64 42.3 2622.88

1405 15 169233 33.88 -2.3 93.88 54.9 81.17
10 142206 1.7 -25.3 3.51 64.7 3.5
20 191342 1415.91 -4.0 2935.78 53.8 3008.78

1407 15 166298 47.44 3.5 94.17 60.1 102.78
10 144264 2.03 13.8 4.19 68.6 4.23
20 134105 252.14 2.2 500.97 38.0 510.72

28 15 121105 7.77 -1.6 15 52.8 16.16
10 103105 0.36 16.4 0.71 49.4 0.71
20 8058 4.92 -0.01 5.3 0.01 5.32

29 15 8055 0.28 -0.1 0.34 0.02 0.34
10 8050 0.01 -0.01 0.02 0.07 0.02
20 5212 51.19 19.1 75.39 19.3 72.5

408 15 5200 2.11 18.7 3.29 19.3 3.41
10 2166 0.11 38.1 0.2 139.0 0.2
20 17314 167.91 5.4 278.29 40.5 278.7

412 15 15270 6.49 6.2 10.98 72.1 11.1
10 10233 0.27 87.8 0.5 88.4 0.78
20 23292 629.36 -12.9 1278.39 17.4 1306.98

414 15 18268 20.14 -16.3 42.87 49.4 42.99
10 16213 1.05 -31.0 2.35 49.8 2.09
20 127050 38.9 -4.7 71.47 7.8 68.35

42 15 111050 1.43 -1.8 2.52 14.4 2.55
10 93050 0.06 2.1 0.12 19.3 0.12
20 19240 51.36 -36.3 66.9 5.2 63.16

505 15 16208 2.2 -18.5 3.35 0.1 3.23
10 13194 0.15 -15.2 0.21 15.1 0.21
20 16292 276.74 -6.1 510.66 0.2 520.3

507 15 14270 9.84 6.7 19.01 42.2 18.88
10 11226 0.47 8.6 0.92 53.7 0.92
20 22281 507.64 4.6 1026.43 22.5 1046.89

509 15 20267 16.2 -24.6 34.68 34.7 34.72
10 14219 0.83 14.0 1.64 77.7 1.62

Fig. 5. Experimental results on Spot5 instances

is the space and not the time what bounds the maximum value of z that can
be used in practice. As a consequence, that constant increase in time is not that
significant as the space complexity remains the same.

5.2 Combinatorial Auctions

Combinatorial auctions (CA) allow bidders to bid for indivisible subsets of goods.
Consider a set of goods {1, 2, . . . , n} that go on auction. There are m bids. Bid
j is defined by the subset of requested goods Xj ⊆ {1, 2, . . . , n} and the money
offer bj . The bid-taker must decide which bids are to be accepted maximizing
the benefits.

We have generated CA using the path and regions model of the CATS gener-
ator [16]. We experiment on instances with 20 and 50 goods, varying the number
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Fig. 6. Combinatorial Auctions. Path distribution.

of bids from 80 to 200. For each parameter configuration, we generate samples
of size 10. We execute algorithms MBE, MBEp

r , and MBEp
h with z equal to 15

and 20. We do not report results with MBEp
r because it was always very inferior

than MBEp
h. For space reasons, we only report results on the path model. The

results for the regions model follows the same pattern.
Figure 6 reports the results for path instances with 20 and 50 goods, respec-

tively. As can be observed, the behaviour for both configurations is almost the
same. Regarding the algorithms, it is clear that MBEp

h always outperformes
MBE. Note that the lower bound obtained with MBEp

h(z = 15) is clearly su-
perior than that obtained with MBE(z = 20). Moreover, as pointed out in the
previous domain, the effect of the propagation in each sample point is higher for
z = 15 than for z = 20. That is, the percentage of increment in the lower bound
obtained with MBEp

h(z = 15) is higher than that of MBEp
h(z = 20). Finally,

it is important to note that the impact of the propagation is higher when the
problems become harder (i.e., as the number of bids increase).

5.3 Maxclique

A clique of a graph G = (V,E) is a set S ⊆ V , such that every two nodes in
S are joined by an edge of E. The maximum clique problem consists on finding
the largest cardinality of a clique. The maximum clique problem can be easily
encoded as a minimization problem (i.e., minimize the number of nodes in V −S).

We test our approach on the dimacs benchmark [17]. Figure 7 reports the re-
sults. The first column identifies the instance. The second column indicates the
value of the control parameter z with which the algorithms are executed. The third
column report the lower bound obtained with standard MBE. Columns fourth and
fifth indicates, for MBEp

r and MBEp
l , the percentage of increment in the lower

bound with respect MBE, respectively. As the behaviour of the cpu time is the
same as for the previous benchmark, we do not report this information.

MBEp
r increases the lower bound obtained with standard MBE for all the

instances except for those of hamming and johnson. The percentage of increment
is up to 1226% when the value of the control parameter z is 10, and up to 812%
when z is the highest value. The best results are obtained with MBEp

h which
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Instance z MBE MBEp
r MBE

p

h
Lb. % %

brock200-1 18 66 30.3 48.4
10 51 52.9 78.4

brock200-2 18 55 67.2 103.6
10 29 200 268.9

brock200-3 18 64 48.4 68.7
10 38 139.4 173.6

brock200-4 18 63 36.5 65.0
10 41 121.9 131.7

brock400-1 18 79 100 141.7
10 46 256.5 273.9

brock400-2 18 75 114.6 157.3
10 44 261.3 277.2

brock400-3 18 87 88.5 114.9
10 44 250 286.3

brock400-4 18 76 106.5 160.5
10 47 248.9 289.3

brock800-1 18 71 336.6 454.9
10 41 675.6 773.1

brock800-2 18 63 395.2 520.6
10 37 748.6 875.6

brock800-3 18 68 352.9 483.8
10 44 604.5 706.8

brock800-4 18 71 343.6 460.5
10 36 758.3 902.7

c-fat200-1 18 71 32.3 78.8
10 62 27.4 112.9

c-fat200-2 18 63 38.0 82.5
10 48 77.0 156.2

c-fat200-5 18 55 23.6 12.7
10 37 32.4 70.2

c-fat500-10 18 77 115.5 123.3
10 52 173.0 253.8

c-fat500-1 18 132 84.0 137.1
10 107 126.1 196.2

c-fat500-2 18 108 108.3 164.8
10 85 160 254.1

c-fat500-5 18 83 145.7 202.4
10 74 163.5 264.8

hamming10-2 18 412 -66.9 -72.0
10 419 -72.0 -73.7

hamming10-4 18 119 264.7 413.4
10 77 451.9 720.7

hamming6-2 18 32 -28.1 -31.2
10 32 -50 -59.3

hamming6-4 18 45 -4.4 2.2
10 33 9.0 33.3

hamming8-2 18 114 -59.6 -64.9
10 113 -74.3 -78.7

hamming8-4 18 82 46.3 89.0
10 51 113.7 215.6

johnson16-2-4 18 72 -4.1 11.1
10 56 10.7 48.2

johnson32-2-4 18 195 27.6 71.2
10 134 75.3 150

johnson8-2-4 18 23 -4.3 0
10 20 -20 -5

johnson8-4-4 18 45 -22.2 -11.1
10 40 -15 -10

keller4 18 70 27.1 54.2
10 41 97.5 168.2

keller5 18 90 246.6 394.4
10 61 414.7 634.4

MANN-a27 15 247 0.4 0.4
10 244 -1.2 0.8

Instance z MBE MBEp
r MBE

p

h
Lb. % %

MANN-a45 15 677 -0.7 0.4
10 671 -0.1 0.1

MANN-a81 15 2177 0.0 0.3
10 2171 -0.1 0.5

p-hat1000-1 15 85 380 654.1
10 63 577.7 873.0

p-hat1000-2 15 57 589.4 821.0
10 36 1013.8 1325

p-hat1000-3 15 82 364.6 415.8
10 50 668 764

p-hat1500-1 15 69 802.8 1292.7
10 82 686.5 1021.9

p-hat1500-2 15 64 812.5 1112.5
10 45 1226.6 1566.6

p-hat1500-3 15 79 624.0 706.3
10 54 924.0 1111.1

p-hat300-1 18 62 112.9 195.1
10 48 187.5 306.2

p-hat300-2 18 61 121.3 168.8
10 38 247.3 328.9

p-hat300-3 18 76 71.0 100
10 51 145.0 172.5

p-hat500-1 18 74 170.2 301.3
10 50 330 524

p-hat500-2 18 75 178.6 248
10 39 407.6 556.4

p-hat500-3 18 93 125.8 169.8
10 50 300 338

p-hat700-1 15 66 340.9 581.8
10 52 482.6 711.5

p-hat700-2 18 63 357.1 492.0
10 36 672.2 919.4

p-hat700-3 18 78 260.2 330.7
10 44 543.1 588.6

san1000 15 89 319.1 493.2
10 100 260 438

san200-0.7-1 18 69 26.0 53.6
10 50 82 86

san200-0.7-2 18 84 40.4 51.1
10 53 75.4 115.0

san200-0.9-1 18 108 -1.8 0
10 82 18.2 14.6

san200-0.9-2 18 85 20 17.6
10 68 25 27.9

san200-0.9-3 18 83 21.6 18.0
10 67 34.3 26.8

san400-0.5-1 18 79 115.1 194.9
10 58 189.6 289.6

san400-0.7-1 18 84 95.2 144.0
10 55 138.1 209.0

san400-0.7-2 18 78 105.1 158.9
10 42 247.6 309.5

san400-0.7-3 18 73 138.3 180.8
10 47 225.5 287.2

san400-0.9-1 18 97 63.9 75.2
10 75 93.3 98.6

sanr200-0.7 18 61 42.6 63.9
10 45 80 104.4

sanr200-0.9 18 77 12.9 23.3
10 61 31.1 37.7

sanr400-0.5 18 67 152.2 223.8
10 32 406.2 543.7

sanr400-0.7 18 76 103.9 152.6
10 47 231.9 270.2

Fig. 7. Experimental results on maxclique instances
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obtains a percentage increment of 1566% (see instance p-hat1500-2 ). In this case,
the increase ranges from 14.6% to 1566% when z is set to 10, and from 17.6%
to 1292% for the highest value of z.

It is important to note that the bound obtained with MBEp
h is always higher

than that of MBEp
r . For some instances, the percentage of increment of MBEp

h

is more than 4 times higher the one obtained with MBEp
r (e.g. instance c-

fat200-1 ). Therefore, it is clear that an adequate propagation tree impacts on
the propagation phase and, as a consequence, on the bounds obtained.

6 Conclusions and Future Work

Mini-bucket elimination (MBE) is a well-known approximation algorithm for
combinatorial optimization problems. It has a control parameter z which allow
us to trace time and space for approximation accuracy. In practice, it is usually
the space rather than the cpu time which limits the control parameter.

In this paper we introduce a new propagation phase that MBE should exe-
cute at each bucket. In the new algorithm, that we call MBEp, the idea is to
move costs along mini-buckets in order to accumulate as much information as
possible in one of them. The propagation phase is based on a propagation tree
where each node is a mini-bucket and edges represent movements of costs along
branches from the leaves to the root. Finally, it is important to note that the
propagation phase does not increase the asymptotical time and space complexity
of the original MBE algorithm.

We demonstrate the effectiveness of our algorithm in scheduling, combinatorial
auction and maxclique problems. The typical percentage of increment in the
lower bound obtained is 50%. However, for almost all maxclique instances the
percentage of increment ranges from 250% to a maximum of 1566%. Therefore,
MBEp is able to obtain much more accurate lower bounds than standard MBE
using the same amount of resources.

In our future work we want to integrate the propagation phase into the depth-
first mini-bucket elimination algorithm [9]. The two main issues are how the
computation tree rearrangements affect the bucket propagation and how to effi-
ciently deal with the functions maintaining the transferred costs.
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Abstract. The constraint satisfaction problem can be solved in polyno-
mial time for instances where certain parameters (e.g., the treewidth of
primal graphs) are bounded. However, there is a trade-off between gen-
erality and performance: larger bounds on the parameters yield worse
time complexities. It is desirable to pay for more generality only by a
constant factor in the running time, not by a larger degree of the poly-
nomial. Algorithms with such a uniform polynomial time complexity are
known as fixed-parameter algorithms.

In this paper we determine whether or not fixed-parameter algorithms
for constraint satisfaction exist, considering all possible combinations of
the following parameters: the treewidth of primal graphs, the treewidth
of dual graphs, the treewidth of incidence graphs, the domain size, the
maximum arity of constraints, and the maximum size of overlaps of con-
straint scopes. The negative cases are subject to the complexity theoretic
assumption FPT 
= W[1] which is the parameterized analog to P 
= NP.
For the positive cases we provide an effective fixed-parameter algorithm
which is based on dynamic programming on “nice” tree decompositions.

1 Introduction

An instance of the constraint satisfaction problem (CSP) consists of a set of vari-
ables that range over a domain of values together with a set of constraints that
allow certain combinations of values for certain sets of variables. The question is
whether one can instantiate the variables in such a way that all constraints are
simultaneously satisfied; in that case the instance is called consistent or satisfi-
able. Constraint satisfaction provides a general framework which allows direct
structure preserving encodings of numerous problems that arise in practice.

Although constraint satisfaction is NP-complete in general, many efforts have
been made to identify restricted problems that can be solved in polynomial time.
Such restrictions can either limit the constraints used in the instance [5] or limit
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the overall structure of the instance, i.e., how variables and constraints interact
in the instance [7]. In this paper we focus on the latter form of restrictions which
are also referred to as “structural restrictions.” Structural restrictions are usually
formulated in terms of certain graphs and hypergraphs that are associated with
a constraint satisfaction instance:

The primal graph has the variables as its vertices; two variables are joined by
an edge if they occur together in the scope of a constraint. The dual graph has the
constraints as its vertices; two constraints are joined by an edge if their scopes
have variables in common. The incidence graph is a bipartite graph and has both
the variables and the constraints as its vertices; a variable and a constraint are
joined by an edge if the variable occurs in the scope of the constraint. Finally,
the constraint hypergraph is a hypergraph whose vertices are the variables and
the scopes of constraints form the hyperedges.

Fundamental classes of tractable instances are obtained if the associated (hy-
per)graphs are acyclic with respect to certain notions of acyclicity. Acyclicity
can be generalized by means of (hyper)graph decomposition techniques which
give rise to “width” parameters that measure how far an instance deviates from
being acyclic. Already in the late 1980s Freuder [11] and Dechter and Pearl [8]
observed that constraint satisfaction is polynomial-time solvable if

– the treewidth of primal graphs, tw,

is bounded by a constant. The graph parameter treewidth, introduced by Robert-
son and Seymour in their Graph Minors Project, has become a very popular ob-
ject of study as many NP-hard graph problems are polynomial-time solvable for
graphs of bounded treewidth; we define treewidth in Section 2.2. In subsequent
years several further structural parameters have been considered, such as

– the treewidth of dual graphs, twd,
– the treewidth of incidence graphs, tw∗,

and various width parameters on constraint hypergraphs, including

– the (generalized) hypertree width, (g)hw, (Gottlob, Leone, and Scarcello[14]),
– the spread-cut width, scw, (Cohen, Jeavons, and Gyssens [6]), and
– the fractional hypertree width, fhw, (Grohe and Marx [17]).

Considering constraint satisfaction instances where the width parameter un-
der consideration is bounded by some fixed integer k gives rise to a class Wk of
tractable instances. The larger k gets, the larger is the resulting tractable class
Wk. However, for getting larger and larger tractable classes one has to pay by
longer running times. A fundamental question is the trade-off between general-
ity and performance. A typical time complexity of algorithms known from the
literature are of the form

O(‖I‖O(f(k))) (1)

for instances I belonging to the class Wk; here ‖I‖ denotes the input size of I
and f(k) denotes a slowly growing function. Such a running time is polynomial
when k is considered as a constant. However, since k appears in the exponent,
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such algorithms become impractical—even if k is small—when large instances
are considered. It is significantly better if instances I of the class Wk can be
solved in time

O(f(k)‖I‖O(1)) (2)

where f is an arbitrary (possibly exponential) computable function. In that case
the order of the polynomial does not depend on k, and so considering larger and
larger classes does not increase the order of the polynomial. Thus, it is a signifi-
cant objective to classify the trade-off between generality and performance of a
width parameter under consideration: whether the parameter allows algorithms
of type (1) or of type (2).

1.1 Parameterized Complexity

The framework of parameterized complexity provides the adequate concepts and
tools for studying the above question. Parameterized complexity was initiated
by Downey and Fellows in the late 1980s and has become an important branch of
algorithm design and analysis; hundreds of research papers have been published
in that area [9,19,10]. It turned out that the distinction between tractability of
type (2) and tractability of type (1) is a robust indication of problem hardness.

A fixed parameter algorithm is an algorithm that achieves a running time of
type (2) for instances I and parameter k. A parameterized problem is fixed-
parameter tractable if it can be solved by a fixed-parameter algorithm. FPT
denotes the class of all fixed-parameter tractable decision problems.

Parameterized complexity offers a completeness theory, similar to the the-
ory of NP-completeness, that allows the accumulation of strong theoretical ev-
idence that a parameterized problem is not fixed-parameter tractable. This
completeness theory is based on the weft hierarchy of complexity classes
W[1], W[2], . . . , W[P]. Each class is the equivalence class of certain parame-
terized satisfiability problems under fpt-reductions (for instance, the canonical
W[1]-complete problem asks whether a given 3SAT instance can be satisfied by
setting at most k variables to true). Let Π and Π ′ be two parameterized prob-
lems. An fpt-reduction R from Π to Π ′ is a many-to-one transformation from
Π to Π ′, such that (i) (I, k) ∈ Π if and only if (I ′, k′) ∈ Π ′ with k′ ≤ g(k) for
a fixed computable function g and (ii) R is of complexity O(f(k)‖I‖O(1)) for a
computable function f . The class XP consists of parameterized problems which
can be solved in polynomial time if the parameter is considered as a constant.
The above classes form the chain

FPT ⊆W[1] ⊆ W[2] ⊆ · · · ⊆W[P] ⊆ XP

where all inclusions are assumed to be proper. A parameterized analog of Cook’s
Theorem gives strong evidence to assume that FPT �= W[1] [9]. It is known that
FPT �= XP [9]; hence the term “parameterized tractable” (which is sometimes
used to indicate membership in XP [6]) must be carefully distinguished from
“fixed-parameter tractable.” Although XP contains problems which are very
unlikely to be fixed-parameter tractable, it is often a significant improvement to
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show that a problem belongs to this class, in contrast to, e.g., k-SAT which is
NP-complete for every constant k ≥ 3.

The following parameterized clique-problem is W[1]-complete [9]; this problem
is the basis for the hardness results considered in the sequel.

CLIQUE
Instance: A graph G and a non-negative integer k.
Parameter: k.
Question: Does G contain a clique on k vertices?

1.2 Parameterized Constraint Satisfaction

We consider any computable function p that assigns to a constraint satisfaction
instance I a non-negative integer p(I) as a constraint satisfaction parameter.
For a finite set {p1, . . . , pr} of constraint satisfaction parameters we consider the
following generic parameterized problem:

CSP({p1, . . . , pr})
Instance: A constraint satisfaction instance I and non-negative integers
k1, . . . , kr with p1(I) ≤ k1, . . . , pr(I) ≤ kr.
Parameters: k1, . . . , kr.
Question: Is I consistent?

Slightly abusing notation, we will also write CSP(p1, . . . , pr) instead of
CSP({p1, . . . , pr}). We write CSPboole(S) to denote CSP(S) with the Boolean
domain {0, 1}, and CSPbin(S) to denote CSP(S) where all constraints have
arity at most 2.

Note that we formulate this problem as a “promise problem” in the sense
that for solving the problem we do not need to verify the assumption p1(I) ≤
k1, . . . , pr(I) ≤ kr. However, unless otherwise stated, for all cases considered in
the sequel where CSP(p1, . . . , pr) is fixed-parameter tractable, also the verifica-
tion of the assumption p1(I) ≤ k1, . . . , pr(I) ≤ kr is fixed-parameter tractable.
For a constraint satisfaction instance I we have the basic parameters

– the number of variables, vars,
– the size of the domain, dom,
– the largest size of a constraint scope, arity, and
– the largest number of variables that occur in the overlap of the scopes of two

distinct constraints, ovl.

If we parameterize by the domain size, then we have obviously an NP-com-
plete problem, since, e.g., 3-colorability can be expressed as a constraint satis-
faction problem with constant domain. Thus CSP(dom) is not fixed-parameter
tractable unless P = NP. On the other hand, if we parameterize by the num-
ber of variables and the domain size, i.e., CSP(vars,dom), then we have a
trivially fixed-parameter tractable problem: we can decide the consistency of an
instance I by checking all dom(I)vars(I) possible assignments. However, without
the parameter dom we get CSP(vars), a W[1]-complete problem [20].
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Gottlob, Scarcello, and Sideri [16] have determined the parameterized com-
plexity of constraint satisfaction with bounded treewidth of primal graphs:
CSP(tw,dom) is fixed-parameter tractable, and CSP(tw) is W[1]-hard. The
parameterized complexity of constraint satisfaction with respect to other struc-
tural parameters like treewidth of dual graphs, treewidth of incidence graphs,
and the more general width parameters defined in terms of constraint hyper-
graphs remained open. In this paper we determine exactly those combinations
of parameters from tw, twd, tw∗, dom, arity, and ovl that render constraint
satisfaction fixed-parameter tractable.

To this end we introduce the notion of domination. Let S and S′ be two
finite sets of constraint satisfaction parameters. S dominates S′ if for every
p ∈ S there exists a monotonously growing computable function f such that for
every constraint satisfaction instance I we have p(I) ≤ f(maxp′∈S′(p′(I))). See
Lemma 2 for examples that illustrate this notion (if S or S′ is a singleton, we omit
the braces to improve readability). It is easy to see that whenever S dominates S′,
then fixed-parameter tractability of CSP(S) implies fixed-parameter tractability
of CSP(S′), and W[1]-hardness of CSP(S′) implies W[1]-hardness of CSP(S)
(see Lemma 1).

1.3 Results

We obtain the following classification result (see also the diagram in Figure 1
and the discussion in Section 3).

Theorem 1 (Classification Theorem). Let S ⊆ {tw, twd, tw∗, dom, arity,
ovl}.

1. If {tw∗,dom,ovl} dominates S, then CSP(S) is fixed-parameter tractable.
2. If {tw∗,dom,ovl} does not dominate S, then CSP(S) is not fixed-

parameter tractable unless FPT = W[1].

The fixed-parameter tractability results are established by a dynamic program-
ming algorithm. The established upper bounds to its worst-case running time
show that the algorithm is feasible in practice. Let us remark that many con-
straint satisfaction instances appearing in industry have bounded overlap. For
example, the Adder, Bridge, and NewSystem instances from DaimlerChrysler
have by construction an overlap bounded by 2 [12].

We extend the fixed-parameter tractability result of the Classification
Theorem to the additional parameters diff and equiv; definitions are
given in Section 6. We show that he problems CSP(tw∗,dom,diff) and
CSP(tw∗,dom, equiv) are fixed-parameter tractable.

The notion of domination allows us to extend the W[1]-hardness results of
the Classification Theorem to all parameters that are more general than the
treewidth of incidence graphs. In particular, we obtain the following corollary.

Corollary 1. The problems CSP(p,dom) and CSPboole(p) are W[1]-hard if
p is any of the parameters treewidth of incidence graphs, hypertree width, gener-
alized hypertree width, spread-cut width, and fractional hypertree width.
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Recently, Gottlob et al. [13] have shown that the problem of deciding whether a
given hypergraph has (generalized) hypertree width at most k, is W[2]-hard with
respect to the parameter k. We note that this result does not imply W[1]-hard-
ness of CSP(hw,dom) (respectively CSP(ghw,dom)), since it is possible to
design algorithms for constraint satisfaction instances of bounded (generalized)
hypertree width that avoid the decomposition step. Chen and Dalmau [4] have
recently proposed such an algorithm, which, however, is not a fixed-parameter
algorithm.

Our results are in contrast to the situation for the propositional satisfiability
problem (SAT). A SAT instance is a set of clauses, representing a propositional
formula in conjunctive normal form. The question is whether the instance is
satisfiable. Primal, dual, and incidence graphs and the corresponding treewidth
parameters tw, twd, and tw∗ can be defined for SAT similarly as for constraint
satisfaction [22], as well as the parameterized decision problem SAT(p) for a
parameter p. In contrast to the W [1]-hardness of CSPboole(tw∗), as established
in Corollary 1, the problem SAT(tw∗) is fixed-parameter tractable. This holds
also true for SAT(twd) and SAT(tw) since tw∗ dominates twd and tw. The
fixed-parameter tractability of SAT(tw∗) was shown by Szeider [22] using a
general result on model checking for Monadic Second Order (MSO) logic on
graphs.

2 Preliminaries

2.1 Constraint Satisfaction

Formally, a constraint satisfaction instance I is a triple (V, D, F ), where V is a
finite set of variables, D is a finite set of domain values, and F is a finite set
of constraints. Each constraint in F is a pair (S, R), where S, the constraint
scope, is a sequence of distinct variables of V , and R, the constraint relation, is a
relation over D whose arity matches the length of S. We write var(C) for the set
of variables that occur in the scope of a constraint C and rel(C) for the relation
of C. An assignment is a mapping τ : X → D defined on some set X of variables.
Let C = ((x1, . . . , xn), R) be a constraint and τ : X → D an assignment. We
define

C[τ ] = { (d1, . . . , dn) ∈ R : xi /∈ X or τ(xi) = di, 1 ≤ i ≤ n }.

Similarly, for a set T of assignments and a constraint C we define

C[T ] =
⋃

τ∈T
C[τ ].

An assignment τ : X → D is consistent with a constraint C if C[τ ] �= ∅. An
assignment τ : X → D satisfies a constraint C if var(C) ⊆ X and τ is consistent
with C. An assignment satisfies a constraint satisfaction instance I if it satis-
fies all constraints of I. The instance I is consistent (or satisfiable) if it is satisfied
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by some assignment. The constraint satisfaction problem CSP is the problem of
deciding whether a given constraint satisfaction instance is satisfiable.

2.2 Tree Decompositions

Let G be a graph, let T be a tree, and let χ be a labelling of the vertices of T by
sets of vertices of G. We refer to the vertices of T as “nodes” to avoid confusion
with the vertices of G, and we call the sets χ(t) “bags.” The pair (T, χ) is a tree
decomposition of G if the following three conditions hold:

1. For every vertex v of G there exists a node t of T such that v ∈ χ(t).
2. For every edge vw of G there exists a node t of T such that v, w ∈ χ(t).
3. For any three nodes t1, t2, t3 of T , if t2 lies on the unique path from t1 to t3,

then χ(t1) ∩ χ(t3) ⊆ χ(t2) (“Connectedness Condition”).

The width of a tree decomposition (T, χ) is defined as the maximum |χ(t)|−1
over all nodes t of T . The treewidth tw(G) of a graph G is the minimum width
over all its tree decompositions.

As shown by Bodlaender [1], there exists for every k a linear time algorithm
that checks whether a given graph has treewidth at most k and, if so, outputs
a tree decomposition of minimum width. Bodlaender’s algorithm does not seem
feasible to implement [3]. However, there are several other known fixed-parameter
algorithms that are feasible. For example, Reed’s algorithm [21] runs in time
O(|V | log |V |) and decides either that the treewidth of a given graph G = (V, E)
exceeds k, or outputs a tree decomposition of width at most 4k, for any fixed k.
The algorithm produces tree decompositions with O(|V |) many nodes.

Let (T, χ) be a tree decomposition of a graph G and let r be a node of T . The
triple (T, χ, r) is a nice tree decomposition of G if the following three conditions
hold; here we consider T = (V (T ), E(T )) as a tree rooted at r.

1. Every node of T has at most two children.
2. If a node t of T has two children t1 and t2, then χ(t) = χ(t1) = χ(t2); in

that case we call t a join node.
3. If a node t of T has exactly one child t′, then exactly one of the following

prevails:
(a) |χ(t)| = |χ(t′)| + 1 and χ(t′) ⊂ χ(t); in that case we call t an introduce

node.
(b) |χ(t)| = |χ(t′)| − 1 and χ(t) ⊂ χ(t′); in that case we call t a forget node.

Let (T, χ, r) be a nice tree decomposition of a graph G. For each node t of T
let Tt denote the subtree of T rooted at t. Furthermore, let Vt denote the set of
vertices of G that occur in the bags of nodes of Tt; i.e., Vt =

⋃
t′∈V (Tt)

χ(t′).
It is well known (and easy to see) that for any constant k, given a tree decom-

position of a graph G = (V, E) of width k and with O(|V |) nodes, there exists a
linear-time algorithm that constructs a nice tree decomposition of G with O(|V |)
nodes and width at most k [3].
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3 The Domination Lattice

The next lemma follows directly from the definitions of fpt-reductions and
domination.

Lemma 1. Let S and S′ be two sets of constraint satisfaction parameters such
that S dominates S′. Then there is an fpt-reduction from CSP(S′) to CSP(S).

In particular, fixed-parameter tractability of CSP(S) implies fixed-parameter
tractability of CSP(S′), and W[1]-hardness of CSP(S′) implies W[1]-hardness
of CSP(S).

Lemma 2
1. If S ⊆ S′, then S dominates S′.
2. ovl dominates arity.
3. arity dominates tw.

4. tw∗ dominates tw.
5. tw∗ dominates twd.
6. tw dominates {tw∗, arity}.

Proof. Parts 1 and 2 are obvious. Part 3 is also easy to see since a constraint of
arity r yields a clique on r vertices in the primal graph; it is well known that
if a graph G contains a clique with r vertices, then tw(G) ≥ r − 1 [2]. Part 4
follows from the inequality tw∗(I) ≤ tw(I)+1 shown by Kolaitis and Vardi [18].
A symmetric argument gives tw∗(I) ≤ twd(I) + 1, hence Part 5 holds as well.
Part 6 follows by the inequality tw(I) ≤ tw∗(I)(arity(I)− 1) which is also due
to Kolaitis and Vardi [18]. ��
We note that parts 2–5 of the above lemma are strict in the sense that p domi-
nates q but q does not dominated p.

Let S = {tw, twd, tw∗, dom, arity, ovl}. The following arguments will make
it easier to classify CSP(S) for all subsets S of S.

First we note that whenever S∩{tw, twd, tw∗} = ∅, then S dominates {dom,
arity, ovl}. However, CSP(dom, arity, ovl) is not fixed-parameter tractable
unless P = NP, since graph 3-colorability can be expressed as a constraint sat-
isfaction problem with constant dom, arity, and ovl.

Second, if a set S dominates a proper subset S′ of S, then CSP(S) and
CSP(S′) are of the same parameterized complexity; this follows by Lemmas 1
and 2(1); in this case we can disregard S. For example, we can disregard the
set {tw,arity} since it dominates {tw} by Lemma 2(3). Similarly we can dis-
regard the set {tw,ovl} since it dominates {tw,arity} by Lemma 2(2) and so
it dominates {tw} as well.

Third, by Lemma 2(4 and 6), every set S ∪{tw∗, arity} has the same param-
eterized complexity as the set S ∪ {tw}.

Hence it suffices to classify the parameterized complexity of CSP(S) for the
following twelve sets S ⊆ S.

{tw}, {tw,dom},
{tw∗}, {tw∗,dom},
{tw∗,ovl}, {tw∗,dom,ovl},

{twd}, {twd,dom},
{twd,ovl}, {twd,dom,ovl},
{twd,arity}, {twd,dom, arity}.

Figure 1 shows the relationships among all twelve sets as implied by Lemma 2:
a set S dominates a set S′ if and only if S is above S′ and there is a path from
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{tw∗}

{twd} {tw∗,dom} {tw∗,ovl}

{twd,dom} {twd,ovl} {tw∗,dom,ovl} {tw}

{twd,dom,ovl} {twd,arity} {tw,dom}

{twd,dom, arity}

Fig. 1. Domination lattice

S to S′. The sets S for which CSP(S) is fixed-parameter tractable according
to the Classification Theorem are indicated in the diagram by shaded boxes.
In view of the relationships between the sets, the Classification Theorem is es-
tablished if we show (i) W[1]-hardness of CSP(twd,dom), (ii) W[1]-hardness of
CSP(twd,arity), and (iii) fixed-parameter tractability of CSP(tw∗,dom,ovl).

4 Proof of the W[1]-Hardness Results

We give an fpt-reduction from CLIQUE to CSPboole(twd). To this aim, con-
sider an instance of CLIQUE, i.e., a graph G = ({v1, . . . , vn}, E) and an inte-
ger k. We construct a Boolean constraint satisfaction instance I = ({ xi,j : 1 ≤
i ≤ k, 1 ≤ j ≤ n }, {0, 1}, F ) such that I is consistent if and only if there exists
a clique of size k in G.

We construct the relation R ⊆ {0, 1}2n that encodes the edges of G using
Boolean values 0 and 1 as follows: For each edge vpvq of G, 1 ≤ p < q ≤ n, we
add to R the 2n-tuple

(tp,1, . . . , tp,n, tq,1, . . . , tq,n)

where tp,i = 1 if and only if p = i, and tq,i = 1 if and only if q = i, 1 ≤ i ≤ n.
We let F be the set of constraints

Ci,j = ((xi,1, . . . , xi,n, xj,1, . . . , xj,n), R)

for 1 ≤ i < j ≤ k. It is easy to verify that G contains a clique on k vertices if
and only if I is consistent. The reduction can be carried out in polynomial time.

Next we construct a trivial tree decomposition of the dual graph of I
by creating a single tree node and putting all constraints in its bag. Since



508 M. Samer and S. Szeider

|F | =
(
k
2

)
, the width of our decomposition is

(
k
2

)
− 1. Hence, twd(I) ≤

(
k
2

)
− 1.

Thus we have indeed an fpt-reduction from CLIQUE to CSPboole(twd) and
CSP(twd,dom). Consequently, the latter problems are W[1]-hard. Since tw∗

dominates twd (Lemma 2(5)), also CSPboole(tw∗) and CSP(tw∗,dom) are
W[1] hard (Lemma 1).

In turn, it is well known that the treewidth of incidence graphs is dominated by
each of the parameters (generalized) hypertree width, fractional hypertree width,
and spread-cut width of constraint hypergraphs [6,15,17,18]. Hence, Corollary 1
follows by Lemma 1.

The W[1]-hardness of CSP(twd,arity) can be shown by an fpt-reduction
from CLIQUE as well. This reduction, which is easier than the reduction
above, was used by Papadimitriou and Yannakakis for showing W[1]-hardness
of CSP(vars): Given a graph G = (V, E) and an integer k, we construct a CSP
instance I = ({x1, . . . , xk}, V, F ) where F contains constraints ((xi, xj), E) for
all 1 ≤ i < j ≤ k. Evidently, G contains a clique of size k if and only if I
is consistent. Since there are

(
k
2

)
constraints, the dual graph of I has a trivial

tree decomposition of width
(
k
2

)
− 1. Thus twd(I) ≤

(
k
2

)
− 1 and arity(I) = 2.

Whence CSPbin(twd,arity) and CSP(twd,arity) are W[1]-hard.
For establishing the Classification Theorem it remains to show that

CSP(tw∗,dom,ovl) is fixed-parameter tractable.

5 Fixed-Parameter Algorithm for CSP(tw∗, dom, ovl)

For this section, let (T, χ, r) be a nice tree decomposition of width k of the
incidence graph of a constraint satisfaction instance I = (V, D, F ).

For each node t of T , let Ft denote the set of all the constraints in Vt, and let
Xt denote the set of all variables in Vt; that is, Ft = Vt ∩ F and Xt = Vt ∩ V .
We also use the shorthands χc(t) = χ(t) ∩ F and χv(t) = χ(t) ∩ V for the
set of variables and the set of constraints in χ(t), respectively. Moreover, χ∗v(t)
denotes the set of all variables of Xt that are in χv(t) or in var(C1) ∩ var(C2)
for two distinct constraints C1, C2 ∈ χc(t). That is, χ∗v(t) is the set of variables
in χv(t) together with all “forgotten” variables in Xt that occur in at least two
constraints in χc(t).

Let t be a node of T and let α : χ∗v(t) → D be an assignment. We define N(t, α)
as the set of assignments τ : Xt → D such that τ |χ∗

v(t) = α and τ is consistent with
all constraints in Ft. Consequently, I is consistent if and only if N(r, α) �= ∅ for
some α : χ∗v(r) → D. The following lemmas show that we can decide consistency
of I by dynamic programming along a bottom-up traversal of T .

Lemma 3. Let t be a join node of T with children t1, t2. Let α : χ∗v(t) → D be
an assignment and αi = α|χ∗

v(ti), i = 1, 2. Then the following holds:

1. N(t, α) �= ∅ if and only if N(t1, α1) �= ∅, N(t2, α2) �= ∅, and C[N(t1, α1)] ∩
C[N(t2, α2)] �= ∅ for all C ∈ χc(t).

2. If N(t, α) �= ∅, then C[N(t, α)] = C[N(t1, α1)] ∩ C[N(t2, α2)] for all C ∈
χc(t).
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Proof. (1) For the only if direction, let τ ∈ N(t, α), and τ1 = τ |Xt1
and τ2 =

τ |Xt2
. It is then easy to verify that τ1 ∈ N(t1, α1) and τ2 ∈ N(t2, α2). Moreover,

it holds that C[τ ] �= ∅ for all C ∈ χc(t), which implies C[τ1] ∩ C[τ2] �= ∅ for all
C ∈ χc(t). Hence, we have C[N(t1, α1)]∩C[N(t2, α2)] �= ∅ for all C ∈ χc(t). For
the if direction, let τ1 ∈ N(t1, α1) and τ2 ∈ N(t2, α2) such that C[τ1]∩C[τ2] �= ∅
for all C ∈ χc(t). Now, let us define the assignment τ : Xt → D by τ |Xt1

= τ1

and τ |Xt2
= τ2. To verify that τ ∈ N(t, α), note that, by the Connectedness

Condition, we have Vt1 ∩ Vt2 = χ(t), that is, Xt1 ∩ Xt2 = χv(t) ⊆ χ∗v(t) and
Ft1 ∩ Ft2 = χc(t). Moreover, it holds that χ∗v(t1) ∪ χ∗v(t2) = (χ∗v(t) ∩ Xt1) ∪
(χ∗v(t)∩Xt2) = χ∗v(t)∩(Xt1 ∪Xt2) = χ∗v(t)∩Xt = χ∗v(t). (2) follows immediately
from the above constructions. ��

Lemma 4. Let t be an introduce node with child t′ where χ(t) = χ(t′) ∪ {x}
for a variable x. Let α : χ∗v(t′) → D be an assignment and β = α ∪ {(x, d)} for
some domain element d ∈ D. Then the following holds:

1. N(t, β) �= ∅ if and only if N(t′, α) �= ∅ and C[N(t′, α)] ∩ C[{(x, d)}] �= ∅ for
all C ∈ χc(t).

2. If N(t, β) �= ∅, then C[N(t, β)] = C[N(t′, α)] ∩C[{(x, d)}] for all C ∈ χc(t).

Proof. (1) For the only if direction, let τ ∈ N(t, β) and τ ′ = τ |Xt′ . Thus,
it follows that τ ′ ∈ N(t′, α). Moreover, it holds that C[τ ] �= ∅ for all C ∈
χc(t), which implies C[τ ′] ∩ C[{(x, d)}] �= ∅ for all C ∈ χc(t). Hence, we have
C[N(t′, α)] ∩ C[{(x, d)}] �= ∅ for all C ∈ χc(t). For the if direction, let τ ′ ∈
N(t′, α) such that C[τ ′] ∩ C[{(x, d)}] �= ∅ for all C ∈ χc(t). Now, let us define
the assignment τ : Xt → D by τ |Xt′ = τ ′ and τ(x) = d for the single variable
x ∈ Xt \Xt′ . It is then easy to show that τ ∈ N(t, β). (2) follows immediately
from the above constructions. ��

Lemma 5. Let t be an introduce node with child t′ where χ(t) = χ(t′)∪{B} for
a constraint B. Let α : χ∗v(t) → D be an assignment. Then the following holds:

1. N(t, α) �= ∅ if and only if N(t′, α) �= ∅ and B[α] �= ∅.
2. If N(t, α) �= ∅, then C[N(t, α)] = C[N(t′, α)] for all C ∈ χc(t′).

Proof. (1) For the only if direction, let τ ∈ N(t, α) and τ ′ = τ |Xt′ . So we have
τ ′ ∈ N(t′, α). Moreover, since C[τ ] �= ∅ for all C ∈ χc(t), we know that B[τ ] �= ∅.
Thus, since τ |χ∗

v(t) = α, we obtain B[α] �= ∅. For the if direction, let τ ′ ∈ N(t′, α)
and B[α] �= ∅. By the construction of a tree decomposition of an incidence graph,
we know that var(B) ∩ Xt ⊆ χv(t) ⊆ χ∗v(t). Thus, since τ ′|χ∗

v(t) = α, we have
B[τ ′] �= ∅. So it can be easily verified that τ ′ ∈ N(t, α). (2) follows immediately
from the above constructions. ��

Lemma 6. Let t be a forget node with child t′ where χ(t) = χ(t′) \ {x} for a
variable x. Let α : χ∗v(t) → D be an assignment. If x ∈ χ∗v(t), then the following
holds:
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1. N(t, α) �= ∅ if and only if N(t′, α) �= ∅.
2. If N(t, α) �= ∅, then C[N(t, α)] = C[N(t′, α)] for all C ∈ χc(t).

Otherwise, if x /∈ χ∗v(t), then the following holds:

1. N(t, α) �= ∅ if and only if N(t′, α ∪ {(x, d)}) �= ∅ for some d ∈ D.
2. If N(t, α) �= ∅, then C[N(t, α)] =

⋃
d∈D C[N(t′, α ∪ {(x, d)})] for all C ∈

χc(t).

Proof. The case of x ∈ χ∗v(t) is trivial, since χ∗v(t) = χ∗v(t′) and χc(t) = χc(t′).
Let us therefore consider the more interesting case of x /∈ χ∗v(t). (1) For the
only if direction, let τ ∈ N(t, α). Thus, since Xt = Xt′ , we know that τ(x) = d
for the single variable x ∈ χ∗v(t′) \ χ∗v(t) and some domain element d ∈ D.
Consequently, τ ∈ N(t′, α ∪ {(x, d)}) for some d ∈ D. For the if direction, let
τ ′ ∈ N(t′, α ∪ {(x, d)}) for some d ∈ D. Then we trivially have τ ′ ∈ N(t, α).
(2) follows immediately from the above constructions. ��

Lemma 7. Let t be a forget node with child t′ where χ(t) = χ(t′) \ {B} for a
constraint B. Let α : χ∗v(t) → D be an assignment. Then the following holds:

1. N(t, α) �= ∅ if and only if N(t′, α′) �= ∅ for some α′ : χ∗v(t′) → D s.t.
α = α′|χ∗

v(t).
2. If N(t, α) �= ∅, then C[N(t, α)] =

⋃
α=α′|χ∗

v(t)
C[N(t′, α′)] for all C ∈ χc(t).

Proof. (1) For the only if direction, let τ ∈ N(t, α). Thus, since Xt = Xt′ ,
we know that for all variables x ∈ χ∗v(t′) \ χ∗v(t) there exists some domain
element d ∈ D such that τ(x) = d. Consequently, τ ∈ N(t′, α′) for some
α′ : χ∗v(t

′) → D such that α = α′|χ∗
v(t). For the if direction, let τ ′ ∈ N(t′, α′) for

some α′ : χ∗v(t′) → D such that α = α′|χ∗
v(t). Then we trivially have τ ′ ∈ N(t, α).

(2) follows immediately from the above constructions. ��

Lemma 8. Let t be a leaf node and α : χ∗v(t) → D be an assignment. Then the
following holds:

1. N(t, α) �= ∅ if and only if C[α] �= ∅ for all C ∈ χc(t).
2. If N(t, α) �= ∅, then C[N(t, α)] = C[α] for all C ∈ χc(t).

Proof. Since Xt = χv(t) = χ∗v(t) and Ft = χc(t) for every leaf node t, we
immediately obtain the above properties. ��
In the following, we represent the sets C[N(t, α)] for each α : χ∗v(t) → D and
C ∈ χc(t) by a table Mt with at most |χ∗v(t)| + |χc(t)|m columns and |D||χ∗

v(t)|

rows, where m = maxC∈F |rel(C)|. The first |χ∗v(t)| columns of Mt contain values
from D encoding α(x) for variables x ∈ χ∗v(t). The further columns of Mt rep-
resent the tuples in rel(C) for C ∈ χc(t) and contain Boolean values. The proof
of the next lemma is straightforward and omitted due to the space restrictions.

Lemma 9. Let t be a node of T . Given the tables of the children of t, we can
compute the table Mt in time O(dppks), where p = |χ∗v(t)|, d = |D|, and s is the
size of a largest constraint relation of constraints of I.
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Theorem 2. Given a constraint satisfaction instance I together with a nice tree
decomposition (T, χ) of the incidence graph of I. Let d be the size of the domain
of I and let s be the size of a largest constraint relation of constraints of I.
Furthermore, let k be the width and n the number of nodes of (T, χ), and let
p denote the maximum |χ∗v(t)| over all nodes t of T . Then we can decide in
time O(dppksn) whether I is consistent.

Proof. We compute the tables Mt for all nodes t of T in a bottom up order-
ing, starting from the leaf nodes. By Lemma 9, each table can be computed in
time O(dppks). Since I is consistent if and only if Mr is nonempty, the theorem
follows. ��

Corollary 2. CSP(tw∗,dom,ovl) is fixed-parameter tractable.

Proof. Let I be a constraint satisfaction instance whose incidence graph has
treewidth at most k and c = ovl(I). Recall from Section 2.2 that we can find
in linear time a nice tree decomposition of the incidence graph of G of width
at most k. Now the corollary follows immediately from Theorem 2 and the fact
that |χ∗v(t)| ≤ k + ck2 holds for all nodes t of T . ��
Corollary 2 provides the last step for the proof of the Classification Theorem.

6 Fixed-Parameter Tractability for Further Parameters

In this section, we describe two further constraint satisfaction parameters for
which Theorem 2 applies.

Let I = (V, D, F ) be a constraint satisfaction instance. For a subset F ′ of F
we define δI(F ′) as the set of variables that occur in the scopes of all constraints
of F ′ but in no scope of constraints of F \ F ′; i.e., δI(F ′) = (

⋂
C∈F ′ var(C)) \

(
⋃

C∈F\F ′ var(C)). We define equiv(I) as the maximum size of δI(F ′) over all
subsets F ′ ⊆ F that contain at least two constraints. Furthermore, we define
diff(I) as the maximum size of var(C1) \ var(C2) over all pairs of constraints
C1, C2 ∈ F .

Corollary 3. CSP(tw∗,dom, equiv) is fixed-parameter tractable.

Proof. Let I be a constraint satisfaction instance whose incidence graph has
treewidth at most k. We compute in linear time a nice tree decomposition
(T, χ, r) of the incidence graph of I of width at most k. Let q = equiv(I).
Evidently, we have |χ∗v(t)| ≤ k + q2k for all nodes t of T . Hence the corollary
follows immediately from Theorem 2. ��
Note that the running time of our fixed-parameter algorithm for
CSP(tw∗,dom,ovl) is significantly smaller than the running time for
CSP(tw∗,dom, equiv). However, there exist instances with bounded equiv
and arbitrarily large ovl (i.e., equiv dominates ovl, but not vice versa). For
example, let us construct an instance in the following way: We start with
any constraint C0 and add in each step a new constraint Cn and a new
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variable xn such that
⋂

0≤i≤n var(Ci) = {xn}. By construction equiv(I) = 1,
but ovl(I) ≥ n since |C0 ∩ C1| = n.

Corollary 4. CSP(tw∗,dom,diff) is fixed-parameter tractable.

Proof. Again, let I = (V, D, F ) be a constraint satisfaction instance whose in-
cidence graph has treewidth at most k. Let q′ = diff(I) and let d = |D|. We
compute in linear time a nice tree decomposition (T, χ, r) of the incidence graph
of I of width at most k and n nodes. Next we obtain from I a solution-equivalent
constraint satisfaction instance I ′ by computing the join of all relations of con-
straints in χc(t) for each node t of T . Note that the result of a join operation
of two relations over D having a size at most s can be of size at most sdq′

un-
der our restriction. Thus, the join of at most k relations can be computed in
time O(s2dq′k) and the size of the largest relation of I ′ is bounded by sdq′k.
Moreover, note that the tree decomposition of the incidence graph of I gives
rise to a tree decomposition of the incidence graph of I ′; for the latter we have
χ∗v(t) = χv(t); that is, |χ∗v(t)| ≤ k, for all nodes t of T . Hence, in view of
Theorem 2, we obtain a running time of O(nd(q′+1)kk2s2) for the dynamic pro-
gramming algorithm. ��
Since tw∗ dominates twd, we obtain from these corollaries that the prob-
lems CSP(twd,dom, equiv) and CSP(twd,dom,diff) are fixed-parameter
tractable.

7 Conclusion

We have presented a general framework for studying the trade-off between gener-
ality and performance for parameterized constraint satisfaction problems. Within
our framework we have classified the parameterized complexity of combinations
of natural parameters including the treewidth of primal, dual, and incidence
graphs, the domain size, and the size of overlaps of constraint scopes. The pa-
rameterized complexity of further parameters and their combinations remain
open for future research. Furthermore, it would be interesting to extend the
hardness results of this paper to completeness results for classes of the weft
hierarchy.

Acknowledgement. We thank Moshe Vardi for suggesting us to include the
treewidth of dual graphs into our considerations.

References

1. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25(6):1305–1317, 1996.

2. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. The-
oret. Comput. Sci., 209(1-2):1–45, 1998.

3. H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the
pathwidth and treewidth of graphs. J. Algorithms.



Constraint Satisfaction with Bounded Treewidth Revisited 513

4. H. Chen and V. Dalmau. Beyond hypertree width: Decomposition methods without
decompositions. In Proc. CP’05, LNCS, vol. 3709, 167–181. Springer, 2005.

5. D. Cohen and P. Jeavons. The complexity of constraint languages. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, part I,
chapter 8. Elsevier, 2006 (forthcoming).

6. D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractability
for constraint satisfaction and spread cut decomposition. In Proc. IJCAI’05, 72–77,
2005.

7. R. Dechter. Tractable structures for constraint satisfaction problems. In F. Rossi,
P. van Beek, and T. Walsh, editors, Handbook of Constraint Programming, part I,
chapter 7. Elsevier, 2006 (forthcoming).

8. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-
gence, 38(3):353–366, 1989.

9. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
10. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
11. E. C. Freuder. A sufficient condition for backtrack-bounded search. Journal of the

ACM, 32(4):755–761, 1985.
12. T. Ganzow, G. Gottlob, N. Musliu, and M. Samer. A CSP hypergraph library.

Technical Report DBAI-TR-2005-50, Database and Artificial Intelligence Group,
Vienna University of Technology, 2005.

13. G. Gottlob, M. Grohe, N. Musliu, M. Samer, and F. Scarcello. Hypertree decom-
positions: Structure, algorithms, and applications. In D. Kratsch, editor, Proc.
WG’05, LNCS, vol. 3787, 1–15. Springer, 2005.

14. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions: a survey. In
Proc. MFCS’01, LNCS, vol. 2136, 37–57. Springer, 2001.

15. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. J. of Computer and System Sciences, 64(3):579–627, 2002.

16. G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55–86, 2002.

17. M. Grohe and D. Marx. Constraint solving via fractional edge covers. In Proc.
SODA’06, 289–298, ACM, 2006.

18. P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint
satisfaction. J. of Computer and System Sciences, 61(2):302–332, 2000.

19. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

20. C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries.
J. of Computer and System Sciences, 58(3):407–427, 1999.

21. B. Reed. Finding approximate separators and computing tree width quickly. In
Proc. STOC’92, 221–228. ACM, 1992.

22. S. Szeider. On fixed-parameter tractable parameterizations of SAT. In
E. Giunchiglia and A. Tacchella, editors, Theory and Applications of Satisfiabil-
ity, 6th International Conference, SAT 2003, Selected and Revised Papers, LNCS,
vol. 2919, 188–202. Springer, 2004.



Preprocessing QBF

Horst Samulowitz, Jessica Davies, and Fahiem Bacchus

Department of Computer Science, University of Toronto, Canada
{horst, jdavies, fbacchus}@cs.toronto.edu

Abstract. In this paper we investigate the use of preprocessing when solving
Quantified Boolean Formulas (QBF). Many different problems can be efficiently
encoded as QBF instances, and there has been a great deal of recent interest and
progress in solving such instances efficiently. Ideas from QBF have also started to
migrate to CSP with the exploration of Quantified CSPs which offer an intriguing
increase in representational power over traditional CSPs. Here we show that QBF
instances can be simplified using techniques related to those used for preprocess-
ing SAT. These simplifications can be performed in polynomial time, and are used
to preprocess the instance prior to invoking a worst case exponential algorithm
to solve it. We develop a method for preprocessing QBF instances that is empiri-
cally very effective. That is, the preprocessed formulas can be solved significantly
faster, even when we account for the time required to perform the preprocessing.
Our method significantly improves the efficiency of a range of state-of-the-art
QBF solvers. Furthermore, our method is able to completely solve some instances
just by preprocessing, including some instances that to our knowledge have never
been solved before by any QBF solver.

1 Introduction

QBF is a powerful generalization of SAT in which the variables can be universally
or existentially quantified (in SAT all variables are implicitly existentially quantified).
While any NP problem can be encoded in SAT, QBF allows us to encode any PSPACE
problem: QBF is PSPACE-complete. This increase in representational power also holds
for finite domain CSPs, with quantified CSPs being able to represent PSPACE-complete
problems not expressible as standard CSP problems [12,20].

This opens a much wider range of potential application areas for a QBF or QCSP
solver, including problems from areas like automated planning (particularly conditional
planning), non-monotonic reasoning, electronic design automation, scheduling, model
checking and verification, see, e.g., [11,16]. However, the difficulty is that QBF and
QCSP are in practice much harder problems to solve.

Current QBF solvers are typically limited to problems that are about 1-2 orders of
magnitude smaller than the instances solvable by current SAT solvers (1000’s of vari-
ables rather than 100,000’s). A similar difference holds between current QCSP solvers
and CSP solvers. Nevertheless, both QBF and QCSP solvers continue to improve. Fur-
thermore, many problems have a much more compact encoding when quantifiers are
available, so a quantified solver can still be useful even if it can only deal with much
smaller instances than a traditional solver.
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In this paper we present a new technique for improving QBF solvers. Like many tech-
niques used for QBF, ours is a modification of techniques already used in SAT. Namely
we preprocess the input formula, without changing its meaning, so that it becomes
easier to solve. As we demonstrate below our technique can be extremely effective,
sometimes reducing the time it takes to solve a QBF instance by orders of magnitude.
Although our technique is not immediately applicable to QCSP, it does provide insights
into preprocessing that in future work could have a positive impact on the efficiency of
QCSP solvers. We discuss some of the connections to QCSP in our future work section.

In the sequel we first present some necessary background, setting the context for our
methods. We then present further details of our approach and state some results about its
correctness. Then we provide empirical evidence of the effectiveness of our approach,
and close with a discussion of future work and some conclusions.

2 QBF

A quantified boolean formula has the form Q.F , where F is a propositional formula
expressed in CNF and Q is a sequence of quantified variables (∀x or ∃x). We require
that no variable appear twice in Q and that the set of variables in F and Q be identical
(i.e., F contains no free variables, and Q contains no extra or redundant variables).

A quantifier block qb of Q is a maximal contiguous subsequence of Q where every
variable in qb has the same quantifier type. We order the quantifier blocks by their
sequence of appearance in Q: qb1 ≤ qb2 iff qb1 is equal to or appears before qb2 in Q.
Each variable x in F appears in some quantifier block qb(x) and we say that x ≤q y
if qb(x) ≤ qb(y) and x <q y if qb(x) < qb(y). We also say that x is universal
(existential) if its quantifier in Q is ∀ (∃).

For example, ∃e1e2.∀u1u2.∃e3e4.(e1,¬e2, u2, e4)∧ (¬u1,¬e3) is a QBF with Q =
∃e1e2.∀u1u2.∃e3e4 and F equal to the two clauses (e1,¬e2, u2, e4) and (¬u1,¬e3).
The quantifier blocks in order are ∃e1e2, ∀u1u2, and ∃e3e4, and we have, e.g., that,
e1 <q e3, u1 <q e4, u1 is universal, and e4 is existential.

A QBF instance can be reduced by assigning values to some of its variables. The
reduction of a formula Q.F by a literal  (denoted by Q.F

∣∣
�
) is the new formula

Q′.F ′ where F ′ is F with all clauses containing  removed and the negation of , ¬,
removed from all remaining clauses, and Q′ is Q with the variable of  and its quantifier
removed. For example,

(
∀xz.∃y.(¬y, x, z) ∧ (¬x, y)

)∣∣
¬x

= ∀z.∃y(¬y, z).

Semantics. A SAT-model Ms of a CNF formula F is a truth assignment π to the
variables of F that satisfies every clause in F . In contrast a QBF model (QBF-model)
Mq of a quantified formula Q.F is a tree of truth assignments in which the root is the
empty truth assignment, and every node n assigns a truth value to a variable of F not yet
assigned by one of n’s ancestors. The treeMq is subject to the following conditions:

1. For every node n in Mq , n has a sibling if and only if it assigns a truth value to a
universal variable x. In this case it has exactly one sibling that assigns the opposite
truth value to x. Nodes assigning existentials have no siblings.

2. Every path π inMq (π is the sequence of truth assignments made from the root to
a leaf of Mq) must assign the variables in an order that respects ≤q . That is, if n
assigns x and one of n’s ancestors assigns y then we must have that y ≤q x.
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3. Every path π inMq must be a SAT-model of F . That is π must satisfy the body of
Q.F .

Thus a QBF-model has a path for every possible setting of the universal variables of
Q, and each of these paths is a SAT-model of F . We say that a QBF Q.F is QSAT iff it
has a QBF-model, and that it is UNQSAT otherwise. The QBF problem is to determine
whether or not Q.F is QSAT.

A more standard way of defining QSAT is the recursive definition: (1) ∀xQ.F is
QSAT iff both Q.F |x and Q.F |¬x are QSAT, and (2) ∃xQ.F is QSAT iff at least one
of Q.F |x and Q.F |¬x is QSAT. By removing the quantified variables one by one we
arrive at either a QBF with an empty clause in its body F (which is not QSAT) or a QBF
with an empty body F (which is QSAT). It is not difficult to prove by induction on the
length of the quantifier sequence that the definition we provided above is equivalent to
this definition.

The advantage of our “tree-of-models” definition is that it makes two key observa-
tions more apparent. These observations can be used to prove the correctness of our
preprocessing technique.

A. If F ′ has the same SAT-models as F then Q.F will have the same QBF-models as
Q.F ′.
Proof: Mq is a QBF-model of Q.F iff each path in Mq is a SAT-model of F iff
each path is a SAT-model of F ′ iffMq is a QBF-model of Q.F ′.
This observation allows us to transform F with any model preserving SAT transfor-
mation. Note that the transformation must be model preserving, i.e., it must preserve
all SAT-models of F. Simply preserving whether or not F is satisfiable is not sufficient.

B. A QBF-model preserving (but not SAT-model preserving) transformation that can
be performed on Q.F is universal reduction. A universal variable u is called a
tailing universal in a clause c if for every existential variable e ∈ c we have that
e <q u. The universal reduction [9] of a clause c is the process of removing all
tailing universals from c. The universal reduction of a QBF formula Q.F is the
process of applying universal reduction to all of the clauses of F . Universal reduc-
tion preserves the set of QBF-models.
Proof: Let Q.F ′ be the universal reduction of Q.F .
Mq |= Q.F →Mq |= Q.F ′: Say that v ∈ c is a tailing universal, then along any
path π in any QBF-Model Mq of Q.F , c must be satisfied by π prior to v being
assigned a value. Say not, then since v is universal, the prefix of π that leads to
the assignment of v must also be the prefix of another path π′ that sets v to false:
but then π′ will falsify c because at this point c is a unit clause containing only
the universal variable v. Therefore Mq cannot be a QBF-model of Q.F . Hence
every path π satisfies the universal reduction of c (and all other clauses in F ), and
thus Mq is also QBF-model of Q.F ′ where F ′ is F with the tailing universal v
removed from c. This process can be repeated to remove all tailing universals from
all clauses of F .
Mq |= Q.F ′ → Mq |= Q.F : Since the clauses of F are longer (less restrictive)
than those of F ′ every QBF-Model Mq of Q.F ′ must be also a QBF-Model of
Q.F .

We call two QBF formulas Q-equivalent iff they have exactly the same QBF-Models.
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3 HyperBinary Resolution for SAT

The foundation of our polynomial time preprocessing technique is the SAT method of
reasoning with binary clauses using hyper-resolution developed in [2,3]. This method
reasons with CNF SAT theories using the following “HypBinRes” rule of inference:

Given a single n-ary clause c = (l1, l2, ..., ln), D a subset of c, and the set of
binary clauses {(,¬l)|l ∈ D}, infer the new clause b = (c−D) ∪ {} if b is
either binary or unary.

For example, from (a, b, c, d), (h,¬a), (h,¬c) and (h,¬d), we infer the new binary
clause (h, b), similarly from (a, b, c) and (b,¬a) the rule generates (b, c). The HypBinRes
rule covers the standard case of resolving two binary clauses (from (l1, l2) and (¬l1, )
infer (, l2)) and it can generate unit clauses (e.g., from (l1, ) and (¬l1, ) we infer
(, ) ≡ ()).

The advantage of HypBinRes inference is that it does not blow up the theory (it
can only add binary or unary clauses to the theory) and it can discover a lot of new
unit clauses. These unit clauses can then be used to simplify the formula by doing
unit propagation which in turn might allow more applications of HypBinRes. Applying
HypBinRes and unit propagation until closure (i.e., until nothing new can be inferred)
uncovers all failed literals. That is, in the resulting reduced theory there will be no literal
 such that forcing  to be true followed by unit propagation results in a contradiction.
This and other results about HypBinRes are proved in the above references.

In addition to uncovering unit clauses we can use the binary clauses to perform equal-
ity reductions. In particular, if we have two clauses (¬x, y) and (x,¬y) we can replace
all instances of y in the formula by x (and ¬y by ¬x). This might result in some tau-
tological clauses which can be removed, and some clauses which are reduced in length
because of duplicate literals. This reduction might yield new binary or unary clauses
which can then enable further HypBinRes inferences. Taken together HypBinRes and
equality reduction can significantly reduce a SAT formula removing many of its vari-
ables and clauses [3].

4 Preprocessing QBF

Given a QBF Q.F we could apply HypBinRes, unit propagation, and equality reduction
to F until closure. This would yield a new formula F ′, and the QBF Q′.F ′ where Q′ is
Q with all variables not in F ′ removed. Unfortunately, there are two problems with this
approach. One is that the new QBF Q′.F ′ might not be Q-equivalent to Q.F , so that
this method of preprocessing is not sound. The other problem is that we miss out on
some important additional inferences that can be achieved through universal reduction.
We elaborate on these two issues and show how they can be overcome.

The reason why the straightforward application of HypBinRes, unit propagation and
equality reduction to the body of a QBF is unsound, is that the resulting formula F ′

does not have exactly the same SAT models as F , as is required by condition A above.
In particular, the models of F ′ do not make assignments to variables that have been
removed by unit propagation and equality reduction. Hence, a QBF-model of Q′.F ′
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might not be extendable to a QBF-model of Q.F . For example, if unit propagation
forced a universal variable in F , then Q′.F ′ might be QSAT, but Q.F is not (no QBF-
model of Q.F can exist since the paths that set the forced universal to its opposite value
will not be SAT-models of F ). This situation occurs in the following example. Consider
the QBF Q.F = ∃abc∀x∃yz(x,¬y)(x, z)(¬z, y)(a, b, c). We can see that Q.F is not
QSAT since when x is false, ¬y and z must be true, falsifying the clause (¬z, y). If we
apply HypBinRes and unit propagation to F , we obtain F ′ = (a, b, c), where the uni-
versal variable x has been unit propagated away. As anticipated, Q′.F ′ = ∃abc(a, b, c)
is QSAT, so this reduction of F has not preserved the QSAT status of the original for-
mula. This, however, is an easy problem to fix. Making unit propagation sound for QBF
simply requires that we regard the unit propagation of a universal variable as equivalent
to the derivation of the empty clause (i.e. false). This fact is well known and applied in
all search-based QBF solvers.

Ensuring that equality reduction is sound for QBF is a bit more subtle. Consider a
formula F in which we have the two clauses (x,¬y) and (¬x, y). Since every path
in any QBF-model satisfies F , this means that along any path x and y must have the
same truth value. However, in order to soundly replace all instances of one of these
variables by the other in F , we must respect the quantifier ordering. In particular, if
x <q y then we must replace y by x. It would be unsound to do the replacement in the
other direction. For example, say that x appears in quantifier block 3 while y appears
in quantifier block 5 with both x and y being existentially quantified. The above binary
clauses will enforce the constraint that along any path of any QBF-model once x is
assigned y must get the same value. In particular, y will be invariant as we change
the assignments to the universal variables in quantifier block 4. This constraint will
continue to hold if we replace y by x in all of the clauses of F . However, if we perform
the opposite replacement, we would be able to make y vary as we vary the assignments
to the universal variables of quantifier block 4: i.e., the opposite replacement would
weaken the theory perhaps changing its QSAT status. The same reasoning holds if x is
universal and y is existential. However, if y is universal, the two binary clauses imply
that we will never have the freedom to assign y its two different truth values. That is, in
this case the QBF is UNQSAT, and we can again treat this case as if the empty clause
has been derived.

Therefore a sound version of equality reduction must respect the variable ordering.
We call this (<q preferred) equality reduction. That is, if we detect that x and y are
equivalent and x <q y then we always remove y from the theory replacing it by x. With
this restriction on equality reduction we have the following result:

Proposition 1. Let F ′ be the result of applying HypBinRes, unit propagation, and (<q

preferred) equality reduction to F until closure. If F ′ has the same set of universal
variables as F (i.e., no universal variable was removed by unit propagation or equality
reduction), then the QBF-models of Q′.F ′ are in 1-1 correspondence with the QBF-
models of Q.F . In particular, Q.F is QSAT iff Q′.F ′ is QSAT. On the other hand, if F ′

has fewer universal variables than F then Q.F is UNQSAT.

The idea behind the proof is that we can map any SAT-model of F ′ to a SAT-model
of F by assigning all forced variables their forced value, and assigning all equality
reduced variables a value derived from the variable they are equivalent to. That is, if
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x was removed because it was equivalent to ¬y (y), we assign x the opposite (same)
value assigned to y in F ′’s SAT-model. In the other direction any SAT-model of F
can be mapped to a SAT-model of F ′ by simply omitting the assignments of variables
not in F ′. Given this relationship between the SAT-models, we can then show that any
QBF-model of F can be transformed to a unique QBF-model of F ′ (by splicing out the
nodes that assign variables not in F ′) and vice versa (by splicing in nodes to assign the
variables not in F ′). This proves that the number of QBF-models of each formula are
equal and that the transformation must be a 1-1 mapping.

This proposition tells us that we can use a SAT based reduction of F as a way of
preprocessing a QBF, as long as we ensure that equality reduction respects the quantifier
ordering and check for the removal of universals. This approach, however, does not
fully utilize the power of universal reduction (condition B above). So instead we use a
more powerful approach that is based on the following modification of HypBinRes that
“folds” universal reduction into the inference rule. We call this rule “HypBinRes+UR”:

Given a single n-ary clause c = (l1, l2, ..., ln), D a subset of c, and the set
of binary clauses {(,¬l)|l ∈ D}, infer the universal reduction of the clause
(c \D) ∪ {} if this reduction is either binary or unary.

For example, from c = (u1, e3, u4, e5, u6, e7), (e2,¬e7), (e2,¬e5) and (e2,¬e3) we
infer the new binary clause (u1, e2) when u1 ≤q e2 ≤q e3 ≤q u4 ≤q e5 ≤q u6 ≤q e7.
Note that without universal reduction, HypBinRes would need 5 binary clauses in order
to reduce c, while with universal reduction, 2 fewer binary clauses are required. This ex-
ample also shows that HypBinRes+UR is able to derive clauses that HypBinRes cannot.
Since clearly HypBinRes+UR can derive anything HypBinRes can, HypBinRes+UR is
a more powerful rule of inference.

In addition to using universal reduction inside of HypBinRes we must also use it
when unit propagation is used. For example, from the two clauses (e1, u2, u3, u4,¬e5)
and (e5) (with e1 <q ui) unit propagation by itself can only derive (e1, u2, u3, u4), but
unit propagation with universal reduction can derive (e1).

It turns out that in addition to gaining more inferential power, universal reduction
also allows us to obtain the unconditionally sound preprocessing we would like to have.

Proposition 2. Let F ′ be the result of applying HypBinRes+UR, unit propagation, uni-
versal reduction and (<q preferred) equality reduction to F until closure, where we al-
ways apply universal reduction before unit propagation. Then the QBF-models of Q′.F ′

are in 1-1 correspondence with the QBF-models of Q.F .

This result can be proved by showing that universal reduction generates the empty
clause whenever a universal variable is to be unit propagated or removed via equal-
ity reduction. For example, for a universal u to be forced it must first appear in a unit
clause (u), but then universal reduction would generate the empty clause (given that we
apply universal reduction before unit propagation). Similarly, to make a universal vari-
able u equivalent to an existential variable e with e ≤q u we would first have to generate
the two binary clauses (e,¬u) and (¬e, u) which after universal reduction would yield
(e) and (¬e) which after unit propagation would yield the empty clause. Thus the cases
where Proposition 1 fails to preserve QBF-models are directly detected through the
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generation of an UNQSAT Q′.F ′. In this case we still preserve the QBF-models—
neither formula has any.

Proposition 3. Applying HypBinRes+UR, unit propagation, universal reduction and
(<q preferred) equality reduction to Q.F until we reach closure can be done in time
polynomial in the size of F .

This result can be proved by making three observations: (1) F can never become larger
than |F |2 since we are only adding binary clauses, (2) there are at most a polynomial
number of rule applications possible before closure since each rule either reduces a
clause, removes a variable or adds a binary clause, and (3) at each stage detecting if
another rule can be applied requires only time polynomial in the current size of the
theory.

Our QBF preprocessor modifies Q.F exactly as described in Proposition 2. It applies
HypBinRes+UR, unit propagation, universal reduction, and (<q preferred) equality
reduction to F until it reaches closure. It then outputs the new formula Q′.F ′. Propo-
sition 2 shows that this modification of the formula is sound. In particular, this prepro-
cessing does not change the QSAT status of the formula.

To implement the preprocessor we adapted the algorithm presented in [3] which
exploits a close connection between HypBinRes and unit propagation. In particular,
this algorithm uses trial unit propagations to detect new HypBinRes inferences. The
main changes required to make this algorithm work for QBF were adding universal
reduction, modifying the unit propagator so that it performs universal reduction prior
to any unit propagation step, and modifying equality reduction to ensure it respects the
quantifier ordering.

To understand how trial unit propagation is used to detect HypBinRes+UR infer-
ences, consider the example above of inferring (u1, e2) from (u1, e3, u4, e5, u6, e7),
(e2,¬e7), (e2,¬e5) and (e2,¬e3). If we perform a trial unit propagation of ¬e2, dy-
namically performing universal reduction we obtain the unit clause (u1). Because the
trial propagation started with ¬e2 this unit clause actually corresponds to the binary
clause (u1, e2) (i.e., ¬e2 → u1). The trial unit propagation has to keep track of the
“root” of the propagation so that it does not erroneously apply universal reduction (ev-
ery clause reduced during this process implicitly contains e2).

5 Empirical Results

We implemented the described approach in the preprocessor Prequel [19]. To eval-
uate its performance we considered all of the non-random benchmark instances from
QBFLib(2005) [13] (508 instances in total). We discarded the instances from the bench-
mark families von Neumann and Z since these are all very quickly solved by any state
of the art QBF solver (less than 10 sec. for the entire suite of instances). We also
discarded the instances coming from the benchmark families Jmc, and Jmc-squaring.
None of these instances (with or without preprocessing) can be solved within our time
bounds by any of the QBF solvers we tested. This left us with 468 remaining in-
stances from 19 different benchmark families. We tested our approach on all of these
instances.
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Fig. 1. Logarithmic scale comparison between the number of input variables and the preprocess-
ing time in seconds on a selected set of benchmark families

All tests were run on a Pentium 4 3.60GHz CPU with 6GB of memory. The time
limit for each run of any of the solvers or the preprocessor was set to 5,000 seconds.

5.1 Performance of the Preprocessor Prequel

We first examine the time required to preprocess the QBF formulas by looking at the
runtime behaviour of Prequel on the given set of benchmark families. On the vast major-
ity of benchmarks the preprocessing time is negligible. In particular, the preprocessing
time for even the largest instances in the benchmarks Adder, Chain, Connect, Counter,
FlipFlop, Lut, Mutex, Qshifter, Toilet, Tree, and Uclid is less than one second. For
example, the instance Adder-16-s with ≈ 22,000 variables and ≈ 25,000 clauses is
preprocessed in 0.3 seconds.

The benchmarks that require more effort to preprocess are C, EVPursade, S, Szy-
manski, and Blocks and a subset of the K benchmark:1 k-branch-n, k-branch-p, k-lin-n,
k-ph-n, and k-ph-p. To examine the runtime behaviour on the these benchmark families
we plot the number of input variables of each instance against the time required for
preprocessing (Figure 1), clustering all of the K-subfamilies into one group. Both axis
of the plot are drawn in logarithmic scale.

Figure 1 shows that for all of these harder benchmarks the relationship between
the number of input variables and preprocessing time is approximately linear on the

1 This benchmark family is divided into sub-families.
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Table 1. Summary of results reported in Tables 2 and 3. For each solver we show its number of
solved instances among all tested benchmark families with and without preprocessing, the total
CPU time (in seconds) required to solve the preprocessed and unpreprocessed instances taken
over the “common” instances (instances solved in both preprocessed and unpreprocessed form),
and the total CPU time required by the solvers to solve the “new” instances (instances that can
only be solved in preprocessed form).

Solver Skizzo Quantor Quaffle Qube SQBF
no-pre pre no-pre pre no-pre pre no-pre pre no-pre pre

# Instances 311 351 262 312 226 238 213 243 205 239
Time on common instances 9,748 9,595 10,384 2,244 36,382 20,188 41,107 23,196 46,147 25,554
Time on new instances - 12,756 - 16,829 - 9,579 - 9,707 - 2,421

loglog-plot. This is not surprising since Proposition 3 showed that the preprocessor runs
in worst-case polynomial time: any polynomial function is linear in a loglog scale with
the slope increasing with the degree of the polynomial. Fitting a linear function to each
benchmark family enables a more detailed estimate of the runtime, since the slope of the
fitted linear function determines the relationship between the number of input variables
and preprocessing time. For instance, a slope of one indicates a linear runtime, a slope
of two indicates quadratic behaviour, etc. Except for the benchmarks ‘k-ph-n’ and ‘k-
ph-p’ the slope of the fitted linear function ranges between 1.3 (Szymanski) and 2.3
(Blocks) which indicates a linear to quadratic behaviour of the preprocessor. The two
K-subfamilies ‘k-ph-n’ and ‘k-ph-p’ display worse behaviour, on them preprocessing
time is almost cubic (slope of 2.9).

The graph also shows that on some of the larger problems the preprocessor can take
thousands of seconds. However, this is not a practical limitation. In particular out of the
468 instances only 23 took more than 100 seconds to preprocess. Of these 18 could not
be solved by any of our solvers, either in preprocessed form or unpreprocessed form.
That is, preprocessing might well be cost effective on these 18 problems, but they are so
hard that we have no way of evaluating this. Of the other 5 instances, which were solved
by some solver, there were a total of 25 instance-solver solving attempts. Thirteen of
these attempts resulted in success where a solver succeeded on either the preprocessed
instance only or on the preprocessed and unpreprocessed instances (it was never the
case that a solver failed on the preprocessed instance while succeeding on its unpre-
processed form). Among these 13 successful attempts, 38% were cases where only the
preprocessed instance could be solved, an additional 24% were cases where the prepro-
cessor yielded a net speedup, and only 38% were cases where the preprocessor yielded
a net slowdown. So our conclusion is that except for a few instances, preprocessing is
not a significant added computational burden.

5.2 Impact of Preprocessing

Now we examine how effective Prequel is. Is it able to improve the performance of
state of the art QBF solvers, even when we consider the time it takes to run? To answer
this question we studied the effect preprocessing has on the performance of five state
of the art QBF solvers Quaffle [21] (version as of Feb. 2005), Quantor [8] (version as
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of 2004), Qube (release 1.3) [14], Skizzo (v0.82, r355) [4] and SQBF [17]. Quaffle,
Qube and SQBF are based on search, whereas Quantor is based on variable elimination.
Skizzo uses mainly a combination of variable elimination and search, but it also applies
a variety of other kinds of reasoning on the symbolic and the ground representations of
the instances.

A summary of our results is presented in Table 1. The second row of the table shows
the total time required by each solver to solve the instances that could be solved in both
preprocessed and unpreprocessed form (the “common instances”). The data demon-
strates that preprocessing provides a speedup for every solver. Note that the times for
the preprocessed instances include the time taken by the preprocessor. On these com-
mon instances Quantor was 4.6 times faster with preprocessing, while Quaffle, Qube
and SQBF were all approximately 1.8 times faster with preprocessing. Skizzo is only
slightly faster on the preprocessed benchmarks (that it could already solve). The first
row of Table 1 shows the number of instances that can be solved within the 5000 sec.
time bound. It demonstrates that in addition to speeding up the solvers on problems
they can already solve, preprocessing also extends the reach of each solver, allowing it
to solve problems that it could not solve before (within our time and memory bounds).
In particular, the first row shows that the number of solved instances for each solver is
significantly larger when preprocessing is applied. The increase in the number of solved
instances is 13% for Skizzo, 19% for Quantor, 5% for Quaffle, 14% for Qube and 17%
for SQBF. The time required by the solvers on these new instances is shown in row
3. For example, we see that SQBF was able to solve 34 new instances. None of these
instances could previously be solved in 5,000 sec. each. That is, 170,000 CPU seconds
were expended in 34 failed attempts. With preprocessing all of these instances could
be solved in 2,421 sec. Similarly, Quantor expended 250,000 sec. in 50 failed attempts,
which with preprocessing could all solved in 16,829 sec. Skizzo expended 200,000 sec.
in 40 failed attempts which with preprocessing could all be solved in 12,756 seconds.
Quaffle expended 60,000 sec. in 12 failed attempts, which with preprocessing could all
be solved in 9,579 sec. And Qube expended 150,000 sec. in 30 failed attempts, which
with preprocessing could all be solved in 9,707 seconds.

These results demonstrate quite convincingly that our preprocessor technique offers
robust improvements to all of these different solvers, even though some of them are
utilizing completely different solving techniques.

Tables 2 and 3 provide a more detailed breakdown of the data. Table 2 gives a family
by family breakdown of the common instances (instances that can be solved in both pre-
processed and unpreprocessed form). Specifically, the table shows for each benchmark
family and solver (a) the percentage of instances that are solvable in both preprocessed
and unpreprocessed form, (b) the total time required by the solvable instances when no
preprocessing is used, and (c) the total time required with preprocessing (i.e., solving
as well as preprocessing time).

Table 2 shows that the benefit of preprocessing varies among the benchmark families
and, to a lesser extent, among the solvers. Nevertheless, the data demonstrates that
among these benchmarks, preprocessing almost never causes a significant increase in
the total time required to solve a set of instances. On the other hand, each solver has
at least 2 benchmark families in which preprocessing yields more than an order of
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Table 2. Benchmark family specific information about commonly solved instances. Shown are
the percentage of instances that are solved in both preprocessed and unpreprocessed form and
the total time in CPU seconds taken to solve these instances within each family with and without
preprocessing. Best times shown in bold.

Benchmark Skizzo Quantor Quaffle Qube SQBF

(# instances)
Succ.
%

time
no-
pre

time
pre

Succ.
%

time
no-
pre

time
pre

Succ.
%

time
no-
pre

time
pre

Succ.
%

time
no-
pre

time
pre

Succ.
%

time
no-
pre

time
pre

ADDER (16) 50% 954 792 25% 24 25 25% 1 1 13% 72 27 13% 3 1

adder (16) 44% 455 550 25% 29 27 42% 5 4 44% 0 1 38% 2,678 2,229

Blocks (16) 56% 108 11 100% 308 79 75% 1,284 762 69% 1774 242 75% 7,042 1,486

C (24) 25% 1,070 1,272 21% 140 32 21% 5,356 14 8% 3 5 17% 4 0

Chain (12) 100% 1 0 100% 0 0 67% 6,075 0 83% 4,990 0 58% 4,192 0

Connect (60) 68% 802 5 67% 14 7 70% 253 5 75% 7,013 7 67% 0 5

Counter (24) 54% 1,036 731 50% 217 141 38% 5 5 33% 2 1 38 9 20

EVPursade (38) 29% 1,450 1,765 3% 73 82 26% 1,962 1,960 18% 4,402 2,537 32% 4,759 4,508

FlipFlop (10) 100% 6 4 100% 3 4 100% 0 4 100% 1 4 80% 5,027 1

K (107) 88% 1,972 2,228 63% 3,839 39 35% 21,675 17,083 37% 21,801 19,203 33% 5,563 5,197

Lut (5) 100% 9 9 100% 3 3 100% 1 1 100% 3 6 100% 1,247 66

Mutex (7) 100% 0 102 43% 0 1 29% 43 49 43% 64 71 43% 1 6

Qshifter (6) 100% 8 9 100% 26 29 17% 0 0 33% 29 29 33 1,107 2,103

S (52) 27% 644 1,886 25% 910 1,530 2% 0 0 4% 401 451 2% 0 0

Szymanski (12) 42% 1,147 179 25% 7 0 0% 0 0 8% 0 200 0% 0 0

TOILET (8) 100% 1 25 100% 4,135 3 75% 61 84 63% 496 325 100% 1,307 621

toilet (38) 100% 84 50 100% 684 243 97% 115 207 100% 58 90 97% 395 3,060

Tree (14) 100% 0 0 100% 0 0 100% 37 9 100% 0 1 93% 1,051 1,251

magnitude improvement in solving time. There are only two cases (Skizzo on Mutex,
SQBF on the toilet benchmark) where preprocessing causes a slowdown that is as much
as an order of magnitude (from 0 to 102 seconds and from 395 to 3,060 seconds).

Table 3 provides more information about the instances that were solvable only af-
ter preprocessing. In particular, it shows the percentage of each benchmark family that
can be solved by each solver before and after preprocessing (for those families where
this percentage changes). From this table we can see that for each solver there exist
benchmark families where preprocessing increases the number of instances that can be
solved. It is interesting to note that preprocessing improves different solvers on differ-
ent families. That is, the effect of preprocessing is solver-specific. Nevertheless, pre-
processing allows every solver to solve more instances. It can also be noted that the
different solvers have distinct coverage, with or without preprocessing. That is, even
when a solver is solving a larger percentage of a benchmark it can still be the case
that it is failing to solve particular instances that are solved by another solver with a
much lower success percentage on that benchmark. Preprocessing does not eliminate
this variability.

Some instances are actually solved by the preprocessor itself. There are two bench-
mark families that are completely solved by preprocessing: FlipFlop and Connect.
While the first family is rather easy to solve the second one is considered to be hard.
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Table 3. Benchmark families where preprocessing changes the percentage of solved instances
(within our 5,000 sec. time bound). The table shows the percentage of each families’ instances
that can be solved with and without preprocessing.

Benchmark Skizzo Quantor Quaffle Qube SQBF

no-pre pre no-pre pre no-pre pre no-pre pre no-pre pre

Blocks 69% 88% 100% 100% 75% 88% 69% 69% 75% 81%

C 25% 29% 21% 30% 21% 25% 8% 21% 17% 25%

Chain 100% 100% 100% 100% 67% 100% 83% 100% 58% 100%

Connect 68% 100% 67% 100% 70% 100% 75% 100% 58% 100%

FlipFlop 100% 100% 100% 100% 100% 100% 100% 100% 80% 100%

K 89% 91% 63% 83% 35% 36% 37% 42% 33% 35%

S 27% 37% 25% 31% 2% 8% 4% 8% 2% 8%

Szymanski 42% 75% 25% 50% 0% 0% 8% 25% 8% 0%

toilet 100% 100% 100% 100% 97% 100% 100% 100% 97% 97%

Uclid 0% 67% 0% 0% 0% 0% 0% 0% 0% 0%

In fact, ≈ 25% of the Connect benchmarks could not be solved by any QBF solver in
the 2005 QBF evaluation [15]. Our preprocessor solves the complete benchmark fam-
ily in less than 10 seconds. In addition, a few benchmarks from the hard S benchmark
family can be solved by the preprocessor. Again these instances could not be solved
by any of the QBF solvers we tested within our time bounds. In total, the preprocessor
can completely solve 18 instances that were unsolvable by any of the solvers we tested
(in our time bounds). The Chain benchmark is another interesting case (its instances
have 2 quantifier alternations ∃∀∃). The instances in this family are reduced to ordinary
SAT instances by preprocessing. The preprocessor was able to eliminate all existential
variables from the innermost quantifier block and consequently remove all universals
by universal reduction. The resulting SAT instance is trivial to solve (it is smaller than
the original QBF instance). In all of these cases the extended reasoning applied in the
preprocessor exploits the structure of the instances very effectively. Note that the pre-
processing cannot blow up the body of the QBF since it can only add binary clauses to
the body. Thus, any time the preprocessor converts a QBF instance to a SAT instance,
the SAT instance cannot be much larger that the original QBF.

There were only five cases where for a particular solver preprocessing changed a
solvable instance to be unsolvable (Quaffle on one instance in the K benchmarks, SQBF
on one instance in the Szymanski benchmarks, Skizzo on two instances in the Blocks
benchmark and on one instance in the K benchmark). This is not apparent from Ta-
ble 3 since both Quaffle and Skizzo can still solve more instances of the K and Blocks
benchmarks respectively, with preprocessing than without. However, we can see that
the percentage of solved instances for SQBF on the Szymanski benchmark falls to 0%
after preprocessing. This simply represents the fact that SQBF can solve one instance of
Szymanski before preprocessing and none after. That is, we have found very few cases
when preprocessing is detrimental.

In total, these results indicate that preprocessing is very effective for each of the
tested solvers across almost all of the benchmark families.
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6 Related Work

In this section we review the similarities between our preprocessor and the methods
applied in existing QBF solvers. We conclude that HypBinRes has not been previously
lifted to the QBF setting, although equality reduction and binary clause reasoning have
been used in some state-of-the-art QBF solvers. Our experimental results support this,
since our preprocessor aids the performance and reach of even the solvers that employ
binary clause reasoning and equality reduction.

Skizzo applies equality reduction as part of its symbolic reasoning phase [4]. [4]
makes the claim that Skizzo’s SHBR rule performs a symbolic version of hyper binary
resolution. However, a close reading of the papers [4,6,5,7] suggests that in fact the
SHBR rule is a strictly weaker form of inference than HypBinRes. SHBR traverses the
binary implication graph of the theory, where each binary clause (x, y) corresponds
to an edge ¬x → y in the graph. It detects when there is a path from a literal l
to its negation ¬l, and in this case, unit propagates ¬l. This process will not achieve
HypBinRes. Consider the following example where HypBinRes is applied to the the-
ory {(a, b, c, d), (x,¬a), (x,¬b), (x,¬c)}. HypBinRes is able to infer the binary clause
(x, d). Yet the binary implication graph does not contain any path from a literal to its
negation, so Skizzo’s method will not infer any new clauses. In fact, the process of
searching the implication graph is well known to be equivalent to ordinary resolution
over binary clauses [1]. On the other hand, HypBinRes can infer anything that SHBR is
able to since it captures binary clause resolution as a special case. Therefore SHBR is
strictly weaker than HypBinRes. This conclusion is also supported by our experimental
results, which show, e.g., that our preprocessor is able to completely solve the Connect
Benchmark where as Skizzo is only able to solve 68% of these instances.

The variable elimination algorithm of Quantor also bears some resemblance to hyper
binary resolution, in that variables are eliminated by performing all resolutions involv-
ing that variable in order to remove it from the theory. General resolution among n-ary
clauses is a stronger rule of inference than HypBinRes, but it is difficult to use as a
preprocessing technique due to its time and space complexity (however see [10]).

In this paper we have only discussed the static use of hyper binary resolution, i.e., its
use prior to search. In [18] hyper binary resolution was used dynamically during search
in a QBF solver and was found to also be useful in that context, but not as universally
effective as its static use in a preprocessor.

7 Future Work

Additional techniques for preprocessing remain to be investigated. Based on the data we
have gathered with our preprocessor, we can conclude that a very effective technique
would be to run our preprocessor followed by running Quantor for a short period of time
(10-20 seconds). This technique is capable of solving a surprising number of instances.
As shown in Figure 2 the combination of the preprocessor and Quantor is in fact able
to solve more instances than Skizzo [4]. Hence, by simply employing hyper resolution
and variable elimination it is possible to gain an advantage over such sophisticated QBF
solvers as Skizzo. Furthermore, this technique solves a number of instances that are
particularly problematic for search based solvers. Figure 2 shows that this technique
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Fig. 2. Logarithmic time scale comparison of Quantor and Skizzo on the original and Quantor
on the preprocessed benchmarks. Shown is the time in seconds versus the number of instances
solved.

(the “Quantor-Preprocessed” line) can solve approximately 285 instances within 10
seconds. Yet if we continue to run Quantor for another 5000 seconds very few additional
problems are solved (about 25 more instances). We have also found that search based
solvers can solve a larger number of these “left-over” instances than Quantor.

This suggests the strategy of first running the preprocessor, then running Quantor,
and then a search based solver if Quantor is unable to solve the instance quickly. Even
more interesting would be to investigate obtaining the partially eliminated theory from
Quantor after it has run for a few seconds, and then seeing if it could be further prepro-
cessed or fed directly into a search based solver. The Skizzo solver [4] attempts to mix
variable elimination with search in a related way, but it does not employ the extended
preprocessing reasoning we have suggested here.

Another important direction for future work is to investigate how some of these ideas
can be used to preprocess QCSP problems. Unfortunately although preprocessing is
common in CSPs (achieving some level of local consistency prior to search), our partic-
ular technique of HypBinRes has no immediate analog in CSP. HypBinRes takes advan-
tage of the fact that binary clauses form a tractable subtheory of SAT, however binary
constraints are not a tractable subtheory in CSPs unless we also have binary valued do-
mains. Nevertheless, what our work does indicate is that it might be worth investigating
the usefulness of achieving higher levels of local consistency prior to search in QCSPs
than might be sensible for standard CSPs. This is because QCSPs require more exten-
sive search: all values of every universal variable have to be solved. So effort expended
prior to search can be amortized over a larger search space. Note that HypBinRes+UR
is a more powerful form of inference than what most of the QBF solvers are applying.
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8 Conclusions

We have shown that preprocessing can be very effective for QBF and have presented
substantial and significant empirical results to verify this claim. Nearly all of the pub-
licly available instances are taken into account, and five different state of the art solvers
are compared. The proposed method of preprocessing offers robust improvements
across the different solvers among all tested benchmark families. The achieved im-
provement also includes almost 20 instances that to our knowledge have never been
solved before.
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Abstract. By introducing the Regular Membership Constraint, Gilles Pesant pi-
oneered the idea of basing constraints on formal languages. The paper presented
here is highly motivated by this work, taking the obvious next step, namely to
investigate constraints based on grammars higher up in the Chomsky hierarchy.
We devise an arc-consistency algorithm for context-free grammars, investigate
when logic combinations of grammar constraints are tractable, show how to ex-
ploit non-constant size grammars and reorderings of languages, and study where
the boundaries run between regular, context-free, and context-sensitive grammar
filtering.

Keywords: global constraints, regular grammar constraints, context-free gram-
mar constraints, constraint filtering.

1 Introduction

With the introduction of the regular language membership constraint [9,10,2], a new
field of study for filtering algorithms has opened. Given the great expressiveness of
formal grammars and their (at least for someone with a background in computer sci-
ence) intuitive usage, grammar constraints are extremely attractive modeling entities
that subsume many existing definitions of specialized global constraints. Moreover, Pe-
sant’s implementation [8] of the regular grammar constraint has shown that this type of
filtering can also be performed incrementally and generally so efficiently that it even
rivals custom filtering algorithms for special regular grammar constraints like Stretch
and Pattern [9,4].

In this paper, we theoretically investigate filtering problems that arise from gram-
mar constraints. We answer questions like: Can we efficiently filter context-free gram-
mar constraints? How can we achieve arc-consistency for conjunctions of regular
grammar constraints? Given that we can allow non-constant grammars and reordered
languages for the purposes of constraint filtering, what languages are suited for filter-
ing based on regular and context-free grammar constraints? Are there languages that
are suited for context-free, but not for regular grammar filtering?

Particularly, after recalling some essential basic concepts from the theory of for-
mal languages in the next section, we devise an efficient arc-consistency algorithm that
propagates context-free grammar constraints in Section 3. Then, in Section 4, we study
how logic combinations of grammar constraints can be propagated efficiently. Finally,
we investigate non-constant size grammars and reorderings of languages in Section 5.
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2 Basic Concepts

We start our work by reviewing some well-known definitions from the theory of formal
languages. For a full introduction, we refer the interested reader to [6]. All proofs that
are omitted in this paper can also be found there.

Definition 1 (Alphabet and Words). Given sets Z , Z1, and Z2, with Z1Z2 we denote
the set of all sequences or strings z = z1z2 with z1 ∈ Z1 and z2 ∈ Z2, and we call
Z1Z2 the concatenation of Z1 and Z2. Then, for all n ∈ IN we denote with Zn the set
of all sequences z = z1z2 . . . zn with zi ∈ Z for all 1 ≤ i ≤ n. We call z a word of
length n, and Z is called an alphabet or set of letters. The empty word has length 0 and
is denoted by ε. It is the only member of Z0. We denote the set of all words over the
alphabet Z by Z∗ :=

⋃
n∈IN Zn. In case that we wish to exclude the empty word, we

write Z+ :=
⋃

n≥1 Z
n.

Definition 2 (Grammar). A grammar is a four-tuple G = (Σ,N, P, S0) where Σ is
the alphabet, N is a finite set of non-terminals,P ⊆ (N ∪Σ)∗N(N ∪Σ)∗× (N ∪Σ)∗

is the set of productions, and S0 ∈ N is the start non-terminal. We will always assume
that N ∩Σ = ∅.

Remark 1. We will use the following convention: Capital letters A, B, C, D, and E
denote non-terminals, lower case letters a, b, c, d, and e denote letters in Σ, Y and Z
denote symbols that can either be letters or non-terminals, u, v, w, x, y, and z denote
strings of letters, and α, β, and γ denote strings of letters and non-terminals. Moreover,
productions (α, β) in P can also be written as α→ β.

Definition 3 (Derivation and Language)

– Given a grammar G = (Σ,N, P, S0), we write αβ1γ ⇒
G

αβ2γ iff there exists a

production β1 → β2 ∈ P . We write α1
∗⇒
G

αm iff there exists a sequence of strings

α2, . . . , αm−1 such that αi ⇒
G

αi+1 for all 1 ≤ i < m. Then, we say that αm can

be derived from α1.
– We define the language given by G to be LG := {w ∈ Σ∗ | S0

∗⇒
G

w}.

Definition 2 gives a very general form of grammars which is known to be Turing
machine equivalent. Consequently, reasoning about languages given by general gram-
mars is infeasible. For example, the word problem for grammars as defined above is
undecidable.

Definition 4 (Word Problem). Given a grammar G = (Σ,N, P, S0) and a word w ∈
Σ∗, the word problem consists in answering the question whether w ∈ LG.

Therefore, in the theory of formal languages, more restricted forms of grammars have
been defined. Noam Chomsky introduced a hierarchy of decreasingly complex sets of
languages [5]. In this hierarchy, the grammars given in Definition 2 are called Type-0
grammars. In the following, we define the Chomsky hierarchy of formal languages.
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Definition 5 (Context-Sensitive, Context-Free, and Regular Grammars)

– Given a grammar G = (Σ,N, P, S0) such that for all productions α → β ∈ P
we have that β is at least as long as α, then we say that the grammar G and the
language LG are context-sensitive. In Chomsky’s hierarchy, these grammars are
known as Type-1 grammars.

– Given a grammar G = (Σ,N, P, S0) such that P ⊆ N×(N∪Σ)∗, we say that the
grammar G and the language LG are context-free. In Chomsky’s hierarchy, these
grammars are known as Type-2 grammars.

– Given a grammar G = (Σ,N, P, S0) such that P ⊆ N×(Σ∗N ∪Σ∗), we say that
G and the language LG are right-linear. In Chomsky’s hierarchy, these grammars
are known as Type-3 grammars.

Remark 2. The word problem becomes easier as the grammars become more and more
restricted: For context-sensitive grammars, the problem is already decidable, but un-
fortunately PSPACE-complete. For context-free languages, the word problem can be
answered in polynomial time. For Type-3 languages, the word problem can even be
decided in time linear in the length of the given word.

For all grammars mentioned above there exists an equivalent definition based on some
sort of automaton that accepts the respective language. As mentioned earlier, for Type-0
grammars, that automaton is the Turing machine. For context-sensitive languages it is
a Turing machine with a linearly space-bounded tape. For context-free languages, it is
the so-called push-down automaton (in essence a Turing machine with a stack rather
than a tape). And for right-linear languages, it is the finite automaton (which can be
viewed as a Turing machine with only one read-only input tape on which it cannot move
backwards). Depending on what one tries to prove about a certain class of languages, it
is convenient to be able to switch back and forth between different representations (i.e.
grammars or automata). In this work, when reasoning about context-free languages, it
will be most convenient to use the grammar representation. For right-linear languages,
however, it is often more convenient to use the representation based on finite automata:

Definition 6 (Finite Automaton). Given a finite set Σ, a finite automaton A is defined
as a tupleA = (Q,Σ, δ, q0, F ), where Q is a set of states, Σ denotes the alphabet of our
language, δ ⊆ Q×Σ×Q defines the transition function, q0 is the start state, andF is the
set of final states. A finite automaton is called deterministic iff (q, a, p1), (q, a, p2) ∈ δ
implies that p1 = p2.

Definition 7 (Accepted Language). The language defined by a finite automaton A is
the set LA := {w = (w1, . . . wn) ∈ Σ∗ | ∃ (p0, . . . , pn) ∈ Qn ∀ 1 ≤ i ≤ n :
(pi−1, wi, pi) ∈ δ and p0 = q0, pn ∈ F}. LA is called a regular language.

Lemma 1. For every right-linear grammar G there exists a finite automaton A such
that LA = LG, and vice versa.

Consequently, we can use the terms right-linear and regular synonymously.
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3 Context-Free Grammar Constraints

Within constraint programming it would be convenient to use formal languages to de-
scribe certain features that we would like our solutions to exhibit. It is worth noting here
that any constraint and conjunction of constraints really defines a formal language by it-
self when we view the instantiations of variablesX1, . . . , Xn with domainsD1, . . . , Dn

as forming a word in D1D2 . . .Dn. Conversely, if we want a solution to belong to a cer-
tain formal language in this view, then we need appropriate constraints and constraint
filtering algorithms that will allow us to express and solve such constraint programs
efficiently. We formalize the idea by defining grammar constraints.

Definition 8 (Grammar Constraint). For a given grammar G = (Σ,N, P, S0) and
variables X1, . . . , Xn with domains D1 := D(X1), . . . , Dn := D(Xn) ⊆ Σ, we say
that GrammarG(X1, . . . , Xn) is true for an instantiation X1 ← w1, . . . , Xn ← wn

iff it holds that w = w1 . . . wn ∈ LG ∩D1 × · · · ×Dn.

Gilles Pesant pioneered the idea to exploit formal grammars for constraint program-
ming by considering regular languages [9,10]. Based on the review of our knowledge
of formal languages in the previous section, we can now ask whether we can also de-
velop efficient filtering algorithms for grammar constraints of higher-orders. Clearly,
for Type-0 grammars, this is not possible, since the word problem is already undecid-
able. For context-sensitive languages, the word problem is PSPACE complete, which
means that even checking the corresponding grammar constraint is computationally
intractable.

However, for context-free languages deciding whether a given word belongs to the
language can be done in polynomial time. Context-free grammar constraints come in
particularly handy when we need to look for a recursive sequence of nested objects.
Consider for instance the puzzle of forming a mathematical term based on two occur-
rences of the numbers 3 and 8, operators +, -, *, /, and brackets (, ), such that the term
evaluates to 24. The generalized problem is NP-hard, but when formulating the prob-
lem as a constraint program, with the help of a context-free grammar constraint we can
easily express the syntactic correctness of the term formed. Or, closer to the real-world,
consider the task of organizing a group of workers into a number of teams of unspeci-
fied size, each team with one team leader and one project manager who is the head of
all team leaders. This organizational structure can be captured easily by a combination
of an AllDifferent and a context-free grammar constraint. Therefore, in this section we
will develop an algorithm that propagates context-free grammar constraints.

3.1 Parsing Context-Free Grammars

One of the most famous algorithms for parsing context-free grammars is the algorithm
by Cocke, Younger, and Kasami (CYK). It takes as input a word w ∈ Σn and a context-
free grammar G = (Σ,N, P, S0) in some special form and decides in time O(n3|P |)
whether it holds that w ∈ LG. The algorithm is based on the dynamic programming
principle. In order to keep the recursion equation under control, the algorithm needs to
assume that all productions are length-bounded on the right-hand side.
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Definition 9 (Chomsky Normal Form). A context-free grammar G = (Σ,N, P, S0)
is said to be in Chomsky Normal Form iff for all productions A→ α ∈ P we have that
α ∈ Σ1 ∪N2.

Lemma 2. Every context free grammar G such that ε /∈ LG can be transformed into a
grammar H such that LG = LH and H is in Chomsky Normal Form.

The proof of this lemma is given in [6]. It is important to note that the proof is construc-
tive but that the resulting grammar H may be exponential in size of G, which is really
due to the necessity to remove all productions A → ε. When we view the grammar
size as constant (i.e. if the size of the grammar is independent of the word-length as
it is commonly assumed in the theory of formal languages), then this is not an issue.
As a matter of fact, in most references one will simply read that CYK could solve the
word problem for any context-free language in cubic time. For now, let us assume that
indeed all grammars given can be treated as having constant-size, and that our asymp-
totic analysis only takes into account the increasing word lengths. We will come back
to this point later in Section 4 when we discuss logic combinations of grammar con-
straints, and in Section 5 when we discuss the possibility of non-constant grammars and
reorderings.

Now, given a word w ∈ Σn, let us denote the sub-sequence wiwi+1 . . . wi+j−1

by wij . Based on a grammar G = (Σ,N, P, S0) in Chomsky Normal Form, CYK
determines iteratively the set of all non-terminals from where we can derive wij , i.e.
Sij := {A ∈ N | A ∗⇒

G
wij} for all 1 ≤ i ≤ n and 1 ≤ j ≤ n− i. It is easy to initialize

the sets Si1 just based on wi and all productions A→ wi ∈ P . Then, for j from 2 to n
and i from 1 to n− j + 1, we have that

Sij =
j−1⋃
k=1

{A | A→ BC ∈ P with B ∈ Sik and C ∈ Si+k,j−k}. (1)

Then, w ∈ LG iff S0 ∈ S1n. From the recursion equation it is simple to derive that
CYK can be implemented to run in time O(n3|P |) = O(n3) when we treat the size of
the grammar as a constant.

3.2 Example

Assume we are given the following context-free, normal-form grammar G = ({], [},-
{A,B,C, S0}, {S0 → AC, S0 → S0S0, S0 → BC,B → AS0, A→ [ , C → ] }, S0)
that gives the language LG of all correctly bracketed expressions (like, for example,
“[[][]]” or “[][[]]”). Given the word “[][[]]”, CYK first sets S11 = S31 = S41 = {A},
and S21 = S51 = S61 = {C}. Then it determines the non-terminals from which we
can derive sub-sequences of length 2: S12 = S42 = {S0} and S22 = S32 = S52 =
∅. The only other non-empty sets that CYK finds in iterations regarding longer sub-
sequences are S34 = {S0} and S16 = {S0}. Consequently, since S0 ∈ S16, CYK
decides (correctly) that [][[]] ∈ LG.
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1. We run the dynamic program based on recursion equation 1 with initial sets Si1 := {A | A →
v ∈ P, v ∈ Di}.

2. We define the directed graph Q = (V, E) with node set V := {vijA | A ∈ Sij} and arc
set E := E1 ∪ E2 with E1 := {(vijA, vikB) | ∃ C ∈ Si+k,j−k : A → BC ∈ P} and
E2 := {(vijA, vi+k,j−k,C) | ∃ B ∈ Sik : A → BC ∈ P} (see Figure 1).

3. Now, we remove all nodes and arcs from Q that cannot be reached from v1nS0 and denote the
resulting graph by Q′ := (V ′, E′).

4. We define S′
ij := {A | vijA ∈ V ′} ⊆ Sij , and set D′

i := {v | ∃ A ∈ S′
i1 : A → v ∈ P}.

Algorithm 1 CFCG Filtering Algorithm

3.3 Context-Free Grammar Filtering

We denote a given grammar constraint GrammarG(X1, . . . , Xn) over a context-free
grammar G in Chomsky Normal Form by CFGCG(X1, . . . , Xn). Obviously, we can
use CYK to determine whether CFGCG(X1, . . . , Xn) is satisfied for a full instantia-
tion of the variables, i.e. we could use the parser for generate-and-test purposes. In the
following, we show how we can augment CYK to a filtering algorithm that achieves
generalized arc-consistency for CFGC.

First, we observe that we can check the satisfiability of the constraint by making just
a very minor adjustment to CYK. Given the domains of the variables, we can decide
whether there exists a word w ∈ D1 . . . Dn such that w ∈ LG simply by adding all non-
terminals A to Si1 for which there exists a production A→ v ∈ P with v ∈ Di. From
the correctness of CYK it follows trivially that the constraint is satisfiable iff S0 ∈ S1n.
The runtime of this algorithm is the same as that for CYK.

As usual, whenever we have a polynomial-time algorithm that can decide the satis-
fiability of a constraint, we know already that achieving arc-consistency is also com-
putationally tractable. A brute force approach could simply probe values by setting
Di := {v}, for every 1 ≤ i ≤ n and every v ∈ Di, and checking whether the constraint
is still satisfiable or not. This method would result in a runtime in O(n4D|P |), where
D ≤ |Σ| is the size of the largest domain Di.

We will now show that we can achieve a much improved filtering time. The core
idea is once more to exploit Mike Trick’s method of filtering dynamic programs [11].
Roughly speaking, when applied to our CYK-constraint checker, Trick’s method simply
reverses the recursion process after it has assured that the constraint is satisfiable so as
to see which non-terminals in the sets Si1 can actually be used in the derivation of any
word w ∈ LG ∩ (D1 . . . Dn). The methodology is formalized in Algorithm 1.

Lemma 3. In Algorithm 1:

1. It holds that A ∈ Sij iff there exists a word wi . . . wi+j−1 ∈ Di . . . Di+j−1 such
that A

∗⇒
G

wi . . . wi+j−1.

2. It holds that B ∈ S′ik iff there exists a word w ∈ LG ∩ (D1 . . . Dn) such that
S0

∗⇒
G

w1 . . . wi−1 B wi+k . . . wn.

Proof. 1. We induce over j. For j = 1, the claim holds by definition of Si1. Now
assume j > 1 and that the claim is true for all Sik with 1 ≤ k < j. Now, by

.
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definition of Sij , A ∈ Sij iff there exists a 1 ≤ k < j and a production A →
BC ∈ P such that B ∈ Sik and C ∈ Si+k,j−k . Thus, A ∈ Sij iff there exist wik ∈
Di . . . Di+k−1 and wi+k,j−k ∈ Di+k . . .Di+j−1 such that A

∗⇒
G

wikwi+k,j−k .

2. We induce over k, starting with k = n and decreasing to k = 1. For k = n,
S′1k = S′1n ⊆ {S0}, and it is trivially true that S0

∗⇒
G

S0. Now let us as-

sume the claim holds for all S′ij with k < j ≤ n. Choose any B ∈ S′ik.
According to the definition of S′ik there exists a path from v1nS0 to vikB . Let
(vijA, vikB) ∈ E1 be the last arc on any one such path (the case when the last
arc is in E2 follows analogously). By the definition of E1 there exists a production
A → BC ∈ P with C ∈ Si+k,j−k . By induction hypothesis, we know that there
exists a word w ∈ LG ∩ (D1 . . . Dn) such that S0

∗⇒
G

w1 . . . wi−1 A wi+j . . . wn.

Thus, S0
∗⇒
G

w1 . . . wi−1 BC wi+j . . . wn. And therefore, with (1) and C ∈

Si+k,j−k , there exists a word wi+k . . . wi+j−1 ∈ Di+k . . . Di+j−1 such that S0
∗⇒
G

w1 . . . wi−1 B wi+k . . . wi+j−1 wi+j . . . wn. Since we can also apply (1) to non-
terminal B, we have proven the claim.

��

Theorem 1. Algorithm 1 achieves generalized arc-consistency for the CFGC.

Proof. We show that v /∈ D′
i iff for all words w = w1 . . . wn ∈ LG ∩ (D1 . . . Dn) it

holds that v �= wi.

⇒ (Correctness) Let v /∈ D′
i and w = w1 . . . wn ∈ LG ∩ (D1 . . . Dn). Due to

w ∈ LG there must exist a derivation S0
∗⇒
G

w1 . . . wi−1 A wi+1 . . . wn ⇒
G

w1 . . . wi−1wiwi+1 . . . wn for some A ∈ N with A → wi ∈ P . According to
Lemma 3, A ∈ S′i1, and thus wi ∈ D′

i, which implies v �= wi as v /∈ D′
i.

⇐ (Effectiveness) Now let v ∈ D′
i ⊆ Di. According to the definition of D′

i, there
exists some A ∈ S′i1 with A → v ∈ P . With Lemma 3 we know that then there
exists a word w ∈ LG ∩ (D1 . . . Dn) such that S0

∗⇒
G

w1 . . . wi−1 A wi+1 . . . wn.

Thus, it holds that S0
∗⇒
G

w1 . . . wi−1 v wi+1 . . . wn ∈ LG ∩ (D1 . . .Dn).
��

We now have a filtering algorithm that achieves generalized arc-consistency for context-
free grammar constraints. Since the computational effort is dominated by carrying out
the recursion equation, Algorithm 1 runs asymptotically in the same time as CYK. In
essence, this implies that checking one complete assignment via CYK is as costly as
performing full arc-consistency filtering for CFGC. Clearly, achieving arc-consistency
for a grammar constraint is at least as hard as parsing. Now, there exist faster parsing
algorithms for context-free grammars. For example, the fastest known algorithm was
developed by Valiant and parses context-free grammars in time O(n2.8). While this
is only moderately faster than the O(n3) that CYK requires, there also exist special
purpose parsers for non-ambiguous context-free grammars (i.e. grammars where each
word in the language has exactly one parse tree) that run in O(n2). Now, it is known
that there exist inherently ambiguous context-free languages, so these parsers lack some
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Fig. 1. Context-Free Filtering: Assume we are given the context-free grammar from section 3.2
again. A rectangle with coordinates (i, j) contains one node vijA for each non-terminal A in
the set Sij . All arcs are considered to be directed from top to bottom. The left picture shows
the situation after step (2). S0 is in S14, therefore the constraint is satisfiable. The right picture
illustrates the shrunken graph with sets S′

ij after all parts have been removed that cannot be
reached from node v14S0 . We see that the value ’]’ will be removed from D1 and ’[’ from D4.
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Fig. 2. We show how the algorithm works when the initial domain of X3 is D3 = {[}. The left
picture shows sets Sij and the right the sets S′

ij . We see that the constraint filtering algorithm
determines the only word in LG ∩ D1 . . . D4 is “[][]”.

generality. However, in case that a user specifies a grammar that is non-ambiguous it
would actually be nice to have a filtering algorithm that runs in quadratic rather than
cubic time. It is a matter of further research to find out whether grammar constraint
propagation can be done faster for non-ambiguous context-free grammars.

4 Logic Combinations of Grammar Constraints

We define regular grammar constraints analogously to CFGC, but as in [10] we base
it on automata rather than right-linear grammars:

Definition 10 (Regular Grammar Constraint). Given a finite automaton A and a
right-linear grammar G with LA = LG, we set

RGCA(X1, . . . , Xn) := GrammarG(X1, . . . , Xn).
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Efficient arc-consistency algorithms for RGCs have been developed in [9,10]. Now
equipped with efficient filtering algorithms for regular and context-free grammar con-
straints, in the spirit of [7,1,3] we focus on certain questions that arise when a problem
is modeled by logic combinations of these constraints. An important aspect when in-
vestigating logical combinations of grammar constraints is under what operations the
given class of languages is closed. For example, when given a conjunction of regu-
lar grammar constraints, the question arises whether the conjunction of the constraints
could not be expressed as one global RGC. This question can be answered affirma-
tively since the class of regular languages is known to be closed under intersection. In
the following we summarize some relevant, well-known results for formal languages
(see for instance [6]).

Lemma 4. For every regular language LA1 based on the finite automaton A1 there
exists a deterministic finite automaton A2 such that LA1 = LA2 .

Proof. WhenQ1 = {q0, . . . , qn−1}, we set A2 := (Q2, Σ, δ2, q2
0 , F

2) withQ2 := 2Q1
,

q2
0 = {q1

0}, δ2 := {(P, a,R) | R = {r ∈ Q1 | ∃ p ∈ P : (p, a, r) ∈ δ1}}, and
F 2 := {P ⊆ Q1 | ∃ p ∈ P ∩ F 1}. With this construction, it is easy to see that
LA1 = LA2 . ��

We note that the proof above gives a construction that can change the properties of the
language representation, just like we had noted it earlier for context-free grammars that
we had transformed into Chomsky Normal Form first before we could apply CYK for
parsing and filtering. And just like we were faced with an exponential blow-up of the
representation when bringing context-free grammars into normal-form, we see the same
again when transforming a non-deterministic finite automaton of a regular language into
a deterministic one.

Theorem 2. Regular languages are closed under the following operations:

– Union
– Intersection
– Complement

Proof. Given two regular languages LA1 and LA2 with respective finite automata A1 =
(Q1, Σ, δ1, q1

0 , F
1) and A2 = (Q2, Σ, δ2, q2

0 , F
2), without loss of generality, we may

assume that the sets Q1 and Q2 are disjoint and do not contain symbol q3
0 .

– We define Q3 := Q1 ∪ Q2 ∪ {q3
0}, δ3 := δ1 ∪ δ2 ∪ {(q3

0 , a, q) | (q1
0 , a, q) ∈

δ1 or (q2
0 , a, q) ∈ δ2)}, and F 3 := F 1 ∪F 2. Then, it is straight-forward to see that

the automaton A3 := (Q3, Σ, δ3, q3
0 , F

3) defines LA1 ∪ LA2 .
– We define Q3 := Q1 × Q2, δ3 := {((q1, q2), a, (p1, p2) | ∃(q1, a, p1) ∈ δ1,-

(q2, a, p2)∈δ2}, and F 3 :=F 1×F 2. The automatonA3 :=(Q3, Σ, δ3, (q1
0 , q

2
0), F 3)

defines LA1 ∩ LA2 .
– According to Lemma 4, we may assume that A1 is a deterministic automaton. Then,

(Q1, Σ, δ1, q1
0 , Q

1 \ F 1) defines LC
A1 . ��
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The results above suggest that any logic combination (disjunction, conjunction, and
negation) of RGCs can be expressed as one global RGC. While this is true in principle,
from a computational point of view, the size of the resulting automaton needs to be taken
into account. In terms of disjunctions of RGCs, all that we need to observe is that the
algorithm developed in [9] actually works with non-deterministic automata as well. In
the following, denote by m an upper bound on the number of states in all automata
involved, and denote the size of the alphabet Σ by D. We obtain our first result for
disjunctions of regular grammar constraints:

Lemma 5. Given RGCs R1, . . . , Rk, all over variables X1, . . . , Xn in that order, we
can achieve arc-consistency for the global constraint

∨
i Ri in time O((km+k)nD) =

O(nDk) for automata with constant state-size m.

If all that we need to consider are disjunctions of RGCs, then the result above is sub-
sumed by the well known technique of achieving arc-consistency for disjunctive con-
straints which simply consists in removing, for each variable domain, the intersection of
all values removed by the individual constraints. However, when considering conjunc-
tions over disjunctions the result above is interesting as it allows us to treat a disjunctive
constraint over RGCs as one new RGC of slightly larger size.

Now, regarding conjunctions of RGCs, we find the following result:

Lemma 6. Given RGCs R1, . . . , Rk, all over variables X1, . . . , Xn in that order, we
can achieve arc-consistency for the global constraint

∧
i Ri in time O(nDmk).

Finally, for the complement of a regular constraint, we have:

Lemma 7. Given an RGC R based on a deterministic automaton, we can achieve arc-
consistency for the constraint ¬R in time O(nDm) = O(nD) for an automaton with
constant state-size.

Proof. Lemmas 5- 7 are an immediate consequence of the results in [9] and the con-
structive proof of Theorem 2. ��
Note that the lemma above only covers RGCs for which we know a deterministic finite
automaton. However, when negating a disjunction of regular grammar constraints, the
automaton to be negated is non-deterministic. Fortunately, this problem can be entirely
avoided: When the initial automata associated with the elementary constraints of a logic
combination of regular grammar constraints are deterministic, we can apply the rule of
DeMorgan so as to only have to apply negations to the original constraints rather than
the non-deterministic disjunctions or conjunctions thereof. With this method, we have:

Corollary 1. For any logic combination (disjunction, conjunction, and negation) of
deterministic RGCs R1, . . . , Rk, all over variables X1, . . . , Xn in that order, we can
achieve generalized arc-consistency in time O(nDmk).

Regarding logic combinations of context-free grammar constraints, unfortunately we
find that this class of languages is not closed under intersection and complement, and
the mere disjunction of context-free grammar constraints is not interesting given the
standard methods for handling disjunctions. We do know, however, that context-free
languages are closed under intersection with regular languages. It is a subject of further
research to assess how big the resulting grammars can become.
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Fig. 3. Regular grammar filtering for {anbn}. The left figure shows a linear-size automaton, the
right an automaton that accepts a reordering of the language.

5 Limits of the Expressiveness of Grammar Constraints

So far we have been very careful to mention explicitly how the size of the state-space of
a given automaton or how the size of the set of non-terminals of a grammar influences
the running time of our filtering algorithms. From the theory of formal languages’ view-
point, this is rather unusual, since here the interest lies purely in the asymptotic runtime
with respect to the word-length. For the purposes of constraint programming, however,
a grammar may very well be generated on the fly and may depend on the word-length,
whenever this can be done efficiently. This fact makes grammar constraints even more
expressive and powerful tools from the modeling perspective. Consider for instance the
context-free language L = {anbn} that is well-known not to be regular. Note that,
within a constraint program, the length of the word is known — simply by consider-
ing the number of variables that define the scope of the grammar constraint. Now, by
allowing the automaton to have 2n + 1 states, we can express that the first n variables
shall take the value a and the second n variables shall take the value b by means of a
regular grammar constraint. Of course, larger automata also result in more time that is
needed for propagation. However, as long as the grammar is polynomially bounded in
the word-length, we can still guarantee a polynomial filtering time.

The second modification that we can safely allow is the reordering of variables. In
the example above, assume the first n variables are X1, . . . , Xn and the second n vari-
ables are Y1, . . . , Yn. Then, instead of building an automaton with 2n + 1 states that
is linked to (X1, . . . , Xn, Y1, . . . , Yn), we could also build an automaton with just two
states and link it to (X1, Y1, X2, Y2, . . . , Xn, Yn) (see Figure 3). The same ideas can
also be applied to {anbncn} which is not even context-free but context-sensitive. The
one thing that we really need to be careful about is that, when we want to exploit our
earlier results on the combination of grammar constraints, we need to make sure that
the ordering requirements specified in the respective theorems are met (see for instance
Lemmas 5 and 6).

While these ideas can be exploited to model some required properties of solutions by
means of grammar constraints, they make the theoretical analysis of which properties
can or cannot be modeled by those constraints rather difficult. Where do the boundaries
run between languages that are suited for regular or context-free grammar filtering? The
introductory example, as uninteresting as it is from a filtering point of view, showed al-
ready that the theoretical tools that have been developed to assess that a certain language
cannot be expressed by a grammar on a lower level in the Chomsky hierarchy fail. The
well-known pumping lemmas for regular and context-free grammars for instance rely
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on the fact that grammars be constant in size. As soon as we allow reordering and/or
non-constant size grammars, they do not apply anymore.

To be more formal: what we really need to consider for propagation purposes is not
an entire infinite set of words that form a language, but just a slice of words of a given
length. I.e., given a language L what we need to consider is just L|n := L ∩Σn. Since
L|n is a finite set, it really is a regular language. In that regard, our previous finding that
{anbn} for fixed n can be modeled as regular language is not surprising. The interesting
aspect is that we can model {anbn} by a regular grammar of size linear in n, or even
of constant size when reordering the variables appropriately.

Definition 11 (Suitedness for Grammar Filtering). Given a language L over the al-
phabet Σ, we say that L is suited for regular (or context-free) grammar filtering iff
there exist constants k, n ∈ IN such that there exists a permutation σ : {1, . . . , n} →
{1, . . . , n} and a finite automaton A (or normal-form context-free grammar G) such
that both σ and A (G) can be constructed in time O(nk) with σ(L|n) = σ(L∩Σn) :=
{wσ(1) . . . wσ(n) | w1 . . . wn ∈ L} = LA (σ(L|n) = LG).

Remark 3. Note that the previous definition implies that the size of the automaton
(grammar) constructed is in O(nk). Note further that, if the given language is regu-
lar (context-free), then it is also suited for regular (context-free) grammar filtering.

Now, we have the terminology at hand to express that some properties cannot be mod-
eled efficiently by regular or context-free grammar constraints. We start out by proving
the following useful Lemma:

Lemma 8. Denote with N = {S0, . . . , Sr} a set of non-terminal symbols and G =
(Σ,N, P, S0) a context-free grammar in Chomsky-Normal-Form. Then, for every word
w ∈ LG of length n, there must exist t, u, v ∈ Σ∗ and a non-terminal symbol Si ∈ N
such that S0

∗⇒
G

tSiv, Si
∗⇒
G

u, w = tuv, and n/4 ≤ |u| ≤ n/2.

Proof. Since w ∈ LG, there exists a derivation S0
∗⇒
G

w in G. We set h1 := 0. Assume

the first production used in the derivation of w is Sh1 → Sk1Sk2 for some 0 ≤ k1, k2 ≤
r. Then, there exist words u1, u2 ∈ Σ∗ such that w = u1u2, Sk1

∗⇒
G

u1, and Sk2

∗⇒
G

u2.

Now, either u1 or u2 fall into the length interval claimed by the lemma, or one of
them is longer than n/2. In the first case, we are done, the respective non-terminal has
the claimed properties. Otherwise, if |u1| < |u2| we set h2 := k2, else h2 := k1.
Now, we repeat the argument that we just made for Sh1 for the non-terminal Sh2 that
derives to the longer subsequence of w. At some point, we are bound to hit a production
Shm → SkmSkm+1 where Shm still derives to a subsequence of length greater than
n/2, but both Skm , Skm+1 derive to subsequences that are at most n/2 letters long. The
longer of the two is bound to have length greater than n/4, and the respective non-
terminal has the desired properties. ��
Now consider the language

LAllDiff := {w ∈ IN∗ | ∀ 1 ≤ k ≤ |w| : ∃ 1 ≤ i ≤ |w| : wi = k}.

Since the word problem for LAllDiff can be decided in linear space, LAllDiff is (at most)
context-sensitive.
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Theorem 3. LAllDiff is not suited for context-free grammar filtering.

Proof. We observe that reordering the variables linked to the constraint has no effect on
the language itself, i.e. we have that σ(LAllDiff|n) = LAllDiff|n for all permutations σ.
Now assume that, for all n ∈ IN, we can construct a normal-form context-free grammar
G = ({1, . . . , n}, {S0, . . . , Sr}, P, S0) that generates LAllDiff|n. We will show that the
minimum size forG is exponential in n. Due to Lemma 8, for every wordw ∈ LAllDiff|n

there exist t, u, v ∈ {1, . . . , n}∗ and a non-terminal symbol Si such that S0
∗⇒
G

tSiv,

Si
∗⇒
G

u, w = tuv, and n/4 ≤ |u| ≤ n/2. Now, let us count for how many words non-

terminal Si can be used in the derivation. Since from Si we can derive u, all terminal
symbols that are in u must appear in one block in any word that can use Si for its
derivation. This means that there can be at most (n − |u|)(n − |u|)!(|u|)! ≤ 3n

4 (n
2 !)2

such words. Consequently, since there exist n! many words in the language, the number
of non-terminals is bounded from below by

r ≥ n!
3n
4 (n

2 !)2
=

4(n− 1)!
3(n

2 !)2
≈ 4

√
2

3
√
π

2n

n3/2
∈ ω(1.5n).

��

Now, the interesting question arises whether there exist languages at all that are fit for
context-free, but not for regular grammar filtering? If this wasn’t the case, then the
algorithm developed in Section 3 would be utterly useless. What makes the analysis
of suitedness so complicated is the fact that the modeler has the freedom to change
the ordering of variables that are linked to the grammar constraint — which essentially
allows him or her to change the language almost ad gusto. We have seen an example
for this earlier where we proposed that anbn could be modeled as (ab)n.

Theorem 4. The set of languages that are suited for context-free grammar filtering is
a strict superset of the set of languages that are suited for regular grammar filtering.

Proof. Consider the language L = {wwR#vvR | v, w ∈ {0, 1}∗} ⊆ {0, 1,#}∗
(where xR denotes the reverse of a word x). Obviously,L is context-free with the gram-
mar ({0, 1,#}, {S0, S1}, {S0 → S1#S1, S1 → 0S10, S1 → 1S11, S1 → ε}, S0).
Consequently L is suited for context-free grammar filtering.

Note that, when the position 2k+1 of the sole occurrence of the letter # is fixed, for
every position i containing a letter 0 or 1, there exists a partner position pk(i) so that
both corresponding variables are forced to take the same value. Crucial to our following
analysis is the fact that, in every word x ∈ L of length |x| = n = 2l + 1, every even
(odd) position is linked in this way exactly with every odd (even) position for some
placement of #. Formally, we have that {pk(i) | 0 ≤ k ≤ l} = {1, 3, 5, . . . , n}
({pk(i) | 0 ≤ k ≤ l} = {2, 4, 6, . . . , 2l}) when i is even (odd).

Now, assume that, for every odd n = 2l + 1, there exists a finite automaton that ac-
cepts some reordering of L ∩ {0, 1,#}n under variable permutation σ : {1, . . . , n} →
{1, . . . , n}. For a given position 2k + 1 of # (in the original ordering), by distkσ :=∑

i=1,3,...,2l+1 |σ(i) − σ(pk(i))| we denote the total distance of the pairs after the re-
ordering through σ. Then, the average total distance after reordering through σ is
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1
l+1

∑
0≤k≤l dist

k
σ = 1

l+1

∑
0≤k≤l

∑
i=1,3,...,2l+1 |σ(i)− σ(pk(i))|

= 1
l+1

∑
i=1,3,...,2l+1

∑
0≤k≤l |σ(i)− σ(pk(i))|.

Now, since we know that every odd i has l even partners, even for an ordering σ that
places all partner positions in the immediate neighborhood of i, we have that∑

0≤k≤l

|σ(i)− σ(pk(i))| ≥ 2
∑

s=1,...,�l/2�
s = (�l/2�+ 1)�l/2�.

Thus, for sufficiently large l, the average total distance under σ is

1
l+1

∑
0≤k≤l dist

k
σ ≥ 1

l+1

∑
i=1,3,...,2l+1(�l/2�+ 1)�l/2�

≥ l
l+1 (�l/2�+ 1)�l/2�

≥ l2/8.

Consequently, for any given reordering σ, there must exist a position 2k + 1 for the
letter # such that the total distance of all pairs of linked positions is at least the average,
which in turn is greater or equal to l2/8. Therefore, since the maximum distance is 2l,
there must exist at least l/16 pairs that are at least l/8 positions apart after reordering
through σ. It follows that there exists an 1 ≤ r ≤ n such that there are at least l/128
positions i ≤ r such that pk(i) > r. Consequently, after reading r inputs, the finite
automaton that accepts the reordering of L ∩ {0, 1,#}n needs to be able to reach at
least 2l/128 different states. It is therefore not polynomial in size. It follows: L is not
suited for regular grammar filtering. ��

As a final remark, it is interesting that {wwR#vvR}|2l+1 =
⋃l

k=1{wwR#vvR | -
|w| = k, |v| = l − k}, and {wwR#vvR | |w| = k, |v| = l − k} is actually suited
for regular grammar filtering when each of the sets is reordered appropriately. Now,
Lemma 5 cannot be applied, since the different constraints use different reorderings
of the variables. However, we could apply standard disjunctive constraint filtering. Ul-
timately, context-free grammar filtering only appears to become unavoidable for unre-
stricted concatenations of non-regular grammars such as {w1w

R
1 #w2w

R
2 # . . . wkw

R
k },

or our example grammar that generates correctly bracketed expressions, or the language
of syntactically correct mathematical expressions, to name just a few.

6 Conclusions

We investigated the idea of basing constraints on formal languages. Particularly, we de-
vised an efficient arc-consistency algorithm for grammar constraints based on context-
free grammars in Chomsky Normal Form. We studied logic combinations of grammar
constraints and showed where the boundaries run between regular, context-free, and
context-sensitive grammar constraints when allowing non-constant grammars and re-
orderings of variables. Our hope is that grammar constraints can serve as powerful
modeling entities for constraint programming in the future, and that our theory can help
to better understand and tackle the computational problems that arise in the context of
grammar constraint filtering.
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Abstract. The problem of finding a graceful labelling of a graph, or proving
that the graph is not graceful, has previously been modelled as a CSP. A new
and much faster CSP model of the problem is presented, with several new results
for graphs whose gracefulness was previously unknown. Several classes of graph
that are conjectured to be graceful only for small instances are investigated: after
a certain size, it appears that for some of these classes the search to prove that
there is no graceful labelling is essentially the same for each successive instance.
The possibility of constructing a proof of the conjecture based on the search is
discussed.

1 Introduction

The study of graceful labellings of graphs is an active research area in graph theory.
Few general results are known and constraint programming can be a useful tool in
investigating new classes of graph. An existing CSP model used in previous studies
is shown to be far slower than a model derived from a proof that cliques Kn are not
graceful for n > 4. The new model is applied to instances from several classes of graph,
finding some new graceful labellings and showing that some graphs, whose status was
previously unknown, are not graceful. For some classes of graph, the results lead to
the conjecture that only small instances of the class are graceful. The paper discusses
whether it would be possible to base a proof of such a conjecture on a trace of the search
to show that an instance of the class is not graceful.

2 Graceful Graphs

A labelling f of the nodes of a graph with q edges is graceful if f assigns each node a
unique label from {0, 1, ..., q} and when each edge xy is labelled with |f(x) − f(y)|,
the edge labels are all different. (Hence, the edge labels are a permutation of 1, 2, ..., q.)

Figure 1 shows an example, with 25 edges and 10 nodes. The labels on the edges
consist of the numbers 1 to 25, while the node labels are all different and taken from
{0, ..., 25}.

Gallian [6] gives a survey of graceful graphs, i.e. graphs with a graceful labelling, and
lists the graphs whose status is known; his survey is frequently updated to include new
results. Graceful labellings were first defined by Rosa in 1967, although the name was
introduced by Golomb [8] in 1972. Gallian lists a number of applications of labelled
graphs; however, the study of graceful graphs has become an active area of research

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 545–559, 2006.
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Fig. 1. A graceful labelling of the graph K5 × P2

in its own right. The survey lists several classes of graph for which it is known that
every instance is graceful, for instance the wheel graph Wn, consisting of a cycle Cn

and an additional node joined to every node of the cycle. However, the only general
result given by Gallian is that if every node has even degree and the number of edges
is congruent to 1 or 2 (mod 4) then the graph is not graceful. For example, the cycles
C4n+1 and C4n+2 are not graceful, although C4n and C4n+3 are graceful for all n.
There is a long-standing conjecture that all trees are graceful and although this has been
proved for several classes of tree (including paths), and for all trees with at most 27
nodes, the general case remains unproven.

Given a graph whose gracefulness is so far unknown, in general there is no way to
tell whether it is graceful or not, except by trying to label it. Constraint programming is
thus a useful tool to use in investigating graceful graphs.

3 A CP Model

Constraint programming has already been applied to finding graceful labellings in a
few cases; for instance, the all-interval series problem (problem 007 in CSPLib, at
http://www.csplib.org) is equivalent to finding a graceful labelling of a path. Lustig &
Puget [10] found a graceful labelling of the graph shown in Figure 2, which was not pre-
viously known to be graceful. Petrie and Smith [11] used graceful graphs to investigate
different symmetry breaking methods in constraint programming.

In order to model the problem of finding a graceful labelling as a CSP, the nodes of
the graph are numbered from 1 to n, where n is the number of nodes. Figure 2 shows
this numbering of the nodes, as well as (in brackets) the label attached to each node in
one of the graceful labellings.

The CSP model used in [10,11] has two sets of variables: a variable for each node,
x1, x2, ..., xn each with domain {0, 1, ..., , q} and a variable for each edge, d1, d2, ..., dq ,
each with domain {1, 2, ..., , q}. The value assigned to xi is the label attached to node
i, and the value of dk is the label attached to the edge k.

The constraints of the problem are: if edge k joins nodes i and j then dk = |xi−xj |,
for k = 1, 2, ..., q; x1, x2, ..., xn are all different; d1, d2, ..., dq are all different (and
form a permutation).
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Fig. 2. The graph K4 × P2

There are two kinds of symmetry in the problem of finding a graceful labelling of a
graph: first, there may be symmetry in the graph. For instance, if the graph is a clique,
any permutation of the node labels in a graceful labelling is also graceful, and if the
graph is a path, Pn, the node labels can be reversed. The second type of symmetry is
that we can replace the value v of every node variable xi by its complement q − v. We
can also combine each graph symmetry with the complement symmetry. For instance,
the graceful labelling (0, 3, 1, 2) of P4 has three symmetric equivalents: reversal (2, 1,
3, 0); complement (3, 0, 2, 1); and reversal + complement (1, 2, 0, 3).

If the graph is symmetric, it is essential to eliminate all or most of the symmetry in
the CSP in order to avoid wasted search, especially if all graceful labellings are required
or the graph is not graceful. In terms of the CSP model described above, the symme-
try of the graph leads to variable symmetries in the CSP affecting the node variables
x1, x2, ..., xn; each symmetry maps an assignment of a value l to a variable xi to an
assignment of the same value to a variable xj . Following the procedure introduced by
Crawford et al. [5], variable symmetries can be eliminated by adding a lexicographic
ordering constraint for each symmetry. Although in general this may not be practica-
ble, Puget [12] showed that when there is an allDifferent constraint on the variables,
the symmetry can be eliminated by at most n − 1 binary constraints; he used the CSP
model of graceful graphs described in this section as an example.

The symmetries of the graph in Figure 2 are, firstly, any permutation of the 4-cliques
which acts on both in the same way, for instance, transposing nodes 1 and 2 and simul-
taneously nodes 5 and 6. Secondly, the labels of the first clique (nodes 1, 2, 3, 4) can be
interchanged with the labels of the corresponding nodes (nodes 5, 6, 7, 8) in the second.
A possible set of constraints to eliminate the graph symmetry is x1 < x2, x2 < x3,
x3 < x4 to exclude permutations within the cliques and x1 < x5, x1 < x6, x1 < x7,
x1 < x8 to exclude swapping the cliques and permuting both. Since the constraints
imply that x1 = 0, this constraint together with x2 < x3, x3 < x4 is sufficient.

It is not easy to devise a simple constraint that will eliminate the complement sym-
metry in this example. It is simpler if the graph has a node that is not symmetrically
equivalent to any other node; the constraint that the label of this node must be ≤ q/2
will eliminate the complement symmetry, at least if q is odd. Eliminating the comple-
ment symmetry will be returned to later; for now, this symmetry will be ignored.

As an alternative to using symmetry-breaking constraints, a dynamic symmetry-
breaking method such as Symmetry Breaking During Search (SBDS) [7] can be used;
again, this will be discussed further in the context of an alternative CSP model.
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The model just described, which will be called the node model in the rest of the pa-
per, is adequate to find all graceful labellings of the graph in Figure 2, and allowed us to
investigate slightly larger graphs as well, e.g. the related graphs K5×P2 and K6×P2.
K5 × P2 is graceful, and has a unique graceful labelling, apart from symmetric equiv-
alents, shown in Figure 1, whereas K6 × P2 is not graceful; these new results are now
listed in Gallian’s survey [6]. Results that we obtained with this model for other classes
of graph are summarised in [13]. However, the search effort and run time increase
rapidly with problem size, so that it is very time-consuming, as shown below, to prove
that K7×P2, with 14 nodes and 49 edges, is not graceful; K8×P2 is out of reach within
a reasonable time. In the next sections, a better model of the problem is introduced.

4 Gracefulness of Cliques

Beutner & Harborth [3] present a search algorithm which they use to investigate grace-
ful labellings of “nearly complete” graphs. To illustrate their method, they present
Golomb’s proof that Kn is not graceful for n > 4 [8]:

Any gracefully labelled graph must have an edge labelled q and it must link nodes
labelled 0 and q. Then we consider the edge labelled q − 1 (which has to exist unless
the graph is just a path of length 2). It must link either 0 and q − 1 or 1 and q. So we
must have a path 0 ↔ q ↔ 1 or q − 1 ↔ 0 ↔ q. These two possibilities are symmet-
rically equivalent under the complement symmetry, so we can break this symmetry by
arbitrarily choosing one, say 0 ↔ q ↔ 1; hence, we need a third node labelled 1.

This gives a complete graceful labelling of K3. To extend the labelling to Kn, n > 3,
we next consider the edge labelled q − 2. This must link either 0 and q − 2 or 1 and
q− 1 or 2 and q, so we need a new node labelled q − 2, q − 1 or 2. But there is already
an edge labelled 1 (from 0 to 1) and both q−1 (from q−1 to q) and 2 (from 2 to 1) give
another, which is not allowed. Hence, there must be nodes labelled 0, 1, q − 2 and q.
This gives the graceful labelling of K4, with q = 6, shown in Figure 3; the construction
shows that it is unique, apart from the complement labelling.

64

0 1

Fig. 3. The graceful labelling of K4

In larger cliques, the next edge label to consider is q − 4 (there is already an edge
labelled q − 3 from 1 to q − 2). The fifth node added to the clique must be labelled so
that this edge label is created. The possible ways to construct an edge label q − 4 (in
any graph) are: 0 and q − 4 or 1 and q − 3 or 2 and q − 2 or 3 and q − 1 or 4 and q.
However, labelling the fifth node with any of q − 4, 2 and 3 gives a new edge labelled
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2 (q − 4 to q − 2, 2 to 0, 3 to 1), so the fifth node must be labelled 4. But this gives an
edge labelled q − 6 from q − 2 to 4; we also have an edge labelled 4, from 0 to 4, and
for n = 5, q − 6 = 4. So K5 cannot be graceful.

For n ≥ 6, introducing a fifth node labelled 4 is allowable, so that the nodes so far
are labelled 0, 1, 4, q− 2 and q. The largest edge label not already present is q− 5. This
edge label must come from nodes labelled either 0 and q − 5 or 1 and q − 4 or 2 and
q − 3 or 3 and q − 2 or 4 and q − 1 or 5 and q. Nodes labelled q − 4, 2 and 3 have
already been ruled out. q − 5 will give a 2nd edge labelled 3 (from q − 5 to q − 2); 5
will give a 2nd edge labelled 4, from 5 to 1. So we cannot have an edge labelled q − 6
and hence Kn is not graceful for n > 5.

Beutner & Harborth use a backtracking search procedure, based on the approach in
the proof, to find graceful labellings or prove that there are none. They focus on the
edge labels, considering each label in turn, from q (the number of edges) downwards.
Each edge label has to be used, and appear somewhere in the graph, and they construct
a labelling, or prove that there is no labelling, by trying to decide, for each edge label in
turn, which node labels will appear at either end of the edge. The classes they consider
are nearly complete graphs, with specific kinds of subgraph removed from a clique; for
instance, they show that Kn − e, i.e. an n-clique with one edge removed, is graceful
only for n ≤ 5 and that any graph derived from Kn by removing 2 or 3 edges is not
graceful for n > 6.

5 A CSP Model Based on Edge Labels

The proof that Kn is not graceful for n ≥ 5 can equally be adapted to modelling the
problem of finding graceful labellings of a graph as a CSP. The model has a variable
ei for each edge label i, which indicates how this edge label will be formed. The value
assigned to ei is the smaller node label forming the edge labelled i, i.e. if ei = j,
the edge labelled i joins the nodes labelled j and j + i. Hence, the domain of ei is
{0, 1, ..., q − i}. (Essentially, an edge label is associated with a pair of node labels, but
since if the edge label and the smaller node label are known, the other node label is also
known, we need only associate an edge label with one node label.) Note that the domain
of eq is {0}. The domain of eq−1 is initially {0, 1} but this can be reduced either to {1}
or to {0} arbitrarily, to break the complement symmetry, as in the proof.

Once it is decided how to construct an edge label from two node labels, those node
labels must be attached to specific nodes in the graph. (This is not necessary in the proof,
because all nodes in a clique are equivalent.) The variable lj represents the node to
which the label j is attached, provided that this node label is used at all in the labelling.
To allow for the fact that a label may not be used, the domains of these variables contain
a dummy value, say n + 1.

The link between the two sets of variables is achieved by the constraints: ei = j iff
the values of lj and lj+i correspond to adjacent nodes (1 ≤ i ≤ q; 0 ≤ j ≤ q − i). In
Solver 6.0, this is expressed as a table constraint, using a ternary predicate which uses
the adjacency matrix of the graph.

The node label variables must all have different values (unless they are assigned the
dummy value). There is no need for a constraint to ensure that each edge has a different
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label, since an edge label is represented by a variable and so must have exactly one
value, i.e. labels exactly one edge.

This new model will be called the edge-label model in the rest of the paper.
The complement symmetry can be eliminated by setting eq−1 = 1, as already de-

scribed. (The alternative choice, eq−1 = 0, makes little difference.) However, the graph
symmetry, if any, has still to be dealt with. In the edge-label model, it appears as value
symmetries affecting the node-label variables. If a graph symmetry σ maps the node
numbered i to the node numbered σ(i), then it maps the assignment lj = i to the as-
signment lj = σ(i), whereas in the node model, it maps xi = j into xσ(i) = j. Law
and Lee [9] point out that value symmetry can be transformed into variable symmetry
acting on the dual variables and then is amenable to the Crawford et al. procedure for
deriving symmetry-breaking constraints.

Hence, a simple way to derive symmetry-breaking constraints in the edge-label
model is to re-introduce the variables x1, ..., xn from the node model. These are the
duals of the node label variables l1, ..., lq . The two sets of variables can be linked by the
channelling constraints: xi = j iff lj = i for i = 1, ..., n and j = 0, ..., q, or equiva-
lently by the global inverse constraint [1]. As a side-effect, the channelling constraints
are sufficient to ensure that every possible node label is assigned to a different node, or
else is not used, so that no explicit allDifferent constraint is required.

In the next section, where the two CSP models are compared experimentally, SBDS
is also used to break the symmetry in the edge-label model; for some classes of graph,
this is a better choice.

The search strategy is designed to mimic the process described in the proof of sec-
tion 4, with an extra step in which specific nodes in the graph are labelled. The edge
labels are considered in descending order; for each one in turn, the search first decides
which node labels will make that edge label, and then decides where in the graph to
put those node labels. Hence, both the edge label variables e1, e2, ..., eq and the node
label variables l0, l1, ..., lq are search variables. The variable ordering strategy finds the
largest edge label i that has not yet been attached to a specific edge in the graph. The
next variable assigned is ei, if that has not been assigned; if ei has been assigned a value
j, then the next variable is lj , if that is not yet assigned, or li+j . (If all three variables
have been assigned, the label i has been associated with a specific edge.)

In the next section, the performance of the edge-label model will be compared with
that of the node model.

6 Kn × P2 Graphs

In this section, an experimental comparison of the two models is presented, using graphs
of the class Kn × P2; these have two copies of a clique Kn with corresponding nodes
of successive cliques also forming the nodes of a path P2. The graph K4×P2 from this
class was used in section 3 to illustrate the node model.

As before, the graph symmetry in the node model can be eliminated by the con-
straints x1 = 0; x2 < x3 < ... < xn. The complement symmetry can now be broken
in the same way as in the edge-label model, by using the fact that the edge label q − 1
either joins nodes labelled 1 and q or nodes 0 and q − 1 and that these are symmetric
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under the complement symmetry. In the Kn × P2 graphs, it is simple to add a con-
straint that there is a node labelled q− 1 adjacent to the node labelled 0, since the other
symmetry-breaking constraints ensure that node 1 is the node labelled 0.

The allDifferent constraint on the node variables is treated as a set of binary �= con-
straints, whereas generalized arc consistency is enforced on the allDifferent constraint
on the edge variables. They are treated differently because the values assigned to the
edge variables form a permutation and hence the allDifferent constraint is much tighter
than that on the node variables, which gives little scope for domain pruning.

In order to give a small search tree (even at the expense of increasing the run-time)
generalized arc consistency is enforced on the ternary constraints dk = |xi − xj |. A set
of implied constraints are also added: for any triple of nodes i, j, k, where i is adjacent
to both j and k, 2xi �= xj + xk .

Smallest-domain variable ordering is used with the node model for this class of
graph; the earlier studies [11] showed that this is not always a good choice for these
problems, compared to lexicographic variable ordering, but in this case it is better. In
both models, the value ordering chooses the smallest available value in the domain.

In the edge-label model, as described in the last section, the graph symmetry can
be broken by the symmetry-breaking constraints on the node variables x1, x2, ..., xn.
For this class of problems, as will be seen, it is also worthwhile to use SBDS: the
symmetry permuting the nodes within each cliques can be broken using SBDS and
the symmetry between cliques by the constraint that the smallest node label in the
first clique is less than the smallest in the second clique, i.e. min(x1, x2, ..., xn) <
min(xn+1, xn+2, ..., x2n). This constraint still allows the nodes within the cliques to
be freely permuted and so is compatible with SBDS breaking the symmetry within
cliques. This symmetry is easy to deal with in SBDS: since it allows all permutations
of the nodes in a clique (while simultaneously permuting the corresponding nodes in
the other clique), it is only necessary to input the transpositions of pairs of nodes. For
instance, one such transposition swaps the assignments to xi and xj (1 ≤ i, j ≤ n) and
also to xi+n and xj+n.

The models were implemented in ILOG Solver 6.0, and all experiments reported in
this paper were run on a 1.7GHz Pentium M PC. The results for the two models, and
both symmetry-breaking methods used in the edge-label model, are given in Table 1.

Clearly, the new model is far better than the original model for these problems. With
hindsight, the domains of the node variables in the original model are too large to allow
efficient search (and they increase rapidly with the size of the problem). In the edge-
label model, the initial domain sizes of the edge-label variables, in the order in which
they are assigned, are always 1, 2, ..., q. In practice, domain pruning ensures that by the
time an edge label variable is reached during the search, there are very few possible
values left in its domain− often no more than two.

For this class of graph, symmetry breaking constraints give significantly worse per-
formance than SBDS, with the edge-label model. It is known that symmetry-breaking
constraints can conflict with variable ordering heuristics. In the edge-label model, the
symmetry-breaking constraints are posted on the node variables, but these are not search
variables. The order in which the node variables are assigned is hard to predict, and it is
difficult to see how the symmetry-breaking constraints can be tailored to be compatible
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Table 1. Comparison of CSP models for finding all graceful labellings of Kn ×P2 graphs, using
Solver 6.0 on a 1.7GHz Pentium M PC

Node model Edge label model
(with symmetry-breaking Symmetry-breaking Breaking symmetry

constraints) constraints using SBDS
Graph Solutions backtracks time (sec.) backtracks time (sec.) backtracks time (sec.)

K3 × P2 4 37 0.01 18 0.01 20 0.03
K4 × P2 15 499 0.15 198 0.21 172 0.21
K5 × P2 1 9,350 5.55 1,252 6.28 866 3.84
K6 × P2 0 192,360 220.95 4,151 109.50 1,861 42.53
K7 × P2 0 3,674,573 8,433.96 10,635 739.53 2,440 169.81
K8 × P2 0 - - 23,048 3,301.41 2,553 351.32
K9 × P2 0 - - - - 2,561 715.21
K10 × P2 0 - - - - 2,561 1,314.71

with it. Because of the way that the two cliques are linked, it seems that early in the
search labels are assigned in the second clique in a way that creates conflicts with the
symmetry-breaking constraints when the corresponding nodes in the first clique are
labelled later in search; hence, this leads the search into backtracking to try to resolve
these conflicts. In the rest of the paper, other classes of graph containing multiple cliques
are considered, but in these cases, the cliques are much less interlinked, and symmetry-
breaking constraints do not encounter the same difficulties. Since symmetry-breaking
constraints are easy to post, break all the symmetries in these problems, and offer the
potential to prune variable domains early, they are a better choice than SBDS for these
graphs. However, it is worth remembering that conflict with the variable ordering can
sometimes cause them to do very poorly.

For n ≥ 9, it appears from Table 1 that the size of the search tree explored by the edge-
label model with SBDS no longer increases with n. This has also been observed in other
classes of graph and will be discussed further in the next section. The runtime continues
to increase with n because increasing the size of the problem means more variables and
larger domain sizes, and hence constraint propagation is more time-consuming.

Cliques and nearly complete graphs with n nodes are graceful only for small values
of n. Gallian lists a few other families of graphs involving cliques that are known not to
be graceful; for instance, ‘windmill’ graphs K

(m)
n consisting of m copies of Kn with

a common vertex are not graceful for m = 2. Intuitively, these graphs have too many
edges compared to the number of nodes to be graceful, or else this eventually happens
as n increases. In the light of this and the results in Table 1, it seems reasonable to
conjecture that Kn × P2 is not graceful for n > 5. In the next section, other graph
families based on cliques will be considered which exhibit similar behaviour.

7 Sets of Overlapping Cliques

It is clearly possible to use constraint programming to show that some graphs are grace-
ful and that some graphs are not. What would be required to show that a class of graph
is not graceful (perhaps from some point onwards)?
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Fig. 4. The graph B(5, 2, 2) with its unique graceful labelling (apart from symmetric equivalents)

Table 2. Search effort with the new model to find all graceful labellings of graphs B(n, 2, 2) or
prove that there are none

Graph Solutions backtracks time (sec.)
B(3, 2, 2) 4 1 0.01
B(4, 2, 2) 4 22 0.01
B(5, 2, 2) 1 80 0.14
B(6, 2, 2) 0 116 1.72
B(7, 2, 2) 0 124 6.88
B(8, 2, 2) 0 124 15.26
B(9, 2, 2) 0 124 29.78

If we consider cliques Kn and the proof given earlier that they are graceful only for
n ≤ 4, the proof demonstrates that when n ≥ 6, it is impossible to construct an edge
labelled q−5, where q is the number of edges, given that the edge labels q, q−1, .., q−4
already exist. (The proof in the case n = 5 is slightly shorter, since in that case the label
q − 4 cannot be constructed.) If we applied this proof on an instance-by-instance basis,
then when n = 6, it would be impossible to construct the edge labelled 11 (q=15);
when n = 7, it would be impossible to construct the edge labelled 16 (q = 21); and so
on. However, the proof for each instance would be essentially the same.

The search strategy used with the new model is based on the structure of Golomb’s
proof. This suggests that perhaps a proof that some class of graphs is not graceful from
some point onwards could be constructed from the searches for individual instances that
prove that each instance has no solution. For this to be possible, a first requirement is
that the search is essentially the same for each instance, from some instance onwards
on. And a first indication that the searches are essentially the same is that the number
of backtracks is the same. In this section, this idea is explored, using a class of graphs
that, like the Kn × P2 graphs of the last section, contain multiple copies of a clique.

Gallian [6] summarises what is known about the gracefulness or otherwise of the
class of graph denoted by B(n, r, m), consisting of m copies of Kn with a Kr in com-

mon (n ≥ r). The case r = 1 is the same as the windmill graphs K
(m)
n . For r > 1, the

only graceful graphs in this class listed in Gallian’s survey are: n = 3; r = 2; m ≥ 1;
n = 4; r = 2; m ≥ 1; n = 4; r = 3; m ≥ 1.
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Using the edge-label model, it is easy to add to the list of graceful instances: for
example, the graph B(5, 2, 2) is graceful, with a unique graceful labelling (except for
symmetric equivalents) shown in Figure 4. It can also be shown that B(n, 2, 2) is not
graceful for n = 6, 7, 8, 9, which according to Gallian’s survey was not previously
known. These results by themselves suggest that B(n, 2, 2) is not graceful for n ≥ 6,
and indeed, a result by Bermond and Farhi [2] shows that B(n, 2, 2) is not graceful for
n ≥ 9. Results for the model applied to these instances is shown in Table 2; the model
is exactly as used for Table 1, except that only symmetry-breaking constraints are used
and not SBDS.

It is notable that the number of backtracks is constant for n= 7, 8, 9; this suggests that
the same search tree is being explored for these instances. The number of assignments
made during the search to each edge variable eq−i is also the same in all three searches,
making allowance for the fact that q is different in each case. If it can be shown the
searches are in some sense equivalent for these three instances, and it can be assumed
that they will continue to be equivalent for larger values of n, then a trace of the search
could form the outline of a new proof, based on constraint programming, that these
graphs are not graceful for n ≥ 7.

In ILOG Solver, the user can define trace functions to execute after various events
during the search, for instance when a value is about to be removed from the domain of
a variable, when a value has just been removed from the domain of a variable, or when
a variable has been set. These functions can be used to extract an instance-independent
account of the search from the individual searches for the instances n = 7, 8, 9. The
first step is to output any reference to an edge or node label > q/2 in terms of q rather
than a specific value. For instance, since q = 41, 55, 71 when n = 7, 8, 9, the values 40,
54 and 70 respectively are all output as q − 1.

Most of the constraint propagation events occurring during the search are not relevant
to its eventual failure. To tailor the trace output to try to produce a clear account of the
search, the relevant events were defined.

For this class of graph, there are three symmetrically distinct sets of nodes: those
in the first clique that are not in the common edge; those in the second clique that are
not in the common edge; and the two nodes in the common edge. (Although the two
cliques are indistinguishable in the graph, they are distinguished in the CSP by the
symmetry-breaking constraints.) The three sets of nodes are denoted by Ka

n, Kb
n and

K2 respectively in the trace output.
The only relevant events affecting the node label variable ni are: the node label must

be used (because it is required to form an edge label); it cannot be used (because it
would create a duplicate edge label); it must or must not be assigned to a node in one
of the three sets (denoted for instance as ni ∈ Ka

n in the trace output).
The only events relating to edge labels that are output are those in which the value of

an edge-label variable is set; this is output as ei = (j, j + i). This can happen either as
the result of a search choice, or because two node labels have been assigned to adjacent
nodes and created this edge label, or because all other values have been removed from
the domain of the variable. The last event is the most interesting because it can lead
to further constraint propagation. A value j is removed from the domain of an edge
variable ei either because one or both of the node labels j and j + i cannot be used;
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or because one of the node labels is already assigned to a node in Ka
n or Kb

n and the
other label cannot be assigned to an adjacent node; or because one node label is already
assigned to a node in Ka

n and the other to a node in Kb
n.

As well as using the Solver trace facilities to output details of the relevant constraint
propagation events, a summary of the state of the search is output whenever the variable
ordering heuristic chooses the next variable to assign. The variable assignments made
so far are listed, as well as any node label variables that must be used or cannot be in one
of the sets of nodes. The search follows the Solver default of making binary choices,
either assigning a value to a variable (var = val) or not assigning that value to that
variable (var �= val). On each branch, the relevant choice defining the branch is output.

The trace information is output as Latex; a small example is shown in Table 3. This
fragment was obtained by solving the subproblem created by labelling the nodes in the
common edge 0 and q and insisting that the edge labelled q−2 joins nodes labelled 2 and
q (in the instance n = 7). It takes only three backtracks to prove that the subproblem has
no solution, compared to 124 for the complete problem. The original output has been
further reduced by about half by removing all the output relating to propagation between
successive choice point on the same branch: the summary of the state of the search
when each choice is made presents the same information more clearly. This leaves the
output relating to the constraint propagation on each branch between the last choice
point and the point where the search backtracks. For clarity, a few propagation events
that were not relevant to the failure have also been removed and a brief explanation of
each failure (in italics) is given; these last two changes have obviously required manual
intervention, but have been done in order to explore what would be needed to explain
the failure reasonably comprehensibly.

In the complete search traces for the three instances, the choices made and so the search
tree explored are identical (apart from the value of q). The smallest edge label > q/2
whose value is set during the search is q − 20 and the largest edge label < q/2 is 12; the
smallest edge label set at a choice point isq−9, but smaller edge labels are set by constraint
propagation. The traces do differ very slightly from instance to instance because events
can be added to the propagation queue in a different order.

The trace given in Table 3 does not unfortunately give as clear an explanation of each
failure as would be desirable. One difficulty is that the list of events preceding a failure
does not necessarily appear in a logical order from the point of view of explaining it.
Nevertheless, the information that is output before each failure is sufficient to be able
to understand (with a little effort) why the previous choice, given the state of the search
at that point, led to a failure.

It is worth noting that the proof given by Beutner and Harborth [3] that Kn − e
is graceful only if n ≤ 5 is based on their search procedure but is given in a very
compressed format (which reduces the proof given in section 4 to just five lines). The
proof gives the structure of the search tree, with the choices available at each choice
point. It lists the assignments made to node labels during the search (whether by choice
or as the result of another assignment) and the largest edge label not yet used. It differs
significantly from Table 3 in that when the next largest edge label cannot be constructed,
given the choices already made, it is simply recorded that the search backtracks at that
point, without any further explanation. Although it is possible to reconstruct the reason
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Table 3. Search to demonstrate that there is no labelling of B(n, 2, 2) with the common edge
labelled 0 and q and the edge label q − 2 formed from node labels 2 and q

Edge labels set: e1 = (0, 1); e2 = (0, 2); e3 = (q − 3, q);
eq−3 = (0, q − 3); eq−2 = (2, q); eq−1 = (1, q); eq = (0, q);
Node labels set: n0 ∈ K2; n1 ∈ Ka

n; n2 ∈ Kb
n ; nq ∈ K2;

Node labels partly set: n4 /∈ Kb
n; n5 /∈ Kb

n;
Node labels not used: 3; 4; q − 2; q − 1;
Choose nq−3 ∈ Ka

n

Edge labels set: e1 = (0, 1); e2 = (0, 2); e3 = (q − 3, q);
eq−4 = (1, q − 3); eq−3 = (0, q − 3); eq−2 = (2, q); eq−1 = (1, q); eq = (0, q);
Node labels set: n0 ∈ K2; n1 ∈ Ka

n; n2 ∈ Kb
n ; nq−3 ∈ Ka

n; nq ∈ K2;
Node labels partly set: n5 /∈ Kb

n; nq−6 /∈ Ka
n; nq−5 /∈ Ka

n

Node labels not used: 3; 4; q − 4; q − 2; q − 1;
Choose eq−5 = (0, q − 5)

n5 /∈ Ka
n; n5 is not used

nq−5 must be used; nq−5 ∈ Kb
n

eq−7 = (2, q − 5)
e5 = (q − 5, q)
nq−6 is not used
nq−8 is not used
nq−7 is not used
eq−6 = (6, q)
n7 is not used
n6 /∈ Ka

n

eq−8 = (8, q)
n8 must be used; n8 ∈ Ka

n

n6 must be used; n6 ∈ Kb
n

eq−9 = (0, q − 9)
nq−9 must be used
e6 = (0, 6)
e4 = (2, 6)
fail: nq−9 ∈ Ka

n gives a 2nd edge labelled 6 from (q − 9, q − 3)
nq−9 ∈ Kb

n gives a 2nd edge labelled 4 from (q − 9, q − 5) �
Choose eq−5 
= (0, q − 5)

eq−5 = (5, q)
n5 must be used; n5 ∈ Ka

n

nq−5 is not used
e4 = (1, 5)
n6 is not used
nq−6 is not used
eq−6 = (0, q − 6)
fail: q − 6 is not used �

Choose nq−3 /∈ Ka
n

nq−3 ∈ Kb
n

eq−5 = (2, q − 3)
nq−4 must be used; nq−4 ∈ Ka

n

fail: (q − 4, 1) gives a 2nd edge labelled q − 5 �
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for the failure from the previous choices, it requires significant work. Their proof, based
on a search with 13 backtracks, occupies just 27 lines. Using the same format, Table 3
would occupy about six lines, and most of the trace information would be lost.

Bundy [4] discusses the acceptability (or rather the unacceptability) of large
computer-generated proofs in mathematics. A proof that B(n, 2, 2) is not graceful for
n > 7 based on a search which requires 124 backtracks and in the style of Table 3
would occupy about 50 pages. However, cutting out explanatory detail does not seem
to be an adequate answer. Bundy suggests breaking a long automated proof into small
lemmas, where possible. In this case, we could think of each failure during the search
as requiring a lemma that the choices made along this branch of the search tree cannot
lead to a graceful labelling. Hence, Table 3 could be rewritten as three lemmas, one for
each failure, embedded within a structure reflecting the search tree.

8 Larger Classes

The edge-label model has been used to investigate other graphs in the general B(n, r, m)
class. The graph B(4, 3, 2), i.e. two copies of K4 with a common triangle, was already
known to be graceful; the result in [2] shows that B(n, 3, m) is not graceful for n ≥
11 if m ≥ 2. With the edge-label model, it can be shown that B(n, 3, 2) is also not
graceful for n = 6, 7, 8, 9, 10. The search to prove this for the last three instances takes
143 backtracks in each case, suggesting that, as before, these searches are essentially
identical. B(4, 3, 3) was already known to be graceful. B(5, 3, 3) is also graceful, with
5 possible distinct labellings, of which one is shown in Figure 5; this is a new result.
For larger values of n, B(n, 3, 3) is not graceful for n = 6 and 7. The search effort
to prove that an instance has no graceful labelling is still increasing rapidly with n at
these problem sizes: for n = 7, the search takes 5,944 backtracks. One might expect
that the search effort may exhibit similar behaviour to that shown in Table 2, i.e. that
at some point the search effort reaches a plateau and appears not to increase further.

0

4 24

11

21

9

16 22

23

Fig. 5. The graph B(5, 3, 3) with one of its graceful labellings
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However, even if an acceptable proof can be based on a search which requires 100 or
so backtracks, it seems doubtful that this can be done for a search requiring thousands.

9 Conclusions

A CSP model for finding a graceful labelling of a graph or proving that it is not grace-
ful has been presented, based on constructing the edge labels in descending order. This
model is far more efficient than the previous model based on assigning a label to each
node. This demonstrates again the importance of having a good model of the problem
to be solved, and also that what seems a natural CSP model may not prove to be a good
model. The new model in this case was developed not by reformulating the existing
model, but by adopting an approach from the graph theory literature [8]; non-CP ap-
proaches to solving a problem may be a good source of modelling ideas in other cases.

The search strategy used with the edge-label model has already been used by Beutner
and Harborth [3] in a special-purpose algorithm for finding graceful labellings. The
main advantage of using this strategy in a constraint programming framework is the
constraint propagation it provides; in [3], checking that a new node label does not create
duplicate edge labels is only done after the node label is assigned, whereas in solving
the CSP, it can be determined in advance that the node label is not consistent with the
assignments already made. Furthermore, a trace of the constraint propagation provides
reasons for a branch of the search to fail and thus can be used to explain the search; as
discussed in section 3 it may be possible in some cases to use trace information as the
basis for a proof that a class of graphs is ungraceful.

The edge-label model has so far been applied to classes of graph which contain mul-
tiple copies of the clique Kn. Some new results have been obtained; graceful labellings
have been found for B(5, 2, 2) and B(5, 3, 3), which were not previously known to be
graceful, and it has been shown for the first time that several instances of the same
classes are not graceful.

Future work will consider further how to construct a proof, that the graphs B(n, 2, 2)
and similar graphs are not graceful beyond a certain size, from the searches to prove that
CSP instances have no solution. Although Bermond and Farhi [2] already dealt with
the class B(n, r, m), there are related graphs, such as those consisting of two unequal-
sized cliques with a common edge, that are not covered by their result, but that could
be amenable to a search-based proof. Currently, we are investigating a single CSP that
is a relaxation of every CSP instance representing the graceful labelling of B(n, 2, 2)
with n ≥ 7, and also covers the case where the cliques are not the same size. If the
relaxation has no solution, then none of the instances has a solution either. This work
will be described in a later paper.

The conjecture that graphs Kn × P2 are not graceful for n > 5 seems harder to
prove. A key point in presenting the search trace given in Table 3 is that in B(n, r, m)
graphs, the nodes fall into three sets. The nodes within each set are indistinguishable,
and this limits the number of different search events affecting each node label that need
be considered. In Kn×P2 graphs, although all the nodes are initially indistinguishable,
they become distinct as nodes are labelled and other nodes have different relationships
to the labelled nodes; hence the number of different cases to consider is far greater.
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Nevertheless, the fact that the search tree appears not to increase in size for n ≥ 9
suggests that in theory a proof might be constructed from the search.

Other classes of graph constructed from multiple copies of cliques will also be con-
sidered; from the evidence reported in this paper, it seems likely that these will also be
graceful only for small instances. Further elucidation of this type of graph would be a
useful contribution to the study of graceful graphs.
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Abstract. The max k-armed bandit problem is a recently-introduced on-
line optimization problem with practical applications to heuristic search.
Given a set of k slot machines, each yielding payoff from a fixed (but un-
known) distribution, we wish to allocate trials to the machines so as to
maximize the maximum payoff received over a series of n trials. Previ-
ous work on the max k-armed bandit problem has assumed that payoffs
are drawn from generalized extreme value (GEV) distributions. In this pa-
per we present a simple algorithm, based on an algorithm for the classi-
cal k-armed bandit problem, that solves the max k-armed bandit problem
effectively without making strong distributional assumptions. We demon-
strate the effectiveness of our approach by applying it to the task of select-
ing among priority dispatching rules for the resource-constrained project
scheduling problem with maximal time lags (RCPSP/max).

1 Introduction

In the classical k-armed bandit problem one is faced with a set of k slot machines,
each having an arm that, when pulled, yields a payoff drawn independently at
random from a fixed (but unknown) distribution. The goal is to allocate trials to
the arms so as to maximize the cumulative payoff received over a series of n trials.
Solving the problem entails striking a balance between exploration (determining
which arm yields the highest mean payoff) and exploitation (repeatedly pulling
this arm).

In the max k-armed bandit problem, the goal is to maximize the maximum
(rather than cumulative) payoff. This version of the problem arises in practice
when tackling combinatorial optimization problems for which a number of ran-
domized search heuristics exist: given k heuristics, each yielding a stochastic
outcome when applied to some particular problem instance, we wish to allocate
trials to the heuristics so as to maximize the maximum payoff (e.g., the maximum
number of clauses satisfied by any sampled variable assignment, the minimum
makespan of any sampled schedule). Cicirello and Smith (2005) show that a max
k-armed bandit approach yields good performance on the resource-constrained
project scheduling problem with maximum time lags (RCPSP/max).
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1.1 Motivations

When solving the classical k-armed bandit problem, one can provide meaningful
performance guarantees subject only to the assumption that payoffs are drawn
from a bounded interval, for example [0, 1]. In the max k-armed bandit problem
stronger distributional assumptions are necessary, as illustrated by the following
example.

Example 1. There are two arms. One returns payoff 1
2 with probability 0.999,

and payoff 1 with probability 0.001; the other returns payoff 1
2 with probabil-

ity 0.995 and payoff 1 with probability 0.005. It is not known which arm is which.

Given a budget of n pulls of the two arms described in Example 1, a variety of
techniques are available for (approximately) maximizing the cumulative payoff
received. However, any attempt to maximize the maximum payoff received over
n trials is hopeless. No information is gained about any of the arms until a payoff
of 1 is obtained, at which point the maximum payoff cannot be improved.

Previous work on the max k-armed bandit problem has assumed that pay-
offs are drawn from generalized extreme value (GEV) distributions. A random
variable Z has a GEV distribution if

P[Z ≤ z] = exp

(
−
(

1 +
ξ(z − μ)

σ

)− 1
ξ

)

for some constants μ, σ > 0, and ξ.
The assumption that payoffs are drawn from a GEV is justified by the Ex-

tremal Types Theorem [6], which singles out the GEV as the limiting distribution
of the maximum of a large number of independent identically distributed (i.i.d.)
random variables. Roughly speaking, one can think of the Extremal Types The-
orem as an analogue of the Central Limit Theorem. Just as the Central Limit
Theorem states that the sum of a large number of i.i.d. random variables con-
verges in distribution to a Gaussian, the Extremal Types Theorem states that
the maximum of a large number of i.i.d. random variables converges in distribu-
tion to a GEV. Despite this asymptotic guarantee, we will see in §4 that the GEV
is often not even an approximately accurate model of the payoff distributions
encountered in practice.

In this work, we do not assume that the payoff distributions belong to any
specific parametric family. In fact, we will not make any formal assumptions at all
about the payoff distributions, although (as shown in Example 1) our approach
cannot be expected to work well if the distributions are chosen adversarially.
Roughly speaking, our approach will work best when the following two criteria
are satisfied.

1. There is a (relatively low) threshold tcritical such that, for all t > tcritical,
the arm that is most likely to yield a payoff > t is the same as the arm most
likely to yield a payoff > tcritical. Call this arm i∗.
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2. As t increases beyond tcritical, there is a growing gap between the probability
that arm i∗ yields a payoff > t and the corresponding probability for other
arms. Specifically, if we let pi(t) denote the probability that the ith arm
returns a payoff > t, the ratio pi∗ (t)

pi(t)
should increase as a function of t for

t > tcritical, for any i �= i∗.

Figure 1 illustrates a set of two payoff distributions that satisfy these
assumptions.
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Fig. 1. A max k-armed bandit instance on which Threshold Ascent should perform well

1.2 Contributions

The primary contributions of this paper are as follows.

1. We present a new algorithm, Chernoff Interval Estimation, for the classical
k-armed bandit problem and prove a bound on its regret. Our algorithm is
extremely simple and has performance guarantees competitive with the state
of the art.

2. Building onChernoff IntervalEstimation,wedevelop anewalgorithm,Thresh-
old Ascent, for solving the max k-armed bandit problem. Our algorithm is de-
signed toworkwell as long as the twomilddistributional assumptionsdescribed
in §1.1 are satisfied.

3. We evaluate Threshold Ascent experimentally by using it to select among
randomized priority dispatching rules for the RCPSP/max. We find that
Threshold Ascent (a) performs better than any of the priority rules perform
in isolation, and (b) outperforms the recent QD-BEACON max k-armed
bandit algorithm of Cicirello and Smith [4,5].

1.3 Related Work

The classical k-armed bandit problem was first studied by Robbins [11] and
has since been the subject of numerous papers; see Berry and Fristedt [3] and
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Kaelbling [7] for overviews. We give a more detailed discussion of related work
on the classical k-armed bandit problem as part of our discussion of Chernoff
Interval Estimation in §2.2

The max k-armed bandit problem was introduced by Cicirello and Smith
[4,5], whose experiments with randomized priority dispatching rules for the
RCPSP/max form the basis of our experimental evaluation in §4. Cicirello and
Smith show that their max k-armed bandit problem yields performance on the
RCPSP/max that is competitive with the state of the art. The design of Ci-
cirello and Smith’s heuristic is motivated by an analysis of the special case in
which each arm’s payoff distribution is a GEV distribution with shape param-
eter ξ = 0. Streeter and Smith [13] provide a theoretical treatment of the max
k-armed bandit problem under the assumption that each payoff distribution is
a GEV.

2 Chernoff Interval Estimation

In this section we present and analyze a simple algorithm, Chernoff Interval
Estimation, for the classical k-armed bandit problem. In §3 we use this approach
as the basis for Threshold Ascent, an algorithm for the max k-armed bandit
problem.

In the classical k-armed bandit problem one is faced with a set of k arms. The
ith arm, when pulled, returns a payoff drawn independently at random from a
fixed (but unknown) distribution. All payoffs are real numbers between 0 and 1.
We denote by μi the expected payoff obtained from a single pull of arm i, and
define μ∗ = max1≤i≤k μi. We consider the finite-time version of the problem, in
which our goal is to maximize the cumulative payoff received using a fixed budget
of n pulls. The regret of an algorithm (on a particular instance of the classical
k-armed bandit problem) is the difference between the cumulative payoff the
algorithm would have received by pulling the single best arm n times and the
cumulative payoff the algorithm actually received.

Procedure ChernoffIntervalEstimation(n, δ):
1. Initialize xi ← 0, ni ← 0 ∀i ∈ {1, 2, . . . , k}.
2. Repeat n times:

(a) î← argmaxi U(μ̄i, ni), where μ̄i = xi

ni
and

U(μ, n) =

{
μ + α+

√
2nμα+α2

n if n > 0
∞ otherwise

where α = ln
(

2nk
δ

)
.

(b) Pull arm î, receive payoff R, set xî ← xî + R, and set
ni ← ni + 1.

Chernoff Interval Estimation is simply the well-known interval estimation
algorithm [7,8] with confidence intervals derived using Chernoff’s inequality.
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Although various interval estimation algorithms have been analyzed in the litera-
ture and a variety of guarantees have been proved, both (a) our use of Chernoff’s
inequality in an interval estimation algorithm and (b) our analysis appear to be
novel. In particular, when the mean payoff returned by each arm is small (relative
to the maximum possible payoff) our algorithm has much better performance
than the recent algorithm of [1], which is identical to our algorithm except that
confidence intervals are derived using Hoeffding’s inequality. We give further dis-
cussion of related work in §2.2.

2.1 Analysis

In this section we put a bound on the expected regret of Chernoff Interval Es-
timation. Our analysis proceeds as follows. Lemma 1 shows that (with a cer-
tain minimum probability) the value U(μ̄i, ni) is always an upper bound on μi.
Lemma 2 then places a bound on the number of times the algorithm will sample
an arm whose mean payoff is suboptimal. Theorem 1 puts these results together
to obtain a bound on the algorithm’s expected regret.

We will make use of the following inequality.

Chernoff’s inequality. Let X =
∑n

i=1 Xi be the sum of n independent iden-
tically distributed random variables with Xi ∈ [0, 1] and μ = E[Xi]. Then for
β > 0,

P

[
X

n
< (1 − β)μ

]
< exp

(
−nμβ2

2

)
and

P

[
X

n
> (1 + β)μ

]
< exp

(
−nμβ2

3

)
.

We will also use the following easily-verified algebraic fact.

Fact 1. If U = U(μ, n) then

Un
(
1− μ

U

)2

= 2α .

Lemma 1. During a run of ChernoffIntervalEstimation(n, δ) it holds with prob-
ability at least 1 − δ

2 that for all arms i ∈ {1, 2, . . . , k} and for all n repetitions
of the loop, U(μ̄i, ni) ≥ μi.

Proof. It suffices to show that for any arm i and any particular repetition of the
loop, P[U(μ̄i, ni) < μi] < δ

2nk . Consider some particular fixed values of μi, α,
and ni, and let μc be the largest solution to the equation

U(μc, ni) = μi (1)
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By inspection, U(μc, ni) is strictly increasing as a function of μc. Thus U(μ̄i, ni)<
μi if and only if μ̄i < μc, so P[U(μ̄i, ni) < μi] = P[μ̄i < μc]. Thus

P [U(μ̄i, ni) < μi] = P [μ̄i < μc]

= P

[
μ̄i < μi

(
1−

(
1− μc

μi

))]
< exp

(
−μini

2

(
1− μc

μi

)2
)

= exp (−α)

=
δ

2nk

where on the third line we have used Chernoff’s inequality, and on the fourth
line we have used Fact 1 in conjunction with (1). ��

Lemma 2. During a run of ChernoffIntervalEstimation(n, δ) it holds with prob-
ability at least 1 − δ that each suboptimal arm i (i.e., each arm i with μi < μ∗)
is pulled at most 3α

μ∗
1

(1−√yi)2
times, where yi = μi

μ∗ .

Proof. Let i∗ be some optimal arm (i.e., μi∗ = μ∗) and assume that U(μ̄i∗ , ni∗) ≥
μ∗ for all n repetitions of the loop. By Lemma 1, this assumption is valid with
probability at least 1 − δ

2 . Consider some particular suboptimal arm i. By in-
spection, we will stop sampling arm i once U(μ̄i, ni) < μ∗. So it suffices to show
that if ni ≥ 3α

μ∗
1

(1−√yi)2
, then U(μ̄i, ni) < μ∗ with probability at least 1 − δ

2k

(then the probability that any of our assumptions fail is at most δ
2 + k δ

2k = δ).
To show this we will prove two claims.

Claim. If ni ≥ 3α
μ∗

1
(1−√yi)2

, then with probability at least 1− δ
2k , μ̄i <

√
y−1

i μi.

Proof (of Claim 1).

P

[
μ̄i >

√
y−1

i μi

]
= P

[
μ̄i >

(
1 +

1−√yi√
yi

)
μi

]
< exp

(
−niμi

3
(1−√yi)2

yi

)
= exp

(
−niμ

∗

3
(1 −√yi)2

)
< exp (−α)

=
δ

2nk
<

δ

2k
.

��

Claim. If ni ≥ 3α
μ∗

1
(1−√yi)2

and μ̄i <
√
y−1

i μi, then U(μ̄i, ni) < μ∗.
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Proof (of Claim 2). Let Ui = U(μ̄i, ni), and suppose for contradiction that
Ui ≥ μ∗. Then by Fact 1,

ni =
2α
Ui

(
1− μ̄i

Ui

)−2

.

The right hand side increases as a function of μ̄i (assuming μ̄i < Ui, which is true

by definition). So if μ̄i <
√
y−1

i μi then replacing μ̄i with
√
y−1

i μi only increases
the value of the right hand side. Similarly, the right hand side decreases as a
function of Ui, so if Ui ≥ μ∗ then replacing replacing Ui with μ∗ only increases
the value of the right hand side. Thus

ni <
2α
μ∗

⎛⎝1−

√
y−1

i μi

μ∗

⎞⎠−2

=
2α
μ∗

(1−√yi)
−2

which is a contradiction. ��

Putting Claims 1 and 2 together, once ni ≥ 3α
μ∗

1
(1−√yi)2

it holds with probability

at least 1− δ
2k that U(μ̄i, ni) < μ∗, so arm i will no longer be pulled. ��

The following theorem shows that when n is large (and the parameter δ is small),
the total payoff obtained by Chernoff Interval Estimation over n trials is almost
as high as what would be obtained by pulling the single best arm for all n trials.

Theorem 1. The expected regret incurred by ChernoffIntervalEstimation(n, δ)
is at most

(1− δ)2
√

3μ∗n(k − 1)α + δμ∗n

where α = ln
(

2nk
δ

)
.

Proof. We confine our attention to the special case k = 2. The proof for general
k is similar.

First, note that the conclusion of Lemma 2 fails to hold with probability at
most δ. Because expected regret cannot exceed μ∗n, this scenario contributes at
most δμ∗n to overall expected regret. Thus it remains to show that, conditioned
on the event that the conclusion of Lemma 2 holds, expected regret is at most
2
√

3μ∗n(k − 1)α.
Assume μ∗ = μ1 > μ2 and let y = μ2

μ∗ . By Lemma 2, we sample arm 2 at
most min{n, 3α

μ∗
1

(1−√y)2 } times. Each sample of arm 2 incurs expected regret
μ∗ − μ2 = μ∗(1− y). Thus expected total regret is at most

μ∗(1− y)min
{
n,

3α
μ∗

1
(1−√y)2

}
. (2)
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Using the fact that y < 1,

1− y

(1−√y)2
=

1− y

(1 −√y)2
·
(1 +

√
y)2

(1 +
√
y)2

=
(1 +

√
y)2

1− y

<
4

1− y
.

Plugging this value into (2), the expected total regret is at most

min
{
μ∗Δn,

12α
Δ

}
where Δ = 1 − y. Setting these two expressions equal gives Δ̄ = 2

√
3α

nμ∗ as the
value of Δ that maximizes expected regret. Thus the expected regret is at most
μ∗Δ̄n = 2

√
3μ∗nα = 2

√
3μ∗n(k − 1)α.

��

2.2 Discussion and Related Work

Types of Regret Bounds. In comparing the regret bound of Theorem 1 to
previous work, we must distinguish between two different types of regret bounds.
The first type of bound describes the asymptotic behavior of regret (as n→∞)
on a fixed problem instance (i.e., with all k payoff distributions held constant).
In this framework, a lower bound of Ω(ln(n)) has been proved, and algorithms
exist that achieve regret O(ln(n)) [1]. Though we do not prove it here, Chernoff
Interval Estimation achieves O(ln(n)) regret in this framework when δ is set
appropriately.

The second type of bound concerns the maximum, over all possible instances,
of the expected regret incurred by the algorithm when run on that instance for
n pulls. In this setting, a lower bound of Ω(

√
kn) has been proved [2]. It is this

second form of bound that Theorem 1 provides. In what follows, we will only
consider bounds of this second form.

The Classical k-Armed Bandit Problem. We are not aware of any work
on the classical k-armed bandit problem that offers a better regret bound (of
the second form) than the one proved in Theorem 1. Auer et al. [1] analyze an
algorithm that is identical to ours except that the confidence intervals are de-
rived from Hoeffding’s inequality rather than Chernoff’s inequality. An analysis
analogous to the one in this paper shows that their algorithm has worst-case
regret O(

√
nk ln(n)) when the instance is chosen adversarially as a function of

n. Plugging δ = 1
n2 into Theorem 1 gives a bound of O(

√
nμ∗k ln(n)), which

is never any worse than the latter bound (because μ∗ ≤ 1) and is much better
when μ∗ is small.
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The Nonstochastic Multiarmed Bandit Problem. In a different paper,
Auer et al. [2] consider a variant of the classical k-armed bandit problem in
which the sequence of payoffs returned by each arm is determined adversarially
in advance. For this more difficult problem, they present an algorithm called
Exp3.1 with expected regret

8
√

(e− 1)Gmaxk ln(k) + 8(e− 1)k + 2k ln(k)

where Gmax is the maximum, over all k arms, of the total payoff that would be
obtained by pulling that arm for all n trials. If we plug in Gmax = μ∗n, this
bound is sometimes better than the one given by Theorem 1 and sometimes not,
depending on the values of n, k, and μ∗, as well as the choice of the parameter δ.

3 Threshold Ascent

To solve the max k-armed bandit problem, we use Chernoff Interval Estimation
to maximize the number of payoffs that exceed a threshold T that varies over
time. Initially, we set T to zero. Whenever s or more payoffs > T have been re-
ceived so far, we increment T . We refer to the resulting algorithm as Threshold
Ascent. The code for Threshold Ascent is given below. For simplicity, we assume
that all payoffs are integer multiples of some known constant Δ.

Procedure ThresholdAscent(s, n, δ):
1. Initialize T ← 0 and nR

i = 0, ∀i ∈ {1, 2, . . . , k}, R ∈
{0, Δ, 2Δ, . . . , 1−Δ, 1}.

2. Repeat n times:
(a) While

∑k
i=1 Si(T ) ≥ s do:

T ← T + Δ

where Si(t) =
∑

R>t n
R
i is the number of payoffs > t

received so far from arm i.
(b) î ← argmaxi U

(
Si(T )

ni
, ni

)
, where ni =

∑
R nR

i is the
number of times arm i has been pulled and

U(μ, n) =

{
μ + α+

√
2nμα+α2

n if n > 0
∞ otherwise

where α = ln
(

2nk
δ

)
.

(c) Pull arm î, receive payoff R, and set nR
i ← nR

i + 1.

The parameter s controls the tradeoff between exploration and exploitation.
To understand this tradeoff, it is helpful to consider two extreme cases.
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Case s = 1. ThresholdAscent(1, n, δ) is equivalent to round-robin sampling.
When s = 1, the threshold T is incremented whenever a payoff > T is ob-
tained. Thus the value Si(T )

ni
calculated in 2 (b) is always 0, so the value of

U
(

Si(T )
ni

, ni

)
is determined strictly by ni. Because U is a decreasing function of

ni, the algorithm simply samples whatever arm has been sampled the smallest
number of times so far.

Case s = ∞. ThresholdAscent(∞, n, δ) is equivalent to ChernoffIntervalEstima-
tion (n, δ) running on a k-armed bandit instance where payoffs > T are mapped
to 1 and payoffs ≤ T are mapped to 0.

4 Evaluation on the RCPSP/max

Following Cicirello and Smith [4,5], we evaluate our algorithm for the max k-armed
bandit problem by using it to select among randomized priority dispatching rules
for the resource-constrained project scheduling problem with maximal time lags
(RCPSP/max). Cicirello and Smith’s work showed that a max k-armed bandit
approach yields good performance on benchmark instances of this problem.

Briefly, in the RCPSP/max one must assign start times to each of a number
of activities in such a way that certain temporal and resource constraints are
satisfied. Such an assignment of start times is called a feasible schedule. The
goal is to find a feasible schedule whose makespan is as small as possible, where
makespan is defined as the maximum completion time of any activity.

Even without maximal time lags (which make the problem more difficult), the
RCPSP is NP-hard and is “one of the most intractable problems in operations
research” [9]. When maximal time lags are included, the feasibility problem (i.e.,
deciding whether a feasible schedule exists) is also NP-hard.

4.1 The RCPSP/max

Formally, an instance of the RCPSP/max is a tuple I = (A, R, T ), where A is a
set of activities, R is a vector of resource capacities, and T is a list of temporal
constraints. Each activity ai ∈ A has a processing time pi, and a resource demand
ri,k for each k ∈ {1, 2, . . . , |R|}. Each temporal constraint T ∈ T is a triple
T = (i, j, δ), where i and j are activity indices and δ is an integer. The constraint
T = (i, j, δ) indicates that activity aj cannot start until δ time units after activity
ai has started.

A schedule S assigns a start time S(a) to each activity a ∈ A. S is feasible if

S(aj)− S(ai) ≥ δ ∀(i, j, δ) ∈ T

(i.e., all temporal constraints are satisfied), and∑
ai∈A(S,t)

ri,k ≤ Rk ∀ t ≥ 0, k ∈ {1, 2, . . . , |R|}



570 M.J. Streeter and S.F. Smith

where A(S, t) = {ai ∈ A | S(ai) ≤ t < S(ai) + pi} the set of activities that are
in progress at time t. The latter equation ensures that no resource capacity is
ever exceeded.

4.2 Randomized Priority Dispatching Rules

A priority dispatching rule for the RCPSP/max is a procedure that assigns
start times to activities one at a time, in a greedy fashion. The order in which
start times are assigned is determined by a rule that assigns priorities to each
activity. As noted above, it is NP-hard to generate a feasible schedule for the
RCPSP/max. Priority dispatching rules are therefore augmented to perform a
limited amount of backtracking in order to increase the odds of producing a
feasible schedule. For more details, see [10].

Cicirello and Smith describe experiments with randomized priority dispatch-
ing rules, in which the next activity to schedule is chosen from a probability
distribution, with the probability assigned to an activity being proportional to
its priority. Cicirello and Smith consider the five randomized priority dispatching
rules in the set H = {LPF,LST,MST,MTS,RSM}. See Cicirello and Smith
[4,5] for a complete description of these heuristics. We use the same five heuris-
tics as Cicirello and Smith, with two modifications: (1) we added a form of
intelligent backtracking to the procedure of [10] in order to increase the odds of
generating a feasible schedule and (2) we modified the RSM heuristic to improve
its performance.

4.3 Instances

We evaluate our approach on a set I of 169 RCPSP/max instances from the
ProGen/max library [12]. These instances were selected as follows. We first ran
the heuristic LPF (the heuristic identified by Cicirello and Smith as having the
best performance) 10,000 times on all 540 instances from the TESTSETC data set.
For many of these instances, LPF found a (provably) optimal schedule on a large
proportion of the runs. We considered any instance in which the best makespan
found by LPF was found with frequency > 0.01 to be “easy” and discarded
it from the data set. What remained was a set I of 169 “hard” RCPSP/max
instances.

For each RCPSP/max instance I ∈ I, we ran each heuristic h ∈ H 10,000
times, storing the results in a file. Using this data, we created a set K of 169
five-armed bandit problems (each of the five heuristics h ∈ H represents an
arm). After the data were collected, makespans were converted to payoffs by
multiplying each makespan by −1 and scaling them to lie in the interval [0, 1].

4.4 Payoff Distributions in the RCPSP/max

To motivate the use of a distribution-free approach to the max k-armed bandit
problem, we examine the payoff distributions generated by randomized priority
dispatching rules for the RCPSP/max. For a number of instances I ∈ I, we



A Simple Distribution-Free Approach to the Max k-Armed Bandit Problem 571

plotted the payoff distribution functions for each heuristic h ∈ H. For each
distribution, we fitted a GEV to the empirical data using maximum likelihood
estimation of the parameters μ, σ, and ξ, as recommended by Coles [6].

Our experience was that the GEV sometimes provides a good fit to the em-
pirical cumulative distribution function but sometimes provides a very poor fit.
Figure 2 shows the empirical distribution and the GEV fit to the payoff distri-
bution of LPF on instances PSP129 and PSP121. For the instance PSP129, the
GEV accurately models the entire distribution, including the right tail. For the
instance PSP121, however, the GEV fit severely overestimates the probability
mass in the right tail. Indeed, the distribution in Figure 2 (B) is so erratic that
no parametric family of distributions can be expected to be a good model of its
behavior. In such cases a distribution-free approach is preferable.

(A) Instance PSP129
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(B) Instance PSP121
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Fig. 2. Empirical cumulative distribution function of the LPF heuristic for two
RCPSP/max instances. (A) depicts an instance for which the GEV provides a good
fit; (B) depicts an instance for which the GEV provides a poor fit.

4.5 An Illustrative Run

Before presenting our results, we illustrate the typical behavior of Threshold
Ascent by showing how it performs on the instance PSP124. For this and all
subsequent experiments, we run Threshold Ascent with parameters n = 10, 000,
s = 100, and δ = 0.01.

Figure 3 (A) depicts the payoff distributions for each of the five arms. As can
be seen, LPF has the best performance on PSP124. MST has zero probability
of generating a payoff > 0.8, while LST and RMS have zero probability of
generating a payoff > 0.9. MTS gives competitive performance up to a payoff
of t ≈ 0.9, after which point the probability of obtaining a payoff > t suddenly
drops to zero.

Figure 3 (B) shows the number of pulls allocated by Threshold Ascent to
each of the five arms as a function of the number of pulls performed so far. As
can be seen, Threshold Ascent is a somewhat conservative strategy, allocating a
fair number of pulls to heuristics that might seem “obviously” suboptimal to a
human observer. Nevertheless, Threshold Ascent spends the majority of its time
sampling the single best heuristic (LPF ).
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(A) Payoff Distributions
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(B) Behavior of Threshold Ascent
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Fig. 3. Behavior of Threshold Ascent on instance PSP124. (A) shows the payoff distri-
butions; (B) shows the number of pulls allocated to each arm.

4.6 Results

For each instance K ∈ K, we ran three max k-armed bandit algorithms, each
with a budget of n = 10, 000 pulls: Threshold Ascent with parameters n =
10, 000, s = 100, and δ = 0.01, the QD-BEACON algorithm of Cicirello and
Smith [5], and an algorithm that simply sampled the arms in a round-robin
fashion. Cicirello and Smith describe three versions of QD-BEACON; we use
the one based on the GEV distribution. For each instance K ∈ K, we define
the regret of an algorithm as the difference between the minimum makespan
(which corresponds to the maximum payoff) sampled by the algorithm and the
minimum makespan sampled by any of the five heuristics (on any of the 10, 000
stored runs of each of the five heuristics). For each of the three algorithms,
we also recorded the number of instances for which the algorithm generated a
feasible schedule. Table 1 summarizes the performance of these three algorithms,
as well as the performance of each of the five heuristics in isolation.

Table 1. Performance of eight heuristics on 169 RCPSP/max instances

Heuristic Σ Regret P[Regret = 0] Num. Feasible

Threshold Ascent 188 0.722 166
Round-robin sampling 345 0.556 166
LPF 355 0.675 164
MTS 402 0.657 166
QD-BEACON 609 0.538 165
RSM 2130 0.166 155
LST 3199 0.095 164
MST 4509 0.107 164

Of the eight max k-armed bandit strategies we evaluated (Threshold Ascent,
QD-BEACON, round-robin sampling, and the five pure strategies), Threshold
Ascent has the least regret and achieves zero regret on the largest number of
instances. Additionally, Threshold Ascent generated a feasible schedule for the
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166 (out of 169) instances for which any of the five heuristics was able to generate
a feasible schedule (for three instances, none of the five randomized priority rules
generated a feasible schedule after 10,000 runs).

4.7 Discussion

Two of the findings summarized in Table 1 may seem counterintuitive: the fact
that round-robin performs better than any single heuristic, and the fact that
QD-BEACON performs worse than round-robin. We now examine each of these
findings in more detail.

Why Round-Robin Sampling Performs Well. In the classical k-armed ban-
dit problem, round-robin sampling can never outperform the best pure strategy
(where a pure strategy is one that samples the same arm the entire time), either
on a single instance or across multiple instances. In the max k-armed bandit
problem, however, the situation is different, as the following example illustrates.

Example 2. Suppose we have 2 heuristics, and we run them each for n trials
on a set of I instances. On half the instances, heuristic A returns payoff 0 with
probability 0.9 and returns payoff 1 with probability 0.1, while heuristic B re-
turns payoff 0 with probability 1. On the other half of the instances, the roles of
heuristics A and B are reversed.

If n is large, round-robin sampling will yield total regret ≈ 0, while either of
the two heuristics will have regret ≈ 1

2I. By allocating pulls equally to each
arm, round-robin sampling is guaranteed to sample the best heuristic at least n

k
times, and if n is large this number of samples may be enough to exploit the tail
behavior of the best heuristic.

Understanding QD-BEACON. QD-BEACON is designed to converge to a
single arm at a doubly-exponential rate. That is, the number of pulls allocated
to the (presumed) optimal arm increases doubly-exponentially relative to the
number of pulls allocated to presumed suboptimal arms. In our experience, QD-
BEACON usually converges to a single arm after at most 10-20 pulls from each
arm. This rapid convergence can lead to large regret if the presumed best arm
is actually suboptimal.

5 Conclusions

We presented an algorithm, Chernoff Interval Estimation, for solving the classical
k-armed bandit problem, and proved that it has good performance guarantees
when the mean payoff returned by each arm is small relative to the maximum
possible payoff. Building on Chernoff Interval Estimation we presented an algo-
rithm, Threshold Ascent, that solves the max k-armed bandit problem without
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making strong assumptions about the payoff distributions. We demonstrated the
effectiveness of Threshold Ascent on the problem of selecting among randomized
priority dispatching rules for the RCPSP/max.
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Abstract. Ideally, programming propagators as implementations of constraints
should be an entirely declarative specification process for a large class of con-
straints: a high-level declarative specification is automatically translated into an
efficient propagator. This paper introduces the use of existential monadic second-
order logic as declarative specification language for finite set propagators. The
approach taken in the paper is to automatically derive projection propagators (in-
volving a single variable only) implementing constraints described by formulas.
By this, the paper transfers the ideas of indexicals to finite set constraints while
considerably increasing the level of abstraction available with indexicals. The pa-
per proves soundness and completeness of the derived propagators and presents
a run-time analysis, including techniques for efficiently executing projectors for
n-ary constraints.

1 Introduction

Implementing constraints as propagators is an essential yet challenging task in devel-
oping and extending constraint programming systems. It is essential as the system’s
propagators define its efficiency, correctness, maintainability, and usability. It is chal-
lenging as most systems can only be programmed at a painfully low level of abstraction,
requiring the use of languages such as C++, Java, or Prolog as well as intimate knowl-
edge of complex programming interfaces. Some approaches that address this problem
are indexicals (discussed below), high-level descriptions for the range and roots con-
straint [5], and deriving filtering algorithms from constraint checkers [3].

For finite domain constraints, indexicals have been introduced as a high-level pro-
gramming language for projectors, a restricted form of propagators that only allow
projections for a single variable [13,6,8]. While indexicals simplify programming prop-
agators considerably, they have shortcomings with respect to level of abstraction and
expressiveness. Indexicals still can not be automatically obtained from purely declara-
tive specifications: multiple implementations for the same constraint are required, such
as for different levels of consistency and entailment checking. Indexicals are only ex-
pressive enough for binary or ternary constraints. For n-ary constraints the very idea
to decompose the propagator into projectors sacrifices efficiency. For example, decom-
posing a linear equation constraint involving n variables into n projectors increases the
run-time from O(n) to O(n2).
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Worse still, for more involved constraint domains such as finite sets the burden on
the programmer increases. Here programmers do not only need to reason on a by-value-
base but on a by-set-base (typically involving sets for lower and upper bounds). This
additional complexity has been addressed by recent work of Ågren, Flener, and Pear-
son [2] in the context of constraint-based local search with finite set variables. The au-
thors use formulas from an existential monadic second-order logic (∃MSO) to give de-
scriptions of penalty functions to guide local search. While using ∃MSO as a high-level
language, formulas are treated in a purely syntactic fashion: different penalty functions
are obtained from syntactically different yet logically equivalent formulas.

Main contribution. This paper presents an exercise in applied software engineering.
We provide a high-level, abstract specification language for finite set constraints, and
an automatic translation into an efficient implementation.

The paper introduces the use of ∃MSO as a purely declarative specification language
for automatically obtaining propagators for finite set constraints. As an example, con-
sider the binary union constraint x = y∪ z. In the fragment of ∃MSO we define, this
constraint can be written ∀v.v ∈ x↔ v ∈ y∨ v ∈ z, where v ranges over individual val-
ues from the universe, and x, y, and z are the finite set variables. Formulas allow us to
specify constraints in a purely declarative way.

From a constraint expressed as a formula, we derive a set of projectors, one for
each of the variables. For the binary union example, we get px = (y∪ z ⊆ x ⊆ y∪ z),
py = (x\ z⊆ y ⊆ x), pz = (x\ y⊆ z ⊆ x). Projectors transfer the idea of finite domain
indexicals to finite sets. We show that the generated set of projectors is sound and com-
plete for the constraint it was derived from.

Projectors are an executable specification. Just like indexicals, projectors can be im-
plemented efficiently. We have implemented an interpreter and compiler for projectors
for the Gecode library [20]. We can specify constraints purely declaratively as formulas,
and then generate an implementation that is provably sound and complete.

Plan of the paper. After presenting a framework for studying propagators in Section 2,
this paper is organized as follows:

– The use of ∃MSO as a declarative specification language for finite set constraints
is introduced (Section 3).

– Projectors for finite set constraints are derived from range expressions over finite set
variables (Section 4). This transfers the ideas of indexicals to finite set constraints.

– A correspondence between formulas in ∃MSO and finite set projectors is estab-
lished (Section 5), where equivalent formulas lead to equivalent projectors. We
prove that the derived projectors are correct and as strong as possible.

– Negated and reified constraints are obtained from entailment-checking projectors
(Section 6).

– The specification language is shown to be also suitable for generating ROBDD-
based propagators (Section 7).

– Techniques for evaluating projectors derived from range expressions are discussed,
including common subexpression elimination (Section 8).

– We analyze the run-time of projectors and generalize range expressions to propa-
gators involving arbitrary numbers of set variables (Section 9).

Section 10 concludes the paper.
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2 Constraints and Propagators

This section introduces the central notions used in the rest of the paper. The presentation
builds on the extended constraint systems of Benhamou [4].

Variables and constraints. We assume a finite set of variables Var and a finite set of
values Val. Constraints are characterized by assignments α ∈ Asn mapping variables
to values: Asn = Var → Val. A constraint c ∈ Con is a set of fulfilling assignments,
Con = P(Asn). Basing constraints on assignments (defined for all variables Var) rather
than tuples or partial assignments (defined for a subset of variables X ⊆ Var) simplifies
further presentation. Note that a set of tuples or partial assignments for a set of variables
X can be extended easily to a set of assignments by mapping all variables from Var \X
to all possible values.

Domains and stores. Propagation is performed by propagators over constraint stores
(or just stores) where stores are constructed from domain approximations as follows.
A domain d ∈ Dom contains values a variable can take, Dom = P(Val). A domain
approximation A for Dom is a subset of Dom that is closed under intersection and that
contains at least those domains needed to perform constraint propagation, namely /0,
Val, and all singletons {v} (called unit approximate domains in [4]). We call elements
of A approximate domains.

A store S ∈ Store is a tuple of approximate domains. The set of stores is a Cartesian
product Store = An, where n = |Var| and A is a domain approximation for Dom.

Note that a store S can be identified with a mapping S ∈ Var → A or with a set of
assignments S ∈P(Asn). This allows us to treat stores as constraints when there is no
risk of confusion. In particular, for any assignment α , {α} is a store.

A store S1 is stronger than a store S2, if S1 ⊆ S2. By (c)Store we refer to the strongest
store including all values of a constraint, defined as min{S ∈ Store|c ⊆ S}. The mini-
mum exists as stores are closed under intersection. Note that this is a meaningful def-
inition as stores only allow Cartesian products of approximate domains. Now, for a
constraint c and a store S, (c∩S)Store refers to removing all values from S not supported
by the constraint c (with respect to the approximative nature of stores). For a constraint
c, we define c.x = {v|∃α ∈ c : α(x) = v} as the projection on the variable x. For a store
S, S.x is the x-component of the tuple S.

Constraint satisfaction problems. A constraint satisfaction problem is a pair (C,S) ∈
P(Con)× Store of a set of constraints C and a store S. A solution of a constraint
satisfaction problem (C,S) is an assignment α such that α ∈ S and α ∈⋂c∈C c.

Propagators. Propagators serve here as implementations of constraints. They are some-
times also referred to as constraint narrowing operators or filter functions. A prop-
agator is a function p ∈ Store → Store that is contracting (p(S) ⊆ S) and monotone
(S′ ⊆ S⇒ p(S′)⊆ p(S)). Note that propagators are not required to be idempotent.

A propagator is sound for a constraint c iff for all assignments α , we have c∩{α}=
p({α}). This implies that for any store S, we have (c∩S)Store ⊆ p(S). Thus, p is sound
for c if it does not remove solutions and can decide if an assignment fulfills c or not.
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A propagator is complete for a constraint c iff for all stores S, we have (c∩S)Store =
p(S). A complete propagator thus removes all assignments from S that are locally in-
consistent with c. Note that a complete propagator for a constraint c establishes domain-
consistency for c with respect to the domain approximation.

Fixpoints as propagation results. With set inclusion lifted point-wise to Cartesian prod-
ucts, stores form a complete partial order. Hence, one can show that the greatest mutual
fixpoint of a set of propagators P for a store S exists. We write the fixpoint as

�
P S.

In the following we will be interested in the soundness and completeness of sets
of propagators. A set of propagators P is sound for a constraint c iff ∀α : c∩ {α} =�

P {α}. Likewise, P is complete for c iff ∀S : (c∩S)Store =
�

P S.
Note that we specify what is computed by constraint propagation and not how. Ap-

proaches how to perform constraint propagation can be found in [4,1,18].

Projectors. Projection propagators (or projectors, for short) behave as the identity func-
tion for all but one variable. Thus, for a projector on x, we have ∀S ∀y �= x : (p(S)).y =
S.y. To simplify presentation, we write a projector on x as px ∈ Store→ A.

3 A Specification Language for Finite Set Constraints

This section introduces a high-level, declarative language that allows to specify finite set
constraints intensionally. Finite set constraints talk about variables ranging over finite
sets of a fixed, finite universe: Val = P(U ). To specify finite set constraints, we use a
fragment of existential monadic second order logic (∃MSO).

In the following sections, we use ∃MSO for proving properties of projectors and
the constraints they implement. Furthermore, we derive sound and complete projectors
from formulas.

3.1 A Logic for Finite Set Constraints

In our framework, constraints are represented extensionally as collections of assign-
ments. To be able to reason about them, we use formulas of a fragment of second-order
logic as an intensional representation.

Finite set constraints can be elegantly stated in existential monadic second-order
logic (∃MSO), see [2] for a discussion in the context of local search. Second-order
variables take the role of finite set variables from Var, and first-order variables range
over individual values from the universe U .

We use the fragment defined by the grammar in Table 1. It has the usual Boolean
connectives, a first-order universal quantifier and a second-order existential quantifier,
all with their standard interpretation. As the second-order variables represent finite sets,
we write v ∈ x instead of x(v) and abbreviate ¬v ∈ x as v /∈ x. Furthermore, we use
implication (→) and equivalence (↔) as the usual abbreviations.

Formulas as constraints. The extension of a formula ϕ is the set of models of ϕ . In the
case of monadic second-order formulas without free first-order variables, a model cor-
responds directly to an assignment. The extension of ϕ is hence the set of assignments
that satisfy ϕ .
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Table 1. Syntax of a fragment of ∃MSO

S ::= ∃x S | F second-order quantification

F ::= ∀v.B | F ∧F first-order quantification

B ::= B∧B | B∨B | ¬B | v ∈ x | ⊥ basic formulas

A set of satisfying (or fulfilling) assignments is exactly the definition of a constraint.
Thus, for a formula ϕ without free first-order variables, we write [ϕ ] for its extension,
and we use it like a constraint. Table 2 shows some examples of finite set constraints
expressed as ∃MSO formulas.

Some important constraints, like disequality of sets, cannot be expressed using this
logic, as they require a first-order existential quantifier. Extending the logic with exis-
tential quantification is discussed in Section 6.

Table 2. Finite set constraints expressed in ∃MSO

x⊆ y [∀v.v ∈ x→ v ∈ y] subset
x = y [∀v.v ∈ x↔ v ∈ y] equality
x = y∪ z [∀v.v ∈ x↔ v ∈ y∨ v ∈ z] union
x = y∩ z [∀v.v ∈ x↔ v ∈ y∧ v ∈ z] intersection
x ‖ y [∀v.v /∈ x∨ v /∈ y] disjointness

4 Finite Integer Set Projectors

This section introduces a high-level programming language for implementing projec-
tors for finite set constraints. First, we define domain approximations for finite set con-
straints – this yields a concrete instance of the framework defined in Section 2. Then
we describe range expressions as introduced by Müller [15], which carry over the ideas
behind finite domain indexicals to finite set projectors.

4.1 Domain Approximations for Sets

With Val = P(U ) for set variables, a full representation of the domain of a variable
can be exponential in size. This makes domain approximations especially important for
set variables.

Most constraint programming systems use convex sets as an approximation (intro-
duced in [16], formalized in [10]). A convex set d is a set of sets that can be described
by a greatest lower bound glb(d) and a least upper bound lub(d) and represents the sets
{v | glb(d)⊆ v⊆ lub(d)}.

In our terminology, we define the domain approximation ASet as the set of all convex
sets. ASet is indeed a domain approximation, as /0, Val, and all singletons {s} for s ∈ Val
are convex, and the intersection of two convex sets is again convex. We write glb(S.x)
and lub(S.x) to denote the greatest lower resp. least upper bound of x in the store S.
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Table 3. Evaluating range expressions in a store

rglb(x,S) = glb(S.x) rglb
(
R,S

)
= rlub(R,S)

rglb(R1∪R2,S) = rglb(R1,S)∪ rglb(R2,S) rglb( /0,S) = rlub( /0,S) = /0
rglb(R1∩R2,S) = rglb(R1,S)∩ rglb(R2,S)

rlub(R,S) analogous

4.2 Range Expressions for Finite Set Projectors

Given ASet, a projector for a finite set variable x can be written as a function px ∈
Store→ Val×Val, returning the pruned greatest lower and least upper bound for x.

For finite domain constraints, indexicals have proven a useful projector programming
language. The main idea goes back to cc(FD) [12,13] and was later elaborated in the
context of clp(FD), AKL, and SICStus Prolog [9,6,8]. Indexicals build on range expres-
sions as a syntax for set-valued expressions that can be used to define the projection of
a constraint. These ideas easily carry over to finite set projectors over ASet. We define
range expressions by the following grammar:

R ::= x | R∪R | R∩R | R | /0

A finite set projector for the variable x can now be defined by two range expressions,
one pruning the greatest lower bound of x, and one pruning the upper bound. We write
such a projector px = (R1 ⊆ x⊆ R2).

Range expressions are evaluated in a store using the functions rglb and rlub from
Table 3. A projector px = (R1 ⊆ x ⊆ R2) is defined to compute the function px(S) =
(rglb(R1,S)∪glb(S.x),rlub(R2,S)∩ lub(S.x)).

Proposition 1. A function px = (R1 ⊆ x⊆ R2) is contracting and monotone and there-
fore a propagator.

Proof. The function px is contracting by construction. It is monotone iff ∀S′ ⊆ S :
px(S′) ⊆ px(S), or equivalently ∀S′ ⊆ S : glb(px(S)) ⊆ glb(px(S′)) and lub(px(S′)) ⊆
lub(px(S)). For a projector defined by range expressions (R1 ⊆ x ⊆ R2), we must have
∀S′ ⊆ S : rglb(R1,S) ⊆ rglb(R1,S′) and rlub(R2,S′) ⊆ rlub(R2,S). This can be shown by
induction over the structure of range expressions.

5 ∃MSO Specifications for Projectors

We have seen two specification languages so far, one high-level declarative language
for specifying set constraints, and one programming language for set projectors. This
section shows how to connect the two languages: on the one hand, we want to find a
formula describing the constraint a projector implements, on the other hand, we want
to find projectors implementing the constraint represented by a formula.

We derive a ∃MSO formula ϕ for a given projector px such that px is sound for [ϕ ].
The formula thus declaratively describes the constraint that px implements.

For the other direction, we generate a set of projectors P for a given formula ϕ such
that P is sound and complete for [ϕ ]. This allows us to use ∃MSO as a specification
language for sound and complete finite set projectors.
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Table 4. Translating a range expression to a formula

ev(x) = v ∈ x ev
(
R
)

= ¬ev(R)
ev(R1∪R2) = ev(R1)∨ ev(R2) ev( /0) = ⊥
ev(R1∩R2) = ev(R1)∧ ev(R2)

5.1 From Range Expressions to ∃MSO Specifications

Given a projector px, we now derive a formula ϕpx such that px is sound for [ϕpx ].
The correspondence between relational algebra and logic gives rise to the definition

of the function e (Table 4). For a range expression R, ev(R) is a formula that is true iff
v ∈ R. Furthermore, a subset relation corresponds to a logical implication. Hence, for a
projector px = (R1 ⊆ x⊆ R2), we define ϕpx = ∀v.(ev(R1)→ v ∈ x)∧(v ∈ x→ ev(R2)).
We can now show that px is sound for [ϕpx ].

Lemma 1. Range expressions have the same extension as the corresponding formulas.

α ∈ [∀v.ev(R)→ v ∈ x]⇔ rglb(R,{α})⊆ α(x)
α ∈ [∀v.v ∈ x→ ev(R)]⇔ α(x)⊆ rlub(R,{α})

Proof. By induction over the structure of range expressions.

Proposition 2. Every projector px = (R1 ⊆ x⊆ R2) is sound for the constraint [ϕpx ].

Proof. We have to show [ϕpx ]∩{α} = px({α}) for all α . This is equivalent to show-
ing α ∈ [ϕpx ]⇔ px({α}) = {α}. From the definition of projectors, we get px({α}) =
{α}⇔ rglb(R1,{α})⊆ α(x)∧α(x)⊆ rlub(R2,{α}). Lemma 1 says that this is equiva-
lent to α ∈ [∀v.ev(R1)→ v ∈ x] and α ∈ [∀v.v ∈ x→ ev(R2)]. This can be combined into
α ∈ [∀v.(ev(R1)→ v ∈ x)∧ (v ∈ x→ ev(R2))] = [ϕpx ].

Equivalence of projectors. We say that two projectors px and p′x are equivalent iff
they are sound for the same constraint. Using the translation to formulas as introduced
above, px and p′x are equivalent iff ϕpx ≡ ϕp′x . Note that two equivalent projectors may
still differ in propagation strength, for instance if only one of them is complete for ϕpx .

5.2 From Specifications to Projectors

The previous section shows that for every set projector px one can find a formula ϕpx

such that px is sound for [ϕpx ]. We now want to find a set of projectors P for a given
formula ϕ such that P is sound and complete for [ϕ ]. Remember that we need a set of
projectors, as each individual projector only affects one variable. For completeness, all
variable domains have to be pruned.

A first step extracts all implications to a single variable x from a given formula ϕ ,
yielding a normal form for ϕ . A second step then transforms this normal form into a
projector for x. Using the transformation to normal form, we can construct a set of pro-
jectors, one for each variable in ϕ . Finally, we show that the set of projectors obtained
this way is complete for [ϕ ].
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Step 1: Extraction of Implications. As we use the convex-set approximation, a pro-
jector for a variable x has to answer two questions: which values for x occur in all
assignments satisfying the constraint (the greatest lower bound), and which values
can occur at all in a satisfying assignment (the least upper bound). The idea of our
transformation is that the first question can be answered by a formula of the form
∀v.ψ1 → v ∈ x, while the second question corresponds to a formula ∀v.v ∈ x → ψ2.
The remaining problem is hence to transform any formula ϕ into an equivalent ϕ ′ =∧

x∀v : (ψ1x → v ∈ x)∧ (v ∈ x→ ψ2x).
The transformation proceeds in four steps: (1) Skolemization, (2) merging of first-

order quantifiers, (3) transformation to conjunctive normal form, and (4) extraction of
implications for each variable.

Skolemization removes all second-order existential quantifiers and replaces them
with fresh variables. Intuitively, the fresh variables play the role of intermediate vari-
ables. Though this is not strictly an equivalence transformation, the extension of the
resulting formula is the same for the variables of the original formula. We can merge
universal quantifiers (∀v.ψ)∧ (∀v.ψ ′) into ∀v.ψ ∧ψ ′. After these transformations, we
arrive at a formula of the form ∀v.ψ where ψ is quantifier-free. We can then transform
ψ into conjunctive normal form (CNF), into a set of clauses {C1, . . . ,Cn}, where each
Ci is a set of literals L (either v ∈ x or v /∈ x).

From the CNF, one can extract all implications for a variable x as follows:

∀v.ψ ≡ ∀v.
∧

i
∨

L′∈Ci
L′

≡ ∀v.
∧

i

(∧
L′ �=(v∈x)∈Ci

L′ → v ∈ x
)
∧
(∧

L′ �=(v/∈x)∈Ci
L′ → v /∈ x

)
≡ ∀v.

(∨
i
∧

L′ �=(v∈x)∈Ci
L′ → v ∈ x

)
∧
(

v ∈ x → ∧
i
∨

L′ �=(v/∈x)∈Ci
L′
)

If ψ does not contain v ∈ x (or v /∈ x), the corresponding implication is trivially true.
Thus, in practice, this transformation only has to consider the free variables of ψ (after
Skolemization) instead of all the variables.

We call this form L-implying normal form of ϕ , written INFL(ϕ). We refer to∨
i(
∧

L′ �=(v∈x)∈Ci
L′) as ψ1x and to

∧
i
∨

L′ �=(v/∈x)∈Ci
L′ as ψ2x .

Step 2: Compilation to Projectors. The two subformulas of an L-implying normal
form, ψ1x and ψ2x , are quantifier-free and contain a single first-order variable v. We
observe that the function ev from Table 4 has an inverse e−1 for quantifier-free formulas
with a single free first-order variable v.

With Proposition 2 we can thus argue that (e−1(ψ1x) ⊆ x ⊆ e−1(ψ2x)) is sound for
[INFx(ϕ)]. Furthermore, for any formula ϕ ′ =

∧
x INFx(ϕ), it is easy to show that the

set P = {(e−1(ψ1x)⊆ x⊆ e−1(ψ2x)) | x ∈ Var} is sound for [ϕ ].

Example. Consider the ternary intersection constraint x = y∩ z. It can be expressed in
∃MSO as ∀v.v ∈ x↔ v ∈ y∧ v ∈ z. The implied normal forms for x, y, and z are
∀v. (v ∈ y∧ v ∈ z→ v ∈ x) ∧ (v ∈ x→ v ∈ y∧ v ∈ z)
∀v. (v ∈ x→ v ∈ y) ∧ (v ∈ y→ v ∈ x∨ v /∈ z)
∀v. (v ∈ x→ v ∈ z) ∧ (v ∈ z→ v ∈ x∨ v /∈ y)
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Deriving projectors from these formulas, we get px = (y∩ z⊆ x⊆ y∩ z), py = (x⊆ y⊆
x∪ z), and pz = (x⊆ z⊆ x∪ y).

Proposition 3. We can now prove completeness of the generated projector set: Given a
formula ϕ ′ =

∧
x INFx(ϕ), the projector set P = {(e−1(ψ1x)⊆ x⊆ e−1(ψ2x)) | x∈ Var}

is complete for [ϕ ].

Proof. We only sketch the proof due to space limitations. For completeness, we have to
show

�
P S ⊆ ([ϕ ]∩S)Store. If ([ϕ ]∩S)Store = S, this is trivial. Otherwise, we only have

to show that at least one projector can make a contribution.
First, we can show that if [ϕ ] removes values from the greatest lower or least upper

bounds of variables in S, then there exists at least one x such that already [INFx(ϕ)]
prunes S. More formally, ([ϕ ]∩S)Store �= S implies glb(([∀v.ψ1x → v ∈ x] ∩ S).x) �=
glb(S.x) or lub(([∀v.v ∈ x→ ψ2x ]∩ S).x) �= lub(S.x) for some x. This is true because
of the way implications are extracted from ϕ .

The second step in the proof is to show that if glb(([∀v.ψ1x → v ∈ x]∩S).x) �= glb(S.x),
then glb(([∀v.ψ1x → v ∈ x]∩ S).x) ⊆ rglb(e−1(ψ1x),S)∪ glb(S.x), and dually for lub.
This means that the projector for x makes a contribution and narrows the domain.

Finally, if none of the projectors can contribute for the store S, we know on the
one hand that ([ϕ ]∩S)Store = S (we have just proved that), and on the other hand that�

P S = S (S must be a fixpoint). This concludes the proof.

With Propositions 2 and 3, it follows that the set of projectors {px = (e−1(ψ1x) ⊆
x⊆ e−1(ψ2x)) | x ∈ Var} is sound and complete for [

∧
x INFx(ϕ)] = [ϕ ].

Finding small formulas. The projectors derived from two equivalent formulas ϕ ≡ ϕ ′
are equivalent in the sense that they are sound and complete for both formulas. However,
the size of their range expressions, and therefore the time complexity of propagating
them (as discussed in Section 9), can differ dramatically.

The antecedents in an L-implied normal form are in disjunctive normal form (DNF).
We can apply well-known techniques from circuit minimization to find equivalent min-
imal formulas (e.g. the Quine-McCluskey and Petrick’s methods). Note that for the
“standard constraints” like those from Table 2, the generated INF are minimal.

6 Negated and Reified Constraints

In this section, we show how to specify and execute negated and reified constraints,
by transferring the ideas of entailment checking indexicals [7] to finite set projectors.
Negation adds first-order existential quantifiers to the specification language.

Checking entailment of a projector. A propagator p is called entailed by a store S iff
for all stores S′ ⊆ S we have p(S′) = S′.

In the indexical scheme, entailment can be checked using anti-monotone indexi-
cals [7]. Following this approach, we use the anti-monotone interpretation of a projector
to check its entailment. For example, a sufficient condition for p = (R1 ⊆ x⊆ R2) being
entailed is rlub(R1,S)⊆ glb(S.x) and lub(S.x)⊆ rglb(R2,S).
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Negated projectors – existential quantifiers. A negated projector p can be propagated
by checking entailment of p. If p is entailed, p is failed, and vice versa. Such a p is
sound for [¬ϕp], but not necessarily complete.

We observe that this gives us a sound implementation for formulas ¬ϕ , where ϕ =
∀v.(ψ1 → v ∈ x)∧(v ∈ x→ ψ2). This is equivalent to ¬ϕ = ∃v.¬(ψ1 → v∈ x∧v∈ x→
ψ2). We can thus extend our formulas with existential first-order quantification:

F ::= ∀v.B | ∃v.B | F ∧F

One important constraint we could not express in Section 3 was disequality of sets,
x �= y. Using existential quantification, this is easy: ∃v.¬(v ∈ x↔ v ∈ y).

Reified constraints. A reified constraint is a constraint that can be expressed as a for-
mula ϕ ↔ b, for a 0/1 finite domain variable b. Exactly as for reified finite domain
constraints implemented as indexicals [8], we can detect entailment and dis-entailment
of ϕ , and we can propagate ϕ and ¬ϕ . Thus, we can reify any constraint expressible in
our ∃MSO fragment.

7 Generating Projectors for BDD-Based Solvers

Solvers based on binary decision diagrams (BDDs) have been proposed as a way to
implement full domain consistency for finite set constraints [11]. This section briefly
recapitulates how BDD-based solvers work. We can then show that ∃MSO can also be
used as a specification language for BDD-based propagators.

Domains and constraints as Boolean functions. The solvers as described by Hawkins et
al. [11] represent both the variable domains and the propagators as Boolean functions.

A finite integer set s can be represented by its characteristic function: χs(i) = 1 ⇔
i ∈ s. A domain, i.e. a set of sets, is a disjunction of characteristic functions.

Constraints can also be seen as Boolean functions. In fact, formulas in our ∃MSO
fragment are a compact representation of Boolean functions. The universal quantifica-
tion ∀v corresponds to a finite conjunction over all v, because the set of values Val is
finite. For instance, the formula ∀v.v ∈ x→ v ∈ y, modeling the constraint x⊆ y, can be
transformed into the Boolean function

∧
v xv → yv.

Reduced Ordered Binary Decision Diagrams. ROBDDs are a well-known data struc-
ture for storing and manipulating Boolean functions. Hawkins et al. propose to store
complete variable domains and propagators as ROBDDs. Although this representation
may still be exponential in size, it works well for many practical examples.

Propagation using ROBDDs also performs a projection of a constraint on a single
variable, with respect to a store. The fundamental difference to our setup is the choice
of domain approximation, as ROBDDs allow to use the full A = P(Dom).

Hawkins et al. also discuss approximations including cardinality information and
lexicographic bounds [17]. These approximations can yield stronger propagation than
simple convex bounds but, in contrast to the full domain representation, have guaranteed
polynomial size.
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From specification to ROBDD. As we have sketched above, ∃MSO formulas closely
correspond to Boolean functions, and can thus be used as a uniform specification lan-
guage for projectors based on both range expressions and BDDs.

Although BDDs can be used to implement the approximation based on convex sets
and cardinality, our approach still has some advantages: (1) It can be used for existing
systems that do not have a BDD-based finite set solver. (2) A direct implementation
of the convex-set approximation may be more memory efficient. (3) Projectors can be
compiled statically, and independent of the size of U . Still, projectors based on range
expressions offer the same compositionality as BDD-based projectors.

8 Implementing Projectors

The implementation techniques developed for finite domain indexicals directly carry
over to set projectors. We thus sketch only briefly how to implement projectors. Fur-
thermore, we present three ideas for efficient projector execution: grouping projectors,
common subexpression elimination, and computing without intermediate results.

Evaluating projectors. The operational model of set projectors is very similar to that
of finite domain indexicals. We just have to compute two sets (lower and upper bound)
instead of one (the new domain).

The main functionality a projector (R1 ⊆ x⊆ R2) has to implement is the evaluation
of rglb(R1,S) and rlub(R2,S). Just like indexicals, we can implement rglb and rlub using
a stack-based interpreter performing a bottom-up evaluation of a range expression [6],
or generate code that directly evaluates ranges [9,15].

Grouping projectors. Traditionally, one projector (or indexical) is treated as one propa-
gator. Systems like SICStus Prolog [14] schedule indexicals with a higher priority than
propagators for global constraints.

However, from research on virtual machines it is well known that grouping several
instructions into one super-instruction reduces the dispatch overhead and possibly en-
ables an optimized implementation of the super-instructions.

In constraint programming systems, propagators play the role of instructions in a
virtual machine. Müller [15] proposes a scheme where the set of projectors that imple-
ments one constraint is compiled statically into one propagator.

Common Subexpression Elimination. Range expressions form a tree. A well-known op-
timization for evaluating tree-shaped expressions is common subexpression elimination
(or CSE): if a sub-expression appears more than once, only evaluate it once and reuse
the result afterwards.

Using CSE for range expressions has been suggested already in earlier work on in-
dexicals (e.g. [6]). Common subexpressions can be shared both within a single range
expression, between the two range expressions of a set projector, and between range
expressions of different projectors.

If subexpressions are shared between projectors, special care must be taken of the
order in which the projectors are evaluated, as otherwise evaluating one projector may
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invalidate already computed subexpressions. This makes grouping projectors a prereq-
uisite for inter-projector CSE, because grouping fixes the order of evaluation.

Using iterators to evaluate range expressions. Bottom-up evaluation of range expres-
sions usually places intermediate results on a stack. This imposes a significant perfor-
mance penalty for finite set constraints, which can be avoided using range iterators [19].
Range iterators allow to evaluate range expressions without intermediate results.

A range iterator represents a set of integers implicitly by providing an interface for
iterating over the maximal disjoint ranges of integers that define the set. Set variables
can provide iterators for their greatest lower and least upper bound. The union or inter-
section of two iterators can again be implemented as an iterator. Domain operations on
variables, such as updating the bounds, can take iterators as their arguments. Iterators
can serve as the basis for both compiling the evaluation of range expressions to e.g. C++,
and for evaluating range expressions using an interpreter.

Implementation in Gecode. We have implemented an interpreter and a compiler for
finite set projectors for the Gecode library ([20], version 1.3 or higher). Both interpreter
and compiler provide support for negated and reified propagators.

The interpreter is a generic Gecode propagator that can be instantiated with a set of
projectors, defined by range expressions. Propagation uses range iterators to evaluate
the range expressions. This approach allows to define new set propagators at run-time.

The compiler generates C++ code that implements a Gecode propagator for a set of
projectors. Again, range iterators are used for the actual evaluation of range expressions.

Compiling to C++ code has three main advantages. First, the generated code has no in-
terpretation overhead. Second, more expensive static analysis can be done to determine
a good order of propagation for the grouped projectors (see [15]). Third, the generated
code uses template-based polymorphism instead of virtual function calls (as discussed
in [19]). This allows the C++ compiler to perform aggressive optimizations.

9 Run-Time Analysis

In this section, we analyze the time complexity of evaluating set projectors. This analy-
sis shows that the naive decomposition of a constraint over n variables into n projectors
leads to quadratic run-time O(n2). We develop an extended range expression language
that allows to evaluate some important n-ary projectors in linear time O(n).

The technique presented here is independent of the constraint domain. We show that
the same technique can be used for indexicals over finite integer domain variables.

Run-time complexity of projectors. The time needed for evaluating a projector depends
on the size of its defining range expressions. We define the size of a range expression R
as the number of set operations (union, intersection, complement) R contains, and write
it |R|. To evaluate a projector px = (R1 ⊆ x ⊆ R2), one has to perform |R1|+ |R2| set
operations. Abstracting from the cost of individual operations (as it depends on how
sets are implemented), the run-time of px is in O(|R1|+ |R2|).
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Example for an n-ary propagator. The finite set constraint y =
⋃

1≤i≤n xi can be stated
as n + 1 finite set projectors:

py = (glb(x1)∪·· ·∪glb(xn)⊆ y⊆ lub(x1)∪·· ·∪ lub(xn))
pxi = (glb(y)\⋃j�=i lub(xj)⊆ xi ⊆ lub(y)) for all xi

The range expressions in each projector have size n. Propagating all projectors once
therefore requires time O(n2). If however these n + 1 projectors are grouped, and thus
their order of propagation is fixed, we can apply a generalized form of CSE in order to
propagate in linear time.

Let us assume we propagate in the order px1 . . . pxn . Then at step pxi , we know that for
all j > i, we have not yet changed the domain of x j. Thus, we can use a precomputed
table right[i] =

⋃
j>i lub(x j). The other half of the union, lefti =

⋃
j<i lub(x j), can be

maintained incrementally while moving from step i− 1 to step i. The projectors can
thus be written as

pxi = (glb(y)\ (right[i]∪ lefti)⊆ xi ⊆ lub(y)) for all i
Computing the right[i] requires time O(n). Maintaining lefti is constant time, and

each resulting projector pxi can be executed in time O(1), too. This yields O(n) for
running all projectors once.

Indexed range expressions. We now extend range expressions so that they can be eval-
uated efficiently in the n-ary case, using the method sketched in the example above.

We assume that a subset of the variables Varidx⊆ Var is indexed, such that xi ∈ Varidx

for all 1≤ i≤ k. We extend range expressions to indexed range expressions:

R ::= x | R∪R | R∩R | R |⋃1≤ j≤k, j �=i x j |
⋂

1≤ j≤k, j �=i x j | /0

To simplify presentation, we do not consider nested indexed range expressions here.
A family of projectors can now be stated together as pxi = (R1⊆ xi⊆R2). We extend the
functions rlub and rglb evaluating range expressions to take the index i of the projector
as an argument. The functions rlub and rglb implement the optimization sketched above:

rlub(
⋃

1≤ j≤n, j �=i x j, i,S) = right[i]∪ lefti
where right and lefti are the “two halves” of the union as described in the example. The
evaluation of the lower bound and the intersection is analogous.

From specification to indexed range expressions. In order to generate indexed range
expressions from formulas as specifications, we have two options. We can either add
syntactic sugar to the formulas that allows to express indexed conjunctions and disjunc-
tions, or we search for sub-formulas of the form

∧
i�= j xi (and similar for disjunction).

Application to n-ary finite domain projectors. The same scheme applies to finite domain
projectors. An n-ary linear equation ∑i xi = c can be stated as

pxi = xi in c−∑ j �=i max(xi) . . . c−∑ j �=i min(xi)

Again, if the pxi are evaluated in fixed order, the sums can be precomputed. As for
the set projectors, this scheme allows propagation in time O(n) instead of O(n2).
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10 Conclusions and Future Work

We have presented two specification languages: ∃MSO, a high-level, purely declarative
language for specifying finite set constraints, and range expressions, a programming
language for implementing finite set projectors. Set projectors transfer the ideas of in-
dexicals to the domain of finite sets.

We have captured both languages within one formal framework. On the one hand,
this allows us to prove soundness and completeness for projectors with respect to con-
straints specified as formulas. On the other hand, we can derive sound and complete sets
of projectors from constraints specified as formulas. Furthermore, we have shown that
we can derive sound propagators for negated and reified constraints, and that ∃MSO is
a suitable specification language for BDD-based finite set solvers.

With ∃MSO we thus have an expressive, declarative, high-level specification lan-
guage for a large class of sound and complete finite set projectors, both for domain ap-
proximations using convex sets, and for complete domain representations using BDDs.

The run-time analysis we have presented shows that using plain projectors for n-ary
constraints results in quadratic run-time. We have solved this problem with the help of
indexed range expressions and evaluating projectors in a group, leading to linear run-
time for important n-ary constraints. This result carries over to finite domain indexicals.

An implementation of finite set projectors is available in the Gecode library.

Future Work. We are currently integrating a BDD-based solver into the Gecode li-
brary. This will allow us to use the same constraint specifications with different solvers.
In addition, it will ease the comparison of propagation strength as well as efficiency of
different finite set solvers.

The translation from ∃MSO formulas to range expressions still has to be imple-
mented. We currently conduct our experiments by translating formulas by hand.

Besides the implementation, our focus is on extensions of the logic as well as the
projector language. We will add cardinality reasoning, which has proven very effective
for several areas of application. An interesting further question is whether and how
propagators for a domain approximation based on lexicographic bounds [17] can be
derived automatically.
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Abstract. In this paper, we propose a method to encode Constraint Sat-
isfaction Problems (CSP) and Constraint Optimization Problems (COP)
with integer linear constraints into Boolean Satisfiability Testing Prob-
lems (SAT). The encoding method is basically the same with the one
used to encode Job-Shop Scheduling Problems by Crawford and Baker.
Comparison x ≤ a is encoded by a different Boolean variable for each in-
teger variable x and integer value a. To evaluate the effectiveness of this
approach, we applied the method to Open-Shop Scheduling Problems
(OSS). All 192 instances in three OSS benchmark sets are examined,
and our program found and proved the optimal results for all instances
including three previously undecided problems.

1 Introduction

Recent advances in SAT solver technologies [1,2,3,4,5] have enabled solving a
problem by encoding it to a SAT problem, and then to use the efficient SAT
solver to find a solution, such as for model checking, planning, and scheduling
[6,7,8,9,10,11,12].

In this paper, we propose a method to encode Constraint Satisfaction Prob-
lems (CSP) and Constraint Optimization Problems (COP) with integer linear
constraints into Boolean Satisfiability Testing Problems (SAT) of CNF (product-
of-sums) formulas.

As Hoos discussed in [8], basically two encoding methods are known: “sparse
encoding” and “compact encoding”. Sparse encoding [13] encodes each assign-
ment of a value to an integer variable by a different Boolean variable, that is,
Boolean variable representing x = a is used for each integer variable x and inte-
ger value a. Compact encoding [14,7] assigns a Boolean variable for each bit of
each integer variable.

Encoding method used in this paper is different from these. The method is
basically the same with the one used to encode Job-Shop Scheduling Problems
by Crawford and Baker in [9] and studied by Soh, Inoue, and Nabeshima in
[10,11,12]. It encodes a comparison x ≤ a by a different Boolean variable for
each integer variable x and integer value a.

The benefit of this encoding is the natural representation of the order relation
on integers. Axiom clauses with two literals, such as {¬(x ≤ a), x ≤ a + 1} for
each integer a, represent the order relation for an integer variable x. Clauses,

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 590–603, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Compiling Finite Linear CSP into SAT 591

for example {x ≤ a,¬(y ≤ a)} for each integer a, can be used to represent the
constraint among integer variables, i.e. x ≤ y.

The original encoding method in [9,10,11,12] is only for Job-Shop Scheduling
Problems. In this paper, we extend the method so that it can be applied for any
finite linear CSPs and COPs.

To evaluate the effectiveness of this approach, we applied the method to Open-
Shop Scheduling Problems (OSS). All 192 instances in three OSS benchmark sets
[15,16,17] are examined, and our program found and proved the optimal results
for all instances including three previously undecided problems [18,19,20].

2 Finite Linear CSP and SAT

In this section, we define finite linear Constraint Satisfaction Problems (CSP)
and Boolean Satisfiability Testing Problems (SAT) of CNF formulas.

Z is used to denote a set of integers and B is used to denote a set of Boolean
constants (& and ⊥ are the only elements of B representing “true” and “false”
respectively).

We also prepare two countably infinite sets of integer variables V and Boolean
variables B. Although only a finite number of variables are used in a specific
CSP or SAT, countably infinite variables are prepared to introduce new variables
during the translation. Symbols x, y, z, x1, y1, z1, . . . , are used to denote integer
variables, and symbols p, q, r, p1, q1, r1, . . . , are used to denote Boolean variables.

Linear expressions over V ⊂ V , denoted by E(V ), are algebraic expressions in
the form of

∑
ai xi where ai’s are non-zero integers and xi’s are integer variables

(elements of V ). We also add the restriction that xi’s are mutually distinct.
Literals over V ⊂ V and B ⊂ B, denoted by L(V, B), consist of Boolean

variables {p | p ∈ B}, negations of Boolean variables {¬p | p ∈ B}, and com-
parisons {e ≤ c | e ∈ E(V ), c ∈ Z}. Please note that we restrict compari-
son literals to only appear positively and in the form of

∑
ai xi ≤ c without

loss of generality. For example, ¬(a1x1 + a2x2 ≤ c) can be represented with
−a1x1 − a2x2 ≤ −c − 1, and x �= y (that is, (x < y) ∨ (x > y)) can be repre-
sented with (x − y ≤ −1) ∨ (−x + y ≤ −1).

Clauses over V ⊂ V and B ⊂ B, denoted by C(V, B), are defined as usual
where literals are chosen from L(V, B), that is, a clause represents a disjunction
of element literals. Integer variables occurring in a clause are treated as free
variables, that is, a clause {x ≤ 0} does not mean ∀x.(x ≤ 0).

Definition 1 (Finite linear CSP). A (finite linear) CSP (Constraint Satis-
faction Problem) is defined as a tuple (V, , u, B, S) where

(1) V is a finite subset of integer variables V ,
(2)  is a mapping from V to Z representing the lower bound of the integer

variable,
(3) u is a mapping from V to Z representing the upper bound of the integer

variable,
(4) B is a finite subset of Boolean variables B, and
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(5) S is a finite set of clauses (that is, a finite subset of C(V, B)) representing
the constraint to be satisfied.

In the rest of this paper, we simply call finite linear CSP as CSP.
We extend the functions  and u for any linear expressions e ∈ E(V ), e.g.

(2x− 3y) = −9 and u(2x− 3y) = 6 when (x) = (y) = 0 and u(x) = u(y) = 3.
An assignment of a CSP (V, , u, B, S) is a pair (α, β) where α is a mapping

from V to Z and β is a mapping from B to {&,⊥}.

Definition 2 (Satisfiability). Let (V,,u, B, S) be a CSP. A clause C∈C(V, B)
is satisfiable by an assignment (α, β) if the assignment makes the clause C be
true and (x) ≤ α(x) ≤ u(x) for all x ∈ V . We denote this satisfiability relation
as follows.

(α, β) |= C

A clause C is satisfiable if C is satisfiable by some assignment.
A set of clauses is satisfiable when all clauses in the set are satisfiable by

the same assignment. A logical formula is satisfiable when its clausal form is
satisfiable. The CSP is satisfiable if S is satisfiable.

Finally, we define SAT as a special form of CSP.

Definition 3 (SAT). A SAT (Boolean Satisfiability Testing Problem) is a CSP
without integer variables, that is, (∅, ∅, ∅, B, S).

3 Encoding Finite Linear CSP to SAT

3.1 Converting Comparisons to Primitive Comparisons

In this section, we will explain a method to transform a comparison into primitive
comparisons.

A primitive comparison is a comparison in the form of x ≤ c where x is an
integer variable and c is an integer satisfying (x) − 1 ≤ c ≤ u(x). In fact, it is
possible to restrict the range of c to (x) ≤ c ≤ u(x) − 1 since x ≤ (x) − 1 is
always false and x ≤ u(x) is always true. However, we use the wider range to
simplify the discussion.

Let us consider a comparison of x + y ≤ 7 when (x) = (y) = 0 and u(x) =
u(y) = 6. As shown in Figure 1, the comparison can be equivalently expressed as
(x ≤ 1∨y ≤ 5)∧(x ≤ 2∨y ≤ 4)∧(x ≤ 3∨y ≤ 3)∧(x ≤ 4∨y ≤ 2)∧(x ≤ 5∨y ≤ 1)
in which 10 black dotted points are contained as satisfiable assignments since
0 ≤ x, y ≤ 6. Please note that conditions (x ≤ 1 ∨ y ≤ 5) and (x ≤ 5 ∨ y ≤ 1),
which are equivalent to y ≤ 5 and x ≤ 5 respectively, are necessary to exclude
cases of x = 2, y = 6 and x = 6, y = 2.

Now, we will show the following lemma before describing the conversion to
primitive comparisons in general.
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Fig. 1. Converting x + y ≤ 7 to primitive comparisons

Lemma 1. Let (V, , u, B, S) be a CSP, then for any assignment (α, β) of the
CSP, for any linear expressions e, f ∈ E(V ), and for any integer c ≥ (e)+ (f),
the following holds.

(α, β) |= e + f ≤ c

⇐⇒ (α, β) |=
∧

a+b=c−1

(e ≤ a ∨ f ≤ b)

Parameters a and b range over Z satisfying a + b = c − 1, (e)− 1 ≤ a ≤ u(e),
and (f) − 1 ≤ b ≤ u(f). The conjunction represents & if there are no such a
and b.

Proof. (=⇒) From the hypotheses and the definition of satisfiability, we get
α(e)+α(f) ≤ c, (e) ≤ α(e) ≤ u(e), and (f) ≤ α(f) ≤ u(f). Let a and b be any
integers satisfying a + b = c− 1, (e)− 1 ≤ a ≤ u(e), and (f)− 1 ≤ b ≤ u(f).
If there are no such a and b, the conclusion holds.

If α(e) ≤ a, e ≤ a in the conclusion is satisfied. Otherwise, f ≤ b in the
conclusion is satisfied since α(f) ≤ c−α(e) ≤ c− a− 1 = (a+ b+1)− a− 1 = b.
Therefore, e ≤ a ∨ f ≤ b is satisfied for any a and b.

(⇐=) From the hypotheses, α(e) ≤ a ∨ α(f) ≤ b is true for any a and b
satisfying a + b = c− 1, (e)− 1 ≤ a ≤ u(e), and (f)− 1 ≤ b ≤ u(f). From the
definition of satisfiability, we also have (e) ≤ α(e) ≤ u(e) and (f) ≤ α(f) ≤
u(f). Now, we show the conclusion through a proof by contradiction. Assume
that α(e) + α(f) > c which is the negation of the conclusion.

When α(e) ≥ c− (f) + 1, we choose a = c− (f) and b = (f)− 1. It is easy
to check the conditions (e)−1 ≤ a ≤ u(e) and (f)−1 ≤ b ≤ u(f) are satisfied,
and α(e) ≤ a ∨ α(f) ≤ b becomes false for such a and b, which contradicts the
hypotheses.
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When α(e) < c− (f)+ 1, we choose a = α(e)− 1 and b = c−α(e). It is easy
to check the conditions (e)−1 ≤ a ≤ u(e) and (f)−1 ≤ b ≤ u(f) are satisfied,
and α(e) ≤ a ∨ α(f) ≤ b becomes false for such a and b, which contradicts the
hypotheses. ��

The following proposition shows a general method to convert a (linear) compar-
ison into primitive comparisons.

Proposition 1. Let (V, , u, B, S) be a CSP, then for any assignment (α, β)
of the CSP, for any linear expression

∑n
i=1 ai xi ∈ E(V ), and for any integer

c ≥ (
∑n

i=1 ai xi) the following holds.

(α, β) |=
n∑

i=1

ai xi ≤ c

⇐⇒ (α, β) |=
∧

∑
n
i=1 bi=c−n+1

∨
i

(ai xi ≤ bi)#

Parameters bi’s range over Z satisfying
∑n

i=1 bi = c − n + 1 and (aixi) − 1 ≤
bi ≤ u(aixi) for all i. The translation ()# is defined as follows.

(a x ≤ b)# ≡

⎧⎪⎪⎨⎪⎪⎩
x ≤

⌊
b

a

⌋
(a > 0)

¬
(

x ≤
⌈

b

a

⌉
− 1

)
(a < 0)

Proof. The satisfiability of
∑

ai xi ≤ c is equivalent to the satisfiability of∧∨
(ai xi ≤ bi) from Lemma 1, and the satisfiability of each ai xi ≤ bi is

equivalent to the satisfiability of (ai xi ≤ bi)#. ��

Therefore, any comparison literal
∑

ai xi ≤ c in a CSP can be converted to a
CNF (product-of-sums) formula of primitive comparisons (or Boolean constants)
without changing its satisfiability. Please note that the comparison literal should
occur positively in the CSP to perform this conversion.

Example 1. When (x) = (y) = (z) = 0 and u(x) = u(y) = u(z) = 3, com-
parison x + y < z − 1 is converted into (x ≤ −1 ∨ y ≤ −1 ∨ ¬(z ≤ 1)) ∧ (x ≤
−1∨ y ≤ 0∨¬(z ≤ 2))∧ (x ≤ −1∨ y ≤ 1∨¬(z ≤ 3))∧ (x ≤ 0∨ y ≤ −1∨¬(z ≤
2)) ∧ (x ≤ 0 ∨ y ≤ 0 ∨ ¬(z ≤ 3)) ∧ (x ≤ 1 ∨ y ≤ −1 ∨ ¬(z ≤ 3)).

3.2 Encoding to SAT

As shown in the previous subsection, any (finite linear) CSP can be converted
into a CSP with only primitive comparisons.

Now, we eliminate each primitive comparison x ≤ c (x ∈ V , (x) − 1 ≤ c ≤
u(x)) by replacing it with a newly introduced Boolean variable p(x, c) which is
chosen from B. We denote a set of these new Boolean variables as follows.

B′ = {p(x, c) | x ∈ V, (x) − 1 ≤ c ≤ u(x)}
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We also need to introduce the following axiom clauses A(x) for each integer
variable x in order to represent the bound and the order relation.

A(x) = {{¬p(x, (x)− 1)}, {p(x, u(x))}}
∪ {{¬p(x, c− 1), p(x, c)} | (x) ≤ c ≤ u(x)}

As previously described, clauses of {¬p(x, (x) − 1)} and {p(x, u(x))} are
redundant. However, these will be removed in the early stage of SAT solving
and will not much affect the performance of the solver.

Proposition 2. Let (V, , u, B, S) be a CSP with only primitive comparisons,
let S∗ be a clausal form formula obtained from S by replacing each primitive
comparison x ≤ c with p(x, c), and let A =

⋃
x∈V A(x). Then, the following

holds.

(V, , u, B, S) is satisfiable
⇐⇒ (∅, ∅, ∅, B ∪B′, S∗ ∪A) is satisfiable

Proof. (=⇒) Since (V, , u, B, S) is satisfiable, there is an assignment (α, β) which
makes S be true and (x) ≤ α(x) ≤ u(x) for all x ∈ V . We extend the mapping
β to β∗ as follows.

β∗(p) =
{

β(p) (p ∈ B)
α(x) ≤ c (p = p(x, c) ∈ B′)

Then an assignment (α, β∗) satisfies S∗ ∪A.
(⇐=) From the hypotheses, there is an assignment (∅, β) which makes S∗∪A

be true. We define a mapping α as follows.

α(x) = min {c | (x) ≤ c ≤ u(x), p(x, c)}

It is straightforward to check the assignment (α, β) satisfies S. ��

3.3 Keeping Clausal Form

When encoding a clause of CSP to SAT, the encoded formula is no more a clausal
form in general.

Consider a case of encoding a clause {x− y ≤ −1,−x+ y ≤ −1} which means
x �= y. Each of x − y ≤ −1 and −x + y ≤ −1 is encoded into a CNF formula
of primitive comparisons. Therefore, when we expand the conjunctions to get a
clausal form, the number of obtained clauses is the multiplication of two numbers
of primitive comparisons.

As it is well known, introduction of new Boolean variables is useful to reduce
the size. Suppose {c1, c2, . . . , cn} is a clause of original CSP where ci’s are com-
parison literals, and {Ci1, Ci2, . . . , Cini} is an encoded CNF formula (in clausal
form) of ci for each i.



596 N. Tamura et al.

We introduce new Boolean variables p1, p2, . . . , pn chosen from B, and replace
the original clause with {p1, p2, . . . , pn}. We also introduce new clauses {¬pi} ∪
Cij for each 1 ≤ i ≤ n and 1 ≤ j ≤ ni.

This conversion does not affect the satisfiability which can be shown from the
following Lemma.

Lemma 2. Let (V, , u, B, S) be a CSP, {L1, L2, . . . , Ln} be a clause of the CSP,
and p1, p2, . . . , pn be new Boolean variables. Then, the following holds.

{L1, L2, . . . , Ln} is satisfiable
⇐⇒ {{p1, p2, . . . , pn} {¬p1, L1}, {¬p2, L2}, . . . , {¬pn, Ln}} is satisfiable

Proof. (=⇒) From the hypotheses, there is an assignment (α, β) which satisfies
some Li. We extend the mapping β so that β(pi) = & and β(pj) = ⊥ (j �= i).
Then, the assignment satisfies converted clauses.

(⇐=) From the hypotheses, there is an assignment (α, β) which satisfies some
pi. The assignment also satisfies {¬pi, Li}, and therefore Li. Hence the conclusion
holds. ��

Example 2. Consider an example of encoding a clause {x−y ≤ −1,−x+y ≤ −1}
when (x) = (y) = 0 and u(x) = u(y) = 2. x − y ≤ −1 and −x + y ≤ −1
are converted into S1 = (p(x,−1) ∨ ¬p(y, 0)) ∧ (p(x, 0) ∨ ¬p(y, 1)) ∧ (p(x, 1) ∨
¬p(y, 2)) and S2 = (¬p(x, 2)∨p(y, 1))∧(¬p(x, 1)∨p(y, 0))∧(¬p(x, 0)∨p(y,−1))
respectively. Expanding S1 ∨ S2 generates 9 clauses. However, by introducing
new Boolean variables p and q, we obtain the following seven clauses.

{p, q}
{¬p, p(x,−1),¬p(y, 0)} {¬p, p(x, 0),¬p(y, 1)} {¬p, p(x, 1),¬p(y, 2)}
{¬q,¬p(x, 2), p(y, 1)} {¬q,¬p(x, 1), p(y, 0)} {¬q,¬p(x, 0), p(y,−1)}

3.4 Size of the Encoded SAT Problem

Usually the size of the encoded SAT problem becomes large.
Suppose the number of integer variables is n, and the size of integer variable

domains is d, that is, d = u(x) − (x) + 1 for all x ∈ V . Then the size of newly
introduced Boolean variables B′ is O(n d), the size of axiom clauses A is also
O(n d), and the number of literals in each axiom clause is at most two.

Each comparison
∑m

i=1 ai xi ≤ c will be encoded into O(dm−1) clauses in
general by Proposition 1.

However, it is possible to reduce the number of integer variables in each com-
parison at most three. For example, x1 + x2 + x3 + x4 ≤ c can be replaced with
x + x3 + x4 ≤ c by introducing a new integer variable x and new constraints
x− x1 − x2 ≤ 0 and −x + x1 + x2 ≤ 0, that is, x = x1 + x2.

Therefore, each comparison
∑m

i=1 ai xi ≤ c can be encoded by at most O(d2)+
O(md) clauses even when m ≥ 4, and the number of literals in each clause is at
most four (three for integer variables and one for the case handling described in
the previous subsection).
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(pij) =

⎛⎝ 661 6 333
168 489 343
171 505 324

⎞⎠
Fig. 2. OSS benchmark instance gp03-01

4 Encoding Finite Linear COP to SAT

Definition 4 (Finite linear COP). A (finite linear) COP (Constraint Opti-
mization Problem) is defined as a tuple (V, , u, B, S, v) where

(1) (V, , u, B, S) is a finite linear CSP, and
(2) v ∈ V is an integer variable representing the objective variable to be min-

imized (without loss of generality we assume COPs as minimization prob-
lems).

The optimal value of COP (V, , u, B, S, v) can be obtained by repeatedly solving
CSPs.

min {c | (v) ≤ c ≤ u(v), CSP (V, , u, B, S ∪ {{v ≤ c}}) is satisfiable}

Of course, instead of linear search, binary search method is useful to find the
optimal value efficiently as used in previous works [10,11,12].

It is also possible to encode COP to SAT once at first, and repeatedly modify
only the clause {v ≤ c} for a given c. This procedure substantially reduces the
time spent for encoding.

5 Solving OSS

In order to show the applicability of our method, we applied it to OSS (Open-
Shop Scheduling) problems. There are three well-known sets of OSS benchmark
problems by Guéret and Prins [15] (80 instances denoted by gp*), Taillard [16]
(60 instances denoted by tai_*), and Brucker et al. [17] (52 instances denoted
by j*), which are also used in [18,19,20].

Some problems in these benchmark sets are very hard to solve. Actually,
three instances (j7-per0-0, j8-per0-1, and j8-per10-2) are still open, and 37
instances are closed recently in 2005 by complete MCS-based search solver of
ILOG [20].

Representing OSS problem as CSP is straightforward. Figure 2 defines a
benchmark instance gp03-01 of 3 jobs and 3 machines. Each element pij repre-
sents the process time of the operation Oij (0 ≤ i, j ≤ 2). The instance gp03-01
can be represented as a CSP of 27 clauses as shown in Figure 3.

In the figure, integer variables m represents the makespan and each sij rep-
resents the start time of each operation Oij . Clauses {sij + pij ≤ m} represent
deadline constraint such that operations should be completed before m. Clauses
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{s00 + 661 ≤ m} {s01 + 6 ≤ m} {s02 + 333 ≤ m}
{s10 + 168 ≤ m} {s11 + 489 ≤ m} {s12 + 343 ≤ m}
{s20 + 171 ≤ m} {s21 + 505 ≤ m} {s22 + 324 ≤ m}

{s00 + 661 ≤ s01, s01 + 6 ≤ s00} {s00 + 661 ≤ s02, s02 + 333 ≤ s00}
{s01 + 6 ≤ s02, s02 + 333 ≤ s01} {s10 + 168 ≤ s11, s11 + 489 ≤ s10}

{s10 + 168 ≤ s12, s12 + 343 ≤ s10} {s11 + 489 ≤ s12, s12 + 343 ≤ s11}
{s20 + 171 ≤ s21, s21 + 505 ≤ s20} {s20 + 171 ≤ s22, s22 + 324 ≤ s20}
{s21 + 505 ≤ s22, s22 + 324 ≤ s21} {s00 + 661 ≤ s10, s10 + 168 ≤ s00}
{s00 + 661 ≤ s20, s20 + 171 ≤ s00} {s10 + 168 ≤ s20, s20 + 171 ≤ s10}

{s01 + 6 ≤ s11, s11 + 489 ≤ s01} {s01 + 6 ≤ s21, s21 + 505 ≤ s01}
{s11 + 489 ≤ s21, s21 + 505 ≤ s11} {s02 + 333 ≤ s12, s12 + 343 ≤ s02}
{s02 + 333 ≤ s22, s22 + 324 ≤ s02} {s12 + 343 ≤ s22, s22 + 324 ≤ s12}

Fig. 3. CSP representation of gp03-01

{sij +pij ≤ skl, skl +pkl ≤ sij} represent resource capacity constraint such that
the operation Oij and Okl should not be overlapped each other.

Before encoding the CSP to SAT, we also need to determine the lower and
upper bound of integer variables. We used the following values  and u (where
n is the number of jobs and machines).

 = max

⎛⎝ max
0≤i<n

∑
0≤j<n

pij , max
0≤j<n

∑
0≤i<n

pij

⎞⎠
u =

∑
0≤k<n

max
(i−j) mod n=k

pij

The value u is used for the upper bound of sij ’s and m, and the value  is used
for the lower bound of m (the lower bound 0 is used for sij ’s). For example,
 = 1000 and u = 1509 for the instance gp03-01.

We developed a program called CSP2SAT which encodes a CSP representation
(of a given OSS problem) into SAT and repeatedly invokes a complete SAT
solver to find the optimal solution by binary search1. We used MiniSat [5] as the
backend complete SAT solver because it is known to be very efficient (MiniSat
is a winner of all industrial categories of the SAT 2005 competition).

We run CSP2SAT for all 192 instances of the three benchmark sets on In-
tel Xeon 2.8GHz 4GB memory machine with the time limit of 3 hours (10800
seconds).

Figures 7, 8, and 9 provides the results. The column named “Optim.” describes
the optimal value found by the program, and “CPU” describes the total CPU
time in seconds including encoding process. The column named “SAT” describes
the numbers of Boolean variables and clauses in the encoded SAT problem.
Although time spent for encoding is not shown separately in the figures, it ranges
from 1 second to 1163 seconds and fits linearly with the number of clauses in
the encoded SAT program.
1 The program will be available at http://bach.istc.kobe-u.ac.jp/csp2sat/
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(sij) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

247 296 110 618 537 31 500 127
815 50 328 274 311 672 550 6

1 583 120 339 876 842 675 58
293 669 5 72 250 502 403 994
286 517 870 594 612 347 0 297
404 252 73 28 83 25 300 734
707 997 560 12 48 87 842 340
53 6 703 285 342 872 526 547

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 4. Optimal Scheduling of j8-per10-2 found by CSP2SAT
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Fig. 5. Log scale plot of the number of clauses and the CPU time

Instance Makespan Previously known bounds
Lower bound Upper bound

j7-per0-0 1048 1039 1048
j8-per0-1 1039 1018 1039
j8-per10-2 1002 1000 1009

Fig. 6. New results found and proved to be optimal

CSP2SAT found the optimal solutions for 189 known problems and one un-
known problem (j8-per10-2) within 3 hours.

The known upper bound of j8-per10-2 was 1009. CSP2SAT improved the
result to 1002 and proved there are no solutions for 1001. Figure 4 shows the
start times sij of the optimal scheduling found by the program.
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Instance Optim. CPU SAT
Variables Clauses

gp03-01 1168 3 14155 61133
gp03-02 1170 3 13945 59978
gp03-03 1168 3 13945 59978
gp03-04 1166 3 13995 60253
gp03-05 1170 3 13855 59483
gp03-06 1169 3 13915 59813
gp03-07 1165 3 13925 59868
gp03-08 1167 3 13955 60033
gp03-09 1162 3 14075 60693
gp03-10 1165 3 13945 59978
gp04-01 1281 10 28097 179010
gp04-02 1270 13 33928 223257
gp04-03 1288 9 28182 179655
gp04-04 1261 12 32925 215646
gp04-05 1289 10 27927 177720
gp04-06 1269 9 27383 173592
gp04-07 1267 9 25955 162756
gp04-08 1259 9 26516 167013
gp04-09 1280 9 26737 168690
gp04-10 1263 13 37736 252153
gp05-01 1245 36 72727 643703
gp05-02 1247 33 65993 578694
gp05-03 1265 37 75457 670058
gp05-04 1258 23 50497 429098
gp05-05 1280 33 68151 599527
gp05-06 1269 37 74131 657257
gp05-07 1269 32 68801 605802
gp05-08 1287 28 55489 477290
gp05-09 1262 35 70387 621113
gp05-10 1254 33 69009 607810
gp06-01 1264 57 96410 1038543
gp06-02 1285 65 106659 1158484
gp06-03 1255 72 115317 1259806
gp06-04 1275 63 104957 1138566
gp06-05 1299 65 107806 1171907
gp06-06 1284 65 106400 1155453
gp06-07 1290 77 119091 1303972
gp06-08 1265 71 113726 1241187
gp06-09 1243 72 118943 1302240
gp06-10 1254 57 95559 1028584

Instance Optim. CPU SAT
Variables Clauses

gp07-01 1159 99 137537 1761090
gp07-02 1185 148 188537 2461830
gp07-03 1237 132 179037 2331300
gp07-04 1167 131 176437 2295576
gp07-05 1157 141 182137 2373894
gp07-06 1193 127 166587 2160237
gp07-07 1185 102 141187 1811241
gp07-08 1180 144 184787 2410305
gp07-09 1220 150 194437 2542896
gp07-10 1270 127 171837 2232372
gp08-01 1130 160 186315 2762188
gp08-02 1135 190 216215 3233688
gp08-03 1110 197 215955 3229588
gp08-04 1153 227 242020 3640613
gp08-05 1218 247 259830 3921463
gp08-06 1115 175 203085 3026638
gp08-07 1126 204 229215 3438688
gp08-08 1148 183 207245 3092238
gp08-09 1114 189 213225 3186538
gp08-10 1161 203 227980 3419213
gp09-01 1129 323 317881 5423978
gp09-02 1110 327 291477 4954180
gp09-03 1115 395 357077 6121380
gp09-04 1130 340 322063 5498387
gp09-05 1180 362 333871 5708483
gp09-06 1093 401 359455 6163691
gp09-07 1090 339 325507 5559665
gp09-08 1105 349 321325 5485256
gp09-09 1123 316 286803 4871017
gp09-10 1110 355 310993 5301422
gp10-01 1093 470 353491 6705492
gp10-02 1097 526 412677 7878078
gp10-03 1081 535 376317 7157718
gp10-04 1077 515 378438 7199739
gp10-05 1071 515 358743 6809544
gp10-06 1071 508 410960 7844061
gp10-07 1079 523 408839 7802040
gp10-08 1093 498 392578 7479879
gp10-09 1112 541 434897 8318298
gp10-10 1092 656 483276 9276777

Fig. 7. Results for benchmark instances provided by Guéret and Prins

Figure 5 provides the log scale plot of the number of clauses in the encoded
SAT problem (x-axis) and the total CPU time (y-axis) for 190 problems. The
mark + is used for gp* benchmarks, × is used for tai* benchmarks, and 0 is
used for j* benchmarks. Dotted line is a plot of y = 0.00006x.

Except some instances of j* benchmarks, it seems the total CPU time linearly
fits with the number of clauses. This shows that the encoding used in this paper
is natural and does not uselessly increase the complexity for SAT solver.

For the remaining two open problems j7-per0-0 and j8-per0-1, we solved
and proved their optimal values by using 10 Mac mini machines (PowerPC G4
1.42GHz 1GB memory) running in parallel on Xgrid system [21] and by divid-
ing the problem into 120 subproblems where each subproblem is obtained by
specifying the order of six operations. Optimal solutions were found and proved
for both of the two remaining instances within 13 hours.

Figure 6 summarizes the newly obtained results. All three remaining open
problems in [18,19,20] are now closed.
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Instance Optim. CPU SAT
Variables Clauses

tai 4x4 1 193 2 5043 31706
tai 4x4 2 236 1 4643 27426
tai 4x4 3 271 2 5460 32925
tai 4x4 4 250 2 5358 32341
tai 4x4 5 295 2 6081 36418
tai 4x4 6 189 2 4721 29194
tai 4x4 7 201 2 4743 29188
tai 4x4 8 217 2 5629 35110
tai 4x4 9 261 2 5328 31517
tai 4x4 10 217 2 5611 35444
tai 5x5 1 300 6 11526 94098
tai 5x5 2 262 5 10110 82314
tai 5x5 3 323 6 11318 90297
tai 5x5 4 310 5 11047 88190
tai 5x5 5 326 6 10356 80906
tai 5x5 6 312 5 10942 87344
tai 5x5 7 303 6 10951 87906
tai 5x5 8 300 6 11009 88852
tai 5x5 9 353 6 11940 94884
tai 5x5 10 326 7 11344 90508
tai 7x7 1 435 21 30952 370295
tai 7x7 2 443 24 31244 372853
tai 7x7 3 468 30 31669 374258
tai 7x7 4 463 20 31224 370305
tai 7x7 5 416 22 30171 360661
tai 7x7 6 451 45 30986 367026
tai 7x7 7 422 33 32415 389596
tai 7x7 8 424 20 30863 370287
tai 7x7 9 458 21 31929 380761
tai 7x7 10 398 20 29939 359194

Instance Optim. CPU SAT
Variables Clauses

tai 10x10 1 637 98 94183 1678890
tai 10x10 2 588 95 95343 1716326
tai 10x10 3 598 92 92303 1651992
tai 10x10 4 577 92 91314 1639647
tai 10x10 5 640 96 93978 1677177
tai 10x10 6 538 95 91151 1642608
tai 10x10 7 616 103 92285 1648788
tai 10x10 8 595 95 91094 1631685
tai 10x10 9 595 97 94528 1697235
tai 10x10 10 596 95 93315 1674220
tai 15x15 1 937 523 309784 8563684
tai 15x15 2 918 567 325397 9026993
tai 15x15 3 871 543 315726 8767426
tai 15x15 4 934 560 326511 9067128
tai 15x15 5 946 541 323109 8940331
tai 15x15 6 933 560 326512 9067214
tai 15x15 7 891 566 322034 8943618
tai 15x15 8 893 546 319320 8866998
tai 15x15 9 899 568 324060 8998985
tai 15x15 10 902 586 325865 9053491
tai 20x20 1 1155 3105 775142 29178719
tai 20x20 2 1241 3559 777061 29153596
tai 20x20 3 1257 2990 770228 28898989
tai 20x20 4 1248 3442 779059 29238508
tai 20x20 5 1256 3603 785066 29485803
tai 20x20 6 1204 2741 773489 29073596
tai 20x20 7 1294 2912 779414 29225385
tai 20x20 8 1169 2990 778336 29262619
tai 20x20 9 1289 3204 785835 29493666
tai 20x20 10 1241 3208 770645 28917758

Fig. 8. Results for benchmark instances provided by Taillard

Instance Optim. CPU SAT
Variables Clauses

j3-per0-1 1127 2 10805 42708
j3-per0-2 1084 5 20335 95123
j3-per10-0 1131 3 12675 53453
j3-per10-1 1069 3 15335 68062
j3-per10-2 1053 4 15355 68341
j3-per20-0 1026 2 10015 39923
j3-per20-1 1000 2 9245 35496
j3-per20-2 1000 4 15755 71137
j4-per0-0 1055 7 22062 133215
j4-per0-1 1180 11 32160 209841
j4-per0-2 1071 8 26057 163530
j4-per10-0 1041 10 29457 190740
j4-per10-1 1019 7 22538 137589
j4-per10-2 1000 9 26057 164892
j4-per20-0 1000 10 28726 186429
j4-per20-1 1004 9 26074 165849
j4-per20-2 1009 9 26822 171525
j5-per0-0 1042 28 40825 335726
j5-per0-1 1054 28 58687 508163
j5-per0-2 1063 26 44127 367603
j5-per10-0 1004 18 39967 329523
j5-per10-1 1002 17 37653 307928
j5-per10-2 1006 16 36509 296700
j5-per20-0 1000 17 38329 315830
j5-per20-1 1000 27 56607 492707
j5-per20-2 1012 25 51485 442196

Instance Optim. CPU SAT
Variables Clauses

j6-per0-0 1056 817 63443 652740
j6-per0-1 1045 57 92340 990913
j6-per0-2 1063 57 75801 797362
j6-per10-0 1005 52 67661 705462
j6-per10-1 1021 46 76467 808206
j6-per10-2 1012 51 77799 823964
j6-per20-0 1000 60 69400 727773
j6-per20-1 1000 46 75431 798740
j6-per20-2 1000 40 66181 692002
j7-per0-0 – – 85887 1051419
j7-per0-1 1055 428 109837 1380492
j7-per0-2 1056 292 113537 1431330
j7-per10-0 1013 332 108687 1368170
j7-per10-1 1000 121 107087 1347411
j7-per10-2 1011 1786 93887 1165467
j7-per20-0 1000 66 95487 1193523
j7-per20-1 1005 132 125087 1595847
j7-per20-2 1003 132 107987 1361349
j8-per0-1 – – 145495 2118473
j8-per0-2 1052 870 177995 2630988
j8-per10-0 1017 2107 168310 2481679
j8-per10-1 1000 8346 140620 2047787
j8-per10-2 1002 7789 136655 1984646
j8-per20-0 1000 148 139255 2030756
j8-per20-1 1000 136 149265 2191364
j8-per20-2 1000 144 145300 2125157

Fig. 9. Results for benchmark instances provided by Brucker et al.



602 N. Tamura et al.

6 Conclusion

In this paper, we proposed a method to encode Constraint Satisfaction Prob-
lems (CSP) and Constraint Optimization Problems (COP) with integer linear
constraints into Boolean Satisfiability Testing Problems (SAT).

To evaluate the effectiveness of the encoding, we applied the method to Open-
Shop Scheduling Problems (OSS). All 192 instances in three OSS benchmark
sets are examined, and our program found and proved the optimal results for all
instances including three previously undecided problems.
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Abstract. Invariants that incrementally maintain the value of expres-
sions under assignments to their variables are a natural abstraction to
build high-level local search algorithms. But their functionalities are not
sufficient to allow arbitrary expressions as constraints or objective func-
tions as in constraint programming. Differentiable invariants bridge this
expressiveness gap. A differentiable invariant maintains the value of an
expression and its variable gradients, it supports differentiation to evalu-
ate the effect of local moves. The benefits of differentiable invariants are
illustrated on a number of applications which feature complex, possibly
reified, expressions and whose models are essentially similar to their CP
counterparts. Experimental results demonstrate their practicability.

1 Introduction

Local search algorithms approach the solving of combinatorial optimization prob-
lems by moving from solutions to solutions until a feasible solution or a high-
quality solution is found. These algorithms typically maintain sophisticated data
structures to evaluate or to propagate the effect of local moves quickly. Since, in
general, the neighborhood does not vary dramatically when moving from one so-
lution to one of its neighbors, these incremental data structures may significantly
speed up local search algorithms.

Invariants were introduced in Localizer [3] to automate the tedious and
error-prone implementation of incremental data structures. An invariant declar-
atively specifies a (numerical, set, or graph) expression whose value must be
maintained incrementally under local moves. Invariants were shown to be in-
strumental in simplifying the implementation of many local search algorithms.
However, the resulting algorithms were still not expressed at a similar level of
abstraction as constraint programming (CP) approaches for the same problems.
This recognition led to the concept of differentiable objects [5,8] which have
emerged as the cornerstone of constraint-based local search (CBLS). In CBLS,
objective functions and constraints, which are differentiable objects, not only
maintain the value of an expression: they also maintain variable gradient (e.g.,
to determine how the expression value increases/decreases by changing a vari-
able) and support differentiation (e.g., to assess the effect of a local move on
the expression value). Although differentiable objects are often implemented us-
ing invariants (see [8] for some examples), it is still cumbersome, difficult, and
repetitive to derive correct invariants for a given differentiable object.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 604–619, 2006.
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This paper aims at bridging the expressiveness gap between invariants and
differentiable objects by providing systematic ways of deriving differential objec-
tives and constraints. It proposes the concept of differentiable invariant that au-
tomatically lifts an arbitrarily complex expression into a differentiable objective
function. Like invariants, the resulting objective function incrementally main-
tains the value of the expression. Unlike invariants, it also maintains variable
gradients (to determine how much a variable may increase/decrease the value of
the expression) and supports the differentiability (to determine the effect of local
moves on the expression value). Moreover, since a differentiable constraint can be
seen as differentiable objective function maintaining its violations, differentiable
invariants automatically lift arbitrarily complex relations into differentiable con-
straints. The resulting differentiable constraints maintain the violations of the
relations, their variable violations (to determine how much a variable may in-
crease/decrease the violations), and support differentiability.

As a consequence, differentiable invariants bring two main benefits for CBLS.
First, expressions can now be used to state complex idiosyncratic constraints
and objectives declaratively, a functionality that have accounted for much of
the industrial success of constraint programming and that relieves programmers
from deriving specific invariants and algorithms for each possible expressions.
In other words, in the same way as CP languages perform domain reduction
on arbitrary expressions, Comet now allows arbitrary expressions and relations
as differentiable invariants, maintaining their values, their violations, and their
variable gradients, as well as supporting differentiability. Second, differentiable
invariants allow CBLS and CP models to be remarkably close since both now
feature a similar, rich language for stating constraints and objectives.

The rest of this paper illustrates the concept of differentiable invariants, de-
scribes their implementation, and reports experimental results. Sections 2–4
show how differentiable invariants are a natural vehicle for modeling the spa-
tially balanced latin square, scene allocation, and progressive party problems.
Sections 5–7 show how to implement differentiable invariants in stepwise refine-
ments, starting with their evaluations and gradients before presenting constraints
and their reification. Section 8 presents the experimental results.

2 Totally Spatially Balanced Latin Squares

The first application consists of generating spatially balanced scientific experi-
ment designs and, in particular, totally spatially balanced Latin squares [2].

The Problem: A latin square of size n is an n× n matrix in which each number
in 1..n appears exactly once in each row and column. The distance dr(v, w) of
a pair (v, w) in row r is the absolute difference of the column indices in which v
and w appear in row r. The total distance of a pair (v, w) is given by

d(v, w) =
n∑

r=1

dr(v, w).
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A Latin square is totally spatially balanced if

d(v, w) =
n(n + 1)

3
(1 ≤ k < l ≤ n).

Gomes et al [2] introduced this problem to the community and proposed both
local search and constraint programming solutions. Subsequently, Gomes [6] pro-
posed a streamlined local search which solves large instances rapidly by permut-
ing columns. This section only considers the local search in [2] since it raises
more interesting modeling issues (for our purposes) and motivated our initial
research on differentiable invariants.

The Model: The model uses a variable col [r, v] to denote the column of value v in
row. The (latin square) constraint that a value v appears in exactly one column
is expressed by an alldifferent constraint alldifferent (col [1, v], ..., col [n, v]). The
(latin square) constraint that all the values in a row are different is an (implicit)
hard constraint. It holds initially by assigning all rows to a permutation of 1..n
and is maintained during the search by the local moves. The constraint that
the Latin square be totally spatially balanced is soft and is transformed into an
objective function. Hence the goal is to find a latin square minimizing

O =
∑

1≤v<w≤n

(
d(v, w) − n(n + 1)

3
)2
.

Since the column constraint is a soft constraint as well, the overall problem can
then viewed as minimizing the objection function n× viol(S ) + O where viol(S)
denotes the violations of the soft constraints and is weighted by n.

The Search: The local search is a tabu procedure swapping the position of two
values on the same row. The best non-tabu move is selected at each step. The
local search also uses an intensification component and a restart strategy.

The Comet Program: Figure 1 depicts the Comet statement. The declaration
of data and decision variables are in lines 1–8. The soft constraints are specified
in lines 9–11. The objective for spatial balance is in lines 12–14. The global
objective is in line 15. The search procedure is in line 17–27. The Comet program
is almost a one-to-one mapping of the informal description presented earlier
and we review some of its components now. The matrix of decision variables is
declared in line 4. All variables have a domain 1..n and each row is initialized by
a random permutation (lines 5–8). A constraint system S is declared in line 9 and
it contains all the soft constraints expressing that a value v appears atmost once
in each column. The objective function for balancing the latin square spatially
is specified in line 12. Variable OS (declared in line 12) is a sum of objectives,
one for each pair of values (v,w) to express their relative balance, i.e.,

((sum(r in R) (abs(col[r,v] - col[r,w])))-balance)^2
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Such an objective is a differentiable invariant involving absolute values, a sub-
traction, a square function, and an aggregate operator. The value of the ex-
pression is maintained incrementally under changes to its variables (i.e., all the
decision variables col[r,w] and col[r,w] associated with values v and w). More-
over, the objective is differentiable and can be queried to evaluate the effect of
local moves. Finally, it also maintains gradient information to estimate how much
each variable may increase or decrease its value. Observe also that the expres-
sion involves absolutes values and a square function. The soft constraints are
transformed into an objective function in line 15, specifying the overall objective
O that combines the weighted violations of the soft constraints with the sum of
the balance objectives.

(Part of) the tabu search is depicted in lines 17–27. As long as O evaluates to
strictly positive value, the search selects the positions of the values v and w on
row r that are not tabu and whose swap produces the best value of the objec-
tive function. The call in line 22, i.e., O.getSwapDelta(col[r,v],col[r,w]),
is particularly interesting, as it queries the soft constraints and the objectives to
evaluate the candidate swap. This ability to estimate the effect of loval moves on
arbitrary expressions is one of the novel contributions of differentiable invariants.

It is useful to emphasize that Comet enables a direct and natural formula-
tion of the model. The constraints and objective functions are expressed declar-
atively. Their violations and evaluations are maintained incrementally and can
be queried to assess the impact of local moves, providing the clean separation
between model and search typically associated with CP and CBLS. The novelty
for CBLS is the ability to use complex expressions as objectives.

3 Scene Allocation

The second application is the scene allocation problem [7].

The Problem: A scene allocation consists of deciding when to shoot scenes for
a movie. Each scene involves a number of actors and each actor may appear in
a number of different scenes. All actors of a scene must be present on the day
the scene is shot and at most 5 scenes a day can be filmed. The actors have fees
representing the amount to be paid per day they spent in the studio. The goal of
the application is to minimize the production costs while satisfying the capacity
constraints on the number of scenes per day.

The Model: The local search model is essentially the same as the CP model. It
associates a variable scene[s] with every scene s to represent the day s is filmed.
The objective function uses reification to decide whether to pay an actor on
a given day. The capacity on the scenes is an (implicit) hard constraint. It is
satisfied by the initial assignment and maintained through local moves.

The Local Search: The local search is again a tabu procedure whose local moves
swaps the days allocated to two scenes. Once again, the best non-tabu swap is
selected at each step. A restarting strategy is also used.
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1. int n = 8;

2. range R = 1..n;

3. int balance = n*(n+1)/3;

4. var{int} col[R,R](mgr,R);

5. forall(r in R) {
6. RandomPermutation p(R);

7. forall(v in R) col[r,v] := p.get();

8. }
9. ConstraintSystem S(mgr);

10. forall(v in R)

11. S.post(alldifferent(all(r in R) col[r,v]));

12. ObjectiveSum OS(mgr);

13. forall(v in R, w in R: v < w)

14. OS.post(((sum(r in R) (abs(col[r,v] - col[r,w])))-balance)^2);

15. Objective O = n * S + OS;

16. mgr.close();

17. int tabu[R,R,R] = -1;

18. int tabuLength = 10;

19. int it = 0;

20. while (O.evaluation() > 0) {
21. selectMin(r in R,v in R, w in R: v < w && tabu[r,v,w] <= it)

22. (O.getSwapDelta(col[r,v],col[r,w])) {
23. col[r,v] :=: col[r,w];

24. tabu[r,v,w] = it + tabuLength;

25. }
26. it++;

27. }

Fig. 1. A Simple Tabu-Search Algorithm for the Balanced Latin Square Problem

The Comet Program: The Comet program is (partially) depicted in Figure 2.
For space reasons, the search procedure is omitted but is essentially the same
as in the latin square application. Lines 1–8 declare and initialize the data. In
particular, they declare the scenes, the days, the actors (line 4), the actors’ fees
(line 5), and the actors appearing in the scenes (line 6). Line 8 also specifies the
scenes in which an actor appears, which is convenient to state the constraints.

The data and decision variables are declared in lines 9–17. A decision variable
scene[s] specifies the day scene s is scheduled and the scene are allocated
randomly initially (see lines 11–12). The most interesting part of the model is
the objective function O (declared in line 14) which sums the fees of all actors
on all days (lines 15–16). Each sub-objective thus represents the fee to be paid
by an actor a on a day d. It is expressed by the differentiable expression

pay[a] * (or(s in which[a]) scene[s] == d)

which uses reification to determine whether actor a plays on day d. More pre-
cisely, if a scene s in which[a] is scheduled on day d, the disjunction holds and
is reified to 1, in which case the amount is pay[a]. Otherwise, the disjunction
does not hold and is reified to 0.
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1. include "localSolver";

2. int maxScene = 19; range Scenes = 0..maxScene-1;

3. int maxDay = 5; range Days = 0..maxDay-1;

4. enum Actor = . . .;
5. int pay[Actor] = . . .;
6. set{Actor} appears[Scenes];

7. . . .
8. set{int} which[a in Actor] = setof(s in Scenes) member(a,appears[s]);

9. LocalSolver mgr();

10. var{int} scene[Scenes](mgr,Days);

11. RandomPermutation perm(Scenes);

12. forall(i in Scenes) scene[perm.get()] := i/maxDay;

13.

14. ObjectiveSum O(mgr);

15. forall(a in Actor, d in Days)

16. O.post(pay[a] * (or(s in which[a]) scene[s] == d));

Fig. 2. A Simple Tabu-Search Algorithm for the Scene Allocation Problem

What we find remarkable here is that the Comet model is almost identical to
the OPL model in [7]: the only difference (besides syntactical details) is the fact
that the cardinality constraint on the days is omitted since it holds initially and
is maintained by local moves. This similarity is possible because differentiable
invariants allows objective function to be complex reified expressions.

4 The Progressive Party Problem

Our last application is the progressive party problem which has been used several
times to illustrate constraint-based local search [5,9]. The motivation here is to
show that differentiable invariants can also be used to state constraints, providing
the equivalent for CBLS of high-order or meta-constraint in CP. The key insight
is to recognize that a constraint is nothing else but a differentiable invariant
maintaining its violations.

The Comet Program: The Comet program is (partially) depicted in Figure 3.
The search procedure can be found in earlier publications (e.g., [8]). The data is
described in lines 1–7 and the decision variables are declared and initialized in
lines 10–11. A decision variable boat[g,p] specifies the boat that group g visits
in period p. The core of the model are the constraints in line 12–18.

The novelty here is in how the model expresses that no two groups meet more
than once (in line 18). In [8], this constraint was expressed using a cardinality
operator atmost. The model above uses a meta-constraint

sum(p in Periods) (boat[i,p] == boat[j,p]) <= 1

which is the way it would probably be expressed using a traditional constraint-
programming tool such as OPL or Ilog Solver. The Comet implementation
automatically derives the constraint violations of the constraints, i.e.,
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1. include "LocalSolver";

2. int up = 6;

3. range Hosts = 1..13;

4. range Guests = 1..29;

5. range Periods = 1..up;

6. int cap[Hosts] = . . .;
7. int crew[Guests] = . . .;
8.

9. LocalSolver m();

10. UniformDistribution distr(Hosts);

11. var{int} boat[Guests,Periods](m,Hosts) := distr.get();

12. ConstraintSystem S(m);

13. forall(g in Guests)

14. S.post(2 * alldifferent(all(p in Periods) boat[g,p]));

15. forall(p in Periods)

16. S.post(2 * knapsack(all(g in Guests) boat[g,p],crew,cap));

17. forall(i in Guests, j in Guests : j > i)

18. S.post(sum(p in Periods) (boat[i,p] == boat[j,p]) <= 1);

Fig. 3. A Comet Model for the Progressive Party Problem

max(0,sum(p in Periods) (boat[i,p] == boat[j,p]) - 1)

which is a differentiable invariant involving, once again, reification. Note also that
the Comet implementation must automatically derive the variable violations for
these constraints, since the search procedure first selects variable with the most
violations before choosing the value decreasing the violations the most. This
highlights the benefits of differentiable invariants: they let programmers state
constraints declaratively while systematically deriving their violations, their vari-
able violations, and differentiation algorithms. How this is achieved is the topic
of the next sections.

5 Expressions as Differentiable Objective Functions

As mentioned earlier, a differentiable invariant transforms an expression into
a differentiable objective function. The syntax of the expressions used in this
paper is given in Figure 4. Differentiable invariants must thus implement, for
any such expression, the interface of objective functions depicted in 5. Method
evaluation specifies the value of the objective function, which is maintained by
invariants. Methods increase and decrease return gradient information for a
decision variable x, i.e., they estimate by how much the objective may increase
or decrease by re-assigning x. These gradients are also maintained incrementally.
Note that the ability of determining both increasing and decreasing gradients is
critical even if one is interested in minimization only. The next three methods
specify how the objective value evolve under local moves, i.e., the assignment of
a value to a variable, the swap of two variables, and the assignments of values
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v ∈ N ; x, y ∈ Variable; e ∈ Expression ;
e ::= v | x | e + e | e − e | e × e | min(e, e) | max(e, e) | −e | abs(e) | e2 | (e) | c

Fig. 4. The Syntax of Expressions (Partial Description)

interface Objective {
var{int} evaluation();

var{int} increase(var{int} x);

var{int} decrease(var{int} x);

int getAssignDelta(var{int} x,int v);

int getSwapDelta(var{int} x,var{int} y);

int getAssignDelta(var{int}[] x,var[] v);

var{int}[] getVariables();

}
Fig. 5. The Objective Interface in Comet (Partial Description)

to a set of variables. The rest of this section shows how to implement these
functionalities. Aggregate operations (e.g., for summation) can be viewed as
shorthands for multiple applications of the same operators and are not discussed
here for space reasons.

Evaluations Figure 6 shows how to evaluate an expression and how to maintain
it through invariants. In the figure, Eα[e] denotes the value of expression e under
variable assignment α and ie is the invariant maintaining Eα[e]. Both Eα[e] and ie
are defined by induction on the structure of expression e. In particular, there is one
invariant associated with every sub-expression in e, which is important to imple-
ment gradients and differentiations efficiently. In this paper, a variable assignment
is a function from variables to integers. Moreover, α[x/v] denotes the assignment
behaving like α except that x is now assigned to v. This notation may be general-
ized tomultiplevariables. These evaluations do not raise anydifficulty and the algo-
rithmstomaintain these invariants efficientlyarepresented in [4].Note thatmethod
evaluation in Figure 5 returns ie for the objective function associated with e.

Gradients. Many search procedures choose local moves by a two-step approach,
first selecting the variable to re-assign and then the new value. Typically, the
variable selection uses gradients, i.e., information on how much the objective
function or the violations may increase/decrease by changing the value of a vari-
able. Since such a variable selection takes place at every iteration of the local
search, such gradients are typically maintained incrementally in systems such as
Comet. The section shows how to evaluate and maintain gradients for the ex-
pressions depicted earlier. The gradients must satisfy the following inequalities:

x

↑
α
e ≥ max

v∈Dx

E
α[x/v]

[e]− E
α
[e] and

x

↓
α
e ≥ E

α
[e]− min

v∈Dx

E
α[x/v]

[e]

where Dx denotes the domain of variable x. Variable gradients thus provide
optimistic evaluations to the maximum increase/decrease of expression e by
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E
α
[v] = v iv ← v

E
α
[x] = α(x) ix ← x

E
α
[e1 + e2] = E

α
[e1] + E

α
[e2] ie1+e2 ← ie1 + ie2

E
α
[e1 − e2] = E

α
[e1] − E

α
[e2] ie1−e2 ← ie1 − ie2

E
α
[e1 × e2] = E

α
[e1] × E

α
[e2] ie1×e2 ← ie1 × ie2

E
α
[−e] = −E

α
[e] i−e ← −ie

E
α
[abs(e)] = abs(E

α
[e]) iabs(e) ← abs(ie)

E
α
[e2] = (E

α
[e])2 ie2 ← (ie)2

E
α
[min(e1, e2)] = min(E

α
[e1], E

α
[e2]) imin(e1,e2) ← min(ie1 , ie2)

E
α
[max(e1, e2)] = max(E

α
[e1], E

α
[e2]) imax(e1,e2) ← max(ie1 , ie2)

Fig. 6. The Evaluation of Expressions and their Underlying Invariants

re-assigning variable x only. It is critical to use optimistic evaluations since pes-
simistic evaluations may artificially reduce the connectivity of the neighborhood.
Many of the gradients satisfy these relations at equality. However, for efficiency
reasons, it may be beneficial to approximate the right-hand sides for complex
nonlinear expressions with multiple occurrences of the same variables. In the
following, the assignment α is implicit (unless specified otherwise). Similarly,
the gradients are always taken with respect to variable x, and y denotes a vari-
able different from x. The minimum and maximum values in the domain Dx of
variable x are denoted by mx and Mx.

Figure 7 depicts the evaluations of the gradients whose definitions are mutu-
ally recursive. It is useful to review some of the rules to convey the intuition. The
increasing gradient for subtraction, i.e., ↑[e1−e2] = ↑e1+↓e2, uses the increasing
gradient on e1 and the decreasing gradient on e2. The rule for absolute value
can be written as

↑[abs(e)] = max(abs(E[e] + ↑e), abs(E[e]− ↓e))− E[abs(e)].

It indicates that there are two ways to increase the absolute value of e: increase
or decrease e. The definition captures the increase and subtracts the current
value of e. The rule for square and for min/max are similar in spirit, while the
multiplication has a more complex case analysis due to the possible signs of the
underlying expressions. Observe also the base case for variable x which returns
the difference between Mx and α(x). The decreasing gradient for absolute value

↓[abs(e)] = if E[e] ≥ 0 then min(E[e], ↓e) else min(−E[e], ↑e)

is interesting. If E[e] ≥ 0, the gradient is obtained by decreasing e but the
decrease must be bounded by E[e] since zero is the smallest possible value.
Observe that the maximum decrease of abs(e) is not necessarily obtained by the
maximum decrease of e and hence the gradient is optimistic. The case E[e] < 0
is symmetric and obtained by increasing e up to −E[e].
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E[e]+ = E[e] + ↑e

E[e]− = E[e] − ↓e
↑[v] = 0
↑[y] = 0
↑[x] = Mx − α(x)
↑[e1 + e2] = ↑e1 + ↑e2

↑[e1 − e2] = ↑e1 + ↓e2

↑[−e] = ↓e

↑[abs(e)] = max(abs(E[e]+), abs(E[e]−)) − E[abs(e)]
↑[e2] = max((E[e] + ↑e)2, (E[e] − ↓e)2) − E[e2]
↑[max(e1, e2)] = max(E[e1]+, E[e2]+) − E[max(e1, e2)]
↑[min(e1, e2)] = min(E[e1]+, E[e2]+) − E[min(e1, e2)]
↑[e1 ∗ e2] = max(E[e1]+ ∗ E[e2]+, E[e1]+ ∗ E[e2]−, E[e1]− ∗ E[e2]+, E[e1]− ∗ E[e2]−)

−E[e1 ∗ e2]

↓[v] = 0
↓[y] = 0
↓[x] = α(x) − mx

↓[e1 + e2] = ↓e1 + ↓e2

↓[e1 − e2] = ↓e1 + ↑e2

↓[−e] = ↑e
↓[abs(e)] = if E[e] ≥ 0 then min(E[e], ↓e) else min(−E[e], ↑e)
↓[e2] = E[e]2 − if E[e] ≥ 0 then (E[e] − min(E[e], ↓e))2 else (E[e] + min(−E[e], ↑e))2

↓[max(e1, e2)] = E[max(e1, e2)] − max(E[e1]−, E[e2]−)
↓[min(e1, e2)] = E[min(e1, e2)] − min(E[e1]−, E[e2]−)
↓[e1 ∗ e2] = E[e1 ∗ e2]−

min(E[e1]+ ∗ E[e2]+, E[e1]+ ∗ E[e2]−, E[e1]− ∗ E[e2]+, E[e1]− ∗ E[e2]−)

Fig. 7. The Evaluation for the Variable Gradients

Figure 8 depicts the invariants maintaining the gradients. There is an invariant
i↑e and an invariant i↓e) associated with each expression e and each variable x
(which is implicit in the figure). These gradient invariants use both gradient
invariants on the sub-expressions and evaluation invariants. For instance, the
(increasing) gradient invariant for subtraction, i.e.,

i↑e1−e2
← i↑e1

− i↓e2

uses increasing and decreasing gradient invariants on the sub-expressions. The
gradient invariant for absolute value can be written as

i↑abs(e) ← max(abs(ie + i↑e), abs(ie − i↓e)− iabs(e)

and illustrates the use of invariants ie and iabs(e) for accessing the current value
of e and abs(e). Note that methods increase and decrease in Figure 5 returns
i↑e and i↓e for the objective function associated with e.

Differentiation Differentiable methods can be evaluated directly. Indeed, given
an expression e, a variable x, and a value v, method e.getAssignDelta(x,v)
returns Eα[x/v][e] − Eα[e] where α is the current assignment. It is too costly to
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i+e ← ie + i↑
e

i−
e ← ie − i↓

e

i↑
v ← 0

i↑
y ← 0

i↑
x ← Mx − x

i↑
e1+e2

← i↑
e1 + i↑

e2

i↑
e1−e2

← i↑
e1 + i↓

e2

i↑
−e ← i↓

e

i↑
abs(e) ← max(abs(i+e ), abs(i−

e )) − iabs(e)

i↑
e2 ← max((i+e )2, (i−

e )2) − ie2

i↑
max(e1,e2) ← max(i+e1 , i+e2) − imax(e1,e2)

i↑
min(e1,e2) ← min(i+e1 , i+e2) − imin(e1,e2)

i↑
e1∗e2 ← max(i+e1 ∗ i+e2 , i+e1 ∗ i−

e2 , i−
e1 ∗ i+e2 , i−

e1 ∗ i−
e2 ) − ie1∗e2

i↓
v ← 0

i↓
y ← 0

i↓
x ← x − mx

i↓
e1+e2

← i↓
e1 + i↓

e2

i↓
e1−e2

← i↓
e1 + i↑

e2

i↓
−e ← i↑

e

i↓
abs(e) ← if ie ≥ 0 then min(ie, i↓

e) else min(−ie, i
↑
e)

i↓
e2 ← ie2 − if ie ≥ 0 then (ie − min(ie, i↓

e))2 else (ie + min(−ie, i
↑
e))2

i↓
max(e1,e2) ← imax(e1,e2) − max(i−

e1 , i−
e2)

i↓
min(e1,e2) ← imin(e1,e2) − min(i−

e1 , i−
e2)

i↓
e1∗e2 ← ie1∗e2 − min(i+e1 ∗ i+e2 , i+e1 ∗ i−

e2 , i−
e1 ∗ i+e2 , i−

e1 ∗ i−
e2)

Fig. 8. The Invariants of the Variable Gradients

maintain these evaluations incrementally for each pair (x, v) in general. How-
ever, differentiable methods may exploit the fact that variables typically occur
only in some sub-expressions and reuse the evaluations that are maintained in-
crementally. This is particularly important for aggregate operators. Consider an
expression e1 + . . . + en and assume that x appears only in e1. Then

E
α[x/v]

[e1 + . . . + en] = E
α[x/v]

[e1]− E
α
[e1]

and the differentiable method only needs to evaluate Eα[x/v][e1]. By induction,
differentiable methods then only evaluates the leaves containing the variables to
be assigned and the branches from the root to these leaves.

6 Relational Expressions as Differentiable Constraints

This section shows how relational expressions can be translated into constraints.
Recall that, in CBLS, a constraint is a differentiable object maintaining its
violations and its variable violations, and supporting differentiation. In order to
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r ∈ Relation.
r ::= e = e | e ≤ e | e �= e | r ∨ r | r ∧ r | ¬r

V[e1 = e2] = abs(e1 − e2)
V[e1 ≤ e2] = max(e1 − e2, 0)
V[e1 �= e2] = 1 − min(1, abs(e1 − e2))

V[r1 ∧ r2] = V[r1] + V[r2]
V[r1 ∨ r2] = min(V[r1], V[r2])
V[¬r] = 1 − min(1, V[r])

Fig. 9. Constraints as Objective Functions

interface constraint {
var{int} violations();

var{int} violations(var{int} x);

int getAssignDelta(var{int} x,int v);

int getSwapDelta(var{int} x,var{int} y);

int getAssignDelta(var{int}[] x,var[] v);

var{int}[] getVariables();

}
Fig. 10. The Constraint Interface in Comet (Partial Description)

translate a relation into a constraint, the key idea is to map the relation r into
an expression V[r] denoting its violations. Once such a mapping V : Relation →
Expression is available, the constraint interface depicted in Figure 10 can be
naturally implemented. In particular,

– E
α
[V[r]] denotes the violations of r for α, incrementally maintained by iV[r]

which is returned by method violations() of the constraint interface.

–
x

↓
α
V[r] is the variable violations of x for α, incrementally maintained by i↓

V[r]
which is returned by method violations(var{int} x).

Figure 9 depicts the syntax of relations and a mapping V for a variety of relations
and logical connectives. For instance, the violations of a relation e1 = e2 are spec-
ified by the expression V[e1 = e2] = abs(e1 − e2). The resulting expression can
then be transformed into a differentiable objective which incrementally main-
tains the constraint violations using the invariant iabs(e1−e2) and the variable
violations using the gradient invariant i↓abs(e1−e2). Observe how differentiable in-
variants preclude the need to derive specific variable violations (as in [1]), since
variable violations are directly inherited from violation expressions.

7 Reification

Since expressions and relations can be both transformed into objectives, it be-
comes natural to support reification in expressions. Reification, a fundamental
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E
α
[r] = δ(B

α
[r]) ir ← δ(br)

B
α
[e1 = e2] = E

α
[e1] = E

α
[e2] be1=e2 ← ie1 = ie2

B
α
[e1 ≤ e2] = E

α
[e1] ≤ E

α
[e2] be1≤e2 ← ie1 ≤ ie2

B
α
[e1 �= e2] = E

α
[e1] �= E

α
[e2] be1 �=e2 ← ie1 �= ie2

B
α
[r1 ∨ r2] = B

α
[r1] ∨ B

α
[r2] br1∨r2 ← br1 ∨ br2

B
α
[r1 ∧ r2] = B

α
[r1] ∧ B

α
[r2] br1∧r2 ← br1 ∧ br2

B
α
[¬r] = ¬B

α
[r] b¬r ← ¬br

Fig. 11. The Evaluation of Reified Constraints and their Corresponding Invariants

x

↓
α
r = let e = V[r] in δ(B

α
[r] ∧

x

↑
α
e > 0) i↓

r ← δ(br ∧ i↑
V[r] > 0)

x

↑
α
r = let e = V[r] in δ(¬B

α
[r] ∧

x

↓
α
e ≥ E

α
[e]) i↑

r ← δ(¬br ∧ i↓
V[r] ≥ iV[r])

Fig. 12. The Gradients of Reified Constraints and their Corresponding Invariants

technique in CP, was illustrated in the scene allocation and progressive party
problems, in which expressions includes arithmetic operations over relations. It
is different from, and more challenging than, the reification from differentiable
constraints to differentiable objectives which already presented in [9]. To support
reification in CBLS, it is necessary to specify how to evaluate reified expressions
and their gradients. Figure 11 depicts the extensions of Figure 6 to handle reifi-
cation in evaluations and their corresponding invariants. In the figure, Bα[e]
denotes the truth value of expression e under assignment α and be denotes the
corresponding Boolean invariant. The figure also uses the Kronecker symbol δ
to convert Boolean values into 0/1 values:

δ(b) =
{

1 if b = true;
0 otherwise.

It remains to define how to evaluate the gradients of reified constraints, which
is depicted in Figure 12. The definitions are specified generically using B and V.
The intuition is as follows: given an assignment α, changing x may decrease the
evaluation of r if r holds for α (i.e., Bα r) and changing x may violate r (i.e.,
i↑
V[r] > 0). Similarly, changing x may increase the evaluation of c if c does not

hold for α and changing x may remove all violations of c, i.e.,

x

↓
α
V[r] ≥ E

α
[V[r]].

Again, the invariants for maintaining gradients can be derived systematically
from the evaluations.
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Table 1. The Overhead of Differential Invariants

n 6 7 8 9
PP(Atmost) 0.85 1.01 7.46 145.89
PP(DI) 2.18 2.46 12.46 213.29
%Overhead 256.47 243.56 67.20 46.20

It is also interesting to illustrate the expressions obtained for the reified con-
straints in the progressive party problem. These constraints are of the form

(x1 = y1) + . . . + (xp = yp) ≤ 1

where x1, . . . , xp, y1, . . . , yp are all distinct variables. The invariants maintaining
the violations are of the form

ic ← max(im, 0) im ← iδ(x1=y1) + . . . + iδ(xp=yp) − 1

The gradient for variable x1 is maintained through invariants of the form

i↓c ←max(im + i↓m, 0)− ic i↓m ← δ(bx1=y1 ∧ i↑abs(x1−y1)
> 0)

Observe how differentiable invariants abstract away the complexity behind these
constraints, elegantly encompass reification, and allow constraint-based local
search to support a constraint language as rich as in traditional CP languages.

8 Experimental Evaluation

This section provides preliminary evidence of the practicability of differentiable
invariants. It studies the cost of differentiable invariants and the benefits of
gradients invariants, and gives results on the applications.

The Cost of Differentiable Invariants. Table 1 reports the cost of differentiable
invariants. It measures the time in seconds for finding solutions to the progres-
sive party problem of increasing sizes (from 6 to 9 periods) when the hosts
are boats 1–13. The table compares the Comet program with differentiable
invariants (PP(DI) shown in Figure 3) with the same program is replaced by
the cardinality operator proposed in [9]. Since there are a quadratic number of
these constraints, this is where most of the computation time is spent. Both
programs are compared using the deterministic mode of Comet so that they
execute exactly the same local moves. The results indicate that the overhead of
using differential invariants decreases as the problem size grows and goes down
to 46% for the largest instance. Differentiable invariants thus introduces a rea-
sonable overhead compared to a tailored cardinality operator. This overhead
should be largely compensated by the simplicity of expressing complex idiosyn-
cratic constraints, which frees programming from implementing special-purpose
constraints, objective functions, or combinators.
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Table 2. The Benefits of Gradient Invariants

n 6 7 8 9
PP(DI-G) 6.05 6.98 122.76 2777.74
PP(DI) 2.18 2.46 12.46 213.29
Speedup 2.77 2.83 9.85 13.02

Table 3. Experimental Results on Scene Allocation and Balanced Latin Squares

Bench min(S) μ(S) max(S) μ(TS) σ(S) σ(TS)
scene 334144.00 335457.38 343256.00 1.10% 0.72 0.06
balance(8) 0 0 0 0.0 13.85 14.74
balance(9) 0 0 0 0.0 61.26 51.78

The Benefits of Gradient Invariants. Table 2 reports experimental results on
the benefits on maintaining variable gradients incrementally. It compares the
results of the model in Figure 3 when the implementation incrementally updates
(PP(DI)) or evaluates (PP(DI-G)) variable gradients. The results highlight the
importance of gradient invariants as the speed-ups increase with the problem
size to reach a 13-fold improvement on the largest instance.

Other Experimental Results. For completeness, Table 3 reports the experimental
results on scene allocation and spatially balanced latin squares. The first three
columns report the min, average, and maximal values of the objective function,
the fourth column reports the average CPU time (in seconds), and the last two
columns show the standard deviation. The scene allocation program, despite its
simplicity, performs extremely well and does not need the symmetry-breaking
required in the CP solution for good performance (see [7]). The Comet program
for latin square is very competitive with the local search algorithms presented
in [2] which use a similar neighborhood (but a different search strategy which is
not specified precisely enough for reproduction).

Overall, these results show that differentiable invariants are an effective high-
level abstraction to bridge the gap between invariants and differentiable objects.
They allow programmers to express complex, idiosyncratic constraints declara-
tively, while leaving the system deriving invariants and incremental algorithms
so important in constraint-based local search.
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6. C. Smith, C. Gomes, and C. Fernàndez. Streamlining Local Search for Spatially

Balanced Latin Squares. In IJCAI-05, Edinburgh, Scotland, July 2005.
7. P. Van Hentenryck. Constraint and Integer Programming in OPL. Informs Journal

on Computing, 14(4):345–372, 2002.
8. P. Van Hentenryck. Constraint-Based Local Search. The MIT Press, 2005.
9. P. Van Hentenryck, L. Michel, and L. Liu. Constraint-Based Combinators for Local

Search. In CP’04, October 2004.



Revisiting the Sequence Constraint

Willem-Jan van Hoeve1, Gilles Pesant2,3,
Louis-Martin Rousseau2,3,4, and Ashish Sabharwal1

1 Department of Computer Science, Cornell University,
4130 Upson Hall, Ithaca, NY 14853, USA

{vanhoeve, sabhar}@cs.cornell.edu
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Abstract. Many combinatorial problems, such as car sequencing and
rostering, feature sequence constraints, restricting the number of occur-
rences of certain values in every subsequence of a given width. To date,
none of the filtering algorithms proposed guaranteed domain consistency.
In this paper, we present three filtering algorithms for the sequence con-
straint, with complementary strengths. One borrows ideas from dynamic
programming; another reformulates it as a regular constraint; the last is
customized. The last two algorithms establish domain consistency. Our
customized algorithm does so in polynomial time, and can even be ap-
plied to a generalized sequence constraint for subsequences of variable
widths. Experimental results show the practical usefulness of each.

1 Introduction

The sequence constraint was introduced by Beldiceanu and Contejean [4] as
a set of overlapping among constraints. The constraint is also referred to as
among seq in [3]. An among constraint restricts the number of variables to be
assigned to a value from a specific set. For example, consider a nurse-rostering
problem in which each nurse can work at most 2 night shifts during every 7
consecutive days. The among constraint specifies the 2-out-of-7 relation, while
the sequence constraint imposes such among for every subsequence of 7 days.

Beldiceanu and Carlsson [2] have proposed a filtering algorithm for the se-
quence constraint, while Régin and Puget [10] have presented a filtering
algorithm for the sequence constraint in combination with a global cardinal-
ity constraint [8] for a car sequencing application. Neither approach establishes
domain consistency, however. As the constraint is inherent to many real-life
problems, improved filtering could have a substantial industrial impact.

In this work we present three novel filtering algorithms for the sequence
constraint. The first is based on dynamic programming concepts and runs in
polynomial time, but it does not establish domain consistency. The second algo-
rithm is based on the regular constraint [7]. It establishes domain consistency,

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 620–634, 2006.
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but needs exponential time in the worst case. In most practical cases it is very
efficient however. Our third algorithm establishes domain consistency in polyno-
mial time. It can be applied to a generalized version of the sequence constraint,
for which the subsequences are of variable length. Moreover the number of oc-
currences may also vary per subsequence. Each algorithm has advantages over
the others, either in terms of (asymptotic) running time or in terms of filtering.

The rest of the paper is structured as follows. Section 2 presents some back-
ground and notation on constraint programming. Section 3 recalls and discusses
the among and sequence constraints. Sections 4 to 6 describe filtering algo-
rithms for sequence. Section 7 compares the algorithms experimentally. Fi-
nally, Section 8 summarizes the contributions of the paper and discusses possible
extensions.

2 Constraint Programming Preliminaries

We first introduce basic constraint programming concepts. For more information
on constraint programming we refer to [1].

Let x be a variable. The domain of x is a set of values that can be assigned
to x and is denoted by D(x). In this paper we only consider variables with finite
domains. Let X = x1, x2, . . . , xk be a sequence of variables. We denote D(X) =⋃

1≤i≤k D(xi). A constraint C on X is defined as a subset of the Cartesian
product of the domains of the variables in X , i.e. C ⊆ D(x1)×D(x2)×· · ·×D(xk).
A tuple (d1, . . . , dk) ∈ C is called a solution to C. We also say that the tuple
satisfies C. A value d ∈ D(xi) for some i = 1, . . . , k is inconsistent with respect to
C if it does not belong to a tuple of C, otherwise it is consistent. C is inconsistent
if it does not contain a solution. Otherwise, C is called consistent.

A constraint satisfaction problem, or a CSP, is defined by a finite sequence of
variables X = x1, x2, . . . , xn, together with a finite set of constraints C, each on
a subsequence of X . The goal is to find an assignment xi = di with di ∈ D(xi)
for i = 1, . . . , n, such that all constraints are satisfied. This assignment is called
a solution to the CSP.

The solution process of constraint programming interleaves constraint propa-
gation, or propagation in short, and search. The search process essentially consists
of enumerating all possible variable-value combinations, until we find a solution
or prove that none exists. We say that this process constructs a search tree. To re-
duce the exponential number of combinations, constraint propagation is applied
to each node of the search tree: Given the current domains and a constraint C,
remove domain values that do not belong to a solution to C. This is repeated
for all constraints until no more domain value can be removed. The removal of
inconsistent domain values is called filtering.

In order to be effective, filtering algorithms should be efficient, because they
are applied many times during the solution process. Further, they should remove
as many inconsistent values as possible. If a filtering algorithm for a constraint
C removes all inconsistent values from the domains with respect to C, we say
that it makes C domain consistent. Formally:
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Definition 1 (Domain consistency, [6]). A constraint C on the variables
x1, . . . , xk is called domain consistent if for each variable xi and each value
di ∈ D(xi) (i = 1, . . . , k), there exist a value dj ∈ D(xj) for all j �= i such that
(d1, . . . , dk) ∈ C.

In the literature, domain consistency is also referred to as hyper-arc consistency
or generalized-arc consistency.

Establishing domain consistency for binary constraints (constraints defined on
two variables) is inexpensive. For higher arity constraints this is not necessarily
the case since the naive approach requires time that is exponential in the number
of variables. Nevertheless the underlying structure of a constraint can sometimes
be exploited to establish domain consistency much more efficiently.

3 The Among and Sequence Constraints

The among constraint restricts the number of variables to be assigned to a value
from a specific set:

Definition 2 (Among constraint, [4]). Let X = x1, x2, . . . , xq be a sequence
of variables and let S be a set of domain values. Let 0 ≤ min ≤ max ≤ q be
constants. Then

among(X,S,min,max) = {(d1, . . . , dq) | ∀i ∈ {1, . . . , q} di ∈ D(xi),
min ≤ |{i ∈ {1, . . . , q} : di ∈ S}| ≤ max}.

Establishing domain consistency for the among constraint is not difficult. Sub-
tracting from min, max, and q the number of variables that must take their value
in S, and subtracting further from q the number of variables that cannot take
their value in S, we are in one of four cases:

1. max < 0 or min > q: the constraint is inconsistent;
2. max = 0: remove values in S from the domain of all remaining variables,

making the constraint domain consistent;
3. min = q: remove values not in S from the domain of all remaining variables,

making the constraint domain consistent;
4. max > 0 and min < q: the constraint is already domain consistent.

The sequence constraint applies the same among constraint on every q con-
secutive variables:

Definition 3 (Sequence constraint, [4]). Let X = x1, x2, . . . , xn be an or-
dered sequence of variables (according to their respective indices) and let S be a
set of domain values. Let 1 ≤ q ≤ n and 0 ≤ min ≤ max ≤ q be constants. Then

sequence(X,S, q,min,max) =
n−q+1∧

i=1

among(si, S,min,max),

where si represents the sequence xi, . . . , xi+q−1.
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In other words, the sequence constraint states that every sequence of q consec-
utive variables is assigned to at least min and at most max values in S. Note
that working on each among constraint separately, and hence locally, is not as
powerful as reasoning globally. In particular, establishing domain consistency on
each among of the conjunction does not ensure domain consistency for sequence.

Example 1. Let X = x1, x2, x3, x4, x5, x6, x7 be an ordered sequence of variables
variables with domains D(xi) = {0, 1} for i ∈ {3, 4, 5, 7}, D(x1) = D(x2) = {1},
and D(x6) = {0}. Consider the constraint sequence(X, {1}, 5, 2, 3), i.e., every
sequence of five consecutive variables must account for two or three 1’s. Each
individual among is domain consistent but it is not the case for sequence: value 0
is unsupported for variable x7. (x7 = 0 forces at least two 1’s among {x3, x4, x5},
which brings the number of 1’s for the leftmost among to at least four.)

Establishing domain consistency for the sequence constraint is not nearly as
easy as for among. The algorithms proposed so far in the literature may miss
such global reasoning. The filtering algorithm proposed in [10] and implemented
in Ilog Solver does not filter out 0 from D(x7) in the previous example. However
in some special cases domain consistency can be efficiently computed: When min
equals max, it can be established in linear time. Namely, if there is a solution,
then xi must equal xi+q because of the constraints ai +ai+1 + · · ·+ai+q−1 = min
and ai+1 + · · · + ai+q = min. Hence, if one divides the sequence up into n/q
consecutive subsequences of size q each, they must all look exactly the same.
Thus, establishing domain consistency now amounts to propagating the “set-
tled” variables (i.e. D(xi) ⊆ S or D(xi) ∩ S = ∅) to the first subsequence and
then applying the previously described algorithm for among. Two of the filter-
ing algorithms we describe below establish domain consistency in the general
case.

Without loss of generality, we shall consider instances of sequence in which
S = {1} and the domain of each variable is a subset of {0, 1}. Using an element
constraint, we can map every value in S to 1 and every other value (i.e., D(X)\S)
to 0, yielding an equivalent instance on new variables.

4 A Graph-Based Filtering Algorithm

We propose a first filtering algorithm that considers the individual among con-
straints of which the sequence constraint is composed. First, it filters the among
constraints for each sequence of q consecutive variables si. Then it filters the
conjunction of every pair of consecutive sequences si and si+1. This is presented
as SuccessiveLocalGraph (SLG) in Algorithm 1, and discussed below.

4.1 Filtering the among Constraints

The individual among constraints are filtered with the algorithm FilterLocal-
Graph. For each sequence si = xi, . . . , xi+q−1 of q consecutive variables in
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x1 x2 x3 x4 x2 x3 x4 x5 x3 x4 x5 x6

S
¬S

Fig. 1. Filtered Local Graphs of Example 2

X = x1, . . . , xn, we build a digraph Gsi = (Vi, Ai) as follows. The vertex set and
the arc set are defined as

Vi = {vj,k | j ∈ {i− 1, . . . , i + q − 1}, k ∈ {0, . . . , j}},

Ai ={(vj,k, vj+1,k) | j∈{i− 1, . . . , i + q − 2}, k∈{0, . . . , j}, D(xj+1) \ S �=∅} ∪
{(vj,k, vj+1,k+1) | j∈{i− 1, . . . , i + q − 2}, k∈{0, . . . , j}, D(xj+1) ∩ S �=∅}.

In other words, the arc (vj,k, vj+1,k+1) represents variable xj+1 taking its value
in S, while the arc (vj,k, vj+1,k) represents variable xj+1 not taking its value in
S. The index k in vj,k represents the number of variables in xi, . . . , xj−1 that
take their value in S. This is similar to the dynamic programming approach
taken in [11] to filter knapsack constraints.

Next, the individual among constraint on sequence si is filtered by removing
all arcs that are not on a path from vertex vi−1,0 to a goal vertex vi+q−1,k with
min ≤ k ≤ max. This can be done in linear time (in the size of the graph,
Θ(q2)) by breadth-first search starting from the goal vertices. Naturally, if the
filtered graph contains no arc (vj,k, vj+1,k) for all k, we remove S from D(xj+1).
Similarly, we remove D(X)\S from D(xj+1) if it contains no arc (vj,k, vj+1,k+1)
for all k.

Example 2. Let X = x1, x2, x3, x4, x5, x6 be an ordered sequence of variables
with domains D(xi) = {0, 1} for i ∈ {1, 2, 3, 4, 6} and D(x5) = {1}. Let S = {1}.
Consider the constraint sequence(X,S, 4, 2, 2). The filtered local graphs of this
constraint are depicted in Figure 1.

4.2 Filtering for a Sequence of among

We filter the conjunction of two “consecutive” among constraints. This algorithm
has a “forward” phase and a “backward” phase. In the forward phase, we com-
pare the among on si with the among on si+1 for increasing i, using the algorithm
Compare. This is done by projecting Gsi+1 onto Gsi such that corresponding
variables overlap. Doing so, the projection keeps only arcs that appear in both
original local graphs. We can either project vertex vi+1,0 of Gsi+1 onto vertex
vi+1,0 of Gsi , or onto vertex vi+1,1 of Gsi . We consider both projections sep-
arately, and label all arcs “valid” if they belong to a path from vertex vi,0 to
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SuccessiveLocalGraph(X, S, q, min, max) begin
build a local graph Gsi

for each sequence si (1 ≤ i ≤ n − q)

for i = 1, . . . , n− q do
FilterLocalGraph(Gsi

)

for i = 1, . . . , n− q − 1 do
Compare(Gsi

, Gsi+1)

for i = n− q − 1, . . . , 1 do
Compare(Gsi

, Gsi+1)

end

FilterLocalGraph(Gsi
) begin

mark all arcs of Gsi
as invalid.

by breadth-first search, mark as valid every arc on a path from vi−1,0 to a goal vertex
remove all invalid arcs

end

Compare(Gsi
, Gsi+1) begin

mark all arcs in Gsi
and Gsi+1 “invalid”

for k = 0, 1 do
project Gsi+1 onto vertex vi,k of Gsi

by breadth-first search, mark all arcs on a path from vi−1,0 to a goal vertex in Gsi+1
“valid”

remove all invalid arcs
end

goal vertex in Gsi+1 in one of the composite graphs. All other arcs are labeled
“invalid”, and are removed from the original graphs Gsi and Gsi+1 . In the back-
ward phase, we compare the among on si with the among on si+1 for decreasing
i, similarly to the forward phase.

4.3 Analysis

SuccessiveLocalGraph does not establish domain consistency for the se-
quence constraint. We illustrate this in the following example.

Example 3. Let X = x1, x2, . . . , x10 be an ordered sequence of variables with do-
mains D(xi) = {0, 1} for i ∈ {3, 4, 5, 6, 7, 8} and D(xi) = {0} for i ∈ {1, 2, 9, 10}.
Let S = {1}. Consider the constraint sequence(X,S, 5, 2, 3), i.e., every sequence
of 5 consecutive variables must take between 2 and 3 values in S. The first
among constraint imposes that at least two variables out of {x3, x4, x5} must be
1. Hence, at most one variable out of {x6, x7} can be 1, by the third among. This
implies that x8 must be 1 (from the last among). Similarly, we can deduce that
x3 must be 1. This is however not deduced by our algorithm.

The problem occurs in the Compare method, when we merge the valid arcs
coming from different projection. Up until that point there is a direct equivalence
between a path in a local graph and a support for the constraint. However
the union of the two projection breaks this equivalence and thus prevents this
algorithm from being domain consistent.

The complexity of the algorithm is polynomial since the local graphs are all of
size O(q ·max). Hence FilterLocalGraph runs in O(q ·max) time, which is
called n− q times. The algorithm Compare similarly runs for O(q ·max) steps

Algorithm 1. Filtering algorithm for the sequence constraint
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and is called 2(n−q) times. Thus, the filtering algorithm runs in O((n−q)·q·max)
time. As max ≤ q, it follows that the algorithm runs in O(nq2) time.

5 Reaching Domain Consistency Through regular

The regular constraint [7], defining the set of allowed tuples for a sequence of
variables as the language recognized by a given automaton, admits an incremen-
tal filtering algorithm establishing domain consistency. In this section, we give
an automaton recognizing the tuples of the sequence constraint whose number
of states is potentially exponential in q. Through that automaton, we can express
sequence as a regular constraint, thereby obtaining domain consistency.

The idea is to record in a state the last q values encountered, keeping only
the states representing valid numbers of 1‘s for a sequence of q consecutive
variables and adding the appropriate transitions between those states. Let Qq

k

denote the set of strings of length q featuring exactly k 1’s and q−k 0’s — there
are

(
q
k

)
such strings. Given the constraint sequence(X, {1}, q, �, u), we create

states for each of the strings in
⋃u

k=� Q
q
k. By a slight abuse of notation, we will

refer to a state using the string it represents. Consider a state d1d2 . . . dq in
Qq

k, � ≤ k ≤ u. We add a transition on 0 to state d2d3 . . . dq0 if and only if
d1 = 0 ∨ (d1 = 1 ∧ k > �). We add a transition on 1 to state d2d3 . . . dq1 if and
only if d1 = 1 ∨ (d1 = 0 ∧ k < u).

We must add some other states to encode the first q−1 values of the sequence:
one for the initial state, two to account for the possible first value, four for the
first two values, and so forth. There are at most 2q−1 of those states, considering
that some should be excluded because the number of 1’s does not fall within [�, u].
More precisely, we will have states

q−1⋃
i=0

min(i,u)⋃
k=max(0,�−(q−i))

Qi
k.

Transitions from a state d1 . . . di in Qi
k to state d1 . . . di0 in Qi+1

k on value 0
and to state d1 . . . di1 in Qi+1

k+1 on value 1, provided such states are part of
the automaton. Every state in the automaton is considered a final (accepting)
state. Figure 2 illustrates the automaton that would be built for the constraint
sequence(X, {1}, 4, 1, 2).

The filtering algorithm for regular guarantees domain consistency provided
that the automaton recognizes precisely the solutions of the constraint. By con-
struction, the states Qq

� of the automaton represent all the valid configurations
of q consecutive values and the transitions between them imitate a shift to the
right over the sequence of values. In addition, the states Qi

�, 0 ≤ i < q are linked
so that the first q values reach a state that encodes them. All states are accept-
ing states so the sequence of n values is accepted if and only if the automaton
completes the processing. Such a completion corresponds to a successful scan of
every subsequence of length q, precisely our solutions.
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Fig. 2. Automaton for sequence(X, {1}, 4, 1, 2)

The resulting algorithm runs in time linear in the size of the underlying graph,
which has O(n2q) vertices and arcs in the worst case. Nevertheless, in most
practical problems q is much smaller than n. Note also that subsequent calls of
the algorithm run in time proportional to the number of updates in the graph
and not to the size of the whole graph.

6 Reaching Domain Consistency in Polynomial Time

The filtering algorithms we considered thus far apply to sequence constraints
with fixed among constraints for the same q, min, and max. In this section we
present a polynomial-time algorithm that achieves domain consistency in a more
generalized setting, where we have m arbitrary among constraints over sequences
of consecutive variables in X . These m constraints may have different min and
max values, be of different length, and overlap in an arbitrary fashion. A con-
junction of k sequence constraints over the same ordered set of variables, for
instance, can be expressed as a single generalized sequence constraint. We define
the generalized sequence constraint, gen-sequence, formally as follows:

Definition 4 (Generalized sequence constraint). Let X = x1, . . . , xn be
an ordered sequence of variables (according to their respective indices) and S
be a set of domain values. For 1 ≤ j ≤ m, let sj be a sequence of consecutive
variables in X, |sj | denote the length of sj, and integers minj and maxj be such
that 0 ≤ minj ≤ maxj ≤ |sj |. Let Σ = {s1, . . . , sm} ,Min = {min1, . . . ,minm} ,
and Max = {max1, . . . ,maxm}. Then

gen-sequence(X,S,Σ,Min,Max) =
m∧

j=1

among(sj , S,minj ,maxj).

For simplicity, we will identify each sj ∈ Σ with the corresponding among con-
straint on sj . The basic structure of the filtering algorithm for the gen-sequence
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CompleteFiltering(X, S = {1} , Σ,Min, Max) begin
for xi ∈ X do

for d ∈ D(xi) do
if CheckConsistency(xi, d) = false then

D(xi) ← D(xi) \ {d}

end

CheckConsistency(xi, d) begin
fix xi = d, i.e., temporarily set D(xi) = {d}
y[0] ← 0
for � ← 1, . . . , n do

y[�] ← number of forced 1’s among x1, . . . , x�

while a constraint sj ∈ Σ is violated, i.e., value(sj ) < minj or value(sj ) > maxj do
if value(sj) < minj then

idx ← right end-point of sj

PushUp(idx,minj − value(sj ))

else
idx ← left end-point of sj

PushUp(idx, value(sj )−maxj)

if sj still violated then
return false

return true
end

PushUp(idx, v) begin
y[idx] ← y[idx] + v
if y[idx] > idx then return false
// repair y on the left
while (idx>0)∧ ((y[idx]− y[idx−1] > 1) ∨ ((y[idx]− y[idx−1] = 1) ∧ (1 /∈ D(xidx−1))))
do

if 1 /∈ D(xidx−1) then
y[idx− 1] ← y[idx]

else
y[idx− 1] ← y[idx]− 1

if y[idx− 1] > idx− 1 then
return false

idx ← idx− 1

// repair y on the right
while (idx < n) ∧ ((y[idx]− y[idx + 1] > 0) ∨ ((y[idx]− y[idx + 1] = 0) ∧ (0 /∈ D(xidx))))
do

if 0 /∈ D(xidx) then
y[idx + 1] ← y[idx] + 1

else
y[idx + 1] ← y[idx]

idx ← idx + 1

end

constraint is presented as Algorithm 2. The main loop, CompleteFiltering,
simply considers all possible domain values of all variables. If a domain value is
yet unsupported, we check its consistency via procedure CheckConsistency.
If it has no support, we remove it from the domain of the corresponding variable.

Procedure CheckConsistency is the heart of the algorithm. It finds a single
solution to the gen-sequence constraint, or proves that none exists. It uses
a single array y of length n + 1, such that y[0] = 0 and y[i] represents the
number of 1’s among x1, . . . , xi. The invariant for y maintained throughout is
that y[i + 1] − y[i] is either 0 or 1. Initially, we start with the lowest possible
array, in which y is filled according to the lower bounds of the variables in X .

Algorithm 2. Complete filtering algorithm for the gen-sequence constraint
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For clarity, let Lj and Rj denote the left and right end-points, respectively,
of the among constraint sj ∈ Σ; Rj = Lj + |sj | − 1. As an example, for the
usual sequence constraint with among constraints of size q, Lj would be i and
Rj would be i+q−1. The value of sj is computed using the array y: value(sj) =
y[Rj ] − y[Lj − 1]. In other words, value(sj) counts exactly the number of 1’s
in the sequence sj . Hence, a constraint sj is satisfied if and only if minj ≤
value(sj) ≤ maxj . In order to find a solution, we consider all among constraints
sj ∈ Σ. Whenever a constraint sj is violated, we make it consistent by “pushing
up” either y[Rj ] or y[Lj − 1]:

if value(sj) < minj , then push up y[Rj ] with value minj − value(sj),
if value(sj) > maxj , then push up y[Lj − 1] with value value(sj)−maxj .

Such a “push up” may result in the invariant for y being violated. We therefore
repair y in a minimal fashion to restore its invariant as follows. Let y[idx] be the
entry that has been pushed up. We first push up its neighbors on the left side
(from idx downward). In case xidx−1 is fixed to 0, we push up y[idx− 1] to the
same level y[idx]. Otherwise, we push it up to y[idx] − 1. This continues until
the difference between all neighbors is at most 1. Whenever y[i] > i for some i,
we need more 1’s than there are variables up to i, and we report an immediate
failure. Repairing the array on the right side is done in a similar way.

Example 4. Consider again the sequence constraint from Example 2, i.e., the
constraint sequence(X,S, 4, 2, 2) with X = {x1, x2, x3, x4, x5, x6}, D(xi) =
{0, 1} for i ∈ {1, 2, 3, 4, 6}, D(x5) = {1}, and S = {1}. The four among con-
straints are over s1 = {x1, x2, x3}, s2 = {x2, x3, x4}, s3 = {x3, x4, x5}, and
s4 = {x4, x5, x6}. We apply CheckConsistency to find a minimum solution.
The different steps are depicted in Figure 3. We start with y = [0, 0, 0, 0, 0, 1, 1],
and consider the different among constraints. First we consider s1, which is vio-
lated. Namely, value(s1) = y[3]− y[0] = 0− 0 = 0, while it should be at least 2.
Hence, we push up y[3] with 2 units, and obtain y = [0, 0, 1, 2, 2, 3, 3]. Note that
we push up y[5] to 3 because x5 is fixed to 1.

Next we consider s2 with value y[4] − y[1] = 2, which is not violated. We
continue with s3 with value y[5] − y[2] = 2, which is not violated. Then we
consider s4 with value y[6]− y[3] = 1, which is violated as it should be at least
2. Hence, we push up y[6] by 1, and obtain y = [0, 0, 1, 2, 2, 3, 4]. One more
loop over the among constraint concludes consistency, with minimum solution
x1 = 0, x2 = 1, x3 = 1, x4 = 0, x5 = 1, x6 = 1.

We have optimized the basic procedure in Algorithm 2 in several ways. The main
loop of CompleteFiltering is improved by maintaining a support for all do-
main values. Namely, one call to CheckConsistency (with positive response)
yields a support for n domain values. This immediately reduces the number of
calls to CheckConsistency by half, while in practice the reduction is even
more. A second improvement is achieved by starting out CompleteFilter-
ing with the computation of the “minimum” and the “maximum” solutions to
gen-sequence, in a manner very similar to the computation in CheckConsis-
tency but without restricting the value of any variable. This defines bounds
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Fig. 3. Finding a minimum solution to Example 4

ymin and ymax within which y must lie for all subsequent consistency checks
(details in the following section).

6.1 Analysis

A solution to a gen-sequence constraint can be thought of as the corresponding
binary sequence or, equivalently, as the y array for it. This y array representation
has a useful property. Let y and y′ be two solutions. Define array y ⊕ y′ to be
the smaller of y and y′ at each point, i.e., (y ⊕ y′)[i] = min(y[i], y′[i]).

Lemma 1. If y, y′ are solutions to a gen-sequence constraint, then so is y⊕y′.

Proof. Suppose for the sake of contradiction that y∗ = y ⊕ y′ violates an
among constraint s of the gen-sequence constraint. Let L and R denote the left
and right end-points of s, respectively. Suppose y∗ violates the min constraint,
i.e., y∗[R] − y∗[L − 1] < min(s). Since y and y′ satisfy s, it must be that y∗

agrees with y on one end-point of s and with y′ on the other. W.l.o.g., assume
y∗[L− 1] = y′[L− 1] and y∗[R] = y[R]. By the definition of y∗, it must be that
y[L−1] ≥ y′[L−1], so that y[R]−y[L−1]≤ y[R]−y′[L−1] = y∗[R]−y∗[L−1] <
min(s). In other words, y itself violates s, a contradiction. A similar reasoning
works when y∗ violates the max constraint of s. �

As a consequence of this property, we can unambiguously define an absolute
minimum solution for gen-sequence as the one whose y value is the lowest over
all solutions. Denote this solution by ymin; we have that for all solutions y and
for all i, ymin[i] ≤ y[i]. Similarly, define the absolute maximum solution, ymax.

Lemma 2. The procedure CheckConsistency constructs the minimum solu-
tion to the gen-sequence constraint or proves that none exists, in O(n2) time.

Proof. CheckConsistency reports success only when no among constraint in
gen-sequence is violated by the current y values maintained by it, i.e., y is a
solution. Hence, if there is no solution, this fact is detected. We will argue that
when CheckConsistency does report success, its y array exactly equals ymin.

We first show by induction that y never goes above ymin at any point, i.e.,
y[i] ≤ ymin[i], 0 ≤ i ≤ n throughout the procedure. For the base case, y[i] is
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clearly initialized to a value not exceeding ymin[i], and the claim holds trivially.
Assume inductively that the claim holds after processing t ≥ 0 among constraint
violations. Let s be the t+ 1st violated constraint processed. We will show that
the claim still holds after processing s.

Let L and R denote the left and right end-points of s, respectively. First
consider the case that the min constraint was violated, i.e., y[R] − y[L − 1] <
min(s), and index L−1 was pushed up so that the new value of y[L−1], denoted
ŷ[L− 1], became y[R]−min(s). Since this was the first time a y value exceeded
ymin, we have y[R] ≤ ymin[R], so that ŷ[L−1] ≤ ymin[R]−min(s) ≤ ymin[L−1].
It follows that ŷ[L − 1] itself does not exceed ymin[L − 1]. It may still be that
the resulting repair on the left or the right causes a ymin violation. However, the
repair operations only lift up y values barely enough to be consistent with the
possible domain values of the relevant variables. In particular, repair on the right
“flattens out” y values to equal ŷ[L − 1] (forced 1’s being exceptions) as far as
necessary to “hit” the solution again. It follows that since ŷ[L−1] ≤ ymin[L−1],
all repaired y values must also not go above ymin. A similar argument works when
instead the max constraint is violated. This finishes the inductive step.

This shows that by performing repeated PushUp operations, one can never
accidentally “go past” the solution ymin. Further, since each PushUp increases y
in at least one place, repeated calls to it will eventually “hit” ymin as a solution.

For the time complexity of CheckConsistency, note that y[i] ≤ i. Since we
monotonically increase y values, we can do so at most

∑n
i=1 i = O(n2) times.

The cost of each PushUp operation can be charged to the y values it changes
because the while loops in it terminate as soon as they find a y value that need
not be changed. Finally, simple book-keeping can be used to locate a violated
constraint in constant time. This proves the desired bound of O(n2) overall. �

The simple loop structure of CompleteFiltering immediately implies:

Theorem 1. Algorithm CompleteFiltering establishes domain consistency
on the gen-sequence constraint or proves that it is inconsistent, in O(n3) time.

Remark 1. Régin proved that finding a solution to an arbitrary combination of
among constraints is NP-complete [9]. Our algorithm finds a solution in polyno-
mial time to a more restricted problem, namely, when each among constraint is
defined on a sequence of consecutive variables with respect to a fixed ordering.

7 Experimental Results

To evaluate the different filtering algorithms presented, we used two sets of
benchmark problems. The first is a very simple model, constructed with only
one sequence constraint, allowing us to isolate and evaluate the performance of
each method. Then we conduct a limited series of experiments on the well-known
car sequencing problem. Successive Local Graph (SLG), Generalized Sequence
(GS), and regular-based implementation (REG) are compared with the se-
quence constraint provided in the Ilog Solver library in both basic (IB) and
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Table 1. Comparison on instances with n = 100, d = 10

IB IE SLG GS REG
q Δ BT CPU BT CPU BT CPU BT CPU BT CPU
5 1 – – 33976.9 18.210 0.2 0.069 0 0.014 0 0.009
6 2 361770 54.004 19058.3 6.390 0 0.078 0 0.013 0 0.018
7 1 380775 54.702 113166 48.052 0 0.101 0 0.012 0 0.020
7 2 264905 54.423 7031 4.097 0 0.129 0 0.016 0 0.039
7 3 286602 48.012 0 0.543 0 0.129 0 0.015 0 0.033
9 1 – – 60780.5 42.128 0.1 0.163 0 0.010 0 0.059
9 3 195391 43.024 0 0.652 0 0.225 0 0.016 0 0.187

Table 2. Comparison on instances with Δ = 1, d = 10

IB IE SLG GS REG
q n BT CPU BT CPU BT CPU BT CPU BT CPU
5 50 459154 18.002 22812 18.019 0.4 0.007 0 0.001 0 0.001
5 100 192437 12.008 11823 12.189 1 0.041 0 0.005 0 0.005
5 500 48480 12.249 793 41.578 0.7 1.105 0 0.466 0 0.023
5 1000 942 1.111 2.3 160.000 1.1 5.736 0 4.374 0 0.062
7 50 210107 12.021 67723 12.309 0.2 0.015 0 0.001 0 0.006
7 100 221378 18.030 44963 19.093 0.4 0.059 0 0.005 0 0.010
7 500 80179 21.134 624 48.643 2.8 2.115 0 0.499 0 0.082
7 1000 30428 28.270 46 138.662 588.5 14.336 0 3.323 0 0.167
9 50 18113 1.145 18113 8.214 0.9 0.032 0 0.001 0 0.035
9 100 3167 0.306 2040 10.952 1.6 0.174 0 0.007 0 0.087
9 500 48943 18.447 863 65.769 2.2 4.311 0 0.485 0 0.500
9 1000 16579 19.819 19 168.624 21.9 16.425 0 3.344 0 0.843

extended (IE) propagation modes. Experiments were run with Ilog Solver 6.2 on
a bi-processor Intel Xeon HT 2.8Ghz, 3G RAM.

7.1 Single Sequence

To evaluate the filtering both in terms of domain reduction and efficiency, we
build a very simple model consisting of only one sequence constraint.

The first series of instances is generated in the following manner. All instances
contain n variables of domain size d and the S set is composed of the first d/2
elements. We generate a family of instances by varying the size of q and of
the difference between min and max, Δ = max−min. For each family we try to
generate 10 challenging instances by randomly filling the domain of each variable
and by enumerating all possible values of min. These instances are then solved
using a random choice for both variable and value selection, keeping only the
ones that are solved with more than 10 backtracks by method IB. All runs were
stopped after one minute of computation.

Table 1 reports on instances with a fixed number of variables (100) and varying
q and Δ. Table 2 reports on instances with a fixed Δ (1) and growing number
of variables. The results confirm that the new algorithms are very efficient. The
average number of backtracks for SLG is generally very low. As predicted by
its time complexity, GS is very stable for fixed n in the first table but becomes
more time consuming as n grows in the second table. The performance of SLG
and REG decreases as q grows but REG remains competitive throughout these
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Table 3. Comparison on small car sequencing instances

Version Average Median
BT CPU BT CPU

A 1067 26.5 0 4.6
B 1067 10.3 0 3.8
C 802 8.4 0 4.1
D 798 34.3 0 7.0

tests. We expect that the latter would suffer with still larger values of q and Δ
but it proved difficult to generate challenging instances in that range — they
tended to be loose enough to be easy for every algorithm.

7.2 Car Sequencing

In order to evaluate this constraint in a more realistic setting, we turned to the
car sequencing problem. We ran experiments using the first set of instances on
the CSPLib web site and out of the 78 instances we kept the 31 that could be
solved within 5 minutes using a program found in the Ilog distribution. Recall
that the Ilog version of the sequence constraint also allows to specify individual
cardinalities for values in S so it is richer than our version of sequence . Table 3
compares the following versions of the sequencing constraint: (A) original Ilog
program; (B) A + REG (added as a redundant constraint); (C) A + REG
with cost [5], using the cost variable to restrict the total number of cars with a
particular option; (D) A + REG with cost, using the cost variable to restrict the
total number of cars of a particular configuration for each option. For A,B and
C we thus introduce one constraint per option and for D we add one constraint
per configuration and option.

It is interesting to see that adding REG as a redundant constraint significantly
improves performance as it probably often detects a dead end before IloSequence
does, thus avoiding expensive work. The simple cost version (C) does quite well
since it also incorporates a weak form of cardinality constraint within the se-
quence constraint. For a fairer comparison, we chose not to compare our two
other algorithms as we do not currently have incremental implementations.

8 Discussion

We have proposed, analyzed, and evaluated experimentally three filtering algo-
rithms for the sequence constraint. They have different strengths that comple-
ment each other well. The local graph approach of Section 4 does not guarantee
domain consistency but causes quite a bit of filtering, as witnessed in the ex-
periments. Its asymptotic time complexity is O(nq2). The reformulation as a
regular constraint, described in Section 5, establishes domain consistency but
its asymptotic time and space complexity are exponential in q, namely O(n2q).
Nevertheless for small q, not uncommon in applications, it performs very well
partly due to its incremental algorithm. The generalized sequence approach of
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Section 6 also establishes domain consistency on the sequence constraint, as well
as on a more general variant defined on arbitrary among constraints. It has an
asymptotic time complexity that is polynomial in both n and q, namely O(n3).
Also in practice this algorithm performed very well, being often even faster than
the local graph approach. It should be noted that previously known algorithms
did not establish domain consistency.

Since q plays an important role in the efficiency of some of the approaches pro-
posed, it is worth estimating it in some typical applications. For example, in car
sequencing values between 2 and 5 are frequent, whereas the shift construction
problem may feature widths of about 12.

As a possible extension of this work, our first two algorithms lend themselves
to a generalization of sequence in which the number of occurrences is repre-
sented by a set (as opposed to an interval of values).
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Abstract. Thanks to its extended expressiveness, the quantified con-
straint satisfaction problem (QCSP) can be used to model problems
that are difficult to express in the standard CSP formalism. This is
only recently that the constraint community got interested in QCSP and
proposed algorithms to solve it. In this paper we propose BlockSolve,
an algorithm for solving QCSPs that factorizes computations made in
branches of the search tree. Instead of following the order of the variables
in the quantification sequence, our technique searches for combinations
of values for existential variables at the bottom of the tree that will work
for (several) values of universal variables earlier in the sequence. An ex-
perimental study shows the good performance of BlockSolve compared
to a state of the art QCSP solver.

1 Introduction

The quantified constraint satisfaction problem (QCSP) is an extension of the
constraint satisfaction problem (CSP) in which variables are totally ordered
and quantified either existentially or universally. This generalization provides
a better expressiveness for modelling problems. Model Checking and planning
under uncertainty are examples of problems that can nicely be modeled with
QCSP. But such an expressiveness has a cost. Whereas CSP is in NP, QCSP is
PSPACE-complete.

The SAT community has also done a similar generalization from the problem
of satisfying a Boolean formula into the quantified Boolean formula problem
(QBF). The most natural way to solve instances of QBF or QCSP is to instan-
tiate variables from the outermost quantifier to the innermost. This approach
is called top-down. Most QBF solvers implement top-down techniques. Those
solvers lift SAT techniques to QBF. Nevertheless, Biere [1], or Pan and Vardi
[2] proposed different techniques to solve QBF instances. Both try to eliminate
variables from the innermost quantifier to the outermost quantifier, an approach
called bottom-up. Biere uses expansion of universal variables into clauses to elimi-
nate them, and Pan and Vardi use symbolic techniques. The bottom-up approach
is motived by the fact that the efficiency of heuristics that are used in SAT is
lost when following the ordering of the sequence of quantifiers. The drawback of
bottom-up approaches is the cost in space.
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The interest of the community in solving a QCSP is more recent than QBF,
so there are few QCSP solvers. Gent, Nightingale and Stergiou [3] developed
QCSP-Solve, a top-down solver that uses generalizations of well-known tech-
niques in CSP like arc-consistency [4,5], intelligent backtracking, and some QBF
techniques like the Pure Literal rule. This state-of-the-art solver is faster than
previous approaches that transform the QCSP into a QBF problem before call-
ing a QBF solver. Repair-based methods seem to be quite helpful as well, as
shown by Stergiou in [6].

In this paper we introduce BlockSolve, the first bottom-up algorithm to solve
QCSPs. BlockSolve instantiates variables from the innermost to the outermost.
On the one hand, this permits to factorize equivalent subtrees during search. On
the other hand, BlockSolve only uses standard CSP techniques, no need for
generalizing them into QCSP techniques. The algorithm processes a problem as
if it were composed of pieces of classical CSPs. Hence, BlockSolve uses the con-
straint propagation techniques of a standard CSP solver as long as it enforces at
least forward checking (FC) [7]. The factorization technique used in BlockSolve
is very close to that used by Fargier et al. for Mixed CSPs [8]. Mixed CSPs are
QCSPs in which the sequence of variables is only composed of two consecutive
sets, one universally quantified and the other existentially quantified. Fargier et
al. decomposed Mixed CSPs to solve them using subproblem extraction as in [9].
BlockSolve uses this kind of technique, but extends it to deal with any num-
ber of alternations of existential and universal variables. Like QBF bottom-up
algorithms, BlockSolve requires an exponential space to store combinations of
values for universal variables that have been proved to extend to inner existen-
tial variables. However, storing them in a careful way dramatically decreases this
space, as we observed in the experiments.

The rest of the paper is organized as follows. Section 2 defines the concepts
that we will use during the paper. Section 3 describes BlockSolve, starting by
an example and discusses its space complexity. Finally, Section 4 experimentally
compares BlockSolve to the state-of-the-art QCSP solver QCSP-Solve and Sec-
tion 5 contains a summary of this work and details for future work.

2 Preliminaries

In this section we define the basic concepts that we will use.

Definition 1 (Quantified Constraint Network). A quantified constraint
network is a formula QC in which:

– Q is a sequence of quantified variables Qixi, i ∈ [1..n], with Qi ∈ {∃, ∀}
and xi a variable with a domain of values D(xi),

– C is a conjunction of constraints (c1 ∧ ... ∧ cm) where each ci involves some
variables among x1, . . . , xn.

Now we define what is a solution tree of a quantified constraint network.

Definition 2 (Solution tree). The solution tree of a quantified constraint
network QC is a tree such that:
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– the root node r has no label,
– every node s at distance i (1 ≤ i ≤ n) from the root r is labelled by an

instantiation (xi ← v) where v ∈ D(xi),
– for every node s at depth i, the number of successors of s in the tree is
|D(xi+1)| if xi+1 is a universal variable or 1 if xi+1 is an existential variable.
When xi+1 is universal, every value w in D(xi+1) appears in the label of one
of the successors of s,

– for any leaf, the instantiation on x1, . . . , xn defined by the labels of nodes
from r to the leaf satisfies all constraints in C.

It is important to notice that contrary to classical CSPs, variables are ordered
as an input of the network. A different order in the sequence Q gives a different
network.

Example 1. The network ∃x1∀x2, x1 �= x2, D(x1) = D(x2) = {0, 1} is inconsis-
tent, there is no value for x1 in D(x1) that is compatible with all values in D(x2)
for x2.

Example 2. The network ∀x2∃x1, x1 �= x2, D(x1) = D(x2) = {0, 1} has a solu-
tion: whatever the value of x2 in D(x2), x1 can be instantiated.

Notice that if all variables are existentially quantified, a solution to the quantified
network is a classical instantiation. Hence, the network is a classical constraint
network.

Definition 2 leads to the concept of quantified constraint satisfaction problem.

Definition 3 (QCSP). A quantified constraint satisfaction problem (QCSP)
is the problem of the existence of a solution to a quantified constraint network.

We point out that this original definition of QCSP, though different in presen-
tation, is equivalent to previous recursive definitions. The advantage of ours is
that it formally specifies what a solution of a QCSP is.

Example 3. Consider the quantified network ∃x1∃x2∀x3∀x4∃x5∃x6, (x1 �= x5)∧
(x1 �= x6)∧ (x2 �= x6)∧ (x3 �= x5)∧ (x4 �= x6)∧ (x3 �= x6), D(xi) = {0, 1, 2, 3}, ∀i.
Figure 1 shows a solution tree for this network.

We define the concept of block, which is the main concept handled by our algo-
rithm BlockSolve.

Definition 4 (Block). A block in a network QC is a maximal subsequence of
variables in Q that have the same quantifier. We call a block that contains uni-
versal variables a universal block, and a block that contains existential variables
an existential block.

Inverting two variables of a same block does not change the problem, whereas
inverting variables of two different blocks changes the problem. If x and y are
variables in two different blocks, with x earlier in the sequence than y, we say that
x is the outer variable and y is the inner variable. In this paper, we limit ourselves
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Fig. 1. A solution tree for Example 3

to binary constraints for simplicity of presentation: a constraint involving xi and
xj is noted cij . Nevertheless, BlockSolve can handle non-binary constraints if
they overlap at most two blocks and there is at most one variable in the outer
block (if there are two blocks).

The concept of block can be used to define a solution block-tree of a QCSP.
This is a compressed version of the solution tree defined above.

Definition 5 (Solution block-tree). The solution of a quantified constraint
network QC is a tree such that:

– the root node r has no label,
– every node s at distance i from the root represents the ith block in Q,
– every node s at distance i from the root r is labelled by an instantiation of

the variables in the ith block if it is an existential block, or by a union of
Cartesian products of sub-domains of its variables if it is a universal block,

– for every node s at depth i, the number of successors of s in the tree is 1
if the i+1th block is existential, or possibly more than 1 if the i+1th block
is universal. When the i+1th block is universal, every combination of values
for its variables appears in the label of one of the successors of s,

– for any leaf, an instantiation on x1, . . . , xn defined by the labels of the exis-
tential nodes from r to the leaf and any of the labels of the universal nodes
from r to the leaf satisfies all constraints in C.

Note that the root node is present only for having a tree and not a forest in
cases where the first block is universal. Figure 2 is the block-based version of
the solution tree in Fig. 1. The root node is not shown because the first block
is existential. The problem is divided in three blocks, the first and the third
blocks are existential whereas the second block is universal. Existential nodes
are completely instantiated, it means that all variables of those blocks have a
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single value. The universal block is in three nodes, each one composed of the
name of the variables and a union of Cartesian products of sub-domains. Each
of the universal nodes represents as many nodes in the solution tree of Fig. 1
as there are tuples in the product. The block-tree in Figure 2 is a compressed
version of the tree in Figure 1.

Fig. 2. Solution block-tree of example 3

BlockSolve uses this concept of blocks for generating a solution and for solv-
ing the problem. Blocks divides the problem in levels.

Definition 6 (Level). A network P = QC is divided in p levels from 1 to
p. Each level k, 1 ≤ k ≤ p, is composed of a universal block block∀(k), and
the following existential block in Q, noted block∃(k). If the first block in Q is
existential, the first level contains only this block, and if the last block is universal,
the last level contains only this block.

We call Pk the subproblem that contains variables in levels k to p and constraints
that are defined on those variables. P1 is the whole problem P. The principle of
BlockSolve is to solve Pp first, then using the result to solve Pp−1, and so on
until it solves P1 = P.

3 The BlockSolve Algorithm

In this section we describe BlockSolve, our QCSP solving algorithm. First of
all we run the algorithm on Example 3. Afterwards, we provide the general
algorithm.

As done in QCSP-Solve, we start by a preprocessing that permanently removes
constraints ∀xi∀xj cij and ∃xi∀xj cij . Let us explain why these constraints can
be completely removed. For constraints of type ∀xi∀xj cij , if there exists a couple
(vi, vj) of values for xi and xj that is forbidden by cij , then the whole problem
is inconsistent. If not, the constraint will ever be satisfied, so we can remove it.
For constraints of type ∃xi∀xj cij , if there exists a couple (vi, vj) of values for xi

and xj that is forbidden by cij , then xi cannot take value vi. So, we can remove
it from the domain of xi. If D(xi) becomes empty, the problem is inconsistent.
Once all values in D(xi) have been checked, we can remove cij . Once the network
has been preprocessed this way, the main algorithm can start. BlockSolve uses
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classical propagation techniques, and thus can be integrated into a CSP solver
(like Choco [10]). It then inherits all propagation algorithms implemented in the
solver. Let us illustrate the behavior of BlockSolve on the network of Example
3 before describing how it works.

3.1 Running BlockSolve on an Example

In this section we run the algorithm on the network of Example 3 whose solution
is presented in Figure 2. The following pictures are an execution of BlockSolve
on this example.

The main idea in BlockSolve is to instantiate existential variables of the
last block, and to go up to the root instantiating all existential variables. Each
assignment vi of an existential variable xi can lead to the deletion of inconsistent
values of outer variables by propagation. (We illustrate here with FC).

Removing a value of an outer existential variable is similar to the CSP case.
While the domains of variables are non empty, it is possible to continue instanti-
ating variables. But if a domain is reduced to the empty set, it will be necessary
to backtrack on previous choices on inner variables and to restore domains.

Removing a value of an outer universal variable implies that we will have to
find another instantiation of inner variables that supports this value, because all
tuples in universal blocks have to match to a partial solution of inner subproblem.
But the instantiation that removes a value in the domain of an universal variable
must not be rejected: it can be compatible with a subset of tuples of the universal
block. The bigger the size of the subset, the better the grouping. Factorizing
tuples of values for a universal block in large groups is a way for minimizing
the number of times the algorithm has to solve subproblems. Each time an
instantiation of inner variables is found consistent with a subset of tuples for a
universal block, we must store this subset and solve again the inner subproblem
wrt remaining tuples for the universal variables.

At level k, BlockSolve looks for a solution to Pk+1, and then tries to solve
Pk. The first subproblem BlockSolve tries to solve is the innermost subproblem.
In the example, BlockSolve will instantiate variables of the last block (x5 and
x6) as if the problem was a classical CSP.

First step.

Before the instantiation x5 and x6 instantiated

BlockSolve has found an instantiation ((x5, x6) = (0, 0)) which is consistent
with all remaining values of the other variables (thanks to FC filtering). Thus,
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if there is a consistent assignment for (x1, x2) with their remaining values, it is
consistent with values that we assigned to (x5, x6).

Here, FC removed value 0 for x3 and x4, and for x1 and x2. It means that
BlockSolve has not found an instantiation for (x5, x6) that is consistent with
tuples in D(x3) × D(x4) that contain 0 for x3 or for x4. So, in the next step,
BlockSolve tries to find a partial solution on x5 and x6 that is consistent with
some of the tuples in {0} × {0, 1, 2, 3} ∪ {1, 2, 3}× {0} for x3 and x4 (i.e., x3 or
x4 is forced to take 0).

Second step.

Before the instantiation x5 and x6 instantiated

In the second step, BlockSolve has found the instantiation (1, 1) for (x5, x6),
which is consistent with some of the remaining tuples of x3, x4. This partial
solution (x5, x6) = (1, 1) is inconsistent with (x3, x4) = (1, 0) and (x3, x4) =
(0, 1). Note that domains of x1 and x2 have been reduced as well.

Last step.

Before the instantiation x5 and x6 instantiated

Finally, in the last step, we find the instantiation (2, 2) for (x5, x6), which is con-
sistent with the last remaining combinations for x3, x4 (namely, (0, 1) and (1, 0)).
At this point we know that any combination of values on (x3, x4) can be extended
to x5, x6. The subproblem P2 is solved. During this process the domains of x1 and
x2 have been successively reduced until they both reached the singleton {3}. These
are the only values consistent with all instantiations found for x5, x6 in the three
previous steps. These values 3 for x1 and 3 for x2 being compatible (there is no
constraint between x1 and x2), we know that P1 (= P) is satisfiable. The solution
generated by BlockSolve is the one depicted in Figure 2.
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3.2 Description of BlockSolve

In this section, we describe BlockSolve, presented as Algorithm 1. This is a
recursive algorithm. BlockSolve(k) is the call of the algorithm at level k, which
itself calls BlockSolve(k + 1). In the section above, we saw that it is necessary
to keep in memory the tuples of each block. This is saved in two tables: T∀[1..p]
and T∃[1..p] where p is the number of levels. BlockSolve(k) modifies the global
tables T∀[] and T∃[] as side-effects. Local tables A and B are used to restore T
adequately depending on success or failure in inner subproblems.

BlockSolve works as follows: for a level k starting from level 1, we try to
solve the subproblem Pk+1, keeping in mind that it must be compatible with all
constraints in P. If there is no solution for Pk+1, it means that current values of
existential variables in block∃(k) do not lead to a solution. But it may be the case
that previous choices in Pk+1 provoked the removal of those values in block∃(k)
that lead to a solution with other values in Pk+1. So we try to solve Pk+1 again,
after having removed tuples on block∃(k) that led to failure. If there exists a
solution for Pk+1, we try to instantiate block∃(k) with values consistent with
some of the tuples on block∀(k), exactly as if it was a classical CSP. If success,
we remove from T∀[k] the tuples on block∀(k) that are known to extend on inner
variables, and we start again the process on the not yet supported tuples of
block∀(k). The first call is made with these parameters: P1 which is the whole
problem, and for each level k, the Cartesian products T∃[k] and T∀[k] of domains
of variables in the blocks of level k.

Here we describe the main lines of the algorithm BlockSolve.

At line 1, BlockSolve returns true for the empty problem.
At line 2, we test if there remain tuples in T∀[k], that is, tuples of block∀(k)

for which we have not yet found a partial solution in Pk. If empty, it means we
have found a partial solution tree for Pk and we can go up to level k − 1 (line
13). We also test if we have tried all tuples in T∃[k]. If yes (i.e., T∃[k] = ∅), it
means that Pk cannot be solved. In this case, we will go up to level k − 1 (line
13), and we will have to try other values for variables of block∃(k − 1) (line 12).

At line 4, a call is made to solve Pk+1. If the result is true, T∀[i], ∀i ≤ k and
T∃[i], ∀i ≤ k are tables of tuples that are compatible with the partial solution of
Pk+1. If the result is false, there is no solution for Pk+1 consistent with tuples
in T∃[k] for existential variables at level k.

At line 5, tuples on block∀(k) and block∃(k) compatible with Pk+1 are saved
in B∀ and B∃.

From line 6 to line 9, BlockSolve tries to instantiate variables of block∃(k)
consistently with tuples of T∀[k], i.e., tuples of values of universal variables
for which it has found a partial solution of Pk+1. At line 7, BlockSolve calls
solve-level(k)which is presented in Algorithm 2. This is a classical CSP solver
that instantiates only existential variables at level k (block∃(k)) so that the in-
stantiation is compatible with all constraints. This CSP solver has to propagate
at least FC to ensure that values of outer variables that are inconsistent with the
instantiation are removed. This is due to the fact that we limit constraints to
constraints on two blocks, with only one variable in the outermost block. Hence
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Algorithm 1. BlockSolve
in: P, k, T∀[k], T∃[k]
in/out: T∀[1..k − 1], T∃[1..k − 1]
Result: true if there exists a solution, false otherwise
begin

if k > number of levels then return true;1

while T∀[k] �= ∅ ∧ T∃[k] �= ∅ do2

A∀[1..k] ← T∀[1..k]; A∃[1..k] ← T∃[1..k];3

solved ← BlockSolve(k + 1);4

B∃ ← T∃[k]; B∀ ← T∀[k];5

if solved then
repeat6

(inst, T Inc
∀ ) ←solve-level(k);7

if inst then T∀[k] ← T Inc
∀ ;8

until T∀[k] = ∅ ∨ ¬inst ;9

solved ← (B∀ �= T∀[k]);10

if solved then
T∃[k] ← A∃[k]; T∀[k] ← (A∀[k] \ B∀) ∪ T∀[k];11

else
T∃[k] ← A∃[k] \ B∃ ;12

T∃[1..k − 1] ← A∃[1..k − 1]; T∀[1..k] ← A∀[1..k];

return (T∀[k] = ∅);13

end

we ensure that all variables but the outermost are instantiated when propagating
a constraint. Each time it finds an instantiation, solve-level(k) removes from
T∀[k] the tuples not consistent with the instantiation of block∃(k), and returns
the table T Inc

∀ containing these tuples. This is the new value for T∀[k] (line 8).
BlockSolve will indeed try to find another instantiation on block∃(k) as long
as not all tuples in block∀(k) compatible with Pk+1 (those in B∀) have found
extension to block∃(k) or there is no more instantiation which is compatible with
T∀[k] (i.e., solve-level returns false).

If we have extended some new tuples in block∀(k) since line 5 (test in line 10),
then line 11 updates T∀[k]: there remains to consider all tuples that have been
removed by BlockSolve(k + 1) or solve-level(k) since the beginning of the
loop (line 3). For all these tuples of block∀(k), BlockSolve has not yet found any
partial solution of inner variables consistent with them. Remark that existential
variables in block∃(k) are restored to their state at the beginning of the loop
(line 3).

At line 12, two cases: either solved has taken the value false from the call to
BlockSolve(k+1) or it has taken the value false because BlockSolve(k+1) has
found a solution but there was no possible instantiation of variables in block∃(k)
with a tuple of B∃ compatible with tuples of B∀. In both cases no tuple in B∃ can
lead to a partial solution while universal variables of block∀(k) have their values
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Algorithm 2. solve-level(k)
in: P,k, T∀[k],T∃[k]
in/out: T∃[1..k − 1], T∀[1..k − 1]
Result: a couple (inst, T Inc

∀ ):
begin

Instantiate variables of block∃(k) consistently with T∀[] and T∃[] and
propagate the constraints;
if success then

T Inc
∀ ← tuples in T∀[k] that are inconsistent with the instantiation;

return (true, T Inc
∀ );

else return (false, —);
end

in B∀. But there might exist a solution on B∀ consistent with some other tuples of
A∃[k] (tuples that have been removed because of choices in BlockSolve(k +1)).
We update T∃[k] to contain them.

We should bear in mind that function solve-level (Algorithm 2) is a stan-
dard CSP solving algorithm that tries to instantiate existential variables of
block∃(k). If it is possible to instantiate them, inst is true and T Inc

∀ contains
all tuples of T∀[k] that are in conflict with the instantiation. Maintaining con-
sistency with outer variables is done as side-effects on tables T∃[] and T∀[].

BlockSolve can give the solution block-tree as in Definition 5. Figure 2 shows
the result given. In order to build such a tree, BlockSolve takes as parameter a
node that corresponds to the existential block of the previous level (or the root for
the first level). When solving Pk+1, BlockSolve produces a tree that is plugged
to the current existential node. Plugging the current sub-tree can be done after
the call to solve-level (line 7), using the instantiation of the variables in T∃[k],
and the compatible tuples in T∀[k]. If solving Pk+1 fails, nothing is plugged.

3.3 Spatial Complexity

BlockSolve needs more space than a top-down algorithm like QCSP-Solve. It
keeps in memory all tuples of existential and universal blocks for which a solution
has not yet been found. The size of such sets can be exponential in the number
of variables of the block. But when solving a QCSP, the user usually prefers to
obtain a solution tree than an answer: “yes, it is satisfiable”. Since a solution
tree takes exponential space, any algorithm that returns a solution tree of a
quantified network requires exponential space.1

BlockSolve keeps sets of tuples as unions of Cartesian products, which uses far
less space than tuples in extension. In addition, computing the difference between
two unions of Cartesian products is much faster than with tuples in extension.
1 We can point out that a solution can be returned in polynomial space if we allow

interactive computation: the values of the first existential block are returned, then,
based on the values chosen adversarially for the first universal block, values of the
second existential block are returned, and so on.
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4 Experiments

In this section we compare QCSP-Solve and BlockSolve on random problems.
The experiments show the differences between these two algorithms in CPU time
and number of visited nodes.

4.1 Coding BlockSolve

BlockSolve is developed in Java using Choco as constraint library [10]. This
library provides different propagation algorithms and a CSP solver. After loading
the data of a problem, BlockSolve creates tables of sets of tuples for each block
and finally launches the main function.

Heuristics. The algorithm uses a value ordering heuristic to increase efficiency.
Because BlockSolve is able to factorize subtrees, the most efficient way to solve
a QCSP is to minimize the number of subtrees during the search. One way to
accomplish this is to select the value v of variable x that is compatible with the
largest set of tuples of outer blocks. In order to determine which value is the best
according to this criterion, the solver instantiates x to all its values successively.
For each value it propagates the instantiation to others domains and computes
the number of branches it is in (i.e., the number of compatible tuples in outer
blocks). The larger the better.

4.2 The Random Problem Generator

Instances of QCSP presented in these experiments have been created with a
generator based on that used in [3]. In this model, problems are composed of
three blocks, the first is an existential block. It takes seven parameters as input
< n, n∀, n∃, d, p, q∀∃, q∃∃ > where n is the total number of variables, n∀ is the
number of universal variables, n∃ is the number of existential variables in the
first block, d is the size of domains of variables (the same for each variable), p
is the number of binary constraints as a fraction of all possible constraints. All
constraints are ∀xi∃xj cij constraints or ∃xi∃xj cij constraints, other type of
constraints that can be removed during the preprocessing are not generated. q∀∃
and q∃∃ are the looseness of constraints, i.e., the number of goods as a fraction of
all possible couples of values. To avoid the flaw with which almost all problems
are inconsistent, constraints ∀xi∃xj cij have very few forbidden couples.

We extended this generator to allow more than 3 blocks. We added an eighth
parameter, b∀, that is the number of universal blocks. Variables are sequenced
as follow: n∃ existential variables followed by n∀ universal variables, then again
n∃ existential variables followed by n∀ universal variables.

4.3 Results

Now we present some results on randomly generated instances created by the
generator. For each experiment, 100 instances were generated for each value of
q∃∃, from 0.05 to 0.95.
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Fig. 3. Number of nodes for n = 15, n∀ = 7, n∃ = 4, b∀ = 1, d = 15, p = 30, q∀∃ = .50
where q∃∃ grows. (cross-over point at q∃∃ = .25).

The first three figures are from experiments on problems with these charac-
teristics: each instance contains 15 variables, one block of 7 universal variables.
Figure 3 shows the results in terms of number of nodes explored. In the leftmost
part of the figure, both algorithms detect inconsistency before exploring any
node. As we can see, BlockSolve traverses far less nodes than QCSP-Solve.
Notice that BlockSolve explores only existential nodes, not universal ones.
QCSP-Solve seems to have difficulties to solve problems that have solutions.
On under-constrained problems, BlockSolve finds a solution without any back-
track. This means that for easy problems, there exists an instantiation of the
innermost existential block that is consistent with all tuples of the universal
block.

Figure 4 shows the results in term of CPU time. Comparing it to Figure 3,
it is clear that BlockSolve takes a lot of time for exploring one node. This is
because at each node BlockSolve looks for the best value for matching more
tuples in outer universal blocks. This heuristic is quite long to compute compared
to what QCSP-Solve does at a node. Note that QCSP-Solve determines faster
than BlockSolve that a problem is inconsistent (q∃∃ < .25), but BlockSolve
finds a solution much faster when it exists (q∃∃ > .25). For very high values of
q∃∃ (> .90), QCSP-Solve is more efficient than BlockSolve.

It is interesting to see that BlockSolve is more stable than QCSP-Solve, as
shown in Figure 5. In this figure, each point represents an instance of problem.
We see that in the satisfiable region, it is hard to predict how much time will
take QCSP-Solve to solve an instance.

We ran both algorithms on instances that have more than three blocks. Figure
6 presents results for instances that have five blocks (∃∀∃∀∃) of five variables each
(left graph), and instances that have seven blocks of four variables each (right
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Fig. 5. Scattered plot for cpu time on n = 15, n∀ = 7, n∃ = 4, b∀ = 1, d = 15, p = 30,
q∀∃ = .50

graph). These experiments show that the general behavior of both algorithms
looks similar whatever the number of levels in the problem. In unsolvable prob-
lems, QCSP-Solve detects inconsistency before BlockSolve, whereas for solvable
instances QCSP-Solve takes as much time as at the cross-over point (i.e., where
there are as many satisfiable instances as unsatisfiable ones).
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Fig. 6. Problems with 25 variables and 5 blocks (left) and 28 variables and 7 blocks
(right)

5 Conclusions

In this paper we presented BlockSolve, a bottom-up QCSP solver that uses
standard CSP techniques. Its specificity is that it treats variables from leaves to
root in the search tree, and factorizes lower branches avoiding the search in sub-
trees that are equivalent. The larger this factorization, the better the algorithm,
thus minimizing the number of nodes visited. Experiments show that grouping
branches gives BlockSolve a great stability in time spent and in number of
nodes visited. The number of nodes BlockSolve visits is much smaller than the
number of nodes visited by QCSP-Solve in almost all instances.

Future work will focus on improving time efficiency of BlockSolve. Great im-
provements can probably be obtained by designing heuristics to efficiently prune
subtrees that are inconsistent. Furthermore, most of the cpu time is spent updat-
ing and propagating tables of tuples on blocks. Finding better ways to represent
them could significantly decrease the cpu time of BlockSolve. The current im-
plementation of BlockSolve being far from being optimized, this leaves a lot of
space for significant improvements. Finally, we plan to generalize BlockSolve to
global constraints.
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Abstract. We describe some new propagators for breaking symmetries
in constraint satisfaction problems. We also introduce symmetry break-
ing constraints to deal with symmetries acting simultaneously on vari-
ables and values, conditional symmetries, as well as symmeties acting on
set and other types of variables.

1 Introduction

Symmetry occurs in many constraint satisfaction problems. We must deal with
symmetry or we will waste much time visiting symmetric solutions, as well as
parts of the search tree which are symmetric to already visited parts. One mech-
anism to deal with symmetry is to add constraints which eliminate symmetric
solutions [1]. Crawford et al. have presented [2] a simple method for breaking
any type of symmetry between variables. We pick an ordering on the variables,
and then post symmetry breaking constraints to ensure that the final solution is
lexicographically less than any symmetric re-ordering of the variables. That is,
we select the “lex leader” assignment. Whilst this method was defined for sym-
metries of Boolean variables, it has been lifted to symmetries of non-Boolean
variables, and symmetries acting independently on variables and values [3,4]. In
this paper, we show how this basic method can be extended further to symme-
tries acting simultaneously on variables and values, conditional symmetries, as
well as symmeties acting on set and other types of variables.

2 Background

A constraint satisfaction problem consists of a set of variables, each with a
domain of values, and a set of constraints specifying allowed combinations of
values for given subsets of variables. A solution is an assignment of values to
variables satisfying the constraints. Finite domain variables take one value from
a given finite set. Set variables take sets of such values and are typically defined
by a lower bound on the definite elements and an upper bound on the definite
and potential elements. We write [X1, . . . , Xn] for the vector of values taken by
variables X1 to Xn. Systematic constraint solvers explore partial assignments
enforcing some level of local consistency property. We consider two of the most
common local consistencies: arc consistency and bound consistency. Given a
constraint C on finite domain variables, a support is assignment to each variable

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 650–664, 2006.
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of a value in its domain which satisfies C. A constraint C on finite domains
variables is generalized arc consistent (GAC ) iff for each variable, every value in
its domain belongs to a support. Given a constraint C on set variables, a bound
support on C is an assignment of a set to each set variable between its lower
and upper bounds which satisfies C. A constraint C is bound consistent (BC )
iff for each set variable S, the values in ub(S) belong to S in at least one bound
support and the values in lb(S) belong to S in all bound supports.

3 Variable Symmetry Breaking

A variable symmetry σ is a bijection on variables that preserves solutions. That
is, if {Xi = vi | 1 ≤ i ≤ n} is a solution, then {Xσ(i) = vi | 1 ≤ i ≤ n} is
also. Crawford et al. [2] show how to break all variable symmetry by posting
the constraint LexLeader(σ, [X1, . . . , Xn]) for each variable symmetry σ. This
ensures:

[X1, . . . , Xn] ≤lex [Xσ(1), . . . , Xσ(n)]

Where X1 to Xn is any fixed ordering on the variables. To enforce GAC on such
a constraint, we can use the lex propagator described in [5] which copes with
repeated variables. This takes O(nm) time where m is the maximum domain
size. In general, this decomposition into a set of LexLeader constraints hinders
propagation. There may be values which can be pruned because they do not
occur in all lex leaders which we will not identify by looking at the lex leader
constraints individually.

Theorem 1. GAC(
∧

σ∈Σ LexLeader(σ, [X1, . . . , Xn])) is strictly stronger
than GAC(LexLeader(σ, [X1, . . . , Xn])) for all σ ∈ Σ.

Proof: Clearly it is at least as strong. We show strictness with just two sym-
metries and four variables. Consider X1, X2, X4 ∈ {0, 1}, X3 = 1 and two sym-
metries defined by the cycles (1 4 2 3) and (1 2 4 3). Then [X1, X2, X3, X4] ≤lex

[X4, X3, X1, X2] and [X1, X2, X3, X4] ≤lex [X2, X4, X1, X3]) are GAC. However,
enforcing GAC on their conjunction prunes 0 from X4 as the only support for
X3 = 1 and X4 = 0 that satisfies [X1, X2, X3, X4] ≤lex [X4, X3, X1, X2] is
X1 = X2 = 0, whilst the only support for X3 = 1 and X4 = 0 that satisfies
[X1, X2, X3, X4] ≤lex [X2, X4, X1, X3]) is X1 = 0 and X2 = 1. 0
Breaking all symmetry may require an exponential number of LexLeader con-
straints (e.g. the n! symmetries of n indistinguishable variables). It may there-
fore be worth developing a global constraint that combines together several
LexLeader constraints. For example, the lex chain constraint [6] breaks all
row symmetries of a matrix model. This would require an exponential number
of LexLeader constraints. Unfortunately, there are also cases where such a
combined symmetry breaking constraint is intractable. For example, a global
constraint that combines together all the LexLeader constraints for row and
column symmetries of a matrix model is NP-hard to propagate completely [7].
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4 Value Symmetry Breaking

A value symmetry σ is a bijection on values that preserves solutions. That is, if
{Xi = vi | 1 ≤ i ≤ n} is a solution, then {Xi = σ(vi) | 1 ≤ i ≤ n} is also. The
lex leader method can also be used to break value symmetries [3]. We simply
post the constraint ValLexLeader(σ, [X1, . . . , Xn]) for each value symmetry
σ. This holds iff:

[X1, . . . , Xn] ≤lex [σ(X1), . . . , σ(Xn)]

Again X1 to Xn is any fixed ordering on the variables. We first prove that such
constraints break all symmetry.

Theorem 2. ValLexLeader(σ, [X1, . . . , Xn]) for all σ ∈ Σ leaves exactly one
solution in each symmetry class.

Proof: Immediate as lex is a total ordering. 0
For example, suppose we have a reflection symmetry on the values 1 to m defined
by σr(i) = m− i + 1. We can break this symmetry with a single ValLexLeader
constraint. If m is even, ValLexLeader(σr, [X1, . . . , Xn]) simplifies to the logi-
cally equivalent constraint: X1 ≤ m

2 . If m is odd, it simplifies into the constraints:
X1 ≤ m+1

2 , if X1 = m+1
2 then X2 ≤ m+1

2 , if X1 = X2 = m+1
2 then X3 ≤ m+1

2 , . . .,
and if X1 = . . . = Xn−1 = m+1

2 then Xn ≤ m+1
2 .

It is an interesting open question how to simplify ValLexLeader constraints
for other types of value symmetries. We conjecture that we may be able to ap-
ply some of Puget’s ideas from [8]. When there are few value symmetries, Puget
has proposed decomposing ValLexLeader into Element and lex ordering con-
straints [4]. However, enforcing GAC on such a decomposition does not achieve
GAC on the ValLexLeader constraint. We show here how to enforce GAC in
O(nm) time for each value symmetry. One possibility is to adapt the lex propaga-
tor from [9]. Alternativelywe decomposeValLexLeader into ternary constraints
using a set of Boolean variables,Bi. We identify two important sets of values:L are
those values for which v < σ(v), whilst E are those values for which v = σ(v). We
post the sequence of constraints, C(Xi, Bi, Bi+1) for 1 ≤ i ≤ n, where B1 = 0
and C(Xi, Bi, Bi+1) holds iff Bi = Bi+1 = 0 and Xi ∈ E , or Bi = 0, Bi+1 = 1
and Xi ∈ L, or Bi = Bi+1 = 1. We can enforce GAC on the ternary constraint
C using a table constraint, GAC-schema or logical primitives like implication. As
the constraint graph of the decomposition is Berge-acyclic, enforcing GAC on each
ternary constraint achieves GAC on the whole ValLexLeader constraint [10].

As with variable symmetry, decomposition into individual symmetry breaking
constraints may hinder propagation.

Theorem 3. GAC(
∧

σ∈Σ ValLexLeader(σ, [X1, . . . , Xn])) is strictly stronger
than GAC(ValLexLeader(σ, [X1, . . . , Xn])) for all σ ∈ Σ.

Proof: Clearly it is at least as strong. We show strictness with just two symme-
tries and two variables. Suppose X1 ∈ {0, 1} and X2 ∈ {0, 2}. Consider a value
symmetry σ defined by the cycle (0 2). Then ValLexLeader(σ, [X1, X2])) is
GAC. Consider a second value symmetry σ′ defined by the cycle (1 2). Then



General Symmetry Breaking Constraints 653

ValLexLeader(σ′, [X1, X2])) is GAC. However, enforcing GAC on the con-
junction of these two symmetry breaking constraints prunes 2 from X2. 0

Breaking all value symmetry may again introduce an exponential number of
symmetry breaking constraints (e.g. the n! symmetries of n indistinguishable
values). It may therefore be worth developing a specialized global constraint
that combines together several ValLexLeader constraints. For example, as
we discuss later, the global precedence constraint [11] combines together all the
ValLexLeader constraints for indistinguishable values. As a second example,
Puget has recently proposed a forward checking algorithm for any combination
of value symmetries [4].

5 Variable and Value Symmetry Breaking

We may have both variable and value symmetries. Consider, for example, a model
of the rehearsal problem (prob039 in CSPLib) in which variables represent time
slots and values are the pieces practised in each time slot. This model has variable
symmetry since any rehearsal can be reversed, as well as value symmetry since
any piece requiring the same players is indistinguishable. Can we simply combine
the appropriate LexLeader and ValLexLeader constraints?

If each symmetry breaking constraint considers the variables in different or-
ders, it may not be safe to combine them. For example, if σ reflects 1 and 2, and
X1, X2 ∈ {1, 2} then LexLeader(σ, [X1, X2]) and ValLexLeader(σ, [X2, X1])
eliminate the assignment X1 = 1 and X2 = 2, as well as all its symmetries. We
assume therefore in what follows that the lexicographical ordering within each
symmetry breaking constraint considers the variables X1 to Xn in the same or-
dering, and is the lifting of the same ordering on values to an ordering on tuples.
Variable and value symmetry breaking constraints can then be combined safely.

Theorem 4. If X1 to Xn have a set of variable symmetries Σ and a set of
value symmetries Σ′ then posting LexLeader(σ, [X1, . . . , Xn]) for all σ ∈ Σ
and ValLexLeader(σ′, [X1, . . . , Xn]) for all σ′ ∈ Σ′ leaves one or more as-
signments in each equivalence class.

Proof: Consider any assignment. Pick the lex leader under Σ of this assignment.
By construction, this satisfies LexLeader(σ, [X1, . . . , Xn]) for all σ ∈ Σ. Now
consider the lex leader under Σ′ of this current assignment. By construction,
this satisfies ValLexLeader(σ′, [X1, . . . , Xn]) for all σ′ ∈ Σ′. This also moves
us down the lexicographical order on tuples. However, we may no longer satisfy
LexLeader(σ, [X1, . . . , Xn]). We therefore pick the lex leader under Σ of our
current assignment. We again must move down the lexicographical order on
tuples. This process terminates as the lexicographical order is well founded and
bounded by [0, . . . , 0] where 0 is the least value. We terminate with an assignment
that satisfies both the LexLeader and ValLexLeader constraints. 0

Such symmetry breaking may leave one or more assignments in each equivalence
class. Consider, for example, a Boolean problem in which both variables and
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values have reflection symmetry. Then the assignments [0, 1, 1] and [0, 0, 1] are
symmetric, and both satisfy the appropriate LexLeader and ValLexLeader
constraints. Thus, whilst we can post variable symmetry breaking constraints
and value symmetry breaking constraints separately, they may not break all
symmetry. We need to consider symmetry breaking constraints for the combined
variable and value symmetries. We give such constraints in the next section.

6 Variable/Value Symmetry Breaking

In general, a symmetry σ is a bijection on assignments that preserves solutions
[12]. We call this a variable/value symmetry to distinguish it from symmetries
that act just on the variables or just on the values. Consider, for example, a
model for the n-queens problem in which we have one variable for each row. This
problem has a rotational symmetry r90 that maps Xi = j onto Xj = n− i + 1.
This is neither a variable nor a value symmetry as it acts on both variables and
values together. With variable/value symmetries, we need to be careful that the
image of an assignment is itself a proper assignment. We say that a complete
assignment [X1, . . . , Xn] is admissible for σ if the image under σ is also a complete
assignment. In particular, the image should assign one value to each variable.
Thus [X1, . . . , Xn] is admissible iff |{k | Xi = j, σ(i, j) = (k, l)}| = n. To return
to the 3-queens example, the assignment [2, 3, 1] for [X1, X2, X3] is admissible for
r90 as its image under r90 is [1, 3, 2] which is a complete assignment. However,
the assignment [2, 3, 3] is not as its image tries to assign both 1 and 2 to X3.
If [X1, . . . , Xn] is admissible for σ we write σ([X1, . . . , Xn]) for its image under
σ. More precisely, σ([X1, . . . , Xn]) is the sequence [Y1, . . . , Yn] where for each
Xi = j and σ(i, j) = (k, l), we have Yk = l.

We now propose a generic method to break all variable/value symmetry.
We simply post the constraint GenLexLeader(σ, [X1, . . . , Xn]) for each vari-
able/value symmetry σ. This holds iff:

admissible(σ, [X1, . . . , Xn]) & [X1, . . . , Xn] ≤lex σ([X1, . . . , Xn])

Again X1 to Xn is any fixed ordering on the variables. If σ is a variable sym-
metry or a value symmetry, all assignments are admissible and we get the same
symmetry breaking constraint as before. Consider the 3-queens problem and the
r90 rotational symmetry. Suppose X1 = 2, X2 ∈ {1, 3} and X3 ∈ {1, 2, 3}. Then
enforcing GAC on GenLexLeader(r90, [X1, X2, X3]) prunes X3 = 2 as this
does not extend to an admissible assignment, as well as X2 = 3 and X3 = 1
as the image under r90 of any admissible assignment with X2 = 3 or X3 = 1
is smaller in the lexicographical order. As before, decomposition into individ-
ual symmetry breaking constraints may hinder propagation so it may be worth
developing a specialized global constraint that combines several together.

One way to propagate an individual GenLexLeader constraint is to in-
troduce variables Y1 to Yn for the image of X1 to Xn. We post channelling
constraints of the form Xi = j iff Yk = l for each i, j where σ(i, j) = (k, l). Fi-
nally, we post a lexicographical ordering constraint of the form [X1, . . . , Xn] ≤lex
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[Y1, . . . , Yn]). Enforcing GAC on this decomposition takes just O(nm) time. Un-
fortunately, this decomposition may hinder propagation.

Theorem 5. GAC(GenLexLeader(σ, [X1, . . . , Xn])) is strictly stronger than
GAC([X1, . . . , Xn] ≤lex [Y1, . . . , Yn]) and GAC(∀i, j . Xi = j iff Yk = l) where
σ(i, j) = (k, l).

Proof: Clearly it is at least as strong. To show strictness, consider the 3-queens
problem and the symmetry r90. Suppose X1 ∈ {1, 3}, X2 = 2 and X3 ∈ {1, 3}.
Then enforcing GAC on GenLexLeader(r90, [X1, X2, X3]) prunes X1 = 3 and
X3 = 1 as these are not lex leaders. However, the decomposition is GAC. 0

To enforce GAC on a GenLexLeader constraint, we can adapt the lex propa-
gator with repeated variables [5]. This give an O(n2) time propagator. The basic
idea is simple but unfortunately we lack space to give full details. The propaga-
tor focuses on the first position in the lex constraint where the variables are not
ground and equal. We need to test if the variables at this position can be strictly
ordered or made equal consistent with admissibility, As in the lex propagator
with repeated variables, they can only be made equal if admissibility does not
then require the rest of the vector to be ordered the wrong way.

7 Conditional Symmetry Breaking

A conditional symmetry σ is a symmetry that preserves solutions subject to
some condition [13]. This condition might be a partial assignment (e.g. that
X1 = X2 = 1) or, more generally, an arbitrary constraint (e.g. that X1 �= Xn).
More precisely, a conditional symmetry σ is a bijection on assignments such that
if A is an admissible solution and A satisfies Cσ then σ(A) is also a solution.
Consider, for example, the all interval series problem (prob007 in CSPLib) in
which we wish to find a permutation of the integers from 0 to n, such that the
difference between adjacent numbers is itself a permutation from 1 to n. One
model of this problem is a sequence of integer variables where Xi represents the
number in position i. The problem has a variable reflection symmetry since we
can invert any sequence. The problem also has a value reflection symmetry since
we can map any value j to n − j. Finally, as noted in [13], the problem has a
conditional symmetry since we can cycle a solution about a pivot to generate
a new solution. Consider n = 4 and the solution [3, 2, 0, 4, 1]. The difference
between first and last numbers in the sequence is 2. However, this is also the
difference between the 2nd and 3rd numbers in the sequence. We can therefore
rotate round to this point to give the new solution [0, 4, 1, 3, 2]. This symmetry
is conditional since it depends on the values taken by neighbouring variables.

To break such conditional symmetry, we simply need to post a constraint:

Cσ(X1, . . . , Xn) implies GenLexLeader(σ, [X1, . . . , Xn])

Consider again the all interval series problem. We can break the conditional
symmetries in this problem by posting the constraints:

|X1 −Xn+1| = |Xi −Xi+1| implies LexLeader(roti, [X1, . . . , Xn+1])
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Where 1 ≤ i ≤ n and roti is the symmetry that rotates a sequence by i elements.
We can break other types of conditional symmetries in an identical way.

8 Indistinguishable Values

A common type of value symmetry in which symmetry breaking constraints are
effective is when values are interchangeable. For example, in a model of the social
golfer problem (prob010 in CSPLib) in which we assign groups to golfers in each
week, all values are interchangeable. To break all such symmetry, Law and Lee
[11] propose the value precedence constraint:

Precedence([v1, . . . , vm], [X1, . . . , Xn])

This holds iff min{i |Xi = vi∨i = n+1} < min{i | Xi = vj∨i = n+2} for all 1 ≤
i < j < m. To propagate this constraint, Law and Lee decompose it into pairwise
value precedence constraints, and give a specialized algorithm for enforcing GAC
on each pairwise constraint [11]. In [14], we show that this decomposition hinders
propagation and give a simple ternary encoding which permits us to achieve GAC
in linear time. It is not hard to show that a value precedence constraint combines
together the exponential number of ValLexLeader constraints which break the
symmetry of indistinguishable values.

9 All Different Problems

Another class of problems on which symmetry breaking constraints are espe-
cially effective are those like the all interval series problem in which variables
must all take different values. On such problems, Puget has shown that the
LexLeader constraints for any (possibly exponentially large) set of variable
symmetries simplify down to a linear number of binary inequalities [15]. These
can be determined by computing stabilizer chains and coset representatives. For
example, on the all interval series problem, the variable reflection symmetry
breaking constraint simplifies to X1 < Xn+1.

Puget has also shown how to use this method to break value symmetries [8].
We assume we have a surjection problem in which each value is used at least
once. (If this is not the case, we introduce “dummy” variables to take the unused
values.) We then introduce index variables, Zi where Zj = min{i | Xi = j}.
These variables are by construction all-different and have a variable symmetry.
We can thus break the original value symmetry by adding just a linear number of
binary inequalities to break this variable symmetry. For interchangeable values,
Puget’s method gives the binary symmetry breaking constraints: Xi = j → Zj ≤
i, Zj = i→ Xi = j, and Zk < Zk+1 for all 1 ≤ i ≤ n, 1 ≤ j ≤ m and 1 ≤ k < m.
We observe that these constraints break all value symmetries by ensuring value
precedence [11]. However, this decomposition into binary constraints hinders
propagation. Consider X1 = 1, X2 ∈ {1, 2}, X3 ∈ {1, 3}, X4 ∈ {3, 4}, X5 = 2,
X6 = 3, X7 = 4, Z1 = 1, Z2 ∈ {2, 5}, Z3 ∈ {3, 4, 6}, and Z4 ∈ {4, 7}. Now all
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the binary implications are arc consistent. However, we can prune X2 = 1 as
this violates value precedence.

If we have both variable and value symmetries and an all different problem,
we can break variable symmetry with O(n) binary inequalities on the primal
model, and break value symmetry with O(m) binary inequalities on the dual.
This symmetry breaking on the dual is compatible with symmetry breaking on
the primal [8]. However, as in the general case, this may not break all symmetry.
Consider an all different problem with 3 variables and 3 values with variable
rotation symmetry and value reflection symmetry. Then [1, 2, 3] and [1, 3, 2] are
symmetric, but both satisfy the (simplified) variable symmetry breaking con-
straints that X1 < X2 and X1 < X3, and the (simplified) value symmetry
breaking constraint (on the dual) that Y1 < Y3.

10 Set Variable Symmetry Breaking

There are many problems involving symmetry which are naturally modelled and
effectively solved using set variables. Set variables can themselves eliminate some
symmetry (in particular, the ordering between elements). However, we may still
be left with symmetry. For example, another model of the social golfers problem
introduces a 2 dimensional matrix of set variables, one for each group and each
week. As groups and weeks are indistinguishable, these set variables have row and
column symmetry. More generally, a set variable symmetry σ is a bijection on
set variables, S1 to Sn that preserves solutions. To break all such symmetry, we
simply post the constraint SetLexLeader(σ, [S1, . . . , Sn]) for each set variable
symmetry σ. This ensures:

[S1, . . . , Sn] ≤lex [Sσ(1), . . . , Sσ(n)]

Again, S1 to Sn is any fixed ordering on the set variables. The lexicographical
ordering, ≤lex is the standard lifting of the multiset ordering on set variables to
an ordering on tuples of set variables. The multiset ordering on sets is equivalent
to the lexicographical ordering on the characteristic function.

We can propagate the SetLexLeader constraint by adapting the propagator
for the the lex constraint on finite domain variables described in [5] which copes
with repeated variables. Alternatively, we can post a SetLexLeader constraint
by means of the following decomposition: D(Si, Sσ(i), Bi, Bi+1) for 1 ≤ i ≤ n
where Bi are Booleans playing the role of α in the lex propagator, B1 = 0,
and D(Si, Sσ(i), Bi, Bi+1) holds iff Bi = Bi+1 = 0 and Si = Sσ(i), or Bi = 0,
Bi+1 = 1 and Si <mset Sσ(i), or Bi = Bi+1 = 1, and <mset is the multiset
ordering on sets.

We still need to provide a propagator for each quaternary constraint, D. This
is not trivial as the quaternary constraint is over both set and Boolean variables,
and involves notions like whether the sets are multiset ordered. We suppose the
set variables are represented by their characteristic function using an m-tuple
of Boolean variables. We will use the notation Si,k for the Boolean indicating
whether k ∈ Si. If i = σ(i) then D(Si, Sσ(i), Bi, Bi+1) simplifies to the equality
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constraint: Bi = Bi+1. If i �= σ(i) then we give a further decomposition. This
decomposition exploits the property that the multiset ordering on sets is identical
to the lexicographical ordering on the characteristic function. More precisely, we
decompose D(Si, Sj , Bi, Bi+1) into E(Si,k, Sj,k, Bi, Bi+1, Ai,k, Ai,k+1) for 1 ≤
k ≤ m, and two implication constraints, Ai,m+1 = 0 implies Bi = Bi+1 and
Ai,m+1 = 1 implies Bi+1 = 1, where Ai,k are Booleans (again playing a role
similar to α in the lex propagator), and E(Si,k, Sj,k, Bi, Bi+1, Ai,k, Ai,k+1) holds
iff Bi = Ai,k = 0 implies Si,k ≤ Sj,k and Si,k < Sj,k implies Ai,k+1 = 1.

Our decomposition is a simple logical combinations of Booleans which is read-
ily propagated by most solvers. As this decomposition of D(Si, Sj, Bi, Bi+1) is
Berge-acyclic, enforcing BC (=GAC) on the decomposition enforces BC on the
original quaternary constraint [10]. This takes O(m) time as we can enforce BC
on each of the O(m) Boolean constraints in constant time. Enforcing BC on the
decomposition of SetLexLeader thus takes O(nm) time.

As with finite domain variables, the decomposition into a set ofSetLexLeader
constraints hinders propagation.

Theorem 6. BC(
∧

σ∈Σ SetLexLeader(σ, [S1, . . . , Sn])) is strictly stronger
than BC(SetLexLeader(σ, [S1, . . . , Sn])) for all σ ∈ Σ.

Proof: Clearly it is at least as strong. We show strictness with just two symme-
tries. Consider S1, S2 ⊆ {0, 1}, S3 = {0}, S4 = {0} and two symmetries defined
by the cycles (1 2)(3 4) and (1 3 2 4). 0
Decomposition may also introduce an exponential number of SetLexLeader
constraints (e.g. the n! symmetries of n indistinguishable set variables). It may
therefore be worth developing specialized global constraints that combine to-
gether several SetLexLeader constraints.

11 Set Value Symmetry Breaking

The values used by some set variables might also be symmetric. Consider again
the model of the social golfers problem with a 2 dimensional matrix of set vari-
ables, each containing the set of golfers playing in particular group in a given
week. As the golfers are indistinguishable, any permutation of the values is also
a solution. More precisely, a set value symmetry σ is a bijection on values that
preserves solutions. That is, if {Si = {vij | 1 ≤ j ≤ mi} | 1 ≤ i ≤ n} is a solu-
tion, then {Si = {σ(vij) | 1 ≤ j ≤ mi} | 1 ≤ i ≤ n} is also. An even more general
definition of symmetry would be a bijection on sets of values that preserves so-
lutions. However, we focus here on what appears to be the more common case
of a bijection on values. To break all such set value symmetry, we simply post
the constraint SetValLexLeader(σ, [S1, . . . , Sn]) for each value symmetry σ.
This constraint ensures:

[S1, . . . , Sn] ≤lex [σ(S1), . . . , σ(Sn)]

Again, S1 to Sn is any fixed ordering on the set variables, and ≤lex is the stan-
dard lifting of the multiset ordering on set variables to an ordering on tuples
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of set variables. To propagate SetValLexLeader we can adapt the lex prop-
agator from [9]. Alternatively, we can use a simple decomposition somewhat
similar to that used for ValLexLeader on finite domain variables. We decom-
pose SetValLexLeader(σ, [S1, . . . , Sn]) into F (Si, Bi, Bi+1) for 1 ≤ i ≤ n
where Bi are Booleans playing the role of α in the lex propagator, B1 = 0, and
F (Xi, Bi, Bi+1) holds iff Bi = Bi+1 = 0 and Si = σ(Si), or Bi = 0, Bi+1 = 1
and Si <mset σ(Si), or Bi = Bi+1 = 1. Enforcing BC on this decomposition
achieves BC on the SetValLexLeader constraint.

We still need to provide a propagator for each ternary constraint,F . This is again
not trivial as it involves a set variable and notions like strict multiset ordering. We
can again decompose it into some simple Boolean constraints on the characteristic
function representation of the set variable.We identify two important sets of values:
L are those values for which v < σ(v), whilst E are those value for which v = σ(v).
We thendecomposeF (Si, Bi, Bi+1) intoG(Si,k, Bi, Bi+1, Ai,k, Ai,k+1) for 1 ≤ k ≤
m, and two implication constraints,Ai,m+1 = 0 impliesBi = Bi+1 andAi,m+1 = 1
implies Bi+1 = 1, where Ai,k are Booleans (again playing a role similar to α in the
lex propagator), and G(Si,k, Bi, Bi+1, Ai,k, Ai,k+1) holds iff (Bi = Ai,k = 0 and
k �∈ L∪E) impliesSi,k = 0and(k ∈ LandSi,k = 1) impliesAi,k+1 = 1.Ourdecom-
position is a simple logical combination of Booleans which is readily propagated by
most solvers. As this decomposition is Berge-acyclic, enforcing BC (=GAC) on the
decomposition enforces BC on the original ternary constraint [10]. This takesO(m)
time as we can enforce BC on the O(m) Boolean implication constraints in con-
stant time. Hence, enforcing BC on SetValLexLeader takes O(nm) time. This
is optimal. Nevertheless, it may be worthdeveloping a specialized global constraint
that combines together severalSetValLexLeader constraints as decomposition
into individual constraints may hinder propagation, and as there may be an expo-
nential number of SetValLexLeader constraints. For example, the precedence
constraint for set variables [11] combines together all theSetValLexLeader con-
straints for breaking the symmetry of indistinguishable set values.

12 Set Variable and Value Symmetry Breaking

Problems can contain both set variable and set value symmetry. Consider again
the model of the social golfers problem with a 2 dimensional matrix of set vari-
ables, each containing the set of golfers playing in particular group in a given
week. As the weeks, groups and golfers are all interchangeable, the set variables
in this model have row and column symmetry, and their values have permutation
symmetry. As with finite domain variables, we can combine together symmetry
breaking constraints for set variables and set values, provided all the symmetry
breaking constraints use the same ordering of set variables.

Theorem 7. Suppose S1 to Sn have set variable symmetries Σ and value sym-
metries Σ′. Then posting SetLexLeader(σ, [S1, . . . , Sn]) for all σ ∈ Σ and
SetValLexLeader(σ′, [S1, . . . , Sn]) for all σ′ ∈ Σ′ leaves one or more assign-
ments in each equivalence class.
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Proof: Similar to the proof with finite domain variables. The only difference is
that we now consider moving down the lexicographical order on tuples of sets. 0
In fact, complete symmetry breaking in this case is intractable in general (as-
suming P �=NP). For instance, if we have set variables and values that are in-
distinguishable, then the problem is isomorphic to breaking all row and column
symmetries of an 0/1 matrix model, and this is NP-hard [7].

13 Set Variable/Value Symmetry Breaking

Symmetries can act on set variables and their values simultaneously. Consider
a model of the peaceable coexisting armies of queens problem [16] in which we
have a set variable for each row of the chessboard containing the positions of the
white queens along the row. As in [16], we do not place the black queens and
just keep a count on the number of squares not attacked by white queens. This
model has a rotational symmetry r90′ that maps i ∈ Sj onto n − i + 1 ∈ Si.
This symmetry acts on both set variables and values together. More generally,
we will consider a set variable/value symmetry to be a bijection on set variable
membership constraints that preserves solutions. That is, if {i ∈ Sj | 1 ≤ j ≤ n}
is a solution then {k ∈ Sl | i ∈ Sj , σ(i, j) = (k, l)} is also. Note that the mapping
of a value just depends on the set variable to which it is assigned. An even more
general definition would be when the mapping depends on both the value, the
set variable, and the other values assigned to the set variable.

Given a complete assignment to the sequence of set variables, [S1 . . . , Sn]
we write σ([S1, . . . , Sn]) for its image under σ. More precisely, σ([S1, . . . , Sn])
is the sequence [T1, . . . , Tn] where for each σ(i, j) = (k, l), we have i ∈ Sj iff
k ∈ Tl. To break all set variable/value symmetries, we simply post the constraint
SetGenLexLeader(σ, [S1, . . . , Sn]) for each such symmetry σ. This ensures:

[S1, . . . , Sn] ≤lex σ([S1, . . . , Sn])

Consider the 5 by 5 peaceable armies of queens problem in which {1, 4} ⊆
S1 ⊆ {1, 4, 5}, S2 = {2}, S3 = {}, {} ⊆ S4 ⊆ {1} and {1} ⊆ S5 ⊆ {1, 2, 3, 4}.
Enforcing BC on SetGenLexLeader(r90′, [S1, S2, S3, S4, S5]) will reduce the
upper bound on S1 to its lower bound, {1, 4} to ensure that the placement of
white queens is ordered less than its rotation.

As set variable/value symmetry generalizes both set variable and set value
symmetry, decomposition into individual symmetry breaking constraints may
hinder propagation. We observe, however, that breaking all such symmetry is
intractable in general. To propagate an individual SetGenLexLeader con-
straint, we introduce variables T1 to Tn for the image of S1 to Sn. We post
channelling constraints of the form i ∈ Sj iff k ∈ Tl for each i and j, where
σ(i, j) = (k, l). Finally we post a lexicographical ordering constraint on the set
variables: [S1, . . . , Sn] ≤lex [T1, . . . , Tn]. We can again propagate this by adapt-
ing the propagator for the lex constraint on finite domain variables to set vari-
ables [5]. Alternatively, we can use a decomposition similar to that used for the
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SetLexLeader constraint. Enforcing BC on this decomposition takes O(nm).
Unfortunately, decomposition hinders propagation as it ignores the repeated
variables in the lexicographical ordering constraint.

Theorem 8. BC(SetGenLexLeader(σ, [S1, . . . , Sn])) is strictly stronger than
BC(i ∈ Sj iff k ∈ Tl) for each i, j where σ(i, j) = (k, l), and BC([S1, . . . , Sn] ≤lex

[T1, . . . , Tn]).

Proof: Clearly it is at least as strong. To show strictness, consider {} ⊆ S1, S3 ⊆
{1}, S2 = {1} and the rotational set variable symmetry, rot which maps S1 to S3,
S2 to S1 and S3 to S2. Enforcing BC on SetGenLexLeader(rot, [S1, S2, S3])
reduces the upper bound on S3 to {}. However, the decomposition is BC. 0

14 Symmetry Breaking for Other Representations of Sets

We can represent other information about a set variable besides the possible
and necessary elements in the set. For example, many solvers include an inte-
ger variable to record the cardinality of the set. Such cardinality information
can be used when symmetry breaking to permit additional pruning. For in-
stance, suppose we have a set variable, {} ⊆ S1 ⊆ {3, 4} with a cardinality of 1
and the permutation set value symmetry, σ34 that swaps the values 3 and 4. If
we post the symmetry breaking constraint, SetValLexLeader(σ34, [S1]) then
a propagator can exploit the cardinality information to prune the upper and
lower bounds on S1 to give S1 the unique assignment up to set value symmetry
of {3}.

Sadler and Gervet have proposed maintaining upper and lower bounds on a
set variable according to the lexicographical ordering [17]. That is, they main-
tain a set which is lexicographically larger than all possible assignments, as well
as one which is lexicographically smaller than all possible assignments. Such
lexicographical bounds fit well with the symmetry breaking methods proposed
here. For example, suppose we have a pair of set variables, S1 and S2 and the
permutation set variable symmetry, σ12 that swaps S1 and S2. Then the symme-
try breaking constraint, SetLexLeader(σ12, [S1, S2]) simplifies to S1 ≤lex S2.
We can enforce lexicographical bounds consistency on this ordering constraint
simply by making the lexicographical upper bound on S1 equal to the smaller of
the two upper bounds, and the lexicographical lower bound on S2 equal to the
larger of the two lower bounds.

Another representation used for a set variable is a binary decision diagram
[18]. Whilst such a representation requires exponential space in the worst case,
it is often manageable in practice and permits the maximum possible pruning.
Whilst set variable symmetry breaking constraints fit well with such a decision
diagram representation, set value symmetry breaking constraints do not. For set
variable symmetry, we can use the same ordering for values within the decision
diagram as within the symmetry breaking constraint. This will lead to a compact
representation for the symmetry broken set variables. For set value symmetry,
different symmetries can map values far apart in the ordering used in the decision
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diagram. Adding set value symmetry breaking constraints may therefore give
exponentially large decision diagrams.

15 Symmetry Breaking on Other Variable Types

These symmetry breaking methods lift to other types of variables. We consider
here multiset variables [19]. Multiset (or bag) variables are useful to model a
range of problems. As with set variables, their use can eliminate some but not
necessarily all symmetry in the model of a problem. Thus, we may need to break
symmetries in models involving multiset variables. For example, one model of
the template design problem (prob002 in CSPLib) introduces a multiset variable
for each template containing the number of each design. Such multiset variables
allow us to ignore the ordering of designs on the template. However, as templates
with the same production run length are indistinguishable, certain multiset vari-
ables can still be permuted. We thus may have a permutation symmetry, σ over
some of the multiset variables. To break all such symmetry, we simply post the
constraint MSetLexLeader(σ, [M1, . . . ,Mn]) for each multiset variable sym-
metry σ. This constraint ensures:

[M1, . . . ,Mn] ≤lex [Mσ(1), . . . ,Mσ(n)]

Again, M1 to Mn is any fixed ordering on the multiset variables. The lexico-
graphical ordering, ≤lex is the lifting of the multiset ordering on multiset vari-
ables to an ordering on tuples of set variables. Note that the multiset ordering
is equivalent to the lexicographical ordering on the occurrence representation of
the multiset. We can propagate the MSetLexLeader constraint by adapting
the propagator for the lex constraint on finite domain variables [5] or with an
encoding similar to that proposed for the SetLexLeader constraint. The ex-
tensions to multiset value and multiset variable/value symmetries are similar.
Another promising computation domain for constraint programming is the do-
main of graphs. Graph variables can be used in domains like bioinformatics to
represent combinatorial graph problems [20]. These symmetry breaking methods
also lift to deal with symmetries of such graph variables.

16 Related Work

Puget proved that symmetries can always be eliminated by the additional of
suitable constraints [1]. Crawford et al. presented the first general method for
constructing such symmetry breaking constraints [2]. Petrie and Smith applied
this lex-leader method to value symmetries [3]. Puget has recently proposed a
simple method to propagate such lex-leader constraints when symmetries are the
product of variable and value symmetries [4]. He has also proposed a forward
checking algorithm for a set of ValLexLeader constraints [4]. To reduce the
number of lex-leader constraints used, Aloul et al. suggest breaking only those
symmetries corresponding to generators of the group [21]. Aloul, Sakallah and
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Markov exploit the cyclic structure of generators to reduce the size of lex-leader
constraints from quadratic to linear in the number of variables [22]. The full
set of lex-leader constraints can often be simplified. For example, in matrix
models with row symmetry, the exponential number of lex-leader constraints
simplifies to a linear number of lex row ordering constraints [23,24]. For matrix
models with both row and column symmetry, it is unlikely that we can break
all row and column symmetry using a polynomial number of symmetry breaking
constraints as this is NP-hard [7]. However, we can break most row and column
symmetry using lex constraints to order rows and columns [23,24]. As a second
example, for problems where variables must take all different values, Puget has
shown that the lex-leader constraints simplify to just a linear number of binary
inequality constraints [15]. Finally, an alternative way to break value symmetry
is to convert it into a variable symmetry by channeling into a dual viewpoint
and using lex-leader constraints on this dual view [24,25].

17 Conclusions

We have presented some new propagators to break symmetries in constraint sat-
isfaction problems. Our symmetry breaking method works with symmetries act-
ing simultaneously on both variables and values, conditional symmetries, as well
as symmetries acting on set and other types of variables. There exist a number
of promising areas for future work. Are they efficient ways to combine together
these symmetry breaking constraints for particular types of symmetries (just as
value precedence combines together an exponential number of value symmetry
breaking constraints)? Are there useful subsets of these symmetry breaking con-
straints when there are too many to post individually? Are there other types
of problems and symmetries where these symmetry breaking constraints sim-
plify dramatically (just as Puget has shown for all different problems)? Finally,
can these symmetry breaking methods be used to improve symmetry breaking
methods like SBDS and SBDD that work during search?

References

1. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems.
In ISMIS’93. (1993) 350–361

2. Crawford, J., Luks, G., Ginsberg, M., Roy, A.: Symmetry breaking predicates for
search problems. In 5th Int. Conf. on Knowledge Representation and Reasoning,
(KR ’96). (1996) 148–159

3. Petrie, K.E., Smith, B.M.: Symmetry Breaking in Graceful Graphs. Technical
Report APES-56a-2003, APES Research Group (2003)

4. Puget, J.F.: An efficient way of breaking value symmetries. In 21st National Conf.
on AI, (2006)

5. Kiziltan, Z.: Symmetry Breaking Ordering Constraints. PhD thesis, Dept. of
Information Science, Uppsala University (2004)

6. Carlsson, M., Beldiceanu, N.: Arc-consistency for a chain of lexicographic ordering
constraints. Technical report T2002-18, Swedish Institute of Computer Science
(2002)



664 T. Walsh

7. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global con-
straints. In Proc. of the 19th National Conf. on AI, (2004)

8. Puget, J.F.: Breaking all value symmetries in surjection problems. In 11th Int.
Conf. on Principles and Practice of Constraint Programming (CP2005), (2005)

9. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for
lexicographic orderings. In 8th Int. Conf. on Principles and Practices of Constraint
Programming (CP-2002), (2002)

10. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artificial Intelligence
38 (1989) 353–366

11. Law, Y., Lee, J.: Global constraints for integer and set value precedence. In 10th
Int. Conf. on Principles and Practice of Constraint Programming (CP2004), (2004)
362–376

12. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B.: Symmetry definitions
for constraint satisfaction problems. In 11th Int. Conf. on Principles and Practice
of Constraint Programming (CP2005), (2005) 17–31

13. Gent, I., Kelsey, T., Linton, S., McDonald, I., Miguel, I., Smith, B.: Conditional
symmetry breaking. In 11th Int. Conf. on Principles and Practice of Constraint
Programming (CP2005), (2005)

14. Walsh, T.: Symmetry breaking using value precedence. In 17th ECAI, IOS Press
(2006)

15. Puget, J.F.: Breaking symmetries in all different problems. In 19th IJCAI, (2005)
272–277

16. Smith, B., Petrie, K., Gent, I.: Models and symmetry breaking for peacable armies
of queens. In Proc. of the 1st Int. Conf. on Integration of AI and OR Techniques
in Constraint Programming (CP-AI-OR), (2004) 271–286.

17. Sadler, A., Gervet, C.: Hybrid set domains to strengthen constraint propagation
and reduce symmetries. In 10th Int. Conf. on Principles and Practice of Constraint
Programming (CP2004), (2004)

18. Hawkins, P., Lagoon, V., Stuckey, P.: Solving set constraint satisfaction problems
using ROBDDs. Journal of Artificial Intelligence Research 24 (2005) 109–156

19. Walsh, T.: Consistency and propagation with multiset constraints: A formal view-
point. In 9th Int. Conf. on Principles and Practices of Constraint Programming
(CP-2003), (2003)

20. Dooms, G., Deville, Y., Dupont, P.: CP(Graph): Introducing a graph computation
domain in constraint programming. In 11th Int. Conf. on Principles and Practice
of Constraint Programming (CP2005), (2005)

21. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult SAT instances
in the presence of symmetries. In Proc. of the Design Automation Conf.. (2002)
731–736

22. Aloul, F., Sakallah, K., Markov, I.: Efficient symmetry breaking for Boolean sat-
isfiability. In 18th IJCAI (2003) 271–276

23. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. In Proc. of LICS workshop on Theory and Applications of Satisfiability
Testing (SAT 2001). (2001)

24. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetry in matrix models. In 8th Int. Conf. on Prin-
ciples and Practices of Constraint Programming (CP-2002), (2002)

25. Law, Y., Lee, J.: Symmetry Breaking Constraints for Value Symmetries in Con-
straint Satisfaction. Constraints (2006) to appear.



Inferring Variable Conflicts for Local Search�
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Abstract. For efficiency reasons, neighbourhoods in local search are of-
ten shrunk by only considering moves modifying variables that actually
contribute to the overall penalty. These are known as conflicting vari-
ables. We propose a new definition for measuring the conflict of a vari-
able in a model and apply it to the set variables of models expressed in
existential second-order logic extended with counting (∃SOL+). Such a
variable conflict can be automatically and incrementally evaluated. Fur-
thermore, this measure is lower-bounded by an intuitive conflict measure,
and upper-bounded by the penalty of the model. We also demonstrate
the usefulness of the approach by replacing a built-in global constraint
by an ∃SOL+ version thereof, while still obtaining competitive results.

1 Introduction

In local search, it is often important to limit the size of the neighbourhood
by only considering moves modifying conflicting variables, i.e., variables that
actually contribute to the overall penalty. See [4,6,8], for example.

We address the inference of variable conflicts from a formulation of a con-
straint. After giving necessary background information in Section 2, we propose
in Section 3 a new definition for measuring the conflict of a variable and ap-
ply it to the set variables of models expressed in existential second-order logic
extended with counting (∃SOL+) [5]. Such a variable conflict can be automat-
ically and incrementally evaluated. The calculated value is lower-bounded by
an intuitive target value, namely the maximum penalty decrease of the model
that may be achieved by only changing the given variable, and upper-bounded
by the penalty of the model. We demonstrate the usefulness of the approach
in Section 4 by replacing a built-in constraint by an ∃SOL+ version, while still
obtaining competitive results.

2 Preliminaries

As usual, a constraint satisfaction problem (CSP) is a triple 〈X ,D, C〉, where X
is a finite set of variables, D is a finite set of domains, each Dx ∈ D containing
the set of possible values for x ∈ X , and C is a finite set of constraints, each
being defined on a subset of X and specifying their valid combinations of values.
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A variable S ∈ X is a set variable if its corresponding domain DS is 2U , where
U is a common finite set of values of some type, called the universe.

Local search iteratively makes a small change to a current assignment of val-
ues to all variables (configuration), upon examining the merits of many such
changes, until a solution is found or allocated resources have been exhausted.
The configurations examined constitute the neighbourhood of the current con-
figuration, crucial guidance being provided by penalties and variable conflicts.

Definition 1. Let P = 〈X ,D, C〉 be a CSP. A configuration for P (or X ) is a
total function k : X →

⋃
D∈D D. We use K to denote the set of all configurations

for a given CSP or set of variables, depending on the context. A neighbourhood
function for P is a function n : K → 2K. The neighbourhood of P with respect
to (w.r.t.) a configuration k ∈ K and n is the set n(k). The variable neigh-
bourhood for x ∈ X w.r.t. k is the subset of K reachable from k by changing
k(x) only: nx(k) = { ∈ K | ∀y ∈ X : y �= x → k(y) = (y)}. A penalty
function of a constraint c ∈ C is a function penalty(c) : K → N such that (s.t.)
penalty(c)(k) = 0 if and only if (iff) c is satisfied w.r.t. k. The penalty of c w.r.t.
k is penalty(c)(k). A conflict function of c is a function conflict(c) : X ×K→ N
s.t. if conflict(c)(x, k) = 0 then ∀ ∈ nx(k) : penalty(c)(k) ≤ penalty(c)(). The
conflict of x w.r.t. c and k is conflict(c)(x, k).

Example 1. Let P = 〈{S, T }, {DS , DT }, {S ⊂ T }〉 where DS = DT = 2U and
U = {a, b, c}. A configuration for P is given by k(S) = {a, b} and k(T ) = ∅,
or equivalently by k = {S 2→ {a, b}, T 2→ ∅}. The neighbourhood of P w.r.t. k
and the neighbourhood function for P that moves an element from S to T is
the set {ka = {S 2→ {b}, T 2→ {a}}, kb = {S 2→ {a}, T 2→ {b}}. The variable
neighbourhood for S w.r.t. k is the set nS(k) = {k, k1 = {S 2→ ∅, T 2→ ∅}, k2 =
{S 2→ {a}, T 2→ ∅}, k3 = {S 2→ {b}, T 2→ ∅}, k4 = {S 2→ {c}, T 2→ ∅}, k5 = {S 2→
{a, c}, T 2→ ∅}, k6 = {S 2→ {b, c}, T 2→ ∅}, k7 = {S 2→ {a, b, c}, T 2→ ∅}}. Let the
penalty and conflict functions of S ⊂ T be defined by:

penalty(S ⊂ T )(k) = |k(S) \ k(T )| +
{

1, if k(T ) ⊆ k(S)
0, otherwise

conflict(S ⊂ T )(Q,k) = |k(S) \ k(T )| +

⎧⎪⎨⎪⎩
1, if Q = T and k(T ) ⊆ k(S)
1, if Q = S and k(S) ∩ k(T ) �= ∅
0, otherwise

We have that penalty(S ⊂ T )(k) = 3. Indeed, we may satisfy P w.r.t. k by,
e.g., adding the three values a, b, and c to T . We also have that conflict(S ⊂
T )(S, k) = 2 and conflict(S ⊂ T )(T, k) = 3. Indeed, by removing the values a
and b from S, we may decrease the penalty of P by two. Similarly, by adding
the values a, b, and c to T , we may decrease the penalty of P by three.

We use existential second-order logic extended with counting (∃SOL+) for mod-
elling set constraints [1]. In the BNF below, the non-terminal symbol 〈S〉 denotes
an identifier for a bound set variable S such that S ⊆ U , while 〈x〉 and 〈y〉 de-
note identifiers for bound variables x and y such that x, y ∈ U , and 〈a〉 denotes
a natural number constant:
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〈Constraint〉 ::= (∃ 〈S〉)+ 〈Formula〉
〈Formula〉 ::= (〈Formula〉) | (∀ | ∃)〈x〉 〈Formula〉

| 〈Formula〉 (∧ | ∨) 〈Formula〉 | 〈Literal〉
〈Literal〉 ::= 〈x〉 (∈ | /∈) 〈S〉

| 〈x〉 (< | ≤ | = | �= | ≥ | >) 〈y〉
| |〈S〉| (< | ≤ | = | �= | ≥ | >) 〈a〉

As a running example, consider the constraint S ⊂ T of Ex. 1. This may be
expressed in ∃SOL+ by Ω = ∃S∃T ((∀x(x /∈ S ∨ x ∈ T ))∧ (∃x(x ∈ T ∧ x /∈ S))).

We proposed a penalty function for ∃SOL+ formulas in [1], which was inspired
by [9]. For example, the penalty of a literal x ∈ S w.r.t. a configuration k is 0
if k(x) ∈ k(S) and 1, otherwise. The penalty of a conjunction (disjunction) is
the sum (minimum) of the penalties of its conjuncts (disjuncts). The penalty of
a universal (existential) quantification is the sum (minimum) of the penalties of
the quantified formula where the occurrences of the bound variable are replaced
by each value in the universe.

Example 2. Recall k = {S 2→ {a, b}, T 2→ ∅} of Ex. 1. Then penalty(Ω)(k) = 3.

3 Variable Conflicts of an ∃SOL+ Formula

The notion of abstract conflict measures the maximum possible penalty decrease
obtainable by only changing the value of the given variable. It is uniquely deter-
mined by the chosen penalty function:

Definition 2. Let P = 〈X ,D, C〉 be a CSP and let c ∈ C. The abstract conflict
function of c w.r.t. penalty(c) is the function abstractConflict(c) : X × K → N
s.t. abstractConflict(c)(x, k) = max{penalty(c)(k) − penalty(c)() |  ∈ nx(k)}.
The abstract conflict of x ∈ X w.r.t. c and k ∈ K is abstractConflict(c)(x, k).

Example 3. The function conflict(S ⊂ T ) of Ex. 1 gives abstract conflicts.

Similarly to our penalty function in [1], it is important to stress that the calcu-
lation of the variable conflict defined next is automatable and feasible incremen-
tally [3], as it is based only on the syntax of the formula and the semantics of
the quantifiers, connectives, and relational operators of ∃SOL+, but not on the
intended semantics of the formula.

Definition 3. Let F ∈ ∃SOL+, let S ∈ vars(F), and let k be a configuration
for vars(F). The conflict of S w.r.t. F and k is defined by:
(a) conflict(∃S1 · · · ∃Snφ)(S, k) = conflict(φ)(S, k)
(b) conflict(∀xφ)(S, k) =

∑
u∈U

conflict(φ)(S, k ∪ {x �→ u})
(c) conflict(∃xφ)(S, k) =

max{0} ∪ {penalty(∃xφ)(k)−
(penalty(φ)(k ∪ {x �→ u}) − conflict(φ)(S, k ∪ {x �→ u})) | u ∈ U}

(d) conflict(φ ∧ ψ)(S, k) =
∑{conflict(γ)(S, k) | γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

(e) conflict(φ ∨ ψ)(S, k) = max{0} ∪ {penalty(φ ∨ ψ)(k)−
(penalty(γ)(k) − conflict(γ)(S, k)) | γ ∈ {φ, ψ} ∧ S ∈ vars(γ)}

(f) conflict(|S| ≤ c)(S, k) = penalty(|S| ≤ c)(k)
(g) conflict(x ∈ S)(S, k) = penalty(x ∈ S)(k)
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We only show cases for subformulas of the form |S| ♦ c and x 3 S where
♦ ∈ {≤} and 3 ∈ {∈}. The other cases are defined similarly.

Example 4. Recall once again k = {S 2→ {a, b}, T 2→ ∅} of Ex. 1. According to
Def. 3, we have that conflict(Ω)(S, k) = 2 and conflict(Ω)(T, k) = 3, i.e., the
same values as obtained by the handcrafted conflict(S ⊂ T ) of Ex. 1.

The novelty of Def. 3 compared to the one in [8] lies in rules (c) and (e) for
disjunctive formulas, due to the different abstract conflict that we target (see [3]
for more details). The following example clarifies these rules in terms of (e).

Example 5. Consider F = (|S| = 5 ∨ (|T | = 3 ∧ |S| = 6)) and let k1 be a
configuration s.t. |k1(S)| = 6 and |k1(T )| = 4. Then penalty(F)(k1) = 1 and we
have conflict(|S| = 5)(S, k1) = 1 and conflict(|T | = 3 ∧ |S| = 6)(S, k1) = 0.
Rule (e) applies for calculating conflict(F)(S, k1), which, for each disjunct, gives
the maximum possible penalty decrease one may obtain by changing k1(S). This
is 1 for the first disjunct since we may decrease penalty(F)(k1) by 1 by changing
k1(S) as witnessed by penalty(F)(k1) − (penalty(|S| = 5)(k1) − conflict(|S| =
5)(S, k1)) = 1 − (1 − 1) = 1. It is 0 for the second disjunct since we cannot
decrease penalty(F)(k1) by changing k1(S) as witnessed by penalty(F)(k1) −
(penalty(|T | = 3∧|S| = 6)(k1)−conflict(|T | = 3∧|S| = 6)(S, k1) = 1−(1−0) = 0.
The maximum value of these is 1 and hence conflict(F)(S, k1) = 1.

Consider now k2 s.t. |k2(S)| = 4 and |k2(T )| = 4. Then penalty(F)(k2) = 1
and conflict(|T | = 3 ∧ |S| = 6)(T, k2) = 1. The maximum possible penalty
decrease one may obtain by changing k2(T ) in the only disjunct for T is −1 as
witnessed by penalty(F)(k2)−(penalty(|T | = 3∧|S| = 6)(k2)−conflict(|T | = 3∧
|S| = 6)(T, k2) = 1−(3−1) = −1. But we may not have a negative conflict, hence
the union with {0} in (e). Indeed, we cannot decrease penalty(F)(k) by changing
k2(T ) since even if we satisfy |k2(T ) = 3|, the conjunct |k2(S) = 6| implies a
penalty larger than 1 which is the minimum penalty of the two disjuncts.

We now state some properties of variable conflicts compared to the abstract
conflict of Def. 2 and the formula penalty [1]. The proofs can be found in [3].

Proposition 1. LetF ∈ ∃SOL+, let k be a configuration for vars(F), and let S ∈
vars(F). Then abstractConflict(F)(S, k) ≤ conflict(F)(S, k) ≤ penalty(F)(k).

Corollary 1. The function induced by Def. 3 is a conflict function w.r.t. Def. 1.

4 Practical Results and Conclusion

The progressive party problem [7] is about timetabling a party at a yacht club,
where the crews of certain boats (the guest boats) party at other boats (the
host boats) over a number of periods. The crew of a guest boat must party at
some host boat in each period. The spare capacity of a host boat is never to
be exceeded. The crew of a guest boat may visit a particular host boat at most
once. The crews of two distinct guest boats may meet at most once.
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We use the same set-based model and local search algorithm as we did in [2].
The model includes AllDisjoint(X )(k) constraints that hold iff no two distinct
set variables in X = {S1, . . . , Sn} overlap. Assuming that this global constraint
is not built-in, we may use the following ∃SOL+ version instead:

∃S1 · · · ∃Sn∀x ( (x /∈ S1 ∨ (x /∈ S2 ∧ · · · ∧ x /∈ Sn)) ∧
(x /∈ S2 ∨ (x /∈ S3 ∧ · · · ∧ x /∈ Sn)) ∧ · · · ∧ (x /∈ Sn−1 ∨ x /∈ Sn))

We have run the same classical instances as we did in [2], on a 2.4GHz/512MB
Linux machine. The following table shows the results for the ∃SOL+ and built-in
versions of the AllDisjoint constraint (mean run time in seconds of successful
runs out of 100 and the number of unsuccessful runs, if any, in parentheses).

∃SOL+ AllDisjoint Built-in AllDisjoint

H/periods (fails) 6 7 8 9 10 6 7 8 9 10

1-12,16 1.3 3.5 42.0 1.2 2.3 21.0
1-13 16.5 239.3 7.0 90.5
1,3-13,19 18.9 273.2 (3) 7.2 128.4 (4)
3-13,25,26 36.5 405.5 (16) 13.9 170.0 (17)
1-11,19,21 19.8 186.7 10.3 83.0 (1)
1-9,16-19 32.2 320.0 (12) 18.2 160.6 (22)

The run times for the ∃SOL+ version are only 2 to 3 times higher, though it
must be noted that efforts such as designing penalty and conflict functions as
well as incremental maintenance algorithms for AllDisjoint were not necessary.
Note also that the robustness of the local search algorithm does not degrade for
the ∃SOL+ version, as witnessed by the number of solved instances.

To conclude, we proposed a new definition for inferring the conflict of a vari-
able in a model and proved that any inferred variable conflict is lower-bounded
by the targeted value, and upper-bounded by the inferred penalty. The search is
indeed directed towards interesting neighbourhoods, as a built-in constraint can
be replaced without too high losses in run-time, nor any losses in robustness.
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Abstract. In this paper, we extend the principle of symmetry to domi-
nance in Not-Equals Constraint Networks and show how dominated val-
ues are detected and eliminated efficiently at each node of the search
tree.

1 Introduction

As far as we know the principle of symmetry is first introduced by [1] to improve
resolution in propositional logic. Symmetry for boolean constraints is studied
in [2] where the authors showed that its exploitation is a real improvement for
several automated deduction algorithms’ efficiency. Symmetry in CSPs is studied
in [3,4]. Since that, many research works on symmetry appeared.

Recently a method which breaks symmetries between the variables of an Alld-
iff constraint is studied in [5], a method which eliminates all value symmetries in
surjection problems is given in [6], and a work gathering the different symmetry
definitions is done in [7].

We investigate in this article the principle of dominance in Not-Equals binary
Constraint Networks (notation NECSPs). A CSP is an object P = (X, D, C)
where: X is a finite set of variables; D is the set of finite discrete domains
associated to the CSP variables; C is a finite set of constraints each involving
some subsets of the CSP variables. A constraint is binary when it involves two
variables. A binary constraint is called a Not-Equal constraint if it forces the
two variables Xi and Xj to take different values (it is denoted by Xi �= Xj). A
binary Not-Equal CSP (NECSP) is a CSP whose all constraints are binary Not-
Equal constraints. Dominance is a weak symmetry principle which extend the
Full substitutability notion [8]. Dominance is first introduced in [9] for general
CSPs, but it is shown that its detection is harder than symmetry. Here, we
show how dominance is adapted, detected, and exploited efficiently in NECSPs.
Of course, the NECSPs is a limited framework, but in theory, this restriction
remains NP-complete. Indeed, Graph coloring fits in the NECSPs framework
and is NP-complete, thus solving Not-Equals CSPs is in general a NP-complete
problem. Besides, in practice, this framework is quite expressive, it covers a broad
range of problems in artificial intelligence, such as Time-tabling and Scheduling,
Register Allocation in compilation, and Cartography.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 670–674, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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For space reason, the work is not developped in depth here. A more complete
version of this paper is given in [10].

2 Dominance in NECSPs

Benhamou in [9] defined a weak symmetry called Dominance which extends the
Full substitutability notion [8]. Here we adapt the principle of dominance to
NECSPs and give some sufficient conditions which leads to a linear algorithm
for dominance detection.

2.1 The Principle of Dominance

Definition 1. [Semantic Dominance] A value ai dominates another value bi for
a CSP variable vi ∈ V (notation ai 4 bi) iff [There exist a solution of the CSP
which assigns the value bi to the variable vi ⇒ there exist a solution of the CSP
which assigns the value ai to vi].

The value bi participates in a solution if the value ai does; otherwise it does not.
The value bi can be removed from Di without affecting the CSP consistency.

Proposition 1. If ai 4 bi and ai doesn’t participate in any solution of P, then
bi doesn’t participate in any solution of P.

2.2 A Sufficient Condition for Dominance

Now, we give the sufficient conditions for dominance which represent the main
key of this work.

Theorem 1. Let ai and bi be two values of a domain Di corresponding to a
variable Xi of a Not-Equals CSP P, I a partial instantiation of P, and Y the
set of un-instantiated variables of P. If the two following conditions:

1. ai ∈ Dj ⇒ bi ∈ Dj, for all Xj ∈ Y such that Xj shares a constraint with
Xi.

2. ai ∈ Dj ⇔ bi ∈ Dj for each variable Xj of Y which does not share a
constraint with Xi

hold, then ai dominates bi in P.

2.3 The Weakened Dominance Sufficient Conditions

Before introducing the weakened sufficient conditions, we define the notion of as-
signment trees and failure trees corresponding to the enumerative search method
used to prove the consistency of the considered CSP.

Definition 2. We call an assignment tree of a CSP P corresponding to a given
search method and a fixed variable ordering, a tree which gathers the history of
all the variable assignments made during its consistency proof, where the nodes
represent the variables of the CSP and where the edges out coming from a node
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Xi are labeled by the different values used to instantiate the corresponding CSP
variable Xi.

Definition 3. Let T be an assignment tree corresponding to a consistency proof
of a CSP P, I = (a1, a2, ..., ai) an inconsistent partial instantiation of the vari-
ables X1,X2,...,Xi corresponding to the path {X1, X2, ..., Xi} in T . We call a
failure tree of the instantiation I, the sub-tree of T noted by TI=(a1,a2,...,ai) such
that:

1. The root of the tree T and the root of the sub-tree TI=(a1,a2,...,ai) are joined
by the path corresponding to the instantiation I;

2. All the CSP variables corresponding to the leaf nodes of TI=(a1,a2,...,ai) have
empty domains.

We can now give the weakened sufficient conditions of dominance. That is, the
conditions of theorem 1 are restricted to only the variables involved in the failure
tree among the un-instantiated ones.

Theorem 2. Let P(X, D, C) be a CSP, ai ∈ Di and bi ∈ Di two values of the
domain Di of the current CSP variable Xi under instantiation, I0 = (a1, ..., ai−1)
a partial instantiation of the i− 1 variables instantiated before Xi such that the
extension I = I0

⋃
{ai} = (a1, ..., ai−1, ai) is inconsistent, TI=(a1,...,ai−1,ai) is the

failure tree of I and V ar(TI=(a1,...,ai−1,ai)) the set of variables corresponding to
the nodes of TI=(a1,...,ai−1,ai). If the two following conditions:

1. bi ∈ Dj ⇒ ai ∈ Dj, for all Xj ∈ V ar(TI=(a1,...,ai−1,ai)) such that Xj shares
a constraint with Xi.

2. ai ∈ Dj ⇔ bj ∈ Di for each other variable Xj of V ar(TI=(a1,...,ai−1,ai))
which do not share a constraint with Xi

hold, then the extension J = I0

⋃
{bi} = (a1, ..., ai−1, bi) is inconsistent.

2.4 Dominance Detection and Exploitation

Dominance detection is based on the conditions of theorem 2. The algorithm
sketched in Figure 1 computes the values dominated by a value ai of a given
domain Di w.r.t the conditions of theorem 2.

The algorithm computes the class cl(di) of dominated values by ai with a
complexity O(nd) in the worst case. It has a linear complexity w.r.t the NECSP
size.

Theorem 2 allows to prune k-1 branches in the search tree if there are k
dominated values by a dominant value which is shown to not participating in
any solution.

This property can be exploited in all enumerative resolution methods. Here
we use it in a Simplified Forward Checking method (denoted by SFC) adapted
to NECSPs where the filtering consists only in removing the value di from the
domains of the future variables having a constraint with the current variable vi

under instantiation with di.



Reasoning by Dominance in Not-Equals Binary Constraint Networks 673

procedure weak dominance(ai ∈ Di,V ar(TI=(a1,...,ai)), var cl(ai):class);
input: a value ai ∈ Di, a set of variables V ar(TI=(a1,...,ai))
Output: the class cl(ai) of the dominated values by ai.
begin

cl(ai):={ai}
for each di ∈ Di-{ai} do

for each domain Dk of variables of V ar(TI=(a1,...,ai)) do
if (cik ∈ C and (ai ∈ Dk ⇒ di ∈ Dk)) or
(cik �∈ C and (ai ∈ Dk ⇔ di ∈ Dk)) then cl(ai):=cl(ai)∪{di}

end

Fig. 1. The algorithm of dominance search in NECSPs

3 Experiments

We tested and compared the SFC augmented by the symmetry property de-
fined in [11] (SFC-sym), the SFC augmented by the advantage of the dominance
property of theorem 2 (SFC-weak-dom), and an improved version [12] of the well
known method DSATUR. The source code is written in C and compiled on a P4
2.8 GHz - RAM 1 Go.

Table 1. Dimacs graph coloring benchmarks

Pb k DSATUR SFC-SYM SFC-dom-weak Pb k DSATUR SFC-SYM SFC-dom-weak
instances N T N T N T instances N T N T N T

queen8 8 9 1581661 4.3 1368441 6.1 1353680 6.1 myciel5 6 378310 0.6 72966 0.2 21278 0.0
queen8 12 12 162 0.0 460 0.0 460 0.0 myciel6 7 - - 83157279556.029754513 190.2
le450 5a 5 - - 1408 0.1 1395 0.1 le450 25a 25 425 0.1 450 0.1 450 0.1
le450 5b 5 - - 19884 0.6 19763 0.5 le450 25b 25 425 0.0 450 0.1 450 0.1

qg.order3030 1680 0.2 1169 0.2 1162 0.2 school.1 14 371 0.2 568 0.4 555 0.4
qg.order4040 - - 12089785302.010814593 266.6 school nsh14 338 0.2 352 0.4 352 0.4
1-FullIns 3 4 37 0.0 51 0.0 50 0.0 mug88 25 4 - - 22643 0.0 1631 0.0
2-FullIns 3 5 156663424193.6 678 0.0 359 0.0 mug100 25 4 - - 99917 0.2 515 0.0

ash608 4 10242 0.5 1742 0.5 1707 0.5 R125.5 3613575739.1 55952 0.4 1051 0.0
ash958 4 - - 10252 2.2 7167 1.6 R500.1c 84 - - - - 280449843096.0

Table 1 shows the results of the methods on some graph coloring benchmarks
of Dimacs1. It gives the number of nodes of the search tree and the CPU time
for each method. We seek for each of them the chromatic number2 k.

We can remark that only SFC-weak-dom is able to solve the known hard
problem ”DSJR500.1c” which, as far as, we know it has never been solved by an
exact method. We can see that SFC-dom-weak outperforms both DSATUR, and
SFC-sym is better than DSATUR on these problems. Theses methods are also
tested and compared on random graph coloring problems which are not reported
here, and the results confirme that SFC-weak-dom has the best performance in
the average.

4 Conclusion

In this work we extended the symmetry principle to dominance and weakened the
symmetry/dominance sufficient conditions in Not-Equals constraint networks
1 http://dimacs.rutgers.edu/Challenges/
2 The minimal number of colors needed to color the vertices of the corresponding

graph.



674 B. Benhamou and M.R. Säıdi

when an inconsistent partial instantiation is generated. We implemented a more
efficient dominance search algorithm which detects both symmetry and which
captures the dominance. We exploited the new dominance property in a back-
tracking algorithm which we use to solve NECSPs. Experiments are carried, and
the obtained results show that reasoning by dominance is profitable for solving
NECSPs.
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Abstract. We consider the Stable Marriage Problem and the Stable
Roommates Problem in presence of ties and incomplete preference lists.
They can be solved by centralized algorithms, but this requires to make
public preference lists, something that members would prefer to avoid
for privacy reasons. This motivates a distributed formulation to keep
privacy. We propose a distributed constraint approach that solves all the
considered problems, keeping privacy.

1 The Stable Marriage Problem

The Stable Marriage Problem (SM ) [5] involves n men and n women. Each man
mi ranks women forming his preference list, and each woman wj ranks men
forming hers. A matching M is a one-to-one mapping between the two sexes. M
is stable when there is no blocking pair (m,w) such that m and w, no partners in
M , prefer one another to his/her partner in M . A solution is a stable matching.

There are several SM versions. With Incomplete Lists (SMI ) some people
may consider unacceptable some members of the other sex. With Ties (SMT ),
some people may consider equally acceptable some members of the other sex, so
there is a tie among them. For SMT , three stability types have studied: weak,
strong and super [6]. (m,w) is a weak blocking pair for M if m and w are not
partners in M , and each of whom strictly prefers the other to his/her partner in
M . (m,w) is a strong blocking pair for M if m and w are not partners in M , and
one strictly prefers the other to his/her partner in M and the other is at least
indifferent between them. (m,w) is a super blocking pair for M if m and w are
not partners in M , and each of whom either strictly prefers the other to his/her
partner in M or it is indifferent between them. With Ties and Incomplete Lists
(SMTI), some person may consider as equally acceptable some members of the
other sex, while others are unacceptable. The three stability types apply here.

Solvability conditions, complexity and solving algorithms of each SM version
appear in Table 1. For SMTI-weak, different solutions may exist with different
lengths, so it is of interest to find the matching of maximum cardinality. This is
SMTI-weak-max, an optimization problem that is NP-hard.
� Supported by the Spanish project TIN2005-09312-C03-01.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 675–679, 2006.
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Table 1. Solvability conditions, solving algorithm and complexity for the SM versions

SM version ∃ solution? Size All solutions Algorithm Compl
Length Partners

SM always n same same EGS [5] poly
SMI always ≤ n same same EGS [5] poly
SMT-weak always n same same break ties + EGS [6] poly
SMT-strong not always n same same STRONG [6] poly
SMT-super not always n same same SUPER [6] poly
SMTI-weak always ≤ n diff diff break ties + EGS [7] poly
SMTI-strong not always ≤ n same same STRONG2 [7] poly
SMTI-super not always ≤ n same same SUPER2 [7] poly
SMTI-weak-max always ≤ n same diff break ties in all possible ways + EGS [7] NP-hard

Table 2. Algorithms for solving SM and DisSM versions

DisSM problem Centralized Extension to the distributed
Algorithm case, keeping privacy

DisSMT-weak break ties + EGS [6] break ties arbitrary + DisEGS [3]
DisSMT-strong STRONG [6] No extension [2]
DisSMT-super SUPER [6] Extension [2]
DisSMTI-weak break ties + EGS [7] break ties arbitrary + DisEGS [3]
DisSMTI-strong STRONG2 [7] No extension [2]
DisSMTI-super SUPER2 [7] No extension [2]
DisSMTI-weak-max break ties in all possible ways + EGS [7] Discussion [2]

SM appears to be naturally distributed. Each person would like to keep
his/her preference lists private, which is not possible in the centralized case.
This motivates the Distributed Stable Marriage (DisSM ) [3], defined as SM
plus a set of 2n agents. Each agent owns exactly one person. An agent knows
all the information of its owned person, but it cannot access the information
of people owned by other agents. A solution is a stable matching. Similarly, we
define here the distributed versions with incomplete lists (DisSMI ), with ties
(DisSMT ) and with ties and incomplete lists (DisSMTI ) 1.

Is it possible to extend the centralized algorithms to the distributed setting
keeping privacy? DisEGS is a distributed version of Extended Gale-Shapley
(EGS ) that maintains privacy. It was used to solve DisSM and DisSMI [3]. Here
we focus on DisSMT and DisSMTI, that jointly with the three stability types,
produce six decision problems plus one optimization problem. The extension of
centralized algorithms to the distributed case appear in Table 2. Only three out of
the six decision problems can be solved by extending the centralized algorithms
to the distributed case while keeping preferences private. Details appear in [2].

2 Constraint Formulation

In [4], SM is modeled and solved as a binary CSP with 2n variables. Variable do-
mains are the preference lists. Constraints are defined between men and women:
Cij is a table with all possible partial matchings involving man i and woman j.
For any pair k, l (k ∈ Dom(i), l ∈ Dom(j)), the element Cij [k, l] represents the
partial matching (mi, wk)(ml, wj); which could be: Allowed, Illegal, Blocked or
Support. Tables with A, I, B, S are passed into 1/0 by A, S → 1, I, B → 0.

1 [9] proposes a solving method based on encryption techniques.
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For instances with ties, we consider the different definitions of stability. This
affects the usage of Blocked pair in Cij . The definition given in [4] is valid for
weak stability. For strong and super stability, we replace B definition in [4] by,

– Cij [k, l] = Blocked if (mi, wj) is a strong blocking pair for (ml, wk).
– Cij [k, l] = Blocked if (mi, wj) is a super blocking pair for (ml, wk).

Privacy is one of the main motivations for distributed CSP (DisCSP ). We
differentiate between value privacy and constraint privacy [1]. Value privacy
implies that agents are not aware of other agent’s values during the solving
process and in the final solution. On constraint privacy, the Partially Known
Constraints (PKC) model was presented. It assumes that when two agents i, j
share a constraint Cij , none of them fully knows it. Each agent knows the part
of the constraint that it is able to build, using its own information. We say that
agent i knows Ci(j), and j knows C(i)j . Similarly to [3], we use the constraint
formulation of Section 2 to solve DisSMT and DisSMTI by the DisFC algorithm
[1], keeping privacy of preference lists using the PKC model.

How can i build Ci(j)? Ordering rows of Ci(j) following his preference list, all
elements in rows above wj are 1 (except mth

i column that are 0). All elements in
rows below wj may be 1 or 0, depending on the ordering of columns (except mth

i

column that are 0). Since xi does not know the preference list of yj , columns are
ordered lexicographically, and the elements below wj row are ? (undecided). If
there is a tie between wj and wj′ elements in wj′ row are # (tie). Ci(j) is,

Ci(j) =

m1 . . . mi . . . mn
wi1 1 . . . 1 0 1 . . . 1

. . .
1 . . . 1 0 1 . . . 1

wj 0 . . . 0 1 0 . . . 0
w

j′ # . . . # 0 # . . . #

? . . . ? 0 ? . . . ?
. . .

win
? . . . ? 0 ? . . . ?

A property of these tables is that all columns of Ci(j) are equal, except mi

column. All rows of C(i)j are equal except wj row [3]. Cij = Ci(j) 0 C(i)j , 0
operates component to component. 0 depends on each type of stability.

How does a distributed algorithm achieve a global solution?. DisFC does it,
using phase I only. DisFC instead of sending the assigned value to lower priority
agents, it sends the domain subset that is compatible with the assigned value.
Also, it replaces actual values by sequence numbers. After assignment, each man
agent sends the domain that each woman may take to the women involved.
For example, when an agent i assigns value k to xi, it sends to j the row of
Ci(j) corresponding to value k. This row may contain 1’s, 0’s, ?’s or #’s. For
each received domain, the agents search for a compatible value. If the domain
contains ? or # entries, they are disambiguated, following the rules of 0 operation
specific for each type of stability. When j receives a domain with ? or # values,
it performs the 0 operation with a row of C(i)j different from i. Since all rows in
C(i)j are equal, except i row, they will all give the same result. The 0 operation
j will compute the corresponding row in the complete constraint Cij , although
j does not know to which value this row corresponds. After this operation the
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resulting domain will contain neither ? nor # values, and the receiver will have
no ambiguity. If it finds no compatible value, it performs backtracking. The
process repeats until finding a solution or detecting that no solution exits.

The 0 operation depends on the stability type. Weak Stability. From weak
blocking pair definition, we realize that no matched pair (m, w) will be blocked
for any other pair (m′,w′), such that either m is indifferent between w and w′ or
w is indifferent between m and m′. So #’s are replaced by 1’s in tables. Rules for
the 0 operation of [3] apply. For DisSMTI-weak, not all stable matchings have
the same length. One may desire to find a matching of maximum cardinality.
With this aim, we consider the question ’Is there a weakly stable matching of
size k?’, where k starts with value n. If a weakly stable matching exits, it will
be of maximum cardinality. Otherwise, the value k is decreased by one, and the
problem is reconsidered. Modeling this idea with constraints, we add n variables,
u1, u2, . . . , un, plus an extra variable z, with the domains: D(ui) = {0, 1}, 1 ≤
i ≤ n, D(z) = {k}. New constraints are: if xi < n + 1 then ui = 1 else ui =
0, 1 ≤ i ≤ n and z =

∑n
i=1 ui. The agent that owns xi also owns ui. An extra

agent owns z. Strong Stability. 0 includes #: # 0 # = 1, 1 0 # = 1, #0? = 0,
0 0# = 0. Super Stability. 0 has a single change from strong stability:# 0# = 0.

Experimentally, we observe that when it is possible to extend an special-
ized centralized algorithm to the distributed case keeping privacy, the resulting
algorithm is more efficient than DisFC. However, only a fraction of the SM
versions can be solved in this way, while all of them can be solved by the generic
distributed constraint formulation.

3 The Stable Roommates Problem

The Stable Roommates Problem (SR) consists of 2n participants, each ranks all
other participants in strict order according to his/her preferences [5]. A matching
is a set of n disjointed participant pairs. A matching is stable if it contains
no blocking pair. A pair (pi, pj) is a blocking pair for M if pi prefers pj to
his/her partner in M and pj prefers pi to his/her partner in M . There are
instances that admit no stable matching. The goal is to determine whether an SR
instance is solvable, and if so, find a stable matching. Like SM , there are versions
with Incomplete Lists (SRI ), with Ties (SRT ), and with Ties and Incomplete
Lists (SRTI ). For versions including Ties, there are three stability types, weak,
strong and super. Solvability conditions, complexity and solving algorithms of
each SR version appear in Table 3. Considering SRTI-weak, different solutions
may exist with different lengths, so it is of interest to find the matching of
maximum cardinality. This is SRTI-weak-max, an optimization problem that is
NP-hard.

With a motivation similar to SM, the Distributed Stable Roommates Prob-
lem (DisSR) [3] is defined by 2n persons plus a set of agents. Each person ranks
all the other in his/her preference list. Each agent owns exactly one person. An
agent knows the preference list of its owned person, but it does not know others’
preferences. A solution is to find a stable matching, if it exists. Similarly, we
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Table 3. Solvability conditions, solving algorithm and complexity for the SR versions

SR version ∃ solution? Size All solutions Algorithm Compl
Length Partners

SR not always n same same Stable Roommates [5] poly
SRI not always ≤ n same same Stable Roommates [5] poly
SRT-weak not always n same same break ties in all possible ways + Stable NP-comp

Roommates, until finding a solution [8]
SRT-strong not always n same same ? [8] ?
SRT-super not always n same same SRT-super [8] poly
SRTI-weak not always ≤ n diff diff break ties in all possible ways + Stable NP-comp

Roommates, until finding a solution [8]
SRTI-strong not always ≤ n same same ? [8] ?
SRTI-super not always ≤ n same same SRTI-super [8] poly
SRTI-weak-max not always ≤ n same diff break ties in all possible ways NP-hard

+ Stable Roommates [8]

Table 4. Algorithms for solving SR and DisSR versions

DisSR problem Centralized Extension to the distributed
Algorithm case, keeping privacy

DisSRT-weak break ties in all possible ways + Stable No extension
Roommates, until finding a solution [8]

DisSRT-strong ? [8] No extension
DisSRT-super SRT-super [8] Extension
DisSRTI-weak break ties in all possible ways + Stable No extension

Roommates, until finding a solution [8]
DisSRTI-strong ? [8] No extension
DisSRTI-super SRTI-super [8] Extension
DisSRTI-weak-max break ties in all possible No extension

ways + Stable Roommates [8]

define the distributed versions with incomplete lists (DisSRI ), with ties (Dis-
SRT ) and with ties and incomplete lists (DisSRTI ).

We investigate if centralized algorithms can be extended to the distributed
case keeping privacy, focusing on DisSRT and DisSRTI. Their resolution is sum-
marized in Table 4. We conclude that only two decision problems can be solved
by extending the centralized algorithms to the distributed case while keeping
privacy. Experimentally, we get similar results to those obtained for SM.
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Abstract. We show in this article1 how the Weighted CSP framework
can be used to solve an optimisation version of numerical planning. The
WCSP finds an optimal plan in the planning graph containing all solution
plans of minimum length. Experimental trials were performed to study
the impact of soft arc consistency techniques (FDAC and EDAC) on the
efficiency of the search for an optimal plan in this graph. We conclude by
giving a possible theoretical explanation for the fact that we were able
to solve optimisation problems involving several hundred variables.

1 Introduction

In the field of planning, one of today’s challenges is the solution of numeri-
cal problems to optimality. Some numerical planners perform heuristic choices,
aiming simply to produce a good quality plan [5] while others merely compute
a posteriori the cost of the solution-plan [6]. Some planners already use CSP to
encode the planning graph [4], but never in a numerical approch to planning.
We use the WCSP [7] framework to find a minimum cost plan, allowing the
representation of strict constraints and an optimisation criterion expressed as
the aggregation of cost functions.

2 WCSP and Numerical Planning

2.1 Numerical Planning Graph

A numerical planning problem is a triple 〈A, I,G〉 such that the initial state I is
a finite set of propositional and numerical variables (or fluents) with their initial
assignments, A is a set of actions, i.e. triples 〈prec(a), effect(a), cost(a)〉, where
prec(a) is the set of preconditions of action a, effect(a) is the set of effects
of a (Adds, Deletes and Modifiers of fluents), cost(a) is the cost of applying
a. An action a is applicable in a state S iff its preconditions are satisfied. A
proposition p is satisfied in S iff p ∈ S; a numerical condition c is satisfied in
state S iff the numerical variables of c are defined in S and verify c. G is the set
of propositional and numerical goals to be satisfied. One of the most efficient and
1 An extended version of this paper is available at http://www.irit.fr/recherches/

RPDMP/persos/Regnier/PLANIF/index.html
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influential algorithms in the field of planning is that of GRAPHPLAN [1]. We
had to adapt the construction of the planning graph in order to solve numerical
planning problems. The numerical planning graph Gp is a disjunctive graph
which can be considered as a compact summary of all solution-plans up to a given
maximal length. Actions can be applied in parallel but with three restrictions
(called interference): (1) none deletes a precondition or an add-effect of another,
(2) they have no numerical variable in common and (3) for each pair of distinct
preconditions of actions at level i, there is at least one pair of non-interfering
actions at the level i− 1 which produce them.

In GRAPHPLAN, the planning graph Gp is extended level by level until either
the extraction of a solution-plan is successful or the planning graph levels off.
Level-off occurs when the sets of actions, fluents and mutexes (mutual exclusion
constraints) are identical at levels i and i+1. It can be shown that if no solution
has been found in a planning graph that has levelled off, then no solution exists.
The first level of the graph consists simply of fluents corresponding to the initial
state I. The next levels i > 0 are developed using the following algorithm:

1. We find all actions whose preconditions are satisfied in level i−1. To maintain
at level i a fluent f present at level i − 1, there is a noop action which has
f as its only precondition and its only effect.

2. Next, we have to calculate the mutual exclusion relations (or mutexes) be-
tween actions. Two actions are mutex iff one interferes with the other.

3. We can now add to the graph all the fluents produced by these level i actions.
As for the actions, we have to search for interferences between fluents: Two
fluents are mutex at a given level i if there is no couple of non-mutex actions
at the same level i that add these fluents.

4. The final step of level construction is to check if the goal is satisfied in the
current state. If this is the case, the algorithm halts and we extract a solution
plan from the graph. Otherwise, we go back to step 1.

The quality of a numerical plan can be estimated through a function known
as a plan metric. We consider only the problem of minimising a linear additive
metric, the sum of the costs of the actions in a plan P .

After having constructed the numerical planning graph, we reduce it by elimi-
nating actions which cannot possibly be part of a solution-plan, ie all actions and
fluents that do not have a path to any goal fluent. In preparation for coding the
numerical planning graph as a WCSP (see Section 2.2), we rename the fluents
f1, f2, . . . and renumber the actions 1,2,. . ., starting at the last level.

2.2 Coding the Planning Graph as a WCSP

Once the numerical planning graph has been constructed and reduced, we code
it as a WCSP as follows:

1. Creation of variables and domains: for each fluent (not present in the initial
state), we create a variable whose domain is the set of actions which produce
this fluent. For each fluent (not present in the goal state) we add the value
-1 to represent its non-activation.
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2. Translation of mutexes between fluents: for all mutex fluents fi and fj , we
code the fact that fi et fj cannot both be activated: (fi = −1)∨ (fj = −1).

3. Translation of mutexes between actions: for all mutex actions a and b with
(respective) effects fi and fj (fi �= fj), this mutual exclusion is coded by a
constraint which states that fi and fj cannot simultaneously be triggered
by the actions a and b: ¬((fi = a) ∧ (fj = b)).

4. Translation of activity arcs: the activation of a fluent fi produced by an
action a implies the activation of the preconditions of this action. This is
coded by activity constraints: ∀fj ∈ prec(a), (fi = a)⇒ (fj �= −1).

5. Translation of the cost of actions: For each value a, we add a unary constraint
for f = a corresponding to the cost of the action. No-ops have cost 0.

6. Actions with multiple effects: when an action a produces several fluents fi ∈
effect(a), the cost of this action could be counted several times. To avoid
this problem, we create an intermediary fluent f int with domain {a,−1}.
Furthermore, the action a is replaced by a false action aint (cost 0) in the
domains of each fi. We add the activity constraint (fi = aint)⇒ (f int = a)
between the fluent f int and each of the fluents fi ∈ effect(a).

A limitation of our approach is that we only search for the optimal plan among
parallel plans of length L, where L is the length of a shortest parallel solution-
plan. Once this optimal plan among shortest-length plans has been discovered,
it could, of course, be used as a good lower bound in the search for an optimal
plan of any fixed length. Note, however, that the search space of all numerical
plans is, in the worst case, infinite.

2.3 Search for an Optimal Solution to the WCSP

To simplify the WCSP [7] before solving it, we can apply soft arc consistency
algorithms. Node consistency (NC) corresponds to taking the sum of minimum
unary costs at each variable as a lower bound.

Propagating all infinite costs (between unary and binary constraints) and pro-
jecting binary costs until convergence establishes (soft) arc consistency (SAC).
In order to have non-zero costs available as soon as possible during search, di-
rectional arc consistency (DAC) always chooses to send costs (via project and
extend operations) towards variables which occur earlier in the instantation or-
der. Full directional arc consistency (FDAC) [2] is the combination of directional
arc consistency and arc consistency.

FDAC has recently been extended to existential directional arc consistency
(EDAC) [3] which also performs the following operation: if for each value a in
the domain of variable Xi, there exists a neighbouring variable Xj such that it
is possible to increase ci(a) by sending costs from cj and cij , then perform all
these operations and then establish NC at Xi.

3 Experimental Trials

To test the utility of this approach, we carried out a large number of trials on
different benchmark problems from IPC (International Planning Competition)
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Fig. 1. Results of the trials using NC, FDAC and EDAC

covering diverse application areas (Blocksworld (bwt), Depots, Driverlog, Lo-
gistics, Mprime, Rover, Satellite and Zenotravel). We used the Toolbar library2

[3] to solve the WCSP derived from the numerical planning graph3. The IPC
benchmarks are derived from real problems and are highly structured. For each
different domain, there is a series of problems of increasing difficulty, this being
a function of the number of available actions and the number of fluents in the
initial and goal states. The solution-plans for the hardest problems consist of
thousands of actions. These benchmarks can be found at the IPC website4.

We tested different soft arc consistency algorithms (NC, FDAC and EDAC)
on different problems from the benchmark domains. NC, FDAC or EDAC was
established at each node of the branch-and-bound search. Fig 1 compares the
performances of these three soft arc consistency algorithms in terms of CPU
time.

Firstly, comparing NC and FDAC (Figure 1), we observed that the number
of nodes visited was always less with FDAC and that, on average, FDAC visited
17 times less nodes than NC. As for CPU time, FDAC is on average 7 times
faster than NC. We can conclude that the use of FDAC significantly improves
the time to extract an optimal solution from the numerical planning graph coded
as a WCSP. Figure 1 also allows us to compare FDAC and EDAC. We found
no significant difference between the two techniques. On average, EDAC visited

2 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
3 wcsp files are available here: http://mulcyber.toulouse.inra.fr/plugins/scmcvs/

cvsweb.php/benchs/planning/?cvsroot=toolbar
4 http://ipc.icaps-conference.org/
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5% less nodes but used 6% more CPU time. We can therefore conclude that
EDAC, unlike on random problems of similar density [3], does not provide an
improvement compared with FDAC on the problems tested.

The most striking result of our experimental trials is that we were able to
solve real optimal planning problems coded as WCSPs with several hundred
variables (maximum search space size about 10376), even though previous trials
on random WCSPs had indicated a practical upper limit of about 50 variables
(search space size 1045) [3]. The good performance of intelligent branch and
bound search on planning problems can probably be explained by the existence
of many crisp constraints and the structure of the constraint graph: the variables
can be divided into levels (corresponding to the levels of the planning graph)
and binary constraints only exist between variables at the same or adjacent
levels. If there are L levels, then at level L

2 , i.e. after instantiating half of the
problem variables, we can already apply approximately half of the constraints.
In a random problem, when half of the variables have been instantiated, we can
only apply approximately one quarter of the constraints. We formalize this idea
in the following definition.

Definition 1. A WCSP is linearly incremental under an ordering X1, . . . , Xn

of its variables if, for all p ∈ {1, . . . , n}, the number cp of constraints whose
scopes are subsets of {X1, . . . , Xp} satisfies cp = c

n (p+◦(n)), where c is the total
number of constraints.

A random problem is not linearly incremental, since in this case cp = cp(p−1)/2
n(n−1)/2

= O( cp2

n2 ). In the optimal planning problem under consideration in this paper,
assuming for simplicity that there are the same number of variables in each
of L levels and that L, n/L are both ◦(n), we have, for p a multiple of n/L:

cp = c( pL
n −1)

L−1 = c
n (p + ◦(n)) and hence the problem is linearly incremental.
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Abstract. The Low Autocorrelation Binary Sequences problem (LABS) is prob-
lem 005 in the CSPLIB library, where it is stated that “these problems pose a sig-
nificant challenge to local search methods”. This paper presents a straighforward
tabu search that systematically finds the optimal solutions for all tested instances.

1 Introduction

Sequences S = {s1 =, . . . , sN} (si ∈ {−1,+1}) with low off-peak autocorrelations

Ck(S) =
N−k∑
i=1

sisi+k

have applications in many communication and electrical engineering problems [14],
including high-precision interplanetary radar measurements [15]. The The Low Auto-
correlation Binary Sequences (LABS) Problem consists in finding a sequence S with
minimal energy

E(S) =
N−1∑
k=1

C2
k(S).

A well-known measure of optimality for a sequence, known as the Bernasconi model
[2], is given by F ≈ N2

2E and is estimated to be about F ≈ 9.3 [9].
The LABS problem is a challenging problem for constraint programming and is

listed as problem 005 in the CSPLIB library [4]. The difficulty comes from its symmet-
ric nature and the limited propagation [5]. The optimal sequences for up to N = 50 are
known and given in [4]). It is also claimed on the CSPLIB web site that these problems
pose a significant challenge to local search methods.

This paper proposes a trivial tabu-search algorithm with restarts that finds optimal
sequences for up to N = 48. The rest of the paper is organized as follows: Section 2
reviews related work. Section 3 presents the algorithm. Section 4 presents the experi-
mental results and Section 5 concludes the paper and discusses future work.

2 Related Work

The LABS problem attracted the attention of many communities since the early 70s.
Physicists and mathematicians studied the structure of its search space. [7] found se-
quences with optimal energy up to N = 32 using exhaustive search and [9] found

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 685–689, 2006.
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optimal solutions up to N = 48 by means of branch-and-bound and symmetry break-
ing. Although this latter approach clearly outperformed the former, the algorithm took
about 1 hour to solve N = 39 using a Sun Sparc 20 workstation with 4 processors.

A substantial piece of work has been conducted on a special restricted type of se-
quence: the skew-symmetric sequences of odd length N = 2n− 1, which satisfy

sn+l = (−1)lsn−l, where l = 1, . . . , n− 1.

which guarantees that all Ck with odd k have a 0 value. Restricting attention to skew-
symmetric sequences allow for larger values of N (up to 71) but optimal solutions are
not guaranteed to be skew-symmetric [6,8]. Many heuristic procedures were developed
to find skew-symmetric sequences [1], including simulated annealing ([2]), evolution-
ary algorithms [8], and techniques inspired by molecular evolution ([16]). These ap-
proaches on skew-symmetric sequences yield sequences with a merit factor F ≈ 6 and
thus very far from optimal solutions. ([2,7]). The conclusion of that research line was
that optimal sequences must be extremely isolated. In particularm, it is said that stochas-
tic search procedures are not well suited to find this ”golf holes” [9], an observation also
made on the CSPLIB site.

Constraint programming was also applied to LABS problems. Gent and Smith [5]
used symmetric breaking and reported CPU times around 45, 780 seconds for N = 35.
More recently, a hybrid branch & bound and local search technique was proposed by
Prestwich [11]. This Constrained Local Search (CLS) algorithm assigns unassigned
variables with consistent values until a failure occurs. Then CLS unassigns B variables
either randomly or heuristically. In this case, B is set to 1, variables are selected ran-
domly, and random restarts are used. The starting point of Prestwich’s CLS is a simpli-
fied variant of the branch-and-bound technique presented in [9] but without symmetry
breaking. CLS is able to find optimal sequences up to N = 48 and is faster than earlier
approaches. Recently, reference [3] proposed an effective local search algorithm based
on Kerninghan and Lin’s meta-heuristic.

3 A Tabu-Search Algorithm for LABS

The Modeling The model is straightforward: there is a decision variable with every
element in the sequence. A configuration σ is a complete assignment of variables to
values and σ(i) denotes the value assigned to variable si in configuration σ. There are
no constraints in this problem but the algorithm maintains every Ck incrementally to
compute and update the energy E. The energy of a configuration σ is denoted by E(σ).
The problem thus consists of finding a configuration σ minimizing E(σ).

The Neighborhood. The neighborhood of the local search is also straightforward: it
simply consists of flipping the value of a variable. Thus, the neighbors of a configuration
σ can be defined as

M(σ) = {σ′ | i ∈ 0..N − 1 & ∀j �= i : σ′(j) = σ(j) & σ′(i) = σ(i)× (−1)}.
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1. LABSLS(N)
2. σ ← random configuration;
3. σ∗ ← σ;
4. k ← 0;
5. s ← 0;
6. while k ≤ maxIt do
7. select σ′ ∈ M∗(σ, σ∗) minimizing E(σ′);
8. σ ← σ′;
9. if E(σ) < E(σ∗) then
10. σ∗ ← σ;
11. s ← 0;
12. else if s > maxStable then
13. σ ←random configuration;
14. s ← 0;
15. else
16. s++;
17. k++;

Fig. 1. Algorithm for Low Autocorrelation Binary Sequences

The Tabu Component. The tabu component is again straithforward: it maintains a fixed-
length tabu list to avoid flipping recently considered variable. It also uses an aspiration
criterion to overwrite the tabu status when the move would lead to the best solution
found so far. The so-obtained neighborhood is denoted by M∗(σ, σ∗) for a configura-
tion σ and a best-found solution σ∗.

The Tabu-Search Algorithm. Figure 1 depicts the tabu search with a restarting com-
ponent. The initial configuration is randomly generated. Each iteration selects the best
move in the neighborhood (line 7). The restarting component simply reinitializes the
search from a random configuration whenever the best configuration found so far has
not been improved upon for maxStable iterations.

4 Experimental Results

This section reports our experimental results to find optimal LABSs up to N = 48 (the
only results presented in [11]). A table of optimal solutions for N = 17 − 50 can be
found on the CSPLIB website [4]. The goal is simply to show the effectiveness of the
simple tabu search, not to provide a systematic comparison with other algorithms.

Table 1 reports the mean times in seconds for a set of 10 runs for each N = 21− 47
and 4 runs for N = 48, and compares them with one of the fastest approaches (CLS
from [11] on a 300 MHz DEC Alpha Server 1000A 5/300). The energy E and merit
factor F are also depicted for every instance. Experiments were run on a 3.01GHz PC
under linux. The algorithm was run with a maxStable factor of 1, 000 iterations and
maximum limit of iterations of 10, 000, 000. Depicted mean times correspond to the
times to find the optimal solution. The table also shows median and mean times and
iterations.
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Table 1. Experimental Results on the LABS Problem

N E F CLS LABSLS speedup medianIts meanIts medianT meanT
21 26 8.48 3.85 0.23 16.74 5572 5768 0.22 0.23
22 39 6.21 0.74 0.02 37.00 2389 2964 0.03 0.02
23 47 5.63 2.21 0.12 18.42 793 2399 0.04 0.12
24 36 8.00 9.55 0.17 56.18 2389 2964 0.14 0.17
25 36 8.68 1.72 0.62 2.78 6311 9677 0.41 0.62
26 45 7.51 3.12 0.23 13.57 2287 3247 0.16 0.23
27 37 9.85 33.9 1.77 19.16 19138 22499 1.51 1.77
28 50 7.84 37.2 0.96 38.75 8685 11076 0.75 0.96
29 62 6.78 43.3 1.24 34.92 12920 12894 1.24 1.24
30 59 7.63 25.3 3.08 8.21 28951 29382 3.04 3.08
31 67 7.17 117 2.59 45.17 16019 22599 1.84 2.59
32 64 8.00 319 6.47 49.30 44544 51687 5.58 6.47
33 64 8.51 482 17.80 27.08 100278 130509 13.67 17.80
34 65 8.89 422 14.80 28.51 125260 100000 18.51 14.80
35 73 8.39 709 44.85 15.81 107415 277547 17.22 44.85
36 82 7.90 981 53.21 18.44 205506 305737 36.52 53.21
37 86 7.96 2096 78.92 26.56 354694 417485 66.29 78.92
38 87 8.30 1679 147.17 11.41 578751 724586 117.20 147.17
39 99 7.68 5300 138.99 39.56 666494 640236 144.15 138.99
40 108 7.41 14305 260.11 55.00 787803 1128835 183.66 260.11
41 108 7.78 21224 460.26 46.11 1618612 1857771 404.25 460.26
42 101 8.73 4890 466.73 10.48 1639049 1722619 446.95 466.73
43 109 8.48 46168 1600.63 28.84 4608116 5757618 1286.87 1600.63
44 122 7.93 27422 764.66 35.86 1930648 2547498 588.25 764.66
45 118 8.58 52920 1103.48 47.96 3536722 3448381 1188.24 1103.48
46 131 8.08 5184 703.32 7.37 2154834 2053875 728.30 703.32
47 135 8.18 26280 1005.03 26.15 2416869 2749650 863.86 1005.03
48 140 8.23 12096 964.13 12.55 2024970 2553812 759.83 964.13

Observe that this simple tabu search algorithm quickly finds solutions for instances
up to N = 32 (a few seconds or less), and finds solutions in reasonable time for the
remaining instances. The algorithm is consistently 8 to 55 times faster than CLS, even
for N = 43 − 48 were CLS reports only the times for a single run. This is particularly
remarkable, since the energy is not specified in our approach, while it is set to the
known optimal value plus 1 in CLS. Note also that the means and medians are very
similar indicating the robustness of the algorithm.

Every sequence is symmetric in up to 8 ways. However, no symmetries have been
exploited in this approach. Adding symmetries for local search has been found to be
unlikely to improve performance for several problems ([12,13]).

5 Conclusion and Future Work

This paper proposed a simple local-search algorithm for LABS problems that was
shown to be effective and robust. In particular, it finds optimal sequences for up to
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N = 48. These results are quite surprising given the claim (on the CSPLIB website and
in [9]) that “these problems pose a significant challenge to local search methods”. This
seems to suggest (once again) that it is not easy to predict what makes a problem hard
for local search methods.

Future work includes pushing the N = 48 limit, along with the study of novel hy-
bridizations. A complete local search (exploring the search space exhaustively) has been
developed, although it cannot (yet) compete with the local search presented here. A ver-
sion of the complete local search with limited discrepancies produces similar results in
quality to the tabu-search, indicating the potential for obtaining a complete and effective
search procedure for LABS problems.
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1 Introduction

The Quantified CSP (QCSP) is a generalisation of the classical CSP in which some of the
variables are universally quantified [3]. We consider the problem of relaxing an instance
of the QCSP when it is unsatisfiable. We propose several novel forms of problem relax-
ations for the QCSP and present an algorithm for generating conflict-based explanations
of inconsistency. Our motivation comes from problems in supply-chain management
and conformant planning.

Definition 1 (Quantified CSP). A QCSP, φ, has the form

φ =̂ Q.C = Q1x1 ∈ D(x1) · · ·Qnxn ∈ D(xn).C(x1, . . . , xn)

where D(xi) is the domain of xi; C is a set of constraints defined over the variables
x1 . . . xn; and Q is a sequence of quantifiers over the variables x1 . . . xn where each
Qi (1 ≤ i ≤ n) is either an existential, ∃, or a universal, ∀, quantifier1. The expression
∃xi.c means that “there exists a value a ∈ D(xi) such that the assignment (xi, a)
satisfies c”. Similarly, the expression ∀xi.c means that “for every value a ∈ D(xi),
(xi, a) satisfies c”.

Example 1 (Quantified CSP). Consider a QCSP defined on the variables x1 and x2 such
that D(x1) = {1, 2} and D(x2) = {1, 2, 3} as follows: ∃x1∀x2.{x1 < x2}. This QCSP

is false. This is because for any choice of value for variable x1 there is at least one
value in the domain of x2 that ensures that the constraint x1 < x2 will be violated. �

2 Relaxation

We observe that many real world problems are over-constrained, and that we are often
interested in relaxing a problem so that we find a solution that is at least relatively
satisfactory. Problem relaxations give us a language with which we can explain the
over-constrainedness of a problem.

� This work was supported by Science Foundation Ireland (Grant 03/CE3/I405). The authors
thank Hubie Chen, Helene Fargier and Nic Wilson for their helpful comments.

1 When the domain of a variable is clear from context we often write Qixi rather than Qixi ∈
D(xi) in the quantifier sequence.
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2.1 Relaxation for the Quantified CSP

Partial Constraint Satisfaction [4] identifies a number of relaxations for classical CSP,
all of which can be regarded as enlarging either constraint relations or variable do-
mains. We identity five classes of relaxation for QCSPs: the first two are familiar from
CSP, the remaining three particular to QCSPs. We claim that these are comprehensive in
representing all ‘natural’ relaxations of a given QCSP.

Single Constraint Relaxation. This consists of adding allowed tuples to an extension-
ally represented constraint, and is equivalent to the corresponding relaxation operation
in classical CSP.

Example 2 (Single Constraint Relaxation). Consider the following QCSP, which is
false:

∃x1 ∈ {1, 2}∀x2 ∈ {1, 2, 3}.{x1 < x2}.
If we relax the constraint between x1 and x2 from < to ≤ the QCSP becomes true. This
is because if x1 is assigned 1, the constraint cannot be violated by any value of x2. �

Relaxation of Existentially Quantified Domains. Adding values to the domain of
an existentially quantified variable corresponds to the CSP case of enlarging a variable
domain.

Example 3 (Relaxation of Existential Domains). Consider the QCSP in Example 2. A
suitable relaxation is the following, in which the value 0 is added to the domain of x1:

∃x1 ∈ {0, 1, 2}∀x2 ∈ {1, 2, 3}.{x1 < x2};

the relaxed QCSP is true since setting x1 to 0 ensures that any assignment to x2 satisfies
the constraint. �

Relaxation of Universally Quantified Domains. A class of relaxation particular to
QCSPs is to remove values from the domains of universally quantified variables.

Example 4 (Relaxation of Universal Domains). Returning to the QCSP of Example 2:
this is false, as 1 can be assigned to x2, for which there is no satisfying counter-
assignment. However, if we relax the domain of the universally quantified variable x2

so that it no longer contains the value 1 as follows:

∃x1 ∈ {1, 2}∀x2 ∈ {2, 3}.{x1 < x2},

then the relaxed QCSP is true. �

Quantifier Relaxation. A fourth form of relaxation, also with no direct equivalent in
classical CSP, is to reverse the quantification of a variable from universal to existential.

Example 5 (Quantifier Relaxation). We revisit the QCSP presented in Example 2, which
is false. If we relax the universal quantifier on variable x2 to be existential to get:

∃x1 ∈ {1, 2}∃x2 ∈ {1, 2, 3}.{x1 < x2},

then the relaxed QCSP is true. This is valid if the associated domain is non-empty. �
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Quantifier Moving. A fourth class of relaxation corresponds to moving an existentially
quantified variable to the right in the sequence of quantifiers.

Example 6 (Quantifier Moving). Consider the following QCSP, which is false:

∃x1 ∈ {true, false}∀x2 ∈ {true, false}.{(x1 ∨ x2), (¬x1 ∨ ¬x2)}.

We relax this problem by moving the quantification ∃x1 to the right, giving sequence
∀x2 ∈ {true, false}∃x1 ∈ {true, false}. The resulting QCSP is true. This corresponds
to delaying a key decision until better information is available about assignments to
universal variables. �

2.2 QCSP Relaxation as Requirement Relaxation

We now present a uniform treatment of the relaxation of both quantifiers and con-
straints. Requirements correspond to either a constraint in the QCSP, or a universal
quantifier, and we frame relaxation of each as instances of requirement relaxation, over
a partial order defined for that purpose.

Definition 2 (Relaxation of a QCSP). We define the relaxation φ[r′] of a QCSP φ on a
single requirement, r, to be its replacement with the given requirement r′. This can then
be extended to a set of relaxations R: φ[∅] = φ, φ[{r′} ∪R] = (φ[r′])[R].

Definition 3 (Ordering over Requirement Relaxations). Given the set of possible
relaxations, R(r), of a requirement r, we say that (r1 ∈ R(r)) 5 (r2 ∈ R(r)) iff for
any problem φ, if φ[r1] is satisfiable then φ[r2] is, necessarily. We further require that
this partial order also be a meet-semilattice. That is to say, greatest lower bounds are
guaranteed to exist: if r1, r2 ∈ R(r), then r1 � r2 is well-defined. This corresponds to
the unique requirement relaxation which is as constraining as both of its arguments, but
no more.

We now consider universal quantifier relaxation. Informally, the space of possible re-
laxations for a universal quantifier corresponds to restricting the quantifier to any one
of the exponentially many subsets of the domain of the quantified variable, narrowing
to a single choice of value, and thereafter widening to existentially quantified subsets.
Of course, in practice, one can limit this powerset to a subset of tractable size.

Definition 4 (Requirement Relaxation for Universals). Given a requirement on an
universally quantified variable x, i.e. r =̂ ∀x ∈ D(x), the set of relaxations R(∀x ∈
D(x)) is defined as:

R(r) =̂ {(∀x ∈ D′(x)) : ∅ ⊆ D′(x) ⊆ D(x)}∪{(∃x ∈ D′(x)) : ∅ ⊆ D′(x) ⊆ D(x)}

The elements ofR(∀x ∈ D(x)) form the following meet-semilattice:

(∀x ∈ D(x)) � (∀x ∈ D′(x)) =̂ (∀x ∈ (D(x) ∪D′(x)));
(∃x ∈ D(x)) � (∃x ∈ D′(x)) =̂ (∃x ∈ (D(x) ∩D′(x)));
(∀x ∈ D(x)) � (∃x ∈ D′(x)) =̂ (∀x ∈ D(x)), if D(x) ∩D′(x) �= ∅;
(∀x ∈ D(x)) � (∃x ∈ D′(x)) =̂ (∃x ∈ ∅), if D(x) ∩D′(x) = ∅.
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Note the existence of unique top and bottom points, corresponding to trivially- and
un-satisfiable quantifications:& = (∀x ∈ ∅),⊥ = (∃x ∈ ∅).

We also define the space of relaxations, R(c), for a constraint c. The elements of
R(c) form the usual lattice using intersection, that is, � =̂ ∩.

Definition 5 (Requirement Relaxation for Constraints). Given a constraint c with
scope var(c) and relation sol(c), we define its relaxations in terms of adding addi-
tional allowed tuples to sol(c) as follows: R(c) =̂ {sol′(c) : sol(c) ⊆ sol′(c) ⊆
Πx∈var(c)D(x)}.

We can now define the space of possible relaxations of a given QCSP in terms of its con-
stituent requirements in the natural way, in terms of the cross-product of the available
relaxations for each, and similarly the associated comparison and meet operations.

3 From Relaxations to Explanations

A familiar notion of explanation is that based on minimal conflicts [6], which we gener-
alise to minimally conflicting explanations, or alternatively, maximally relaxed conflict-
based explanations. We define explanation with respect to a (typically incomplete) con-
sistency propagation method Π , such as QAC [2], in a similar way to Junker [6].

Definition 6 (Maximally Relaxed Explanation). Given a consistency propagator Π ,
a maximally relaxed (Π-conflict-based) explanation of a Π-inconsistent QCSP φ, is
a maximal QCSP, X , that is inconsistent with respect to Π; i.e. such that φ 5 X ,
⊥ ∈ Π(X) and ∀X ′ such that X � X ′,⊥ /∈ Π(X ′).

We adopt a scheme similar to that of the QUICKXPLAIN ‘family’ of algorithms [6], in
particular REPLAYXPLAIN. We present QUANTIFIEDXPLAIN (Algorithm 1), which is
parameterised by a semilattice of available relaxations for each requirement. We begin
with a maximal relaxation of each requirement, and progressively tighten these one by
one, by a minimal amount to ensure maximality of the final relaxation. Each time an
inconsistency is detected, we eliminate all relaxations tighter than the current approx-
imation. At the same time, we take the last-relaxed requirement to be no more relaxed
than the last-chosen value that produced the inconsistency. Eventually only one possi-
bility remains from each relaxation, thus fully determining the chosen explanation.

Theorem 1 (Maximally Relaxed Explanations using QUANTIFIEDXPLAIN). If⊥ ∈
Π(φ), and R is a set of available relaxations of some, all or none of the requirements
of φ, and QUANTIFIEDXPLAIN (φ, R) = X , then: ⊥ ∈ Π(X), and if X ′ = X [r] for
some r ∈ R such that X � X ′, then ⊥ /∈ Π(X ′).

Proof. (Sketch) If ⊥ ∈ Π(φ[R]) where R = {r1, . . . , rm+n}, and each ri is maximal
in Ri, then φ[R] is a maximally relaxed explanation. If ⊥ /∈ Π(φ) then no conflict
exists. If ⊥ ∈ Π(φ[ri]), and X is a maximally relaxed explanation for φ, then X is a
maximally relaxed explanation for φ where R′i = {r ∈ Ri, ri 5 r}. If ⊥ ∈ Π(φ[ri])
and ⊥ /∈ Π(φ[r′i]), where r′i ∈ minima{r′′ : r′′ ∈ Ri, ri � r′′}, then if X is a
maximally relaxed explanation for φ, then X is a maximally relaxed explanation for φ
whereR′i = {r ∈ Ri, r 5 ri}. ��
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Algorithm 1. QUANTIFIEDXPLAIN(φ,R)
Input : A QCSP φ; a set of relaxation spaces for each quantifier and constraint, R ⊆

R(φ)).

Output : A maximally relaxed conflict-based explanation for φ.

if ⊥ /∈ Π(φ) then return exception “no conflict”;
enumerate R as R1 . . . Rm+n;
if ∀i ∈ [1, m + n].|Ri| = 1 then return φ;
while ∃i : |Ri| > 1 do

foreach Ri do select an ri from maxima(Ri);
if ⊥ ∈ Π(φ) then return φ[{r1, . . . , rm+n}];
while ⊥ /∈ Π(φ[{r1, . . . , rm+n}]) do

select (any) i s.t. ri �= �
(Ri);

choose an r′ from maxima{r : r ∈ Ri, ri �� r};
ri ← r′ � ri;

Ri ← {r : r ∈ Ri, ri � r � r′};
foreach Rj , j �= i do Rj ← {r : r ∈ Rj , rj � r};

return φ[{r1, . . . , rm+n}];

4 Related Work and Conclusions

Classical CSP concepts such as arc-consistency, satisfiability, interchangeability and
symmetry have been extended to the QCSP [1, 7]. A number of techniques for solving
the QCSP have also been proposed [5, 8].

Our work on relaxation and explanation of inconsistency is the first on these impor-
tant aspects of reasoning about QCSPs. We have defined a number of different forms of
relaxation not available in classical CSP, and presented an algorithm called QUANTI-
FIEDXPLAIN for computing minimally conflicting explanations for QCSPs.

References

1. L. Bordeaux, M. Cadoli, and T. Mancini. CSP properties for quantified constraints: Definitions
and complexity. In AAAI, pages 360–365, 2005.

2. L. Bordeaux and E. Monfroy. Beyond NP: Arc-consistency for quantified constraints. In CP,
pages 371–386, 2002.

3. H. Chen. The Computational Complexity of Quantified Constraint Satisfaction. PhD thesis,
Cornell University, August 2004.

4. E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. Artif. Intell., 58(1-3):21–70,
1992.

5. I.P. Gent, P. Nightingale, and K. Stergiou. QCSP-solve: A solver for quantified constraint
satisfaction problems. In IJCAI, pages 138–143, 2005.

6. U. Junker. Quickxplain: Preferred explanations and relaxations for over-constrained problems.
In AAAI, pages 167–172, 2004.

7. N. Mamoulis and K. Stergiou. Algorithms for quantified constraint satisfaction problems. In
CP, pages 752–756, 2004.

8. K. Stergiou. Repair-based methods for quantified CSPs. In CP, pages 652–666, 2005.



Static and Dynamic Structural Symmetry Breaking

Pierre Flener1, Justin Pearson1, Meinolf Sellmann2, and Pascal Van Hentenryck2

1 Dept of Information Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden
2 Dept of Computer Science, Brown University, Box 1910, Providence, RI 02912, USA

{pierref, justin}@it.uu.se, {sello, pvh}@cs.brown.edu

Abstract. We reconsider the idea of structural symmetry breaking (SSB) for
constraint satisfaction problems (CSPs). We show that the dynamic dominance
checks used in symmetry breaking by dominance-detection search for CSPs with
piecewise variable and value symmetries have a static counterpart: there exists
a set of constraints that can be posted at the root node and that breaks all these
symmetries. The amount of these symmetry-breaking constraints is linear in
the size of the problem, but they possibly remove a super-exponential number of
symmetries on both values and variables. Moreover, static and dynamic structural
symmetry breaking coincide for static variable and value orderings.

1 Introduction

Symmetry breaking has been the topic of intense research in recent years. Substan-
tial progress was achieved in many directions, often exhibiting significant speedups for
complex real-life problems arising, say, in configuration and network design. One of
the interesting recent developments has been the design of general symmetry-breaking
schemes such as symmetry breaking by dominance detection (SBDD) and symmetry
breaking during search (SBDS). SBDD [1,2] is particularly appealing as it combines
low memory requirements with a number of dominance checks at each node linearly
proportional to the depth of the search tree. It then became natural to study which classes
of symmetries for CSPs admit polynomial-time dominance-checking algorithms. This
issue was first studied in [9], where symmetry breaking for various classes of value
symmetries was shown to take constant time and space (see also [7] for an elegant gen-
eralization to all value symmetries). It was revisited for CSPs with piecewise variable
and value symmetry in [8], where a polynomial-time dominance-checking algorithm
was given and the name ‘structural symmetry breaking’ (SSB) was coined. In parallel,
researchers have investigated for many years (e.g., [4]) static symmetry breaking, which
consists in adding constraints to the CSP in order to remove symmetries.

In this paper, after reviewing the basic concepts in Section 2, we show in Section 3
that the polynomial-time dominance-checking algorithm of [8] has a static counterpart,
namely that there exists a static set of constraints for CSPs with piecewise symmetric
variables and values that, when added to the CSP, results in a symmetry-free search
tree. The amount of symmetry-breaking constraints is linear in the size of the problem,
but possibly removes a super-exponential number of symmetries on both values and
variables. In Section 4, we establish a clear link between static (SSSB) and dynamic
structural symmetry breaking (DSSB) by showing that the obtained SSSB scheme ex-
plores the same tree as DSSB [8] whenever the variable and value orderings are fixed.
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2 Basic Concepts

Definition 1 (CSP, Assignment, Solution). A constraint satisfaction problem (CSP) is
a triplet 〈V,D,C〉, where V denotes the set of variables, D denotes the set of possible
values for these variables and is called their domain, and C : (V → D) → Bool is a
constraint that specifies which assignments of values to the variables are solutions. An
assignment for a CSP P = 〈V,D,C〉 is a function α : V → D. A partial assignment
for a CSP P = 〈V,D,C〉 is a function α : W → D, where W ⊆ V . The scope of α,
denoted by scope(α), is W . A solution to a CSP P = 〈V,D,C〉 is an assignment σ for
P such that C(σ) = true. The set of all solutions to a CSP P is denoted by Sol(P).

Definition 2 (Partition, Piecewise Bijection). Given a set S and a set of sets P =
{P1, . . . , Pn} such that S =

⋃
i Pi and the Pi are pairwise non-overlapping, we say

that P is a partition of S and that each Pi is a component, and we write S =
∑

i Pi. A
bijection b : S → S is a piecewise bijection over

∑
i Pi iff {b(e) | e ∈ Pi} = Pi.

Definition 3 (Piecewise Symmetric CSP). A CSPP = 〈
∑

k Vk,
∑

� D�, C〉 is a piece-
wise symmetric CSP iff, for each solution α ∈ Sol(P), each piecewise bijection τ over∑

� D�, and each piecewise bijection σ over
∑

k Vk, we have τ ◦ α ◦ σ ∈ Sol(P).

Definition 4 (Dominance Detection). Given two partial assignments α and β for a
piecewise symmetric CSPP = 〈

∑
k Vk,

∑
� D�, C〉, we say that α dominates β iff there

exist piecewise bijections σ over
∑

k Vk and τ over
∑

� D� such that α(v) = τ ◦β◦σ(v)
for all v ∈ scope(α).

Dominance detection constitutes the core operation of symmetry breaking by dom-
inance detection (SBDD) [1,2], and its tractability immediately implies that we can
efficiently limit ourselves to the exploration of symmetry-free search trees only. For
piecewise symmetric CSPs, [8] showed that dominance detection is tractable.

3 Static SSB for Piecewise Symmetric CSPs

When we assume a total ordering of the variables V = {v1, . . . , vn} and the values
D = {d1, . . . , dm}, we can break the variable symmetries within each variable com-
ponent as usual, by requiring that earlier variables take smaller or equal values. To
break the value symmetries, we resort to structural abstractions, so-called signatures,
which generalize from an exact assignment of values to variables by quantifying how
often a given value is assigned to variables in each component. Let the frequency
fk

h = |{vg ∈ Vk | vg ∈ scope(α) & α(vg) = dh}| denote how often each value dh is
taken under partial assignment α by the variables in each variable component Vk . For
a partial assignment α, we then denote by sigα(dh) := (f1

h , . . . , f
a
h ) the signature of

dh under α. Then, for all consecutive values dh, dh+1 in the same value component, we
require that their signatures are lexicographically non-increasing, i.e., sigα(dh) ≥lex

sigα(dh+1). So the problem boils down to computing the signatures of values effi-
ciently. Fortunately, this is an easy task when using the existing global cardinality con-
straint (gcc) [6]. We thus propose to add the following static set of constraints to a
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piecewise symmetric CSP 〈
∑a

k=1 Vk,
∑b

�=1 D�, C〉 with Vk = {vi(k), . . . , vi(k+1)−1}
and D� = {dj(�), . . . , dj(�+1)−1}:

∀ 1 ≤ k ≤ a : ∀ i(k) ≤ h < i(k + 1)− 1 : vh ≤ vh+1

∀ 1 ≤ k ≤ a : gcc(vi(k), . . . , vi(k+1)−1, d1, . . . , dm, fk
1 , . . . , f

k
m)

∀ 1 ≤ � ≤ b : ∀ j(�) ≤ h < j(� + 1)− 1 : (f1
h , . . . , f

a
h ) ≥lex (f1

h+1, . . . , f
a
h+1)

where i(k) denotes the index in {1, . . . , n} of the first variable in V of variable compo-
nent Vk, with i(a + 1) = n + 1, and j(�) denotes the index in {1, . . . ,m} of the first
value in D of value component D�, with j(b + 1) = m + 1.

Example. Consider scheduling study groups for two sets of five indistinguishable stu-
dents each. There are six identical tables with four seats each. Let {v1, . . . , v5} +
{v6, . . . , v10} be the partitioned set of piecewise interchangeable variables, one for
each student. Let the domain {t1, . . . , t6} denote the set of tables, which are fully inter-
changeable. The static structural symmetry-breaking constraints are:

v1 ≤ v2 ≤ v3 ≤ v4 ≤ v5, v6 ≤ v7 ≤ v8 ≤ v9 ≤ v10,
gcc(v1, . . . , v5, t1, . . . , t6, f

1
1 , . . . , f

1
6 ), gcc(v6, . . . , v10, t1, . . . , t6, f

2
1 , . . . , f

2
6 ),

(f1
1 , f

2
1 ) ≥lex (f1

2 , f
2
2 ) ≥lex · · · ≥lex (f1

6 , f
2
6 )

Consider the assignment α = {v1 	→ t1, v2 	→ t1, v3 	→ t2, v4 	→ t2, v5 	→ t3} ∪
{v6 	→ t1, v7 	→ t2, v8 	→ t3, v9 	→ t4, v10 	→ t5}. Within each variable component,
the ≤ ordering constraints are satisfied. Having determined the frequencies using the
gcc constraints, we observe that the ≥lex constraints are satisfied, because (2, 1) ≥lex

(2, 1) ≥lex (1, 1) ≥lex (0, 1) ≥lex (0, 1) ≥lex (0, 0). If student 10 moves from table
5 to table 6, producing a symmetrically equivalent assignment because the tables are
fully interchangeable, the ≥lex constraints are no longer satisfied, because (2, 1) ≥lex

(2, 1) ≥lex (1, 1) ≥lex (0, 1) ≥lex (0, 0) �≥lex (0, 1).

Theorem 1. For every solution α to a piecewise symmetric CSP, there exists exactly
one symmetric solution that obeys the static structural symmetry-breaking constraints.

Proof. (a) We show that there exists at least one symmetric solution that obeys all the
symmetry-breaking constraints. Denote by τ �

α : {j(�), . . . , j(�+1)−1} → {j(�), . . . ,-
j(� + 1)− 1} the function that ranks the values in D� according to the signatures over
some solution α, i.e., sigα(dτ�

α(h)) ≥ sigα(dτ�
α(h+1)) for all j(�) ≤ h < j(� + 1)− 1.

We obtain a symmetric solution β where we re-order the values in each D� according to
τ �
α. Then, when we denote by σk

β : {i(k), . . . , i(k+1)−1} → {i(k), . . . , i(k+1)−1}
the function that ranks the variables in Vk according to β, i.e., β(vσk

β(h)) ≤ β(vσk
β(h+1))

for all i(k) ≤ h < i(k+1)−1, we can re-order the variables in each Vk according to σk
β ,

and we get a new symmetric solution γ. Note that the re-ordering of the variables within
each component has no effect on the signatures of the values, i.e., sigγ(d) = sigβ(d)
for all d ∈ D. Thus, γ obeys all the symmetry-breaking constraints.

(b) Now assume there are two symmetric solutions α and β to the piecewise sym-
metric CSP that both obey all the symmetry-breaking constraints. Denote by τ � the
re-ordering of the values in D� and denote by σk the re-ordering of the variables in Vk.
Then, we denote by τ the piecewise bijection over the values based on the τ �, and by σ
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the piecewise bijection over the variables based on the σk, such that α = τ ◦ β ◦ σ. The
first thing to note is that the application of the piecewise bijection σ on the variables has
no effect on the signatures of the values, i.e., sigβ(d) = sigβ◦σ(d) for all d ∈ D. Con-
sequently, the total lexicographic ordering constraints on the signatures of each value d
and its image τ(d) require that sigβ(d) = sigβ(τ(d)) = sigτ◦β(d) = sigτ◦β◦σ(d) =
sigα(d). Thus, the signatures under α and β are identical. However, with the signatures
of all the values fixed and with the ordering on the variables, there exists exactly one
assignment that gives these signatures, so α and β must be identical. ��

4 Static Versus Dynamic SSB for Piecewise Symmetric CSPs

The advantage of a static symmetry-breaking method lies mainly in its ease of use
and its moderate costs per search node. The number of constraints added is linear in
the size of the problem, unlike the general method in [5], but they may break super-
exponentially many variable and value symmetries. Constraint propagation and incre-
mentality are inherited from the existing lex-ordering and gcc constraints. However, it is
well-known that static symmetry breaking can collide with dynamic variable and value
orderings, whereas dynamic methods such as SBDD do not suffer from this drawback.

Theorem 2. Given static variable and value orderings, static (SSSB) and dynamic SSB
(DSSB) explore identical search trees for piecewise symmetric CSPs.

Proof. (a) Proof by contradiction. Assume there exists a node in the SSSB search tree
that is pruned by DSSB. Without loss of generality, we may consider the first node in
a depth-first search tree where this occurs. We identify this node with the assignment
β := {v1, . . . , vt} → D, and the node that dominatesβ is identified with the assignment
α := {v1, . . . , vs} → D, for some 1 ≤ s ≤ t ≤ n. By the definition of DSSB, we have
that α(vi) = β(vi) for all 1 ≤ i < s (since every no-good considered by SBDD differs
in exactly its last variable assignment from the current search node), andα(vs) < β(vs).

First consider s = t. Assume the dominance check between α and β is successful.
Then, sigβ(β(vs)) = sigα(α(vs)) � sigβ(α(vs)). However, since α(vs) < β(vs), it
must also hold that sigβ(α(vs)) ≥ sigβ(β(vs)). Contradiction.

Now consider s < t. Since the parent of β is not dominated by α, as β was chosen
minimally, we know that vt must be interchangeable with some vp with p ≤ s < t. If we
denote the component of vt by {vq, . . . , vt, . . . , vu}, we can deduce that q ≤ s < t ≤ u,
i.e., vs and vt must belong to the same component. By definition of SSSB, we also know
that α(vq) ≤ · · · ≤ α(vs) < β(vs) ≤ · · · ≤ β(vt). Moreover, we know that β(vt) and
α(vp) must be interchangeable. Consequently, α(vs) and β(vs) are also interchange-
able. Now, since setting α(vs) and β(vs) to vs was not considered symmetric by DSSB,
together with β(vs) > α(vs), we know that sigβ(α(vs)) � sigα(α(vs)). It follows that
sigα(α(vs)) � sigβ(α(vs)) ≥ sigβ(β(vs)) (1). When α(vs) is matched with β(vi), for
q ≤ i ≤ t, by the successful dominance check of α and β, then it must hold that i < s
as otherwise sigα(α(vs)) ≤ sigβ(β(vi)) ≤ sigβ(β(vs)), which is in conflict with (1).
This implies that β(vt) must be matched with some α(vr) for q ≤ r < s by the suc-
cessful dominance check. Hence all the values in {α(vr), . . . , α(vs), β(vs), . . . , β(vt)}
are pairwise interchangeable. But then sigα(α(vr)) ≤ sigβ(β(vt)) ≤ sigβ(β(vs)) �
sigα(α(vs)) ≤ sigα(α(vr)). Contradiction.
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(b) Assume there exists a node in the DSSB search tree that is pruned by SSSB.
Without loss of generality, we may consider the first node in a depth-first search tree
where this occurs. We identify this node with the assignment β := {v1, . . . , vt} → D.

First assume a variable ordering constraint is violated, i.e., β(vj) > β(vi) for some
1 ≤ i < j ≤ t where vi and vj are interchangeable. Consider α : {v1, . . . , vi} → D
such that α(vk) := β(vk) for all 1 ≤ k < i, and α(vi) := β(vj). Then, due to the static
variable and value orderings, α is a node that has been fully explored before β, and α
dominates β, which is clear by mapping vi to vj . Thus, β is also pruned by DSSB.

Now assume a lex-ordering constraint on the value signatures is violated. Denote the
interchangeable values by di and dj , with 1 ≤ i < j. Since β was chosen minimally,
when we denote the variable component that shows that sigβ(di) < sigβ(dj) by Vk, we
know that sigβ(di)[�] = sigβ(dj)[�] for all � < k and sigβ(di)[k] + 1 = sigβ(dj)[k].
With s := max{p | p < t & β(vp) = di}, we set α : {v1, . . . , vs+1} → D with
α(vr) := β(vr) for all r ≤ s and α(vs+1 := di). Again, due to the static variable and
value orderings, α is a node that has been fully explored before β, and α dominates β,
which is clear simply by mapping di to dj . Hence, β is also pruned by DSSB. ��

We conclude that dynamic symmetry breaking draws its strength from its ability to ac-
commodate dynamic variable and value orderings, but causes an unnecessary overhead
when these orderings are fixed. In this case, static symmetry breaking offers a much
more light-weight method that achieves exactly the same symmetry-breaking effective-
ness for piecewise symmetric CSPs. Can we find general conditions under which a static
symmetry-breaking method leads to symmetry-free search trees?
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Abstract. We describe the Zinc modelling language. Zinc provides set
constraints, user defined types, constrained types, and polymorphic pred-
icates and functions. The last allows Zinc to be readily extended to dif-
ferent application domains by user-defined libraries. Zinc is designed to
support a modelling methodology in which the same conceptual model
can be automatically mapped into different design models, thus allowing
modellers to easily “plug and play” with different solving techniques and
so choose the most appropriate for that problem.

1 Introduction

Solving combinatorial problems is a remarkably difficult task which requires
the problem to be precisely formulated and efficiently solved. Even formulating
the problem precisely is surprisingly difficult and typically requires many cycles
of formulation and solving. Efficiently solving it often requires development of
tailored algorithms which exploit the structure of the problem, and extensive
experimentation to determine which technique or combination of techniques is
most appropriate for a particular problem. Reflecting this discussion, modern
approaches to solving combinatorial problems divide the task into two (hopefully
simpler) steps. The first step is to develop the conceptual model of the problem
which specifies the problem without consideration as to how to actually solve
it. The second step is to solve the problem by mapping the conceptual model
into an executable program called the design model. Ideally, the same conceptual
model can be transformed into different design models, thus allowing modellers
to easily “plug and play” with different solving techniques [4].

Here we introduce a new modelling language, Zinc, specifically designed to
support this methodology. There has been a considerable body of research into
problem modelling which has resulted in a progression of modelling languages
including AMPL [2], Localizer [6], OPL [7], and specification languages includ-
ing ESRA [1] and ESSENCE [3]. We gladly acknowledge the strong influence
that OPL has had on our design. Our reasons to develop yet another modelling
language are threefold.

First, we want the modelling language to be solver and technique indepen-
dent, allowing the same conceptual model to be mapped to different solving
techniques and solvers, i.e., be mapped to design models that use the most appro-
priate technique, be it local search, mathematical modelling (MIP), Constraint
Programming (CP), or a combination of the above. To date the implemented
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languages have been tied to specific underlying platforms or solving technologies.
For example, AMPL is designed to interface to MIP packages such as Cplex and
Xpress-MP, Localizer was designed to map down to a local search engine, and
ESSENCE and ESRA are designed for CP techniques. Of the above, only OPL
was designed to combine the strengths of both MIP and CP, and now the most
recent version of OPL only supports MIP.

Second, we want to provide high-level modelling features but still ensure that
the Zinc models can be refined into practical design models. Zinc offers struc-
tured types, sets, and user defined predicates and functions which allow a Zinc
model to be encapsulated as a predicate. It also allows users to define “con-
strained objects” i.e., to associate constraints to a particular type thus specify-
ing the common characteristics that a class of items are expected to have [5].
It supports polymorphism, overloading and type coercion which make the lan-
guage comfortable and natural to use. However, sets must be finite, and re-
cursion is restricted to iteration so as to ensure that execution of Zinc pro-
grams is guaranteed to terminate. Zinc is more programming language like
than the specification based approaches of ESSENCE and ESRA. These pro-
vide a more abstract kind of modeling based on first-order relations. Currently,
they do not support variables with continuous domains or, as far as we can
tell, functions or predicates. Furthermore, only limited user-defined types are
provided.

And third, we want Zinc to have a simple, concise core but allow it to be
extended to different application areas. This is achieved by allowing Zinc users
to define their own application specific library predicates, functions and types.
This contrasts with, say, OPL which provides seemingly ad-hoc built-in types
and predicates for resource allocation and cannot be extended to model new
application areas without redefining OPL itself since it does not allow user-
defined predicates and functions.

2 Zinc

Zinc is a first-order functional language with simple, declarative semantics. It
provides: mathematical notation-like syntax; expressive constraints (finite do-
main and integer, set and linear arithmetic); separation of data from model;
high-level data structures and data encapsulation including constrained types;
user defined functions and constraints.

As an example of Zinc, consider the model in Figure 1 for the perfect squares
problem [8]. This consists of a base square of size sizeBase (6 in the figure) and
a list of squares of various sizes squares (three of size 3, one of size 2 and five
of size 1 in the figure). The aim is to place all squares into the base without
overlapping each other.

The model defines a constrained type PosInt as a positive integer and declares
the parameter sizeBase to be of this type. A record type Square is used to model
each of the squares. It has three fields x, y and size where (x, y) is the (unknown)
position of the lower left corner of the square and size is the size of its sides.
The first constraint in the model ensures each square is inside the base (note
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type PosInt = (int:x where x>0);

PosInt: sizeBase;

record Square=(var 1..sizeBase: x, y; PosInt: size);

list of Square:squares;

constraint forall(s in squares)

s.x + s.size =< sizeBase+1 /\

s.y + s.size =< sizeBase+1;

predicate nonOverlap(Square: s,t) =

s.x+s.size =< t.x \/ t.x+t.size =< s.x \/

s.y+s.size =< t.y \/ t.y+t.size =< s.y;

constraint forall(i,j in 1..length(squares) where i<j)

nonOverlap(squares[i], squares[j]);

predicate onRow(Square:s, int: r) =

s.x =< r /\ r < s.x + s.size;

predicate onCol(Square:s, int: c) =

s.y =< c /\ c < s.y + s.size;

assert sum(s in squares) (s.size^2) == sizeBase^2;

constraint forall(p in 1..sizeBase)

sum(s in Squares) (s.size*holds(onRow(s,p))) == sizeBase /\

sum(s in Squares) (s.size*holds(onCol(s,p))) == sizeBase;

output(squares);

5

6

4

3

2

1

1 2 3 4 5 6

Fig. 1. Perfect Squares model

that \/ and /\ denote disjunction and conjunction, respectively). The model
contains three user-defined predicates: nonOverlap which ensures two squares
do not overlap, while onRow and onCol ensure the square is, respectively, on a
particular row or column in the base.

The squares provided as input data are assumed to be such that they fit in
the base exactly. To check this assumption, the model includes an assertion that
equates their total areas.

The last constraint in the model is redundant since it is derived from the
assumption that the squares exactly fill the base: the constraint simply enforces
each row and column in the base to be completely full.

Data for the model can be given in a separate data file as, for example:

sizeBase=6;

squares = [ (x:_,y:_,size:s) | s in [3,3,3,2,1,1,1,1,1]];

Let us now look at the more interesting features of Zinc.

Types: Zinc provides a rich variety of types: integers, floats, strings (for output),
Booleans, arrays, sets, lists, tuples, records, discriminated union (i.e. variant
records) and enumerated types. All types have a total order on their elements,
thus facilitating the specification of symmetry breaking and of polymorphic pred-
icates and functions. In the case of compound types this total order is the natural
lexicographic ordering based on their component types.
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A useful feature of Zinc is that arrays are not restricted to integer indexes,
they are actually maps from virtually any type to any other type. Similarly, Sets
can be of any data type as long as they are finite.

In order to allow natural mathematical-like notation, Zinc provides automatic
coercion from integers to floats, from sets to lists, from lists to arrays and from
tuples to records with the same field types. A set is coerced to a list with its
elements in increasing order, and a list of length n is coerced to an array with
index set 1..n.

One of the novel features of Zinc is that types, such as PosInt in the perfect
squares model in Figure 1, can have an associated constraint on elements of that
type. Effectively, whenever a variable is declared to be of constrained type, the
constraint is implicitly placed in the model.

Variables: All variables must be declared with a type except for local variables
occurring in an array, list or set comprehension. The reason for requiring explicit
typing is that automatic coercion and separate datafiles precludes complete type
inference.

Variables have an associated instantiation which indicates whether they are
parameters of the model whose value is known before performing any solving of
the model, or decision variables whose value is known only after. Variables are,
by default, assumed to be parameters, and are declared to be decision variables
by adding the var keyword before their type definition. This keyword can only
be applied to integers, floats, enumerated types, Booleans, and sets. Lists of
variable length are not allowed.

Expressions: Zinc provides all the standard mathematical functions and oper-
ators, many of which are overloaded to accept floats and integers.

List, set and array comprehensions provide the standard iteration constructs
in Zinc. Examples of their use are shown in the preceding example. Other it-
erations such as forall, exists, sum and product are defined as Zinc library
functions using foldl(Fun,List, Init), which applies the binary function Fun to
each element in List (working left-to-right) with initial accumulator value set to
Init. For instance,

constraint forall(list of bool: L) = foldl(’/\’,L,true);

function int: sum(list of int: L) = foldl(’+’,L,0);

function float: sum(list of float: L) = foldl(’+’,L,0);

foldl and foldr are the only higher-order functions provided by Zinc. User-
defined higher-order functions and predicates are not allowed in Zinc.

Constraints: Zinc supports the usual constraints over integers, floats, Booleans,
sets and user defined enumerated type constants. All constraints, including user-
defined constraints, are regarded as Boolean functions and can be combined using
the standard Boolean operators. Higher-order constraints can also be readily
defined, which is useful, for example, to define functions such as the built-in
function holds which returns 1 if the constraint holds, and 0 otherwise.
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The standard global constraints, such as alldifferent, are provided. Note
that thanks to the existence of a total order on the elements of any type, the
alldifferent global constraint works for lists of any type, including records.

User-defined Predicates and Functions: One of the most powerful features
of Zinc is the ability for users to define their own predicates and functions,
such as nonOverlap, onRow and onCol, in the perfect square model in Fig-
ure 1. Zinc supports polymorphic types and context-free overloading. Although
the average modeller may not use these facilities, it allows standard modelling
functions to be defined in Zinc itself. We have previously seen an example of
how the library function sum is overloaded to take either a list of integers or
a list of floats, and how the library function alldifferent is polymorphically
defined for lists of any type. As another example of polymorphism, consider
the polymorphic predicate between (with polymorphic types being indicated
by $T):

predicate between($T: x,y,z) =

(x =< y /\ y =< z) \/ (z=<y /\ y=<x);

which applies to numeric and non-numeric types, lists, tuples, records and sets!
User-defined functions and predicates are instantiation-overloaded in the sense

that a definition can take both parameters and decision variables.

3 Conclusion and Future Work

We have presented a new modelling language Zinc designed to allow natural,
high-level specification of a conceptual model. Unlike most other modelling lan-
guages, Zinc provides set constraints, constrained types, user defined types, and
polymorphic predicates and functions. The last allows Zinc to be readily ex-
tended to different application domains by user-defined libraries.

One of the main aims of developing Zinc is that a Zinc model can be mapped
into design models that utilize different solving techniques such as local search
or tree-search with propagation based solvers. Currently, we are implementing
three mapping modules to map the Zinc models into design models in ECLiPSe
for three different solving techniques: constraint programming, local search and
mathematical methods.
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Abstract. We present an incomplete filtering algorithm for the circuit
constraint. The filter removes redundant values by eliminating nonhamil-
tonian edges from the associated graph. We identify nonhamiltonian
edges by analyzing a smaller graph with labeled edges that is defined
on a separator of the original graph. The complexity of the procedure
for each separator S is approximately O(|S|5). We found that it identified
all infeasible instances and eliminated about one-third of the redundant
domain elements in feasible instances.

The circuit constraint can be written

circuit(x1, . . . , xn)

where the domain of each xi is Di ⊂ {1, . . . , n}. The constraint requires that
y1, . . . , yn be a cyclic permutation of 1, . . . , n, where

yi+1 = xyi , i = 1, . . . , n− 1
y1 = xyn

Let directed graph G contain an edge (i, j) if and only if j belongs to the domain
of xi. If edge (i, j) is selected when xi = j, the circuit constraint requires that
the selected edges form a hamiltonian circuit or tour of G.

One approach to filtering the circuit constraint is to make use of necessary
conditions for hamiltonicity of G. Chvátal [2, 3] analyzes several conditions, one
of which (1-toughness) is a very restricted case of a condition we develop for
filtering nonhamiltonian edges.

Some elementary techniques for filtering domains after a partial tour has been
constructed are described by Shufelt and Berliner [4], whose analysis relies on
the special structure of a chessboard problem, and Caseau and Laburthe [1],
who solve small traveling salesman problems. Neither approach is intended for
the general filtering problem in which arbitrary variable domains are given.

1 Separator Graph

Given a graph G = (V,E), a set of vertices S ⊂ V is a (vertex) separator of G
if V \ S induces a subgraph ḠS of G with at least two connected components
C1, . . . , Cp. The separator graph GS for a separator S of G consists of a directed
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Fig. 1. Graph G on vertices {1, . . . , 6} contains the solid edges, and the separator
graph GS on S = {1, 2, 3} contains the solid (unlabeled) edges and dashed (labeled)
edges within the larger circle. The small circles surround connected components of the
separated graph.

graph with vertex set S and edge set ES , along with a set LS of labels corre-
sponding to the connected components of ḠS . ES contains (a) an unlabeled edge
(i, j) for each (i, j) ∈ E, as well as (b) a labeled edge (i, j)C whenever C ∈ LS

and (i, c1), (c2, j) ∈ E for some pair of vertices c1, c2 in connected component C
(possibly c1 = c2 and c1 and c2 need not be connected by an edge).

Consider for example the graph G of Fig. 1. Vertex set S = {1, 2, 3} separates
G into three connected components that may be labeled A,B and C, each of
which contains only one vertex. Thus LS = {A,B,C}, and the separator graph
GS contains the three edges that connect its vertices in G plus four labeled edges.
For example, there is an edge (1, 2) labeled A, which can be denoted (1, 2)A,
because there is a directed path from some vertex in component A through
(1, 2) and back to a vertex of component A.

A hamiltonian cycle of GS is permissible if it contains at least one edge bearing
each label in LS. An edge of GS is permissible if it is part of some permissible
hamiltonian cycle of GS . Thus the edges (1, 2)A, (2, 3)B and (3, 1)C form a
permissible hamiltonian cycle in Fig. 1, and they are the only permissible edges.

Theorem 1. If S is a separator of directed graph G, then G is hamiltonian
only if GS contains a permissible hamiltonian cycle. Furthermore, an edge of G
connecting vertices in S is hamiltonian only if it is a permissible edge of GS.

Proof. Consider an arbitrary hamiltonian cycle H of G. We can construct a per-
missible hamiltonian cycle HS for GS as follows. Consider the sequence of vertices
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in H and remove those that are not in S; let i1, . . . , im, i1 be the remaining se-
quence of vertices. HS can be constructed on these vertices as follows. For any
pair ik, ik+1 (where im+1 is identified with i1), if they are adjacent in H then
(ik, ik+1) is an unlabeled edge of GS and connects ik and ik+1 in HS . If ik, ik+1

are not adjacent in H then all vertices in H between ik and ik+1 lie in the same
connected component C of the subgraph of G induced by V \ S. This means
(ik, ik+1) is an edge of GS with label C, and (ik, ik+1)C connects ik and ik+1 in
HS . Since H passes through all connected components, every label must occur
on some edge of HS , and HS is permissible.

We now show that if (i, j) with i, j ∈ S is an edge of a hamiltonian cycle H
of G, then (i, j) is an edge of a permissible hamiltonian cycle of GS . But in this
case (i, j) is an unlabeled edge of GS , and by the above construction (i, j) is
part of HS .

Corollary 1. If |LS| > |S| for some separator S, then G is nonhamiltonian.

Proof. The separator graph GS has |S| vertices and therefore cannot have a
hamiltonian cycle with more than |S| edges.

If |LS| ≤ |S| for all separators S, G is 1-tough, adapting Chvátal’s term [3] to
directed graphs.

Corollary 2. If |LS | = |S| for some separator S, then no edge connecting ver-
tices of S is hamiltonian.

Proof. An edge e that connects vertices in S is unlabeled in GS . If e is hamilto-
nian, some hamiltonian cycle in GS that contains e must have at least |S| labeled
edges. But since the cycle must have exactly |S| edges, all the edges must be
labeled and none can be identical to e.

2 Finding Separators

We use a straightforward breadth-first-search heuristic to find separators of G.
We arrange the vertices of G in levels as follows. Arbitrarily select a vertex i of
G as a seed and let level 0 contain i alone. Let level 1 contain all neighbors of i in
G. Let level k (for k ≥ 2) contain all vertices j of G such that (a) j is a neighbor
of some vertex on level k− 1, and (b) j does not occur in levels 0 through k− 1.
If maximum level m ≥ 2, the vertices on any given level k (0 < k < m) form a
separator of G. Thus the heuristic yields m− 1 separators.

The heuristic can be run several times as desired, each time beginning with a
different vertex on level 0.

3 Cardinality Filter and Vertex Degree Filtering

The next step of the algorithm is to identify nonpermissible edges of GS for each
separator S by a relaxation of the permissibility condition.
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Fig. 2. Flow model for simultaneous gcc and out-degree filtering of nonhamiltonian
edges. Heavy lines show the only feasible flow.

Let Y contain a variable yij for each ordered pair of vertices i, j in GS . The
domain of yij contains label C for each edge (i, j)C in GS and the element U if
unlabeled edge (i, j) is in GS . A permissible hamiltonian cycle must satisfy the
constraint

gcc(Y, (C1, . . . , Cp, U), (1, . . . , 1, 0), (∞, . . . ,∞)) (1)

Vertex degree filtering is based on the fact that the in-degree and out-degree
of every vertex in a hamiltonian cycle is one. Constraint (1) can be combined
with out-degree filtering by constructing a capacitated flow graph Gout

S with the
following vertices

source s and sink t
U and C1, . . . , Cp

a vertex for each yij ∈ Y
a vertex for every vertex of GS

and the following directed edges

(s, Ci) with capacity range [1,∞) for i = 1, . . . , p
(s, U) with capacity range [0,∞)
(C, yij) with capacity range [0, 1] for every edge (i, j)C ∈ ES

(U, yij) with capacity range [0, 1] for every unlabeled edge (i, j) ∈ ES

(yij , i) with capacity range [0, 1] for every ordered pair (i, j) such that
(i, j) or (i, j)C belongs to ES

(i, t) with capapcity range [0, 1] for every vertex i of GS

return edge (t, s) with capacity range [|S|, |S|]

The gcc and out-degree constraints are simultaneously satisfiable if and only if
Gout

S has a feasible flow. The same is true of the graph Gin
S constructed in an

analogous way to enforce in-degree constraints. Thus
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Let G be the directed graph associated with circuit(x1, . . . , xn).
Let Di be the current domain of xi for i = 1, . . . , n.
Let s be a limit on the size of separators considered.
For one or more vertices i of G:

Use the breadth-first-search heuristic to create a collection S of separators,
with i as the seed.

For each S ∈ S with |S| ≤ s:
For G′

S = Gout
S , Gin

S :
If G′

S has a feasible flow f then:
For each edge (U, yij) of G′

S on which f places zero flow:
If there is no augmenting path from yij to U then delete j from Di.

Else stop; circuit(x1, . . . , xn) is infeasible.

Fig. 3. Filtering algorithm for the circuit constraint

Theorem 2. An edge (i, j) of G is nonhamiltonian if there is a separator S of
G for which the maximum flow on arc (U, yij) of either Gout

S or Gin
S is zero.

This can be checked by first computing a feasible flow f on Gout
S and on Gin

S .
The maximum flow on (U, yij) is zero if (a) f places zero flow on (U, yij), and
(b) there is no augmenting path from yij to U .

For example, the networkGout
S for the graphG and separatorS of Fig. 1 is shown

in Fig. 2. Since the flow of zero on edges (U, y12), (U, y13) and (U, y21) is maximum
in each case, the three edges (1, 2), (1, 3), and (2, 1) are nonhamiltonian.

4 The Algorithm and Computational Results

The filtering algorithm (Fig. 3) has complexity of approximately O(|S|5) for
each seoparator S. In preliminary computational tests on several thousand ran-
dom graphs with up to 15 vertices, we detected all nonhamiltonian graphs and
eliminated about 1/3 of nonhamiltonian edges in hamiltonian graphs.
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Abstract. The paper presents a method for generating solutions of a constraint
satisfaction problem (CSP) uniformly at random. Our method relies on express-
ing the constraint network as a uniform probability distribution over its solutions
and then sampling from the distribution using state-of-the-art probabilistic sam-
pling schemes. To speed up the rate at which random solutions are generated,
we augment our sampling schemes with pruning techniques used successfully in
constraint satisfaction search algorithms such as conflict-directed back-jumping
and no-good learning.

1 Introduction

The paper presents a method for generating solutions to a constraint network uniformly
at random. The idea is to express the uniform distribution over the set of solutions as a
probability distribution and then generate samples from this distribution using monte-
carlo sampling. We develop monte-carlo sampling algorithms that extend our previous
work on monte-carlo sampling algorithms for probabilistic networks [4] in which the
output of generalized belief propagation is used for sampling.

Our experiments reveal that pure sampling schemes, even if quite advanced [4], may
fail to output even a single solution for constraint networks that have few solutions. So
we propose to enhance sampling with search techniques that aim at finding a consistent
solution fast, such as conflict directed back-jumping and no-good learning.

We demonstrate empirically the performance of our search+sampling schemes by
comparing them with two previous schemes: (a) the WALKSAT algorithm [6] and (b)
the mini-bucket approximation [2]. Our work is motivated by a real-world application
of generating test programs in the field of functional verification (see [2] for details).

2 Preliminaries

Definition 1 (constraint network). A constraint network (CN) is defined by a 3-tuple,
〈X,D,C〉, where X is a set of variables X = {X1, . . . ,Xn}, associated with a set of
discrete-valued domains, D = {D1, . . . ,Dn}, and a set of constraints C = {C1, . . . ,Cr}.
Each constraint Ci is a pair (Si,Ri), where Ri is a relation Ri ⊆DSi defined on a subset
of variables Si ⊆ X. Ri contains the allowed tuples of Ci. A solution is an assignment
of values to variables x = (X1 = x1, . . . ,Xn = xn), Xi ∈ Di, such that ∀Ci ∈ C, xSi ∈ Ri.

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 711–715, 2006.
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Definition 2 (Random Solution Generation Task). Let sol be the set of solutions to
a constraint network R = (X,D,C). We define a uniform probability distribution Pu(x)
relative to R such that for every assignment x = (X1 = x1, . . . ,Xn = xn) to all the vari-
ables that is a solution, we have Pu(x ∈ sol) = 1

|sol| while for non-solutions we have

Pu(x /∈ sol) = 0. The task of random solution generation is to generate positive tuples
from this distribution uniformly at random.

3 Generating Solutions Uniformly at Random

In this section, we describe how to generate random solutions using monte-carlo (MC)
sampling. We first express the constraint network R (X,D,C) as a uniform probability
distribution P over the space of solutions: P (X) = α∏iCi(Si = si). Here, Ci(si) = 1 if
si ∈ Ri and 0 otherwise. α = 1/∑∏i fi(Si) is the normalization constant. Clearly, any
algorithm that samples tuples from P accomplishes the solution generation task. This
allows us to use the following monte-carlo (MC) sampler to sample from P .

Algorithm Monte-Carlo Sampling
Input: A factored distribution P and a time-bound ,Output: A collection of samples from P .
Repeat until the time-bound expires

1. FOR j = 1 to n
(a) Sample Xj = x j from P(Xj|X1 = x1, . . . ,Xj−1 = x j−1)

2. End FOR
3. If x1, . . . ,xn is a solution output it.

Hence forth, we will use P to denote the conditional distribution P(Xj|X1, . . . ,Xj−1)
(which is derived from P ). In [2], a method is presented to compute the conditional
distributions P from P in time exponential in tree-width. But the tree-width is usually
large for real-world networks and so we have to use approximations.

4 Approximating P Using Iterative Join Graph Propagation

Because exact methods for computing the conditional probabilities P are impractical
when the tree-width is large, we consider a generalized belief propagation algorithm
called Iterative Join Graph Propagation (IJGP) [3] to compute an approximation to P.
IJGP is a belief-propagation algorithm that takes a factored probability distribution P
and a partial assignment E = e as input. It then performs message passing on a special
structure called the join-graph. The output of IJGP is a collection of functions which can
be used to approximate P (Xj|e) for each variable Xj of P . If the number of variables in
each cluster is bounded by i (called the i-bound), we refer to IJGP as IJGP(i). The time
and space complexity of one iteration of IJGP(i) is bounded exponentially by i.

IJGP(i) can be used to compute an approximation Q of P by executing it with P
and the partial assignment X1 = x1, . . . ,Xj−1 = x j−1 as input and then using Q instead
of P in step 1(a) of algorithm monte-carlo sampling. In this case, IJGP(i) should be
executed n times, one for each instantiation of variable Xj to generate one full sample.
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This process may be slow because the complexity of generating N samples in this way
is O(nNexp(i)). To speed-up the sampling process, in [4] we pre-computed the approx-
imation of P by executing IJGP(i) just once, yielding a complexity of O(nN + exp(i)).

Therefore, in order to be able to have a flexible control between the two extremes
of using IJGP(i) just once, prior to sampling, versus using IJGP(i) at each variable
instantiation, we introduce a control parameter p, measured as a percentage, which
allows executing IJGP(i) every p % of the possible n variable instantiations. We call the
resulting technique IJGP(i,p)-sampling.

4.1 Rejection of Samples

It is important to note that when all P’s are exact in the algorithm monte-carlo sampling,
all samples generated are guaranteed to be solutions to the constraint network. However,
when we approximate P using IJGP such guarantees do not exist and our scheme will
attempt to generate samples that are not consistent and therefore need to be rejected.
Since the amount of rejection in IJGP(i,p)-sampling can be quite high, we equipped the
basic IJGP(i,p)-sampling scheme with pruning algorithms common in search schemes
for solving constraint problems. We describe these schemes in the next section.

5 Backjumping and No-Good Learning to Improve
IJGP(i,p)-Sampling

Traditional sampling algorithms start sampling anew from the first variable in the order-
ing when an inconsistent assignment (sample) is generated. Instead, the algorithms can
backtrack to the previous variable and sample a new value for the previous variable as
is common in search algorithms. In other words, we could perform backtracking search
instead of pure sampling. Before we sample a new value for the previous variable, we
can update our sampling probability to reflect the discovery of the rejected sample.
Also, instead of using naive backtracking we can use a more advanced approach such
as conflict-directed backjumping and no-good learning. In conflict-directed backjump-
ing, the algorithm backtracks a few levels back, to a variable that can be relevant to the
current variables, instead of the recent previous variable [1]. In no-good learning each
time an inconsistent assignment (sample) is discovered, the algorithm adds the assign-
ment as a constraint (no-good) to the original constraint network so that in subsequent
calls to the search procedure, the same assignment is not sampled. We learn only those
no-goods which are bounded by i (the i-bound of IJGP(i)) to maintain constant space.

Once a no-good bounded by i is discovered, we check if the scope of the no-good
is included in a cluster of the join-graph. If it is, then we insert the no-good in the
cluster and subsequent runs of IJGP utilize this no-good; thereby potentially improving
its approximation. We refer to the algorithm resulting from adding back-jumping search
and no-good learning to IJGP(i,p)-sampling as IJGP(i,p)-SampleSearch.

6 Experimental Evaluation

We experimented with 5 algorithms (a) IJGP(i,p)-sampling which does not perform
search, (b) MBE(i)-sampling which uses mini-bucket-elimination instead of IJGP to
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Table 1. Performance of IJGP(3,p)-sampling and MBE(3)-sampling on random binary CSPs

Problems Time IJGP(3,p)-SampleSearch IJGP(3,p)-SampleSearch MBE(3)-SampleSearch
(N,K,C,T) No learning learning

p=0 p=10 p=50 p=100 p=0 p=10 p=50 p=100 p=0
KL KL KL KL KL KL KL KL KL

MSE MSE MSE MSE MSE MSE MSE MSE MSE
#S #S #S #S #S #S #S #S #S

100,4,350,4 1000s 0.0346 0.0319 0.0108 0.011 0.0403 0.0172 0.013 0.0053 0.134
0.0074 0.0061 0.0028 0.0017 0.0086 0.0048 0.0026 0.0008 0.073
82290 42398 19032 11792 103690 37923 25631 9872 93823

100,4,370,4 1000s 0.0249 0.0235 0.0267 0.0156 0.0167 0.0188 0.0143 0.0106 0.107
0.0089 0.0062 0.0084 0.0037 0.0058 0.0061 0.0049 0.0019 0.0332
18894 17883 2983 1092 28346 14894 3329 1981 33895

approximate P and does not perform backjumping and no-good learning, (c) IJGP(i,p)-
SampleSearch as described in section 5, (d) MBE(i)-SampleSearch which incorpo-
rates backjumping in MBE(i)-sampling as described in section 5 and (e) WALKSAT
(which only works on SAT instances). We experimented with randomly generated bi-
nary constraint networks and SAT benchmarks available from satlib.org. Detailed ex-
periments are presented in the extended version of the paper [5]. Here, we describe
results on 100-variable random CSP instances, on logistics benchmarks and on verifi-
cation benchmarks. For each network, we compute the fraction of solutions that each
variable-value pair participates in i.e. Pe(Xi = xi). Our sampling algorithms output a
set of solution samples S from which we compute the approximate marginal distri-

bution: Pa(Xi = xi) =
NS(xi)
|S| where NS(xi) is the number of solutions in the set S with

Xi assigned the value xi. We then compare the exact distribution with the approxi-
mate distribution using two error measures (accuracy): (a) Mean Square error - the
square of the difference between the approximate and the exact and (b) KL distance -
Pe(xi)∗ log(Pe(xi)/Pa(xi)) averaged over all values, all variables and all problems. We
also report the number of solutions generated by each sampling technique.

100-variable random CSPs: We experimented with randomly generated 100-variable
CSP instances with domain size and tightness of 4. Here, we had to stay with relatively
small problems in order to compute the exact marginal for comparison. The time-bound
used is indicated by the column Time in Table 1. The results are averaged over 100 in-
stances. We used an i-bound of 3 in all experiments. Here, pure IJGP(i,p)-sampling and
pure MBE(i)-sampling [2] which do not perform search did not generate any consistent
samples (solutions) and so we report results on IJGP(i,p)-SampleSearch and MBE(i)-
SampleSearch in Table 1. We observe that as we increase p, the accuracy of IJGP(i,p)-
SampleSearch increases while the number of solutions generated decreases. Thus, we
clearly have a trade-off between accuracy and the number of solutions generated as we
change p. It is clear from Table 1 that our new scheme IJGP(i,0)-SampleSearch is bet-
ter than MBE(i,0)-SampleSearch both in terms of accuracy and the number of solutions
generated. Also, no-good learning improves the accuracy of IJGP(i,p)-SampleSearch in
most cases.

SAT benchmarks: We experimented with logistics and verification SAT benchmarks
available from satlib.org. On all the these benchmarks instances, we had to reduce the
number of solutions that each problem admits by adding unary clauses in order to apply
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Table 2. KLD, Mean-squared Error and #Solutions for SAT benchmarks

Logistics.a Logistics.d Verification1 Verification2
N=828,Time=1000s N=4713,Time=1000s N=2654,Time=10000s N=4713,Time=10000s
IJGP(3,10) WALK IJGP(3,10) WALK IJGP(3,10) WALK IJGP(3,10) WALK

No Learn Learn No Learn Learn No Learn Learn No Learn Learn
KL 0.00978 0.00193 0.01233 0.0009 0.0003 0.0008 0.0044 0.0037 0.003 0.0199 0.0154 0.01

MSE 0.001167 0.00033 0.00622 0.00073 0.00041 0.0002 0.0035 0.0021 0.0012 0.009 0.0088 0.0073
#S 23763 32893 882 10949 19203 28440 1394 945 11342 1893 1038 8390

our exact algorithms. Here, we only experimented with our best performing algorithm
IJGP(i,p)-SampleSearch with i=3 and p=10. From Table 2 we can see that on the logis-
tics benchmarks, IJGP(3,10)-SampleSearch is slightly better than WALKSAT in terms
of accuracy while on the verification benchmarks WALKSAT is slightly better than
IJGP(3,10)-SampleSearch. WALKSAT however dominates IJGP(3,10)-SampleSearch
in terms of the number of solutions generated (except Logistics.a).

7 Summary and Conclusion

The paper presents a new algorithm for generating random, uniformly distributed solu-
tions for constraint satisfaction problems. This algorithm falls under the class of monte-
carlo sampling algorithms that sample from the output of generalized belief propagation
and extend our previous work [4]. We show how to improve upon conventional monte-
carlo sampling methods by integrating sampling with back-jumping search and no-good
learning. This has the potential of improving the performance of monte-carlo sampling
methods used in the belief network literature [4], especially on networks having large
number of zero probabilities. Our best-performing schemes are competitive with the
state-of-the-art SAT solution samplers [6] in terms of accuracy and thus present a monte-
carlo style alternative to random walk solution samplers like WALKSAT [6].
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Abstract. This paper presents an enumerative approach for a sports
league scheduling problem. This simple method can solve some instances
involving a number T of teams up to 70 while the best known constraint
programing algorithm is limited to T ≤ 40. The proposed approach relies
on interesting properties which are used to constraint the search process.

1 Introduction

This paper deals with “Prob026” from CSPLib [1], also known as the “balanced
tournament design” problem in combinatorial design theory [2, pages 238–241].
It seems to be first introduced in [3].

– There are T = 2n teams (i.e. T even). The season lasts W = T − 1 weeks.
Weeks are partitioned into P = T/2 slots (periods);

– cH constraint: All teams play each other exactly once (Half competition);
– cW constraint: All teams play in each Week;
– cP constraint: No team plays more than twice in the same Period.

Various techniques were used to tackle Prob026: Integer programming [4,5]
(T ≤ 12), basic local search [4] (T ≤ 14), local search with a many-valued
propositional logic encoding [6] (T ≤ 16), randomized deterministic complete
search [7] (T ≤ 18), local search with classical propositional logic encoding [8]
(T ≤ 20), constraint programming with powerful filtering algorithm [9] (T ≤ 24),
multiple threads [10] (T ≤ 28), constraint programming [11] (T ≤ 30), constraint
programming with problem transformation [12] and tabu search [13] (T ≤ 40).

Note that solutions exist for all T �= 4 [14]. Furthermore, direct constructions
have already been proposed when (T − 1) mod 3 �= 0 or T/2 is odd [14,15,16].
This leaves open the cases where T mod 12 = 4.

In this paper, we present EnASS, an Enumerative Algorithm for Sports Schedu-
ling for Prob026. Given T , EnASS starts building a particular conflicting schedule
(called s) verifying a setR of properties (orRequirements). The set S of solutions
is generated using s in a simple exhaustive way with backtracks and observed
to identify new properties. R is then updated to solve Prob026 for larger T or
to accelerate the resolution. Despite the exponential-time complexity of EnASS,
we manage to build particular R sets that enable EnASS to find solutions to
Prob026 for most T up to 70 in a reasonable amount of time. Note that similar
ideas have been recently used for constraint reasoning [17].
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2 Reducing the Complexity

Since any valid schedule can be thought of as a particular permutation of the
T (T − 1)/2 matches, the search space size is [T (T − 1)/2]!. In other words, the
search space size grows as the factorial of the square of T/2.

Patterned one-factorization [2, page 662, example 4.33] can be used to verify
cH and cW , the goal of EnASS being then to satisfy the last constraint cP . Form
a regular polygon with the first T − 1 teams. Draw W sets of P − 1 parallels
connecting vertices in pairs starting with each w side. Each set, augmented with
the pair of missing teams, corresponds to the matches to place in week w [18]. Let
s be the tournament obtained (in linear-time complexity) with this technique,
where s〈p, w〉 is the match scheduled in period p and week w in s. See [15] for a
full detailed description and the formal model used to build s.

Prob026 has symmetries that can be combined [19]: renumbering of the teams,
permutation of weeks or / and periods. They can be avoided using patterned
one-factorization and fixing the first week.

Prob026 solutions verify this property: In each p period, two different “Defi-
cient” [14] teams (a 2-set Dp) appear exactly once. Furthermore, if one considers
any p′ �= p period, then ∀t ∈ Dp, t appears twice in period p′. More formally, if
cD refers to this implicit constraint, then: cD(p) ⇔ ∀p′ �= p,Dp′ ∩ Dp = ∅.

3 Prob026: A Constraint Satisfaction Problem

Let x = 〈p, w〉 be any assignment of a match in period p and week w. Values
of this variable type are of (t, t′) pattern, meaning that team t meets team
t′ in period p and week w, noted x 2→ (t, t′). So, the set X of variables is
X = {x = 〈p, w〉, 1 ≤ p ≤ P, 1 ≤ w ≤ W}. Domains are defined according to
the comments from the previous section: ∀x = 〈p, 1〉 ∈ X, dx = {s〈p, 1〉} and
∀x = 〈p, w〉 ∈ X(w > 1), dx = {s〈p, w〉, 1 ≤ p ≤ P}. Since s verifies already cW
and cH, the set of constraints is only composed of the implicit cD constraint (see
Sect. 2) and cP : For each team t and each period p, we impose the constraint
cP(t, p) ⇔ |{x = 〈p, w〉 2→ (t, t′), 1 ≤ w ≤ W, t′ �= t}| ≤ 2.

4 EnASS: Overall Procedure

Let wf = 2 and wl = W be the first (respectively last) week that EnASS considers
when filling any period and R = R0 = {cP , cD}.

EnASS requires three parameters: p and w identify the current variable, p
specifies the value assignment tried. The function returns TRUE if a solution is
found, FALSE otherwise. EnASS is called first, after building s, with (p, w, p) =
(1, 2, 1) meaning that it tries to fill period 1 of week 2 with the s〈1, 2〉 match.
Note that we only give here the pseudo-code of EnASS for finding a first solution
since it can easily be modified to return the entire set of all-different solutions.
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EnASS(p, w, p):

1. If p = P + 1 then return TRUE: A solution is obtained since all periods are
filled and valid according to R;

2. If w = wl + 1 then return EnASS(p + 1, wf , 1): Period p is filled and valid
according to R, try to fill next period;

3. If p = P +1 then return FALSE: Backtrack since no value remains for 〈p, w〉;
4. If ∃ 1 ≤ p′ < p/〈p′, w〉 = s〈p, w〉 then return EnASS(p, w, p+1): Value already

assigned to a variable, try next value;
5. 〈p, w〉← s〈p, w〉: Try to assign a value to the current variable;
6. If R is locally verified and EnASS(p, w + 1, 1) = TRUE then return TRUE:

The assignment leads to a solution;
7. Undo step 5 and return EnASS(p, w, p+1): R is locally violated or next calls

lead to a failure, backtrack and try next value.

We will refer to this complete EnASS function with EnASS0. All EnASS functions
were coded in C (cc compiler) and ran on an Intel PIV processor (2 Ghz) Linux
station. A time limit of 3 hours was imposed.

EnASS0 solved Prob026 for all T ≤ 32 in less than three minutes except for T =
24. This clearly outperforms [4,5,6,7,8,9,10,11] and competes well with [12,13].

5 Invariants in Prob026

We describe here exact EnASS variants that are no more complete since they
work on a subset of the EnASS0 solutions space.

Some solutions to Prob026 verify the following r⇒ property: assume that
〈p, w〉 has been fixed to a match x with wf ≤ w ≤ P , then x and the 〈p, T−w+1〉
match appear in the same period in s. More formally, ∀wf ≤ w ≤ P, r⇒(p, w) ⇔
〈p, w〉 = s〈p, w〉⇒ 〈p, T − w + 1〉 = s〈p, T − w + 1〉.

This leads to EnASS1 which comes from EnASS0 by setting wl = P and adding
the r⇒ requirement to R0: R1 = {cP , cD, r⇒}.

Columns 2–4 in Table 1 give results obtained with EnASS1: Number |S1| of
solutions (“≥ n” indicates that EnASS1 found n solutions when reaching the time
limit), time (including the s construction) and number of backtracks to reach
a first solution. “-” marks mean that EnASS1 found no solution within the time
limit or |BT| is larger than the maximal value authorized by the system.

EnASS1 clearly outperforms EnASS0 and [12,13]. However, other invariants are
needed to tackle larger instances within the time limit. For this purpose, we
reinforce the set R of requirements by adding the following two properties:

1. rI : Inverse weeks wf and W . More formally, ∀w ∈ {wf , W}, rI(w) ⇔ ∀ 1 ≤
p ≤ P, 〈p, w〉 = s〈P − p + 1, w〉;

2. rV : Matches (t, T ) form a “V” like pattern. More formally, ∀ 1 ≤ p <
P, rV (p) ⇔ 〈p, p + 1〉 = s〈P, p + 1〉 and 〈p, T − p〉 = s〈P, T − p〉.
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This leads to EnASS2 with R2 = {cP , cD, r⇒, rI , rV }. Naturally, an additional
step must be added in EnASS (between steps 1 and 2) due to rV and wf has to
be set to 3.

Columns 5–7 in Table 1 give results obtained with EnASS2. Note that no result
is reported for T mod 4 = 0 or T > 70 since EnASS2 failed in these cases within
the time limit.

Table 1. Computational results (times in seconds)

T
EnASS1 EnASS2

|S1| Time |BT| |S2| Time |BT|
32 ≥ 3 657 013 < 1 332 306 - - -
34 ≥ 2 173 500 < 1 1 342 216 ≥ 1 < 1 130 149
36 ≥ 1 122 145 < 1 2 160 102 - - -
38 ≥ 692 284 5.34 13 469 359 ≥ 1 < 1 2 829 421
40 ≥ 523 804 6.25 16 393 039 - - -
42 ≥ 339 383 107.69 256 686 929 ≥ 1 2.11 7 836 823
44 ≥ 236 614 876.91 1 944 525 360 - - -
46 ≥ 119 383 1 573.31 3 565 703 651 ≥ 1 < 1 1 323 929
48 ≥ 90 009 542.79 1 231 902 706 - - -
50 ≥ 19 717 6 418.52 - ≥ 1 13.75 47 370 701
54 - - - ≥ 1 10.59 29 767 940
58 - - - ≥ 1 269.88 827 655 311
62 - - - ≥ 1 279.38 494 071 117
66 - - - ≥ 1 7 508.51 1 614 038 658
70 - - - ≥ 1 8 985.05 -

6 Conclusion

We presented EnASS, an Enumerative Algorithm for Sports Scheduling, for Prob-
026 from CSPLib. Based on this basic procedure, we derived two effective exact
algorithms to constraint the search process by integrating solutions properties.

Computational results showed that these algorithms clearly outperform
[4,5,6,7,8,9,10,11,13] and the best known constraint programming approach [12]
which is limited to T ≤ 40: EnASS solved Prob026 in a reasonable amount of
time for all T ≤ 50 and, for 50 < T ≤ 70, solutions have been generated for
some T values.

EnASS is a simple enumerative algorithm with backtrack. One possible way to
solve Prob026 for larger T or to speed up EnASS could be to use more elaborated
backtracking techniques.
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6. Béjar, R., Manyà, F.: Solving combinatorial problems with regular local search
algorithms. Volume 1705 of LNAI. Springer-Verlag (1999) 33–43

7. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through random-
ization. In: Proceedings AAAI/IAAI’98, AAAI Press/MIT Press (1998) 431–437
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Symmetry breaking by dominance detection (SBDD) [4,6,1,12], has proven to excel on
problems that contain large symmetry groups. The core task of SBDD is the dominance
detection algorithm. The first automated dominance detection algorithms were based
on group theory [7], while the first provably polynomial-time dominance checkers for
specific types of value symmetry were devised in [15]. This work was later extended to
tackle any kind of value symmetry in polynomial time [13]. Based on these results, for
specific “piecewise” symmetric problems, [14] showed that breaking variable and value
symmetry can be broken simultaneously in polynomial time. The method was named
structural symmetry breaking (SSB) and is based on the structural abstraction of a given
partial assignment of values to variables.

Compared with other symmetry breaking techniques, the big advantage of dynamic
symmetry breaking is that it can accommodate dynamic variable and value orderings.
Dynamic orderings have been shown to be vastly superior to static orderings in many
different types of constraint satisfaction problems. However, robust heuristics for the
selection of variables and values are hard to come by. For the task of variable selection,
a bias towards variables with smaller domains often works comparably well, but there
always remains a fair probability that we hit instances on which a solver gets trapped
in extremely long runs. Particularly, heavy-tailed runtime distributions have been re-
ported [9]. One way to circumvent this problematic situation is to randomize the solver
and to restart the search when a run takes too long [10]. We show how symmetry no-
goods can be used in restarted methods and introduce practical enhancements of SSB
for its application in restarted solvers.

1 Symmetry No-Goods and Restarts

Unfortunately, due to space restrictions, we cannot review SSB here. For definitions
and a detailed description of the method, we must therefore refer the reader to [14].
SSB (as a special form of SBDD) stores the most general previously fully expanded
search nodes as a list of no-goods. In contrast to ordinary no-goods, an SBDD no-
good implicitly represents a whole set of no-goods (namely the set of all its symmetric
variants), and it is the algorithmic task of the dominance checker to see whether this set
contains a no-good that is relevant with respect to the current search node.

What is interesting to note is that SBDD no-goods also keep a record of those parts
of the search space that have already been searched through. In that regard, it is of
interest to store them (or at least the most powerful ones) between restarts. There is a
trade-off, however: No-goods will only be beneficial if the method that prevents us from
exploring the same part of the search space more than once does not impose a greater
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computational cost than what the exploration would cost anyway. One simple thing that
we can do is to remove those no-goods from the list that have very little impact anyway
because they only represent a small part of the search space. This is an idea that is
commonly used in SAT, too. However, for symmetry-nogoods we can do more.

2 Delayed Ancestor-Based Filtering

We introduce delayed symmetry filtering. The core idea here is to apply an inexpensive
inference mechanism that quickly identifies which no-goods cannot possibly cause ef-
fective symmetry-based filtering at a given search node. Like this, we hope to save many
of the expensive calls to SSB-based domain filtering. Note that no-goods are only used
for ancestor-based filtering, which is why this idea will only be applied for this type
of symmetry filtering. We will discuss special methods to improve the performance of
sibling-based filtering in Section 3.

2.1 A Simple Pretest

We start by introducing a very simple pretest before a full-fledged ancestor-based fil-
tering call is being made. What we need to identify are simple conditions under which
a previously expanded node α (as usual, α is identified with the partial assignment that
leads to the node) cannot “almost dominate” the current search node β. To make this
more precise, with “almost” we mean to say that one more assignment to β could re-
sult to a successful dominance relation with α, which is a necessary condition for SSB
filtering to have any effect.

First, we observe that β must contain at least as many variable assignments as α
minus 1. This is a trivial condition which is always true in a one-shot tree search as all
no-goods stored by SBDD were taken from search nodes at the same or lower depth as
that of the current node. However, for no-goods stored in earlier restarts, this test can
quickly reveal that ancestor-based filtering will not be effective.

Only if the above condition holds, we perform one more test before applying the
full-fledged filtering call: we can look a little bit closer at the two assignments α and β
and see whether α is close to dominating β. Before looking at each value individually,
determining all their signatures and which ones dominates which, we can do the same
on the level of value classes: For each value partition Ql, we determine how many vari-
ables in each value partition are taking a value in it under assignment γ, thus computing
a signature for each partition of mutually symmetric values: signγ(Ql) := (|{X ∈
Pk | γ(v) ∈ Ql}|)k≤r for all 1 ≤ l ≤ s.

Lemma 1. Given assignments α and β such that α dominates β, we have that, for all
1 ≤ l ≤ s, it holds that signα(Ql) ≤ signβ(Ql) (whereby with ≤ we denote the
component-wise comparison of the two tuples).

Proof. Let l ∈ {1, . . . , s}. Since α dominates β, we have that, for all v ∈ Ql, it holds
signα(v) ≤ signβ(w) for some value w ∈ Ql that is the unique matching partner of
v. Consequently, it holds that signα(Ql) =

∑
v∈Ql

signα(v) ≤
∑

w∈Ql
signβ(w) =

signβ(Ql). ��

Thus, SSB filtering can only be effective if the inequality holds for all but at most one
value partition l, and if for that partition we have that signα(Ql) ≤ signβ(Ql) + ek,
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where ek is the unit vector with a 1 in position 1 ≤ k ≤ r. Only if this condition holds,
we finally apply ancestor-based filtering.

Note that our simple pretest can be conducted much faster than a full-fledged filter-
ing call: it runs in time linear in the size of the given assignments (which is in O(n))
whereas ancestor-based filtering wrt each ancestor requires time O(m2.5 + mn) for a
CSP with n variables and m values.

2.2 Deterministic Lower Bounds

Assume that a call to the ancestor-based filtering procedure reveals that we are at least p
edges short of finding a perfect matching in the value dominance graph that was set-up
for assignments α and β.1 Clearly, as was already noted in [14], this means that at least
another p − 1 variable assignments need to be added to β before filtering can become
effective. By adding this information to no-good α, and by keeping track of the depth of
the current search node β, we can avoid many useless filtering calls. What is interesting
is that we cannot only propagate this information when diving deeper into the tree, but
also upon backtracking.

Consider the following situation: For no-good α, the check against the current search
node in depth d results in a maximum matching with 4 edges missing to be perfect.
Then, at depth d + 4 − 1 = d + 3, we call for ancestor filtering wrt α again and find
that there are still 4 edges missing. Clearly, this means that none of the last 3 branching
decisions has brought us any closer to a successful dominance relation with α, and
this information can be used even when backtracking up from the current position. At
depth d + 2, for example, we know, even without conducting the filtering call, that
the maximum matching must have 4 edges missing. Which implies that, when diving
deeper into the tree from depth d + 2, ancestor-based filtering cannot be effective until
we reach depth d + 2 + 4− 1 = d + 5.

More generally, if at depth d+ p− 1 we find a maximum matching with q ≤ p edges
missing to perfection, when backtracking up to depth d+ r − 1 for some r < p, we are
sure that there are at least max{r+q, p}−1 more variable assignments necessary before
filtering wrt ancestorα can be effective. Consequently, we will not call for ancestor-based
filtering wrt α until we reach depth max{d + r + q − 1, d + p− 1} in the search tree.

Note that the above procedure also works if we never get to perform the full filtering
procedure at depth d+p−1 because our pretest fails: If the first condition fails, instead of
using the number of missing perfect matching edges, we can simply count the number
of variable assignments still needed before at least as many variables are assigned in
the current search node as are in α. And in the second case, we can count how many
more assignments are necessary before each value class signature in α can have become
lower or equal to the signatures in the current partial assignment.

3 Incremental Sibling-Based Filtering

Sibling-based filtering requires that we compute the sets of mutually symmetric values
that have the same signature under the current partial assignment. Rather than recom-
puting the signatures of all values and regrouping the values after a branching step has

1 Note that, due to the special way that SBDD unifies no-goods, p > 1 is only possible for
no-goods generated in earlier runs.
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Fig. 1. An efficient data structure supporting sibling-based filtering incrementally. The leftmost
column depicts value partitions [1] = {1, 2, 3} and [2] = {4}. For both partitions, horizontally
it follows a sorted list of signatures (over two variable partitions in this example) that are each
associated with all the values underneath them in the current partial assignment. Even though
signatures are actually stored in sparse format, we show them explicitly to improve the readability.
Value 2 in the left assignment for instance has signature (1,0) and shares it with value 3.

added another variable assignment, we use an incremental data structure for this pur-
pose so as to conduct this type of symmetry related inference as efficiently as possible.

First, let us describe the idea of sparse signatures that are needed to guarantee the
worst-case complexity as given in [14]: Instead of writing down entire signatures, for
each value we maintain a sparse list that only contains the non-zero entries of a sig-
nature, together with the information to which variable partition an entry in the sparse
list belongs. To set up this sparse representation from a new partial assignment, we first
order the variable instantiations in a given partial assignment according to the partition
that the corresponding variable belongs to. This can be done in time linear in the num-
ber of variable partitions. In this order, we then scan through the partial assignment and
set up the sparse signatures simply by adding one to the last entry if the current variable
belongs to the same partition as the last, and by introducing a new non-zero entry if the
variable belongs to a new partition.

For the current search node, we group values in the same value partition and with
the same signature in the following data structure. It consists of an array of lists, one
for each value partition. Each such list contains, in lexicographic order, the different
signatures within the respective value partition. Associated with each signature is yet
another list of values in the partition that have the signature, whereby each value holds
a pointer to the signature. Note that this data structure allows us to perform sibling
based-filtering extremely efficiently. Given a variable, the different values that we need
to consider when branching are only the first values in each list of each signature in
each value partition.

Now, when branching by assigning a value to some variable, we update the data
structure incrementally. Note that the value assigned is the first in its list of values with
the same signature. Moreover, the value holds a pointer to its signature. Therefore, we
can compute its new signature incrementally, and since the signatures within the value
partition are ordered lexicographically, we can also find out quickly to which signature
the value needs to be added, whereby we create a new list of values if the value’s new
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signature is not yet in our list. Finally, we remove the value from the list of values for
its old signature and add it to the list of values for its new signature, while updating the
value’s pointer to its own signature.

We illustrate the data structure in Figure 1 on the following example. Assume we are
given four variables X1, . . . , X4, whereby the first two and the last two are symmetric.
Assume further that the variables can take four values 1, . . . , 4, whereby the first three
are symmetric. Figure 1 (A) shows our incremental data structure for the partial assign-
ment {(X1, 2), (X2, 3), (X3, 4)}. We see that we can easily pick non-symmetric values
simply by choosing the first representative for each signature. In our example, those are
the values 1, 2, and 4. Figure 1 (B) shows the data structure after another variable has
been instantiated by adding (X4, 2) to our assignment. We see that the data structure
can easily be adapted by updating the signature of value 2.

4 Conclusions

We introduced two practical algorithmic enhancements of structural symmetry break-
ing: delayed ancestor-based filtering and incremental sibling-based filtering. Especially
the first is designed for the application in restarted solvers where it reduces the compu-
tational efforts when using symmetry no-goods from previous restarts.
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Abstract. Tractability results for structural subproblems have gener-
ally been considered for explicit relations listing the allowed assignments.
In this paper we define a representation which allows us to express con-
straint relations as either an explicit set of allowed labelings, or an ex-
plicit set of disallowed labelings, whichever is smaller. We demonstrate
a new structural width parameter, which we call the interaction width,
that when bounded allows us to carry over well known structural de-
compositions to this more concise representation. Our results naturally
derive new structurally tractable classes for SAT.

1 Introduction

An instance of the constraint satisfaction problem is a collection of variables to
be assigned, a universe of possible values and a collection of constraints. Each
constraint has a relation which restricts the allowed simultaneous assignments to
a set of these variables. This set of variables is called the scope of the constraint.

The constraint satisfaction problem is, in general, NP-hard. As such, it is an
important area of research to identify subproblems which are tractable.

The structure of a constraint satisfaction problem instance (CSP) is defined
to be the hypergraph whose vertices are the variables of the instance and whose
hyperedges are the constraint scopes.

When we are given a CSP to solve, the constraint relations will be expressed in
some encoding, that is, by some sequence of symbols. We classify these encodings
based on the expression method used. The set of encodings that we allow a class
of CSPs to be expressed by is called a representation. Practitioners generally use
the most concise representation they can to express a problem.

Most research on tractability has been concerned with explicitly allowed en-
codings [2], which we shall refer to as the positive representation. In this paper
we wish to investigate how well our current theory translates into a more natural
representation.

We define a notion of structural width for a hypergraph which we call the in-
teraction width. We are able to show that certain structural classes with bounded
interaction width are tractable.

We describe SAT in terms of our complement representation and show why
this is a natural approach for discussing the structural tractability of classes of
SAT instances.
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2 CSPs and Representations

Definition 1. A constraint satisfaction problem instance (CSP) is a triple
〈V,D,C〉 where; V is a set of variables, D is a finite set which we call the
universe of the problem, and C is a set of constraints.

Each constraint c ∈ C is a pair 〈σ, ρ〉, where σ (called the constraint scope)
is a subset of V and ρ (called the constraint relation) is a set of labelings of σ.
Each labeling is a function from σ into the universe D.

A solution to a CSP, P = 〈V,D,C〉 is a mapping s : V → D such that for
every 〈σ, ρ〉 ∈ C we have that s restricted to σ is an element of ρ.

A hypergraph is a pair, 〈V,E〉, where V is a set of vertices and E is a set of
subsets of V , called the hyperedges. For any CSP P = 〈V,D,C〉, the structure
of P , denoted σ (P ), is the hypergraph 〈V, {σ | 〈σ, ρ〉 ∈ C}〉.
The class of CSPs with acyclic structure is tractable [1].

Example 1. Let A be the class of CSPs generated by taking an instance of graph
3-coloring and adding a universal constraint which allows all labelings. This does
not alter solution, but forces instances of A to have acyclic structure.

This anomaly relies on the universal constraint being expressed by listing every
possible assignment to all variables in the CSP. An encoding is the way in which
a constraint relation is expressed. It is usual for the labelings in a constraint
relation to be encoded as the allowed assignments to the variables in the scope.
We shall refer to this encoding as the positive encoding. The labelings may also
be encoded as the disallowed assignments (complement encoding).

Definition 2. A representation, R, is a set of possible encodings. A CSP, P =
〈V,D,C〉, is said to be expressed in a representation, R, if for every constraint,
〈σ, ρ〉 ∈ C, ρ is expressed by the encoding in R which has the smallest size for ρ.
(This is similar to the concept of Minimum Description Length [3].)

The representation which allows only the positive encoding is called the posi-
tive representation (Pos) and the representation which allows only the comple-
ment encoding is called the complement representation (Comp). The represen-
tation which allows both encodings is called the mixed representation (Mixed).

3 Tractability with Respect to Representation

We show that the tractable classes of each of these representations is distinct by
demonstrating classes which distinguish them.

Definition 3. A class of CSPs is called tractable if there is a polynomial time
algorithm to decide membership and to solve the instances of the class.

Define by T(R) the tractable classes of representation R.

Proposition 1. Consider two representations, R and Q, such that Q ⊆ R.
Assuming that there is a polynomial conversion from relations expressed w.r.t.
Q to relations expressed w.r.t. R, then for a set, S, of CSPs, we have that if
S ∈ T (R) then S ∈ T (Q).
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Proof. Let P be any CSP in S expressed w.r.t. Q. We use the polynomial time
conversion to change the expression of P from Q to R and then solve using the
algorithm for S w.r.t. R.

Corollary 1. Let S be a set of CSPs such that S ∈ T (Mixed). We have that
S ∈ T (Pos) and S ∈ T (Comp).

Proof. Any relation expressed in the larger of the two encodings must list more
than half the possible number of assignments. The universal constraint on this
scope is at most twice as big, so we are able to generate the other encoding.

Class A from Ex. 1 is in T (Pos) but not T (Comp). The universal constraint has
no size when expressed in Comp so is directly equivalent to graph 3-coloring.

Example 2. Let B be the class of CSPs with 2n variables generated by taking an
instance of graph 3-coloring over n of the variables and adding a single constraint,
c1, over the remaining n variables which allows only a single labeling.

The class of instances, B, in example 2 is not tractable when expressed in Pos.
The added constraint, c1, is small when expressed in the positive encoding, and
so the problem is directly equivalent to graph coloring. When expressed in Comp,
the size of this constraint dominates the size of the graph coloring component
and so a simple polynomial time algorithm is to test all possible assignments to
the graph coloring component.

So, T (Pos) is incomparable to T (Comp) as neither is contained in the other.
However, anything in T (Mixed) must also be in both T (Pos) and T (Comp),
T (Mixed) must be a proper subset of both T (Pos) and T (Comp). This poses
the question; does T (Mixed) contain any interesting (non-trivial) classes?

4 Converting Mixed to Pos

We shall show that by bounding some new notion of structural size, called the
interaction width, we can convert certain CSPs from Mixed to Pos. If there are
subclasses of CSP classes in T (Pos) for which there is a polynomial conversion
from Mixed to Pos, then such subclasses are tractable w.r.t. Mixed.

If we represent a hypergraph as a Venn Diagram, where the hyperedges are
the sets, an interaction region of the hypergraph is a region of the Venn Diagram.
Interaction width is the maximal number of regions over any of the hyperedges.

Definition 4. Let H = 〈V,E〉 be a hypergraph. We define the interaction on
vertex x ∈ V , denoted τ (x), to be the set of edges containing x so that τ (x) =
{e ∈ E | x ∈ e}.

We define I to be the set of interactions for all vertices, I = {τ (x) | x ∈ V }.
We define I (e) to be the set of interactions for the vertices which are in the edge
e so that I (e) = {X ∈ I | e ∈ X}. The interaction region, V (X), associated with
the interaction X ∈ I is the set of vertices which are in the same interaction as
X that is, V (X) = {x ∈ V | τ (x) = X}. The interaction width, denoted Iw (H),
of H is the largest number of non-singleton interactions associated with any of
its edges; Iw (H) = max {|I (e)− {{e}}| | e ∈ E}.
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There are two types of interaction region in which we may not have enough
information to do the conversion in polynomial time. We call these ‘isolated
regions’ and ‘trivial complement regions’.

For a hypergraph, H = 〈V,E〉, we define the removal of a set of vertices,
V ′ ⊆ V , to be the hypergraph H ′ = 〈V ′, E′〉 where E′ = {e ∩ V ′ | e ∈ E}.

It is straightforward to show that removing a set of vertices does not increase
the structural decomposition width of a hypergraph. Structural decomposition
of the original structure may therefore be used to solve the converted instance.

Our conversion requires that we project out certain interaction regions.

Definition 5. The projection of a constraint, 〈σ, ρ〉 onto a subset, X, of its
scope is the constraint 〈X,

{
f|X | f ∈ ρ

}
〉.

Method 1 performs projection in polynomial time for constraints expressed w.r.t.
Comp and the resulting constraint is also expressed w.r.t. Comp.

Method 1. Given an encoding of a constraint, 〈σ, ρ〉, where ρ is a set of dis-
allowed assignments, and a subset of the variables in the scope, σ′ ⊆ σ we can
project ρ onto σ′ in the following way;

Restrict the assignments of ρ so that they are only over the variables of σ′ to
give ρ′. For every l in ρ′, if every possible extension to l exists in ρ then keep l
in ρ′, else discard l.

After performing projection on a constraint represented w.r.t. Pos, it may then
allow more than half the possible assignments and need to be converted to Comp
(which can be done in polynomial time for the same reason).

Definition 6. Given a hypergraph, H = 〈V,E〉, for each e ∈ E the region
associated with the interaction {e} is called an isolated region.

If we project out the isolated regions of a CSP, we can solve the reduced instance
and extend any solution to the isolated regions of the original instance.

Definition 7. Let P = 〈V,D,C〉 be a CSP encoded w.r.t. Mixed or Comp and
X be an interaction of σ (P ). Let CX ⊆ C be the constraints with scopes in X.
X is a complement interaction if all constraints in CX are encoded w.r.t. Comp.

Let ρ be the set of all assignments from the given (complement) encoding of
the constraints in CX restricted to the region V (X). If ρ does not contain all
possible assignments over V (X), |ρ| < |D||V (X)|, then we call V (X) a trivial
complement region.

We can remove trivial complement regions as not all disallowed assignments
exist in ρ so any missing assignment must be allowed by all extensions for every
constraint in CX . We can see that ρ can be generated in polynomial time. By
assuming an order on assignments we can easily check if one is missing from ρ.
We can stop after finding a single missing assignment and remember it for the
purpose of extending solutions later.

LetH be a set of hypergraphs with interaction width i. We can now provide an
algorithm for converting any CSP represented w.r.t. Mixed and whose structure
is in H to a solution preserved CSP represented w.r.t. Pos.
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Method 2. INPUT: CSP P = 〈V,D,C〉 and the hypergraph of P , H = 〈V,E〉.
1. Find and project out all isolated regions.
2. Find and project out trivial complement regions, remembering extensions.

(Let H ′ be the reduced structure and P ′ = 〈V ′, D,C′〉 be the reduced instance
after projecting out isolated regions and trivial complement regions.)

3. Convert the reduced instance to the positive representation.
– Create a mapping, L, which maps from interactions I of the hypergraph

H ′ to sets of assignments on the respective interaction regions such that
• For each interaction, X ∈ I, if there exists a constraint, 〈σ′, ρ′〉 ∈
C′ whose relation is expressed w.r.t. Pos and whose scope contains
V (X), the region of the interaction X, then set L(X) to be ρ|V (X)

.
Else, set L(X) to be the set of possible assignments to V (X) over D.

– Create a new CSP, P̄ = 〈V ′, D, C̄〉 with structure H ′ such that
• For each hyperedge σ′ of H ′, create the new constraint in 〈σ′, ρ̄〉 in
P̄ such that ρ̄ is the product over X ∈ I(σ′) of (L(X)).

• For each constraint 〈σ′, ρ̄〉 ∈ C̄, then for every constraint 〈σ′, ρ′〉 ∈
C′, if ρ′ is represented w.r.t. Pos, then ρ̄ := ρ̄∩ ρ′. Else, ρ̄ := ρ̄− ρ′.

It is straightforward to show that this algorithm runs in polynomial time
for bounded interaction width. The bound is required for generating the new
constraints based on the products of the assignments over the regions.

Once we have solved the reduced CSP we can then extend the found solution
to the trivial complement regions and the isolated regions of the original CSP.

For any tractably identifiable structural decomposition, such as bounded
width hypertrees [2], we generate a new tractable class w.r.t. Mixed.

4.1 Structurally Tractable Classes of SAT

Each clause in a SAT instance only disallows a single assignment. There can be
no polynomial time conversion from clauses to Pos unless the arity is bound.

However, SAT may be naturally represented in Mixed. As such, structural
tractability results (with bounded interaction width) naturally extend to SAT.

Szeider [4] has also developed a structural tractability result for SAT which
is based on the treewidth of the so called incidence graph. We can show that
even just for SAT, these two structurally tractable classes are incomparable, so
there are two distinct structural tractability results for SAT. However, ours has
a natural extension to domains of larger size, so we hope may be applicable to
other practical problems.
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1 Introduction

Search effort is typically measured in terms of the number of backtracks, constraint
checks, or nodes in the search tree, but measures such as the number of incorrect de-
cisions have also been proposed. Comparisons based on mean and median effort are
common. However, other researchers focus on studying runtime distributions, where
one can observe a (non-)heavy-tailed distribution under certain conditions [2, 3].

In this paper we augment our traditional statistics-based approach to studying sys-
tematic search with a visualisation method that uses heatmaps, which can be more in-
formative and present different views of the relationship between the depth at which a
mistake occurred and the size of the refutation associated with it. We compare search
algorithms on the basis of the number of, and effort required to recover from, indi-
vidual mistakes. We highlight interesting differences between random and real-world
problems, contradicting conventional wisdom that states that mistakes at the top of the
search tree are much more expensive to refute than those made deeper in the tree.

We also observe some interesting patterns in terms of where most of the search ef-
fort is consumed over a large population of problem instances and show that it is not
always the case that extremely large mistakes account for most of the effort. Finally, we
show that variable ordering heuristics alone can avoid making mistakes, but that their
performance cannot be attributed exclusively to either fail-firstness or promise.

2 Experiments

We study the failure characteristics of backtrack search methods in constraint satisfac-
tion problems. Our analysis is based on counting the number of times an assignment
was made during search that took us off the path to a solution. We refer to such deci-
sions as mistakes [5]. The set of nodes visited by the algorithm in order to recover from
a mistake is the refutation tree of that mistake. The number of nodes in that tree is the
refutation size, which is our measure of effort.

Our empirical analysis includes configurations of uniform Model B random binary
problems and quasigroup completion problems, encoded using binary constraints. With
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the exception of the random 17 × 8 problems (i.e. 17 variables with uniform domain
size 8), where we used backtracking, all other experiments used MAC. Our data sets of
random problems contain approximately 10,000 instances for each algorithm used. The
QWH-10 data set includes a total of over 1,000,000 instances. Specifically, our data sets
comprise of the following problems:

1. Dense random 30× 10, density 0.86, tightness 0.15, at the phase transition.
2. Sparse random 30× 10, density 0.3, tightness 0.35, in the easy region.
3. Sparse random 150× 10, density 0.03356, tightness 0.52, in the easy region.
4. QWH-10 with 90% random balanced holes.
5. Random 17× 8, density 0.84, tightness 0.09375 (easy but heavy-tailed when using

random orderings); and 0.25, near the phase transition and non-heavy-tailed.

Rather than using the overall effort required to solve each instance, which we refer
to as instance-based effort, as the basis of our analysis, we also considered the effort
required to refute each mistake separately, which we refer to as mistake-based effort.
We established that they were highly correlated, and so observations made on the lat-
ter can be used to draw conclusions about the former. Studying search algorithms at
the mistake-level allows us to perform a more detailed analysis of the interactions be-
tween variable and value ordering heuristics over a large population of instances. For
the remainder of the paper we will base our comparison of search heuristics on an
analysis of mistake-level effort through the use of heatmaps (best viewed in colour at
http://hulubei.net/tudor/papers/fabscs).

2.1 Distribution of Search Effort

For random problems 17 × 8, as well as for QWH-10 with 90% holes, Figure 1 shows
heatmaps of the probability of encountering mistakes of a certain size at a certain depth
(Figures 1(a) and 1(c)), as well as the proportion of effort spent at a certain depth in
refutations of a certain size (Figures 1(b) and 1(d)). Colours represent a log-scale.

Random 17×8 instances, using a random variable ordering with backtrack search ex-
hibit heavy tails in the easy region, but not in the hard region. While a survival function-
based analysis [2] can demonstrate the presence or absence of such large mistakes,
heatmap visualisations also show precisely the depth where these mistakes occur.

It is also interesting to consider how the size of mistakes varies with depth. The
conventional wisdom is that mistakes made at, or near, the top of the tree are exponen-
tially larger than those made deeper in the tree. However, the QWH-10 plots in Figure 1
contradict that assumption – the largest mistakes occur at intermediate depths.

The heatmap in Figure 1(d) depicts, for a population of instances, the proportion of
effort required to refute, for QWH-10 with 90% holes, mistakes of various sizes at each
depth. The darkest spots in the heatmap represent those mistake sizes for which the
cumulative effort over all the mistakes in our data set was proportionally the largest at
that depth. It is clear that over a population of instances, for all the algorithms we used,
the bulk of the effort is spent in refuting the extremely large number of small mistakes
(4 to 100 nodes) that occur deep down in the search tree (Figure 1(c)).

Random binary problems do exhibit exponential decay of the refutation size with
depth (Figures 1(a), 1(b) and 2(d), similar results for random 150 × 10 and 30 × 10).
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(a) Random 17 × 8 (left: easy, right: hard):
probability of a refutation of a certain size (y-
axis) occurring at a given depth (x-axis).

(b) Random 17×8 (left: easy, right: hard): pro-
portion of effort spent in refutations of a certain
size (y-axis) at a given depth (x-axis).

(c) QWH-10 problems with 90% holes: proba-
bility of a refutation of a certain size (y-axis)
occurring at a given depth (x-axis).

(d) QWH-10 problems with 90% holes: propor-
tion of effort spent in refutations of a certain
size (y-axis) at a given depth (x-axis). Lines:
dotted=medians, continuous=means.

Fig. 1. Heatmaps for random problems 17 × 8 and QWH-10 with 90% holes

Moreover, as random problems approach the phase transition, mistakes start occurring
close to the root of the tree, and over a population of instances, the bulk of the effort,
which corresponds to the dark colour in the heatmaps, shifts towards the top of the tree.

Clearly, the mean and median refutation sizes in Figure 1(d) fail to provide any infor-
mation with respect to the wide range and distribution of refutation sizes encountered
here. The large number of small-to-medium size refutations not only keeps the median
below 10, but also prevents the extremely large mistakes from contributing to the mean.
Furthermore, the medians and means in Figure 1(d) do not indicate where the effort
is in terms of depth. While for a population of instances of QWH-10 the effort seems
dominated by the disproportionately large number of small mistakes, for any particular
difficult instance, a small number of large refutations dominate the search effort.

MAC with min-conflicts and min-dom/wdeg is the only algorithm in our arsenal that
can eliminate heavy tails for QWH-10 [5]. The bottom-right plot in Figure 1(d) shows
a far smaller variation in the size of the refutations than any of the other 3 plots. This
translates into a significant reduction in the variation in instance-based effort and is
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(a) 1-CDF for the runtime distribution. (b) PDF of the number of mistakes per instance.

(c) Probability of a certain number of mistakes
(y-axis) at a given depth (x-axis) in an instance.
Lines: dotted=medians, continuous=means.

(d) Proportion of effort spent in refutations of
a certain size (y-axis) at a given depth (x-axis).
Lines: dotted=medians, continuous=means.

Fig. 2. Sparse random 30 × 10: Promise vs fail-firstness; 4 variable orderings, random values

consistent with the non-heavy-tailed nature of that data set. Similar, but more complex
behaviour can be observed in Figure 1(b). The upper-left heatmap is the only one corre-
sponding to a heavy-tailed distribution. There are two characteristics of the other three
heatmaps that help in visually determining the absence of heavy-tails: in the lower-left
plot there is insufficient variation in the refutation sizes; in the plots on the right, the
greatest proportion of our effort is associated with the large refutations.

2.2 Promise Versus Fail-Firstness

Good variable ordering heuristics reduce the effort required to refute insoluble subtrees
using a property called fail-firstness [4]. Variable ordering heuristics have also been
shown to exhibit promise, i.e. they can contribute to a search algorithm’s ability to
avoid making mistakes [1]. Promise was measured previously based on the probability
that search remains on the path to a solution. Here we measure it very differently and
present an alternative analysis of its complex interaction with fail-firstness.

The remainder of our experiments are based on sparse random problems with 30
variables and uniform domain size 10. Figure 2(a) clearly shows that min-dom/wdeg
and random variable orderings are the best and worst heuristics, respectively, and that
max-degree performs better than min-domain. Further supporting the usefulness of
heatmaps, we can see how Figure 2(b), as well as the means and medians in Fig-
ure 2(c), portray min-domain and min-dom/wdeg as being very similar. The heatmaps in
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Figure 2(c), however, clearly show the mistakes made by the two heuristics are dis-
tributed differently across depths, with min-dom/wdeg having a higher probability of
making more mistakes per instance over almost the entire range of depths it covers.

Figures 2(c) and 2(d) present a measure of promise and fail-firstness, respectively, for
each variable ordering heuristic, arranged left to right and top to bottom in increasing
order of performance, as per Figure 2(a). A comparison of the various heuristics de-
picted there may seem contradictory at first: max-degree seemingly outperforms min-
domain due to its better fail-firstness and despite its worse promise (more mistakes),
while min-dom/wdeg performs better than max-degree due to its better promise, and
despite its slightly worse fail-firstness. Smith and Grant [6] showed that trying harder
to fail first does not always improve performance, and our experiments support a sim-
ilar conclusion for promise. From the heuristics studied here, min-dom/wdeg performs
best not because it makes fewer mistakes, or because it refutes them with less effort, but
because it strikes a good balance between these two properties.

3 Conclusions

Our novel use of heatmaps nicely complements the use of survival functions and allows
a more granular view of the complex interaction between a heuristic’s ability to avoid
mistakes and its ability to recover from them. Heatmaps have helped show very clearly
that the effort required to recover from mistakes is not always correlated with the depth
where they occur, and better search heuristics do not necessarily make fewer mistakes,
or have the ability to recover from them quickly.
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1 Introduction

We perform an in-depth empirical study of runtime distributions associated with a con-
tinuum of problem formulations for QWH-10 with 90% holes1 defined between the
points where a formulation is entirely specified in terms of binary inequality con-
straints to models specified using an increasing number of ALLDIFFERENT global con-
straints [4]. For each model we study a variety of variable and value ordering heuristics.
We compare their runtime distributions against runtime distributions where any mis-
takes made in search are refuted optimally [2], and make the following observations:

1. For the problems considered, variations in the heuristics used have a far more
significant effect on hybrid models (i.e. models using both binary and global con-
straints) than they do on purely binary models.

2. While algorithms tend to perform better on hybrid models, a straight line can still
be observed in a log-log plot of their runtime distributions, even when mistakes
are refuted optimally. In other words, runtime distributions of hybrid models can
remain inherently heavy-tailed [3].

3. Models using global constraints are not always better than purely binary models.
We encountered configurations where increasing the number of global constraints
used to enforce distinct values on rows and columns (and removing the correspond-
ing sets of binary constraints) does not lead to a monotonic decrease in search ef-
fort. The discrepancy all but disappeared when we looked at the corresponding
(quasi-)optimal refutations for the exact same configuration.

4. With the exception of a few unusual cases, using global constraints did improve
search performance and, when that occured, the refutations encountered for hybrid
models were much closer to their corresponding optimal than for the binary model.

5. For the problems considered, the variables used in refuting a mistake usually repre-
sent only a small fraction of the variables still uninstantiated at the time the mistake
was made, yet this small subset of variables can most of the time be re-ordered to
refute the mistake optimally.

� This work was supported by Science Foundation Ireland (Grant 00/PI.1/C075). We thank the
Boole Centre For Research in Informatics for providing access to their Beowulf cluster.

1 We choose under-constrained problems in order to study heavy-tailed runtime distributions [1].
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2 Experiments

Our experiments were performed on satisfiable QWH-10 problem instances with 90%
random balanced holes, and included 4 variable ordering heuristics: min-domain, min-
dom/ddeg2, brelaz and min-dom/wdeg, and 3 value ordering heuristics: random, min-
conflicts and max-conflicts, totalling 12 algorithms (we broke ties randomly). Most
binary instances were too difficult to solve using random variable orderings or variable
ordering anti-heuristics, which is why these heuristics have not been included.

We began our study of various ways to model a CSP by encoding these problems
using only binary constraints (propagated using MAC) and then gradually replacing the
binary constraints used to enforce distinct cells on rows and columns with equivalent
n-ary ALLDIFFERENT constraints (which propagate generalised arc-consistency). In
addition to the binary model, we represented QWH-10 using 3 different hybrid models
by randomly selecting 2, 4, and 8 (out of the 20 possible) rows and/or columns and
replacing their corresponding binary constraints with a single n-ary ALLDIFFERENT

constraint. We will use hybrid = X to denote a certain model, with X being 0 for the
binary case and 2, 4, or 8 for the others (16 and 20 are too easy).

We refer to a mistake point [2] as an assignment that cannot lead to a solution even
though one existed before that assignment was made. An actual refutation is the search
tree corresponding to a mistake, as obtained by some algorithm, with the optimal refu-
tation for that mistake corresponding to a search tree of minimum size. Finally, the
quasi-optimal refutation is the smallest refutation whose height does not exceed that of
the actual refutation.

3 Results

The plots in Figures 1(a) and 1(b) show the actual and (quasi-)optimal runtime distri-
butions of our 12 algorithms on the binary and hybrid models. We use the term shorter
to refer to refutations that are either optimal, quasi-optimal, or simply the shortest im-
proved refutations we could find that were smaller than the corresponding actual refu-
tations, and the term restricted shorter to denote the smallest refutations we could find
when the search for optimal refutations was restricted to the variables involved in the
actual refutation. We use the term cumulative effort to refer to the effort required to
refute all the mistakes encountered in a given instance.

Figure 1(a) shows the runtime distributions of our algorithms on the binary and hy-
brid models. MAC+min-conflicts+min-dom/wdeg is the only algorithm that succeeds in
eliminating heavy tails for the binary model [3] and keeps doing so as we add more
global constraints, while all other algorithms remain heavy-tailed for all hybrid models
(hybrid=X with X≤8). Moreover, Figure 1(b) shows that, for some algorithms, heavy
tails do not disappear even when the mistakes encountered are refuted optimally. In
other words, for almost all hybrid models studied, even if we were able to use an oracle
to refute insoluble subtrees optimally, for some combinations of heuristics we would
still see heavy tails (inherent heavy-tailedness).

2 We abbreviate dynamic-degree as ‘ddeg’ and weighted-degree as ‘wdeg’.
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(a) Actual refutation effort. (b) Shorter refutation effort.

Fig. 1. Complement of the CDF (y-axis) of the actual (left) and shorter (right) effort (x-axis). We
vary the value ordering across columns and variable ordering across rows.

(a) Binary and hybrid=8 models using a poor
(min-domain) and a good (min-dom/wdeg)
variable ordering (various value orderings).

(b) Binary and hybrid=8 models using a
poor (max-conflicts) and a good (min-conflicts)
value ordering (various variable orderings).

Fig. 2. Complement of the CDF (y-axis) of the cumulative actual effort (x-axis)

Figures 1(a) and 1(b) also show that as our models become more sophisticated
through the addition of global constraints, the slopes of the runtime distributions de-
crease to the point they can no longer be considered heavy-tailed. However, more so-
phisticated models do not always lead to better performance. Combining max-conflicts
with min-dom/wdeg performs worse for the hybrid=4 model than for the binary model
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Fig. 3. Comparison of the complement of the CDF (y-axis) for the cumulative actual and shorter
effort (x-axis) for the binary and hybrid=8 models

(a) Comparison of the complement of the CDF
(y-axis) for the cumulative shorter and re-
stricted shorter (R-Shorter in the plots) (x-axis)
refutations for the binary and hybrid=8 models.

(b) Average number of variables involved in the
actual refutations (y-axis) as a function of the
number of variables still uninstantiated at the
time a mistake was made (x-axis).

Fig. 4. Statistics on restricted refutations

(hybrid=0), as can be seen in Figure 1(a). In the corresponding optimal refutations,
while the binary model still outperforms the hybrid=4 model, it only does so by a very
small margin. Also, it seems that more sophisticated models can benefit more from
good ordering heuristics than the equivalent binary models.

Figure 2(a) shows that the performance improvements due to better value orderings
heuristics become significant when a good variable ordering (min-dom/wdeg) is applied
to the hybrid=8 model. Similarly, Figure 2(b) shows that the performance improvements
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due to better variable ordering heuristics become significant when a good value ordering
heuristic (min-conflicts) is applied to the hybrid=8 model. These improvements are
closely correlated with the runtime distribution of the (quasi-)optimal refutations (not
shown for lack of space). Hardly any difference can be observed for the binary models.
This analysis suggests that heuristics can infer more from more sophisticated models.

Figure 3 shows another advantage of using global constraints: compared with binary
models, actual refutations are closer to optimality. Finally, Figure 4(a) shows that for the
binary and hybrid=8 models, the (quasi-)optimal and restricted (quasi-)optimal refuta-
tions have almost identical runtime distributions3. Interestingly, the average number of
variables involved in the actual refutations is only a small fraction of the total number
of variables still uninstantiated when the mistake was made (Figure 4(b)). These obser-
vations suggest that all the variable ordering heuristics studied here select a very small
subset of the remaining uninstantiated variables that could be re-ordered to obtain an
optimal refutation. What differentiates a good heuristic from a poor one is the ability to
select those variables in an order that minimises the size of the refutation.

4 Conclusions

We have shown empirically that for QWH-10, variations in heuristics have a greater
effect on formulations involving a mix of binary and global constraints than on purely
binary models. Models using global constraints are not always better than purely binary
models. We have also shown that the small subset of variables used by a heuristic to
refute a mistake can be re-ordered to obtain an almost optimal refutation. This raises
the question of why heuristics select the right variables, but fail to find better refutations.
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Abstract. This paper deals with methods exploiting tree-decomposition
approaches for solving constraint networks. We consider here the practi-
cal efficiency of these approaches by defining five classes of variable orders
more and more dynamic which guarantee time complexity bounds from
O(exp(w + 1)) to O(exp(2(w + k))), with w the ”tree-width” of a CSP
and k a constant. Finally, we assess practically their relevance.

1 Introduction

The CSP formalism (Constraint Satisfaction Problem) offers a powerful frame-
work for representing and solving efficiently many problems. An instance of CSP
is defined by a tuple (X, D, C) where X is a set of n variables, taking their values
in finite domains from D, and being subject to constraints from C. Given an
instance, the CSP problem consists in determining if there is an assignment of
each variable which satisfies each constraint. This problem is NP-complete. In
this paper, without loss of generality, we only consider binary constraints (i.e.
constraints which involve two variables). So, the structure of a CSP can be repre-
sented by the constraint graph G = (X, C). The usual approach for solving CSP
(Backtracking), has an exponential theoretical time complexity in O(exp(n)). To
improve this bound, structural methods like Tree-Clustering [1] were proposed
(see [2] for a survey and a theoretical comparison of these methods). They are
based on particular features of the instance like the ”tree-width” of the con-
straint graph (denoted w). The tree-width w of G is the minimal width over
all the tree-decompositions of G [3]. A tree-decomposition of G is a pair (E, T )
where T = (I, F ) is a tree with nodes I and edges F and E = {Ei : i ∈ I}
a family of subsets of X , such that each subset (called cluster) Ei is a node
of T and verifies: (i) ∪i∈IEi = X , (ii) for each edge {x, y} ∈ C, there exists
i ∈ I with {x, y} ⊆ Ei, and (iii) for all i, j, k ∈ I, if k is in a path from i to
j in T , then Ei ∩ Ej ⊆ Ek. The width of a tree-decomposition (E, T ) is equal
to maxi∈I |Ei| − 1. Recent studies (e.g. [4]) integrate as quality parameter for
a decomposition, its efficiency for solving the considered CSP. This paper deals

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 741–745, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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with the question of an efficient use of the considered decompositions. We focus
on the BTD method (Backtracking on tree-decomposition [5]) which seems to
be the most effective method proposed until now within the framework of these
structural methods. Indeed, most of works based on this approach only present
theoretical results, except [6,5]. BTD proceeds by an enumerative search guided
by a static pre-established partial order induced by a tree-decomposition of the
constraint graph. This permits to bound its time complexity by O(exp(w + 1)),
while its space complexity is O(n.s.ds) with s the size of the largest minimal sep-
arators of the graph. Since the efficiency of dynamic variable orders is known, we
propose five classes of orders which exploit dynamically the tree-decomposition
and guarantee time complexity bounds. Then we define several heuristics for
each class.

In section 2, we define the classes and heuristics to compute their orders.
Section 3 is devoted to experimental results and conclusions.

2 Classes of Orders and Heuristics

Even though, the basic version of BTD uses a compatible static variable ordering,
we prove here by defining the following classes that it is possible to consider
more dynamic orders without loosing the complexity bounds. These orders are
in fact provided by the cluster order and the variable ordering inside each cluster.
Firstly, we give the definition of a generalized tree-decomposition [7]. The set
of directed k-covering tree-decompositions of a tree-decomposition (E, T ) of G
with E1 its root cluster and k a non nil positive integer, is defined by the set of
tree-decompositions (E′, T ′) of G that verify: (i) E1 ⊂ E′

1, E′
1 the root cluster

of (E′, T ′), (ii) ∀E′
i ∈ E′, E′

i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiK , with Ei1 . . .EiK a path
in T , and (iii) |E′

i| ≤ w+ + k, where w+ = maxEi∈E|Ei|. Given a CSP and a
tree-decomposition of its constraint graph, we define:

– Class 1. Enumerative static compatible order.
– Class 2. Static compatible cluster order and dynamic variable order in the

clusters.
– Class 3. Dynamic compatible cluster order and dynamic variable order in

the clusters.
– Class 4. Class 3 order on a directed k-covering tree-decomposition of the

tree-decomposition.
– Class 5. Class 3 order on a set of directed k-covering tree-decompositions

of the tree-decomposition.
– Class ++. Enumerative dynamic order.

The defined classes form a hierarchy since we have: Class 1 ⊂ Class 2 ⊂ Class
3 ⊂ Class 4 ⊂ Class 5⊂ Class ++. The Class ++ gives a complete freedom,
but it does not guarantee time complexity bounds, contrary to the Class 3.

Theorem 1. Let the enumerative order be in the Class 3, the time complexity
of BTD is O(exp(w + 1)).
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The properties of the Class 3 offer the possibility to choose any cluster to visit
next since the variables on the path from the root cluster to that cluster are
already assigned. And in each cluster, the variable ordering is totally free. The
definitions of the Class 4 and Class 5 enforce the order of one assignment to be
in the Class 3. So we derive natural theorems:

Theorem 2. Let the enumerative order be in the Class 4 with constant k, the
time complexity of BTD is O(exp(w+ + k)).

Theorem 3. [7] Let the enumerative order be in the Class 5, the time complexity
of BTD is O(exp(2(w+ + k))).

We define many heuristics to compute orders in the Classes proposed here and,
by lack of place, we only present the more efficient ones:

– minexp(A): this heuristic is based on the expected number of partial solu-
tions of clusters [8] and on their size. It chooses as root cluster one which
minimizes the ratio between the expected number of solutions and the size
of the cluster. It allows to start the exploration with a large cluster having
few solutions.

– size(B): we have here a local criteria: we choose the cluster of maximum size
as root cluster

– minexps(C ): this heuristic is similar to minexp and orders the son clusters
according to the increasing value of their ratio.

– minseps (D): we order the son clusters according to the increasing size of
their separator with their parent.

– nv(E ): we visit first the son cluster where appears the next variable in the
variable order among the variables of the unvisited son clusters.

– minexpsdyn(F ): the next cluster to visit minimizes the ratio between the
current expected number

– nvsdyn(G): We visit first the son cluster where appears the next variable in
the variable order among the variables of the unvisited son clusters.

Inside a cluster, we use min domain/degree heuristic for choosing the next vari-
able (static version mdds for class 1 and dynamic mdddyn for the other classes).

3 Experimental Study and Discussion

Applying a structural method on an instance generally assumes that this instance
presents some particular topological features. So, our study is performed on
random partial structured CSPs described in [7]. All these experimentations are
performed on a Linux-based PC with a Pentium IV 3.2GHz and 1GB of memory.
For each class, the presented results are the average on instances solved over 50.
We limit the runtime to 30 minutes. Above, the solver is stopped and the involved
instance is considered as unsolved. In the table, the letter M means that at least
one instance cannot be solved because it requires more than 1GB of memory. We
use MCS [9] to compute tree-decompositions because it obtains the best results
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Table 1. Parameters w+ and s of the tree-decomposition and runtime (in s) on random
partial structured CSPs with mdd for class 1 and mdddyn for classes 2, 3 and 4

CSP Class 1 Class 2 Class 3 Class 4

w+ s B A B A A B B A A B
(n, d, w, t, s, nc, p) D C D C F G D C F G

(150, 25, 15, 215, 5, 15, 10) 13.0 12.2 9.31 28.12 3.41 2.52 2.45 5.34 2.75 2.17 2.08 2.65
(150, 25, 15, 237, 5, 15, 20) 12.5 11.9 9.99 5.27 5.10 2.47 1.99 5.47 2.58 1.76 1.63 2.97
(150, 25, 15, 257, 5, 15, 30) 12.1 11.4 13.36 27.82 3.38 5.06 4.97 3.55 1.41 1.05 1.13 1.30
(150, 25, 15, 285, 5, 15, 40) 11.5 10.6 3.07 8.77 1.13 0.87 1.27 1.17 1.67 0.39 0.63 1.75
(250, 20, 20, 107, 5, 20, 10) 17.8 16.9 54.59 57.75 15.92 12.39 12.14 14.93 10.18 7.75 7.34 10.26
(250, 20, 20, 117, 5, 20, 20) 17.2 16.5 55.39 79.80 23.38 14.26 13.25 24.14 10.05 8.81 8.39 10.34
(250, 20, 20, 129, 5, 20, 30) 16.8 15.8 26.21 21.14 7.23 5.51 6.19 7.84 33.93 4.61 4.41 34.20
(250, 20, 20, 146, 5, 20, 40) 15.9 15.2 44.60 30.17 26.24 3.91 4.51 17.99 11.38 3.17 3.17 10.63
(250, 25, 15, 211, 5, 25, 10) 13.0 12.3 28.86 38.75 15.33 11.67 13.37 18.12 5.86 7.71 6.65 6.44
(250, 25, 15, 230, 5, 25, 20) 12.8 11.9 20.21 34.47 8.60 7.12 14.84 19.47 4.19 3.94 3.36 6.81
(250, 25, 15, 253, 5, 25, 30) 12.3 11.8 11.36 16.91 5.18 11.13 5.14 5.26 2.80 3.71 3.52 3.06
(250, 25, 15, 280, 5, 25, 40) 11.8 11.1 7.56 32.74 3.67 16.32 17.49 4.91 4.03 1.40 1.26 3.55
(250, 20, 20, 99, 10, 25, 10) 17.9 17.0 M M M M M M 66.94 63.15 62.99 66.33
(500, 20, 15, 123, 5, 50, 10) 13.0 12.5 12.60 13.63 7.01 8.08 7.31 7.54 5.48 4.50 4.41 5.86
(500, 20, 15, 136, 5, 50, 20) 12.9 12.1 47.16 19.22 25.54 23.49 27.01 15.11 4.86 4.92 3.94 5.24

in the study performed in [4] on triangulation algorithms to compute a good
tree-decomposition w.r.t. CSP solving. FC and MAC are often unable to solve
several instances of each class within 30 minutes.

Table 1 shows the runtime of BTD with several heuristics of Classes 1, 2, 3
and 4. For Class 5, we cannot get good results and then, the results are not
presented. Also it presents the width of the computed tree-decompositions and
the maximum size of the separators. Clearly, we observe that Class 1 orders
obtain poor results. This behaviour is not surprising since static variable orders
are well known to be inefficient compared to dynamic ones. A dynamic strat-
egy allows to make good choices by taking in account the modifications of the
problem during search. That explains the good results of Classes 2 and 3 orders.
The results show as well the crucial importance of the root cluster choice since
each heuristic of the Classes 2 and 3 has a dramatic runtime on an average of 4
instances over all instances of all classes because of a bad choice of root cluster.
The memory problems marked by M can be solved by using a Class 4 order
with the sep heuristic for grouping variables (we merge cluster whose intersec-
tion is greater than a value smax). Table 1 gives the runtime of BTD for this
class with smax = 5. When we analyze the value of the parameter k, we observe
that in general, that its value is limited (between 1 to 6). Yet, for the CSPs
(250, 20, 20, 99, 10, 25, 10), the value of k is near 40, but this high value allows to
solve them.

The heuristics improve very significantly their results obtained for the Classes
2 and 3. The impact of the dynamicity is obvious. minexp and nv heuristics
solve all the instances except one due to a bad root cluster choice, size solves
all the instances. Except this unsolved instance, minexp obtains very promis-
ing results. The son cluster ordering has a limited effect because the instances
considered have a few son clusters reducing the possible choices and so their im-
pact. The best results are obtained by minexp + minexpsdyn , but size + minseps

obtains often similar results and succeed in solving all instances in the Class
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4. The calculus of the expected number of solution assumes that the problem
constraints are independent, what is the case for the problems considered here.
Thus, size + minsep may outperform minexp + minexpsdyn on real-world prob-
lems which have dependent constraints.

These experiments highlight the importance of dynamic orders and make us
conclude that the Class 4 gives the best variable orders w.r.t CSP solving with a
good value of k. Merging clusters with k less than 5 decreases the maximal size
of separator and leads to an important reduction of the runtime.

To summarize, we aim to improve the practical interest of the CSP solving
methods based on tree-decompositions. This study takes now on importance for
solving hard instances with suitable structural properties since they are seldom
solved by enumerative methods like FC or MAC. We defined classes of variable
orders which guarantee good theoretical time complexity bounds. A comparison
of these classes with relevant heuristics w.r.t. CSP solving, points up the impor-
tance of a dynamic variable ordering. Indeed the best results are obtained by
Class 4 orders because they give more freedom to the variable ordering heuristic
while their time complexity is O(exp(w+k)) where k is a constant to parameter-
ize. Note that for the most dynamic class (the Class 5), we get a time complexity
in O(exp(2(w+k))) which should be too large to expect a practical improvement.
Then, for Class 4, we aim to exploit better the problem features to improve the
computing of k. This study will be pursued on the optimization problem.
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Abstract. In this paper we show that the clique concept can be ex-
ploited in order to solve Max-CSP. We present a clique inference process
which leads to construct linear systems useful for computing new lower
bounds. The clique inference process is introduced in the PFC-MPRDAC
[5] algorithm and the obtained algorithm is called PFC-MPRDAC+CBB
(CBB for Clique Based Bound). The carried out experiments have shown
that PFC-MPRDAC+CBB leads to obtain very encouraging results.

1 Introduction

A binary Constraint Satisfaction Problem (CSP) is defined by a triplet (X, D, C)
where X = {X1, X2, ..., Xn} is a set of n variables, D = {D1, D2, ..., Dn} is a
set of n domains where Di is a set of di possible values for Xi, C is a set of e
constraints in which a constraint Cij involves variables Xi and Xj and assigns
costs to assignments to variables Xi and Xj (namely, Cij : Di ×Dj → {0, 1}).
A pair (vk, vl) satisfies Cij if Cij(vk, vl) = 0. A solution of the CSP is a total
assignment satisfying each of the constraints. In some cases the CSP may be
over-constrained and it may be of interest to find a total assignment violating
the minimum number of constraints. This problem is usually referred as Max-
CSP and can be represented by a graph G whose vertices represent the values of
the variables and the edges represent the not permitted pairs of values. A union
of subsets, Ei1 ⊆ Di1 , Ei2 ⊆ Di2 , ..., Eim ⊆ Dim , forms a clique of G if and only
if for each couple (j1, j2) ∈ {i1, i2, ..., im}2 such that Ej1 �= ∅ and Ej2 �= ∅ we
have Cj1j2 ∈ C and Cj1j2(vk, vl) = 1 ∀(vk, vl) ∈ Ej1 × Ej2 . We will say that a
clique is binary if it is a union of two subsets of two domains of the CSP.

In this work, we propose a linear formulation for any binary clique and show
how it can be used to propose a new linear models useful for solving Max-CSP.
We then propose a clique inference process which leads to construct interesting
linear systems useful for computing good lower bounds.

2 Clique Based Linear Models for Max-CSP

In this section we propose a linear formulation for binary clique, and show how
it can be exploited to construct linear systems useful for computing new lower

� This work is supported in part by the French Electricity Board (EDF).
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bounds. We begin the process modeling by introducing for each variable Xi, di

binary variables xk
i ( k ∈ [1, di]). We also introduce for each constraint Cij a

binary variable ηij . We will denote by x the array of components xk
i , by η the

array of components ηij and by S the set of all solutions of the Max-CSP :
x ∈ S ⇔

∑
vk∈Di

xk
i = 1∀i ∈ [1, n]. A binary clique Γij = Ei ∪ Ej (Ei ⊆ Di, Ej ⊆

Dj) can be formulated as follows : ψ(Ei, Ej) =
∑

vk∈Ei

xk
i +

∑
vl∈Ej

xl
j ≤ 1 + ηij .

This linear constraint expresses the fact that if the variables Xi and Xj are
respectively assigned to values vk ∈ Ei and vl ∈ Ej then the binary constraint
Cij is violated (ηij must be equal to 1). Thus, for each set of m binary cliques,
Γ = {Γ t

ij = Et
i ∪ Et

j : t = 1...m, 1 ≤ i < j ≤ n} we can define the following
optimization problem :

IP (Γ )

⎧⎨⎩
min η. l1 e

s.t : ψ(Et
i , E

t
j) ≤ 1 + ηij t = 1...m

x ∈ S

where l1 e is a vector of e 1, e is the constraint number of the Max-CSP.
Each lower bound of the linear system IP (Γ ) is a lower bound of the Max-

CSP. Moreover, if Γ contains, for each constraint Cij ∈ C and for each pair
(vk, vl) ∈ Di × Dj : Cij(vk, vl) = 1, at least one clique Γ t

ij involving vk and vl

then the linear system IP (Γ ) is equivalent to the Max-CSP [3].
The clique inference schema which we use to define sets of cliques associates for

a constraint Cij ∈ C and a subset Ei of Di the maximal binary clique Γij(Ei) =
φji(φij(Ei)) ∪ φij(Ei), where φij(Ei) = {vl ∈ Dj : Cij(vk, vl) = 1 ∀vk ∈ Ei}
and φji(φij(Ei)) = {vk ∈ Di : Cij(vk, vl) = 1 ∀vl ∈ φij(Ei)}. A particular set of
cliques which we consider is Γ 0 = {Γij(Di), Γji(Dj), Cij ∈ C}.

Theorem 1. To Γ 0 correspond the linear system :

IP (Γ 0)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

∑
Cij∈C

ηij

st : ψ(Di, φij(Di)) ≤ 1 + ηij ∀Cij ∈ C
ψ(φji(Dj), Dj) ≤ 1 + ηij ∀Cij ∈ C
x ∈ S

The value V (LP (Γ 0)) of the continuous relaxation of IP (Γ 0) is greater or equal
to the lower bounds based on the Directed Arc Consistency [8], Reversible Di-
rected Arc Consistency [4] and Weighted Arc Consistency [1] counts1.

3 A Clique Inference Process

This section presents a local search process constructing p clique sets Γ 1, Γ 2, ...,
Γ p in such way that LR( l1 , Γ 1) < LR( l1 , Γ 2) < ... < LR( l1 , Γ p−1) = LR( l1 , Γ p),
where LR( l1 , Γ q) (1 ≤ q ≤ p) is the value of the Lagrangean relaxation which
1 A proof of the theorem is given in [3].
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we obtain if we dualize the clique constraints of IP (Γ q) by using a vector of
Lagrangean multipliers with all components equal to 1.

Let us denote by LR(λ, Γ 0) the value of the Lagrangean relaxation which we
obtain if we dualize the clique constraints of IP (Γ 0) by using the vector of La-
grangean multipliers λ = (λij , λji)cij∈C : λij ≥ 0. Multipliers λij , λji are respec-
tively associated to the constraints ψ(Di, φij(Di)) ≤ 1 and ψ(φji(Dj), Dj) ≤ 1.

First, the dual Lagrangean problem max
λ≥0

LR(λ, Γ 0) is solved in an approxi-

mated way by using the greedy local search algorithm GreedyOpt [4]. Then,

GreedyOpt
1. STOP ← false, ∀Cij ∈ C, λij = 1, λji = 0
2. WHILE(! STOP)
a. STOP ← true
b. ∀Cij ∈ C
i. λ′ ← λ, λ′

ij ← λji, λ
′
ji ← λij

ii. if (LR(λ′, Γ 0) > LR(λ, Γ 0)) then {λ ← λ′, STOP ← false}

the process initializes Γ 1 by assigning to each constraint Cij ∈ C one of the
cliques Γij(Di) or Γji(Dj), according to whether (λij , λji) is given equal to (1,0)
or (0,1) by GreedyOpt. It maintains two counters for each value vk of each vari-
able Xi : the clique count cck

i and the reduced cost rck
i = cck

i − min
vk′∈Di

cck′
i . The

clique count cck
i is initialized by the number of different cliques in Γ 1 involving

the value vk of Xi. The current lower bound is LR( l1 , Γ 1) =
n∑

i=1

min
vk∈Di

cck
i − e.

The process continues in order to improve this bound. Consider the following
notations :

– Γ q = {Γ q
ij , Cij ∈ C} : the clique set generated at the q-th process step;

– Γ q
ij = Eq

ij ∪ Eq
ji : the associated clique to the constraint Cij ;

– MIN(Eq
ij) = {vk ∈ Eq

ij : rck
i = 0} : values in Eq

ij with a null reduced cost;
– MIN(Eq

ji) = {vl ∈ Eq
ji : rcl

j = 0} : values in Eq
ji with a null reduced cost;

ClimbOpt

1. Γ q ← Γ q−1

2. ∀Cij ∈ C
if (λij = 1 ) then Γ q ← Γ q \ Γ q

ij ∪ Γij(MIN(Eq−1
ij ))

else Γ q ← Γ q \ Γ q
ij ∪ Γji(MIN(Eq−1

ji ))
3. NewLB = V (LR( l1 , Γ q))

The sets Γ q, 2 ≤ q ≤ p are obtained by the ClimbOpt procedure which replaces
the cliques of Γ q−1 (step 2) : each clique Γ q−1

ij (∀Cij ∈ C) is replaced by one of
the cliques Γij(MIN(Eq−1

ij )) or Γji(MIN(Eq−1
ji )) according to whether (λij , λji)

is equal to (1,0) or (0,1). The procedure ClimbOpt is executed while it leads
to increase the lower bound.
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Fig. 1. Example of Max-CSP

Example 1. Fig. 1 shows an example of Max-CSP with 4 variables (X = {X1,
X2, X3, X4}) and 5 constraints (C = {C12, C14, C23, C24, C34}). The edges on
graph represent the incompatible pairs. When we solve the dual Lagrangean prob-
lem max

λ
LR(λ, x) corresponding to Γ 0 by the GreedyOpt procedure we obtain

the solution vector λ = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0). The set Γ 1 is then initialized as
follow: Γ 1 = {Γ12(D1), Γ14(D1), Γ23(D2), Γ24(D2), Γ34(D3)} = {{(1, 1), (2, 3)},
{(1, 1), (4, 2)}, {(2, 1), (2, 2), (2, 3)}, {(2, 1), (2, 2), (2, 3)}, {(3, 1), (3, 2)}}. The
initial values of the clique counts are given by the two first tables on Fig.2. The

corresponding lower bound is LR( l1 , Γ 1) =
n∑

i=1

min
vk∈Di

cck
i − e = 2 + 2 + 1− 5 = 0.

The process continues by executing ClimbOpt. This leads to construct Γ 2. Only
the cliques associated to the constraints C23 and C34 are replaced by new ones.
The clique Γ23(D2) is replaced by Γ23(MIN(E1

23)) = Γ23({(2, 1), (2, 2)}) =
{(2, 1), (2, 2), (3, 2)} and the clique Γ34(D3) is replaced by Γ34(MIN(E1

34)) =
Γ34({(3, 1)}) = {(3, 1), (4, 1)}. These replacements modify the clique counts of
some values of variables. The values of the clique counts are now as given by the

two last tables on Fig.2 and the new lower bound is LR( l1 , Γ 2) =
n∑

i=1

min
vk∈Di

cck
i −

e = 2 + 2 + 1 + 1− 5 = 1.

i cc1
i cc2

i cc3
i min

1 2 ∞ ∞ 2

2 2 2 3 2

i cc1
i cc2

i cc3
i min

3 1 1 ∞ 1

4 0 1 ∞ 0

i cc1
i cc2

i cc3
i min

1 2 ∞ ∞ 2

2 2 2 2 2

i cc1
i cc2

i cc3
i min

3 1 1 ∞ 1

4 1 1 ∞ 1

Fig. 2. Initial and final computed clique counts

The corresponding linear system to Γ 2 is :

IP (Γ 2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min η12 + η14 + η23 + η24 + η34

st : x1
1 + x3

2 ≤ 1 + η12

x1
1 + x2

4 ≤ 1 + η14

x1
2 + x2

2 + x2
3 ≤ 1 + η23

x1
2 + x2

2 + x3
2 ≤ 1 + η24

x1
3 + x1

4 ≤ 1 + η34

x ∈ S
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Since we have LR( l1 , Γ 2) > LR( l1 , Γ 1) the process executes ClimbOpt in order
to construct Γ 3. This does not lead to improve the current lower bound and the
process stops. The computed lower bound is equal to 1.

4 Conclusion

In this paper, we have shown that the concept of clique can be exploited in order
to solve Max-CSP. We have proposed a linear formulation for binary cliques and
shown that this formulation can be used to construct linear models useful for
solving Max-CSP. We have proposed a clique inference process which leads to
construct partial linear systems in order to compute lower bounds. The clique
inference process is introduced in the PFC-MPRDAC algorithm and the obtained
algorithm is denoted PFC-MPRDAC+CBB (CBB for Clique Based Bound). Our
first experimental results [3] have shown that PFC-MPRDAC+CBB outperforms
PFC-MPRDAC on the tested random problems.

The sophistication of our algorithm and the study of bonds between clique
inference and the stronger local consistency techniques AC∗ [7], FDAC∗ [6] and
EDAC∗ [2] remain as future work.
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1 Introduction

Global constraints are an important tool in the constraint toolkit. Unfortunately,
whilst it is usually easy to specify when a global constraint holds, it is often dif-
ficult to build a good propagator. One promising direction is to specify global
constraints via grammars or automata. For example, the Regular constraint
[1] permits us to specify a wide range of global constraints by means of a DFA
accepting a regular language, and to propagate this constraint specification ef-
ficiently and effectively. More precisely, the Regular constraint ensures that
the values taken by a sequence of variables form a string accepted by the DFA.
In this paper, we consider how to propagate such grammar constraints and a
number of extensions.

2 Regular Constraint

Pesant has given a domain consistency algorithm for the Regular constraint
based on dynamic programming that runs in O(ndQ) time and space where d
is the domain size, Q is the number of states in the DFA, and n is the num-
ber of variables. The Regular constraint can be encoded using a simple se-
quence of ternary constraints. Enforcing GAC on this decomposition achieves
GAC on the original Regular constraint. and takes just O(ndQ) time and
space. We introduce a second sequence of variables, Q0 to Qn to represent the
state of the automaton. We then post the sequence of transition constraints
C(Xi+1, Qi, Qi+1) for 0 ≤ i < n which hold iff Qi+1 = T (Xi+1, Qi) where
T is the transition function of the DFA. In addition, we post the unary con-
straints Q0 = q0 and Qn ∈ F . To enforce GAC on such ternary constraints,
we can use the table constraint available in many solvers, or primitives like the
implication.

One advantage of this encoding is that we have explicit access to the states of
the automaton. These can be used, for example, to model the objective function.
The states of the automaton also need not be finite integer domain variables but
can, for example, be set variables. We can model the open stacks problem in this
way. This encoding also works with a non-deterministic finite automaton. Whist
NFA only recognize regular languages, they can do so with exponentially fewer
states than the smallest DFA. Enforcing GAC on the encoding takes O(nT )

F. Benhamou (Ed.): CP 2006, LNCS 4204, pp. 751–755, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



752 C.-G. Quimper and T. Walsh

time, where T is the number of transitions in the automaton. This number can
be exponentially smaller for a NFA compared to a DFA. We can also encode
the soft form of the Regular constraint [2] in a similar way by introducing a
variable whose value is the state of the automaton and the distance from it.

For repeating sequences, we introduce two cyclic forms of the Regular con-
straint. Regular+(A, [X1, . . . , Xn]) holds iff the string defined by X1 . . . XnX1

is part of the regular language recognized by A. To enforce GAC on Regular+,
we can create a new automaton in which states also contain the first value
used. We can therefore use this new automaton and a normal Regular con-
straint to enforce GAC on Regular+ in O(nd2Q) time. The Regularo con-
straint ensures that any rotation of the sequence gives a string in the regular
language. More precisely, Regularo(A, [X1, . . . , Xn]) holds iff the strings de-
fined by Xi . . . X1+(i+n−1 mod n) for 1 ≤ i ≤ n are part of the regular language
recognized by A. Unfortunately, enforcing GAC on a Regularo constraint is
NP-hard (reduction from Hamiltonian cycle).

3 Cfg Constraint

Another generalization is to context-free languages. We introduce the global
grammar constraint Cfg(G, [X1, . . . , Xn]) which ensures that X1 to Xn form a
string accepted by the context-free grammar G. Such a constraint might be useful
in a number of applications like bioinformatics or natural language processing.

To achieve GAC on a Cfg constraint, we give a propagator based on the
CYK parser which requires the context-free grammar to be in Chomsky normal
form. The propagator given in Algorithm 1 proceeds in two phases. In the first
phase (lines 0 to 7), we use dynamic programming to construct a table V [i, j]
with the potential non-terminal symbols that can be parsed using values in the
domains of Xi to Xi+j−1. V [1, n] thus contains all the possible parsings of the
sequence of n variables. In the second phase of the algorithm (lines 9 to 18), we
backtrack in the table V and mark each triplet (i, j, A) such that there exists a
valid sequence of size n in which A generates the substring of size j starting at
i. When the triplet (i, 1, A) is marked, we conclude there is a support for every
value a ∈ dom(Xi) such that A→ a ∈ G.

Theorem 1. CYK-prop enforces GAC on Cfg(G, [X1, . . . , Xn]) in Θ(|G|n3)
time and Θ(|G|n2) space.

Our second propagator is based on the popular Earley chart parser which also
uses dynamic programming to parse a context-free language. Whilst this prop-
agator is more complex, it is not restricted to Chomsky normal form, and is
often much more efficient than CYK as it parses strings top-down, particularly
when the productions are left-recursive. The propagator again uses dynamic
programming to build up possible support. Productions are annotated with a
“dot” indicating position of the parser. WLOG, we assume a unique starting
production S → U . A successful parsing is thus S → U•.
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Algorithm 1. CYK-prop(G, [X1, . . . , Xn])
for i = 1 to n do1

V [i, 1] ← {A | A → a ∈ G, a ∈ dom(Xi)}2

for j = 2 to n do3

for i = 1 to n − j + 1 do4

V [i, j] ← ∅5

for k = 1 to j − 1 do6

V [i, j] ← V [i, j] ∪ {A | A → BC ∈ G, B ∈ V [i, k], C ∈ V [i + k, j − k]}7

if S �∈ V [1, n] then return “Unsatisfiable”8

mark (1, n, S)9

for j = n downto 2 do10

for i = 1 to n − j + 1 do11

for A → BC ∈ G such that (i, j, A) is marked do12

for k = 1 to j − 1 do13

if B ∈ V [i, k], C ∈ V [k + k, j − k] then14

mark (i, k, B)15

mark (i + k, j − k, C)16

for i = 1 to n do17

dom(Xi) ← {a ∈ dom(Xi) | A → a ∈ G, (i, 1, A) is marked}18

return “Satisfiable”19

Algorithm 2 is the Earley chart parser augmented with the setsS that keep track
of the supports for each value in the domains. We use a special data structure to
implement these sets S. We first build the basic sets {Xi = v} for every poten-
tial support v ∈ dom(Xi). Once a set is computed, its value is never changed. To
compute the union of two sets A ∪ B, we create a set C with a pointer on A and a
pointer on B. This allows to represent the union of two sets in constant time. The
data structure forms a directed graph where the sets are the nodes and the pointers
are the edges. To enumerate the content of a set S, one can perform a depth-first
search. The basic sets {Xi = v} that are visited in the search are the elements of S.

Theorem 2. Earley-prop enforces GAC on Cfg(G, [X1, . . . , Xn]) in O(|G|n3)
time for an arbitrary context-free grammar, and in O(|G|n3) space.

4 Related Work

For the Regular constraint, a propagation algorithm based on dynamic pro-
gramming that enforces GAC was given in [1]. Coincidently Beldiceanu, Carlsson
and Petit proposed specifying global constraints by means of deterministic finite
automaton augmented with counters [3]. Propagators for such automaton are
constructed automatically by means of a conjunction of signature and transi-
tion constraints. The ternary encodings used here are similar to those proposed



754 C.-G. Quimper and T. Walsh

Algorithm 2. Earley-Prop(G, [X1, . . . , Xn])
for i = 0 to n do C[i] ← ∅1

queue ← {(s → •u, 0, ∅)}2

for i = 0 to n + 1 do3

for state ∈ C[i] do push(state,queue)4

while queue is not empty do5

(r, j, S) ← pop(queue)6

add((r, j, S), C[i])7

if r = (u → v•) then8

foreach (w → . . . •u . . . , k, T ) ∈ C[j] do9

add((w → . . . u• . . . , k, S ∪ T ), queue)10

else if i ≤ n and r = (u → . . . •v . . .) and v ∈ dom(Xi) then11

add((u → . . . v• . . . , j, S ∪ {Xi = v}), C[i + 1])12

else if r = (u → . . . •v . . .) and non terminal(v,G) then13

foreach v → w ∈ G such that (v → •w, i, ∅) �∈ C[i] ∪ queue do14

push((v → •w, i, ∅), queue)15

if C[i] = ∅ then16

return “Unsatisfiable”17

if (s → u•, 0, S) ∈ C[n] then18

for i = 1 to n do19

dom(Xi) = {a | Xi = a ∈ S}20

else21

return “Unsatisfiable”22

Algorithm 3. add((a, b, c), q)
if ∃ (a, b, d) ∈ q then1

q ← replace((a, b, d), (a, b, c ∪ d), q)2

else3

push((a, b, c), q)4

in [3]. However, there are a number of differences. One is that we permit non-
deterministic transitions. As argued before, non-determinism can reduce the size
of the automaton significantly. In addition, the counters used by Beldiceanu,
Carlsson and Petit introduce complexity. For example, they need to achieve
pairwise consistency to guarantee global consistency. Pesant encodes a cyclic
Stretch constraint into a Regular constraint in which the initial variables of
the sequence are repeated at the end, and then dummy unconstrained variables
are placed at the start and end [1]. Hellsten, Pesant and van Beek propose a
domain consistency algorithm similar to that for the Regular constraint [4].
They also showed how to extend it to deal with cyclic Stretch constraints.
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5 Conclusions

We have studied a range of grammar constraints. These are global constraints
over a sequence of variables which restrict the values assigned to be a string
within a given language. Such constraints are useful in a wide range of schedul-
ing, rostering and sequencing problems. For regular languages, we gave a simple
encoding into ternary constraints that can be used to enforce GAC in linear time.
Experiments demonstrate that such encodings are efficient and effective in prac-
tice. This ternary encoding is therefore an easy means to incorporate this global
constraint into constraint toolkits. We also considered a number of extensions
including regular languages specified by non-deterministic finite automata, and
soft and cyclic versions of the global constraint. For context-free languages, we
gave two propagators which enforce GAC based on the CYK and Earley parsers.
Experiments show that the propagator based on the CYK parser is faster at the
top of the search tree while the propagator based on the Earley parser is faster
at the end of the search. This shows some potential for a hybrid propagator.
There are many directions for future work. One promising direction is to learn
grammar constraints from examples. We can leverage on results and algorithms
from grammar induction. For example, it is not possible to learn a Regular
constraint from just positive examples.
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1 Introduction

The coordinated management of inter-dependent plans or schedules belonging
to different agents is a complex, real-world problem arising in diverse domains
such as disaster rescue, small-team reconnaissance, and security patrolling. The
problem is inherently a distributed one; no single agent has a global view and
must make local scheduling decisions through collaboration with other agents
to ensure a high quality global schedule. A key step towards addressing this
problem is to devise appropriate distributed representations. The Coordinators
Task Analysis Environmental Modeling and Simulation (C tæms) language is
a representation that was jointly designed by several multi-agent systems re-
searchers explicitly for multi-agent task scheduling problems [1,2,3,4]. C tæms
is an extremely challenging class of scheduling problem which is able to model
the distributed aspects of the problem.

The Distributed Constraint Optimization Problem (DCOP) [5] was devised to
model reasoning problems where agents must coordinate to ensure that solutions
are globally optimal which makes it a suitable approach for representing multi-
agent task scheduling. We propose an approach of problem transformation that
converts a significant subclass of C tæms into the DCOP representation and
show this subclass of C tæms problems remains computationally difficult. We
demonstrate a key advantage of our constraint-based approach is the ability to
apply constraint solving techniques from the constraint programming literature.
In this paper, we report on experiments using the Adopt algorithm [5] which
is guaranteed to find optimal solutions through asynchronous peer-to-peer mes-
sage passing between agents with worst-case polynomial space requirements. We
propose pre-processing techniques to perform domain pruning to significantly in-
crease problem solving efficiency. We demonstrate a 96% reduction in state space
size for a set of C tæms problems. This equates to up to a 60% increase in the
ability to distributedly and optimally solve C tæms problems in a reasonable
amount of time as a result of our constraint-based pre-processing algorithms.

2 Background

A DCOP defines a set of agents that are responsible for assigning a value to their
respective variables subject to a set of soft or hard constraints. Each variable in
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T1

(Task Group)

T3

M4M3

T2

M2M1

Fig. 1. An example C tæms task hierarchy

the DCOP is assigned to a specific agent, whose job it is to assign the value of
the variable. The objective of a DCOP is to have each agent assign values to its
associated variables in order to minimize the cost over all constraints.

C tæms is a derivative of the tæms modeling language [6] used for repre-
senting instances multi-agent scheduling problems. In this paper, we consider
a restricted subclass of C tæms1 that is defined as a tuple containing a set of
agents, a set of methods, a set of tasks, and a set of “Non-Local Effects” (NLEs).
As shown in Figure 1, the methods and tasks are arranged in a task hierarchy
in which the methods are the leaves and the root is a special task known as
the “task group.” Methods and tasks may have earliest start times, deadlines,
and expected durations. NLEs are precedence constraints, e.g., an enables NLE
requires that method X cannot execute before method Y has finished. A “sched-
ule” is a grammar within the C tæms specification for defining the chosen start
times of methods. A feasible schedule is one that satisfies NLEs constraints
and mutex constraints which require that an agent not execute more than one
method at once. Methods render “quality” if chosen to execute; each task has
a “Quality Accumulation Function” (QAF) that defines how its children’s qual-
ities are propagated up the tree. The objective is to create a feasible schedule
that maximizes the quality of the task group.

3 Technical Approach

The basis of our approach is to map a restricted class of C tæms instances to
an equivalent DCOP whose solution leads to an optimal schedule. The technical
challenge lies in ensuring that the resulting DCOP’s solution leads to an optimal
schedule. The following section formalizes the approach.

3.1 Mapping C tæms to a DCOP

For each agent in the C tæms instance, create an associated DCOP agent. For
each method, create an associated variable. The domains of the variables will
contain all possible start times of the method (including an option for the method
to forgo execution). In order to encode the mutex constraints, for all agents find
all pairs of methods that share that agent and create a hard DCOP constraint

1 This version differs from the full C tæms by omitting probabilistic aspects of task
durations, the facilitates and hinders NLEs, and non-summation QAFs.
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(i.e. of infinite cost) for all pairs of equal domain values for the associated vari-
ables. This will ensure that an agent may not execute multiple methods at once.
NLEs are encoded similarly: for all enables NLEs (i.e. method X cannot execute
before method Y has finished), find all pairs of methods that are in the sub-
tree rooted by the endpoints of the NLE and add a hard DCOP constraint for
their associated variables when the NLE is violated. Finally, add one unary soft
constraint for all methods’ variables as follows: if a method is not scheduled to
execute, its unary constraint will have a cost equal to the quality that the method
would have contributed to the task group had it been executed. This mapping
will produce a DCOP with |M | variables and worst-case O(|M |2) constraints
(where M is the set of methods in the C tæms instance).

3.2 Efficiency Optimizations

In this section, we consider how to make the variable domains as small as possi-
ble while ensuring that the solution space of the DCOP still contains the optimal
solution. We first consider how to ensure that domains are finite through a naive
domain bounding method. Then, we leverage the hierarchical task structure of
C tæmsto further reduce domain sizes followed by applying constraint propa-
gation techniques such as arc consistency.

Näıve Domain Bounding. It is possible to create a finite (although not necessarily
tight) upper bound on the start times of the methods. Let us consider a C tæms
instance in which all methods have an earliest start time of zero. Assuming all
of the methods will be executed, the optimal start time of a method cannot be
greater than the sum of the expected durations of all of the other methods. In the
general case of heterogeneous earliest start times, we can define an upper bound
on the start time of a method as the maximum finite earliest start time among
all of the methods plus the duration of all other methods. This proposed method
of näıve domain bounding will provably not remove all optimal solutions.

Bound Propagation. Although the nature of the distributed scheduling problem
implies that a child’s bounds are inherited from (and therefore cannot be looser
than) its parent’s, this is neither required nor enforced by C tæms. Bounds can
be propagated down the tree to improve upon the näıve bounding. Distributed
bound propagation (requiring only local knowledge) is possible by propagating
bound information down the HTN, enforcing the invariant between layers.

Constraint Propagation. A binary constraint is arc consistent if for each assign-
ment of one variable there exists a feasible assignment of the other. A DCOP is
said to be arc consistent if all constraints are arc consistent [7]. We use constraint
propagation down the NLE chains to prune the domains, ensuring arc consis-
tency of the DCOP. Distributed constraint propagation is achievable through
continual broadcast of current start time bounds; if agents receive a bound that
violates arc consistency, they increase the lower bound on their method’s start
time until the constraint is arc consistent and re-broadcast the new bounds. Since
the lower bounds monotonically increase and are bounded above, the algorithm
must terminate.
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4 Results

We used the DARPA’s COORDINATORs C tæms scenario generator to
randomly-generate a set of 100 C tæms instances, each with four agents, three-
to-four windows2, one-to-three agents per window, and one-to-three NLE chains.
Note that the scenario generator does not ensure that a feasible schedule exists
for its resulting C tæms instances. Experiments were terminated after 10,000
DCOP cycles after which a C tæms instance is simply declared “insoluble.”

Table 1. Efficiency of Constraint Propagation at reducing average domain size and
state space size, in terms of solubility

Avg. Domain Avg. Final State Space Final State
Solubility Size Reduction Domain Size Reduction Space Size

Solved 8.02% 35.29 97% 2.34 × 1071

Unsolved 7.61% 35.24 94% 1.47 × 1077

We used the DCOP algorithm Adopt [5] to solve the DCOPs obtained using
our transformation mapping. Of the 100 random problems, none were soluble by
the näıve domain bounding approach. Applying bound propagation to the näıve
bounding resulted in 2% of the problems becoming soluble. Applying all of our
methods resulted in 26% solubility. Using an upper one-sided paired t-test, we
can say with 95% certainty that constraint propagation made an average domain
size reduction of 7.62% over the domains produced from bound propagation
alone. This is equatable to an average 94% decrease in state space size. Table 1
presents the state space reduction efficiency in terms of problem solubility. Since

Table 2. Solubility statistics for different complexities of C tæms instances. All sim-
ulations had four agents. None of the problems bounded using the näıve method were
soluble. * This is the default configuration for the C tæms scenario generator.

% Soluble Avg. # Cycles Avg. # Messages
# Windows # NLE Chains Näıve CP Näıve CP Näıve CP

3 0 0 40.00 - 143.87 - 2569.25
3 2 0 36.67 - 143.40 - 3114.14
3 4 0 46.67 - 220.73 - 3854.2
4 0 0 33.33 - 83.89 - 1758.5
4 2 0 11.76 - 66.18 - 2783
4 4 0 33.33 - 108.72 - 3887
5 0 0 60.00 - 122.1 - 1364.5
5 2 0 60.00 - 242.4 - 2634
5 4 0 50.00 - 248.8 - 5748.67

* 6 3 0 41.67 - 196.42 - 4025.08

2 “Windows” are tasks whose parent is the task group (i.e., they are tasks at the
second layer from the root in the task hierarchy).
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constraint propagation was fairly consistent in the percentage of state space
reduced, this suggests that the 74% of the problems that remained insoluble
were due to the large state space size inherent in their structure.

We also conducted tests over C tæms problems of differing complexity; these
data are presented in Table 2. Problems bounded näıvely were never soluble.
Over the most complex problems with 6 windows and 3 NLEs chains, constraint
propagation required an average of 144.94 messages (with a standard deviation
of 16.13), which was negligible in comparison to the number required to arrive
at an optimal solution.

5 Discussion

We have presented mappings from the C tæms modeling language to an equiva-
lent DCOP whose solution is guaranteed to lead to an optimal schedule. We have
empirically validated our approach, using various existing techniques from the
constraint processing literature, indicating that these problems are in fact soluble
using our method. With the groundwork laid in solving distributed multi-agent
coordination problems with distributed constraint optimization, we have many
extensions in which to investigate. We hope to and are optimistic in extending
our mapping to subsume a larger subset of C tæms. If the resulting schedule
need not be optimal (i.e., feasibility is sufficient), approximation techniques for
DCOPs also exist.
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Abstract. Interactive configuration is the process of assisting a user
in selecting values for parameters that respect given constraints. In-
spired by the increasing demand for the real-time configuration in Supply
Chain Management, we apply a compilation approach to the problem of
interactive distributed configuration where the user options depend on
constraints fragmented over a number of different locations connected
through a network. We formalize the problem, suggest a solution ap-
proach based on an asynchronous compilation scheme, and perform
experimental verification.

1 Introduction

An interactive configuration problem is an application of Constraint Satisfac-
tion Problems (CSP) where a user is assisted in interactively assigning values
to variables by a software tool. This configurator assists the user by displaying
the valid choices for each unassigned variable in what are called valid domains
computations. In many application domains user options depend on constraints
fragmented over a number of different locations connected through a network.
This paper attempts to extend the functionality provided by centralized config-
uration to distributed configuration while taking advantage of the distribution
of the problem when possible. One of the current solution approaches to interac-
tive configuration is to divide the computational effort into an offline and online
phase. First compile the set of all valid solutions offline into a compact symbolic
representation based on Binary Decision Diagrams (BDD). In the on-line phase
we can deliver valid domains computation in time bounded polynomially in the
size of the BDD representation[1,2,3].

2 Interactive Distributed Configuration

One application domain where constraint information is fragmented is in Sup-
ply Chain Management [4], where the user options depend on many interrelated
businesses. The dominating relationship in a supply chain is the supplier pro-
ducing items offered to consumers. We model these relationships with a supply
chain graph (SCG), which is a directed graph G(N , A) where every node Ni ∈ N
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denotes a business entity and there is an arc (Ni, Nj) ∈ A iff a company Ni sup-
plies goods to Nj . We will assume that an SCG is a directed acyclic graph. Note
that this will not imply in any way an acyclic constraint graph. In the SCM
domain each company have independent variable namespaces in their models.
For ease of exposition of the techniques discussed in this paper we will in the
rest of the paper assume a global namespace between the distributed models,
for details see [5]. We now introduce some basic terminology and define the dis-
tributed configuration model. An assignment ρ is a set of variable-value pairs
(x, v), such that any one variable occurs only once. dom(ρ) is the set of variables
assigned by ρ. A total assignment is an assignment ρ such that dom(ρ) = X . An
assigment ρ is valid iff there exists a total assignment ρ′ such that ρ ⊆ ρ′ and ρ′

satisfies all constraints.

Definition 1 (Distributed Configuration Model). A distributed configu-
ration model DisC(X, D,F ,N ) consists of a set of variables X, variable do-
mains D, nodes N = {N1, . . . , Nk} and a set of sets of propositional formulas
over subsets of X, F = {F1, . . .Fk}. Each node Ni is associated a constraint
Ci =

∧
f∈Fi

f . The scope of this constraint is denoted Xi, and the restriction
of the domains to Xi is denoted Di. A solution to the distributed configuration
model is a total assignment to X satisfying Ci for all nodes Ni ∈ N .

We will interchangeably refer to constraints such as Ci as a constraint and as
the set of solutions to this constraint over all variables X .

2.1 Overall Solution Approach

To solve the problem we take advantage of the fact that the user in any reasonable
configuration problem over a supply chain is only interested in choosing values
for a small subset of the variables, denoted Xu. We designate a node as the user
node Nu, storing a constraint over variables Xu. The user performs interactive
configuration by interacting with this node only. Let Sol be the set of solutions
to the global problem, Sol =

⋂k
i=1 Ci. At Nu we need to generate the minimal

solution space over the user variables, that is minSolu = πXu(Sol). Hence all
solutions in minSolu are globally consistent. After generating minSolu at Nu,
the standard interactive configuration approach can be applied, resulting in a
partial assignment ρ ∈ minSolu[2]. Since minSolu is globally consistent we can
extend ρ to ρ′ ∈ Sol. Discovering this extension is called validation and can be
performed efficiently. Due to space constraints we do not describe the validation
algorithm here.

3 Distributed Compilation Algorithms

The most complex part of our solution approach is to generate a minimal solution
space on a user node. The BDD representing minSolu can be calculated as:
∃(X\Xu).(C1∧C2∧C3...∧Ck). Our algorithms will process a schedule placing and
ordering the above conjunctions. We define a distributed conjunction schedule
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Subtree-Consistency(Ni, T )
1 activeTreeChildren ← children(Ni, T ){children(Ni, T ) := {Nj |Nj �T Ni}}
2 Soli ← Ci

3 S ← scopeT
E(Ni) ∩ scopeT

E(parent(Ni, T )){parent(Ni, T ) := Nj s.t. Ni ∈ children(Nj , T )}
4 if activeChildren = ∅
5 then done ← True

6 else send(parent(Ni, T ), πS(Ci), ACTIV E) { ASYN ONLY }
7 while ¬done

8 do sol, sender, type ← ReceiveMostRecentMsg()
9 Remove from message queue all older messages from sender

10 Soli ← Soli ∧ sol

11 if type = FINISHED

12 then remove(activeChildren, sender)
13 if activeChildren = ∅
14 then done ← True

15 else send(parent(Ni, T ), πS(Soli), ACTIV E) { ASYN ONLY }
16 send(parent(Ni, T ), πS(CE

i ), F INISHED)

Fig. 1. Upon receiving an update(line 8) the receiving node Ni conjoins it with its
current solution space Soli(line 10). If all children nodes have updated Ni a final
update is send to the parent of Ni(line 16). ASyn in addition sends a tentative update
whenever it has new information for its parent(line 6 and 15).

T as a tree with k nodes, where the root is labelled with Cu, and each remaining
constraint is a label of some inner node. To each node Ni we associate a constraint
Soli representing this nodes current view of the global solution space. Initially
Soli = Ci. Given a distributed tree schedule T , if a node Nj is on a path between
a root node and a node Ni, we say that Nj is an ascendant of Ni (or Ni is a
descendant of Nj) and we write Ni 'T Nj . Furthermore, given a fixed tree
schedule T we define the extended scope scopeT

E(Ni) of the node Ni as follows:
x ∈ scopeT

E(Ni) iff x ∈ Xi or Ni has an ascendant Ni 'T Nj and a descendant
Nk 'T Ni such that x ∈ scope(Nj) ∩ scope(Nk). Now we can define tree-width
analogous to definitions in [6], as well as consistency notions used in the reminder
of the paper.

Definition 2 (Tree Width [6]). The tree width w.r.t. a tree schedule T over
a distributed model DisC is denoted as twT = maxN∈N |scopeT

E(N)|.

Definition 3 ((Strong) Subtree Consistency). A distributed configuration
model DisC is said to be subtree consistent w.r.t. a tree schedule T , if ∀Ni ∈
N : Soli = πX′

i
(
⋂

Nj�T Ni
Cj), where X ′

i ⊇ Xi. If scopeT
E(Ni) ⊆ X ′

i DisC is
strongly subtree consistent.

Subtree Consistency will enable backtrack free configuration at the user node
while Strong Subtree Consistency is required for efficient validation. We describe
two compilation algorithms that makes DisC strongly subtree consistent. We
denote them as synchronous (Syn) and asynchronous (ASyn) algorithm. Both
are shown as variations of the algorithm SUBTREE-CONSISTENCY in Fig. 1.
Syn obtains the simplest form of parallelism by processing seperate branches in T
simultaneously. It sends one message per edge in T , that is k−1 messages. Asyn
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S maxi{mi
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AS(u)} ∑

i
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AS(li) maxi{mi

AS} Asyn num msgs
29 1024 1800 396 972 3588 109

28+29 390 1205 380 322 3586 134
20 1504 3588 363 96 3588 126
10 2414 3588 340 96 3588 116
- 3099 3588 335 96 3588 109

(c) ci
S is the time used to process the update to the i’th node in Syn. ci

AS(u) is
the same for the u’th update received at node i in Asyn. mi

· is the size of the i’th
message send. li is the index of the last update received at node i. Nres is the index
of the restricted node(s)

Fig. 2. Experimental results

allows seperate levels in T to operate in parallel. Each child sends a tentative
version of its final constraint to its parent. Ascendants in T can immediately
integrate this into their own constraint. When a node is updated it sends a new
tentative solution space. In the worst case, each node sends one message plus
one message per each node below it. The message complexity is O(kl) where l
is the depth of T . A hybrid of the two can be obtained by changing the message
loop such that if an update that deprecates the one currently being processed
arrives, the older one is abandoned. The following can be shown for all variants:

Lemma 1. Given a compilation schedule T rooted in Nu, after the execution of
SUBTREE-CONSISTENCY, DisC is strongly subtree consistent w.r.t. T .

4 Experiments

For our experiments we utilize the GridCCC instance from [7]. The GridCCC
instance is based on commonly occurring rules in supply chains involving avail-
ability of sub-components and production capacity. Its parameterized by the
number of products per node, the number of components in a product, and
the number of nodes. The best node ordering was achieved by assigning the user
node index 1, and then assigning indices such that a supplier always had a higher
index than its consumers. For GridCCC this gives a linear ordering.

To test feasibility we scale the treewidth of the instance by adjusting the num-
ber of product dependencies among nodes (Figure 2(a) and 2(b)). As expected we
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observe an exponential dependency on the treewidth, we also note that perfor-
mance is acceptable even for quite large treewidth.

We compare the Syn and Asyn algorithms in Figure 2. The simulated Asyn
algorithm differs from Figure 1 by not picking more recent messages first. Since
the GridCCC instance is based on component availability constraints we expect
ASyn to do well when all components are available. We restrict nodes at different
positions to produce instances where child messages will have a greater impact.
The algorithms were simulated on a single computer so we do not provide the
total runtime for Asyn. Restricting nodes at the bottom of the schedule (high
index) decreases the efficiency of the tentative updates, such that the ASyn
algorithm spends a long time on the final updates. For less significant restrictions
(smaller index) the time to handle the last messages as well as the largest message
recieved remains small, meaning that the Asyn approach would be preferable.
The hybrid approach suggested earlier would likely be preferable in practice so
as to obtain good performance in all cases.

5 Conclusion

In this paper we addressed the problem of providing interactive configuration
functionality in a distributed setting. We formally defined the concept of Dis-
tributed Configuration and proposed a solution approach based on techniques
introduced in BDD-based compilation approaches and the area of Constraint
Satisfaction. Finally we experimentally evaluated our approach and demon-
strated its feasibility.
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Abstract. Dynamic Backtracking (DBT ) is a well known algorithm for solving
Constraint Satisfaction Problems. In DBT , variables are allowed to keep their
assignment during backjump, if they are compatible with the set of eliminating
explanations. A previous study has shown that when DBT is combined with
variable ordering heuristics it performs poorly compared to standard Conflict-
directed Backjumping (CBJ) [1]. The special feature of DBT , keeping valid
elimination explanations during backtracking, can be used for generating a new
class of ordering heuristics. In the proposed algorithm, the order of already as-
signed variables can be changed. Consequently, the new class of algorithms is
termed Retroactive DBT.

In the proposed algorithm, the newly assigned variable can be moved to a
position in front of assigned variables with larger domains and as a result prune
the search space more effectively. The experimental results presented in this paper
show an advantage of the new class of heuristics and algorithms over standard
DBT and over CBJ. All algorithms tested were combined with forward-checking
and used a Min-Domain heuristic.

1 Introduction

Conflict directed Backjumping (CBJ) is a technique which is known to improve the
search of Constraint Satisfaction Problems (CSP s) by a large factor [4,7]. Its efficiency
increases when it is combined with forward checking [8]. The advantage of CBJ over
standard backtracking algorithms lies in the use of conflict sets in order to prune un-
solvable sub search spaces [8]. The down side of CBJ is that when such a backtrack
(back-jump) is performed, assignments of variables which were assigned later than the
culprit assignment are discarded.

Dynamic Backtracking (DBT ) [5] improves on standard CBJ by preserving assign-
ments of non conflicting variables during back-jumps. In the original form of DBT, the
culprit variable which replaces its assignment is moved to be the last among the assigned
variables. In other words, the new assignment of the culprit variable must be consistent
with all former assignments. Although DBT saves unnecessary assignment attempts
and therefore was proposed as an improvement to CBJ , a later study by Baker [1] has
revealed a major drawback of DBT . According to Baker, when no specific ordering
heuristic is used, DBT performs better than CBJ . However, when ordering heuristics
which are known to improve the run-time of CSP search algorithms by a large fac-
tor are used [6,2,3], DBT is slower than CBJ . This phenomenon is easy to explain.
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Whenever the algorithm performs a back-jump it actually takes a variable which was
placed according to the heuristic in a high position and moves it to a lower position.
Thus, while in CBJ , the variables are ordered according to the specific heuristic, in
DBT the order of variables becomes dependent on the algorithm’s behavior [1].

In order to leave the assignments of non conflicting variables without a change on
backjumps, DBT maintains a system of eliminating explanations (Nogoods) [5]. As a
result, the DBT algorithm maintains dynamic domains for all variables and can poten-
tially benefit from the Min-Domain (fail first) heuristic.

The present paper investigates a number of improvements to DBT that use radical
versions of the Min-Domain heuristic. First, the algorithm avoids moving the culprit
variable to the lowest position in the partial assignment. This alone can be enough to
eliminate the phenomenon reported by Baker [1].

Second, the assigned variables which were originally ordered in a lower position
than the culprit variable can be reordered according to their current domain size.

Third, a retroactive ordering heuristic in which assigned variables are reordered
is proposed. A retroactive heuristic allows an assigned variable to be moved upwards
beyond assigned variables as far as the heuristic is justified.

If for example the variables are ordered according to the Min-Domain heuristic, the
potential of each currently assigned variable to have a small domain is fully utilized.
We note that although variables are chosen according to a Min-Domain heuristic, a
newly assigned variable can have a smaller current domain than previously assigned
variables. This can happen because of two reasons. First, as a result of forward-checking
which might cause values from the current variables’ domain to be eliminated due to
conflicts with unassigned variables. Second, as a result of multiple backtracks to the
same variable which eliminate at least one value each time. Therefore, the exploitation
of the heuristic properties can be done, not only by choosing the next variable to be
assigned, but by placing it in its right place among the assigned variables after it is
assigned successfully.

The combination of the three ideas above was found to be successful in the empirical
study presented in the present paper.

2 Retroactive Dynamic Backtracking

We assume in our presentation that the reader is familiar with both DBT following [1]
and CBJ [8].

The first step in enhancing the desired heuristic (Min-Domain in our case) for DBT
is to avoid the moving forward variables that the algorithm backtracks to (i.e. culprit
variables). One way to do this is to try to replace the assignment of the culprit variable
and leave the variable in the same position.

The second step is to reorder the assigned variables that have a lower order than the
culprit assignment which was replaced. This step takes into consideration the possibility
that the replaced assignment of a variable that lies higher in the order has the potential to
change the size of the current domains of the already assigned variables that are ordered
after it. The simplest way to perform this step is to reassign these variables and order
them using the desired heuristic.
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Retroactive FC DBT
1. var list ← variables;
2. assigned list ← φ;
3. pos ← 1;
4. while (pos < N)
5. next var ← select next var(var list);
6. var list.remove(next var);
7. assign(next var);
8. report solution;

procedure assign(var)
10. for each (value ∈ var.current domain)
11. var.assignment ← value;
12. consistent ← true;
13. forall (i ∈ var list)

and while consistent
14. consistent ← check forward(var, i);
15. if not (consistent)
16. nogood ← resolve nogoods(i);
17. store(var, nogood);
18. undo reductions(var, pos);
19. else
20. nogood ← resolve nogoods(pos);
21. lastVar ← nogood.RHS variable;
21. newPos ← select new pos(var, lastVar);
22. assigned list.insert(var, newPos);
23. forall (var 1 ∈ assigned list) and

(pos var 1 > newPos)
24. check forward(var, var 1);
25. update nogoods(var, var 1);
26. forall (var 2 ∈ var list)
27. update nogoods(var, var 2);
28. pos ← pos+1;
29. return;
30. var.assignment ← Nil;
31. backtrack(var);

procedure backtrack(var)
32. nogood ← resolve nogoods(var);
33. if (nogood = φ)
34. report no solution;
35. stop;
36. culprit ← nogood.RHS variable;
37. store(culprit, nogood);
38. culprit.assignment ← Nil;
39. undo reductions(culprit, pos culprit);
40. forall (var 1 ∈ assigned list) and

(pos var 1 > newPos)
41. undo reductions(var 1, pos var 1);
42. var 1.assignment ← Nil;
43. var list.insert(var 1);
44. assigned list.remove(var 1);
45. pos ← pos culprit;

procedure update nogoods(var 1, var 2)
46. for each (val ∈

{var 2.domain - var 2.current domain})
47. if not (check(var 2, val, var 1.assignment))
48. nogood ← remove eliminating nogood

(var 1, val);
49. if not (∃var 3 ∈ nogood and

pos var 3 < pos var 1)
50. nogood ← 〈var 1.assignment →

var 2 �= val〉;
51. store(var 2, nogood);

Fig. 1. The Retroactive FC DBT algorithm

The third step derives from the observation that in many cases the size of the current
domain of a newly assigned variable is smaller than the current domains of variables
which were assigned before it.

Allowing a reordering of assigned variables enables the use of heuristic information
which was not available while the previous assignments have been performed. This takes
ordering heuristics to a new level and generates a radical new approach. Variables can be
moved up in the order, in front of assigned variables of the partial solution. As long as the
new assignment is placed after the most recent assignment which is in conflict with one
of the variable’s values, the size of the domain of the assigned variable is not changed.

In the best ordering heuristic proposed by the present paper, the new position of
the assigned variable in the order of the partial solution is dependent on the size of
its current domain. The heuristic checks all assignments from the last up to the first
assignment which is included in the union of the newly assigned variable’s eliminating
Nogoods. The new assignment will be placed right after the first assigned variable with
a smaller current domain.
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(a) (b)

Fig. 2. CCs performed by DBT, CBJ and Retroactive DBT (a) p1 = 0.3, (b) p1 = 0.7

(a) (b)

Fig. 3. CCs performed by FC DBT, FC CBJ and FC Retroactive DBT (a) p1 = 0.3, (b) p1 = 0.7

Figures 1 presents the code of Retroactive Forward Checking Dynamic Backtrack-
ing (Retro FC DBT ). For lack of space we leave out the detailed description of the
algorithm and its correctness proof.

3 Experimental Evaluation

The common approach in evaluating the performance of CSP algorithms is to mea-
sure time in logical steps to eliminate implementation and technical parameters from
affecting the results. The number of constraints checks serves as the measure in our
experiments [9,7].

Experiments were conducted on random CSPs of n variables, k values in each do-
main, a constraints density of p1 and tightness p2 (which are commonly used in exper-
imental evaluations of CSP algorithms [10]). Two sets of experiments were performed.
In the first set the CSPs included 15 variables (n = 15) and in the second set the CSPs
included 20 variables (n = 20). In all of our experiments the number of values for each
variable was 10 (k = 10). Two values of constraints density were used, p1 = 0.3 and
p1 = 0.7. The tightness value p2, was varied between 0.1 and 0.9, in order to cover all
ranges of problem difficulty. For each of the pairs of fixed density and tightness (p1, p2),
50 different random problems were solved by each algorithm and the results presented
are an average of these 50 runs.



770 R. Zivan et al.

Three algorithms were compared, Conflict Based Backjumping (CBJ), Dynamic
Backtracking (DBT ) and Retroactive Dynamic Backtracking (Retro DBT ). In all of
our experiments all the algorithms use a Min-Domain heuristic for choosing the next
variable to be assigned. In the first set of experiments, the three algorithms were imple-
mented without forward-checking.

Figure 2 (a) presents the number of constraints checks performed by the three al-
gorithms on low density CSPs (p1 = 0.3). The CBJ algorithm does not benefit from
the heuristic when it is not combined with forward-checking. The advantage of both
versions of DBT over CBJ is therefore large. Retroactive DBT improves on stan-
dard DBT by a large factor as well. Figure 2 (b) present the results for high density
CSPs(p1 = 0.7). Although the results are similar, the differences between the algo-
rithms are smaller for the case of higher density CSPs.

In our second set of experiments, each algorithm was combined with Forward-
Checking [8]. This improvement enabled testing the algorithms on larger CSPs with
20 variables

Figure 3 (a) presents the number of constraints checks performed by each of the
algorithms. It is very clear that the combination of CBJ with forward-checking im-
proves the algorithm and makes it compatible with the others. This is easy to explain
since the pruned domains as a result of forward-checking enable an effective use of the
Min-Domain heuristic. Both FC CBJ and Retroactive FC DBT outperform FC DBT.
Retroactive FC DBT performs better than FC CBJ. Figures 3 (b) presents similar re-
sults for higher density CSPs. As before, the differences between the algorithms are
smaller when solving CSPs with higher densities.

4 Discussion

Variable ordering heuristics such as Min-Domain are known to improve the perfor-
mance of CSP algorithms [6,2,3]. This improvement results from a reduction in the
search space explored by the algorithm. Previous studies have shown that DBT does
not preserve the properties of variable ordering heuristics and as a result performs
poorly compared to CBJ [1]. The Retroactive DBT algorithm, presented in this paper,
combines the advantages of both previous algorithms by preventing the placing of vari-
ables in a position which does not support the heuristic and allowing the reordering (or
reassigning) of assigned variables with lower priority than the culprit assignment after
a backtrack operation.

We have used the mechanism of Dynamic Backtracking which by maintaining elim-
inating Nogoods, allows variables with higher priority to be reassigned while lower
priority variables keep their assignment. These dynamically maintained domains en-
able to take the Min-Domain heuristic to a new level. Standard backtracking algorithms
use ordering heuristics only to decide on which variable is to be assigned next. Retroac-
tive DBT enables the use of heuristics which reorder assigned variables. Since the
sizes of the current domains of variables are dynamic during search, the flexibility of
the heuristics which are possible in Retroactive DBT enables a dynamic enforcement
of the Min-Domain property over assigned and unassigned variables.

The ordering of assigned variables requires some overhead in computation when
the algorithm maintains consistency by using Forward Checking. This overhead was
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found by the experiments presented in this paper to be worth the effort since the overall
computation effort is reduced.
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