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Abstract. Supporting the early phases of design requires, among others, support 
for the specification and use of multiple and evolving representations, and for 
the exchange of information between these representations. We consider a 
complex adaptive system as a model for the development of design representa-
tions, and present a semi-constructive algebraic formalism for design represen-
tations, termed sorts, as a candidate for supporting this approach. We analyze 
sorts with respect to the requirements of a complex adaptive system and com-
pare it to other representational formalisms that consider a constructive ap-
proach to representations. 

1   Introduction 

Design is a multi-disciplinary process, involving participants, knowledge and infor-
mation from various domains. As such, design problems require a multiplicity of 
viewpoints each distinguished by particular interests and emphases, and each of these 
views, in turn, requires a different representation of the design entity. Even within the 
same task and for the same person, various representations may serve different pur-
poses defined within the problem context and the selected approach. Especially in the 
early phases of design, the exploratory and dynamic nature of the design process 
invites a variety of approaches and representations, and any particular representation 
may be as much an outcome of as a means to the design process. Therefore, support-
ing the designer in these early phases requires, among others, support for the specifi-
cation and use of multiple and evolving representations, and for the exchange of in-
formation between these representations. 

Various modeling schemes for defining product models and ontologies exist (e.g., 
[1], [8]). These allow for the development of representations in support of different 
disciplines or methodologies, and enable information exchange between representa-
tions and collaboration across disciplines. However, they still require an a priori effort 
at establishing an agreement on concepts and relationships, which offer a complete 
and uniform description of the project data, mainly independent of any project specif-
ics. We are particularly interested in providing the user access to the specification of a 
design representation, and the means to create and adapt design representations ac-
cording to the designer’s intentions in the task at hand, in support of creativity. Crea-
tivity, as an activity in the design process, relies on a restructuring of information that 
is not yet captured in a current information structure — that is, emergent information 
— for example, when the design provides new insights that lead to a new interpreta-
tion of constituent design entities. 
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This flexibility in using design representations necessitates a solution for dealing 
with the complexity of representations. For this purpose, we consider a complex adap-
tive system as a model for the development of design representations, in particular, its 
three key principles [5]. First, the outcome of the design process is generally unpre-
dictable, as it is indeterminately related to the design requirements and the design 
process. Under the assumption that the design representation is an intricate part of the 
design outcome, this representation is necessarily also unpredictable. Secondly, the 
state or history of a design representation is in principle irreversible as changes to the 
representational structure can result in data loss. Finally, with respect to the emer-
gence of order in the development of a design representation, we refer to Prigogine 
and Stengers [11]: “Order arises from complexity through self-organization.” In the 
context of constructing a design representation, the process of self-organization can 
take on the form of human communication or correspondence, leading to an agree-
ment on the representation that prevails in the system (see also [6]). This communica-
tion may be considered among different users or between the user and the design 
application (correspondence between the user’s mental model and the application’s 
design representation).  

Typically, a representation is a complex structure of properties and constructors, 
and a representation may be a construction of another [16]. As such, an approach to 
constructing representations in terms of other representations can be considered, in 
which correspondence can be achieved through the adaptation of the representational 
structure of properties and constructors and by agreement on the naming of represen-
tations, or parts thereof. Such an approach can benefit from a formal framework that 
allows for alternative representations of the same entity to be compared and related 
with respect to scope and coverage, in order to support translation and identify where 
exact translation is possible. Considering a representation as a complex structure of 
properties and constructors, comparing alternative representations requires a compari-
son of their respective properties and their mutual relationships, and of the overall 
construction. Such a comparison will not only yield a possible mapping in support of 
information exchange, but also uncover potential data loss when moving data from 
less-restrictive to more-restrictive representations. At the same time, the vocabulary 
of available properties and constructors defines the expressive power of the represen-
tational framework. 

In this paper, we consider a semi-constructive algebraic formalism for design rep-
resentations, termed sorts [15], as a candidate for supporting a constructive approach 
to design representations, and analyze sorts with respect to the requirements of a 
complex adaptive system. In particular, we consider the ability of sorts to support 
correspondence on design representations, to compare representations with respect to 
scope and coverage and detect data loss, and consider its potential to support the de-
sign process and the design outcome. Critical in this respect is the formal specifica-
tion of sortal representations in terms of other sortal representations under formal 
compositional operations, the behavioral specification of sortal representations ena-
bling the comparison of alternative representations and the detection of data loss, and 
the ability to integrate data functions into sortal representations. Sorts are also com-
pared to other representational formalisms that consider a constructive approach to 
representations. 
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2   Incrementally Constructing Design Representations 

Van Leeuwen et al. [17] describe a property-oriented data modeling approach, in 
which design concepts are represented as flexible networks of objects and properties. 
In contrast to traditional modeling approaches, an object has no predefined set of 
properties and the composition of properties defining an object can be changed at any 
time. Under the property-modeling approach, correspondence can be achieved 
through the development (over time) of the network of objects and properties and by 
agreement on the naming of objects. Such an approach can greatly benefit from a 
formal framework that allows for representations to be compared and related, for-
mally, in order to support translation and identify where exact translation is possible.  
For example, Stouffs et al. [16] were able to show, using a subsumption relation de-
fined on well-known solid models, that information loss between some of these solid 
models is inevitable. Subsumption is a powerful mechanism for comparing alternative 
representations of the same entity. When a representation subsumes another, the enti-
ties represented by the latter can also be represented by the former representation, 
without any data loss. 

There are many representational formalisms that consider the subsumption rela-
tionship in order to achieve partially ordered representational structures; most are 
based on first-order logic. Applied to building design, a good example is Woodbury et 
al. [18], who adopt typed feature structures as a model for design space exploration. 
Like many other formalisms, typed feature structures consider a record-like data 
structure for representing data types. Record-like data structures facilitate the encap-
sulation of property information in (a variation of) attribute/value pairs [2]. Further-
more, the properties may themselves be typed feature structures, i.e., expressed in 
terms of record-like data structures, containing (sub)properties. Then, the subsump-
tion relationship defines a partial ordering on feature structures. Furthermore, the 
algebraic operations of intersection and union (or others similar) may be defined on 
feature structures so that the intersection of two feature structures is subsumed by 
either structure, and the union of two feature structures subsumes either structure. 

Key to typed feature structures is the notion of partial information structures and 
the existence of a unification procedure that determines if two partial information 
structures are consistent and, if so, combines them into a single, new (partial) infor-
mation structure. Typed feature structures further consider a type hierarchy and a 
description language, where each type defines a corresponding description. The sub-
sumption relation between feature structures extends the subsumption ordering on 
types inherent to the type hierarchy. Woodbury et al. [18] also specify a generating 
procedure that relates feature structures with a description (or type) that they satisfy, 
and that incrementally generates more complete design structures. This fact — that 
the generating procedure monotonically generates more complete information struc-
tures — could be interpreted as excluding the possibility for information loss and thus 
making design states reversible. However, the inclusion of an information removal 
operator is possible providing more flexibility at the cost of limiting search strategies 
[18]. Datta [4] also presents a visual notation for representing design correspondence 
between designer and typed feature structures, using the concepts of mixed initiative 
and rational conversation. 
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3   A Subsumption Relationship over sorts 

Sorts [15] provide a semi-constructive algebraic formulation of design representations 
that enables these to be compared with respect to scope and coverage and that pre-
sents a uniform approach to dealing with and manipulating data constructs. Sorts are 
class structures identified by compositions of properties [16], where properties are 
named entities identified by a type specifying the set of possible values. Exemplar 
types are labels and numeric values, and spatial types such as points, line segments, 
plane segments and volumes. In the construction of sorts, every composition of prop-
erties is considered a sort. Even a single property defines a sort — thus, a sort is typi-
cally a composition of other sorts. We denote a sort identified by a single property as 
primitive and all other sorts as composite. A primitive sort necessarily has a name; a 
composite sort can also have a name assigned. Named sorts can be conceived to de-
fine object classes. Similarly to the property-oriented modeling approach [17], the 
collection of properties of a class is not predefined. This allows class structures easily 
to be modified, both by adding and removing properties, and by altering the construc-
tive relationships. For this purpose, we consider even property relationships and data 
functions (see Section 5) as properties, such that these can be dealt with in the same 
way. 

Properties are composed using one or more constructors. We consider an attribute 
operator (denoted ‘^’), resulting in a conjunctively subordinate composition of prop-
erties, and an operation of sum (denoted ‘+’), resulting in a disjunctively co-ordinate 
composition. For example, a sort of colored labels may be defined as a composition 
of labels and colors under the attribute operator, such that each label has one (or 
more) colors assigned as attribute. On the other hand, a sort of points and line seg-
ments may be defined as a composition of points and line segments under the opera-
tion of sum; a resulting data entity can be either a point or a line segment. The opera-
tion of sum defines a subsumption relationship (denoted ‘≤’) over sorts, as follows: 

a ≤ b ⇔ a + b = b . (1) 

The typed feature structures formalism, like most logic-based formalisms, links 
subsumption directly to information specificity, that is, a structure is subsumed by 
another, if this structure contains strictly more information than the other. One conse-
quence of subsumption is that the absence of information in a design representation 
does not necessarily imply the absence of this information in the design, that is, repre-
sentations are automatically considered to be incomplete. As a result, when searching 
for a design (representation) that satisfies certain information, less specific representa-
tions cannot automatically be excluded (e.g., [3]). 

The subsumption relationship over sorts does not formally apply over the attribute 
operator. Though a ^ b is more information specific than either a or b, a ^ b is not 
subsumed by a or b (nor a + b), i.e., (a ^ b) + a + b ≠ a + b — algebraically, the at-
tribute operator corresponds to the Cartesian product operator; a ^ b is the sort of all 
proper 2-tuples of which the first member belongs to a and the second to b. In logic 
formalisms, a relational construct is used to represent such tuples. For example, in 
description logic [3], roles are defined as binary relationships between individuals. 
Consider a concept Label and a concept Color; the concept of colored labels can then 
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be represented as Label ∩ ∃hasAttribute.Color1, denoting those labels that have an 
attribute that is a color. Here, ∩ denotes intersection and ∃R.C denotes full existential 
quantification with respect to role R and concept C. It follows that Label ∩ ∃hasAt-
tribute.Color ⊆ Label; the concept of labels subsumes the concept of colored labels. A 
similar construct is not considered with respect to sorts — e.g., when looking for a 
yellow square, any square will not do, unless it has the yellow color assigned. In other 
words, logic-based models adhere to an open world — that is, nothing can be ex-
cluded unless it is explicitly excluded — sorts, on the other hand, adhere to a closed 
world, any reasoning is based purely on present or emergent (under a part relation-
ship, see Section 4) information. Sorts only represent data; logic-based models essen-
tially represent knowledge. 

4   A Behavioral Specification for sorts 

An important ingredient of sorts is behavioral specification. Behavioral specification 
is a prerequisite for the effective exchange of data between various representations. 
When an application receives data along with its behavioral specification, the applica-
tion can correctly interpret, manipulate, and represent this information without unex-
pected data loss. For instance, at the representational level, operations that may oth-
erwise seem trivial, such as adding or removing data elements, become resolutely 
non-trivial — for instance, the addition of two numbers when these represent cardinal 
values (e.g., a number of columns that is increased) and when these represent ordinal 
values (e.g., for a given space, determining the minimum distance to a fire exit or the 
(maximum) amount of ventilation required given a variety of activities), and simi-
larly, additive versus subtractive colors, depending on whether these refer to the mix-
ing of surface paints or colors of light, respectively. Fortunately, behavioral specifica-
tion is reasonably limited to the common arithmetic operations of addition, subtrac-
tion, and product. It turns out that the more common CAD operations of creation and 
deletion, and selection and deselection, can all be expressed as some combination of 
addition and subtraction from one design space (sort) to another. The complex opera-
tions of grouping and layering can be treated likewise [14].  

The simplest specification of a part relationship corresponds to the subset relation-
ship on mathematical sets. This part relationship particularly applies to points and 
labels, e.g., a point is part of another point only if the two are identical, and a label is a 
part of a collection of labels only if it is identical to one of the labels in the collection. 
Then, operations of addition (combining elements), subtraction, and product (intersect-
ing elements) correspond to set union, difference, and intersection, respectively. 

Another kind of behavior arises when we consider the part relationship on line 
segments. A line segment is an interval on an infinite line carrier; in general, one-
dimensional quantities such as time may be considered as intervals. An interval is a 
part of another interval if it is embedded in this interval; intervals on the same carrier 
that are adjacent or overlap combine into a single interval. Specifically, interval be-
havior can be expressed in terms of the behavior of the boundaries of intervals [7]. 
                                                           
1 Note that this syntax differs slightly from the syntax adopted by Baader et al. [3], which, for 

example, differentiates the intersection constructor on concepts from the operation of inter-
section on interpretations. Interpretations do not play a role in this example. 
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Behaviors also apply to composite sorts, that is, a part relationship can be defined 
for its component data elements belonging to a composite sort defined under a con-
junction (attribute operator) or disjunction. The composite sort inherits its behavior 
from its components in a manner that depends on the compositional relationship.  

The disjunctive operator distinguishes all operand sorts such that each data element 
belongs explicitly to one of these sorts. Consequently, a data element is part of a dis-
junctive data collection if it is a part of the partial data collection of elements from the 
same component sort. In other words, data collections from different component 
sorts, under the disjunctive operator, never interact; the resulting data collection is the 
set of collections from all component sorts. When the operation of addition, subtrac-
tion or product is applied to two data collections of the same disjunctive sort, the 
operation instead applies to the respective component collections. 

Under the attribute operator a data element is part of a data collection if it is a part 
of the data elements of the first component sort, and if it has an attribute collection 
that is a part of the respective attribute collection(s) of the data element(s) of the first 
component sort it is a part of. When data collections of the same composite sort (un-
der the attribute operator) are pairwise summed (differenced or intersected), identical 
data elements merge, and their attribute collections combine, under this operation. 
Elements with empty attributes are removed. 

When reorganizing the composition of sorts under the attribute operator, the corre-
sponding behavior may be altered in such a way as to trigger data loss. Consider a 
behavior for weights [12] (e.g., line thickness or surface tones) as becomes apparent 
from drawings on paper — a single line drawn multiple times, each time with a dif-
ferent thickness, appears as if it were drawn once with the largest thickness, even 
though it assumes the same line with other thickness. When using numeric values to 
represent weights, the part relation on weights corresponds to the less-than-or-equal 
relation on numeric values. Thus, weights can combine into a single weight, which 
has as its value the least upper bound of all the respective weight values, i.e., their 
maximum value. Similarly, the common value (intersection) of a collection of weights 
is the greatest lower bound of all the individual weights, i.e., their minimum value. 
The result of subtracting one weight from another is either a weight that equals the 
numeric difference of their values or zero (i.e., no weight), and this depends on their 
relative values.  

Now consider a sort of weighted entities, say points, i.e., a sort of points with at-
tribute weights, and a sort of pointed weights, i.e., a sort of weights with attribute 
points. A collection of weighted points defines a set of non-identical points, each 
having a single weight assigned (possibly the maximum value of various weights 
assigned to the same point). These weights may be different for different points. On 
the other hand, a collection of pointed weights is defined as a single weight (which is 
the maximum of all weights considered) with an attribute collection of points. In both 
cases, points are associated with weights. However, in the first case, different points 
may be associated with different weights, whereas, in the second case, all points are 
associated with the same weight. In a conversion from the first to the second sort, data 
loss is inevitable. 

An understanding of when and where exact translation of data between different 
sorts, or representations, is possible, becomes important for assessing data integrity 
and controlling data flow [16]. Data loss can easily be assessed under the subsumption 
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relationship. If one sort subsumes another, exact translation is trivial from the part to 
the whole. If two sorts subsume a third, exact translation only applies to the data that 
can be said to belong to the third sort. When the subsumption relationship doesn’t 
apply, such as under the attribute operator — as is the case in the examples above — 
sorts can still be compared, roughly, as equivalent, similar, convertible and incongru-
ent [15]. Two sorts are said to be equivalent if these are semantically derived from the 
same sort — through renaming. Equivalent sorts are syntactically identical; this guar-
antees exact translation of data, except for a loss of semantic identity. Two sorts are 
denoted similar if these are similarly constructed from equivalent sorts. The similarity 
of sorts relies on the existence of a semi-canonical form of a composite sort as a dis-
junctive composition over sorts, each of which is either a primitive sort or composed 
of primitive sorts under the attribute operator [15]. Associative and distributive rules 
with respect to both compositional operators allow for a syntactical reduction of sorts 
to this semi-canonical form. If two sorts reduce to the same semi-canonical form, then 
these sorts are considered similar, and exact translation, except for a loss of semantic 
identity, applies. Otherwise, two sorts are either convertible or incongruent. If two 
sorts are convertible, data loss depends also on their behavioral specification, as in the 
examples above. 

5   Functional Descriptions 

The part relationship that underlies the behavioral specification for a sort enables data 
recognition to be implemented for this sort; since composite sorts inherit their behavior 
and part relationship from their component sorts, any technical difficulties in imple-
menting data recognition apply just once, for each primitive sort. Data recognition 
plays an important role in the specification of design queries. So does counting. Stouffs 
and Krishnamurti [13] indicate how a query language for querying graphical design 
information can be built from basic operations and geometric relations that are defined 
as part of a maximal element representation for weighted geometries, augmented with 
operations that are derived from techniques of counting and data recognition. For  
example, by augmenting networks of utility pipes, represented as volumes (or plane 
segments) with appropriate behavioral specification, with labels as attributes, and by 
combining these augmented geometries under the operation of sum, colliding pipes 
specifically result in geometries that have more than one label as attribute. These colli-
sions can easily be counted, while the labels on each geometry identify the colliding 
pipes, and each geometry itself specifies the location of the collision [13]. 

In order to consider counting and other functional behavior as part of the represen-
tational approach, sorts consider data functions as a data kind, offering functional 
behavior integrated into data constructs. Data functions are assigned to apply to one 
or more selected sorts — specifically, they apply over tuples of data entities, one from 
each selected sort, where these data entities relate to the function under a sequence of 
one or more compositional relationships. Then, the result value of the data function is 
computed (iteratively) from the values of these tuples of data entities. The value of a 
data entity used in the computation is the actual value of the entity, such as its  
numeric value, or the position vector for a point, but may also be a derived value, 
such as the length of a line segment, or its direction vector. The data function’s result 
value is automatically recomputed each time the data structure is traversed, e.g., when 
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visualizing the structure. As a data kind, data functions specify both a functional de-
scription, a result value, and one or more sorts and their respective value methods. 

Data functions can introduce specific behaviors and functionalities into representa-
tional structures, for the purpose of counting or other numerical or geometric opera-
tions. Consider, for example, a sort of linear building elements, represented as line 
segments, with an attribute sort specifying the cost of each element per unit length. 
Then, by augmenting the corresponding data construct with a sum-over-product func-
tion applied to the numeric value of the cost entities and the length value of the linear 
elements, the value of this function is automatically computed as the total cost of all 
the building elements. As another example, consider a composite sort specifying both 
a reference point and a number of emergency exits represented as line segments. 
Then, a minimum-value function in combination with a function that computes the 
distance between a position vector and a line segment, specified by two end vectors, 
will yield the minimum distance from the reference point to any emergency exit. 

Moving data functions in the data construct, by altering the compositional structure 
of the representation, alters the scope of the function — that is, the sorts’ data entities 
that relate to the function under a sequence of one or more compositional relation-
ships — and thereby its result. In this way, data functions can be used as a technique 
for querying design information, where moving the data function alters the query. 

6   Discussion 

Sorts present an algebraic formalism for constructing design representations. A sortal 
representation is a composition of sorts that can easily be modified by adding and 
removing sorts or by altering the constructive relationships, and that can be given a 
name. A subsumption relationship over sorts, in combination with a behavioral specifi-
cation of sorts, allows sortal representations to be compared and related with respect to 
scope and coverage, and data loss to be assessed when converting data from one repre-
sentation to another. Data functions can be integrated into data constructs in order to 
query design information. In this way, the design representation is an intricate part of 
the design outcome, and the construction of a design representation can be the result of 
correspondence that forms part of the design process. This naturally raises the question 
how such correspondence can be facilitated through an application interface. 

In developing such an application interface, we consider three aspects in particular; 
these are the ability to conceptualize representational structures, the need for effective 
visualizations of these structures and the embedding of the application in a practical 
context. First, we’re considering the definition of sorts as the specification of a con-
cept hierarchy that, subsequently, can be detailed into a representational structure 
consisting of primitive sorts and constructive relationships. By separating the specifi-
cation of the representational semantics (the names of the structures and their hierar-
chical relationships) from the specification of the nuts and bolts (the data types and 
their behaviors, and the distinction between disjunctively compositional and attribute 
relationships) we aim to ease a conceptualization of the intended representational 
structures that facilitates their development. Secondly, we’re exploring effective 
(graphical) visualizations of (parts of) the representational and data structures that can 
offer the user insight into these structures. In particular, we’re implementing a dy-
namic visualization of these structures with variable focus and level of detail. 
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Thirdly, we’re investigating practical applications of sorts in order to illustrate 
their strengths in practical contexts. Specifically, we’re looking into the context of 
collaborative building design projects where a CAD program is used to express the 
design but where the design process also involves other information that is collected 
and stored in the form of documents. We’re investigating the use of sorts to specify 
relationships between these documents and elements within the CAD model that help 
to organize this information. Given a sort element_ids ^ element_descriptions that 
reflects on (part of) the CAD model, the data for this sort can be automatically gener-
ated from the CAD data. This representation can then be extended using the sort ele-
ment_ids ^ (element_descriptions + document_references) to represent CAD elements 
with associated document references. Using a graphical interface, the user can specify 
both the references and their associations to CAD elements. When the CAD model is 
changed, the data for element_ids ^ element_descriptions can be regenerated, while 
the data for element_ids ^ document_references can be retrieved from element_ids ^ 
(element_descriptions + document_references) using an automatic conversion based 
on the matching of both sorts. Since the first sort is subsumed by the second (‘^’ 
distributes over ‘+’), exact translation applies. Merging both data forms re-associates 
the document references to the CAD elements, on condition that the respective ele-
ment IDs have not changed. 

Park and Krishnamurti investigate the use of sorts in the context of building con-
struction, within a larger project that investigates ways of integrating “suites of 
emerging evaluation technologies to help find, record, manage, and limit the impact 
of construction defects” [10]. The project considers an Integrated Project Model 
(IPM) that is continuously updated to reflect on both the as-designed and as-built 
building models. “The as-designed model is an IFC file obtained from a commercial 
parametric design software. Laser scanning provides accurate 3D geometric as-built 
information  (e.g., component identity); similarly, embedded sensors provide frequent 
quality related information (e.g., thermal expansion)” [10]. Sorts are adopted to pro-
vide the flexibility to generate both pre-defined and user-defined views. For example, 
Park and Krishnamurti consider the use of sorts to generate different information 
views of a target object. “The embedded sensor planner needs the geometric informa-
tion, location, material type, and construction method of the target object. On the 
other hand, the laser scanning technician needs two-dimensional geometric informa-
tion of the target region, geometric information, and location of the target object.” [9] 

Sortal representations can complement a Building Information Model (BIM). Kuhn 
and Krishnamurti argue that “current methods of obtaining precise information from a 
BIM are cumbersome. Furthermore, it is computationally expensive to produce a 
representation from a BIM” [10]. We aim to put forward the concept of a sortal build-
ing model as an extension to a BIM, offering the user the means to build up design 
representations, in support of common or interdisciplinary views, and to use such 
representations for querying building information. 
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