
, pp. 653 – 662, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Constructing Design Representations

Rudi Stouffs and Albert ter Haar

Design Informatics Chair, Dept. of Building Technology, Faculty of Architecture, Delft
University of Technology, Berlageweg 1, 2628 CR Delft, The Netherlands

{r.m.f.stouffs, a.terhaar}@tudelft.nl

Abstract. Supporting the early phases of design requires, among others, support
for the specification and use of multiple and evolving representations, and for
the exchange of information between these representations. We consider a
complex adaptive system as a model for the development of design representa-
tions, and present a semi-constructive algebraic formalism for design represen-
tations, termed sorts, as a candidate for supporting this approach. We analyze
sorts with respect to the requirements of a complex adaptive system and com-
pare it to other representational formalisms that consider a constructive ap-
proach to representations.

1 Introduction

Design is a multi-disciplinary process, involving participants, knowledge and infor-
mation from various domains. As such, design problems require a multiplicity of
viewpoints each distinguished by particular interests and emphases, and each of these
views, in turn, requires a different representation of the design entity. Even within the
same task and for the same person, various representations may serve different pur-
poses defined within the problem context and the selected approach. Especially in the
early phases of design, the exploratory and dynamic nature of the design process
invites a variety of approaches and representations, and any particular representation
may be as much an outcome of as a means to the design process. Therefore, support-
ing the designer in these early phases requires, among others, support for the specifi-
cation and use of multiple and evolving representations, and for the exchange of in-
formation between these representations.

Various modeling schemes for defining product models and ontologies exist (e.g.,
[1], [8]). These allow for the development of representations in support of different
disciplines or methodologies, and enable information exchange between representa-
tions and collaboration across disciplines. However, they still require an a priori effort
at establishing an agreement on concepts and relationships, which offer a complete
and uniform description of the project data, mainly independent of any project specif-
ics. We are particularly interested in providing the user access to the specification of a
design representation, and the means to create and adapt design representations ac-
cording to the designer’s intentions in the task at hand, in support of creativity. Crea-
tivity, as an activity in the design process, relies on a restructuring of information that
is not yet captured in a current information structure — that is, emergent information
— for example, when the design provides new insights that lead to a new interpreta-
tion of constituent design entities.

I.F.C. Smith (Ed.): EG-ICE 2006, LNAI 4200

654 R. Stouffs and A. ter Haar

This flexibility in using design representations necessitates a solution for dealing
with the complexity of representations. For this purpose, we consider a complex adap-
tive system as a model for the development of design representations, in particular, its
three key principles [5]. First, the outcome of the design process is generally unpre-
dictable, as it is indeterminately related to the design requirements and the design
process. Under the assumption that the design representation is an intricate part of the
design outcome, this representation is necessarily also unpredictable. Secondly, the
state or history of a design representation is in principle irreversible as changes to the
representational structure can result in data loss. Finally, with respect to the emer-
gence of order in the development of a design representation, we refer to Prigogine
and Stengers [11]: “Order arises from complexity through self-organization.” In the
context of constructing a design representation, the process of self-organization can
take on the form of human communication or correspondence, leading to an agree-
ment on the representation that prevails in the system (see also [6]). This communica-
tion may be considered among different users or between the user and the design
application (correspondence between the user’s mental model and the application’s
design representation).

Typically, a representation is a complex structure of properties and constructors,
and a representation may be a construction of another [16]. As such, an approach to
constructing representations in terms of other representations can be considered, in
which correspondence can be achieved through the adaptation of the representational
structure of properties and constructors and by agreement on the naming of represen-
tations, or parts thereof. Such an approach can benefit from a formal framework that
allows for alternative representations of the same entity to be compared and related
with respect to scope and coverage, in order to support translation and identify where
exact translation is possible. Considering a representation as a complex structure of
properties and constructors, comparing alternative representations requires a compari-
son of their respective properties and their mutual relationships, and of the overall
construction. Such a comparison will not only yield a possible mapping in support of
information exchange, but also uncover potential data loss when moving data from
less-restrictive to more-restrictive representations. At the same time, the vocabulary
of available properties and constructors defines the expressive power of the represen-
tational framework.

In this paper, we consider a semi-constructive algebraic formalism for design rep-
resentations, termed sorts [15], as a candidate for supporting a constructive approach
to design representations, and analyze sorts with respect to the requirements of a
complex adaptive system. In particular, we consider the ability of sorts to support
correspondence on design representations, to compare representations with respect to
scope and coverage and detect data loss, and consider its potential to support the de-
sign process and the design outcome. Critical in this respect is the formal specifica-
tion of sortal representations in terms of other sortal representations under formal
compositional operations, the behavioral specification of sortal representations ena-
bling the comparison of alternative representations and the detection of data loss, and
the ability to integrate data functions into sortal representations. Sorts are also com-
pared to other representational formalisms that consider a constructive approach to
representations.

 Constructing Design Representations 655

2 Incrementally Constructing Design Representations

Van Leeuwen et al. [17] describe a property-oriented data modeling approach, in
which design concepts are represented as flexible networks of objects and properties.
In contrast to traditional modeling approaches, an object has no predefined set of
properties and the composition of properties defining an object can be changed at any
time. Under the property-modeling approach, correspondence can be achieved
through the development (over time) of the network of objects and properties and by
agreement on the naming of objects. Such an approach can greatly benefit from a
formal framework that allows for representations to be compared and related, for-
mally, in order to support translation and identify where exact translation is possible.
For example, Stouffs et al. [16] were able to show, using a subsumption relation de-
fined on well-known solid models, that information loss between some of these solid
models is inevitable. Subsumption is a powerful mechanism for comparing alternative
representations of the same entity. When a representation subsumes another, the enti-
ties represented by the latter can also be represented by the former representation,
without any data loss.

There are many representational formalisms that consider the subsumption rela-
tionship in order to achieve partially ordered representational structures; most are
based on first-order logic. Applied to building design, a good example is Woodbury et
al. [18], who adopt typed feature structures as a model for design space exploration.
Like many other formalisms, typed feature structures consider a record-like data
structure for representing data types. Record-like data structures facilitate the encap-
sulation of property information in (a variation of) attribute/value pairs [2]. Further-
more, the properties may themselves be typed feature structures, i.e., expressed in
terms of record-like data structures, containing (sub)properties. Then, the subsump-
tion relationship defines a partial ordering on feature structures. Furthermore, the
algebraic operations of intersection and union (or others similar) may be defined on
feature structures so that the intersection of two feature structures is subsumed by
either structure, and the union of two feature structures subsumes either structure.

Key to typed feature structures is the notion of partial information structures and
the existence of a unification procedure that determines if two partial information
structures are consistent and, if so, combines them into a single, new (partial) infor-
mation structure. Typed feature structures further consider a type hierarchy and a
description language, where each type defines a corresponding description. The sub-
sumption relation between feature structures extends the subsumption ordering on
types inherent to the type hierarchy. Woodbury et al. [18] also specify a generating
procedure that relates feature structures with a description (or type) that they satisfy,
and that incrementally generates more complete design structures. This fact — that
the generating procedure monotonically generates more complete information struc-
tures — could be interpreted as excluding the possibility for information loss and thus
making design states reversible. However, the inclusion of an information removal
operator is possible providing more flexibility at the cost of limiting search strategies
[18]. Datta [4] also presents a visual notation for representing design correspondence
between designer and typed feature structures, using the concepts of mixed initiative
and rational conversation.

656 R. Stouffs and A. ter Haar

3 A Subsumption Relationship over sorts

Sorts [15] provide a semi-constructive algebraic formulation of design representations
that enables these to be compared with respect to scope and coverage and that pre-
sents a uniform approach to dealing with and manipulating data constructs. Sorts are
class structures identified by compositions of properties [16], where properties are
named entities identified by a type specifying the set of possible values. Exemplar
types are labels and numeric values, and spatial types such as points, line segments,
plane segments and volumes. In the construction of sorts, every composition of prop-
erties is considered a sort. Even a single property defines a sort — thus, a sort is typi-
cally a composition of other sorts. We denote a sort identified by a single property as
primitive and all other sorts as composite. A primitive sort necessarily has a name; a
composite sort can also have a name assigned. Named sorts can be conceived to de-
fine object classes. Similarly to the property-oriented modeling approach [17], the
collection of properties of a class is not predefined. This allows class structures easily
to be modified, both by adding and removing properties, and by altering the construc-
tive relationships. For this purpose, we consider even property relationships and data
functions (see Section 5) as properties, such that these can be dealt with in the same
way.

Properties are composed using one or more constructors. We consider an attribute
operator (denoted ‘^’), resulting in a conjunctively subordinate composition of prop-
erties, and an operation of sum (denoted ‘+’), resulting in a disjunctively co-ordinate
composition. For example, a sort of colored labels may be defined as a composition
of labels and colors under the attribute operator, such that each label has one (or
more) colors assigned as attribute. On the other hand, a sort of points and line seg-
ments may be defined as a composition of points and line segments under the opera-
tion of sum; a resulting data entity can be either a point or a line segment. The opera-
tion of sum defines a subsumption relationship (denoted ‘≤’) over sorts, as follows:

a ≤ b ⇔ a + b = b . (1)

The typed feature structures formalism, like most logic-based formalisms, links
subsumption directly to information specificity, that is, a structure is subsumed by
another, if this structure contains strictly more information than the other. One conse-
quence of subsumption is that the absence of information in a design representation
does not necessarily imply the absence of this information in the design, that is, repre-
sentations are automatically considered to be incomplete. As a result, when searching
for a design (representation) that satisfies certain information, less specific representa-
tions cannot automatically be excluded (e.g., [3]).

The subsumption relationship over sorts does not formally apply over the attribute
operator. Though a ^ b is more information specific than either a or b, a ^ b is not
subsumed by a or b (nor a + b), i.e., (a ^ b) + a + b ≠ a + b — algebraically, the at-
tribute operator corresponds to the Cartesian product operator; a ^ b is the sort of all
proper 2-tuples of which the first member belongs to a and the second to b. In logic
formalisms, a relational construct is used to represent such tuples. For example, in
description logic [3], roles are defined as binary relationships between individuals.
Consider a concept Label and a concept Color; the concept of colored labels can then

 Constructing Design Representations 657

be represented as Label ∩ ∃hasAttribute.Color1, denoting those labels that have an
attribute that is a color. Here, ∩ denotes intersection and ∃R.C denotes full existential
quantification with respect to role R and concept C. It follows that Label ∩ ∃hasAt-
tribute.Color ⊆ Label; the concept of labels subsumes the concept of colored labels. A
similar construct is not considered with respect to sorts — e.g., when looking for a
yellow square, any square will not do, unless it has the yellow color assigned. In other
words, logic-based models adhere to an open world — that is, nothing can be ex-
cluded unless it is explicitly excluded — sorts, on the other hand, adhere to a closed
world, any reasoning is based purely on present or emergent (under a part relation-
ship, see Section 4) information. Sorts only represent data; logic-based models essen-
tially represent knowledge.

4 A Behavioral Specification for sorts

An important ingredient of sorts is behavioral specification. Behavioral specification
is a prerequisite for the effective exchange of data between various representations.
When an application receives data along with its behavioral specification, the applica-
tion can correctly interpret, manipulate, and represent this information without unex-
pected data loss. For instance, at the representational level, operations that may oth-
erwise seem trivial, such as adding or removing data elements, become resolutely
non-trivial — for instance, the addition of two numbers when these represent cardinal
values (e.g., a number of columns that is increased) and when these represent ordinal
values (e.g., for a given space, determining the minimum distance to a fire exit or the
(maximum) amount of ventilation required given a variety of activities), and simi-
larly, additive versus subtractive colors, depending on whether these refer to the mix-
ing of surface paints or colors of light, respectively. Fortunately, behavioral specifica-
tion is reasonably limited to the common arithmetic operations of addition, subtrac-
tion, and product. It turns out that the more common CAD operations of creation and
deletion, and selection and deselection, can all be expressed as some combination of
addition and subtraction from one design space (sort) to another. The complex opera-
tions of grouping and layering can be treated likewise [14].

The simplest specification of a part relationship corresponds to the subset relation-
ship on mathematical sets. This part relationship particularly applies to points and
labels, e.g., a point is part of another point only if the two are identical, and a label is a
part of a collection of labels only if it is identical to one of the labels in the collection.
Then, operations of addition (combining elements), subtraction, and product (intersect-
ing elements) correspond to set union, difference, and intersection, respectively.

Another kind of behavior arises when we consider the part relationship on line
segments. A line segment is an interval on an infinite line carrier; in general, one-
dimensional quantities such as time may be considered as intervals. An interval is a
part of another interval if it is embedded in this interval; intervals on the same carrier
that are adjacent or overlap combine into a single interval. Specifically, interval be-
havior can be expressed in terms of the behavior of the boundaries of intervals [7].

1 Note that this syntax differs slightly from the syntax adopted by Baader et al. [3], which, for

example, differentiates the intersection constructor on concepts from the operation of inter-
section on interpretations. Interpretations do not play a role in this example.

658 R. Stouffs and A. ter Haar

Behaviors also apply to composite sorts, that is, a part relationship can be defined
for its component data elements belonging to a composite sort defined under a con-
junction (attribute operator) or disjunction. The composite sort inherits its behavior
from its components in a manner that depends on the compositional relationship.

The disjunctive operator distinguishes all operand sorts such that each data element
belongs explicitly to one of these sorts. Consequently, a data element is part of a dis-
junctive data collection if it is a part of the partial data collection of elements from the
same component sort. In other words, data collections from different component
sorts, under the disjunctive operator, never interact; the resulting data collection is the
set of collections from all component sorts. When the operation of addition, subtrac-
tion or product is applied to two data collections of the same disjunctive sort, the
operation instead applies to the respective component collections.

Under the attribute operator a data element is part of a data collection if it is a part
of the data elements of the first component sort, and if it has an attribute collection
that is a part of the respective attribute collection(s) of the data element(s) of the first
component sort it is a part of. When data collections of the same composite sort (un-
der the attribute operator) are pairwise summed (differenced or intersected), identical
data elements merge, and their attribute collections combine, under this operation.
Elements with empty attributes are removed.

When reorganizing the composition of sorts under the attribute operator, the corre-
sponding behavior may be altered in such a way as to trigger data loss. Consider a
behavior for weights [12] (e.g., line thickness or surface tones) as becomes apparent
from drawings on paper — a single line drawn multiple times, each time with a dif-
ferent thickness, appears as if it were drawn once with the largest thickness, even
though it assumes the same line with other thickness. When using numeric values to
represent weights, the part relation on weights corresponds to the less-than-or-equal
relation on numeric values. Thus, weights can combine into a single weight, which
has as its value the least upper bound of all the respective weight values, i.e., their
maximum value. Similarly, the common value (intersection) of a collection of weights
is the greatest lower bound of all the individual weights, i.e., their minimum value.
The result of subtracting one weight from another is either a weight that equals the
numeric difference of their values or zero (i.e., no weight), and this depends on their
relative values.

Now consider a sort of weighted entities, say points, i.e., a sort of points with at-
tribute weights, and a sort of pointed weights, i.e., a sort of weights with attribute
points. A collection of weighted points defines a set of non-identical points, each
having a single weight assigned (possibly the maximum value of various weights
assigned to the same point). These weights may be different for different points. On
the other hand, a collection of pointed weights is defined as a single weight (which is
the maximum of all weights considered) with an attribute collection of points. In both
cases, points are associated with weights. However, in the first case, different points
may be associated with different weights, whereas, in the second case, all points are
associated with the same weight. In a conversion from the first to the second sort, data
loss is inevitable.

An understanding of when and where exact translation of data between different
sorts, or representations, is possible, becomes important for assessing data integrity
and controlling data flow [16]. Data loss can easily be assessed under the subsumption

 Constructing Design Representations 659

relationship. If one sort subsumes another, exact translation is trivial from the part to
the whole. If two sorts subsume a third, exact translation only applies to the data that
can be said to belong to the third sort. When the subsumption relationship doesn’t
apply, such as under the attribute operator — as is the case in the examples above —
sorts can still be compared, roughly, as equivalent, similar, convertible and incongru-
ent [15]. Two sorts are said to be equivalent if these are semantically derived from the
same sort — through renaming. Equivalent sorts are syntactically identical; this guar-
antees exact translation of data, except for a loss of semantic identity. Two sorts are
denoted similar if these are similarly constructed from equivalent sorts. The similarity
of sorts relies on the existence of a semi-canonical form of a composite sort as a dis-
junctive composition over sorts, each of which is either a primitive sort or composed
of primitive sorts under the attribute operator [15]. Associative and distributive rules
with respect to both compositional operators allow for a syntactical reduction of sorts
to this semi-canonical form. If two sorts reduce to the same semi-canonical form, then
these sorts are considered similar, and exact translation, except for a loss of semantic
identity, applies. Otherwise, two sorts are either convertible or incongruent. If two
sorts are convertible, data loss depends also on their behavioral specification, as in the
examples above.

5 Functional Descriptions

The part relationship that underlies the behavioral specification for a sort enables data
recognition to be implemented for this sort; since composite sorts inherit their behavior
and part relationship from their component sorts, any technical difficulties in imple-
menting data recognition apply just once, for each primitive sort. Data recognition
plays an important role in the specification of design queries. So does counting. Stouffs
and Krishnamurti [13] indicate how a query language for querying graphical design
information can be built from basic operations and geometric relations that are defined
as part of a maximal element representation for weighted geometries, augmented with
operations that are derived from techniques of counting and data recognition. For
example, by augmenting networks of utility pipes, represented as volumes (or plane
segments) with appropriate behavioral specification, with labels as attributes, and by
combining these augmented geometries under the operation of sum, colliding pipes
specifically result in geometries that have more than one label as attribute. These colli-
sions can easily be counted, while the labels on each geometry identify the colliding
pipes, and each geometry itself specifies the location of the collision [13].

In order to consider counting and other functional behavior as part of the represen-
tational approach, sorts consider data functions as a data kind, offering functional
behavior integrated into data constructs. Data functions are assigned to apply to one
or more selected sorts — specifically, they apply over tuples of data entities, one from
each selected sort, where these data entities relate to the function under a sequence of
one or more compositional relationships. Then, the result value of the data function is
computed (iteratively) from the values of these tuples of data entities. The value of a
data entity used in the computation is the actual value of the entity, such as its
numeric value, or the position vector for a point, but may also be a derived value,
such as the length of a line segment, or its direction vector. The data function’s result
value is automatically recomputed each time the data structure is traversed, e.g., when

660 R. Stouffs and A. ter Haar

visualizing the structure. As a data kind, data functions specify both a functional de-
scription, a result value, and one or more sorts and their respective value methods.

Data functions can introduce specific behaviors and functionalities into representa-
tional structures, for the purpose of counting or other numerical or geometric opera-
tions. Consider, for example, a sort of linear building elements, represented as line
segments, with an attribute sort specifying the cost of each element per unit length.
Then, by augmenting the corresponding data construct with a sum-over-product func-
tion applied to the numeric value of the cost entities and the length value of the linear
elements, the value of this function is automatically computed as the total cost of all
the building elements. As another example, consider a composite sort specifying both
a reference point and a number of emergency exits represented as line segments.
Then, a minimum-value function in combination with a function that computes the
distance between a position vector and a line segment, specified by two end vectors,
will yield the minimum distance from the reference point to any emergency exit.

Moving data functions in the data construct, by altering the compositional structure
of the representation, alters the scope of the function — that is, the sorts’ data entities
that relate to the function under a sequence of one or more compositional relation-
ships — and thereby its result. In this way, data functions can be used as a technique
for querying design information, where moving the data function alters the query.

6 Discussion

Sorts present an algebraic formalism for constructing design representations. A sortal
representation is a composition of sorts that can easily be modified by adding and
removing sorts or by altering the constructive relationships, and that can be given a
name. A subsumption relationship over sorts, in combination with a behavioral specifi-
cation of sorts, allows sortal representations to be compared and related with respect to
scope and coverage, and data loss to be assessed when converting data from one repre-
sentation to another. Data functions can be integrated into data constructs in order to
query design information. In this way, the design representation is an intricate part of
the design outcome, and the construction of a design representation can be the result of
correspondence that forms part of the design process. This naturally raises the question
how such correspondence can be facilitated through an application interface.

In developing such an application interface, we consider three aspects in particular;
these are the ability to conceptualize representational structures, the need for effective
visualizations of these structures and the embedding of the application in a practical
context. First, we’re considering the definition of sorts as the specification of a con-
cept hierarchy that, subsequently, can be detailed into a representational structure
consisting of primitive sorts and constructive relationships. By separating the specifi-
cation of the representational semantics (the names of the structures and their hierar-
chical relationships) from the specification of the nuts and bolts (the data types and
their behaviors, and the distinction between disjunctively compositional and attribute
relationships) we aim to ease a conceptualization of the intended representational
structures that facilitates their development. Secondly, we’re exploring effective
(graphical) visualizations of (parts of) the representational and data structures that can
offer the user insight into these structures. In particular, we’re implementing a dy-
namic visualization of these structures with variable focus and level of detail.

 Constructing Design Representations 661

Thirdly, we’re investigating practical applications of sorts in order to illustrate
their strengths in practical contexts. Specifically, we’re looking into the context of
collaborative building design projects where a CAD program is used to express the
design but where the design process also involves other information that is collected
and stored in the form of documents. We’re investigating the use of sorts to specify
relationships between these documents and elements within the CAD model that help
to organize this information. Given a sort element_ids ^ element_descriptions that
reflects on (part of) the CAD model, the data for this sort can be automatically gener-
ated from the CAD data. This representation can then be extended using the sort ele-
ment_ids ^ (element_descriptions + document_references) to represent CAD elements
with associated document references. Using a graphical interface, the user can specify
both the references and their associations to CAD elements. When the CAD model is
changed, the data for element_ids ^ element_descriptions can be regenerated, while
the data for element_ids ^ document_references can be retrieved from element_ids ^
(element_descriptions + document_references) using an automatic conversion based
on the matching of both sorts. Since the first sort is subsumed by the second (‘^’
distributes over ‘+’), exact translation applies. Merging both data forms re-associates
the document references to the CAD elements, on condition that the respective ele-
ment IDs have not changed.

Park and Krishnamurti investigate the use of sorts in the context of building con-
struction, within a larger project that investigates ways of integrating “suites of
emerging evaluation technologies to help find, record, manage, and limit the impact
of construction defects” [10]. The project considers an Integrated Project Model
(IPM) that is continuously updated to reflect on both the as-designed and as-built
building models. “The as-designed model is an IFC file obtained from a commercial
parametric design software. Laser scanning provides accurate 3D geometric as-built
information (e.g., component identity); similarly, embedded sensors provide frequent
quality related information (e.g., thermal expansion)” [10]. Sorts are adopted to pro-
vide the flexibility to generate both pre-defined and user-defined views. For example,
Park and Krishnamurti consider the use of sorts to generate different information
views of a target object. “The embedded sensor planner needs the geometric informa-
tion, location, material type, and construction method of the target object. On the
other hand, the laser scanning technician needs two-dimensional geometric informa-
tion of the target region, geometric information, and location of the target object.” [9]

Sortal representations can complement a Building Information Model (BIM). Kuhn
and Krishnamurti argue that “current methods of obtaining precise information from a
BIM are cumbersome. Furthermore, it is computationally expensive to produce a
representation from a BIM” [10]. We aim to put forward the concept of a sortal build-
ing model as an extension to a BIM, offering the user the means to build up design
representations, in support of common or interdisciplinary views, and to use such
representations for querying building information.

Acknowledgments

The first author wishes to thank Ramesh Krishnamurti for his collaboration on this
research.

662 R. Stouffs and A. ter Haar

References

1. AIA Model Support Group: IFC2x Edition 3. International Alliance for Interoperability
(2006). http://www.iai-international.org/Model/R2x3_final/index.htm (1 May 2006)

2. Aït-Kaci, H.: A lattice theoretic approach to computation based on a calculus of partially
ordered type structures (property inheritance, semantic nets, graph unification). Ph.D.
Diss. University of Pennsylvania, Philadelphia, PA (1984)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Descrip-
tion Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

4. Datta, S.: Modeling dialogue with mixed initiative in design space exploration. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing 20 (2006) 129-142

5. Dooley, K.J.: A complex adaptive systems model of organization change. Nonlinear Dy-
namics, Psychology, and Life Sciences 1 (1997) 69-97

6. Kooistra, J.: Flowing. Systems Research and Behavioral Science 19 (2002) 123-127
7. Krishnamurti, R., Stouffs, R.: The boundary of a shape and its classification. The Journal

of Design Research 4(1) (2004)
8. Manola, F., Miller, E. (eds.): RDF Primer. W3C World Wide Web Consortium (2004).

http://www.w3.org/TR/rdf-primer/ (1 May 2006)
9. Park, K., Krishnamurti, R.: Flexible design representation for construction. In: Lee, H.S.,

Choi, J.W. (eds.): CAADRIA 2004. Yonsei University Press, Seoul, South Korea (2004)
671-680

10. Park, K., Krishnamurti, R.: The digital diary of a building. In: Bhatt, A. (ed.):
CAADRIA'05, Vol 2. TVB School of Habitat Studies, New Delhi (2005) 15-25

11. Prigogine, I., Stengers, I.: Order out of Chaos. Bantam Books, New York (1984)
12. Stiny, G.: Weights. Environment and Planning B: Planning and Design 19 (1992) 413-430
13. Stouffs, R., Krishnamurti, R.: On a query language for weighted geometries. In: Moselhi,

O., Bedard, C., Alkass, S. (eds.): Third Canadian Conference on Computing in Civil and
Building Engineering. Canadian Society for Civil Engineering, Montreal (1996) 783-793

14. Stouffs, R., Krishnamurti, R.: The extensibility and applicability of geometric representa-
tions. In: Architecture proceedings of 3rd Design and Decision Support Systems in Archi-
tecture and Urban Planning Conference. Eindhoven University of Technology, Eindhoven,
The Netherlands (1996) 436-452

15. Stouffs, R. Krishnamurti, R., Cumming, M.: Mapping design information by manipulating
representational structures. In: Akın, Ö., Krishnamurti, R., Lam, K.P. (eds.): Generative
CAD Systems. School of Architecture, Carnegie Mellon University, Pittsburgh, PA (2004)
387-400

16. Stouffs, R., Krishnamurti, R., Eastman, C.M.: A Formal Structure for Nonequivalent Solid
Representations. In: Finger, S., Mäntylä, M., Tomiyama, T. (eds.): Proc. IFIP WG 5.2
Workshop on Knowledge Intensive CAD II. IFIP WG 5.2, Pittsburgh, PA (1996) 269-289

17. van Leeuwen, J.P., Hendrickx A., Fridqvist, S.: Towards dynamic information modelling
in architectural design. Proc. CIB-W78 International Conference IT in Construction in Af-
rica. CSIR, Pretoria (2001) 19.1-19.14

18. Woodbury, R., Burrow, A., Datta, S., Chang, T.: Typed feature structures and design space
exploration. Artificial Intelligence in Design, Engineering and Manufacturing 13 (1999)
287-302

	Introduction
	Incrementally Constructing Design Representations
	A Subsumption Relationship over sorts
	Behavioral Specification for sorts
	Functional Descriptions
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

