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Abstract. History of a construction project can have a multitude of uses in sup-
porting decisions throughout the lifecycle of a facility and on new projects. 
Based on motivating case studies, this paper describes the need for and some is-
sues associated with capturing and representing construction project histories. 
This research focuses on supporting defect detection and decision-making for 
estimating an upcoming activity’s production rates, and it proposes an inte-
grated approach to develop and represent construction project histories. The 
proposed approach starts with identifying the data needs of different stake-
holders from job sites and leverages available automated data collection tech-
nologies with their specific performance characterizations to collect the data re-
quired.  Once the data is captured from a variety of sensors, then the approach 
incorporates a data fusion formalism to create an integrated project history 
model that can be analyzed in a more comprehensive way.  

1   Introduction 

The history of a construction project can have a multitude of uses in supporting  
decisions throughout the lifecycle of a facility and on new projects. Capturing and 
modeling construction project history not only helps in active project monitoring and 
situation assessment, but also aids in learning from the trends observed so far in a 
project to make projections about project completion. After the completion of a pro-
ject, a project history also provides information useful in estimations of upcoming 
projects.  

Many challenges exist in capturing and modeling a project’s history. Currently, 
types of data that should be collected on a job site are not clearly identified. Existing 
formalisms (e.g., time cards) only consider a single view, such as cost accounting 
view, on what data should be captured; resulting in sparse data collection that do not 
meet the requirements of other stake-holders, such as cost estimators and quality con-
trol engineers. Secondly, most of the data is captured manually resulting in missing 
information and errors. Thirdly, collected data are mostly stored in dispersed docu-
ments and databases, which do not facilitate integrated assessment of what happened 
on a job site. As a result, there are not many decision support systems available for 
engineers to fully leverage the data collected during construction. 

This paper provides an overview of findings from various case studies, showing 
that: (1) current data collection and storage processes are not effective in gathering the 
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data needed for developing project histories that can be useful for defect detection and 
cost estimation of future projects; (2) sensing technologies enable robust data collec-
tion when used in conjunction with a formalized data collection procedure; however, 
the accuracy of the data collected using such technologies is not well-defined. Find-
ings suggest a need for a formalized approach for capturing and modeling construc-
tion project histories. An example of such an approach, as described in this paper, 
starts with identifying different users’ needs from project histories, provides guidance 
in collecting data, and incorporates a framework for fusing data from multiple 
sources. With such formalism, it would be possible to leverage project histories to 
support active decision-making during construction (e.g., active defect detection) and 
proactive decision-making for future projects (e.g., cost estimation of future projects).  

2   Motivating Vignettes from Case Studies 

Four case studies were conducted in commercial buildings with sizes ranging from 
3,345 m2 to 12,355 m2, where laser scanners and temperature sensors were used in 
periodically collecting data from the job sites to actively identify defects [1].  In addi-
tion, we conducted a case study on a 19 km highway project, during which we identi-
fied a set of issues associated with data collection [2].  Currently, we are conducting 
another study on a 9 km of a roadway project, where we are trying to understand how 
to leverage and fuse the data collected by equipment on-board instrument (OBI) and 
other publicly available databases (e.g., weather database), to create a more compre-
hensive project history to support estimators in determining production rates in future 
projects [3].  Below summarizes some findings from these case studies. 

The need for and issues associated with data collection to support multiple decisions:  
Current data collection at job sites seems to support mostly the needs of construction 
schedule and cost control, yet data from job sites are useful for other tasks, such as 
active defect detection and situation assessment in current projects and estimating the 
production rates of activities in future ones. Such varying uses place different re-
quirements on data collection from sites.  For example, highly accurate information 
on geometric features of components is necessary to identify defects [4], versus gen-
eral information on processes and the conditions under which processes occur (i.e., 
contextual data) is helpful for estimating a production rate of a future activity [3].   

The case study findings showed that most of the data collected on site focused on 
the resources used for a given task, but the contextual data was rarely collected [2].  
Similarly, the available sources of data and related databases did not provide detailed 
information that can be used to assess why certain production rates were observed to 
be fluctuating when the same activity was performed in different zones and dates [3].  
As a result, the collected data was not useful in helping estimators in picking a pro-
duction rate among alternatives for a new project. 

Issues with manual data collection and utilization of sensing technologies: 
Current manual data collection processes utilized at job sites do not enable collecting 
required data completely and accurately. One of the cases showed large percentages of 
missing data describing the daily productivities of activities and the conditions under 
which such daily productions are achieved [2].  Even when collected, the quantity 
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information was described based on some indirect measures (e.g., number of truck-
loads of dirt moved out); resulting in inaccuracies in the data collected and stored.   

Utilization of sensing technologies (e.g., laser scanners, equipment OBIs), reduces 
the percentage of missing information. However, there can still be inaccuracy issues, 
if a sensor is not well calibrated and its accuracy under different conditions is not well 
defined. In certain cases, data collected from such sensors needs to be processed fur-
ther and fused to be in a format useful for decision makers.   

Issues with and the need for fusing data from multiple sources: 
Currently, data collected on job sites is stored in multiple dispersed documents and 
databases. For example, daily crew and material data are kept on time cards, soil con-
ditions are described on reports and production data are stored on databases associ-
ated with equipment OBIs. To get a more comprehensive understanding of how ac-
tivities were performed, one needs to either fuse data stored in such various sources or 
rely on his/her tacit knowledge, which might not be accurate. In a case study, when an 
engineer was asked to identify reasons for explaining the fluctuations in the excava-
tion work, he attributed it to fog in the mornings and the soil conditions. When the 
data collected from equipment OBIs merged along with the data collected in time-
cards, the soil profiles defined by USGS and the weather data, it was observed that the 
factors identified by him did not vary on the days when there were large deviations on 
production [3]. While this showed the benefits of integrating such data to analyze a 
given situation, the research team observed that it was tedious and time-consuming to 
do the integration manually. For instance, it took us approximately forty hours to fuse 
daily production data of a single activity with the already collected crew, material, 
and daily contextual data for a typical month.  

3   Vision and Overview of the Approach 

We have started developing and implementing an approach that addresses the identi-
fied issues and needs based on the case studies. This approach consists of two parts 
focusing on: (1) formalizing a data collection plan prior to the execution of construc-
tion activities (Figure 1); and (2) fusing the data collected and creating integrated 
project histories to support decision-making (Figure 2). So far, our research has fo-
cused on using such formalism to support defect detection on construction sites and to 
support estimation of production rates of activities occurring in future projects. 
Hence, the corresponding figures and subsections below highlight those perspectives.  

3.1   Formalization of a Data Collection Plan 

The data requirements of decision makers from job sites need to be incorporated prior 
to data collection. The first step in doing that is to understand what these requirements 
are, and how they can be derived or specified (Figure 1).  Since our research focus has 
been to support defect detection and cost estimation, we identified construction speci-
fications and estimators’ knowledge of factors impacting activity production rates as 
sources of information to generate a list of measurement goals.  

The approach leverages an integrated product and process model, depicting the as-
design and schedule information, and a timeframe for data collection, as input. Using 
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this, it first identifies activities that will be executed during that timeframe and the 
corresponding measurement goals, derived based on specifications and factors affect-
ing the production rates of those activities. Next, measurement goals identified for 
each activity are utilized to identify possible sources for data collection with the goal 
of reducing manual collection. Sources of data include sensors (e.g., laser scanners, 
equipment OBIs) and general public databases (e.g., USGS soil profiles, weather 
database). With this, the approach generates a data collection plan as an output. 

 

Fig. 1. An approach for generating a data collection plan 

Construction specifications provide information on the expected quality of the 
components by specifying the features of a product to be inspected and the tolerances 
to deduce the required accuracy for measurements. Specifications can be represented 
in a computer-interpretable way and can be used to automate the generation of meas-
urement goals for a given set of components [4].  

Creating a project history model to be utilized by estimators requires not only 
product related data, but also contextual data representing the conditions under which 
the activities were executed, so that estimators can understand what happened in the 
past, compare it to the current project’s conditions and make a decision accordingly.  
Therefore, within the scope of this research, project history can be defined as as-
design project information augmented with activity-specific as-built project data. As 
built project data are enriched with contextual data, which are captured and stored on 
a daily basis. We built on the factors identified in the literature (e.g., [3]) and have 
further extended it based on findings from a set of interviews conducted with several 
senior estimators in heavy-civil and commercial construction companies.  Table 1 
provides examples from an initial list of factors identified for excavation, footing and 
wall construction activities. The factors identified can be grouped under the categories 
of design-related factors, construction method-related factors, construction site-
related factors and external factors. Based on these factors, it would be possible to 
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generate a list of measurement goals for each activity, map them to a set of sensors 
and publicly-available databases that would help in collecting some of the data 
needed. As a result it would be possible to generate a data collection plan associated 
with each group of activity to be executed. 

Table 1. Initial findings on the factors affecting productivity of activities 

Factor Groups Specific examples of factors for excavation, foundation an wall 
construction activities 

Depth of cut, height, length and width of components 
Shape of cut/shape of component 
Total quantity of work for the entire project 
Number and sizes of openings in walls 
Existence of steps on walls and footings 

Design-Related  
Factors 

Rebar/Formwork to concrete ratio, rebar size 
Type and capacity of equipment, number of equipments 
Crew size and composition 
Stockpile dirt vs. haul off 
Method of forming and type of bracing used, formwork size 

Construction 
Method-Related 
Factors Material characteristics, such as concrete strength, soil type 

Site access constraints and space availability  
Moisture content of soil 

Construction 
Site-Related 
Factors Length, grade, direction, width of haul roads 
External Factors Time of year, weather, project location 

3.2   Data Fusion and Analysis for Creating and Using Project Histories 

Once a data collection plan is generated, it can be executed at the job site to collect 
the data needed. The next step is to process the data gathered from sensors and data-
bases and fuse them to create an integrated project history model that can serve as a 
basis to perform analysis for defect detection and cost estimation (Figure 2). Different 
components of such an approach are described below. 

3.2.1   Utilization of Sensors for Data Capture  
Many research studies have explored utilization of sensors on construction sites for 
automated data collection (e.g., [1,5,6]). In our research, we have explored the utiliza-
tion of laser scanners, Radio Frequency Identification (RFID), Global Positioning 
System (GPS), thermocouples, and equipment OBIs to capture data on job sites for 
supporting active defect detection and estimators’ decision-making. The selections of 
these technologies are based on the lessons learned from past and ongoing research 
projects within our research group [1,6]. Our experiments demonstrated that such 
technologies can enable the capturing of some of the data needed for project history 
models in an automated way [6].  

Our experiments also showed that the behaviors of such sensors vary greatly at job 
sites; hence manufacturers’ specifications might not be reliable in varying situations.  
For example, we observed that the reading ranges of active RFID tags was reduced by 
about 1/4th or 1/5th of the specified ranges when they were used to track precast ele-



20 B. Akinci, S. Kiziltas, and A. Pradhan 

ments [6]. Similarly, laser scanner accuracy varies considerably based on its incidence 
angle and distance from the target object [7]. While in most cases, the accuracy and 
the reliability of the data were observed to be better than the manual approaches, it is 
still important to have a better characterization of accuracies of sensors under differ-
ent conditions (e.g. incidence angle) when creating and analyzing project history 
models. Currently, we are conducting experiments for that purpose.  

 

Fig. 2. An approach for data fusion and analysis for creating and using project histories 

3.2.2   Formalization of Fusing Data from Multiple Sources 
Data collected from multiple sources need to be fused to have a more comprehensive 
assessment of a project. We have started to develop and evaluate a system 
architecture for data fusion purposes, based on Dasarathy’s fusion functional model 
[8], where the entire fusion processing is categorized into three general levels of ab-
straction as, the data level (sensor fusion), the feature level (feature fusion) and the 
decision level (decision fusion). 

In sensor fusion, the raw data from multiple sensors, which are measuring the same 
physical phenomena, are directly combined. For example, the data collected from 
GPS and RFID readers can be directly combined after initial corrections to track the 
location and ID of components respectively [6].  However, some sensors, such as 
laser scanners, cannot measure a component and its geometric features directly and 
hence, the data collected needs to be processed further and fused with other data at a 
feature and component level. In one of our research projects, laser scanner is being 
used to detect geometric deviations, i.e. length, height and width of building compo-
nents [1]. Since laser scanners provide point cloud data, the components and their 
features needed to be explicitly extracted from point clouds using 3D computer vision 
techniques [1]. The sensor and feature level fusions are done with appropriate proc-
essing agents (Fig 2).  
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The third level of fusion described in [8] is the decision level fusion, where the data 
fused at the sensor and feature levels are further integrated and analyzed to achieve a 
decision. We are leveraging different models such as-built product/process model and 
data collection model for decision level fusion (Fig 2).  Decision level fusion is chal-
lenging compared to sensor and feature level fusions, since the formalisms used in 
sensor and feature level fusions are well defined and can be identical across multiple 
domains.  However formalisms for decision-level fusion differ among domains since 
they need to support different decisions [9].. As discussed in Section 3.1., different 
tasks require different sets of data being collected and fused. Hence, the decision-
level fusion requires customized formalisms to be developed to enable the integration 
and processing of the data to support specific decisions. In our approach, decision-
level fusion formalisms are designed to generate the views (e.g. from the estimator’s 
perspective) that are helpful in supporting decisions to select a proper production rate. 
These formalisms are not meant to perform any kind of predictions or support case-
based reasoning.  

3.2.3   Formalisms for Data Interaction and Analysis to Support Active Defect 
Detection and Cost Estimating  

In this research, we have explored project history models to support defect detection 
during construction and in estimating production rates of future activities.  An ap-
proach implemented for active defect detection leverages the information represented 
in as-design models, construction specifications, and the as-built models, generated by 
processing the data collected from laser scanners.  It uses the information in specifica-
tions to identify the features of the components that are of interest for defect detection 
and compares the design and as-built models accordingly.  When there is a deviation 
between an as-design and an as-built model, it refers to the specifications to assess 
whether the deviation detected exceeds the tolerances specified.  If it exceeds the 
tolerances, then it flags the component as a defective component [4].  

In supporting estimators’ decision-making, we have been focusing on identifying 
and generating views from integrated project history models, so that estimators can 
navigate through the model and identify the information that they need to determine 
the production rates of activities in future bids.  Initial interviews with several estima-
tors from two companies showed that estimators would like to be able to navigate 
through production data in multiple levels (e.g., zone level, project level) and in mul-
tiple perspectives (e.g., based on a certain contextual data, such as depth of cut), and 
be able to compare alternatives (e.g., comparing productions on multiple zones) using 
such a model. These views will enable estimators to factually learn from what hap-
pened on a job site, and make the estimate for a similar upcoming activity based on 
this learning. We are currently implementing mechanisms to generate such views for 
estimators. 

4   Conclusions  

This paper describes the need for capturing and representing construction project 
histories and some issues associated with it for cost estimation and defect detection 
purposes. The approach described in the paper starts with identifying some data  
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capture needs and creating data collection plan for each activity to satisfy those needs. 
Since several case studies demonstrated that manual data collection is inaccurate and 
unreliable, the envisioned approach focuses on leveraging the data already stored in 
publicly-available databases and data collection through a variety of sensors. Once the 
data is captured from a variety of sensors, they should be fused to create an integrated 
project model that can be analyzed in a comprehensive way. Such analyses include 
defect detection and situation assessment during the execution of a project, and gen-
eration of information needed for estimators in determining the production rates of 
future activities.  
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