
Grey-Box Checking

Edith Elkind1, Blaise Genest1,2, Doron Peled1, and Hongyang Qu1,3

1 Department of Computer Science, Warwick, Coventry, CV4 7AL, UK
2 CNRS & IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

3 LIF, 39 rue Joliot Curie, 13453 Marseille Cedex 13, France

Abstract. There are many cases where we want to verify a system that
does not have a usable formal model: the model may be missing, out of
date, or simply too big to be used. A possible method is to analyze the
system while learning the model (black box checking). However, learning
may be an expensive task, thus it needs to be guided, e.g., using the
checked property or an inaccurate model (adaptive model checking). In
this paper, we consider the case where some of the system components
are completely specified (white boxes), while others are unknown (black
boxes), giving rise to a grey box system. We provide algorithms and lower
bounds, as well as experimental results for this model.

1 Introduction

Tools for analyzing a system (e.g., model-checkers) usually require an accurate
model of the system. However, such a model may be difficult to find: while some
tools can perform the analysis based on a model constructed directly from the
source code, there are few tools that can deal with a binary file or with a chip.
A recent paper [12] proposed a method of checking black box systems, that is,
systems for which we do not have a model. Later, it was extended to testing based
on an approximately accurate model that can be automatically changed when
discrepancies are found [9]. This approach is based on interactive learning of
finite state systems [2] combined with conformance testing [14,6], and has many
applications. For instance, [15] considers deriving a specification from observing
a system, and [7,1] apply these techniques in order to guess an efficient property
to be used as an interface in assume-guarantee reasoning.

In this paper, we extend the black box checking procedure of [12] to the case
where some parts of the system in question are known. Specifically, we focus on
the situation where we know the high level description of the system as well as
some of its components, while the internal structure of the remaining components
is unknown. We call such a system a grey box, and use the terms ‘white box’
and ‘black box’ to denote the known and the unknown parts, respectively. For
instance, a component in a distributed system or a module in a hierarchical
system can play the role of the (known) white box or the (unknown) black
box. We propose the framework of grey box checking in a concurrent system,
where several asynchronous components communicate with each other. We can
easily extend our approach and get good complexity bounds for (sequential)
hierarchical systems as well [8].

E. Najm et al. (Eds.): FORTE 2006, LNCS 4229, pp. 420–435, 2006.
c© IFIP International Federation for Information Processing 2006

Grey-Box Checking 421

In some settings, each component can be analyzed separately; in others, we can
only test the system as a whole. In both cases, the information available about
the white box can speed up the testing considerably. In the first case, the problem
essentially reduces to learning the unknown components and thus its complexity
does not depend on the size of the white box. For the more challenging case
where all components have to be run together, we show that the complexity
of checking the synchronous product B × W is substantially higher than the
complexity of black box checking B (the increase in complexity is exponential
in the size of the alphabet), but substantially lower than checking B × W as a
black box (the savings are exponential in |W|).

Our algorithms are based on the black box checking procedure of [12]. To
decrease complexity, we use conformance testers that are better suited to our
setup than the standard Vasilevskii-Chow algorithm [14,6]. Our first oracle relies
on enumerating all finite automata up to a certain size and has an almost opti-
mal worst case complexity. The second oracle combines the algorithm of [14,6]
with ideas from partial order reduction and performs better in some of our ex-
periments (see Section 6). Also, both algorithms use the information about the
white box to speed up the learning algorithm of [2]. The experimental data pro-
vided by a new tool we are developing shows that the best compromise is to run
both algorithms together, so that they help each other find discrepancies. This
appears to speed up the process by several orders of magnitude.

While our goal is similar to that of adaptive model checking [9], we see our
work as complementing the adaptive approach rather than replacing it. Indeed,
adaptive model checking uses an inaccurate model to help the learner; here,
we use partial but accurate information about the system being tested. The
usefulness of the adaptive model checking has been argued by [9], which demon-
strates that the learning algorithm is robust enough to deal with a partially
wrong specification. However, there are small modifications to the system (e.g.,
adding a new state that separates two components of the system) that cannot
be handled efficiently by this method. Our approach is likely to be successful
if the changes can be limited to a small part of the system, which will then be
treated as a black box. In particular, this applies to the case described above.
Moreover, sometimes the two techniques can be combined. For instance, we may
have an accurate model of a component, some old model of another component
that was changed since the model was made, and another component that is to-
tally unknown. Then we can use our approach for the product, and the adaptive
approach when analyzing the second component.

2 Preliminaries

A finite automaton is a tuple A = (S, s0, Σ, →) where

– S is the finite set of states,
– s0 is the initial state of A.
– Σ is the finite set of letters (alphabet) of actions.
– →⊆ S ×Σ × S is the deterministic transition function, that is, for all a ∈ Σ

and s, t, t′ ∈ S, if s
a−→ t and s

a−→ t′ then t′ = t.

422 E. Elkind et al.

We do not designate a set of accepting states; every state of A is consid-
ered to be accepting. A run ρ of A is a finite or infinite sequence of transitions
(vi, ai, vi+1) ∈→ with v0 = s0. An experiment is any sequence of labels in Σ∗.
Since every automaton that we consider is deterministic, any experiment is as-
sociated with at most one run. Abusing notation, we will identify a run with
the corresponding sequence of labels. The language L(A) of A is the set of all
maximal runs1. One can easily test whether an experiment u is a prefix of a run:
it suffices to feed the sequence u to the system after a reset, letter by letter, and
check that each time the next letter is enabled through executing a transition of
the system.

ok error

pause

data

send

pauseerror
data

send

ack

error

ack

resume

Fig. 1. The automaton Interface

2.1 The Black-Box Checking Procedure

Black-box checking was proposed in [12] for verification of (partially) unknown
systems. It is based on interleaving learning and model checking. In what follows,
we describe this approach in more detail.

The Learning Algorithm. In [2], Angluin describes an algorithm L∗ for learn-
ing the minimal deterministic automaton that corresponds to a given black
box A.

Angluin’s learning algorithm builds a candidate automaton A∗ by making
experiments on the system A, i.e., invoking a procedure test(v) that returns 1
if v is executable in the black box after a reset, and 0 otherwise. Once it has
obtained a candidate solution A∗ that is consistent with all experiments run
so far, it calls an oracle that checks whether L(A∗) = L(A). If not, the oracle
gives a minimal-size experiment σ (discrepancy) distinguishing A∗ from A, i.e.,
a sequence σ that is either in L(A) \ L(A∗) or in L(A∗) \ L(A). The learning
algorithm then uses σ to refine the current solution. Later, we show how to build
this oracle using Vasilevskii-Chow [14,6] algorithm.

To construct a candidate automaton, the algorithm keeps two sets of se-
quences: a prefix-closed set of access sequences V ⊆ Σ∗ and a suffix-closed set of
1 A run is maximal if it is not a prefix of another run.

Grey-Box Checking 423

distinguishing sequences W ⊆ Σ∗. Each sequence v in V corresponds to reaching
a state of A∗ by executing v from s0. Different sequences may lead to the same
state. Also, the algorithm keeps a table T : (V ∪ V.Σ) × W → {0, 1} such that
for any v ∈ V ∪ V.Σ we have T (v, w) = 1 if and only if vw ∈ L(A).

We define the equivalence ∼⊆ V ×V as v ∼ v′ if T (v, w) = T (v′, w) for every
w ∈ W . For (V, W) to represent an automaton, it is necessary that T is closed,
i.e., for every v ∈ V and a ∈ Σ s.t. T (v, a) = 1, there exists v′ ∈ V with v′ ∼ va.
If T is not closed because a is executable after v, but va �∼ v′ for all v′ ∈ V , we
add va to V . Also, we verify that the table T is consistent, i.e., for all v ∼ v′, if
T (v, a) = 1, then T (va, w) = T (v′a, w) for all w ∈ W . If this is not the case, the
sequence aw is added to W .

When the table T is closed and consistent, we set A∗ = ([V/ ∼], ε, Σ, δ), where
the transition relation δ is defined as follows. Let [v] be a ∼ equivalence class
of v. Set δ([v], a) = [v′] when v′ ∼ va. This relation is well defined when the
table T is closed and consistent. We then invoke the oracle on A∗. If the oracle
returns a discrepancy σ, for each prefix v of σ that is not in V , we add v to V
and update T accordingly.

Here is the formal description of one phase of the algorithm L∗ after the oracle
returned a discrepancy σ.

subroutine L∗(V, W, T, σ) returns (V, W, T) =
if T is empty then

let V := {ε}, W := Σ;
for each a ∈ Σ, set T (ε, a) according to test(a)

else
for each prefix v of σ do

add rows(v);
while T is inconsistent or not closed do

if T is inconsistent then
find v1, v2 ∈ V , a ∈ Σ, w ∈ W,

such that v1 ∼ v2 and T (v1a, w) �= T (v2a, w)
add column(aw)

else
find v ∈ V , a ∈ Σ,

such that va �∈ [u] for any u ∈ V
add rows(va)

end while
end L∗

Here, the procedure add rows(v) checks if v ∈ V , and if not, adds v to V and
fills the new rows in T , i.e., makes the experiments reset vaw for all w ∈ W and
all a ∈ Σ ∪ {ε}. Similarly, add column(w) adds a new distinguishing sequence
w to W and updates T (v, w) for each v ∈ V ∪ V.Σ by making the experiment
reset vw.

In our experiments, we use a modified version of L∗ algorithm proposed by
Rivest and Schapire [13]. The algorithm of [13] adds an appropriately chosen

424 E. Elkind et al.

suffix of the discrepancy to W (instead of adding prefixes concatenated by a
letter from Σ to V , as in Angluin’s algorithm). Also, Rivest and Schapire noticed
that consistency check is also performed by the conformance algorithm. In fact,
this is exactly what is done by Vasilevskii-Chow algorithm when l = 1 (see next
subsection). Therefore, in their version of the learning algorithm they omit the
consistency check.

Let n be an upper bound on the number of states of the minimal deterministic
automaton modeling the black box. Suppose that any counterexample returned
by the oracle is of size O(n) (this is indeed the case for all oracles considered in
this paper). Then for the Rivest–Schapire version of the L∗ algorithm we have
the following result.

Proposition 1. [13] The L∗ algorithm makes O(n2|Σ|) membership queries and
at most n calls to the oracle. Its running time is O(n3|Σ|)+Toracle, where Toracle

is the total time spent by the oracle.

Vasilevskii-Chow Algorithm. The oracle is built using the Vasilevskii-Chow
algorithm. This algorithm uses the sets V, W and a known upper bound n on the
size of the minimal deterministic automaton modeling the black box. In order to
check whether A = A∗, VC algorithm runs both automata on some sequences
y ∈ Σ∗. We write check(y) = 1 if y is either in L(A) \L(A∗) or in L(A∗) \L(A).
The sequences that are tested are those of the form y = vxw with v a selected
representative per each equivalence class of [V/ ∼], w ∈ W and |x| ≤ n−|[V \ ∼]|.
Intuitively, if two equivalent access sequences are not consistent, then one is not
consistent with the actual black box and a new distinguishing sequence can be
found.

VC(V,W,n):
k = sizeof([V/ ∼]);
for l = 1, . . . , n − k

for each word x of size l, c ∈ [V/ ∼], w ∈ W
let v be an arbitrary representative of c;
if check(vxw) then return vxw;

return void;

Proposition 2. [14,6] It is sufficient to test sequences of the form y = vxw
with v selected as representative for each equivalence class of [V/ ∼], w ∈ W
and |x| ≤ n − k in order to find a difference between A∗ and A, where k is the
number of equivalent classes of [V/ ∼] and n is a bound on the number of states
of A. The algorithm makes k2|Σ|n−k+1 membership queries. Its time complexity
is O(nk2|Σ|n−k+1).

Observe that the L∗ algorithm invokes Vasilevskii-Chow algorithm at most n
times, and after each call the value of k increases by at least 1. Therefore, the
total number of queries made by Vasilevskii-Chow algorithm during these calls
is at most |Σ|n + 4|Σ|n−1 + · · · + n2|Σ| = O(n2|Σ|n), and the total time spent
by Vasilevskii-Chow algorithm is O(n3|Σ|n).

Grey-Box Checking 425

Black Box Checking. Finally, we describe the black box checking procedure
[12], which is a way to test whether a given black box A satisfies a property ϕ.
The property ϕ describes a set of allowed (or good) runs. We assume that it is
written in some formal notation such as LTL or Büchi automata, Let L(ϕ) be
the set of runs (the language of) the specification ϕ. We denote by A |= ϕ (A
satisfies ϕ) the fact that L(A) ⊆ L(ϕ).

Suppose that we are given a (partially) unknown system A. Our goal is to
check whether there exists a run of A that does not satisfy ϕ. Such a run is called
a counterexample. To do so, we infer an automaton A∗ by running experiments on
A. We begin by using the learning algorithm initialized with V = ε and W = Σ.
Then we feed the model checker with the candidate automaton A∗. The model
checker tests whether A∗ satisfies ϕ. If not, it outputs a counterexample σ such
that σ ∈ L(A∗) \ L(ϕ). We then test σ on A. If σ ∈ L(A), we have found a
genuine counterexample. Otherwise, σ is a discrepancy between A and A∗ and
can be used to change A∗ so that it models A more accurately. If A |= ϕ, we
will have to repeat this procedure until L(A∗) = L(A). However, if A �|= ϕ, we
may find a counterexample before we learn A.

3 Our Model

We associate a set of components (Si, si
0, Σ

i, →i) with the automaton G =
(
∏

Si,
∏

si
0,

⋃
Σi, →), where

∏
i=1,...,n(si)

a−→
∏

i=1,...,n(ti) iff for all i, either
a /∈ Σi and si = ti, or a ∈ Σi and si

a−→ ti. We want to verify a property of the
whole system G, and we know the alphabet Σi used by every component (if not
we take Σi = Σ).

As a running example, we consider a data acquisition system (DAS) similar
to the one used in [16]. It consists of three components Interface, Command,
Sensor, which communicate as follows. The Command can request the Sensor
to send a data to the Interface. The Sensor can inform the Interface that an
error occurred. Finally, the Interface can stop and resume the Command, and
send the data it received to the environment, receiving acknowledgement from
it. Assume that the Interface is given by the automaton in Figure 1; the other
two components are unknown. In the beginning, we assume that both Sensor
and Command can always perform each of their internal actions. Alternatively, if
we only have an old specification of these components, we can use it to initialize
these components, as is done in adaptive model checking [9]. We want to verify
that between one pause and one send, the system G always performs a resume.
Of course, a bad sequence of actions seems possible with this Interface, with the
trace error pause data send, but this error may not be possible in the system
with the actual Command and Sensor.

The algorithm that we use depends on whether the components can be an-
alyzed separately, or only as a whole. The latter case may occur if, for in-
stance, the communication is coded in a special way, or if the system is on a
chip.

426 E. Elkind et al.

4 Independent Components

In this section, we assume that we can perform a test w on any black box
B. Our algorithm is a slight modification of the black box checking algorithm.
Let W be the product of all white boxes. Our goal is to model check the system
G = W×

∏
i≤l(Bi). Suppose |W| = m, |Bi| ≤ n for all i = 1, . . . , l, i.e., |G| ≤ mnl.

We repeat the following steps until we find a counterexample or construct a
product automaton G∗ with L(G∗) = L(G).

– Execute the learning algorithm for each Bi separately to construct candidate
automata B∗

i .
– Model check the product G∗ = W ×

∏
i≤l(B∗

i).
– If no counterexample is found, call the conformance tester on every black

box separately and feed the discrepancies to the learning algorithm.
– If a counterexample σ is found, then for all i, set σi = πΣi(σ), where πΣi(σ)

is the projection of σ on the alphabet Σi, and test σi on the black box Bi.
If each of these tests passes, then the algorithm terminates and returns σ
as a real counterexample. Otherwise, we have discrepancies (one per each
component), which we then pass to the learner for each black box.

Proposition 3. The maximal number of tests performed during the black box
checking of a system W ×

∏
i≤l Bi is O(l n2 |Σ|n). The time complexity of this

procedure is O(l n3 |Σ|n).

Observe that the time complexity of running the black box testing procedure
on G is O(m3n3l |Σ|mnl

). Thus, it is highly profitable to learn the components
separately. For both algorithms, we can apply the method in an incremental way
(increasing the size of the tested automata used by the Vasilevskii-Chow algo-
rithm, up to n). In case that the checked system does not satisfy the specification,
we typically find it much quicker than the worst case complexity (see [12]).

We now show how this algorithm behaves on the data acquisition example.
We begin by model-checking the candidate system against our property (between
one pause and one send, the system G always performs a resume), and find a
first possible counterexample: error pause data send. We find out that Sensor
never emits an error as its first execution (rather, it does nothing without
receiving an action request). Thus, we learn that the current model for Sensor
is wrong and we ask the learner to give a better approximation. The learner
comes up with the following table (the rows contain the access sequences V ,
the columns contain the distinguishing sequences of W initialized with Σ). A√

in the table means that w ∈ W is executable after v ∈ V . This table can be
interpreted as the following automaton for Sensor:

Then, the model-checker verifies the new system with the new Sensor, and
finds no errors since the action error is not allowed in the current model of
Sensor. Hence, the conformance tester checks both the Sensor and the Command.
For Sensor, the conformance tester comes up with the distinguishing sequence
request error which is fed to the learner.

Grey-Box Checking 427

ε req

request

data

request
T (v, w) req data error

ε
√ x x

req √ √ x
req,req √ √ x
req,data √ x x

Fig. 2. First inferred black box Sensor: experiment Table and corresponding automaton

5 Testing a Grey Product

A more restrictive scenario is when we can only test whether σ ∈ B × W. In
what follows, we describe several new algorithms for this setting. Despite their
simplicity, it turns out that our algorithms are almost optimal. We prove this by
showing an (almost) matching lower bound. We focus on the case when there is
one white box W of size m and one black box B of size n. If there are several
black boxes that cannot be tested separately, we consider B to be their product.
In some cases, B cannot be learned exactly. For instance, if b is in the intersection
of both alphabets and W has no transition labeled by the letter b, then we cannot
decide whether any state of B has a transition labeled by b. Therefore, our goal
is to learn a black box B∗ that satisfies L(B × W) = L(B∗ × W). As W can
be a machine that accepts every word of Σ∗, our problem is a generalization
of black-box learning. This implies that one needs at least n2 × |Σ|n tests. We
can also ignore what we know about W and treat B × W as a black box of size
mn. This shows that it suffices to perform O((mn)2 × |Σ|nm) tests of size nm.
Clearly, if m is much bigger than n, this approach does not seem attractive.

5.1 Lower Bounds

We start by proving two new lower bounds. They imply that testing a black box
combined with a known white box is much more difficult than testing the black
box alone. In particular, unlike in black box checking, the number of tests may
have to be exponential in the size of the alphabet.

Proposition 4. For any n ∈ N, |Σ| even, and x, y �∈ Σ, there exists a family of
black boxes F = (Br)r∈R and a white box W with |Br| ≤ n+1, |W| ≤ n|Σ|2 such
that 2Ω(n|Σ|) tests of size Ω(n|Σ|) are needed to distinguish between Br ×W and
Br′ × W.

Proof. The automata in F are constructed as follows. Any automaton in this
family has n + 1 states s0, . . . , sn and uses the alphabet Σ∪{x, y}. For each
1 ≤ i ≤ n, let Σi be a subalphabet of Σ of size |Σ|/2. There is a transition
si

a−→ si for every a ∈ Σi and a transition si
a−→ s0 for every a ∈ Σ \ Σi. Also,

for i = 1, . . . , n − 1 there is a transition si
x−→ si+1. The only transition labeled

by y is sn
y−→ s0. Finally, s0

a−→ s0 for every a �= y. Every choice of subalphabets

428 E. Elkind et al.

s1 s2 s3 sn

s0

x x

Σ \ Σ1

Σ \ Σ2 Σ \ Σ3
y

Σ1 Σ2 Σ3 Σn

Σ ∪ {x}

x

Fig. 3. A black box in BB

(Σ1, · · · , Σn) defines a black box in F , which means that |F| = (|Σ|
|Σ|/2)

n. Using
Stirling’s formula, we obtain |F| = 2Ω(n|Σ|).

To describe the white box W , we fix a strict order ≺⊆ Σ × Σ on letters.
Intuitively, we want W to accept words that consist of n blocks of |Σ|/2 letters
from Σ separated by x’s, followed by a y; within each block, the letters should be
ordered according to ≺. More formally, W is the minimal deterministic automa-
ton that accepts prefixes of the words w1 · · ·wt, t = n(|Σ|/2 + 1), that satisfy
the following: wt = y, wi(|Σ|/2+1) = x for all i = 1, . . . , n− 1, and finally, for any
i such that i mod |Σ/2| + 1 �= 0, 1, we have wi−1 ≺ wi. It is not hard to see
that W can be implemented using n|Σ|2 states.

Clearly, any word of the form w1 · · · wt accepted by W is a word of the black
box associated with (Σ1, . . . , Σn), where Σi consists of the letters in the ith
block of w. On the other hand, all other black boxes do not accept this word.
This implies that we need at least 2Ω(n|Σ|) tests of size Ω(n|Σ|) each. �

Our second bound shows that the size of the counterexample cannot be bounded
by a number lower than nm. Hence, the Vasilevskii-Chow approach of testing
every sequence of a bounded size will require at least |Σ|nm tests.

Proposition 5. Let n �= m be two prime numbers. There exists a white box W
with m + 1 states and two black boxes B, B′ of size at most n + 1 such that a
word of size nm is needed to distinguish between B × W and B′ × W.

Proof. For all r > 0, consider an automaton Ar with r + 1 states s1, · · · , sr+1

and transitions si
a−→ si+1 for all i < r, sr

a−→ s1, and sr
b−→ sr+1. The regular

language accepted by Ar is a∗ + (ar−1)(ar)∗b.
If W = Am and B = An, it is easy to see that the smallest word of G that

contains b is amn−1b because m and n are distinct primes. This is the smallest
word that distinguishes W × B from W × B′, where B′ is the automaton with
one state s and s

a−→ s. �

Grey-Box Checking 429

5.2 An Almost Optimal Algorithm

It is not hard to identify the automaton that corresponds to the black box by
considering all automata of size at most n.

Proposition 6. Let B be a black box of size at most n and W a known automa-
ton of size m. One can learn B × W with at most 2n×|Σ|×logn tests of size at
most 2nm − 1.

Proof. Let (Br)r∈{0,··· ,l} be the family of all deterministic finite automata of size
at most n. For all r < l, if Br × W and Br+1 × W agree on all words of size
at most 2nm − 1, they are equivalent. Otherwise, they have a distinguishing
sequence, i.e., a word w of size at most 2nm − 1 such that w ∈ Br × W and
w /∈ Br+1 × W or vice versa. It suffices to test this word to make sure that
B �= Br+1 or B �= Br. Observe that w can be chosen as the smallest sequence in
(L(B∗

r) ∩ L(B∗
r+1) ∩ L(W)) ∪ (L(B∗

r+1) ∩ L(B∗
r) ∩ L(W)). Moreover, since B∗

r is
deterministic, computing its complement B∗

r is easy. Hence, we have to perform
at most l tests of size at most 2nm−1 to find a Br such that Br×W = B×W . To
finish the proof, note that the number of automata of size at most n is bounded
by 2n×|Σ|×log n. �

The worst-case running time of the algorithm described above is very close to the
lower bound of Proposition 4. In other words, our algorithm is almost optimal.
However, it is impractical since it has to test every possible automaton with-
out learning anything before the very last test is performed. Thus, its average
complexity is equal to its worst case complexity. On the other hand, if we apply
the black box learning algorithm described in Section 2.1 to our grey box, the
worst case complexity will be exponential in m, but the average complexity will
be much lower. In what follows, we show how to combine the two approaches to
construct an algorithm that needs at most 2n×|Σ|×log n +mn tests of size at most
2mn − 1 in the worst case, but can be expected to do much better on average.
The experiments in Section 6 show that this is indeed the case.

Our algorithm uses the learning algorithm L∗ on the grey box G = B × W .
Whenever L∗ produces a candidate solution G∗, we check that G∗ does not accept
sequences in W ; any such sequence is a discrepancy and can be used to refine
G∗. Then, instead of using Vasilevskii-Chow algorithm for conformance testing,
we use an oracle that only tests the candidate solution G∗ proposed by L∗ on the
distinguishing sequences considered in Proposition 6. More precisely, we generate
automata of size up to n one by one. Let B′ = Bi be the most recently generated
such automaton. We compute a distinguishing sequence for B′ × W and G∗ and
test it on the grey box. Clearly, either B′ × W or G∗ will behave differently from
G. If B′ × W �= G, we conclude that B′ �= B, so we set B′ = Bi+1. If G∗ �= G,
we have a discrepancy on G∗ allowing refinement with L∗. Clearly, the first case
can occur at most 2n×|Σ|×log n times, and the second case can occur at most
mn times (each time, the size of G∗ increases). Therefore, the total number of
tests is at most 2n×|Σ|×logn + mn. Moreover, as |G∗| ≤ mn, the length of each
experiment is at most 2mn − 1.

430 E. Elkind et al.

For this algorithm to be efficient, we need to eliminate early many automata.
To do so, we use the information about B provided by tests made by L∗. Namely,
if wa is executable in B × W , then it is executable in B. If wa is executable
in W , but not in B × W , then we know that it is not executable in B. To
generate the automaton, for each state and label we choose the destination of
the transition from this state with this label. The number of automata generated
depends heavily on the order in which we generate the transitions. Worse yet, the
best ordering may change a lot with the choice of transition. Hence, we decide
not to impose this order statically but to determine it dynamically: the next
transition chosen is the one that makes the largest number of tests progress,
so that hopefully a contradiction is reached and every extension of the current
automaton is eliminated.

Another technique to speed up the algorithm is to use information about the
white box in order to lower the number of distinguishing sequences per state
of the candidate solution. We denote by white(v) the state of W reached after
reading the sequence v ∈ V , where V is an access sequence for the grey box. We
also denote by Ws the distinguishing sequences needed to distinguish the states
in {v ∈ V | white(v) = s}, for each state s of W . Recall that in Section 2.1 we
defined an equivalence relation ∼ on V × V . We can refine ∼ as follows: v ∼ v′

iff white(v) = white(v′) = s and for all w ∈ Ws, T (v, w) = T (v, w′). Our closure
and consistency checks are based on this new equivalence. The modified L∗

algorithm only fills those lines T (v, w) with w ∈ Wwhite(v). Notice that |Ws| ≤ n.
It may be the case that white(v) = white(v′) with v and v′ accepting the same
language, and hence we may have to apply a minimization procedure to get a
minimal automaton.

5.3 An Algorithm Based on Partial Order Reduction

Another way to reduce the number of experiments in the conformance step is
to use the information about the alphabet. This approach is inspired by partial
order reduction [4]. Suppose that we know an independence relation I given by
I = Σ2 \ D, with (a, b) ∈ D iff a, b ∈ Σi for some i. For instance, in the data
acquisition example, (request, send) ∈ I.

Definition 1. Let σ, ρ ∈ Σ∗. Define σ
1≡ρ iff σ = uabv and ρ = ubav, where

u, v ∈ Σ∗, and a I b.

That is, ρ is obtained from σ (or vice versa) by commuting an adjacent pair of
letters.

Definition 2. Let σ ≡ ρ be the transitive closure of the relation
1≡. This relation

is often called trace equivalence [10].

For example, for Σ = {a, b} and I = {(a, b), (b, a)} we have abbab
1≡ababb and

abbab ≡ bbbaa.
Let
 be a total order on the alphabet Σ. We call it the alphabetic order. We

extend
 in the standard alphabetical way to words, i.e., v
 vu and vau
 vbw
for v, u , w ∈ Σ∗, a, b ∈ Σ and a
 b.

Grey-Box Checking 431

Definition 3. Let σ ∈ Σ∗. Denote by σ̃ the least string under the relation

that is trace equivalent to σ. If σ = σ̃, then we say that σ is in lexicographic
normal form (LNF) [11].

Our approach is based on using L∗ algorithm together with Vasilevskii–Chow
conformance oracle. However, instead of checking all sequences of the form vxw,
we only check the ones where x is in LNF. Clearly, this preserves the correct-
ness of our algorithm. In what follows, we show that by using appropriate data
structures, we can ensure that the overhead due to generating sequences in LNF
is not too big. This is also confirmed by our experimental results (see Section 6).

Denote by α(σ) the set of letters occurring in σ. Let ≺σ be a total order on
the letters from α(σ) called the summary of σ. It is defined as follows:

Definition 4. Define a ≺σ b if the last occurrence of a in σ precedes the last
occurrence of b in σ. That is, a ≺σ b if and only if σ = vaubw, where v ∈ Σ∗,
u ∈ (Σ \ {a})∗, w ∈ (Σ \ {a, b})∗.

Lemma 1. Let σ ∈ Σ∗ be in LNF, and a ∈ Σ. Then σa is not in LNF exactly
when we can decompose σ = vu, such that (a) vau ≡ vua and (b) vau
 vu.

Intuitively, this means that we can commute the last a in vua backwards over u to
obtain a string that is smaller in the alphabetic order than vu. Note that it is not
sufficient to check locally that a does not commute with the previous letter, i.e.,
the case with |u| = 1. Consider Σ = {a, b, c} and I = {(a, b), (b, a), (b, c), (c, b)}.
Then ca is in LNF, while cab ≡ bca, where bca
 ca.

Proof. If the two conditions (a) and (b) hold, then obviously vua cannot be
in LNF since it is not minimal under the alphabetic order among sequences
equivalent to it.

Conversely, let ρ be the minimal string such that ρ ≡ σa. Denote by first(v)
the first letter of a nonempty string v. Let v be the maximal common prefix of
ρ and σ (and thus also of σa). Write σ = vu (as in (i)), and ρ = vw. Consider
the following cases:

1. w starts with an a.
(a) u1 does not contain an a. Then au ≡ ua, satisfying (ii).
(b) u contains a. Write u = u1au2, where u contains no a. Then u = u1au2 ≡

au1u2. Since ρ = vw
 vua, we have that a = first(w)
 first(u1) =
first(u). Thus, vau1u2
 vu1au2 = vu, a contradiction to the fact that
σ is in LNF.

2. Write w = w1aw2, where w2 does not contain an a. Then, w = w1aw2 ≡
w1w2a ≡ ua and thus w1w2 ≡ u. Since vw
 vu, we have that first(w1) =
first(w)
 first(u). Thus, vw1w2
 vu = σ and vw1w2 ≡ vu. This contra-
dicts the fact that σ is in LNF. �

The following Lemma shows how we can use a summary to decide whether σa is
in LNF. Since |σ| is usually quite larger than the size of the summary (essentially
|Σ|), this makes the generation of normal forms much more efficient.

432 E. Elkind et al.

Lemma 2. Let σ ∈ Σ∗ be in LNF with a summary ≺σ and a ∈ Σ. Then σa is
not in LNF exactly when there is b ∈ α(σ) such that a
 b and for each c such
that b �σ c, aIc.

In words, this means that it is sufficient to check the commutativity of a with a
suffix of the summary that commutes with a, and look among these letters for
one that comes after a in the alphabetic order. This replaces a similar check for
an actual suffix of σ.

Proof. Suppose that σ is in LNF and σa is not. Let u be the shortest suffix of σ
according to the conditions of the previous lemma, i.e., σ = vu and vau ≡ vua.
Let b be the head of u. Then a
 b. Let C = α(u). We have aIc for each c ∈ C,
hence at least for each b �σ c.

Conversely, let b ∈ α(σ) a letter satisfying the conditions of the Lemma. Let
u be the shortest suffix of σ that begins with b. Since ≺σ is the summary of σ,
it follows that all the letters c ∈ α(u) satisfy b �α(σ) c, hence aIc. This means
that (a) and (b) from the previous lemma hold. �

For instance, assume we have request � data � error � resume � pause �

send � ack. Then if the action error is seen, the new order � will be request
� data � resume � pause � send � ack � error.

Like in other partial order approaches, this algorithm can provide us with a
reduction that is at most exponential in the number of concurrent (e.g., indepen-
dent black box) components. Conversely, in other extreme cases, there can be
no reduction at all. It is worth noting that the same idea can be used to improve
the learning algorithm. Namely, two equivalent (with respect to commutation)
states will never be distinguished, hence the tests for one are copied from the
other one.

6 Experimental Results

Our implementation prototype for grey box checking is written in SML and in-
cludes roughly 6000 lines of code. We use three kinds of examples: an artificially
pathological example simple n with n components, DAS (data acquisition sys-
tem) with 4 components from [16] with every event observable, and finally, a
system in which the memory is incremented and decremented by two processes
through a COMA coherency protocol with unobservable actions (COMA was
already used in [9], though modeled differently). The two different versions of
COMA correspond to different initializations of the memory. Notice that we only
include the learner/conformance part, since the model checking part is the same
for all algorithms considered. The algorithms are based on Rivest–Schapire’s
version of the learning algorithm L∗, but call different conformance testers: VC
for the usual Vasilevskii-Chow algorithm, LNF for VC generating only sequences
in LNF, GBC for Grey Box Checking, i.e., generating distinguishing sequences
from the possible automata, and LNFGBC, which uses mainly LNF with calls
to GBC when no short sequences were found by LNF.

Grey-Box Checking 433

For each example, we indicated the number of states of the product G to
learn, the number of letters of the alphabet, and the size ‘leng.’ of the largest
experiment needed to distinguish two different states. Then for each algorithm,
we give the number of experiments needed to learn the whole system (M indicates
millions). We also give an indicative value of the time needed in parentheses, in
minutes (or seconds if ‘s’ is specified). All tests were realized on a P-M@1.2Ghz
with 256MB of dedicated memory. In Grey Box Checking, we consider only one
component as known, the other components being black boxes that cannot be
tested separately. In COMA, the black box B and the white box W are close in
size. In simple 2, W is much bigger than B. For DAS and simple 4, B is much
bigger than W .

example states letters leng. VC LNF GBC LNFGBC
simple 2 19 2 18 .5M (9) .5M (9) 388 (1s) 444 (1s)
simple 4 82 6 9 7.2M (22) 2.3M (3) too long 2.3M (4)

DAS 73 12 4 .25M (13s) .13M (8s) too long .13M (10s)
COMA(1) 48 8 6 9.8M (33) 5.7M (16) 1821 (120) .4M (2)
COMA(2) 48 8 7 46M (190) 25M (75) 1731 (170) .4M (2)

Partial Order

– The overhead in time due to the computation of the lexicographic normal
form (LNF) is negligible in all the tests we did.

– Apart from simple 2, which has no commutation, partial order results in a
speedup by a factor of 2 to 7. While the speedup in DAS is due to the equiv-
alence relation that we consider on states (the length of the distinguishing
sequences is too small), the longer the distinguishing sequences are, the more
commutations can be found and the better the speedup is.

Grey Box Checking

– GBC tests very few distinguishing sequences compared with LNF. However,
the time taken is not linear in the number of tests performed.

– simple 2 is the pathological case for VC, which explains why Grey Box
Checking succeeds. One is, however, unlikely to find such cases in real life.

– In many cases, a pure Grey Box Checking approach is unpractical. However,
a distinction should be made between two cases: In Simple 4, no informa-
tion guides the generation of automata. Even generating all automata with
3 states takes hours, and is useless. On the other hand, in the more realis-
tic DAS example, the initialization gives a lot of information. Although the
number of letters is high, every automaton of size 8 respecting the informa-
tion can be generated within 90 seconds. There are roughly 430,000 such
(partial) automata, compared to about 896 if no information was known.

– When VC is efficient (‘leng.’ is small), Grey Box Checking is useless (DAS).
– Using LNFGBC, i.e., combining Grey Box Checking and LNF can be much

more efficient than any of them separately in non-artificial cases (COMA).

434 E. Elkind et al.

Moreover, the overhead of GBC as a helper of LNF is small even in the
case where GBC is useless, and can lead to impressive speedup (100 times
in COMA(2)).

– Many improvements are possible, e.g., using some of the tests realized by
LNF as information to guide the generation of automata.

7 Conclusion

Black box checking [12] was suggested as a way to directly verify a system when
its model is not given but a way of conducting experiments is provided. In this
paper we studied an extension of this problem, where our system is decomposed
into a known part (white box) and unknown part (black box, or a collection of
concurrently operating black boxes).

In particular, one of the most interesting cases that we address here is that
of an unknown system (i.e., a black box) that is connected to a device whose
specification is given (a white box), where both components are coupled, i.e., we
can perform the experiments only on the combined system. We prove that the
complexity of verifying such a system is strictly in between that of verifying the
properties of the black box alone and that of considering the complete structure
as a big black box for which no specification is given. We provide algorithms and
heuristic methods for verifying such systems.

We implemented the proposed algorithms and showed that this approach can
be practical. We performed several experiments verifying that the overhead of
these techniques is small, while in some real life cases, the speedup over the black
box checking algorithm can be up to two orders of magnitude.

References

1. R. Alur, P. Madhusudan, and W. Nam. Symbolic Compositional Verification by
Learning Assumptions. In CAV’05, LNCS, 2005.

2. D. Angluin. Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation, 75, 87-106 (1987).

3. R. Alur, R. Grosu and M. McDougall. Efficient Reachability Analysis of Hierar-
chical Reactive Machines In CAV’00, LNCS 1855, p.280-295, 2000.

4. E. M. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, 1999.
5. E. Clarke, D. Long, K. McMillan. Compositional Model Checking. In LICS’89,

IEEE , p.353-362, 1989.
6. T.S. Chow. Testing software design modeled by finite-states machines. In IEEE

transactions on software engineering, SE-4, 1978, 178-187.
7. J. Cobleigh, D. Giannakopoulou, C. Pasareanu. Learning Assumptions for Com-

positional Verification. In TACAS’03, LNCS 2619, p.331-346, 2003.
8. E. Elkind, B. Genest, D. Peled and H. Qu. Grey-Box Checking. Internal Report,

available at http://www.crans.org/~genest/EGPQ.ps.
9. A. Groce, D. Peled and M. Yannakakis. Adaptive Model Checking. In TACAS’02,

LNCS 2280 , p.357-370, 2002.
10. A. Mazurkiewicz, Trace Semantics, Proceedings of Advances in Petri Nets, 1986,

Bad Honnef, Lecture Notes in Computer Science, Springer Verlag, 279–324, 1987.

http://www.crans.org/~ genest/EGPQ.ps

Grey-Box Checking 435

11. E. Ochmanski, Languages and Automata, in The Book of Traces, V. Diekert, G.
Rozenberg (eds.), World Scientific, 167–204.

12. D. Peled, M. Vardi and M. Yannakakis. Black Box Checking. In FORTE/PSTV’99,
1999.

13. R. Rivest and R. Schapire. Inference of Finite Automata Using Homing Sequences.
Information and Computation, 103(2), p.299-347, 1993.

14. M.P. Vasilevskii. Failure diagnosis of automata. Kibertetika, no 4, p.98-108, 1973.
15. W. Weimer and G. Necula Mining Temporal Specifications for Error Detection.

In TACAS’05, LNCS 3440, p.461-476, 2005.
16. G. Xie and Z. Dang. Testing Systems of Concurrent Black-boxes - an Automata-

Theoretic and Decompositional Approach. In FATES’05, LNCS, 2005.

	Introduction
	Preliminaries
	The Black-Box Checking Procedure

	Our Model
	Independent Components
	Testing a Grey Product
	Lower Bounds
	An Almost Optimal Algorithm
	An Algorithm Based on Partial Order Reduction

	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

